DOE Office of Scientific and Technical Information (OSTI.GOV)
Rembold, Randy Kai; Hart, Darren M.; Harris, James Mark
Sandia National Laboratories has tested, evaluated and reported on the Geotech Smart24 data acquisition system with active Fortezza crypto card data signing and authentication in SAND2008-. One test, Input Terminated Noise, allows us to characterize the self-noise of the Smart24 system. By computing the power spectral density (PSD) of the input terminated noise time series data set and correcting for the instrument response of different seismometers, the resulting spectrum can be compared to the USGS new low noise model (NLNM) of Peterson (1996), and determine the ability of the matched system of seismometer and Smart24 to be quiet enough formore » any general deployment location. Four seismometer models were evaluated: the Streckeisen STS2-Low and High Gain, Guralp CMG3T and Geotech GS13 models. Each has a unique pass-band as defined by the frequency band of the instrument corrected noise spectrum that falls below the new low-noise model.« less
NASA Astrophysics Data System (ADS)
Sano, Kimikazu; Nagatani, Munehiko; Mutoh, Miwa; Murata, Koichi
This paper is a report on a high ESD breakdown-voltage InP HBT transimpedance amplifier IC for optical video distribution systems. To make ESD breakdown-voltage higher, we designed ESD protection circuits integrated in the TIA IC using base-collector/base-emitter diodes of InP HBTs and resistors. These components for ESD protection circuits have already existed in the employed InP HBT IC process, so no process modifications were needed. Furthermore, to meet requirements for use in optical video distribution systems, we studied circuit design techniques to obtain a good input-output linearity and a low-noise characteristic. Fabricated InP HBT TIA IC exhibited high human-body-model ESD breakdown voltages (±1000V for power supply terminals, ±200V for high-speed input/output terminals), good input-output linearity (less than 2.9-% duty-cycle-distortion), and low noise characteristic (10.7pA/√Hz averaged input-referred noise current density) with a -3-dB-down higher frequency of 6.9GHz. To the best of our knowledge, this paper is the first literature describing InP ICs with high ESD-breakdown voltages.
NASA Technical Reports Server (NTRS)
Kleinberg, L. L. (Inventor)
1984-01-01
A bandpass amplifier employing a field effect transistor amplifier first stage is described with a resistive load either a.c. or directly coupled to the non-inverting input of an operational amplifier second stage which is loaded in a Wien Bridge configuration. The bandpass amplifier may be operated with a signal injected into the gate terminal of the field effect transistor and the signal output taken from the output terminal of the operational amplifier. The operational amplifier stage appears as an inductive reactance, capacitive reactance and negative resistance at the non-inverting input of the operational amplifier, all of which appear in parallel with the resistive load of the field effect transistor.
A study of the optimization method used in the NAVY/NASA gas turbine engine computer code
NASA Technical Reports Server (NTRS)
Horsewood, J. L.; Pines, S.
1977-01-01
Sources of numerical noise affecting the convergence properties of the Powell's Principal Axis Method of Optimization in the NAVY/NASA gas turbine engine computer code were investigated. The principal noise source discovered resulted from loose input tolerances used in terminating iterations performed in subroutine CALCFX to satisfy specified control functions. A minor source of noise was found to be introduced by an insufficient number of digits in stored coefficients used by subroutine THERM in polynomial expressions of thermodynamic properties. Tabular results of several computer runs are presented to show the effects on program performance of selective corrective actions taken to reduce noise.
A general numerical analysis program for the superconducting quasiparticle mixer
NASA Technical Reports Server (NTRS)
Hicks, R. G.; Feldman, M. J.; Kerr, A. R.
1986-01-01
A user-oriented computer program SISCAP (SIS Computer Analysis Program) for analyzing SIS mixers is described. The program allows arbitrary impedance terminations to be specified at all LO harmonics and sideband frequencies. It is therefore able to treat a much more general class of SIS mixers than the widely used three-frequency analysis, for which the harmonics are assumed to be short-circuited. An additional program, GETCHI, provides the necessary input data to program SISCAP. The SISCAP program performs a nonlinear analysis to determine the SIS junction voltage waveform produced by the local oscillator. The quantum theory of mixing is used in its most general form, treating the large signal properties of the mixer in the time domain. A small signal linear analysis is then used to find the conversion loss and port impedances. The noise analysis includes thermal noise from the termination resistances and shot noise from the periodic LO current. Quantum noise is not considered. Many aspects of the program have been adequately verified and found accurate.
Graphene ballistic nano-rectifier with very high responsivity
Auton, Gregory; Zhang, Jiawei; Kumar, Roshan Krishna; Wang, Hanbin; Zhang, Xijian; Wang, Qingpu; Hill, Ernie; Song, Aimin
2016-01-01
Although graphene has the longest mean free path of carriers of any known electronic material, very few novel devices have been reported to harness this extraordinary property. Here we demonstrate a ballistic nano-rectifier fabricated by creating an asymmetric cross-junction in single-layer graphene sandwiched between boron nitride flakes. A mobility ∼200,000 cm2 V−1 s−1 is achieved at room temperature, well beyond that required for ballistic transport. This enables a voltage responsivity as high as 23,000 mV mW−1 with a low-frequency input signal. Taking advantage of the output channels being orthogonal to the input terminals, the noise is found to be not strongly influenced by the input. Hence, the corresponding noise-equivalent power is as low as 0.64 pW Hz−1/2. Such performance is even comparable to superconducting bolometers, which however need to operate at cryogenic temperatures. Furthermore, output oscillations are observed at low temperatures, the period of which agrees with the lateral size quantization. PMID:27241162
Low-Noise Large-Area Photoreceivers with Low Capacitance Photodiodes
NASA Technical Reports Server (NTRS)
Joshi, Abhay M. (Inventor); Datta, Shubhashish (Inventor)
2013-01-01
A quad photoreceiver includes a low capacitance quad InGaAs p-i-n photodiode structure formed on an InP (100) substrate. The photodiode includes a substrate providing a buffer layer having a metal contact on its bottom portion serving as a common cathode for receiving a bias voltage, and successive layers deposited on its top portion, the first layer being drift layer, the second being an absorption layer, the third being a cap layer divided into four quarter pie shaped sections spaced apart, with metal contacts being deposited on outermost top portions of each section to provide output terminals, the top portions being active regions for detecting light. Four transimpedance amplifiers have input terminals electrically connected to individual output terminals of each p-i-n photodiode.
NASA Technical Reports Server (NTRS)
Conner, David A.; Page, Juliet A.
2002-01-01
To improve aircraft noise impact modeling capabilities and to provide a tool to aid in the development of low noise terminal area operations for rotorcraft and tiltrotors, the Rotorcraft Noise Model (RNM) was developed by the NASA Langley Research Center and Wyle Laboratories. RNM is a simulation program that predicts how sound will propagate through the atmosphere and accumulate at receiver locations located on flat ground or varying terrain, for single and multiple vehicle flight operations. At the core of RNM are the vehicle noise sources, input as sound hemispheres. As the vehicle "flies" along its prescribed flight trajectory, the source sound propagation is simulated and accumulated at the receiver locations (single points of interest or multiple grid points) in a systematic time-based manner. These sound signals at the receiver locations may then be analyzed to obtain single event footprints, integrated noise contours, time histories, or numerous other features. RNM may also be used to generate spectral time history data over a ground mesh for the creation of single event sound animation videos. Acoustic properties of the noise source(s) are defined in terms of sound hemispheres that may be obtained from theoretical predictions, wind tunnel experimental results, flight test measurements, or a combination of the three. The sound hemispheres may contain broadband data (source levels as a function of one-third octave band) and pure-tone data (in the form of specific frequency sound pressure levels and phase). A PC executable version of RNM is publicly available and has been adopted by a number of organizations for Environmental Impact Assessment studies of rotorcraft noise. This paper provides a review of the required input data, the theoretical framework of RNM's propagation model and the output results. Code validation results are provided from a NATO helicopter noise flight test as well as a tiltrotor flight test program that used the RNM as a tool to aid in the development of low noise approach profiles.
AIRNOISE: A Tool for Preliminary Noise-Abatement Terminal Approach Route Design
NASA Technical Reports Server (NTRS)
Li, Jinhua; Sridhar, Banavar; Xue, Min; Ng, Hok
2016-01-01
Noise from aircraft in the airport vicinity is one of the leading aviation-induced environmental issues. The FAA developed the Integrated Noise Model (INM) and its replacement Aviation Environmental Design Tool (AEDT) software to assess noise impact resulting from all aviation activities. However, a software tool is needed that is simple to use for terminal route modification, quick and reasonably accurate for preliminary noise impact evaluation and flexible to be used for iterative design of optimal noise-abatement terminal routes. In this paper, we extend our previous work on developing a noise-abatement terminal approach route design tool, named AIRNOISE, to satisfy this criterion. First, software efficiency has been significantly increased by over tenfold using the C programming language instead of MATLAB. Moreover, a state-of-the-art high performance GPU-accelerated computing module is implemented that was tested to be hundreds time faster than the C implementation. Secondly, a Graphical User Interface (GUI) was developed allowing users to import current terminal approach routes and modify the routes interactively to design new terminal approach routes. The corresponding noise impacts are then calculated and displayed in the GUI in seconds. Finally, AIRNOISE was applied to Baltimore-Washington International Airport terminal approach route to demonstrate its usage.
Quantum propagation in single mode fiber
NASA Technical Reports Server (NTRS)
Joneckis, Lance G.; Shapiro, Jeffrey H.
1994-01-01
This paper presents a theory for quantum light propagation in a single-mode fiber which includes the effects of the Kerr nonlinearity, group-velocity dispersion, and linear loss. The theory reproduces the results of classical self-phase modulation, quantum four-wave mixing, and classical solution physics, within their respective regions of validity. It demonstrates the crucial role played by the Kerr-effect material time constant, in limiting the quantum phase shifts caused by the broadband zero-point fluctuations that accompany any quantized input field. Operator moment equations - approximated, numerically, via a terminated cumulant expansion - are used to obtain results for homodyne-measurement noise spectra when dispersion is negligible. More complicated forms of these equations can be used to incorporate dispersion into the noise calculations.
Circuit for measuring time differences among events
Romrell, Delwin M.
1977-01-01
An electronic circuit has a plurality of input terminals. Application of a first input signal to any one of the terminals initiates a timing sequence. Later inputs to the same terminal are ignored but a later input to any other terminal of the plurality generates a signal which can be used to measure the time difference between the later input and the first input signal. Also, such time differences may be measured between the first input signal and an input signal to any other terminal of the plurality or the circuit may be reset at any time by an external reset signal.
ACOUSTIC LINERS FOR TURBOFAN ENGINES
NASA Technical Reports Server (NTRS)
Minner, G. L.
1994-01-01
This program was developed to design acoustic liners for turbofan engines. This program combines results from theoretical models of wave alternation in acoustically treated passages with experimental data from full-scale fan noise suppressors. By including experimentally obtained information, the program accounts for real effects such as wall boundary layers, duct terminations, and sound modal structure. The program has its greatest use in generating a number of design specifications to be used for evaluation of trade-offs. The program combines theoretical and empirical data in designing annular acoustic liners. First an estimate of the noise output of the fan is made based on basic fan aerodynamic design variables. Then, using a target noise spectrum after alternation and the estimated fan noise spectrum, a design spectrum is calculated as their difference. Next, the design spectrum is combined with knowledge of acoustic liner performance and the liner design variables to specify the acoustic design. Details of the liner design are calculated by combining the required acoustic impedance with a mathematical model relating acoustic impedance to the physical structure of the liner. Input to the noise prediction part of the program consists of basic fan operating parameters, distance that the target spectrum is to be measured and the target spectrum. The liner design portion of the program requires the required alternation spectrum, desired values of length to height and several option selection parameters. Output from the noise prediction portion is a noise spectrum consisting of discrete tones and broadband noise. This may be used as input to the liner design portion of the program. The liner design portion of the program produces backing depths, open area ratios, and face plate thicknesses. This program is written in FORTRAN V and has been implemented in batch mode on a UNIVAC 1100 series computer with a central memory requirement of 12K (decimal) of 36 bit words.
Reduction of Helicopter BVI Noise, Vibration, and Power Consumption Through Individual Blade Control
NASA Technical Reports Server (NTRS)
Jacklin, Stephen A.; Blaas, Achim; Teves, Dietrich; Kube, Roland; Warmbrodt, William (Technical Monitor)
1994-01-01
A wind tunnel test was conducted with a full-scale BO 105 helicopter rotor to evaluate the potential of open-loop individual blade control (IBC) to improve rotor performance, to reduce blade vortex interaction (BVI) noise, and to alleviate helicopter vibrations. The wind tunnel test was an international collaborative effort between NASA/U.S. Army AFDD, ZF Luftfahrttechnik, Eurocopter Deutschland, and the German Aerospace Laboratory (DLR) and was conducted under the auspices of the U.S./German MOU on Rotorcraft Aeromechanics. In this test the normal blade pitch links of the rotor were replaced by servo-actuators so that the pitch of each blade could be controlled independently of the other blades. The specially designed servoactuators and IBC control system were designed and manufactured by ZF Luftfahrttechnik, GmbH. The wind tunnel test was conducted in the 40- by 80-Foot Wind Tunnel at the NASA Ames Research Center. An extensive amount of measurement information was acquired for each IBC data point. These data include rotor performance, static and dynamic hub forces and moments, rotor loads, control loads, inboard and outboard blade pitch motion, and BVI noise data. The data indicated very significant (80 percent) simultaneous reductions in both BVI noise and hub vibrations could be obtained using multi-harmonic input at the critical descent (terminal approach) condition. The data also showed that performance improvements of up to 7 percent could be obtained using 2P input at high-speed forward flight conditions.
Full wave modulator-demodulator amplifier apparatus. [for generating rectified output signal
NASA Technical Reports Server (NTRS)
Black, J. M. (Inventor)
1974-01-01
A full-wave modulator-demodulator apparatus is described including an operational amplifier having a first input terminal coupled to a circuit input terminal, and a second input terminal alternately coupled to the circuit input terminal. A circuit is ground by a switching circuit responsive to a phase reference signal and the operational amplifier is alternately switched between a non-inverting mode and an inverting mode. The switching circuit includes three field-effect transistors operatively associated to provide the desired switching function in response to an alternating reference signal of the same frequency as an AC input signal applied to the circuit input terminal.
Common source cascode amplifiers for integrating IR-FPA applications
NASA Technical Reports Server (NTRS)
Woolaway, James T.; Young, Erick T.
1989-01-01
Space based astronomical infrared measurements present stringent performance requirements on the infrared detector arrays and their associated readout circuitry. To evaluate the usefulness of commercial CMOS technology for astronomical readout applications a theoretical and experimental evaluation was performed on source follower and common-source cascode integrating amplifiers. Theoretical analysis indicates that for conditions where the input amplifier integration capacitance is limited by the detectors capacitance the input referred rms noise electrons of each amplifier should be equivalent. For conditions of input gate limited capacitance the source follower should provide lower noise. Measurements of test circuits containing both source follower and common source cascode circuits showed substantially lower input referred noise for the common-source cascode input circuits. Noise measurements yielded 4.8 input referred rms noise electrons for an 8.5 minute integration. The signal and noise gain of the common-source cascode amplifier appears to offer substantial advantages in acheiving predicted noise levels.
NASA Technical Reports Server (NTRS)
Wike, E. L.; Wike, S. S.
1972-01-01
Seven experiments are reported on low-frequency whole-body vibration and rats' escape conditioning in a modified Skinner box. In the first three studies, conditioning was observed but was independent of frequency. In experiment four, the number of escape responses was directly related to vibration amplitude. Experiment five was a control for vibration noise and noise termination; experiments six and seven studied vibration-induced activation. Noise termination did not produce conditioning. In experiment six, subjects made more responses when responding led to termination than when it did not. In experiment seven, subjects preferred a bar which terminated vibration to one which did not.
NASA Technical Reports Server (NTRS)
King, Sun-Kun
1996-01-01
The variances of the quantum-mechanical noise in a two-input-port Michelson interferometer within the framework of the Loudon-Ni model were solved exactly in two general cases: (1) one coherent state input and one squeezed state input, and (2) two photon number states inputs. Low intensity limit, exponential decaying signal and the noise due to mixing were discussed briefly.
Akan, Zafer; Körpinar, Mehmet Ali; Tulgar, Metin
2011-06-01
Noise pollution is a common health problem for developing countries. Especially highways and airports lead to noise pollution in different levels and in many frequencies. In this study, we focused on the effect of noise pollution in airports. This work aimed measurements of noise pollution levels in Van Ferit Melen (VFM) airport and effect of noise pollution over the immunoglobulin A, G, and M changes among VFM airport workers in Turkey. It was seen that apron and terminal workers were exposed to high noise (>80 dB(A)) without any protective precautions. Noise-induced temporary threshold shifts and noise-induced permanent threshold shifts were detected between the apron workers (p < 0.001) and terminal workers (p < 0.005). IgA values of apron terminal and control group workers were approximately the same in the morning and increased in a linear manner during the day. This increase was statistically significant (p < 0.001). IgG and IgM values of apron, terminal, and control group workers were approximately same in the morning. Apron and terminal workers IgG and IgM levels were increased until noon and then decreased until evening as compare to control group, but these changes were not statically significant (p > 0.05). These findings suggested that the noise pollution in the VFM airport could lead to hearing loss and changes in blood serum immunoglobulin levels of airport workers. Blood serum immunoglobulin changes might be due to vibrational effects of noise pollution. Airport workers should apply protective precautions against effect of noise pollution in the VFM airport.
Factorizing the motion sensitivity function into equivalent input noise and calculation efficiency.
Allard, Rémy; Arleo, Angelo
2017-01-01
The photopic motion sensitivity function of the energy-based motion system is band-pass peaking around 8 Hz. Using an external noise paradigm to factorize the sensitivity into equivalent input noise and calculation efficiency, the present study investigated if the variation in photopic motion sensitivity as a function of the temporal frequency is due to a variation of equivalent input noise (e.g., early temporal filtering) or calculation efficiency (ability to select and integrate motion). For various temporal frequencies, contrast thresholds for a direction discrimination task were measured in presence and absence of noise. Up to 15 Hz, the sensitivity variation was mainly due to a variation of equivalent input noise and little variation in calculation efficiency was observed. The sensitivity fall-off at very high temporal frequencies (from 15 to 30 Hz) was due to a combination of a drop of calculation efficiency and a rise of equivalent input noise. A control experiment in which an artificial temporal integration was applied to the stimulus showed that an early temporal filter (generally assumed to affect equivalent input noise, not calculation efficiency) could impair both the calculation efficiency and equivalent input noise at very high temporal frequencies. We conclude that at the photopic luminance intensity tested, the variation of motion sensitivity as a function of the temporal frequency was mainly due to early temporal filtering, not to the ability to select and integrate motion. More specifically, we conclude that photopic motion sensitivity at high temporal frequencies is limited by internal noise occurring after the transduction process (i.e., neural noise), not by quantal noise resulting from the probabilistic absorption of photons by the photoreceptors as previously suggested.
Bird, David A.
1983-01-01
A low-noise pulse conditioner is provided for driving electronic digital processing circuitry directly from differentially induced input pulses. The circuit uses a unique differential-to-peak detector circuit to generate a dynamic reference signal proportional to the input peak voltage. The input pulses are compared with the reference signal in an input network which operates in full differential mode with only a passive input filter. This reduces the introduction of circuit-induced noise, or jitter, generated in ground referenced input elements normally used in pulse conditioning circuits, especially speed transducer processing circuits.
Noise in Charge Amplifiers— A gm/ID Approach
NASA Astrophysics Data System (ADS)
Alvarez, Enrique; Avila, Diego; Campillo, Hernan; Dragone, Angelo; Abusleme, Angel
2012-10-01
Charge amplifiers represent the standard solution to amplify signals from capacitive detectors in high energy physics experiments. In a typical front-end, the noise due to the charge amplifier, and particularly from its input transistor, limits the achievable resolution. The classic approach to attenuate noise effects in MOSFET charge amplifiers is to use the maximum power available, to use a minimum-length input device, and to establish the input transistor width in order to achieve the optimal capacitive matching at the input node. These conclusions, reached by analysis based on simple noise models, lead to sub-optimal results. In this work, a new approach on noise analysis for charge amplifiers based on an extension of the gm/ID methodology is presented. This method combines circuit equations and results from SPICE simulations, both valid for all operation regions and including all noise sources. The method, which allows to find the optimal operation point of the charge amplifier input device for maximum resolution, shows that the minimum device length is not necessarily the optimal, that flicker noise is responsible for the non-monotonic noise versus current function, and provides a deeper insight on the noise limits mechanism from an alternative and more design-oriented point of view.
Measurement of hearing aid internal noise1
Lewis, James D.; Goodman, Shawn S.; Bentler, Ruth A.
2010-01-01
Hearing aid equivalent input noise (EIN) measures assume the primary source of internal noise to be located prior to amplification and to be constant regardless of input level. EIN will underestimate internal noise in the case that noise is generated following amplification. The present study investigated the internal noise levels of six hearing aids (HAs). Concurrent with HA processing of a speech-like stimulus with both adaptive features (acoustic feedback cancellation, digital noise reduction, microphone directionality) enabled and disabled, internal noise was quantified for various stimulus levels as the variance across repeated trials. Changes in noise level as a function of stimulus level demonstrated that (1) generation of internal noise is not isolated to the microphone, (2) noise may be dependent on input level, and (3) certain adaptive features may contribute to internal noise. Quantifying internal noise as the variance of the output measures allows for noise to be measured under real-world processing conditions, accounts for all sources of noise, and is predictive of internal noise audibility. PMID:20370034
Prevention and Treatment of Noise-Induced Tinnitus. Revision
2013-07-01
CTBP2 immunolabeling) for their loss following noise. Sub-Task 1c: Assessment of Auditory Nerve ( VGLUT1 immunolabel) terminals on neurons in Ventral...and Dorsal Cochlear Nucleus (VCN, DCN) for their loss following noise. Sub-Task 1d: Assessment of VGLUT2 , VAT & VGAT immunolabeled terminals in VCN...significant reduction in connections compared to animals without noise exposure. Sub-Task 1c: Assessment of Auditory Nerve ( VGLUT1 immunolabel
Low-noise cryogenic transmission line
NASA Technical Reports Server (NTRS)
Norris, D.
1987-01-01
New low-noise cryogenic input transmission lines have been developed for the Deep Space Network (DSN) at 1.668 GHz for cryogenically cooled Field Effect Transistors (FET) and High Electron Mobility Transistor (HEMT) amplifiers. These amplifiers exhibit very low noise temperatures of 5 K to 15 K, making the requirements for a low-noise input transmission line critical. Noise contribution to the total amplifier system from the low-noise line is less than 0.5 K for both the 1.668-GHz and 2.25-GHz FET systems. The 1.668-GHz input line was installed in six FET systems which were implemented in the DSN for the Venus Balloon Experiment. The 2.25-GHz input line has been implemented in three FET systems for the DSN 34-m HEF antennas, and the design is currently being considered for use at higher frequencies.
Noise adaptation in integrate-and fire neurons.
Rudd, M E; Brown, L G
1997-07-01
The statistical spiking response of an ensemble of identically prepared stochastic integrate-and-fire neurons to a rectangular input current plus gaussian white noise is analyzed. It is shown that, on average, integrate-and-fire neurons adapt to the root-mean-square noise level of their input. This phenomenon is referred to as noise adaptation. Noise adaptation is characterized by a decrease in the average neural firing rate and an accompanying decrease in the average value of the generator potential, both of which can be attributed to noise-induced resets of the generator potential mediated by the integrate-and-fire mechanism. A quantitative theory of noise adaptation in stochastic integrate-and-fire neurons is developed. It is shown that integrate-and-fire neurons, on average, produce transient spiking activity whenever there is an increase in the level of their input noise. This transient noise response is either reduced or eliminated over time, depending on the parameters of the model neuron. Analytical methods are used to prove that nonleaky integrate-and-fire neurons totally adapt to any constant input noise level, in the sense that their asymptotic spiking rates are independent of the magnitude of their input noise. For leaky integrate-and-fire neurons, the long-run noise adaptation is not total, but the response to noise is partially eliminated. Expressions for the probability density function of the generator potential and the first two moments of the potential distribution are derived for the particular case of a nonleaky neuron driven by gaussian white noise of mean zero and constant variance. The functional significance of noise adaptation for the performance of networks comprising integrate-and-fire neurons is discussed.
Ultra-low-noise preamplifier for condenser microphones.
Starecki, Tomasz
2010-12-01
The paper presents the design of a low-noise preamplifier dedicated for condenser measurement microphones used in high sensitivity applications, in which amplifier noise is the main factor limiting sensitivity of the measurements. In measurement microphone preamplifiers, the dominant source of noise at lower frequencies is the bias resistance of the input stage. In the presented solution, resistors were connected to the input stage by means of switches. The switches are opened during measurements, which disconnects the resistors from the input stage and results in noise reduction. Closing the switches allows for fast charging of the microphone capacitance. At low frequencies the noise of the designed preamplifier is a few times lower in comparison to similar, commercially available instruments.
Low noise multi-channel biopotential wireless data acquisition system for dry electrodes
NASA Astrophysics Data System (ADS)
Pandian, P. S.; Whitchurch, Ashwin K.; Abraham, Jose K.; Bhusan Baskey, Himanshu; Radhakrishnan, J. K.; Varadan, Vijay K.; Padaki, V. C.; Bhasker Rao, K. U.; Harbaugh, R. E.
2008-03-01
The bioelectrical potentials generated within the human body are the result of electrochemical activity in the excitable cells of the nervous, muscular or glandular tissues. The ionic potentials are measured using biopotential electrodes which convert ionic potentials to electronic potentials. The commonly monitored biopotential signals are Electrocardiogram (ECG), Electroencephalogram (EEG) and Electromyogram (EMG). The electrodes used to monitor biopotential signals are Ag-AgCl and gold, which require skin preparation by means of scrubbing to remove the dead cells and application of electrolytic gel to reduce the skin contact resistance. The gels used in biopotential recordings dry out when used for longer durations and add noise to the signals and also prolonged use of gels cause irritations and rashes to skin. Also noises such as motion artifact and baseline wander are added to the biopotential signals as the electrode floats over the electrolytic gel during monitoring. To overcome these drawbacks, dry electrodes are used, where the electrodes are held against the skin surface to establish contact with the skin without the need for electrolytic fluids or gels. The major drawback associated with the dry electrodes is the high skin-electrode impedance in the low frequency range between 0.1-120 Hz, which makes it difficult to acquire clean and noise free biopotential signals. The paper presents the design and development of biopotential data acquisition and processing system to acquire biopotential signals from dry electrodes. The electrode-skin-electrode- impedance (ESEI) measurements was carried out for the dry electrodes by impedance spectroscopy. The biopotential signals are processed using an instrumentation amplifier with high CMRR and high input impedance achieved by boot strapping the input terminals. The signals are band limited by means of a second order Butterworth band pass filters to eliminate noise. The processed biopotential signals are digitized and transmitted wirelessly to a remote monitoring station.
1/f noise in metallic and semiconducting carbon nanotubes
NASA Astrophysics Data System (ADS)
Reza, Shahed; Huynh, Quyen T.; Bosman, Gijs; Sippel-Oakley, Jennifer; Rinzler, Andrew G.
2006-11-01
The charge transport and noise properties of three terminal, gated devices containing multiple single-wall metallic and semiconducting carbon nanotubes were measured at room temperature. Applying a high voltage pulsed bias at the drain terminal the metallic tubes were ablated sequentially, enabling the separation of measured conductance and 1/f noise into metallic and semiconducting nanotube contributions. The relative low frequency excess noise of the metallic tubes was observed to be two orders of magnitude lower than that of the semiconductor tubes.
Bird, D.A.
1981-06-16
A low-noise pulse conditioner is provided for driving electronic digital processing circuitry directly from differentially induced input pulses. The circuit uses a unique differential-to-peak detector circuit to generate a dynamic reference signal proportional to the input peak voltage. The input pulses are compared with the reference signal in an input network which operates in full differential mode with only a passive input filter. This reduces the introduction of circuit-induced noise, or jitter, generated in ground referenced input elements normally used in pulse conditioning circuits, especially speed transducer processing circuits. This circuit may be used for conditioning the sensor signal from the Fidler coil in a gas centrifuge for separation of isotopic gaseous mixtures.
Noise reduction of coincidence detector output by the inferior colliculus of the barn owl.
Christianson, G Björn; Peña, José Luis
2006-05-31
A recurring theme in theoretical work is that integration over populations of similarly tuned neurons can reduce neural noise. However, there are relatively few demonstrations of an explicit noise reduction mechanism in a neural network. Here we demonstrate that the brainstem of the barn owl includes a stage of processing apparently devoted to increasing the signal-to-noise ratio in the encoding of the interaural time difference (ITD), one of two primary binaural cues used to compute the position of a sound source in space. In the barn owl, the ITD is processed in a dedicated neural pathway that terminates at the core of the inferior colliculus (ICcc). The actual locus of the computation of the ITD is before ICcc in the nucleus laminaris (NL), and ICcc receives no inputs carrying information that did not originate in NL. Unlike in NL, the rate-ITD functions of ICcc neurons require as little as a single stimulus presentation per ITD to show coherent ITD tuning. ICcc neurons also displayed a greater dynamic range with a maximal difference in ITD response rates approximately double that seen in NL. These results indicate that ICcc neurons perform a computation functionally analogous to averaging across a population of similarly tuned NL neurons.
Noise behavior of microwave amplifiers operating under nonlinear conditions
NASA Astrophysics Data System (ADS)
Escotte, L.; Gonneau, E.; Chambon, C.; Graffeuil, J.
2005-12-01
B The noise behavior of microwave amplifiers operating under a large-signal condition has been studied in this paper. A Gaussian noise is added to a microwave signal and they are applied at the input of several amplifying devices. Experimental data show a decrease of the output noise spectral density when the power of the microwave signal at the input of the devices increases due to the compression of the amplifiers. A distortion component due to the interaction of the signal and its harmonics with the noise is also demonstrated from a simplified theoretical model. The statistical properties of the signal and the noise have also been investigated in order to verify the Gaussianity of the noise at the output of the nonlinear circuits. We have also observed that the majority of the measured devices show some variations of their additive noise versus the input power level.
Assessment of Traffic-Related Noise in Three Cities in the United States
Lee, Eunice Y.; Jerrett, Michael; Ross, Zev; Coogan, Patricia F.; Seto, Edmund Y. W.
2014-01-01
Background Traffic-related noise is a growing public health concern in developing and developed countries due to increasing vehicle traffic. Epidemiological studies have reported associations between noise exposure and high blood pressure, increased risk of hypertension and heart disease, and stress induced by sleep disturbance and annoyance. These findings motivate the need for regular noise assessments within urban areas. This paper assesses the relationships between traffic and noise in three US cities. Methods Noise measurements were conducted in downtown areas in three cities in the United States: Atlanta, Los Angeles, and New York City. For each city, we measured ambient noise levels, and assessed their correlation with simultaneously measured vehicle counts, and with traffic data provided by local Metropolitan Planning Organizations (MPO). Additionally, measured noise levels were compared to noise levels predicted by the Federal Highway Administration’s Traffic Noise Model using (1) simultaneously measured traffic counts or (2) MPO traffic data sources as model input. Results We found substantial variations in traffic and noise within and between cities. Total number of vehicle counts explained a substantial amount of variation in measured ambient noise in Atlanta (78%), Los Angeles (58%), and New York City (62%). Modeled noise levels were moderately correlated with measured noise levels when observed traffic counts were used as model input. Weaker correlations were found when MPO traffic data was used as model input. Conclusions Ambient noise levels measured in all three cities were correlated with traffic data, highlighting the importance of traffic planning in mitigating noise-related health effects. Model performance was sensitive to the traffic data used as input. Future noise studies that use modeled noise estimates should evaluate traffic data quality and should ideally include other factors, such as local roadway, building, and meteorological characteristics. PMID:24792415
Gas tube-switched high voltage DC power converter
She, Xu; Bray, James William; Sommerer, Timothy John; Chokhawala, Rahul
2018-05-15
A direct current (DC)-DC converter includes a transformer and a gas tube-switched inverter circuit. The transformer includes a primary winding and a secondary winding. The gas tube-switched inverter circuit includes first and second inverter load terminals and first and second inverter input terminals. The first and second inverter load terminals are coupled to the primary winding. The first and second inverter input terminals are couplable to a DC node. The gas tube-switched inverter circuit further includes a plurality of gas tube switches respectively coupled between the first and second inverter load terminals and the first and second inverter input terminals. The plurality of gas tube switches is configured to operate to generate an alternating current (AC) voltage at the primary winding.
Hsu, Chung-Lun; Jiang, Haowei; Venkatesh, A G; Hall, Drew A
2015-10-01
Over the past two decades, nanopores have been a promising technology for next generation deoxyribonucleic acid (DNA) sequencing. Here, we present a hybrid semi-digital transimpedance amplifier (HSD-TIA) to sense the minute current signatures introduced by single-stranded DNA (ssDNA) translocating through a nanopore, while discharging the baseline current using a semi-digital feedback loop. The amplifier achieves fast settling by adaptively tuning a DC compensation current when a step input is detected. A noise cancellation technique reduces the total input-referred current noise caused by the parasitic input capacitance. Measurement results show the performance of the amplifier with 31.6 M Ω mid-band gain, 950 kHz bandwidth, and 8.5 fA/ √Hz input-referred current noise, a 2× noise reduction due to the noise cancellation technique. The settling response is demonstrated by observing the insertion of a protein nanopore in a lipid bilayer. Using the nanopore, the HSD-TIA was able to measure ssDNA translocation events.
Effect of individual blade control on noise radiation
NASA Technical Reports Server (NTRS)
Swanson, S. M.; Jacklin, Stephen A.; Niesl, G.; Blaas, Achim; Kube, R.
1995-01-01
In a joint research program of NASA Ames Research Center, ZF Luftfahrttechnik, the German Aerospace Research Establishment (DLR), and EUROCOPTER Deutschland, a wind tunnel test was performed to evaluate the effects of Individual Blade Control (IBC) on rotor noise. This test was conducted in the 40x80 ft wind tunnel at NASA Ames Research Center, utilizing a full scale MBB-BO 105 four-bladed rotor system. Three microphones were installed for determination of the radiated noise, two of them on a moveable traverse below the advancing blade side and one in a fixed location below the retreating side. Acoustic results are presented for flight conditions with Blade-Vortex-Interaction (BVI) noise radiation. High noise level reductions were measured for single harmonic control inputs. In addition to the single harmonic inputs, multi-harmonic inputs were evaluated by superimposing 2/rev to 6/rev harmonics. For the first time the efficiency of sharp wavelets (60 deg and 90 deg width) on acoustic noise were measured. In order to achieve an adequate wavelet shape at the blade tip, corrections were made to account for the blade torsional behavior. In parallel with the acoustic measurements, vibratory loads were measured during the BVI flight condition to correlate the effects of IBC on noise and vibrations. It is shown how noise levels and vibrations are affected by specific IBC control inputs. In addition, correlations are made between noise levels and acoustic time histories with IBC phase and amplitude variations. For one IBC input mode with high noise reducing efficiency, a sweep of the moveable microphone traverse below the advancing side shows the effect on BVI noise directivity.
Environmental aspects of the TROLL terminal design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weeks, D.J.
1996-12-31
Norway, in common with many countries nowadays, is very protective of its environment. This consciousness and responsibility are reflected by the strict limits on air pollution, in particular noise, and hydrocarbon contaminant levels in discharged water that were imposed for the TROLL terminal design. The capacity of the terminal and the size of its equipment have necessitated new research in the field of noise prediction some of which conflicts with current industry beliefs. This paper discusses some of the engineered solutions to in-plant and community noise abatement and describes the water treatment facilities installed to meet hydrocarbon discharge limits ofmore » 5 mg/l.« less
Effectiveness of Shield Termination Techniques Tested with TEM Cell and Bulk Current Injection
NASA Technical Reports Server (NTRS)
Bradley, Arthur T.; Hare, Richard J.
2009-01-01
This paper presents experimental results of the effectiveness of various shield termination techniques. Each termination technique is evaluated by two independent noise injection methods; transverse electromagnetic (TEM) cell operated from 3 MHz 400 MHz, and bulk current injection (BCI) operated from 50 kHz 400 MHz. Both single carrier and broadband injection tests were investigated. Recommendations as to how to achieve the best shield transfer impedance (i.e. reduced coupled noise) are made based on the empirical data. Finally, the noise injection techniques themselves are indirectly evaluated by comparing the results obtained from the TEM Cell to those from BCI.
Hole-assisted fiber based fiber fuse terminator supporting 22 W input
NASA Astrophysics Data System (ADS)
Tsujikawa, Kyozo; Kurokawa, Kenji; Hanzawa, Nobutomo; Nozoe, Saki; Matsui, Takashi; Nakajima, Kazuhide
2018-05-01
We investigated the air hole structure in hole-assisted fiber (HAF) with the aim of terminating fiber fuse propagation. We focused on two structural parameters c/MFD and S1/S2, which are related respectively to the position and area of the air holes, and mapped their appropriate values for terminating fiber fuse propagation. Here, MFD is the mode field diameter, c is the diameter of an inscribed circle linking the air holes, S1 is the total area of the air holes, and S2 is the area of a circumscribed circle linking the air holes. On the basis of these results, we successfully realized a compact fiber fuse terminator consisting of a 1.35 mm-long HAF, which can terminate fiber fuse propagation even with a 22 W input. In addition, we observed fiber fuse termination using a high-speed camera. We additionally confirmed that the HAF-based fiber fuse terminator is effective under various input power conditions. The penetration length of the optical discharge in the HAF was only less than 300 μm when the input power was from 2 to 22 W.
Noise facilitates transcriptional control under dynamic inputs.
Kellogg, Ryan A; Tay, Savaş
2015-01-29
Cells must respond sensitively to time-varying inputs in complex signaling environments. To understand how signaling networks process dynamic inputs into gene expression outputs and the role of noise in cellular information processing, we studied the immune pathway NF-κB under periodic cytokine inputs using microfluidic single-cell measurements and stochastic modeling. We find that NF-κB dynamics in fibroblasts synchronize with oscillating TNF signal and become entrained, leading to significantly increased NF-κB oscillation amplitude and mRNA output compared to non-entrained response. Simulations show that intrinsic biochemical noise in individual cells improves NF-κB oscillation and entrainment, whereas cell-to-cell variability in NF-κB natural frequency creates population robustness, together enabling entrainment over a wider range of dynamic inputs. This wide range is confirmed by experiments where entrained cells were measured under all input periods. These results indicate that synergy between oscillation and noise allows cells to achieve efficient gene expression in dynamically changing signaling environments. Copyright © 2015 Elsevier Inc. All rights reserved.
A low power low noise analog front end for portable healthcare system
NASA Astrophysics Data System (ADS)
Yanchao, Wang; Keren, Ke; Wenhui, Qin; Yajie, Qin; Ting, Yi; Zhiliang, Hong
2015-10-01
The presented analog front end (AFE) used to process human bio-signals consists of chopping instrument amplifier (IA), chopping spikes filter and programmable gain and bandwidth amplifier. The capacitor-coupling input of AFE can reject the DC electrode offset. The power consumption of current-feedback based IA is reduced by adopting capacitor divider in the input and feedback network. Besides, IA's input thermal noise is decreased by utilizing complementary CMOS input pairs which can offer higher transconductance. Fabricated in Global Foundry 0.35 μm CMOS technology, the chip consumes 3.96 μA from 3.3 V supply. The measured input noise is 0.85 μVrms (0.5-100 Hz) and the achieved noise efficient factor is 6.48. Project supported by the Science and Technology Commission of Shanghai Municipality (No. 13511501100), the State Key Laboratory Project of China (No. 11MS002), and the State Key Laboratory of ASIC & System, Fudan University.
Noise Considerations for V/STOL Transports
NASA Technical Reports Server (NTRS)
Kenyon, George C.
1968-01-01
Noise consideration may well be as important a factor in future aircraft concept selection as such economic factors as operating cost and profitability. The impact of noise on some of the design and operational aspects of future V/STOL transports is examined in detail, including consideration of configuration, attitude-control system, lift system, and terminal flight pattern. Extended vertical rise of VTOL aircraft as a method of limiting the intense noise exposure to the terminal area is shown to be only partially effective as well as costly. Comparisons are made of noise contours for conceptual V/STOL transports for several PNdB criteria. The variation in extent of affected area with configuration and criterion emphasizes the importance of establishing an "acceptable" noise level for "city-center" operation.
Noise-immune multisensor transduction of speech
NASA Astrophysics Data System (ADS)
Viswanathan, Vishu R.; Henry, Claudia M.; Derr, Alan G.; Roucos, Salim; Schwartz, Richard M.
1986-08-01
Two types of configurations of multiple sensors were developed, tested and evaluated in speech recognition application for robust performance in high levels of acoustic background noise: One type combines the individual sensor signals to provide a single speech signal input, and the other provides several parallel inputs. For single-input systems, several configurations of multiple sensors were developed and tested. Results from formal speech intelligibility and quality tests in simulated fighter aircraft cockpit noise show that each of the two-sensor configurations tested outperforms the constituent individual sensors in high noise. Also presented are results comparing the performance of two-sensor configurations and individual sensors in speaker-dependent, isolated-word speech recognition tests performed using a commercial recognizer (Verbex 4000) in simulated fighter aircraft cockpit noise.
Weight distributions for turbo codes using random and nonrandom permutations
NASA Technical Reports Server (NTRS)
Dolinar, S.; Divsalar, D.
1995-01-01
This article takes a preliminary look at the weight distributions achievable for turbo codes using random, nonrandom, and semirandom permutations. Due to the recursiveness of the encoders, it is important to distinguish between self-terminating and non-self-terminating input sequences. The non-self-terminating sequences have little effect on decoder performance, because they accumulate high encoded weight until they are artificially terminated at the end of the block. From probabilistic arguments based on selecting the permutations randomly, it is concluded that the self-terminating weight-2 data sequences are the most important consideration in the design of constituent codes; higher-weight self-terminating sequences have successively decreasing importance. Also, increasing the number of codes and, correspondingly, the number of permutations makes it more and more likely that the bad input sequences will be broken up by one or more of the permuters. It is possible to design nonrandom permutations that ensure that the minimum distance due to weight-2 input sequences grows roughly as the square root of (2N), where N is the block length. However, these nonrandom permutations amplify the bad effects of higher-weight inputs, and as a result they are inferior in performance to randomly selected permutations. But there are 'semirandom' permutations that perform nearly as well as the designed nonrandom permutations with respect to weight-2 input sequences and are not as susceptible to being foiled by higher-weight inputs.
Exoplanet atmospheres with EChO: spectral retrievals using EChOSim
NASA Astrophysics Data System (ADS)
Barstow, Joanna K.; Bowles, Neil E.; Aigrain, Suzanne; Fletcher, Leigh N.; Irwin, Patrick G. J.; Varley, Ryan; Pascale, Enzo
2015-12-01
We demonstrate the effectiveness of the Exoplanet Characterisation Observatory mission concept for constraining the atmospheric properties of hot and warm gas giants and super Earths. Synthetic primary and secondary transit spectra for a range of planets are passed through EChOSim [13] to obtain the expected level of noise for different observational scenarios; these are then used as inputs for the NEMESIS atmospheric retrieval code and the retrieved atmospheric properties (temperature structure, composition and cloud properties) compared with the known input values, following the method of [1]. To correctly retrieve the temperature structure and composition of the atmosphere to within 2 σ, we find that we require: a single transit or eclipse of a hot Jupiter orbiting a sun-like (G2) star at 35 pc to constrain the terminator and dayside atmospheres; 20 transits or eclipses of a warm Jupiter orbiting a similar star; 10 transits/eclipses of a hot Neptune orbiting an M dwarf at 6 pc; and 30 transits or eclipses of a GJ1214b-like planet.
NASA Technical Reports Server (NTRS)
Allen, Glen
1988-01-01
A 45 month effort for the development of a 20 GHz, low-noise, low-cost receiver for digital, satellite communication system, ground terminal applications is discussed. Six proof-of-concept receivers were built in two lots of three each. Performance was generally consistent between the two lots. Except for overall noise figure, parameters were within or very close to specification. While noise figure was specified as 3.5 dB, typical performance was measured at 3.0 to 5.5 dB, over the full temperature range of minus 30 C to plus 75 C.
Quelling Cabin Noise in Turboprop Aircraft via Active Control
NASA Technical Reports Server (NTRS)
Kincaid, Rex K.; Laba, Keith E.; Padula, Sharon L.
1997-01-01
Cabin noise in turboprop aircraft causes passenger discomfort, airframe fatigue, and employee scheduling constraints due to OSHA standards for exposure to high levels of noise. The noise levels in the cabins of turboprop aircraft are typically 10 to 30 decibels louder than commercial jet noise levels. However. unlike jet noise the turboprop noise spectrum is dominated by a few low frequency tones. Active structural acoustic control is a method in which the control inputs (used to reduce interior noise) are applied directly to a vibrating structural acoustic system. The control concept modeled in this work is the application of in-plane force inputs to piezoceramic patches bonded to the wall of a vibrating cylinder. The goal is to determine the force inputs and locations for the piezoceramic actuators so that: (1) the interior noise is effectively damped; (2) the level of vibration of the cylinder shell is not increased; and (3) the power requirements needed to drive the actuators are not excessive. Computational experiments for data taken from a computer generated model and from a laboratory test article at NASA Langley Research Center are provided.
Adaptive noise reduction circuit for a sound reproduction system
NASA Technical Reports Server (NTRS)
Engebretson, A. Maynard (Inventor); O'Connell, Michael P. (Inventor)
1995-01-01
A noise reduction circuit for a hearing aid having an adaptive filter for producing a signal which estimates the noise components present in an input signal. The circuit includes a second filter for receiving the noise-estimating signal and modifying it as a function of a user's preference or as a function of an expected noise environment. The circuit also includes a gain control for adjusting the magnitude of the modified noise-estimating signal, thereby allowing for the adjustment of the magnitude of the circuit response. The circuit also includes a signal combiner for combining the input signal with the adjusted noise-estimating signal to produce a noise reduced output signal.
Regulation of Cortical Dynamic Range by Background Synaptic Noise and Feedforward Inhibition
Khubieh, Ayah; Ratté, Stéphanie; Lankarany, Milad; Prescott, Steven A.
2016-01-01
The cortex encodes a broad range of inputs. This breadth of operation requires sensitivity to weak inputs yet non-saturating responses to strong inputs. If individual pyramidal neurons were to have a narrow dynamic range, as previously claimed, then staggered all-or-none recruitment of those neurons would be necessary for the population to achieve a broad dynamic range. Contrary to this explanation, we show here through dynamic clamp experiments in vitro and computer simulations that pyramidal neurons have a broad dynamic range under the noisy conditions that exist in the intact brain due to background synaptic input. Feedforward inhibition capitalizes on those noise effects to control neuronal gain and thereby regulates the population dynamic range. Importantly, noise allows neurons to be recruited gradually and occludes the staggered recruitment previously attributed to heterogeneous excitation. Feedforward inhibition protects spike timing against the disruptive effects of noise, meaning noise can enable the gain control required for rate coding without compromising the precise spike timing required for temporal coding. PMID:26209846
Multicore fibre photonic lanterns for precision radial velocity Science
NASA Astrophysics Data System (ADS)
Gris-Sánchez, Itandehui; Haynes, Dionne M.; Ehrlich, Katjana; Haynes, Roger; Birks, Tim A.
2018-04-01
Incomplete fibre scrambling and fibre modal noise can degrade high-precision spectroscopic applications (typically high spectral resolution and high signal to noise). For example, it can be the dominating error source for exoplanet finding spectrographs, limiting the maximum measurement precision possible with such facilities. This limitation is exacerbated in the next generation of infra-red based systems, as the number of modes supported by the fibre scales inversely with the wavelength squared and more modes typically equates to better scrambling. Substantial effort has been made by major research groups in this area to improve the fibre link performance by employing non-circular fibres, double scramblers, fibre shakers, and fibre stretchers. We present an original design of a multicore fibre (MCF) terminated with multimode photonic lantern ports. It is designed to act as a relay fibre with the coupling efficiency of a multimode fibre (MMF), modal stability similar to a single-mode fibre and low loss in a wide range of wavelengths (380 nm to 860 nm). It provides phase and amplitude scrambling to achieve a stable near field and far-field output illumination pattern despite input coupling variations, and low modal noise for increased stability for high signal-to-noise applications such as precision radial velocity (PRV) science. Preliminary results are presented for a 511-core MCF and compared with current state of the art octagonal fibre.
Miniaturized FDDA and CMOS Based Potentiostat for Bio-Applications
Ghodsevali, Elnaz; Morneau-Gamache, Samuel; Mathault, Jessy; Landari, Hamza; Boisselier, Élodie; Boukadoum, Mounir; Gosselin, Benoit; Miled, Amine
2017-01-01
A novel fully differential difference CMOS potentiostat suitable for neurotransmitter sensing is presented. The described architecture relies on a fully differential difference amplifier (FDDA) circuit to detect a wide range of reduction-oxidation currents, while exhibiting low-power consumption and low-noise operation. This is made possible thanks to the fully differential feature of the FDDA, which allows to increase the source voltage swing without the need for additional dedicated circuitry. The FDDA also reduces the number of amplifiers and passive elements in the potentiostat design, which lowers the overall power consumption and noise. The proposed potentiostat was fabricated in 0.18 µm CMOS, with 1.8 V supply voltage. The device achieved 5 µA sensitivity and 0.99 linearity. The input-referred noise was 6.9 µVrms and the flicker noise was negligible. The total power consumption was under 55 µW. The complete system was assembled on a 20 mm × 20 mm platform that includes the potentiostat chip, the electrode terminals and an instrumentation amplifier for redox current buffering, once converted to a voltage by a series resistor. the chip dimensions were 1 mm × 0.5 mm and the other PCB components were off-chip resistors, capacitors and amplifiers for data acquisition. The system was successfully tested with ferricyanide, a stable electroactive compound, and validated with dopamine, a popular neurotransmitter. PMID:28394289
Noise screen for attitude control system
NASA Technical Reports Server (NTRS)
Rodden, John J. (Inventor); Stevens, Homer D. (Inventor); Hong, David P. (Inventor); Hirschberg, Philip C. (Inventor)
2002-01-01
An attitude control system comprising a controller and a noise screen device coupled to the controller. The controller is adapted to control an attitude of a vehicle carrying an actuator system that is adapted to pulse in metered bursts in order to generate a control torque to control the attitude of the vehicle in response to a control pulse. The noise screen device is adapted to generate a noise screen signal in response to the control pulse that is generated when an input attitude error signal exceeds a predetermined deadband attitude level. The noise screen signal comprises a decaying offset signal that when combined with the attitude error input signal results in a net attitude error input signal away from the predetermined deadband level to reduce further control pulse generation.
Noise reduction in a Mach 5 wind tunnel with a rectangular rod-wall sound shield
NASA Technical Reports Server (NTRS)
Creel, T. R., Jr.; Keyes, J. W.; Beckwith, I. E.
1980-01-01
A rod wall sound shield was tested over a range of Reynolds numbers of 0.5 x 10 to the 7th power to 8.0 x 10 to the 7th power per meter. The model consisted of a rectangular array of longitudinal rods with boundary-layer suction through gaps between the rods. Suitable measurement techniques were used to determine properties of the flow and acoustic disturbance in the shield and transition in the rod boundary layers. Measurements indicated that for a Reynolds number of 1.5 x 10 to the 9th power the noise in the shielded region was significantly reduced, but only when the flow is mostly laminar on the rods. Actual nozzle input noise measured on the nozzle centerline before reflection at the shield walls was attenuated only slightly even when the rod boundary layer were laminar. At a lower Reynolds number, nozzle input noise at noise levels in the shield were still too high for application to a quiet tunnel. At Reynolds numbers above 2.0 x 10 the the 7th power per meter, measured noise levels were generally higher than nozzle input levels, probably due to transition in the rod boundary layers. The small attenuation of nozzle input noise at intermediate Reynolds numbers for laminar rod layers at the acoustic origins is apparently due to high frequencies of noise.
A High Input Impedance Low Noise Integrated Front-End Amplifier for Neural Monitoring.
Zhou, Zhijun; Warr, Paul A
2016-12-01
Within neural monitoring systems, the front-end amplifier forms the critical element for signal detection and pre-processing, which determines not only the fidelity of the biosignal, but also impacts power consumption and detector size. In this paper, a novel combined feedback loop-controlled approach is proposed to compensate for input leakage currents generated by low noise amplifiers when in integrated circuit form alongside signal leakage into the input bias network. This loop topology ensures the Front-End Amplifier (FEA) maintains a high input impedance across all manufacturing and operational variations. Measured results from a prototype manufactured on the AMS 0.35 [Formula: see text] CMOS technology is provided. This FEA consumes 3.1 [Formula: see text] in 0.042 [Formula: see text], achieves input impedance of 42 [Formula: see text], and 18.2 [Formula: see text] input-referred noise.
Ho, Kevin I-J; Leung, Chi-Sing; Sum, John
2010-06-01
In the last two decades, many online fault/noise injection algorithms have been developed to attain a fault tolerant neural network. However, not much theoretical works related to their convergence and objective functions have been reported. This paper studies six common fault/noise-injection-based online learning algorithms for radial basis function (RBF) networks, namely 1) injecting additive input noise, 2) injecting additive/multiplicative weight noise, 3) injecting multiplicative node noise, 4) injecting multiweight fault (random disconnection of weights), 5) injecting multinode fault during training, and 6) weight decay with injecting multinode fault. Based on the Gladyshev theorem, we show that the convergence of these six online algorithms is almost sure. Moreover, their true objective functions being minimized are derived. For injecting additive input noise during training, the objective function is identical to that of the Tikhonov regularizer approach. For injecting additive/multiplicative weight noise during training, the objective function is the simple mean square training error. Thus, injecting additive/multiplicative weight noise during training cannot improve the fault tolerance of an RBF network. Similar to injective additive input noise, the objective functions of other fault/noise-injection-based online algorithms contain a mean square error term and a specialized regularization term.
A High Resolution Graphic Input System for Interactive Graphic Display Terminals. Appendix B.
ERIC Educational Resources Information Center
Van Arsdall, Paul Jon
The search for a satisfactory computer graphics input system led to this version of an analog sheet encoder which is transparent and requires no special probes. The goal of the research was to provide high resolution touch input capabilities for an experimental minicomputer based intelligent terminal system. The technique explored is compatible…
NASA Astrophysics Data System (ADS)
Traversa, Fabio L.; Di Ventra, Massimiliano
2017-02-01
We introduce a class of digital machines, we name Digital Memcomputing Machines, (DMMs) able to solve a wide range of problems including Non-deterministic Polynomial (NP) ones with polynomial resources (in time, space, and energy). An abstract DMM with this power must satisfy a set of compatible mathematical constraints underlying its practical realization. We prove this by making a connection with the dynamical systems theory. This leads us to a set of physical constraints for poly-resource resolvability. Once the mathematical requirements have been assessed, we propose a practical scheme to solve the above class of problems based on the novel concept of self-organizing logic gates and circuits (SOLCs). These are logic gates and circuits able to accept input signals from any terminal, without distinction between conventional input and output terminals. They can solve boolean problems by self-organizing into their solution. They can be fabricated either with circuit elements with memory (such as memristors) and/or standard MOS technology. Using tools of functional analysis, we prove mathematically the following constraints for the poly-resource resolvability: (i) SOLCs possess a global attractor; (ii) their only equilibrium points are the solutions of the problems to solve; (iii) the system converges exponentially fast to the solutions; (iv) the equilibrium convergence rate scales at most polynomially with input size. We finally provide arguments that periodic orbits and strange attractors cannot coexist with equilibria. As examples, we show how to solve the prime factorization and the search version of the NP-complete subset-sum problem. Since DMMs map integers into integers, they are robust against noise and hence scalable. We finally discuss the implications of the DMM realization through SOLCs to the NP = P question related to constraints of poly-resources resolvability.
Noise-Enhanced Human Balance Control
NASA Astrophysics Data System (ADS)
Priplata, Attila; Niemi, James; Salen, Martin; Harry, Jason; Lipsitz, Lewis A.; Collins, J. J.
2002-11-01
Noise can enhance the detection and transmission of weak signals in certain nonlinear systems, via a mechanism known as stochastic resonance. Here we show that input noise can be used to improve motor control in humans. Specifically, we show that the postural sway of both young and elderly individuals during quiet standing can be significantly reduced by applying subsensory mechanical noise to the feet. We further demonstrate with input noise a trend towards the reduction of postural sway in elderly subjects to the level of young subjects. These results suggest that noise-based devices, such as randomly vibrating shoe inserts, may enable people to overcome functional difficulties due to age-related sensory loss.
75 FR 22675 - Notice of Passenger Facility Charge (PFC) Approvals and Disapprovals
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-29
... expansion. Security screening expansion. Terminal restroom design. Terminal restroom remodel. Terminal... remodeling. Pavement management system. Master plan, phase 1. Decision Date: September 23, 2009. FOR FURTHER... modifications, passenger terminal. Rehabilitation of taxilane K-1. Design and implement noise mitigation...
Kameda, Hiroshi; Hioki, Hiroyuki; Tanaka, Yasuyo H; Tanaka, Takuma; Sohn, Jaerin; Sonomura, Takahiro; Furuta, Takahiro; Fujiyama, Fumino; Kaneko, Takeshi
2012-03-01
To examine inputs to parvalbumin (PV)-producing interneurons, we generated transgenic mice expressing somatodendritic membrane-targeted green fluorescent protein specifically in the interneurons, and completely visualized their dendrites and somata. Using immunolabeling for vesicular glutamate transporter (VGluT)1, VGluT2, and vesicular GABA transporter, we found that VGluT1-positive terminals made contacts 4- and 3.1-fold more frequently with PV-producing interneurons than VGluT2-positive and GABAergic terminals, respectively, in the primary somatosensory cortex. Even in layer 4, where VGluT2-positive terminals were most densely distributed, VGluT1-positive inputs to PV-producing interneurons were 2.4-fold more frequent than VGluT2-positive inputs. Furthermore, although GABAergic inputs to PV-producing interneurons were as numerous as VGluT2-positive inputs in most cortical layers, GABAergic inputs clearly preferred the proximal dendrites and somata of the interneurons, indicating that the sites of GABAergic inputs were more optimized than those of VGluT2-positive inputs. Simulation analysis with a PV-producing interneuron model compatible with the present morphological data revealed a plausible reason for this observation, by showing that GABAergic and glutamatergic postsynaptic potentials evoked by inputs to distal dendrites were attenuated to 60 and 87%, respectively, of those evoked by somatic inputs. As VGluT1-positive and VGluT2-positive axon terminals were presumed to be cortical and thalamic glutamatergic inputs, respectively, cortical excitatory inputs to PV-producing interneurons outnumbered the thalamic excitatory and intrinsic inhibitory inputs more than two-fold in any cortical layer. Although thalamic inputs are known to evoke about two-fold larger unitary excitatory postsynaptic potentials than cortical ones, the present results suggest that cortical inputs control PV-producing interneurons at least as strongly as thalamic inputs. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Modelling Urban Noise in Citygml Ade: Case of the Netherlands
NASA Astrophysics Data System (ADS)
Kumar, K.; Ledoux, H.; Commandeur, T. J. F.; Stoter, J. E.
2017-10-01
Road traffic and industrial noise has become a major source of discomfort and annoyance among the residents in urban areas. More than 44 % of the EU population is regularly exposed to road traffic noise levels over 55 dB, which is currently the maximum accepted value prescribed by the Environmental Noise Directive for road traffic noise. With continuously increasing population and number of motor vehicles and industries, it is very unlikely to hope for noise levels to diminish in the near future. Therefore, it is necessary to monitor urban noise, so as to make mitigation plans and to deal with its adverse effects. The 2002/49/EC Environmental Noise Directive aims to determine the exposure of an individual to environmental noise through noise mapping. One of the most important steps in noise mapping is the creation of input data for simulation. At present, it is done semi-automatically (and sometimes even manually) by different companies in different ways and is very time consuming and can lead to errors in the data. In this paper, we present our approach for automatically creating input data for noise simulations. Secondly, we focus on using 3D city models for presenting the results of simulation for the noise arising from road traffic and industrial activities in urban areas. We implemented a few noise modelling standards for industrial and road traffic noise in CityGML by extending the existing Noise ADE with new objects and attributes. This research is a steping stone in the direction of standardising the input and output data for noise studies and for reconstructing the 3D data accordingly.
Regulation of Cortical Dynamic Range by Background Synaptic Noise and Feedforward Inhibition.
Khubieh, Ayah; Ratté, Stéphanie; Lankarany, Milad; Prescott, Steven A
2016-08-01
The cortex encodes a broad range of inputs. This breadth of operation requires sensitivity to weak inputs yet non-saturating responses to strong inputs. If individual pyramidal neurons were to have a narrow dynamic range, as previously claimed, then staggered all-or-none recruitment of those neurons would be necessary for the population to achieve a broad dynamic range. Contrary to this explanation, we show here through dynamic clamp experiments in vitro and computer simulations that pyramidal neurons have a broad dynamic range under the noisy conditions that exist in the intact brain due to background synaptic input. Feedforward inhibition capitalizes on those noise effects to control neuronal gain and thereby regulates the population dynamic range. Importantly, noise allows neurons to be recruited gradually and occludes the staggered recruitment previously attributed to heterogeneous excitation. Feedforward inhibition protects spike timing against the disruptive effects of noise, meaning noise can enable the gain control required for rate coding without compromising the precise spike timing required for temporal coding. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Programmable noise bandwidth reduction by means of digital averaging
NASA Technical Reports Server (NTRS)
Poklemba, John J. (Inventor)
1993-01-01
Predetection noise bandwidth reduction is effected by a pre-averager capable of digitally averaging the samples of an input data signal over two or more symbols, the averaging interval being defined by the input sampling rate divided by the output sampling rate. As the averaged sample is clocked to a suitable detector at a much slower rate than the input signal sampling rate the noise bandwidth at the input to the detector is reduced, the input to the detector having an improved signal to noise ratio as a result of the averaging process, and the rate at which such subsequent processing must operate is correspondingly reduced. The pre-averager forms a data filter having an output sampling rate of one sample per symbol of received data. More specifically, selected ones of a plurality of samples accumulated over two or more symbol intervals are output in response to clock signals at a rate of one sample per symbol interval. The pre-averager includes circuitry for weighting digitized signal samples using stored finite impulse response (FIR) filter coefficients. A method according to the present invention is also disclosed.
