Sample records for input-voltage range needed

  1. Logarithmic circuit with wide dynamic range

    NASA Technical Reports Server (NTRS)

    Wiley, P. H.; Manus, E. A. (Inventor)

    1978-01-01

    A circuit deriving an output voltage that is proportional to the logarithm of a dc input voltage susceptible to wide variations in amplitude includes a constant current source which forward biases a diode so that the diode operates in the exponential portion of its voltage versus current characteristic, above its saturation current. The constant current source includes first and second, cascaded feedback, dc operational amplifiers connected in negative feedback circuit. An input terminal of the first amplifier is responsive to the input voltage. A circuit shunting the first amplifier output terminal includes a resistor in series with the diode. The voltage across the resistor is sensed at the input of the second dc operational feedback amplifier. The current flowing through the resistor is proportional to the input voltage over the wide range of variations in amplitude of the input voltage.

  2. Voltage controlled current source

    DOEpatents

    Casne, Gregory M.

    1992-01-01

    A seven decade, voltage controlled current source is described for use in testing intermediate range nuclear instruments that covers the entire test current range of from 10 picoamperes to 100 microamperes. High accuracy is obtained throughout the entire seven decades of output current with circuitry that includes a coordinated switching scheme responsive to the input signal from a hybrid computer to control the input voltage to an antilog amplifier, and to selectively connect a resistance to the antilog amplifier output to provide a continuous output current source as a function of a preset range of input voltage. An operator controlled switch provides current adjustment for operation in either a real-time simulation test mode or a time response test mode.

  3. Series-Connected Buck Boost Regulators

    NASA Technical Reports Server (NTRS)

    Birchenough, Arthur G.

    2005-01-01

    A series-connected buck boost regulator (SCBBR) is an electronic circuit that bucks a power-supply voltage to a lower regulated value or boosts it to a higher regulated value. The concept of the SCBBR is a generalization of the concept of the SCBR, which was reported in "Series-Connected Boost Regulators" (LEW-15918), NASA Tech Briefs, Vol. 23, No. 7 (July 1997), page 42. Relative to prior DC-voltage-regulator concepts, the SCBBR concept can yield significant reductions in weight and increases in power-conversion efficiency in many applications in which input/output voltage ratios are relatively small and isolation is not required, as solar-array regulation or battery charging with DC-bus regulation. Usually, a DC voltage regulator is designed to include a DC-to-DC converter to reduce its power loss, size, and weight. Advances in components, increases in operating frequencies, and improved circuit topologies have led to continual increases in efficiency and/or decreases in the sizes and weights of DC voltage regulators. The primary source of inefficiency in the DC-to-DC converter portion of a voltage regulator is the conduction loss and, especially at high frequencies, the switching loss. Although improved components and topology can reduce the switching loss, the reduction is limited by the fact that the converter generally switches all the power being regulated. Like the SCBR concept, the SCBBR concept involves a circuit configuration in which only a fraction of the power is switched, so that the switching loss is reduced by an amount that is largely independent of the specific components and circuit topology used. In an SCBBR, the amount of power switched by the DC-to-DC converter is only the amount needed to make up the difference between the input and output bus voltage. The remaining majority of the power passes through the converter without being switched. The weight and power loss of a DC-to-DC converter are determined primarily by the amount of power processed. In the SCBBR, the unswitched majority of the power is passed through with very little power loss, and little if any increase in the sizes of the converter components is needed to enable the components to handle the unswitched power. As a result, the power-conversion efficiency of the regulator can be very high, as shown in the example of Figure 1. A basic SCBBR includes a DC-to-DC converter (see Figure 2). The switches and primary winding of a transformer in the converter is connected across the input bus, while the secondary winding and switches are connected in series with the output bus, so that the output voltage is the sum of the input voltage and the secondary voltage of the converter. In the breadboard SCBBR, the input voltage applied to the primary winding is switched by use of metal oxide/semiconductor field-effect transistors (MOSFETs) in a full bridge circuit; the secondary winding is center-tapped, with two MOSFET switches and diode rectifiers connected in opposed series in each leg. The sets of opposed switches and rectifiers are what enable operation in either a boost or a buck mode. In the boost mode, input voltage and current, and the output voltage and current are all positive; that is, the secondary voltage is added to the input voltage and the net output voltage can be regulated at a value equal or greater than the input voltage. In the buck mode, input voltage is still positive and the current still flows in the same direction in the secondary, but the switches are controlled such that some power flows from the secondary to the primary. The voltage across the secondary and the current into the primary are reversed. The result is that the output voltage is lower than the input voltage, and some power is recirculated from the converter secondary back to the input. Quantitatively, the advantage of an SCBBR is a direct function of the regulation range required. If, for example, a regulation range of 20 percent is required for a 500-W supply, th it suffices to design the DC-to-DC converter in the SCBBR for a power rating of only 100 W. The switching loss and size are much smaller than those of a conventional regulator that must be rated for switching of all 500 W. The reduction in size and the increase in efficiency are not directly proportional to switched-power ratio of 5:1 because the additional switches contribute some conduction loss and the input and output filters must be larger than those typically required for a 100-W converter. Nevertheless, the power loss and the size can be much smaller than those of a 500-W converter.

  4. Power-control switch

    NASA Technical Reports Server (NTRS)

    Kessler, L. L.

    1976-01-01

    Constant-current source creates drive current independent of input-voltage variations, 50% reduction in power loss in base drive circuitry, maintains essentially constant charge rate, and improves rise-time consistency over input voltage range.

  5. Fuel Cell/Electrochemical Cell Voltage Monitor

    NASA Technical Reports Server (NTRS)

    Vasquez, Arturo

    2012-01-01

    A concept has been developed for a new fuel cell individual-cell-voltage monitor that can be directly connected to a multi-cell fuel cell stack for direct substack power provisioning. It can also provide voltage isolation for applications in high-voltage fuel cell stacks. The technology consists of basic modules, each with an 8- to 16-cell input electrical measurement connection port. For each basic module, a power input connection would be provided for direct connection to a sub-stack of fuel cells in series within the larger stack. This power connection would allow for module power to be available in the range of 9-15 volts DC. The relatively low voltage differences that the module would encounter from the input electrical measurement connection port, coupled with the fact that the module's operating power is supplied by the same substack voltage input (and so will be at similar voltage), provides for elimination of high-commonmode voltage issues within each module. Within each module, there would be options for analog-to-digital conversion and data transfer schemes. Each module would also include a data-output/communication port. Each of these ports would be required to be either non-electrical (e.g., optically isolated) or electrically isolated. This is necessary to account for the fact that the plurality of modules attached to the stack will normally be at a range of voltages approaching the full range of the fuel cell stack operating voltages. A communications/ data bus could interface with the several basic modules. Options have been identified for command inputs from the spacecraft vehicle controller, and for output-status/data feeds to the vehicle.

  6. A High Efficiency Boost Converter with MPPT Scheme for Low Voltage Thermoelectric Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Guan, Mingjie; Wang, Kunpeng; Zhu, Qingyuan; Liao, Wei-Hsin

    2016-11-01

    Using thermoelectric elements to harvest energy from heat has been of great interest during the last decade. This paper presents a direct current-direct current (DC-DC) boost converter with a maximum power point tracking (MPPT) scheme for low input voltage thermoelectric energy harvesting applications. Zero current switch technique is applied in the proposed MPPT scheme. Theoretical analysis on the converter circuits is explored to derive the equations for parameters needed in the design of the boost converter. Simulations and experiments are carried out to verify the theoretical analysis and equations. A prototype of the designed converter is built using discrete components and a low-power microcontroller. The results show that the designed converter can achieve a high efficiency at low input voltage. The experimental efficiency of the designed converter is compared with a commercial converter solution. It is shown that the designed converter has a higher efficiency than the commercial solution in the considered voltage range.

  7. Power supply

    DOEpatents

    Yakymyshyn, Christopher Paul; Hamilton, Pamela Jane; Brubaker, Michael Allen

    2007-12-04

    A modular, low weight impedance dropping power supply with battery backup is disclosed that can be connected to a high voltage AC source and provide electrical power at a lower voltage. The design can be scaled over a wide range of input voltages and over a wide range of output voltages and delivered power.

  8. Low Temperature Performance of High Power Density DC/DC Converter Modules

    NASA Technical Reports Server (NTRS)

    Elbuluk, Malik E.; Hammond, Ahmad; Gerber, Scott; Patterson, Richard L.; Overton, Eric

    2001-01-01

    In this paper, two second-generation high power density DC/DC converter modules have been evaluated at low operating temperatures. The power rating of one converter (Module 1) was specified at 150 W with an input voltage range of 36 to 75 V and output voltage of 12 V. The other converter (Module 2) was specified at 100 W with the same input voltage range and an output voltage of 3.3 V. The converter modules were evaluated in terms of their performance as a function of operating temperature in the range of 25 to -140 C. The experimental procedures along with the experimental data obtained are presented and discussed in this paper.

  9. Integration Testing of a Modular Discharge Supply for NASA's High Voltage Hall Accelerator Thruster

    NASA Technical Reports Server (NTRS)

    Pinero, Luis R.; Kamhawi, hani; Drummond, Geoff

    2010-01-01

    NASA s In-Space Propulsion Technology Program is developing a high performance Hall thruster that can fulfill the needs of future Discovery-class missions. The result of this effort is the High Voltage Hall Accelerator thruster that can operate over a power range from 0.3 to 3.5 kW and a specific impulse from 1,000 to 2,800 sec, and process 300 kg of xenon propellant. Simultaneously, a 4.0 kW discharge power supply comprised of two parallel modules was developed. These power modules use an innovative three-phase resonant topology that can efficiently supply full power to the thruster at an output voltage range of 200 to 700 V at an input voltage range of 80 to 160 V. Efficiencies as high as 95.9 percent were measured during an integration test with the NASA103M.XL thruster. The accuracy of the master/slave current sharing circuit and various thruster ignition techniques were evaluated.

  10. The Series Connected Buck Boost Regulator Concept for High Efficiency Light Weight DC Voltage Regulation

    NASA Technical Reports Server (NTRS)

    Birchenough, Arthur G.

    2003-01-01

    Improvements in the efficiency and size of DC-DC converters have resulted from advances in components, primarily semiconductors, and improved topologies. One topology, which has shown very high potential in limited applications, is the Series Connected Boost Unit (SCBU), wherein a small DC-DC converter output is connected in series with the input bus to provide an output voltage equal to or greater than the input voltage. Since the DC-DC converter switches only a fraction of the power throughput, the overall system efficiency is very high. But this technique is limited to applications where the output is always greater than the input. The Series Connected Buck Boost Regulator (SCBBR) concept extends partial power processing technique used in the SCBU to operation when the desired output voltage is higher or lower than the input voltage, and the implementation described can even operate as a conventional buck converter to operate at very low output to input voltage ratios. This paper describes the operation and performance of an SCBBR configured as a bus voltage regulator providing 50 percent voltage regulation range, bus switching, and overload limiting, operating above 98 percent efficiency. The technique does not provide input-output isolation.

  11. A low-voltage fully balanced CMFF transconductor with improved linearity

    NASA Astrophysics Data System (ADS)

    Calvo, B.; Celma, S.; Alegre, J. P.; Sanz, M. T.

    2007-05-01

    This paper presents a new low-voltage pseudo-differential continuous-time CMOS transconductor for wideband applications. The proposed cell is based on a feedforward cancellation of the input common-mode signal and keeps the input common mode voltage constant, while the transconductance is easily tunable through a continuous bias voltage. Linearity is preserved during the tuning process for a moderate range of transconductance values. Simulation results for a 0.35 μm CMOS design show a 1:2 G m tuning range with an almost constant bandwidth over 600 MHz. Total harmonic distortion figures are below -60 dB over the whole range at 10 MHz up to a 200 μA p-p differential output. The proposed cell consumes less than 1.2 mW from a single 2.0 V supply.

  12. High Input Voltage, Silicon Carbide Power Processing Unit Performance Demonstration

    NASA Technical Reports Server (NTRS)

    Bozak, Karin E.; Pinero, Luis R.; Scheidegger, Robert J.; Aulisio, Michael V.; Gonzalez, Marcelo C.; Birchenough, Arthur G.

    2015-01-01

    A silicon carbide brassboard power processing unit has been developed by the NASA Glenn Research Center in Cleveland, Ohio. The power processing unit operates from two sources: a nominal 300 Volt high voltage input bus and a nominal 28 Volt low voltage input bus. The design of the power processing unit includes four low voltage, low power auxiliary supplies, and two parallel 7.5 kilowatt (kW) discharge power supplies that are capable of providing up to 15 kilowatts of total power at 300 to 500 Volts (V) to the thruster. Additionally, the unit contains a housekeeping supply, high voltage input filter, low voltage input filter, and master control board, such that the complete brassboard unit is capable of operating a 12.5 kilowatt Hall effect thruster. The performance of the unit was characterized under both ambient and thermal vacuum test conditions, and the results demonstrate exceptional performance with full power efficiencies exceeding 97%. The unit was also tested with a 12.5kW Hall effect thruster to verify compatibility and output filter specifications. With space-qualified silicon carbide or similar high voltage, high efficiency power devices, this would provide a design solution to address the need for high power electric propulsion systems.

  13. A robust low quiescent current power receiver for inductive power transmission in bio implants

    NASA Astrophysics Data System (ADS)

    Helalian, Hamid; Pasandi, Ghasem; Jafarabadi Ashtiani, Shahin

    2017-05-01

    In this paper, a robust low quiescent current complementary metal-oxide semiconductor (CMOS) power receiver for wireless power transmission is presented. This power receiver consists of three main parts including rectifier, switch capacitor DC-DC converter and low-dropout regulator (LDO) without output capacitor. The switch capacitor DC-DC converter has variable conversion ratios and synchronous controller that lets the DC-DC converter to switch among five different conversion ratios to prevent output voltage drop and LDO regulator efficiency reduction. For all ranges of output current (0-10 mA), the voltage regulator is compensated and is stable. Voltage regulator stabilisation does not need the off-chip capacitor. In addition, a novel adaptive biasing frequency compensation method for low dropout voltage regulator is proposed in this paper. This method provides essential minimum current for compensation and reduces the quiescent current more effectively. The power receiver was designed in a 180-nm industrial CMOS technology, and the voltage range of the input is from 0.8 to 2 V, while the voltage range of the output is from 1.2 to 1.75 V, with a maximum load current of 10 mA, the unregulated efficiency of 79.2%, and the regulated efficiency of 64.4%.

  14. An optical fiber Bragg grating and piezoelectric ceramic voltage sensor

    NASA Astrophysics Data System (ADS)

    Yang, Qing; He, Yanxiao; Sun, Shangpeng; Luo, Mandan; Han, Rui

    2017-10-01

    Voltage measurement is essential in many fields like power grids, telecommunications, metallurgy, railways, and oil production. A voltage-sensing unit, consisting of fiber Bragg gratings (FBGs) and piezoelectric ceramics, based on which an optical over-voltage sensor was proposed and fabricated in this paper. No demodulation devices like spectrometer or Fabry-Perot filter were needed to gain the voltage signal, and a relatively large sensing frequency range was acquired in this paper; thus, the cost of the sensing system is more acceptable in engineering application. The voltage to be measured was directly applied to the piezoelectric ceramic, and deformation of the ceramics and the grating would be caused because of the inverse piezoelectric effect. With a reference grating, the output light intensity change will be caused by the FBG center wavelength change; thus, the relationship between the applied voltage and the output light intensity was established. Validation of the sensor was accomplished in the frequency range from 50 Hz to 20 kHz and switching impulse waves with a test platform; good linearity of the input-output characteristic was achieved. A temperature validation test was completed, showing that the sensor maintains good temperature stability. Experimental results show that the optical over-voltage sensor can be used for voltage monitoring, and if applied with a voltage divider, the sensor can be used to measure high voltage.

  15. An optical fiber Bragg grating and piezoelectric ceramic voltage sensor.

    PubMed

    Yang, Qing; He, Yanxiao; Sun, Shangpeng; Luo, Mandan; Han, Rui

    2017-10-01

    Voltage measurement is essential in many fields like power grids, telecommunications, metallurgy, railways, and oil production. A voltage-sensing unit, consisting of fiber Bragg gratings (FBGs) and piezoelectric ceramics, based on which an optical over-voltage sensor was proposed and fabricated in this paper. No demodulation devices like spectrometer or Fabry-Perot filter were needed to gain the voltage signal, and a relatively large sensing frequency range was acquired in this paper; thus, the cost of the sensing system is more acceptable in engineering application. The voltage to be measured was directly applied to the piezoelectric ceramic, and deformation of the ceramics and the grating would be caused because of the inverse piezoelectric effect. With a reference grating, the output light intensity change will be caused by the FBG center wavelength change; thus, the relationship between the applied voltage and the output light intensity was established. Validation of the sensor was accomplished in the frequency range from 50 Hz to 20 kHz and switching impulse waves with a test platform; good linearity of the input-output characteristic was achieved. A temperature validation test was completed, showing that the sensor maintains good temperature stability. Experimental results show that the optical over-voltage sensor can be used for voltage monitoring, and if applied with a voltage divider, the sensor can be used to measure high voltage.

  16. Wide-temperature integrated operational amplifier

    NASA Technical Reports Server (NTRS)

    Mojarradi, Mohammad (Inventor); Levanas, Greg (Inventor); Chen, Yuan (Inventor); Cozy, Raymond S. (Inventor); Greenwell, Robert (Inventor); Terry, Stephen (Inventor); Blalock, Benjamin J. (Inventor)

    2009-01-01

    The present invention relates to a reference current circuit. The reference circuit comprises a low-level current bias circuit, a voltage proportional-to-absolute temperature generator for creating a proportional-to-absolute temperature voltage (VPTAT), and a MOSFET-based constant-IC regulator circuit. The MOSFET-based constant-IC regulator circuit includes a constant-IC input and constant-IC output. The constant-IC input is electrically connected with the VPTAT generator such that the voltage proportional-to-absolute temperature is the input into the constant-IC regulator circuit. Thus the constant-IC output maintains the constant-IC ratio across any temperature range.

  17. A single supply biopotential amplifier.

    PubMed

    Spinelli, E M; Martinez, N H; Mayosky, M A

    2001-04-01

    A biopotential amplifier for single supply operation is presented. It uses a Driven Right Leg Circuit (DRL) to drive the patient's body to a DC common mode voltage, centering biopotential signals with respect to the amplifier's input voltage range. This scheme ensures proper range operation when a single power supply is used. The circuit described is especially suited for low consumption, battery-powered applications, requiring a single battery and avoiding switching voltage inverters to achieve dual supplies. The generic circuit is described and, as an example, a biopotential amplifier with a gain of 60 dB and a DC input range of +/-200 mV was implemented using low power operational amplifiers. A Common Mode Rejection Ratio (CMRR) of 126 dB at 50 Hz was achieved without trimming.

  18. Flexible Power Distribution Based on Point of Load Converters

    NASA Astrophysics Data System (ADS)

    Dhallewin, G.; Galiana, D.; Mollard, J. M.; Schaper, W.; Strixner, E.; Tonicello, F.; Triggianese, M.

    2014-08-01

    Present digital electronic loads require low voltages and suffer from high currents. In addition, they need several different voltage levels to supply the different parts of digital devices like the core, the input/output I/F, etc. Distributed Power Architectures (DPA) with point-of- load (POL) converters (synchronous buck type) offer excellent performance in term of efficiency and load step behaviour. They occupy little PCB area and are well suited for very low voltage (VLV) DC conversion (1V to 3.3V). The paper presents approaches to architectural design of POL based supplies including redundancy and protection as well as the requirements on a European hardware implementation. The main driver of the analysis is the flexibility of each element (DC/DC converter, protection, POL core) to cover a wide range of space applications.

  19. A digital prediction algorithm for a single-phase boost PFC

    NASA Astrophysics Data System (ADS)

    Qing, Wang; Ning, Chen; Weifeng, Sun; Shengli, Lu; Longxing, Shi

    2012-12-01

    A novel digital control algorithm for digital control power factor correction is presented, which is called the prediction algorithm and has a feature of a higher PF (power factor) with lower total harmonic distortion, and a faster dynamic response with the change of the input voltage or load current. For a certain system, based on the current system state parameters, the prediction algorithm can estimate the track of the output voltage and the inductor current at the next switching cycle and get a set of optimized control sequences to perfectly track the trajectory of input voltage. The proposed prediction algorithm is verified at different conditions, and computer simulation and experimental results under multi-situations confirm the effectiveness of the prediction algorithm. Under the circumstances that the input voltage is in the range of 90-265 V and the load current in the range of 20%-100%, the PF value is larger than 0.998. The startup and the recovery times respectively are about 0.1 s and 0.02 s without overshoot. The experimental results also verify the validity of the proposed method.

  20. Series resonant converter with auxiliary winding turns: analysis, design and implementation

    NASA Astrophysics Data System (ADS)

    Lin, Bor-Ren

    2018-05-01

    Conventional series resonant converters have researched and applied for high-efficiency power units due to the benefit of its low switching losses. The main problems of series resonant converters are wide frequency variation and high circulating current. Thus, resonant converter is limited at narrow input voltage range and large input capacitor is normally adopted in commercial power units to provide the minimum hold-up time requirement when AC power is off. To overcome these problems, the resonant converter with auxiliary secondary windings are presented in this paper to achieve high voltage gain at low input voltage case such as hold-up time duration when utility power is off. Since the high voltage gain is used at low input voltage cased, the frequency variation of the proposed converter compared to the conventional resonant converter is reduced. Compared to conventional resonant converter, the hold-up time in the proposed converter is more than 40ms. The larger magnetising inductance of transformer is used to reduce the circulating current losses. Finally, a laboratory prototype is constructed and experiments are provided to verify the converter performance.

  1. High Voltage TAL Performance

    NASA Technical Reports Server (NTRS)

    Jacobson, David T.; Jankovsky, Robert S.; Rawlin, Vincent K.; Manzella, David H.

    2001-01-01

    The performance of a two-stage, anode layer Hall thruster was evaluated. Experiments were conducted in single and two-stage configurations. In single-stage configuration, the thruster was operated with discharge voltages ranging from 300 to 1700 V. Discharge specific impulses ranged from 1630 to 4140 sec. Thruster investigations were conducted with input power ranging from 1 to 8.7 kW, corresponding to power throttling of nearly 9: 1. An extensive two-stage performance map was generated. Data taken with total voltage (sum of discharge and accelerating voltage) constant revealed a decrease in thruster efficiency as the discharge voltage was increased. Anode specific impulse values were comparable in the single and two-stage configurations showing no strong advantage for two-stage operation.

  2. Feasibility of Stochastic Voltage/VAr Optimization Considering Renewable Energy Resources for Smart Grid

    NASA Astrophysics Data System (ADS)

    Momoh, James A.; Salkuti, Surender Reddy

    2016-06-01

    This paper proposes a stochastic optimization technique for solving the Voltage/VAr control problem including the load demand and Renewable Energy Resources (RERs) variation. The RERs often take along some inputs like stochastic behavior. One of the important challenges i. e., Voltage/VAr control is a prime source for handling power system complexity and reliability, hence it is the fundamental requirement for all the utility companies. There is a need for the robust and efficient Voltage/VAr optimization technique to meet the peak demand and reduction of system losses. The voltages beyond the limit may damage costly sub-station devices and equipments at consumer end as well. Especially, the RERs introduces more disturbances and some of the RERs are not even capable enough to meet the VAr demand. Therefore, there is a strong need for the Voltage/VAr control in RERs environment. This paper aims at the development of optimal scheme for Voltage/VAr control involving RERs. In this paper, Latin Hypercube Sampling (LHS) method is used to cover full range of variables by maximally satisfying the marginal distribution. Here, backward scenario reduction technique is used to reduce the number of scenarios effectively and maximally retain the fitting accuracy of samples. The developed optimization scheme is tested on IEEE 24 bus Reliability Test System (RTS) considering the load demand and RERs variation.

  3. Dual physiological rate measurement instrument

    NASA Technical Reports Server (NTRS)

    Cooper, Tommy G. (Inventor)

    1990-01-01

    The object of the invention is to provide an instrument for converting a physiological pulse rate into a corresponding linear output voltage. The instrument which accurately measures the rate of an unknown rectangular pulse wave over an extended range of values comprises a phase-locked loop including a phase comparator, a filtering network, and a voltage-controlled oscillator, arranged in cascade. The phase comparator has a first input responsive to the pulse wave and a second input responsive to the output signal of the voltage-controlled oscillator. The comparator provides a signal dependent on the difference in phase and frequency between the signals appearing on the first and second inputs. A high-input impedance amplifier accepts an output from the filtering network and provides an amplified output DC signal to a utilization device for providing a measurement of the rate of the pulse wave.

  4. Piezoelectric transformers for low-voltage generation of gas discharges and ionic winds in atmospheric air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Michael J.; Go, David B., E-mail: dgo@nd.edu; Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indianapolis 46556

    To generate a gas discharge (plasma) in atmospheric air requires an electric field that exceeds the breakdown threshold of ∼30 kV/cm. Because of safety, size, or cost constraints, the large applied voltages required to generate such fields are often prohibitive for portable applications. In this work, piezoelectric transformers are used to amplify a low input applied voltage (<30 V) to generate breakdown in air without the need for conventional high-voltage electrical equipment. Piezoelectric transformers (PTs) use their inherent electromechanical resonance to produce a voltage amplification, such that the surface of the piezoelectric exhibits a large surface voltage that can generate corona-like dischargesmore » on its corners or on adjacent electrodes. In the proper configuration, these discharges can be used to generate a bulk air flow called an ionic wind. In this work, PT-driven discharges are characterized by measuring the discharge current and the velocity of the induced ionic wind with ionic winds generated using input voltages as low as 7 V. The characteristics of the discharge change as the input voltage increases; this modifies the resonance of the system and subsequent required operating parameters.« less

  5. Series Connected Buck-Boost Regulator

    NASA Technical Reports Server (NTRS)

    Birchenough, Arthur G. (Inventor)

    2006-01-01

    A Series Connected Buck-Boost Regulator (SCBBR) that switches only a fraction of the input power, resulting in relatively high efficiencies. The SCBBR has multiple operating modes including a buck, a boost, and a current limiting mode, so that an output voltage of the SCBBR ranges from below the source voltage to above the source voltage.

  6. Programmable differential capacitance-to-voltage converter for MEMS accelerometers

    NASA Astrophysics Data System (ADS)

    Royo, G.; Sánchez-Azqueta, C.; Gimeno, C.; Aldea, C.; Celma, S.

    2017-05-01

    Capacitive MEMS sensors exhibit an excellent noise performance, high sensitivity and low power consumption. They offer a huge range of applications, being the accelerometer one of its main uses. In this work, we present the design of a capacitance-to-voltage converter in CMOS technology to measure the acceleration from the capacitance variations. It is based on a low-power, fully-differential transimpedance amplifier with low input impedance and a very low input noise.

  7. Membrane voltage fluctuations reduce spike frequency adaptation and preserve output gain in CA1 pyramidal neurons in a high conductance state

    PubMed Central

    Fernandez, Fernando R.; Broicher, Tilman; Truong, Alan; White, John A.

    2011-01-01

    Modulating the gain of the input-output function of neurons is critical for processing of stimuli and network dynamics. Previous gain control mechanisms have suggested that voltage fluctuations play a key role in determining neuronal gain in vivo. Here we show that, under increased membrane conductance, voltage fluctuations restore Na+ current and reduce spike frequency adaptation in rat hippocampal CA1 pyramidal neurons in vitro. As a consequence, membrane voltage fluctuations produce a leftward shift in the f-I relationship without a change in gain, relative to an increase in conductance alone. Furthermore, we show that these changes have important implications for the integration of inhibitory inputs. Due to the ability to restore Na+ current, hyperpolarizing membrane voltage fluctuations mediated by GABAA-like inputs can increase firing rate in a high conductance state. Finally, our data show that the effects on gain and synaptic integration are mediated by voltage fluctuations within a physiologically relevant range of frequencies (10–40 Hz). PMID:21389243

  8. A Novel Concept for a Deformable Membrane Mirror for Correction of Large Amplitude Aberrations

    NASA Technical Reports Server (NTRS)

    Moore, Jim; Patrick, Brian

    2006-01-01

    Very large, light weight mirrors are being developed for applications in space. Due to launch mass and volume restrictions these mirrors will need to be much more flexible than traditional optics. The use of primary mirrors with these characteristics will lead to requirements for adaptive optics capable of correcting wave front errors with large amplitude relatively low spatial frequency aberrations. The use of low modulus membrane mirrors actuated with electrostatic attraction forces is a potential solution for this application. Several different electrostatic membrane mirrors are now available commercially. However, as the dynamic range requirement of the adaptive mirror is increased the separation distance between the membrane and the electrodes must increase to accommodate the required face sheet deformations. The actuation force applied to the mirror decreases inversely proportional to the square of the separation distance; thus for large dynamic ranges the voltage requirement can rapidly increase into the high voltage regime. Experimentation with mirrors operating in the KV range has shown that at the higher voltages a serious problem with electrostatic field cross coupling between actuators can occur. Voltage changes on individual actuators affect the voltage of other actuators making the system very difficult to control. A novel solution has been proposed that combines high voltage electrodes with mechanical actuation to overcome this problem. In this design an array of electrodes are mounted to a backing structure via light weight large dynamic range flextensional actuators. With this design the control input becomes the separation distance between the electrode and the mirror. The voltage on each of the actuators is set to a uniform relatively high voltage, thus the problem of cross talk between actuators is avoided and the favorable distributed load characteristic of electrostatic actuation is retained. Initial testing and modeling of this concept demonstrates that this is an attractive concept for increasing the dynamic range capability of electrostatic deformable mirrors.

  9. High ESD Breakdown-Voltage InP HBT Transimpedance Amplifier IC for Optical Video Distribution Systems

    NASA Astrophysics Data System (ADS)

    Sano, Kimikazu; Nagatani, Munehiko; Mutoh, Miwa; Murata, Koichi

    This paper is a report on a high ESD breakdown-voltage InP HBT transimpedance amplifier IC for optical video distribution systems. To make ESD breakdown-voltage higher, we designed ESD protection circuits integrated in the TIA IC using base-collector/base-emitter diodes of InP HBTs and resistors. These components for ESD protection circuits have already existed in the employed InP HBT IC process, so no process modifications were needed. Furthermore, to meet requirements for use in optical video distribution systems, we studied circuit design techniques to obtain a good input-output linearity and a low-noise characteristic. Fabricated InP HBT TIA IC exhibited high human-body-model ESD breakdown voltages (±1000V for power supply terminals, ±200V for high-speed input/output terminals), good input-output linearity (less than 2.9-% duty-cycle-distortion), and low noise characteristic (10.7pA/√Hz averaged input-referred noise current density) with a -3-dB-down higher frequency of 6.9GHz. To the best of our knowledge, this paper is the first literature describing InP ICs with high ESD-breakdown voltages.

  10. High voltage electrical amplifier having a short rise time

    DOEpatents

    Christie, David J.; Dallum, Gregory E.

    1991-01-01

    A circuit, comprising an amplifier and a transformer is disclosed that produces a high power pulse having a fast response time, and that responds to a digital control signal applied through a digital-to-analog converter. The present invention is suitable for driving a component such as an electro-optic modulator with a voltage in the kilovolt range. The circuit is stable at high frequencies and during pulse transients, and its impedance matching circuit matches the load impedance with the output impedance. The preferred embodiment comprises an input stage compatible with high-speed semiconductor components for amplifying the voltage of the input control signal, a buffer for isolating the input stage from the output stage; and a plurality of current amplifiers connected to the buffer. Each current amplifier is connected to a field effect transistor (FET), which switches a high voltage power supply to a transformer which then provides an output terminal for driving a load. The transformer comprises a plurality of transmission lines connected to the FETs and the load. The transformer changes the impedance and voltage of the output. The preferred embodiment also comprises a low voltage power supply for biasing the FETs at or near an operational voltage.

  11. High dynamic range charge measurements

    DOEpatents

    De Geronimo, Gianluigi

    2012-09-04

    A charge amplifier for use in radiation sensing includes an amplifier, at least one switch, and at least one capacitor. The switch selectively couples the input of the switch to one of at least two voltages. The capacitor is electrically coupled in series between the input of the amplifier and the input of the switch. The capacitor is electrically coupled to the input of the amplifier without a switch coupled therebetween. A method of measuring charge in radiation sensing includes selectively diverting charge from an input of an amplifier to an input of at least one capacitor by selectively coupling an output of the at least one capacitor to one of at least two voltages. The input of the at least one capacitor is operatively coupled to the input of the amplifier without a switch coupled therebetween. The method also includes calculating a total charge based on a sum of the amplified charge and the diverted charge.

  12. Two-electrode low supply voltage electrocardiogram signal amplifier.

    PubMed

    Dobrev, D

    2004-03-01

    Portable biomedical instrumentation has become an important part of diagnostic and treatment instrumentation, including telemedicine applications. Low-voltage and low-power design tendencies prevail. Modern battery cell voltages in the range of 3-3.6 V require appropriate circuit solutions. A two-electrode biopotential amplifier design is presented, with a high common-mode rejection ratio (CMRR), high input voltage tolerance and standard first-order high-pass characteristic. Most of these features are due to a high-gain first stage design. The circuit makes use of passive components of popular values and tolerances. Powered by a single 3 V source, the amplifier tolerates +/- 1 V common mode voltage, +/- 50 microA common mode current and 2 V input DC voltage, and its worst-case CMRR is 60 dB. The amplifier is intended for use in various applications, such as Holter-type monitors, defibrillators, ECG monitors, biotelemetry devices etc.

  13. Photovoltaic power system tests on an 8-kilowatt single-phase line-commutated inverter

    NASA Technical Reports Server (NTRS)

    Stover, J. B.

    1978-01-01

    Efficiency and power factor were measured as functions of solar array voltage and current. The effects of input shunt capacitance and series inductance were determined. Tests were conducted from 15 to 75 percent of the 8 kW rated inverter input power. Measured efficiencies ranged from 76 percent to 88 percent at about 50 percent of rated inverter input power. Power factor ranged from 36 percent to 72 percent.

  14. Measuring Input Thresholds on an Existing Board

    NASA Technical Reports Server (NTRS)

    Kuperman, Igor; Gutrich, Daniel G.; Berkun, Andrew C.

    2011-01-01

    A critical PECL (positive emitter-coupled logic) interface to Xilinx interface needed to be changed on an existing flight board. The new Xilinx input interface used a CMOS (complementary metal-oxide semiconductor) type of input, and the driver could meet its thresholds typically, but not in worst-case, according to the data sheet. The previous interface had been based on comparison with an external reference, but the CMOS input is based on comparison with an internal divider from the power supply. A way to measure what the exact input threshold was for this device for 64 inputs on a flight board was needed. The measurement technique allowed an accurate measurement of the voltage required to switch a Xilinx input from high to low for each of the 64 lines, while only probing two of them. Directly driving an external voltage was considered too risky, and tests done on any other unit could not be used to qualify the flight board. The two lines directly probed gave an absolute voltage threshold calibration, while data collected on the remaining 62 lines without probing gave relative measurements that could be used to identify any outliers. The PECL interface was forced to a long-period square wave by driving a saturated square wave into the ADC (analog to digital converter). The active pull-down circuit was turned off, causing each line to rise rapidly and fall slowly according to the input s weak pull-down circuitry. The fall time shows up as a change in the pulse width of the signal ready by the Xilinx. This change in pulse width is a function of capacitance, pulldown current, and input threshold. Capacitance was known from the different trace lengths, plus a gate input capacitance, which is the same for all inputs. The pull-down current is the same for all inputs including the two that are probed directly. The data was combined, and the Excel solver tool was used to find input thresholds for the 62 lines. This was repeated over different supply voltages and temperatures to show that the interface had voltage margin under all worst case conditions. Gate input thresholds are normally measured at the manufacturer when the device is on a chip tester. A key function of this machine was duplicated on an existing flight board with no modifications to the nets to be tested, with the exception of changes in the FPGA program.

  15. A 13.56 MHz CMOS Active Rectifier With Switched-Offset and Compensated Biasing for Biomedical Wireless Power Transfer Systems.

    PubMed

    Yan Lu; Wing-Hung Ki

    2014-06-01

    A full-wave active rectifier switching at 13.56 MHz with compensated bias current for a wide input range for wirelessly powered high-current biomedical implants is presented. The four diodes of a conventional passive rectifier are replaced by two cross-coupled PMOS transistors and two comparator- controlled NMOS switches to eliminate diode voltage drops such that high voltage conversion ratio and power conversion efficiency could be achieved even at low AC input amplitude |VAC|. The comparators are implemented with switched-offset biasing to compensate for the delays of active diodes and to eliminate multiple pulsing and reverse current. The proposed rectifier uses a modified CMOS peaking current source with bias current that is quasi-inversely proportional to the supply voltage to better control the reverse current over a wide AC input range (1.5 to 4 V). The rectifier was fabricated in a standard 0.35 μm CMOS N-well process with active area of 0.0651 mm(2). For the proposed rectifier measured at |VAC| = 3.0 V, the voltage conversion ratios are 0.89 and 0.93 for RL=500 Ω and 5 kΩ, respectively, and the measured power conversion efficiencies are 82.2% to 90.1% with |VAC| ranges from 1.5 to 4 V for RL=500 Ω.

  16. Methods, systems and apparatus for controlling operation of two alternating current (AC) machines

    DOEpatents

    Gallegos-Lopez, Gabriel [Torrance, CA; Nagashima, James M [Cerritos, CA; Perisic, Milun [Torrance, CA; Hiti, Silva [Redondo Beach, CA

    2012-02-14

    A system is provided for controlling two AC machines. The system comprises a DC input voltage source that provides a DC input voltage, a voltage boost command control module (VBCCM), a five-phase PWM inverter module coupled to the two AC machines, and a boost converter coupled to the inverter module and the DC input voltage source. The boost converter is designed to supply a new DC input voltage to the inverter module having a value that is greater than or equal to a value of the DC input voltage. The VBCCM generates a boost command signal (BCS) based on modulation indexes from the two AC machines. The BCS controls the boost converter such that the boost converter generates the new DC input voltage in response to the BCS. When the two AC machines require additional voltage that exceeds the DC input voltage required to meet a combined target mechanical power required by the two AC machines, the BCS controls the boost converter to drive the new DC input voltage generated by the boost converter to a value greater than the DC input voltage.

  17. A new low voltage level-shifted FVF current mirror with enhanced bandwidth and output resistance

    NASA Astrophysics Data System (ADS)

    Aggarwal, Bhawna; Gupta, Maneesha; Gupta, Anil Kumar; Sangal, Ankur

    2016-10-01

    This paper proposes a new high-performance level-shifted flipped voltage follower (LSFVF) based low-voltage current mirror (CM). The proposed CM utilises the low-supply voltage and low-input resistance characteristics of a flipped voltage follower (FVF) CM. In the proposed CM, level-shifting configuration is used to obtain a wide operating current range and resistive compensation technique is employed to increase the operating bandwidth. The peaking in frequency response is reduced by using an additional large MOSFET. Moreover, a very high output resistance (in GΩ range) along with low-current transfer error is achieved through super-cascode configuration for a wide current range (0-440 µA). Small signal analysis is carried out to show the improvements achieved at each step. The proposed CM is simulated by Mentor Graphics Eldospice in TSMC 0.18 µm CMOS, BSIM3 and Level 53 technology. In the proposed CM, a bandwidth of 6.1799 GHz, 1% settling time of 0.719 ns, input and output resistances of 21.43 Ω and 1.14 GΩ, respectively, are obtained with a single supply voltage of 1 V. The layout of the proposed CM has been designed and post-layout simulation results have been shown. The post-layout simulation results for Monte Carlo and temperature analysis have also been included to show the reliability of the CM against the variations in process parameters and temperature changes.

  18. Optimum Design of LLC Resonant Converter using Inductance Ratio (Lm/Lr)

    NASA Astrophysics Data System (ADS)

    Palle, Kowstubha; Krishnaveni, K.; Ramesh Reddy, Kolli

    2017-06-01

    The main benefits of LLC resonant dc/dc converter over conventional series and parallel resonant converters are its light load regulation, less circulating currents, larger bandwidth for zero voltage switching, and less tuning of switching frequency for controlled output. An unique analytical tool, called fundamental harmonic approximation with peak gain adjustment is used for designing the converter. In this paper, an optimum design of the converter is proposed by considering three different design criterions with different values of inductance ratio (Lm/Lr) to achieve good efficiency at high input voltage. The optimum design includes the analysis in operating range, switching frequency range, primary side losses of a switch and stability. The analysis is carried out with simulation using the software tools like MATLAB and PSIM. The performance of the optimized design is demonstrated for a design specification of 12 V, 5 A output operating with an input voltage range of 300-400 V using FSFR 2100 IC of Texas instruments.

  19. Electrical Characterization of Special Purpose Linear Microcircuits.

    DTIC Science & Technology

    1980-05-01

    Forced voltage VHS "Hold" step voltage VIH Logic ŕ" input voltage VII, Logic Ŕ" input voltage VIN Input voltage V10 Input offset voltage VIO AW...This measurement is performed similar to (10), but with Vcc = + 15 VDC, VIH = + 10.4 , and K6 energized. 12. Gain Error Drift (F7SW AT) The unipolar

  20. In vivo voltage-dependent influences on summation of synaptic potentials in neurons of the lateral nucleus of the amygdala

    PubMed Central

    Rosenkranz, J. Amiel

    2012-01-01

    The amygdala has a fundamental role in driving affective behaviors in response to sensory cues. To accomplish this, neurons of the lateral nucleus (LAT) must integrate a large number of synaptic inputs. A wide range of factors influence synaptic integration, including membrane potential, voltage-gated ion channels and GABAergic inhibition. However, little is known about how these factors modulate integration of synaptic inputs in LAT neurons in vivo. The purpose of this study was to determine the voltage-dependent factors that modify in vivo integration of synaptic inputs in the soma of LAT neurons. In vivo intracellular recordings from anesthetized rats were used to measure post-synaptic potentials (PSPs) and clusters of PSPs across a range of membrane potentials. These studies found that the relationship between membrane potential and PSP clusters was sublinear, due to a reduction of cluster amplitude and area at depolarized membrane potentials. In combination with intracellular delivery of pharmacological agents, it was found that the voltage-dependent suppression of PSP clusters was sensitive to tetraethylammonium (TEA), but not cesium or a blocker of fast GABAergic inhibition. These findings indicate that integration of PSPs in LAT neurons in vivo is strongly modified by somatic membrane potential, likely through voltage-dependent TEA-sensitive potassium channels. Conditions that lead to a shift in membrane potential, or a modulation of the number or function of these ion channels will lead to a more uniform capacity for integration across voltages, and perhaps greatly facilitate amygdala-dependent behaviors. PMID:22989917

  1. Lightweight, high-frequency transformers

    NASA Technical Reports Server (NTRS)

    Schwarze, G. E.

    1983-01-01

    The 25-kVA space transformer was developed under contract by Thermal Technology Laboratory, Buffalo, N. Y. The NASA Lewis transformer technology program attempted to develop the baseline technology. For the 25-kVA transformer the input voltage was chosen as 200 V, the output voltage as 1500 V, the input voltage waveform as square wave, the duty cycle as continuous, the frequency range (within certain constraints) as 10 to 40 kHz, the operating temperatures as 85 deg. and 130 C, the baseplate temperature as 50 C, the equivalent leakage inductance as less than 10 micro-h, the operating environment as space, and the life expectancy as 10 years. Such a transformer can also be used for aircraft, ship and terrestrial applications.

  2. Low voltage to high voltage level shifter and related methods

    NASA Technical Reports Server (NTRS)

    Mentze, Erik J. (Inventor); Buck, Kevin M. (Inventor); Hess, Herbert L. (Inventor); Cox, David F. (Inventor)

    2006-01-01

    A shifter circuit comprises a high and low voltage buffer stages and an output buffer stage. The high voltage buffer stage comprises multiple transistors arranged in a transistor stack having a plurality of intermediate nodes connecting individual transistors along the stack. The transistor stack is connected between a voltage level being shifted to and an input voltage. An inverter of this stage comprises multiple inputs and an output. Inverter inputs are connected to a respective intermediate node of the transistor stack. The low voltage buffer stage has an input connected to the input voltage and an output, and is operably connected to the high voltage buffer stage. The low voltage buffer stage is connected between a voltage level being shifted away from and a lower voltage. The output buffer stage is driven by the outputs of the high voltage buffer stage inverter and the low voltage buffer stage.

  3. Mechanisms of Gain Control by Voltage-Gated Channels in Intrinsically-Firing Neurons

    PubMed Central

    Patel, Ameera X.; Burdakov, Denis

    2015-01-01

    Gain modulation is a key feature of neural information processing, but underlying mechanisms remain unclear. In single neurons, gain can be measured as the slope of the current-frequency (input-output) relationship over any given range of inputs. While much work has focused on the control of basal firing rates and spike rate adaptation, gain control has been relatively unstudied. Of the limited studies on gain control, some have examined the roles of synaptic noise and passive somatic currents, but the roles of voltage-gated channels present ubiquitously in neurons have been less explored. Here, we systematically examined the relationship between gain and voltage-gated ion channels in a conductance-based, tonically-active, model neuron. Changes in expression (conductance density) of voltage-gated channels increased (Ca2+ channel), reduced (K+ channels), or produced little effect (h-type channel) on gain. We found that the gain-controlling ability of channels increased exponentially with the steepness of their activation within the dynamic voltage window (voltage range associated with firing). For depolarization-activated channels, this produced a greater channel current per action potential at higher firing rates. This allowed these channels to modulate gain by contributing to firing preferentially at states of higher excitation. A finer analysis of the current-voltage relationship during tonic firing identified narrow voltage windows at which the gain-modulating channels exerted their effects. As a proof of concept, we show that h-type channels can be tuned to modulate gain by changing the steepness of their activation within the dynamic voltage window. These results show how the impact of an ion channel on gain can be predicted from the relationship between channel kinetics and the membrane potential during firing. This is potentially relevant to understanding input-output scaling in a wide class of neurons found throughout the brain and other nervous systems. PMID:25816008

  4. A low-power wide range transimpedance amplifier for biochemical sensing.

    PubMed

    Rodriguez-Villegas, Esther

    2007-01-01

    This paper presents a novel low voltage and low power transimpedance amplifier for amperometric potentiostats. The power is optimized by having three different gain settings for different current ranges, which can be programmed with a biasing current. The voltage ranges have been optimized by using FGMOS transistors in a second voltage amplification stage that simultaneously allow for offset calibration as well as independent biasing of the gates. The circuit operates with input currents from 1 pA to 1 microA, with a maximum power supply voltage of 1.5 V and consumes 82.5 nW, 9.825 microW, 47.325 microW for currents varying from (1 pA, 0.25 nA), (0.25 nA, 62.5 nA) and (62.5 nA, 1 microA) respectively.

  5. A nanoscale piezoelectric transformer for low-voltage transistors.

    PubMed

    Agarwal, Sapan; Yablonovitch, Eli

    2014-11-12

    A novel piezoelectric voltage transformer for low-voltage transistors is proposed. Placing a piezoelectric transformer on the gate of a field-effect transistor results in the piezoelectric transformer field-effect transistor that can switch at significantly lower voltages than a conventional transistor. The piezoelectric transformer operates by using one piezoelectric to squeeze another piezoelectric to generate a higher output voltage than the input voltage. Multiple piezoelectrics can be used to squeeze a single piezoelectric layer to generate an even higher voltage amplification. Coupled electrical and mechanical modeling in COMSOL predicts a 12.5× voltage amplification for a six-layer piezoelectric transformer. This would lead to more than a 150× reduction in the power needed for communications.

  6. Timing discriminator using leading-edge extrapolation

    DOEpatents

    Gottschalk, Bernard

    1983-01-01

    A discriminator circuit to recover timing information from slow-rising pulses by means of an output trailing edge, a fixed time after the starting corner of the input pulse, which is nearly independent of risetime and threshold setting. This apparatus comprises means for comparing pulses with a threshold voltage; a capacitor to be charged at a certain rate when the input signal is one-third threshold voltage, and at a lower rate when the input signal is two-thirds threshold voltage; current-generating means for charging the capacitor; means for comparing voltage capacitor with a bias voltage; a flip-flop to be set when the input pulse reaches threshold voltage and reset when capacitor voltage reaches the bias voltage; and a clamping means for discharging the capacitor when the input signal returns below one-third threshold voltage.

  7. Inverter ratio failure detector

    NASA Technical Reports Server (NTRS)

    Wagner, A. P.; Ebersole, T. J.; Andrews, R. E. (Inventor)

    1974-01-01

    A failure detector which detects the failure of a dc to ac inverter is disclosed. The inverter under failureless conditions is characterized by a known linear relationship of its input and output voltages and by a known linear relationship of its input and output currents. The detector includes circuitry which is responsive to the detector's input and output voltages and which provides a failure-indicating signal only when the monitored output voltage is less by a selected factor, than the expected output voltage for the monitored input voltage, based on the known voltages' relationship. Similarly, the detector includes circuitry which is responsive to the input and output currents and provides a failure-indicating signal only when the input current exceeds by a selected factor the expected input current for the monitored output current based on the known currents' relationship.

  8. Programmable Multiple-Ramped-Voltage Power Supply

    NASA Technical Reports Server (NTRS)

    Ajello, Joseph M.; Howell, S. K.

    1993-01-01

    Ramp waveforms range up to 2,000 V. Laboratory high-voltage power-supply system puts out variety of stable voltages programmed to remain fixed with respect to ground or float with respect to ramp waveform. Measures voltages it produces with high resolution; automatically calibrates, zeroes, and configures itself; and produces variety of input/output signals for use with other instruments. Developed for use with ultraviolet spectrometer. Also applicable to control of electron guns in general and to operation of such diverse equipment used in measuring scattering cross sections of subatomic particles and in industrial electron-beam welders.

  9. Timing discriminator using leading-edge extrapolation

    DOEpatents

    Gottschalk, B.

    1981-07-30

    A discriminator circuit to recover timing information from slow-rising pulses by means of an output trailing edge, a fixed time after the starting corner of the input pulse, which is nearly independent of risetime and threshold setting is described. This apparatus comprises means for comparing pulses with a threshold voltage; a capacitor to be charged at a certain rate when the input signal is one-third threshold voltage, and at a lower rate when the input signal is two-thirds threshold voltage; current-generating means for charging the capacitor; means for comparing voltage capacitor with a bias voltage; a flip-flop to be set when the input pulse reaches threshold voltage and reset when capacitor voltage reaches the bias voltage; and a clamping means for discharging the capacitor when the input signal returns below one-third threshold voltage.

  10. Characterization of Low Noise, Precision Voltage Reference REF5025-HT Under Extreme Temperatures

    NASA Technical Reports Server (NTRS)

    Patterson, Richard; Hammoud, Ahmad

    2010-01-01

    The performance of Texas Instruments precision voltage reference REF5025-HT was assessed under extreme temperatures. This low noise, 2.5 V output chip is suitable for use in high temperature down-hole drilling applications, but no data existed on its performance at cryogenic temperatures. The device was characterized in terms of output voltage and supply current at different input voltage levels as a function of temperature between +210 C and -190 C. Line and load regulation characteristics were also established at six load levels and at different temperatures. Restart capability at extreme temperatures and the effects of thermal cycling, covering the test temperature range, on its operation and stability were also investigated. Under no load condition, the voltage reference chip exhibited good stability in its output over the temperature range of -50 C to +200 C. Outside that temperature range, output voltage did change as temperature was changed. For example, at the extreme temperatures of +210 C and - 190 C, the output level dropped to 2.43 V and 2.32 V, respectively as compared to the nominal value of 2.5 V. At cryogenic test temperatures of -100 C and -150 C the output voltage dropped by about 20%. The quiescent supply current of the voltage reference varied slightly with temperature but remained close to its specified value. In terms of line regulation, the device exhibited excellent stability between -50 C and +150 C over the entire input voltage range and load levels. At the other test temperatures, however, while line regulation became poor at cryogenic temperatures of -100 C and below, it suffered slight degradation at the extreme high temperature but only at the high load level of 10 mA. The voltage reference also exhibited very good load regulation with temperature down to -100 C, but its output dropped sharply at +210 C only at the heavy load of 10 mA. The semiconductor chip was able restart at the extreme temperatures of -190 C and +210 C, and the limited thermal cycling did not influence its characteristics and had no impact on its packaging as no structural or physical damage was observed.

  11. Self-Nulling Lock-in Detection Electronics for Capacitance Probe Electrometer

    NASA Technical Reports Server (NTRS)

    Blaes, Brent R.; Schaefer, Rembrandt T.

    2012-01-01

    A multi-channel electrometer voltmeter that employs self-nulling lock-in detection electronics in conjunction with a mechanical resonator with noncontact voltage sensing electrodes has been developed for space-based measurement of an Internal Electrostatic Discharge Monitor (IESDM). The IESDM is new sensor technology targeted for integration into a Space Environmental Monitor (SEM) subsystem used for the characterization and monitoring of deep dielectric charging on spacecraft. Use of an AC-coupled lock-in amplifier with closed-loop sense-signal nulling via generation of an active guard-driving feedback voltage provides the resolution, accuracy, linearity and stability needed for long-term space-based measurement of the IESDM. This implementation relies on adjusting the feedback voltage to drive the sense current received from the resonator s variable-capacitance-probe voltage transducer to approximately zero, as limited by the signal-to-noise performance of the loop electronics. The magnitude of the sense current is proportional to the difference between the input voltage being measured and the feedback voltage, which matches the input voltage when the sense current is zero. High signal-to-noise-ratio (SNR) is achieved by synchronous detection of the sense signal using the correlated reference signal derived from the oscillator circuit that drives the mechanical resonator. The magnitude of the feedback voltage, while the loop is in a settled state with essentially zero sense current, is an accurate estimate of the input voltage being measured. This technique has many beneficial attributes including immunity to drift, high linearity, high SNR from synchronous detection of a single-frequency carrier selected to avoid potentially noisy 1/f low-frequency spectrum of the signal-chain electronics, and high accuracy provided through the benefits of a driven shield encasing the capacitance- probe transducer and guarded input triaxial lead-in. Measurements obtained from a 2- channel prototype electrometer have demonstrated good accuracy (|error| < 0.2 V) and high stability. Twenty-four-hour tests have been performed with virtually no drift. Additionally, 5,500 repeated one-second measurements of 100 V input were shown to be approximately normally distributed with a standard deviation of 140 mV.

  12. Dual-bridge LLC-SRC with extended voltage range for deeply depleted PEV battery charging

    NASA Astrophysics Data System (ADS)

    Shahzad, M. Imran; Iqbal, Shahid; Taib, Soib

    2017-11-01

    This paper proposes a dual-bridge LLC series resonant converter with hybrid-rectifier for achieving extended charging voltage range of 50-420 V for on-board battery charger of plug-in electric vehicle for normal and deeply depleted battery charging. Depending upon the configuration of primary switching network and secondary rectifier, the proposed topology has three operating modes as half-bridge with bridge rectifier (HBBR), full-bridge with bridge rectifier (FBBR) and full-bridge with voltage doubler (FBVD). HBBR, FBBR and FBVD operating modes of converter achieve 50-125, 125-250 and 250-420 V voltage ranges, respectively. For voltage above 62 V, the converter operates below resonance frequency zero voltage switching region with narrow switching frequency range for soft commutation of secondary diodes and low turn-off current of MOSFETs to reduce switching losses. The proposed converter is simulated using MATLAB Simulink and a 1.5 kW laboratory prototype is also built to validate the operation of proposed topology. Simulation and experimental results show that the converter meets all the charging requirements for deeply depleted to fully charged battery using constant current-constant voltage charging method with fixed 400 V DC input and achieves 96.22% peak efficiency.

  13. Soft switching resonant converter with duty-cycle control in DC micro-grid system

    NASA Astrophysics Data System (ADS)

    Lin, Bor-Ren

    2018-01-01

    Resonant converter has been widely used for the benefits of low switching losses and high circuit efficiency. However, the wide frequency variation is the main drawback of resonant converter. This paper studies a new modular resonant converter with duty-cycle control to overcome this problem and realise the advantages of low switching losses, no reverse recovery current loss, balance input split voltages and constant frequency operation for medium voltage direct currentgrid or system network. Series full-bridge (FB) converters are used in the studied circuit in order to reduce the voltage stresses and power rating on power semiconductors. Flying capacitor is used between two FB converters to balance input split voltages. Two circuit modules are paralleled on the secondary side to lessen the current rating of rectifier diodes and the size of magnetic components. The resonant tank is operated at inductive load circuit to help power switches to be turned on at zero voltage with wide load range. The pulse-width modulation scheme is used to regulate output voltage. Experimental verifications are provided to show the performance of the proposed circuit.

  14. On the use of an Arduino-based controller to control the charging process of a wind turbine

    NASA Astrophysics Data System (ADS)

    Mahmuddin, Faisal; Yusran, Ahmad Muhtam; Klara, Syerly

    2017-02-01

    In order to avoid an excessive charging voltage which can damage power storage when converting wind energy using a turbine, it is necessary to control the charging voltage of the turbine generator. In the present study, a charging controller which uses an Arduino microcontroller, is designed. 3 (three) indicator lights are installed to indicate the battery charging process, power diversion to dummy load and battery power level. The performance of the designed controller is evaluated by simulating 3 cases. In this simulation, a battery with maximum voltage of 12.4 V is used. Case 1 is performed with input voltage equals the one set in Arduino which is 10 V. In this case, the battery is charged up to 10.8 V. In case 2, the input voltage is 13 V while the maximum voltage set in Arduino is also 13 V. In this case, the battery is charged up to maximum voltage of the battery. Moreover, the dummy load indicator is ON and charging indicator is OFF after the maximum charging voltage is reached because the electricity is flowed to the dummy load. In the final case, the input voltage is set to be 16 V while the maximum voltage set in Arduino is 13 V. In this case, the charging indicator is OFF and dummy load indicator is ON which means that the Arduino has successfully switched the power to be flowed to dummy load. From the 3 (three) cases, it can be concluded that the designed controller works perfectly to control the charging process of the wind turbine. Moreover, the charging time needed in each case can also be determined.

  15. Design, experiments and simulation of voltage transformers on the basis of a differential input D-dot sensor.

    PubMed

    Wang, Jingang; Gao, Can; Yang, Jie

    2014-07-17

    Currently available traditional electromagnetic voltage sensors fail to meet the measurement requirements of the smart grid, because of low accuracy in the static and dynamic ranges and the occurrence of ferromagnetic resonance attributed to overvoltage and output short circuit. This work develops a new non-contact high-bandwidth voltage measurement system for power equipment. This system aims at the miniaturization and non-contact measurement of the smart grid. After traditional D-dot voltage probe analysis, an improved method is proposed. For the sensor to work in a self-integrating pattern, the differential input pattern is adopted for circuit design, and grounding is removed. To prove the structure design, circuit component parameters, and insulation characteristics, Ansoft Maxwell software is used for the simulation. Moreover, the new probe was tested on a 10 kV high-voltage test platform for steady-state error and transient behavior. Experimental results ascertain that the root mean square values of measured voltage are precise and that the phase error is small. The D-dot voltage sensor not only meets the requirement of high accuracy but also exhibits satisfactory transient response. This sensor can meet the intelligence, miniaturization, and convenience requirements of the smart grid.

  16. A high gain wide dynamic range transimpedance amplifier for optical receivers

    NASA Astrophysics Data System (ADS)

    Lianxi, Liu; Jiao, Zou; Yunfei, En; Shubin, Liu; Yue, Niu; Zhangming, Zhu; Yintang, Yang

    2014-01-01

    As the front-end preamplifiers in optical receivers, transimpedance amplifiers (TIAs) are commonly required to have a high gain and low input noise to amplify the weak and susceptible input signal. At the same time, the TIAs should possess a wide dynamic range (DR) to prevent the circuit from becoming saturated by high input currents. Based on the above, this paper presents a CMOS transimpedance amplifier with high gain and a wide DR for 2.5 Gbit/s communications. The TIA proposed consists of a three-stage cascade pull push inverter, an automatic gain control circuit, and a shunt transistor controlled by the resistive divider. The inductive-series peaking technique is used to further extend the bandwidth. The TIA proposed displays a maximum transimpedance gain of 88.3 dBΩ with the -3 dB bandwidth of 1.8 GHz, exhibits an input current dynamic range from 100 nA to 10 mA. The output voltage noise is less than 48.23 nV/√Hz within the -3 dB bandwidth. The circuit is fabricated using an SMIC 0.18 μm 1P6M RFCMOS process and dissipates a dc power of 9.4 mW with 1.8 V supply voltage.

  17. High-Voltage-Input Level Translator Using Standard CMOS

    NASA Technical Reports Server (NTRS)

    Yager, Jeremy A.; Mojarradi, Mohammad M.; Vo, Tuan A.; Blalock, Benjamin J.

    2011-01-01

    proposed integrated circuit would translate (1) a pair of input signals having a low differential potential and a possibly high common-mode potential into (2) a pair of output signals having the same low differential potential and a low common-mode potential. As used here, "low" and "high" refer to potentials that are, respectively, below or above the nominal supply potential (3.3 V) at which standard complementary metal oxide/semiconductor (CMOS) integrated circuits are designed to operate. The input common-mode potential could lie between 0 and 10 V; the output common-mode potential would be 2 V. This translation would make it possible to process the pair of signals by use of standard 3.3-V CMOS analog and/or mixed-signal (analog and digital) circuitry on the same integrated-circuit chip. A schematic of the circuit is shown in the figure. Standard 3.3-V CMOS circuitry cannot withstand input potentials greater than about 4 V. However, there are many applications that involve low-differential-potential, high-common-mode-potential input signal pairs and in which standard 3.3-V CMOS circuitry, which is relatively inexpensive, would be the most appropriate circuitry for performing other functions on the integrated-circuit chip that handles the high-potential input signals. Thus, there is a need to combine high-voltage input circuitry with standard low-voltage CMOS circuitry on the same integrated-circuit chip. The proposed circuit would satisfy this need. In the proposed circuit, the input signals would be coupled into both a level-shifting pair and a common-mode-sensing pair of CMOS transistors. The output of the level-shifting pair would be fed as input to a differential pair of transistors. The resulting differential current output would pass through six standoff transistors to be mirrored into an output branch by four heterojunction bipolar transistors. The mirrored differential current would be converted back to potential by a pair of diode-connected transistors, which, by virtue of being identical to the input transistors, would reproduce the input differential potential at the output

  18. Four-Quadrant Analog Multipliers Using G4-FETs

    NASA Technical Reports Server (NTRS)

    Mojarradi, Mohammad; Blalock, Benjamin; Christoloveanu, Sorin; Chen, Suheng; Akarvardar, Kerem

    2006-01-01

    Theoretical analysis and some experiments have shown that the silicon-on-insulator (SOI) 4-gate transistors known as G4-FETs can be used as building blocks of four-quadrant analog voltage multiplier circuits. Whereas a typical prior analog voltage multiplier contains between six and 10 transistors, it is possible to construct a superior voltage multiplier using only four G4-FETs. A G4-FET is a combination of a junction field-effect transistor (JFET) and a metal oxide/semiconductor field-effect transistor (MOSFET). It can be regarded as a single transistor having four gates, which are parts of a structure that affords high functionality by enabling the utilization of independently biased multiple inputs. The structure of a G4-FET of the type of interest here (see Figure 1) is that of a partially-depleted SOI MOSFET with two independent body contacts, one on each side of the channel. The drain current comprises of majority charge carriers flowing from one body contact to the other that is, what would otherwise be the side body contacts of the SOI MOSFET are used here as the end contacts [the drain (D) and the source (S)] of the G4-FET. What would otherwise be the source and drain of the SOI MOSFET serve, in the G4-FET, as two junction-based extra gates (JG1 and JG2), which are used to squeeze the channel via reverse-biased junctions as in a JFET. The G4-FET also includes a polysilicon top gate (G1), which plays the same role as does the gate in an accumulation-mode MOSFET. The substrate emulates a fourth MOS gate (G2). By making proper choices of G4-FET device parameters in conjunction with bias voltages and currents, one can design a circuit in which two input gate voltages (Vin1,Vin2) control the conduction characteristics of G4-FETs such that the output voltage (Vout) closely approximates a value proportional to the product of the input voltages. Figure 2 depicts two such analog multiplier circuits. In each circuit, there is the following: The input and output voltages are differential, The multiplier core consists of four G4- FETs (M1 through M4) biased by a constant current sink (Ibias), and The G4-FETs in two pairs are loaded by two identical resistors (RL), which convert a differential output current to a differential output voltage. The difference between the two circuits stems from their input and bias configurations. In each case, provided that the input voltages remain within their design ranges as determined by considerations of bias, saturation, and cutoff, then the output voltage is nominally given by Vout = kVin1Vin2, where k is a constant gain factor that depends on the design parameters and is different for the two circuits. In experimental versions of these circuits constructed using discrete G4- FETs and resistors, multiplication of voltages in all four quadrants (that is, in all four combinations of input polarities) was demonstrated, and deviations of the output voltages from linear dependence on the input voltages were found to amount to no more than a few percent. It is anticipated that in fully integrated versions of these circuits, the deviations from linearity will be made considerably smaller through better matching of devices.

  19. Method and apparatus for monitoring the rotating frequency of de-energized induction motors

    DOEpatents

    Mikesell, H.E.; Lucy, E.

    1998-02-03

    The rotational speed of a coasting induction motor is measured by sensing e residual electrical voltages at the power terminals of the motor, thus eliminating the need for conventional tachometer equipment, additional mechanical components or modifications to the induction motor itself. The power terminal voltage signal is detected and transformed into a DC voltage proportional to the frequency of the signal. This DC voltage can be input to the control system of a variable frequency motor controller to regulate the output characteristics thereof relative to the speed of the coasting motor. 6 figs.

  20. Method and apparatus for monitoring the rotating frequency of de-energized induction motors

    DOEpatents

    Mikesell, Harvey E.; Lucy, Eric

    1998-01-01

    The rotational speed of a coasting induction motor is measured by sensing e residual electrical voltages at the power terminals of the motor, thus eliminating the need for conventional tachometer equipment, additional mechanical components or modifications to the induction motor itself. The power terminal voltage signal is detected and transformed into a DC voltage proportional to the frequency of the signal. This DC voltage can be input to the control system of a variable frequency motor controller to regulate the output characteristics thereof relative to the speed of the coasting motor.

  1. A High Frequency Active Voltage Doubler in Standard CMOS Using Offset-Controlled Comparators for Inductive Power Transmission

    PubMed Central

    Lee, Hyung-Min; Ghovanloo, Maysam

    2014-01-01

    In this paper, we present a fully integrated active voltage doubler in CMOS technology using offset-controlled high speed comparators for extending the range of inductive power transmission to implantable microelectronic devices (IMD) and radio-frequency identification (RFID) tags. This active voltage doubler provides considerably higher power conversion efficiency (PCE) and lower dropout voltage compared to its passive counterpart and requires lower input voltage than active rectifiers, leading to reliable and efficient operation with weakly coupled inductive links. The offset-controlled functions in the comparators compensate for turn-on and turn-off delays to not only maximize the forward charging current to the load but also minimize the back current, optimizing PCE in the high frequency (HF) band. We fabricated the active voltage doubler in a 0.5-μm 3M2P std. CMOS process, occupying 0.144 mm2 of chip area. With 1.46 V peak AC input at 13.56 MHz, the active voltage doubler provides 2.4 V DC output across a 1 kΩ load, achieving the highest PCE = 79% ever reported at this frequency. In addition, the built-in start-up circuit ensures a reliable operation at lower voltages. PMID:23853321

  2. System and methods for reducing harmonic distortion in electrical converters

    DOEpatents

    Kajouke, Lateef A; Perisic, Milun; Ransom, Ray M

    2013-12-03

    Systems and methods are provided for delivering energy using an energy conversion module. An exemplary method for delivering energy from an input interface to an output interface using an energy converison module coupled between the input interface and the output interface comprises the steps of determining an input voltage reference for the input interface based on a desired output voltage and a measured voltage and the output interface, determining a duty cycle control value based on a ratio of the input voltage reference and the measured voltage, operating one or more switching elements of the energy conversion module to deliver energy from the input interface to the output interface to the output interface with a duty cycle influenced by the dute cycle control value.

  3. Analysis of transistor and snubber turn-off dynamics in high-frequency high-voltage high-power converters

    NASA Technical Reports Server (NTRS)

    Wilson, P. M.; Wilson, T. G.; Owen, H. A., Jr.

    1982-01-01

    Dc to dc converters which operate reliably and efficiently at switching frequencies high enough to effect substantial reductions in the size and weight of converter energy storage elements are studied. A two winding current or voltage stepup (buck boost) dc-to-dc converter power stage submodule designed to operate in the 2.5-kW range, with an input voltage range of 110 to 180 V dc, and an output voltage of 250 V dc is emphasized. In order to assess the limitations of present day component and circuit technologies, a design goal switching frequency of 10 kHz was maintained. The converter design requirements represent a unique combination of high frequency, high voltage, and high power operation. The turn off dynamics of the primary circuit power switching transistor and its associated turn off snubber circuitry are investigated.

  4. Analysis of transistor and snubber turn-off dynamics in high-frequency high-voltage high-power converters

    NASA Astrophysics Data System (ADS)

    Wilson, P. M.; Wilson, T. G.; Owen, H. A., Jr.

    Dc to dc converters which operate reliably and efficiently at switching frequencies high enough to effect substantial reductions in the size and weight of converter energy storage elements are studied. A two winding current or voltage stepup (buck boost) dc-to-dc converter power stage submodule designed to operate in the 2.5-kW range, with an input voltage range of 110 to 180 V dc, and an output voltage of 250 V dc is emphasized. In order to assess the limitations of present day component and circuit technologies, a design goal switching frequency of 10 kHz was maintained. The converter design requirements represent a unique combination of high frequency, high voltage, and high power operation. The turn off dynamics of the primary circuit power switching transistor and its associated turn off snubber circuitry are investigated.

  5. Wide-band current preamplifier for conductance measurements with large input capacitance.

    PubMed

    Kretinin, Andrey V; Chung, Yunchul

    2012-08-01

    A wide-band current preamplifier based on a composite operational amplifier is proposed. It has been shown that the bandwidth of the preamplifier can be significantly increased by enhancing the effective open-loop gain. The described 10(7) V/A current gain preamplifier had the bandwidth of about 100 kHz with the 1 nF input shunt capacitance. The measured preamplifier current noise was 46 fA/√Hz at 1 kHz, close to the design noise minimum. The voltage noise was found to be about 2.9 nV/√Hz at 1 kHz, which is in a good agreement with the value expected for the particular operational amplifier used in the input stage. By analysing the total produced noise we found that the optimal frequency range suitable for the fast lock-in measurements is from 1 kHz to 2 kHz. To obtain the same signal-to-noise ratio, the reported preamplifier requires ~10% of the integration time needed in measurements made with a conventional preamplifier.

  6. A Dielectric Rod Antenna for Picosecond Pulse Stimulation of Neurological Tissue

    PubMed Central

    Petrella, Ross A.; Schoenbach, Karl H.; Xiao, Shu

    2016-01-01

    A dielectrically loaded wideband rod antenna has been studied as a pulse delivery system to subcutaneous tissues. Simulation results applying 100 ps electrical pulse show that it allows us to generate critical electric field for biological effects, such as brain stimulation, in the range of several centimeters. In order to reach the critical electric field for biological effects, which is approximately 20 kV/cm, at a depth of 2 cm, the input voltage needs to be 175 kV. The electric field spot size in the brain at this position is approximately 1 cm2. Experimental studies in free space with a conical antenna (part of the antenna system) with aluminum nitride as the dielectric have confirmed the accuracy of the simulation. These results set the foundation for high voltage in situ experiments on the complete antenna system and the delivery of pulses to biological tissue. PMID:27563160

  7. Ultralow-quiescent-current and wide-load-range low-dropout linear regulator with self-biasing technique for micropower battery management

    NASA Astrophysics Data System (ADS)

    Ozaki, Toshihiro; Hirose, Tetsuya; Asano, Hiroki; Kuroki, Nobutaka; Numa, Masahiro

    2017-04-01

    In this paper, we present a 151 nA quiescent and 6.8 mA maximum-output-current low-dropout (LDO) linear regulator for micropower battery management. The LDO regulator employs self-biasing and multiple-stacked cascode techniques to achieve efficient, accurate, and high-voltage-input-tolerant operation. Measurement results demonstrated that the proposed LDO regulator operates with an ultralow quiescent current of 151 nA. The maximum output currents with a 4.16 V output were 1.0 and 6.8 mA when the input voltages were 4.25 and 5.0 V, respectively.

  8. High-Speed Isolation Board for Flight Hardware Testing

    NASA Technical Reports Server (NTRS)

    Yamamoto, Clifford K.; Goodpasture, Richard L.

    2011-01-01

    There is a need to provide a portable and cost-effective galvanic isolation between ground support equipment and flight hardware such that any unforeseen voltage differential between ground and power supplies is eliminated. An interface board was designed for use between the ground support equipment and the flight hardware that electrically isolates all input and output signals and faithfully reproduces them on each side of the interface. It utilizes highly integrated multi-channel isolating devices to minimize size and reduce assembly time. This single-board solution provides appropriate connector hardware and breakout of required flight signals to individual connectors as needed for various ground support equipment. The board utilizes multi-channel integrated circuits that contain transformer coupling, thereby allowing input and output signals to be isolated from one another while still providing high-fidelity reproduction of the signal up to 90 MHz. The board also takes in a single-voltage power supply input from the ground support equipment and in turn provides a transformer-derived isolated voltage supply to power the portion of the circuitry that is electrically connected to the flight hardware. Prior designs used expensive opto-isolated couplers that were required for each signal to isolate and were time-consuming to assemble. In addition, these earlier designs were bulky and required a 2U rack-mount enclosure. The new design is smaller than a piece of 8.5 11-in. (.22 28-mm) paper and can be easily hand-carried where needed. The flight hardware in question is based on a lineage of existing software-defined radios (SDRs) that utilize a common interface connector with many similar input-output signals present. There are currently four to five variations of this SDR, and more upcoming versions are planned based on the more recent design.

  9. Design of a Miniaturized RAD Hard Point-of-Load Converter

    NASA Astrophysics Data System (ADS)

    Lofgren, Henrik; Landstrom, Sven; Gunnarsson, Marcus; Hagstrom, Maria

    2014-08-01

    As an ARTES 5.2 activity, a miniaturized radiation hardened Point-Of-Load converter (uPOL) has been developed. Several different design options have been evaluated before the final system level design was selected. The selected topology is a buck regulator with synchronous rectification utilizing peak current mode control. The PWM logic is designed using discrete electronics. Inside the POL converter package, an independent latching current limiter and clamping over- voltage protection are included as protection devices. The converter has an input voltage range of 4.8-6.2V, output voltage range of 1.2-3.5V and an output current of 0-3.5A. The final converter will be a metal packaged hybrid built on LTCC technology with an operating case temperature range of -40 to +85 °C.

  10. A rugged 650 V SOI-based high-voltage half-bridge IGBT gate driver IC for motor drive applications

    NASA Astrophysics Data System (ADS)

    Hua, Qing; Li, Zehong; Zhang, Bo; Chen, Weizhong; Huang, Xiangjun; Feng, Yuxiang

    2015-05-01

    This paper proposes a rugged high-voltage N-channel insulated gate bipolar transistor (IGBT) gate driver integrated circuit. The device integrates a high-side and a low-side output stages on a single chip, which is designed specifically for motor drive applications. High-voltage level shift technology enables the high-side stage of this device to operate up to 650 V. The logic inputs are complementary metal oxide semiconductor (CMOS)/transistor transistor logic compatible down to 3.3 V. Undervoltage protection functionality with hysteresis characteristic has also been integrated to enhance the device reliability. The device is fabricated in a 1.0 μm, 650 V high-voltage bipolar CMOS double-diffused metal oxide semiconductor (BCD) on silicon-on-insulator (SOI) process. Deep trench dielectric isolation technology is employed to provide complete electrical isolation with advantages such as reduced parasitic effects, excellent noise immunity and low leakage current. Experimental results show that the isolation voltage of this device can be up to approximately 779 V at 25°C, and the leakage current is only 5 nA at 650 V, which is 15% higher and 67% lower than the conventional ones. In addition, it delivers an excellent thermal stability and needs very low quiescent current and offers a high gate driver capability which is needed to adequately drive IGBTs that have large input capacitances.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milkov, Mihail M.

    A comparator circuit suitable for use in a column-parallel single-slope analog-to-digital converter comprises a comparator, an input voltage sampling switch, a sampling capacitor arranged to store a voltage which varies with an input voltage when the sampling switch is closed, and a local ramp buffer arranged to buffer a global voltage ramp applied at an input. The comparator circuit is arranged such that its output toggles when the buffered global voltage ramp exceeds the stored voltage. Both DC- and AC-coupled comparator embodiments are disclosed.

  12. On the reliability of voltage and power as input parameters for the characterization of high power ultrasound applications

    NASA Astrophysics Data System (ADS)

    Haller, Julian; Wilkens, Volker

    2012-11-01

    For power levels up to 200 W and sonication times up to 60 s, the electrical power, the voltage and the electrical impedance (more exactly: the ratio of RMS voltage and RMS current) have been measured for a piezocomposite high intensity therapeutic ultrasound (HITU) transducer with integrated matching network, two piezoceramic HITU transducers with external matching networks and for a passive dummy 50 Ω load. The electrical power and the voltage were measured during high power application with an inline power meter and an RMS voltage meter, respectively, and the complex electrical impedance was indirectly measured with a current probe, a 100:1 voltage probe and a digital scope. The results clearly show that the input RMS voltage and the input RMS power change unequally during the application. Hence, the indication of only the electrical input power or only the voltage as the input parameter may not be sufficient for reliable characterizations of ultrasound transducers for high power applications in some cases.

  13. 60 V tolerance full symmetrical switch for battery monitor IC

    NASA Astrophysics Data System (ADS)

    Zhang, Qidong; Yang, Yintang; Chai, Changchun

    2017-06-01

    For stacked battery monitoring IC high speed and high precision voltage acquisition requirements, this paper introduces a kind of symmetrical type high voltage switch circuit. This kind of switch circuit uses the voltage following structure, which eliminates the leakage path of input signals. At the same time, this circuit adopts a high speed charge pump structure, in any case the input signal voltage is higher than the supply voltage, it can fast and accurately turn on high voltage MOS devices, and convert the battery voltage to an analog to digital converter. The proposed high voltage full symmetry switch has been implemented in a 0.18 μm BCD process; simulated and measured results show that the proposed switch can always work properly regardless of the polarity of the voltage difference between the input signal ports and an input signal higher than the power supply. Project supported by the National Natural Science Foundation of China (No. 61334003).

  14. Micro-fabrication of a novel linear actuator

    NASA Astrophysics Data System (ADS)

    Jiang, Shuidong; Liu, Lei; Hou, Yangqing; Fang, Houfei

    2017-04-01

    The novel linear actuator is researched with light weight, small volume, low power consumption, fast response and relatively large displacement output. It can be used for the net surface control of large deployable mesh antennas, the tension precise adjustment of the controlled cable in the tension and tensile truss structure and many other applications. The structure and the geometry parameters are designed and analysed by finite element method in multi-physics coupling. Meantime, the relationship between input voltage and displacement output is computed, and the strength check is completed according to the stress distribution. Carbon fiber reinforced composite (CFRC), glass fiber reinforced composited (GFRC), and Lead Zirconium Titanate (PZT) materials are used to fabricate the actuator by using laser etching and others MEMS process. The displacement output is measured by the laser displacement sensor device at the input voltage range of DC0-180V. The response time is obtained by oscilloscope at the arbitrarily voltage in the above range. The nominal force output is measured by the PTR-1101 mechanics setup. Finally, the computed and test results are compared and analysed.

  15. AC to DC Bridgeless Boost Converter for Ultra Low Input Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Dawam, A. H. A.; Muhamad, M.

    2018-03-01

    This paper presents design of circuit which converts low input AC voltage to a higher output DC voltage. A buck-boost topology and boost topology are combined to condition cycle of an AC input voltage. the unique integration of a combining circuit of buck-boost and boost circuit have been proposed in order to introduce a new direct ac-dc power converter topology without conventional diode bridge rectifier. The converter achieved to convert a milli-volt scale of input AC voltage into a volt scale of output DC voltages which is from 400mV to 3.3V.

  16. MULTIPLIER CIRCUIT

    DOEpatents

    Thomas, R.E.

    1959-01-20

    An electronic circuit is presented for automatically computing the product of two selected variables by multiplying the voltage pulses proportional to the variables. The multiplier circuit has a plurality of parallel resistors of predetermined values connected through separate gate circults between a first input and the output terminal. One voltage pulse is applied to thc flrst input while the second voltage pulse is applied to control circuitry for the respective gate circuits. Thc magnitude of the second voltage pulse selects the resistors upon which the first voltage pulse is imprcssed, whereby the resultant output voltage is proportional to the product of the input voltage pulses

  17. Audio-frequency analysis of inductive voltage dividers based on structural models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avramov, S.; Oldham, N.M.; Koffman, A.D.

    1994-12-31

    A Binary Inductive Voltage Divider (BIVD) is compared with a Decade Inductive Voltage Divider (DIVD) in an automatic IVD bridge. New detection and injection circuitry was designed and used to evaluate the IVDs with either the input or output tied to ground potential. In the audio frequency range the DIVD and BIVD error patterns are characterized for both in-phase and quadrature components. Differences between results obtained using a new error decomposition scheme based on structural modeling, and measurements using conventional IVD standards are reported.

  18. Dual side control for inductive power transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Hunter; Sealy, Kylee; Gilchrist, Aaron

    An apparatus for dual side control includes a measurement module that measures a voltage and a current of an IPT system. The voltage includes an output voltage and/or an input voltage and the current includes an output current and/or an input current. The output voltage and the output current are measured at an output of the IPT system and the input voltage and the input current measured at an input of the IPT system. The apparatus includes a max efficiency module that determines a maximum efficiency for the IPT system. The max efficiency module uses parameters of the IPT systemmore » to iterate to a maximum efficiency. The apparatus includes an adjustment module that adjusts one or more parameters in the IPT system consistent with the maximum efficiency calculated by the max efficiency module.« less

  19. Design, Experiments and Simulation of Voltage Transformers on the Basis of a Differential Input D-dot Sensor

    PubMed Central

    Wang, Jingang; Gao, Can; Yang, Jie

    2014-01-01

    Currently available traditional electromagnetic voltage sensors fail to meet the measurement requirements of the smart grid, because of low accuracy in the static and dynamic ranges and the occurrence of ferromagnetic resonance attributed to overvoltage and output short circuit. This work develops a new non-contact high-bandwidth voltage measurement system for power equipment. This system aims at the miniaturization and non-contact measurement of the smart grid. After traditional D-dot voltage probe analysis, an improved method is proposed. For the sensor to work in a self-integrating pattern, the differential input pattern is adopted for circuit design, and grounding is removed. To prove the structure design, circuit component parameters, and insulation characteristics, Ansoft Maxwell software is used for the simulation. Moreover, the new probe was tested on a 10 kV high-voltage test platform for steady-state error and transient behavior. Experimental results ascertain that the root mean square values of measured voltage are precise and that the phase error is small. The D-dot voltage sensor not only meets the requirement of high accuracy but also exhibits satisfactory transient response. This sensor can meet the intelligence, miniaturization, and convenience requirements of the smart grid. PMID:25036333

  20. High-frequency matrix converter with square wave input

    DOEpatents

    Carr, Joseph Alexander; Balda, Juan Carlos

    2015-03-31

    A device for producing an alternating current output voltage from a high-frequency, square-wave input voltage comprising, high-frequency, square-wave input a matrix converter and a control system. The matrix converter comprises a plurality of electrical switches. The high-frequency input and the matrix converter are electrically connected to each other. The control system is connected to each switch of the matrix converter. The control system is electrically connected to the input of the matrix converter. The control system is configured to operate each electrical switch of the matrix converter converting a high-frequency, square-wave input voltage across the first input port of the matrix converter and the second input port of the matrix converter to an alternating current output voltage at the output of the matrix converter.