Perceptual learning improves visual performance in juvenile amblyopia.
Li, Roger W; Young, Karen G; Hoenig, Pia; Levi, Dennis M
2005-09-01
To determine whether practicing a position-discrimination task improves visual performance in children with amblyopia and to determine the mechanism(s) of improvement. Five children (age range, 7-10 years) with amblyopia practiced a positional acuity task in which they had to judge which of three pairs of lines was misaligned. Positional noise was produced by distributing the individual patches of each line segment according to a Gaussian probability function. Observers were trained at three noise levels (including 0), with each observer performing between 3000 and 4000 responses in 7 to 10 sessions. Trial-by-trial feedback was provided. Four of the five observers showed significant improvement in positional acuity. In those four observers, on average, positional acuity with no noise improved by approximately 32% and with high noise by approximately 26%. A position-averaging model was used to parse the improvement into an increase in efficiency or a decrease in equivalent input noise. Two observers showed increased efficiency (51% and 117% improvements) with no significant change in equivalent input noise across sessions. The other two observers showed both a decrease in equivalent input noise (18% and 29%) and an increase in efficiency (17% and 71%). All five observers showed substantial improvement in Snellen acuity (approximately 26%) after practice. Perceptual learning can improve visual performance in amblyopic children. The improvement can be parsed into two important factors: decreased equivalent input noise and increased efficiency. Perceptual learning techniques may add an effective new method to the armamentarium of amblyopia treatments.
Communication system with adaptive noise suppression
NASA Technical Reports Server (NTRS)
Kozel, David (Inventor); Devault, James A. (Inventor); Birr, Richard B. (Inventor)
2007-01-01
A signal-to-noise ratio dependent adaptive spectral subtraction process eliminates noise from noise-corrupted speech signals. The process first pre-emphasizes the frequency components of the input sound signal which contain the consonant information in human speech. Next, a signal-to-noise ratio is determined and a spectral subtraction proportion adjusted appropriately. After spectral subtraction, low amplitude signals can be squelched. A single microphone is used to obtain both the noise-corrupted speech and the average noise estimate. This is done by determining if the frame of data being sampled is a voiced or unvoiced frame. During unvoiced frames an estimate of the noise is obtained. A running average of the noise is used to approximate the expected value of the noise. Spectral subtraction may be performed on a composite noise-corrupted signal, or upon individual sub-bands of the noise-corrupted signal. Pre-averaging of the input signal's magnitude spectrum over multiple time frames may be performed to reduce musical noise.
Jung, Sung-Jin; Hong, Seong-Kwan; Kwon, Oh-Kyong
2017-02-01
This paper presents a low-noise amplifier (LNA) using attenuation-adaptive noise control (AANC) for ultrasound imaging systems. The proposed AANC reduces unnecessary power consumption of the LNA, which arises from useless noise floor, by controlling the noise floor of the LNA with respect to the attenuation of the ultrasound. In addition, a current feedback amplifier with a source-degenerated input stage reduces variations of the bandwidth and the closed loop gain, which are caused by the AANC. The proposed LNA was fabricated using a 0.18-[Formula: see text] CMOS process. The input-referred voltage noise density of the fabricated LNA is 1.01 [Formula: see text] at the frequency of 5 MHz. The second harmonic distortion is -53.5 dB when the input signal frequency is 5 MHz and the output voltage swing is 2 [Formula: see text]. The power consumption of the LNA using the AANC is 16.2 mW at the supply voltage of 1.8 V, which is reduced to 64% of that without using the AANC. The noise efficiency factor (NEF) of the proposed LNA is 3.69, to our knowledge, which is the lowest NEF compared with previous LNAs for ultrasound imaging.
XV-15 Tiltrotor Low Noise Terminal Area Operations
NASA Technical Reports Server (NTRS)
Conner, David A.; Marcolini, Michael A.; Edwards, Bryan D.; Brieger, John T.
1998-01-01
Acoustic data have been acquired for the XV-15 tiltrotor aircraft performing a variety of terminal area operating procedures. This joint NASA/Bell/Army test program was conducted in two phases. During Phase 1 the XV-15 was flown over a linear array of microphones, deployed perpendicular to the flight path, at a number of fixed operating conditions. This documented the relative noise differences between the various conditions. During Phase 2 the microphone array was deployed over a large area to directly measure the noise footprint produced during realistic approach and departure procedures. The XV-15 flew approach profiles that culminated in IGE hover over a landing pad, then takeoffs from the hover condition back out over the microphone array. Results from Phase 1 identify noise differences between selected operating conditions, while those from Phase 2 identify differences in noise footprints between takeoff and approach conditions and changes in noise footprint due to variation in approach procedures.
Terminal sliding mode tracking control for a class of SISO uncertain nonlinear systems.
Chen, Mou; Wu, Qing-Xian; Cui, Rong-Xin
2013-03-01
In this paper, the terminal sliding mode tracking control is proposed for the uncertain single-input and single-output (SISO) nonlinear system with unknown external disturbance. For the unmeasured disturbance of nonlinear systems, terminal sliding mode disturbance observer is presented. The developed disturbance observer can guarantee the disturbance approximation error to converge to zero in the finite time. Based on the output of designed disturbance observer, the terminal sliding mode tracking control is presented for uncertain SISO nonlinear systems. Subsequently, terminal sliding mode tracking control is developed using disturbance observer technique for the uncertain SISO nonlinear system with control singularity and unknown non-symmetric input saturation. The effects of the control singularity and unknown input saturation are combined with the external disturbance which is approximated using the disturbance observer. Under the proposed terminal sliding mode tracking control techniques, the finite time convergence of all closed-loop signals are guaranteed via Lyapunov analysis. Numerical simulation results are given to illustrate the effectiveness of the proposed terminal sliding mode tracking control. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.
Robust image retrieval from noisy inputs using lattice associative memories
NASA Astrophysics Data System (ADS)
Urcid, Gonzalo; Nieves-V., José Angel; García-A., Anmi; Valdiviezo-N., Juan Carlos
2009-02-01
Lattice associative memories also known as morphological associative memories are fully connected feedforward neural networks with no hidden layers, whose computation at each node is carried out with lattice algebra operations. These networks are a relatively recent development in the field of associative memories that has proven to be an alternative way to work with sets of pattern pairs for which the storage and retrieval stages use minimax algebra. Different associative memory models have been proposed to cope with the problem of pattern recall under input degradations, such as occlusions or random noise, where input patterns can be composed of binary or real valued entries. In comparison to these and other artificial neural network memories, lattice algebra based memories display better performance for storage and recall capability; however, the computational techniques devised to achieve that purpose require additional processing or provide partial success when inputs are presented with undetermined noise levels. Robust retrieval capability of an associative memory model is usually expressed by a high percentage of perfect recalls from non-perfect input. The procedure described here uses noise masking defined by simple lattice operations together with appropriate metrics, such as the normalized mean squared error or signal to noise ratio, to boost the recall performance of either the min or max lattice auto-associative memories. Using a single lattice associative memory, illustrative examples are given that demonstrate the enhanced retrieval of correct gray-scale image associations from inputs corrupted with random noise.
Del Prete, Valeria; Treves, Alessandro
2002-04-01
In a previous paper we have evaluated analytically the mutual information between the firing rates of N independent units and a set of multidimensional continuous and discrete stimuli, for a finite population size and in the limit of large noise. Here, we extend the analysis to the case of two interconnected populations, where input units activate output ones via Gaussian weights and a threshold linear transfer function. We evaluate the information carried by a population of M output units, again about continuous and discrete correlates. The mutual information is evaluated solving saddle-point equations under the assumption of replica symmetry, a method that, by taking into account only the term linear in N of the input information, is equivalent to assuming the noise to be large. Within this limitation, we analyze the dependence of the information on the ratio M/N, on the selectivity of the input units and on the level of the output noise. We show analytically, and confirm numerically, that in the limit of a linear transfer function and of a small ratio between output and input noise, the output information approaches asymptotically the information carried in input. Finally, we show that the information loss in output does not depend much on the structure of the stimulus, whether purely continuous, purely discrete or mixed, but only on the position of the threshold nonlinearity, and on the ratio between input and output noise.
A PWM Controller of a Full Bridge Single-Phase Synchronous Inverter for Micro-Grid System
NASA Astrophysics Data System (ADS)
Rahman, Tawfikur; Motakabber, S. M. A.; Ibrahimy, M. I.; Raghib, Aliza ‘Aini Binti Md Ralib@ Md
2017-12-01
Nowadays, microgrid system technology is becoming popular for small area power management systems. It is essential to be less harmonic-distortion and high efficiency of the inverter for microgrid applications. Pulse width modulation (PWM) controller is a conventional switching control technique which is suitable to use in the microgrid connected power inverter system. The control method and algorithm of this technique are challenging, and different approaches are required to avoid the complexity for a customized solution of the microgrid application. This paper proposes a comparative analysis of different controller and their operational methods. A PWM controller is used to reduce the ripple voltage noise while a continuous current mode provides a small output ripple which gives steady-state error as zero on fundamental and cutoff frequency. To reduce the ripple current, higher frequency harmonic distortion, switching loss and phase noise, LC low pass filter is used on either side of input and output terminals. The proposed inverter is designed by MATLAB 2016a simulation software. A balanced load resistance (RL = 20.5 Ω) of star configuration and a dual input DC voltage of ± 35V are considered. In this design, the circuit parameters, the fundamental frequency of 50 Hz, the PWM duty cycle of 95%, the cutoff frequency of the switching controller of 33 kHz are considered. The inverter in this paper exhibits THD of 0.44% and overall efficiency approximately of 98%. The proposed inverter is expected to be suitable for microgrid applications.
Noise produced by turbulent flow into a rotor: Users manual for noise calculation
NASA Technical Reports Server (NTRS)
Amiet, R. K.; Egolf, C. G.; Simonich, J. C.
1989-01-01
A users manual for a computer program for the calculation of noise produced by turbulent flow into a helicopter rotor is presented. These inputs to the program are obtained from the atmospheric turbulence model and mean flow distortion calculation, described in another volume of this set of reports. Descriptions of the various program modules and subroutines, their function, programming structure, and the required input and output variables are included. This routine is incorporated as one module of NASA's ROTONET helicopter noise prediction program.
The Noise Level Optimization for Induction Magnetometer of SEP System
NASA Astrophysics Data System (ADS)
Zhu, W.; Fang, G.
2011-12-01
The Surface Electromagnetic Penetration (SEP) System, subsidized by the SinoProbe Plan in China, is designed for 3D conductivity imaging in geophysical mineral exploration, underground water distribution exploration, oil and gas reservoir exploration. Both the Controlled Source Audio Magnetotellurics (CSAMT) method and Magnetotellurics (MT) method can be surveyed by SEP system. In this article, an optimization design is introduced, which can minimize the noise level of the induction magnetometer for SEP system magnetic field's acquisition. The induction magnetometer transfers the rate of the magnetic field's change to voltage signal by induction coil, and amplified it by Low Noise Amplifier The noise parts contributed to the magnetometer are: the coil's thermal noise, the equivalent input voltage and current noise of the pre-amplifier. The coil's thermal noise is decided by coil's DC resistance. The equivalent input voltage and current noise of the pre-amplifier depend on the amplifier's type and DC operation condition. The design here optimized the DC operation point of pre-amplifier, adjusted the DC current source, and realized the minimum of total noise level of magnetometer. The calculation and test results show that: the total noise is about 1pT/√Hz, the thermal noise of coils is 1.7nV/√Hz, the preamplifier equivalent input voltage and current noise is 3nV/ √Hz and 0.1pA/√Hz, the weight of the magnetometer is 4.5kg and meet the requirement of SEP system.
Davidović, A; Huntington, E H; Frater, M R
2009-07-01
For some nonlinear systems the performance can improve with an increasing noise level. Such noise-induced improvement in static nonlinearities is of great interest for practical applications since many systems can be modeled in that way (e.g., sensors, quantizers, limiters, etc.). We present experimental evidence that noise-induced performance improvement occurs in those systems as a consequence of discretization in time with the achievable signal-to-noise ratio (SNR) gain increasing with decreasing ratio of input noise bandwidth and total measurement bandwidth. By modifying the input noise bandwidth, noise-induced improvement with SNR gain larger than unity is demonstrated in a system where it was not previously thought possible. Our experimental results bring closer two different theoretical models for the same class of nonlinearities and shed light on the behavior of static nonlinear discrete-time systems.
Response of a lock-in amplifier to noise
NASA Astrophysics Data System (ADS)
Van Baak, D. A.; Herold, George
2014-08-01
The "lock-in" detection technique can extract, from a possibly noisy waveform, the amplitude of a signal that is synchronous with a known reference signal. This paper examines the effects of input noise on the output of a lock-in amplifier. We present quantitative predictions for the root-mean-square size of the resulting fluctuations and for the spectral density of the noise at the output of a lock-in amplifier. Our results show how a lock-in amplifier can be used to measure the spectral density of noise in the case of a noise-only input signal. Some implications of the theory, familiar and surprising, are tested against experimental data.
A BASIC program for the removal of noise from reaction traces using Fourier filtering.
Brittain, T
1989-04-01
Software for the removal of noise from reaction curves using the principle of Fourier filtering has been written in BASIC to execute on a PC. The program inputs reaction traces which are subjected to a rotation-inversion process, to produce functions suitable for Fourier analysis. Fourier transformation into the frequency domain is followed by multiplication of the transform by a rectangular filter function, to remove the noise frequencies. Inverse transformation then yields a noise-reduced reaction trace suitable for further analysis. The program is interactive at each stage and could easily be modified to remove noise from a range of input data types.
Kurioka, Takaomi; Lee, Min Young; Heeringa, Amarins N.; Beyer, Lisa A.; Swiderski, Donald L.; Kanicki, Ariane C.; Kabara, Lisa L.; Dolan, David F.; Shore, Susan E.; Raphael, Yehoash
2016-01-01
In experimental animal models of auditory hair cell (HC) loss, insults such as noise or ototoxic drugs often lead to secondary changes or degeneration in non-sensory cells and neural components, including reduced density of spiral ganglion neurons, demyelination of auditory nerve fibers and altered cell numbers and innervation patterns in the cochlear nucleus. However, it is not clear whether loss of HCs alone leads to secondary degeneration in these neural components of the auditory pathway. To elucidate this issue, we investigated changes of central components after cochlear insults specific to HCs using diphtheria toxin receptor (DTR) mice expressing DTR only in HCs and exhibiting complete HC loss when injected with diphtheria toxin (DT). We showed that DT-induced HC ablation has no significant impacts on the survival of auditory neurons, central synaptic terminals, and myelin, despite complete HC loss and profound deafness. In contrast, noise exposure induced significant changes in synapses, myelin and CN organization even without loss of inner HCs. We observed a decrease of neuronal size in the auditory pathway, including peripheral axons, spiral ganglion neurons, and cochlear nucleus neurons, likely due to loss of input from the cochlea. Taken together, selective HC ablation and noise exposure showed different patterns of pathology in the auditory pathway and the presence of HCs is not essential for the maintenance of central synaptic connectivity and myelination. PMID:27403879
Coupling induced logical stochastic resonance
NASA Astrophysics Data System (ADS)
Aravind, Manaoj; Murali, K.; Sinha, Sudeshna
2018-06-01
In this work we will demonstrate the following result: when we have two coupled bistable sub-systems, each driven separately by an external logic input signal, the coupled system yields outputs that can be mapped to specific logic gate operations in a robust manner, in an optimal window of noise. So, though the individual systems receive only one logic input each, due to the interplay of coupling, nonlinearity and noise, they cooperatively respond to give a logic output that is a function of both inputs. Thus the emergent collective response of the system, due to the inherent coupling, in the presence of a noise floor, maps consistently to that of logic outputs of the two inputs, a phenomenon we term coupling induced Logical Stochastic Resonance. Lastly, we demonstrate our idea in proof of principle circuit experiments.
Frequency-Agile LIDAR Receiver for Chemical and Biological Agent Sensing
2010-06-01
transimpedance preamplifier architecture was optimized around the selected IR detector diode – Input-referenced noise density of 0.8 nV/ Hz0.5 A portion of...objectives: • Reduce baseline (background) photon flux on detector : Tunable Fabry-Perot etalon in optical train • Reduce input-referenced amplifier noise ...custom amplifier • Reduce detector dark current: High impedance detector Performance Metrics: – Noise equivalent power of receiver system (NEP
Helicopter noise prediction - The current status and future direction
NASA Technical Reports Server (NTRS)
Brentner, Kenneth S.; Farassat, F.
1992-01-01
The paper takes stock of the progress, assesses the current prediction capabilities, and forecasts the direction of future helicopter noise prediction research. The acoustic analogy approach, specifically, theories based on the Ffowcs Williams-Hawkings equations, are the most widely used for deterministic noise sources. Thickness and loading noise can be routinely predicted given good plane motion and blade loading inputs. Blade-vortex interaction noise can also be predicted well with measured input data, but prediction of airloads with the high spatial and temporal resolution required for BVI is still difficult. Current semiempirical broadband noise predictions are useful and reasonably accurate. New prediction methods based on a Kirchhoff formula and direct computation appear to be very promising, but are currently very demanding computationally.
ADAM: An Axisymmetric Duct Aeroacoustic Modeling system. [aircraft turbofan engines
NASA Technical Reports Server (NTRS)
Abrahamson, A. L.
1983-01-01
An interconnected system of computer programs for analyzing the propagation and attenuation of sound in aeroengine ducts containing realistic compressible subsonic mean flows, ADAM was developed primarily for research directed towards the reduction of noise emitted from turbofan aircraft engines. The two basic components are a streamtube curvature program for determination of the mean flow, and a finite element code for solution of the acoustic propagation problem. The system, which has been specifically tailored for ease of use, is presently installed at NASA Langley Reseach Center on a Control Data Cyber 175 Computer under the NOS Operating system employing a Tektronix terminal for interactive graphics. The scope and organization of the ADAM system is described. A users guide, examples of input data, and results for selected cases are included.
NASA Astrophysics Data System (ADS)
Ma, Xunjun; Lu, Yang; Wang, Fengjiao
2017-09-01
This paper presents the recent advances in reduction of multifrequency noise inside helicopter cabin using an active structural acoustic control system, which is based on active gearbox struts technical approach. To attenuate the multifrequency gearbox vibrations and resulting noise, a new scheme of discrete model predictive sliding mode control has been proposed based on controlled auto-regressive moving average model. Its implementation only needs input/output data, hence a broader frequency range of controlled system is modelled and the burden on the state observer design is released. Furthermore, a new iteration form of the algorithm is designed, improving the developing efficiency and run speed. To verify the algorithm's effectiveness and self-adaptability, experiments of real-time active control are performed on a newly developed helicopter model system. The helicopter model can generate gear meshing vibration/noise similar to a real helicopter with specially designed gearbox and active struts. The algorithm's control abilities are sufficiently checked by single-input single-output and multiple-input multiple-output experiments via different feedback strategies progressively: (1) control gear meshing noise through attenuating vibrations at the key points on the transmission path, (2) directly control the gear meshing noise in the cabin using the actuators. Results confirm that the active control system is practical for cancelling multifrequency helicopter interior noise, which also weakens the frequency-modulation of the tones. For many cases, the attenuations of the measured noise exceed the level of 15 dB, with maximum reduction reaching 31 dB. Also, the control process is demonstrated to be smoother and faster.
Design of ultra-low power biopotential amplifiers for biosignal acquisition applications.
Zhang, Fan; Holleman, Jeremy; Otis, Brian P
2012-08-01
Rapid development in miniature implantable electronics are expediting advances in neuroscience by allowing observation and control of neural activities. The first stage of an implantable biosignal recording system, a low-noise biopotential amplifier (BPA), is critical to the overall power and noise performance of the system. In order to integrate a large number of front-end amplifiers in multichannel implantable systems, the power consumption of each amplifier must be minimized. This paper introduces a closed-loop complementary-input amplifier, which has a bandwidth of 0.05 Hz to 10.5 kHz, an input-referred noise of 2.2 μ Vrms, and a power dissipation of 12 μW. As a point of comparison, a standard telescopic-cascode closed-loop amplifier with a 0.4 Hz to 8.5 kHz bandwidth, input-referred noise of 3.2 μ Vrms, and power dissipation of 12.5 μW is presented. Also for comparison, we show results from an open-loop complementary-input amplifier that exhibits an input-referred noise of 3.6 μ Vrms while consuming 800 nW of power. The two closed-loop amplifiers are fabricated in a 0.13 μ m CMOS process. The open-loop amplifier is fabricated in a 0.5 μm SOI-BiCMOS process. All three amplifiers operate with a 1 V supply.
NASA Technical Reports Server (NTRS)
Smith, J. R., Jr.
1964-01-01
Circuit utilizing a transistorized differential amplifier is developed for biomedical use. This low voltage operating circuit provides adjustable cancellation at the input for unbalanced noise signals, and automatic temperature compensation is accomplished by a single active element across the input-output ends.
Perceptual Learning of Noise Vocoded Words: Effects of Feedback and Lexicality
ERIC Educational Resources Information Center
Hervais-Adelman, Alexis; Davis, Matthew H.; Johnsrude, Ingrid S.; Carlyon, Robert P.
2008-01-01
Speech comprehension is resistant to acoustic distortion in the input, reflecting listeners' ability to adjust perceptual processes to match the speech input. This adjustment is reflected in improved comprehension of distorted speech with experience. For noise vocoding, a manipulation that removes spectral detail from speech, listeners' word…
NASA Astrophysics Data System (ADS)
Oku, Hideki; Narita, Kiyomi; Shiraishi, Takashi; Ide, Satoshi; Tanaka, Kazuhiro
2012-01-01
A 25-Gbps high-sensitivity optical receiver with a 10-Gbps photodiode (PD) using inductive input coupling has been demonstrated for optical interconnects. We introduced the inductive input coupling technique to achieve the 25-Gbps optical receiver using a 10-Gbps PD. We implemented an input inductor (Lin) between the PD and trans-impedance amplifier (TIA), and optimized inductance to enhance the bandwidth and reduce the input referred noise current through simulation with the RF PD-model. Near the resonance frequency of the tank circuit formed by PD capacitance, Lin, and TIA input capacitance, the PD photo-current through Lin into the TIA is enhanced. This resonance has the effects of enhancing the bandwidth at TIA input and reducing the input equivalent value of the noise current from TIA. We fabricated the 25-Gbps optical receiver with the 10-Gbps PD using an inductive input coupling technique. Due to the application of an inductor, the receiver bandwidth is enhanced from 10 GHz to 14.2 GHz. Thanks to this wide-band and low-noise performance, we were able to improve the sensitivity at an error rate of 1E-12 from non-error-free to -6.5 dBm. These results indicate that our technique is promising for cost-effective optical interconnects.
Wide-band current preamplifier for conductance measurements with large input capacitance.
Kretinin, Andrey V; Chung, Yunchul
2012-08-01
A wide-band current preamplifier based on a composite operational amplifier is proposed. It has been shown that the bandwidth of the preamplifier can be significantly increased by enhancing the effective open-loop gain. The described 10(7) V/A current gain preamplifier had the bandwidth of about 100 kHz with the 1 nF input shunt capacitance. The measured preamplifier current noise was 46 fA/√Hz at 1 kHz, close to the design noise minimum. The voltage noise was found to be about 2.9 nV/√Hz at 1 kHz, which is in a good agreement with the value expected for the particular operational amplifier used in the input stage. By analysing the total produced noise we found that the optimal frequency range suitable for the fast lock-in measurements is from 1 kHz to 2 kHz. To obtain the same signal-to-noise ratio, the reported preamplifier requires ~10% of the integration time needed in measurements made with a conventional preamplifier.
NASA Technical Reports Server (NTRS)
Cotariu, Steven S.
1991-01-01
Pattern recognition may supplement or replace certain navigational aids on spacecraft in docking or landing activities. The need to correctly identify terrain features remains critical in preparation of autonomous planetary landing. One technique that may solve this problem is optical correlation. Correlation has been successfully demonstrated under ideal conditions; however, noise significantly affects the ability of the correlator to accurately identify input signals. Optical correlation in the presence of noise must be successfully demonstrated before this technology can be incorporated into system design. An optical correlator is designed and constructed using a modified 2f configuration. Liquid crystal televisions (LCTV) are used as the spatial light modulators (SLM) for both the input and filter devices. The filter LCTV is characterized and an operating curve is developed. Determination of this operating curve is critical for reduction of input noise. Correlation of live input with a programmable filter is demonstrated.
Enzymatic AND logic gates operated under conditions characteristic of biomedical applications.
Melnikov, Dmitriy; Strack, Guinevere; Zhou, Jian; Windmiller, Joshua Ray; Halámek, Jan; Bocharova, Vera; Chuang, Min-Chieh; Santhosh, Padmanabhan; Privman, Vladimir; Wang, Joseph; Katz, Evgeny
2010-09-23
Experimental and theoretical analyses of the lactate dehydrogenase and glutathione reductase based enzymatic AND logic gates in which the enzymes and their substrates serve as logic inputs are performed. These two systems are examples of the novel, previously unexplored class of biochemical logic gates that illustrate potential biomedical applications of biochemical logic. They are characterized by input concentrations at logic 0 and 1 states corresponding to normal and pathophysiological conditions. Our analysis shows that the logic gates under investigation have similar noise characteristics. Both significantly amplify random noise present in inputs; however, we establish that for realistic widths of the input noise distributions, it is still possible to differentiate between the logic 0 and 1 states of the output. This indicates that reliable detection of pathophysiological conditions is indeed possible with such enzyme logic systems.
NASA Astrophysics Data System (ADS)
Cotariu, Steven S.
1991-12-01
Pattern recognition may supplement or replace certain navigational aids on spacecraft in docking or landing activities. The need to correctly identify terrain features remains critical in preparation of autonomous planetary landing. One technique that may solve this problem is optical correlation. Correlation has been successfully demonstrated under ideal conditions; however, noise significantly affects the ability of the correlator to accurately identify input signals. Optical correlation in the presence of noise must be successfully demonstrated before this technology can be incorporated into system design. An optical correlator is designed and constructed using a modified 2f configuration. Liquid crystal televisions (LCTV) are used as the spatial light modulators (SLM) for both the input and filter devices. The filter LCTV is characterized and an operating curve is developed. Determination of this operating curve is critical for reduction of input noise. Correlation of live input with a programmable filter is demonstrated.
Probes for measuring noise current in an electronic cable
NASA Technical Reports Server (NTRS)
Lundy, C. C.
1974-01-01
Electromagnetic interference in deep-space network receiver is often caused by stray coupling from power lines. These stray signals create potential differences between ground terminals, which leads to excessive noise in receiver circuits. Pair of probes detect and measure noise currents in conductors.
NASA Astrophysics Data System (ADS)
Bickman, S.; DeMille, D.
2005-11-01
Two large-area, low-noise, high-speed fluorescence detectors have been built. One detector consists of a photodiode with an area of 28mm×28mm and a low-noise transimpedance amplifier. This detector has a input light-equivalent spectral noise density of less than 3pW/√Hz , can recover from a large scattered light pulse within 10μs, and has a bandwidth of at least 900 kHz. The second detector consists of a 16-mm-diam avalanche photodiode and a low-noise transimpedance amplifier. This detector has an input light-equivalent spectral noise density of 0.08pW/√Hz , also can recover from a large scattered light pulse within 10μs, and has a bandwidth of 1 MHz.
NASA Astrophysics Data System (ADS)
Park, Chang-In; Jeon, Su-Jin; Hong, Nam-Pyo; Choi, Young-Wan
2016-03-01
Lock-in amplifier (LIA) has been proposed as a detection technique for optical sensors because it can measure low signal in high noise level. LIA uses synchronous method, so the input signal frequency is locked to a reference frequency that is used to carry out the measurements. Generally, input signal frequency of LIA used in optical sensors is determined by modulation frequency of optical signal. It is important to understand the noise characteristics of the trans-impedance amplifier (TIA) to determine the modulation frequency. The TIA has a frequency range in which noise is minimized by the capacitance of photo diode (PD) and the passive component of TIA feedback network. When the modulation frequency is determined in this range, it is possible to design a robust system to noise. In this paper, we propose a method for the determination of optical signal modulation frequency selection by using the noise characteristics of TIA. Frequency response of noise in TIA is measured by spectrum analyzer and minimum noise region is confirmed. The LIA and TIA circuit have been designed as a hybrid circuit. The optical sensor is modeled by the laser diode (LD) and photo diode (PD) and the modulation frequency was used as the input to the signal generator. The experiments were performed to compare the signal to noise ratio (SNR) of the minimum noise region and the others. The results clearly show that the SNR is enhanced in the minimum noise region of TIA.
Spatiotemporal coding of inputs for a system of globally coupled phase oscillators
NASA Astrophysics Data System (ADS)
Wordsworth, John; Ashwin, Peter
2008-12-01
We investigate the spatiotemporal coding of low amplitude inputs to a simple system of globally coupled phase oscillators with coupling function g(ϕ)=-sin(ϕ+α)+rsin(2ϕ+β) that has robust heteroclinic cycles (slow switching between cluster states). The inputs correspond to detuning of the oscillators. It was recently noted that globally coupled phase oscillators can encode their frequencies in the form of spatiotemporal codes of a sequence of cluster states [P. Ashwin, G. Orosz, J. Wordsworth, and S. Townley, SIAM J. Appl. Dyn. Syst. 6, 728 (2007)]. Concentrating on the case of N=5 oscillators we show in detail how the spatiotemporal coding can be used to resolve all of the information that relates the individual inputs to each other, providing that a long enough time series is considered. We investigate robustness to the addition of noise and find a remarkable stability, especially of the temporal coding, to the addition of noise even for noise of a comparable magnitude to the inputs.
Improved noise-adding radiometer for microwave receivers
NASA Technical Reports Server (NTRS)
Batelaan, P. D.; Stelzried, C. T.; Goldstein, R. M.
1973-01-01
Use of input switch and noise reference standard is avoided by using noise-adding technique. Excess noise from solid state noise-diode is coupled into receiver through directional coupler and square-wave modulated at low rate. High sensitivity receivers for radioastronomy applications are utilized with greater confidence in stability of radiometer.
Wideband low-noise variable-gain BiCMOS transimpedance amplifier
NASA Astrophysics Data System (ADS)
Meyer, Robert G.; Mack, William D.
1994-06-01
A new monolithic variable gain transimpedance amplifier is described. The circuit is realized in BiCMOS technology and has measured gain of 98 kilo ohms, bandwidth of 128 MHz, input noise current spectral density of 1.17 pA/square root of Hz and input signal-current handling capability of 3 mA.
NASA Astrophysics Data System (ADS)
Hong, Wei; Huang, Dexiu; Zhang, Xinliang; Zhu, Guangxi
2007-11-01
A thorough simulation and evaluation of phase noise for optical amplification using semiconductor optical amplifier (SOA) is very important for predicting its performance in differential phase shift keyed (DPSK) applications. In this paper, standard deviation and probability distribution of differential phase noise are obtained from the statistics of simulated differential phase noise. By using a full-wave model of SOA, the noise performance in the entire operation range can be investigated. It is shown that nonlinear phase noise substantially contributes to the total phase noise in case of a noisy signal amplified by a saturated SOA and the nonlinear contribution is larger with shorter SOA carrier lifetime. Power penalty due to differential phase noise is evaluated using a semi-analytical probability density function (PDF) of receiver noise. Obvious increase of power penalty at high signal input powers can be found for low input OSNR, which is due to both the large nonlinear differential phase noise and the dependence of BER vs. receiving power curvature on differential phase noise standard deviation.
An aircraft noise pollution model for trajectory optimization
NASA Technical Reports Server (NTRS)
Barkana, A.; Cook, G.
1976-01-01
A mathematical model describing the generation of aircraft noise is developed with the ultimate purpose of reducing noise (noise-optimizing landing trajectories) in terminal areas. While the model is for a specific aircraft (Boeing 737), the methodology would be applicable to a wide variety of aircraft. The model is used to obtain a footprint on the ground inside of which the noise level is at or above 70 dB.
Helicopter Non-Unique Trim Strategies for Blade-Vortex Interaction (BVI) Noise Reduction
2016-01-22
levels of harmonic rotor noise are one of the key technical barriers preventing the widespread public acceptance of helicopters for commercial...transportation. Blade-Vortex Interaction (BVI) is one such mechanism of rotor noise. BVI noise is a problem for civilian helicopter terminal area...non-rotating frame) on the vehicle trim which in turn affects noise generation. For example, conventional single main rotor helicopters commonly
Theoretic aspects of the identification of the parameters in the optimal control model
NASA Technical Reports Server (NTRS)
Vanwijk, R. A.; Kok, J. J.
1977-01-01
The identification of the parameters of the optimal control model from input-output data of the human operator is considered. Accepting the basic structure of the model as a cascade of a full-order observer and a feedback law, and suppressing the inherent optimality of the human controller, the parameters to be identified are the feedback matrix, the observer gain matrix, and the intensity matrices of the observation noise and the motor noise. The identification of the parameters is a statistical problem, because the system and output are corrupted by noise, and therefore the solution must be based on the statistics (probability density function) of the input and output data of the human operator. However, based on the statistics of the input-output data of the human operator, no distinction can be made between the observation and the motor noise, which shows that the model suffers from overparameterization.
NASA Technical Reports Server (NTRS)
Stankiewicz, N.
1982-01-01
The multiple channel input signal to a soft limiter amplifier as a traveling wave tube is represented as a finite, linear sum of Gaussian functions in the frequency domain. Linear regression is used to fit the channel shapes to a least squares residual error. Distortions in output signal, namely intermodulation products, are produced by the nonlinear gain characteristic of the amplifier and constitute the principal noise analyzed in this study. The signal to noise ratios are calculated for various input powers from saturation to 10 dB below saturation for two specific distributions of channels. A criterion for the truncation of the series expansion of the nonlinear transfer characteristic is given. It is found that he signal to noise ratios are very sensitive to the coefficients used in this expansion. Improper or incorrect truncation of the series leads to ambiguous results in the signal to noise ratios.
Mokri, Yasamin; Worland, Kate; Ford, Mark; Rajan, Ramesh
2015-01-01
Humans can accurately localize sounds even in unfavourable signal-to-noise conditions. To investigate the neural mechanisms underlying this, we studied the effect of background wide-band noise on neural sensitivity to variations in interaural level difference (ILD), the predominant cue for sound localization in azimuth for high-frequency sounds, at the characteristic frequency of cells in rat inferior colliculus (IC). Binaural noise at high levels generally resulted in suppression of responses (55.8%), but at lower levels resulted in enhancement (34.8%) as well as suppression (30.3%). When recording conditions permitted, we then examined if any binaural noise effects were related to selective noise effects at each of the two ears, which we interpreted in light of well-known differences in input type (excitation and inhibition) from each ear shaping particular forms of ILD sensitivity in the IC. At high signal-to-noise ratios (SNR), in most ILD functions (41%), the effect of background noise appeared to be due to effects on inputs from both ears, while for a large percentage (35.8%) appeared to be accounted for by effects on excitatory input. However, as SNR decreased, change in excitation became the dominant contributor to the change due to binaural background noise (63.6%). These novel findings shed light on the IC neural mechanisms for sound localization in the presence of continuous background noise. They also suggest that some effects of background noise on encoding of sound location reported to be emergent in upstream auditory areas can also be observed at the level of the midbrain. PMID:25865218
Chen, Chang Hao; McCullagh, Elizabeth A.; Pun, Sio Hang; Mak, Peng Un; Vai, Mang I; Mak, Pui In; Klug, Achim; Lei, Tim C.
2017-01-01
The ability to record and to control action potential firing in neuronal circuits of the brain is critical to understand how the brain functions on the cellular and network levels. Recent development of optogenetic proteins allows direct stimulation or inhibition of action potential firing of neurons upon optical illumination. In this paper, we combined a low-noise and high input impedance (or low input capacitance) neural recording amplifier, and a high current laser/LED driver in a monolithic integrated circuit (IC) for simultaneous neural recording and optogenetic neural control. The low input capacitance of the amplifier (9.7 pF) was achieved through adding a dedicated unity gain input stage optimized for high impedance metal electrodes. The input referred noise of the amplifier was measured to be 4.57 µVrms, which is lower than the estimated thermal noise of the metal electrode. Thus, action potentials originating from a single neuron can be recorded with a signal-to-noise ratio of ~6.6. The LED/laser current driver delivers a maximum current of 330 mA to generate adequate light for optogenetic control. We experimentally tested the functionality of the IC with an anesthetized Mongolian gerbil and recorded auditory stimulated action potentials from the inferior colliculus. Furthermore, we showed that spontaneous firing of 5th (trigeminal) nerve fibers was inhibited using the optogenetic protein Halorhodopsin. A noise model was also derived including the equivalent electronic components of the metal electrode and the high current driver to guide the design. PMID:28221990
NASA Technical Reports Server (NTRS)
Aslam, Shahid; Jones, Hollis H.
2011-01-01
Care must always be taken when performing noise measurements on high-Tc superconducting materials to ensure that the results are not from the measurement system itself. One situation likely to occur is with low noise transformers. One of the least understood devices, it provides voltage gain for low impedance inputs (< 100 ), e.g., YBaCuO and GdBaCuO thin films, with comparatively lower noise levels than other devices for instance field effect and bipolar junction transistors. An essential point made in this paper is that because of the complex relationships between the transformer ports, input impedance variance alters the transformer s transfer function in particular, the low frequency cutoff shift. The transfer of external and intrinsic transformer noise to the output along with optimization and precautions are treated; all the while, we will cohesively connect the transfer function shift, the load impedance, and the actual noise at the transformer output.
ERIC Educational Resources Information Center
Stifle, Jack
A graphics terminal designed for use as a remote computer input/output terminal is described. Although the terminal is intended for use in teaching applications, it has several features which make it useful in many other computer terminal applications. These features include: a 10-inch square plasma display panel, permanent storage of information…
NASA Astrophysics Data System (ADS)
Mohlman, H. T.
1983-04-01
The Air Force community noise prediction model (NOISEMAP) is used to describe the aircraft noise exposure around airbases and thereby aid airbase planners to minimize exposure and prevent community encroachment which could limit mission effectiveness of the installation. This report documents two computer programs (OMEGA 10 and OMEGA 11) which were developed to prepare aircraft flight and ground runup noise data for input to NOISEMAP. OMEGA 10 is for flight operations and OMEGA 11 is for aircraft ground runups. All routines in each program are documented at a level useful to a programmer working with the code or a reader interested in a general overview of what happens within a specific subroutine. Both programs input normalized, reference aircraft noise data; i.e., data at a standard reference distance from the aircraft, for several fixed engine power settings, a reference airspeed and standard day meteorological conditions. Both programs operate on these normalized, reference data in accordance with user-defined, non-reference conditions to derive single-event noise data for 22 distances (200 to 25,000 feet) in a variety of physical and psycho-acoustic metrics. These outputs are in formats ready for input to NOISEMAP.
Device for modular input high-speed multi-channel digitizing of electrical data
VanDeusen, Alan L.; Crist, Charles E.
1995-09-26
A multi-channel high-speed digitizer module converts a plurality of analog signals to digital signals (digitizing) and stores the signals in a memory device. The analog input channels are digitized simultaneously at high speed with a relatively large number of on-board memory data points per channel. The module provides an automated calibration based upon a single voltage reference source. Low signal noise at such a high density and sample rate is accomplished by ensuring the A/D converters are clocked at the same point in the noise cycle each time so that synchronous noise sampling occurs. This sampling process, in conjunction with an automated calibration, yields signal noise levels well below the noise level present on the analog reference voltages.
Chung, King
2012-01-01
The objectives of this study were: (1) to examine the effect of wide dynamic range compression (WDRC) and modulation-based noise reduction (NR) algorithms on wind noise levels at the hearing aid output; and (2) to derive effective strategies for clinicians and engineers to reduce wind noise in hearing aids. Three digital hearing aids were fitted to KEMAR. The noise output was recorded at flow velocities of 0, 4.5, 9.0, and 13.5 m/s in a wind tunnel as the KEMAR head was turned from 0° to 360°. Flow noise levels were compared between the 1:1 linear and 3:1 WDRC conditions, and between NR-activated and NR-deactivated conditions when the hearing aid was programmed to the directional and omnidirectional modes. The results showed that: (1) WDRC increased low-level noise and reduced high-level noise; and (2) different noise reduction algorithms provided different amounts of wind noise reduction in different microphone modes, frequency regions, flow velocities, and head angles. Wind noise can be reduced by decreasing the gain for low-level inputs, increasing the compression ratio for high-level inputs, and activating modulation-based noise reduction algorithms.
Effects of entanglement in an ideal optical amplifier
NASA Astrophysics Data System (ADS)
Franson, J. D.; Brewster, R. A.
2018-04-01
In an ideal linear amplifier, the output signal is linearly related to the input signal with an additive noise that is independent of the input. The decoherence of a quantum-mechanical state as a result of optical amplification is usually assumed to be due to the addition of quantum noise. Here we show that entanglement between the input signal and the amplifying medium can produce an exponentially-large amount of decoherence in an ideal optical amplifier even when the gain is arbitrarily close to unity and the added noise is negligible. These effects occur for macroscopic superposition states, where even a small amount of gain can leave a significant amount of which-path information in the environment. Our results show that the usual input/output relation of a linear amplifier does not provide a complete description of the output state when post-selection is used.
DC/DC Converter Stability Testing Study
NASA Technical Reports Server (NTRS)
Wang, Bright L.
2008-01-01
This report presents study results on hybrid DC/DC converter stability testing methods. An input impedance measurement method and a gain/phase margin measurement method were evaluated to be effective to determine front-end oscillation and feedback loop oscillation. In particular, certain channel power levels of converter input noises have been found to have high degree correlation with the gain/phase margins. It becomes a potential new method to evaluate stability levels of all type of DC/DC converters by utilizing the spectral analysis on converter input noises.
Mankin, Romi; Rekker, Astrid
2016-12-01
The output interspike interval statistics of a stochastic perfect integrate-and-fire neuron model driven by an additive exogenous periodic stimulus is considered. The effect of temporally correlated random activity of synaptic inputs is modeled by an additive symmetric dichotomous noise. Using a first-passage-time formulation, exact expressions for the output interspike interval density and for the serial correlation coefficient are derived in the nonsteady regime, and their dependence on input parameters (e.g., the noise correlation time and amplitude as well as the frequency of an input current) is analyzed. It is shown that an interplay of a periodic forcing and colored noise can cause a variety of nonequilibrium cooperation effects, such as sign reversals of the interspike interval correlations versus noise-switching rate as well as versus the frequency of periodic forcing, a power-law-like decay of oscillations of the serial correlation coefficients in the long-lag limit, amplification of the output signal modulation in the instantaneous firing rate of the neural response, etc. The features of spike statistics in the limits of slow and fast noises are also discussed.
Response to a periodic stimulus in a perfect integrate-and-fire neuron model driven by colored noise
NASA Astrophysics Data System (ADS)
Mankin, Romi; Rekker, Astrid
2016-12-01
The output interspike interval statistics of a stochastic perfect integrate-and-fire neuron model driven by an additive exogenous periodic stimulus is considered. The effect of temporally correlated random activity of synaptic inputs is modeled by an additive symmetric dichotomous noise. Using a first-passage-time formulation, exact expressions for the output interspike interval density and for the serial correlation coefficient are derived in the nonsteady regime, and their dependence on input parameters (e.g., the noise correlation time and amplitude as well as the frequency of an input current) is analyzed. It is shown that an interplay of a periodic forcing and colored noise can cause a variety of nonequilibrium cooperation effects, such as sign reversals of the interspike interval correlations versus noise-switching rate as well as versus the frequency of periodic forcing, a power-law-like decay of oscillations of the serial correlation coefficients in the long-lag limit, amplification of the output signal modulation in the instantaneous firing rate of the neural response, etc. The features of spike statistics in the limits of slow and fast noises are also discussed.
Lei, Wanlong; Deng, Yunping; Liu, Bingbing; Mu, Shuhua; Guley, Natalie M.; Wong, Ting; Reiner, Anton
2014-01-01
We examined thalamic input to striatum in rats using immunolabeling for the vesicular glutamate transporter (VGLUT2). Double immunofluorescence viewed with confocal laser scanning microscopy (CLSM) revealed that VGLUT2+ terminals are distinct from VGLUT1+ terminals. CLSM of Phaseolus vulgaris-leucoagglutinin (PHAL)-labeled cortical or thalamic terminals revealed that VGLUT2 is rare in corticostriatal terminals but nearly always present in thalamostriatal terminals. Electron microscopy revealed that VGLUT2+ terminals made up 39.4% of excitatory terminals in striatum (with VGLUT1+ corticostriatal terminals constituting the rest), and 66.8% of VGLUT2+ terminals synapsed on spines and the remainder on dendrites. VGLUT2+ axo-spinous terminals had a mean diameter of 0.624 lm, while VGLUT2+ axodendritic terminals a mean diameter of 0.698 µm. In tissue in which we simultaneously immunolabeled thalamostriatal terminals for VGLUT2 and striatal neurons for D1 (with about half of spines immunolabeled for D1), 54.6% of VGLUT2+ terminals targeted D1+ spines (i.e., direct pathway striatal neurons), and 37.3% of D1+ spines received VGLUT2+ synaptic contacts. By contrast, 45.4% of VGLUT2+ terminals targeted D1-negative spines (i.e., indirect pathway striatal neurons), and only 25.8% of D1-negative spines received VGLUT2+ synaptic contacts. Similarly, among VGLUT2+ axodendritic synaptic terminals, 59.1% contacted D1+ dendrites, and 40.9% contacted D1-negative dendrites. VGLUT2+ terminals on D1+ spines and dendrites tended to be slightly smaller than those on D1-negative spines and dendrites. Thus, thala-mostriatal terminals contact both direct and indirect pathway striatal neurons, with a slight preference for direct. These results are consistent with physiological studies indicating slightly different effects of thalamic input on the two types of striatal projection neurons. PMID:23047588
Lei, Wanlong; Deng, Yunping; Liu, Bingbing; Mu, Shuhua; Guley, Natalie M; Wong, Ting; Reiner, Anton
2013-04-15
We examined thalamic input to striatum in rats using immunolabeling for the vesicular glutamate transporter (VGLUT2). Double immunofluorescence viewed with confocal laser scanning microscopy (CLSM) revealed that VGLUT2+ terminals are distinct from VGLUT1+ terminals. CLSM of Phaseolus vulgaris-leucoagglutinin (PHAL)-labeled cortical or thalamic terminals revealed that VGLUT2 is rare in corticostriatal terminals but nearly always present in thalamostriatal terminals. Electron microscopy revealed that VGLUT2+ terminals made up 39.4% of excitatory terminals in striatum (with VGLUT1+ corticostriatal terminals constituting the rest), and 66.8% of VGLUT2+ terminals synapsed on spines and the remainder on dendrites. VGLUT2+ axospinous terminals had a mean diameter of 0.624 μm, while VGLUT2+ axodendritic terminals a mean diameter of 0.698 μm. In tissue in which we simultaneously immunolabeled thalamostriatal terminals for VGLUT2 and striatal neurons for D1 (with about half of spines immunolabeled for D1), 54.6% of VGLUT2+ terminals targeted D1+ spines (i.e., direct pathway striatal neurons), and 37.3% of D1+ spines received VGLUT2+ synaptic contacts. By contrast, 45.4% of VGLUT2+ terminals targeted D1-negative spines (i.e., indirect pathway striatal neurons), and only 25.8% of D1-negative spines received VGLUT2+ synaptic contacts. Similarly, among VGLUT2+ axodendritic synaptic terminals, 59.1% contacted D1+ dendrites, and 40.9% contacted D1-negative dendrites. VGLUT2+ terminals on D1+ spines and dendrites tended to be slightly smaller than those on D1-negative spines and dendrites. Thus, thalamostriatal terminals contact both direct and indirect pathway striatal neurons, with a slight preference for direct. These results are consistent with physiological studies indicating slightly different effects of thalamic input on the two types of striatal projection neurons. Copyright © 2012 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bickman, S.; DeMille, D.
2005-11-15
Two large-area, low-noise, high-speed fluorescence detectors have been built. One detector consists of a photodiode with an area of 28 mmx28 mm and a low-noise transimpedance amplifier. This detector has a input light-equivalent spectral noise density of less than 3 pW/{radical}(Hz), can recover from a large scattered light pulse within 10 {mu}s, and has a bandwidth of at least 900 kHz. The second detector consists of a 16-mm-diam avalanche photodiode and a low-noise transimpedance amplifier. This detector has an input light-equivalent spectral noise density of 0.08 pW/{radical}(Hz), also can recover from a large scattered light pulse within 10 {mu}s, andmore » has a bandwidth of 1 MHz.« less
47 CFR 76.2000 - Exclusive access to multiple dwelling units generally.
Code of Federal Regulations, 2010 CFR
2010-10-01
... time share units, academic campuses and dormitories, military bases, hotels, rooming houses, prisons..., Receiver-generated, Responsibility 76.617 Isolation, Terminal 76.5 J-L Leakage measurements, Signal 76.601... noise 76.5 T Technical standards 76.605 Terminal isolation 76.5 Terminal, Subscriber 76.5 Tests...
47 CFR 76.2000 - Exclusive access to multiple dwelling units generally.
Code of Federal Regulations, 2011 CFR
2011-10-01
... time share units, academic campuses and dormitories, military bases, hotels, rooming houses, prisons..., Receiver-generated, Responsibility 76.617 Isolation, Terminal 76.5 J-L Leakage measurements, Signal 76.601... noise 76.5 T Technical standards 76.605 Terminal isolation 76.5 Terminal, Subscriber 76.5 Tests...
Ultrastructure of spines and associated terminals on brainstem neurons controlling auditory input
Brown, M. Christian; Lee, Daniel J.; Benson, Thane E.
2013-01-01
Spines are unique cellular appendages that isolate synaptic input to neurons and play a role in synaptic plasticity. Using the electron microscope, we studied spines and their associated synaptic terminals on three groups of brainstem neurons: tensor tympani motoneurons, stapedius motoneurons, and medial olivocochlear neurons, all of which exert reflexive control of processes in the auditory periphery. These spines are generally simple in shape; they are infrequent and found on the somata as well as the dendrites. Spines do not differ in volume among the three groups of neurons. In all cases, the spines are associated with a synaptic terminal that engulfs the spine rather than abuts its head. The positions of the synapses are variable, and some are found at a distance from the spine, suggesting that the isolation of synaptic input is of diminished importance for these spines. Each group of neurons receives three common types of synaptic terminals. The type of terminal associated with spines of the motoneurons contains pleomorphic vesicles, whereas the type associated with spines of olivocochlear neurons contains large round vesicles. Thus, spine-associated terminals in the motoneurons appear to be associated with inhibitory processes but in olivocochlear neurons they are associated with excitatory processes. PMID:23602963
Nonlinear Transfer of Signal and Noise Correlations in Cortical Networks
Lyamzin, Dmitry R.; Barnes, Samuel J.; Donato, Roberta; Garcia-Lazaro, Jose A.; Keck, Tara
2015-01-01
Signal and noise correlations, a prominent feature of cortical activity, reflect the structure and function of networks during sensory processing. However, in addition to reflecting network properties, correlations are also shaped by intrinsic neuronal mechanisms. Here we show that spike threshold transforms correlations by creating nonlinear interactions between signal and noise inputs; even when input noise correlation is constant, spiking noise correlation varies with both the strength and correlation of signal inputs. We characterize these effects systematically in vitro in mice and demonstrate their impact on sensory processing in vivo in gerbils. We also find that the effects of nonlinear correlation transfer on cortical responses are stronger in the synchronized state than in the desynchronized state, and show that they can be reproduced and understood in a model with a simple threshold nonlinearity. Since these effects arise from an intrinsic neuronal property, they are likely to be present across sensory systems and, thus, our results are a critical step toward a general understanding of how correlated spiking relates to the structure and function of cortical networks. PMID:26019325
NASA Astrophysics Data System (ADS)
Mita, Akifumi; Okamoto, Atsushi; Funakoshi, Hisatoshi
2004-06-01
We have proposed an all-optical authentic memory with the two-wave encryption method. In the recording process, the image data are encrypted to a white noise by the random phase masks added on the input beam with the image data and the reference beam. Only reading beam with the phase-conjugated distribution of the reference beam can decrypt the encrypted data. If the encrypted data are read out with an incorrect phase distribution, the output data are transformed into a white noise. Moreover, during read out, reconstructions of the encrypted data interfere destructively resulting in zero intensity. Therefore our memory has a merit that we can detect unlawful accesses easily by measuring the output beam intensity. In our encryption method, the random phase mask on the input plane plays important roles in transforming the input image into a white noise and prohibiting to decrypt a white noise to the input image by the blind deconvolution method. Without this mask, when unauthorized users observe the output beam by using CCD in the readout with the plane wave, the completely same intensity distribution as that of Fourier transform of the input image is obtained. Therefore the encrypted image will be decrypted easily by using the blind deconvolution method. However in using this mask, even if unauthorized users observe the output beam using the same method, the encrypted image cannot be decrypted because the observed intensity distribution is dispersed at random by this mask. Thus it can be said the robustness is increased by this mask. In this report, we compare two correlation coefficients, which represents the degree of a white noise of the output image, between the output image and the input image in using this mask or not. We show that the robustness of this encryption method is increased as the correlation coefficient is improved from 0.3 to 0.1 by using this mask.
Nakamura, Kazuhiro; Wu, Sheng-Xi; Fujiyama, Fumino; Okamoto, Keiko; Hioki, Hiroyuki; Kaneko, Takeshi
2004-03-01
To characterize glutamatergic axon terminals onto sympathetic preganglionic neurons (SPNs), we visualized immunohistochemically three vesicular glutamate transporters (VGLUTs) in the intermediolateral cell column (IML) of rat thoracic spinal cord. VGLUT2 and VGLUT3 immunoreactivities but not VGLUT1 immunoreactivity were distributed in the IML and found in terminals making asymmetric synapses and apposed to dendrites immunopositive for choline acetyltransferase, an SPN marker. VGLUT2 and VGLUT3 immunoreactivities were not co-localized with each other. A population of VGLUT2-immunoreactive but not VGLUT3-immunoreactive terminals were adrenergic or noradrenergic. Some of VGLUT3-immunoreactive but not VGLUT2-immunoreactive terminals contained serotonin. These results indicate at least two independent glutamatergic terminal populations, which include a distinct monoaminergic subpopulation, making excitatory inputs onto SPNs. Copyright 2004 Lippincott Williams & Wilkins
Bittner, J.W.; Biscardi, R.W.
1991-03-19
An electronic measurement circuit is disclosed for high speed comparison of the relative amplitudes of a predetermined number of electrical input signals independent of variations in the magnitude of the sum of the signals. The circuit includes a high speed electronic switch that is operably connected to receive on its respective input terminals one of said electrical input signals and to have its common terminal serve as an input for a variable-gain amplifier-detector circuit that is operably connected to feed its output to a common terminal of a second high speed electronic switch. The respective terminals of the second high speed electronic switch are operably connected to a plurality of integrating sample and hold circuits, which in turn have their outputs connected to a summing logic circuit that is operable to develop first, second and third output voltages, the first output voltage being proportional to a predetermined ratio of sums and differences between the compared input signals, the second output voltage being proportional to a second summed ratio of predetermined sums and differences between said input signals, and the third output voltage being proportional to the sum of signals to the summing logic circuit. A servo system that is operably connected to receive said third output signal and compare it with a reference voltage to develop a slowly varying feedback voltage to control the variable-gain amplifier in said common amplifier-detector circuit in order to make said first and second output signals independent of variations in the magnitude of the sum of said input signals. 2 figures.
Bittner, John W.; Biscardi, Richard W.
1991-01-01
An electronic measurement circuit for high speed comparison of the relative amplitudes of a predetermined number of electrical input signals independent of variations in the magnitude of the sum of the signals. The circuit includes a high speed electronic switch that is operably connected to receive on its respective input terminals one of said electrical input signals and to have its common terminal serve as an input for a variable-gain amplifier-detector circuit that is operably connected to feed its output to a common terminal of a second high speed electronic switch. The respective terminals of the second high speed electronic switch are operably connected to a plurality of integrating sample and hold circuits, which in turn have their outputs connected to a summing logic circuit that is operable to develop first, second and third output voltages, the first output voltage being proportional to a predetermined ratio of sums and differences between the compared input signals, the second output voltage being proportional to a second summed ratio of predetermined sums and differences between said input signals, and the third output voltage being proportional to the sum of signals to the summing logic circuit. A servo system that is operably connected to receive said third output signal and compare it with a reference voltage to develop a slowly varying feedback voltage to control the variable-gain amplifier in said common amplifier-detector circuit in order to make said first and second output signals independent of variations in the magnitude of the sum of said input signals.
Radiofrequency amplifier based on a dc superconducting quantum interference device
Hilbert, C.; Martinis, J.M.; Clarke, J.
1984-04-27
A low noise radiofrequency amplifer, using a dc SQUID (superconducting quantum interference device) as the input amplifying element. The dc SQUID and an input coil are maintained at superconductivity temperatures in a superconducting shield, with the input coil inductively coupled to the superconducting ring of the dc SQUID. A radiofrequency signal from outside the shield is applied to the input coil, and an amplified radiofrequency signal is developed across the dc SQUID ring and transmitted to exteriorly of the shield. A power gain of 19.5 +- 0.5 dB has been achieved with a noise temperature of 1.0 +- 0.4 K at a frequency of 100 MHz.
Characterization and Modeling of High Power Microwave Effects in CMOS Microelectronics
2010-01-01
margin measurement 28 Any voltage above the line marked VIH is considered a valid logic high on the input of the gate. VIH and VIL are defined...can handle any voltage noise level at the input up to VIL without changing state. The region in between VIL and VIH is considered an invalid logic...29 Table 2.2: Intrinsic device characteristics derived from SPETCRE simulations VIH (V) VIL (V) High Noise Margin (V) Low Noise Margin (V
General mechanism for the 1 /f noise
NASA Astrophysics Data System (ADS)
Yadav, Avinash Chand; Ramaswamy, Ramakrishna; Dhar, Deepak
2017-08-01
We consider the response of a memoryless nonlinear device that acts instantaneously, converting an input signal ξ (t ) into an output η (t ) at the same time t . For input Gaussian noise with power-spectrum 1 /fα , the nonlinearity can modify the spectral index of the output to give a spectrum that varies as 1 /fα ' with α'≠α . We show that the value of α' depends on the nonlinear transformation and can be tuned continuously. This provides a general mechanism for the ubiquitous 1 /f noise found in nature.
Device for modular input high-speed multi-channel digitizing of electrical data
VanDeusen, A.L.; Crist, C.E.
1995-09-26
A multi-channel high-speed digitizer module converts a plurality of analog signals to digital signals (digitizing) and stores the signals in a memory device. The analog input channels are digitized simultaneously at high speed with a relatively large number of on-board memory data points per channel. The module provides an automated calibration based upon a single voltage reference source. Low signal noise at such a high density and sample rate is accomplished by ensuring the A/D converters are clocked at the same point in the noise cycle each time so that synchronous noise sampling occurs. This sampling process, in conjunction with an automated calibration, yields signal noise levels well below the noise level present on the analog reference voltages. 1 fig.
Stochastic resonance in an array of integrate-and-fire neurons with threshold
NASA Astrophysics Data System (ADS)
Zhou, Bingchang; Qi, Qianqian
2018-06-01
We investigate the phenomenon of stochastic resonance (SR) in parallel integrate-and-fire neuronal arrays with threshold driven by additive noise or signal-dependent noise (SDN) and a noisy input signal. SR occurs in this system. Whether the system is subject to the additive noise or SDN, the input noise η(t) weakens the performance of SR but the array size N and signal parameter I1 promote the performance of SR. Signal parameter I0 promotes the performance of SR for the additive noise, but the peak values of the output signal-to-noise ratio (SNRout) first decrease, then increase as I0 increases for the SDN. Moreover, when N tends to infinity, for the SDN, the curve of SNRout first increases and then decreases, however, for the additive noise, the curve of SNRout increases to reach a plain. By comparing system performance with the additive noise to one with SDN, we also find that the information transmission of a periodic signal with SDN is significantly better than one with the additive noise in limited array size N.
A 2385 MHz, 2-stage low noise amplifier design
NASA Technical Reports Server (NTRS)
Sifri, Jack D.
1986-01-01
This article shows the design aspects of a 2.385 GHz low noise preamplifier with a .7 dB noise figure and 16.5 dB gain using the NE 67383 FET. The design uses a unique method in matching the input which achieves optimum noise figure and unconditional stability.
Precision limits of lock-in amplifiers below unity signal-to-noise ratios
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gillies, G.T.; Allison, S.W.