  1. Development of a Piezoelectric Vacuum Sensing Component for a Wide Pressure Range

    PubMed Central

    Wang, Bing-Yu; Hsieh, Fan-Chun; Lin, Che-Yu; Chen, Shao-En; Chen, Fong-Zhi; Wu, Chia-Che

    2014-01-01

    In this study, we develop a clamped–clamped beam-type piezoelectric vacuum pressure sensing element. The clamped–clamped piezoelectric beam is composed of a PZT layer and a copper substrate. A pair of electrodes is set near each end. An input voltage is applied to a pair of electrodes to vibrate the piezoelectric beam, and the output voltage is measured at the other pair. Because the viscous forces on the piezoelectric beam vary at different air pressures, the vibration of the beam depends on the vacuum pressure. The developed pressure sensor can sense a wide range of pressure, from 6.5 × 10−6 to 760 Torr. The experimental results showed that the output voltage is inversely proportional to the gas damping ratio, and thus, the vacuum pressure was estimated from the output voltage. PMID:25421736

  2. A 155-dB Dynamic Range Current Measurement Front End for Electrochemical Biosensing.

    PubMed

    Dai, Shanshan; Perera, Rukshan T; Yang, Zi; Rosenstein, Jacob K

    2016-10-01

    An integrated current measurement system with ultra wide dynamic range is presented and fabricated in a 180-nm CMOS technology. Its dual-mode design provides concurrent voltage and frequency outputs, without requiring an external clock source. An integrator-differentiator core provides a voltage output with a noise floor of 11.6 fA/ [Formula: see text] and a -3 dB cutoff frequency of 1.4 MHz. It is merged with an asynchronous current-to-frequency converter, which generates an output frequency linearly proportional to the input current. Together, the voltage and frequency outputs yield a current measurement range of 155 dB, spanning from 204 fA (100 Hz) or 1.25 pA (10 kHz) to 11.6 μA. The proposed architecture's low noise, wide bandwidth, and wide dynamic range make it ideal for measurements of highly nonlinear electrochemical and electrophysiological systems.

  3. A Highly Linear and Wide Input Range Four-Quadrant CMOS Analog Multiplier Using Active Feedback

    NASA Astrophysics Data System (ADS)

    Huang, Zhangcai; Jiang, Minglu; Inoue, Yasuaki

    Analog multipliers are one of the most important building blocks in analog signal processing circuits. The performance with high linearity and wide input range is usually required for analog four-quadrant multipliers in most applications. Therefore, a highly linear and wide input range four-quadrant CMOS analog multiplier using active feedback is proposed in this paper. Firstly, a novel configuration of four-quadrant multiplier cell is presented. Its input dynamic range and linearity are improved significantly by adding two resistors compared with the conventional structure. Then based on the proposed multiplier cell configuration, a four-quadrant CMOS analog multiplier with active feedback technique is implemented by two operational amplifiers. Because of both the proposed multiplier cell and active feedback technique, the proposed multiplier achieves a much wider input range with higher linearity than conventional structures. The proposed multiplier was fabricated by a 0.6µm CMOS process. Experimental results show that the input range of the proposed multiplier can be up to 5.6Vpp with 0.159% linearity error on VX and 4.8Vpp with 0.51% linearity error on VY for ±2.5V power supply voltages, respectively.

  4. Real Time Calibration Method for Signal Conditioning Amplifiers

    NASA Technical Reports Server (NTRS)

    Medelius, Pedro J. (Inventor); Mata, Carlos T. (Inventor); Eckhoff, Anthony (Inventor); Perotti, Jose (Inventor); Lucena, Angel (Inventor)

    2004-01-01

    A signal conditioning amplifier receives an input signal from an input such as a transducer. The signal is amplified and processed through an analog to digital converter and sent to a processor. The processor estimates the input signal provided by the transducer to the amplifier via a multiplexer. The estimated input signal is provided as a calibration voltage to the amplifier immediately following the receipt of the amplified input signal. The calibration voltage is amplified by the amplifier and provided to the processor as an amplified calibration voltage. The amplified calibration voltage is compared to the amplified input signal, and if a significant error exists, the gain and/or offset of the amplifier may be adjusted as necessary.

  5. Non-linear Membrane Properties in Entorhinal Cortical Stellate Cells Reduce Modulation of Input-Output Responses by Voltage Fluctuations

    PubMed Central

    Fernandez, Fernando R.; Malerba, Paola; White, John A.

    2015-01-01

    The presence of voltage fluctuations arising from synaptic activity is a critical component in models of gain control, neuronal output gating, and spike rate coding. The degree to which individual neuronal input-output functions are modulated by voltage fluctuations, however, is not well established across different cortical areas. Additionally, the extent and mechanisms of input-output modulation through fluctuations have been explored largely in simplified models of spike generation, and with limited consideration for the role of non-linear and voltage-dependent membrane properties. To address these issues, we studied fluctuation-based modulation of input-output responses in medial entorhinal cortical (MEC) stellate cells of rats, which express strong sub-threshold non-linear membrane properties. Using in vitro recordings, dynamic clamp and modeling, we show that the modulation of input-output responses by random voltage fluctuations in stellate cells is significantly limited. In stellate cells, a voltage-dependent increase in membrane resistance at sub-threshold voltages mediated by Na+ conductance activation limits the ability of fluctuations to elicit spikes. Similarly, in exponential leaky integrate-and-fire models using a shallow voltage-dependence for the exponential term that matches stellate cell membrane properties, a low degree of fluctuation-based modulation of input-output responses can be attained. These results demonstrate that fluctuation-based modulation of input-output responses is not a universal feature of neurons and can be significantly limited by subthreshold voltage-gated conductances. PMID:25909971

  6. Non-linear Membrane Properties in Entorhinal Cortical Stellate Cells Reduce Modulation of Input-Output Responses by Voltage Fluctuations.

    PubMed

    Fernandez, Fernando R; Malerba, Paola; White, John A

    2015-04-01

    The presence of voltage fluctuations arising from synaptic activity is a critical component in models of gain control, neuronal output gating, and spike rate coding. The degree to which individual neuronal input-output functions are modulated by voltage fluctuations, however, is not well established across different cortical areas. Additionally, the extent and mechanisms of input-output modulation through fluctuations have been explored largely in simplified models of spike generation, and with limited consideration for the role of non-linear and voltage-dependent membrane properties. To address these issues, we studied fluctuation-based modulation of input-output responses in medial entorhinal cortical (MEC) stellate cells of rats, which express strong sub-threshold non-linear membrane properties. Using in vitro recordings, dynamic clamp and modeling, we show that the modulation of input-output responses by random voltage fluctuations in stellate cells is significantly limited. In stellate cells, a voltage-dependent increase in membrane resistance at sub-threshold voltages mediated by Na+ conductance activation limits the ability of fluctuations to elicit spikes. Similarly, in exponential leaky integrate-and-fire models using a shallow voltage-dependence for the exponential term that matches stellate cell membrane properties, a low degree of fluctuation-based modulation of input-output responses can be attained. These results demonstrate that fluctuation-based modulation of input-output responses is not a universal feature of neurons and can be significantly limited by subthreshold voltage-gated conductances.

  7. Remote Monitor Alarm System

    NASA Technical Reports Server (NTRS)

    Stute, Robert A. (Inventor); Galloway, F. Houston (Inventor); Medelius, Pedro J. (Inventor); Swindle, Robert W. (Inventor); Bierman, Tracy A. (Inventor)

    1996-01-01

    A remote monitor alarm system monitors discrete alarm and analog power supply voltage conditions at remotely located communications terminal equipment. A central monitoring unit (CMU) is connected via serial data links to each of a plurality of remote terminal units (RTUS) that monitor the alarm and power supply conditions of the remote terminal equipment. Each RTU can monitor and store condition information of both discrete alarm points and analog power supply voltage points in its associated communications terminal equipment. The stored alarm information is periodically transmitted to the CMU in response to sequential polling of the RTUS. The number of monitored alarm inputs and permissible voltage ranges for the analog inputs can be remotely configured at the CMU and downloaded into programmable memory at each RTU. The CMU includes a video display, a hard disk memory, a line printer and an audio alarm for communicating and storing the alarm information received from each RTU.

  8. A programmable power processor for high power space applications

    NASA Technical Reports Server (NTRS)

    Lanier, J. R., Jr.; Graves, J. R.; Kapustka, R. E.; Bush, J. R., Jr.

    1982-01-01

    A Programmable Power Processor (P3) has been developed for application in future large space power systems. The P3 is capable of operation over a wide range of input voltage (26 to 375 Vdc) and output voltage (24 to 180 Vdc). The peak output power capability is 18 kW (180 V at 100 A). The output characteristics of the P3 can be programmed to any voltage and/or current level within the limits of the processor and may be controlled as a function of internal or external parameters. Seven breadboard P3s and one 'flight-type' engineering model P3 have been built and tested both individually and in electrical power systems. The programmable feature allows the P3 to be used in a variety of applications by changing the output characteristics. Test results, including efficiency at various input/output combinations, transient response, and output impedance, are presented.

  9. GROUND CLEARANCE INDICATOR

    DOEpatents

    Skinner, L.V.

    1959-09-29

    A narrow-band frequency-modulated distance measuring system is described. Reflected wave energy is fed into a mixer circuit together with a direct wave energy portion from the transmitter. These two input signals are out of phase by an amount proportional to the distance. Two band pass filter s select two different frequency components (both multiples of transmitter modulation frequency) from the beat frequency. These component frequencies are rectified and their voltage values, which are representative of those frequencies, are compared. It has been found that these voltages will have equal values producing a null output only when an object attains a preselected distance. The null output may be utilized to operate a normally closed relay, for example. At other ranges the voltage comparison will yield a voltage sufficient to keep the relay energized. Ranges may be changed by varying the degree of modulation of the transmitter carrier frequency. A particular advantage of this system lies in its high degree of accuracy throughout a range of distances approaching zero as a minimum.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braga, D.; Coleman-Smith, P. J.; Davinson, T.

    We have designed a read-out ASIC for nuclear decay spectroscopy as part of the AIDA project - the Advanced Implantation Detector Array. AIDA will be installed in experiments at the Facility for Antiproton and Ion Research in GSI, Darmstadt. The AIDA ASIC will measure the signals when unstable nuclei are implanted into the detector, followed by the much smaller signals when the nuclei subsequently decay. Implant energies can be as high as 20 GeV; decay products need to be measured down to 25 keV within just a few microseconds of the initial implants. The ASIC uses two amplifiers per detectormore » channel, one covering the 20 GeV dynamic range, the other selectable over a 20 MeV or 1 GeV range. The amplifiers are linked together by bypass transistors which are normally switched off. The arrival of a large signal causes saturation of the low-energy amplifier and a fluctuation of the input voltage, which activates the link to the high-energy amplifier. The bypass transistors switch on and the input charge is integrated by the high-energy amplifier. The signal is shaped and stored by a peak-hold, then read out on a multiplexed output. Control logic resets the amplifiers and bypass circuit, allowing the low-energy amplifier to measure the subsequent decay signal. We present simulations and test results, demonstrating the AIDA ASIC operation over a wide range of input signals. (authors)« less

  11. Analysis and Design of Bridgeless Switched Mode Power Supply for Computers

    NASA Astrophysics Data System (ADS)

    Singh, S.; Bhuvaneswari, G.; Singh, B.

    2014-09-01

    Switched mode power supplies (SMPSs) used in computers need multiple isolated and stiffly regulated output dc voltages with different current ratings. These isolated multiple output dc voltages are obtained by using a multi-winding high frequency transformer (HFT). A half-bridge dc-dc converter is used here for obtaining different isolated and well regulated dc voltages. In the front end, non-isolated Single Ended Primary Inductance Converters (SEPICs) are added to improve the power quality in terms of low input current harmonics and high power factor (PF). Two non-isolated SEPICs are connected in a way to completely eliminate the need of single-phase diode-bridge rectifier at the front end. Output dc voltages at both the non-isolated and isolated stages are controlled and regulated separately for power quality improvement. A voltage mode control approach is used in the non-isolated SEPIC stage for simple and effective control whereas average current control is used in the second isolated stage.

  12. A Constant Energy-Per-Cycle Ring Oscillator Over a Wide Frequency Range for Wireless Sensor Nodes

    PubMed Central

    Lee, Inhee; Sylvester, Dennis; Blaauw, David

    2016-01-01

    This paper presents an energy-efficient oscillator for wireless sensor nodes (WSNs). It avoids short-circuit current by minimizing the time spent in the input voltage range from Vthn to [Vdd − |Vthp|]. A current-feeding scheme with gate voltage control enables the oscillator to operate over a wide frequency range. A test chip is fabricated in a 0.18 μm CMOS process. The measurements show that the proposed oscillator achieves a constant energy-per-cycle (EpC) of 0.8 pJ/cycle over the 21–60 MHz frequency range and is more efficient than a conventional current-starved ring oscillator (CSRO) below 300 kHz at 1.8 V supply voltage. As an application example, the proposed oscillator is implemented in a switched-capacitor DC–DC converter. The converter is 11%–56% more efficient for load power values ranging from 583 pW to 2.9 nW than a converter using a conventional CSRO. PMID:27546899

  13. A Constant Energy-Per-Cycle Ring Oscillator Over a Wide Frequency Range for Wireless Sensor Nodes.

    PubMed

    Lee, Inhee; Sylvester, Dennis; Blaauw, David

    2016-03-01

    This paper presents an energy-efficient oscillator for wireless sensor nodes (WSNs). It avoids short-circuit current by minimizing the time spent in the input voltage range from V thn to [ V dd - | V thp |]. A current-feeding scheme with gate voltage control enables the oscillator to operate over a wide frequency range. A test chip is fabricated in a 0.18 μm CMOS process. The measurements show that the proposed oscillator achieves a constant energy-per-cycle (EpC) of 0.8 pJ/cycle over the 21-60 MHz frequency range and is more efficient than a conventional current-starved ring oscillator (CSRO) below 300 kHz at 1.8 V supply voltage. As an application example, the proposed oscillator is implemented in a switched-capacitor DC-DC converter. The converter is 11%-56% more efficient for load power values ranging from 583 pW to 2.9 nW than a converter using a conventional CSRO.

  14. Apparatus for Controlling Low Power Voltages in Space Based Processing Systems

    NASA Technical Reports Server (NTRS)

    Petrick, David J. (Inventor)

    2017-01-01

    A low power voltage control circuit for use in space missions includes a switching device coupled between an input voltage and an output voltage. The switching device includes a control input coupled to an enable signal, wherein the control input is configured to selectively turn the output voltage on or off based at least in part on the enable signal. A current monitoring circuit is coupled to the output voltage and configured to produce a trip signal, wherein the trip signal is active when a load current flowing through the switching device is determined to exceed a predetermined threshold and is inactive otherwise. The power voltage control circuit is constructed of space qualified components.

  15. Measurement of ozone production scaling in a helium plasma jet with oxygen admixture

    NASA Astrophysics Data System (ADS)

    Sands, Brian; Ganguly, Biswa

    2012-10-01

    Capillary dielectric barrier plasma jet devices that generate confined streamer-like discharges along a rare gas flow can produce significant quantities of reactive oxygen species with average input powers ranging from 100 mW to >1 W. We have measured spatially-resolved ozone production in a He plasma jet with O2 admixture concentrations up to 5% using absorption spectroscopy of the O3 Hartley band system. A 20-ns risetime, 10-13 kV positive unipolar voltage pulse train was used to power the discharge, with pulse repetition rates varied from 1-20 kHz. The discharge was operated in a transient glow mode to scale the input power by adjusting the gap width between the anode and downstream cathodic plane. Peak ozone number densities in the range of 10^16 - 10^17 cm-3 were measured. At a given voltage, the density of ozone increased monotonically up to 3% O2 admixture (6 mm gap) as the peak discharge current decreased by an order of magnitude. Ozone production increased with distance from the capillary, consistent with observations by other groups. Atomic oxygen production inferred from O-atom 777 nm emission intensity did not scale with ozone as the input power was increased. The spatial distribution of ozone and scaling with input power will be presented.

  16. 80-GHz MMIC HEMT Voltage-Controlled Oscillator

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene; Radisic, Vesna; Micovic, Miro; Hu, Ming; Janke, Paul; Ngo, Catherine; Nguyen, Loi

    2003-01-01

    A voltage-controlled oscillator (VCO) that operates in the frequency range from 77.5 to 83.5 GHz has been constructed in the form of a monolithic microwave integrated circuit (MMIC) that includes high-electron-mobility transistors (HEMTs). This circuit is a prototype of electronically tunable signal sources in the 75-to-110-GHz range, needed for communication, imaging, and automotive radar applications, among others. This oscillator (see Figure 1) includes two AlInAs/GaInAs/InP HEMTs. One HEMT serves mainly as an oscillator gain element. The other HEMT serves mainly as a varactor for controlling the frequency: the frequency-control element is its gate-to-source capacitance, which is varied by changing its gate supply voltage. The gain HEMT is biased for class-A operation (meaning that current is conducted throughout the oscillation cycle). Grounded coplanar waveguides are used as impedance-matching transmission lines, the input and output matching being chosen to sustain oscillation and maximize output power. Air bridges are placed at discontinuities to suppress undesired slot electromagnetic modes. A high density of vias is necessary for suppressing a parallel-plate electromagnetic mode that is undesired because it can propagate energy into the MMIC substrate. Previous attempts at constructing HEMT-based oscillators yielded circuits with relatively low levels of output power and narrow tuning ranges. For example, one HEMT VCO reported in the literature had an output power of 7 dBm (.5 mW) and a tuning range 2-GHz wide centered approximately at a nominal frequency of 77 GHz. In contrast, as shown in Figure 2, the present MMIC HEMT VCO puts out a power of 12.5 dBm (.18 mW) or more over the 6-GHz-wide frequency range from 77.5 to 83.5 GHz

  17. Resonant-Type Smooth Impact Drive Mechanism Actuator Operating at Lower Input Voltages

    NASA Astrophysics Data System (ADS)

    Morita, Takeshi; Nishimura, Takuma; Yoshida, Ryuichi; Hosaka, Hiroshi

    2013-07-01

    We report on the design and fabrication of a resonant-type smooth impact drive mechanism (SIDM) actuator based on a multilayered piezoelectric ceramic transducer. Conventional SIDMs use off-resonant sawtooth-shaped displacement in developing stick-slip motion of a slider, but require large input voltages for high-speed operation. In contrast, in resonant-type SIDMs, a quasi-sawtooth-shaped displacement is obtained by combining two resonant vibrational modes. This driving principle enables low input voltage operations. In combining the modes, their frequency ratio must be 1:2. To design and optimize the stator transducer to generate sawtooth-shaped displacements, a transfer matrix method was adopted. With a preload of 270 mN, the no-load speed was 40 mm/s under a driving voltage of 1.6 V (peak to peak). This input voltage was one-sixth that of previous SIDMs for the same performance. Concurrently, heat generation was significantly reduced because dielectric losses were suppressed under the lower input voltage operation.

  18. A > 4 MGy radiation tolerant 8 THzOhm transimpedance amplifier with 50 dB dynamic range

    NASA Astrophysics Data System (ADS)

    Verbeeck, J.; Steyaert, M.; Leroux, P.

    2013-02-01

    A 130 nm Transimpedance Amplifier has been developed with a 255 MHz bandwidth, 90 dBΩ transimpedance gain and a dynamic input range of 1:325 or 50 dB for a photo-diode capacitance of 0.75 pF. The equivalent integrated input noise is 160 nA @ 25°C. The gain of the voltage amplifier, used in the transimpedance amplifier (TIA), degrades less than 3% over a temperature range from -40 °C up to 125 °C. The TIA and attenuator exhibit a radiation tolerance larger than 4 MGy, as evidenced by radiation assessment.

  19. RF-DC converter for HF RFID sensing applications powered by a near-field loop antenna

    NASA Astrophysics Data System (ADS)

    Colella, R.; Pasca, M.; Catarinucci, L.; Tarricone, L.; D'Amico, S.

    2016-07-01

    In this paper, an RF-DC converter operating at 13.56 MHz (HF radio frequency identification (RFID) frequency band) is presented. Its architecture provides RF to load isolation, reducing the losses due to the reverse saturation current and improving the sensitivity. Fed by a loop antenna, the RF-DC converter is made by a Dickson's RF-DC rectifier and an additional Pelliconi's charge pump driven by a fully integrated 50 kHz ring oscillator realized using an application-specific integrated circuit (ASIC). The input RF signal from the reader is converted to DC supply voltage and stored on a 1 μF capacitor. Mathematical model of the converter is developed and verified through measurements. Silicon prototypes of the ASIC have been realized in 350 nm complementary metal-oxide semiconductor technology. Measurements have been done on 10 different samples showing an output voltage in the range of 0.5 V-3.11 V in correspondence of an RF input signal power in the range of -19 dBm-0 dBm. These output voltage levels are suitable to power HF RFID sensing platforms and sensor nodes of body sensor networks.

  20. Investigation and optimization of low-frequency noise performance in readout electronics of dc superconducting quantum interference device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Jing; Peter Grünberg Institute; Zhang, Yi

    2014-05-15

    We investigated and optimized the low-frequency noise characteristics of a preamplifier used for readout of direct current superconducting quantum interference devices (SQUIDs). When the SQUID output was detected directly using a room-temperature low-voltage-noise preamplifier, the low-frequency noise of a SQUID system was found to be dominated by the input current noise of the preamplifiers in case of a large dynamic resistance of the SQUID. To reduce the current noise of the preamplifier in the low-frequency range, we investigated the dependence of total preamplifier noise on the collector current and source resistance. When the collector current was decreased from 8.4 mAmore » to 3 mA in the preamplifier made of 3 parallel SSM2220 transistor pairs, the low-frequency total voltage noise of the preamplifier (at 0.1 Hz) decreased by about 3 times for a source resistance of 30 Ω whereas the white noise level remained nearly unchanged. Since the relative contribution of preamplifier's input voltage and current noise is different depending on the dynamic resistance or flux-to-voltage transfer of the SQUID, the results showed that the total noise of a SQUID system at low-frequency range can be improved significantly by optimizing the preamplifier circuit parameters, mainly the collector current in case of low-noise bipolar transistor pairs.« less

  1. Investigation and optimization of low-frequency noise performance in readout electronics of dc superconducting quantum interference device

    NASA Astrophysics Data System (ADS)

    Zhao, Jing; Zhang, Yi; Lee, Yong-Ho; Krause, Hans-Joachim

    2014-05-01

    We investigated and optimized the low-frequency noise characteristics of a preamplifier used for readout of direct current superconducting quantum interference devices (SQUIDs). When the SQUID output was detected directly using a room-temperature low-voltage-noise preamplifier, the low-frequency noise of a SQUID system was found to be dominated by the input current noise of the preamplifiers in case of a large dynamic resistance of the SQUID. To reduce the current noise of the preamplifier in the low-frequency range, we investigated the dependence of total preamplifier noise on the collector current and source resistance. When the collector current was decreased from 8.4 mA to 3 mA in the preamplifier made of 3 parallel SSM2220 transistor pairs, the low-frequency total voltage noise of the preamplifier (at 0.1 Hz) decreased by about 3 times for a source resistance of 30 Ω whereas the white noise level remained nearly unchanged. Since the relative contribution of preamplifier's input voltage and current noise is different depending on the dynamic resistance or flux-to-voltage transfer of the SQUID, the results showed that the total noise of a SQUID system at low-frequency range can be improved significantly by optimizing the preamplifier circuit parameters, mainly the collector current in case of low-noise bipolar transistor pairs.

  2. Closed-loop analysis and control of a non-inverting buck-boost converter

    NASA Astrophysics Data System (ADS)

    Chen, Zengshi; Hu, Jiangang; Gao, Wenzhong

    2010-11-01

    In this article, a cascade controller is designed and analysed for a non-inverting buck-boost converter. The fast inner current loop uses sliding mode control. The slow outer voltage loop uses the proportional-integral (PI) control. Stability analysis and selection of PI gains are based on the nonlinear closed-loop error dynamics incorporating both the inner and outer loop controllers. The closed-loop system is proven to have a nonminimum phase structure. The voltage transient due to step changes of input voltage or resistance is predictable. The operating range of the reference voltage is discussed. The controller is validated by a simulation circuit. The simulation results show that the reference output voltage is well-tracked under system uncertainties or disturbances, confirming the validity of the proposed controller.

  3. An Integrated Programmable Wide-range PLL for Switching Synchronization in Isolated DC-DC Converters

    NASA Astrophysics Data System (ADS)

    Fard, Miad

    In this thesis, two Phase-Locked-Loop (PLL) based synchronization schemes are introduced and applied to a bi-directional Dual-Active-Bridge (DAB) dc-dc converter with an input voltage up to 80 V switching in the range of 250 kHz to 1 MHz. The two schemes synchronize gating signals across an isolated boundary without the need for an isolator per transistor. The Power Transformer Sensing (PTS) method utilizes the DAB power transformer to indirectly sense switching on the secondary side of the boundary, while the Digital Isolator Sensing (DIS) method utilizes a miniature transformer for synchronization and communication at up to 100 MHz. The PLL is implemented on-chip, and is used to control an external DAB power-stage. This work will lead to lower cost, high-frequency isolated dc-dc converters needed for a wide variety of emerging low power applications where isolator cost is relatively high and there is a demand for the reduction of parts.

  4. A dynamic plug flow reactor model for a vanadium redox flow battery cell

    NASA Astrophysics Data System (ADS)

    Li, Yifeng; Skyllas-Kazacos, Maria; Bao, Jie

    2016-04-01

    A dynamic plug flow reactor model for a single cell VRB system is developed based on material balance, and the Nernst equation is employed to calculate cell voltage with consideration of activation and concentration overpotentials. Simulation studies were conducted under various conditions to investigate the effects of several key operation variables including electrolyte flow rate, upper SOC limit and input current magnitude on the cell charging performance. The results show that all three variables have a great impact on performance, particularly on the possibility of gassing during charging at high SOCs or inadequate flow rates. Simulations were also carried out to study the effects of electrolyte imbalance during long term charging and discharging cycling. The results show the minimum electrolyte flow rate needed for operation within a particular SOC range in order to avoid gassing side reactions during charging. The model also allows scheduling of partial electrolyte remixing operations to restore capacity and also avoid possible gassing side reactions during charging. Simulation results also suggest the proper placement for cell voltage monitoring and highlight potential problems associated with setting the upper charging cut-off limit based on the inlet SOC calculated from the open-circuit cell voltage measurement.

  5. E-beam high voltage switching power supply

    DOEpatents

    Shimer, Daniel W.; Lange, Arnold C.

    1997-01-01

    A high power, solid state power supply is described for producing a controllable, constant high voltage output under varying and arcing loads suitable for powering an electron beam gun or other ion source. The present power supply is most useful for outputs in a range of about 100-400 kW or more. The power supply is comprised of a plurality of discrete switching type dc-dc converter modules, each comprising a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, and an output rectifier for producing a dc voltage at the output of each module. The inputs to the converter modules are fed from a common dc rectifier/filter and are linked together in parallel through decoupling networks to suppress high frequency input interactions. The outputs of the converter modules are linked together in series and connected to the input of the transmission line to the load through a decoupling and line matching network. The dc-dc converter modules are phase activated such that for n modules, each module is activated equally 360.degree./n out of phase with respect to a successive module. The phased activation of the converter modules, combined with the square current waveforms out of the step up transformers, allows the power supply to operate with greatly reduced output capacitance values which minimizes the stored energy available for discharge into an electron beam gun or the like during arcing. The present power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle using simulated voltage feedback signals and voltage feedback loops. Circuitry is also provided for sensing incipient arc currents reflected at the output of the power supply and for simultaneously decoupling the power supply circuitry from the arcing load.

  6. E-beam high voltage switching power supply

    DOEpatents

    Shimer, D.W.; Lange, A.C.

    1997-03-11

    A high power, solid state power supply is described for producing a controllable, constant high voltage output under varying and arcing loads suitable for powering an electron beam gun or other ion source. The present power supply is most useful for outputs in a range of about 100-400 kW or more. The power supply is comprised of a plurality of discrete switching type dc-dc converter modules, each comprising a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, and an output rectifier for producing a dc voltage at the output of each module. The inputs to the converter modules are fed from a common dc rectifier/filter and are linked together in parallel through decoupling networks to suppress high frequency input interactions. The outputs of the converter modules are linked together in series and connected to the input of the transmission line to the load through a decoupling and line matching network. The dc-dc converter modules are phase activated such that for n modules, each module is activated equally 360{degree}/n out of phase with respect to a successive module. The phased activation of the converter modules, combined with the square current waveforms out of the step up transformers, allows the power supply to operate with greatly reduced output capacitance values which minimizes the stored energy available for discharge into an electron beam gun or the like during arcing. The present power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle using simulated voltage feedback signals and voltage feedback loops. Circuitry is also provided for sensing incipient arc currents reflected at the output of the power supply and for simultaneously decoupling the power supply circuitry from the arcing load. 7 figs.

  7. Analysis, design, and control of a transcutaneous power regulator for artificial hearts.

    PubMed

    Qianhong Chen; Siu Chung Wong; Tse, C K; Xinbo Ruan

    2009-02-01

    Based on a generic transcutaneous transformer model, a remote power supply using a resonant topology for use in artificial hearts is analyzed and designed for easy controllability and high efficiency. The primary and secondary windings of the transcutaneous transformer are positioned outside and inside the human body, respectively. In such a transformer, the alignment and gap may change with external positioning. As a result, the coupling coefficient of the transcutaneous transformer is also varying, and so are the two large leakage inductances and the mutual inductance. Resonant-tank circuits with varying resonant-frequency are formed from the transformer inductors and external capacitors. For a given range of coupling coefficients, an operating frequency corresponding to a particular coupling coefficient can be found, for which the voltage transfer function is insensitive to load. Prior works have used frequency modulation to regulate the output voltage under varying load and transformer coupling. The use of frequency modulation may require a wide control frequency range which may extend well above the load insensitive frequency. In this paper, study of the input-to-output voltage transfer function is carried out, and a control method is proposed to lock the switching frequency at just above the load insensitive frequency for optimized efficiency at heavy loads. Specifically, operation at above resonant of the resonant circuits is maintained under varying coupling-coefficient. Using a digital-phase-lock-loop (PLL), zero-voltage switching is achieved in a full-bridge converter which is also programmed to provide output voltage regulation via pulsewidth modulation (PWM). A prototype transcutaneous power regulator is built and found to to perform excellently with high efficiency and tight regulation under variations of the alignment or gap of the transcutaneous transformer, load and input voltage.

  8. A 190 mV start-up and 59.2% efficiency CMOS gate boosting voltage doubler charge pump in 0.18 µm standard CMOS process for energy harvesting

    NASA Astrophysics Data System (ADS)

    Yoshida, Minori; Miyaji, Kousuke

    2018-04-01

    A start-up charge pump circuit for an extremely low input voltage (V IN) is proposed and demonstrated. The proposed circuit uses an inverter level shifter to generate a 2V IN voltage swing to the gate of both main NMOS and PMOS power transistors in a charge pump to reduce the channel resistance. The proposed circuit is fully implemented in a standard 0.18 µm CMOS process, and the measurement result shows that a minimum input voltage of 190 mV is achieved and output power increases by 181% compared with the conventional forward-body-bias scheme at a 300 mV input voltage. The proposed scheme achieves a maximum efficiency of 59.2% when the input voltage is 390 mV and the output current is 320 nA. The proposed circuit is suitable as a start-up circuit in ultralow power energy harvesting power management applications to boost-up from below threshold voltage.

  9. High Input Voltage, Silicon Carbide Power Processing Unit Performance Demonstration

    NASA Technical Reports Server (NTRS)

    Bozak, Karin E.; Pinero, Luis R.; Scheidegger, Robert J.; Aulisio, Michael V.; Gonzalez, Marcelo C.; Birchenough, Arthur G.

    2015-01-01

    A silicon carbide brassboard power processing unit has been developed by the NASA Glenn Research Center in Cleveland, Ohio. The power processing unit operates from two sources - a nominal 300-Volt high voltage input bus and a nominal 28-Volt low voltage input bus. The design of the power processing unit includes four low voltage, low power supplies that provide power to the thruster auxiliary supplies, and two parallel 7.5 kilowatt power supplies that are capable of providing up to 15 kilowatts of total power at 300-Volts to 500-Volts to the thruster discharge supply. Additionally, the unit contains a housekeeping supply, high voltage input filter, low voltage input filter, and master control board, such that the complete brassboard unit is capable of operating a 12.5 kilowatt Hall Effect Thruster. The performance of unit was characterized under both ambient and thermal vacuum test conditions, and the results demonstrate the exceptional performance with full power efficiencies exceeding 97. With a space-qualified silicon carbide or similar high voltage, high efficiency power device, this design could evolve into a flight design for future missions that require high power electric propulsion systems.

  10. A correlation between extensional displacement and architecture of ionic polymer transducers

    NASA Astrophysics Data System (ADS)

    Akle, Barbar J.; Duncan, Andrew; Leo, Donald J.

    2008-03-01

    Ionic polymer transducers (IPT), sometimes referred to as artificial muscles, are known to generate a large bending strain and a moderate stress at low applied voltages (<5V). Bending actuators have limited engineering applications due to the low forcing capabilities and the need for complicated external devices to convert the bending action into rotating or linear motion desired in most devices. Recently Akle and Leo reported extensional actuation in ionic polymer transducers. In this study, extensional IPTs are characterized as a function of transducer architecture. In this study 2 actuators are built and there extensional displacement response is characterized. The transducers have similar electrodes while the middle membrane in the first is a Nafion / ionic liquid and an aluminum oxide - ionic liquid in the second. The first transducer is characterized for constant current input, voltage step input, and sweep voltage input. The model prediction is in agreement in both shape and magnitude for the constant current experiment. The values of α and β used are within the range of values reported in Akle and Leo. Both experiments and model demonstrate that there is a preferred direction of applying the potential so that the transducer will exhibit large deformations. In step response the model well predicted the negative potential and the early part of the step in the positive potential and failed to predict the displacement after approximately 180s has elapsed. The model well predicted the sweep response, and the observed 1st harmonic in the displacement further confirmed the existence of a quadratic in the charge response. Finally the aluminum oxide based transducer is characterized for a step response and compared to the Nafion based transducer. The second actuator demonstrated electromechanical extensional response faster than that in the Nafion based transducer. The Aluminum oxide based transducer is expected to provide larger forces and hence larger energy density.

  11. Advanced medium-voltage bidirectional dc-dc conversion systems for future electric energy delivery and management systems

    NASA Astrophysics Data System (ADS)

    Fan, Haifeng

    2011-12-01

    The distributed renewable energy generation and utilization are constantly growing, and are expected to be integrated with the conventional grid. The growing pressure for innovative solutions will demand power electronics to take an even larger role in future electric energy delivery and management systems, since power electronics are required for the conversion and control of electric energy by most dispersed generation systems Furthermore, power electronics systems can provide additional intelligent energy management, grid stability and power quality capabilities. Medium-voltage isolated dc-dc converter will become one of the key interfaces for grid components with moderate power ratings. To address the demand of medium voltage (MV) and high power capability for future electric energy delivery and management systems, the power electronics community and industry have been reacting in two different ways: developing semiconductor technology or directly connecting devices in series/parallel to reach higher nominal voltages and currents while maintaining conventional converter topologies; and by developing new converter topologies with traditional semiconductor technology, known as multilevel converters or modular converters. The modular approach uses the well-known, mature, and cheaper power semiconductor devices by adopting new converter topologies. The main advantages of the modular approach include: significant improvement in reliability by introducing desired level of redundancy; standardization of components leading to reduction in manufacturing cost and time; power systems can be easily reconfigured to support varying input-output specifications; and possibly higher efficiency and power density of the overall system. Input-series output-parallel (ISOP) modular configuration is a good choice to realize MV to low voltage (LV) conversion for utility application. However, challenges still remain. First of all, for the high-frequency MV utility application, the low switching loss and conduction loss are must-haves for high efficiency, while bidirectional power flow capability is a must for power management requirement. To address the demand, the phase-shift dual-halfbridge (DHB) is proposed as the constituent module of ISOP configuration for MV application. The proposed ISOP DHB converter employs zero-voltage-switching (ZVS) technique combined with LV MOSFETs to achieve low switching and conduction losses under high frequency operation, and therefore high efficiency and high power density, and bidirectional power flow as well. Secondly, a large load range of high efficiency is desired rather than only a specific load point due to the continuous operation and large load variation range of utility application, which is of high importance because of the rising energy cost. This work proposes a novel DHB converter with an adaptive commutation inductor. By utilizing an adaptive inductor as the main energy transfer element, the output power can be controlled by not only the phase shift but also the commutation inductance, which allows the circulating energy to be optimized for different load conditions to maintain ZVS under light load conditions and minimize additional conduction losses under heavy load conditions as well. As a result, the efficiency at both light and heavy load can be significantly improved compared with the conventional DHB converter, and therefore extended high-efficiency range can be achieved. In addition, current stress of switch devices can be reduced. The theoretical analysis is presented and validated by the experimental results on a 50 kHz, 1 kW dc-dc converter module. Thirdly, input-voltage sharing and output-current sharing are critical to assure the advantages of the ISOP modular configuration. To solve this issue, an identically distributed control scheme is proposed in this work. The proposed control scheme, using only one distributed voltage loop to realize both input-voltage and output-current sharing, provides plug-and-play capability, possible high-level fault tolerance, and easy implementation. Another unique advantage of the proposed ISOP DHB converter is the power rating can be easily extended further by directly connecting multiple ISOP DHB converters in input-parallel-outparallel (IPOP) while no additional control is needed. The proposed control scheme is elaborated using the large-signal average model. Further, the stability of the control schemes is analyzed in terms of the constituent modules' topology as well as the configuration, and then an important fact that the stability of control scheme depends on not only the configuration but also the constituent module topology is first revealed in this work. Finally, the simulation and experimental results of an ISOP DHB converter consisting of three modules are presented to verify the proposed control scheme and the high frequency high efficiency operation.

  12. Operational amplifier with adjustable frequency response.

    PubMed

    Gulisek, D; Hencek, M

    1978-01-01

    The authors describe an operational amplifier with an adjustable frequency response and its use in membrane physiology, using the voltage clamp and current clamp method. The amplifier eliminates feedback poles causing oscillation. It consists of a follower with a high input resistance in the form of a tube and of an actual amplifier with an adjustable frequency response allowing the abolition of clicks by one pole and of oscillation by two poles in the 500 Hz divided by infinity range. Further properties of the amplifier: a long-term voltage drift of 1 mv, a temperature voltage drift of 0.5 mv/degrees K, input resistance greater than 1 GOhm, amplification greater than 80 dB, output +/- 12 v, 25 ma, noise, measured from the width of the oscilloscope track in the presence of a ray of normal brightness, not exceeding 50 muv in the 0-250 kHz band, f1 = 1 MHz. A short report on the amplifier was published a few years ago (Gulísek and Hencek 1973).

  13. Constant Switching Frequency DTC for Matrix Converter Fed Speed Sensorless Induction Motor Drive

    NASA Astrophysics Data System (ADS)

    Mir, Tabish Nazir; Singh, Bhim; Bhat, Abdul Hamid

    2018-05-01

    The paper presents a constant switching frequency scheme for speed sensorless Direct Torque Control (DTC) of Matrix Converter fed Induction Motor Drive. The use of matrix converter facilitates improved power quality on input as well as motor side, along with Input Power Factor control, besides eliminating the need for heavy passive elements. Moreover, DTC through Space Vector Modulation helps in achieving a fast control over the torque and flux of the motor, with added benefit of constant switching frequency. A constant switching frequency aids in maintaining desired power quality of AC mains current even at low motor speeds, and simplifies input filter design of the matrix converter, as compared to conventional hysteresis based DTC. Further, stator voltage estimation from sensed input voltage, and subsequent stator (and rotor) flux estimation is done. For speed sensorless operation, a Model Reference Adaptive System is used, which emulates the speed dependent rotor flux equations of the induction motor. The error between conventionally estimated rotor flux (reference model) and the rotor flux estimated through the adaptive observer is processed through PI controller to generate the rotor speed estimate.

  14. Design of a Programmable Gain, Temperature Compensated Current-Input Current-Output CMOS Logarithmic Amplifier.

    PubMed

    Ming Gu; Chakrabartty, Shantanu

    2014-06-01

    This paper presents the design of a programmable gain, temperature compensated, current-mode CMOS logarithmic amplifier that can be used for biomedical signal processing. Unlike conventional logarithmic amplifiers that use a transimpedance technique to generate a voltage signal as a logarithmic function of the input current, the proposed approach directly produces a current output as a logarithmic function of the input current. Also, unlike a conventional transimpedance amplifier the gain of the proposed logarithmic amplifier can be programmed using floating-gate trimming circuits. The synthesis of the proposed circuit is based on the Hart's extended translinear principle which involves embedding a floating-voltage source and a linear resistive element within a translinear loop. Temperature compensation is then achieved using a translinear-based resistive cancelation technique. Measured results from prototypes fabricated in a 0.5 μm CMOS process show that the amplifier has an input dynamic range of 120 dB and a temperature sensitivity of 230 ppm/°C (27 °C- 57°C), while consuming less than 100 nW of power.

  15. Atmospheric plasma generation for LCD panel cleaning

    NASA Astrophysics Data System (ADS)

    Kim, Gyu-Sik; Won, Chung-Yuen; Choi, Ju-Yeop; Yim, C. H.

    2007-12-01

    UV lamp systems have been used for cleaning of display panels of TFT LCD or Plasma Display Panel (PDP). However, the needs for high efficient cleaning and low cost made high voltage plasma cleaning techniques to be developed and to be improved. Dielectric-barrier discharges (DBDs), also referred to as barrier discharges or silent discharges have for a long time been exclusively related to ozone generation. In this paper, a 6kW high voltage plasma power supply system was developed for LCD cleaning. The -phase input voltage is rectified and then inverter system is used to make a high frequency pulse train, which is rectified after passing through a high-power transformer. Finally, bi-directional high voltage pulse switching circuits are used to generate the high voltage plasma. Some experimental results showed the usefulness of atmospheric plasma for LCD panel cleaning.

  16. Method and apparatus for controlling a microturbine

    DOEpatents

    Garces, Luis Jose; Cardinal, Mark Edward; Sinha, Gautam; Dame, Mark Edward

    2005-08-02

    An apparatus for controlling a microturbine, the apparatus including: a rectifier adapted for converting at least one generated voltage from the microturbine to a DC link voltage; an inverter adapted for converting the DC link voltage to at least one inverter output voltage, the at least one inverter output voltage being electrically coupled to an external power bus; a starter drive adapted for converting at least one starter input voltage to at least one starter output voltage, the at least one starter input voltage being electrically coupled to the external power bus, the at least one starter output voltage being electrically coupled to the microturbine.