1986-02-01
An investigation of noise-related performance limits of commercial-grade lock-in amplifiers has been carried out. The dependence of the output measurement error on the input signal-to-noise ratio was established in each case and measurements of noise-related gain variations were made.
Desired Accuracy Estimation of Noise Function from ECG Signal by Fuzzy Approach
Vahabi, Zahra; Kermani, Saeed
2012-01-01
Unknown noise and artifacts present in medical signals with non-linear fuzzy filter will be estimated and then removed. An adaptive neuro-fuzzy interference system which has a non-linear structure presented for the noise function prediction by before Samples. This paper is about a neuro-fuzzy method to estimate unknown noise of Electrocardiogram signal. Adaptive neural combined with Fuzzy System to construct a fuzzy Predictor. For this system setting parameters such as the number of Membership Functions for each input and output, training epochs, type of MFs for each input and output, learning algorithm and etc. is determined by learning data. At the end simulated experimental results are presented for proper validation. PMID:23717810
Cryogenic Pound Circuits for Cryogenic Sapphire Oscillators
NASA Technical Reports Server (NTRS)
Dick, G. John; Wang, Rabi
2006-01-01
Two modern cryogenic variants of the Pound circuit have been devised to increase the frequency stability of microwave oscillators that include cryogenic sapphire-filled cavity resonators. The original Pound circuit is a microwave frequency discriminator that provides feedback to stabilize a voltage-controlled microwave oscillator with respect to an associated cavity resonator. In the present cryogenic Pound circuits, the active microwave devices are implemented by use of state-of-the-art commercially available tunnel diodes that exhibit low flicker noise (required for high frequency stability) and function well at low temperatures and at frequencies up to several tens of gigahertz. While tunnel diodes are inherently operable as amplitude detectors and amplitude modulators, they cannot, by themselves, induce significant phase modulation. Therefore, each of the present cryogenic Pound circuits includes passive circuitry that transforms the AM into the required PM. Each circuit also contains an AM detector that is used to sample the microwave signal at the input terminal of the high-Q resonator for the purpose of verifying the desired AM null at this point. Finally, each circuit contains a Pound signal detector that puts out a signal, at the modulation frequency, having an amplitude proportional to the frequency error in the input signal. High frequency stability is obtained by processing this output signal into feedback to a voltage-controlled oscillator to continuously correct the frequency error in the input signal.
Investigation of Volumetric Sources in Airframe Noise Simulations
NASA Technical Reports Server (NTRS)
Casper, Jay H.; Lockard, David P.; Khorrami, Mehdi R.; Streett, Craig L.
2004-01-01
Hybrid methods for the prediction of airframe noise involve a simulation of the near field flow that is used as input to an acoustic propagation formula. The acoustic formulations discussed herein are those based on the Ffowcs Williams and Hawkings equation. Some questions have arisen in the published literature in regard to an apparently significant dependence of radiated noise predictions on the location of the integration surface used in the solution of the Ffowcs Williams and Hawkings equation. These differences in radiated noise levels are most pronounced between solid-body surface integrals and off-body, permeable surface integrals. Such differences suggest that either a non-negligible volumetric source is contributing to the total radiation or the input flow simulation is suspect. The focus of the current work is the issue of internal consistency of the flow calculations that are currently used as input to airframe noise predictions. The case study for this research is a computer simulation for a three-element, high-lift wing profile during landing conditions. The noise radiated from this flow is predicted by a two-dimensional, frequency-domain formulation of the Ffowcs Williams and Hawkings equation. Radiated sound from volumetric sources is assessed by comparison of a permeable surface integration with the sum of a solid-body surface integral and a volume integral. The separate noise predictions are found in good agreement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finley, C; Dave, J
Purpose: To characterize noise for image receptors of digital radiography systems based on pixel variance. Methods: Nine calibrated digital image receptors associated with nine new portable digital radiography systems (Carestream Health, Inc., Rochester, NY) were used in this study. For each image receptor, thirteen images were acquired with RQA5 beam conditions for input detector air kerma ranging from 0 to 110 µGy, and linearized ‘For Processing’ images were extracted. Mean pixel value (MPV), standard deviation (SD) and relative noise (SD/MPV) were obtained from each image using ROI sizes varying from 2.5×2.5 to 20×20 mm{sup 2}. Variance (SD{sup 2}) was plottedmore » as a function of input detector air kerma and the coefficients of the quadratic fit were used to derive structured, quantum and electronic noise coefficients. Relative noise was also fitted as a function of input detector air kerma to identify noise sources. The fitting functions used least-squares approach. Results: The coefficient of variation values obtained using different ROI sizes was less than 1% for all the images. The structured, quantum and electronic coefficients obtained from the quadratic fit of variance (r>0.97) were 0.43±0.10, 3.95±0.27 and 2.89±0.74 (mean ± standard deviation), respectively, indicating that overall the quantum noise was the dominant noise source. However, for one system electronic noise coefficient (3.91) was greater than quantum noise coefficient (3.56) indicating electronic noise to be dominant. Using relative noise values, the power parameter of the fitting equation (|r|>0.93) showed a mean and standard deviation of 0.46±0.02. A 0.50 value for this power parameter indicates quantum noise to be the dominant noise source whereas values around 0.50 indicate presence of other noise sources. Conclusion: Characterizing noise from pixel variance assists in identifying contributions from various noise sources that, eventually, may affect image quality. This approach may be integrated during periodic quality assessments of digital image receptors.« less
Development of a character, line and point display system. [for medical records
NASA Technical Reports Server (NTRS)
Owen, E. W.
1977-01-01
A compact graphics terminal for use as the input to a computerized medical records system is described. The principal mode of communication between the terminal and the records system is by checklists and menu selection. However, the terminal accepts short, handwritten messages as well as conventional alphanumeric input. The terminal consists of an electronic tablet, a display, a microcomputer controller, a character generator, and a refresh memory for the display. An Intel SBC 80/10 microcomputer controls the flow of information and a 16 kilobyte memory stores the point-by-point array of information to be displayed. A specially designed interface continuously generates the raster display without the intervention of the microcomputer.
Logarithmic circuit with wide dynamic range
NASA Technical Reports Server (NTRS)
Wiley, P. H.; Manus, E. A. (Inventor)
1978-01-01
A circuit deriving an output voltage that is proportional to the logarithm of a dc input voltage susceptible to wide variations in amplitude includes a constant current source which forward biases a diode so that the diode operates in the exponential portion of its voltage versus current characteristic, above its saturation current. The constant current source includes first and second, cascaded feedback, dc operational amplifiers connected in negative feedback circuit. An input terminal of the first amplifier is responsive to the input voltage. A circuit shunting the first amplifier output terminal includes a resistor in series with the diode. The voltage across the resistor is sensed at the input of the second dc operational feedback amplifier. The current flowing through the resistor is proportional to the input voltage over the wide range of variations in amplitude of the input voltage.
Terminator Disparity Contributes to Stereo Matching for Eye Movements and Perception
Optican, Lance M.; Cumming, Bruce G.
2013-01-01
In the context of motion detection, the endings (or terminators) of 1-D features can be detected as 2-D features, affecting the perceived direction of motion of the 1-D features (the barber-pole illusion) and the direction of tracking eye movements. In the realm of binocular disparity processing, an equivalent role for the disparity of terminators has not been established. Here we explore the stereo analogy of the barber-pole stimulus, applying disparity to a 1-D noise stimulus seen through an elongated, zero-disparity, aperture. We found that, in human subjects, these stimuli induce robust short-latency reflexive vergence eye movements, initially in the direction orthogonal to the 1-D features, but shortly thereafter in the direction predicted by the disparity of the terminators. In addition, these same stimuli induce vivid depth percepts, which can only be attributed to the disparity of line terminators. When the 1-D noise patterns are given opposite contrast in the two eyes (anticorrelation), both components of the vergence response reverse sign. Finally, terminators drive vergence even when the aperture is defined by a texture (as opposed to a contrast) boundary. These findings prove that terminators contribute to stereo matching, and constrain the type of neuronal mechanisms that might be responsible for the detection of terminator disparity. PMID:24285893
Terminator disparity contributes to stereo matching for eye movements and perception.
Quaia, Christian; Optican, Lance M; Cumming, Bruce G
2013-11-27
In the context of motion detection, the endings (or terminators) of 1-D features can be detected as 2-D features, affecting the perceived direction of motion of the 1-D features (the barber-pole illusion) and the direction of tracking eye movements. In the realm of binocular disparity processing, an equivalent role for the disparity of terminators has not been established. Here we explore the stereo analogy of the barber-pole stimulus, applying disparity to a 1-D noise stimulus seen through an elongated, zero-disparity, aperture. We found that, in human subjects, these stimuli induce robust short-latency reflexive vergence eye movements, initially in the direction orthogonal to the 1-D features, but shortly thereafter in the direction predicted by the disparity of the terminators. In addition, these same stimuli induce vivid depth percepts, which can only be attributed to the disparity of line terminators. When the 1-D noise patterns are given opposite contrast in the two eyes (anticorrelation), both components of the vergence response reverse sign. Finally, terminators drive vergence even when the aperture is defined by a texture (as opposed to a contrast) boundary. These findings prove that terminators contribute to stereo matching, and constrain the type of neuronal mechanisms that might be responsible for the detection of terminator disparity.
Transcription termination factor Rho and microbial phenotypic heterogeneity.
Bidnenko, Elena; Bidnenko, Vladimir
2018-06-01
Populations of genetically identical microorganisms exhibit high degree of cell-to-cell phenotypic diversity even when grown in uniform environmental conditions. Heterogeneity is a genetically determined trait, which ensures bacterial adaptation and survival in the ever changing environmental conditions. Fluctuations in gene expression (noise) at the level of transcription initiation largely contribute to cell-to-cell variability within population. Not surprisingly, the analyses of the mechanisms driving phenotypic heterogeneity are mainly focused on the activity of promoters and transcriptional factors. Less attention is currently given to a role of intrinsic and factor-dependent transcription terminators. Here, we discuss recent advances in understanding the regulatory role of the multi-functional transcription termination factor Rho, the major inhibitor of pervasive transcription in bacteria and the emerging global regulator of gene expression. We propose that termination activity of Rho might be among the mechanisms by which cells manage the intensity of transcriptional noise, thus affecting population heterogeneity.
NASA Astrophysics Data System (ADS)
Hong, Wei; Huang, Dexiu; Zhang, Xinliang; Zhu, Guangxi
2008-01-01
A thorough simulation and evaluation of phase noise for optical amplification using semiconductor optical amplifier (SOA) is very important for predicting its performance in differential phase-shift keyed (DPSK) applications. In this paper, standard deviation and probability distribution of differential phase noise at the SOA output are obtained from the statistics of simulated differential phase noise. By using a full-wave model of SOA, the noise performance in the entire operation range can be investigated. It is shown that nonlinear phase noise substantially contributes to the total phase noise in case of a noisy signal amplified by a saturated SOA and the nonlinear contribution is larger with shorter SOA carrier lifetime. It is also shown that Gaussian distribution can be useful as a good approximation of the total differential phase noise statistics in the whole operation range. Power penalty due to differential phase noise is evaluated using a semi-analytical probability density function (PDF) of receiver noise. Obvious increase of power penalty at high signal input powers can be found for low input OSNR, which is due to both the large nonlinear differential phase noise and the dependence of BER vs. receiving power curvature on differential phase noise standard deviation.
Robust and tunable circadian rhythms from differentially sensitive catalytic domains
Phong, Connie; Markson, Joseph S.; Wilhoite, Crystal M.; Rust, Michael J.
2013-01-01
Circadian clocks are ubiquitous biological oscillators that coordinate an organism’s behavior with the daily cycling of the external environment. To ensure synchronization with the environment, the period of the clock must be maintained near 24 h even as amplitude and phase are altered by input signaling. We show that, in a reconstituted circadian system from cyanobacteria, these conflicting requirements are satisfied by distinct functions for two domains of the central clock protein KaiC: the C-terminal autokinase domain integrates input signals through the ATP/ADP ratio, and the slow N-terminal ATPase acts as an input-independent timer. We find that phosphorylation in the C-terminal domain followed by an ATPase cycle in the N-terminal domain is required to form the inhibitory KaiB•KaiC complexes that drive the dynamics of the clock. We present a mathematical model in which this ATPase-mediated delay in negative feedback gives rise to a compensatory mechanism that allows a tunable phase and amplitude while ensuring a robust circadian period. PMID:23277568
Rapid integration of young newborn dentate gyrus granule cells in the adult hippocampal circuitry.
Ide, Yoko; Fujiyama, Fumino; Okamoto-Furuta, Keiko; Tamamaki, Nobuaki; Kaneko, Takeshi; Hisatsune, Tatsuhiro
2008-12-01
Newborn dentate gyrus granule cells (DGCs) are integrated into the hippocampal circuitry and contribute to the cognitive functions of learning and memory. The dendritic maturation of newborn DGCs in adult mice occurs by the first 3-4 weeks, but DGCs seem to receive a variety of neural inputs at both their dendrites and soma even shortly after their birth. However, few studies on the axonal maturation of newborn DGCs have focused on synaptic structure. Here, we investigated the potentiality of output and input in newborn DGCs, especially in the early period after terminal mitosis. We labeled nestin-positive progenitor cells by injecting GFP Cre-reporter adenovirus into Nestin-Cre mice, enabling us to trace the development of progenitor cells by their GFP expression. In addition to GABAergic input from interneurons, we observed that the young DGCs received axosomatic input from the medial septum as early as postinfection day 7 (PID 7). To evaluate the axonal maturation of the newborn DGCs compared with mature DCGs, we performed confocal and electron microscopic analyses. We observed that newborn DGCs projected their mossy fibers to the CA3 region, forming small terminals on hilar or CA3 interneurons and large boutons on CA3 pyramidal cells. These terminals expressed vesicular glutamate transporter 1, indicating they were glutamatergic terminals. Intriguingly, the terminals at PID 7 had already formed asymmetric synapses, similar to those of mature DGCs. Together, our findings suggest that newborn DGCs may form excitatory synapses on both interneurons and CA3 pyramidal cells within 7 days of their terminal mitosis.
Human voice quality measurement in noisy environments.
Ueng, Shyh-Kuang; Luo, Cheng-Ming; Tsai, Tsung-Yu; Yeh, Hsuan-Chen
2015-01-01
Computerized acoustic voice measurement is essential for the diagnosis of vocal pathologies. Previous studies showed that ambient noises have significant influences on the accuracy of voice quality assessment. This paper presents a voice quality assessment system that can accurately measure qualities of voice signals, even though the input voice data are contaminated by low-frequency noises. The ambient noises in our living rooms and laboratories are collected and the frequencies of these noises are analyzed. Based on the analysis, a filter is designed to reduce noise level of the input voice signal. Then, improved numerical algorithms are employed to extract voice parameters from the voice signal to reveal the health of the voice signal. Compared with MDVP and Praat, the proposed method outperforms these two widely used programs in measuring fundamental frequency and harmonic-to-noise ratio, and its performance is comparable to these two famous programs in computing jitter and shimmer. The proposed voice quality assessment method is resistant to low-frequency noises and it can measure human voice quality in environments filled with noises from air-conditioners, ceiling fans and cooling fans of computers.
NASA/ARMY/BELL XV-15 Tiltrotor Low-Noise Terminal Area Operations Flight Research Program
NASA Technical Reports Server (NTRS)
Edwards, Bryan D.; Conner, David A.; Decker, William A.; Marcolini, Michael A.; Klein, Peter D.
2001-01-01
To evaluate the noise reduction potential for tiltrotor aircraft, a series of three XV- 15 acoustic flight tests were conducted over a five-year period by a NASA/Army/Bell Helicopter team. Lower hemispherical noise characteristics for a wide range of steady-state terminal area type operating conditions were measured during the Phase I test and indicated that the takeoff and level flight conditions were not significant contributors to the total noise of tiltrotor operations. Phase I results were also used to design low-noise approach profiles that were tested later during the Phase 2 and Phase 3 tests. These latter phases used large area microphone arrays to directly measure ground noise footprints. Approach profiles emphasized noise reduction while maintaining handling qualities sufficient for tiltrotor commercial passenger ride comfort and flight safety under Instrument Flight Rules (IFR) conditions. This paper will discuss the weather, aircraft, tracking, guidance, and acoustic instrumentation systems, as well as the approach profile design philosophy, and the overall test program philosophy. Acoustic results are presented to document the variation in tiltrotor noise due to changes in operating condition, indicating the potential for significant noise reduction using the unique tiltrotor capability of nacelle tilt. Recommendations are made for a final XV-15 test to define the acoustic benefits of the automated approach capability which has recently been added to this testbed aircraft.
Sottile, Sarah Y; Hackett, Troy A; Cai, Rui; Ling, Lynne; Llano, Daniel A; Caspary, Donald M
2017-11-22
Acetylcholine (ACh) is a potent neuromodulator capable of modifying patterns of acoustic information flow. In auditory cortex, cholinergic systems have been shown to increase salience/gain while suppressing extraneous information. However, the mechanism by which cholinergic circuits shape signal processing in the auditory thalamus (medial geniculate body, MGB) is poorly understood. The present study, in male Fischer Brown Norway rats, seeks to determine the location and function of presynaptic neuronal nicotinic ACh receptors (nAChRs) at the major inputs to MGB and characterize how nAChRs change during aging. In vitro electrophysiological/optogenetic methods were used to examine responses of MGB neurons after activation of nAChRs during a paired-pulse paradigm. Presynaptic nAChR activation increased responses evoked by stimulation of excitatory corticothalamic and inhibitory tectothalamic terminals. Conversely, nAChR activation appeared to have little effect on evoked responses from inhibitory thalamic reticular nucleus and excitatory tectothalamic terminals. In situ hybridization data showed nAChR subunit transcripts in GABAergic inferior colliculus neurons and glutamatergic auditory cortical neurons supporting the present slice findings. Responses to nAChR activation at excitatory corticothalamic and inhibitory tectothalamic inputs were diminished by aging. These findings suggest that cholinergic input to the MGB increases the strength of tectothalamic inhibitory projections, potentially improving the signal-to-noise ratio and signal detection while increasing corticothalamic gain, which may facilitate top-down identification of stimulus identity. These mechanisms appear to be affected negatively by aging, potentially diminishing speech perception in noisy environments. Cholinergic inputs to the MGB appear to maximize sensory processing by adjusting both top-down and bottom-up mechanisms in conditions of attention and arousal. SIGNIFICANCE STATEMENT The pedunculopontine tegmental nucleus is the source of cholinergic innervation for sensory thalamus and is a critical part of an ascending arousal system that controls the firing mode of thalamic cells based on attentional demand. The present study describes the location and impact of aging on presynaptic neuronal nicotinic acetylcholine receptors (nAChRs) within the circuitry of the auditory thalamus (medial geniculate body, MGB). We show that nAChRs are located on ascending inhibitory and descending excitatory presynaptic inputs onto MGB neurons, likely increasing gain selectively and improving temporal clarity. In addition, we show that aging has a deleterious effect on nAChR efficacy. Cholinergic dysfunction at the level of MGB may affect speech understanding negatively in the elderly population. Copyright © 2017 the authors 0270-6474/17/3711378-13$15.00/0.
Sottile, Sarah Y.; Hackett, Troy A.
2017-01-01
Acetylcholine (ACh) is a potent neuromodulator capable of modifying patterns of acoustic information flow. In auditory cortex, cholinergic systems have been shown to increase salience/gain while suppressing extraneous information. However, the mechanism by which cholinergic circuits shape signal processing in the auditory thalamus (medial geniculate body, MGB) is poorly understood. The present study, in male Fischer Brown Norway rats, seeks to determine the location and function of presynaptic neuronal nicotinic ACh receptors (nAChRs) at the major inputs to MGB and characterize how nAChRs change during aging. In vitro electrophysiological/optogenetic methods were used to examine responses of MGB neurons after activation of nAChRs during a paired-pulse paradigm. Presynaptic nAChR activation increased responses evoked by stimulation of excitatory corticothalamic and inhibitory tectothalamic terminals. Conversely, nAChR activation appeared to have little effect on evoked responses from inhibitory thalamic reticular nucleus and excitatory tectothalamic terminals. In situ hybridization data showed nAChR subunit transcripts in GABAergic inferior colliculus neurons and glutamatergic auditory cortical neurons supporting the present slice findings. Responses to nAChR activation at excitatory corticothalamic and inhibitory tectothalamic inputs were diminished by aging. These findings suggest that cholinergic input to the MGB increases the strength of tectothalamic inhibitory projections, potentially improving the signal-to-noise ratio and signal detection while increasing corticothalamic gain, which may facilitate top-down identification of stimulus identity. These mechanisms appear to be affected negatively by aging, potentially diminishing speech perception in noisy environments. Cholinergic inputs to the MGB appear to maximize sensory processing by adjusting both top-down and bottom-up mechanisms in conditions of attention and arousal. SIGNIFICANCE STATEMENT The pedunculopontine tegmental nucleus is the source of cholinergic innervation for sensory thalamus and is a critical part of an ascending arousal system that controls the firing mode of thalamic cells based on attentional demand. The present study describes the location and impact of aging on presynaptic neuronal nicotinic acetylcholine receptors (nAChRs) within the circuitry of the auditory thalamus (medial geniculate body, MGB). We show that nAChRs are located on ascending inhibitory and descending excitatory presynaptic inputs onto MGB neurons, likely increasing gain selectively and improving temporal clarity. In addition, we show that aging has a deleterious effect on nAChR efficacy. Cholinergic dysfunction at the level of MGB may affect speech understanding negatively in the elderly population. PMID:29061702
Identification and modification of dominant noise sources in diesel engines
NASA Astrophysics Data System (ADS)
Hayward, Michael D.
Determination of dominant noise sources in diesel engines is an integral step in the creation of quiet engines, but is a process which can involve an extensive series of expensive, time-consuming fired and motored tests. The goal of this research is to determine dominant noise source characteristics of a diesel engine in the near and far-fields with data from fewer tests than is currently required. Pre-conditioning and use of numerically robust methods to solve a set of cross-spectral density equations results in accurate calculation of the transfer paths between the near- and far-field measurement points. Application of singular value decomposition to an input cross-spectral matrix determines the spectral characteristics of a set of independent virtual sources, that, when scaled and added, result in the input cross spectral matrix. Each virtual source power spectral density is a singular value resulting from the decomposition performed over a range of frequencies. The complex relationship between virtual and physical sources is estimated through determination of virtual source contributions to each input measurement power spectral density. The method is made more user-friendly through use of a percentage contribution color plotting technique, where different normalizations can be used to help determine the presence of sources and the strengths of their contributions. Convolution of input measurements with the estimated path impulse responses results in a set of far-field components, to which the same singular value contribution plotting technique can be applied, thus allowing dominant noise source characteristics in the far-field to also be examined. Application of the methods presented results in determination of the spectral characteristics of dominant noise sources both in the near- and far-fields from one fired test, which significantly reduces the need for extensive fired and motored testing. Finally, it is shown that the far-field noise time history of a physically altered engine can be simulated through modification of singular values and recalculation of transfer paths between input and output measurements of previously recorded data.
Reconstruction of Complex Network based on the Noise via QR Decomposition and Compressed Sensing.
Li, Lixiang; Xu, Dafei; Peng, Haipeng; Kurths, Jürgen; Yang, Yixian
2017-11-08
It is generally known that the states of network nodes are stable and have strong correlations in a linear network system. We find that without the control input, the method of compressed sensing can not succeed in reconstructing complex networks in which the states of nodes are generated through the linear network system. However, noise can drive the dynamics between nodes to break the stability of the system state. Therefore, a new method integrating QR decomposition and compressed sensing is proposed to solve the reconstruction problem of complex networks under the assistance of the input noise. The state matrix of the system is decomposed by QR decomposition. We construct the measurement matrix with the aid of Gaussian noise so that the sparse input matrix can be reconstructed by compressed sensing. We also discover that noise can build a bridge between the dynamics and the topological structure. Experiments are presented to show that the proposed method is more accurate and more efficient to reconstruct four model networks and six real networks by the comparisons between the proposed method and only compressed sensing. In addition, the proposed method can reconstruct not only the sparse complex networks, but also the dense complex networks.
1981-06-01
for a de- tection probability of PD and associated false alarm probability PFA (in dB). 21 - - - II V. REFERENCE MODEL A. INTRODUCTION In order to...space for which to choose HI . PFA = P (wI 0o)dw = Q(---) (26) j 0 Similarity, the miss probability=l-detection probability is obtained by integrating...31) = 2 (1+ (22 [()BT z] ~Z The input signal-to-noise ratio: S/N(input) - a2 (32) The probability of false alarm: PFA = Q[ tB(j-I) 1 (33) The
A computer simulation of an adaptive noise canceler with a single input
NASA Astrophysics Data System (ADS)
Albert, Stuart D.
1991-06-01
A description of an adaptive noise canceler using Widrows' LMS algorithm is presented. A computer simulation of canceler performance (adaptive convergence time and frequency transfer function) was written for use as a design tool. The simulations, assumptions, and input parameters are described in detail. The simulation is used in a design example to predict the performance of an adaptive noise canceler in the simultaneous presence of both strong and weak narrow-band signals (a cosited frequency hopping radio scenario). On the basis of the simulation results, it is concluded that the simulation is suitable for use as an adaptive noise canceler design tool; i.e., it can be used to evaluate the effect of design parameter changes on canceler performance.
A model for the rapid assessment of the impact of aviation noise near airports.
Torija, Antonio J; Self, Rod H; Flindell, Ian H
2017-02-01
This paper introduces a simplified model [Rapid Aviation Noise Evaluator (RANE)] for the calculation of aviation noise within the context of multi-disciplinary strategic environmental assessment where input data are both limited and constrained by compatibility requirements against other disciplines. RANE relies upon the concept of noise cylinders around defined flight-tracks with the Noise Radius determined from publicly available Noise-Power-Distance curves rather than the computationally intensive multiple point-to-point grid calculation with subsequent ISO-contour interpolation methods adopted in the FAA's Integrated Noise Model (INM) and similar models. Preliminary results indicate that for simple single runway scenarios, changes in airport noise contour areas can be estimated with minimal uncertainty compared against grid-point calculation methods such as INM. In situations where such outputs are all that is required for preliminary strategic environmental assessment, there are considerable benefits in reduced input data and computation requirements. Further development of the noise-cylinder-based model (such as the incorporation of lateral attenuation, engine-installation-effects or horizontal track dispersion via the assumption of more complex noise surfaces formed around the flight-track) will allow for more complex assessment to be carried out. RANE is intended to be incorporated into technology evaluators for the noise impact assessment of novel aircraft concepts.
Locally Based Kernel PLS Regression De-noising with Application to Event-Related Potentials
NASA Technical Reports Server (NTRS)
Rosipal, Roman; Trejo, Leonard J.; Wheeler, Kevin; Tino, Peter
2002-01-01
The close relation of signal de-noising and regression problems dealing with the estimation of functions reflecting dependency between a set of inputs and dependent outputs corrupted with some level of noise have been employed in our approach.
Raju, Dinesh V; Shah, Deep J; Wright, Terrence M; Hall, Randy A; Smith, Yoland
2006-11-10
The striatum is divided into two compartments named the patch (or striosome) and the matrix. Although these two compartments can be differentiated by their neurochemical content or afferent and efferent projections, the synaptology of inputs to these striatal regions remains poorly characterized. By using the vesicular glutamate transporters vGluT1 and vGluT2, as markers of corticostriatal and thalamostriatal projections, respectively, we demonstrate a differential pattern of synaptic connections of these two pathways between the patch and the matrix compartments. We also demonstrate that the majority of vGluT2-immunolabeled axon terminals form axospinous synapses, suggesting that thalamic afferents, like corticostriatal inputs, terminate preferentially onto spines in the striatum. Within both compartments, more than 90% of vGluT1-containing terminals formed axospinous synapses, whereas 87% of vGluT2-positive terminals within the patch innervated dendritic spines, but only 55% did so in the matrix. To characterize further the source of thalamic inputs that could account for the increase in axodendritic synapses in the matrix, we undertook an electron microscopic analysis of the synaptology of thalamostriatal afferents to the matrix compartments from specific intralaminar, midline, relay, and associative thalamic nuclei in rats. Approximately 95% of PHA-L-labeled terminals from the central lateral, midline, mediodorsal, lateral dorsal, anteroventral, and ventral anterior/ventral lateral nuclei formed axospinous synapses, a pattern reminiscent of corticostriatal afferents but strikingly different from thalamostriatal projections arising from the parafascicular nucleus (PF), which terminated onto dendritic shafts. These findings provide the first evidence for a differential pattern of synaptic organization of thalamostriatal glutamatergic inputs to the patch and matrix compartments. Furthermore, they demonstrate that the PF is the sole source of significant axodendritic thalamic inputs to striatal projection neurons. These observations pave the way for understanding differential regulatory mechanisms of striatal outflow from the patch and matrix compartments by thalamostriatal afferents. 2006 Wiley-Liss, Inc.
Tunable single-photon multi-channel quantum router based on an optomechanical system
NASA Astrophysics Data System (ADS)
Ma, Peng-Cheng; Yan, Lei-Lei; Zhang, Jian; Chen, Gui-Bin; Li, Xiao-Wei; Zhan, You-Bang
2018-01-01
Routing of photons plays a key role in optical communication networks and quantum networks. Although the quantum routing of signals has been investigated for various systems, both in theory and experiment, the general form of a quantum router with multi-output terminals still needs to be explored. Here, we propose an experimentally accessible tunable single-photon multi-channel routing scheme using an optomechanics cavity which is Coulomb coupled to a nanomechanical resonator. The router can extract single photons from the coherent input signal and directly modulate them into three different output channels. More importantly, the two output signal frequencies can be selected by adjusting the Coulomb coupling strength. For application purposes, we justify that there is insignificant influence from the vacuum and thermal noises on the performance of the router under cryogenic conditions. Our proposal may pave a new avenue towards multi-channel routers and quantum networks.
Chen, Chang Hao; McCullagh, Elizabeth A; Pun, Sio Hang; Mak, Peng Un; Vai, Mang I; Mak, Pui In; Klug, Achim; Lei, Tim C
2017-03-01
The ability to record and to control action potential firing in neuronal circuits is critical to understand how the brain functions. The objective of this study is to develop a monolithic integrated circuit (IC) to record action potentials and simultaneously control action potential firing using optogenetics. A low-noise and high input impedance (or low input capacitance) neural recording amplifier is combined with a high current laser/light-emitting diode (LED) driver in a single IC. The low input capacitance of the amplifier (9.7 pF) was achieved by adding a dedicated unity gain stage optimized for high impedance metal electrodes. The input referred noise of the amplifier is [Formula: see text], which is lower than the estimated thermal noise of the metal electrode. Thus, the action potentials originating from a single neuron can be recorded with a signal-to-noise ratio of at least 6.6. The LED/laser current driver delivers a maximum current of 330 mA, which is adequate for optogenetic control. The functionality of the IC was tested with an anesthetized Mongolian gerbil and auditory stimulated action potentials were recorded from the inferior colliculus. Spontaneous firings of fifth (trigeminal) nerve fibers were also inhibited using the optogenetic protein Halorhodopsin. Moreover, a noise model of the system was derived to guide the design. A single IC to measure and control action potentials using optogenetic proteins is realized so that more complicated behavioral neuroscience research and the translational neural disorder treatments become possible in the future.
Suprathreshold stochastic resonance in neural processing tuned by correlation.
Durrant, Simon; Kang, Yanmei; Stocks, Nigel; Feng, Jianfeng
2011-07-01
Suprathreshold stochastic resonance (SSR) is examined in the context of integrate-and-fire neurons, with an emphasis on the role of correlation in the neuronal firing. We employed a model based on a network of spiking neurons which received synaptic inputs modeled by Poisson processes stimulated by a stepped input signal. The smoothed ensemble firing rate provided an output signal, and the mutual information between this signal and the input was calculated for networks with different noise levels and different numbers of neurons. It was found that an SSR effect was present in this context. We then examined a more biophysically plausible scenario where the noise was not controlled directly, but instead was tuned by the correlation between the inputs. The SSR effect remained present in this scenario with nonzero noise providing improved information transmission, and it was found that negative correlation between the inputs was optimal. Finally, an examination of SSR in the context of this model revealed its connection with more traditional stochastic resonance and showed a trade-off between supratheshold and subthreshold components. We discuss these results in the context of existing empirical evidence concerning correlations in neuronal firing.
Suprathreshold stochastic resonance in neural processing tuned by correlation
NASA Astrophysics Data System (ADS)
Durrant, Simon; Kang, Yanmei; Stocks, Nigel; Feng, Jianfeng
2011-07-01
Suprathreshold stochastic resonance (SSR) is examined in the context of integrate-and-fire neurons, with an emphasis on the role of correlation in the neuronal firing. We employed a model based on a network of spiking neurons which received synaptic inputs modeled by Poisson processes stimulated by a stepped input signal. The smoothed ensemble firing rate provided an output signal, and the mutual information between this signal and the input was calculated for networks with different noise levels and different numbers of neurons. It was found that an SSR effect was present in this context. We then examined a more biophysically plausible scenario where the noise was not controlled directly, but instead was tuned by the correlation between the inputs. The SSR effect remained present in this scenario with nonzero noise providing improved information transmission, and it was found that negative correlation between the inputs was optimal. Finally, an examination of SSR in the context of this model revealed its connection with more traditional stochastic resonance and showed a trade-off between supratheshold and subthreshold components. We discuss these results in the context of existing empirical evidence concerning correlations in neuronal firing.
Aircraft noise source and computer programs - User's guide
NASA Technical Reports Server (NTRS)
Crowley, K. C.; Jaeger, M. A.; Meldrum, D. F.
1973-01-01
The application of computer programs for predicting the noise-time histories and noise contours for five types of aircraft is reported. The aircraft considered are: (1) turbojet, (2) turbofan, (3) turboprop, (4) V/STOL, and (5) helicopter. Three principle considerations incorporated in the design of the noise prediction program are core effectiveness, limited input, and variable output reporting.
Electrometer Amplifier With Overload Protection
NASA Technical Reports Server (NTRS)
Woeller, F. H.; Alexander, R.
1986-01-01
Circuit features low noise, input offset, and high linearity. Input preamplifier includes input-overload protection and nulling circuit to subtract dc offset from output. Prototype dc amplifier designed for use with ion detector has features desirable in general laboratory and field instrumentation.
Adaptive Data-based Predictive Control for Short Take-off and Landing (STOL) Aircraft
NASA Technical Reports Server (NTRS)
Barlow, Jonathan Spencer; Acosta, Diana Michelle; Phan, Minh Q.
2010-01-01
Data-based Predictive Control is an emerging control method that stems from Model Predictive Control (MPC). MPC computes current control action based on a prediction of the system output a number of time steps into the future and is generally derived from a known model of the system. Data-based predictive control has the advantage of deriving predictive models and controller gains from input-output data. Thus, a controller can be designed from the outputs of complex simulation code or a physical system where no explicit model exists. If the output data happens to be corrupted by periodic disturbances, the designed controller will also have the built-in ability to reject these disturbances without the need to know them. When data-based predictive control is implemented online, it becomes a version of adaptive control. The characteristics of adaptive data-based predictive control are particularly appropriate for the control of nonlinear and time-varying systems, such as Short Take-off and Landing (STOL) aircraft. STOL is a capability of interest to NASA because conceptual Cruise Efficient Short Take-off and Landing (CESTOL) transport aircraft offer the ability to reduce congestion in the terminal area by utilizing existing shorter runways at airports, as well as to lower community noise by flying steep approach and climb-out patterns that reduce the noise footprint of the aircraft. In this study, adaptive data-based predictive control is implemented as an integrated flight-propulsion controller for the outer-loop control of a CESTOL-type aircraft. Results show that the controller successfully tracks velocity while attempting to maintain a constant flight path angle, using longitudinal command, thrust and flap setting as the control inputs.
Discharge regularity in the turtle posterior crista: comparisons between experiment and theory.
Goldberg, Jay M; Holt, Joseph C
2013-12-01
Intra-axonal recordings were made from bouton fibers near their termination in the turtle posterior crista. Spike discharge, miniature excitatory postsynaptic potentials (mEPSPs), and afterhyperpolarizations (AHPs) were monitored during resting activity in both regularly and irregularly discharging units. Quantal size (qsize) and quantal rate (qrate) were estimated by shot-noise theory. Theoretically, the ratio, σV/(dμV/dt), between synaptic noise (σV) and the slope of the mean voltage trajectory (dμV/dt) near threshold crossing should determine discharge regularity. AHPs are deeper and more prolonged in regular units; as a result, dμV/dt is larger, the more regular the discharge. The qsize is larger and qrate smaller in irregular units; these oppositely directed trends lead to little variation in σV with discharge regularity. Of the two variables, dμV/dt is much more influential than the nearly constant σV in determining regularity. Sinusoidal canal-duct indentations at 0.3 Hz led to modulations in spike discharge and synaptic voltage. Gain, the ratio between the amplitudes of the two modulations, and phase leads re indentation of both modulations are larger in irregular units. Gain variations parallel the sensitivity of the postsynaptic spike encoder, the set of conductances that converts synaptic input into spike discharge. Phase variations reflect both synaptic inputs to the encoder and postsynaptic processes. Experimental data were interpreted using a stochastic integrate-and-fire model. Advantages of an irregular discharge include an enhanced encoder gain and the prevention of nonlinear phase locking. Regular and irregular units are more efficient, respectively, in the encoding of low- and high-frequency head rotations, respectively.
Discharge regularity in the turtle posterior crista: comparisons between experiment and theory
Holt, Joseph C.
2013-01-01
Intra-axonal recordings were made from bouton fibers near their termination in the turtle posterior crista. Spike discharge, miniature excitatory postsynaptic potentials (mEPSPs), and afterhyperpolarizations (AHPs) were monitored during resting activity in both regularly and irregularly discharging units. Quantal size (qsize) and quantal rate (qrate) were estimated by shot-noise theory. Theoretically, the ratio, σV/(dμV/dt), between synaptic noise (σV) and the slope of the mean voltage trajectory (dμV/dt) near threshold crossing should determine discharge regularity. AHPs are deeper and more prolonged in regular units; as a result, dμV/dt is larger, the more regular the discharge. The qsize is larger and qrate smaller in irregular units; these oppositely directed trends lead to little variation in σV with discharge regularity. Of the two variables, dμV/dt is much more influential than the nearly constant σV in determining regularity. Sinusoidal canal-duct indentations at 0.3 Hz led to modulations in spike discharge and synaptic voltage. Gain, the ratio between the amplitudes of the two modulations, and phase leads re indentation of both modulations are larger in irregular units. Gain variations parallel the sensitivity of the postsynaptic spike encoder, the set of conductances that converts synaptic input into spike discharge. Phase variations reflect both synaptic inputs to the encoder and postsynaptic processes. Experimental data were interpreted using a stochastic integrate-and-fire model. Advantages of an irregular discharge include an enhanced encoder gain and the prevention of nonlinear phase locking. Regular and irregular units are more efficient, respectively, in the encoding of low- and high-frequency head rotations, respectively. PMID:24004525
Analysis of modeling cumulative noise from simultaneous flights volume 2 : supplemental analysis
DOT National Transportation Integrated Search
2012-12-31
This is the second of two volumes of the report on modeling cumulative noise from simultaneous flights. This volume examines the effect of several modeling input cases on Percent Time Audible results calculated by the Integrated Noise Model. The case...
Choi, Hyun Ho; Lee, Ju Hwan; Kim, Sung Min; Park, Sung Yun
2015-01-01
Here, the speckle noise in ultrasonic images is removed using an image fusion-based denoising method. To optimize the denoising performance, each discrete wavelet transform (DWT) and filtering technique was analyzed and compared. In addition, the performances were compared in order to derive the optimal input conditions. To evaluate the speckle noise removal performance, an image fusion algorithm was applied to the ultrasound images, and comparatively analyzed with the original image without the algorithm. As a result, applying DWT and filtering techniques caused information loss and noise characteristics, and did not represent the most significant noise reduction performance. Conversely, an image fusion method applying SRAD-original conditions preserved the key information in the original image, and the speckle noise was removed. Based on such characteristics, the input conditions of SRAD-original had the best denoising performance with the ultrasound images. From this study, the best denoising technique proposed based on the results was confirmed to have a high potential for clinical application.
On optimal control of linear systems in the presence of multiplicative noise
NASA Technical Reports Server (NTRS)
Joshi, S. M.
1976-01-01
This correspondence considers the problem of optimal regulator design for discrete time linear systems subjected to white state-dependent and control-dependent noise in addition to additive white noise in the input and the observations. A pseudo-deterministic problem is first defined in which multiplicative and additive input disturbances are present, but noise-free measurements of the complete state vector are available. This problem is solved via discrete dynamic programming. Next is formulated the problem in which the number of measurements is less than that of the state variables and the measurements are contaminated with state-dependent noise. The inseparability of control and estimation is brought into focus, and an 'enforced separation' solution is obtained via heuristic reasoning in which the control gains are shown to be the same as those in the pseudo-deterministic problem. An optimal linear state estimator is given in order to implement the controller.
Cross-Spectrum PM Noise Measurement, Thermal Energy, and Metamaterial Filters.
Gruson, Yannick; Giordano, Vincent; Rohde, Ulrich L; Poddar, Ajay K; Rubiola, Enrico
2017-03-01
Virtually all commercial instruments for the measurement of the oscillator PM noise make use of the cross-spectrum method (arXiv:1004.5539 [physics.ins-det], 2010). High sensitivity is achieved by correlation and averaging on two equal channels, which measure the same input, and reject the background of the instrument. We show that a systematic error is always present if the thermal energy of the input power splitter is not accounted for. Such error can result in noise underestimation up to a few decibels in the lowest-noise quartz oscillators, and in an invalid measurement in the case of cryogenic oscillators. As another alarming fact, the presence of metamaterial components in the oscillator results in unpredictable behavior and large errors, even in well controlled experimental conditions. We observed a spread of 40 dB in the phase noise spectra of an oscillator, just replacing the output filter.
NASA Technical Reports Server (NTRS)
Dittmar, J. H.
1983-01-01
High speed turboprops are attractive candidates for future aircraft because of their high propulsive efficiency. However, the noise of their propellers may create a cabin environment problem for the aircraft powered by these propellers. The noise of some propeller models was measured, and predictions of the noise using a method based on the Ffowcs Williams-Hawkins equation were made. The predictions and data agree well at lower helical tip Mach numbers but deviate above Mach 1.0. Some possible reasons why the theory does not predict the data and focuses on improvement of the aerodynamic inputs as the most likely remedy are investigated. In particular, it is proposed that an increase in the drag and a decrease in the lift near the tip of the blade where the majority of the noise is generated, is warranted in the input to the theory.
The behavior of quantization spectra as a function of signal-to-noise ratio
NASA Technical Reports Server (NTRS)
Flanagan, M. J.
1991-01-01
An expression for the spectrum of quantization error in a discrete-time system whose input is a sinusoid plus white Gaussian noise is derived. This quantization spectrum consists of two components: a white-noise floor and spurious harmonics. The dithering effect of the input Gaussian noise in both components of the spectrum is considered. Quantitative results in a discrete Fourier transform (DFT) example show the behavior of spurious harmonics as a function of the signal-to-noise ratio (SNR). These results have strong implications for digital reception and signal analysis systems. At low SNRs, spurious harmonics decay exponentially on a log-log scale, and the resulting spectrum is white. As the SNR increases, the spurious harmonics figure prominently in the output spectrum. A useful expression is given that roughly bounds the magnitude of a spurious harmonic as a function of the SNR.
Ultra Small Aperture Terminal for Ka-Band SATCOM
NASA Technical Reports Server (NTRS)
Acosta, Roberto; Reinhart, Richard; Lee, Richard; Simons, Rainee
1997-01-01
An ultra small aperture terminal (USAT) at Ka-band frequency has been developed by Lewis Research Center (LeRC) for data rates up to 1.5 Mbps in the transmit mode and 40 Mbps in receive mode. The terminal consists of a 35 cm diameter offset-fed parabolic antenna which is attached to a solid state power amplifier and low noise amplifier. A single down converter is used to convert the Ka-band frequency to 70 MHz intermediate frequency (IF). A variable rate (9.6 Kbps to 10 Mbps) commercial modem with a standard RS-449/RS-232 interface is used to provide point-to-point digital services. The terminal has been demonstrated numerous times using the Advanced Communications Technology Satellite (ACTS) and the 4.5 in Link Evaluation Terminal (LET) in Cleveland. A conceptual design for an advanced terminal has also been developed. This advanced USAT utilizes Microwave Monolithic Integrated Circuit (MMIC) and flat plate array technologies. This terminal will be self contained in a single package which will include a 1 watt solid state amplifier (SSPA), low noise amplifier (LNA) and a modem card located behind the aperture of the array. The advanced USAT will be light weight, transportable, low cost and easy to point to the satellite. This paper will introduce designs for the reflector based and array based USAT's.
Sato, Shin-ichi; You, Jin; Jeon, Jin Yong
2007-07-01
Psychoacoustical and autocorrelation function (ACF) parameters were employed to describe the temporal fluctuations of refrigerator noise during starting, transition into/from the stationary phase and termination of operation. The temporal fluctuations of refrigerator noise include a click at start-up, followed by a rapid increase in volume, a change of pitch, and termination of the operation. Subjective evaluations of the noise of 24 different refrigerators were conducted in a real living environment. The relationship between objective measures and perceived noisiness was examined by multiple regression analysis. Sound quality indices were developed based on psychoacoustical and ACF parameters. The psychoacoustical parameters found to be important for evaluating noisiness in the stationary phase were loudness and roughness. The relationship between noisiness and ACF parameters shows that sound energy and its fluctuations are important for evaluating noisiness. Also, refrigerator sounds that had a fluctuation of pitch were rated as more annoying. The tolerance level for the starting phase of refrigerator noise was found to be 33 dBA, which is the level where 65% of the participants in the subjective tests were satisfied.
Radiofrequency amplifier based on a dc superconducting quantum interference device
Hilbert, Claude; Martinis, John M.; Clarke, John
1986-01-01
A low noise radiofrequency amplifier (10), using a dc SQUID (superconducting quantum interference device) as the input amplifying element. The dc SQUID (11) and an input coil (12) are maintained at superconductivity temperatures in a superconducting shield (13), with the input coil (12) inductively coupled to the superconducting ring (17) of the dc SQUID (11). A radiofrequency signal from outside the shield (13) is applied to the input coil (12), and an amplified radiofrequency signal is developed across the dc SQUID ring (17) and transmitted to exteriorly of the shield (13). A power gain of 19.5.+-.0.5 dB has been achieved with a noise temperature of 1.0.+-.0.4 K. at a frequency of 100 MHz.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Jing; Peter Grünberg Institute; Zhang, Yi
2014-05-15
We investigated and optimized the low-frequency noise characteristics of a preamplifier used for readout of direct current superconducting quantum interference devices (SQUIDs). When the SQUID output was detected directly using a room-temperature low-voltage-noise preamplifier, the low-frequency noise of a SQUID system was found to be dominated by the input current noise of the preamplifiers in case of a large dynamic resistance of the SQUID. To reduce the current noise of the preamplifier in the low-frequency range, we investigated the dependence of total preamplifier noise on the collector current and source resistance. When the collector current was decreased from 8.4 mAmore » to 3 mA in the preamplifier made of 3 parallel SSM2220 transistor pairs, the low-frequency total voltage noise of the preamplifier (at 0.1 Hz) decreased by about 3 times for a source resistance of 30 Ω whereas the white noise level remained nearly unchanged. Since the relative contribution of preamplifier's input voltage and current noise is different depending on the dynamic resistance or flux-to-voltage transfer of the SQUID, the results showed that the total noise of a SQUID system at low-frequency range can be improved significantly by optimizing the preamplifier circuit parameters, mainly the collector current in case of low-noise bipolar transistor pairs.« less
NASA Astrophysics Data System (ADS)
Zhao, Jing; Zhang, Yi; Lee, Yong-Ho; Krause, Hans-Joachim
2014-05-01
We investigated and optimized the low-frequency noise characteristics of a preamplifier used for readout of direct current superconducting quantum interference devices (SQUIDs). When the SQUID output was detected directly using a room-temperature low-voltage-noise preamplifier, the low-frequency noise of a SQUID system was found to be dominated by the input current noise of the preamplifiers in case of a large dynamic resistance of the SQUID. To reduce the current noise of the preamplifier in the low-frequency range, we investigated the dependence of total preamplifier noise on the collector current and source resistance. When the collector current was decreased from 8.4 mA to 3 mA in the preamplifier made of 3 parallel SSM2220 transistor pairs, the low-frequency total voltage noise of the preamplifier (at 0.1 Hz) decreased by about 3 times for a source resistance of 30 Ω whereas the white noise level remained nearly unchanged. Since the relative contribution of preamplifier's input voltage and current noise is different depending on the dynamic resistance or flux-to-voltage transfer of the SQUID, the results showed that the total noise of a SQUID system at low-frequency range can be improved significantly by optimizing the preamplifier circuit parameters, mainly the collector current in case of low-noise bipolar transistor pairs.
SNDR Limits of Oscillator-Based Sensor Readout Circuits.
Cardes, Fernando; Quintero, Andres; Gutierrez, Eric; Buffa, Cesare; Wiesbauer, Andreas; Hernandez, Luis
2018-02-03
This paper analyzes the influence of phase noise and distortion on the performance of oscillator-based sensor data acquisition systems. Circuit noise inherent to the oscillator circuit manifests as phase noise and limits the SNR. Moreover, oscillator nonlinearity generates distortion for large input signals. Phase noise analysis of oscillators is well known in the literature, but the relationship between phase noise and the SNR of an oscillator-based sensor is not straightforward. This paper proposes a model to estimate the influence of phase noise in the performance of an oscillator-based system by reflecting the phase noise to the oscillator input. The proposed model is based on periodic steady-state analysis tools to predict the SNR of the oscillator. The accuracy of this model has been validated by both simulation and experiment in a 130 nm CMOS prototype. We also propose a method to estimate the SNDR and the dynamic range of an oscillator-based readout circuit that improves by more than one order of magnitude the simulation time compared to standard time domain simulations. This speed up enables the optimization and verification of this kind of systems with iterative algorithms.
S-band low noise amplifier using 1 μm InGaAs/InAlAs/InP pHEMT
NASA Astrophysics Data System (ADS)
Hamaizia, Z.; Sengouga, N.; Yagoub, M. C. E.; Missous, M.
2012-02-01
This paper discusses the design of a wideband low noise amplifier (LNA) in which specific architecture decisions were made in consideration of system-on-chip implementation for radio-astronomy applications. The LNA design is based on a novel ultra-low noise InGaAs/InAlAs/InP pHEMT Linear and non-linear modelling of this pHEMT has been used to design an LNA operating from 2 to 4 GHz. A common-drain in cascade with a common source inductive degeneration, broadband LNA topology is proposed for wideband applications. The proposed configuration achieved a maximum gain of 27 dB and a noise figure of 0.3 dB with a good input and output return loss (S11 < -10 dB, S22 < -11 dB). This LNA exhibits an input 1-dB compression point of -18 dBm, a third order input intercept point of 0 dBm and consumes 85 mW of power from a 1.8 V supply.
Propagation of spiking regularity and double coherence resonance in feedforward networks.
Men, Cong; Wang, Jiang; Qin, Ying-Mei; Deng, Bin; Tsang, Kai-Ming; Chan, Wai-Lok
2012-03-01
We investigate the propagation of spiking regularity in noisy feedforward networks (FFNs) based on FitzHugh-Nagumo neuron model systematically. It is found that noise could modulate the transmission of firing rate and spiking regularity. Noise-induced synchronization and synfire-enhanced coherence resonance are also observed when signals propagate in noisy multilayer networks. It is interesting that double coherence resonance (DCR) with the combination of synaptic input correlation and noise intensity is finally attained after the processing layer by layer in FFNs. Furthermore, inhibitory connections also play essential roles in shaping DCR phenomena. Several properties of the neuronal network such as noise intensity, correlation of synaptic inputs, and inhibitory connections can serve as control parameters in modulating both rate coding and the order of temporal coding.
Reliability testing of ultra-low noise InGaAs quad photoreceivers
NASA Astrophysics Data System (ADS)
Joshi, Abhay M.; Datta, Shubhashish; Prasad, Narasimha; Sivertz, Michael
2018-02-01
We have developed ultra-low noise quadrant InGaAs photoreceivers for multiple applications ranging from Laser Interferometric Gravitional Wave Detection, to 3D Wind Profiling. Devices with diameters of 0.5 mm, 1mm, and 2 mm were processed, with the nominal capacitance of a single quadrant of a 1 mm quad photodiode being 2.5 pF. The 1 mm diameter InGaAs quad photoreceivers, using a low-noise, bipolar-input OpAmp circuitry exhibit an equivalent input noise per quadrant of <1.7 pA/√Hz in 2 to 20 MHz frequency range. The InGaAs Quad Photoreceivers have undergone the following reliability tests: 30 MeV Proton Radiation up to a Total Ionizing Dose (TID) of 50 krad, Mechanical Shock, and Sinusoidal Vibration.
NASA Astrophysics Data System (ADS)
Mohammad, Yasir K.; Pavlova, Olga N.; Pavlov, Alexey N.
2016-04-01
We discuss the problem of quantifying chaotic dynamics at the input of the "integrate-and-fire" (IF) model from the output sequences of interspike intervals (ISIs) for the case when the fluctuating threshold level leads to the appearance of noise in ISI series. We propose a way to detect an ability of computing dynamical characteristics of the input dynamics and the level of noise in the output point processes. The proposed approach is based on the dependence of the largest Lyapunov exponent from the maximal orientation error used at the estimation of the averaged rate of divergence of nearby phase trajectories.
Ultra-low-noise, high-impedance preamp for cryogenic detectors
NASA Technical Reports Server (NTRS)
Brown, E. R.
1985-01-01
A relatively simple room-temperature preamp design that satisfies both the low-noise and wideband requirements for the InSb Putley-mode detector and which is based on a common-drain JFET input, is presented. The design has an input capacitance of 28 pf which is much less than comparably noisy common-source amplifiers. It can be used for preamplification of 0.1 to 10 MHz signals from liquid-helium-cooled radiation detectors.
Programmable differential capacitance-to-voltage converter for MEMS accelerometers
NASA Astrophysics Data System (ADS)
Royo, G.; Sánchez-Azqueta, C.; Gimeno, C.; Aldea, C.; Celma, S.
2017-05-01
Capacitive MEMS sensors exhibit an excellent noise performance, high sensitivity and low power consumption. They offer a huge range of applications, being the accelerometer one of its main uses. In this work, we present the design of a capacitance-to-voltage converter in CMOS technology to measure the acceleration from the capacitance variations. It is based on a low-power, fully-differential transimpedance amplifier with low input impedance and a very low input noise.
NASA Technical Reports Server (NTRS)
Howlett, J. T.
1979-01-01
The partial coherence analysis method for noise source/path determination is summarized and the application to a two input, single output system with coherence between the inputs is illustrated. The augmentation of the calculations on a digital computer interfaced with a two channel, real time analyzer is also discussed. The results indicate possible sources of error in the computations and suggest procedures for avoiding these errors.
Theory of optimal information transmission in E. coli chemotaxis pathway
NASA Astrophysics Data System (ADS)
Micali, Gabriele; Endres, Robert G.
Bacteria live in complex microenvironments where they need to make critical decisions fast and reliably. These decisions are inherently affected by noise at all levels of the signaling pathway, and cells are often modeled as an input-output device that transmits extracellular stimuli (input) to internal proteins (channel), which determine the final behavior (output). Increasing the amount of transmitted information between input and output allows cells to better infer extracellular stimuli and respond accordingly. However, in contrast to electronic devices, the separation into input, channel, and output is not always clear in biological systems. Output might feed back into the input, and the channel, made by proteins, normally interacts with the input. Furthermore, a biological channel is affected by mutations and can change under evolutionary pressure. Here, we present a novel approach to maximize information transmission: given cell-external and internal noise, we analytically identify both input distributions and input-output relations that optimally transmit information. Using E. coli chemotaxis as an example, we conclude that its pathway is compatible with an optimal information transmission device despite the ultrasensitive rotary motors.
2011-03-01
b b are additive accelerometer and gyro noises and w b abias and wbbbias are accelerometer bias and gyro bias noises. These will described in further...order accelerometer bias time constant and w b abias is the additive accelerometer bias noise, and ḃb = − 1 τb bb +wbbbias (2.43) where τb is the first
A Low-Power Wide Dynamic-Range Current Readout Circuit for Ion-Sensitive FET Sensors.
Son, Hyunwoo; Cho, Hwasuk; Koo, Jahyun; Ji, Youngwoo; Kim, Byungsub; Park, Hong-June; Sim, Jae-Yoon
2017-06-01
This paper presents an amplifier-less and digital-intensive current-to-digital converter for ion-sensitive FET sensors. Capacitance on the input node is utilized as a residue accumulator, and a clocked comparator is followed for quantization. Without any continuous-time feedback circuit, the converter performs a first-order noise shaping of the quantization error. In order to minimize static power consumption, the proposed circuit employs a single-ended current-steering digital-to-analog converter which flows only the same current as the input. By adopting a switching noise averaging algorithm, our dynamic element matching not only mitigates mismatch of current sources in the current-steering DAC, but also makes the effect of dynamic switching noise become an input-independent constant. The implemented circuit in 0.35 μm CMOS converts the current input with a range of 2.8 μ A to 15 b digital output in about 4 ms, showing a DNL of +0.24/-0.25 LSB and an INL of + 1.98/-1.98 LSB while consuming 16.8 μW.
Guo, Xueshi; Li, Xiaoying; Liu, Nannan; Ou, Z Y
2016-07-26
One of the important functions in a communication network is the distribution of information. It is not a problem to accomplish this in a classical system since classical information can be copied at will. However, challenges arise in quantum system because extra quantum noise is often added when the information content of a quantum state is distributed to various users. Here, we experimentally demonstrate a quantum information tap by using a fiber optical parametric amplifier (FOPA) with correlated inputs, whose noise is reduced by the destructive quantum interference through quantum entanglement between the signal and the idler input fields. By measuring the noise figure of the FOPA and comparing with a regular FOPA, we observe an improvement of 0.7 ± 0.1 dB and 0.84 ± 0.09 dB from the signal and idler outputs, respectively. When the low noise FOPA functions as an information splitter, the device has a total information transfer coefficient of Ts+Ti = 1.5 ± 0.2, which is greater than the classical limit of 1. Moreover, this fiber based device works at the 1550 nm telecom band, so it is compatible with the current fiber-optical network for quantum information distribution.
NASA Astrophysics Data System (ADS)
Wang, Jiafeng; Fan, Xiangning; Shi, Xiaoyang; Wang, Zhigong
2017-12-01
With the rapid evolution of wireless communication technology, integrating various communication modes in a mobile terminal has become the popular trend. Because of this, multi-standard wireless technology is one of the hot spots in current research. This paper presents a wideband fractional-N frequency divider of the multi-standard wireless transceiver for many applications. High-speed divider-by-2 with traditional source-coupled-logic is designed for very wide band usage. Phase switching technique and a chain of divider-by-2/3 are applied to the programmable frequency divider with 0.5 step. The phase noise of the whole frequency synthesizer will be decreased by the narrower step of programmable frequency divider. Δ-Σ modulator is achieved by an improved MASH 1-1-1 structure. This structure has excellent performance in many ways, such as noise, spur and input dynamic range. Fabricated in TSMC 0.18μm CMOS process, the fractional-N frequency divider occupies a chip area of 1130 × 510 μm2 and it can correctly divide within the frequency range of 0.8-9 GHz. With 1.8 V supply voltage, its division ratio ranges from 62.5 to 254 and the total current consumption is 29 mA.
Network-based de-noising improves prediction from microarray data.
Kato, Tsuyoshi; Murata, Yukio; Miura, Koh; Asai, Kiyoshi; Horton, Paul B; Koji, Tsuda; Fujibuchi, Wataru
2006-03-20
Prediction of human cell response to anti-cancer drugs (compounds) from microarray data is a challenging problem, due to the noise properties of microarrays as well as the high variance of living cell responses to drugs. Hence there is a strong need for more practical and robust methods than standard methods for real-value prediction. We devised an extended version of the off-subspace noise-reduction (de-noising) method to incorporate heterogeneous network data such as sequence similarity or protein-protein interactions into a single framework. Using that method, we first de-noise the gene expression data for training and test data and also the drug-response data for training data. Then we predict the unknown responses of each drug from the de-noised input data. For ascertaining whether de-noising improves prediction or not, we carry out 12-fold cross-validation for assessment of the prediction performance. We use the Pearson's correlation coefficient between the true and predicted response values as the prediction performance. De-noising improves the prediction performance for 65% of drugs. Furthermore, we found that this noise reduction method is robust and effective even when a large amount of artificial noise is added to the input data. We found that our extended off-subspace noise-reduction method combining heterogeneous biological data is successful and quite useful to improve prediction of human cell cancer drug responses from microarray data.
Linlor, W.I.; Kerns, Q.A.
1960-11-15
A system is given for detecting incremental changes in a transducer impedance terminating a transmission line. Principal novelty resides in the transducer impedance terminating the line in a mismatch and a pulse generator being provided to apply discrete pulses to the input end of the line. The amplitudes of the pulses reflected to the input end of the line from the mismatched transducer impedance are then observed as a very accurate measure of the instantaneous value of the latter.
Electromagnetic interference filter for automotive electrical systems
Herron, Nicholas Hayden; Carlson, Douglas S; Tang, David; Korich, Mark D
2013-07-02
A filter for an automotive electrical system includes a substrate having first and second conductive members. First and second input terminals are mounted to the substrate. The first input terminal is electrically connected to the first conductive member, and the second input terminal is electrically connected to the second conductive member. A plurality of capacitors are mounted to the substrate. Each of the capacitors is electrically connected to at least one of the first and second conductive members. First and second power connectors are mounted to the substrate. The first power connector is electrically connected to the first conductive member, and the second power connector is electrically connected to the second conductive member. A common mode choke is coupled to the substrate and arranged such that the common mode choke extends around at least a portion of the substrate and the first and second conductive members.
Room-temperature quantum noise limited spectrometry and methods of the same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stevens, Charles G.; Tringe, Joseph W.; Cunningham, Christopher T.
According to one embodiment, a heterodyne detection system for detecting light, includes: a first input aperture configured to receive first light from a scene input; a second input aperture configured to receive second light from a local oscillator input; a broadband local oscillator configured to provide the second light to the second input aperture; a dispersive element configured to disperse the first light and the second light; and a final condensing lens coupled to a detector. The final condensing lens is configured to concentrate incident light from a primary condensing lens onto the detector. The detector is configured to sensemore » a frequency difference between the first light and the second light; and the final condensing lens comprises a plasmonic condensing lens. Methods for forming a plasmonic condensing lens to enable room temperature quantum noise limited spectrometry are also disclosed.« less
NASA Technical Reports Server (NTRS)
Hymer, R. L.
1970-01-01
System provides automatic volume control for an audio amplifier or a voice communication system without introducing noise surges during pauses in the input, and without losing the initial signal when the input resumes.
NASA Astrophysics Data System (ADS)
Akiba, M.
2015-09-01
A photodetection system with an optical-feedback circuit accompanied by current amplification was fabricated to minimize the drawbacks associated with a transimpedance amplifier (TIA) with a very high resistance feedback resistor. Current amplification was implemented by extracting an output light from the same light source that emitted the feedback light. The current gain corresponds to the ratio of the photocurrent created by the output light to that created by the feedback light because the feedback current value is identical to the input photocurrent value generated by an input light to be measured. The current gain has no theoretical limit. The output light was detected by a photodiode with a TIA having a small feedback resistance. The expression for the input-referred noise current of the optical-feedback photodetection system was derived, and the trade-off between sensitivity and response, which is a characteristic of TIA, was found to considerably improve. An optical-feedback photodetection system with an InGaAs pin photodiode was fabricated. The measured noise equivalent power of the system was 1.7 fW/Hz1/2 at 10 Hz and 1.3 μm, which is consistent with the derived expression. The time response of the system was found to deteriorate with decreasing photocurrent. The 50% rise time for a light pulse input increased from 3.1 μs at a photocurrent of 10 nA to 15 μs at photocurrents below 10 pA. The bandwidth of the input-referred noise current was 7 kHz, which is consistent with rise times below 10 pA.
Akiba, M
2015-09-01
A photodetection system with an optical-feedback circuit accompanied by current amplification was fabricated to minimize the drawbacks associated with a transimpedance amplifier (TIA) with a very high resistance feedback resistor. Current amplification was implemented by extracting an output light from the same light source that emitted the feedback light. The current gain corresponds to the ratio of the photocurrent created by the output light to that created by the feedback light because the feedback current value is identical to the input photocurrent value generated by an input light to be measured. The current gain has no theoretical limit. The output light was detected by a photodiode with a TIA having a small feedback resistance. The expression for the input-referred noise current of the optical-feedback photodetection system was derived, and the trade-off between sensitivity and response, which is a characteristic of TIA, was found to considerably improve. An optical-feedback photodetection system with an InGaAs pin photodiode was fabricated. The measured noise equivalent power of the system was 1.7 fW/Hz(1/2) at 10 Hz and 1.3 μm, which is consistent with the derived expression. The time response of the system was found to deteriorate with decreasing photocurrent. The 50% rise time for a light pulse input increased from 3.1 μs at a photocurrent of 10 nA to 15 μs at photocurrents below 10 pA. The bandwidth of the input-referred noise current was 7 kHz, which is consistent with rise times below 10 pA.
Low noise charge sensitive preamplifier DC stabilized without a physical resistor
Bertuccio, Giuseppe; Rehak, Pavel; Xi, Deming
1994-09-13
The invention is a novel charge sensitive preamplifier (CSP) which has no resistor in parallel with the feedback capacitor. No resetting circuit is required to discharge the feedback capacitor. The DC stabilization of the preamplifier is obtained by means of a second feedback loop between the preamplifier output and the common base transistor of the input cascode. The input transistor of the preamplifier is a Junction Field Transistor (JFET) with the gate-source junction forward biased. The detector leakage current flows into this junction. This invention is concerned with a new circuit configuration for a charge sensitive preamplifier and a novel use of the input Field Effect Transistor of the CSP itself. In particular this invention, in addition to eliminating the feedback resistor, eliminates the need for external devices between the detector and the preamplifier, and it eliminates the need for external circuitry to sense the output voltage and reset the CSP. Furthermore, the noise level of the novel CSP is very low, comparable with the performance achieved with other solutions. Experimental tests prove that this configuration for the charge sensitive preamplifier permits an excellent noise performance at temperatures including room temperature. An equivalent noise charge of less than 20 electrons r.m.s. has been measured at room temperature by using a commercial JFET as input device of the preamplifier.
Low noise charge sensitive preamplifier DC stabilized without a physical resistor
Bertuccio, G.; Rehak, P.; Xi, D.
1994-09-13
The invention is a novel charge sensitive preamplifier (CSP) which has no resistor in parallel with the feedback capacitor. No resetting circuit is required to discharge the feedback capacitor. The DC stabilization of the preamplifier is obtained by means of a second feedback loop between the preamplifier output and the common base transistor of the input cascode. The input transistor of the preamplifier is a Junction Field Transistor (JFET) with the gate-source junction forward biased. The detector leakage current flows into this junction. This invention is concerned with a new circuit configuration for a charge sensitive preamplifier and a novel use of the input Field Effect Transistor of the CSP itself. In particular this invention, in addition to eliminating the feedback resistor, eliminates the need for external devices between the detector and the preamplifier, and it eliminates the need for external circuitry to sense the output voltage and reset the CSP. Furthermore, the noise level of the novel CSP is very low, comparable with the performance achieved with other solutions. Experimental tests prove that this configuration for the charge sensitive preamplifier permits an excellent noise performance at temperatures including room temperature. An equivalent noise charge of less than 20 electrons r.m.s. has been measured at room temperature by using a commercial JFET as input device of the preamplifier. 6 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenthal, William Steven; Tartakovsky, Alex; Huang, Zhenyu
State and parameter estimation of power transmission networks is important for monitoring power grid operating conditions and analyzing transient stability. Wind power generation depends on fluctuating input power levels, which are correlated in time and contribute to uncertainty in turbine dynamical models. The ensemble Kalman filter (EnKF), a standard state estimation technique, uses a deterministic forecast and does not explicitly model time-correlated noise in parameters such as mechanical input power. However, this uncertainty affects the probability of fault-induced transient instability and increased prediction bias. Here a novel approach is to model input power noise with time-correlated stochastic fluctuations, and integratemore » them with the network dynamics during the forecast. While the EnKF has been used to calibrate constant parameters in turbine dynamical models, the calibration of a statistical model for a time-correlated parameter has not been investigated. In this study, twin experiments on a standard transmission network test case are used to validate our time-correlated noise model framework for state estimation of unsteady operating conditions and transient stability analysis, and a methodology is proposed for the inference of the mechanical input power time-correlation length parameter using time-series data from PMUs monitoring power dynamics at generator buses.« less
Rosenthal, William Steven; Tartakovsky, Alex; Huang, Zhenyu
2017-10-31
State and parameter estimation of power transmission networks is important for monitoring power grid operating conditions and analyzing transient stability. Wind power generation depends on fluctuating input power levels, which are correlated in time and contribute to uncertainty in turbine dynamical models. The ensemble Kalman filter (EnKF), a standard state estimation technique, uses a deterministic forecast and does not explicitly model time-correlated noise in parameters such as mechanical input power. However, this uncertainty affects the probability of fault-induced transient instability and increased prediction bias. Here a novel approach is to model input power noise with time-correlated stochastic fluctuations, and integratemore » them with the network dynamics during the forecast. While the EnKF has been used to calibrate constant parameters in turbine dynamical models, the calibration of a statistical model for a time-correlated parameter has not been investigated. In this study, twin experiments on a standard transmission network test case are used to validate our time-correlated noise model framework for state estimation of unsteady operating conditions and transient stability analysis, and a methodology is proposed for the inference of the mechanical input power time-correlation length parameter using time-series data from PMUs monitoring power dynamics at generator buses.« less
Atcherson, Samuel R; Mendel, Lisa Lucks; Baltimore, Wesley J; Patro, Chhayakanta; Lee, Sungmin; Pousson, Monique; Spann, M Joshua
2017-01-01
It is generally well known that speech perception is often improved with integrated audiovisual input whether in quiet or in noise. In many health-care environments, however, conventional surgical masks block visual access to the mouth and obscure other potential facial cues. In addition, these environments can be noisy. Although these masks may not alter the acoustic properties, the presence of noise in addition to the lack of visual input can have a deleterious effect on speech understanding. A transparent ("see-through") surgical mask may help to overcome this issue. To compare the effect of noise and various visual input conditions on speech understanding for listeners with normal hearing (NH) and hearing impairment using different surgical masks. Participants were assigned to one of three groups based on hearing sensitivity in this quasi-experimental, cross-sectional study. A total of 31 adults participated in this study: one talker, ten listeners with NH, ten listeners with moderate sensorineural hearing loss, and ten listeners with severe-to-profound hearing loss. Selected lists from the Connected Speech Test were digitally recorded with and without surgical masks and then presented to the listeners at 65 dB HL in five conditions against a background of four-talker babble (+10 dB SNR): without a mask (auditory only), without a mask (auditory and visual), with a transparent mask (auditory only), with a transparent mask (auditory and visual), and with a paper mask (auditory only). A significant difference was found in the spectral analyses of the speech stimuli with and without the masks; however, no more than ∼2 dB root mean square. Listeners with NH performed consistently well across all conditions. Both groups of listeners with hearing impairment benefitted from visual input from the transparent mask. The magnitude of improvement in speech perception in noise was greatest for the severe-to-profound group. Findings confirm improved speech perception performance in noise for listeners with hearing impairment when visual input is provided using a transparent surgical mask. Most importantly, the use of the transparent mask did not negatively affect speech perception performance in noise. American Academy of Audiology
W-band Heterodyne Receiver Module with 27 K Noise Temperature
NASA Technical Reports Server (NTRS)
Gawande, R.; Reeves, R.; Cleary, K.; Readhead, A. C.; Gaier, T.; Kangaslahti, P.; Samoska, L.; Church, S.; Sieth, M.; Voll, P.;
2012-01-01
We present noise temperature and gain measurements of a W-band heterodyne module populated with MMIC LNAs designed and fabricated using 35nm InP HEMT process. The module has a WR-10 waveguide input. GPPO connectors are used for the LO input and the I and and Q IF outputs. The module is tested at both ambient (300 K) and cryogenic (25 K) temperatures. At 25 K physical temperature, the module has a noise temperature in the range of 27-45 K over the frequency band of 75-111 GHz. The module gain varies between 15 dB and 27 dB. The band-averaged module noise temperature of 350 K and 33 K were measured over 80-110 GHz for the physical temperature of 300 K and 25 K, respectively. The resulting cooling factor is 10.6.
NASA Technical Reports Server (NTRS)
Shulman, A. R. (Inventor)
1971-01-01
A method and apparatus for substantially eliminating noise in a coherent energy imaging system, and specifically in a light imaging system of the type having a coherent light source and at least one image lens disposed between an input signal plane and an output image plane are, discussed. The input signal plane is illuminated with the light source by rotating the lens about its optical axis. In this manner, the energy density of coherent noise diffraction patterns as produced by imperfections such as dust and/or bubbles on and/or in the lens is distributed over a ring-shaped area of the output image plane and reduced to a point wherein it can be ignored. The spatial filtering capability of the coherent imaging system is not affected by this noise elimination technique.
Cui, Lingli; Wu, Na; Wang, Wenjing; Kang, Chenhui
2014-01-01
This paper presents a new method for a composite dictionary matching pursuit algorithm, which is applied to vibration sensor signal feature extraction and fault diagnosis of a gearbox. Three advantages are highlighted in the new method. First, the composite dictionary in the algorithm has been changed from multi-atom matching to single-atom matching. Compared to non-composite dictionary single-atom matching, the original composite dictionary multi-atom matching pursuit (CD-MaMP) algorithm can achieve noise reduction in the reconstruction stage, but it cannot dramatically reduce the computational cost and improve the efficiency in the decomposition stage. Therefore, the optimized composite dictionary single-atom matching algorithm (CD-SaMP) is proposed. Second, the termination condition of iteration based on the attenuation coefficient is put forward to improve the sparsity and efficiency of the algorithm, which adjusts the parameters of the termination condition constantly in the process of decomposition to avoid noise. Third, composite dictionaries are enriched with the modulation dictionary, which is one of the important structural characteristics of gear fault signals. Meanwhile, the termination condition of iteration settings, sub-feature dictionary selections and operation efficiency between CD-MaMP and CD-SaMP are discussed, aiming at gear simulation vibration signals with noise. The simulation sensor-based vibration signal results show that the termination condition of iteration based on the attenuation coefficient enhances decomposition sparsity greatly and achieves a good effect of noise reduction. Furthermore, the modulation dictionary achieves a better matching effect compared to the Fourier dictionary, and CD-SaMP has a great advantage of sparsity and efficiency compared with the CD-MaMP. The sensor-based vibration signals measured from practical engineering gearbox analyses have further shown that the CD-SaMP decomposition and reconstruction algorithm is feasible and effective. PMID:25207870
Cui, Lingli; Wu, Na; Wang, Wenjing; Kang, Chenhui
2014-09-09
This paper presents a new method for a composite dictionary matching pursuit algorithm, which is applied to vibration sensor signal feature extraction and fault diagnosis of a gearbox. Three advantages are highlighted in the new method. First, the composite dictionary in the algorithm has been changed from multi-atom matching to single-atom matching. Compared to non-composite dictionary single-atom matching, the original composite dictionary multi-atom matching pursuit (CD-MaMP) algorithm can achieve noise reduction in the reconstruction stage, but it cannot dramatically reduce the computational cost and improve the efficiency in the decomposition stage. Therefore, the optimized composite dictionary single-atom matching algorithm (CD-SaMP) is proposed. Second, the termination condition of iteration based on the attenuation coefficient is put forward to improve the sparsity and efficiency of the algorithm, which adjusts the parameters of the termination condition constantly in the process of decomposition to avoid noise. Third, composite dictionaries are enriched with the modulation dictionary, which is one of the important structural characteristics of gear fault signals. Meanwhile, the termination condition of iteration settings, sub-feature dictionary selections and operation efficiency between CD-MaMP and CD-SaMP are discussed, aiming at gear simulation vibration signals with noise. The simulation sensor-based vibration signal results show that the termination condition of iteration based on the attenuation coefficient enhances decomposition sparsity greatly and achieves a good effect of noise reduction. Furthermore, the modulation dictionary achieves a better matching effect compared to the Fourier dictionary, and CD-SaMP has a great advantage of sparsity and efficiency compared with the CD-MaMP. The sensor-based vibration signals measured from practical engineering gearbox analyses have further shown that the CD-SaMP decomposition and reconstruction algorithm is feasible and effective.
Meter circuit for tuning RF amplifiers
NASA Technical Reports Server (NTRS)
Longthorne, J. E.
1973-01-01
Circuit computes and indicates efficiency of RF amplifier as inputs and other parameters are varied. Voltage drop across internal resistance of ammeter is amplified by operational amplifier and applied to one multiplier input. Other input is obtained through two resistors from positive terminal of power supply.
Note: Broadband low-noise photodetector for Pound-Drever-Hall laser stabilization
NASA Astrophysics Data System (ADS)
Potnis, Shreyas; Vutha, Amar C.
2016-07-01
The Pound-Drever-Hall laser stabilization technique requires a fast, low-noise photodetector. We present a simple photodetector design that uses a transformer as an intermediary between a photodiode and cascaded low-noise radio-frequency amplifiers. Our implementation using a silicon photodiode yields a detector with 50 MHz bandwidth, gain >105 V/A, and input current noise <4 pA/ √{ Hz } , allowing us to obtain shot-noise-limited performance with low optical power.
A Trajectory Algorithm to Support En Route and Terminal Area Self-Spacing Concepts
NASA Technical Reports Server (NTRS)
Abbott, Terence S.
2007-01-01
This document describes an algorithm for the generation of a four dimensional aircraft trajectory. Input data for this algorithm are similar to an augmented Standard Terminal Arrival Route (STAR) with the augmentation in the form of altitude or speed crossing restrictions at waypoints on the route. Wind data at each waypoint are also inputs into this algorithm. The algorithm calculates the altitude, speed, along path distance, and along path time for each waypoint.
Problems of the design of low-noise input devices. [parametric amplifiers
NASA Technical Reports Server (NTRS)
Manokhin, V. M.; Nemlikher, Y. A.; Strukov, I. A.; Sharfov, Y. A.
1974-01-01
An analysis is given of the requirements placed on the elements of parametric centimeter waveband amplifiers for achievement of minimal noise temperatures. A low-noise semiconductor parametric amplifier using germanium parametric diodes for a receiver operating in the 4 GHz band was developed and tested confirming the possibility of satisfying all requirements.
Planck 2015 results. VI. LFI mapmaking
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chary, R.-R.; Christensen, P. R.; Colombi, S.; Colombo, L. P. L.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Henrot-Versillé, S.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kiiveri, K.; Kisner, T. S.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; Lindholm, V.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Novikov, D.; Novikov, I.; Paci, F.; Pagano, L.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Pierpaoli, E.; Pietrobon, D.; Pointecouteau, E.; Polenta, G.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renzi, A.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vassallo, T.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Watson, R.; Wehus, I. K.; Yvon, D.; Zacchei, A.; Zonca, A.
2016-09-01
This paper describes the mapmaking procedure applied to Planck Low Frequency Instrument (LFI) data. The mapmaking step takes as input the calibrated timelines and pointing information. The main products are sky maps of I, Q, and U Stokes components. For the first time, we present polarization maps at LFI frequencies. The mapmaking algorithm is based on a destriping technique, which is enhanced with a noise prior. The Galactic region is masked to reduce errors arising from bandpass mismatch and high signal gradients. We apply horn-uniform radiometer weights to reduce the effects of beam-shape mismatch. The algorithm is the same as used for the 2013 release, apart from small changes in parameter settings. We validate the procedure through simulations. Special emphasis is put on the control of systematics, which is particularly important for accurate polarization analysis. We also produce low-resolution versions of the maps and corresponding noise covariance matrices. These serve as input in later analysis steps and parameter estimation. The noise covariance matrices are validated through noise Monte Carlo simulations. The residual noise in the map products is characterized through analysis of half-ring maps, noise covariance matrices, and simulations.
Effects of Aircraft Noise and Sonic Booms on Domestic Animals and Wildlife: Bibliographic Abstracts
1988-06-01
described in historical tales and literature regarding a "hush or stillness falling over" an area preceding some remarkable event, such as a volcanic ...canaries (Serinus canarias ). Longer exposure caused greater deficits with losses of high-frequency sensitivity. After the noise exposure was terminated
SNDR Limits of Oscillator-Based Sensor Readout Circuits
Buffa, Cesare; Wiesbauer, Andreas; Hernandez, Luis
2018-01-01
This paper analyzes the influence of phase noise and distortion on the performance of oscillator-based sensor data acquisition systems. Circuit noise inherent to the oscillator circuit manifests as phase noise and limits the SNR. Moreover, oscillator nonlinearity generates distortion for large input signals. Phase noise analysis of oscillators is well known in the literature, but the relationship between phase noise and the SNR of an oscillator-based sensor is not straightforward. This paper proposes a model to estimate the influence of phase noise in the performance of an oscillator-based system by reflecting the phase noise to the oscillator input. The proposed model is based on periodic steady-state analysis tools to predict the SNR of the oscillator. The accuracy of this model has been validated by both simulation and experiment in a 130 nm CMOS prototype. We also propose a method to estimate the SNDR and the dynamic range of an oscillator-based readout circuit that improves by more than one order of magnitude the simulation time compared to standard time domain simulations. This speed up enables the optimization and verification of this kind of systems with iterative algorithms. PMID:29401646
Optimization of actuator arrays for aircraft interior noise control
NASA Technical Reports Server (NTRS)
Cabell, R. H.; Lester, H. C.; Mathur, G. P.; Tran, B. N.
1993-01-01
A numerical procedure for grouping actuators in order to reduce the number of degrees of freedom in an active noise control system is evaluated using experimental data. Piezoceramic actuators for reducing aircraft interior noise are arranged into groups using a nonlinear optimization routine and clustering algorithm. An actuator group is created when two or more actuators are driven with the same control input. This procedure is suitable for active control applications where actuators are already mounted on a structure. The feasibility of this technique is demonstrated using measured data from the aft cabin of a Douglas DC-9 fuselage. The measured data include transfer functions between 34 piezoceramic actuators and 29 interior microphones and microphone responses due to the primary noise produced by external speakers. Control inputs for the grouped actuators were calculated so that a cost function, defined as a quadratic pressure term and a penalty term, was a minimum. The measured transfer functions and microphone responses are checked by comparing calculated noise reductions with measured noise reductions for four frequencies. The grouping procedure is then used to determine actuator groups that improve overall interior noise reductions by 5.3 to 15 dB, compared to the baseline experimental configuration.
Theory and Measurement of Signal-to-Noise Ratio in Continuous-Wave Noise Radar.
Stec, Bronisław; Susek, Waldemar
2018-05-06
Determination of the signal power-to-noise power ratio on the input and output of reception systems is essential to the estimation of their quality and signal reception capability. This issue is especially important in the case when both signal and noise have the same characteristic as Gaussian white noise. This article considers the problem of how a signal-to-noise ratio is changed as a result of signal processing in the correlation receiver of a noise radar in order to determine the ability to detect weak features in the presence of strong clutter-type interference. These studies concern both theoretical analysis and practical measurements of a noise radar with a digital correlation receiver for 9.2 GHz bandwidth. Firstly, signals participating individually in the correlation process are defined and the terms signal and interference are ascribed to them. Further studies show that it is possible to distinguish a signal and a noise on the input and output of a correlation receiver, respectively, when all the considered noises are in the form of white noise. Considering the above, a measurement system is designed in which it is possible to represent the actual conditions of noise radar operation and power measurement of a useful noise signal and interference noise signals—in particular the power of an internal leakage signal between a transmitter and a receiver of the noise radar. The proposed measurement stands and the obtained results show that it is possible to optimize with the use of the equipment and not with the complex processing of a noise signal. The radar parameters depend on its prospective application, such as short- and medium-range radar, ground-penetrating radar, and through-the-wall detection radar.
Embedded parallel processing based ground control systems for small satellite telemetry
NASA Technical Reports Server (NTRS)
Forman, Michael L.; Hazra, Tushar K.; Troendly, Gregory M.; Nickum, William G.
1994-01-01
The use of networked terminals which utilize embedded processing techniques results in totally integrated, flexible, high speed, reliable, and scalable systems suitable for telemetry and data processing applications such as mission operations centers (MOC). Synergies of these terminals, coupled with the capability of terminal to receive incoming data, allow the viewing of any defined display by any terminal from the start of data acquisition. There is no single point of failure (other than with network input) such as exists with configurations where all input data goes through a single front end processor and then to a serial string of workstations. Missions dedicated to NASA's ozone measurements program utilize the methodologies which are discussed, and result in a multimission configuration of low cost, scalable hardware and software which can be run by one flight operations team with low risk.
Tanlock loop noise reduction using an optimised phase detector
NASA Astrophysics Data System (ADS)
Al-kharji Al-Ali, Omar; Anani, Nader; Al-Qutayri, Mahmoud; Al-Araji, Saleh
2013-06-01
This article proposes a time-delay digital tanlock loop (TDTL), which uses a new phase detector (PD) design that is optimised for noise reduction making it amenable for applications that require wide lock range without sacrificing the level of noise immunity. The proposed system uses an improved phase detector design which uses two phase detectors; one PD is used to optimise the noise immunity whilst the other is used to control the acquisition time of the TDTL system. Using the modified phase detector it is possible to reduce the second- and higher-order harmonics by at least 50% compared with the conventional TDTL system. The proposed system was simulated and tested using MATLAB/Simulink using frequency step inputs and inputs corrupted with varying levels of harmonic distortion. A hardware prototype of the system was implemented using a field programmable gate array (FPGA). The practical and simulation results indicate considerable improvement in the noise performance of the proposed system over the conventional TDTL architecture.
Applications of active adaptive noise control to jet engines
NASA Technical Reports Server (NTRS)
Shoureshi, Rahmat; Brackney, Larry
1993-01-01
During phase 2 research on the application of active noise control to jet engines, the development of multiple-input/multiple-output (MIMO) active adaptive noise control algorithms and acoustic/controls models for turbofan engines were considered. Specific goals for this research phase included: (1) implementation of a MIMO adaptive minimum variance active noise controller; and (2) turbofan engine model development. A minimum variance control law for adaptive active noise control has been developed, simulated, and implemented for single-input/single-output (SISO) systems. Since acoustic systems tend to be distributed, multiple sensors, and actuators are more appropriate. As such, the SISO minimum variance controller was extended to the MIMO case. Simulation and experimental results are presented. A state-space model of a simplified gas turbine engine is developed using the bond graph technique. The model retains important system behavior, yet is of low enough order to be useful for controller design. Expansion of the model to include multiple stages and spools is also discussed.
Multiple channel coincidence detector and controller for microseismic data analysis
Fasching, George E.
1976-11-16
A multiple channel coincidence detector circuit is provided for analyzing data either in real time or recorded data on a magnetic tape during an experiment for determining location and progression of fractures in an oil field or the like while water is being injected at high pressure in wells located in the field. The circuit is based upon the utilization of a set of parity generator trees combined with monostable multivibrators to detect the occurrence of two events at any pair of channel input terminals that are within a preselected time frame and have an amplitude above a preselected magnitude. The parity generators perform an exclusive OR function in a timing circuit composed of monostable multivibrators that serve to yield an output when two events are present in the preselected time frame. Any coincidences falling outside this time frame are considered either noise or not otherwise useful in the analysis of the recorded data. Input pulses of absolute magnitude below the low-level threshold setting of a bipolar low-level threshold detector are unwanted and therefore rejected. A control output is provided for a utilization device from a coincidence hold circuit that may be used to halt a tape search unit at the time of coincidence or perform other useful control functions.
Gawthrop, Peter J.; Lakie, Martin; Loram, Ian D.
2017-01-01
Key points A human controlling an external system is described most easily and conventionally as linearly and continuously translating sensory input to motor output, with the inevitable output remnant, non‐linearly related to the input, attributed to sensorimotor noise.Recent experiments show sustained manual tracking involves repeated refractoriness (insensitivity to sensory information for a certain duration), with the temporary 200–500 ms periods of irresponsiveness to sensory input making the control process intrinsically non‐linear.This evidence calls for re‐examination of the extent to which random sensorimotor noise is required to explain the non‐linear remnant.This investigation of manual tracking shows how the full motor output (linear component and remnant) can be explained mechanistically by aperiodic sampling triggered by prediction error thresholds.Whereas broadband physiological noise is general to all processes, aperiodic sampling is associated with sensorimotor decision making within specific frontal, striatal and parietal networks; we conclude that manual tracking utilises such slow serial decision making pathways up to several times per second. Abstract The human operator is described adequately by linear translation of sensory input to motor output. Motor output also always includes a non‐linear remnant resulting from random sensorimotor noise from multiple sources, and non‐linear input transformations, for example thresholds or refractory periods. Recent evidence showed that manual tracking incurs substantial, serial, refractoriness (insensitivity to sensory information of 350 and 550 ms for 1st and 2nd order systems respectively). Our two questions are: (i) What are the comparative merits of explaining the non‐linear remnant using noise or non‐linear transformations? (ii) Can non‐linear transformations represent serial motor decision making within the sensorimotor feedback loop intrinsic to tracking? Twelve participants (instructed to act in three prescribed ways) manually controlled two systems (1st and 2nd order) subject to a periodic multi‐sine disturbance. Joystick power was analysed using three models, continuous‐linear‐control (CC), continuous‐linear‐control with calculated noise spectrum (CCN), and intermittent control with aperiodic sampling triggered by prediction error thresholds (IC). Unlike the linear mechanism, the intermittent control mechanism explained the majority of total power (linear and remnant) (77–87% vs. 8–48%, IC vs. CC). Between conditions, IC used thresholds and distributions of open loop intervals consistent with, respectively, instructions and previous measured, model independent values; whereas CCN required changes in noise spectrum deviating from broadband, signal dependent noise. We conclude that manual tracking uses open loop predictive control with aperiodic sampling. Because aperiodic sampling is inherent to serial decision making within previously identified, specific frontal, striatal and parietal networks we suggest that these structures are intimately involved in visuo‐manual tracking. PMID:28833126
Sasaki, Kosei; Jing, Jian; Due, Michael R; Weiss, Klaudiusz R
2008-02-20
Despite the importance of spike-timing regulation in network functioning, little is known about this regulation at the cellular level. In the Aplysia feeding network, we show that interneuron B65 regulates the timing of the spike initiation of phase-switch neurons B64 and cerebral-buccal interneuron-5/6 (CBI-5/6), and thereby determines the identity of the neuron that acts as a protraction terminator. Previous work showed that B64 begins to fire before the end of protraction phase and terminates protraction in CBI-2-elicited ingestive, but not in CBI-2-elicited egestive programs, thus indicating that the spike timing and phase-switching function of B64 depend on the type of the central pattern generator (CPG)-elicited response rather than on the input used to activate the CPG. Here, we find that CBI-5/6 is a protraction terminator in egestive programs elicited by the esophageal nerve (EN), but not by CBI-2, thus indicating that, in contrast to B64, the spike timing and protraction-terminating function of CBI-5/6 depends on the input to the CPG rather than the response type. Interestingly, B65 activity also depends on the input in that B65 is highly active in EN-elicited programs, but not in CBI-2-elicited programs independent of whether the programs are ingestive or egestive. Notably, during EN-elicited egestive programs, hyperpolarization of B65 delays the onset of CBI-5/6 firing, whereas in CBI-2-elicited ingestive programs, B65 stimulation simultaneously advances CBI-5/6 firing and delays B64 firing, thereby substituting CBI-5/6 for B64 as the protraction terminator. Thus, we identified a neural mechanism that, in an input-dependent manner, regulates spike timing and thereby the functional role of specific neurons.
Wireless and acoustic hearing with bone-anchored hearing devices.
Bosman, Arjan J; Mylanus, Emmanuel A M; Hol, Myrthe K S; Snik, Ad F M
2015-07-01
The efficacy of wireless connectivity in bone-anchored hearing was studied by comparing the wireless and acoustic performance of the Ponto Plus sound processor from Oticon Medical relative to the acoustic performance of its predecessor, the Ponto Pro. Nineteen subjects with more than two years' experience with a bone-anchored hearing device were included. Thirteen subjects were fitted unilaterally and six bilaterally. Subjects served as their own control. First, subjects were tested with the Ponto Pro processor. After a four-week acclimatization period performance the Ponto Plus processor was measured. In the laboratory wireless and acoustic input levels were made equal. In daily life equal settings of wireless and acoustic input were used when watching TV, however when using the telephone the acoustic input was reduced by 9 dB relative to the wireless input. Speech scores for microphone with Ponto Pro and for both input modes of the Ponto Plus processor were essentially equal when equal input levels of wireless and microphone inputs were used. Only the TV-condition showed a statistically significant (p <5%) lower speech reception threshold for wireless relative to microphone input. In real life, evaluation of speech quality, speech intelligibility in quiet and noise, and annoyance by ambient noise, when using landline phone, mobile telephone, and watching TV showed a clear preference (p <1%) for the Ponto Plus system with streamer over the microphone input. Due to the small number of respondents with landline phone (N = 7) the result for noise annoyance was only significant at the 5% level. Equal input levels for acoustic and wireless inputs results in equal speech scores, showing a (near) equivalence for acoustic and wireless sound transmission with Ponto Pro and Ponto Plus. The default 9-dB difference between microphone and wireless input when using the telephone results in a substantial wireless benefit when using the telephone. The preference of wirelessly transmitted audio when watching TV can be attributed to the relatively poor sound quality of backward facing loudspeakers in flat screen TVs. The ratio of wireless and acoustic input can be easily set to the user's preference with the streamer's volume control.
Detailed numerical investigation of the dissipative stochastic mechanics based neuron model.
Güler, Marifi
2008-10-01
Recently, a physical approach for the description of neuronal dynamics under the influence of ion channel noise was proposed in the realm of dissipative stochastic mechanics (Güler, Phys Rev E 76:041918, 2007). Led by the presence of a multiple number of gates in an ion channel, the approach establishes a viewpoint that ion channels are exposed to two kinds of noise: the intrinsic noise, associated with the stochasticity in the movement of gating particles between the inner and the outer faces of the membrane, and the topological noise, associated with the uncertainty in accessing the permissible topological states of open gates. Renormalizations of the membrane capacitance and of a membrane voltage dependent potential function were found to arise from the mutual interaction of the two noisy systems. The formalism therein was scrutinized using a special membrane with some tailored properties giving the Rose-Hindmarsh dynamics in the deterministic limit. In this paper, the resultant computational neuron model of the above approach is investigated in detail numerically for its dynamics using time-independent input currents. The following are the major findings obtained. The intrinsic noise gives rise to two significant coexisting effects: it initiates spiking activity even in some range of input currents for which the corresponding deterministic model is quiet and causes bursting in some other range of input currents for which the deterministic model fires tonically. The renormalization corrections are found to augment the above behavioral transitions from quiescence to spiking and from tonic firing to bursting, and, therefore, the bursting activity is found to take place in a wider range of input currents for larger values of the correction coefficients. Some findings concerning the diffusive behavior in the voltage space are also reported.
NASA Technical Reports Server (NTRS)
1986-01-01
A former NASA employee who discovered a kind of plastic that soaked up energy, dampened vibrations, and was a good noise abatement material, founded a company to market noise deadening adhesives, sheets, panels and enclosures. Known as SMART products, they are 75-80% lighter than ordinary soundproofing material and have demonstrated a high degree of effectiveness. The company, Varian Associates, makes enclosures for high voltage terminals and other electronic system components, and easily transportable audiometric test booths.
Kim, Kyung Hyuk; Sauro, Herbert M
2015-01-01
This chapter introduces a computational analysis method for analyzing gene circuit dynamics in terms of modules while taking into account stochasticity, system nonlinearity, and retroactivity. (1) ANALOG ELECTRICAL CIRCUIT REPRESENTATION FOR GENE CIRCUITS: A connection between two gene circuit components is often mediated by a transcription factor (TF) and the connection signal is described by the TF concentration. The TF is sequestered to its specific binding site (promoter region) and regulates downstream transcription. This sequestration has been known to affect the dynamics of the TF by increasing its response time. The downstream effect-retroactivity-has been shown to be explicitly described in an electrical circuit representation, as an input capacitance increase. We provide a brief review on this topic. (2) MODULAR DESCRIPTION OF NOISE PROPAGATION: Gene circuit signals are noisy due to the random nature of biological reactions. The noisy fluctuations in TF concentrations affect downstream regulation. Thus, noise can propagate throughout the connected system components. This can cause different circuit components to behave in a statistically dependent manner, hampering a modular analysis. Here, we show that the modular analysis is still possible at the linear noise approximation level. (3) NOISE EFFECT ON MODULE INPUT-OUTPUT RESPONSE: We investigate how to deal with a module input-output response and its noise dependency. Noise-induced phenotypes are described as an interplay between system nonlinearity and signal noise. Lastly, we provide the comprehensive approach incorporating the above three analysis methods, which we call "stochastic modular analysis." This method can provide an analysis framework for gene circuit dynamics when the nontrivial effects of retroactivity, stochasticity, and nonlinearity need to be taken into account.
Lee, Taehee; Kim, Uhnoh
2012-04-01
In the mammalian somatic system, peripheral inputs from cutaneous and deep receptors ascend via different subcortical channels and terminate in largely separate regions of the primary somatosensory cortex (SI). How these inputs are processed in SI and then projected back to the subcortical relay centers is critical for understanding how SI may regulate somatic information processing in the subcortex. Although it is now relatively well understood how SI cutaneous areas project to the subcortical structures, little is known about the descending projections from SI areas processing deep somatic input. We examined this issue by using the rodent somatic system as a model. In rat SI, deep somatic input is processed mainly in the dysgranular zone (DSZ) enclosed by the cutaneous barrel subfields. By using biotinylated dextran amine (BDA) as anterograde tracer, we characterized the topography of corticostriatal and corticofugal projections arising in the DSZ. The DSZ projections terminate mainly in the lateral subregions of the striatum that are also known as the target of certain SI cutaneous areas. This suggests that SI processing of deep and cutaneous information may be integrated, to a certain degree, in this striatal region. By contrast, at both thalamic and prethalamic levels as far as the spinal cord, descending projections from DSZ terminate in areas largely distinguishable from those that receive input from SI cutaneous areas. These subcortical targets of DSZ include not only the sensory but also motor-related structures, suggesting that SI processing of deep input may engage in regulating somatic and motor information flow between the cortex and periphery. Copyright © 2011 Wiley-Liss, Inc.
Precision absolute-value amplifier for a precision voltmeter
Hearn, W.E.; Rondeau, D.J.
1982-10-19
Bipolar inputs are afforded by the plus inputs of first and second differential input amplifiers. A first gain determining resistor is connected between the minus inputs of the differential amplifiers. First and second diodes are connected between the respective minus inputs and the respective outputs of the differential amplifiers. First and second FETs have their gates connected to the outputs of the amplifiers, while their respective source and drain circuits are connected between the respective minus inputs and an output lead extending to a load resistor. The output current through the load resistor is proportional to the absolute value of the input voltage difference between the bipolar input terminals. A third differential amplifier has its plus input terminal connected to the load resistor. A second gain determining resistor is connected between the minus input of the third differential amplifier and a voltage source. A third FET has its gate connected to the output of the third amplifier. The source and drain circuit of the third transistor is connected between the minus input of the third amplifier and a voltage-frequency converter, constituting an output device. A polarity detector is also provided, comprising a pair of transistors having their inputs connected to the outputs of the first and second differential amplifiers. The outputs of the polarity detector are connected to gates which switch the output of the voltage-frequency converter between up and down counting outputs.
Precision absolute value amplifier for a precision voltmeter
Hearn, William E.; Rondeau, Donald J.
1985-01-01
Bipolar inputs are afforded by the plus inputs of first and second differential input amplifiers. A first gain determining resister is connected between the minus inputs of the differential amplifiers. First and second diodes are connected between the respective minus inputs and the respective outputs of the differential amplifiers. First and second FETs have their gates connected to the outputs of the amplifiers, while their respective source and drain circuits are connected between the respective minus inputs and an output lead extending to a load resister. The output current through the load resister is proportional to the absolute value of the input voltage difference between the bipolar input terminals. A third differential amplifier has its plus input terminal connected to the load resister. A second gain determining resister is connected between the minus input of the third differential amplifier and a voltage source. A third FET has its gate connected to the output of the third amplifier. The source and drain circuit of the third transistor is connected between the minus input of the third amplifier and a voltage-frequency converter, constituting an output device. A polarity detector is also provided, comprising a pair of transistors having their inputs connected to the outputs of the first and second differential amplifiers. The outputs of the polarity detector are connected to gates which switch the output of the voltage-frequency converter between up and down counting outputs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avramova, Maria; Blyth, Taylor S.; Salko, Robert K.
This document describes how to make a CTF input deck. A CTF input deck is organized into Card Groups and Cards. A Card Group is a collection of Cards. A Card is defined as a line of input. Each Card may contain multiple data. A Card is terminated by making a new line.
The prediction of airborne and structure-borne noise potential for a tire
NASA Astrophysics Data System (ADS)
Sakamoto, Nicholas Y.
Tire/pavement interaction noise is a major component of both exterior pass-by noise and vehicle interior noise. The current testing methods for ranking tires from loud to quiet require expensive equipment, multiple tires, and/or long experimental set-up and run times. If a laboratory based off-vehicle test could be used to identify the airborne and structure-borne potential of a tire from its dynamic characteristics, a relative ranking of a large group of tires could be performed at relatively modest expense. This would provide a smaller sample set of tires for follow-up testing and thus save expense for automobile OEMs. The focus of this research was identifying key noise features from a tire/pavement experiment. These results were compared against a stationary tire test in which the natural response of the tire to a forced input was measured. Since speed was identified as having some effect on the noise, an input function was also developed to allow the tires to be ranked at an appropriate speed. A relative noise model was used on a second sample set of tires to verify if the ranking could be used against interior vehicle measurements. While overall level analysis of the specified spectrum had mixed success, important noise generating features were identified, and the methods used could be improved to develop a standard off-vehicle test to predict a tire's noise potential.
NASA Technical Reports Server (NTRS)
Cunningham, Thomas J.; Gee, Russell C.; Fossum, Eric R.; Baier, Steven M.
1993-01-01
This paper discusses the electrical properties of the complementary heterojunction field-effect transistor (CHFET) at 4K, including the gate leakage current, the subthreshold transconductance, and the input-referred noise voltage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Geronimo, G.; Li, S.; D'Andragora, A.
We present a front-end application-specific integrated circuit (ASIC) for a wire based time-projection-chamber (TPC) operating in liquid Argon (LAr). The LAr TPC will be used for long baseline neutrino oscillation experiments. The ASIC must provide a low-noise readout of the signals induced on the TPC wires, digitization of those signals at 2 MSamples/s, compression, buffering and multiplexing. A resolution of better than 1000 rms electrons at 200 pF input capacitance for an input range of 300 fC is required, along with low power and operation in LAr (at 87 K). We include the characterization of a commercial technology for operationmore » in the cryogenic environment and the first experimental results on the analog front end. The results demonstrate that complementary metal-oxide semiconductor transistors have lower noise and much improved dc characteristics at LAr temperature. Finally, we introduce the concept of '1/f equivalent' to model the low-frequency component of the noise spectral density, for use in the input metal-oxide semiconductor field-effect transistor optimization.« less
NASA Astrophysics Data System (ADS)
Gao, Feng-Yin; Kang, Yan-Mei; Chen, Xi; Chen, Guanrong
2018-05-01
This paper reveals the effect of fractional Gaussian noise with Hurst exponent H ∈(1 /2 ,1 ) on the information capacity of a general nonlinear neuron model with binary signal input. The fGn and its corresponding fractional Brownian motion exhibit long-range, strong-dependent increments. It extends standard Brownian motion to many types of fractional processes found in nature, such as the synaptic noise. In the paper, for the subthreshold binary signal, sufficient conditions are given based on the "forbidden interval" theorem to guarantee the occurrence of stochastic resonance, while for the suprathreshold binary signal, the simulated results show that additive fGn with Hurst exponent H ∈(1 /2 ,1 ) could increase the mutual information or bits count. The investigation indicated that the synaptic noise with the characters of long-range dependence and self-similarity might be the driving factor for the efficient encoding and decoding of the nervous system.
Signal processing method and system for noise removal and signal extraction
Fu, Chi Yung; Petrich, Loren
2009-04-14
A signal processing method and system combining smooth level wavelet pre-processing together with artificial neural networks all in the wavelet domain for signal denoising and extraction. Upon receiving a signal corrupted with noise, an n-level decomposition of the signal is performed using a discrete wavelet transform to produce a smooth component and a rough component for each decomposition level. The n.sup.th level smooth component is then inputted into a corresponding neural network pre-trained to filter out noise in that component by pattern recognition in the wavelet domain. Additional rough components, beginning at the highest level, may also be retained and inputted into corresponding neural networks pre-trained to filter out noise in those components also by pattern recognition in the wavelet domain. In any case, an inverse discrete wavelet transform is performed on the combined output from all the neural networks to recover a clean signal back in the time domain.
Park, Hame; Lueckmann, Jan-Matthis; von Kriegstein, Katharina; Bitzer, Sebastian; Kiebel, Stefan J.
2016-01-01
Decisions in everyday life are prone to error. Standard models typically assume that errors during perceptual decisions are due to noise. However, it is unclear how noise in the sensory input affects the decision. Here we show that there are experimental tasks for which one can analyse the exact spatio-temporal details of a dynamic sensory noise and better understand variability in human perceptual decisions. Using a new experimental visual tracking task and a novel Bayesian decision making model, we found that the spatio-temporal noise fluctuations in the input of single trials explain a significant part of the observed responses. Our results show that modelling the precise internal representations of human participants helps predict when perceptual decisions go wrong. Furthermore, by modelling precisely the stimuli at the single-trial level, we were able to identify the underlying mechanism of perceptual decision making in more detail than standard models. PMID:26752272
Modal noise investigation in multimode polymer waveguides
NASA Astrophysics Data System (ADS)
Beals, Joseph, IV; Bamiedakis, Nikos; Penty, Richard V.; White, Ian H.; DeGroot, Jon V., Jr.; Clapp, Terry V.
2007-11-01
In this work the recent interest in waveguides for use in short optical links has motivated a study of the modal noise dependence on launch conditions in short-reach step-index multimode polymer waveguides. Short optical links, especially those with several connection interfaces and utilising a restricted launch are likely to be subject to a modal noise power penalty. We therefore experimentally study the modal noise impact of restricted launches for a short-reach optical link employing a 50 x 50 μm polymer multimode waveguide. Lens launches resulting in small diameter input spots are investigated as are restricted launches from an 8 μm core optical fibre. For a launch spot of 10 μm diameter no impairment is observed for up to 9 dBo of mode selective loss, and for a fibre launch with a dynamic input movement of 6 μm no impairment is seen for up to 8 dBo of mode selective loss.
Baldwin, Alex S.; Baker, Daniel H.; Hess, Robert F.
2016-01-01
The internal noise present in a linear system can be quantified by the equivalent noise method. By measuring the effect that applying external noise to the system’s input has on its output one can estimate the variance of this internal noise. By applying this simple “linear amplifier” model to the human visual system, one can entirely explain an observer’s detection performance by a combination of the internal noise variance and their efficiency relative to an ideal observer. Studies using this method rely on two crucial factors: firstly that the external noise in their stimuli behaves like the visual system’s internal noise in the dimension of interest, and secondly that the assumptions underlying their model are correct (e.g. linearity). Here we explore the effects of these two factors while applying the equivalent noise method to investigate the contrast sensitivity function (CSF). We compare the results at 0.5 and 6 c/deg from the equivalent noise method against those we would expect based on pedestal masking data collected from the same observers. We find that the loss of sensitivity with increasing spatial frequency results from changes in the saturation constant of the gain control nonlinearity, and that this only masquerades as a change in internal noise under the equivalent noise method. Part of the effect we find can be attributed to the optical transfer function of the eye. The remainder can be explained by either changes in effective input gain, divisive suppression, or a combination of the two. Given these effects the efficiency of our observers approaches the ideal level. We show the importance of considering these factors in equivalent noise studies. PMID:26953796
Baldwin, Alex S; Baker, Daniel H; Hess, Robert F
2016-01-01
The internal noise present in a linear system can be quantified by the equivalent noise method. By measuring the effect that applying external noise to the system's input has on its output one can estimate the variance of this internal noise. By applying this simple "linear amplifier" model to the human visual system, one can entirely explain an observer's detection performance by a combination of the internal noise variance and their efficiency relative to an ideal observer. Studies using this method rely on two crucial factors: firstly that the external noise in their stimuli behaves like the visual system's internal noise in the dimension of interest, and secondly that the assumptions underlying their model are correct (e.g. linearity). Here we explore the effects of these two factors while applying the equivalent noise method to investigate the contrast sensitivity function (CSF). We compare the results at 0.5 and 6 c/deg from the equivalent noise method against those we would expect based on pedestal masking data collected from the same observers. We find that the loss of sensitivity with increasing spatial frequency results from changes in the saturation constant of the gain control nonlinearity, and that this only masquerades as a change in internal noise under the equivalent noise method. Part of the effect we find can be attributed to the optical transfer function of the eye. The remainder can be explained by either changes in effective input gain, divisive suppression, or a combination of the two. Given these effects the efficiency of our observers approaches the ideal level. We show the importance of considering these factors in equivalent noise studies.
Modeling the impact of common noise inputs on the network activity of retinal ganglion cells
Ahmadian, Yashar; Shlens, Jonathon; Pillow, Jonathan W.; Kulkarni, Jayant; Litke, Alan M.; Chichilnisky, E. J.; Simoncelli, Eero; Paninski, Liam
2013-01-01
Synchronized spontaneous firing among retinal ganglion cells (RGCs), on timescales faster than visual responses, has been reported in many studies. Two candidate mechanisms of synchronized firing include direct coupling and shared noisy inputs. In neighboring parasol cells of primate retina, which exhibit rapid synchronized firing that has been studied extensively, recent experimental work indicates that direct electrical or synaptic coupling is weak, but shared synaptic input in the absence of modulated stimuli is strong. However, previous modeling efforts have not accounted for this aspect of firing in the parasol cell population. Here we develop a new model that incorporates the effects of common noise, and apply it to analyze the light responses and synchronized firing of a large, densely-sampled network of over 250 simultaneously recorded parasol cells. We use a generalized linear model in which the spike rate in each cell is determined by the linear combination of the spatio-temporally filtered visual input, the temporally filtered prior spikes of that cell, and unobserved sources representing common noise. The model accurately captures the statistical structure of the spike trains and the encoding of the visual stimulus, without the direct coupling assumption present in previous modeling work. Finally, we examined the problem of decoding the visual stimulus from the spike train given the estimated parameters. The common-noise model produces Bayesian decoding performance as accurate as that of a model with direct coupling, but with significantly more robustness to spike timing perturbations. PMID:22203465
29 CFR 1910.16 - Longshoring and marine terminals.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Ionizing radiation. Subpart Z, § 1910.1096; (vi) Noise. Subpart G, § 1910.95; (vii) Nonionizing radiation. Subpart G, § 1910.97; Note to paragraph (a)(2)(vii): Exposures to nonionizing radiation emissions from.... Subpart Z, § 1910.1200; (vii) Ionizing radiation. Subpart Z, § 1910.1096; (viii) Noise. Subpart G, § 1910...
Advanced insulated gate bipolar transistor gate drive
Short, James Evans [Monongahela, PA; West, Shawn Michael [West Mifflin, PA; Fabean, Robert J [Donora, PA
2009-08-04
A gate drive for an insulated gate bipolar transistor (IGBT) includes a control and protection module coupled to a collector terminal of the IGBT, an optical communications module coupled to the control and protection module, a power supply module coupled to the control and protection module and an output power stage module with inputs coupled to the power supply module and the control and protection module, and outputs coupled to a gate terminal and an emitter terminal of the IGBT. The optical communications module is configured to send control signals to the control and protection module. The power supply module is configured to distribute inputted power to the control and protection module. The control and protection module outputs on/off, soft turn-off and/or soft turn-on signals to the output power stage module, which, in turn, supplies a current based on the signal(s) from the control and protection module for charging or discharging an input capacitance of the IGBT.
NASA Technical Reports Server (NTRS)
Kraft, R. E.
1996-01-01
A computational method to predict modal reflection coefficients in cylindrical ducts has been developed based on the work of Homicz, Lordi, and Rehm, which uses the Wiener-Hopf method to account for the boundary conditions at the termination of a thin cylindrical pipe. The purpose of this study is to develop a computational routine to predict the reflection coefficients of higher order acoustic modes impinging on the unflanged termination of a cylindrical duct. This effort was conducted wider Task Order 5 of the NASA Lewis LET Program, Active Noise Control of aircraft Engines: Feasibility Study, and will be used as part of the development of an integrated source noise, acoustic propagation, ANC actuator coupling, and control system algorithm simulation. The reflection coefficient prediction will be incorporated into an existing cylindrical duct modal analysis to account for the reflection of modes from the duct termination. This will provide a more accurate, rapid computation design tool for evaluating the effect of reflected waves on active noise control systems mounted in the duct, as well as providing a tool for the design of acoustic treatment in inlet ducts. As an active noise control system design tool, the method can be used preliminary to more accurate but more numerically intensive acoustic propagation models such as finite element methods. The resulting computer program has been shown to give reasonable results, some examples of which are presented. Reliable data to use for comparison is scarce, so complete checkout is difficult, and further checkout is needed over a wider range of system parameters. In future efforts the method will be adapted as a subroutine to the GEAE segmented cylindrical duct modal analysis program.
NASA Technical Reports Server (NTRS)
Stute, Robert A. (Inventor); Galloway, F. Houston (Inventor); Medelius, Pedro J. (Inventor); Swindle, Robert W. (Inventor); Bierman, Tracy A. (Inventor)
1996-01-01
A remote monitor alarm system monitors discrete alarm and analog power supply voltage conditions at remotely located communications terminal equipment. A central monitoring unit (CMU) is connected via serial data links to each of a plurality of remote terminal units (RTUS) that monitor the alarm and power supply conditions of the remote terminal equipment. Each RTU can monitor and store condition information of both discrete alarm points and analog power supply voltage points in its associated communications terminal equipment. The stored alarm information is periodically transmitted to the CMU in response to sequential polling of the RTUS. The number of monitored alarm inputs and permissible voltage ranges for the analog inputs can be remotely configured at the CMU and downloaded into programmable memory at each RTU. The CMU includes a video display, a hard disk memory, a line printer and an audio alarm for communicating and storing the alarm information received from each RTU.
Single-Chip T/R Module for 1.2 GHz
NASA Technical Reports Server (NTRS)
Moussessian, Alina; Mojarradi, Mohammad; Johnson, Travis; Davis, John; Grigorian, Edwin; Hoffman, James; Caro, Edward; Kuhn, William
2006-01-01
A single-chip CMOS-based (complementary-metal-oxide-semiconductorbased) transmit/receive (T/R) module is being developed for L-band radar systems. Previous T/R module implementations required multiple chips employing different technologies (GaAs, Si, and others) combined with off-chip transmission lines and discrete components including circulators. The new design eliminates the bulky circulator, significantly reducing the size and mass of the T/R module. Compared to multi-chip designs, the single-chip CMOS can be implemented with lower cost. These innovations enable cost-effective realization of advanced phased array and synthetic aperture radar systems that require integration of thousands of T/R modules. The circulator is a ferromagnetic device that directs the flow of the RF (radio frequency) power during transmission and reception. During transmission, the circulator delivers the transmitted power from the amplifier to the antenna, while preventing it from damaging the sensitive receiver circuitry. During reception, the circulator directs the energy from the antenna to the low-noise amplifier (LNA) while isolating the output of the power amplifier (PA). In principle, a circulator could be replaced by series transistors acting as electronic switches. However, in practice, the integration of conventional series transistors into a T/R chip introduces significant losses and noise. The prototype single-chip T/R module contains integrated transistor switches, but not connected in series; instead, they are connected in a shunt configuration with resonant circuits (see figure). The shunt/resonant circuit topology not only reduces the losses associated with conventional semiconductor switches but also provides beneficial transformation of impedances for the PA and the LNA. It provides full singlepole/ double-throw switching for the antenna, isolating the LNA from the transmitted signal and isolating the PA from the received signal. During reception, the voltage on control line RX/TX (raised bar) is high, causing the field-effect transistor (FET) switch S1 to be closed, forming a parallel resonant tank circuit L1||C1. This circuit presents high impedance to the left of the antenna, so that the received signal is coupled to the LNA. At the same time, FET switches S2 and S3 are open, so that C2 is removed from the circuit (except for a small parasitic capacitance). The combination of L2 and C3 forms a matching network that transforms the antenna impedance of 50 ohms to a higher value from the perspective of the LNA input terminal. This transformation of impedance improves LNA noise figure by increasing the received voltage delivered to the input transistor. This allows lower transconductance and therefore a smaller transistor, which makes it possible to design the CMOS LNA for low power consumption. During transmission, the voltage on control line RX/TX (raised bar) is low, causing switch S1 to be open. In this configuration, the combination of L1 and C1 transforms the antenna impedance to a lower value from the perspective of the PA. This low impedance is helpful in producing a relatively high output power compatible with the low CMOS operating potential. At the same time, switches S2 and S3 are closed, forming the parallel resonant tank circuit L2||C2. This circuit presents high impedance to the right of the antenna, directing the PA output signal to the antenna and away from the LNA. During this time, S3 presents a short circuit across the LNA input terminals to guarantee that the voltage seen by the LNA is small enough to prevent damage.
Electroacoustic Performance of Direct-Input Hearing Aids with FM Amplification Systems.
ERIC Educational Resources Information Center
Thibodeau, Linda M.
1990-01-01
The electroacoustic performance of 18 direct-input and two inductive-coupling hearing aids was compared when operating with two different frequency modulation (FM) systems. The most significant differences occurred in full-on gain, equivalent-input noise, and frequency response, as opposed to high frequency average saturation sound pressure level…
A First Look at Electric Motor Noise For Future Propulsion Systems
NASA Technical Reports Server (NTRS)
Huff, Dennis L.; Henderson, Brenda S.; Envia, Edmane
2016-01-01
Motor tone predictions using a vibration analysis and input from design parameters for high power density motors show that the noise can be significantly higher or lower than the empirical correlations and exceeds the stated uncertainty.
Resource sharing on CSMA/CD networks in the presence of noise. M.S. Thesis
NASA Technical Reports Server (NTRS)
Dinschel, Duane Edward
1987-01-01
Resource sharing on carrier sense multiple access with collision detection (CSMA/CD) networks can be accomplished by using window-control algorithms for bus contention. The window-control algorithms are designed to grant permission to transmit to the station with the minimum contention parameter. Proper operation of the window-control algorithm requires that all stations sense the same state of the newtork in each contention slot. Noise causes the state of the network to appear as a collision. False collisions can cause the window-control algorithm to terminate without isolating any stations. A two-phase window-control protocol and approximate recurrence equation with noise as a parameter to improve the performance of the window-control algorithms in the presence of noise are developed. The results are compared through simulation, with the approximate recurrence equation yielding the best overall performance. Noise is even a bigger problem when it is not detected by all stations. In such cases it is possible for the window boundaries of the contending stations to become out of phase. Consequently, it is possible to isolate a station other than the one with the minimum contention parameter. To guarantee proper isolation of the minimum, a broadcast phase must be added after the termination of the algorithm. The protocol required to correct the window-control algorithm when noise is not detected by all stations is discussed.
Input-output mapping reconstruction of spike trains at dorsal horn evoked by manual acupuncture
NASA Astrophysics Data System (ADS)
Wei, Xile; Shi, Dingtian; Yu, Haitao; Deng, Bin; Lu, Meili; Han, Chunxiao; Wang, Jiang
2016-12-01
In this study, a generalized linear model (GLM) is used to reconstruct mapping from acupuncture stimulation to spike trains driven by action potential data. The electrical signals are recorded in spinal dorsal horn after manual acupuncture (MA) manipulations with different frequencies being taken at the “Zusanli” point of experiment rats. Maximum-likelihood method is adopted to estimate the parameters of GLM and the quantified value of assumed model input. Through validating the accuracy of firings generated from the established GLM, it is found that the input-output mapping of spike trains evoked by acupuncture can be successfully reconstructed for different frequencies. Furthermore, via comparing the performance of several GLMs based on distinct inputs, it suggests that input with the form of half-sine with noise can well describe the generator potential induced by acupuncture mechanical action. Particularly, the comparison of reproducing the experiment spikes for five selected inputs is in accordance with the phenomenon found in Hudgkin-Huxley (H-H) model simulation, which indicates the mapping from half-sine with noise input to experiment spikes meets the real encoding scheme to some extent. These studies provide us a new insight into coding processes and information transfer of acupuncture.
NASA Technical Reports Server (NTRS)
Kontos, Karen B.; Kraft, Robert E.; Gliebe, Philip R.
1996-01-01
The Aircraft Noise Predication Program (ANOPP) is an industry-wide tool used to predict turbofan engine flyover noise in system noise optimization studies. Its goal is to provide the best currently available methods for source noise prediction. As part of a program to improve the Heidmann fan noise model, models for fan inlet and fan exhaust noise suppression estimation that are based on simple engine and acoustic geometry inputs have been developed. The models can be used to predict sound power level suppression and sound pressure level suppression at a position specified relative to the engine inlet.
Statistics of optimal information flow in ensembles of regulatory motifs
NASA Astrophysics Data System (ADS)
Crisanti, Andrea; De Martino, Andrea; Fiorentino, Jonathan
2018-02-01
Genetic regulatory circuits universally cope with different sources of noise that limit their ability to coordinate input and output signals. In many cases, optimal regulatory performance can be thought to correspond to configurations of variables and parameters that maximize the mutual information between inputs and outputs. Since the mid-2000s, such optima have been well characterized in several biologically relevant cases. Here we use methods of statistical field theory to calculate the statistics of the maximal mutual information (the "capacity") achievable by tuning the input variable only in an ensemble of regulatory motifs, such that a single controller regulates N targets. Assuming (i) sufficiently large N , (ii) quenched random kinetic parameters, and (iii) small noise affecting the input-output channels, we can accurately reproduce numerical simulations both for the mean capacity and for the whole distribution. Our results provide insight into the inherent variability in effectiveness occurring in regulatory systems with heterogeneous kinetic parameters.
Planck 2015 results: VI. LFI mapmaking
Ade, P. A. R.; Aghanim, N.; Ashdown, M.; ...