  17. Enhanced Response Time of Electrowetting Lenses with Shaped Input Voltage Functions.

    PubMed

    Supekar, Omkar D; Zohrabi, Mo; Gopinath, Juliet T; Bright, Victor M

    2017-05-16

    Adaptive optical lenses based on the electrowetting principle are being rapidly implemented in many applications, such as microscopy, remote sensing, displays, and optical communication. To characterize the response of these electrowetting lenses, the dependence upon direct current (DC) driving voltage functions was investigated in a low-viscosity liquid system. Cylindrical lenses with inner diameters of 2.45 and 3.95 mm were used to characterize the dynamic behavior of the liquids under DC voltage electrowetting actuation. With the increase of the rise time of the input exponential driving voltage, the originally underdamped system response can be damped, enabling a smooth response from the lens. We experimentally determined the optimal rise times for the fastest response from the lenses. We have also performed numerical simulations of the lens actuation with input exponential driving voltage to understand the variation in the dynamics of the liquid-liquid interface with various input rise times. We further enhanced the response time of the devices by shaping the input voltage function with multiple exponential rise times. For the 3.95 mm inner diameter lens, we achieved a response time improvement of 29% when compared to the fastest response obtained using single-exponential driving voltage. The technique shows great promise for applications that require fast response times.

  18. Low Power, High Voltage Power Supply with Fast Rise/Fall Time

    NASA Technical Reports Server (NTRS)

    Bearden, Douglas B. (Inventor)

    2007-01-01

    A low power, high voltage power supply system includes a high voltage power supply stage and a preregulator for programming the power supply stage so as to produce an output voltage which is a predetermined fraction of a desired voltage level. The power supply stage includes a high voltage, voltage doubler stage connected to receive the output voltage from the preregulator and for, when activated, providing amplification of the output voltage to the desired voltage level. A first feedback loop is connected between the output of the preregulator and an input of the preregulator while a second feedback loop is connected between the output of the power supply stage and the input of the preregulator.

  19. Low power, high voltage power supply with fast rise/fall time

    NASA Technical Reports Server (NTRS)

    Bearden, Douglas B. (Inventor)

    2007-01-01

    A low power, high voltage power supply system includes a high voltage power supply stage and a preregulator for programming the power supply stage so as to produce an output voltage which is a predetermined fraction of a desired voltage level. The power supply stage includes a high voltage, voltage doubler stage connected to receive the output voltage from the preregulator and for, when activated, providing amplification of the output voltage to the desired voltage level. A first feedback loop is connected between the output of the preregulator and an input of the preregulator while a second feedback loop is connected between the output of the power supply stage and the input of the preregulator.

  20. Development of piezoelectric bistable energy harvester based on buckled beam with axially constrained end condition for human motion

    NASA Astrophysics Data System (ADS)

    Eltanany, Ali M.; Yoshimura, Takeshi; Fujimura, Norifumi; Ebied, Mohamed R.; Ali, Mohamed G. S.

    2017-10-01

    In this study, we aim to examine the triggering force for an efficient snap-through solution of hand shaking vibrations of a piezoelectric bistable energy harvester. The proposed structure works at very low frequencies with nearly continuous periodic vibrations. The static characterizations are presented as well as the dynamic characterizations based on the phase diagrams of velocity vs displacement, voltage vs displacement, and voltage vs input acceleration. The mass attached to the bistable harvester plays an important role in determining the acceleration needed for the snap-through action, and the explanation for this role is complex because of mass dependence on frequency/amplitude vibration. Various hand shaking vibration tests are performed to demonstrate the advantage of the proposed structure in harvesting energy from hand shaking vibration. The minimum input acceleration for snap-through action was 11.59 m/s2 with peaks of 15.76 and 2 m/s2 in the frequency range of 1.3-2.7 Hz, when an attached mass of 14.6 g is used. The maximum generated power at a buckling state of 0.5 mm is 11.3 µW for the test structure at 26 g. The experimental results obtained in this study indicate that power output harvesting of slow hand shaking vibrations at 10 µW and a load resistance of 1 MΩ.

  1. Generation of electrical power

    DOEpatents

    Hursen, Thomas F.; Kolenik, Steven A.; Purdy, David L.

    1976-01-01

    A heat-to-electricity converter is disclosed which includes a radioactive heat source and a thermoelectric element of relatively short overall length capable of delivering a low voltage of the order of a few tenths of a volt. Such a thermoelectric element operates at a higher efficiency than longer higher-voltage elements; for example, elements producing 6 volts. In the generation of required power, thermoelectric element drives a solid-state converter which is controlled by input current rather than input voltage and operates efficiently for a high signal-plus-noise to signal ratio of current. The solid-state converter has the voltage gain necessary to deliver the required voltage at the low input of the thermoelectric element.

  2. Dynamics of action potential initiation in the GABAergic thalamic reticular nucleus in vivo.

    PubMed

    Muñoz, Fabián; Fuentealba, Pablo

    2012-01-01

    Understanding the neural mechanisms of action potential generation is critical to establish the way neural circuits generate and coordinate activity. Accordingly, we investigated the dynamics of action potential initiation in the GABAergic thalamic reticular nucleus (TRN) using in vivo intracellular recordings in cats in order to preserve anatomically-intact axo-dendritic distributions and naturally-occurring spatiotemporal patterns of synaptic activity in this structure that regulates the thalamic relay to neocortex. We found a wide operational range of voltage thresholds for action potentials, mostly due to intrinsic voltage-gated conductances and not synaptic activity driven by network oscillations. Varying levels of synchronous synaptic inputs produced fast rates of membrane potential depolarization preceding the action potential onset that were associated with lower thresholds and increased excitability, consistent with TRN neurons performing as coincidence detectors. On the other hand the presence of action potentials preceding any given spike was associated with more depolarized thresholds. The phase-plane trajectory of the action potential showed somato-dendritic propagation, but no obvious axon initial segment component, prominent in other neuronal classes and allegedly responsible for the high onset speed. Overall, our results suggest that TRN neurons could flexibly integrate synaptic inputs to discharge action potentials over wide voltage ranges, and perform as coincidence detectors and temporal integrators, supported by a dynamic action potential threshold.

  3. Power Factor Controller

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Frank Nola invented the Power Factor Controller (PFC) at Marshall Space Flight Center more than a decade ago. Nola came up with a way to curb power wastage in AC induction motors. The PFC matches voltage with the motor's actual need by continuously sensing shifts between voltage and current. When it senses a light load it cuts the voltage to the minimum needed. Potential energy savings range from 8 to 65 percent.

  4. Benefit from NASA

    NASA Image and Video Library

    1997-01-01

    Frank Nola invented the Power Factor Controller (PFC) at Marshall Space Flight Center more than a decade ago. Nola came up with a way to curb power wastage in AC induction motors. The PFC matches voltage with the motor's actual need by continuously sensing shifts between voltage and current. When it senses a light load it cuts the voltage to the minimum needed. Potential energy savings range from 8 to 65 percent.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elizondo-Decanini, Juan M.; Coleman, Phillip D.; Moorman, Matthew W.

    Low- and high-voltage Soliton waves were produced and used to demonstrate collision and compression using diode-based nonlinear transmission lines. Experiments demonstrate soliton addition and compression using homogeneous nonlinear lines. We built the nonlinear lines using commercially available diodes. These diodes are chosen after their capacitance versus voltage dependence is used in a model and the line design characteristics are calculated and simulated. Nonlinear ceramic capacitors are then used to demonstrate high-voltage pulse amplification and compression. The line is designed such that a simple capacitor discharge, input signal, develops soliton trains in as few as 12 stages. We also demonstrated outputmore » voltages in excess of 40 kV using Y5V-based commercial capacitors. The results show some key features that determine efficient production of trains of solitons in the kilovolt range.« less

  6. A fully integrated, wide-load-range, high-power-conversion-efficiency switched capacitor DC-DC converter with adaptive bias comparator for ultra-low-power power management integrated circuit

    NASA Astrophysics Data System (ADS)

    Asano, Hiroki; Hirose, Tetsuya; Kojima, Yuta; Kuroki, Nobutaka; Numa, Masahiro

    2018-04-01

    In this paper, we present a wide-load-range switched-capacitor DC-DC buck converter with an adaptive bias comparator for ultra-low-power power management integrated circuit. The proposed converter is based on a conventional one and modified to operate in a wide load range by developing a load current monitor used in an adaptive bias comparator. Measurement results demonstrated that our proposed converter generates a 1.0 V output voltage from a 3.0 V input voltage at a load of up to 100 µA, which is 20 times higher than that of the conventional one. The power conversion efficiency was higher than 60% in the load range from 0.8 to 100 µA.

  7. High Power Microwave (HPM) and Ionizing Radiation Effects on CMOS Devices

    DTIC Science & Technology

    2010-03-01

    24 xviii Symbol Page VIH minimum input voltage for proper high voltage output...38 VOH output voltage corresponding to VIH ...design. The high level at the input, VIH , along with VDD, define the maximum permitted “Logic 1” region, which allows for proper state change for a

  8. Precision absolute-value amplifier for a precision voltmeter

    DOEpatents

    Hearn, W.E.; Rondeau, D.J.

    1982-10-19

    Bipolar inputs are afforded by the plus inputs of first and second differential input amplifiers. A first gain determining resistor is connected between the minus inputs of the differential amplifiers. First and second diodes are connected between the respective minus inputs and the respective outputs of the differential amplifiers. First and second FETs have their gates connected to the outputs of the amplifiers, while their respective source and drain circuits are connected between the respective minus inputs and an output lead extending to a load resistor. The output current through the load resistor is proportional to the absolute value of the input voltage difference between the bipolar input terminals. A third differential amplifier has its plus input terminal connected to the load resistor. A second gain determining resistor is connected between the minus input of the third differential amplifier and a voltage source. A third FET has its gate connected to the output of the third amplifier. The source and drain circuit of the third transistor is connected between the minus input of the third amplifier and a voltage-frequency converter, constituting an output device. A polarity detector is also provided, comprising a pair of transistors having their inputs connected to the outputs of the first and second differential amplifiers. The outputs of the polarity detector are connected to gates which switch the output of the voltage-frequency converter between up and down counting outputs.

  9. Precision absolute value amplifier for a precision voltmeter

    DOEpatents

    Hearn, William E.; Rondeau, Donald J.

    1985-01-01

    Bipolar inputs are afforded by the plus inputs of first and second differential input amplifiers. A first gain determining resister is connected between the minus inputs of the differential amplifiers. First and second diodes are connected between the respective minus inputs and the respective outputs of the differential amplifiers. First and second FETs have their gates connected to the outputs of the amplifiers, while their respective source and drain circuits are connected between the respective minus inputs and an output lead extending to a load resister. The output current through the load resister is proportional to the absolute value of the input voltage difference between the bipolar input terminals. A third differential amplifier has its plus input terminal connected to the load resister. A second gain determining resister is connected between the minus input of the third differential amplifier and a voltage source. A third FET has its gate connected to the output of the third amplifier. The source and drain circuit of the third transistor is connected between the minus input of the third amplifier and a voltage-frequency converter, constituting an output device. A polarity detector is also provided, comprising a pair of transistors having their inputs connected to the outputs of the first and second differential amplifiers. The outputs of the polarity detector are connected to gates which switch the output of the voltage-frequency converter between up and down counting outputs.

  10. Influence of asymmetric attenuation of single and paired dendritic inputs on summation of synaptic potentials and initiation of action potentials.

    PubMed

    Fortier, Pierre A; Bray, Chelsea

    2013-04-16

    Previous studies revealed mechanisms of dendritic inputs leading to action potential initiation at the axon initial segment and backpropagation into the dendritic tree. This interest has recently expanded toward the communication between different parts of the dendritic tree which could preprocess information before reaching the soma. This study tested for effects of asymmetric voltage attenuation between different sites in the dendritic tree on summation of synaptic inputs and action potential initiation using the NEURON simulation environment. Passive responses due to the electrical equivalent circuit of the three-dimensional neuron architecture with leak channels were examined first, followed by the responses after adding voltage-gated channels and finally synaptic noise. Asymmetric attenuation of voltage, which is a function of asymmetric input resistance, was seen between all pairs of dendritic sites but the transfer voltages (voltage recorded at the opposite site from stimulation among a pair of dendritic sites) were equal and also summed linearly with local voltage responses during simultaneous stimulation of both sites. In neurons with voltage-gated channels, we reproduced the observations where a brief stimulus to the proximal ascending dendritic branch of a pyramidal cell triggers a local action potential but a long stimulus triggers a somal action potential. Combined stimulation of a pair of sites in this proximal dendrite did not alter this pattern. The attraction of the action potential onset toward the soma with a long stimulus in the absence of noise was due to the higher density of voltage-gated sodium channels at the axon initial segment. This attraction was, however, negligible at the most remote distal dendritic sites and was replaced by an effect due to high input resistance. Action potential onset occurred at the dendritic site of higher input resistance among a pair of remote dendritic sites, irrespective of which of these two sites received the synaptic input. Exploration of the parameter space showed how the gradient of voltage-gated channel densities and input resistances along a dendrite could draw the action potential onset away from the stimulation site. The attraction of action potential onset toward the higher density of voltage-gated channels in the soma during stimulation of the proximal dendrite was, however, reduced after the addition of synaptic noise. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Modular 5-kW Power-Processing Unit Being Developed for the Next-Generation Ion Engine

    NASA Technical Reports Server (NTRS)

    Pinero, Luis R.; Bond, Thomas H.; Okada, Don; Phelps, Keith; Pyter, Janusz; Wiseman, Steve

    2001-01-01

    The NASA Glenn Research Center is developing a 5- to 10-kW ion engine for a broad range of mission applications. Simultaneously, a 5-kW breadboard power-processing unit (PPU) is being designed and fabricated by Boeing Electron Dynamic Devices, Torrance, California, under contract with Glenn. The beam supply, which processes up to 90 percent of the power into this unit, consists of four 1.1-kW power modules connected in parallel, equally sharing the output current. The modular design allows scalability to higher powers as well as the possibility of implementing an N + 1 redundant beam supply. A novel phaseshifted/pulse-width-modulated, dual full-bridge topology was chosen for this module design for its efficient switching characteristics. A breadboard version of the beam power supply module was assembled. Efficiencies ranging between 91.6 and 96.9 percent were measured for an input voltage range of 80 to 160 V, an output voltage range of 800 to 1500 V, and output powers from 0.3 to 1.0 kW. This beam supply could result in a PPU with a total efficiency between 93 and 95 percent at a nominal input voltage of 100 V. This is up to a 4-percent improvement over the state-of-the-art PPU used for the Deep Space 1 mission. A flight-packaged PPU is expected to weigh no more than 15 kg, which represents a 50-percent reduction in specific mass from the Deep Space 1 design. This will make 5-kW ion propulsion very attractive for many planetary missions.

  12. A Wide-Range Tunable Level-Keeper Using Vertical Metal-Oxide-Semiconductor Field-Effect Transistors for Current-Reuse Systems

    NASA Astrophysics Data System (ADS)

    Tanoi, Satoru; Endoh, Tetsuo

    2012-04-01

    A wide-range tunable level-keeper using vertical metal-oxide-semiconductor field-effect transistors (MOSFETs) is proposed for current-reuse analog systems. The design keys for widening tunable range of the operation are a two-path feed-back and a vertical MOSFET with back-bias-effect free. The proposed circuit with the vertical MOSFETs shows the 1.23-V tunable-range of the input level with the 2.4-V internal-supply voltage (VDD) in the simulation. This tunable-range of the proposed circuit is 4.7 times wider than that of the conventional. The achieved current efficiency of the proposed level-keeper is 66% at the 1.2-V output with the 2.4-V VDD. This efficiency of the proposed circuit is twice higher than that of the traditional voltage down converter.

  13. Ion accelerator system mounting design and operating characteristics for a 5 kW 30-cm xenon ion engine

    NASA Technical Reports Server (NTRS)

    Aston, Graeme; Brophy, John R.

    1987-01-01

    Results from a series of experiments to determine the effect of accelerator grid mount geometry on the performance of the J-series ion optics assembly are described. Three mounting schemes, two flexible and one rigid, are compared for their relative ion extraction capability over a range of total accelerating voltages. The largest ion beam current, for the maximum total voltage investigated, is shown to occur using one of the flexible grid mounting geometries. However, at lower total voltages and reduced engine input power levels, the original rigid J-series ion optics accelerator grid mounts result in marginally better grid system performance at the same cold interelectrode gap.

  14. Integrator Circuitry for Single Channel Radiation Detector

    NASA Technical Reports Server (NTRS)

    Holland, Samuel D. (Inventor); Delaune, Paul B. (Inventor); Turner, Kathryn M. (Inventor)

    2008-01-01

    Input circuitry is provided for a high voltage operated radiation detector to receive pulses from the detector having a rise time in the range of from about one nanosecond to about ten nanoseconds. An integrator circuit, which utilizes current feedback, receives the incoming charge from the radiation detector and creates voltage by integrating across a small capacitor. The integrator utilizes an amplifier which closely follows the voltage across the capacitor to produce an integrator output pulse with a peak value which may be used to determine the energy which produced the pulse. The pulse width of the output is stretched to approximately 50 to 300 nanoseconds for use by subsequent circuits which may then use amplifiers with lower slew rates.

  15. SAMPLING OSCILLOSCOPE

    DOEpatents

    Sugarman, R.M.

    1960-08-30

    An oscilloscope is designed for displaying transient signal waveforms having random time and amplitude distributions. The oscilloscopc is a sampling device that selects for display a portion of only those waveforms having a particular range of amplitudes. For this purpose a pulse-height analyzer is provided to screen the pulses. A variable voltage-level shifter and a time-scale rampvoltage generator take the pulse height relative to the start of the waveform. The variable voltage shifter produces a voltage level raised one step for each sequential signal waveform to be sampled and this results in an unsmeared record of input signal waveforms. Appropriate delay devices permit each sample waveform to pass its peak amplitude before the circuit selects it for display.

  16. Biased low differential input impedance current receiver/converter device and method for low noise readout from voltage-controlled detectors

    DOEpatents

    Degtiarenko, Pavel V [Williamsburg, VA; Popov, Vladimir E [Newport News, VA

    2011-03-22

    A first stage electronic system for receiving charge or current from voltage-controlled sensors or detectors that includes a low input impedance current receiver/converter device (for example, a transimpedance amplifier), which is directly coupled to the sensor output, a source of bias voltage, and the device's power supply (or supplies), which use the biased voltage point as a baseline.

  17. Disinfection by electrohydraulic treatment.

    PubMed

    Allen, M; Soike, K

    1967-04-28

    Electrohydraulic treatment was applied to suspensions of Escherichia coli, spores of Bacillus subtilis var. niger, Saccharomyces cerevisiae, and bacteriophage T2 at an input energy that, in most cases, was below the energy required to sterilize. The input energy was held relatively constant for each of these microorganisms, but the capacitance and voltage were varied. Data are presented which show the degree of disinfection as a function of capacitance and voltage. In all cases, the degree of disinfection for a given input energy increases as both capacitance and voltage are lowered.

  18. Ultra-low-power conversion and management techniques for thermoelectric energy harvesting applications

    NASA Astrophysics Data System (ADS)

    Fleming, Jerry W.

    2010-04-01

    Thermoelectric energy harvesting has increasingly gained acceptance as a potential power source that can be used for numerous commercial and military applications. However, power electronic designers have struggled to incorporate energy harvesting methods into their designs due to the relatively small voltage levels available from many harvesting device technologies. In order to bridge this gap, an ultra-low input voltage power conversion method is needed to convert small amounts of scavenged energy into a usable form of electricity. Such a method would be an enabler for new and improved medical devices, sensor systems, and other portable electronic products. This paper addresses the technical challenges involved in ultra-low-voltage power conversion by providing a solution utilizing novel power conversion techniques and applied technologies. Our solution utilizes intelligent power management techniques to control unknown startup conditions. The load and supply management functionality is also controlled in a deterministic manner. The DC to DC converter input operating voltage is 20mV with a conversion efficiency of 90% or more. The output voltage is stored into a storage device such as an ultra-capacitor or lithium-ion battery for use during brown-out or unfavorable harvesting conditions. Applications requiring modular, low power, extended maintenance cycles, such as wireless instrumentation would significantly benefit from the novel power conversion and harvesting techniques outlined in this paper.

  19. Apparatus and method for detecting and measuring changes in linear relationships between a number of high frequency signals

    DOEpatents

    Bittner, J.W.; Biscardi, R.W.

    1991-03-19

    An electronic measurement circuit is disclosed for high speed comparison of the relative amplitudes of a predetermined number of electrical input signals independent of variations in the magnitude of the sum of the signals. The circuit includes a high speed electronic switch that is operably connected to receive on its respective input terminals one of said electrical input signals and to have its common terminal serve as an input for a variable-gain amplifier-detector circuit that is operably connected to feed its output to a common terminal of a second high speed electronic switch. The respective terminals of the second high speed electronic switch are operably connected to a plurality of integrating sample and hold circuits, which in turn have their outputs connected to a summing logic circuit that is operable to develop first, second and third output voltages, the first output voltage being proportional to a predetermined ratio of sums and differences between the compared input signals, the second output voltage being proportional to a second summed ratio of predetermined sums and differences between said input signals, and the third output voltage being proportional to the sum of signals to the summing logic circuit. A servo system that is operably connected to receive said third output signal and compare it with a reference voltage to develop a slowly varying feedback voltage to control the variable-gain amplifier in said common amplifier-detector circuit in order to make said first and second output signals independent of variations in the magnitude of the sum of said input signals. 2 figures.

  20. Apparatus and method for detecting and measuring changes in linear relationships between a number of high frequency signals

    DOEpatents

    Bittner, John W.; Biscardi, Richard W.

    1991-01-01

    An electronic measurement circuit for high speed comparison of the relative amplitudes of a predetermined number of electrical input signals independent of variations in the magnitude of the sum of the signals. The circuit includes a high speed electronic switch that is operably connected to receive on its respective input terminals one of said electrical input signals and to have its common terminal serve as an input for a variable-gain amplifier-detector circuit that is operably connected to feed its output to a common terminal of a second high speed electronic switch. The respective terminals of the second high speed electronic switch are operably connected to a plurality of integrating sample and hold circuits, which in turn have their outputs connected to a summing logic circuit that is operable to develop first, second and third output voltages, the first output voltage being proportional to a predetermined ratio of sums and differences between the compared input signals, the second output voltage being proportional to a second summed ratio of predetermined sums and differences between said input signals, and the third output voltage being proportional to the sum of signals to the summing logic circuit. A servo system that is operably connected to receive said third output signal and compare it with a reference voltage to develop a slowly varying feedback voltage to control the variable-gain amplifier in said common amplifier-detector circuit in order to make said first and second output signals independent of variations in the magnitude of the sum of said input signals.

  1. Advanced Power Conditioning System

    NASA Technical Reports Server (NTRS)

    Johnson, N. L.

    1971-01-01

    The second portion of the advanced power conditioning system development program is reported. Five 100-watt parallel power stages with majority-vote-logic feedback-regulator were breadboarded and tested to the design goals. The input voltage range was 22.1 to 57.4 volts at loads from zero to 500 watts. The maximum input ripple current was 200 mA pk-pk (not including spikes) at 511 watts load; the output voltage was 56V dc with a maximum change of 0.89 volts for all variations of line, load, and temperature; the maximum output ripple was 320 mV pk-pk at 512 watts load (dependent on filter capacitance value); the maximum efficiency was 93.9% at 212 watts and 50V dc input; the minimum efficiency was 87.2% at 80-watt load and 50V dc input; the efficiency was above 90% from 102 watts to 372 watts; the maximum excursion for an 80-watt load change was 2.1 volts with a recovery time of 7 milliseconds; and the unit performed within regulation limits from -20 C to +85 C. During the test sequence, margin tests and failure mode tests were run with no resulting degradation in performance.

  2. A monolithic K-band phase-locked loop for microwave radar application

    NASA Astrophysics Data System (ADS)

    Zhou, Guangyao; Ma, Shunli; Li, Ning; Ye, Fan; Ren, Junyan

    2017-02-01

    A monolithic K-band phase-locked loop (PLL) for microwave radar application is proposed and implemented in this paper. By eliminating the tail transistor and using optimized high-Q LC-tank, the proposed voltage-controlled oscillator (VCO) achieves a tuning range of 18.4 to 23.3 GHz and reduced phase noise. Two cascaded current-mode logic (CML) divide-by-two frequency prescalers are implemented to bridge the frequency gap, in which inductor peaking technique is used in the first stage to further boost allowable input frequency. Six-stage TSPC divider chain is used to provide programmable division ratio from 64 to 127, and a second-order passive loop filter with 825 kHz bandwidth is also integrated on-chip to minimize required external components. The proposed PLL needs only approximately 18.2 μs settling time, and achieves a wide tuning range from 18.4 to 23.3 GHz, with a typical output power of ‑0.84 dBm and phase noise of ‑91.92 dBc/Hz @ 1 MHz. The chip is implemented in TSMC 65 nm CMOS process, and occupies an area of 0.56 mm2 without pads under a 1.2 V single voltage supply. Project supported by the National High-Tech Research and Development Program of China (No. 2013AA014101).

  3. Piezoelectric Vibrational and Acoustic Alert for a Personal Communication Device

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E. (Inventor); Hellbaum, Richard F. (Inventor); Daugherty, Robert H. (Inventor); Scholz, Raymond C. (Inventor); Little, Bruce D. (Inventor); Fox, Robert L. (Inventor); Denhardt, Gerald A. (Inventor); Jang, SeGon (Inventor); Balein, Rizza (Inventor)

    2001-01-01

    An alert apparatus for a personal communication device includes a mechanically prestressed piezoelectric wafer positioned within the personal communication device and an alternating voltage input line coupled at two points of the wafer where polarity is recognized. The alert apparatus also includes a variable frequency device coupled to the alternating voltage input line, operative to switch the alternating voltage on the alternating voltage input line at least between an alternating voltage having a first frequency and an alternating voltage having a second frequency. The first frequency is preferably sufficiently high so as to cause the wafer to vibrate at a resulting frequency that produces a sound perceptible by a human ear, and the second frequency is preferably sufficiently low so as to cause the wafer to vibrate at a resulting frequency that produces a vibration readily felt by a holder of the personal communication device.

  4. Soliton production with nonlinear homogeneous lines

    DOE PAGES

    Elizondo-Decanini, Juan M.; Coleman, Phillip D.; Moorman, Matthew W.; ...

    2015-11-24

    Low- and high-voltage Soliton waves were produced and used to demonstrate collision and compression using diode-based nonlinear transmission lines. Experiments demonstrate soliton addition and compression using homogeneous nonlinear lines. We built the nonlinear lines using commercially available diodes. These diodes are chosen after their capacitance versus voltage dependence is used in a model and the line design characteristics are calculated and simulated. Nonlinear ceramic capacitors are then used to demonstrate high-voltage pulse amplification and compression. The line is designed such that a simple capacitor discharge, input signal, develops soliton trains in as few as 12 stages. We also demonstrated outputmore » voltages in excess of 40 kV using Y5V-based commercial capacitors. The results show some key features that determine efficient production of trains of solitons in the kilovolt range.« less

  5. Detailed numerical investigation of the dissipative stochastic mechanics based neuron model.

    PubMed

    Güler, Marifi

    2008-10-01

    Recently, a physical approach for the description of neuronal dynamics under the influence of ion channel noise was proposed in the realm of dissipative stochastic mechanics (Güler, Phys Rev E 76:041918, 2007). Led by the presence of a multiple number of gates in an ion channel, the approach establishes a viewpoint that ion channels are exposed to two kinds of noise: the intrinsic noise, associated with the stochasticity in the movement of gating particles between the inner and the outer faces of the membrane, and the topological noise, associated with the uncertainty in accessing the permissible topological states of open gates. Renormalizations of the membrane capacitance and of a membrane voltage dependent potential function were found to arise from the mutual interaction of the two noisy systems. The formalism therein was scrutinized using a special membrane with some tailored properties giving the Rose-Hindmarsh dynamics in the deterministic limit. In this paper, the resultant computational neuron model of the above approach is investigated in detail numerically for its dynamics using time-independent input currents. The following are the major findings obtained. The intrinsic noise gives rise to two significant coexisting effects: it initiates spiking activity even in some range of input currents for which the corresponding deterministic model is quiet and causes bursting in some other range of input currents for which the deterministic model fires tonically. The renormalization corrections are found to augment the above behavioral transitions from quiescence to spiking and from tonic firing to bursting, and, therefore, the bursting activity is found to take place in a wider range of input currents for larger values of the correction coefficients. Some findings concerning the diffusive behavior in the voltage space are also reported.

  6. LNA with wide range of gain control and wideband interference rejection

    NASA Astrophysics Data System (ADS)

    Wang, Jhen-Ji; Chen, Duan-Yu

    2016-10-01

    This work presents a low-noise amplifier (LNA) design with a wide-range gain control characteristic that integrates adjustable current distribution and output impedance techniques. For a given gain characteristic, the proposed LNA provides better wideband interference rejection performance than conventional LNA. Moreover, the proposed LNA also has a wider gain control range than conventional LNA. Therefore, it is suitable for satellite communications systems. The simulation results demonstrate that the voltage gain control range is between 14.5 and 34.2 dB for such applications (2600 MHz); the input reflection coefficient is less than -18.9 dB; the noise figure (NF) is 1.25 dB; and the third-order intercept point (IIP3) is 4.52 dBm. The proposed LNA consumes 23.85-28.17 mW at a supply voltage of 1.8 V. It is implemented by using TSMC 0.18-um RF CMOS process technology.

  7. Dynamics of Action Potential Initiation in the GABAergic Thalamic Reticular Nucleus In Vivo

    PubMed Central

    Muñoz, Fabián; Fuentealba, Pablo

    2012-01-01

    Understanding the neural mechanisms of action potential generation is critical to establish the way neural circuits generate and coordinate activity. Accordingly, we investigated the dynamics of action potential initiation in the GABAergic thalamic reticular nucleus (TRN) using in vivo intracellular recordings in cats in order to preserve anatomically-intact axo-dendritic distributions and naturally-occurring spatiotemporal patterns of synaptic activity in this structure that regulates the thalamic relay to neocortex. We found a wide operational range of voltage thresholds for action potentials, mostly due to intrinsic voltage-gated conductances and not synaptic activity driven by network oscillations. Varying levels of synchronous synaptic inputs produced fast rates of membrane potential depolarization preceding the action potential onset that were associated with lower thresholds and increased excitability, consistent with TRN neurons performing as coincidence detectors. On the other hand the presence of action potentials preceding any given spike was associated with more depolarized thresholds. The phase-plane trajectory of the action potential showed somato-dendritic propagation, but no obvious axon initial segment component, prominent in other neuronal classes and allegedly responsible for the high onset speed. Overall, our results suggest that TRN neurons could flexibly integrate synaptic inputs to discharge action potentials over wide voltage ranges, and perform as coincidence detectors and temporal integrators, supported by a dynamic action potential threshold. PMID:22279567

  8. Electrical pulse generator

    DOEpatents

    Norris, Neil J.

    1979-01-01

    A technique for generating high-voltage, wide dynamic range, shaped electrical pulses in the nanosecond range. Two transmission lines are coupled together by resistive elements distributed along the length of the lines. The conductance of each coupling resistive element as a function of its position along the line is selected to produce the desired pulse shape in the output line when an easily produced pulse, such as a step function pulse, is applied to the input line.

  9. An operational amplifier B1404UD1A-1 in the patch-clamp current-to-voltage converter.

    PubMed

    Korzun, A M; Rozinov, S V; Abashin, G I

    1997-01-01

    The applicability of the home-made operational amplifier B1404UD1A-1 in a patch-clamp current-to-voltage converter was analyzed. Its parameters (background noise, input bias current, and gain-bandwidth product) were estimated. Schematic solutions and practical recommendations for the use of this amplifier in a current-to-voltage converter were given. Based on the background noise and frequency parameters of the converter, we found that this device can be used for measuring ion channel currents with a high sensitivity and within a broad frequency range (0.055 pA, to 1 kHz; 0.4 pA, to 10 kHz). An example of the converter application in experiments is given.

  10. Cryogenic Evaluation of an Advanced DC/DC Converter Module for Deep Space Applications

    NASA Technical Reports Server (NTRS)

    Elbuluk, Malik E.; Hammoud, Ahmad; Gerber, Scott S.; Patterson, Richard

    2003-01-01

    DC/DC converters are widely used in power management, conditioning, and control of space power systems. Deep space applications require electronics that withstand cryogenic temperature and meet a stringent radiation tolerance. In this work, the performance of an advanced, radiation-hardened (rad-hard) commercial DC/DC converter module was investigated at cryogenic temperatures. The converter was investigated in terms of its steady state and dynamic operations. The output voltage regulation, efficiency, terminal current ripple characteristics, and output voltage response to load changes were determined in the temperature range of 20 to -140 C. These parameters were obtained at various load levels and at different input voltages. The experimental procedures along with the results obtained on the investigated converter are presented and discussed.

  11. System and method for motor speed estimation of an electric motor

    DOEpatents

    Lu, Bin [Kenosha, WI; Yan, Ting [Brookfield, WI; Luebke, Charles John [Sussex, WI; Sharma, Santosh Kumar [Viman Nagar, IN

    2012-06-19

    A system and method for a motor management system includes a computer readable storage medium and a processing unit. The processing unit configured to determine a voltage value of a voltage input to an alternating current (AC) motor, determine a frequency value of at least one of a voltage input and a current input to the AC motor, determine a load value from the AC motor, and access a set of motor nameplate data, where the set of motor nameplate data includes a rated power, a rated speed, a rated frequency, and a rated voltage of the AC motor. The processing unit is also configured to estimate a motor speed based on the voltage value, the frequency value, the load value, and the set of nameplate data and also store the motor speed on the computer readable storage medium.

  12. Inductance parameter design based seamless transfer strategy for three-phase converter in microgrid

    NASA Astrophysics Data System (ADS)

    Zhao, Guopeng; Zhou, Xinwei; Jiang, Chao; Lu, Yi; Wang, Yanjie

    2018-06-01

    During the operation of microgrid, especially when the unplanned islanding occurs, the voltage of the point of common coupling (PCC) needs to be maintained within a certain range, otherwise it would affect the operation of loads in microgrid. This paper proposes a seamless transfer strategy based on the inductance parameter design for three-phase converter in microgrid, which considers both the fundamental component of voltage on the inductance and the ripple current in the inductance. In grid-connected mode, the PCC voltage is supported by the grid. When the unplanned islanding occurs, the PCC voltage is affected by the output voltage of converter and the voltage on the inductance. According to the single phase equivalent circuit, analyzing the phasor diagram of voltage and current vector, considering the prescribed range of PCC voltage and satisfying the requirement of the magnitude of ripple current, the inductance parameter is designed. At last, the simulation result shows that the designed inductance can ensure the PCC voltage does not exceed the prescribed range and restrain the ripple current.

  13. Sensitive method for characterizing liquid helium cooled preamplifier feedback resistors

    NASA Technical Reports Server (NTRS)

    Smeins, L. G.; Arentz, R. F.

    1983-01-01

    It is pointed out that the simple and traditional method of measuring resistance using an electrometer is ineffective since it is limited to a narrow and nonrepresentative range of terminal voltages. The present investigation is concerned with a resistor measurement technique which was developed to select and calibrate the Transimpedance Mode Amplifier (TIA) load resistors on the Infrared Astronomical Satellite (IRAS) for the wide variety of time and voltage varying signals which will be processed during the flight. The developed method has great versatility and power, and makes it possible to measure the varied and complex responses of nonideal feedback resistors to IR photo-detector currents. When employed with a stable input coupling capacitor, and a narrow band RMS voltmeter, the five input waveforms thouroughly test and calibrate all the features of interest in a load resistor and its associated TIA circuitry.

  14. Design of a high voltage input - output ratio dc-dc converter dedicated to small power fuel cell systems

    NASA Astrophysics Data System (ADS)

    Béthoux, O.; Cathelin, J.

    2010-12-01

    Consuming chemical energy, fuel cells produce simultaneously heat, water and useful electrical power [J.M. Andújar, F. Segura, Renew. Sust. Energy Rev. 13, 2309 (2009)], [J. Larminie, A. Dicks, Fuel Cell Systems Explained, 2nd edn. (John Wiley & Sons, 2003)]. As a matter of fact, the voltage generated by a fuel cell strongly depends on both the load power demand and the operating conditions. Besides, as a result of many design aspects, fuel cells are low voltage and high current electric generators. On the contrary, electric loads are commonly designed for small voltage swing and a high V/I ratio in order to minimize Joule losses. Therefore, electric loads supplied by fuel cells are typically fed by means of an intermediate power voltage regulator. The specifications of such a power converter are to be able to step up the input voltage with a high ratio (a ratio of 10 is a classic situation) and also to work with an excellent efficiency (in order to minimize its size, its weight and its losses) [A. Shahin, B. Huang, J.P. Martin, S. Pierfederici, B. Davat, Energy Conv. Manag. 51, 56 (2010)]. This paper deals with the design of this essential ancillary device. It intends to bring out the best structure for fulfilling this function. Several dc-dc converters with large voltage step-up ratios are introduced. A topology based on a coupled inductor or tapped inductor is closely studied. A detailed modelling is performed with the purpose of providing designing rules. This model is validated with both simulation and implementation. The experimental prototype is based on the following specifications: the fuel cell output voltage ranges from a 50 V open-voltage to a 25 V rated voltage while the load requires a constant 250 V voltage. The studied coupled inductor converter is compared with a classic boost converter commonly used in this voltage elevating application. Even though the voltage regulator faces severe FC specifications, the measured efficiency reaches 96% at the rated power whereas conventional boost efficiency barely achieves 91.5% in the same operating conditions.

  15. Extrasynaptic Glutamate Receptor Activation as Cellular Bases for Dynamic Range Compression in Pyramidal Neurons

    PubMed Central

    Oikonomou, Katerina D.; Short, Shaina M.; Rich, Matthew T.; Antic, Srdjan D.

    2012-01-01

    Repetitive synaptic stimulation overcomes the ability of astrocytic processes to clear glutamate from the extracellular space, allowing some dendritic segments to become submerged in a pool of glutamate, for a brief period of time. This dynamic arrangement activates extrasynaptic NMDA receptors located on dendritic shafts. We used voltage-sensitive and calcium-sensitive dyes to probe dendritic function in this glutamate-rich location. An excess of glutamate in the extrasynaptic space was achieved either by repetitive synaptic stimulation or by glutamate iontophoresis onto the dendrites of pyramidal neurons. Two successive activations of synaptic inputs produced a typical NMDA spike, whereas five successive synaptic inputs produced characteristic plateau potentials, reminiscent of cortical UP states. While NMDA spikes were coupled with brief calcium transients highly restricted to the glutamate input site, the dendritic plateau potentials were accompanied by calcium influx along the entire dendritic branch. Once initiated, the glutamate-mediated dendritic plateau potentials could not be interrupted by negative voltage pulses. Activation of extrasynaptic NMDA receptors in cellular compartments void of spines is sufficient to initiate and support plateau potentials. The only requirement for sustained depolarizing events is a surplus of free glutamate near a group of extrasynaptic receptors. Highly non-linear dendritic spikes (plateau potentials) are summed in a highly sublinear fashion at the soma, revealing the cellular bases of signal compression in cortical circuits. Extrasynaptic NMDA receptors provide pyramidal neurons with a function analogous to a dynamic range compression in audio engineering. They limit or reduce the volume of “loud sounds” (i.e., strong glutamatergic inputs) and amplify “quiet sounds” (i.e., glutamatergic inputs that barely cross the dendritic threshold for local spike initiation). Our data also explain why consecutive cortical UP states have uniform amplitudes in a given neuron. PMID:22934081

  16. DC attenuation meter

    DOEpatents

    Hargrove, Douglas L.

    2004-09-14

    A portable, hand-held meter used to measure direct current (DC) attenuation in low impedance electrical signal cables and signal attenuators. A DC voltage is applied to the signal input of the cable and feedback to the control circuit through the signal cable and attenuators. The control circuit adjusts the applied voltage to the cable until the feedback voltage equals the reference voltage. The "units" of applied voltage required at the cable input is the system attenuation value of the cable and attenuators, which makes this meter unique. The meter may be used to calibrate data signal cables, attenuators, and cable-attenuator assemblies.

  17. A double-stage start-up structure to limit the inrush current used in current mode charge pump

    NASA Astrophysics Data System (ADS)

    Cong, Liu; Xinquan, Lai; Hanxiao, Du; Yuan, Chi

    2016-06-01

    A double-stage start-up structure to limit the inrush current used in current-mode charge pump with wide input range, fixed output and multimode operation is presented in this paper. As a widely utilized power source implement, a Li-battery is always used as the power supply for chips. Due to the internal resistance, a potential drop will be generated at the input terminal of the chip with an input current. A false shut down with a low supply voltage will happen if the input current is too large, leading to the degradation of the Li-battery's service life. To solve this problem, the inrush current is limited by introducing a new start-up state. All of the circuits have been implemented with the NUVOTON 0.6 μm CMOS process. The measurement results show that the inrush current can be limited below 1 A within all input supply ranges, and the power efficiency is higher than the conventional structure. Project supported by the National Natural Science Foundation of China (No. 61106026).

  18. Chemical sensors are hybrid-input memristors

    NASA Astrophysics Data System (ADS)

    Sysoev, V. I.; Arkhipov, V. E.; Okotrub, A. V.; Pershin, Y. V.

    2018-04-01

    Memristors are two-terminal electronic devices whose resistance depends on the history of input signal (voltage or current). Here we demonstrate that the chemical gas sensors can be considered as memristors with a generalized (hybrid) input, namely, with the input consisting of the voltage, analyte concentrations and applied temperature. The concept of hybrid-input memristors is demonstrated experimentally using a single-walled carbon nanotubes chemical sensor. It is shown that with respect to the hybrid input, the sensor exhibits some features common with memristors such as the hysteretic input-output characteristics. This different perspective on chemical gas sensors may open new possibilities for smart sensor applications.

  19. Ferroresonant flux coupled battery charger

    NASA Technical Reports Server (NTRS)

    McLyman, Colonel W. T. (Inventor)

    1987-01-01

    A battery charger for incorporation into an electric-powered vehicle is disclosed. The charger includes a ferroresonant voltage-regulating circuit for providing an output voltage proportional to the frequency of an input AC voltage. A high frequency converter converts a DC voltage supplied, for example, from a rectifier connected to a standard AC outlet, to a controlled frequency AC voltage which is supplied to the input of the ferroresonant circuit. The ferroresonant circuit includes an output, a saturable core transformer connected across the output, and a first linear inductor and a capacitor connected in series across the saturable core transformer and tuned to resonate at the third harmonic of the AC voltage from the high frequency converter. The ferroresonant circuit further includes a second linear inductor connected between the input of the ferroresonant circuit and the saturable core transformer. The output voltage from the ferroresonant circuit is rectified and applied across a pair of output terminals adapted to be connected to the battery to be charged. A feedback circuit compares the voltage across the output terminals with a reference voltage and controls the frequency of the AC voltage produced by the high frequency converter to maintain the voltage across the output terminals at a predetermined value. The second linear inductor provides a highly reactive load in the event of a fault across the output terminals to render the charger short-circuit proof.