2016-09-20
This article describes the mapmaking procedure applied to Planck Low Frequency Instrument (LFI) data. The mapmaking step takes as input the calibrated timelines and pointing information. The main products are sky maps of I, Q, and U Stokes components. For the first time, we present polarization maps at LFI frequencies. The mapmaking algorithm is based on a destriping technique, which is enhanced with a noise prior. The Galactic region is masked to reduce errors arising from bandpass mismatch and high signal gradients. We apply horn-uniform radiometer weights to reduce the effects of beam-shape mismatch. The algorithm is the same asmore » used for the 2013 release, apart from small changes in parameter settings. We validate the procedure through simulations. Special emphasis is put on the control of systematics, which is particularly important for accurate polarization analysis. We also produce low-resolution versions of the maps and corresponding noise covariance matrices. These serve as input in later analysis steps and parameter estimation. The noise covariance matrices are validated through noise Monte Carlo simulations. The residual noise in the map products is characterized through analysis of half-ring maps, noise covariance matrices, and simulations.« less
Telecommunications network optimization
NASA Technical Reports Server (NTRS)
Lee, J.
1979-01-01
Analysis discusses STACOM (state criminal justic communication) network topology program used to design and evaluate digital telecommunications networks STACOM employs ESAU-WILLIAMS technique to search for direct links between system terminations and regional switching center. Inputs include traffic data, terminal locations, and functional requirements.
Recent Developments on Airborne Forward Looking Interferometer for the Detection of Wake Vortices
NASA Technical Reports Server (NTRS)
Daniels, Taumi S.; Smith, William L.; Kirev, Stanislav
2012-01-01
A goal of these studies was development of the measurement methods and algorithms necessary to detect wake vortex hazards in real time from either an aircraft or ground-based hyperspectral Fourier Transform Spectrometer (FTS). This paper provides an update on research to model FTS detection of wake vortices. The Terminal Area Simulation System (TASS) was used to generate wake vortex fields of 3-D winds, temperature, and absolute humidity. These fields were input to the Line by Line Radiative Transfer Model (LBLRTM), a hyperspectral radiance model in the infrared, employed for the FTS numerical modeling. An initial set of cases has been analyzed to identify a wake vortex IR signature and signature sensitivities to various state variables. Results from the numerical modeling case studies will be presented. Preliminary results indicated that an imaging IR instrument sensitive to six narrow bands within the 670 to 3150 per centimeter spectral region would be sufficient for wake vortex detection. Noise floor estimates for a recommended instrument are a current research topic.
Elimination of coherent noise in a coherent light imaging system
NASA Technical Reports Server (NTRS)
Grebowsky, G. J.; Hermann, R. L.; Paull, H. B.; Shulman, A. R.
1970-01-01
Optical imaging systems using coherent light introduce objectionable noise into the output image plane. Dust and bubbles on and in lenses cause most of the noise in the output image. This noise usually appears as bull's-eye diffraction patterns in the image. By rotating the lens about the optical axis these diffraction patterns can be essentially eliminated. The technique does not destroy the spatial coherence of the light and permits spatial filtering of the input plane.
Noise Exposure Model MOD-5 : Volume 1
DOT National Transportation Integrated Search
1971-06-01
The report contains three sections. The first two sections are contained in Volume 1. It contains an airport analysis which describes the noise exposure model MOD-5 from the perspective of analysing an airport in order to develop the program input mo...
Noise Expands the Response Range of the Bacillus subtilis Competence Circuit
Hayden, Luke; Liu, Jintao; Wiggins, Chris H.; Süel, Gürol M.; Walczak, Aleksandra M.
2016-01-01
Gene regulatory circuits must contend with intrinsic noise that arises due to finite numbers of proteins. While some circuits act to reduce this noise, others appear to exploit it. A striking example is the competence circuit in Bacillus subtilis, which exhibits much larger noise in the duration of its competence events than a synthetically constructed analog that performs the same function. Here, using stochastic modeling and fluorescence microscopy, we show that this larger noise allows cells to exit terminal phenotypic states, which expands the range of stress levels to which cells are responsive and leads to phenotypic heterogeneity at the population level. This is an important example of how noise confers a functional benefit in a genetic decision-making circuit. PMID:27003682
Gollee, Henrik; Gawthrop, Peter J; Lakie, Martin; Loram, Ian D
2017-11-01
A human controlling an external system is described most easily and conventionally as linearly and continuously translating sensory input to motor output, with the inevitable output remnant, non-linearly related to the input, attributed to sensorimotor noise. Recent experiments show sustained manual tracking involves repeated refractoriness (insensitivity to sensory information for a certain duration), with the temporary 200-500 ms periods of irresponsiveness to sensory input making the control process intrinsically non-linear. This evidence calls for re-examination of the extent to which random sensorimotor noise is required to explain the non-linear remnant. This investigation of manual tracking shows how the full motor output (linear component and remnant) can be explained mechanistically by aperiodic sampling triggered by prediction error thresholds. Whereas broadband physiological noise is general to all processes, aperiodic sampling is associated with sensorimotor decision making within specific frontal, striatal and parietal networks; we conclude that manual tracking utilises such slow serial decision making pathways up to several times per second. The human operator is described adequately by linear translation of sensory input to motor output. Motor output also always includes a non-linear remnant resulting from random sensorimotor noise from multiple sources, and non-linear input transformations, for example thresholds or refractory periods. Recent evidence showed that manual tracking incurs substantial, serial, refractoriness (insensitivity to sensory information of 350 and 550 ms for 1st and 2nd order systems respectively). Our two questions are: (i) What are the comparative merits of explaining the non-linear remnant using noise or non-linear transformations? (ii) Can non-linear transformations represent serial motor decision making within the sensorimotor feedback loop intrinsic to tracking? Twelve participants (instructed to act in three prescribed ways) manually controlled two systems (1st and 2nd order) subject to a periodic multi-sine disturbance. Joystick power was analysed using three models, continuous-linear-control (CC), continuous-linear-control with calculated noise spectrum (CCN), and intermittent control with aperiodic sampling triggered by prediction error thresholds (IC). Unlike the linear mechanism, the intermittent control mechanism explained the majority of total power (linear and remnant) (77-87% vs. 8-48%, IC vs. CC). Between conditions, IC used thresholds and distributions of open loop intervals consistent with, respectively, instructions and previous measured, model independent values; whereas CCN required changes in noise spectrum deviating from broadband, signal dependent noise. We conclude that manual tracking uses open loop predictive control with aperiodic sampling. Because aperiodic sampling is inherent to serial decision making within previously identified, specific frontal, striatal and parietal networks we suggest that these structures are intimately involved in visuo-manual tracking. © 2017 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
Capacitive Trans-Impedance Amplifier Circuit with Charge Injection Compensation
NASA Technical Reports Server (NTRS)
Milkov, Mihail M. (Inventor); Gulbransen, David J. (Inventor)
2016-01-01
A capacitive trans-impedance amplifier circuit with charge injection compensation is provided. A feedback capacitor is connected between an inverting input port and an output port of an amplifier. A MOS reset switch has source and drain terminals connected between the inverting input and output ports of the amplifier, and a gate terminal controlled by a reset signal. The reset switch is open or inactive during an integration phase, and closed or active to electrically connect the inverting input port and output port of the amplifier during a reset phase. One or more compensation capacitors are provided that are not implemented as gate oxide or MOS capacitors. Each compensation capacitor has a first port connected to a compensation signal that is a static signal or a toggling compensation signal that toggles between two compensation voltage values, and a second port connected to the inverting input port of the amplifier.
Self-organizing adaptive map: autonomous learning of curves and surfaces from point samples.
Piastra, Marco
2013-05-01
Competitive Hebbian Learning (CHL) (Martinetz, 1993) is a simple and elegant method for estimating the topology of a manifold from point samples. The method has been adopted in a number of self-organizing networks described in the literature and has given rise to related studies in the fields of geometry and computational topology. Recent results from these fields have shown that a faithful reconstruction can be obtained using the CHL method only for curves and surfaces. Within these limitations, these findings constitute a basis for defining a CHL-based, growing self-organizing network that produces a faithful reconstruction of an input manifold. The SOAM (Self-Organizing Adaptive Map) algorithm adapts its local structure autonomously in such a way that it can match the features of the manifold being learned. The adaptation process is driven by the defects arising when the network structure is inadequate, which cause a growth in the density of units. Regions of the network undergo a phase transition and change their behavior whenever a simple, local condition of topological regularity is met. The phase transition is eventually completed across the entire structure and the adaptation process terminates. In specific conditions, the structure thus obtained is homeomorphic to the input manifold. During the adaptation process, the network also has the capability to focus on the acquisition of input point samples in critical regions, with a substantial increase in efficiency. The behavior of the network has been assessed experimentally with typical data sets for surface reconstruction, including suboptimal conditions, e.g. with undersampling and noise. Copyright © 2012 Elsevier Ltd. All rights reserved.
Comparison of two optimized readout chains for low light CIS
NASA Astrophysics Data System (ADS)
Boukhayma, A.; Peizerat, A.; Dupret, A.; Enz, C.
2014-03-01
We compare the noise performance of two optimized readout chains that are based on 4T pixels and featuring the same bandwidth of 265kHz (enough to read 1Megapixel with 50frame/s). Both chains contain a 4T pixel, a column amplifier and a single slope analog-to-digital converter operating a CDS. In one case, the pixel operates in source follower configuration, and in common source configuration in the other case. Based on analytical noise calculation of both readout chains, an optimization methodology is presented. Analytical results are confirmed by transient simulations using 130nm process. A total input referred noise bellow 0.4 electrons RMS is reached for a simulated conversion gain of 160μV/e-. Both optimized readout chains show the same input referred 1/f noise. The common source based readout chain shows better performance for thermal noise and requires smaller silicon area. We discuss the possible drawbacks of the common source configuration and provide the reader with a comparative table between the two readout chains. The table contains several variants (column amplifier gain, in-pixel transistor sizes and type).
NASA Technical Reports Server (NTRS)
Wu, Andy
1995-01-01
Allan Deviation computations of linear frequency synthesizer systems have been reported previously using real-time simulations. Even though it takes less time compared with the actual measurement, it is still very time consuming to compute the Allan Deviation for long sample times with the desired confidence level. Also noises, such as flicker phase noise and flicker frequency noise, can not be simulated precisely. The use of frequency domain techniques can overcome these drawbacks. In this paper the system error model of a fictitious linear frequency synthesizer is developed and its performance using a Cesium (Cs) atomic frequency standard (AFS) as a reference is evaluated using frequency domain techniques. For a linear timing system, the power spectral density at the system output can be computed with known system transfer functions and known power spectral densities from the input noise sources. The resulting power spectral density can then be used to compute the Allan Variance at the system output. Sensitivities of the Allan Variance at the system output to each of its independent input noises are obtained, and they are valuable for design trade-off and trouble-shooting.
Noise And Charge Transport In Carbon Nanotube Devices
NASA Astrophysics Data System (ADS)
Reza, Shahed; Huynh, Quyen T.; Bosman, Gijs; Sippel, Jennifer; Rinzler, Andrew G.
2005-11-01
The charge transport and noise properties of three terminal, gated devices containing multiple, single wall, metallic and semiconductor carbon nanotubes have been measured as a function of gate and drain bias at 300K. Using pulsed bias the metallic tubes could be burned sequentially enabling the separation of measured conductance and low frequency excess noise into metallic and semiconductor contributions. The relative low frequency excess noise of the metallic tubes was about a factor 100 lower than that of the semiconductor tubes, whereas the conductance of the metallic tubes was significantly higher (10 to 50 times) than that of the semiconductor tubes.
Suthakar, Kirupa; Ryugo, David K
2017-01-01
Auditory efferent neurons reside in the brain and innervate the sensory hair cells of the cochlea to modulate incoming acoustic signals. Two groups of efferents have been described in mouse and this report will focus on the medial olivocochlear (MOC) system. Electrophysiological data suggest the MOC efferents function in selective listening by differentially attenuating auditory nerve fiber activity in quiet and noisy conditions. Because speech understanding in noise is impaired in age-related hearing loss, we asked whether pathologic changes in input to MOC neurons from higher centers could be involved. The present study investigated the anatomical nature of descending projections from the inferior colliculus (IC) to MOCs in 3-month old mice with normal hearing, and in 6-month old mice with normal hearing (CBA/CaH), early onset progressive hearing loss (DBA/2), and congenital deafness (homozygous Shaker-2). Anterograde tracers were injected into the IC and retrograde tracers into the cochlea. Electron microscopic analysis of double-labelled tissue confirmed direct synaptic contact from the IC onto MOCs in all cohorts. These labelled terminals are indicative of excitatory neurotransmission because they contain round synaptic vesicles, exhibit asymmetric membrane specializations, and are co-labelled with antibodies against VGlut2, a glutamate transporter. 3D reconstructions of the terminal fields indicate that in normal hearing mice, descending projections from the IC are arranged tonotopically with low frequencies projecting laterally and progressively higher frequencies projecting more medially. Along the mediolateral axis, the projections of DBA/2 mice with acquired high frequency hearing loss were shifted medially towards expected higher frequency projecting regions. Shaker-2 mice with congenital deafness had a much broader spatial projection, revealing abnormalities in the topography of connections. These data suggest that loss in precision of IC directed MOC activation could contribute to impaired signal detection in noise. Copyright © 2016 Elsevier B.V. All rights reserved.
Solid-state current transformer
NASA Technical Reports Server (NTRS)
Farnsworth, D. L. (Inventor)
1976-01-01
A signal transformation network which is uniquely characterized to exhibit a very low input impedance while maintaining a linear transfer characteristic when driven from a voltage source and when quiescently biased in the low microampere current range is described. In its simplest form, it consists of a tightly coupled two transistor network in which a common emitter input stage is interconnected directly with an emitter follower stage to provide virtually 100 percent negative feedback to the base input of the common emitter stage. Bias to the network is supplied via the common tie point of the common emitter stage collector terminal and the emitter follower base stage terminal by a regulated constant current source, and the output of the circuit is taken from the collector of the emitter follower stage.
Drung, D; Krause, C; Becker, U; Scherer, H; Ahlers, F J
2015-02-01
An ultrastable low-noise current amplifier (ULCA) is presented. The ULCA is a non-cryogenic instrument based on specially designed operational amplifiers and resistor networks. It involves two stages, the first providing a 1000-fold current gain and the second performing a current-to-voltage conversion via an internal 1 MΩ reference resistor or, optionally, an external standard resistor. The ULCA's transfer coefficient is highly stable versus time, temperature, and current amplitude within the full dynamic range of ±5 nA. The low noise level of 2.4 fA/√Hz helps to keep averaging times short at small input currents. A cryogenic current comparator is used to calibrate both input current gain and output transresistance, providing traceability to the quantum Hall effect. Within one week after calibration, the uncertainty contribution from short-term fluctuations and drift of the transresistance is about 0.1 parts per million (ppm). The long-term drift is typically 5 ppm/yr. A high-accuracy variant is available that shows improved stability of the input gain at the expense of a higher noise level of 7.5 fA/√Hz. The ULCA also allows the traceable generation of small electric currents or the calibration of high-ohmic resistors.
Flowfield Comparisons from Three Navier-Stokes Solvers for an Axisymmetric Separate Flow Jet
NASA Technical Reports Server (NTRS)
Koch, L. Danielle; Bridges, James; Khavaran, Abbas
2002-01-01
To meet new noise reduction goals, many concepts to enhance mixing in the exhaust jets of turbofan engines are being studied. Accurate steady state flowfield predictions from state-of-the-art computational fluid dynamics (CFD) solvers are needed as input to the latest noise prediction codes. The main intent of this paper was to ascertain that similar Navier-Stokes solvers run at different sites would yield comparable results for an axisymmetric two-stream nozzle case. Predictions from the WIND and the NPARC codes are compared to previously reported experimental data and results from the CRAFT Navier-Stokes solver. Similar k-epsilon turbulence models were employed in each solver, and identical computational grids were used. Agreement between experimental data and predictions from each code was generally good for mean values. All three codes underpredict the maximum value of turbulent kinetic energy. The predicted locations of the maximum turbulent kinetic energy were farther downstream than seen in the data. A grid study was conducted using the WIND code, and comments about convergence criteria and grid requirements for CFD solutions to be used as input for noise prediction computations are given. Additionally, noise predictions from the MGBK code, using the CFD results from the CRAFT code, NPARC, and WIND as input are compared to data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drung, D.; Krause, C.; Becker, U.
2015-02-15
An ultrastable low-noise current amplifier (ULCA) is presented. The ULCA is a non-cryogenic instrument based on specially designed operational amplifiers and resistor networks. It involves two stages, the first providing a 1000-fold current gain and the second performing a current-to-voltage conversion via an internal 1 MΩ reference resistor or, optionally, an external standard resistor. The ULCA’s transfer coefficient is highly stable versus time, temperature, and current amplitude within the full dynamic range of ±5 nA. The low noise level of 2.4 fA/√Hz helps to keep averaging times short at small input currents. A cryogenic current comparator is used to calibratemore » both input current gain and output transresistance, providing traceability to the quantum Hall effect. Within one week after calibration, the uncertainty contribution from short-term fluctuations and drift of the transresistance is about 0.1 parts per million (ppm). The long-term drift is typically 5 ppm/yr. A high-accuracy variant is available that shows improved stability of the input gain at the expense of a higher noise level of 7.5 fA/√Hz. The ULCA also allows the traceable generation of small electric currents or the calibration of high-ohmic resistors.« less
NASA Astrophysics Data System (ADS)
Drung, D.; Krause, C.; Becker, U.; Scherer, H.; Ahlers, F. J.
2015-02-01
An ultrastable low-noise current amplifier (ULCA) is presented. The ULCA is a non-cryogenic instrument based on specially designed operational amplifiers and resistor networks. It involves two stages, the first providing a 1000-fold current gain and the second performing a current-to-voltage conversion via an internal 1 MΩ reference resistor or, optionally, an external standard resistor. The ULCA's transfer coefficient is highly stable versus time, temperature, and current amplitude within the full dynamic range of ±5 nA. The low noise level of 2.4 fA/√Hz helps to keep averaging times short at small input currents. A cryogenic current comparator is used to calibrate both input current gain and output transresistance, providing traceability to the quantum Hall effect. Within one week after calibration, the uncertainty contribution from short-term fluctuations and drift of the transresistance is about 0.1 parts per million (ppm). The long-term drift is typically 5 ppm/yr. A high-accuracy variant is available that shows improved stability of the input gain at the expense of a higher noise level of 7.5 fA/√Hz. The ULCA also allows the traceable generation of small electric currents or the calibration of high-ohmic resistors.
NASA Technical Reports Server (NTRS)
Davarian, F.
1994-01-01
The LOOP computer program was written to simulate the Automatic Frequency Control (AFC) subsystem of a Differential Minimum Shift Keying (DMSK) receiver with a bit rate of 2400 baud. The AFC simulated by LOOP is a first order loop configuration with a first order R-C filter. NASA has been investigating the concept of mobile communications based on low-cost, low-power terminals linked via geostationary satellites. Studies have indicated that low bit rate transmission is suitable for this application, particularly from the frequency and power conservation point of view. A bit rate of 2400 BPS is attractive due to its applicability to the linear predictive coding of speech. Input to LOOP includes the following: 1) the initial frequency error; 2) the double-sided loop noise bandwidth; 3) the filter time constants; 4) the amount of intersymbol interference; and 5) the bit energy to noise spectral density. LOOP output includes: 1) the bit number and the frequency error of that bit; 2) the computed mean of the frequency error; and 3) the standard deviation of the frequency error. LOOP is written in MS SuperSoft FORTRAN 77 for interactive execution and has been implemented on an IBM PC operating under PC DOS with a memory requirement of approximately 40K of 8 bit bytes. This program was developed in 1986.
1990-09-01
FORMULATION OF PROBLEM denoted by AZ and is given by With reference to a cylindrical polar coordinate 17-Z-Zs.- P, 1." * ()d. (4a) system (p,O,Z) the...without limit as a approaches zero. This formulation is not actually valid in this limiting case since one terminal of the generator would then be connected...current. APPE.IXx I Formulation of the input impedance. An expression is here for- mulated for the input impedance at the terminals of an antenna
A Revised Trajectory Algorithm to Support En Route and Terminal Area Self-Spacing Concepts
NASA Technical Reports Server (NTRS)
Abbott, Terence S.
2010-01-01
This document describes an algorithm for the generation of a four dimensional trajectory. Input data for this algorithm are similar to an augmented Standard Terminal Arrival (STAR) with the augmentation in the form of altitude or speed crossing restrictions at waypoints on the route. This version of the algorithm accommodates descent Mach values that are different from the cruise Mach values. Wind data at each waypoint are also inputs into this algorithm. The algorithm calculates the altitude, speed, along path distance, and along path time for each waypoint.
Cascaded analysis of signal and noise propagation through a heterogeneous breast model.
Mainprize, James G; Yaffe, Martin J
2010-10-01
The detectability of lesions in radiographic images can be impaired by patterns caused by the surrounding anatomic structures. The presence of such patterns is often referred to as anatomic noise. Others have previously extended signal and noise propagation theory to include variable background structure as an additional noise term and used in simulations for analysis by human and ideal observers. Here, the analytic forms of the signal and noise transfer are derived to obtain an exact expression for any input random distribution and the "power law" filter used to generate the texture of the tissue distribution. A cascaded analysis of propagation through a heterogeneous model is derived for x-ray projection through simulated heterogeneous backgrounds. This is achieved by considering transmission through the breast as a correlated amplification point process. The analytic forms of the cascaded analysis were compared to monoenergetic Monte Carlo simulations of x-ray propagation through power law structured backgrounds. As expected, it was found that although the quantum noise power component scales linearly with the x-ray signal, the anatomic noise will scale with the square of the x-ray signal. There was a good agreement between results obtained using analytic expressions for the noise power and those from Monte Carlo simulations for different background textures, random input functions, and x-ray fluence. Analytic equations for the signal and noise properties of heterogeneous backgrounds were derived. These may be used in direct analysis or as a tool to validate simulations in evaluating detectability.
Terminal navigation analysis for the 1980 comet Encke slow flyby mission
NASA Technical Reports Server (NTRS)
Jacobson, R. A.; Mcdanell, J. P.; Rinker, G. C.
1973-01-01
The initial results of a terminal navigation analysis for the proposed 1980 solar electric slow flyby mission to the comet Encke are presented. The navigation technique employs onboard optical measurements with the scientific television camera, groundbased observations of the spacecraft and comet, and groundbased orbit determination and thrust vector update computation. The knowledge and delivery accuracies of the spacecraft are evaluated as a function of the important parameters affecting the terminal navigation. These include optical measurement accuracy, thruster noise level, duration of the planned terminal coast period, comet ephemeris uncertainty, guidance initiation time, guidance update frequency, and optical data rate.
INMARSAT's personal communicator system
NASA Technical Reports Server (NTRS)
Hart, Nick; Haugli, HANS-C.; Poskett, Peter; Smith, K.
1993-01-01
Inmarsat has been providing near global mobile satellite communications since 1982 and Inmarsat terminals are currently being used in more than 130 countries. The terminals have been reduced in size and cost over the years and new technology has enabled the recent introduction of briefcase sized personal telephony terminals (Inmarsat-M). This trend continues and we are likely to see Inmarsat handheld terminals by the end of the decade. These terminals are called Inmarsat-P and this paper focuses on the various elements required to support a high quality service to handheld terminals. The main system elements are: the handheld terminals; the space segment with the associated orbits; and the gateways to terrestrial networks. It is both likely and desirable that personal handheld satellite communications will be offered by more than one system provider and this competition will ensure strong emphasis on service quality and cost of ownership. The handheld terminals also have to be attractive to a large number of potential users, and this means that the terminals must be small enough to fit in a pocket. Battery lifetime is another important consideration, and this coupled with radiation safety requirements limits the maximum radiated EIRP. The terminal G/T is mainly constrained by the gain of the omnidirectional antenna and the noise figure of the RF front end (including input losses). Inmarsat has examined, with the support of industry, a number of Geosynchronous (GSO), Medium Earth Orbit (MEO) and Low Earth Orbit (LEO) satellite options for the provision of a handheld mobile satellite service. This paper describes the key satellite and orbit parameters and tradeoffs which affect the overall quality of service and the space segment costing. The paper also stresses not only the importance of using and sharing the available mobile frequency band allocations efficiently, but also the key considerations affecting the choice of feeder link bands. The design of the gateways and the terrestrial network is critical to the overall viability of the service, and this paper also examines the key technical parameters associated with the Land Earth Stations (LES), which act as gateways into the Public Switched Telephone Network (PSTN). These not only include the design tradeoffs associated with the LES, but also the different terrestrial network interface options. The paper concludes with a brief description of the satellite propagation conditions associated with the use of handheld terminals. It describes how the handheld results in a number of propagation impairments which are not common to the previous measurements associated with vehicle mounted antennas. These measurements indicate that there is a complex tradeoff between link margin and the elevation angle to the satellite which has a significant impact on the space segment requirements and costing.
INMARSAT's personal communicator system
NASA Astrophysics Data System (ADS)
Hart, Nick; Haugli, Hans-C.; Poskett, Peter; Smith, K.
Inmarsat has been providing near global mobile satellite communications since 1982 and Inmarsat terminals are currently being used in more than 130 countries. The terminals have been reduced in size and cost over the years and new technology has enabled the recent introduction of briefcase sized personal telephony terminals (Inmarsat-M). This trend continues and we are likely to see Inmarsat handheld terminals by the end of the decade. These terminals are called Inmarsat-P and this paper focuses on the various elements required to support a high quality service to handheld terminals. The main system elements are: the handheld terminals; the space segment with the associated orbits; and the gateways to terrestrial networks. It is both likely and desirable that personal handheld satellite communications will be offered by more than one system provider and this competition will ensure strong emphasis on service quality and cost of ownership. The handheld terminals also have to be attractive to a large number of potential users, and this means that the terminals must be small enough to fit in a pocket. Battery lifetime is another important consideration, and this coupled with radiation safety requirements limits the maximum radiated EIRP. The terminal G/T is mainly constrained by the gain of the omnidirectional antenna and the noise figure of the RF front end (including input losses). Inmarsat has examined, with the support of industry, a number of Geosynchronous (GSO), Medium Earth Orbit (MEO) and Low Earth Orbit (LEO) satellite options for the provision of a handheld mobile satellite service. This paper describes the key satellite and orbit parameters and tradeoffs which affect the overall quality of service and the space segment costing. The paper also stresses not only the importance of using and sharing the available mobile frequency band allocations efficiently, but also the key considerations affecting the choice of feeder link bands. The design of the gateways and the terrestrial network is critical to the overall viability of the service, and this paper also examines the key technical parameters associated with the Land Earth Stations (LES), which act as gateways into the Public Switched Telephone Network (PSTN). These not only include the design tradeoffs associated with the LES, but also the different terrestrial network interface options. The paper concludes with a brief description of the satellite propagation conditions associated with the use of handheld terminals. It describes how the handheld results in a number of propagation impairments which are not common to the previous measurements associated with vehicle mounted antennas. These measurements indicate that there is a complex tradeoff between link margin and the elevation angle to the satellite which has a significant impact on the space segment requirements and costing.
Computer program to predict aircraft noise levels
NASA Technical Reports Server (NTRS)
Clark, B. J.
1981-01-01
Methods developed at the NASA Lewis Research Center for predicting the noise contributions from various aircraft noise sources were programmed to predict aircraft noise levels either in flight or in ground tests. The noise sources include fan inlet and exhaust, jet, flap (for powered lift), core (combustor), turbine, and airframe. Noise propagation corrections are available for atmospheric attenuation, ground reflections, extra ground attenuation, and shielding. Outputs can include spectra, overall sound pressure level, perceived noise level, tone-weighted perceived noise level, and effective perceived noise level at locations specified by the user. Footprint contour coordinates and approximate footprint areas can also be calculated. Inputs and outputs can be in either System International or U.S. customary units. The subroutines for each noise source and propagation correction are described. A complete listing is given.
Gabriele, Mark L.; Shahmoradian, Sarah H.; French, Christopher C.; Henkel, Craig K.we; McHaffie, John G.
2007-01-01
The central nucleus of the inferior colliculus (IC) is a laminated structure that receives multiple converging afferent projections. These projections terminate in a layered arrangement and are aligned with dendritic arbors of the predominant disc-shaped neurons, forming fibrodendritic laminae. Within this structural framework, inputs terminate in a precise manner, establishing a mosaic of partially overlapping domains that likely define functional compartments. Although several of these patterned inputs have been described in the adult, relatively little is known about their organization prior to hearing onset. The present study used the lipophilic carbocyanine dyes DiI and DiD to examine the ipsilateral and contralateral projections from the lateral superior olivary (LSO) nucleus to the IC in a developmental series of paraformaldehyde-fixed kitten tissue. By birth, the crossed and uncrossed projections had reached the IC and were distributed across the frequency axis of the central nucleus. At this earliest postnatal stage, projections already exhibited a characteristic banded arrangement similar to that described in the adult. The heaviest terminal fields of the two inputs were always complementary in nature, with the ipsilateral input appearing slightly denser. This early arrangement of interdigitating ipsilateral and contralateral LSO axonal bands that occupy adjacent sublayers supports the idea that the initial establishment of this highly organized mosaic of inputs that defines distinct synaptic domains within the IC occurs largely in the absence of auditory experience. Potential developmental mechanisms that may shape these highly ordered inputs prior to hearing onset are discussed. PMID:17850770
Cho, Duckhyung; Yang, Myungjae; Shin, Narae; Hong, Seunghun
2018-06-07
We report a direct mapping and analysis of electrical noise in azobenzene-terminated molecular monolayers, revealing reversible photoswitching of the molecular-resistance fluctuations in the layers. In this work, a conducting atomic force microscope combined with a homemade spectrum analyzer was used to image electrical current and noise at patterned self-assembled monolayers (SAMs) of azobenzene-terminated molecular wires on a gold substrate. We analyzed the current and noise imaging data to obtain maps of molecular resistances and amount of mean-square fluctuations in the resistances of the regions of trans-azobenzene and a cis/trans-azobenzene mixture. We revealed that the fluctuations in the molecular resistances in the SAMs were enhanced after the trans-to-cis isomerization, while the resistances were reduced. This result could be attributed to enhanced disorders in the molecular arrangements in the cis-SAMs. Furthermore, we observed that the changes in the resistance fluctuations were reversible with respect to repeated trans-to-cis and cis-to-trans isomerizations, indicating that the effects originated from reversible photoswitching of the molecular structures rather than irreversible damages of the molecules. These findings provide valuable insights into the electrical fluctuations in photoswitchable molecules, which could be utilized in further studies on molecular switches and molecular electronics in general. © 2018 IOP Publishing Ltd.
A Low noise, Non-contact Capacitive Cardiac Sensor*
Peng, GuoChen; Bocko, Mark F.
2014-01-01
The development of sensitive, non-contact electric field sensors to measure weak bioelectric signals will be useful for the development of a number of unobtrusive health sensors. In this paper we summarize our recent work on a number of specific challenges in the development of non-contact ECG sensors. First, we considered the design of a low noise sensor preamplifier. We have adapted circuit designs that incorporate a double feedback loop to cancel the input transistor leakage current while providing stable operation, fast settling time and good low frequency response without the need for ultrahigh value resistors. The measured input referred noise of the preamplifier in the frequency band 0.05–100 Hz is 0.76 μVrms, which is several times lower than existing ECG preamplifiers. PMID:23367049
A low noise, non-contact capacitive cardiac sensor.
Peng, GuoChen; Bocko, Mark F
2012-01-01
The development of sensitive, non-contact electric field sensors to measure weak bioelectric signals will be useful for the development of a number of unobtrusive health sensors. In this paper we summarize our recent work on a number of specific challenges in the development of non-contact ECG sensors. First, we considered the design of a low noise sensor preamplifier. We have adapted circuit designs that incorporate a double feedback loop to cancel the input transistor leakage current while providing stable operation, fast settling time and good low frequency response without the need for ultrahigh value resistors. The measured input referred noise of the preamplifier in the frequency band 0.05-100 Hz is 0.76 µV(rms), which is several times lower than existing ECG preamplifiers.
Bazzani, Armando; Castellani, Gastone C; Cooper, Leon N
2010-05-01
We analyze the effects of noise correlations in the input to, or among, Bienenstock-Cooper-Munro neurons using the Wigner semicircular law to construct random, positive-definite symmetric correlation matrices and compute their eigenvalue distributions. In the finite dimensional case, we compare our analytic results with numerical simulations and show the effects of correlations on the lifetimes of synaptic strengths in various visual environments. These correlations can be due either to correlations in the noise from the input lateral geniculate nucleus neurons, or correlations in the variability of lateral connections in a network of neurons. In particular, we find that for fixed dimensionality, a large noise variance can give rise to long lifetimes of synaptic strengths. This may be of physiological significance.
A fully integrated neural recording amplifier with DC input stabilization.
Mohseni, Pedram; Najafi, Khalil
2004-05-01
This paper presents a low-power low-noise fully integrated bandpass operational amplifier for a variety of biomedical neural recording applications. A standard two-stage CMOS amplifier in a closed-loop resistive feedback configuration provides a stable ac gain of 39.3 dB at 1 kHz. A subthreshold PMOS input transistor is utilized to clamp the large and random dc open circuit potentials that normally exist at the electrode-electrolyte interface. The low cutoff frequency of the amplifier is programmable up to 50 Hz, while its high cutoff frequency is measured to be 9.1 kHz. The tolerable dc input range is measured to be at least +/- 0.25 V with a dc rejection factor of at least 29 dB. The amplifier occupies 0.107 mm2 in die area, and dissipates 115 microW from a 3 V power supply. The total measured input-referred noise voltage in the frequency range of 0.1-10 kHz is 7.8 microVrms. It is fabricated using AMI 1.5 microm double-poly double-metal n-well CMOS process. This paper presents full characterization of the dc, ac, and noise performance of this amplifier through in vitro measurements in saline using two different neural recording electrodes.
Active Vibration Control for Helicopter Interior Noise Reduction Using Power Minimization
NASA Technical Reports Server (NTRS)
Mendoza, J.; Chevva, K.; Sun, F.; Blanc, A.; Kim, S. B.
2014-01-01
This report describes work performed by United Technologies Research Center (UTRC) for NASA Langley Research Center (LaRC) under Contract NNL11AA06C. The objective of this program is to develop technology to reduce helicopter interior noise resulting from multiple gear meshing frequencies. A novel active vibration control approach called Minimum Actuation Power (MAP) is developed. MAP is an optimal control strategy that minimizes the total input power into a structure by monitoring and varying the input power of controlling sources. MAP control was implemented without explicit knowledge of the phasing and magnitude of the excitation sources by driving the real part of the input power from the controlling sources to zero. It is shown that this occurs when the total mechanical input power from the excitation and controlling sources is a minimum. MAP theory is developed for multiple excitation sources with arbitrary relative phasing for single or multiple discrete frequencies and controlled by a single or multiple controlling sources. Simulations and experimental results demonstrate the feasibility of MAP for structural vibration reduction of a realistic rotorcraft interior structure. MAP control resulted in significant average global vibration reduction of a single frequency and multiple frequency excitations with one controlling actuator. Simulations also demonstrate the potential effectiveness of the observed vibration reductions on interior radiated noise.
Dehmel, Susanne; Pradhan, Shashwati; Koehler, Seth; Bledsoe, Sanford; Shore, Susan
2012-01-01
The dorsal cochlear nucleus (DCN) is the first neural site of bimodal auditory-somatosensory integration. Previous studies have shown that stimulation of somatosensory pathways results in immediate suppression or enhancement of subsequent acoustically-evoked discharges. In the unimpaired auditory system suppression predominates. However, damage to the auditory input pathway leads to enhancement of excitatory somatosensory inputs to the cochlear nucleus, changing their effects on DCN neurons (Zeng et al., 2009; Shore et al., 2008). Given the well described connection between the somatosensory system and tinnitus in patients we sought to determine if plastic changes in long lasting bimodal somatosensory-auditory processing accompany tinnitus. Here we demonstrate for the first time in vivo long-term effects of somatosensory inputs on acoustically-evoked discharges of DCN neurons in guinea pigs. The effects of trigeminal nucleus stimulation are compared between normal-hearing animals and animals overexposed with narrow band noise and behaviorally tested for tinnitus. The noise exposure resulted in a temporary threshold shift (TTS) in auditory brainstem responses but a persistent increase in spontaneous and sound-evoked DCN unit firing rates and increased steepness of rate-level functions (RLFs). Rate increases were especially prominent in buildup units. The long-term somatosensory enhancement of sound-evoked responses was strengthened while suppressive effects diminished in noise-exposed animals, especially those that developed tinnitus. Damage to the auditory nerve (ANF) is postulated to trigger compensatory long-term synaptic plasticity of somatosensory inputs that might be an important underlying mechanism for tinnitus generation. PMID:22302808
Towards full band colorless reception with coherent balanced receivers.
Zhang, Bo; Malouin, Christian; Schmidt, Theodore J
2012-04-23
In addition to linear compensation of fiber channel impairments, coherent receivers also provide colorless selection of any desired data channel within multitude of incident wavelengths, without the need of a channel selecting filter. In this paper, we investigate the design requirements for colorless reception using a coherent balanced receiver, considering both the optical front end (OFE) and the transimpedance amplifier (TIA). We develop analytical models to predict the system performance as a function of receiver design parameters and show good agreement against numerical simulations. At low input signal power, an optimum local oscillator (LO) power is shown to exist where the thermal noise is balanced with the residual LO-RIN beat noise. At high input signal power, we show the dominant noise effect is the residual self-beat noise from the out of band (OOB) channels, which scales not only with the number of OOB channels and the common mode rejection ratio (CMRR) of the OFE, but also depends on the link residual chromatic dispersion (CD) and the orientation of the polarization tributaries relative to the receiver. This residual self-beat noise from OOB channels sets the lower bound for the LO power. We also investigate the limitations imposed by overload in the TIA, showing analytically that the DC current scales only with the number of OOB channels, while the differential AC current scales only with the link residual CD, which induces high peak-to-average power ratio (PAPR). Both DC and AC currents at the input to the TIA set the upper bounds for the LO power. Considering both the OFE noise limit and the TIA overload limit, we show that the receiver operating range is notably narrowed for dispersion unmanaged links, as compared to dispersion managed links. © 2012 Optical Society of America
Signal-to-noise ratios in coherent soft limiters
NASA Technical Reports Server (NTRS)
Lesh, J. R.
1973-01-01
Expressions for the output signal-to-noise power ratio of a bandpass soft limiter followed by a coherent detection device are presented and discussed. It is found that a significant improvement in the output signal-to-noise ratio at low input SNRs can be achieved by such soft limiters as compared to hard limiters. This indicates that the soft limiter may be of some use in the area of threshold extension. Approximation methods for determining output signal-to-noise spectral densities are also presented.
Adaptive antenna arrays for weak interfering signals. [in satellite communication
NASA Technical Reports Server (NTRS)
Gupta, I. J.; Ksienski, A. A.
1986-01-01
It is shown that conventional adaptive arrays are unable to suppress weak interfering signals. To overcome this problem, the feedback loops controlling the array weights were modified, reducing the noise level by reducing the correlation between the noise components of the two inputs to the loop correlator. Various techniques to decorrelate these noise components are discussed. An expression is derived for the amount of noise decorrelation required to achieve a specified interference suppression. The results are of interest in connection with satellite communications.
X-band ultralow-noise maser amplifier performance
NASA Technical Reports Server (NTRS)
Glass, G. W.; Ortiz, G. G.; Johnson, D. L.
1994-01-01
Noise temperature measurements of an 8440-MHz ultralow noise maser amplifier (ULNA) have been performed at subatmospheric, liquid-helium temperatures. The traveling-wave maser was operated while immersed in a liquid helium bath. The lowest input noise temperature measured was 1.43 +/- 0.16 K at a physical temperature of 1.60 K. At this physical temperature, the observed gain per centimeter of ruby was 4.9 dB/cm. The amplifier had a 3-dB bandwidth of 76 MHz.
Reliability Investigation of Low Noise GaAs FETs.
1981-07-01
measured by switching its input to the 10 GHz sweep oscillator signal and its output to the microwave power meter. The measured noise figure Fmeas and...associated gain Ga are then used to calculate the minimum noise figure Fmin of the FET: F -IF. zF o Frmin = Fmeas a where F is the measured noise figure...stayed within specification longer. As a matter of interest, Table 5-2 shows that the vast majority of temperature induced failures, that is, ( 60 + 33
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shepard, Kenneth L.; Sturcken, Noah Andrew
Power controller includes an output terminal having an output voltage, at least one clock generator to generate a plurality of clock signals and a plurality of hardware phases. Each hardware phase is coupled to the at least one clock generator and the output terminal and includes a comparator. Each hardware phase is configured to receive a corresponding one of the plurality of clock signals and a reference voltage, combine the corresponding clock signal and the reference voltage to produce a reference input, generate a feedback voltage based on the output voltage, compare the reference input and the feedback voltage usingmore » the comparator and provide a comparator output to the output terminal, whereby the comparator output determines a duty cycle of the power controller. An integrated circuit including the power controller is also provided.« less
Single neuron computation: from dynamical system to feature detector.
Hong, Sungho; Agüera y Arcas, Blaise; Fairhall, Adrienne L
2007-12-01
White noise methods are a powerful tool for characterizing the computation performed by neural systems. These methods allow one to identify the feature or features that a neural system extracts from a complex input and to determine how these features are combined to drive the system's spiking response. These methods have also been applied to characterize the input-output relations of single neurons driven by synaptic inputs, simulated by direct current injection. To interpret the results of white noise analysis of single neurons, we would like to understand how the obtained feature space of a single neuron maps onto the biophysical properties of the membrane, in particular, the dynamics of ion channels. Here, through analysis of a simple dynamical model neuron, we draw explicit connections between the output of a white noise analysis and the underlying dynamical system. We find that under certain assumptions, the form of the relevant features is well defined by the parameters of the dynamical system. Further, we show that under some conditions, the feature space is spanned by the spike-triggered average and its successive order time derivatives.
Teledyne H1RG, H2RG, and H4RG Noise Generator
NASA Technical Reports Server (NTRS)
Rauscher, Bernard J.
2015-01-01
This paper describes the near-infrared detector system noise generator (NG) that we wrote for the James Webb Space Telescope (JWST) Near Infrared Spectrograph (NIRSpec). NG simulates many important noise components including; (1) white "read noise", (2) residual bias drifts, (3) pink 1/f noise, (4) alternating column noise, and (5) picture frame noise. By adjusting the input parameters, NG can simulate noise for Teledyne's H1RG, H2RG, and H4RG detectors with and without Teledyne's SIDECAR ASIC IR array controller. NG can be used as a starting point for simulating astronomical scenes by adding dark current, scattered light, and astronomical sources into the results from NG. NG is written in Python-3.4.
XV-15 Low-Noise Terminal Area Operations Testing
NASA Technical Reports Server (NTRS)
Edwards, B. D.
1998-01-01
Test procedures related to XV-15 noise tests conducted by NASA-Langley and Bell Helicopter Textron, Inc. are discussed. The tests. which took place during October and November 1995, near Waxahachie, Texas, documented the noise signature of the XV-15 tilt-rotor aircraft at a wide variety of flight conditions. The stated objectives were to: -provide a comprehensive acoustic database for NASA and U.S. Industry -validate noise prediction methodologies, and -develop and demonstrate low-noise flight profiles. The test consisted of two distinct phases. Phase 1 provided an acoustic database for validating analytical noise prediction techniques; Phase 2 directly measured noise contour information at a broad range of operating profiles, with emphasis on minimizing 'approach' noise. This report is limited to a documentation of the test procedures, flight conditions, microphone locations, meteorological conditions, and test personnel used in the test. The acoustic results are not included.
2012-05-01
noise (AGN) [1] and [11]. We focus on threshold communication systems due to the underwater environment, noncoherent communication techniques are...the threshold level. In the context of the underwater communications, where noncoherent communication techniques are affected both by noise and
Vibrations and structureborne noise in space station
NASA Technical Reports Server (NTRS)
Vaicaitis, R.; Lyrintzis, C. S.; Bofilios, D. A.
1987-01-01
Analytical models were developed to predict vibrations and structureborne noise generation of cylindrical and rectangular acoustic enclosures. These models are then used to determine structural vibration levels and interior noise to random point input forces. The guidelines developed could provide preliminary information on acoustical and vibrational environments in space station habitability modules under orbital operations. The structural models include single wall monocoque shell, double wall shell, stiffened orthotropic shell, descretely stiffened flat panels, and a coupled system composed of a cantilever beam structure and a stiffened sidewall. Aluminum and fiber reinforced composite materials are considered for single and double wall shells. The end caps of the cylindrical enclosures are modeled either as single or double wall circular plates. Sound generation in the interior space is calculated by coupling the structural vibrations to the acoustic field in the enclosure. Modal methods and transfer matrix techniques are used to obtain structural vibrations. Parametric studies are performed to determine the sensitivity of interior noise environment to changes in input, geometric and structural conditions.
Joint Channel and Phase Noise Estimation in MIMO-OFDM Systems
NASA Astrophysics Data System (ADS)
Ngebani, I. M.; Chuma, J. M.; Zibani, I.; Matlotse, E.; Tsamaase, K.
2017-05-01
The combination of multiple-input multiple-output (MIMO) techniques with orthogonal frequency division multiplexing (OFDM), MIMO-OFDM, is a promising way of achieving high spectral efficiency in wireless communication systems. However, the performance of MIMO-ODFM systems is highly degraded by radio frequency (RF) impairments such as phase noise. Similar to the single-input single-output (SISO) case, phase noise in MIMO-OFDM systems results in a common phase error (CPE) and inter carrier interference (ICI). In this paper the problem of joint channel and phase noise estimation in a system with multiple transmit and receive antennas where each antenna is equipped with its own independent oscillator is tackled. The technique employed makes use of a novel placement of pilot carriers in the preamble and data portion of the MIMO-OFDM frame. Numerical results using a 16 and 64 quadrature amplitude modulation QAM schemes are provided to illustrate the effectiveness of the proposed scheme for MIMO-OFDM systems.
Emergence of spike correlations in periodically forced excitable systems
NASA Astrophysics Data System (ADS)
Reinoso, José A.; Torrent, M. C.; Masoller, Cristina
2016-09-01
In sensory neurons the presence of noise can facilitate the detection of weak information-carrying signals, which are encoded and transmitted via correlated sequences of spikes. Here we investigate the relative temporal order in spike sequences induced by a subthreshold periodic input in the presence of white Gaussian noise. To simulate the spikes, we use the FitzHugh-Nagumo model and to investigate the output sequence of interspike intervals (ISIs), we use the symbolic method of ordinal analysis. We find different types of relative temporal order in the form of preferred ordinal patterns that depend on both the strength of the noise and the period of the input signal. We also demonstrate a resonancelike behavior, as certain periods and noise levels enhance temporal ordering in the ISI sequence, maximizing the probability of the preferred patterns. Our findings could be relevant for understanding the mechanisms underlying temporal coding, by which single sensory neurons represent in spike sequences the information about weak periodic stimuli.
System level latchup mitigation for single event and transient radiation effects on electronics
Kimbrough, J.R.; Colella, N.J.
1997-09-30
A ``blink`` technique, analogous to a person blinking at a flash of bright light, is provided for mitigating the effects of single event current latchup and prompt pulse destructive radiation on a micro-electronic circuit. The system includes event detection circuitry, power dump logic circuitry, and energy limiting measures with autonomous recovery. The event detection circuitry includes ionizing radiation pulse detection means for detecting a pulse of ionizing radiation and for providing at an output terminal thereof a detection signal indicative of the detection of a pulse of ionizing radiation. The current sensing circuitry is coupled to the power bus for determining an occurrence of excess current through the power bus caused by ionizing radiation or by ion-induced destructive latchup of a semiconductor device. The power dump circuitry includes power dump logic circuitry having a first input terminal connected to the output terminal of the ionizing radiation pulse detection circuitry and having a second input terminal connected to the output terminal of the current sensing circuitry. The power dump logic circuitry provides an output signal to the input terminal of the circuitry for opening the power bus and the circuitry for shorting the power bus to a ground potential to remove power from the power bus. The energy limiting circuitry with autonomous recovery includes circuitry for opening the power bus and circuitry for shorting the power bus to a ground potential. The circuitry for opening the power bus and circuitry for shorting the power bus to a ground potential includes a series FET and a shunt FET. The invention provides for self-contained sensing for latchup, first removal of power to protect latched components, and autonomous recovery to enable transparent operation of other system elements. 18 figs.
System level latchup mitigation for single event and transient radiation effects on electronics
Kimbrough, Joseph Robert; Colella, Nicholas John
1997-01-01
A "blink" technique, analogous to a person blinking at a flash of bright light, is provided for mitigating the effects of single event current latchup and prompt pulse destructive radiation on a micro-electronic circuit. The system includes event detection circuitry, power dump logic circuitry, and energy limiting measures with autonomous recovery. The event detection circuitry includes ionizing radiation pulse detection means for detecting a pulse of ionizing radiation and for providing at an output terminal thereof a detection signal indicative of the detection of a pulse of ionizing radiation. The current sensing circuitry is coupled to the power bus for determining an occurrence of excess current through the power bus caused by ionizing radiation or by ion-induced destructive latchup of a semiconductor device. The power dump circuitry includes power dump logic circuitry having a first input terminal connected to the output terminal of the ionizing radiation pulse detection circuitry and having a second input terminal connected to the output terminal of the current sensing circuitry. The power dump logic circuitry provides an output signal to the input terminal of the circuitry for opening the power bus and the circuitry for shorting the power bus to a ground potential to remove power from the power bus. The energy limiting circuitry with autonomous recovery includes circuitry for opening the power bus and circuitry for shorting the power bus to a ground potential. The circuitry for opening the power bus and circuitry for shorting the power bus to a ground potential includes a series FET and a shunt FET. The invention provides for self-contained sensing for latchup, first removal of power to protect latched components, and autonomous recovery to enable transparent operation of other system elements.
NASA Astrophysics Data System (ADS)
Cheng, Lishui; Hobbs, Robert F.; Segars, Paul W.; Sgouros, George; Frey, Eric C.
2013-06-01
In radiopharmaceutical therapy, an understanding of the dose distribution in normal and target tissues is important for optimizing treatment. Three-dimensional (3D) dosimetry takes into account patient anatomy and the nonuniform uptake of radiopharmaceuticals in tissues. Dose-volume histograms (DVHs) provide a useful summary representation of the 3D dose distribution and have been widely used for external beam treatment planning. Reliable 3D dosimetry requires an accurate 3D radioactivity distribution as the input. However, activity distribution estimates from SPECT are corrupted by noise and partial volume effects (PVEs). In this work, we systematically investigated OS-EM based quantitative SPECT (QSPECT) image reconstruction in terms of its effect on DVHs estimates. A modified 3D NURBS-based Cardiac-Torso (NCAT) phantom that incorporated a non-uniform kidney model and clinically realistic organ activities and biokinetics was used. Projections were generated using a Monte Carlo (MC) simulation; noise effects were studied using 50 noise realizations with clinical count levels. Activity images were reconstructed using QSPECT with compensation for attenuation, scatter and collimator-detector response (CDR). Dose rate distributions were estimated by convolution of the activity image with a voxel S kernel. Cumulative DVHs were calculated from the phantom and QSPECT images and compared both qualitatively and quantitatively. We found that noise, PVEs, and ringing artifacts due to CDR compensation all degraded histogram estimates. Low-pass filtering and early termination of the iterative process were needed to reduce the effects of noise and ringing artifacts on DVHs, but resulted in increased degradations due to PVEs. Large objects with few features, such as the liver, had more accurate histogram estimates and required fewer iterations and more smoothing for optimal results. Smaller objects with fine details, such as the kidneys, required more iterations and less smoothing at early time points post-radiopharmaceutical administration but more smoothing and fewer iterations at later time points when the total organ activity was lower. The results of this study demonstrate the importance of using optimal reconstruction and regularization parameters. Optimal results were obtained with different parameters at each time point, but using a single set of parameters for all time points produced near-optimal dose-volume histograms.
Bajo, Victoria M.; Nodal, Fernando R.; Bizley, Jennifer K.; King, Andrew J.
2010-01-01
Descending cortical inputs to the superior colliculus (SC) contribute to the unisensory response properties of the neurons found there and are critical for multisensory integration. However, little is known about the relative contribution of different auditory cortical areas to this projection or the distribution of their terminals in the SC. We characterized this projection in the ferret by injecting tracers in the SC and auditory cortex. Large pyramidal neurons were labeled in layer V of different parts of the ectosylvian gyrus after tracer injections in the SC. Those cells were most numerous in the anterior ectosylvian gyrus (AEG), and particularly in the anterior ventral field, which receives both auditory and visual inputs. Labeling was also found in the posterior ectosylvian gyrus (PEG), predominantly in the tonotopically organized posterior suprasylvian field. Profuse anterograde labeling was present in the SC following tracer injections at the site of acoustically responsive neurons in the AEG or PEG, with terminal fields being both more prominent and clustered for inputs originating from the AEG. Terminals from both cortical areas were located throughout the intermediate and deep layers, but were most concentrated in the posterior half of the SC, where peripheral stimulus locations are represented. No inputs were identified from primary auditory cortical areas, although some labeling was found in the surrounding sulci. Our findings suggest that higher level auditory cortical areas, including those involved in multisensory processing, may modulate SC function via their projections into its deeper layers. PMID:20640247
An investigation of combustion and entropy noise
NASA Technical Reports Server (NTRS)
Strahle, W. C.
1977-01-01
The relative importance of entropy and direct combustion noise in turbopropulsion systems and the parameters upon which these noise sources depend were studied. Theory and experiment were employed to determine that at least with the apparatus used here, entropy noise can dominate combustion noise if there is a sufficient pressure gradient terminating the combustor. Measurements included combustor interior fluctuating pressure, near and far field fluctuating pressure, and combustor exit plane fluctuating temperatures, as well as mean pressures and temperatures. Analysis techniques included spectral, cross-correlation, cross power spectra, and ordinary and partial coherence analysis. Also conducted were combustor liner modification experiments to investigate the origin of the frequency content of combustion noise. Techniques were developed to extract nonpropagational pseudo-sound and the heat release fluctuation spectra from the data.
Reliability, synchrony and noise
Ermentrout, G. Bard; Galán, Roberto F.; Urban, Nathaniel N.
2008-01-01
The brain is noisy. Neurons receive tens of thousands of highly fluctuating inputs and generate spike trains that appear highly irregular. Much of this activity is spontaneous—uncoupled to overt stimuli or motor outputs—leading to questions about the functional impact of this noise. Although noise is most often thought of as disrupting patterned activity and interfering with the encoding of stimuli, recent theoretical and experimental work has shown that noise can play a constructive role—leading to increased reliability or regularity of neuronal firing in single neurons and across populations. These results raise fundamental questions about how noise can influence neural function and computation. PMID:18603311
Matching technique yields optimum LNA performance. [Low Noise Amplifiers
NASA Technical Reports Server (NTRS)
Sifri, J. D.
1986-01-01
The present article is concerned with a case in which an optimum noise figure and unconditional stability have been designed into a 2.385-GHz low-noise preamplifier via an unusual method for matching the input with a suspended line. The results obtained with several conventional line-matching techniques were not satisfactory. Attention is given to the minimization of thermal noise, the design procedure, requirements for a high-impedance line, a sampling of four matching networks, the noise figure of the single-line matching network as a function of frequency, and the approaches used to achieve unconditional stability.
Civil Tiltrotor Feasibility Study for the New York and Washington Terminal Areas
NASA Technical Reports Server (NTRS)
Stouffer, Virginia; Johnson, Jesse; Gribko, Joana; Yackovetsky, Robert (Technical Monitor)
2001-01-01
NASA tasked LMI to assess the potential contributions of a yet-undeveloped Civil Tiltrotor aircraft (CTR) in improving capacity in the National Airspace System in all weather conditions. The CTRs studied have assumed operating parameters beyond current CTR capabilities. LMI analyzed CTRs three ways: in fast-time terminal area modeling simulations of New York and Washington to determine delay and throughput impacts; in the Integrated Noise Model, to determine local environmental impact; and with an economic model, to determine the price viability of a CTR. The fast-time models encompassed a 250 nmi range and included traffic interactions from local airports. Both the fast-time simulation and the noise model assessed impacts from traffic levels projected for 1999, 2007, and 2017. Results: CTRs can reduce terminal area delays due to concrete congestion in all time frames. The maximum effect, the ratio of CTRs to jets and turboprop aircraft at a subject airport should be optimized. The economic model considered US traffic only and forecasted CTR sales beginning in 2010.
Noise-constrained switching times for heteroclinic computing
NASA Astrophysics Data System (ADS)
Neves, Fabio Schittler; Voit, Maximilian; Timme, Marc
2017-03-01
Heteroclinic computing offers a novel paradigm for universal computation by collective system dynamics. In such a paradigm, input signals are encoded as complex periodic orbits approaching specific sequences of saddle states. Without inputs, the relevant states together with the heteroclinic connections between them form a network of states—the heteroclinic network. Systems of pulse-coupled oscillators or spiking neurons naturally exhibit such heteroclinic networks of saddles, thereby providing a substrate for general analog computations. Several challenges need to be resolved before it becomes possible to effectively realize heteroclinic computing in hardware. The time scales on which computations are performed crucially depend on the switching times between saddles, which in turn are jointly controlled by the system's intrinsic dynamics and the level of external and measurement noise. The nonlinear dynamics of pulse-coupled systems often strongly deviate from that of time-continuously coupled (e.g., phase-coupled) systems. The factors impacting switching times in pulse-coupled systems are still not well understood. Here we systematically investigate switching times in dependence of the levels of noise and intrinsic dissipation in the system. We specifically reveal how local responses to pulses coact with external noise. Our findings confirm that, like in time-continuous phase-coupled systems, piecewise-continuous pulse-coupled systems exhibit switching times that transiently increase exponentially with the number of switches up to some order of magnitude set by the noise level. Complementarily, we show that switching times may constitute a good predictor for the computation reliability, indicating how often an input signal must be reiterated. By characterizing switching times between two saddles in conjunction with the reliability of a computation, our results provide a first step beyond the coding of input signal identities toward a complementary coding for the intensity of those signals. The results offer insights on how future heteroclinic computing systems may operate under natural, and thus noisy, conditions.
47 CFR 80.959 - Radiotelephone transmitter.
Code of Federal Regulations, 2010 CFR
2010-10-01
... watts into 50 ohms nominal resistance when operated with its rated supply voltage. The transmitter must... capability of the transmitter, measurements of primary supply voltage and transmitter output power must be... voltage measured at the power input terminals to the transmitter terminated in a matching artificial load...
Internal additive noise effects in stochastic resonance using organic field effect transistor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suzuki, Yoshiharu; Asakawa, Naoki; Matsubara, Kiyohiko
Stochastic resonance phenomenon was observed in organic field effect transistor using poly(3-hexylthiophene), which enhances performance of signal transmission with application of noise. The enhancement of correlation coefficient between the input and output signals was low, and the variation of correlation coefficient was not remarkable with respect to the intensity of external noise, which was due to the existence of internal additive noise following the nonlinear threshold response. In other words, internal additive noise plays a positive role on the capability of approximately constant signal transmission regardless of noise intensity, which can be said “homeostatic” behavior or “noise robustness” against externalmore » noise. Furthermore, internal additive noise causes emergence of the stochastic resonance effect even on the threshold unit without internal additive noise on which the correlation coefficient usually decreases monotonically.« less
System and method for determining stator winding resistance in an AC motor
Lu, Bin [Kenosha, WI; Habetler, Thomas G [Snellville, GA; Zhang, Pinjia [Atlanta, GA; Theisen, Peter J [West Bend, WI
2011-05-31
A system and method for determining stator winding resistance in an AC motor is disclosed. The system includes a circuit having an input connectable to an AC source and an output connectable to an input terminal of an AC motor. The circuit includes at least one contactor and at least one switch to control current flow and terminal voltages in the AC motor. The system also includes a controller connected to the circuit and configured to modify a switching time of the at least one switch to create a DC component in an output of the system corresponding to an input to the AC motor and determine a stator winding resistance of the AC motor based on the injected DC component of the voltage and current.
NASA Technical Reports Server (NTRS)
Solomon, H. L.; Sokolsky, S.
1974-01-01
The results of an economic and environmental study of short haul airline systems using short takeoff and landing (STOL) aircraft are presented. The STOL system characteristics were optimized for maximum patronage at a specified return on investment, while maintaining noise impact compatibility with the terminal area. Supporting studies of aircraft air pollution and hub airport congestion relief were also performed. The STOL concept specified for this study was an Augmentor Wing turbofan aircraft having a field length capability of 2,000 ft. and an effective perceived noise level of 95 EPNdB at 500 ft. sideline distance. An economic and environmental assessment of the defined STOL system and a summary of the methodology, STOL system characteristics and arena characteristics are provided.
NASA Astrophysics Data System (ADS)
Xie, Yiyuan; Zhang, Zhendong; Song, Tingting; He, Chao; Li, Jiachao; Wang, Guijin
2016-05-01
Crosstalk noise and transmission loss are two key elements in determining the performance of optical routers. We propose a universal method for crosstalk noise and transmission loss analysis for the N-port nonblocking optical router used in photonic networks-on-chip. Utilizing this method, we study the crosstalk noise and transmission loss for the five-, six-, seven-, and eight-port optical routers. We ascertain that the crosstalk noise and transmission loss are different for different input-output pairs. For the five-port optical router, the maximum crosstalk noise ranges from 0 to -7.07 dBm, and the transmission loss ranges from -9.05 to -0.51 dB. Furthermore, based on the crosstalk noise and transmission loss, we analyze optical signal-to-noise ratio (OSNR) and bit error ratio (BER) for the five-, six-, seven-, and eight-port nonblocking optical routers. As the number of ports increases, the minimum average OSNR decreases and the average BER increases. In addition, in order to present the performance of the routers more visually, a fiber-optic communications system is designed to simulate the transmission processes of the signals of the different paths of the routers in Optisystem. The results show that the power amplitude of the input signal is obviously higher than the corresponding output signal. With this method, we can easily evaluate the transmission loss, crosstalk noise, OSNR, and BER of high-radix nonblocking optical routers and conveniently study the performance of the N-port optical router.