  20. Synaptic control of the shape of the motoneuron pool input-output function

    PubMed Central

    Heckman, Charles J.

    2017-01-01

    Although motoneurons have often been considered to be fairly linear transducers of synaptic input, recent evidence suggests that strong persistent inward currents (PICs) in motoneurons allow neuromodulatory and inhibitory synaptic inputs to induce large nonlinearities in the relation between the level of excitatory input and motor output. To try to estimate the possible extent of this nonlinearity, we developed a pool of model motoneurons designed to replicate the characteristics of motoneuron input-output properties measured in medial gastrocnemius motoneurons in the decerebrate cat with voltage-clamp and current-clamp techniques. We drove the model pool with a range of synaptic inputs consisting of various mixtures of excitation, inhibition, and neuromodulation. We then looked at the relation between excitatory drive and total pool output. Our results revealed that the PICs not only enhance gain but also induce a strong nonlinearity in the relation between the average firing rate of the motoneuron pool and the level of excitatory input. The relation between the total simulated force output and input was somewhat more linear because of higher force outputs in later-recruited units. We also found that the nonlinearity can be increased by increasing neuromodulatory input and/or balanced inhibitory input and minimized by a reciprocal, push-pull pattern of inhibition. We consider the possibility that a flexible input-output function may allow motor output to be tuned to match the widely varying demands of the normal motor repertoire. NEW & NOTEWORTHY Motoneuron activity is generally considered to reflect the level of excitatory drive. However, the activation of voltage-dependent intrinsic conductances can distort the relation between excitatory drive and the total output of a pool of motoneurons. Using a pool of realistic motoneuron models, we show that pool output can be a highly nonlinear function of synaptic input but linearity can be achieved through adjusting the time course of excitatory and inhibitory synaptic inputs. PMID:28053245

  1. Zero-voltage DC/DC converter with asymmetric pulse-width modulation for DC micro-grid system

    NASA Astrophysics Data System (ADS)

    Lin, Bor-Ren

    2018-04-01

    This paper presents a zero-voltage switching DC/DC converter for DC micro-grid system applications. The proposed circuit includes three half-bridge circuit cells connected in primary-series and secondary-parallel in order to lessen the voltage rating of power switches and current rating of rectifier diodes. Thus, low voltage stress of power MOSFETs can be adopted for high-voltage input applications with high switching frequency operation. In order to achieve low switching losses and high circuit efficiency, asymmetric pulse-width modulation is used to turn on power switches at zero voltage. Flying capacitors are used between each circuit cell to automatically balance input split voltages. Therefore, the voltage stress of each power switch is limited at Vin/3. Finally, a prototype is constructed and experiments are provided to demonstrate the circuit performance.

  2. A soft-switching coupled inductor bidirectional DC-DC converter with high-conversion ratio

    NASA Astrophysics Data System (ADS)

    Chao, Kuei-Hsiang; Jheng, Yi-Cing

    2018-01-01

    A soft-switching bidirectional DC-DC converter is presented herein as a way to improve the conversion efficiency of a photovoltaic (PV) system. Adoption of coupled inductors enables the presented converter not only to provide a high-conversion ratio but also to suppress the transient surge voltage via the release of the energy stored in leakage flux of the coupled inductors, and the cost can kept down consequently. A combined use of a switching mechanism and an auxiliary resonant branch enables the converter to successfully perform zero-voltage switching operations on the main switches and improves the efficiency accordingly. It was testified by experiments that our proposed converter works relatively efficiently in full-load working range. Additionally, the framework of the converter intended for testifying has high-conversion ratio. The results of a test, where a generating system using PV module array coupled with batteries as energy storage device was used as the low-voltage input side, and DC link was used as high-voltage side, demonstrated our proposed converter framework with high-conversion ratio on both high-voltage and low-voltage sides.

  3. Phenomena of nonlinear oscillation and special resonance of a dielectric elastomer minimum energy structure rotary joint

    NASA Astrophysics Data System (ADS)

    Zhao, Jianwen; Niu, Junyang; McCoul, David; Ren, Zhi; Pei, Qibing

    2015-03-01

    The dielectric elastomer minimum energy structure can realize large angular deformations by a small voltage-induced strain of the dielectric elastomer, so it is a suitable candidate to make a rotary joint for a soft robot. Driven with an alternating electric field, the joint deformation vibrational frequency follows the input voltage frequency. However, the authors find that if the rotational inertia increases such that the inertial torque makes the frame deform over a negative angle, then the joint motion will become complicated and the vibrational mode will alter with the change of voltage frequency. The vibration with the largest amplitude does not occur while the voltage frequency is equal to natural response frequency of the joint. Rather, the vibrational amplitude will be quite large over a range of other frequencies at which the vibrational frequency is half of the voltage frequency. This phenomenon was analyzed by a comparison of the timing sequences between voltage and joint vibration. This vibrational mode with the largest amplitude can be applied to the generation lift in a flapping wing actuated by dielectric elastomers.

  4. Miniaturized FDDA and CMOS Based Potentiostat for Bio-Applications

    PubMed Central

    Ghodsevali, Elnaz; Morneau-Gamache, Samuel; Mathault, Jessy; Landari, Hamza; Boisselier, Élodie; Boukadoum, Mounir; Gosselin, Benoit; Miled, Amine

    2017-01-01

    A novel fully differential difference CMOS potentiostat suitable for neurotransmitter sensing is presented. The described architecture relies on a fully differential difference amplifier (FDDA) circuit to detect a wide range of reduction-oxidation currents, while exhibiting low-power consumption and low-noise operation. This is made possible thanks to the fully differential feature of the FDDA, which allows to increase the source voltage swing without the need for additional dedicated circuitry. The FDDA also reduces the number of amplifiers and passive elements in the potentiostat design, which lowers the overall power consumption and noise. The proposed potentiostat was fabricated in 0.18 µm CMOS, with 1.8 V supply voltage. The device achieved 5 µA sensitivity and 0.99 linearity. The input-referred noise was 6.9 µVrms and the flicker noise was negligible. The total power consumption was under 55 µW. The complete system was assembled on a 20 mm × 20 mm platform that includes the potentiostat chip, the electrode terminals and an instrumentation amplifier for redox current buffering, once converted to a voltage by a series resistor. the chip dimensions were 1 mm × 0.5 mm and the other PCB components were off-chip resistors, capacitors and amplifiers for data acquisition. The system was successfully tested with ferricyanide, a stable electroactive compound, and validated with dopamine, a popular neurotransmitter. PMID:28394289

  5. Multi-service highly sensitive rectifier for enhanced RF energy scavenging.

    PubMed

    Shariati, Negin; Rowe, Wayne S T; Scott, James R; Ghorbani, Kamran

    2015-05-07

    Due to the growing implications of energy costs and carbon footprints, the need to adopt inexpensive, green energy harvesting strategies are of paramount importance for the long-term conservation of the environment and the global economy. To address this, the feasibility of harvesting low power density ambient RF energy simultaneously from multiple sources is examined. A high efficiency multi-resonant rectifier is proposed, which operates at two frequency bands (478-496 and 852-869 MHz) and exhibits favorable impedance matching over a broad input power range (-40 to -10 dBm). Simulation and experimental results of input reflection coefficient and rectified output power are in excellent agreement, demonstrating the usefulness of this innovative low-power rectification technique. Measurement results indicate an effective efficiency of 54.3%, and an output DC voltage of 772.8 mV is achieved for a multi-tone input power of -10 dBm. Furthermore, the measured output DC power from harvesting RF energy from multiple services concurrently exhibits a 3.14 and 7.24 fold increase over single frequency rectification at 490 and 860 MHz respectively. Therefore, the proposed multi-service highly sensitive rectifier is a promising technique for providing a sustainable energy source for low power applications in urban environments.

  6. Multi-Service Highly Sensitive Rectifier for Enhanced RF Energy Scavenging

    PubMed Central

    Shariati, Negin; Rowe, Wayne S. T.; Scott, James R.; Ghorbani, Kamran

    2015-01-01

    Due to the growing implications of energy costs and carbon footprints, the need to adopt inexpensive, green energy harvesting strategies are of paramount importance for the long-term conservation of the environment and the global economy. To address this, the feasibility of harvesting low power density ambient RF energy simultaneously from multiple sources is examined. A high efficiency multi-resonant rectifier is proposed, which operates at two frequency bands (478–496 and 852–869 MHz) and exhibits favorable impedance matching over a broad input power range (−40 to −10 dBm). Simulation and experimental results of input reflection coefficient and rectified output power are in excellent agreement, demonstrating the usefulness of this innovative low-power rectification technique. Measurement results indicate an effective efficiency of 54.3%, and an output DC voltage of 772.8 mV is achieved for a multi-tone input power of −10 dBm. Furthermore, the measured output DC power from harvesting RF energy from multiple services concurrently exhibits a 3.14 and 7.24 fold increase over single frequency rectification at 490 and 860 MHz respectively. Therefore, the proposed multi-service highly sensitive rectifier is a promising technique for providing a sustainable energy source for low power applications in urban environments. PMID:25951137

  7. Direct conversion of light to radio frequency energy. [using photoklystrons for solar power satellites

    NASA Technical Reports Server (NTRS)

    Freeman, J. W.; Simons, S.

    1981-01-01

    A description is presented of the test results obtained with the latest models of the phototron. The phototron was conceived as a replacement for the high voltage solar cell-high power klystron combination for the solar power satellite concept. Physically, the phototron is a cylindrical evacuated glass tube with a photocathode, two grids, and a reflector electrode in a planar configuration. The phototron can be operated either in a biased mode where a low voltage is used to accelerate the electron beam produced by the photocathode or in an unbiased mode referred to as self-oscillation. The device is easily modulated by light input or voltage to broadcast in AM or FM. The range of operation of the present test model phototrons is from 2 to 200 MHz.

  8. Effect of voltage waveform on dielectric barrier discharge ozone production efficiency

    NASA Astrophysics Data System (ADS)

    Mericam-Bourdet, N.; Kirkpatrick, M. J.; Tuvache, F.; Frochot, D.; Odic, E.

    2012-03-01

    Dielectric barrier discharges (DBDs) are commonly used for gas effluent cleanup and ozone generation. For these applications, the energy efficiency of the discharge is a major concern. This paper reports on investigations carried out on the voltage shape applied to DBD reactor electrodes, aiming to evaluate a possible energy efficiency improvement for ozone production. Two DBD reactor geometries were used: pin-to-pin and cylinder-to-cylinder, both driven either by a bi-directional power supply (voltage rise rate 1 kV/μs) or by a pulsed power supply (voltage rise rate 1 kV/ns). Ozone formed in dry air was measured at the reactor outlet. Special attention was paid to discharge input power evaluation using different methods including instantaneous current-voltage product and transferred charge-applied voltage figures. The charge transferred by the discharges was also correlated to the ozone production. It is shown that, in the case of the DBD reactors under investigation, the applied voltage shape has no influence on the ozone production efficiency. For the considered voltage rise rate, the charge deposit on the dielectric inserted inside the discharge gap is the important factor (as opposed to the voltage shape) governing the efficiency of the discharge - it does this by tailoring the duration of the current peak into the tens of nanosecond range.

  9. Self-tuning bandpass filter

    NASA Technical Reports Server (NTRS)

    Deboo, G. J.; Hedlund, R. C. (Inventor)

    1973-01-01

    An electronic filter is described which simultaneously maintains a constant bandwidth and a constant center frequency gain as the input signal frequency varies, and remains self-tuning to that center frequency over a decade range. The filter utilizes a field effect transistor (FET) as a voltage variable resistance in the bandpass frequency determining circuit. The FET is responsive to a phase detector to achieve self-tuning.

  10. Microfabricated Bulk Piezoelectric Transformers

    NASA Astrophysics Data System (ADS)

    Barham, Oliver M.

    Piezoelectric voltage transformers (PTs) can be used to transform an input voltage into a different, required output voltage needed in electronic and electro- mechanical systems, among other varied uses. On the macro scale, they have been commercialized in electronics powering consumer laptop liquid crystal displays, and compete with an older, more prevalent technology, inductive electromagnetic volt- age transformers (EMTs). The present work investigates PTs on smaller size scales that are currently in the academic research sphere, with an eye towards applications including micro-robotics and other small-scale electronic and electromechanical sys- tems. PTs and EMTs are compared on the basis of power and energy density, with PTs trending towards higher values of power and energy density, comparatively, indicating their suitability for small-scale systems. Among PT topologies, bulk disc-type PTs, operating in their fundamental radial extension mode, and free-free beam PTs, operating in their fundamental length extensional mode, are good can- didates for microfabrication and are considered here. Analytical modeling based on the Extended Hamilton Method is used to predict device performance and integrate mechanical tethering as a boundary condition. This model differs from previous PT models in that the electric enthalpy is used to derive constituent equations of motion with Hamilton's Method, and therefore this approach is also more generally applica- ble to other piezoelectric systems outside of the present work. Prototype devices are microfabricated using a two mask process consisting of traditional photolithography combined with micropowder blasting, and are tested with various output electri- cal loads. 4mm diameter tethered disc PTs on the order of .002cm. 3 , two orders smaller than the bulk PT literature, had the followingperformance: a prototype with electrode area ratio (input area / output area) = 1 had peak gain of 2.3 (+/- 0.1), efficiency of 33 (+/- 0.1)% and output power density of 51.3 (+/- 4.0)W cm. -3 (for output power of80 (+/- 6)mW) at 1M? load, for an input voltage range of 3V-6V (+/- one standard deviation). The gain results are similar to those of several much larger bulk devices in the literature, but the efficiencies of the present devices are lower. Rectangular topology, free-free beam devices were also microfabricated across 3 or- ders of scale by volume, with the smallest device on the order of .00002cm. 3 . These devices exhibited higher quality factorsand efficiencies, in some cases, compared to circular devices, but lower peak gain (by roughly 1/2 ). Limitations of the microfab- rication process are determined, and future work is proposed. Overall, the devices fabricated in the present work show promise for integration into small-scale engi- neered systems, but improvements can be made in efficiency, and potentially voltage gain, depending on the application.

  11. MEMS earthworm: a thermally actuated peristaltic linear micromotor

    NASA Astrophysics Data System (ADS)

    Arthur, Craig; Ellerington, Neil; Hubbard, Ted; Kujath, Marek

    2011-03-01

    This paper examines the design, fabrication and testing of a bio-mimetic MEMS (micro-electro mechanical systems) earthworm motor with external actuators. The motor consists of a passive mobile shuttle with two flexible diamond-shaped segments; each segment is independently squeezed by a pair of stationary chevron-shaped thermal actuators. Applying a specific sequence of squeezes to the earthworm segments, the shuttle can be driven backward or forward. Unlike existing inchworm drives that use clamping and thrusting actuators, the earthworm actuators apply only clamping forces to the shuttle, and lateral thrust is produced by the shuttle's compliant geometry. The earthworm assembly is fabricated using the PolyMUMPs process with planar dimensions of 400 µm width by 800 µm length. The stationary actuators operate within the range of 4-9 V and provide a maximum shuttle range of motion of 350 µm (approximately half its size), a maximum shuttle speed of 17 mm s-1 at 10 kHz, and a maximum dc shuttle force of 80 µN. The shuttle speed was found to vary linearly with both input voltage and input frequency. The shuttle force was found to vary linearly with the actuator voltage.

  12. High speed preamplifier circuit, detection electronics, and radiation detection systems therefrom

    DOEpatents

    Riedel, Richard A [Knoxville, TN; Wintenberg, Alan L [Knoxville, TN; Clonts, Lloyd G [Knoxville, TN; Cooper, Ronald G [Oak Ridge, TN

    2010-09-21

    A preamplifier circuit for processing a signal provided by a radiation detector includes a transimpedance amplifier coupled to receive a current signal from a detector and generate a voltage signal at its output. A second amplification stage has an input coupled to an output of the transimpedance amplifier for providing an amplified voltage signal. Detector electronics include a preamplifier circuit having a first and second transimpedance amplifier coupled to receive a current signal from a first and second location on a detector, respectively, and generate a first and second voltage signal at respective outputs. A second amplification stage has an input coupled to an output of the transimpedance amplifiers for amplifying the first and said second voltage signals to provide first and second amplified voltage signals. A differential output stage is coupled to the second amplification stage for receiving the first and second amplified voltage signals and providing a pair of outputs from each of the first and second amplified voltage signals. Read out circuitry has an input coupled to receive both of the pair of outputs, the read out circuitry having structure for processing each of the pair of outputs, and providing a single digital output having a time-stamp therefrom.

  13. Radiation detection system

    DOEpatents

    Riedel, Richard A [Knoxville, TN; Wintenberg, Alan L [Knoxville, TN; Clonts, Lloyd G [Knoxville, TN; Cooper, Ronald G [Oak Ridge, TN

    2012-02-14

    A preamplifier circuit for processing a signal provided by a radiation detector includes a transimpedance amplifier coupled to receive a current signal from a detector and generate a voltage signal at its output. A second amplification stage has an input coupled to an output of the transimpedance amplifier for providing an amplified voltage signal. Detector electronics include a preamplifier circuit having a first and second transimpedance amplifier coupled to receive a current signal from a first and second location on a detector, respectively, and generate a first and second voltage signal at respective outputs. A second amplification stage has an input coupled to an output of the transimpedance amplifiers for amplifying the first and said second voltage signals to provide first and second amplified voltage signals. A differential output stage is coupled to the second amplification stage for receiving the first and second amplified voltage signals and providing a pair of outputs from each of the first and second amplified voltage signals. Read out circuitry has an input coupled to receive both of the pair of outputs, the read out circuitry having structure for processing each of the pair of outputs, and providing a single digital output having a time-stamp therefrom.

  14. Analysis of low-offset CTIA amplifier for small-size-pixel infrared focal plane array

    NASA Astrophysics Data System (ADS)

    Zhang, Xue; Huang, Zhangcheng; Shao, Xiumei

    2014-11-01

    The design of input stage amplifier becomes more and more difficult as the expansion of format arrays and reduction of pixel size. A design method of low-offset amplifier based on 0.18-μm process used in small-size pixel is analyzed in order to decrease the dark signal of extended wavelength InGaAs infrared focal plane arrays (IRFPA). Based on an example of a cascode operational amplifier (op-amp), the relationship between input offset voltage and size of each transistor is discussed through theoretical analysis and Monte Carlo simulation. The results indicate that input transistors and load transistors have great influence on the input offset voltage while common-gate transistors are negligible. Furthermore, the offset voltage begins to increase slightly when the width and length of transistors decrease along with the diminution of pixel size, and raises rapidly when the size is smaller than a proximate threshold value. The offset voltage of preamplifiers with differential architecture and single-shared architecture in small pitch pixel are studied. After optimization under same conditions, simulation results show that single-shared architecture has smaller offset voltage than differential architecture.

  15. Adaptive amplifier for probe diagnostics of charged-particle temperature in the upper atmosphere

    NASA Astrophysics Data System (ADS)

    Chkalov, V. G.

    An amplifier for probe experiments in the upper atmosphere is described which is based on a linear current-voltage converter design. Specifically, the amplifier is used as the input unit in a rocket-borne ionospheric probe for the measurement of electron temperature. The range of measured currents is from 10 to the -10th to 10 to the -6th A; the amplifier current range can be shifted up or down depending on the requirements of the experiment.

  16. NLCC controller for SEPIC-based micro-wind energy conversion system

    NASA Astrophysics Data System (ADS)

    Justin Nayagam, Brintha Jane; Sathi, Rama Reddy; Olimuthu, Divya

    2017-04-01

    The growth of the power industry is gaining greater momentum as the usage of the non-conventional energy sources that include fuel, solar, and wind energies, increases. Wind energy conversion systems (WECSs) are gaining more popularity and are expected to be able to control the power at the output. This paper describes the current control (CC), non-linear carrier charge control (NLCCC), and fuzzy logic control (FLC) applied to the single-ended primary inductor converter (SEPIC)-based WECS. The current controller has an inherent overcurrent protection with better line noise rejection. The pulses for the switch of the SEPIC are obtained by comparing the current flowing through it with the virtual current reference. FLC is also investigated for the micro-wind energy conversion system (μWECS), since it improves the damping characteristics of WECS over a wide range of operating points. This cannot attain the unity power factor rectification. In this paper, NLCCC is proposed for high-power factor rectifier-based SEPIC in continuous conduction mode (CCM) for μWECS. The proposed converter provides an output voltage with low input current ripple due to the presence of the inductor at the input side. By comparing the signal proportional to the integral of switch current with a periodic non-linear carrier wave, the duty ratio of the converter switch is determined for the NLCC controller. By selecting the shape of the periodic non-linear carrier wave the input-line current can be made to follow the input-line voltage. This work employs a parabolic carrier waveform generator. The output voltage is regulated for changes in the wind speed. The results obtained prove the effectiveness of the NLCC controller in improving the power factor.

  17. Nonlinear tuning techniques of plasmonic nano-filters

    NASA Astrophysics Data System (ADS)

    Kotb, Rehab; Ismail, Yehea; Swillam, Mohamed A.

    2015-02-01

    In this paper, a fitting model to the propagation constant and the losses of Metal-Insulator-Metal (MIM) plasmonic waveguide is proposed. Using this model, the modal characteristics of MIM plasmonic waveguide can be solved directly without solving Maxwell's equations from scratch. As a consequence, the simulation time and the computational cost that are needed to predict the response of different plasmonic structures can be reduced significantly. This fitting model is used to develop a closed form model that describes the behavior of a plasmonic nano-filter. Easy and accurate mechanisms to tune the filter are investigated and analyzed. The filter tunability is based on using a nonlinear dielectric material with Pockels or Kerr effect. The tunability is achieved by applying an external voltage or through controlling the input light intensity. The proposed nano-filter supports both red and blue shift in the resonance response depending on the type of the used non-linear material. A new approach to control the input light intensity by applying an external voltage to a previous stage is investigated. Therefore, the filter tunability to a stage that has Kerr material can be achieved by applying voltage to a previous stage that has Pockels material. Using this method, the Kerr effect can be achieved electrically instead of varying the intensity of the input source. This technique enhances the ability of the device integration for on-chip applications. Tuning the resonance wavelength with high accuracy, minimum insertion loss and high quality factor is obtained using these approaches.

  18. A wearable stimulation bandage for electrotherapy studies in a rat ischemic wound model.

    PubMed

    Howe, Daniel S; Dunning, Jeremy L; Henzel, Mary K; Graebert, Jennifer K; Bogie, Kath M

    2011-01-01

    The clinical efficacy of electro-therapy in the treatment of chronic wounds is currently debated, and a in-vivo evaluation of stimulation parameters will provide the statistical evidence needed to direct clinical guidelines. A low-cost, wearable electrical stimulation bandage has been developed for use with an established rat ischemic wound model. The bandage consists of a user-programmable stimulator PCB and a plastic bandage with two hydrogel electrodes. The battery-powered bandage may be used for up to seven days between dressing changes, and the stimulator may be reused. The microcontroller-based stimulator uses a boost converter circuit to generate pulses up to 90 V from a 3 V coin cell battery. Consistent operation of the boost converter over the wide input and output voltage ranges is achieved using voltage feedforward and soft-start techniques implemented in firmware. The bandages are laser-cut to shape, and electrical traces are applied using stencils and conductive nickel paint. Both the PCB and electrical traces are encapsulated to protect the animal. The device has been successfully demonstrated using the rat ischemic wound model for a period of seven days, and clinical experiments are ongoing.

  19. Voltage balanced multilevel voltage source converter system

    DOEpatents

    Peng, Fang Zheng; Lai, Jih-Sheng

    1997-01-01

    A voltage balanced multilevel converter for high power AC applications such as adjustable speed motor drives and back-to-back DC intertie of adjacent power systems. This converter provides a multilevel rectifier, a multilevel inverter, and a DC link between the rectifier and the inverter allowing voltage balancing between each of the voltage levels within the multilevel converter. The rectifier is equipped with at least one phase leg and a source input node for each of the phases. The rectifier is further equipped with a plurality of rectifier DC output nodes. The inverter is equipped with at least one phase leg and a load output node for each of the phases. The inverter is further equipped with a plurality of inverter DC input nodes. The DC link is equipped with a plurality of rectifier charging means and a plurality of inverter discharging means. The plurality of rectifier charging means are connected in series with one of the rectifier charging means disposed between and connected in an operable relationship with each adjacent pair of rectifier DC output nodes. The plurality of inverter discharging means are connected in series with one of the inverter discharging means disposed between and connected in an operable relationship with each adjacent pair of inverter DC input nodes. Each of said rectifier DC output nodes are individually electrically connected to the respective inverter DC input nodes. By this means, each of the rectifier DC output nodes and each of the inverter DC input nodes are voltage balanced by the respective charging and discharging of the rectifier charging means and the inverter discharging means.

  20. Voltage balanced multilevel voltage source converter system

    DOEpatents

    Peng, F.Z.; Lai, J.S.

    1997-07-01

    Disclosed is a voltage balanced multilevel converter for high power AC applications such as adjustable speed motor drives and back-to-back DC intertie of adjacent power systems. This converter provides a multilevel rectifier, a multilevel inverter, and a DC link between the rectifier and the inverter allowing voltage balancing between each of the voltage levels within the multilevel converter. The rectifier is equipped with at least one phase leg and a source input node for each of the phases. The rectifier is further equipped with a plurality of rectifier DC output nodes. The inverter is equipped with at least one phase leg and a load output node for each of the phases. The inverter is further equipped with a plurality of inverter DC input nodes. The DC link is equipped with a plurality of rectifier charging means and a plurality of inverter discharging means. The plurality of rectifier charging means are connected in series with one of the rectifier charging means disposed between and connected in an operable relationship with each adjacent pair of rectifier DC output nodes. The plurality of inverter discharging means are connected in series with one of the inverter discharging means disposed between and connected in an operable relationship with each adjacent pair of inverter DC input nodes. Each of said rectifier DC output nodes are individually electrically connected to the respective inverter DC input nodes. By this means, each of the rectifier DC output nodes and each of the inverter DC input nodes are voltage balanced by the respective charging and discharging of the rectifier charging means and the inverter discharging means. 15 figs.

  1. Solid-state current transformer

    NASA Technical Reports Server (NTRS)

    Farnsworth, D. L. (Inventor)

    1976-01-01

    A signal transformation network which is uniquely characterized to exhibit a very low input impedance while maintaining a linear transfer characteristic when driven from a voltage source and when quiescently biased in the low microampere current range is described. In its simplest form, it consists of a tightly coupled two transistor network in which a common emitter input stage is interconnected directly with an emitter follower stage to provide virtually 100 percent negative feedback to the base input of the common emitter stage. Bias to the network is supplied via the common tie point of the common emitter stage collector terminal and the emitter follower base stage terminal by a regulated constant current source, and the output of the circuit is taken from the collector of the emitter follower stage.

  2. ULTRA-STABILIZED D. C. AMPLIFIER

    DOEpatents

    Hartwig, E.C.; Kuenning, R.W.; Acker, R.C.

    1959-02-17

    An improved circuit is described for stabilizing the drift and minimizing the noise and hum level of d-c amplifiers so that the output voltage will be zero when the input is zero. In its detailed aspects, the disclosed circuit incorporates a d-c amplifier having a signal input, a second input, and an output circuit coupled back to the first input of the amplifier through inverse feedback means. An electronically driven chopper having a pair of fixed contacts and a moveable contact alternately connects the two inputs of a difference amplifier to the signal input. The A. E. error signal produced in the difference amplifier is amplified, rectified, and applied to the second input of the amplifier as the d-c stabilizing voltage.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shepard, Kenneth L.; Sturcken, Noah Andrew

    Power controller includes an output terminal having an output voltage, at least one clock generator to generate a plurality of clock signals and a plurality of hardware phases. Each hardware phase is coupled to the at least one clock generator and the output terminal and includes a comparator. Each hardware phase is configured to receive a corresponding one of the plurality of clock signals and a reference voltage, combine the corresponding clock signal and the reference voltage to produce a reference input, generate a feedback voltage based on the output voltage, compare the reference input and the feedback voltage usingmore » the comparator and provide a comparator output to the output terminal, whereby the comparator output determines a duty cycle of the power controller. An integrated circuit including the power controller is also provided.« less

  4. Laminated piezoelectric transformer

    NASA Technical Reports Server (NTRS)

    Vazquez Carazo, Alfredo (Inventor)

    2006-01-01

    A laminated piezoelectric transformer is provided using the longitudinal vibration modes for step-up voltage conversion applications. The input portions are polarized to deform in a longitudinal plane and are bonded to an output portion. The deformation of the input portions is mechanically coupled to the output portion, which deforms in the same longitudinal direction relative to the input portion. The output portion is polarized in the thickness direction relative its electrodes, and piezoelectrically generates a stepped-up output voltage.

  5. A novel wireless power and data transmission AC to DC converter for an implantable device.

    PubMed

    Liu, Jhao-Yan; Tang, Kea-Tiong

    2013-01-01

    This article presents a novel AC to DC converter implemented by standard CMOS technology, applied for wireless power transmission. This circuit combines the functions of the rectifier and DC to DC converter, rather than using the rectifier to convert AC to DC and then supplying the required voltage with regulator as in the transitional method. This modification can reduce the power consumption and the area of the circuit. This circuit also transfers the loading condition back to the external circuit by the load shift keying(LSK), determining if the input power is not enough or excessive, which increases the efficiency of the total system. The AC to DC converter is fabricated with the TSMC 90nm CMOS process. The circuit area is 0.071mm(2). The circuit can produce a 1V DC voltage with maximum output current of 10mA from an AC input ranging from 1.5V to 2V, at 1MHz to 10MHz.

  6. A 2.5 kW cascaded Schwarz converter for 20 kHz power distribution

    NASA Technical Reports Server (NTRS)

    Shetler, Russell E.; Stuart, Thomas A.

    1989-01-01

    Because it avoids the high currents in a parallel loaded capacitor, the cascaded Schwarz converter should offer better component utilization than converters with sinusoidal output voltages. The circuit is relatively easy to protect, and it provides a predictable trapezoidal voltage waveform that should be satisfactory for 20-kHz distribution systems. Analysis of the system is enhanced by plotting curves of normalized variables vs. gamma(1), where gamma(1) is proportional to the variable frequency of the first stage. Light-load operation is greatly improved by the addition of a power recycling rectifier bridge that is back biased at medium to heavy loads. Operation has been verified on a 2.5-kW circuit that uses input and output voltages in the same range as those anticipated for certain future spacecraft power systems.

  7. Offset-free rail-to-rail derandomizing peak detect-and-hold circuit

    DOEpatents

    DeGeronimo, Gianluigi; O'Connor, Paul; Kandasamy, Anand

    2003-01-01

    A peak detect-and-hold circuit eliminates errors introduced by conventional amplifiers, such as common-mode rejection and input voltage offset. The circuit includes an amplifier, three switches, a transistor, and a capacitor. During a detect-and-hold phase, a hold voltage at a non-inverting in put terminal of the amplifier tracks an input voltage signal and when a peak is reached, the transistor is switched off, thereby storing a peak voltage in the capacitor. During a readout phase, the circuit functions as a unity gain buffer, in which the voltage stored in the capacitor is provided as an output voltage. The circuit is able to sense signals rail-to-rail and can readily be modified to sense positive, negative, or peak-to-peak voltages. Derandomization may be achieved by using a plurality of peak detect-and-hold circuits electrically connected in parallel.

  8. TRIAC/SCR proportional control circuit

    DOEpatents

    Hughes, Wallace J.

    1999-01-01

    A power controller device which uses a voltage-to-frequency converter in conjunction with a zero crossing detector to linearly and proportionally control AC power being supplied to a load. The output of the voltage-to frequency converter controls the "reset" input of a R-S flip flop, while an "0" crossing detector controls the "set" input. The output of the flip flop triggers a monostable multivibrator controlling the SCR or TRIAC firing circuit connected to the load. Logic gates prevent the direct triggering of the multivibrator in the rare instance where the "reset" and "set" inputs of the flip flop are in coincidence. The control circuit can be supplemented with a control loop, providing compensation for line voltage variations.

  9. Improving the range of UHF RFID transponders using solar energy harvesting under low light conditions

    NASA Astrophysics Data System (ADS)

    Ascher, A.; Lehner, M.; Eberhardt, M.; Biebl, E.

    2015-11-01

    The sensitivity of passive UHF RFID transponders (Radio Frequency Identification) is the key issue, which determines the maximum read range of an UHF RFID system. During this work the ability of improving the sensitivity using solar energy harvesting, especially for low light conditions, is shown. To use the additional energy harvested from the examined silicon and organic solar cells, the passive RFID system is changed into a semi-active one. This needs no changes on the reader hardware itself, only the used RFIC (Radio Frequency Integrated Circuit) of the transponder has to possess an additional input pin for an external supply voltage. The silicon and organic cells are evaluated and compared to each other regarding their low light performance. The different cells are examined in a shielded box, which is protected from the environmental lighting. Additionally, a demonstrator is shown, which makes the measurement of the extended read range with respect to the lighting conditions possible. If the cells are completely darkened, the sensitivity gain is ascertained using high capacity super caps. Due to the measurements an enhancement in range up to 70 % could be guaranteed even under low light conditions.

  10. Two-Volt Josephson Arbitrary Waveform Synthesizer Using Wilkinson Dividers.

    PubMed

    Flowers-Jacobs, Nathan E; Fox, Anna E; Dresselhaus, Paul D; Schwall, Robert E; Benz, Samuel P

    2016-09-01

    The root-mean-square (rms) output voltage of the NIST Josephson arbitrary waveform synthesizer (JAWS) has been doubled from 1 V to a record 2 V by combining two new 1 V chips on a cryocooler. This higher voltage will improve calibrations of ac thermal voltage converters and precision voltage measurements that require state-of-the-art quantum accuracy, stability, and signal-to-noise ratio. We achieved this increase in output voltage by using four on-chip Wilkinson dividers and eight inner-outer dc blocks, which enable biasing of eight Josephson junction (JJ) arrays with high-speed inputs from only four high-speed pulse generator channels. This approach halves the number of pulse generator channels required in future JAWS systems. We also implemented on-chip superconducting interconnects between JJ arrays, which reduces systematic errors and enables a new modular chip package. Finally, we demonstrate a new technique for measuring and visualizing the operating current range that reduces the measurement time by almost two orders of magnitude and reveals the relationship between distortion in the output spectrum and output pulse sequence errors.

  11. Piezoelectric transformer and modular connections for high power and high voltage power supplies

    NASA Technical Reports Server (NTRS)

    Vazquez Carazo, Alfredo (Inventor)

    2006-01-01

    A modular design for combining piezoelectric transformers is provided for high voltage and high power conversion applications. The input portions of individual piezoelectric transformers are driven for a single power supply. This created the vibration and the conversion of electrical to electrical energy from the input to the output of the transformers. The output portions of the single piezoelectric transformers are combining in series and/or parallel to provide multiple outputs having different rating of voltage and current.

  12. Frequency to Voltage Converter Analog Front-End Prototype

    NASA Technical Reports Server (NTRS)

    Mata, Carlos; Raines, Matthew

    2012-01-01

    The frequency to voltage converter analog front end evaluation prototype (F2V AFE) is an evaluation board designed for comparison of different methods of accurately extracting the frequency of a sinusoidal input signal. A configurable input stage is routed to one or several of five separate, configurable filtering circuits, and then to a configurable output stage. Amplifier selection and gain, filter corner frequencies, and comparator hysteresis and voltage reference are all easily configurable through the use of jumpers and potentiometers.

  13. Push-pull with recovery stage high-voltage DC converter for PV solar generator

    NASA Astrophysics Data System (ADS)

    Nguyen, The Vinh; Aillerie, Michel; Petit, Pierre; Pham, Hong Thang; Vo, Thành Vinh

    2017-02-01

    A lot of systems are basically developed on DC-DC or DC-AC converters including electronic switches such as MOS or bipolar transistors. The limits of efficiency are quickly reached when high output voltages and high input currents are needed. This work presents a new high-efficiency-high-step-up based on push-pull DC-DC converter integrating recovery stages dedicated to smart HVDC distributed architecture in PV solar energy production systems. Appropriate duty cycle ratio assumes that the recovery stage work with parallel charge and discharge to achieve high step-up voltage gain. Besides, the voltage stress on the main switch is reduced with a passive clamp circuit and thus, low on-state resistance Rdson of the main switch can be adopted to reduce conduction losses. Thus, the efficiency of a basic DC-HVDC converter dedicated to renewable energy production can be further improved with such topology. A prototype converter is developed, and experimentally tested for validation.

  14. Series resonance inverter with triggered vacuum gaps

    NASA Astrophysics Data System (ADS)

    Damstra, Geert C.; Zhang, X.

    1994-05-01

    Series resonance inverters based on semi-conductor switching elements are well-known and have a wide range of application, mainly for lower voltages. For high voltage application many switching elements have to be put in series to obtain sufficient blocking voltage. Voltage grinding and multiple gate control elements are needed. There is much experience with the triggered vacuum gaps as high voltage/high current single shot elements, for example in reignition circuits for synthetic circuit breaker tests. These elements have a blocking voltage of 50 - 100 kV and are triggerable by a light fiber control device. A prototype inverter has been developed that generates 0.1 Hz, 30 kV AC voltages with a flat top for tests on cables and capacitors of many micro farads fed from a low voltage supply of about 600 V. Only two TVG elements are needed to switch the resonant circuit alternatively on the positive or negative supply. The resonant circuit itself consists of the capacitance of the testobject and a high quality inductor that determines the frequency and the peak current of the voltage reversing process.

  15. A Survey of State-of-the-Art LORAN-C Receivers.

    DTIC Science & Technology

    1984-06-01

    urvey/monitor, (T)ining, (Land, (O)therl h(inches). 7.6i N(inches). 7.5 D(inches). 12.6 VOLUM(cu.in.) 667 WEIGHT (lb): 18.1 TENP RANGE ( dog F): -67.170...Iaches): 2.8- W~inches): 12 VOLUM kv.ia.): 369 MuIGTY (2b): 6 TRW RANGS ( dog P): 3.*12z INPU VOLTACE: 4.5-50 OE RWQIRUNT (watts): g-12 DISPLAY TYPE: 2...Dinches). v4L0N(cu.in.)• WRIGHT (lb): 4.8 TEMP RANGE ( dog F): -4,+130 INPUT VOLTAGE: 10-45 POWER RRQUIRBNBNT (Watts): DISPLAY TYPE: A-N. LED, DOT

  16. Motor Controller

    NASA Technical Reports Server (NTRS)

    1988-01-01

    M.H. Marks Enterprises' Power Factor Controller (PFC) matches voltage with motor's actual need. Plugged into a motor, PFC continuously determines motor load by sensing shifts between voltage and current flow. When it senses a light load, it cuts voltage to the minimum needed. It offers potential energy savings ranging from eight percent up to 65 percent depending on the application. Myles Marks started out with the notion of writing an article for Popular Electronics magazine at the same time offering to furnish kits to readers interested in assembling PFC's. Within two weeks from publication he had orders for 500 kits and orders are still coming three years later.

  17. Voltage sensing systems and methods for passive compensation of temperature related intrinsic phase shift

    DOEpatents

    Davidson, James R.; Lassahn, Gordon D.

    2001-01-01

    A small sized electro-optic voltage sensor capable of accurate measurement of high levels of voltages without contact with a conductor or voltage source is provided. When placed in the presence of an electric field, the sensor receives an input beam of electromagnetic radiation into the sensor. A polarization beam displacer serves as a filter to separate the input beam into two beams with orthogonal linear polarizations. The beam displacer is oriented in such a way as to rotate the linearly polarized beams such that they enter a Pockels crystal at a preferred angle of 45 degrees. The beam displacer is therefore capable of causing a linearly polarized beam to impinge a crystal at a desired angle independent of temperature. The Pockels electro-optic effect induces a differential phase shift on the major and minor axes of the input beam as it travels through the Pockels crystal, which causes the input beam to be elliptically polarized. A reflecting prism redirects the beam back through the crystal and the beam displacer. On the return path, the polarization beam displacer separates the elliptically polarized beam into two output beams of orthogonal linear polarization representing the major and minor axes. In crystals that introduce a phase differential attributable to temperature, a compensating crystal is provided to cancel the effect of temperature on the phase differential of the input beam. The system may include a detector for converting the output beams into electrical signals, and a signal processor for determining the voltage based on an analysis of the output beams. The output beams are amplitude modulated by the frequency of the electric field and the amplitude of the output beams is proportional to the magnitude of the electric field, which is related to the voltage being measured.

  18. Research and Experiments on a Unipolar Capacitive Voltage Sensor

    PubMed Central

    Zhou, Qiang; He, Wei; Li, Songnong; Hou, Xingzhe

    2015-01-01

    Voltage sensors are an important part of the electric system. In service, traditional voltage sensors need to directly contact a high-voltage charged body. Sensors involve a large volume, complex insulation structures, and high design costs. Typically an iron core structure is adopted. As a result, ferromagnetic resonance can occur easily during practical application. Moreover, owing to the multilevel capacitor divider, the sensor cannot reflect the changes of measured voltage in time. Based on the electric field coupling principle, this paper designs a new voltage sensor; the unipolar structure design solves many problems of traditional voltage sensors like the great insulation design difficulty and high costs caused by grounding electrodes. A differential signal input structure is adopted for the detection circuit, which effectively restrains the influence of the common-mode interference signal. Through sensor modeling, simulation and calculations, the structural design of the sensor electrode was optimized, miniaturization of the sensor was realized, the voltage division ratio of the sensor was enhanced, and the phase difference of sensor measurement was weakened. The voltage sensor is applied to a single-phase voltage class line of 10 kV for testing. According to the test results, the designed sensor is able to meet the requirements of accurate and real-time measurement for voltage of the charged conductor as well as to provide a new method for electricity larceny prevention and on-line monitoring of the power grid in an electric system. Therefore, it can satisfy the development demands of the smart power grid. PMID:26307992

  19. AC motor and generator requirements for isolated WECS

    NASA Technical Reports Server (NTRS)

    Park, G. L.; Mccleer, P. J.; Hanson, B.; Weinberg, B.; Krauss, O.