NASA Technical Reports Server (NTRS)
Morin, Bruce L.
2010-01-01
Pratt & Whitney has developed a Broadband Fan Noise Prediction System (BFaNS) for turbofan engines. This system computes the noise generated by turbulence impinging on the leading edges of the fan and fan exit guide vane, and noise generated by boundary-layer turbulence passing over the fan trailing edge. BFaNS has been validated on three fan rigs that were tested during the NASA Advanced Subsonic Technology Program (AST). The predicted noise spectra agreed well with measured data. The predicted effects of fan speed, vane count, and vane sweep also agreed well with measurements. The noise prediction system consists of two computer programs: Setup_BFaNS and BFaNS. Setup_BFaNS converts user-specified geometry and flow-field information into a BFaNS input file. From this input file, BFaNS computes the inlet and aft broadband sound power spectra generated by the fan and FEGV. The output file from BFaNS contains the inlet, aft and total sound power spectra from each noise source. This report is the second volume of a three-volume set documenting the Broadband Fan Noise Prediction System: Volume 1: Setup_BFaNS User s Manual and Developer s Guide; Volume 2: BFaNS User s Manual and Developer s Guide; and Volume 3: Validation and Test Cases. The present volume begins with an overview of the Broadband Fan Noise Prediction System, followed by step-by-step instructions for installing and running BFaNS. It concludes with technical documentation of the BFaNS computer program.
NASA Technical Reports Server (NTRS)
Morin, Bruce L.
2010-01-01
Pratt & Whitney has developed a Broadband Fan Noise Prediction System (BFaNS) for turbofan engines. This system computes the noise generated by turbulence impinging on the leading edges of the fan and fan exit guide vane, and noise generated by boundary-layer turbulence passing over the fan trailing edge. BFaNS has been validated on three fan rigs that were tested during the NASA Advanced Subsonic Technology Program (AST). The predicted noise spectra agreed well with measured data. The predicted effects of fan speed, vane count, and vane sweep also agreed well with measurements. The noise prediction system consists of two computer programs: Setup_BFaNS and BFaNS. Setup_BFaNS converts user-specified geometry and flow-field information into a BFaNS input file. From this input file, BFaNS computes the inlet and aft broadband sound power spectra generated by the fan and FEGV. The output file from BFaNS contains the inlet, aft and total sound power spectra from each noise source. This report is the first volume of a three-volume set documenting the Broadband Fan Noise Prediction System: Volume 1: Setup_BFaNS User s Manual and Developer s Guide; Volume 2: BFaNS User's Manual and Developer s Guide; and Volume 3: Validation and Test Cases. The present volume begins with an overview of the Broadband Fan Noise Prediction System, followed by step-by-step instructions for installing and running Setup_BFaNS. It concludes with technical documentation of the Setup_BFaNS computer program.
Broadband Fan Noise Prediction System for Turbofan Engines. Volume 3; Validation and Test Cases
NASA Technical Reports Server (NTRS)
Morin, Bruce L.
2010-01-01
Pratt & Whitney has developed a Broadband Fan Noise Prediction System (BFaNS) for turbofan engines. This system computes the noise generated by turbulence impinging on the leading edges of the fan and fan exit guide vane, and noise generated by boundary-layer turbulence passing over the fan trailing edge. BFaNS has been validated on three fan rigs that were tested during the NASA Advanced Subsonic Technology Program (AST). The predicted noise spectra agreed well with measured data. The predicted effects of fan speed, vane count, and vane sweep also agreed well with measurements. The noise prediction system consists of two computer programs: Setup_BFaNS and BFaNS. Setup_BFaNS converts user-specified geometry and flow-field information into a BFaNS input file. From this input file, BFaNS computes the inlet and aft broadband sound power spectra generated by the fan and FEGV. The output file from BFaNS contains the inlet, aft and total sound power spectra from each noise source. This report is the third volume of a three-volume set documenting the Broadband Fan Noise Prediction System: Volume 1: Setup_BFaNS User s Manual and Developer s Guide; Volume 2: BFaNS User s Manual and Developer s Guide; and Volume 3: Validation and Test Cases. The present volume begins with an overview of the Broadband Fan Noise Prediction System, followed by validation studies that were done on three fan rigs. It concludes with recommended improvements and additional studies for BFaNS.
Operational benefits from the terminal configured vehicle
NASA Technical Reports Server (NTRS)
Reeder, J. P.; Schmitz, R. A.; Clark, L. V.
1979-01-01
The NASA Terminal Configured Vehicle is a flying laboratory used to conduct research and development on improved airborne systems (including avionics) and operational flight procedures, with particular emphasis on utilization in the terminal area environment. The objectives of this technology development activity, focused on conventional transport aircraft, are to develop and demonstrate improvements which can lead to increased airport and runway capacity, increased air traffic controller productivity, energy efficient terminal area operations, reduced weather minima with safety, and reduced community noise by use of appropriate procedures. This paper discusses some early results of this activity in addition to defining present efforts and future research plans.
NASA Technical Reports Server (NTRS)
Boyd, D. Douglas, Jr.; Brooks, Thomas F.; Burley, Casey L.; Jolly, J. Ralph, Jr.
1998-01-01
This document details the methodology and use of the CAMRAD.Mod1/HIRES codes, which were developed at NASA Langley Research Center for the prediction of helicopter harmonic and Blade-Vortex Interaction (BVI) noise. CANMAD.Mod1 is a substantially modified version of the performance/trim/wake code CANMAD. High resolution blade loading is determined in post-processing by HIRES and an associated indicial aerodynamics code. Extensive capabilities of importance to noise prediction accuracy are documented, including a new multi-core tip vortex roll-up wake model, higher harmonic and individual blade control, tunnel and fuselage correction input, diagnostic blade motion input, and interfaces for acoustic and CFD aerodynamics codes. Modifications and new code capabilities are documented with examples. A users' job preparation guide and listings of variables and namelists are given.
NASA Technical Reports Server (NTRS)
Brentner, K. S.
1986-01-01
A computer program has been developed at the Langley Research Center to predict the discrete frequency noise of conventional and advanced helicopter rotors. The program, called WOPWOP, uses the most advanced subsonic formulation of Farassat that is less sensitive to errors and is valid for nearly all helicopter rotor geometries and flight conditions. A brief derivation of the acoustic formulation is presented along with a discussion of the numerical implementation of the formulation. The computer program uses realistic helicopter blade motion and aerodynamic loadings, input by the user, for noise calculation in the time domain. A detailed definition of all the input variables, default values, and output data is included. A comparison with experimental data shows good agreement between prediction and experiment; however, accurate aerodynamic loading is needed.
Memory effects on a resonate-and-fire neuron model subjected to Ornstein-Uhlenbeck noise
NASA Astrophysics Data System (ADS)
Paekivi, S.; Mankin, R.; Rekker, A.
2017-10-01
We consider a generalized Langevin equation with an exponentially decaying memory kernel as a model for the firing process of a resonate-and-fire neuron. The effect of temporally correlated random neuronal input is modeled as Ornstein-Uhlenbeck noise. In the noise-induced spiking regime of the neuron, we derive exact analytical formulas for the dependence of some statistical characteristics of the output spike train, such as the probability distribution of the interspike intervals (ISIs) and the survival probability, on the parameters of the input stimulus. Particularly, on the basis of these exact expressions, we have established sufficient conditions for the occurrence of memory-time-induced transitions between unimodal and multimodal structures of the ISI density and a critical damping coefficient which marks a dynamical transition in the behavior of the system.
NASA Astrophysics Data System (ADS)
Krasilenko, Vladimir G.; Bardachenko, Vitaliy F.; Nikolsky, Alexander I.; Lazarev, Alexander A.; Ogorodnik, Konstantin V.
2006-04-01
We analyse the existent methods of cryptographic defence for the facsimile information transfer, consider their shortcomings and prove the necessity of better information protection degree. The method of information protection that is based on presentation of input data as images is proposed. We offer a new noise-immune algorithm for realization of this method which consists in transformation of an input frame by pixels transposition according to an entered key. At decoding mode the reverse transformation of image with the use of the same key is used. Practical realization of the given method takes into account noise in the transmission channels and information distortions by scanners, faxes and others like that. We show that the given influences are reduced to the transformation of the input image coordinates. We show the algorithm in detail and consider its basic steps. We show the possibility of the offered method by the means of the developed software. The realized algorithm corrects curvature of frames: turn, scaling, fallout of pixels and others like that. At low noise level (loss of pixel information less than 10 percents) it is possible to encode, transfer and decode any types of images and texts with 12-size font character. The software filters for information restore and noise removing allow to transfer fax data with 30 percents pixels loss at 18-size font text. This percent of data loss can be considerably increased by the use of the software character recognition block that can be realized on fuzzy-neural algorithms. Examples of encoding and decryption of images and texts are shown.
Current noise generated by spin imbalance in presence of spin relaxation
NASA Astrophysics Data System (ADS)
Khrapai, V. S.; Nagaev, K. E.
2017-01-01
We calculate current (shot) noise in a metallic diffusive conductor generated by spin imbalance in the absence of a net electric current. This situation is modeled in an idealized three-terminal setup with two biased ferromagnetic leads (F-leads) and one normal lead (N-lead). Parallel magnetization of the F-leads gives rise to spin-imbalance and finite shot noise at the N-lead. Finite spin relaxation results in an increase in the shot noise, which depends on the ratio of the length of the conductor ( L) and the spin relaxation length ( l s). For L >> l s the shot noise increases by a factor of two and coincides with the case of the antiparallel magnetization of the F-leads.
Mora Lopez, Carolina; Prodanov, Dimiter; Braeken, Dries; Gligorijevic, Ivan; Eberle, Wolfgang; Bartic, Carmen; Puers, Robert; Gielen, Georges
2012-04-01
Since a few decades, micro-fabricated neural probes are being used, together with microelectronic interfaces, to get more insight in the activity of neuronal networks. The need for higher temporal and spatial recording resolutions imposes new challenges on the design of integrated neural interfaces with respect to power consumption, data handling and versatility. In this paper, we present an integrated acquisition system for in vitro and in vivo recording of neural activity. The ASIC consists of 16 low-noise, fully-differential input channels with independent programmability of its amplification (from 100 to 6000 V/V) and filtering (1-6000 Hz range) capabilities. Each channel is AC-coupled and implements a fourth-order band-pass filter in order to steeply attenuate out-of-band noise and DC input offsets. The system achieves an input-referred noise density of 37 nV/√Hz, a NEF of 5.1, a CMRR > 60 dB, a THD < 1% and a sampling rate of 30 kS/s per channel, while consuming a maximum of 70 μA per channel from a single 3.3 V. The ASIC was implemented in a 0.35 μm CMOS technology and has a total area of 5.6 × 4.5 mm². The recording system was successfully validated in in vitro and in vivo experiments, achieving simultaneous multichannel recordings of cell activity with satisfactory signal-to-noise ratios.
NASA Astrophysics Data System (ADS)
Algrain, Marcelo C.; Powers, Richard M.
1997-05-01
A case study, written in a tutorial manner, is presented where a comprehensive computer simulation is developed to determine the driving factors contributing to spacecraft pointing accuracy and stability. Models for major system components are described. Among them are spacecraft bus, attitude controller, reaction wheel assembly, star-tracker unit, inertial reference unit, and gyro drift estimators (Kalman filter). The predicted spacecraft performance is analyzed for a variety of input commands and system disturbances. The primary deterministic inputs are the desired attitude angles and rate set points. The stochastic inputs include random torque disturbances acting on the spacecraft, random gyro bias noise, gyro random walk, and star-tracker noise. These inputs are varied over a wide range to determine their effects on pointing accuracy and stability. The results are presented in the form of trade- off curves designed to facilitate the proper selection of subsystems so that overall spacecraft pointing accuracy and stability requirements are met.
Design of High Quality Chemical XOR Gates with Noise Reduction.
Wood, Mackenna L; Domanskyi, Sergii; Privman, Vladimir
2017-07-05
We describe a chemical XOR gate design that realizes gate-response function with filtering properties. Such gate-response function is flat (has small gradients) at and in the vicinity of all the four binary-input logic points, resulting in analog noise suppression. The gate functioning involves cross-reaction of the inputs represented by pairs of chemicals to produce a practically zero output when both are present and nearly equal. This cross-reaction processing step is also designed to result in filtering at low output intensities by canceling out the inputs if one of the latter has low intensity compared with the other. The remaining inputs, which were not reacted away, are processed to produce the output XOR signal by chemical steps that result in filtering at large output signal intensities. We analyze the tradeoff resulting from filtering, which involves loss of signal intensity. We also discuss practical aspects of realizations of such XOR gates. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Koniczek, Martin; El-Mohri, Youcef; Antonuk, Larry E.; Liang, Albert; Zhao, Qihua; Jiang, Hao
2011-03-01
A decade after the clinical introduction of active matrix, flat-panel imagers (AMFPIs), the performance of this technology continues to be limited by the relatively large additive electronic noise of these systems - resulting in significant loss of detective quantum efficiency (DQE) under conditions of low exposure or high spatial frequencies. An increasingly promising approach for overcoming such limitations involves the incorporation of in-pixel amplification circuits, referred to as active pixel architectures (AP) - based on low-temperature polycrystalline silicon (poly-Si) thin-film transistors (TFTs). In this study, a methodology for theoretically examining the limiting noise and DQE performance of circuits employing 1-stage in-pixel amplification is presented. This methodology involves sophisticated SPICE circuit simulations along with cascaded systems modeling. In these simulations, a device model based on the RPI poly-Si TFT model is used with additional controlled current sources corresponding to thermal and flicker (1/f) noise. From measurements of transfer and output characteristics (as well as current noise densities) performed upon individual, representative, poly-Si TFTs test devices, model parameters suitable for these simulations are extracted. The input stimuli and operating-point-dependent scaling of the current sources are derived from the measured current noise densities (for flicker noise), or from fundamental equations (for thermal noise). Noise parameters obtained from the simulations, along with other parametric information, is input to a cascaded systems model of an AP imager design to provide estimates of DQE performance. In this paper, this method of combining circuit simulations and cascaded systems analysis to predict the lower limits on additive noise (and upper limits on DQE) for large area AP imagers with signal levels representative of those generated at fluoroscopic exposures is described, and initial results are reported.
Coupled dynamic systems and Le Chatelier's principle in noise control
NASA Astrophysics Data System (ADS)
Maidanik, G.; Becker, K. J.
2004-05-01
Investigation of coupling an externally driven dynamic system-a master dynamic system-to a passive one-an adjunct dynamic system-reveals that the response of the adjunct dynamic system affects the precoupled response of the master dynamic system. The responses, in the two dynamic systems when coupled, are estimated by the stored energies (Es) and (E0), respectively. Since the adjunct dynamic system, prior to coupling, was with zero (0) stored energy, E0s=0, the precoupled stored energy (E00) in the master dynamic system is expected to be reduced to (E0) when coupling is instituted; i.e., one expects E0
Noise-enhanced coding in phasic neuron spike trains.
Ly, Cheng; Doiron, Brent
2017-01-01
The stochastic nature of neuronal response has lead to conjectures about the impact of input fluctuations on the neural coding. For the most part, low pass membrane integration and spike threshold dynamics have been the primary features assumed in the transfer from synaptic input to output spiking. Phasic neurons are a common, but understudied, neuron class that are characterized by a subthreshold negative feedback that suppresses spike train responses to low frequency signals. Past work has shown that when a low frequency signal is accompanied by moderate intensity broadband noise, phasic neurons spike trains are well locked to the signal. We extend these results with a simple, reduced model of phasic activity that demonstrates that a non-Markovian spike train structure caused by the negative feedback produces a noise-enhanced coding. Further, this enhancement is sensitive to the timescales, as opposed to the intensity, of a driving signal. Reduced hazard function models show that noise-enhanced phasic codes are both novel and separate from classical stochastic resonance reported in non-phasic neurons. The general features of our theory suggest that noise-enhanced codes in excitable systems with subthreshold negative feedback are a particularly rich framework to study.
NASA Astrophysics Data System (ADS)
Azarpour, Masoumeh; Enzner, Gerald
2017-12-01
Binaural noise reduction, with applications for instance in hearing aids, has been a very significant challenge. This task relates to the optimal utilization of the available microphone signals for the estimation of the ambient noise characteristics and for the optimal filtering algorithm to separate the desired speech from the noise. The additional requirements of low computational complexity and low latency further complicate the design. A particular challenge results from the desired reconstruction of binaural speech input with spatial cue preservation. The latter essentially diminishes the utility of multiple-input/single-output filter-and-sum techniques such as beamforming. In this paper, we propose a comprehensive and effective signal processing configuration with which most of the aforementioned criteria can be met suitably. This relates especially to the requirement of efficient online adaptive processing for noise estimation and optimal filtering while preserving the binaural cues. Regarding noise estimation, we consider three different architectures: interaural (ITF), cross-relation (CR), and principal-component (PCA) target blocking. An objective comparison with two other noise PSD estimation algorithms demonstrates the superiority of the blocking-based noise estimators, especially the CR-based and ITF-based blocking architectures. Moreover, we present a new noise reduction filter based on minimum mean-square error (MMSE), which belongs to the class of common gain filters, hence being rigorous in terms of spatial cue preservation but also efficient and competitive for the acoustic noise reduction task. A formal real-time subjective listening test procedure is also developed in this paper. The proposed listening test enables a real-time assessment of the proposed computationally efficient noise reduction algorithms in a realistic acoustic environment, e.g., considering time-varying room impulse responses and the Lombard effect. The listening test outcome reveals that the signals processed by the blocking-based algorithms are significantly preferred over the noisy signal in terms of instantaneous noise attenuation. Furthermore, the listening test data analysis confirms the conclusions drawn based on the objective evaluation.
Program CALIB. [for computing noise levels for helicopter version of S-191 filter wheel spectrometer
NASA Technical Reports Server (NTRS)
Mendlowitz, M. A.
1973-01-01
The program CALIB, which was written to compute noise levels and average signal levels of aperture radiance for the helicopter version of the S-191 filter wheel spectrometer is described. The program functions, and input description are included along with a compiled program listing.
Aircraft Hydraulic Systems Dynamic Analysis Component Data Handbook
1980-04-01
82 13. QUINCKE TUBE ...................................... 85 14. 11EAT EXCHANGER ............. ................... 90...Input Parameters ....... ........... .7 61 )uincke Tube Input Parameters with Hole Locat ions 87 62 "rototype Quincke Tube Data ........... 89 6 3 Fo-,:ed...Elasticity (Line 3) PSI 1.6E7 FIGURE 58 HSFR INPUT DATA FOR PULSCO TYPE ACOUSTIC FILTER 84 13. QUINCKE TUBE A means to dampen acoustic noise at resonance
An electric noise component with density 1/f identified on ISEE 3
NASA Technical Reports Server (NTRS)
Hoang, S.; Steinberg, J. L.; Couturier, P.; Feldman, W. C.
1982-01-01
The properties of the 1/f noise detected at the terminals of ISEE 3 antennas are described and related to the solar wind parameters. The 1/f noise was observed with the radio receivers of the three-dimensional radio mapping experiment using the S and Z dipole antennas. The noise spectra contained a negative spectral index component at frequencies lower than 0.7 of the plasma frequency, and 5-10 times the predicted thermal noise for the Z antenna. S-antenna measurements of the 1/f component revealed it to be deeply spin modulated with a minimum electric field in the direction of the solar wind. Modulation increases with increasing frequency, becomes negligible when the 1/f intensity is negligible with respect to the thermal noise, and increases with solar wind velocity. The possibilities that the noise is due either to waves or currents are discussed.
Shot-noise in resistive-diode mixers and the attenuator noise model
NASA Technical Reports Server (NTRS)
Kerr, A. R.
1979-01-01
The representation of a pumped exponential diode, operating as a mixer, by an equivalent lossy network, is reexamined. It is shown that the model is correct provided the network has ports for all sideband frequencies at which (real) power flow can occur between the diode and its embedding. The temperature of the equivalent network is eta/2 times the physical temperature of the diode. The model is valid only if the series resistance and nonlinear capacitance of the diode are negligible. Expressions are derived for the input and output noise temperature and the noise-temperature ratio of ideal mixers. Some common beliefs concerning noise-figure and noise-temperature ratio are shown to be incorrect.
Shipboard fisheries management terminals
NASA Technical Reports Server (NTRS)
Nagler, R. G.; Sager, E. V.
1980-01-01
The needs of the National Marine Fisheries Service (NMGS), National Weather Service, and the U.S. Coast Guard for locational, biological, and environmental data were assessed. The fisheries conservation zones and the yellowfin tuna jurisdiction of the NMFS operates observer programs on foreign and domestic fishing vessels. Data input terminal and data transfer and processing technology are reviewed to establish available capability. A matrix of implementation options is generated to identify the benefits of each option, and preliminary cost estimates are made. Recommendations are made for incremental application of available off the shelf hardware to obtain improved performance and benefits within a well bounded cost. Terminal recommendations are made for three interdependent shipboard units emphasizing: (1) the determination of location and fishing activity; (2) hand held data inputting and formatting in the fishing work areas; and (3) data manipulation, merging, and editing.
Direct current ballast circuit for metal halide lamp
NASA Technical Reports Server (NTRS)
Lutus, P. (Inventor)
1981-01-01
A direct current ballast circuit for a two electrode metal halide lamp is described. Said direct current ballast circuit includes a low voltage DC input and a high frequency power amplifier and power transformer for developing a high voltage output. The output voltage is rectified by diodes and filtered by inductor and capacitor to provide a regulated DC output through commutating diodes to one terminal of the lamp at the output terminal. A feedback path from the output of the filter capacitor through the bias resistor to power the high frequency circuit which includes the power amplifier and the power transformer for sustaining circuit operations during low voltage transients on the input DC supply is described. A current sensor connected to the output of the lamp through terminal for stabilizing lamp current following breakdown of the lamp is described.
Drivers of the primate thalamus
Rovó, Zita; Ulbert, István; Acsády, László
2012-01-01
The activity of thalamocortical neurons is largely determined by giant excitatory terminals, called drivers. These afferents may arise from neocortex or from subcortical centers; however their exact distribution, segregation or putative absence in given thalamic nuclei are unknown. To unravel the nucleus-specific composition of drivers, we mapped the entire macaque thalamus utilizing vesicular glutamate transporters 1 and 2 to label cortical and subcortical afferents, respectively. Large thalamic territories were innervated exclusively either by giant vGLUT2- or vGLUT1-positive boutons. Co-distribution of drivers with different origin was not abundant. In several thalamic regions, no giant terminals of any type could be detected at light microscopic level. Electron microscopic observation of these territories revealed either the complete absence of large multisynaptic excitatory terminals (basal ganglia-recipient nuclei) or the presence of both vGLUT1- and vGLUT2-positive terminals, which were significantly smaller than their giant counterparts (intralaminar nuclei, medial pulvinar). In the basal ganglia-recipient thalamus, giant inhibitory terminals replaced the excitatory driver inputs. The pulvinar and the mediodorsal nucleus displayed subnuclear heterogeneity in their driver assemblies. These results show that distinct thalamic territories can be under pure subcortical or cortical control; however there is significant variability in the composition of major excitatory inputs in several thalamic regions. Since thalamic information transfer depends on the origin and complexity of the excitatory inputs, this suggests that the computations performed by individual thalamic regions display considerable variability. Finally, the map of driver distribution may help to resolve the morphological basis of human diseases involving different parts of the thalamus. PMID:23223308
Detection of radio-frequency modulated optical signals by two and three terminal microwave devices
NASA Technical Reports Server (NTRS)
Bhasin, K. B.; Simons, R. N.; Wojtczuk, S.
1987-01-01
An interdigitated photoconductor (two terminal device) on GaAlAs/GaAs heterostructure was fabricated and tested by an electro-optical sampling technique. Further, the photoresponse of GaAlAs/GaAs HEMT (three terminal device) was obtained by illuminating the device with an optical signal modulated up to 8 GHz. Gain-bandwidth product, response time, and noise properties of photoconductor and HEMT devices were obtained. Monolithic integration of these photodetectors with GaAs microwave devices for optically controlled phased array antenna applications is discussed.
Active Control of Wind Tunnel Noise
NASA Technical Reports Server (NTRS)
Hollis, Patrick (Principal Investigator)
1991-01-01
The need for an adaptive active control system was realized, since a wind tunnel is subjected to variations in air velocity, temperature, air turbulence, and some other factors such as nonlinearity. Among many adaptive algorithms, the Least Mean Squares (LMS) algorithm, which is the simplest one, has been used in an Active Noise Control (ANC) system by some researchers. However, Eriksson's results, Eriksson (1985), showed instability in the ANC system with an ER filter for random noise input. The Restricted Least Squares (RLS) algorithm, although computationally more complex than the LMS algorithm, has better convergence and stability properties. The ANC system in the present work was simulated by using an FIR filter with an RLS algorithm for different inputs and for a number of plant models. Simulation results for the ANC system with acoustic feedback showed better robustness when used with the RLS algorithm than with the LMS algorithm for all types of inputs. Overall attenuation in the frequency domain was better in the case of the RLS adaptive algorithm. Simulation results with a more realistic plant model and an RLS adaptive algorithm showed a slower convergence rate than the case with an acoustic plant as a delay plant. However, the attenuation properties were satisfactory for the simulated system with the modified plant. The effect of filter length on the rate of convergence and attenuation was studied. It was found that the rate of convergence decreases with increase in filter length, whereas the attenuation increases with increase in filter length. The final design of the ANC system was simulated and found to have a reasonable convergence rate and good attenuation properties for an input containing discrete frequencies and random noise.
Chemical sensors are hybrid-input memristors
NASA Astrophysics Data System (ADS)
Sysoev, V. I.; Arkhipov, V. E.; Okotrub, A. V.; Pershin, Y. V.
2018-04-01
Memristors are two-terminal electronic devices whose resistance depends on the history of input signal (voltage or current). Here we demonstrate that the chemical gas sensors can be considered as memristors with a generalized (hybrid) input, namely, with the input consisting of the voltage, analyte concentrations and applied temperature. The concept of hybrid-input memristors is demonstrated experimentally using a single-walled carbon nanotubes chemical sensor. It is shown that with respect to the hybrid input, the sensor exhibits some features common with memristors such as the hysteretic input-output characteristics. This different perspective on chemical gas sensors may open new possibilities for smart sensor applications.
Ferroresonant flux coupled battery charger
NASA Technical Reports Server (NTRS)
McLyman, Colonel W. T. (Inventor)
1987-01-01
A battery charger for incorporation into an electric-powered vehicle is disclosed. The charger includes a ferroresonant voltage-regulating circuit for providing an output voltage proportional to the frequency of an input AC voltage. A high frequency converter converts a DC voltage supplied, for example, from a rectifier connected to a standard AC outlet, to a controlled frequency AC voltage which is supplied to the input of the ferroresonant circuit. The ferroresonant circuit includes an output, a saturable core transformer connected across the output, and a first linear inductor and a capacitor connected in series across the saturable core transformer and tuned to resonate at the third harmonic of the AC voltage from the high frequency converter. The ferroresonant circuit further includes a second linear inductor connected between the input of the ferroresonant circuit and the saturable core transformer. The output voltage from the ferroresonant circuit is rectified and applied across a pair of output terminals adapted to be connected to the battery to be charged. A feedback circuit compares the voltage across the output terminals with a reference voltage and controls the frequency of the AC voltage produced by the high frequency converter to maintain the voltage across the output terminals at a predetermined value. The second linear inductor provides a highly reactive load in the event of a fault across the output terminals to render the charger short-circuit proof.
Mechanisms of information decoding in a cascade system of gene expression
NASA Astrophysics Data System (ADS)
Wang, Haohua; Yuan, Zhanjiang; Liu, Peijiang; Zhou, Tianshou
2016-05-01
Biotechnology advances have allowed investigation of heterogeneity of cellular responses to stimuli on the single-cell level. Functionally, this heterogeneity can compromise cellular responses to environmental signals, and it can also enlarge the repertoire of possible cellular responses and hence increase the adaptive nature of cellular behaviors. However, the mechanism of how this response heterogeneity is generated remains elusive. Here, by systematically analyzing a representative cellular signaling system, we show that (1) the upstream activator always amplifies the downstream burst frequency (BF) but the noiseless activator performs better than the noisy one, remarkably for small or moderate input signal strengths, and the repressor always reduces the downstream BF but the difference in the reducing effect between noiseless and noise repressors is very small; (2) both the downstream burst size and mRNA mean are a monotonically increasing function of the activator strength but a monotonically decreasing function of the repressor strength; (3) for repressor-type input, there is a noisy signal strength such that the downstream mRNA noise arrives at an optimal level, but for activator-type input, the output noise intensity is fundamentally a monotonically decreasing function of the input strength. Our results reveal the essential mechanisms of both signal information decoding and cellular response heterogeneity, whereas our analysis provides a paradigm for analyzing dynamics of noisy biochemical signaling systems.
Light beam frequency comb generator
Priatko, G.J.; Kaskey, J.A.
1992-11-24
A light beam frequency comb generator uses an acousto-optic modulator to generate a plurality of light beams with frequencies which are uniformly separated and possess common noise and drift characteristics. A well collimated monochromatic input light beam is passed through this modulator to produce a set of both frequency shifted and unshifted optical beams. An optical system directs one or more frequency shifted beams along a path which is parallel to the path of the input light beam such that the frequency shifted beams are made incident on the modulator proximate to but separated from the point of incidence of the input light beam. After the beam is thus returned to and passed through the modulator repeatedly, a plurality of mutually parallel beams are generated which are frequency-shifted different numbers of times and possess common noise and drift characteristics. 2 figs.
Light beam frequency comb generator
Priatko, Gordon J.; Kaskey, Jeffrey A.
1992-01-01
A light beam frequency comb generator uses an acousto-optic modulator to generate a plurality of light beams with frequencies which are uniformly separated and possess common noise and drift characteristics. A well collimated monochromatic input light beam is passed through this modulator to produce a set of both frequency shifted and unshifted optical beams. An optical system directs one or more frequency shifted beams along a path which is parallel to the path of the input light beam such that the frequency shifted beams are made incident on the modulator proximate to but separated from the point of incidence of the input light beam. After the beam is thus returned to and passed through the modulator repeatedly, a plurality of mutually parallel beams are generated which are frequency-shifted different numbers of times and possess common noise and drift characteristics.
Low-frequency outdoor-indoor noise level difference for wind turbine assessment.
Thorsson, Pontus; Persson Waye, Kerstin; Smith, Michael; Ögren, Mikael; Pedersen, Eja; Forssén, Jens
2018-03-01
To increase the understanding of wind turbine noise on sleep, human physiological reactions need to be studied in a controlled laboratory setting. The paper presents an outdoor-indoor noise level difference as a function of frequency, applicable to creating wind turbine indoor sounds with the outdoor sounds as input. For this, a combination of measurement data and modeling results has been used. The suggested data are provided in a table.
Control of Acoustics and Store Separation in a Cavity in Supersonic Flow
2005-02-01
laser -based flow visualization experiments on the FSU cavity for different microjet pressures. The details of the experiments are given in Zhuang, et. al...developed that rigorously explains the role of leading edge microjets in cavity noise suppression and predicts the magnitude of noise reduction for a...given control input (that is the steady pressure at which the microjets are fired). The model is validated through comparison of its noise reduction
Jet Measurements for Development of Jet Noise Prediction Tools
NASA Technical Reports Server (NTRS)
Bridges, James E.
2006-01-01
The primary focus of my presentation is the development of the jet noise prediction code JeNo with most examples coming from the experimental work that drove the theoretical development and validation. JeNo is a statistical jet noise prediction code, based upon the Lilley acoustic analogy. Our approach uses time-average 2-D or 3-D mean and turbulent statistics of the flow as input. The output is source distributions and spectral directivity.
NASA Technical Reports Server (NTRS)
Tibbetts, J. G.
1979-01-01
Methods for predicting noise at any point on an aircraft while the aircraft is in a cruise flight regime are presented. Developed for use in laminar flow control (LFC) noise effects analyses, they can be used in any case where aircraft generated noise needs to be evaluated at a location on an aircraft while under high altitude, high speed conditions. For each noise source applicable to the LFC problem, a noise computational procedure is given in algorithm format, suitable for computerization. Three categories of noise sources are covered: (1) propulsion system, (2) airframe, and (3) LFC suction system. In addition, procedures are given for noise modifications due to source soundproofing and the shielding effects of the aircraft structure wherever needed. Sample cases, for each of the individual noise source procedures, are provided to familiarize the user with typical input and computed data.
ERIC Educational Resources Information Center
Stifle, Jack
The PLATO IV computer-based instructional system consists of a large scale centrally located CDC 6400 computer and a large number of remote student terminals. This is a brief and general description of the proposed input/output hardware necessary to interface the student terminals with the computer's central processing unit (CPU) using available…
NASA Technical Reports Server (NTRS)
Houck, J. A.
1979-01-01
The development of a mission simulator for use in the Terminal Configured Vehicle (TCV) program is outlined. The broad objectives of the TCV program are to evaluate new concepts in airborne systems and in operational flight procedures. These evaluations are directed toward improving terminal area capacity and efficiency, improving approach and landing capability in adverse weather, and reducing noise impact in the terminal area. A description is given of the design features and operating principles of the two major components of the TCV Mission Simulator: the TCV Aft Flight Deck Simulation and the Terminal Area Air Traffic Model Simulation, and their merger to form the TCV Mission Simulator. The first research study conducted in the Mission Simulator is presented along with some preliminary results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tikhonenkov, I.; Vardi, A.; Moore, M. G.
2011-06-15
Mach-Zehnder atom interferometry requires hold-time phase squeezing to attain readout accuracy below the standard quantum limit. This increases its sensitivity to phase diffusion, restoring shot-noise scaling of the optimal signal-to-noise ratio in the presence of interactions. The contradiction between the preparations required for readout accuracy and robustness to interactions is removed by monitoring Rabi-Josephson oscillations instead of relative-phase oscillations during signal acquisition. Optimizing the signal-to-noise ratio with a Gaussian squeezed input, we find that hold-time number squeezing satisfies both demands and that sub-shot-noise scaling is retained even for strong interactions.
Impulse Noise Cancellation of Medical Images Using Wavelet Networks and Median Filters
Sadri, Amir Reza; Zekri, Maryam; Sadri, Saeid; Gheissari, Niloofar
2012-01-01
This paper presents a new two-stage approach to impulse noise removal for medical images based on wavelet network (WN). The first step is noise detection, in which the so-called gray-level difference and average background difference are considered as the inputs of a WN. Wavelet Network is used as a preprocessing for the second stage. The second step is removing impulse noise with a median filter. The wavelet network presented here is a fixed one without learning. Experimental results show that our method acts on impulse noise effectively, and at the same time preserves chromaticity and image details very well. PMID:23493998
Method and apparatus for characterizing propagation delays of integrated circuit devices
NASA Technical Reports Server (NTRS)
Blaes, Brent R. (Inventor); Buehler, Martin G. (Inventor)
1987-01-01
Propagation delay of a signal through a channel is measured by cyclically generating a first step-wave signal for transmission through the channel to a two-input logic element and a second step-wave signal with a controlled delay to the second input terminal of the logic element. The logic element determines which signal is present first at its input terminals and stores a binary signal indicative of that determination for control of the delay of the second signal which is advanced or retarded for the next cycle until both the propagation delayed first step-wave signal and the control delayed step-wave signal are coincident. The propagation delay of the channel is then determined by measuring the time between the first and second step-wave signals out of the controlled step-wave signal generator.
Low phase noise oscillator using two parallel connected amplifiers
NASA Technical Reports Server (NTRS)
Kleinberg, Leonard L.
1987-01-01
A high frequency oscillator is provided by connecting two amplifier circuits in parallel where each amplifier circuit provides the other amplifier circuit with the conditions necessary for oscillation. The inherent noise present in both amplifier circuits causes the quiescent current, and in turn, the generated frequency, to change. The changes in quiescent current cause the transconductance and the load impedance of each amplifier circuit to vary, and this in turn results in opposing changes in the input susceptance of each amplifier circuit. Because the changes in input susceptance oppose each other, the changes in quiescent current also oppose each other. The net result is that frequency stability is enhanced.
NASA Technical Reports Server (NTRS)
Blasche, P. R.
1980-01-01
Specific configurations of first and second order all digital phase locked loops are analyzed for both ideal and additive white gaussian noise inputs. In addition, a design for a hardware digital phase locked loop capable of either first or second order operation is presented along with appropriate experimental data obtained from testing of the hardware loop. All parameters chosen for the analysis and the design of the digital phase locked loop are consistent with an application to an Omega navigation receiver although neither the analysis nor the design are limited to this application.
Shafai, Fakhri; Oruc, Ipek
2018-02-01
The other-race effect is the finding of diminished performance in recognition of other-race faces compared to those of own-race. It has been suggested that the other-race effect stems from specialized expert processes being tuned exclusively to own-race faces. In the present study, we measured recognition contrast thresholds for own- and other-race faces as well as houses for Caucasian observers. We have factored face recognition performance into two invariant aspects of visual function: efficiency, which is related to neural computations and processing demanded by the task, and equivalent input noise, related to signal degradation within the visual system. We hypothesized that if expert processes are available only to own-race faces, this should translate into substantially greater recognition efficiencies for own-race compared to other-race faces. Instead, we found similar recognition efficiencies for both own- and other-race faces. The other-race effect manifested as increased equivalent input noise. These results argue against qualitatively distinct perceptual processes. Instead they suggest that for Caucasian observers, similar neural computations underlie recognition of own- and other-race faces. Copyright © 2018 Elsevier Ltd. All rights reserved.
Improving Balance Function Using Low Levels of Electrical Stimulation of the Balance Organs
NASA Technical Reports Server (NTRS)
Bloomberg, Jacob; Reschke, Millard; Mulavara, Ajitkumar; Wood, Scott; Serrador, Jorge; Fiedler, Matthew; Kofman, Igor; Peters, Brian T.; Cohen, Helen
2012-01-01
Crewmembers returning from long-duration space flight face significant challenges due to the microgravity-induced inappropriate adaptations in balance/ sensorimotor function. The Neuroscience Laboratory at JSC is developing a method based on stochastic resonance to enhance the brain s ability to detect signals from the balance organs of the inner ear and use them for rapid improvement in balance skill, especially when combined with balance training exercises. This method involves a stimulus delivery system that is wearable/portable providing imperceptible electrical stimulation to the balance organs of the human body. Stochastic resonance (SR) is a phenomenon whereby the response of a nonlinear system to a weak periodic input signal is optimized by the presence of a particular non-zero level of noise. This phenomenon of SR is based on the concept of maximizing the flow of information through a system by a non-zero level of noise. Application of imperceptible SR noise coupled with sensory input in humans has been shown to improve motor, cardiovascular, visual, hearing, and balance functions. SR increases contrast sensitivity and luminance detection; lowers the absolute threshold for tone detection in normal hearing individuals; improves homeostatic function in the human blood pressure regulatory system; improves noise-enhanced muscle spindle function; and improves detection of weak tactile stimuli using mechanical or electrical stimulation. SR noise has been shown to improve postural control when applied as mechanical noise to the soles of the feet, or when applied as electrical noise at the knee and to the back muscles.
Low-noise encoding of active touch by layer 4 in the somatosensory cortex.
Hires, Samuel Andrew; Gutnisky, Diego A; Yu, Jianing; O'Connor, Daniel H; Svoboda, Karel
2015-08-06
Cortical spike trains often appear noisy, with the timing and number of spikes varying across repetitions of stimuli. Spiking variability can arise from internal (behavioral state, unreliable neurons, or chaotic dynamics in neural circuits) and external (uncontrolled behavior or sensory stimuli) sources. The amount of irreducible internal noise in spike trains, an important constraint on models of cortical networks, has been difficult to estimate, since behavior and brain state must be precisely controlled or tracked. We recorded from excitatory barrel cortex neurons in layer 4 during active behavior, where mice control tactile input through learned whisker movements. Touch was the dominant sensorimotor feature, with >70% spikes occurring in millisecond timescale epochs after touch onset. The variance of touch responses was smaller than expected from Poisson processes, often reaching the theoretical minimum. Layer 4 spike trains thus reflect the millisecond-timescale structure of tactile input with little noise.
SQUID amplifiers for axion search experiments
NASA Astrophysics Data System (ADS)
Matlashov, Andrei; Schmelz, Matthias; Zakosarenko, Vyacheslav; Stolz, Ronny; Semertzidis, Yannis K.
2018-04-01
In the experiments for dark-matter QCD-axion searches, very weak microwave signals from a low-temperature High-Q resonant cavity should be detected using the highest sensitivity. The best commercial low-noise cryogenic semiconductor amplifiers based on high electron mobility transistors have a lowest noise temperature above 1.0 K, even if they are cooled well below 1 K. Superconducting quantum interference devices can work as microwave amplifiers with temperature noise close to the standard quantum limit. Previous SQUID-based RF amplifiers designed for axion search experiments have a microstrip resonant input coil and are thus called micro-strip SQUID amplifiers or MSAs. Due to the resonant input coupling they usually have narrow bandwidth. In this paper we report on a SQUID-based wideband microwave amplifier fabricated using sub-micron size Josephson junctions with very low capacitance. A single amplifier can be used in a frequency range of approximately 1-5 GHz.
NASA Astrophysics Data System (ADS)
Shrivastava, Akash; Mohanty, A. R.
2018-03-01
This paper proposes a model-based method to estimate single plane unbalance parameters (amplitude and phase angle) in a rotor using Kalman filter and recursive least square based input force estimation technique. Kalman filter based input force estimation technique requires state-space model and response measurements. A modified system equivalent reduction expansion process (SEREP) technique is employed to obtain a reduced-order model of the rotor system so that limited response measurements can be used. The method is demonstrated using numerical simulations on a rotor-disk-bearing system. Results are presented for different measurement sets including displacement, velocity, and rotational response. Effects of measurement noise level, filter parameters (process noise covariance and forgetting factor), and modeling error are also presented and it is observed that the unbalance parameter estimation is robust with respect to measurement noise.
NASA Astrophysics Data System (ADS)
Wang, Jia; Su, Lin; Wei, Xiaomin; Zheng, Ran; Hu, Yann
2016-09-01
This paper presents an ASIC readout circuit development, which aims to achieve low noise. In order to compensate the leakage current and improve gain, a dual-stage CSA has been utilized. A 4th-order high-linearity shaper is proposed to obtain a Semi-Gaussian wave and further decrease the noise induced by the leakage current. The ASIC has been designed and fabricated in a standard commercial 2P4M 0.35 μm CMOS process. Die area of one channel is about 1190 μm×147 μm. The input charge range is 1.8 fC. The peaking time can be adjusted from 1 μs to 3 μs. Measured ENC is about 55e- (rms) at input capacitor of 0 F. The gain is 271 mV/fC at the peaking time of 1 μs.
Interior noise prediction methodology: ATDAC theory and validation
NASA Technical Reports Server (NTRS)
Mathur, Gopal P.; Gardner, Bryce K.
1992-01-01
The Acoustical Theory for Design of Aircraft Cabins (ATDAC) is a computer program developed to predict interior noise levels inside aircraft and to evaluate the effects of different aircraft configurations on the aircraft acoustical environment. The primary motivation for development of this program is the special interior noise problems associated with advanced turboprop (ATP) aircraft where there is a tonal, low frequency noise problem. Prediction of interior noise levels requires knowledge of the energy sources, the transmission paths, and the relationship between the energy variable and the sound pressure level. The energy sources include engine noise, both airborne and structure-borne; turbulent boundary layer noise; and interior noise sources such as air conditioner noise and auxiliary power unit noise. Since propeller and engine noise prediction programs are widely available, they are not included in ATDAC. Airborne engine noise from any prediction or measurement may be input to this program. This report describes the theory and equations implemented in the ATDAC program.
Interior noise prediction methodology: ATDAC theory and validation
NASA Astrophysics Data System (ADS)
Mathur, Gopal P.; Gardner, Bryce K.
1992-04-01
The Acoustical Theory for Design of Aircraft Cabins (ATDAC) is a computer program developed to predict interior noise levels inside aircraft and to evaluate the effects of different aircraft configurations on the aircraft acoustical environment. The primary motivation for development of this program is the special interior noise problems associated with advanced turboprop (ATP) aircraft where there is a tonal, low frequency noise problem. Prediction of interior noise levels requires knowledge of the energy sources, the transmission paths, and the relationship between the energy variable and the sound pressure level. The energy sources include engine noise, both airborne and structure-borne; turbulent boundary layer noise; and interior noise sources such as air conditioner noise and auxiliary power unit noise. Since propeller and engine noise prediction programs are widely available, they are not included in ATDAC. Airborne engine noise from any prediction or measurement may be input to this program. This report describes the theory and equations implemented in the ATDAC program.
NASA Technical Reports Server (NTRS)
Pla, Frederic G. (Inventor); Renshaw, Anthony A. (Inventor); Rajiyah, Harindra (Inventor); Hedeen, Robert A. (Inventor)
1995-01-01
A noise source for an aircraft engine active noise cancellation system in which the resonant frequency of a noise radiating element is tuned to permit noise cancellation over a wide range of frequencies. The resonant frequency of the noise radiating element is tuned by an expandable ring embedded in the noise radiating element. Excitation of the ring causes expansion or contraction of the ring, thereby varying the stress in the noise radiating element. The ring is actuated by a controller which receives input of a feedback signal proportional to displacement of the noise radiating element and a signal corresponding to the blade passage frequency of the engine's fan. In response, the controller determines a control signal which is sent to the ring, causing the ring to expand or contract. Instead of a single ring embedded in the noise radiating panel, a first expandable ring can be bonded to one side of the noise radiating element, and a second expandable ring can be bonded to the other side.
Simulation for noise cancellation using LMS adaptive filter
NASA Astrophysics Data System (ADS)
Lee, Jia-Haw; Ooi, Lu-Ean; Ko, Ying-Hao; Teoh, Choe-Yung
2017-06-01
In this paper, the fundamental algorithm of noise cancellation, Least Mean Square (LMS) algorithm is studied and enhanced with adaptive filter. The simulation of the noise cancellation using LMS adaptive filter algorithm is developed. The noise corrupted speech signal and the engine noise signal are used as inputs for LMS adaptive filter algorithm. The filtered signal is compared to the original noise-free speech signal in order to highlight the level of attenuation of the noise signal. The result shows that the noise signal is successfully canceled by the developed adaptive filter. The difference of the noise-free speech signal and filtered signal are calculated and the outcome implies that the filtered signal is approaching the noise-free speech signal upon the adaptive filtering. The frequency range of the successfully canceled noise by the LMS adaptive filter algorithm is determined by performing Fast Fourier Transform (FFT) on the signals. The LMS adaptive filter algorithm shows significant noise cancellation at lower frequency range.
Marmarelis, Vasilis Z.; Zanos, Theodoros P.; Berger, Theodore W.
2010-01-01
This paper presents a new modeling approach for neural systems with point-process (spike) inputs and outputs that utilizes Boolean operators (i.e. modulo 2 multiplication and addition that correspond to the logical AND and OR operations respectively, as well as the AND_NOT logical operation representing inhibitory effects). The form of the employed mathematical models is akin to a “Boolean-Volterra” model that contains the product terms of all relevant input lags in a hierarchical order, where terms of order higher than first represent nonlinear interactions among the various lagged values of each input point-process or among lagged values of various inputs (if multiple inputs exist) as they reflect on the output. The coefficients of this Boolean-Volterra model are also binary variables that indicate the presence or absence of the respective term in each specific model/system. Simulations are used to explore the properties of such models and the feasibility of their accurate estimation from short data-records in the presence of noise (i.e. spurious spikes). The results demonstrate the feasibility of obtaining reliable estimates of such models, with excitatory and inhibitory terms, in the presence of considerable noise (spurious spikes) in the outputs and/or the inputs in a computationally efficient manner. A pilot application of this approach to an actual neural system is presented in the companion paper (Part II). PMID:19517238
NASA Astrophysics Data System (ADS)
Jitsuhiro, Takatoshi; Toriyama, Tomoji; Kogure, Kiyoshi
We propose a noise suppression method based on multi-model compositions and multi-pass search. In real environments, input speech for speech recognition includes many kinds of noise signals. To obtain good recognized candidates, suppressing many kinds of noise signals at once and finding target speech is important. Before noise suppression, to find speech and noise label sequences, we introduce multi-pass search with acoustic models including many kinds of noise models and their compositions, their n-gram models, and their lexicon. Noise suppression is frame-synchronously performed using the multiple models selected by recognized label sequences with time alignments. We evaluated this method using the E-Nightingale task, which contains voice memoranda spoken by nurses during actual work at hospitals. The proposed method obtained higher performance than the conventional method.
Analysis of a first order phase locked loop in the presence of Gaussian noise
NASA Technical Reports Server (NTRS)
Blasche, P. R.
1977-01-01
A first-order digital phase locked loop is analyzed by application of a Markov chain model. Steady state loop error probabilities, phase standard deviation, and mean loop transient times are determined for various input signal to noise ratios. Results for direct loop simulation are presented for comparison.
The estimation error covariance matrix for the ideal state reconstructor with measurement noise
NASA Technical Reports Server (NTRS)
Polites, Michael E.
1988-01-01
A general expression is derived for the state estimation error covariance matrix for the Ideal State Reconstructor when the input measurements are corrupted by measurement noise. An example is presented which shows that the more measurements used in estimating the state at a given time, the better the estimator.
Seismic facies analysis based on self-organizing map and empirical mode decomposition
NASA Astrophysics Data System (ADS)
Du, Hao-kun; Cao, Jun-xing; Xue, Ya-juan; Wang, Xing-jian
2015-01-01
Seismic facies analysis plays an important role in seismic interpretation and reservoir model building by offering an effective way to identify the changes in geofacies inter wells. The selections of input seismic attributes and their time window have an obvious effect on the validity of classification and require iterative experimentation and prior knowledge. In general, it is sensitive to noise when waveform serves as the input data to cluster analysis, especially with a narrow window. To conquer this limitation, the Empirical Mode Decomposition (EMD) method is introduced into waveform classification based on SOM. We first de-noise the seismic data using EMD and then cluster the data using 1D grid SOM. The main advantages of this method are resolution enhancement and noise reduction. 3D seismic data from the western Sichuan basin, China, are collected for validation. The application results show that seismic facies analysis can be improved and better help the interpretation. The powerful tolerance for noise makes the proposed method to be a better seismic facies analysis tool than classical 1D grid SOM method, especially for waveform cluster with a narrow window.
Sensory noise predicts divisive reshaping of receptive fields
Deneve, Sophie; Gutkin, Boris
2017-01-01
In order to respond reliably to specific features of their environment, sensory neurons need to integrate multiple incoming noisy signals. Crucially, they also need to compete for the interpretation of those signals with other neurons representing similar features. The form that this competition should take depends critically on the noise corrupting these signals. In this study we show that for the type of noise commonly observed in sensory systems, whose variance scales with the mean signal, sensory neurons should selectively divide their input signals by their predictions, suppressing ambiguous cues while amplifying others. Any change in the stimulus context alters which inputs are suppressed, leading to a deep dynamic reshaping of neural receptive fields going far beyond simple surround suppression. Paradoxically, these highly variable receptive fields go alongside and are in fact required for an invariant representation of external sensory features. In addition to offering a normative account of context-dependent changes in sensory responses, perceptual inference in the presence of signal-dependent noise accounts for ubiquitous features of sensory neurons such as divisive normalization, gain control and contrast dependent temporal dynamics. PMID:28622330
Rotor Wake/Stator Interaction Noise Prediction Code Technical Documentation and User's Manual
NASA Technical Reports Server (NTRS)
Topol, David A.; Mathews, Douglas C.
2010-01-01
This report documents the improvements and enhancements made by Pratt & Whitney to two NASA programs which together will calculate noise from a rotor wake/stator interaction. The code is a combination of subroutines from two NASA programs with many new features added by Pratt & Whitney. To do a calculation V072 first uses a semi-empirical wake prediction to calculate the rotor wake characteristics at the stator leading edge. Results from the wake model are then automatically input into a rotor wake/stator interaction analytical noise prediction routine which calculates inlet aft sound power levels for the blade-passage-frequency tones and their harmonics, along with the complex radial mode amplitudes. The code allows for a noise calculation to be performed for a compressor rotor wake/stator interaction, a fan wake/FEGV interaction, or a fan wake/core stator interaction. This report is split into two parts, the first part discusses the technical documentation of the program as improved by Pratt & Whitney. The second part is a user's manual which describes how input files are created and how the code is run.
Sensory noise predicts divisive reshaping of receptive fields.
Chalk, Matthew; Masset, Paul; Deneve, Sophie; Gutkin, Boris
2017-06-01
In order to respond reliably to specific features of their environment, sensory neurons need to integrate multiple incoming noisy signals. Crucially, they also need to compete for the interpretation of those signals with other neurons representing similar features. The form that this competition should take depends critically on the noise corrupting these signals. In this study we show that for the type of noise commonly observed in sensory systems, whose variance scales with the mean signal, sensory neurons should selectively divide their input signals by their predictions, suppressing ambiguous cues while amplifying others. Any change in the stimulus context alters which inputs are suppressed, leading to a deep dynamic reshaping of neural receptive fields going far beyond simple surround suppression. Paradoxically, these highly variable receptive fields go alongside and are in fact required for an invariant representation of external sensory features. In addition to offering a normative account of context-dependent changes in sensory responses, perceptual inference in the presence of signal-dependent noise accounts for ubiquitous features of sensory neurons such as divisive normalization, gain control and contrast dependent temporal dynamics.
New design and operating techniques and requirements for improved aircraft terminal area operations
NASA Technical Reports Server (NTRS)
Reeder, J. P.; Taylor, R. T.; Walsh, T. M.
1974-01-01
Current aircraft operating problems that must be alleviated for future high-density terminal areas are safety, dependence on weather, congestion, energy conservation, noise, and atmospheric pollution. The Microwave Landing System (MLS) under development by FAA provides increased capabilities over the current ILS. The development of the airborne system's capability to take maximum advantage of the MLS capabilities in order to solve terminal area problems are discussed. A major limiting factor in longitudinal spacing for capacity increase is the trailing vortex hazard. Promising methods for causing early dissipation of the vortices were explored. Flight procedures for avoiding the hazard were investigated. Terminal configured vehicles and their flight test development are discussed.
Universal statistics of terminal dynamics before collapse
NASA Astrophysics Data System (ADS)
Lenner, Nicolas; Eule, Stephan; Wolf, Fred
Recent biological developments have both drastically increased the precision as well as amount of generated data, allowing for a switching from pure mean value characterization of the process under consideration to an analysis of the whole ensemble, exploiting the stochastic nature of biology. We focus on the general class of non-equilibrium processes with distinguished terminal points as can be found in cell fate decision, check points or cognitive neuroscience. Aligning the data to a terminal point (e.g. represented as an absorbing boundary) allows to device a general methodology to characterize and reverse engineer the terminating history. Using a small noise approximation we derive mean variance and covariance of the aligned data for general finite time singularities.
EMI survey for maritime satellite 1535-1645-MHz shipboard terminal
NASA Technical Reports Server (NTRS)
Taylor, R. E.; Brandel, D. L.; Hill, J. S.
1977-01-01
A 15,690-ton commercial container ship was selected as lead ship for an onboard electromagnetic-interference (EMI) survey prior to installation of 1535-1645-MHz (L-Band) shipboard terminals for communication via a maritime satellite. In general, the EMI survey revealed tolerable interference levels on board ship. Radiometer measurements indicate antenna-noise temperatures less than 70 K at elevation angles of 5 deg and greater at 1559 MHz at the output terminals of the 1.2-m diameter parabolic-dish antenna for the L-band shipboard terminal. Other EMI measurements include field intensity from 3-cm and 10-cm wavelength pulse radars, and conducted-emission tests of primary power lines to both onboard radars.
Frequency Agile Lidar Receiver for Chem-Bio Sensing
2010-06-01
receiver module design is based on the following key attributes: 1) The use of an inexpensive COTS PV MCT , 2) A custom detector amplifier with ultra low...input-referenced noise density of 0.8 nV/ Hz0.5 that is carefully matched to the electrical properties of the detector and temporal characteristics of...LIDAR transmitter. The low- noise amplifier matched to the receiver detector was developed in order to realize the BLIP noise reduction resulting from
1976-04-09
of the signal and noise remain HH ***^-^*--~ 53 h, to r(Mc) h2(r» r(we) Figure 3-2 Sy&toetric Impulse Response for Two FIR Linear Phase...Inputs x,y and Outputs x.j. , 15 2-2 Linear System with Impulse Response h("r) 23 2-3 Model of Error Resulting from Linearly Filtering x(t) to...Corrupted with Additive Noise 42 2-6 Model of Directional Signal Corrupted with Additive Noise and Processed .... 45 2-7 Source Driving Two
Burkitt, A N
2006-08-01
The integrate-and-fire neuron model describes the state of a neuron in terms of its membrane potential, which is determined by the synaptic inputs and the injected current that the neuron receives. When the membrane potential reaches a threshold, an action potential (spike) is generated. This review considers the model in which the synaptic input varies periodically and is described by an inhomogeneous Poisson process, with both current and conductance synapses. The focus is on the mathematical methods that allow the output spike distribution to be analyzed, including first passage time methods and the Fokker-Planck equation. Recent interest in the response of neurons to periodic input has in part arisen from the study of stochastic resonance, which is the noise-induced enhancement of the signal-to-noise ratio. Networks of integrate-and-fire neurons behave in a wide variety of ways and have been used to model a variety of neural, physiological, and psychological phenomena. The properties of the integrate-and-fire neuron model with synaptic input described as a temporally homogeneous Poisson process are reviewed in an accompanying paper (Burkitt in Biol Cybern, 2006).
An alternate protocol to achieve stochastic and deterministic resonances
NASA Astrophysics Data System (ADS)
Tiwari, Ishant; Dave, Darshil; Phogat, Richa; Khera, Neev; Parmananda, P.
2017-10-01
Periodic and Aperiodic Stochastic Resonance (SR) and Deterministic Resonance (DR) are studied in this paper. To check for the ubiquitousness of the phenomena, two unrelated systems, namely, FitzHugh-Nagumo and a particle in a bistable potential well, are studied. Instead of the conventional scenario of noise amplitude (in the case of SR) or chaotic signal amplitude (in the case of DR) variation, a tunable system parameter ("a" in the case of FitzHugh-Nagumo model and the damping coefficient "j" in the bistable model) is regulated. The operating values of these parameters are defined as the "setpoint" of the system throughout the present work. Our results indicate that there exists an optimal value of the setpoint for which maximum information transfer between the input and the output signals takes place. This information transfer from the input sub-threshold signal to the output dynamics is quantified by the normalised cross-correlation coefficient ( | CCC | ). | CCC | as a function of the setpoint exhibits a unimodal variation which is characteristic of SR (or DR). Furthermore, | CCC | is computed for a grid of noise (or chaotic signal) amplitude and setpoint values. The heat map of | CCC | over this grid yields the presence of a resonance region in the noise-setpoint plane for which the maximum enhancement of the input sub-threshold signal is observed. This resonance region could be possibly used to explain how organisms maintain their signal detection efficacy with fluctuating amounts of noise present in their environment. Interestingly, the method of regulating the setpoint without changing the noise amplitude was not able to induce Coherence Resonance (CR). A possible, qualitative reasoning for this is provided.
Noise reduction of a composite cylinder subjected to random acoustic excitation
NASA Technical Reports Server (NTRS)
Grosveld, Ferdinand W.; Beyer, T.
1989-01-01
Interior and exterior noise measurements were conducted on a stiffened composite floor-equipped cylinder, with and without an interior trim installed. Noise reduction was obtained for the case of random acoustic excitation in a diffuse field; the frequency range of interest was 100-800-Hz one-third octave bands. The measured data were compared with noise reduction predictions from the Propeller Aircraft Interior Noise (PAIN) program and from a statistical energy analysis. Structural model parameters were not predicted well by the PAIN program for the given input parameters; this resulted in incorrect noise reduction predictions for the lower one-third octave bands where the power flow into the interior of the cylinder was predicted on a mode-per-mode basis.
Oscillator or Amplifier With Wide Frequency Range
NASA Technical Reports Server (NTRS)
Kleinberg, L.; Sutton, J.
1987-01-01
Inductive and capacitive effects synthesized with feedback circuits. Oscillator/amplifier resistively tunable over wide frequency range. Feedback circuits containing operational amplifiers, resistors, and capacitors synthesize electrical effects of inductance and capacitance in parallel between input terminals. Synthetic inductance and capacitance, and, therefore, resonant frequency of input admittance, adjusted by changing potentiometer setting.
NASA Technical Reports Server (NTRS)
Denn, F. M.
1978-01-01
Geometric input plotting to the VORLAX computer program by means of an interactive remote terminal is reported. The software consists of a procedure file and two programs. The programs and procedure file are described and a sample execution is presented.
Preliminary Investigation of Civil Tiltrotor in NextGen Airspace
NASA Technical Reports Server (NTRS)
Young, Larry A.; Salvano, Dan; Wright, Ken; Chung, William; Young, Ray; Miller, David; Paris, Alfanso; Gao, Huina; Cheng, Victor
2010-01-01
Presentation intro: Tiltrotor aircraft have long been envisioned as being a potentially viable means of commercial aviation transport. Preliminary results from an ongoing study into the operational and technological considerations of Civil Tiltrotor (CTR) operation in the Next Generation airspace, circa the 2025 time-frame, are presented and discussed. In particular, a fleet of CTR aircraft has been conceptually designed. The performance characteristics of this CTR fleet was subsequently translated into BADA (Base of Aircraft DAta) models that could be used as input to emulate CTR aircraft operations in the ACES and AvTerminal airspace and terminal area simulation tools. A network of nine North-Eastern corridor airports is the focus of the airspace simulation effort; the results from this airport network viII then be extrapolated to provide insights into systemic impact of CTRs on the National Airspace System (NAS). Future work will also be detailed as to attempts to model the systemic effects of noise and emissions from this fleet of new aircraft as well as assess their leveraged impact on public service missions, in time of need, such as major regional/national disaster relief efforts. The ideal outcome of this study is a set of results whereby Next Gen airspace CONOPs can be refined to reflect potential CTR capabilities and, conversely, CTR technology development efforts can be better informed as to key performance requirement thresholds needed to be met in order to successfully introduce these aircraft into civilian aviation operation.
NASA Astrophysics Data System (ADS)
Suganthi, K.; Malarvizhi, S.
2018-03-01
A high gain, low power, low Noise figure (NF) and wide band of milli-meter Wave (mmW) circuits design at 50 GHz are used for Radio Frequency (RF) front end. The fundamental necessity of a receiver front-end includes perfect output and input impedance matching and port-to-port isolation with high gain and low noise over the entire band of interest. In this paper, a design of Cascade-Cascode CMOS LNA circuit at 50 GHz for Q-band application is proposed. The design of Low noise amplifier at 50 GHz using Agilent ADS tool with microstrip lines which provides simplicity in fabrication and less chip area. The low off-leakage current Ioff can be maintained with high K-dielectrics CMOS structure. Nano-scale electronics can be achieved with increased robustness. The design has overall gain of 11.091 dB and noise figure of 2.673 dB for the Q-band of 48.3 GHz to 51.3 GHz. Impedance matching is done by T matching network and the obtained input and output reflection coefficients are S11 = <-10 dB and S22 = <-10 dB. Compared to Silicon (Si) material, Wide Band Gap semiconductor materials used attains higher junction temperatures which is well matched to ceramics used in packaging technology, the protection and reliability also can be achieved with the electronic packaging. The reverse transmission coefficient S21 is less than -21 dB has shown that LNA has better isolation between input and output, Stability factor greater than 1 and Power is also optimized in this design. Layout is designed, power gain of 4.6 dB is achieved and area is optimized which is nearly equal to 502 740 μm2. The observed results show that the proposed Cascade-Cascode LNA design can find its suitability in future milli-meter Wave Radar application.
Chaotic behaviors of operational amplifiers.
Yim, Geo-Su; Ryu, Jung-Wan; Park, Young-Jai; Rim, Sunghwan; Lee, Soo-Young; Kye, Won-Ho; Kim, Chil-Min
2004-04-01
We investigate nonlinear dynamical behaviors of operational amplifiers. When the output terminal of an operational amplifier is connected to the inverting input terminal, the circuit exhibits period-doubling bifurcation, chaos, and periodic windows, depending on the voltages of the positive and the negative power supplies. We study these nonlinear dynamical characteristics of this electronic circuit experimentally.
Bi-directional power control system for voltage converter
Garrigan, Neil Richard; King, Robert Dean; Schwartz, James Edward
1999-01-01
A control system for a voltage converter includes: a power comparator for comparing a power signal on input terminals of the converter with a commanded power signal and producing a power comparison signal; a power regulator for transforming the power comparison signal to a commanded current signal; a current comparator for comparing the commanded current signal with a measured current signal on output terminals of the converter and producing a current comparison signal; a current regulator for transforming the current comparison signal to a pulse width modulator (PWM) duty cycle command signal; and a PWM for using the PWM duty cycle command signal to control electrical switches of the converter. The control system may further include: a command multiplier for converting a voltage signal across the output terminals of the converter to a gain signal having a value between zero (0) and unity (1), and a power multiplier for multiplying the commanded power signal by the gain signal to provide a limited commanded power signal, wherein power comparator compares the limited commanded power signal with the power signal on the input terminals.
Bi-directional power control system for voltage converter
Garrigan, N.R.; King, R.D.; Schwartz, J.E.
1999-05-11
A control system for a voltage converter includes: a power comparator for comparing a power signal on input terminals of the converter with a commanded power signal and producing a power comparison signal; a power regulator for transforming the power comparison signal to a commanded current signal; a current comparator for comparing the commanded current signal with a measured current signal on output terminals of the converter and producing a current comparison signal; a current regulator for transforming the current comparison signal to a pulse width modulator (PWM) duty cycle command signal; and a PWM for using the PWM duty cycle command signal to control electrical switches of the converter. The control system may further include: a command multiplier for converting a voltage signal across the output terminals of the converter to a gain signal having a value between zero (0) and unity (1), and a power multiplier for multiplying the commanded power signal by the gain signal to provide a limited commanded power signal, wherein power comparator compares the limited commanded power signal with the power signal on the input terminals. 10 figs.
Amorphous silicon cell array powered solar tracking apparatus
Hanak, Joseph J.
1985-01-01
An array of an even number of amorphous silicon solar cells are serially connected between first and second terminals of opposite polarity. The terminals are connected to one input terminal of a DC motor whose other input terminal is connected to the mid-cell of the serial array. Vane elements are adjacent the end cells to selectively shadow one or the other of the end cells when the array is oriented from a desired attitude relative to the sun. The shadowing of one cell of a group of cells on one side of the mid-cell reduces the power of that group substantially so that full power from the group of cells on the other side of the mid-cell drives the motor to reorient the array to the desired attitude. The cell groups each have a full power output at the power rating of the motor. When the array is at the desired attitude the power output of the two groups of cells balances due to their opposite polarity so that the motor remains unpowered.
Universal Approximation by Using the Correntropy Objective Function.
Nayyeri, Mojtaba; Sadoghi Yazdi, Hadi; Maskooki, Alaleh; Rouhani, Modjtaba
2017-10-16
Several objective functions have been proposed in the literature to adjust the input parameters of a node in constructive networks. Furthermore, many researchers have focused on the universal approximation capability of the network based on the existing objective functions. In this brief, we use a correntropy measure based on the sigmoid kernel in the objective function to adjust the input parameters of a newly added node in a cascade network. The proposed network is shown to be capable of approximating any continuous nonlinear mapping with probability one in a compact input sample space. Thus, the convergence is guaranteed. The performance of our method was compared with that of eight different objective functions, as well as with an existing one hidden layer feedforward network on several real regression data sets with and without impulsive noise. The experimental results indicate the benefits of using a correntropy measure in reducing the root mean square error and increasing the robustness to noise.
NASA Technical Reports Server (NTRS)
Rajiyah, Harindra (Inventor); Pla, Frederic G. (Inventor); Hedeen, Robert A. (Inventor); Renshaw, Anthony A. (Inventor)
1995-01-01
A noise source for an aircraft engine active noise cancellation system in which the resonant frequency of noise radiating structure is tuned to permit noise cancellation over a wide range of frequencies. The resonant frequency of the noise radiating structure is tuned by a plurality of drivers arranged to contact the noise radiating structure. Excitation of the drivers causes expansion or contraction of the drivers, thereby varying the edge loading applied to the noise radiating structure. The drivers are actuated by a controller which receives input of a feedback signal proportional to displacement of the noise radiating element and a signal corresponding to the blade passage frequency of the engine's fan. In response, the controller determines a control signal which is sent to the drivers, causing them to expand or contract. The noise radiating structure may be either the outer shroud of the engine or a ring mounted flush with an inner wall of the shroud or disposed in the interior of the shroud.
NASA Astrophysics Data System (ADS)
Won, Yong-Yuk; Jung, Sang-Min; Han, Sang-Kook
2014-08-01
A new technique, which reduces optical beat interference (OBI) noise in orthogonal frequency division multiple access-passive optical network (OFDMA-PON) links, is proposed. A self-homodyne balanced detection, which uses a single laser for the optical line terminal (OLT) as well as for the optical network unit (ONU), reduces OBI noise and also improves the signal to noise ratio (SNR) of the discrete multi-tone (DMT) signal. The proposed scheme is verified by transmitting quadrature phase shift keying (QPSK)-modulated DMT signal over a 20-km single mode fiber. The optical signal to noise ratio (OSNR), that is required for BER of 10-5, is reduced by 2 dB in the balanced detection compared with a single channel due to the cancellation of OBI noise in conjunction with the local laser.
Method and apparatus for in-situ characterization of energy storage and energy conversion devices
Christophersen, Jon P [Idaho Falls, ID; Motloch, Chester G [Idaho Falls, ID; Morrison, John L [Butte, MT; Albrecht, Weston [Layton, UT
2010-03-09
Disclosed are methods and apparatuses for determining an impedance of an energy-output device using a random noise stimulus applied to the energy-output device. A random noise signal is generated and converted to a random noise stimulus as a current source correlated to the random noise signal. A bias-reduced response of the energy-output device to the random noise stimulus is generated by comparing a voltage at the energy-output device terminal to an average voltage signal. The random noise stimulus and bias-reduced response may be periodically sampled to generate a time-varying current stimulus and a time-varying voltage response, which may be correlated to generate an autocorrelated stimulus, an autocorrelated response, and a cross-correlated response. Finally, the autocorrelated stimulus, the autocorrelated response, and the cross-correlated response may be combined to determine at least one of impedance amplitude, impedance phase, and complex impedance.
High Precision Ranging and Range-Rate Measurements over Free-Space-Laser Communication Link
NASA Technical Reports Server (NTRS)
Yang, Guangning; Lu, Wei; Krainak, Michael; Sun, Xiaoli
2016-01-01
We present a high-precision ranging and range-rate measurement system via an optical-ranging or combined ranging-communication link. A complete bench-top optical communication system was built. It included a ground terminal and a space terminal. Ranging and range rate tests were conducted in two configurations. In the communication configuration with 622 data rate, we achieved a two-way range-rate error of 2 microns/s, or a modified Allan deviation of 9 x 10 (exp -15) with 10 second averaging time. Ranging and range-rate as a function of Bit Error Rate of the communication link is reported. They are not sensitive to the link error rate. In the single-frequency amplitude modulation mode, we report a two-way range rate error of 0.8 microns/s, or a modified Allan deviation of 2.6 x 10 (exp -15) with 10 second averaging time. We identified the major noise sources in the current system as the transmitter modulation injected noise and receiver electronics generated noise. A new improved system will be constructed to further improve the system performance for both operating modes.
The 1980 Aircraft Safety and Operating Problems, Part 2
NASA Technical Reports Server (NTRS)
Stickle, J. W. (Compiler)
1981-01-01
Terminal area operations, avionics and human factors, atmospheric environment, and operating problems and potential solutions are discussed. Other topics include flight experiences, ground operations, and acoustics and noise reduction.
BATMAN: Bayesian Technique for Multi-image Analysis
NASA Astrophysics Data System (ADS)
Casado, J.; Ascasibar, Y.; García-Benito, R.; Guidi, G.; Choudhury, O. S.; Bellocchi, E.; Sánchez, S. F.; Díaz, A. I.
2017-04-01
This paper describes the Bayesian Technique for Multi-image Analysis (BATMAN), a novel image-segmentation technique based on Bayesian statistics that characterizes any astronomical data set containing spatial information and performs a tessellation based on the measurements and errors provided as input. The algorithm iteratively merges spatial elements as long as they are statistically consistent with carrying the same information (I.e. identical signal within the errors). We illustrate its operation and performance with a set of test cases including both synthetic and real integral-field spectroscopic data. The output segmentations adapt to the underlying spatial structure, regardless of its morphology and/or the statistical properties of the noise. The quality of the recovered signal represents an improvement with respect to the input, especially in regions with low signal-to-noise ratio. However, the algorithm may be sensitive to small-scale random fluctuations, and its performance in presence of spatial gradients is limited. Due to these effects, errors may be underestimated by as much as a factor of 2. Our analysis reveals that the algorithm prioritizes conservation of all the statistically significant information over noise reduction, and that the precise choice of the input data has a crucial impact on the results. Hence, the philosophy of BaTMAn is not to be used as a 'black box' to improve the signal-to-noise ratio, but as a new approach to characterize spatially resolved data prior to its analysis. The source code is publicly available at http://astro.ft.uam.es/SELGIFS/BaTMAn.
Memory-induced resonancelike suppression of spike generation in a resonate-and-fire neuron model
NASA Astrophysics Data System (ADS)
Mankin, Romi; Paekivi, Sander
2018-01-01
The behavior of a stochastic resonate-and-fire neuron model based on a reduction of a fractional noise-driven generalized Langevin equation (GLE) with a power-law memory kernel is considered. The effect of temporally correlated random activity of synaptic inputs, which arise from other neurons forming local and distant networks, is modeled as an additive fractional Gaussian noise in the GLE. Using a first-passage-time formulation, in certain system parameter domains exact expressions for the output interspike interval (ISI) density and for the survival probability (the probability that a spike is not generated) are derived and their dependence on input parameters, especially on the memory exponent, is analyzed. In the case of external white noise, it is shown that at intermediate values of the memory exponent the survival probability is significantly enhanced in comparison with the cases of strong and weak memory, which causes a resonancelike suppression of the probability of spike generation as a function of the memory exponent. Moreover, an examination of the dependence of multimodality in the ISI distribution on input parameters shows that there exists a critical memory exponent αc≈0.402 , which marks a dynamical transition in the behavior of the system. That phenomenon is illustrated by a phase diagram describing the emergence of three qualitatively different structures of the ISI distribution. Similarities and differences between the behavior of the model at internal and external noises are also discussed.
Prediction of non-cavitation propeller noise in time domain
NASA Astrophysics Data System (ADS)
Ye, Jin-Ming; Xiong, Ying; Xiao, Chang-Run; Bi, Yi
2011-09-01
The blade frequency noise of non-cavitation propeller in a uniform flow is analyzed in time domain. The unsteady loading (dipole source) on the blade surface is calculated by a potential-based surface panel method. Then the time-dependent pressure data is used as the input for Ffowcs Williams-Hawkings formulation to predict the acoustics pressure. The integration of noise source is performed over the true blade surface rather than the nothickness blade surface, and the effect of hub can be considered. The noise characteristics of the non-cavitation propeller and the numerical discretization forms are discussed.
Pseudo-Hall Effect in Graphite on Paper Based Four Terminal Devices for Stress Sensing Applications
NASA Astrophysics Data System (ADS)
Qamar, Afzaal; Sarwar, Tuba; Dinh, Toan; Foisal, A. R. M.; Phan, Hoang-Phuong; Viet Dao, Dzung
2017-04-01
A cost effective and easy to fabricate stress sensor based on pseudo-Hall effect in Graphite on Paper (GOP) has been presented in this article. The four terminal devices were developed by pencil drawing with hand on to the paper substrate. The stress was applied to the paper containing four terminal devices with the input current applied at two terminals and the offset voltage observed at other two terminals called pseudo-Hall effect. The GOP stress sensor showed significant response to the applied stress which was smooth and linear. These results showed that the pseudo-Hall effect in GOP based four terminal devices can be used for cost effective, flexible and easy to make stress, strain or force sensors.
Classification of Partial Discharge Measured under Different Levels of Noise Contamination.
Jee Keen Raymond, Wong; Illias, Hazlee Azil; Abu Bakar, Ab Halim
2017-01-01
Cable joint insulation breakdown may cause a huge loss to power companies. Therefore, it is vital to diagnose the insulation quality to detect early signs of insulation failure. It is well known that there is a correlation between Partial discharge (PD) and the insulation quality. Although many works have been done on PD pattern recognition, it is usually performed in a noise free environment. Also, works on PD pattern recognition in actual cable joint are less likely to be found in literature. Therefore, in this work, classifications of actual cable joint defect types from partial discharge data contaminated by noise were performed. Five cross-linked polyethylene (XLPE) cable joints with artificially created defects were prepared based on the defects commonly encountered on site. Three different types of input feature were extracted from the PD pattern under artificially created noisy environment. These include statistical features, fractal features and principal component analysis (PCA) features. These input features were used to train the classifiers to classify each PD defect types. Classifications were performed using three different artificial intelligence classifiers, which include Artificial Neural Networks (ANN), Adaptive Neuro-Fuzzy Inference System (ANFIS) and Support Vector Machine (SVM). It was found that the classification accuracy decreases with higher noise level but PCA features used in SVM and ANN showed the strongest tolerance against noise contamination.
Lu, Bin [Kenosha, WI; Luebke, Charles John [Sussex, WI; Habetler, Thomas G [Snellville, GA; Zhang, Pinjia [Atlanta, GA; Becker, Scott K [Oak Creek, WI
2011-12-27
A system and method for measuring and controlling stator winding temperature in an AC motor while idling is disclosed. The system includes a circuit having an input connectable to an AC source and an output connectable to an input terminal of a multi-phase AC motor. The circuit further includes a plurality of switching devices to control current flow and terminal voltages in the multi-phase AC motor and a controller connected to the circuit. The controller is configured to activate the plurality of switching devices to create a DC signal in an output of the motor control device corresponding to an input to the multi-phase AC motor, determine or estimate a stator winding resistance of the multi-phase AC motor based on the DC signal, and estimate a stator temperature from the stator winding resistance. Temperature can then be controlled and regulated by DC injection into the stator windings.
System and method for determining stator winding resistance in an AC motor using motor drives
Lu, Bin; Habetler, Thomas G; Zhang, Pinjia
2013-02-26
A system and method for determining the stator winding resistance of AC motors is provided. The system includes an AC motor drive having an input connectable to an AC source and an output connectable to an input terminal of an AC motor, a pulse width modulation (PWM) converter having switches therein to control current flow and terminal voltages in the AC motor, and a control system connected to the PWM converter. The control system generates a command signal to cause the PWM converter to control an output of the AC motor drive corresponding to an input to the AC motor, selectively generates a modified command signal to cause the PWM converter to inject a DC signal into the output of the AC motor drive, and determines a stator winding resistance of the AC motor based on the DC signal of at least one of the voltage and current.
Jamison, David Kay
2016-04-12
A charge/discharge input is for respectively supplying charge to, or drawing charge from, an electrochemical cell. A transition modifying circuit is coupled between the charge/discharge input and a terminal of the electrochemical cell and includes at least one of an inductive constituent, a capacitive constituent and a resistive constituent selected to generate an adjusted transition rate on the terminal sufficient to reduce degradation of a charge capacity characteristic of the electrochemical cell. A method determines characteristics of the transition modifying circuit. A degradation characteristic of the electrochemical cell is analyzed relative to a transition rate of the charge/discharge input applied to the electrochemical cell. An adjusted transition rate is determined for a signal to be applied to the electrochemical cell that will reduce the degradation characteristic. At least one of an inductance, a capacitance, and a resistance is selected for the transition modifying circuit to achieve the adjusted transition rate.
Position-sensitive proportional counter with low-resistance metal-wire anode
Kopp, Manfred K.
1980-01-01
A position-sensitive proportional counter circuit is provided which allows the use of a conventional (low-resistance, metal-wire anode) proportional counter for spatial resolution of an ionizing event along the anode of the counter. A pair of specially designed active-capacitance preamplifiers are used to terminate the anode ends wherein the anode is treated as an RC line. The preamplifiers act as stabilized active capacitance loads and each is composed of a series-feedback, low-noise amplifier, a unity-gain, shunt-feedback amplifier whose output is connected through a feedback capacitor to the series-feedback amplifier input. The stabilized capacitance loading of the anode allows distributed RC-line position encoding and subsequent time difference decoding by sensing the difference in rise times of pulses at the anode ends where the difference is primarily in response to the distributed capacitance along the anode. This allows the use of lower resistance wire anodes for spatial radiation detection which simplifies the counter construction and handling of the anodes, and stabilizes the anode resistivity at high count rates (>10.sup.6 counts/sec).
93-133 GHz Band InP High-Electron-Mobility Transistor Amplifier with Gain-Enhanced Topology
NASA Astrophysics Data System (ADS)
Sato, Masaru; Shiba, Shoichi; Matsumura, Hiroshi; Takahashi, Tsuyoshi; Nakasha, Yasuhiro; Suzuki, Toshihide; Hara, Naoki
2013-04-01
In this study, we developed a new type of high-frequency amplifier topology using 75-nm-gate-length InP-based high-electron-mobility transistors (InP HEMTs). To enhance the gain for a wide frequency range, a common-source common-gate hybrid amplifier topology was proposed. A transformer-based balun placed at the input of the amplifier generates differential signals, which are fed to the gate and source terminals of the transistor. The amplified signal is outputted at the drain node. The simulation results show that the hybrid topology exhibits a higher gain from 90 to 140 GHz than that of the conventional common-source or common-gate amplifier. The two-stage amplifier fabricated using the topology exhibits a small signal gain of 12 dB and a 3-dB bandwidth of 40 GHz (93-133 GHz), which is the largest bandwidth and the second highest gain reported among those of published 120-GHz-band amplifiers. In addition, the measured noise figure was 5 dB from 90 to 100 GHz.
Stochastic Models for Laser Propagation in Atmospheric Turbulence.
NASA Astrophysics Data System (ADS)
Leland, Robert Patton
In this dissertation, stochastic models for laser propagation in atmospheric turbulence are considered. A review of the existing literature on laser propagation in the atmosphere and white noise theory is presented, with a view toward relating the white noise integral and Ito integral approaches. The laser beam intensity is considered as the solution to a random Schroedinger equation, or forward scattering equation. This model is formulated in a Hilbert space context as an abstract bilinear system with a multiplicative white noise input, as in the literature. The model is also modeled in the Banach space of Fresnel class functions to allow the plane wave case and the application of path integrals. Approximate solutions to the Schroedinger equation of the Trotter-Kato product form are shown to converge for each white noise sample path. The product forms are shown to be physical random variables, allowing an Ito integral representation. The corresponding Ito integrals are shown to converge in mean square, providing a white noise basis for the Stratonovich correction term associated with this equation. Product form solutions for Ornstein -Uhlenbeck process inputs were shown to converge in mean square as the input bandwidth was expanded. A digital simulation of laser propagation in strong turbulence was used to study properties of the beam. Empirical distributions for the irradiance function were estimated from simulated data, and the log-normal and Rice-Nakagami distributions predicted by the classical perturbation methods were seen to be inadequate. A gamma distribution fit the simulated irradiance distribution well in the vicinity of the boresight. Statistics of the beam were seen to converge rapidly as the bandwidth of an Ornstein-Uhlenbeck process was expanded to its white noise limit. Individual trajectories of the beam were presented to illustrate the distortion and bending of the beam due to turbulence. Feynman path integrals were used to calculate an approximate expression for the mean of the beam intensity without using the Markov, or white noise, assumption, and to relate local variations in the turbulence field to the behavior of the beam by means of two approximations.
Transient Response in a Dendritic Neuron Model for Current Injected at One Branch
Rinzel, John; Rall, Wilfrid
1974-01-01
Mathematical expressions are obtained for the response function corresponding to an instantaneous pulse of current injected to a single dendritic branch in a branched dendritic neuron model. The theoretical model assumes passive membrane properties and the equivalent cylinder constraint on branch diameters. The response function when used in a convolution formula enables one to compute the voltage transient at any specified point in the dendritic tree for an arbitrary current injection at a given input location. A particular numerical example, for a brief current injection at a branch terminal, illustrates the attenuation and delay characteristics of the depolarization peak as it spreads throughout the neuron model. In contrast to the severe attenuation of voltage transients from branch input sites to the soma, the fraction of total input charge actually delivered to the soma and other trees is calculated to be about one-half. This fraction is independent of the input time course. Other numerical examples, which compare a branch terminal input site with a soma input site, demonstrate that, for a given transient current injection, the peak depolarization is not proportional to the input resistance at the injection site and, for a given synaptic conductance transient, the effective synaptic driving potential can be significantly reduced, resulting in less synaptic current flow and charge, for a branch input site. Also, for the synaptic case, the two inputs are compared on the basis of the excitatory post-synaptic potential (EPSP) seen at the soma and the total charge delivered to the soma. PMID:4424185
Cryogenic ultra-low-noise SiGe transistor amplifier.
Ivanov, B I; Trgala, M; Grajcar, M; Il'ichev, E; Meyer, H-G
2011-10-01
An ultra-low-noise one-stage SiGe heterojunction bipolar transistor amplifier was designed for cryogenic temperatures and a frequency range of 10 kHz-100 MHz. A noise temperature T(N) ≈ 1.4 K was measured at an ambient temperature of 4.2 K at frequencies between 100 kHz and 100 MHz for a source resistance of ~50 Ω. The voltage gain of the amplifier was 25 dB at a power consumption of 720 μW. The input voltage noise spectral density of the amplifier is about 35 pV/√Hz. The low noise resistance and power consumption makes the amplifier suitable for readout of resistively shunted DC SQUID magnetometers and amplifiers.
Discrete filtering techniques applied to sequential GPS range measurements
NASA Technical Reports Server (NTRS)
Vangraas, Frank
1987-01-01
The basic navigation solution is described for position and velocity based on range and delta range (Doppler) measurements from NAVSTAR Global Positioning System satellites. The application of discrete filtering techniques is examined to reduce the white noise distortions on the sequential range measurements. A second order (position and velocity states) Kalman filter is implemented to obtain smoothed estimates of range by filtering the dynamics of the signal from each satellite separately. Test results using a simulated GPS receiver show a steady-state noise reduction, the input noise variance divided by the output noise variance, of a factor of four. Recommendations for further noise reduction based on higher order Kalman filters or additional delta range measurements are included.
Noise Levels Associated With New York City's Mass Transit Systems
Gershon, Robyn R. M.; Zeltser, Marina; Canton, Allison; Akram, Muhammad
2009-01-01
Objectives. We measured noise levels associated with various forms of mass transit and compared them to exposure guidelines designed to protect against noise-induced hearing loss. Methods. We used noise dosimetry to measure time-integrated noise levels in a representative sample of New York City mass transit systems (subways, buses, ferries, tramway, and commuter railways) aboard transit vehicles and at vehicle boarding platforms or terminals during June and July 2007. Results. Of the transit types evaluated, subway cars and platforms had the highest associated equivalent continuous average (Leq) and maximum noise levels. All transit types had Leq levels appreciably above 70 A-weighted decibels, the threshold at which noise-induced hearing loss is considered possible. Conclusions. Mass transit noise exposure has the potential to exceed limits recommended by the World Health Organization and the US Environmental Protection Agency and thus cause noise-induced hearing loss among riders of all forms of mass transit given sufficient exposure durations. Environmental noise–control efforts in mass transit and, in cases in which controls are infeasible, the use of personal hearing protection would benefit the ridership's hearing health. PMID:19542046
Wu, Chung-Yu; Cheng, Cheng-Hsiang; Chen, Zhi-Xin
2018-06-01
In this paper, a 16-channel analog front-end (AFE) electrocorticography signal acquisition circuit for a closed-loop seizure control system is presented. It is composed of 16 input protection circuits, 16 auto-reset chopper-stabilized capacitive-coupled instrumentation amplifiers (AR-CSCCIA) with bandpass filters, 16 programmable transconductance gain amplifiers, a multiplexer, a transimpedance amplifier, and a 128-kS/s 10-bit delta-modulated successive-approximation-register analog-to-digital converter (SAR ADC). In closed-loop seizure control system applications, the stimulator shares the same electrode with the AFE amplifier for effective suppression of epileptic seizures. To prevent from overstress in MOS devices caused by high stimulation voltage, an input protection circuit with a high-voltage-tolerant switch is proposed for the AFE amplifier. Moreover, low input-referred noise is achieved by using the chopper modulation technique in the AR-CSCCIA. To reduce the undesired effects of chopper modulation, an improved offset reduction loop is proposed to reduce the output offset generated by input chopper mismatches. The digital ripple reduction loop is also used to reduce the chopper ripple. The fabricated AFE amplifier has 49.1-/59.4-/67.9-dB programmable gain and 2.02-μVrms input referred noise in a bandwidth of 0.59-117 Hz. The measured power consumption of the AFE amplifier is 3.26 μW per channel, and the noise efficiency factor is 3.36. The in vivo animal test has been successfully performed to verify the functions. It is shown that the proposed AFE acquisition circuit is suitable for implantable closed-loop seizure control systems.
Algorithm for astronomical, point source, signal to noise ratio calculations
NASA Technical Reports Server (NTRS)
Jayroe, R. R.; Schroeder, D. J.
1984-01-01
An algorithm was developed to simulate the expected signal to noise ratios as a function of observation time in the charge coupled device detector plane of an optical telescope located outside the Earth's atmosphere for a signal star, and an optional secondary star, embedded in a uniform cosmic background. By choosing the appropriate input values, the expected point source signal to noise ratio can be computed for the Hubble Space Telescope using the Wide Field/Planetary Camera science instrument.
NASA Technical Reports Server (NTRS)
Succi, G. P.
1983-01-01
The techniques of helicopter rotor noise prediction attempt to describe precisely the details of the noise field and remove the empiricisms and restrictions inherent in previous methods. These techniques require detailed inputs of the rotor geometry, operating conditions, and blade surface pressure distribution. The Farassat noise prediction techniques was studied, and high speed helicopter noise prediction using more detailed representations of the thickness and loading noise sources was investigated. These predictions were based on the measured blade surface pressures on an AH-1G rotor and compared to the measured sound field. Although refinements in the representation of the thickness and loading noise sources improve the calculation, there are still discrepancies between the measured and predicted sound field. Analysis of the blade surface pressure data indicates shocks on the blades, which are probably responsible for these discrepancies.
NASA Astrophysics Data System (ADS)
Kleinbaum, Ethan; Shingla, Vidhi; Csáthy, G. A.
2017-03-01
We present a dc Superconducting QUantum Interference Device (SQUID)-based current amplifier with an estimated input referred noise of only 2.3 fA/√{Hz}. Because of such a low amplifier noise, the circuit is useful for Johnson noise thermometry of quantum resistors in the kΩ range down to mK temperatures. In particular, we demonstrate that our circuit does not contribute appreciable noise to the Johnson noise of a 3.25 kΩ resistor down to 16 mK. Our circuit is a useful alternative to the commonly used High Electron Mobility Transistor-based amplifiers, but in contrast to the latter, it offers a much reduced 1/f noise. In comparison to SQUIDs interfaced with cryogenic current comparators, our circuit has similar low noise levels, but it is easier to build and to shield from magnetic pickup.
Méndez-Balbuena, Ignacio; Huidobro, Nayeli; Silva, Mayte; Flores, Amira; Trenado, Carlos; Quintanar, Luis; Arias-Carrión, Oscar; Kristeva, Rumyana; Manjarrez, Elias
2015-10-01
The present investigation documents the electrophysiological occurrence of multisensory stochastic resonance in the human visual pathway elicited by tactile noise. We define multisensory stochastic resonance of brain evoked potentials as the phenomenon in which an intermediate level of input noise of one sensory modality enhances the brain evoked response of another sensory modality. Here we examined this phenomenon in visual evoked potentials (VEPs) modulated by the addition of tactile noise. Specifically, we examined whether a particular level of mechanical Gaussian noise applied to the index finger can improve the amplitude of the VEP. We compared the amplitude of the positive P100 VEP component between zero noise (ZN), optimal noise (ON), and high mechanical noise (HN). The data disclosed an inverted U-like graph for all the subjects, thus demonstrating the occurrence of a multisensory stochastic resonance in the P100 VEP. Copyright © 2015 the American Physiological Society.
Performance of correlation receivers in the presence of impulse noise.
NASA Technical Reports Server (NTRS)
Moore, J. D.; Houts, R. C.
1972-01-01
An impulse noise model, which assumes that each noise burst contains a randomly weighted version of a basic waveform, is used to derive the performance equations for a correlation receiver. The expected number of bit errors per noise burst is expressed as a function of the average signal energy, signal-set correlation coefficient, bit time, noise-weighting-factor variance and probability density function, and a time range function which depends on the crosscorrelation of the signal-set basis functions and the noise waveform. Unlike the performance results for additive white Gaussian noise, it is shown that the error performance for impulse noise is affected by the choice of signal-set basis function, and that Orthogonal signaling is not equivalent to On-Off signaling with the same average energy. Furthermore, it is demonstrated that the correlation-receiver error performance can be improved by inserting a properly specified nonlinear device prior to the receiver input.
Non-Gaussian, non-dynamical stochastic resonance
NASA Astrophysics Data System (ADS)
Szczepaniec, Krzysztof; Dybiec, Bartłomiej
2013-11-01
The classical model revealing stochastic resonance is a motion of an overdamped particle in a double-well fourth order potential when combined action of noise and external periodic driving results in amplifying of weak signals. Resonance behavior can also be observed in non-dynamical systems. The simplest example is a threshold triggered device. It consists of a periodic modulated input and noise. Every time an output crosses the threshold the signal is recorded. Such a digitally filtered signal is sensitive to the noise intensity. There exists the optimal value of the noise intensity resulting in the "most" periodic output. Here, we explore properties of the non-dynamical stochastic resonance in non-equilibrium situations, i.e. when the Gaussian noise is replaced by an α-stable noise. We demonstrate that non-equilibrium α-stable noises, depending on noise parameters, can either weaken or enhance the non-dynamical stochastic resonance.
Microwave limb sounder. [measuring trace gases in the upper atmosphere
NASA Technical Reports Server (NTRS)
Gustincic, J. J. (Inventor)
1981-01-01
Trace gases in the upper atmosphere can be measured by comparing spectral noise content of limb soundings with the spectral noise content of cold space. An offset Cassegrain antenna system and tiltable input mirror alternately look out at the limb and up at cold space at an elevation angle of about 22. The mirror can also be tilted to look at a black body calibration target. Reflection from the mirror is directed into a radiometer whose head functions as a diplexer to combine the input radiation and a local ocillator (klystron) beam. The radiometer head is comprised of a Fabry-Perot resonator consisting of two Fabry-Perot cavities spaced a number of half wavelengths apart. Incoming radiation received on one side is reflected and rotated 90 deg in polarization by the resonator so that it will be reflected by an input grid into a mixer, while the klystron beam received on the other side is also reflected and rotated 90 deg, but not without passing some energy to be reflected by the input grid into the mixer.
NASA Technical Reports Server (NTRS)
Stewart, Elwood C.
1961-01-01
The determination of optimum filtering characteristics for guidance system design is generally a tedious process which cannot usually be carried out in general terms. In this report a simple explicit solution is given which is applicable to many different types of problems. It is shown to be applicable to problems which involve optimization of constant-coefficient guidance systems and time-varying homing type systems for several stationary and nonstationary inputs. The solution is also applicable to off-design performance, that is, the evaluation of system performance for inputs for which the system was not specifically optimized. The solution is given in generalized form in terms of the minimum theoretical error, the optimum transfer functions, and the optimum transient response. The effects of input signal, contaminating noise, and limitations on the response are included. From the results given, it is possible in an interception problem, for example, to rapidly assess the effects on minimum theoretical error of such factors as target noise and missile acceleration. It is also possible to answer important questions regarding the effect of type of target maneuver on optimum performance.
Line-of-sight pointing accuracy/stability analysis and computer simulation for small spacecraft
NASA Astrophysics Data System (ADS)
Algrain, Marcelo C.; Powers, Richard M.
1996-06-01
This paper presents a case study where a comprehensive computer simulation is developed to determine the driving factors contributing to spacecraft pointing accuracy and stability. The simulation is implemented using XMATH/SystemBuild software from Integrated Systems, Inc. The paper is written in a tutorial manner and models for major system components are described. Among them are spacecraft bus, attitude controller, reaction wheel assembly, star-tracker unit, inertial reference unit, and gyro drift estimators (Kalman filter). THe predicted spacecraft performance is analyzed for a variety of input commands and system disturbances. The primary deterministic inputs are desired attitude angles and rate setpoints. The stochastic inputs include random torque disturbances acting on the spacecraft, random gyro bias noise, gyro random walk, and star-tracker noise. These inputs are varied over a wide range to determine their effects on pointing accuracy and stability. The results are presented in the form of trade-off curves designed to facilitate the proper selection of subsystems so that overall spacecraft pointing accuracy and stability requirements are met.
NASA Astrophysics Data System (ADS)
Arsenault, Louis-François; Neuberg, Richard; Hannah, Lauren A.; Millis, Andrew J.
2017-11-01
We present a supervised machine learning approach to the inversion of Fredholm integrals of the first kind as they arise, for example, in the analytic continuation problem of quantum many-body physics. The approach provides a natural regularization for the ill-conditioned inverse of the Fredholm kernel, as well as an efficient and stable treatment of constraints. The key observation is that the stability of the forward problem permits the construction of a large database of outputs for physically meaningful inputs. Applying machine learning to this database generates a regression function of controlled complexity, which returns approximate solutions for previously unseen inputs; the approximate solutions are then projected onto the subspace of functions satisfying relevant constraints. Under standard error metrics the method performs as well or better than the Maximum Entropy method for low input noise and is substantially more robust to increased input noise. We suggest that the methodology will be similarly effective for other problems involving a formally ill-conditioned inversion of an integral operator, provided that the forward problem can be efficiently solved.
NASA Astrophysics Data System (ADS)
Fehenberger, Tobias
2018-02-01
This paper studies probabilistic shaping in a multi-span wavelength-division multiplexing optical fiber system with 64-ary quadrature amplitude modulation (QAM) input. In split-step fiber simulations and via an enhanced Gaussian noise model, three figures of merit are investigated, which are signal-to-noise ratio (SNR), achievable information rate (AIR) for capacity-achieving forward error correction (FEC) with bit-metric decoding, and the information rate achieved with low-density parity-check (LDPC) FEC. For the considered system parameters and different shaped input distributions, shaping is found to decrease the SNR by 0.3 dB yet simultaneously increases the AIR by up to 0.4 bit per 4D-symbol. The information rates of LDPC-coded modulation with shaped 64QAM input are improved by up to 0.74 bit per 4D-symbol, which is larger than the shaping gain when considering AIRs. This increase is attributed to the reduced coding gap of the higher-rate code that is used for decoding the nonuniform QAM input.
ERIC Educational Resources Information Center
Dorman, Michael F.; Natale, Sarah; Spahr, Anthony; Castioni, Erin
2017-01-01
Purpose: The aim of this experiment was to compare, for patients with cochlear implants (CIs), the improvement for speech understanding in noise provided by a monaural adaptive beamformer and for two interventions that produced bilateral input (i.e., bilateral CIs and hearing preservation [HP] surgery). Method: Speech understanding scores for…
NASA Technical Reports Server (NTRS)
Rajiyah, Harindra (Inventor); Hedeen, Robert A. (Inventor); Pla, Frederic G. (Inventor); Renshaw, Anthony A. (Inventor)
1995-01-01
A noise source for an aircraft engine active noise cancellation system in which the resonant frequency of a noise radiating element is tuned to permit noise cancellation over a wide range of frequencies. The resonant frequency of the noise radiating element is tuned by a plurality of force transmitting mechanisms which contact the noise radiating element. Each one of the force transmitting mechanisms includes an expandable element and a spring in contact with the noise radiating element so that excitation of the element varies the spring force applied to the noise radiating element. The elements are actuated by a controller which receives input of a signal proportional to displacement of the noise radiating element and a signal corresponding to the blade passage frequency of the engine's fan. In response, the controller determines a control signal which is sent to the elements and causes the spring force applied to the noise radiating element to be varied. The force transmitting mechanisms can be arranged to either produce bending or linear stiffness variations in the noise radiating element.
Intrinsic autocorrelation time of picoseconds for thermal noise in water.
Zhu, Zhi; Sheng, Nan; Wan, Rongzheng; Fang, Haiping
2014-10-02
Whether thermal noise is colored or white is of fundamental importance. In conventional theory, thermal noise is usually treated as white noise so that there are no directional transportations in the asymmetrical systems without external inputs, since only the colored fluctuations with appropriate autocorrelation time length can lead to directional transportations in the asymmetrical systems. Here, on the basis of molecular dynamics simulations, we show that the autocorrelation time length of thermal noise in water is ~10 ps at room temperature, which indicates that thermal noise is not white in the molecular scale while thermal noise can be reasonably assumed as white in macro- and meso-scale systems. The autocorrelation time length of thermal noise is intrinsic, since the value is almost unchanged for different temperature coupling methods. Interestingly, the autocorrelation time of thermal noise is correlated with the lifetime of hydrogen bonds, suggesting that the finite autocorrelation time length of thermal noise mainly comes from the finite lifetime of the interactions between neighboring water molecules.
Crew Procedures for Continuous Descent Arrivals Using Conventional Guidance
NASA Technical Reports Server (NTRS)
Oseguera-Lohr, Rosa M.; Williams, David H.; Lewis, Elliot T,
2007-01-01
This paper presents results from a simulation study which investigated the use of Continuous Descent Arrival (CDA) procedures for conducting a descent through a busy terminal area, using conventional transport-category automation. This research was part of the Low Noise Flight Procedures (LNFP) element within the Quiet Aircraft Technology (QAT) Project, that addressed development of flight guidance, and supporting pilot and Air Traffic Control (ATC) procedures for low noise operations. The procedures and chart were designed to be easy to understand, and to make it easy for the crew to make changes via the Flight Management Computer Control-Display Unit (FMC-CDU) to accommodate changes from ATC. The test runs were intended to represent situations typical of what exists in many of today's terminal areas, including interruptions to the descent in the form of clearances issued by ATC.
Prevention and Treatment of Noise-Induced Tinnitus
2012-07-01
process of completing the normative data base(s) of VGLUT1 , VAT and VGAT immunostaining in the rat AVCN and DCN that will allow assessment of changes under...our experimental conditions. Initial results indicate some loss of VGLUT1 immunolabeled auditory nerve terminals in the ventral cochlear nucleus...Research Accomplishments for TASK 3: Test the hypothesis that the loss of AN terminals (marked by VGLUT1 immunolabel) on neurons in the AVCN and
Effects of amyloid-β plaque proximity on the axon initial segment of pyramidal cells.
León-Espinosa, Gonzalo; DeFelipe, Javier; Muñoz, Alberto
2012-01-01
The output of cortical pyramidal cells reflects the balance between excitatory inputs of cortical and subcortical origin, and inhibitory inputs from distinct populations of cortical GABAergic interneurons, each of which selectively innervate different domains of neuronal pyramidal cells (i.e., dendrites, soma and axon initial segment [AIS]). In Alzheimer's disease (AD), the presence of amyloid-β (Aβ) plaques alters the synaptic input to pyramidal cells in a number of ways. However, the effects of Aβ plaques on the AIS have still not been investigated to date. This neuronal domain is involved in input integration, as well as action potential initiation and propagation, and it exhibits Ca2+- and activity-dependent structural plasticity. The AIS is innervated by GABAergic axon terminals from chandelier cells, which are thought to exert a strong influence on pyramidal cell output. In the AβPP/PS1 transgenic mouse model of AD, we have investigated the effects of Aβ plaques on the morphological and neurochemical features of the AIS, including the cisternal organelle, using immunocytochemistry and confocal microscopy, as well as studying the innervation of the AIS by chandelier cell axon terminals. There is a strong reduction in GABAergic terminals that appose AIS membrane surfaces that are in contact with Aβ plaques, indicating altered inhibitory synapsis at the AIS. Thus, despite a lack of gross structural alterations in the AIS, this decrease in GABAergic innervation may deregulate AIS activity and contribute to the hyperactivity of neurons in contact with Aβ plaques.
Estimating atmospheric parameters and reducing noise for multispectral imaging
Conger, James Lynn
2014-02-25
A method and system for estimating atmospheric radiance and transmittance. An atmospheric estimation system is divided into a first phase and a second phase. The first phase inputs an observed multispectral image and an initial estimate of the atmospheric radiance and transmittance for each spectral band and calculates the atmospheric radiance and transmittance for each spectral band, which can be used to generate a "corrected" multispectral image that is an estimate of the surface multispectral image. The second phase inputs the observed multispectral image and the surface multispectral image that was generated by the first phase and removes noise from the surface multispectral image by smoothing out change in average deviations of temperatures.
Evaluation of Speech Perception via the Use of Hearing Loops and Telecoils
Holmes, Alice E.; Kricos, Patricia B.; Gaeta, Laura; Martin, Sheridan
2015-01-01
A cross-sectional, experimental, and randomized repeated-measures design study was used to examine the objective and subjective value of telecoil and hearing loop systems. Word recognition and speech perception were tested in 12 older adult hearing aid users using the telecoil and microphone inputs in quiet and noise conditions. Participants were asked to subjectively rate cognitive listening effort and self-confidence for each condition. Significant improvement in speech perception with the telecoil over microphone input in both quiet and noise was found along with significantly less reported cognitive listening effort and high self-confidence. The use of telecoils with hearing aids should be recommended for older adults with hearing loss. PMID:28138458
Multi-channel detector readout method and integrated circuit
Moses, William W.; Beuville, Eric; Pedrali-Noy, Marzio
2006-12-12
An integrated circuit which provides multi-channel detector readout from a detector array. The circuit receives multiple signals from the elements of a detector array and compares the sampled amplitudes of these signals against a noise-floor threshold and against one another. A digital signal is generated which corresponds to the location of the highest of these signal amplitudes which exceeds the noise floor threshold. The digital signal is received by a multiplexing circuit which outputs an analog signal corresponding the highest of the input signal amplitudes. In addition a digital control section provides for programmatic control of the multiplexer circuit, amplifier gain, amplifier reset, masking selection, and test circuit functionality on each input thereof.
Multi-channel detector readout method and integrated circuit
Moses, William W.; Beuville, Eric; Pedrali-Noy, Marzio
2004-05-18
An integrated circuit which provides multi-channel detector readout from a detector array. The circuit receives multiple signals from the elements of a detector array and compares the sampled amplitudes of these signals against a noise-floor threshold and against one another. A digital signal is generated which corresponds to the location of the highest of these signal amplitudes which exceeds the noise floor threshold. The digital signal is received by a multiplexing circuit which outputs an analog signal corresponding the highest of the input signal amplitudes. In addition a digital control section provides for programmatic control of the multiplexer circuit, amplifier gain, amplifier reset, masking selection, and test circuit functionality on each input thereof.
ULTRA-STABILIZED D. C. AMPLIFIER
Hartwig, E.C.; Kuenning, R.W.; Acker, R.C.
1959-02-17
An improved circuit is described for stabilizing the drift and minimizing the noise and hum level of d-c amplifiers so that the output voltage will be zero when the input is zero. In its detailed aspects, the disclosed circuit incorporates a d-c amplifier having a signal input, a second input, and an output circuit coupled back to the first input of the amplifier through inverse feedback means. An electronically driven chopper having a pair of fixed contacts and a moveable contact alternately connects the two inputs of a difference amplifier to the signal input. The A. E. error signal produced in the difference amplifier is amplified, rectified, and applied to the second input of the amplifier as the d-c stabilizing voltage.
Two Unipolar Terminal-Attractor-Based Associative Memories
NASA Technical Reports Server (NTRS)
Liu, Hua-Kuang; Wu, Chwan-Hwa
1995-01-01
Two unipolar mathematical models of electronic neural network functioning as terminal-attractor-based associative memory (TABAM) developed. Models comprise sets of equations describing interactions between time-varying inputs and outputs of neural-network memory, regarded as dynamical system. Simplifies design and operation of optoelectronic processor to implement TABAM performing associative recall of images. TABAM concept described in "Optoelectronic Terminal-Attractor-Based Associative Memory" (NPO-18790). Experimental optoelectronic apparatus that performed associative recall of binary images described in "Optoelectronic Inner-Product Neural Associative Memory" (NPO-18491).
Fanning, Alan W.; Olich, Eugene E.
1994-01-01
An electrical stator of an electromagnetic pump includes first and second spaced apart coils each having input and output terminals for carrying electrical current. An elongate electrical connector extends between the first and second coils and has first and second opposite ends. The connector ends include respective slots receiving therein respective ones of the coil terminals to define respective first and second joints. Each of the joints includes a braze filler fixedly joining the connector ends to the respective coil terminals for carrying electrical current therethrough.
Experiments for Ka-band mobile applications: The ACTS mobile terminal
NASA Technical Reports Server (NTRS)
Estabrook, Polly; Dessouky, Khaled; Jedrey, Thomas
1990-01-01
To explore the potential of Ka-band to support mobile satellite services, the Jet Propulsion Laboratory (JPL) has initiated the design and development of a Ka-band land-mobile terminal to be used with the Advanced Communications Technology Satellite (ACTS). The planned experimental setup with ACTS is described. Brief functional descriptions of the mobile and fixed terminals are provided. The inputs required from the propagation community to support the design activities and the planned experiments are also discussed.
Accelerating Learning By Neural Networks
NASA Technical Reports Server (NTRS)
Toomarian, Nikzad; Barhen, Jacob
1992-01-01
Electronic neural networks made to learn faster by use of terminal teacher forcing. Method of supervised learning involves addition of teacher forcing functions to excitations fed as inputs to output neurons. Initially, teacher forcing functions are strong enough to force outputs to desired values; subsequently, these functions decay with time. When learning successfully completed, terminal teacher forcing vanishes, and dynamics or neural network become equivalent to those of conventional neural network. Simulated neural network with terminal teacher forcing learned to produce close approximation of circular trajectory in 400 iterations.
High dynamic range pixel architecture for advanced diagnostic medical x-ray imaging applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Izadi, Mohammad Hadi; Karim, Karim S.
2006-05-15
The most widely used architecture in large-area amorphous silicon (a-Si) flat panel imagers is a passive pixel sensor (PPS), which consists of a detector and a readout switch. While the PPS has the advantage of being compact and amenable toward high-resolution imaging, small PPS output signals are swamped by external column charge amplifier and data line thermal noise, which reduce the minimum readable sensor input signal. In contrast to PPS circuits, on-pixel amplifiers in a-Si technology reduce readout noise to levels that can meet even the stringent requirements for low noise digital x-ray fluoroscopy (<1000 noise electrons). However, larger voltagesmore » at the pixel input cause the output of the amplified pixel to become nonlinear thus reducing the dynamic range. We reported a hybrid amplified pixel architecture based on a combination of PPS and amplified pixel designs that, in addition to low noise performance, also resulted in large-signal linearity and consequently higher dynamic range [K. S. Karim et al., Proc. SPIE 5368, 657 (2004)]. The additional benefit in large-signal linearity, however, came at the cost of an additional pixel transistor. We present an amplified pixel design that achieves the goals of low noise performance and large-signal linearity without the need for an additional pixel transistor. Theoretical calculations and simulation results for noise indicate the applicability of the amplified a-Si pixel architecture for high dynamic range, medical x-ray imaging applications that require switching between low exposure, real-time fluoroscopy and high-exposure radiography.« less
Noise tolerant dendritic lattice associative memories
NASA Astrophysics Data System (ADS)
Ritter, Gerhard X.; Schmalz, Mark S.; Hayden, Eric; Tucker, Marc
2011-09-01
Linear classifiers based on computation over the real numbers R (e.g., with operations of addition and multiplication) denoted by (R, +, x), have been represented extensively in the literature of pattern recognition. However, a different approach to pattern classification involves the use of addition, maximum, and minimum operations over the reals in the algebra (R, +, maximum, minimum) These pattern classifiers, based on lattice algebra, have been shown to exhibit superior information storage capacity, fast training and short convergence times, high pattern classification accuracy, and low computational cost. Such attributes are not always found, for example, in classical neural nets based on the linear inner product. In a special type of lattice associative memory (LAM), called a dendritic LAM or DLAM, it is possible to achieve noise-tolerant pattern classification by varying the design of noise or error acceptance bounds. This paper presents theory and algorithmic approaches for the computation of noise-tolerant lattice associative memories (LAMs) under a variety of input constraints. Of particular interest are the classification of nonergodic data in noise regimes with time-varying statistics. DLAMs, which are a specialization of LAMs derived from concepts of biological neural networks, have successfully been applied to pattern classification from hyperspectral remote sensing data, as well as spatial object recognition from digital imagery. The authors' recent research in the development of DLAMs is overviewed, with experimental results that show utility for a wide variety of pattern classification applications. Performance results are presented in terms of measured computational cost, noise tolerance, classification accuracy, and throughput for a variety of input data and noise levels.
Nanowire NMOS Logic Inverter Characterization.
Hashim, Yasir
2016-06-01
This study is the first to demonstrate characteristics optimization of nanowire N-Channel Metal Oxide Semiconductor (NW-MOS) logic inverter. Noise margins and inflection voltage of transfer characteristics are used as limiting factors in this optimization. A computer-based model used to produce static characteristics of NW-NMOS logic inverter. In this research two circuit configuration of NW-NMOS inverter was studied, in first NW-NMOS circuit, the noise margin for (low input-high output) condition was very low. For second NMOS circuit gives excellent noise margins, and results indicate that optimization depends on applied voltage to the inverter. Increasing gate to source voltage with (2/1) nanowires ratio results better noise margins. Increasing of applied DC load transistor voltage tends to increasing in decreasing noise margins; decreasing this voltage will improve noise margins significantly.
Gupta, Rajeev
2017-09-02
The drift kinetic energy of ionic flow through single ion channels cause vibrations of the pore walls which are observed as open-state current fluctuations (open-channel noise) during single-channel recordings. Vibration of the pore wall leads to transitions among different conformational sub-states of the channel protein in the open-state. Open-channel noise analysis can provide important information about the different conformational sub-state transitions and how biochemical modifications of ion channels would affect their transport properties. It has been shown that c-Jun N-terminal kinase-3 (JNK3) becomes activated by phosphorylation in various neurodegenerative diseases and phosphorylates outer mitochondrion associated proteins leading to neuronal apoptosis. In our earlier work, JNK3 has been reported to phosphorylate purified rat brain mitochondrial voltage-dependent anion channel (VDAC) in vitro and modify its conductance and opening probability. In this article we have compared the open-state noise profile of the native and the JNK3 phosphorylated VDAC using Power Spectral Density vs frequency plots. Power spectral density analysis of open-state noise indicated power law with average slope value α ≈1 for native VDAC at both positive and negative voltage whereas average α value < 0.5 for JNK3 phosphorylated VDAC at both positive and negative voltage. It is proposed that 1/f 1 power law in native VDAC open-state noise arises due to coupling of ionic transport and conformational sub-states transitions in open-state and this coupling is perturbed as a result of channel phosphorylation. Copyright © 2017 Elsevier Inc. All rights reserved.
A Research Program in Computer Technology. Volume 1
1981-08-01
rigidity, sensor networks 10. command and control, digital voice communication, graphic input device for terminal, multimedia communications, portable...satellite channel in the internetwork environment; Distributed Sensor Networks - formulation of algorithms and communication protocols to support the...operation of geographically distributed sensors ; Personal Communicator - work intended to result in a demonstration-level portable terminal to test and
MEDOF - MINIMUM EUCLIDEAN DISTANCE OPTIMAL FILTER
NASA Technical Reports Server (NTRS)
Barton, R. S.
1994-01-01
The Minimum Euclidean Distance Optimal Filter program, MEDOF, generates filters for use in optical correlators. The algorithm implemented in MEDOF follows theory put forth by Richard D. Juday of NASA/JSC. This program analytically optimizes filters on arbitrary spatial light modulators such as coupled, binary, full complex, and fractional 2pi phase. MEDOF optimizes these modulators on a number of metrics including: correlation peak intensity at the origin for the centered appearance of the reference image in the input plane, signal to noise ratio including the correlation detector noise as well as the colored additive input noise, peak to correlation energy defined as the fraction of the signal energy passed by the filter that shows up in the correlation spot, and the peak to total energy which is a generalization of PCE that adds the passed colored input noise to the input image's passed energy. The user of MEDOF supplies the functions that describe the following quantities: 1) the reference signal, 2) the realizable complex encodings of both the input and filter SLM, 3) the noise model, possibly colored, as it adds at the reference image and at the correlation detection plane, and 4) the metric to analyze, here taken to be one of the analytical ones like SNR (signal to noise ratio) or PCE (peak to correlation energy) rather than peak to secondary ratio. MEDOF calculates filters for arbitrary modulators and a wide range of metrics as described above. MEDOF examines the statistics of the encoded input image's noise (if SNR or PCE is selected) and the filter SLM's (Spatial Light Modulator) available values. These statistics are used as the basis of a range for searching for the magnitude and phase of k, a pragmatically based complex constant for computing the filter transmittance from the electric field. The filter is produced for the mesh points in those ranges and the value of the metric that results from these points is computed. When the search is concluded, the values of amplitude and phase for the k whose metric was largest, as well as consistency checks, are reported. A finer search can be done in the neighborhood of the optimal k if desired. The filter finally selected is written to disk in terms of drive values, not in terms of the filter's complex transmittance. Optionally, the impulse response of the filter may be created to permit users to examine the response for the features the algorithm deems important to the recognition process under the selected metric, limitations of the filter SLM, etc. MEDOF uses the filter SLM to its greatest potential, therefore filter competence is not compromised for simplicity of computation. MEDOF is written in C-language for Sun series computers running SunOS. With slight modifications, it has been implemented on DEC VAX series computers using the DEC-C v3.30 compiler, although the documentation does not currently support this platform. MEDOF can also be compiled using Borland International Inc.'s Turbo C++ v1.0, but IBM PC memory restrictions greatly reduce the maximum size of the reference images from which the filters can be calculated. MEDOF requires a two dimensional Fast Fourier Transform (2DFFT). One 2DFFT routine which has been used successfully with MEDOF is a routine found in "Numerical Recipes in C: The Art of Scientific Programming," which is available from Cambridge University Press, New Rochelle, NY 10801. The standard distribution medium for MEDOF is a .25 inch streaming magnetic tape cartridge (Sun QIC-24) in UNIX tar format. MEDOF was developed in 1992-1993.
Two terminal micropower radar sensor
McEwan, Thomas E.
1995-01-01
A simple, low power ultra-wideband radar motion sensor/switch configuration connects a power source and load to ground. The switch is connected to and controlled by the signal output of a radar motion sensor. The power input of the motion sensor is connected to the load through a diode which conducts power to the motion sensor when the switch is open. A storage capacitor or rechargeable battery is connected to the power input of the motion sensor. The storage capacitor or battery is charged when the switch is open and powers the motion sensor when the switch is closed. The motion sensor and switch are connected between the same two terminals between the source/load and ground.
Two terminal micropower radar sensor
McEwan, T.E.
1995-11-07
A simple, low power ultra-wideband radar motion sensor/switch configuration connects a power source and load to ground. The switch is connected to and controlled by the signal output of a radar motion sensor. The power input of the motion sensor is connected to the load through a diode which conducts power to the motion sensor when the switch is open. A storage capacitor or rechargeable battery is connected to the power input of the motion sensor. The storage capacitor or battery is charged when the switch is open and powers the motion sensor when the switch is closed. The motion sensor and switch are connected between the same two terminals between the source/load and ground. 3 figs.
NASA's Subsonic Jet Transport Noise Reduction Research
NASA Technical Reports Server (NTRS)
Powell, Clemans A.; Preisser, John S.
2000-01-01
Although new jet transport airplanes in today s fleet are considerably quieter than the first jet transports introduced about 40 years ago, airport community noise continues to be an important environmental issue. NASA s Advanced Subsonic Transport (AST) Noise Reduction program was begun in 1994 as a seven-year effort to develop technology to reduce jet transport noise 10 dB relative to 1992 technology. This program provides for reductions in engine source noise, improvements in nacelle acoustic treatments, reductions in the noise generated by the airframe, and improvements in the way airplanes are operated in the airport environs. These noise reduction efforts will terminate at the end of 2001 and it appears that the objective will be met. However, because of an anticipated 3-8% growth in passenger and cargo operations well into the 21st Century and the slow introduction of new the noise reduction technology into the fleet, world aircraft noise impact will remain essentially constant until about 2020 to 2030 and thereafter begin to rise. Therefore NASA has begun planning with the Federal Aviation Administration, industry, universities and environmental interest groups in the USA for a new noise reduction initiative to provide technology for significant further reductions.
Research and development of a high-performance differential-hybrid charge sensitive preamplifier.
Zeng, Guoqiang; Hu, Chuanhao; Wei, Shilong; Yang, Jian; Li, Qiang; Ge, Liangquan; Tan, Chengjun
2017-02-01
A differential-hybrid charge sensitive preamplifier (CSP) was designed by taking a monolithic dual N-Channel Junction Field-effect Transistor (JFET) and a high-speed, low-noise, operational amplifier as the core parts. Input-stage of the circuit employs low-noise differential dual JFET, which ensures high input impedance and low noise. The differential dual transistor makes the quiescent point of the first-stage differential output stable, which is convenient for connecting with the post stage high-speed operational amplifier. Broadband could be amplified by connecting to the double differential dual transistors through the folded cascode-bootstrap. The amplifying circuit which replaces the interstage and post stage discrete components of a traditional CSP with integrated operational amplifier is simpler and more reliable. It simplifies the design of the quiescent point, gives full play to advantages of releasing large open-loop gain, and improves charge-voltage conversion gain stability. Particularly, the charge-voltage conversion gain is larger under a smaller feedback capacitor, thus enabling to gain better signal-noise ratio. The designed CSP was tested, reporting 3.3×10 13 V/C charge sensitivity, about 90ns rise time of signals, 35:1 signal-noise ratio to gamma-rays of 137 Cs (662keV) and a 0.023 fC/pF noise slope. Gamma-rays of 241 Am (59.5keV) were measured by the BPX66 detector and the designed CSP under room temperature, providing 1.97% energy resolution. Copyright © 2016 Elsevier Ltd. All rights reserved.