    1985-01-01

    After surveying electrically driven loads used on productive farms, the investigators chose three pumps for testing at voltages and frequencies far outside the normal operating range. These loads extract and circulate water and move heat via air, and all are critical to farm productivity. The object was to determine the envelope of supply voltage and frequency over which these loads would operate stably for time intervals under 1 hour. This information is among that needed to determine the feasibility of supplying critical loads, in case of a utility outage, from a wind driven alternator whose output voltage and frequency will vary dramatically in most continental wind regimes. Other related work is surveyed. The salient features and limitations of the test configurations used and the data reduction are described. The development of simulation models suitable for a small computer are outlined. The results are primarily displayed on the voltage frequency plane with the general conclusion that the particular pump models considered will operate over the range of 50 to 90 Hz and a voltage band which starts below rated, decreases as frequency decreases, and is limited on the high side by excessive motor heating. For example, centrifugal pump operating voltage ranges as extensive .4 to 1.4 appear possible. Particular problems with starting, stalling due to lack of motor torque, high speed cavitation, and likely overheating are addressed in a listing of required properties for wind driven alternators and their controllers needed for use in the isolated or stand alone configuration considered.

  20. Improved transmission of electrostatic accelerator in a wide range of terminal voltages by controlling the focal strength of entrance acceleration tube

    NASA Astrophysics Data System (ADS)

    Lobanov, Nikolai R.; Tunningley, Thomas; Linardakis, Peter

    2018-04-01

    Tandem electrostatic accelerators often require the flexibility to operate at a variety of terminal voltages to accommodate various user requirements. However, the ion beam transmission will only be optimal for a limited range of terminal voltages. This paper describes the operational performance of a novel focusing system that expands the range of terminal voltages for optimal transmission. This is accomplished by controlling the gradient of the entrance of the low-energy tube, providing an additional focusing element. In this specific case it is achieved by applying up to 150 kV to the fifth electrode of the first unit of the accelerator tube. Numerical simulations and beam transmission tests have been performed to confirm the effectiveness of the lens. An analytical expression has been derived describing its focal properties. These tests demonstrate that the entrance lens control eliminates the need to short out sections of the tube for operation at low terminal voltage.

  1. Amplifier for measuring low-level signals in the presence of high common mode voltage

    NASA Technical Reports Server (NTRS)

    Lukens, F. E. (Inventor)

    1985-01-01

    A high common mode rejection differential amplifier wherein two serially arranged Darlington amplifier stages are employed and any common mode voltage is divided between them by a resistance network. The input to the first Darlington amplifier stage is coupled to a signal input resistor via an amplifier which isolates the input and presents a high impedance across this resistor. The output of the second Darlington stage is transposed in scale via an amplifier stage which has its input a biasing circuit which effects a finite biasing of the two Darlington amplifier stages.

  2. Surface interactions and high-voltage current collection

    NASA Technical Reports Server (NTRS)

    Mandell, M. J.; Katz, I.

    1985-01-01

    Spacecraft of the future will be larger and have higher power requirements than any flown to date. For several reasons, it is desirable to operate a high power system at high voltage. While the optimal voltages for many future missions are in the range 500 to 5000 volts, the highest voltage yet flown is approximately 100 volts. The NASCAP/LEO code is being developed to embody the phenomenology needed to model the environmental interactions of high voltage spacecraft. Some plasma environment are discussed. The treatment of the surface conductivity associated with emitted electrons and some simulations by NASCAP/LEO of ground based high voltage interaction experiments are described.

  3. A high-voltage cardiac stimulator for field shocks of a whole heart in a bath

    NASA Astrophysics Data System (ADS)

    Mashburn, David N.; Hinkson, Stephen J.; Woods, Marcella C.; Gilligan, Jonathan M.; Holcomb, Mark R.; Wikswo, John P.

    2007-10-01

    Defibrillators are a critical tool for treating heart disease; however, the mechanisms by which they halt fibrillation are still not fully understood and are the subject of ongoing research. Clinical defibrillators do not provide the precise control of shock timing, duration, and voltage or other features needed for detailed scientific inquiry, and there are few, if any, commercially available units designed for research applications. For this reason, we have developed a high-voltage, programmable, capacitive-discharge stimulator optimized to deliver defibrillation shocks with precise timing and voltage control to an isolated animal heart, either in air or in a bath. This stimulator is capable of delivering voltages of up to 500V and energies of nearly 100J with timing accuracy of a few microseconds and with rise and fall times of 5μs or less and is controlled only by two external timing pulses and a control computer that sets the stimulation parameters via a LABVIEW interface. Most importantly, the stimulator has circuits to protect the high-voltage circuitry and the operator from programming and input-output errors. This device has been tested and used successfully in field shock experiments on rabbit hearts as well as other protocols requiring high voltage.

  4. Integrated input protection against discharges for Micro Pattern Gas Detectors readout ASICs

    NASA Astrophysics Data System (ADS)

    Fiutowski, T.; Dąbrowski, W.; Koperny, S.; Wiącek, P.

    2017-02-01

    Immunity against possible random discharges inside active detector volume of MPGDs is one of the key aspects that should be addressed in the design of the front-end electronics. This issue becomes particularly critical for systems with high channel counts and high density readout employing the front-end electronics built as multichannel ASICs implemented in modern CMOS technologies, for which the breakdown voltages are in the range of a few Volts. The paper presents the design of various input protection structures integrated in the ASIC manufactured in a 350 nm CMOS process and test results using an electrical circuit to mimic discharges in the detectors.

  5. Power conditioning system for energy sources

    DOEpatents

    Mazumder, Sudip K [Chicago, IL; Burra, Rajni K [Chicago, IL; Acharya, Kaustuva [Chicago, IL

    2008-05-13

    Apparatus for conditioning power generated by an energy source includes an inverter for converting a DC input voltage from the energy source to a square wave AC output voltage, and a converter for converting the AC output voltage from the inverter to a sine wave AC output voltage.

  6. Cryogenic ultra-low-noise SiGe transistor amplifier.

    PubMed

    Ivanov, B I; Trgala, M; Grajcar, M; Il'ichev, E; Meyer, H-G

    2011-10-01

    An ultra-low-noise one-stage SiGe heterojunction bipolar transistor amplifier was designed for cryogenic temperatures and a frequency range of 10 kHz-100 MHz. A noise temperature T(N) ≈ 1.4 K was measured at an ambient temperature of 4.2 K at frequencies between 100 kHz and 100 MHz for a source resistance of ~50 Ω. The voltage gain of the amplifier was 25 dB at a power consumption of 720 μW. The input voltage noise spectral density of the amplifier is about 35 pV/√Hz. The low noise resistance and power consumption makes the amplifier suitable for readout of resistively shunted DC SQUID magnetometers and amplifiers.

  7. Configurable impedance matching to maximise power extraction for enabling self-powered system based-on photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Rahman, Airul Azha Abd; Jamil, Wan Adil Wan; Umar, Akrajas Ali

    2016-07-01

    Multivariate energy harvesting system, solar and thermal energies, with configurable impedance matching features is presented. The system consists of a tuneable mechanism for peak performance tracking. The inputs are voltages ranging from 20 mV to 3.1 V. The matching load is individually tuned for photovoltaic and thermoelectric power efficiency not less than 80% and 50% of the open circuit voltage respectively. Of experimentation and analysis has been done, the time it takes to fully charge up to 3.4 V is 23 minutes with the rate of charging is 1.8 mV/sec. Empirical data is presented. [Figure not available: see fulltext.

  8. 78 FR 51463 - Energy Conservation Program: Energy Conservation Standards for Metal Halide Lamp Fixtures

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-20

    ... Efficiency at all Possible Voltages b. Posting the Highest and Lowest Efficiencies c. Test at Single Manufacturer-Declared Voltage d. Test at Highest-Rated Voltage e. Test on Input Voltage Based on Wattage and... at the highest voltage for which the ballast is designed to operate. [Dagger] P is defined as the...

  9. TRIAC/SCR proportional control circuit

    DOEpatents

    Hughes, W.J.

    1999-04-06

    A power controller device is disclosed which uses a voltage-to-frequency converter in conjunction with a zero crossing detector to linearly and proportionally control AC power being supplied to a load. The output of the voltage-to frequency converter controls the ``reset`` input of a R-S flip flop, while an ``0`` crossing detector controls the ``set`` input. The output of the flip flop triggers a monostable multivibrator controlling the SCR or TRIAC firing circuit connected to the load. Logic gates prevent the direct triggering of the multivibrator in the rare instance where the ``reset`` and ``set`` inputs of the flip flop are in coincidence. The control circuit can be supplemented with a control loop, providing compensation for line voltage variations. 9 figs.

  10. ELECTRONIC INTEGRATING CIRCUIT

    DOEpatents

    Englemann, R.H.

    1963-08-20

    An electronic integrating circuit using a transistor with a capacitor connected between the emitter and collector through which the capacitor discharges at a rate proportional to the input current at the base is described. Means are provided for biasing the base with an operating bias and for applying a voltage pulse to the capacitor for charging to an initial voltage. A current dividing diode is connected between the base and emitter of the transistor, and signal input terminal means are coupled to the juncture of the capacitor and emitter and to the base of the transistor. At the end of the integration period, the residual voltage on said capacitor is less by an amount proportional to the integral of the input signal. Either continuous or intermittent periods of integration are provided. (AEC)

  11. A 10-kW series resonant converter design, transistor characterization, and base-drive optimization

    NASA Technical Reports Server (NTRS)

    Robson, R. R.; Hancock, D. J.

    1982-01-01

    The development, components, and performance of a transistor-based 10 kW series resonant converter for use in resonant circuits in space applications is described. The transistors serve to switch on the converter current, which has a half-sinusoid waveform when the transistor is in saturation. The goal of the program was to handle an input-output voltage range of 230-270 Vdc, an output voltage range of 200-500 Vdc, and a current limit range of 0-20 A. Testing procedures for the D60T and D7ST transistors are outlined and base drive waveforms are presented. The total device dissipation was minimized and found to be independent of the regenerative feedback ratio at lower current levels. Dissipation was set at within 10% and rise times were found to be acceptable. The finished unit displayed a 91% efficiency at full power levels of 500 V and 20 A and 93.7% at 500 V and 10 A.

  12. Thermodynamics of nickel-cadmium and nickel-hydrogen batteries

    NASA Technical Reports Server (NTRS)

    Macdonald, Digby D.; Challingsworth, Mark L.

    1993-01-01

    Thermodynamic parameters for Nickel-Cadmium (NiCad) and Nickel-Hydrogen (NiH2) batteries are calculated for temperatures ranging from 273.15K (0 C) to 373.15K (100 C). For both systems, we list equilibrium and thermoneutral voltages for the cells, and in the case of the NiH2 battery, these data are provide for hydrogen fugacities ranging from 0.01 to 100 (atm) to simulate the full discharged and charged states. The quality of the input thermodynamic data are assessed and the effect of assuming different cell reactions is analyzed.

  13. Performance Test Results of the NASA-457M v2 Hall Thruster

    NASA Technical Reports Server (NTRS)

    Soulas, George C.; Haag, Thomas W.; Herman, Daniel A.; Huang, Wensheng; Kamhawi, Hani; Shastry, Rohit

    2012-01-01

    Performance testing of a second generation, 50 kW-class Hall thruster labeled NASA-457M v2 was conducted at the NASA Glenn Research Center. This NASA-designed thruster is an excellent candidate for a solar electric propulsion system that supports human exploration missions. Thruster discharge power was varied from 5 to 50 kW over discharge voltage and current ranges of 200 to 500 V and 15 to 100 A, respectively. Anode efficiencies varied from 0.56 to 0.71. The peak efficiency was similar to that of other state-of-the-art high power Hall thrusters, but outperformed these thrusters at lower discharge voltages. The 0.05 to 0.18 higher anode efficiencies of this thruster compared to its predecessor were primarily due to which of two stable discharge modes the thruster was operated. One stable mode was at low magnetic field strengths, which produced high anode efficiencies, and the other at high magnetic fields where its predecessor was operated. Cathode keeper voltages were always within 2.1 to 6.2 V and cathode voltages were within 13 V of tank ground during high anode efficiency operation. However, during operation at high magnetic fields, cathode-to-ground voltage magnitudes increased dramatically, exceeding 30 V, due to the high axial magnetic field strengths in the immediate vicinity of the centrally-mounted cathode. The peak thrust was 2.3 N and this occurred at a total thruster input power of 50.0 kW at a 500 V discharge voltage. The thruster demonstrated a thrust-to-power range of 76.4 mN/kW at low power to 46.1 mN/kW at full power, and a specific impulse range of 1420 to 2740 s. For a discharge voltage of 300 V, where specific impulses would be about 2000 s, thrust efficiencies varied from 0.57 to 0.63.

  14. Utilizing zero-sequence switchings for reversible converters

    DOEpatents

    Hsu, John S.; Su, Gui-Jia; Adams, Donald J.; Nagashima, James M.; Stancu, Constantin; Carlson, Douglas S.; Smith, Gregory S.

    2004-12-14

    A method for providing additional dc inputs or outputs (49, 59) from a dc-to-ac inverter (10) for controlling motor loads (60) comprises deriving zero-sequence components (V.sub.ao, V.sub.bo, and V.sub.co) from the inverter (10) through additional circuit branches with power switching devices (23, 44, 46), transforming the voltage between a high voltage and a low voltage using a transformer or motor (42, 50), converting the low voltage between ac and dc using a rectifier (41, 51) or an H-bridge (61), and providing at least one low voltage dc input or output (49, 59). The transformation of the ac voltage may be either single phase or three phase. Where less than a 100% duty cycle is acceptable, a two-phase modulation of the switching signals controlling the inverter (10) reduces switching losses in the inverter (10). A plurality of circuits for carrying out the invention are also disclosed.

  15. Static DC to DC Power Conditioning-Active Ripple Filter, 1 MHZ DC to DC Conversion, and Nonlinear Analysis. Ph.D. Thesis; [voltage regulation and conversion circuitry for spacecraft power supplies

    NASA Technical Reports Server (NTRS)

    Sander, W. A., III

    1973-01-01

    Dc to dc static power conditioning systems on unmanned spacecraft have as their inputs highly fluctuating dc voltages which they condition to regulated dc voltages. These input voltages may be less than or greater than the desired regulated voltages. The design of two circuits which address specific problems in the design of these power conditioning systems and a nonlinear analysis of one of the circuits are discussed. The first circuit design is for a nondissipative active ripple filter which uses an operational amplifier to amplify and cancel the sensed ripple voltage. A dc to dc converter operating at a switching frequency of 1 MHz is the second circuit discussed. A nonlinear analysis of the type of dc to dc converter utilized in designing the 1 MHz converter is included.

  16. Extension algorithm for generic low-voltage networks

    NASA Astrophysics Data System (ADS)

    Marwitz, S.; Olk, C.

    2018-02-01

    Distributed energy resources (DERs) are increasingly penetrating the energy system which is driven by climate and sustainability goals. These technologies are mostly connected to low- voltage electrical networks and change the demand and supply situation in these networks. This can cause critical network states. Network topologies vary significantly and depend on several conditions including geography, historical development, network design or number of network connections. In the past, only some of these aspects were taken into account when estimating the network investment needs for Germany on the low-voltage level. Typically, fixed network topologies are examined or a Monte Carlo approach is used to quantify the investment needs at this voltage level. Recent research has revealed that DERs differ substantially between rural, suburban and urban regions. The low-voltage network topologies have different design concepts in these regions, so that different network topologies have to be considered when assessing the need for network extensions and investments due to DERs. An extension algorithm is needed to calculate network extensions and investment needs for the different typologies of generic low-voltage networks. We therefore present a new algorithm, which is capable of calculating the extension for generic low-voltage networks of any given topology based on voltage range deviations and thermal overloads. The algorithm requires information about line and cable lengths, their topology and the network state only. We test the algorithm on a radial, a loop, and a heavily meshed network. Here we show that the algorithm functions for electrical networks with these topologies. We found that the algorithm is able to extend different networks efficiently by placing cables between network nodes. The main value of the algorithm is that it does not require any information about routes for additional cables or positions for additional substations when it comes to estimating network extension needs.

  17. A 12 mV start-up converter using piezoelectric transformer for energy harvesting applications

    NASA Astrophysics Data System (ADS)

    Martinez, T.; Pillonnet, G.; Costa, F.

    2016-11-01

    This paper presents a novel topology of start-up converter for sub 100 mV thermal energy harvesting based on an Armstrong oscillator topology using a piezoelectric transformer (PT) and a normally-on MOSFET. Based on a Rosen-type PT and off-the-shelf components, the proposed startup topology begins to oscillate at 12 mV input voltage corresponding to a temperature gradient of 2°C and achieves 1 V output voltage with only 18 mV input voltage applied to the harvester.

  18. Entorhinal stellate cells show preferred spike phase-locking to theta inputs that is enhanced by correlations in synaptic activity

    PubMed Central

    Fernandez, Fernando R.; Malerba, Paola; Bressloff, Paul C.; White, John A.

    2013-01-01

    In active networks, excitatory and inhibitory synaptic inputs generate membrane voltage fluctuations that drive spike activity in a probabilistic manner. Despite this, some cells in vivo show a strong propensity to precisely lock to the local field potential and maintain a specific spike-phase relationship relative to other cells. In recordings from rat medial entorhinal cortical stellate cells, we measured spike phase-locking in response to sinusoidal “test” inputs in the presence of different forms of background membrane voltage fluctuations, generated via dynamic clamp. We find that stellate cells show strong and robust spike phase-locking to theta (4–12 Hz) inputs. This response occurs under a wide variety of background membrane voltage fluctuation conditions that include a substantial increase in overall membrane conductance. Furthermore, the IH current present in stellate cells is critical to the enhanced spike phase-locking response at theta. Finally, we show that correlations between inhibitory and excitatory conductance fluctuations, which can arise through feed-back and feed-forward inhibition, can substantially enhance the spike phase-locking response. The enhancement in locking is a result of a selective reduction in the size of low frequency membrane voltage fluctuations due to cancelation of inhibitory and excitatory current fluctuations with correlations. Hence, our results demonstrate that stellate cells have a strong preference for spike phase-locking to theta band inputs and that the absolute magnitude of locking to theta can be modulated by the properties of background membrane voltage fluctuations. PMID:23554484

  19. Novel High-Voltage, High-Power Piezoelectric Transformer Developed and Demonstrated for Space Communications Applications

    NASA Technical Reports Server (NTRS)

    Carazo, Alfredo V.; Wintucky, Edwin G.

    2004-01-01

    Improvements in individual piezoelectric transformer (PT) performance and the combination of these PTs in a unique modular topology under a Phase I contract with the NASA Glenn Research Center have enabled for the first time the simultaneous achievement of both high voltage and high power at much higher levels than previously obtained with any PT. Feasibility was demonstrated by a prototype transformer (called a Tap-Soner), which is shown in the preceding photograph as part of a direct-current to direct-current (dc-dc) converter having two outputs rated at 1.5 kV/5 W and 4.5 kV/20 W. The power density of 3.5 W/cm3 is significantly lower than for magnetic transformers with the same voltage and power output. This development, which is being done under a Small Business Innovation Research (SBIR) contract by Face Electronics, LC (Norfolk, VA), is based on improvements in the materials and design of Face's basic patented Transoner-T3 PT, shown in the left in the following figure. The T3 PT is most simply described as a resonant multilayer transducer where electrical energy at the input section is efficiently mechanically coupled to the output section, which then vibrates in a fundamental longitudinal mode to generate a high gain in voltage. The piezoelectric material used is a modified lead-zirconium-titanate-based ceramic. One of the significant improvements in PT design was the incorporation of a symmetrical double input layer, shown on the right in the following figure, which eliminated the lossy bending vibration modes characteristic of a single input layer. The performance of the improved PT was optimized to 1.5 kV/5 W. The next step was devising a way to combine the individual PTs in a modular circuit topology needed to achieve the desired high voltage and power output. Since the optimum performance of the individual PT occurs at resonance, the most efficient operation of the modular transformer was achieved by using a separate drive circuit for each PT. The output section consists of a separate output rectifier for each PT connected in series.

  20. A Single-Phase Embedded Z-Source DC-AC Inverter

    PubMed Central

    Kim, Se-Jin; Lim, Young-Cheol

    2014-01-01

    In the conventional DC-AC inverter consisting of two DC-DC converters with unipolar output capacitors, the output capacitor voltages of the DC-DC converters must be higher than the DC input voltage. To overcome this weakness, this paper proposes a single-phase DC-AC inverter consisting of two embedded Z-source converters with bipolar output capacitors. The proposed inverter is composed of two embedded Z-source converters with a common DC source and output AC load. Though the output capacitor voltages of the converters are relatively low compared to those of a conventional inverter, an equivalent level of AC output voltages can be obtained. Moreover, by controlling the output capacitor voltages asymmetrically, the AC output voltage of the proposed inverter can be higher than the DC input voltage. To verify the validity of the proposed inverter, experiments were performed with a DC source voltage of 38 V. By controlling the output capacitor voltages of the converters symmetrically or asymmetrically, the proposed inverter can produce sinusoidal AC output voltages. The experiments show that efficiencies of up to 95% and 97% can be achieved with the proposed inverter using symmetric and asymmetric control, respectively. PMID:25133241

  1. A single-phase embedded Z-source DC-AC inverter.

    PubMed

    Kim, Se-Jin; Lim, Young-Cheol

    2014-01-01

    In the conventional DC-AC inverter consisting of two DC-DC converters with unipolar output capacitors, the output capacitor voltages of the DC-DC converters must be higher than the DC input voltage. To overcome this weakness, this paper proposes a single-phase DC-AC inverter consisting of two embedded Z-source converters with bipolar output capacitors. The proposed inverter is composed of two embedded Z-source converters with a common DC source and output AC load. Though the output capacitor voltages of the converters are relatively low compared to those of a conventional inverter, an equivalent level of AC output voltages can be obtained. Moreover, by controlling the output capacitor voltages asymmetrically, the AC output voltage of the proposed inverter can be higher than the DC input voltage. To verify the validity of the proposed inverter, experiments were performed with a DC source voltage of 38 V. By controlling the output capacitor voltages of the converters symmetrically or asymmetrically, the proposed inverter can produce sinusoidal AC output voltages. The experiments show that efficiencies of up to 95% and 97% can be achieved with the proposed inverter using symmetric and asymmetric control, respectively.

  2. RATIO COMPUTER

    DOEpatents

    Post, R.F.

    1958-11-11

    An electronic computer circuit is described for producing an output voltage proportional to the product or quotient of tbe voltages of a pair of input signals. ln essence, the disclosed invention provides a computer having two channels adapted to receive separate input signals and each having amplifiers with like fixed amplification factors and like negatlve feedback amplifiers. One of the channels receives a constant signal for comparison purposes, whereby a difference signal is produced to control the amplification factors of the variable feedback amplifiers. The output of the other channel is thereby proportional to the product or quotient of input signals depending upon the relation of input to fixed signals in the first mentioned channel.

  3. 13kW Advanced Electric Propulsion Flight System Development and Qualification

    NASA Technical Reports Server (NTRS)

    Jackson, Jerry; Allen, May; Myers, Roger; Soendker, Erich; Welander, Benjamin; Tolentino, Artie; Hablitzel, Sam; Yeatts, Chyrl; Xu, Steven; Sheehan, Chris; hide

    2017-01-01

    The next phase of robotic and human deep space exploration missions is enhanced by high performance, high power solar electric propulsion systems for large-scale science missions and cargo transportation. Aerojet Rocketdynes Advanced Electric Propulsion System (AEPS) program is completing development, qualification and delivery of five flight 13.3kW EP systems to NASA. The flight AEPS includes a magnetically-shielded, long-life Hall thruster, power processing unit (PPU), xenon flow controller (XFC), and intrasystem harnesses. The Hall thruster, originally developed and demonstrated by NASAs Glenn Research Center and the Jet Propulsion Laboratory, operates at input powers up to 12.5kW while providing a specific impulse over 2600s at an input voltage of 600V. The power processor is designed to accommodate an input voltage range of 95 to 140V, consistent with operation beyond the orbit of Mars. The integrated system is continuously throttleable between 3 and 13.3kW. The program has completed the system requirement review; the system, thruster, PPU and XFC preliminary design reviews; development of engineering models, and initial system integration testing. This paper will present the high power AEPS capabilities, overall program and design status and the latest test results for the 13.3kW flight system development and qualification program.

  4. Incorporating voltage security into the planning, operation and monitoring of restructured electric energy markets

    NASA Astrophysics Data System (ADS)

    Nair, Nirmal-Kumar

    As open access market principles are applied to power systems, significant changes are happening in their planning, operation and control. In the emerging marketplace, systems are operating under higher loading conditions as markets focus greater attention to operating costs than stability and security margins. Since operating stability is a basic requirement for any power system, there is need for newer tools to ensure stability and security margins being strictly enforced in the competitive marketplace. This dissertation investigates issues associated with incorporating voltage security into the unbundled operating environment of electricity markets. It includes addressing voltage security in the monitoring, operational and planning horizons of restructured power system. This dissertation presents a new decomposition procedure to estimate voltage security usage by transactions. The procedure follows physical law and uses an index that can be monitored knowing the state of the system. The expression derived is based on composite market coordination models that have both PoolCo and OpCo transactions, in a shared stressed transmission grid. Our procedure is able to equitably distinguish the impacts of individual transactions on voltage stability, at load buses, in a simple and fast manner. This dissertation formulates a new voltage stability constrained optimal power flow (VSCOPF) using a simple voltage security index. In modern planning, composite power system reliability analysis that encompasses both adequacy and security issues is being developed. We have illustrated the applicability of our VSCOPF into composite reliability analysis. This dissertation also delves into the various applications of voltage security index. Increasingly, FACT devices are being used in restructured markets to mitigate a variety of operational problems. Their control effects on voltage security would be demonstrated using our VSCOPF procedure. Further, this dissertation investigates the application of steady state voltage stability index to detect potential dynamic voltage collapse. Finally, this dissertation examines developments in representation, standardization, communication and exchange of power system data. Power system data is the key input to all analytical engines for system operation, monitoring and control. Data exchange and dissemination could impact voltage security evaluation and therefore needs to be critically examined.

  5. Dual-Use Transducer for Use with a Boundary-Stiffened Panel and Method of Using the Same

    NASA Technical Reports Server (NTRS)

    Schiller, Noah H. (Inventor); Cabell, Randolph H. (Inventor)

    2011-01-01

    A transducer for use with a boundary-stiffened panel has an inter-digitated electrode (IDE) and a piezoelectric wafer portion positioned therebetween. The IDE and/or the wafer portion are triangular, with one edge or side aligned with a boundary edge of the panel. The transducer generates and transmits an output force to the panel in response to an input voltage signal from a sensor, which can be another transducer as described above or an accelerometer. A controller can generate an output force signal in response to the input voltage signal to help cancel the input voltage signal. A method of using the transducer minimizes vibration in the panel by connecting multiple transducers around a perimeter thereof. Motion is measured at different portions of the panel, and a voltage signal determined from the motion is transmitted to the transducers to generate an output force at least partially cancelling or damping the motion.

  6. Electron emission controller with pulsed heating of filament

    NASA Astrophysics Data System (ADS)

    Durakiewicz, Tomasz

    1996-11-01

    A novel circuit has been invented for the versatile and safe stabilization of the electron emission current (Ie) produced by a hot filament in mass spectrometers or in ionization gauges. The voltage signal, which is directly proportional to Ie, is provided to the inverting input of a comparator, whereas the noninverting input is connected to the reference voltage. In addition to the commonly used negative feedback loop, a positive feedback loop was introduced by siting a resistor between the noninverting input and the output of the comparator, which results in a pulsation of the filament voltage. The pulses are rectangular, so that the power dissipated by the transistor in the filament power supply circuit is radically reduced. To refine the switching action of the transistor, the output of the comparator is connected through a capacitor to the transistor gate. A concise discussion of the phase shift between Ie, the filament temperature Tf, and the filament voltage Vf, including time constants for different modes of power dissipation, is included.

  7. Electro-optic high voltage sensor

    DOEpatents

    Davidson, James R.; Seifert, Gary D.

    2002-01-01

    A small sized electro-optic voltage sensor capable of accurate measurement of high levels of voltages without contact with a conductor or voltage source is provided. When placed in the presence of an electric field, the sensor receives an input beam of electromagnetic radiation into the sensor. A polarization beam displacer serves as a filter to separate the input beam into two beams with orthogonal linear polarizations. The beam displacer is oriented in such a way as to rotate the linearly polarized beams such that they enter a Pockels crystal having at a preferred angle of 45 degrees. The beam displacer is therefore capable of causing a linearly polarized beam to impinge a crystal at a desired angle independent of temperature. The Pockels electro-optic effect induces a differential phase shift on the major and minor axes of the input beam as it travels through the Pockels crystal, which causes the input beam to be elliptically polarized. A reflecting prism redirects the beam back through the crystal and the beam displacer. On the return path, the polarization beam displacer separates the elliptically polarized beam into two output beams of orthogonal linear polarization representing the major and minor axes. The system may include a detector for converting the output beams into electrical signals, and a signal processor for determining the voltage based on an analysis of the output beams. The output beams are amplitude modulated by the frequency of the electric field and the amplitude of the output beams is proportional to the magnitude of the electric field, which is related to the voltage being measured.

  8. Optically-powered Voltage-supply-device for Effective Utilization of Optical Energy in the Fiber-To-The-Home Network

    NASA Astrophysics Data System (ADS)

    Fukano, Hideki; Shinagawa, Takeshi; Tsuruta, Kenji

    An optically powered device with using InGaAs-Photodiode has been developed. This study aims to harvest light energy (2.8∼500μW) from the FTTH (Fiber To The Home) network and to utilize it for operating remote sensors without external energy sources. First, we designed and evaluated the characteristics of the booster circuit and confirmed that it could boost an input voltage of 0.3 V to 3.0 V. Next, we also evaluated the characteristics of InGaAs photodiode and confirmed that it can output a voltage over 0.3 V at 10-μW input light. We demonstrate that a ready-made sensor can be operated with an input optical power as low as 10 μW.

  9. ZERO SUPPRESSION FOR RECORDERS

    DOEpatents

    Fort, W.G.S.

    1958-12-30

    A zero-suppression circuit for self-balancing recorder instruments is presented. The essential elements of the circuit include a converter-amplifier having two inputs, one for a reference voltage and the other for the signal voltage under analysis, and a servomotor with two control windings, one coupled to the a-c output of the converter-amplifier and the other receiving a reference input. Each input circuit to the converter-amplifier has a variable potentiometer and the sliders of the potentiometer are ganged together for movement by the servoinotor. The particular noveity of the circuit resides in the selection of resistance values for the potentiometer and a resistor in series with the potentiometer of the signal circuit to ensure the full value of signal voltage variation is impressed on a recorder mechanism driven by servomotor.

  10. Method and Apparatus for Reducing the Vulnerability of Latches to Single Event Upsets

    NASA Technical Reports Server (NTRS)

    Shuler, Robert L., Jr. (Inventor)

    2002-01-01

    A delay circuit includes a first network having an input and an output node, a second network having an input and an output, the input of the second network being coupled to the output node of the first network. The first network and the second network are configured such that: a glitch at the input to the first network having a length of approximately one-half of a standard glitch time or less does not cause the voltage at the output of the second network to cross a threshold, a glitch at the input to the first network having a length of between approximately one-half and two standard glitch times causes the voltage at the output of the second network to cross the threshold for less than the length of the glitch, and a glitch at the input to the first network having a length of greater than approximately two standard glitch times causes the voltage at the output of the second network to cross the threshold for approximately the time of the glitch. The method reduces the vulnerability of a latch to single event upsets. The latch includes a gate having an input and an output and a feedback path from the output to the input of the gate. The method includes inserting a delay into the feedback path and providing a delay in the gate.

  11. Method and Apparatus for Reducing the Vulnerability of Latches to Single Event Upsets

    NASA Technical Reports Server (NTRS)

    Shuler, Robert L., Jr. (Inventor)

    2002-01-01

    A delay circuit includes a first network having an input and an output node, a second network having an input and an output, the input of the second network being coupled to the output node of the first network. The first network and the second network are configured such that: a glitch at the input to the first network having a length of approximately one-half of a standard glitch time or less does not cause tile voltage at the output of the second network to cross a threshold, a glitch at the input to the first network having a length of between approximately one-half and two standard glitch times causes the voltage at the output of the second network to cross the threshold for less than the length of the glitch, and a glitch at the input to the first network having a length of greater than approximately two standard glitch times causes the voltage at the output of the second network to cross the threshold for approximately the time of the glitch. A method reduces the vulnerability of a latch to single event upsets. The latch includes a gate having an input and an output and a feedback path from the output to the input of the gate. The method includes inserting a delay into the feedback path and providing a delay in the gate.

  12. A comparison of digital zero-crossing and charge-comparison methods for neutron/γ-ray discrimination with liquid scintillation detectors

    NASA Astrophysics Data System (ADS)

    Nakhostin, M.

    2015-10-01

    In this paper, we have compared the performances of the digital zero-crossing and charge-comparison methods for n/γ discrimination with liquid scintillation detectors at low light outputs. The measurements were performed with a 2″×2″ cylindrical liquid scintillation detector of type BC501A whose outputs were sampled by means of a fast waveform digitizer with 10-bit resolution, 4 GS/s sampling rate and one volt input range. Different light output ranges were measured by operating the photomultiplier tube at different voltages and a new recursive algorithm was developed to implement the digital zero-crossing method. The results of our study demonstrate the superior performance of the digital zero-crossing method at low light outputs when a large dynamic range is measured. However, when the input range of the digitizer is used to measure a narrow range of light outputs, the charge-comparison method slightly outperforms the zero-crossing method. The results are discussed in regard to the effects of the quantization noise and the noise filtration performance of the zero-crossing filter.

  13. Ways to suppress click and pop for class D amplifiers

    NASA Astrophysics Data System (ADS)

    Haishi, Wang; Bo, Zhang; Jiang, Sun

    2012-08-01

    Undesirable audio click and pop may be generated in a speaker or headphone. Compared to linear (class A/B/AB) amplifiers, class D amplifiers that comprise of an input stage and a modulation stage are more prone to producing click and pop. This article analyzes sources that generate click and pop in class D amplifiers, and corresponding ways to suppress them. For a class D amplifier with a single-ended input, click and pop is likely to be due to two factors. One is from a voltage difference (VDIF) between the voltage of an input capacitance (VCIN) and a reference voltage (VREF) of the input stage, and the other one is from the non-linear switching during the setting up of the bias and feedback voltages/currents (BFVC) of the modulation stage. In this article, a fast charging loop is introduced into the input stage to charge VCIN to roughly near VREF. Then a correction loop further charges or discharges VCIN, substantially equalizing it with VREF. Dummy switches are introduced into the modulation stage to provide switching signals for setting up BFVC, and the power switches are disabled until the BFVC are set up successfully. A two channel single-ended class D amplifier with the above features is fabricated with 0.5 μm Bi-CMOS process. Road test and fast Fourier transform analysis indicate that there is no noticeable click and pop.

  14. A programmable, multichannel power supply for SIPMs with temperature compensation loop and Ethernet interface

    NASA Astrophysics Data System (ADS)

    Querol, M.; Rodríguez, J.; Toledo, J.; Esteve, R.; Álvarez, V.; Herrero, V.

    2016-12-01

    Among the different techniques available, the SiPM power supply described in this paper uses output voltage and sensor temperature feedback. A high-resolution ADC digitizes both the output voltage and an analog signal proportional to the SiPM temperature for each of its 16 independent outputs. The appropriate change in the bias voltage is computed in a micro-controller and this correction is applied via a high resolution DAC to the control input of a DC/DC module that produces the output voltage. This method allows a reduction in gain variations from typically 30% to only 0.5% in a 10 °C range. The power supply is housed in a 3U-height aluminum box. A 2.8'' touch screen on the front panel provides local access to the configuration and monitoring functions using a graphical interface. The unit has an Ethernet interface on its rear side to provide remote operation and integration in slow control systems using the encrypted and secure SSH protocol. A LabVIEW application with SSH interface has been designed to operate the power supply from a remote computer. The power supply has good characteristics, such as 85 V output range with 1 mV resolution and stability better than 2 mVP, excellent output load regulation and programmable rise and fall voltage ramps. Commercial power supplies from well-known manufacturers can show far better specifications though can also result in an over featured and over costly solution for typical applications.

  15. Modeling, Development and Control of Multilevel Converters for Power System Application =

    NASA Astrophysics Data System (ADS)

    Vahedi, Hani

    The main goal of this project is to develop a multilevel converter topology to be useful in power system applications. Although many topologies are introduced rapidly using a bunch of switches and isolated dc sources, having a single-dc-source multilevel inverter is still a matter of controversy. In fact, each isolated dc source means a bulky transformer and a rectifier that have their own losses and costs forcing the industries to avoid entering in this topic conveniently. On the other hand, multilevel inverters topologies with single-dc-source require associated controllers to regulate the dc capacitors voltages in order to have multilevel voltage waveform at the output. Thus, a complex controller would not interest investors properly. Consequently, developing a single-dc-source multilevel inverter topology along with a light and reliable voltage control is still a challenging topic to replace the 2-level inverters in the market effectively. The first effort in this project was devoted to the PUC7 inverter to design a simple and yet efficient controller. A new modelling is performed on the PUC7 inverter and it has been simplified to first order system. Afterwards, a nonlinear cascaded controller is designed and applied to regulate the capacitor voltage at 1/3 of the DC source amplitude and to generate 7 identical voltage levels at the output supplying different type of loads such as RL or rectifier harmonic ones. In next work, the PUC5 topology is proposed as a remedy to the PUC7 that requires a complicated controller to operate properly. The capacitor voltage is regulated at half of dc source amplitude to generate 5 voltage levels at the output. Although the 7-level voltage waveform is replaced by a 5-level one in PUC5 topology, it is shown that the PUC5 needs a very simple and reliable voltage balancing technique due to having some redundant switching states. Moreover, a sensor-less voltage balancing technique is designed and implemented on the PUC5 inverter successfully to work in both stand-alone and gridconnected mode of operation. Eventually, a modified configuration of the PUC5 topology is presented to work as a buck PFC rectifier. The internal performance of the rectifier is like a buck converter to generate stepped down DC voltages at the two output terminals while the grid sees a boost converter externally. As well, a decoupled voltage/current controller is designed and applied to balance the output voltages identically and synchronize the input current with grid voltage to have a PFC operation acceptably. A power balance analysis is done to show the load variation range limit. All the theoretical and simulation studies are validated by experimental results completely.

  16. Ferroelectric Emission Cathodes for Low-Power Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Kovaleski, Scott D.; Burke, Tom (Technical Monitor)

    2002-01-01

    Low- or no-flow electron emitters are required for low-power electric thrusters, spacecraft plasma contactors, and electrodynamic tether systems to reduce or eliminate the need for propellant/expellant. Expellant-less neutralizers can improve the viability of very low-power colloid thrusters, field emission electric propulsion devices, ion engines, Hall thrusters, and gridded vacuum arc thrusters. The NASA Glenn Research Center (GRC) is evaluating ferroelectric emission (FEE) cathodes as zero expellant flow rate cathode sources for the applications listed above. At GRC, low voltage (100s to approx. 1500 V) operation of FEE cathodes is examined. Initial experiments, with unipolar, bipolar, and RF burst applied voltage, have produced current pulses 250 to 1000 ns in duration with peak currents of up to 2 A at voltages at or below 1500 V. In particular, FEE cathodes driven by RF burst voltages from 1400 to 2000 V peak to peak, at burst frequencies from 70 to 400 kHz, emitted average current densities from 0.1 to 0.7 A/sq cm. Pulse repeatability as a function of input voltage has been initially established. Reliable emission has been achieved in air background at pressures as high as 10(exp -6) Torr.

  17. Bias-Voltage Stabilizer for HVHF Amplifiers in VHF Pulse-Echo Measurement Systems.

    PubMed

    Choi, Hojong; Park, Chulwoo; Kim, Jungsuk; Jung, Hayong

    2017-10-23

    The impact of high-voltage-high-frequency (HVHF) amplifiers on echo-signal quality is greater with very-high-frequency (VHF, ≥100 MHz) ultrasound transducers than with low-frequency (LF, ≤15 MHz) ultrasound transducers. Hence, the bias voltage of an HVHF amplifier must be stabilized to ensure stable echo-signal amplitudes. We propose a bias-voltage stabilizer circuit to maintain stable DC voltages over a wide input range, thus reducing the harmonic-distortion components of the echo signals in VHF pulse-echo measurement systems. To confirm the feasibility of the bias-voltage stabilizer, we measured and compared the deviations in the gain of the HVHF amplifier with and without a bias-voltage stabilizer. Between -13 and 26 dBm, the measured gain deviations of a HVHF amplifier with a bias-voltage stabilizer are less than that of an amplifier without a bias-voltage stabilizer. In order to confirm the feasibility of the bias-voltage stabilizer, we compared the pulse-echo responses of the amplifiers, which are typically used for the evaluation of transducers or electronic components used in pulse-echo measurement systems. From the responses, we observed that the amplitudes of the echo signals of a VHF transducer triggered by the HVHF amplifier with a bias-voltage stabilizer were higher than those of the transducer triggered by the HVHF amplifier alone. The second, third, and fourth harmonic-distortion components of the HVHF amplifier with the bias-voltage stabilizer were also lower than those of the HVHF amplifier alone. Hence, the proposed scheme is a promising method for stabilizing the bias voltage of an HVHF amplifier, and improving the echo-signal quality of VHF transducers.

  18. A frequency-sensing readout using piezoelectric sensors for sensing of physiological signals.

    PubMed

    Buxi, Dilpreet; Redouté, Jean-Michel; Yuce, Mehmet Rasit

    2014-01-01

    Together with a charge or voltage amplifier, piezoelectric sensors are commonly used to pick up physiological vibrations from the body. As an alternative to chopper or auto-zero amplifiers, frequency sensing is known in literature to provide advantages of noise immunity, interfacing to digital readout systems as well as tunable range of sensing. A frequency-sensing readout circuit for sensing low voltage signals from piezoelectric sensors is successfully developed and tested in this work. The output voltage of a piezoelectric sensor is fed to a varactor, which is part of an Colpitts LC oscillator. The oscillation frequency is converted into a voltage using a phase locked loop. The circuit is compared to a reference design in terms of linearity, noise and transfer function. The readout has a input-referred noise voltage of 2.24μV/√Hz and consumes 15 mA at 5V supply. Arterial pulse wave signals and the cardiac vibrations from the chest are measured from one subject to show the proof of concept of the proposed readout. The results of this work are intended to contribute towards alternative low noise analog front end designs for piezoelectric sensors.

  19. AC coupled three op-amp biopotential amplifier with active DC suppression.

    PubMed

    Spinelli, E M; Mayosky, M A

    2000-12-01

    A three op-amps instrumentation amplifier (I.A) with active dc suppression is presented. dc suppression is achieved by means of a controlled floating source at the input stage, to compensate electrode and op-amps offset voltages. This isolated floating source is built around an optical-isolated device using a general-purpose optocoupler, working as a photovoltaic generator. The proposed circuit has many interesting characteristics regarding simplicity and cost, while preserving common mode rejection ratio (CMRR) and high input impedance characteristics of the classic three op-amps I.A. As an example, a biopotential amplifier with a gain of 80 dB, a lower cutoff frequency of 0.1 Hz, and a dc input range of +/- 8 mV was built and tested. Using general-purpose op-amps, a CMRR of 105 was achieved without trimmings.

  20. A novel input-parasitic compensation technique for a nanopore-based CMOS DNA detection sensor

    NASA Astrophysics Data System (ADS)

    Kim, Jungsuk

    2016-12-01

    This paper presents a novel input-parasitic compensation (IPC) technique for a nanopore-based complementary metal-oxide-semiconductor (CMOS) DNA detection sensor. A resistive-feedback transimpedance amplifier is typically adopted as the headstage of a DNA detection sensor to amplify the minute ionic currents generated from a nanopore and convert them to a readable voltage range for digitization. But, parasitic capacitances arising from the headstage input and the nanopore often cause headstage saturation during nanopore sensing, thereby resulting in significant DNA data loss. To compensate for the unwanted saturation, in this work, we propose an area-efficient and automated IPC technique, customized for a low-noise DNA detection sensor, fabricated using a 0.35- μm CMOS process; we demonstrated this prototype in a benchtop test using an α-hemolysin ( α-HL) protein nanopore.

  1. Magnetic tunnel junction based spintronic logic devices

    NASA Astrophysics Data System (ADS)

    Lyle, Andrew Paul

    The International Technology Roadmap for Semiconductors (ITRS) predicts that complimentary metal oxide semiconductor (CMOS) based technologies will hit their last generation on or near the 16 nm node, which we expect to reach by the year 2025. Thus future advances in computational power will not be realized from ever-shrinking device sizes, but rather by 'outside the box' designs and new physics, including molecular or DNA based computation, organics, magnonics, or spintronic. This dissertation investigates magnetic logic devices for post-CMOS computation. Three different architectures were studied, each relying on a different magnetic mechanism to compute logic functions. Each design has it benefits and challenges that must be overcome. This dissertation focuses on pushing each design from the drawing board to a realistic logic technology. The first logic architecture is based on electrically connected magnetic tunnel junctions (MTJs) that allow direct communication between elements without intermediate sensing amplifiers. Two and three input logic gates, which consist of two and three MTJs connected in parallel, respectively were fabricated and are compared. The direct communication is realized by electrically connecting the output in series with the input and applying voltage across the series connections. The logic gates rely on the fact that a change in resistance at the input modulates the voltage that is needed to supply the critical current for spin transfer torque switching the output. The change in resistance at the input resulted in a voltage margin of 50--200 mV and 250--300 mV for the closest input states for the three and two input designs, respectively. The two input logic gate realizes the AND, NAND, NOR, and OR logic functions. The three input logic function realizes the Majority, AND, NAND, NOR, and OR logic operations. The second logic architecture utilizes magnetostatically coupled nanomagnets to compute logic functions, which is the basis of Magnetic Quantum Cellular Automata (MQCA). MQCA has the potential to be thousands of times more energy efficient than CMOS technology. While interesting, these systems are academic unless they can be interfaced into current technologies. This dissertation pushed past a major hurdle by experimentally demonstrating a spintronic input/output (I/O) interface for the magnetostatically coupled nanomagnets by incorporating MTJs. This spintronic interface allows individual nanomagnets to be programmed using spin transfer torque and read using magneto resistance structure. Additionally the spintronic interface allows statistical data on the reliability of the magnetic coupling utilized for data propagation to be easily measured. The integration of spintronics and MQCA for an electrical interface to achieve a magnetic logic device with low power creates a competitive post-CMOS logic device. The final logic architecture that was studied used MTJs to compute logic functions and magnetic domain walls to communicate between gates. Simulations were used to optimize the design of this architecture. Spin transfer torque was used to compute logic function at each MTJ gate and was used to drive the domain walls. The design demonstrated that multiple nanochannels could be connected to each MTJ to realize fan-out from the logic gates. As a result this logic scheme eliminates the need for intermediate reads and conversions to pass information from one logic gate to another.

  2. Analysis and Simple Circuit Design of Double Differential EMG Active Electrode.

    PubMed

    Guerrero, Federico Nicolás; Spinelli, Enrique Mario; Haberman, Marcelo Alejandro

    2016-06-01

    In this paper we present an analysis of the voltage amplifier needed for double differential (DD) sEMG measurements and a novel, very simple circuit for implementing DD active electrodes. The three-input amplifier that standalone DD active electrodes require is inherently different from a differential amplifier, and general knowledge about its design is scarce in the literature. First, the figures of merit of the amplifier are defined through a decomposition of its input signal into three orthogonal modes. This analysis reveals a mode containing EMG crosstalk components that the DD electrode should reject. Then, the effect of finite input impedance is analyzed. Because there are three terminals, minimum bounds for interference rejection ratios due to electrode and input impedance unbalances with two degrees of freedom are obtained. Finally, a novel circuit design is presented, including only a quadruple operational amplifier and a few passive components. This design is nearly as simple as the branched electrode and much simpler than the three instrumentation amplifier design, while providing robust EMG crosstalk rejection and better input impedance using unity gain buffers for each electrode input. The interference rejection limits of this input stage are analyzed. An easily replicable implementation of the proposed circuit is described, together with a parameter design guideline to adjust it to specific needs. The electrode is compared with the established alternatives, and sample sEMG signals are obtained, acquired on different body locations with dry contacts, successfully rejecting interference sources.

  3. Power characteristics in GMAW: Experimental and numerical investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joensson, P.G.; Szekely, J.; Madigan, R.B.

    1995-03-01

    The voltage and power distributions in gas metal arc welding (GMAW) were studied both experimentally and numerically. The principal voltage drop takes place in the arc, which also constitutes the dominant power contribution. Within the arc, the dominating voltage contributions are from the arc column and the cathode fall, while the anode fall and the electrode regions are less significant. The power input to the arc column increases with both increasing current and increasing arc length. These results indicate that it is critical to control the arc length in order to control the power input to the system.

  4. New highly linear tunable transconductor circuits with low number of MOS transistors

    NASA Astrophysics Data System (ADS)

    Yucel, Firat; Yuce, Erkan

    2016-08-01

    In this article, two new highly linear tunable transconductor circuits are proposed. The transconductors employ only six MOS transistors operated in saturation region. The second transconductor is derived from the first one with a slight modification. Transconductance of both transconductors can be tuned by a control voltage. Both of the transconductors do not need any additional bias voltages and currents. Another important feature of the transconductors is their high input and output impedances for cascadability with other circuits. Besides, total harmonic distortions are less than 1.5% for both transconductors. A positive lossless grounded inductor simulator with a grounded capacitor is given as an application example of the transconductors. Simulation and experimental test results are included to show effectiveness of the proposed circuits.

  5. Pulse shaping system

    DOEpatents

    Skeldon, Mark D.; Letzring, Samuel A.

    1999-03-23

    Temporally shaped electrical waveform generation provides electrical waveforms suitable for driving an electro-optic modulator (EOM) which produces temporally shaped optical laser pulses for inertial confinement fusion (ICF) research. The temporally shaped electrical waveform generation is carried out with aperture coupled transmission lines having an input transmission line and an aperture coupled output transmission line, along which input and output pulses propagate in opposite directions. The output electrical waveforms are shaped principally due to the selection of coupling aperture width, in a direction transverse to the lines, which varies along the length of the line. Specific electrical waveforms, which may be high voltage (up to kilovolt range), are produced and applied to the EOM to produce specifically shaped optical laser pulses.

  6. Pulse shaping system

    DOEpatents

    Skeldon, M.D.; Letzring, S.A.

    1999-03-23

    Temporally shaped electrical waveform generation provides electrical waveforms suitable for driving an electro-optic modulator (EOM) which produces temporally shaped optical laser pulses for inertial confinement fusion (ICF) research. The temporally shaped electrical waveform generation is carried out with aperture coupled transmission lines having an input transmission line and an aperture coupled output transmission line, along which input and output pulses propagate in opposite directions. The output electrical waveforms are shaped principally due to the selection of coupling aperture width, in a direction transverse to the lines, which varies along the length of the line. Specific electrical waveforms, which may be high voltage (up to kilovolt range), are produced and applied to the EOM to produce specifically shaped optical laser pulses. 8 figs.

  7. Ferroelectric Field Effect Transistor Model Using Partitioned Ferroelectric Layer and Partial Polarization

    NASA Technical Reports Server (NTRS)

    MacLeod, Todd C.; Ho, Fat D.

    2004-01-01

    A model of an n-channel ferroelectric field effect transistor has been developed based on both theoretical and empirical data. The model is based on an existing model that incorporates partitioning of the ferroelectric layer to calculate the polarization within the ferroelectric material. The model incorporates several new aspects that are useful to the user. It takes into account the effect of a non-saturating gate voltage only partially polarizing the ferroelectric material based on the existing remnant polarization. The model also incorporates the decay of the remnant polarization based on the time history of the FFET. A gate pulse of a specific voltage; will not put the ferroelectric material into a single amount of polarization for that voltage, but instead vary with previous state of the material and the time since the last change to the gate voltage. The model also utilizes data from FFETs made from different types of ferroelectric materials to allow the user just to input the material being used and not recreate the entire model. The model also allows the user to input the quality of the ferroelectric material being used. The ferroelectric material quality can go from a theoretical perfect material with little loss and no decay to a less than perfect material with remnant losses and decay. This model is designed to be used by people who need to predict the external characteristics of a FFET before the time and expense of design and fabrication. It also allows the parametric evaluation of quality of the ferroelectric film on the overall performance of the transistor.

  8. Ultra low power consumption for self-oscillating nanoelectromechanical systems constructed by contacting two nanowires.

    PubMed

    Barois, T; Ayari, A; Vincent, P; Perisanu, S; Poncharal, P; Purcell, S T

    2013-04-10

    We report here the observation of a new self-oscillation mechanism in nanoelectromechanical systems (NEMS). A highly resistive nanowire was positioned to form a point-contact at a chosen vibration node of a silicon carbide nanowire resonator. Spontaneous and robust mechanical oscillations arise when a sufficient DC voltage is applied between the two nanowires. An original model predicting the threshold voltage is used to estimate the piezoresistivity of the point-contact in agreement with the observations. The measured input power is in the pW-range which is the lowest reported value for such systems. The simplicity of the contacting procedure and the low power consumption open a new route for integrable and low-loss self-excited NEMS devices.

  9. Modular compact solid-state modulators for particle accelerators

    NASA Astrophysics Data System (ADS)

    Zavadtsev, A. A.; Zavadtsev, D. A.; Churanov, D. V.

    2017-12-01

    The building of the radio frequency (RF) particle accelerator needs high-voltage pulsed modulator as a power supply for klystron or magnetron to feed the RF accelerating system. The development of a number of solid-state modulators for use in linear accelerators has allowed to develop a series of modular IGBT based compact solid-state modulators with different parameters. This series covers a wide range of needs in accelerator technology to feed a wide range of loads from the low power magnetrons to powerful klystrons. Each modulator of the series is built on base of a number of unified solid-state modules connected to the pulse transformer, and covers a wide range of modulators: voltage up to 250 kV, a peak current up to 250 A, average power up to 100 kW and the pulse duration up to 20 μsec. The parameters of the block with an overall dimensions 880×540×250 mm are: voltage 12 kV, peak current 1600 A, pulse duration 20 μsec, average power 10 kW with air-cooling and 40 kW with liquidcooling. These parameters do not represent a physical limit, and modulators to parameters outside these ranges can be created on request.

  10. A finite state machine read-out chip for integrated surface acoustic wave sensors

    NASA Astrophysics Data System (ADS)

    Rakshit, Sambarta; Iliadis, Agis A.

    2015-01-01

    A finite state machine based integrated sensor circuit suitable for the read-out module of a monolithically integrated SAW sensor on Si is reported. The primary sensor closed loop consists of a voltage controlled oscillator (VCO), a peak detecting comparator, a finite state machine (FSM), and a monolithically integrated SAW sensor device. The output of the system oscillates within a narrow voltage range that correlates with the SAW pass-band response. The period of oscillation is of the order of the SAW phase delay. We use timing information from the FSM to convert SAW phase delay to an on-chip 10 bit digital output operating on the principle of time to digital conversion (TDC). The control inputs of this digital conversion block are generated by a second finite state machine operating under a divided system clock. The average output varies with changes in SAW center frequency, thus tracking mass sensing events in real time. Based on measured VCO gain of 16 MHz/V our system will convert a 10 kHz SAW frequency shift to a corresponding mean voltage shift of 0.7 mV. A corresponding shift in phase delay is converted to a one or two bit shift in the TDC output code. The system can handle alternate SAW center frequencies and group delays simply by adjusting the VCO control and TDC delay control inputs. Because of frequency to voltage and phase to digital conversion, this topology does not require external frequency counter setups and is uniquely suitable for full monolithic integration of autonomous sensor systems and tags.

  11. Influence of voltage input to heavy metal removal from electroplating wastewater using electrocoagulation process

    NASA Astrophysics Data System (ADS)

    Wulan, D. R.; Cahyaningsih, S.; Djaenudin

    2017-03-01

    In medium capacity, electroplating industry usually treats wastewater until 5 m3 per day. Heavy metal content becomes concern that should be reduced. Previous studies performed electrocoagulation method on laboratory scale, either batch or continuous. This study was aimed to compare the influence of voltage input variation into heavy metal removal in electroplating wastewater treatment using electrocoagulation process on laboratory-scale in order to determine the optimum condition for scaling up the reactor into pilot-scale. The laboratory study was performed in 1.5 L glass reactor in batch system using wastewater from electroplating industry, the voltage input varied at 20, 30 and 40 volt. The electrode consisted of aluminium 32 cm2 as sacrifice anode and copper 32 cm2 as cathode. During 120 min electrocoagulation process, the pH value was measured using pH meter, whereas the heavy metal of chromium, copper, iron, and zinc concentration were analysed using Atomic Absorption Spectrophotometer (AAS). Result showed that removal of heavy metals from wastewater increased due to the increasing of voltage input. Different initial concentration of heavy metals on wastewater, resulted the different detention time. At pilot-scale reactor with 30 V voltage input, chromium, iron, and zinc reached removal efficiency until 89-98%, when copper reached 79% efficiency. At 40V, removal efficiencies increased on same detention time, i.e. chromium, iron, and zinc reached 89-99%, whereas copper reached 85%. These removal efficiencies have complied the government standard except for copper that had higher initial concentration in wastewater. Kinetic rate also calculated in this study as the basic factor for scaling up the process.

  12. Low-voltage analog front-end processor design for ISFET-based sensor and H+ sensing applications

    NASA Astrophysics Data System (ADS)

    Chung, Wen-Yaw; Yang, Chung-Huang; Peng, Kang-Chu; Yeh, M. H.

    2003-04-01

    This paper presents a modular-based low-voltage analog-front-end processor design in a 0.5mm double-poly double-metal CMOS technology for Ion Sensitive Field Effect Transistor (ISFET)-based sensor and H+ sensing applications. To meet the potentiometric response of the ISFET that is proportional to various H+ concentrations, the constant-voltage and constant current (CVCS) testing configuration has been used. Low-voltage design skills such as bulk-driven input pair, folded-cascode amplifier, bootstrap switch control circuits have been designed and integrated for 1.5V supply and nearly rail-to-rail analog to digital signal processing. Core modules consist of an 8-bit two-step analog-digital converter and bulk-driven pre-amplifiers have been developed in this research. The experimental results show that the proposed circuitry has an acceptable linearity to 0.1 pH-H+ sensing conversions with the buffer solution in the range of pH2 to pH12. The processor has a potential usage in battery-operated and portable healthcare devices and environmental monitoring applications.

  13. Bias-Voltage Stabilizer for HVHF Amplifiers in VHF Pulse-Echo Measurement Systems

    PubMed Central

    Choi, Hojong; Park, Chulwoo; Kim, Jungsuk; Jung, Hayong

    2017-01-01

    The impact of high-voltage–high-frequency (HVHF) amplifiers on echo-signal quality is greater with very-high-frequency (VHF, ≥100 MHz) ultrasound transducers than with low-frequency (LF, ≤15 MHz) ultrasound transducers. Hence, the bias voltage of an HVHF amplifier must be stabilized to ensure stable echo-signal amplitudes. We propose a bias-voltage stabilizer circuit to maintain stable DC voltages over a wide input range, thus reducing the harmonic-distortion components of the echo signals in VHF pulse-echo measurement systems. To confirm the feasibility of the bias-voltage stabilizer, we measured and compared the deviations in the gain of the HVHF amplifier with and without a bias-voltage stabilizer. Between −13 and 26 dBm, the measured gain deviations of a HVHF amplifier with a bias-voltage stabilizer are less than that of an amplifier without a bias-voltage stabilizer. In order to confirm the feasibility of the bias-voltage stabilizer, we compared the pulse-echo responses of the amplifiers, which are typically used for the evaluation of transducers or electronic components used in pulse-echo measurement systems. From the responses, we observed that the amplitudes of the echo signals of a VHF transducer triggered by the HVHF amplifier with a bias-voltage stabilizer were higher than those of the transducer triggered by the HVHF amplifier alone. The second, third, and fourth harmonic-distortion components of the HVHF amplifier with the bias-voltage stabilizer were also lower than those of the HVHF amplifier alone. Hence, the proposed scheme is a promising method for stabilizing the bias voltage of an HVHF amplifier, and improving the echo-signal quality of VHF transducers. PMID:29065526

  14. 47 CFR 80.959 - Radiotelephone transmitter.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... watts into 50 ohms nominal resistance when operated with its rated supply voltage. The transmitter must... capability of the transmitter, measurements of primary supply voltage and transmitter output power must be... voltage measured at the power input terminals to the transmitter terminated in a matching artificial load...

  15. MOSFET analog memory circuit achieves long duration signal storage

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Memory circuit maintains the signal voltage at the output of an analog signal amplifier when the input signal is interrupted or removed. The circuit uses MOSFET /Metal Oxide Semiconductor Field Effect Transistor/ devices as voltage-controlled switches, triggered by an external voltage-sensing device.

  16. Ultrasound transducer modeling-received voltage signals and the use of half-wavelength window layers with acoustic coupling layers.

    PubMed

    Willatzen, M

    1999-01-01

    A general set of modeling equations for lossless one-dimensional multilayer ultrasound transducers is presented based on first principles. In particular, a direct relationship between ultrasound transducer results and the underlying physical principles of electroacoustics is given. As such, the model may provide better physical understanding for designers not fully versed in electrical circuits theory or in linear system analyses. The model is suitable for time-domain analysis and monofrequency design. Special attention is given to the determination of the time-dependent voltage across the receiver electrodes subject to a general voltage input, but information on any (dynamic) variable of interest is provided. The basic equations governing the dynamics of the multilayer structure acting as transmitter as well as receiver are solved by Fourier analysis and by imposing continuity of velocity and pressure between layers. Sound transmission between the two piezoelectric circuits is assumed to take place in a water bath such that the Rayleigh equation can be used to obtain the incoming pressure at the receiver aperture from the acceleration of the opposing transmitter aperture. Comparison with experimental results is possible by allowing coupling to external electric impedances. A numerical test case using a multilayered 1-MHz transducer for flow meter applications was considered and good agreement with experiments was obtained in terms of voltage signals. The transducer contains a half-wavelength stainless steel layer needed to resist corrosion, the ability to operate at temperatures in a wide range from 20 to 150 degrees Celsius, resistance to impact from flowing particles in the medium, high pressure or vacuum, and pH values up to 10 in some locations. The influence of epoxy glue and grease acoustic coupling layers-between the piezoceramics and the stainless steel layer-in the range from 1 to 70 mum was examined. It was shown that, for the same layer thickness, epoxy glue is preferred as compared with grease, both in terms of signal shapes and amplitudes. Finally, inclusion of appropriate electric impedances in the transmitter and receiver circuits is found to affect signal pulses strongly.

  17. High static gain single-phase PFC based on a hybrid boost converter

    NASA Astrophysics Data System (ADS)

    Flores Cortez, Daniel; Maccarini, Marcello C.; Mussa, Samir A.; Barbi, Ivo

    2017-05-01

    In this paper, a single-phase unity power factor rectifier, based on a hybrid boost converter, resulting from the integration of a conventional dc-dc boost converter and a switched-capacitor voltage doubler is proposed, analysed, designed and tested. The high-power rectifier is controlled by two feedback loops with the same control strategy employed in the conventional boost-based rectifier. The main feature of the proposed rectifier is its ability to output a dc voltage larger than the double of the peak value of the input line voltage, while subjecting the power switches to half of the dc-link voltage, which contributes to reducing the cost and increasing the efficiency. Experimental data were obtained from a laboratory prototype with an input voltage of 220 Vrms, line frequency of 60 Hz, output voltage of 800 Vdc, load power of 1000 W and switching frequency of 50 kHz. The efficiency of the prototype, measured in the laboratory, was 96.5% for full load and 97% for half load.

  18. Membrane voltage changes in passive dendritic trees: a tapering equivalent cylinder model.

    PubMed

    Poznański, R R

    1988-01-01

    An exponentially tapering equivalent cylinder model is employed in order to approximate the loss of the dendritic trunk parameter observed from anatomical data on apical and basilar dendrites of CA1 and CA3 hippocampal pyramidal neurons. This model allows dendritic trees with a relative paucity of branching to be treated. In particular, terminal branches are not required to end at the same electrotonic distance. The Laplace transform method is used to obtain analytic expressions for the Green's function corresponding to an instantaneous pulse of current injected at a single point along a tapering equivalent cylinder with sealed ends. The time course of the voltage in response to an arbitrary input is computed using the Green's function in a convolution integral. Examples of current input considered are (1) an infinitesimally brief (Dirac delta function) pulse and (2) a step pulse. It is demonstrated that inputs located on a tapering equivalent cylinder are more effective at the soma than identically placed inputs on a nontapering equivalent cylinder. Asymptotic solutions are derived to enable the voltage response behaviour over both relatively short and long time periods to be analysed. Semilogarithmic plots of these solutions provide a basis for estimating the membrane time constant tau m from experimental transients. Transient voltage decrement from a clamped soma reveals that tapering tends to reduce the error associated with inadequate voltage clamping of the dendritic membrane. A formula is derived which shows that tapering tends to increase the estimate of the electrotonic length parameter L.

  19. Wide bandwidth phase-locked loop circuit

    NASA Technical Reports Server (NTRS)

    Koudelka, Robert David (Inventor)

    2005-01-01

    A PLL circuit uses a multiple frequency range PLL in order to phase lock input signals having a wide range of frequencies. The PLL includes a VCO capable of operating in multiple different frequency ranges and a divider bank independently configurable to divide the output of the VCO. A frequency detector detects a frequency of the input signal and a frequency selector selects an appropriate frequency range for the PLL. The frequency selector automatically switches the PLL to a different frequency range as needed in response to a change in the input signal frequency. Frequency range hysteresis is implemented to avoid operating the PLL near a frequency range boundary.

  20. Electro-optic high voltage sensor

    DOEpatents

    Davidson, James R.; Seifert, Gary D.

    2003-09-16

    A small sized electro-optic voltage sensor capable of accurate measurement of high voltages without contact with a conductor or voltage source is provided. When placed in the presence of an electric field, the sensor receives an input beam of electromagnetic radiation. A polarization beam displacer separates the input beam into two beams with orthogonal linear polarizations and causes one linearly polarized beam to impinge a crystal at a desired angle independent of temperature. The Pockels effect elliptically polarizes the beam as it travels through the crystal. A reflector redirects the beam back through the crystal and the beam displacer. On the return path, the polarization beam displacer separates the elliptically polarized beam into two output beams of orthogonal linear polarization. The system may include a detector for converting the output beams into electrical signals and a signal processor for determining the voltage based on an analysis of the output beams.

  1. Design and Analysis of Reconfigurable Analog System

    DTIC Science & Technology

    2011-02-01

    the number of the bits of the sub-ADC, the range of V is smaller than the full-scale input range by a factor of -L. If it is desired that Vin and Vst ...Transistor M1, M9, and M8 are off. Transistor M3 turns on which turns on transistor M7. As a result Vst is connected to V2. Since V2 was charged to Vdd when...Vutb), it disconnects the other output voltage ( Vst ) from the lower transistors (M2). A regenerative action helps both V0st and Vtb to reach their final

  2. 2.5 Gbit/s Optical Receiver Front-End Circuit with High Sensitivity and Wide Dynamic Range

    NASA Astrophysics Data System (ADS)

    Zhu, Tiezhu; Mo, Taishan; Ye, Tianchun

    2017-12-01

    An optical receiver front-end circuit is designed for passive optical network and fabricated in a 0.18 um CMOS technology. The whole circuit consists of a transimpedance amplifier (TIA), a single-ended to differential amplifier and an output driver. The TIA employs a cascode stage as the input stage and auxiliary amplifier to reduce the miller effect. Current injecting technique is employed to enlarge the input transistor's transconductance, optimize the noise performance and overcome the lack of voltage headroom. To achieve a wide dynamic range, an automatic gain control circuit with self-adaptive function is proposed. Experiment results show an optical sensitivity of -28 dBm for a bit error rate of 10-10 at 2.5 Gbit/s and a maxim input optical power of 2 dBm using an external photodiode. The chip occupies an area of 1×0.9 mm2 and consumes around 30 mW from single 1.8 V supply. The front-end circuit can be used in various optical receivers.

  3. Extending Integrate-and-Fire Model Neurons to Account for the Effects of Weak Electric Fields and Input Filtering Mediated by the Dendrite.

    PubMed

    Aspart, Florian; Ladenbauer, Josef; Obermayer, Klaus

    2016-11-01

    Transcranial brain stimulation and evidence of ephaptic coupling have recently sparked strong interests in understanding the effects of weak electric fields on the dynamics of brain networks and of coupled populations of neurons. The collective dynamics of large neuronal populations can be efficiently studied using single-compartment (point) model neurons of the integrate-and-fire (IF) type as their elements. These models, however, lack the dendritic morphology required to biophysically describe the effect of an extracellular electric field on the neuronal membrane voltage. Here, we extend the IF point neuron models to accurately reflect morphology dependent electric field effects extracted from a canonical spatial "ball-and-stick" (BS) neuron model. Even in the absence of an extracellular field, neuronal morphology by itself strongly affects the cellular response properties. We, therefore, derive additional components for leaky and nonlinear IF neuron models to reproduce the subthreshold voltage and spiking dynamics of the BS model exposed to both fluctuating somatic and dendritic inputs and an extracellular electric field. We show that an oscillatory electric field causes spike rate resonance, or equivalently, pronounced spike to field coherence. Its resonance frequency depends on the location of the synaptic background inputs. For somatic inputs the resonance appears in the beta and gamma frequency range, whereas for distal dendritic inputs it is shifted to even higher frequencies. Irrespective of an external electric field, the presence of a dendritic cable attenuates the subthreshold response at the soma to slowly-varying somatic inputs while implementing a low-pass filter for distal dendritic inputs. Our point neuron model extension is straightforward to implement and is computationally much more efficient compared to the original BS model. It is well suited for studying the dynamics of large populations of neurons with heterogeneous dendritic morphology with (and without) the influence of weak external electric fields.

  4. Extending Integrate-and-Fire Model Neurons to Account for the Effects of Weak Electric Fields and Input Filtering Mediated by the Dendrite

    PubMed Central

    Obermayer, Klaus

    2016-01-01

    Transcranial brain stimulation and evidence of ephaptic coupling have recently sparked strong interests in understanding the effects of weak electric fields on the dynamics of brain networks and of coupled populations of neurons. The collective dynamics of large neuronal populations can be efficiently studied using single-compartment (point) model neurons of the integrate-and-fire (IF) type as their elements. These models, however, lack the dendritic morphology required to biophysically describe the effect of an extracellular electric field on the neuronal membrane voltage. Here, we extend the IF point neuron models to accurately reflect morphology dependent electric field effects extracted from a canonical spatial “ball-and-stick” (BS) neuron model. Even in the absence of an extracellular field, neuronal morphology by itself strongly affects the cellular response properties. We, therefore, derive additional components for leaky and nonlinear IF neuron models to reproduce the subthreshold voltage and spiking dynamics of the BS model exposed to both fluctuating somatic and dendritic inputs and an extracellular electric field. We show that an oscillatory electric field causes spike rate resonance, or equivalently, pronounced spike to field coherence. Its resonance frequency depends on the location of the synaptic background inputs. For somatic inputs the resonance appears in the beta and gamma frequency range, whereas for distal dendritic inputs it is shifted to even higher frequencies. Irrespective of an external electric field, the presence of a dendritic cable attenuates the subthreshold response at the soma to slowly-varying somatic inputs while implementing a low-pass filter for distal dendritic inputs. Our point neuron model extension is straightforward to implement and is computationally much more efficient compared to the original BS model. It is well suited for studying the dynamics of large populations of neurons with heterogeneous dendritic morphology with (and without) the influence of weak external electric fields. PMID:27893786

  5. 47 CFR 73.51 - Determining operating power.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... stage of the transmitter, using the following formula: Where: Antenna input power = Ep × Ip × F Ep=DC input voltage of final radio stage. Ip=Total DC input current of final radio stage. F= Efficiency factor...

  6. Impedance Matching Antenna-Integrated High-Efficiency Energy Harvesting Circuit

    PubMed Central

    Shinki, Yuharu; Shibata, Kyohei; Mansour, Mohamed

    2017-01-01

    This paper describes the design of a high-efficiency energy harvesting circuit with an integrated antenna. The circuit is composed of series resonance and boost rectifier circuits for converting radio frequency power into boosted direct current (DC) voltage. The measured output DC voltage is 5.67 V for an input of 100 mV at 900 MHz. Antenna input impedance matching is optimized for greater efficiency and miniaturization. The measured efficiency of this antenna-integrated energy harvester is 60% for −4.85 dBm input power and a load resistance equal to 20 kΩ at 905 MHz. PMID:28763043

  7. Impedance Matching Antenna-Integrated High-Efficiency Energy Harvesting Circuit.

    PubMed

    Shinki, Yuharu; Shibata, Kyohei; Mansour, Mohamed; Kanaya, Haruichi

    2017-08-01

    This paper describes the design of a high-efficiency energy harvesting circuit with an integrated antenna. The circuit is composed of series resonance and boost rectifier circuits for converting radio frequency power into boosted direct current (DC) voltage. The measured output DC voltage is 5.67 V for an input of 100 mV at 900 MHz. Antenna input impedance matching is optimized for greater efficiency and miniaturization. The measured efficiency of this antenna-integrated energy harvester is 60% for -4.85 dBm input power and a load resistance equal to 20 kΩ at 905 MHz.

  8. Programmable electronic synthesized capacitance

    NASA Technical Reports Server (NTRS)

    Kleinberg, Leonard L. (Inventor)

    1987-01-01

    A predetermined and variable synthesized capacitance which may be incorporated into the resonant portion of an electronic oscillator for the purpose of tuning the oscillator comprises a programmable operational amplifier circuit. The operational amplifier circuit has its output connected to its inverting input, in a follower configuration, by a network which is low impedance at the operational frequency of the circuit. The output of the operational amplifier is also connected to the noninverting input by a capacitor. The noninverting input appears as a synthesized capacitance which may be varied with a variation in gain-bandwidth product of the operational amplifier circuit. The gain-bandwidth product may, in turn, be varied with a variation in input set current with a digital to analog converter whose output is varied with a command word. The output impedance of the circuit may also be varied by the output set current. This circuit may provide very small ranges in oscillator frequency with relatively large control voltages unaffected by noise.

  9. Analog/digital pH meter system I.C.

    NASA Technical Reports Server (NTRS)

    Vincent, Paul; Park, Jea

    1992-01-01

    The project utilizes design automation software tools to design, simulate, and fabricate a pH meter integrated circuit (IC) system including a successive approximation type seven-bit analog to digital converter circuits using a 1.25 micron N-Well CMOS MOSIS process. The input voltage ranges from 0.5 to 1.0 V derived from a special type pH sensor, and the output is a three-digit decimal number display of pH with one decimal point.

  10. Phase detector for three-phase power factor controller

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1984-01-01

    A phase detector for the three phase power factor controller (PFC) is described. The phase detector for each phase includes an operational amplifier which senses the current phase angle for that phase by sensing the voltage across the phase thyristor. Common mode rejection is achieved by providing positive feedback between the input and output of the voltage sensing operational amplifier. this feedback preferably comprises a resistor connected between the output and input of the operational amplifier. The novelty of the invention resides in providing positive feedback such that switching of the operational amplifier is synchronized with switching of the voltage across the thyristor. The invention provides a solution to problems associated with high common mode voltage and enables use of lower cost components than would be required by other approaches.

  11. Off-set stabilizer for comparator output

    DOEpatents

    Lunsford, James S.

    1991-01-01

    A stabilized off-set voltage is input as the reference voltage to a comparator. In application to a time-interval meter, the comparator output generates a timing interval which is independent of drift in the initial voltage across the timing capacitor. A precision resistor and operational amplifier charge a capacitor to a voltage which is precisely offset from the initial voltage. The capacitance of the reference capacitor is selected so that substantially no voltage drop is obtained in the reference voltage applied to the comparator during the interval to be measured.

  12. Reconfigurable Resonant Regulating Rectifier With Primary Equalization for Extended Coupling- and Loading-Range in Bio-Implant Wireless Power Transfer.

    PubMed

    Li, Xing; Meng, Xiaodong; Tsui, Chi-Ying; Ki, Wing-Hung

    2015-12-01

    Wireless power transfer using reconfigurable resonant regulating (R(3)) rectification suffers from limited range in accommodating varying coupling and loading conditions. A primary-assisted regulation principle is proposed to mitigate these limitations, of which the amplitude of the rectifier input voltage on the secondary side is regulated by accordingly adjusting the voltage amplitude Veq on the primary side. A novel current-sensing method and calibration scheme track Veq on the primary side. A ramp generator simultaneously provides three clock signals for different modules. Both the primary equalizer and the R(3) rectifier are implemented as custom integrated circuits fabricated in a 0.35 μm CMOS process, with the global control implemented in FPGA. Measurements show that with the primary equalizer, the workable coupling and loading ranges are extended by 250% at 120 mW load and 300% at 1.2 cm coil distance compared to the same system without the primary equalizer. A maximum rectifier efficiency of 92.5% and a total system efficiency of 62.4% are demonstrated.

  13. Single flux quantum voltage amplifiers

    NASA Astrophysics Data System (ADS)

    Golomidov, Vladimir; Kaplunenko, Vsevolod; Khabipov, Marat; Koshelets, Valery; Kaplunenko, Olga

    The novel elements of the Rapid Single Flux Quantum (RSFQ) logic family — a Quasi Digital Voltage Parallel and Series Amplifiers (QDVA) have been computer simulated, designed and experimentally investigated. The Parallel QDVA consists of six stages and provides multiplication of the input voltage with factor five. The output resistance of the QDVA is five times larger than the input so this amplifier seems to be a good matching stage between RSFQL and usual semiconductor electronics. The series QDVA provides a gain factor four and involves two doublers connected by transmission line. The proposed parallel QDVA can be integrated on the same chip with a SQUID sensor.

  14. Single Event Burnout in DC-DC Converters for the LHC Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Claudio H. Rivetta et al.

    High voltage transistors in DC-DC converters are prone to catastrophic Single Event Burnout in the LHC radiation environment. This paper presents a systematic methodology to analyze single event effects sensitivity in converters and proposes solutions based on de-rating input voltage and output current or voltage.

  15. 75 FR 16957 - Energy Conservation Program: Test Procedures for Battery Chargers and External Power Supplies

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-02

    ... Procedures C. Review of Single-Voltage External Power Supply Test Procedure D. Multiple-Voltage External...) Deletions of Existing Definitions (b) Revisions to Existing Definitions (c) Additions of New Definitions 4. Test Apparatus and General Instructions (a) Confidence Intervals (b) Temperature (c) AC Input Voltage...

  16. Setups for in vitro assessment of RFID interference on pacemakers

    NASA Astrophysics Data System (ADS)

    Mattei, E.; Censi, F.; Delogu, A.; Ferrara, A.; Calcagnini, G.

    2013-08-01

    The aim of this study is to propose setups for in vitro assessment of RFID (radiofrequency identification) interference on pacemakers (PM). The voltage induced at the input stage of the PM by low-frequency (LF) and high-frequency (HF) RFID transmitters has been used to quantify the amount of the interference. A commercial PM was modified in order to measure the voltage at its input stage when exposed to a sinusoidal signal at 125 kHz and 13.56 MHz. At both frequencies, two antennas with different dimensions (diameter = 10 cm and 30 cm, respectively) were used to generate the interfering field, and the induced voltage was measured between the lead tip and the PM case (unipolar voltage), and between the tip and ring electrodes (bipolar voltage). The typical lead configurations adopted in similar studies or proposed by international standards, as well as lead paths closer to actual physiological implants were tested. At 125 kHz, the worst-case condition differs for the two antennas: the 10 cm antenna induced the highest voltage in the two-loop spiral configuration, whereas the 30 cm antenna in the 225 cm2 loop configuration. At 13.56 MHz, the highest voltage was observed for both the antennas in the 225 cm2 loop configuration. Bipolar voltages were found to be lower than the unipolar voltages induced in the same configurations, this difference being not as high as one could expect from theoretical considerations. The worst-case scenario, in terms of the induced voltage at the PM input stage, has been identified both for LF and HF readers, and for two sizes of transmitting antennas. These findings may provide the basis for the definition of a standard implant configuration and a lead path to test the EMI effects of LF and HF RFID transmitters on active implantable devices.

  17. Analysis performance of proton exchange membrane fuel cell (PEMFC)

    NASA Astrophysics Data System (ADS)

    Mubin, A. N. A.; Bahrom, M. H.; Azri, M.; Ibrahim, Z.; Rahim, N. A.; Raihan, S. R. S.

    2017-06-01

    Recently, the proton exchange membrane fuel cell (PEMFC) has gained much attention to the technology of renewable energy due to its mechanically ideal and zero emission power source. PEMFC performance reflects from the surroundings such as temperature and pressure. This paper presents an analysis of the performance of the PEMFC by developing the mathematical thermodynamic modelling using Matlab/Simulink. Apart from that, the differential equation of the thermodynamic model of the PEMFC is used to explain the contribution of heat to the performance of the output voltage of the PEMFC. On the other hand, the partial pressure equation of the hydrogen is included in the PEMFC mathematical modeling to study the PEMFC voltage behaviour related to the input variable input hydrogen pressure. The efficiency of the model is 33.8% which calculated by applying the energy conversion device equations on the thermal efficiency. PEMFC’s voltage output performance is increased by increasing the hydrogen input pressure and temperature.

  18. Design and dSpace interfacing of current fed high gain dc to dc boost converter for low voltage applications

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Debraj; Das, Subhrajit; Arunkumar, G.; Elangovan, D.; Ragunath, G.

    2017-11-01

    In this paper a current fed interleaved DC - DC boost converter which has an isolated topology and used for high voltage step up is proposed. A basic DC to DC boost converter converts uncontrolled DC voltage into controlled DC voltage of higher magnitude. Whereas this topology has the advantages of lower input current ripple, lesser output voltage, lesser stress on switches, faster transient response, improved reliability and much lesser electromagnetic emission over the conventional DC to DC boost converter. Most important benefit of this interleaved DC to DC boost converter is much higher efficiency. The input current is divided into two paths, substantially ohmic loss (I2R) and inductor ac loss gets reduced and finally the system achieves much higher efficiency. With recent mandates on energy saving interleaved DC to DC boost converter may be used as a very powerful tool to maintain good power density keeping the input current manageable. Higher efficiency also allows higher switching frequency and as a result the topology becomes more compact and cost friendly. The proposed topology boosts 48v DC to 200 V DC. Switching frequency is 100 kHz and PSIM 9.1 Platform has been used for the simulation.

  19. Pyrotechnic shock measurement and data analysis requirements

    NASA Technical Reports Server (NTRS)

    Albers, L.

    1975-01-01

    A study of laboratory measurement and analysis of pyrotechnic shock prompted by a discrepancy in preliminary Mariner Jupiter/Saturn shock test data is reported. It is shown that before generating shock response plots from any recorded pyrotechnic event, a complete review of each instrumentation and analysis system must be made. In addition, the frequency response capability of the tape recorder used should be as high as possible; the discrepancies in the above data were due to inadequate frequency response in the FM tape recorders. The slew rate of all conditioning amplifiers and input converters must be high enough to prevent signal distortion at maximum input voltage; amplifier ranges should be selected so that the input pulse is approximately 50% of full scale; the Bessel response type should be chosen for digital shock analysis if antialiasing filters are employed; and transducer selection must consider maximum acceleration limit, mounted resonance frequency, flat clean mounting surfaces, base bending sensitivity, and proper torque.

  20. Electrochemical impedance spectroscopy for study of electronic structure in disordered organic semiconductors—Possibilities and limitations

    NASA Astrophysics Data System (ADS)

    Schauer, F.; Nádaždy, V.; Gmucová, K.

    2018-04-01

    There is potential in applying conjugated polymers in novel organic optoelectronic devices, where a comprehensive understanding of the fundamental processes and energetics involved during transport and recombination is still lacking, limiting further device optimization. The electronic transport modeling and its optimization need the energy distribution of transport and defect states, expressed by the energy distribution of the Density of States (DOS) function, as input/comparative parameters. We present the Energy Resolved-Electrochemical Impedance Spectroscopy (ER-EIS) method for the study of transport and defect electronic states in organic materials. The method allows mapping over unprecedentedly wide energy and DOS ranges. The ER-EIS spectroscopic method is based on the small signal interaction between the surface of the organic film and the liquid electrolyte containing reduction-oxidation (redox) species, which is similar to the extraction of an electron by an acceptor and capture of an electron by a donor at a semiconductor surface. The desired DOS of electronic transport and defect states can be derived directly from the measured redox response signal to the small voltage perturbation at the instantaneous position of the Fermi energy, given by the externally applied voltage. The theory of the ER-EIS method and conditions for its validity for solid polymers are presented in detail. We choose four case studies on poly(3-hexylthiophene-2,5-diyl) and poly[methyl(phenyl)silane] to show the possibilities of the method to investigate the electronic structure expressed by DOS of polymers with a high resolution of about 6 orders of magnitude and in a wide energy range of 6 eV.