An inductorless multi-mode RF front end for GNSS receiver in 55 nm CMOS
NASA Astrophysics Data System (ADS)
Yanbin, Luo; Chengyan, Ma; Yebing, Gan; Min, Qian; Tianchun, Ye
2015-10-01
An inductorless multi-mode RF front end for a global navigation satellite system (GNSS) receiver is presented. Unlike the traditional topology of a low noise amplifier (LNA), the inductorless current-mode noise-canceling LNA is applied in this design. The high-impedance-input radio frequency amplifier (RFA) further amplifies the GNSS signals and changes the single-end signal path into fully differential. The passive mixer down-converts the signals to the intermediate frequency (IF) band and conveys the signals to the analogue blocks. The local oscillator (LO) buffer divides the output frequency of the voltage controlled oscillator (VCO) and generates 25%-duty-cycle quadrature square waves to drive the mixer. Our measurement results display that the implemented RF front end achieves good overall performance while consuming only 6.7 mA from 1.2 V supply. The input return loss is better than -26 dB and the ultra low noise figure of 1.43 dB leads to high sensitivity of the GNSS receiver. The input 1 dB compression point is -43 dBm at the high gain of 48 dB. The designed circuit is fabricated in 55 nm CMOS technology and the die area, which is much smaller than traditional circuit, is around 220 × 280 μm2.
Hage, Steffen R; Jiang, Tinglei; Berquist, Sean W; Feng, Jiang; Metzner, Walter
2014-07-15
One of the most efficient mechanisms to optimize signal-to-noise ratios is the Lombard effect - an involuntary rise in call amplitude due to ambient noise. It is often accompanied by changes in the spectro-temporal composition of calls. We examined the effects of broadband-filtered noise on the spectro-temporal composition of horseshoe bat echolocation calls, which consist of a constant-frequency component and initial and terminal frequency-modulated components. We found that the frequency-modulated components became larger for almost all noise conditions, whereas the bandwidth of the constant-frequency component increased only when broadband-filtered noise was centered on or above the calls' dominant or fundamental frequency. This indicates that ambient noise independently modifies the associated acoustic parameters of the Lombard effect, such as spectro-temporal features, and could significantly affect the bat's ability to detect and locate targets. Our findings may be of significance in evaluating the impact of environmental noise on echolocation behavior in bats. © 2014. Published by The Company of Biologists Ltd.
Current Noise from a Magnetic Moment in a Helical Edge
NASA Astrophysics Data System (ADS)
Väyrynen, Jukka I.; Glazman, Leonid I.
2017-03-01
We calculate the two-terminal current noise generated by a magnetic moment coupled to a helical edge of a two-dimensional topological insulator. When the system is symmetric with respect to in-plane spin rotation, the noise is dominated by the Nyquist component even in the presence of a voltage bias V . The corresponding noise spectrum S (V ,ω ) is determined by a modified fluctuation-dissipation theorem with the differential conductance G (V ,ω ) in place of the linear one. The differential noise ∂S /∂V , commonly measured in experiments, is strongly dependent on frequency on a small scale τK-1≪T set by the Korringa relaxation rate of the local moment. This is in stark contrast to the case of conventional mesoscopic conductors where ∂S /∂V is frequency independent and defined by the shot noise. In a helical edge, a violation of the spin-rotation symmetry leads to the shot noise, which becomes important only at a high bias. Uncharacteristically for a fermion system, this noise in the backscattered current is super-Poissonian.
Noise-Aided Logic in an Electronic Analog of Synthetic Genetic Networks
Hellen, Edward H.; Dana, Syamal K.; Kurths, Jürgen; Kehler, Elizabeth; Sinha, Sudeshna
2013-01-01
We report the experimental verification of noise-enhanced logic behaviour in an electronic analog of a synthetic genetic network, composed of two repressors and two constitutive promoters. We observe good agreement between circuit measurements and numerical prediction, with the circuit allowing for robust logic operations in an optimal window of noise. Namely, the input-output characteristics of a logic gate is reproduced faithfully under moderate noise, which is a manifestation of the phenomenon known as Logical Stochastic Resonance. The two dynamical variables in the system yield complementary logic behaviour simultaneously. The system is easily morphed from AND/NAND to OR/NOR logic. PMID:24124531
Uniform apparent contrast noise: A picture of the noise of the visual contrast detection system
NASA Technical Reports Server (NTRS)
Ahumada, A. J., Jr.; Watson, A. B.
1984-01-01
A picture which is a sample of random contrast noise is generated. The noise amplitude spectrum in each region of the picture is inversely proportional to spatial frequency contrast sensitivity for that region, assuming the observer fixates the center of the picture and is the appropriate distance from it. In this case, the picture appears to have approximately the same contrast everywhere. To the extent that contrast detection thresholds are determined by visual system noise, this picture can be regarded as a picture of the noise of that system. There is evidence that, at different eccentricities, contrast sensitivity functions differ only by a magnification factor. The picture was generated by filtering a sample of white noise with a filter whose frequency response is inversely proportional to foveal contrast sensitivity. It was then stretched by a space-varying magnification function. The picture summmarizes a noise linear model of detection and discrimination of contrast signals by referring the model noise to the input picture domain.
Noise reduction efforts for the ALS infrared beamlines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scarvie, Tom; Andresen, Nord; Baptiste, Ken
2003-08-10
The quality of infrared microscopy and spectroscopy data collected at synchrotron based sources is strongly dependent on signal-to-noise. We have successfully identified and suppressed several noise sources affecting Beamlines 1.4.2, 1.4.3, and 1.4.4 at the Advanced Light Source (ALS), resulting in a significant increase in the quality of FTIR spectra obtained. In this paper, we present our methods of noise source analysis, the negative effect of noise on the infrared beam quality, and the techniques used to reduce the noise. These include reducing the phase noise in the storage ring radio-frequency (RF) system, installing an active mirror feedback system, analyzingmore » and changing physical mounts to better isolate portions of the beamline optics from low-frequency environmental noise, and modifying the input signals to the main ALS RF system. We also discuss the relationship between electron beam energy oscillations at a point of dispersion and infrared beamline noise.« less
Noise Reduction Efforts for the ALS Infrared Beamlines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scarvie, Tom; Andresen, Nord; Baptiste, Ken
2004-05-12
The quality of infrared microscopy and spectroscopy data collected at synchrotron based sources is strongly dependent on signal-to-noise. We have successfully identified and suppressed several noise sources affecting Beamlines 1.4.2, 1.4.3, and 1.4.4 at the Advanced Light Source (ALS), resulting in a significant increase in the quality of FTIR spectra obtained. In this paper, we present our methods of noise source analysis, the negative effect of noise on the infrared beam quality, and the techniques used to reduce the noise. These include reducing the phase noise in the storage ring radio-frequency (RF) system, installing an active mirror feedback system, analyzingmore » and changing physical mounts to better isolate portions of the beamline optics from low-frequency environmental noise, and modifying the input signals to the main ALS RF system. We also discuss the relationship between electron beam energy oscillations at a point of dispersion and infrared beamline noise.« less
NASA Astrophysics Data System (ADS)
Kohjiro, Satoshi; Hirayama, Fuminori; Yamamori, Hirotake; Nagasawa, Shuichi; Fukuda, Daiji; Hidaka, Mutsuo
2014-06-01
White noise of dissipationless microwave radio frequency superconducting quantum interference device (RF-SQUID) multiplexers has been experimentally studied to evaluate their readout performance for transition edge sensor (TES) photon counters ranging from near infrared to gamma ray. The characterization has been carried out at 4 K, first to avoid the low-frequency fluctuations present at around 0.1 K, and second, for a feasibility study of readout operation at 4 K for extended applications. To increase the resonant Q at 4 K and maintain low noise SQUID operation, multiplexer chips consisting of niobium nitride (NbN)-based coplanar-waveguide resonators and niobium (Nb)-based RF-SQUIDs have been developed. This hybrid multiplexer exhibited 1 × 104 ≤ Q ≤ 2 × 104 and the square root of spectral density of current noise referred to the SQUID input √SI = 31 pA/√Hz. The former and the latter are factor-of-five and seven improvements from our previous results on Nb-based resonators, respectively. Two-directional readout on the complex plane of the transmission component of scattering matrix S21 enables us to distinguish the flux noise from noise originating from other sources, such as the cryogenic high electron mobility transistor (HEMT) amplifier. Systematic noise measurements with various microwave readout powers PMR make it possible to distinguish the contribution of noise sources within the system as follows: (1) The achieved √SI is dominated by the Nyquist noise from a resistor at 4 K in parallel to the SQUID input coil which is present to prevent microwave leakage to the TES. (2) The next dominant source is either the HEMT-amplifier noise (for small values of PMR) or the quantization noise due to the resolution of 300-K electronics (for large values of PMR). By a decrease of these noise levels to a degree that is achievable by current technology, we predict that the microwave RF-SQUID multiplexer can exhibit √SI ≤ 5 pA/√Hz, i.e., close to √SI of state-of-the-art DC-SQUID-based multiplexers.
Jet Surface Interaction Noise in a High Aspect Ratio Rectangular Exhaust
NASA Technical Reports Server (NTRS)
Khavaran, Abbas
2017-01-01
A physics-based prediction model is employed to simulate jet surface interaction (JSI) noise in a transversely sheared jet exhaust. The methodology finds application in jets with a high aspect ratio (AR) rectangular exhaust in the proximity of a flat surface. Two component spectra are simulated: (i) mixing/scrubbing noise; (ii) trailing edge noise--and are superimposed to obtain the far field exhaust noise on either side of a nearby surface. This document describes the necessary input parameters (including mean flow and turbulence information for the nozzle exhaust of interest) that should be prepared in order to initiate the simulation for each noise component. Sample input/output files in connection with an 8:1 aspect ratio rectangular exhaust at Mach 0.98 near a rigid surface are described. Jet noise spectra are examined below at operating conditions listed in Table IV. Individual noise components, designated as Scrubbing Noise and Trailing Edge Noise, are presented and their sum Total Noise (Analysis) is compared with Measurement (Refs. 8 and 9) at selective number of observer polar angles at azimuth f = 90deg. Results are presented on an arc R = 17.80-ft (i.e., R = 100Deq) on both sides of a nearby surface. Although the predicted TE noise component is symmetric with respect to the edge due to symmetry in the propagator, measurements for the majority of cases are not quite symmetric and exhibit a slightly larger peak on the reflected side of the surface. Turbulent mixing/scrubbing noise component has a greater presence on the reflected side, as expected. Figure 13 to Figure 18 show that the peak in the predicted TE component could differ from measurements by as much as 4 dB due to lack of symmetry in measured data, however, the general trend is in agreement with data across the three Mach numbers. The overall sound pressure level (OASPL) associated with the TE noise component follows a U5 velocity scaling in the current modeling (Ref. 4). Directivity predictions for the TE noise component as well as the total noise are shown in Figure 19 (bottom)-and are compared with measurements (top figure) at conditions of Table IV. As anticipated, the TE noise component (dashed-line) overwhelms the directivity factor due to its dominant spectral peak level. Only at small angles to the jet axis the mixing noise component contributes significant enough to weight noticeably on the total noise.
Sun, Shan C.; Chaprnka, Anthony G.
1977-01-11
An automatic gain control circuit functions to adjust the magnitude of an input signal supplied to a measuring circuit to a level within the dynamic range of the measuring circuit while a log-ratio circuit adjusts the magnitude of the output signal from the measuring circuit to the level of the input signal and optimizes the signal-to-noise ratio performance of the measuring circuit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giovannetti, Vittorio; Maccone, Lorenzo; Shapiro, Jeffrey H.
The minimum Renyi and Wehrl output entropies are found for bosonic channels in which the signal photons are either randomly displaced by a Gaussian distribution (classical-noise channel), or coupled to a thermal environment through lossy propagation (thermal-noise channel). It is shown that the Renyi output entropies of integer orders z{>=}2 and the Wehrl output entropy are minimized when the channel input is a coherent state.
The front-end electronics of the LSPE-SWIPE experiment
NASA Astrophysics Data System (ADS)
Fontanelli, F.; Biasotti, M.; Bevilacqua, A.; Siccardi, F.
2016-07-01
The SWIPE detector of the Ballon Borne Mission LSPE (see e.g. the contribution of P. de Bernardis et al. in this conference) intends to measure the primordial 'B-mode' polarization of the Cosmic Microwave Background (CMB). For this scope microwave telescopes need sensitive cryogenic bolometers with an overall equivalent noise temperature in the nK range. The detector is a spiderweb bolometer based on transition edge sensor and followed by a SQUID to perform the signal readout. This contribution will concentrate on the design, description and first tests on the front-end electronics which processes the squid output (and controls it). The squid output is first amplified by a very low noise preamplifier based on a discrete JFET input differential architecture followed by a low noise CMOS operational amplifier. Equivalent input noise density is 0.6 nV/Hz and bandwidth extends up to at least 2 MHz. Both devices (JFET and CMOS amplifier) have been tested at liquid nitrogen. The second part of the contribution will discuss design and results of the control electronics, both the flux locked loop for the squid and the slow control chain to monitor and set up the system will be reviewed.
A System for Multiplexed Direct Electrical Detection of DNA Synthesis.
Anderson, Erik P; Daniels, Jonathan S; Yu, Heng; Karhanek, Miloslav; Lee, Thomas H; Davis, Ronald W; Pourmand, Nader
2008-01-29
An electronic system for the multiplexed detection of DNA polymerization is designed and characterized. DNA polymerization is detected by the measurement of small transient currents arising from ion diffusion during polymerization. A transimpedance amplifier is used to detect these small currents; we implemented a twenty-four channel recording system on a single printed circuit board. Various contributions to the input-referred current noise are analyzed and characterized, as it limits the minimum detectable current and thus the biological limit of detection. We obtained 8.5 pA RMS mean noise current (averaged over all 24 channels) over the recording bandwidth (DC to 2 kHz). With digital filtering, the input-referred current noise of the acquisition system is reduced to 2.4 pA, which is much lower than the biological noise. Electrical crosstalk between channels is measured, and a model for the crosstalk is presented. Minimizing the crosstalk is critical because it can lead to erroneous microarray data. With proper precautions, crosstalk is reduced to a negligible value (less than 1.4%). Using a micro-fabricated array of 24 gold electrodes, we demonstrated system functionality by detecting the presence of a target DNA oligonucleotide which hybridized onto its corresponding target.
A Study of Morrison's Iterative Noise Removal Method. Final Report M. S. Thesis
NASA Technical Reports Server (NTRS)
Ioup, G. E.; Wright, K. A. R.
1985-01-01
Morrison's iterative noise removal method is studied by characterizing its effect upon systems of differing noise level and response function. The nature of data acquired from a linear shift invariant instrument is discussed so as to define the relationship between the input signal, the instrument response function, and the output signal. Fourier analysis is introduced, along with several pertinent theorems, as a tool to more thorough understanding of the nature of and difficulties with deconvolution. In relation to such difficulties the necessity of a noise removal process is discussed. Morrison's iterative noise removal method and the restrictions upon its application are developed. The nature of permissible response functions is discussed, as is the choice of the response functions used.
Validation of helicopter noise prediction techniques
NASA Technical Reports Server (NTRS)
Succi, G. P.
1981-01-01
The current techniques of helicopter rotor noise prediction attempt to describe the details of the noise field precisely and remove the empiricisms and restrictions inherent in previous methods. These techniques require detailed inputs of the rotor geometry, operating conditions, and blade surface pressure distribution. The purpose of this paper is to review those techniques in general and the Farassat/Nystrom analysis in particular. The predictions of the Farassat/Nystrom noise computer program, using both measured and calculated blade surface pressure data, are compared to measured noise level data. This study is based on a contract from NASA to Bolt Beranek and Newman Inc. with measured data from the AH-1G Helicopter Operational Loads Survey flight test program supplied by Bell Helicopter Textron.
Optimized parameter estimation in the presence of collective phase noise
NASA Astrophysics Data System (ADS)
Altenburg, Sanah; Wölk, Sabine; Tóth, Géza; Gühne, Otfried
2016-11-01
We investigate phase and frequency estimation with different measurement strategies under the effect of collective phase noise. First, we consider the standard linear estimation scheme and present an experimentally realizable optimization of the initial probe states by collective rotations. We identify the optimal rotation angle for different measurement times. Second, we show that subshot noise sensitivity—up to the Heisenberg limit—can be reached in presence of collective phase noise by using differential interferometry, where one part of the system is used to monitor the noise. For this, not only Greenberger-Horne-Zeilinger states but also symmetric Dicke states are suitable. We investigate the optimal splitting for a general symmetric Dicke state at both inputs and discuss possible experimental realizations of differential interferometry.
Noise spectra in balanced optical detectors based on transimpedance amplifiers.
Masalov, A V; Kuzhamuratov, A; Lvovsky, A I
2017-11-01
We present a thorough theoretical analysis and experimental study of the shot and electronic noise spectra of a balanced optical detector based on an operational amplifier connected in a transimpedance scheme. We identify and quantify the primary parameters responsible for the limitations of the circuit, in particular, the bandwidth and shot-to-electronic noise clearance. We find that the shot noise spectrum can be made consistent with the second-order Butterworth filter, while the electronic noise grows linearly with the second power of the frequency. Good agreement between the theory and experiment is observed; however, the capacitances of the operational amplifier input and the photodiodes appear significantly higher than those specified in manufacturers' datasheets. This observation is confirmed by independent tests.
Noise spectra in balanced optical detectors based on transimpedance amplifiers
NASA Astrophysics Data System (ADS)
Masalov, A. V.; Kuzhamuratov, A.; Lvovsky, A. I.
2017-11-01
We present a thorough theoretical analysis and experimental study of the shot and electronic noise spectra of a balanced optical detector based on an operational amplifier connected in a transimpedance scheme. We identify and quantify the primary parameters responsible for the limitations of the circuit, in particular, the bandwidth and shot-to-electronic noise clearance. We find that the shot noise spectrum can be made consistent with the second-order Butterworth filter, while the electronic noise grows linearly with the second power of the frequency. Good agreement between the theory and experiment is observed; however, the capacitances of the operational amplifier input and the photodiodes appear significantly higher than those specified in manufacturers' datasheets. This observation is confirmed by independent tests.
NASA Technical Reports Server (NTRS)
Cunningham, Thomas J.; Fossum, Eric R.; Baier, Steven M.
1992-01-01
Noise and current-voltage characterization of complementary heterojunction field-effect transistor (CHFET) structures below 8 K are presented. It is shown that the CHFET exhibits normal transistor operation down to 6 K. Some of the details of the transistor operation, such as the gate-voltage dependence of the channel potential, are analyzed. The gate current is examined and is shown to be due to several mechanisms acting in parallel. These include field-emission and thermionic-field-emission, conduction through a temperature-activated resistance, and thermionic emission. The input referred noise for n-channel CHFETs is presented and discussed. The noise has the spectral dependence of 1/f noise, but does not exhibit the usual area dependence.
A Low Noise Amplifier for Neural Spike Recording Interfaces
Ruiz-Amaya, Jesus; Rodriguez-Perez, Alberto; Delgado-Restituto, Manuel
2015-01-01
This paper presents a Low Noise Amplifier (LNA) for neural spike recording applications. The proposed topology, based on a capacitive feedback network using a two-stage OTA, efficiently solves the triple trade-off between power, area and noise. Additionally, this work introduces a novel transistor-level synthesis methodology for LNAs tailored for the minimization of their noise efficiency factor under area and noise constraints. The proposed LNA has been implemented in a 130 nm CMOS technology and occupies 0.053 mm-sq. Experimental results show that the LNA offers a noise efficiency factor of 2.16 and an input referred noise of 3.8 μVrms for 1.2 V power supply. It provides a gain of 46 dB over a nominal bandwidth of 192 Hz–7.4 kHz and consumes 1.92 μW. The performance of the proposed LNA has been validated through in vivo experiments with animal models. PMID:26437411
A Low Noise Amplifier for Neural Spike Recording Interfaces.
Ruiz-Amaya, Jesus; Rodriguez-Perez, Alberto; Delgado-Restituto, Manuel
2015-09-30
This paper presents a Low Noise Amplifier (LNA) for neural spike recording applications. The proposed topology, based on a capacitive feedback network using a two-stage OTA, efficiently solves the triple trade-off between power, area and noise. Additionally, this work introduces a novel transistor-level synthesis methodology for LNAs tailored for the minimization of their noise efficiency factor under area and noise constraints. The proposed LNA has been implemented in a 130 nm CMOS technology and occupies 0.053 mm-sq. Experimental results show that the LNA offers a noise efficiency factor of 2.16 and an input referred noise of 3.8 μVrms for 1.2 V power supply. It provides a gain of 46 dB over a nominal bandwidth of 192 Hz-7.4 kHz and consumes 1.92 μW. The performance of the proposed LNA has been validated through in vivo experiments with animal models.
Nuclear spin noise in NMR revisited
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferrand, Guillaume; Luong, Michel; Huber, Gaspard
2015-09-07
The theoretical shapes of nuclear spin-noise spectra in NMR are derived by considering a receiver circuit with finite preamplifier input impedance and a transmission line between the preamplifier and the probe. Using this model, it becomes possible to reproduce all observed experimental features: variation of the NMR resonance linewidth as a function of the transmission line phase, nuclear spin-noise signals appearing as a “bump” or as a “dip” superimposed on the average electronic noise level even for a spin system and probe at the same temperature, pure in-phase Lorentzian spin-noise signals exhibiting non-vanishing frequency shifts. Extensive comparisons to experimental measurementsmore » validate the model predictions, and define the conditions for obtaining pure in-phase Lorentzian-shape nuclear spin noise with a vanishing frequency shift, in other words, the conditions for simultaneously obtaining the spin-noise and frequency-shift tuning optima.« less
Test Results of a 200 GHz, Low Noise Downconverter for USAT Applications
NASA Technical Reports Server (NTRS)
Fujikawa, Gene (Compiler); Svoboda, James S.
1996-01-01
A key component in the development of the advanced communication technology satellite (ACTS) ultra small aperture terminal (USAT) earth station is the low noise down converter (LND). NASA Lewis Research Center has tested a version of an LND designed by Electrodyne Systems Corporation. A number of tests were conducted to characterize the radio frequency performance of the LND over temperature. The test results presented in this paper are frequency response, noise figure, gain, group delay, power transfer characteristics, image rejection, and spurious product suppression. The LND was one of several critical microwave subsystems developed and tested for the ACTS USAT Earth stations.
Test results of a 20 GHz, low noise downconverter for USAT applications
NASA Technical Reports Server (NTRS)
Fujikawa, Gene; Svoboda, James S.
1995-01-01
A key component in the development of the Advanced Communications Technology Satellite (ACTS) ultra small aperture terminal (USAT) earth station is the low noise downconverter (NLD). NASA Lewis Research Center (LeRC) has tested a version of an LND designed by Electrodyne Systems Corporation. A number of tests were conducted to characterize the radio frequency performance of the LND over temperature. The test results presented in this paper are frequency response, noise figure, gain, group delay, power transfer characteristics, image rejection, and spurious product suppression. The LND was one of several critical microwave subsystems developed and tested for the ACTS USAT earth stations.
Attention-driven auditory cortex short-term plasticity helps segregate relevant sounds from noise.
Ahveninen, Jyrki; Hämäläinen, Matti; Jääskeläinen, Iiro P; Ahlfors, Seppo P; Huang, Samantha; Lin, Fa-Hsuan; Raij, Tommi; Sams, Mikko; Vasios, Christos E; Belliveau, John W
2011-03-08
How can we concentrate on relevant sounds in noisy environments? A "gain model" suggests that auditory attention simply amplifies relevant and suppresses irrelevant afferent inputs. However, it is unclear whether this suffices when attended and ignored features overlap to stimulate the same neuronal receptive fields. A "tuning model" suggests that, in addition to gain, attention modulates feature selectivity of auditory neurons. We recorded magnetoencephalography, EEG, and functional MRI (fMRI) while subjects attended to tones delivered to one ear and ignored opposite-ear inputs. The attended ear was switched every 30 s to quantify how quickly the effects evolve. To produce overlapping inputs, the tones were presented alone vs. during white-noise masking notch-filtered ±1/6 octaves around the tone center frequencies. Amplitude modulation (39 vs. 41 Hz in opposite ears) was applied for "frequency tagging" of attention effects on maskers. Noise masking reduced early (50-150 ms; N1) auditory responses to unattended tones. In support of the tuning model, selective attention canceled out this attenuating effect but did not modulate the gain of 50-150 ms activity to nonmasked tones or steady-state responses to the maskers themselves. These tuning effects originated at nonprimary auditory cortices, purportedly occupied by neurons that, without attention, have wider frequency tuning than ±1/6 octaves. The attentional tuning evolved rapidly, during the first few seconds after attention switching, and correlated with behavioral discrimination performance. In conclusion, a simple gain model alone cannot explain auditory selective attention. In nonprimary auditory cortices, attention-driven short-term plasticity retunes neurons to segregate relevant sounds from noise.
Weber, A J; Stanford, L R
1994-05-15
It has long been known that a number of functionally different types of ganglion cells exist in the cat retina, and that each responds differently to visual stimulation. To determine whether the characteristic response properties of different retinal ganglion cell types might reflect differences in the number and distribution of their bipolar and amacrine cell inputs, we compared the percentages and distributions of the synaptic inputs from bipolar and amacrine cells to the entire dendritic arbors of physiologically characterized retinal X- and Y-cells. Sixty-two percent of the synaptic input to the Y-cell was from amacrine cell terminals, while the X-cells received approximately equal amounts of input from amacrine and bipolar cells. We found no significant difference in the distributions of bipolar or amacrine cell inputs to X- and Y-cells, or ON-center and OFF-center cells, either as a function of dendritic branch order or distance from the origin of the dendritic arbor. While, on the basis of these data, we cannot exclude the possibility that the difference in the proportion of bipolar and amacrine cell input contributes to the functional differences between X- and Y-cells, the magnitude of this difference, and the similarity in the distributions of the input from the two afferent cell types, suggest that mechanisms other than a simple predominance of input from amacrine or bipolar cells underlie the differences in their response properties. More likely, perhaps, is that the specific response features of X- and Y-cells originate in differences in the visual responses of the bipolar and amacrine cells that provide their input, or in the complex synaptic arrangements found among amacrine and bipolar cell terminals and the dendrites of specific types of retinal ganglion cells.
RF Design of a Wideband CMOS Integrated Receiver for Phased Array Applications
NASA Astrophysics Data System (ADS)
Jackson, Suzy A.
2004-06-01
New silicon CMOS processes developed primarily for the burgeoning wireless networking market offer significant promise as a vehicle for the implementation of highly integrated receivers, especially at the lower end of the frequency range proposed for the Square Kilometre Array (SKA). An RF-CMOS ‘Receiver-on-a-Chip’ is being developed as part of an Australia Telescope program looking at technologies associated with the SKA. The receiver covers the frequency range 500 1700 MHz, with instantaneous IF bandwidth of 500 MHz and, on simulation, yields an input noise temperature of < 50 K at mid-band. The receiver will contain all active circuitry (LNA, bandpass filter, quadrature mixer, anti-aliasing filter, digitiser and serialiser) on one 0.18 μm RF-CMOS integrated circuit. This paper outlines receiver front-end development work undertaken to date, including design and simulation of an LNA using noise cancelling techniques to achieve a wideband input-power-match with little noise penalty.
Impact of input mask signals on delay-based photonic reservoir computing with semiconductor lasers.
Kuriki, Yoma; Nakayama, Joma; Takano, Kosuke; Uchida, Atsushi
2018-03-05
We experimentally investigate delay-based photonic reservoir computing using semiconductor lasers with optical feedback and injection. We apply different types of temporal mask signals, such as digital, chaos, and colored-noise mask signals, as the weights between the input signal and the virtual nodes in the reservoir. We evaluate the performance of reservoir computing by using a time-series prediction task for the different mask signals. The chaos mask signal shows superior performance than that of the digital mask signals. However, similar prediction errors can be achieved for the chaos and colored-noise mask signals. Mask signals with larger amplitudes result in better performance for all mask signals in the range of the amplitude accessible in our experiment. The performance of reservoir computing is strongly dependent on the cut-off frequency of the colored-noise mask signals, which is related to the resonance of the relaxation oscillation frequency of the laser used as the reservoir.
A Computer Model of a Phase Lock Loop
NASA Technical Reports Server (NTRS)
Shelton, Ralph Paul
1973-01-01
A computer model is reported of a PLL (phase-lock loop), preceded by a bandpass filter, which is valid when the bandwidth of the bandpass filter is of the same order of magnitude as the natural frequency of the PLL. New results for the PLL natural frequency equal to the bandpass filter bandwidth are presented for a second order PLL operating with carrier plus noise as the input. However, it is shown that extensions to higher order loops, and to the case of a modulated carrier are straightforward. The new results presented give the cycle skipping rate of the PLL as a function of the input carrier to noise ratio when the PLL natural frequency is equal to the bandpass filter bandwidth. Preliminary results showing the variation of the output noise power and cycle skipping rates of the PLL as a function of the loop damping ratio for the PLL natural frequency equal to the bandpass filter bandwidth are also included.
A flight research program to develop airborne systems for improved terminal area operations
NASA Technical Reports Server (NTRS)
Reeder, J. P.
1974-01-01
The research program considered is concerned with the solution of operational problems for the approximate time period from 1980 to 2000. The problems are related to safety, weather effects, congestion, energy conservation, noise, atmospheric pollution, and the loss in productivity caused by delays, diversions, and schedule stretchouts. The terminal configured vehicle (TCV) program is to develop advanced flight-control capability. The various aspects of the TCV program are discussed, giving attention to avionics equipment, the piloted simulator, terminal-area environment simulation, the Wallops research facility, flight procedures, displays and human factors, flight activities, and questions of vortex-wake reduction and tracking.
Low noise niobium dc SQUID with a planar input coil
NASA Astrophysics Data System (ADS)
de Waal, V. J.; van den Hamer, P.; Klapwijk, T. M.
1983-02-01
A practical all-niobium dc superconducting quantum interference device (SQUID) with a niobium spiral input coil has been developed. The SQUID utilizes submicron Josephson junctions. The best intrinsic energy resolution obtained with a 1-nH SQUID is 4×10-32 J/Hz. A 20-turn 1.2-μH input coil is coupled to a 2.3-nH SQUID with an efficiency of 0.5. The energy resolution with respect to the coil is 1×10-30 J/Hz.
Deconvolution of noisy transient signals: a Kalman filtering application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Candy, J.V.; Zicker, J.E.
The deconvolution of transient signals from noisy measurements is a common problem occuring in various tests at Lawrence Livermore National Laboratory. The transient deconvolution problem places atypical constraints on algorithms presently available. The Schmidt-Kalman filter, a time-varying, tunable predictor, is designed using a piecewise constant model of the transient input signal. A simulation is developed to test the algorithm for various input signal bandwidths and different signal-to-noise ratios for the input and output sequences. The algorithm performance is reasonable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dar, Roy; Shaffer, Sydney M.; Singh, Abhyudai
Recent analysis demonstrates that the HIV-1 Long Terminal Repeat (HIV LTR) promoter exhibits a range of possible transcriptional burst sizes and frequencies for any mean-expression level. However, these results have also been interpreted as demonstrating that cell-tocell expression variability (noise) and mean are uncorrelated, a significant deviation from previous results. Here, we re-examine the available mRNA and protein abundance data for the HIV LTR and find that noise in mRNA and protein expression scales inversely with the mean along analytically predicted transcriptional burst-size manifolds. We then experimentally perturb transcriptional activity to test a prediction of the multiple burst-size model: thatmore » increasing burst frequency will cause mRNA noise to decrease along given burst-size lines as mRNA levels increase. In conclusion, the data show that mRNA and protein noise decrease as mean expression increases, supporting the canonical inverse correlation between noise and mean.« less
Mohajerin-Ariaei, Amirhossein; Ziyadi, Morteza; Chitgarha, Mohammad Reza; Almaiman, Ahmed; Cao, Yinwen; Shamee, Bishara; Yang, Jeng-Yuan; Akasaka, Youichi; Sekiya, Motoyoshi; Takasaka, Shigehiro; Sugizaki, Ryuichi; Touch, Joseph D; Tur, Moshe; Langrock, Carsten; Fejer, Martin M; Willner, Alan E
2015-07-15
We demonstrate an all-optical phase noise mitigation scheme based on the generation, delay, and coherent summation of higher order signal harmonics. The signal, its third-order harmonic, and their corresponding delayed variant conjugates create a staircase phase-transfer function that quantizes the phase of quadrature-phase-shift-keying (QPSK) signal to mitigate phase noise. The signal and the harmonics are automatically phase-locked multiplexed, avoiding the need for phase-based feedback loop and injection locking to maintain coherency. The residual phase noise converts to amplitude noise in the quantizer stage, which is suppressed by parametric amplification in the saturation regime. Phase noise reduction of ∼40% and OSNR-gain of ∼3 dB at BER 10(-3) are experimentally demonstrated for 20- and 30-Gbaud QPSK input signals.
Shielded multi-stage EMI noise filter
Kisner, Roger Allen; Fugate, David Lee
2016-11-08
Electromagnetic interference (EMI) noise filter embodiments and methods for filtering are provided herein. EMI noise filters include multiple signal exclusion enclosures. The multiple signal exclusion enclosures contain filter circuit stages. The signal exclusion enclosures can attenuate noise generated external to the enclosures and/or isolate noise currents generated by the corresponding filter circuits within the enclosures. In certain embodiments, an output of one filter circuit stage is connected to an input of the next filter circuit stage. The multiple signal exclusion enclosures can be chambers formed using conductive partitions to divide an outer signal exclusion enclosure. EMI noise filters can also include mechanisms to maintain the components of the filter circuit stages at a consistent temperature. For example, a metal base plate can distribute heat among filter components, and an insulating material can be positioned inside signal exclusion enclosures.
Immunolocalization of vesicular glutamate transporters 1 and 2 in the rat inferior colliculus.
Altschuler, R A; Tong, L; Holt, A G; Oliver, D L
2008-06-12
The inferior colliculus is a major relay nucleus in the ascending auditory pathways that receives multiple glutamatergic inputs. Vesicular glutamate transporters 1 and 2 (VGLUT1, VGLUT2) most often have complementary non-overlapping distributions and can be used to differentiate glutamatergic inputs. The present study therefore examined co-immunolabeling of VGLUT1 and VGLUT2 in three divisions of the rat inferior colliculus. Additional co-immunolabeling of microtubule-associated protein 2 and neuronal class III beta-tubulin provided visualization of neuronal soma and processes and allowed identification of axo-somatic versus axo-dendritic contacts. Results showed numerous VGLUT1 and 2 immunolabeled terminals in the central nucleus, lateral cortex and dorsal cortex. In all three divisions there was little to no co-containment of the two vesicular glutamate transporters indicating a complementary distribution. VGLUT1 made predominantly axo-dendritic connections in the neuropil, while VGLUT2 had many axo-somatic contacts in addition to axo-dendritic contacts. VGLUT2 immunolabeled terminals were numerous on the soma and proximal dendrites of many medium-to-large and large neurons in the central nucleus and medium to large neurons in the dorsal cortex. There were more VGLUT2 terminals than VGLUT1 in all divisions and more VGLUT2 terminals in dorsal and lateral cortices than in the central nucleus. This study shows that VGLUT1 and VGLUT2 differentiate complementary patterns of glutamatergic inputs into the central nucleus, lateral and dorsal cortex of the inferior colliculus with VGLUT1 endings predominantly on the dendrites and VGLUT2 on both dendrites and somas.
Origin of information-limiting noise correlations
Kanitscheider, Ingmar; Coen-Cagli, Ruben; Pouget, Alexandre
2015-01-01
The ability to discriminate between similar sensory stimuli relies on the amount of information encoded in sensory neuronal populations. Such information can be substantially reduced by correlated trial-to-trial variability. Noise correlations have been measured across a wide range of areas in the brain, but their origin is still far from clear. Here we show analytically and with simulations that optimal computation on inputs with limited information creates patterns of noise correlations that account for a broad range of experimental observations while at same time causing information to saturate in large neural populations. With the example of a network of V1 neurons extracting orientation from a noisy image, we illustrate to our knowledge the first generative model of noise correlations that is consistent both with neurophysiology and with behavioral thresholds, without invoking suboptimal encoding or decoding or internal sources of variability such as stochastic network dynamics or cortical state fluctuations. We further show that when information is limited at the input, both suboptimal connectivity and internal fluctuations could similarly reduce the asymptotic information, but they have qualitatively different effects on correlations leading to specific experimental predictions. Our study indicates that noise at the sensory periphery could have a major effect on cortical representations in widely studied discrimination tasks. It also provides an analytical framework to understand the functional relevance of different sources of experimentally measured correlations. PMID:26621747
A low-noise low-power EEG acquisition node for scalable brain-machine interfaces
NASA Astrophysics Data System (ADS)
Sullivan, Thomas J.; Deiss, Stephen R.; Cauwenberghs, Gert; Jung, Tzyy-Ping
2007-05-01
Electroencephalograph (EEG) recording systems offer a versatile, noninvasive window on the brain's spatio-temporal activity for many neuroscience and clinical applications. Our research aims at improving the spatial resolution and mobility of EEG recording by reducing the form factor, power drain and signal fanout of the EEG acquisition node in a scalable sensor array architecture. We present such a node integrated onto a dimesized circuit board that contains a sensor's complete signal processing front-end, including amplifier, filters, and analog-to-digital conversion. A daisy-chain configuration between boards with bit-serial output reduces the wiring needed. The circuit's low power consumption of 423 μW supports EEG systems with hundreds of electrodes to operate from small batteries for many hours. Coupling between the bit-serial output and the highly sensitive analog input due to dense integration of analog and digital functions on the circuit board results in a deterministic noise component in the output, larger than the intrinsic sensor and circuit noise. With software correction of this noise contribution, the system achieves an input-referred noise of 0.277 μVrms in the signal band of 1 to 100 Hz, comparable to the best medical-grade systems in use. A chain of seven nodes using EEG dry electrodes created in micro-electrical-mechanical system (MEMS) technology is demonstrated in a real-world setting.
Classification of Partial Discharge Measured under Different Levels of Noise Contamination
2017-01-01
Cable joint insulation breakdown may cause a huge loss to power companies. Therefore, it is vital to diagnose the insulation quality to detect early signs of insulation failure. It is well known that there is a correlation between Partial discharge (PD) and the insulation quality. Although many works have been done on PD pattern recognition, it is usually performed in a noise free environment. Also, works on PD pattern recognition in actual cable joint are less likely to be found in literature. Therefore, in this work, classifications of actual cable joint defect types from partial discharge data contaminated by noise were performed. Five cross-linked polyethylene (XLPE) cable joints with artificially created defects were prepared based on the defects commonly encountered on site. Three different types of input feature were extracted from the PD pattern under artificially created noisy environment. These include statistical features, fractal features and principal component analysis (PCA) features. These input features were used to train the classifiers to classify each PD defect types. Classifications were performed using three different artificial intelligence classifiers, which include Artificial Neural Networks (ANN), Adaptive Neuro-Fuzzy Inference System (ANFIS) and Support Vector Machine (SVM). It was found that the classification accuracy decreases with higher noise level but PCA features used in SVM and ANN showed the strongest tolerance against noise contamination. PMID:28085953
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Q.; Liang, Y. X.; Ferry, D.
2014-07-07
We report on the results obtained from specially designed high electron mobility transistors at 4.2 K: the gate leakage current can be limited lower than 1 aA, and the equivalent input noise-voltage and noise-current at 1 Hz can reach 6.3 nV/Hz{sup 1∕2} and 20 aA/Hz{sup 1∕2}, respectively. These results open the way to realize high performance low-frequency readout electronics under very low-temperature conditions.
Low Noise 1.2 THz SIS Receiver
NASA Technical Reports Server (NTRS)
Karpov, A.; Miller, D.; Rice, F.; Zmuidzinas, J.; Stern, J. A.; Bumble, B.; LeDuc, H. G.
2001-01-01
We present the development of a low noise superconductor insulator superconductor (SIS) mixer for the 1.1 - 1.25 THz heterodyne receiver of FIRST space radiotelescope. The quasi-optical SIS mixer has two NbTiN/AlN/Nb junctions with critical current density 30 kA/sq cm. The individual junction area is close to 0.65 square micrometers. The SIS junctions are coupled to the optical input beam through a planar double slot antenna and a Si hyperhemispherical lens. The minimum DSB receiver noise temperature is 650 K, about 12 hv/k.
NASA Astrophysics Data System (ADS)
Uezu, Tatsuya; Kiyokawa, Shuji
2016-06-01
We investigate the supervised batch learning of Boolean functions expressed by a two-layer perceptron with a tree-like structure. We adopt continuous weights (spherical model) and the Gibbs algorithm. We study the Parity and And machines and two types of noise, input and output noise, together with the noiseless case. We assume that only the teacher suffers from noise. By using the replica method, we derive the saddle point equations for order parameters under the replica symmetric (RS) ansatz. We study the critical value αC of the loading rate α above which the learning phase exists for cases with and without noise. We find that αC is nonzero for the Parity machine, while it is zero for the And machine. We derive the exponents barβ of order parameters expressed as (α - α C)bar{β} when α is near to αC. Furthermore, in the Parity machine, when noise exists, we find a spin glass solution, in which the overlap between the teacher and student vectors is zero but that between student vectors is nonzero. We perform Markov chain Monte Carlo simulations by simulated annealing and also by exchange Monte Carlo simulations in both machines. In the Parity machine, we study the de Almeida-Thouless stability, and by comparing theoretical and numerical results, we find that there exist parameter regions where the RS solution is unstable, and that the spin glass solution is metastable or unstable. We also study asymptotic learning behavior for large α and derive the exponents hat{β } of order parameters expressed as α - hat{β } when α is large in both machines. By simulated annealing simulations, we confirm these results and conclude that learning takes place for the input noise case with any noise amplitude and for the output noise case when the probability that the teacher's output is reversed is less than one-half.
Varadarajan, Prasanna Amur; Del Vecchio, Domitilla
2009-09-01
In this paper, we provide an in silico input-output characterization of a three-terminal transcriptional device employing polymerase per second (PoPS) as input and output. The device is assembled from well-characterized parts of the bacteriophage lambda switch transcriptional circuit. We draw the analogy between voltage and protein concentration and between current and PoPS to demonstrate that the characteristics of the three-terminal transcriptional device are qualitatively similar to those of a bipolar junction transistor (BJT). In particular, as it occurs in a BJT, the device can be tuned to operate either as a linear amplifier or as a switch. When the device operates as a linear amplifier, gains of twofolds can be obtained, which are considerably smaller than those obtained in a BJT (in which 100-fold amplification gains can be reached). This fact suggests that the parts extracted from natural transcriptional systems may be naturally designed mostly to process and store information as opposed to amplify signals.
NASA Astrophysics Data System (ADS)
Botha, J. D. M.; Shahroki, A.; Rice, H.
2017-12-01
This paper presents an enhanced method for predicting aerodynamically generated broadband noise produced by a Vertical Axis Wind Turbine (VAWT). The method improves on existing work for VAWT noise prediction and incorporates recently developed airfoil noise prediction models. Inflow-turbulence and airfoil self-noise mechanisms are both considered. Airfoil noise predictions are dependent on aerodynamic input data and time dependent Computational Fluid Dynamics (CFD) calculations are carried out to solve for the aerodynamic solution. Analytical flow methods are also benchmarked against the CFD informed noise prediction results to quantify errors in the former approach. Comparisons to experimental noise measurements for an existing turbine are encouraging. A parameter study is performed and shows the sensitivity of overall noise levels to changes in inflow velocity and inflow turbulence. Noise sources are characterised and the location and mechanism of the primary sources is determined, inflow-turbulence noise is seen to be the dominant source. The use of CFD calculations is seen to improve the accuracy of noise predictions when compared to the analytic flow solution as well as showing that, for inflow-turbulence noise sources, blade generated turbulence dominates the atmospheric inflow turbulence.
Noise reduction of a tilt-rotor aircraft including effects on weight and performance
NASA Technical Reports Server (NTRS)
Gibs, J.; Stepniewski, W. Z.; Spencer, R.; Kohler, G.
1973-01-01
Various methods for far-field noise reduction of a tilt-rotor acoustic signature and the performance and weight tradeoffs which result from modification of the noise sources are considered in this report. In order to provide a realistic approach for the investigation, the Boeing tilt-rotor flight research aircraft (Model 222), was selected as the baseline. This aircraft has undergone considerable engineering development. Its rotor has been manufactured and tested in the Ames full-scale wind tunnel. The study reflects the current state-of-the-art of aircraft design for far-field acoustic signature reduction and is not based solely on an engineering feasibility aircraft. This report supplements a previous study investigating reduction of noise signature through the management of the terminal flight trajectory.
Novel Signal Noise Reduction Method through Cluster Analysis, Applied to Photoplethysmography.
Waugh, William; Allen, John; Wightman, James; Sims, Andrew J; Beale, Thomas A W
2018-01-01
Physiological signals can often become contaminated by noise from a variety of origins. In this paper, an algorithm is described for the reduction of sporadic noise from a continuous periodic signal. The design can be used where a sample of a periodic signal is required, for example, when an average pulse is needed for pulse wave analysis and characterization. The algorithm is based on cluster analysis for selecting similar repetitions or pulses from a periodic single. This method selects individual pulses without noise, returns a clean pulse signal, and terminates when a sufficiently clean and representative signal is received. The algorithm is designed to be sufficiently compact to be implemented on a microcontroller embedded within a medical device. It has been validated through the removal of noise from an exemplar photoplethysmography (PPG) signal, showing increasing benefit as the noise contamination of the signal increases. The algorithm design is generalised to be applicable for a wide range of physiological (physical) signals.
Empirical mode decomposition-based facial pose estimation inside video sequences
NASA Astrophysics Data System (ADS)
Qing, Chunmei; Jiang, Jianmin; Yang, Zhijing
2010-03-01
We describe a new pose-estimation algorithm via integration of the strength in both empirical mode decomposition (EMD) and mutual information. While mutual information is exploited to measure the similarity between facial images to estimate poses, EMD is exploited to decompose input facial images into a number of intrinsic mode function (IMF) components, which redistribute the effect of noise, expression changes, and illumination variations as such that, when the input facial image is described by the selected IMF components, all the negative effects can be minimized. Extensive experiments were carried out in comparisons to existing representative techniques, and the results show that the proposed algorithm achieves better pose-estimation performances with robustness to noise corruption, illumination variation, and facial expressions.
Fortier, Pierre A; Bray, Chelsea
2013-04-16
Previous studies revealed mechanisms of dendritic inputs leading to action potential initiation at the axon initial segment and backpropagation into the dendritic tree. This interest has recently expanded toward the communication between different parts of the dendritic tree which could preprocess information before reaching the soma. This study tested for effects of asymmetric voltage attenuation between different sites in the dendritic tree on summation of synaptic inputs and action potential initiation using the NEURON simulation environment. Passive responses due to the electrical equivalent circuit of the three-dimensional neuron architecture with leak channels were examined first, followed by the responses after adding voltage-gated channels and finally synaptic noise. Asymmetric attenuation of voltage, which is a function of asymmetric input resistance, was seen between all pairs of dendritic sites but the transfer voltages (voltage recorded at the opposite site from stimulation among a pair of dendritic sites) were equal and also summed linearly with local voltage responses during simultaneous stimulation of both sites. In neurons with voltage-gated channels, we reproduced the observations where a brief stimulus to the proximal ascending dendritic branch of a pyramidal cell triggers a local action potential but a long stimulus triggers a somal action potential. Combined stimulation of a pair of sites in this proximal dendrite did not alter this pattern. The attraction of the action potential onset toward the soma with a long stimulus in the absence of noise was due to the higher density of voltage-gated sodium channels at the axon initial segment. This attraction was, however, negligible at the most remote distal dendritic sites and was replaced by an effect due to high input resistance. Action potential onset occurred at the dendritic site of higher input resistance among a pair of remote dendritic sites, irrespective of which of these two sites received the synaptic input. Exploration of the parameter space showed how the gradient of voltage-gated channel densities and input resistances along a dendrite could draw the action potential onset away from the stimulation site. The attraction of action potential onset toward the higher density of voltage-gated channels in the soma during stimulation of the proximal dendrite was, however, reduced after the addition of synaptic noise. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.
Static Noise Margin Enhancement by Flex-Pass-Gate SRAM
NASA Astrophysics Data System (ADS)
O'Uchi, Shin-Ichi; Masahara, Meishoku; Sakamoto, Kunihiro; Endo, Kazuhiko; Liu, Yungxun; Matsukawa, Takashi; Sekigawa, Toshihiro; Koike, Hanpei; Suzuki, Eiichi
A Flex-Pass-Gate SRAM, i.e. a fin-type-field-effect-transistor- (FinFET-) based SRAM, is proposed to enhance noise margin during both read and write operations. In its cell, the flip-flop is composed of usual three-terminal- (3T-) FinFETs while pass gates are composed of four-terminal- (4T-) FinFETs. The 4T-FinFETs enable to adopt a dynamic threshold-voltage control in the pass gates. During a write operation, the threshold voltage of the pass gates is lowered to enhance the writing speed and stability. During the read operation, on the other hand, the threshold voltage is raised to enhance the static noise margin. An asymmetric-oxide 4T-FinFET is helpful to manage the leakage current through the pass gate. In this paper, a design strategy of the pass gate with an asymmetric gate oxide is considered, and a TCAD-based Monte Carlo simulation reveals that the Flex-Pass-Gate SRAM based on that design strategy is expected to be effective in half-pitch 32-nm technology for low-standby-power (LSTP) applications, even taking into account the variability in the device performance.
Micro EEG/ECG signal’s chopper-stabilization amplifying chip for novel dry-contact electrode
NASA Astrophysics Data System (ADS)
Sun, Jianhui; Wang, Chunxing; Wang, Gongtang; Wang, Jinhui; Hua, Qing; Cheng, Chuanfu; Cai, Xinxia; Yin, Tao; Yu, Yang; Yang, Haigang; Li, Dengwang
2017-02-01
Facing the body’s EEG (electroencephalograph, 0.5–100 Hz, 5–100 μV) and ECG’s (electrocardiogram, < 100 {Hz}, 0.01–5 mV) micro signal detection requirement, this paper develops a pervasive application micro signal detection ASIC chip with the chopping modulation/demodulation method. The chopper-stabilization circuit with the RRL (ripple reduction loop) circuit is to suppress the ripple voltage, which locates at the single-stage amplifier’s outputting terminal. The single-stage chopping core’s noise has been suppressed too, and it is beneficial for suppressing noises of post-circuit. The chopping core circuit uses the PFB (positive feedback loop) to increase the inputting resistance, and the NFB (negative feedback loop) to stabilize the 40 dB intermediate frequency gain. The cascaded switch-capacitor sample/hold circuit has been used for deleting spike noises caused by non-ideal MOS switches, and the VGA/BPF (voltage gain amplifier/band pass filter) circuit is used to tune the chopper system’s gain/bandwidth digitally. Assisted with the designed novel dry-electrode, the real test result of the chopping amplifying circuit gives some critical parameters: 8.1 μW/channel, 0.8 μVrms (@band-width = 100 Hz), 4216–11220 times digitally tuning gain range, etc. The data capture system uses the NI CO’s data capturing DAQmx interface, and the captured micro EEG/ECG’s waves are real-time displayed with the PC-Labview. The proposed chopper system is a unified EEG/ECG signal’s detection instrument and has a critical real application value. Project supported by the National Natural Science Foundation of China (Nos. 61527815, 31500800, 61501426, 61471342), the National Key Basic Research Plan (No. 2014CB744600), the Beijing Science and Technology Plan (No. Z141100000214002), and the Chinese Academy of Sciences’ Key Project (No. KJZD-EW-L11-2).
NASA Astrophysics Data System (ADS)
Chen, Xinyuan; Song, Li; Yang, Xiaokang
2016-09-01
Video denoising can be described as the problem of mapping from a specific length of noisy frames to clean one. We propose a deep architecture based on Recurrent Neural Network (RNN) for video denoising. The model learns a patch-based end-to-end mapping between the clean and noisy video sequences. It takes the corrupted video sequences as the input and outputs the clean one. Our deep network, which we refer to as deep Recurrent Neural Networks (deep RNNs or DRNNs), stacks RNN layers where each layer receives the hidden state of the previous layer as input. Experiment shows (i) the recurrent architecture through temporal domain extracts motion information and does favor to video denoising, and (ii) deep architecture have large enough capacity for expressing mapping relation between corrupted videos as input and clean videos as output, furthermore, (iii) the model has generality to learned different mappings from videos corrupted by different types of noise (e.g., Poisson-Gaussian noise). By training on large video databases, we are able to compete with some existing video denoising methods.
Up-converted 1/f PM and AM noise in linear HBT amplifiers.
Ferre-Pikal, Eva S; Savage, Frederick H
2008-08-01
In this paper we describe a technique to predict the 1/f phase modulation (PM) and 1/f amplitude modulation (AM) noise due to up-conversion of 1/f baseband current noise in microwave heterojunction bipolar transistor (HBT) amplifiers. We obtain an accurate model for the amplifier and find the expression for voltage gain in terms of DC bias, transistor parameters, and circuit components. Theoretical 1/f PM and AM noise sensitivities to 1/f baseband current noise are then found by applying the definitions of PM and AM noise to the gain expression of the amplifier. Measurements of PM and AM sensitivities at 500 MHz and 1 GHz were in good agreement with the values predicted by theory, verifying the validity of this technique. This method can be used to optimize amplifier design for low PM and AM noise. We show that the amplifier PM noise can be reduced by 9 dB by adjusting the value of the input coupling capacitor.
NASA Astrophysics Data System (ADS)
Yao, Yuangen; Ma, Chengzhang; Wang, Canjun; Yi, Ming; Gui, Rong
2018-02-01
We study the effects of multiplicative and additive cross-correlated sine-Wiener (CCSW) noises on the performance of sub-threshold periodic signal detection in the FitzHugh-Nagumo (FHN) neuron by calculating Fourier coefficients Q for measuring synchronization between sub-threshold input signal and the response of system. CCSW noises-induced transitions of electrical activity in the FHN neuron model can be observed. Moreover, the performance of sub-threshold periodic signal detection is achieved at moderate noise strength, cross-correlation time and cross-correlation strength of CCSW noises, which indicate the occurrence of CCSW noises-induced stochastic resonance. Furthermore, the performance of sub-threshold signal detection is strongly sensitive to cross-correlation time of CCSW noises. Therefore, the performance can be effectively controlled by regulating cross-correlation time of CCSW noises. These results provide a possible mechanism for amplifying or detecting the sub-threshold signal in the nervous system.
Development of hybrid method for the prediction of underwater propeller noise
NASA Astrophysics Data System (ADS)
Seol, Hanshin; Suh, Jung-Chun; Lee, Soogab
2005-11-01
Noise reduction and control is an important problem in the performance of underwater acoustic systems and in the habitability of the passenger ship for crew and passenger. Furthermore, sound generated by a propeller is critical in underwater detection and it is often related to the survivability of the vessel especially for military purpose. This paper presents a numerical study on the non-cavitating and blade sheet cavitation noises of the underwater propeller. A brief summary of numerical method with verification and results are presented. The noise is predicted using time-domain acoustic analogy. The flow field is analyzed with potential-based panel method, and then the time-dependent pressure and sheet cavity volume data are used as the input for Ffowcs Williams-Hawkings formulation to predict the far-field acoustics. Noise characteristics are presented according to noise sources and conditions. Through this study, the dominant noise source of the underwater propeller is analyzed, which will provide a basis for proper noise control strategies.
Outside the Hull Electric Propulsion for a Submarine
1990-05-01
improvements. Outside The Hull Electric Propulsion ’OTHEP) uses an inverted geometry, squirrel-cage induction motor to drive a large hub-to-diameter ratio...which is used for shipboard air- borne noise prediction, is adapted to describe the noise which is radiated into the sea. With the estimated...123 5 4.2.3 Using the Forces as Input to Acoustic Analysis S. .. . . . . . .... . . . . . . . . . . . . .. . . . ... . . . . . . . 1 2
Examinations of electron temperature calculation methods in Thomson scattering diagnostics.
Oh, Seungtae; Lee, Jong Ha; Wi, Hanmin
2012-10-01
Electron temperature from Thomson scattering diagnostic is derived through indirect calculation based on theoretical model. χ-square test is commonly used in the calculation, and the reliability of the calculation method highly depends on the noise level of input signals. In the simulations, noise effects of the χ-square test are examined and scale factor test is proposed as an alternative method.
Raman mediated all-optical cascadable inverter using silicon-on-insulator waveguides.
Sen, Mrinal; Das, Mukul K
2013-12-01
In this Letter, we propose an all-optical circuit for a cascadable and integrable logic inverter based on stimulated Raman scattering. A maximum product criteria for noise margin is taken to analyze the cascadability of the inverter. Variation of noise margin for different model parameters is also studied. Finally, the time domain response of the inverter is analyzed for different widths of input pulses.
NASA Astrophysics Data System (ADS)
Kahraman, Gokalp
We examine the performance of optical communication systems using erbium-doped fiber amplifiers (OFAs) and avalanche photodiodes (APDs) including nonlinear and transient effects in the former and transient effects in the latter. Transient effects become important as these amplifiers are operated at very high data rates. Nonlinear effects are important for high gain amplifiers. In most studies of noise in these devices, the temporal and nonlinear effects have been ignored. We present a quantum theory of noise in OFAs including the saturation of the atomic population inversion and the pump depletion. We study the quantum-statistical properties of pulse amplification. The generating function of the output photon number distribution (PND) is determined as a function of time during the course of the pulse with an arbitrary input PND assumed. Under stationary conditions, we determine the Kolmogorov equation obeyed by the PND. The PND at the output is determined for arbitrary input distributions. The effect of the counting time and the filter bandwidth used by the detection circuit is determined. We determine the gain, the noise figure, and the sensitivity of receivers using OFAs as preamplifiers, including the effect of backward amplified spontaneous emission (ASE). Backward ASE degrades the noise figure and the sensitivity by depleting the population inversion at the input side of the fiber and thus increasing the noise during signal amplification. We show that the sensitivity improves with the bit rate at low rates but degrades at high rates. We provide a stochastic model that describes the time dynamics in a double-carrier multiplication (DCM) APD. A discrete stochastic model for the electron/hole motion and multiplication is defined on a spatio-temporal lattice and used to derive recursive equations for the mean, the variance, and the autocorrelation of the impulse response as functions of time. The power spectral density of the photocurrent produced in response to a Poisson-distributed stream of photons of uniform rate is evaluated. A method is also developed for solving the coupled transport equations that describe the electron and hole currents in a DCM-APD of arbitrary structure.
Hesar, Hamed Danandeh; Mohebbi, Maryam
2017-05-01
In this paper, a model-based Bayesian filtering framework called the "marginalized particle-extended Kalman filter (MP-EKF) algorithm" is proposed for electrocardiogram (ECG) denoising. This algorithm does not have the extended Kalman filter (EKF) shortcoming in handling non-Gaussian nonstationary situations because of its nonlinear framework. In addition, it has less computational complexity compared with particle filter. This filter improves ECG denoising performance by implementing marginalized particle filter framework while reducing its computational complexity using EKF framework. An automatic particle weighting strategy is also proposed here that controls the reliance of our framework to the acquired measurements. We evaluated the proposed filter on several normal ECGs selected from MIT-BIH normal sinus rhythm database. To do so, artificial white Gaussian and colored noises as well as nonstationary real muscle artifact (MA) noise over a range of low SNRs from 10 to -5 dB were added to these normal ECG segments. The benchmark methods were the EKF and extended Kalman smoother (EKS) algorithms which are the first model-based Bayesian algorithms introduced in the field of ECG denoising. From SNR viewpoint, the experiments showed that in the presence of Gaussian white noise, the proposed framework outperforms the EKF and EKS algorithms in lower input SNRs where the measurements and state model are not reliable. Owing to its nonlinear framework and particle weighting strategy, the proposed algorithm attained better results at all input SNRs in non-Gaussian nonstationary situations (such as presence of pink noise, brown noise, and real MA). In addition, the impact of the proposed filtering method on the distortion of diagnostic features of the ECG was investigated and compared with EKF/EKS methods using an ECG diagnostic distortion measure called the "Multi-Scale Entropy Based Weighted Distortion Measure" or MSEWPRD. The results revealed that our proposed algorithm had the lowest MSEPWRD for all noise types at low input SNRs. Therefore, the morphology and diagnostic information of ECG signals were much better conserved compared with EKF/EKS frameworks, especially in non-Gaussian nonstationary situations.
DISTRIBUTED AMPLIFIER INCORPORATING FEEDBACK
Bell, P.R. Jr.
1958-10-21
An improved distributed amplifier system employing feedback for stabilization is presented. In accordance with the disclosed invention, a signal to be amplified is applled to one end of a suitable terminated grid transmission line. At intervals along the transmission line, the signal is fed to stable, resistance-capacitance coupled amplifiers incorporating feedback loops therein. The output current from each amplifier is passed through an additional tube to minimize the electrostatic capacitance between the tube elements of the last stage of the amplifier, and fed to appropriate points on an output transmission line, similar to the grid line, but terminated at the opposite (input) end. The output taken from the unterminated end of the plate transmission line is proportional to the input voltage impressed upon the grid line.
The Use of a Small Digital Computer for On-Line Behavioral Experiments,
1983-12-14
Development Command MF58. S24.02C 0011 Reviewed by Approved and Released by Ashton Graybiel, M.D. Captain W. M. Houk , MC, USN Chief, Scientific...as movement artifact would be classified " s contain- ing 50 percent noise. It was estimated that an ECG signal that contained no more than 25 percent...noise could be corrected by the autocorrelation tech- nique (artifact removed) and result in a final d~termination of not more v •F Table I