  1. Fabrication and characteristics of thin disc piezoelectric transformers based on piezoelectric buzzers with gap circles.

    PubMed

    Chang, Kuo-Tsai; Lee, Chun-Wei

    2008-04-01

    This paper investigates design, fabrication and test of thin disc piezoelectric transformers (PTs) based on piezoelectric buzzers with gap circles at different diameters of the gap circles. The performance test is focused on characteristics of voltage gains, including maximum voltage gains and maximum-gain frequencies, for each piezoelectric transformer under different load conditions. Both a piezoelectric buzzer and a gap circle on a silver electrode of the buzzer are needed to build any type of the PTs. Here, the gap circle is used to form a ring-shaped input electrode and a circle-shaped output electrode for each piezoelectric transformer. To do so, both structure and connection of a PT are first expressed. Then, operating principle of a PT and its related vibration mode observed by a carbon-power imaging technique are described. Moreover, an experimental setup for characterizing each piezoelectric transformer is constructed. Finally, effects of diameters of the gap circles on characteristics of voltage gains at different load resistances are discussed.

  2. ELECTRONIC MULTIPLIER

    DOEpatents

    Collier, D.M.; Meeks, L.A.; Palmer, J.P.

    1961-01-31

    S>An electronic multiplier is described for use in analog computers. Two electrical input signals are received; one controls the slope of a saw-tooth voltage wave while the other controls the time duration of the wave. A condenser and diode clamps are provided to sustain the crest voltage reached by the wave, and for storing that voltage to provide an output signal which is a steady d-c voltage.

  3. Investigation into the Effects of Microsecond Power Line Transients on Line-Connected Capacitors

    NASA Technical Reports Server (NTRS)

    Javor, K.

    2000-01-01

    An investigation was conducted into the effect of power-line transients on capacitors used by NASA and installed on platform primary power inputs to avionics. The purpose was to investigate whether capacitor voltage ratings needs to be derated for expected spike potentials. Concerns had been voiced in the past by NASA suppliers that MIL-STD-461 CS06-like requirements were overly harsh and led to physically large capacitors. The author had previously predicted that electrical-switching spike requirements representative of actual power-line transient potentials, durations. and source impedance would require no derating. This investigation bore out that prediction. It was further determined that traditional low source impedance CS06-like transients also will not damage a capacitor, although the spikes themselves are not nearly as well filtered. This report should be used to allay fears that CS06-like requirements drive capacitor voltage derating. Only that derating required by the relatively long duration transients in power quality specification need concern the equipment designer.

  4. Real Time Voltage and Current Phase Shift Analyzer for Power Saving Applications

    PubMed Central

    Krejcar, Ondrej; Frischer, Robert

    2012-01-01

    Nowadays, high importance is given to low energy devices (such as refrigerators, deep-freezers, washing machines, pumps, etc.) that are able to produce reactive power in power lines which can be optimized (reduced). Reactive power is the main component which overloads power lines and brings excessive thermal stress to conductors. If the reactive power is optimized, it can significantly lower the electricity consumption (from 10 to 30%—varies between countries). This paper will examine and discuss the development of a measuring device for analyzing reactive power. However, the main problem is the precise real time measurement of the input and output voltage and current. Such quality measurement is needed to allow adequate action intervention (feedback which reduces or fully compensates reactive power). Several other issues, such as the accuracy and measurement speed, must be examined while designing this device. The price and the size of the final product need to remain low as they are the two important parameters of this solution. PMID:23112662

  5. Investigation Into The Effects of Microsecond Power Line Transients On Line-Connected Capacitors

    NASA Technical Reports Server (NTRS)

    Javor, Ken

    1999-01-01

    An investigation was conducted into the effect of power-line transients on capacitors used by NASA and installed on platform primary power inputs to avionics. The purpose was to investigate whether capacitor voltage rating needs to be derated for expected spike potentials. Concerns had been voiced in the past by NASA suppliers that MIL-STD-461 CS06-like requirements were overly harsh and led to physically large capacitors. The author had previously predicted that electrical-switching spike requirements representative of actual power-line transient potentials, durations and source impedance would require no derating. This investigation bore out that prediction. It was further determined that traditional low source impedance CS06-like transients also will not damage a capacitor, although the spikes themselves are not nearly as well filtered. This report should be used to allay fears that CS06-like requirements drive capacitor voltage derating. Only that derating required by the relatively long duration transients in power quality specification need concern the equipment designer.

  6. Optimization of Passive Low Power Wireless Electromagnetic Energy Harvesters

    PubMed Central

    Nimo, Antwi; Grgić, Dario; Reindl, Leonhard M.

    2012-01-01

    This work presents the optimization of antenna captured low power radio frequency (RF) to direct current (DC) power converters using Schottky diodes for powering remote wireless sensors. Linearized models using scattering parameters show that an antenna and a matched diode rectifier can be described as a form of coupled resonator with different individual resonator properties. The analytical models show that the maximum voltage gain of the coupled resonators is mainly related to the antenna, diode and load (remote sensor) resistances at matched conditions or resonance. The analytical models were verified with experimental results. Different passive wireless RF power harvesters offering high selectivity, broadband response and high voltage sensitivity are presented. Measured results show that with an optimal resistance of antenna and diode, it is possible to achieve high RF to DC voltage sensitivity of 0.5 V and efficiency of 20% at −30 dBm antenna input power. Additionally, a wireless harvester (rectenna) is built and tested for receiving range performance. PMID:23202014

  7. Optimization of passive low power wireless electromagnetic energy harvesters.

    PubMed

    Nimo, Antwi; Grgić, Dario; Reindl, Leonhard M

    2012-10-11

    This work presents the optimization of antenna captured low power radio frequency (RF) to direct current (DC) power converters using Schottky diodes for powering remote wireless sensors. Linearized models using scattering parameters show that an antenna and a matched diode rectifier can be described as a form of coupled resonator with different individual resonator properties. The analytical models show that the maximum voltage gain of the coupled resonators is mainly related to the antenna, diode and load (remote sensor) resistances at matched conditions or resonance. The analytical models were verified with experimental results. Different passive wireless RF power harvesters offering high selectivity, broadband response and high voltage sensitivity are presented. Measured results show that with an optimal resistance of antenna and diode, it is possible to achieve high RF to DC voltage sensitivity of 0.5 V and efficiency of 20% at -30 dBm antenna input power. Additionally, a wireless harvester (rectenna) is built and tested for receiving range performance.

  8. Complementary theta resonance filtering by two spatially segregated mechanisms in CA1 hippocampal pyramidal neurons.

    PubMed

    Hu, Hua; Vervaeke, Koen; Graham, Lyle J; Storm, Johan F

    2009-11-18

    Synaptic input to a neuron may undergo various filtering steps, both locally and during transmission to the soma. Using simultaneous whole-cell recordings from soma and apical dendrites from rat CA1 hippocampal pyramidal cells, and biophysically detailed modeling, we found two complementary resonance (bandpass) filters of subthreshold voltage signals. Both filters favor signals in the theta (3-12 Hz) frequency range, but have opposite location, direction, and voltage dependencies: (1) dendritic H-resonance, caused by h/HCN-channels, filters signals propagating from soma to dendrite when the membrane potential is close to rest; and (2) somatic M-resonance, caused by M/Kv7/KCNQ and persistent Na(+) (NaP) channels, filters signals propagating from dendrite to soma when the membrane potential approaches spike threshold. Hippocampal pyramidal cells participate in theta network oscillations during behavior, and we suggest that that these dual, polarized theta resonance mechanisms may convey voltage-dependent tuning of theta-mediated neural coding in the entorhinal/hippocampal system during locomotion, spatial navigation, memory, and sleep.

  9. Characterization of 6H-SiC JFET Integrated Circuits Over A Broad Temperature Range from -150 C to +500 C

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.; Krasowski, Michael J.; Chen, Liang-Yu; Prokop, Norman F.

    2009-01-01

    The NASA Glenn Research Center has previously reported prolonged stable operation of simple prototype 6H-SiC JFET integrated circuits (logic gates and amplifier stages) for thousands of hours at +500 C. This paper experimentally investigates the ability of these 6H-SiC JFET devices and integrated circuits to also function at cold temperatures expected to arise in some envisioned applications. Prototype logic gate ICs experimentally demonstrated good functionality down to -125 C without changing circuit input voltages. Cascaded operation of gates at cold temperatures was verified by externally wiring gates together to form a 3-stage ring oscillator. While logic gate output voltages exhibited little change across the broad temperature range from -125 C to +500 C, the change in operating frequency and power consumption of these non-optimized logic gates as a function of temperature was much larger and tracked JFET channel conduction properties.

  10. A High-Linearity Low-Noise Amplifier with Variable Bandwidth for Neural Recoding Systems

    NASA Astrophysics Data System (ADS)

    Yoshida, Takeshi; Sueishi, Katsuya; Iwata, Atsushi; Matsushita, Kojiro; Hirata, Masayuki; Suzuki, Takafumi

    2011-04-01

    This paper describes a low-noise amplifier with multiple adjustable parameters for neural recording applications. An adjustable pseudo-resistor implemented by cascade metal-oxide-silicon field-effect transistors (MOSFETs) is proposed to achieve low-signal distortion and wide variable bandwidth range. The amplifier has been implemented in 0.18 µm standard complementary metal-oxide-semiconductor (CMOS) process and occupies 0.09 mm2 on chip. The amplifier achieved a selectable voltage gain of 28 and 40 dB, variable bandwidth from 0.04 to 2.6 Hz, total harmonic distortion (THD) of 0.2% with 200 mV output swing, input referred noise of 2.5 µVrms over 0.1-100 Hz and 18.7 µW power consumption at a supply voltage of 1.8 V.

  11. Modeling of a 5-cell direct methanol fuel cell using adaptive-network-based fuzzy inference systems

    NASA Astrophysics Data System (ADS)

    Wang, Rongrong; Qi, Liang; Xie, Xiaofeng; Ding, Qingqing; Li, Chunwen; Ma, ChenChi M.

    The methanol concentrations, temperature and current were considered as inputs, the cell voltage was taken as output, and the performance of a direct methanol fuel cell (DMFC) was modeled by adaptive-network-based fuzzy inference systems (ANFIS). The artificial neural network (ANN) and polynomial-based models were selected to be compared with the ANFIS in respect of quality and accuracy. Based on the ANFIS model obtained, the characteristics of the DMFC were studied. The results show that temperature and methanol concentration greatly affect the performance of the DMFC. Within a restricted current range, the methanol concentration does not greatly affect the stack voltage. In order to obtain higher fuel utilization efficiency, the methanol concentrations and temperatures should be adjusted according to the load on the system.

  12. System for transmitting low frequency analog signals over AC power lines

    DOEpatents

    Baker, Steven P.; Durall, Robert L.; Haynes, Howard D.

    1989-01-01

    A system for transmitting low frequency analog signals over AC power lines using FM modulation. A low frequency analog signal to be transmitted is first applied to a voltage-to-frequency converter where it is converted to a signal whose frequency varies in proportion to the analog signal amplitude. This signal is then used to modulate the carrier frequency of an FM transmitter coupled to an AC power line. The modulation signal frequency range in selected to be within the response band of the FM transmitter. The FM modulated carrier signal is received by an FM receiver coupled to the AC power line, demodulated and the demodulated signal frequency is converted by a frequency-to-voltage converter back to the form of the original low frequency analog input signal.

  13. System for transmitting low frequency analog signals over AC power lines

    DOEpatents

    Baker, Steven P.; Durall, Robert L.; Haynes, Howard D.

    1989-09-05

    A system for transmitting low frequency analog signals over AC power lines using FM modulation. A low frequency analog signal to be transmitted is first applied to a voltage-to-frequency converter where it is converted to a signal whose frequency varies in proportion to the analog signal amplitude. This signal is then used to modulate the carrier frequency of an FM transmitter coupled to an AC power line. The modulation signal frequency range in selected to be within the response band of the FM transmitter. The FM modulated carrier signal is received by an FM receiver coupled to the AC power line, demodulated and the demodulated signal frequency is converted by a frequency-to-voltage converter back to the form of the original low frequency analog input signal.

  14. A system for tranmitting low frequency analog signals over ac power lines

    DOEpatents

    Baker, S.P.; Durall, R.L.; Haynes, H.D.

    1987-07-30

    A system for transmitting low frequency analog signals over ac power lines using FM modulation. A low frequency analog signal to be transmitted is first applied to a voltage-to-frequency converter where it is converted to a signal whose frequency varies in proportion to the analog signal amplitude. This signal is then used to modulate the carrier frequency of an FM transmitter coupled to an ac power line. The modulation signal frequency range is selected to be within the response band of the FM transmitter. The FM modulated carrier signal is received by an FM receiver coupled to the ac power line, demodulated and the demodulated signal frequency is converted by a frequency-to-voltage converter back to the form of the original low frequency analog input signal. 4 figs.

  15. Electrical Advantages of Dendritic Spines

    PubMed Central

    Gulledge, Allan T.; Carnevale, Nicholas T.; Stuart, Greg J.

    2012-01-01

    Many neurons receive excitatory glutamatergic input almost exclusively onto dendritic spines. In the absence of spines, the amplitudes and kinetics of excitatory postsynaptic potentials (EPSPs) at the site of synaptic input are highly variable and depend on dendritic location. We hypothesized that dendritic spines standardize the local geometry at the site of synaptic input, thereby reducing location-dependent variability of local EPSP properties. We tested this hypothesis using computational models of simplified and morphologically realistic spiny neurons that allow direct comparison of EPSPs generated on spine heads with EPSPs generated on dendritic shafts at the same dendritic locations. In all morphologies tested, spines greatly reduced location-dependent variability of local EPSP amplitude and kinetics, while having minimal impact on EPSPs measured at the soma. Spine-dependent standardization of local EPSP properties persisted across a range of physiologically relevant spine neck resistances, and in models with variable neck resistances. By reducing the variability of local EPSPs, spines standardized synaptic activation of NMDA receptors and voltage-gated calcium channels. Furthermore, spines enhanced activation of NMDA receptors and facilitated the generation of NMDA spikes and axonal action potentials in response to synaptic input. Finally, we show that dynamic regulation of spine neck geometry can preserve local EPSP properties following plasticity-driven changes in synaptic strength, but is inefficient in modifying the amplitude of EPSPs in other cellular compartments. These observations suggest that one function of dendritic spines is to standardize local EPSP properties throughout the dendritic tree, thereby allowing neurons to use similar voltage-sensitive postsynaptic mechanisms at all dendritic locations. PMID:22532875

  16. Electrothermal actuation based on carbon nanotube network in silicone elastomer

    NASA Astrophysics Data System (ADS)

    Chen, L. Z.; Liu, C. H.; Hu, C. H.; Fan, S. S.

    2008-06-01

    The authors report an electrothermal actuator, which is fabricated by involving carbon nanotube network into the silicone elastomer. The actuators exhibit excellent performances as good as normal dielectric elastomer actuators while working under much lower voltages (e.g., 1.5Vmm-1). They are longitudinal actuators and there is no need for stacking or rolling sheets of materials. In addition, they can satisfy the demand of different voltage applications ranging from dozens of voltages to thousands of voltages by using different carbon nanotube loading composites. Visible maximal strain of 4.4% occurs at an electric power intensity around 0.03Wmm-3.

  17. Method and apparatus for frequency spectrum analysis

    NASA Technical Reports Server (NTRS)

    Cole, Steven W. (Inventor)

    1992-01-01

    A method for frequency spectrum analysis of an unknown signal in real-time is discussed. The method is based upon integration of 1-bit samples of signal voltage amplitude corresponding to sine or cosine phases of a controlled center frequency clock which is changed after each integration interval to sweep the frequency range of interest in steps. Integration of samples during each interval is carried out over a number of cycles of the center frequency clock spanning a number of cycles of an input signal to be analyzed. The invention may be used to detect the frequency of at least two signals simultaneously. By using a reference signal of known frequency and voltage amplitude (added to the two signals for parallel processing in the same way, but in a different channel with a sampling at the known frequency and phases of the reference signal), the absolute voltage amplitude of the other two signals may be determined by squaring the sine and cosine integrals of each channel and summing the squares to obtain relative power measurements in all three channels and, from the known voltage amplitude of the reference signal, obtaining an absolute voltage measurement for the other two signals by multiplying the known voltage of the reference signal with the ratio of the relative power of each of the other two signals to the relative power of the reference signal.

  18. A fully integrated neural recording amplifier with DC input stabilization.

    PubMed

    Mohseni, Pedram; Najafi, Khalil

    2004-05-01

    This paper presents a low-power low-noise fully integrated bandpass operational amplifier for a variety of biomedical neural recording applications. A standard two-stage CMOS amplifier in a closed-loop resistive feedback configuration provides a stable ac gain of 39.3 dB at 1 kHz. A subthreshold PMOS input transistor is utilized to clamp the large and random dc open circuit potentials that normally exist at the electrode-electrolyte interface. The low cutoff frequency of the amplifier is programmable up to 50 Hz, while its high cutoff frequency is measured to be 9.1 kHz. The tolerable dc input range is measured to be at least +/- 0.25 V with a dc rejection factor of at least 29 dB. The amplifier occupies 0.107 mm2 in die area, and dissipates 115 microW from a 3 V power supply. The total measured input-referred noise voltage in the frequency range of 0.1-10 kHz is 7.8 microVrms. It is fabricated using AMI 1.5 microm double-poly double-metal n-well CMOS process. This paper presents full characterization of the dc, ac, and noise performance of this amplifier through in vitro measurements in saline using two different neural recording electrodes.

  19. Two-electrode non-differential biopotential amplifier.

    PubMed

    Dobrev, D

    2002-09-01

    A circuit is proposed for a non-differential two-electrode biopotential amplifier, with a current source and a transimpedance amplifier as a potential equaliser for its inputs, fully emulating a differential amplifier. The principle of operation is that the current in the input of the transimpedance amplifier is sensed and made to flow with the same value in the other input. The circuit has a simple structure and uses a small number of components. The current source maintains balanced common-mode interference currents, thus ensuring high signal input impedance. In addition, these currents can be tolerated up to more than 10 microA per input, at a supply voltage of +/- 5 V. A two-electrode differential amplifier with 2 x 10 Mohm input resistances to the reference point allows less than 0.5 microA per input. The circuit can be useful in cases of biosignal acquisition by portable instruments, using low supply voltages, from subjects in areas of high electromagnetic fields. Examples include biosignal recordings in electric power stations and electrically powered locomotives, where traditionally designed input amplifier stages can be saturated.

  20. Annealing effects on hydrogenated diamond NOR logic circuits

    NASA Astrophysics Data System (ADS)

    Liu, J. W.; Oosato, H.; Liao, M. Y.; Imura, M.; Watanabe, E.; Koide, Y.

    2018-04-01

    Here, hydrogenated diamond (H-diamond) NOR logic circuits composed of two p-type enhancement-mode (E-mode) metal-oxide-semiconductor field-effect-transistors (MOSFETs) and a load resistor are fabricated and characterized. The fabrication process and the annealing effect on the electrical properties of the NOR logic circuit are demonstrated. There are distinct logical characteristics for the as-received and 300 °C annealed NOR logic circuits. When one or both input voltages for the E-mode MOSFETs are -10.0 V and "high" signals, output voltages respond 0 V and "low" signals. Instead, when both input voltages are 0 V and "low" signals, output voltage responds -10.0 V and a "high" signal. After annealing at 400 °C, the NOR logical characteristics are damaged, which is possibly attributed to the degradation of the H-diamond MOSFETs.

  1. Direct current ballast circuit for metal halide lamp

    NASA Technical Reports Server (NTRS)

    Lutus, P. (Inventor)

    1981-01-01

    A direct current ballast circuit for a two electrode metal halide lamp is described. Said direct current ballast circuit includes a low voltage DC input and a high frequency power amplifier and power transformer for developing a high voltage output. The output voltage is rectified by diodes and filtered by inductor and capacitor to provide a regulated DC output through commutating diodes to one terminal of the lamp at the output terminal. A feedback path from the output of the filter capacitor through the bias resistor to power the high frequency circuit which includes the power amplifier and the power transformer for sustaining circuit operations during low voltage transients on the input DC supply is described. A current sensor connected to the output of the lamp through terminal for stabilizing lamp current following breakdown of the lamp is described.

  2. Starting Circuit For Erasable Programmable Logic Device

    NASA Technical Reports Server (NTRS)

    Cole, Steven W.

    1990-01-01

    Voltage regulator bypassed to supply starting current. Starting or "pullup" circuit supplies large inrush of current required by erasable programmable logic device (EPLD) while being turned on. Operates only during such intervals of high demand for current and has little effect any other time. Performs needed bypass, acting as current-dependent shunt connecting battery or other source of power more nearly directly to EPLD. Input capacitor of regulator removed when starting circuit installed, reducing probability of damage to transistor in event of short circuit in or across load.

  3. Solutions for transients in arbitrarily branching cables: III. Voltage clamp problems.

    PubMed

    Major, G

    1993-07-01

    Branched cable voltage recording and voltage clamp analytical solutions derived in two previous papers are used to explore practical issues concerning voltage clamp. Single exponentials can be fitted reasonably well to the decay phase of clamped synaptic currents, although they contain many underlying components. The effective time constant depends on the fit interval. The smoothing effects on synaptic clamp currents of dendritic cables and series resistance are explored with a single cylinder + soma model, for inputs with different time courses. "Soma" and "cable" charging currents cannot be separated easily when the soma is much smaller than the dendrites. Subtractive soma capacitance compensation and series resistance compensation are discussed. In a hippocampal CA1 pyramidal neurone model, voltage control at most dendritic sites is extremely poor. Parameter dependencies are illustrated. The effects of series resistance compound those of dendritic cables and depend on the "effective capacitance" of the cell. Plausible combinations of parameters can cause order-of-magnitude distortions to clamp current waveform measures of simulated Schaeffer collateral inputs. These voltage clamp problems are unlikely to be solved by the use of switch clamp methods.

  4. Frequency Preference Response to Oscillatory Inputs in Two-dimensional Neural Models: A Geometric Approach to Subthreshold Amplitude and Phase Resonance.

    PubMed

    Rotstein, Horacio G

    2014-01-01

    We investigate the dynamic mechanisms of generation of subthreshold and phase resonance in two-dimensional linear and linearized biophysical (conductance-based) models, and we extend our analysis to account for the effect of simple, but not necessarily weak, types of nonlinearities. Subthreshold resonance refers to the ability of neurons to exhibit a peak in their voltage amplitude response to oscillatory input currents at a preferred non-zero (resonant) frequency. Phase-resonance refers to the ability of neurons to exhibit a zero-phase (or zero-phase-shift) response to oscillatory input currents at a non-zero (phase-resonant) frequency. We adapt the classical phase-plane analysis approach to account for the dynamic effects of oscillatory inputs and develop a tool, the envelope-plane diagrams, that captures the role that conductances and time scales play in amplifying the voltage response at the resonant frequency band as compared to smaller and larger frequencies. We use envelope-plane diagrams in our analysis. We explain why the resonance phenomena do not necessarily arise from the presence of imaginary eigenvalues at rest, but rather they emerge from the interplay of the intrinsic and input time scales. We further explain why an increase in the time-scale separation causes an amplification of the voltage response in addition to shifting the resonant and phase-resonant frequencies. This is of fundamental importance for neural models since neurons typically exhibit a strong separation of time scales. We extend this approach to explain the effects of nonlinearities on both resonance and phase-resonance. We demonstrate that nonlinearities in the voltage equation cause amplifications of the voltage response and shifts in the resonant and phase-resonant frequencies that are not predicted by the corresponding linearized model. The differences between the nonlinear response and the linear prediction increase with increasing levels of the time scale separation between the voltage and the gating variable, and they almost disappear when both equations evolve at comparable rates. In contrast, voltage responses are almost insensitive to nonlinearities located in the gating variable equation. The method we develop provides a framework for the investigation of the preferred frequency responses in three-dimensional and nonlinear neuronal models as well as simple models of coupled neurons.

  5. The Direct Digital Modulation of Traveling Wave Tubes

    NASA Technical Reports Server (NTRS)

    Radhamohan, Ranjan S.

    2004-01-01

    Traveling wave tube (TWT) technology, first described by Rudolf Kompfner in the early 1940s, has been a key component of space missions from the earliest communication satellites in the 1960s to the Cassini probe today. TWTs are essentially signal amplifiers that have the special capability of operating at microwave frequencies. The microwave frequency range, which spans from approximately 500 MHz to 300 GHz, is shared by many technologies including cellular phones, satellite television, space communication, and radar. TWT devices are superior in reliability, weight, and efficiency to solid-state amplifiers at the high power and frequency levels required for most space missions. TWTs have three main components -an electron gun, slow wave structure, and collector. The electron gun generates an electron beam that moves along the length of the tube axis, inside of the slow wave circuit. At the same time, the inputted signal is slowed by its travel through the coils of the helical slow wave circuit. The interaction of the electron beam and this slowed signal produces a transfer of kinetic energy to the signal, and in turn, amplification. At the end of its travel, the spent electron beam moves into the collector where its remaining energy is dissipated as heat or harnessed for reuse. TWTs can easily produce gains in the tens of decibels, numbers that are suitable for space missions. To date, however, TWTs have typically operated at fixed levels of gain. This gain is determined by various, unchanging, physical factors of the tube. Traditionally, to achieve varying gain, an input signal s amplitude has had to first be modulated by a separate device before being fed into the TWT. This is not always desirable, as significant distortion can occur in certain situations. My mentor, Mr. Dale Force, has proposed an innovative solution to this problem called direct digital modulation . The testing and implementation of this solution is the focus of my summer internship. The direct digital modulation of a TWT removes the need for a separate amplitude modulation device. Instead, different levels of gain are achieved by varying the electron beam current. The lower the current, the less kinetic energy is available to be transferred to the signal. To vary the current, a grid is placed in-between the electron gun and the slow wave circuit. By changing the voltage across the grid, the electron beam current can be controlled. Grid technology has mostly been used in pulse applications such as radar, where only two voltage states are necessary. For direct digital modulation, however, a continuous range of voltages is required.

  6. Device and method for measuring the coefficient of performance of a heat pump

    DOEpatents

    Brantley, V.R.; Miller, D.R.

    1982-05-18

    A method and instrument is provided which allows quick and accurate measurement of the coefficient of performance of an installed electrically powered heat pump including auxiliary resistane heaters. Temperature-sensitive resistors are placed in the return and supply air ducts to measure the temperature increase of the air across the refrigerant and resistive-heating elements of the system. The voltages across the resistors which are directly proportional to the respective duct tempertures are applied to the inputs of a differential amplifier so that its output voltage is proportional to the temperature difference across the unit. A voltage-to-frequency converter connected to the output of the differential amplifier converts the voltage signal to a proportional-frequency signal. A digital watt meter is used to measure the power to the unit and produces a signal having a frequency proportional to the input power. A digital logic circuit ratios the temperature difference signal and the electric power input signal in a unique manner to produce a single number which is the coefficient of performance of the unit over the test interval. The digital logic and an in-situ calibration procedure enables the instrument to make these measurements in such a way that the ratio of heat flow/power input is obtained without computations. No specialized knowledge of thermodynamics or electrons is required to operate the instrument.

  7. Device and method for measuring the coefficient of performance of a heat pump

    DOEpatents

    Brantley, Vanston R.; Miller, Donald R.

    1984-01-01

    A method and instrument is provided which allows quick and accurate measurement of the coefficient of performance of an installed electrically powered heat pump including auxiliary resistance heaters. Temperature sensitive resistors are placed in the return and supply air ducts to measure the temperature increase of the air across the refrigerant and resistive heating elements of the system. The voltages across the resistors which are directly proportional to the respective duct temperatures are applied to the inputs of a differential amplifier so that its output voltage is proportional to the temperature difference across the unit. A voltage-to-frequency converter connected to the output of the differential amplifier converts the voltage signal to a proportional frequency signal. A digital watt meter is used to measure the power to the unit and produces a signal having a frequency proportional to the input power. A digital logic circuit ratios the temperature difference signal and the electric power input signal in a unique manner to produce a single number which is the coefficient of performance of the unit over the test interval. The digital logic and an in-situ calibration procedure enables the instrument to make these measurements in such a way that the ratio of heat flow/power input is obtained without computations. No specialized knowledge of thermodynamics or electronics is required to operate the instrument.

  8. Analysis of Pull-In Instability of Geometrically Nonlinear Microbeam Using Radial Basis Artificial Neural Network Based on Couple Stress Theory

    PubMed Central

    Heidari, Mohammad; Heidari, Ali; Homaei, Hadi

    2014-01-01

    The static pull-in instability of beam-type microelectromechanical systems (MEMS) is theoretically investigated. Two engineering cases including cantilever and double cantilever microbeam are considered. Considering the midplane stretching as the source of the nonlinearity in the beam behavior, a nonlinear size-dependent Euler-Bernoulli beam model is used based on a modified couple stress theory, capable of capturing the size effect. By selecting a range of geometric parameters such as beam lengths, width, thickness, gaps, and size effect, we identify the static pull-in instability voltage. A MAPLE package is employed to solve the nonlinear differential governing equations to obtain the static pull-in instability voltage of microbeams. Radial basis function artificial neural network with two functions has been used for modeling the static pull-in instability of microcantilever beam. The network has four inputs of length, width, gap, and the ratio of height to scale parameter of beam as the independent process variables, and the output is static pull-in voltage of microbeam. Numerical data, employed for training the network, and capabilities of the model have been verified in predicting the pull-in instability behavior. The output obtained from neural network model is compared with numerical results, and the amount of relative error has been calculated. Based on this verification error, it is shown that the radial basis function of neural network has the average error of 4.55% in predicting pull-in voltage of cantilever microbeam. Further analysis of pull-in instability of beam under different input conditions has been investigated and comparison results of modeling with numerical considerations shows a good agreement, which also proves the feasibility and effectiveness of the adopted approach. The results reveal significant influences of size effect and geometric parameters on the static pull-in instability voltage of MEMS. PMID:24860602

  9. Lower-Order Compensation Chain Threshold-Reduction Technique for Multi-Stage Voltage Multipliers.

    PubMed

    Dell' Anna, Francesco; Dong, Tao; Li, Ping; Wen, Yumei; Azadmehr, Mehdi; Casu, Mario; Berg, Yngvar

    2018-04-17

    This paper presents a novel threshold-compensation technique for multi-stage voltage multipliers employed in low power applications such as passive and autonomous wireless sensing nodes (WSNs) powered by energy harvesters. The proposed threshold-reduction technique enables a topological design methodology which, through an optimum control of the trade-off among transistor conductivity and leakage losses, is aimed at maximizing the voltage conversion efficiency (VCE) for a given ac input signal and physical chip area occupation. The conducted simulations positively assert the validity of the proposed design methodology, emphasizing the exploitable design space yielded by the transistor connection scheme in the voltage multiplier chain. An experimental validation and comparison of threshold-compensation techniques was performed, adopting 2N5247 N-channel junction field effect transistors (JFETs) for the realization of the voltage multiplier prototypes. The attained measurements clearly support the effectiveness of the proposed threshold-reduction approach, which can significantly reduce the chip area occupation for a given target output performance and ac input signal.

  10. Detonation control

    DOEpatents

    Mace, Jonathan L.; Seitz, Gerald J.; Bronisz, Lawrence E.

    2016-10-25

    Detonation control modules and detonation control circuits are provided herein. A trigger input signal can cause a detonation control module to trigger a detonator. A detonation control module can include a timing circuit, a light-producing diode such as a laser diode, an optically triggered diode, and a high-voltage capacitor. The trigger input signal can activate the timing circuit. The timing circuit can control activation of the light-producing diode. Activation of the light-producing diode illuminates and activates the optically triggered diode. The optically triggered diode can be coupled between the high-voltage capacitor and the detonator. Activation of the optically triggered diode causes a power pulse to be released from the high-voltage capacitor that triggers the detonator.

  11. Quality engineering tools focused on high power LED driver design using boost power stages in switch mode

    NASA Astrophysics Data System (ADS)

    Ileana, Ioan; Risteiu, Mircea; Marc, Gheorghe

    2016-12-01

    This paper is a part of our research dedicated to high power LED lamps designing. The boost-up selected technology wants to meet driver producers' tendency in the frame of efficiency and disturbances constrains. In our work we used modeling and simulation tools for implementing scenarios of the driver work when some controlling functions are executed (output voltage/ current versus input voltage and fixed switching frequency, input and output electric power transfer versus switching frequency, transient inductor voltage analysis, and transient out capacitor analysis). Some electrical and thermal stress conditions are also analyzed. Based on these aspects, a high reliable power LED driver has been designed.

  12. Voltage mode electronically tunable full-wave rectifier

    NASA Astrophysics Data System (ADS)

    Petrović, Predrag B.; Vesković, Milan; Đukić, Slobodan

    2017-01-01

    The paper presents a new realization of bipolar full-wave rectifier of input sinusoidal signals, employing one MO-CCCII (multiple output current controlled current conveyor), a zero-crossing detector (ZCD), and one resistor connected to fixed potential. The circuit provides the operating frequency up to 10 MHz with increased linearity and precision in processing of input voltage signal, with a very low harmonic distortion. The errors related to the signal processing and errors bound were investigated and provided in the paper. The PSpice simulations are depicted and agree well with the theoretical anticipation. The maximum power consumption of the converter is approximately 2.83 mW, at ±1.2 V supply voltages.

  13. Compensation for electrical converter nonlinearities

    DOEpatents

    Perisic, Milun; Ransom, Ray M; Kajouke, Lateef A

    2013-11-19

    Systems and methods are provided for delivering energy from an input interface to an output interface. An electrical system includes an input interface, an output interface, an energy conversion module between the input interface and the output interface, an inductive element between the input interface and the energy conversion module, and a control module. The control module determines a compensated duty cycle control value for operating the energy conversion module to produce a desired voltage at the output interface and operates the energy conversion module to deliver energy to the output interface with a duty cycle that is influenced by the compensated duty cycle control value. The compensated duty cycle control value is influenced by the current through the inductive element and accounts for voltage across the switching elements of the energy conversion module.

  14. A 1-channel 3-band wide dynamic range compression chip for vibration transducer of implantable hearing aids.

    PubMed

    Kim, Dongwook; Seong, Kiwoong; Kim, Myoungnam; Cho, Jinho; Lee, Jyunghyun

    2014-01-01

    In this paper, a digital audio processing chip which uses a wide dynamic range compression (WDRC) algorithm is designed and implemented for implantable hearing aids system. The designed chip operates at a single voltage of 3.3V and drives a 16 bit parallel input and output at 32 kHz sample. The designed chip has 1-channel 3-band WDRC composed of a FIR filter bank, a level detector, and a compression part. To verify the performance of the designed chip, we measured the frequency separations of bands and compression gain control to reflect the hearing threshold level.

  15. Meter circuit for tuning RF amplifiers

    NASA Technical Reports Server (NTRS)

    Longthorne, J. E.

    1973-01-01

    Circuit computes and indicates efficiency of RF amplifier as inputs and other parameters are varied. Voltage drop across internal resistance of ammeter is amplified by operational amplifier and applied to one multiplier input. Other input is obtained through two resistors from positive terminal of power supply.

  16. The interference of electronic implants in low frequency electromagnetic fields.

    PubMed

    Silny, J

    2003-04-01

    Electronic implants such as cardiac pacemakers or nerve stimulators can be impaired in different ways by amplitude-modulated and even continuous electric or magnetic fields of strong field intensities. For the implant bearer, possible consequences of a temporary electromagnetic interference may range from a harmless impairment of his well-being to a perilous predicament. Electromagnetic interferences in all types of implants cannot be covered here due to their various locations in the body and their different sensing systems. Therefore, this presentation focuses exemplarily on the most frequently used implant, the cardiac pacemaker. In case of an electromagnetic interference the cardiac pacemaker reacts by switching to inhibition mode or to fast asynchronous pacing. At a higher disturbance voltage on the input of the pacemaker, a regular asynchronous pacing is likely to arise. In particular, the first-named interference could be highly dangerous for the pacemaker patient. The interference threshold of cardiac pacemakers depends in a complex way on a number of different factors such as: electromagnetic immunity and adjustment of the pacemaker, the composition of the applied low-frequency fields (only electric or magnetic fields or combinations of both), their frequencies and modulations, the type of pacemaker system (bipolar, unipolar) and its location in the body, as well as the body size and orientation in the field, and last but not least, certain physiological conditions of the patient (e.g. inhalation, exhalation). In extensive laboratory studies we have investigated the interference mechanisms in more than 100 cardiac pacemakers (older types as well as current models) and the resulting worst-case conditions for pacemaker patients in low-frequency electric and magnetic fields. The verification of these results in different practical everyday-life situations, e.g. in the fields of high-voltage overhead lines or those of electronic article surveillance systems is currently in progress. In case of the vertically-oriented electric 50 Hz fields preliminary results show that per 1 kV/m unimpaired electrical field strength (rms) an interference voltage of about 400 microVpp as worst-case could occur at the input of a unipolar ventricularly controlled, left-pectorally implanted cardiac pacemaker. Thus, already a field strength above ca. 5 kV/m could cause an interference with an implanted pacemaker. The magnetic fields induces an electric disturbance voltage at the input of the pacemaker. The body and the pacemaker system compose several induction loops, whose induced voltages rates add or subtract. The effective area of one representing inductive loop ranges from 100 to 221 cm2. For the unfavourable left-pectorally implantated and atrially-controlled pacemaker with a low interference threshold, the interference threshold ranges between 552 and 16 microT (rms) for magnetic fields at frequencies between 10 and 250 Hz. On this basis the occurrence of interferences with implanted pacemakers is possible in everyday-life situations. But experiments demonstrate a low probability of interference of cardiac pacemakers in practical situations. This apparent contradiction can be explained by a very small band of inhibition in most pacemakers and, in comparison with the worst-case, deviating conditions.

  17. Implement an adjustable delay time digital trigger for an NI data acquisition card in a high-speed demodulation system

    NASA Astrophysics Data System (ADS)

    Zhang, Hongtao; Fan, Lingling; Wang, Pengfei; Park, Seong-Wook

    2012-06-01

    A National Instruments (NI) DAQ card PCI 5105 is installed in a high-speed demodulation system based on Fiber Fabry-Pérot Tunable Filter. The instability of the spectra of Fiber Bragg Grating sensors caused by intrinsic drifts of FFP-TF needs an appropriate, flexible trigger. However, the driver of the DAQ card in the current development environment does not provide the functions of analog trigger but digital trigger type. Moreover, the high level of the trigger signal from the tuning voltage of FFP-TF is larger than the maximum input overload voltage of PCI 5105 card. To resolve this incompatibility, a novel converter to change an analog trigger signal into a digital trigger signal has been reported previously. However, the obvious delay time between input and output signals limits the function of demodulation system. Accordingly, we report an improved low-cost, small-size converter with an adjustable delay time. This new scheme can decline the delay time to or close to zero when the frequency of trigger signal is less than 3,000 Hz. This method might be employed to resolve similar problems or to be applied in semiconductor integrated circuits.

  18. Progress and opportunities in high-voltage microactuator powering technology towards one-chip MEMS

    NASA Astrophysics Data System (ADS)

    Mita, Yoshio; Hirakawa, Atsushi; Stefanelli, Bruno; Mori, Isao; Okamoto, Yuki; Morishita, Satoshi; Kubota, Masanori; Lebrasseur, Eric; Kaiser, Andreas

    2018-04-01

    In this paper, we address issues and solutions for micro-electro-mechanical-systems (MEMS) powering through semiconductor devices towards one-chip MEMS, especially those with microactuators that require high voltage (HV, which is more than 10 V, and is often over 100 V) for operation. We experimentally and theoretically demonstrated that the main reason why MEMS actuators need such HV is the tradeoff between resonant frequency and displacement amplitude. Indeed, the product of frequency and displacement is constant regardless of the MEMS design, but proportional to the input energy, which is the square of applied voltage in an electrostatic actuator. A comprehensive study on the principles of HV device technology and associated circuit technologies, especially voltage shifter circuits, was conducted. From the viewpoint of on-chip energy source, series-connected HV photovoltaic cells have been discussed. Isolation and electrical connection methods were identified to be key enabling technologies. Towards future rapid development of such autonomous devices, a technology to convert standard 5 V CMOS devices into HV circuits using SOI substrate and a MEMS postprocess is presented. HV breakdown experiments demonstrated this technology can hold over 700 to 1000 V, depending on the layout.

  19. Mechanisms underlying subunit independence in pyramidal neuron dendrites

    PubMed Central

    Behabadi, Bardia F.; Mel, Bartlett W.

    2014-01-01

    Pyramidal neuron (PN) dendrites compartmentalize voltage signals and can generate local spikes, which has led to the proposal that their dendrites act as independent computational subunits within a multilayered processing scheme. However, when a PN is strongly activated, back-propagating action potentials (bAPs) sweeping outward from the soma synchronize dendritic membrane potentials many times per second. How PN dendrites maintain the independence of their voltage-dependent computations, despite these repeated voltage resets, remains unknown. Using a detailed compartmental model of a layer 5 PN, and an improved method for quantifying subunit independence that incorporates a more accurate model of dendritic integration, we first established that the output of each dendrite can be almost perfectly predicted by the intensity and spatial configuration of its own synaptic inputs, and is nearly invariant to the rate of bAP-mediated “cross-talk” from other dendrites over a 100-fold range. Then, through an analysis of conductance, voltage, and current waveforms within the model cell, we identify three biophysical mechanisms that together help make independent dendritic computation possible in a firing neuron, suggesting that a major subtype of neocortical neuron has been optimized for layered, compartmentalized processing under in-vivo–like spiking conditions. PMID:24357611

  20. Investigation of Passive Filter for LED Lamp

    NASA Astrophysics Data System (ADS)

    Sarwono, Edi; Facta, Mochammad; Handoko, Susatyo

    2017-04-01

    Light Emitting Diode lamp or LED lamp is one of the energy saving lamps nowadays widely used by consumers. However, LED lamp has contained harmonics caused by the rectifier circuit inside the lamp. Harmonics cause a quality problem in power system. As the harmonics present in current or voltage, the waveforms are distorted. Harmonics can lead to overheating in magnetic core of electrical equipments. In this paper, several tests are carried out to investigate the harmonic content of voltage and currents, and also the level of light intensity of the two brands of LED lamps. Measurements in this study are conducted by using HIOKI Power Quality Analyzer 3197. The test results show that the total harmonic distortion or THD of voltage on various brands of LED lamps did not exceed 5% as in compliance to the limit of IEEE standard 519-1992. The largest harmonic voltage is 2.9%, while maximum harmonic current for tested brands of LED lamp is 170.6%. The use of low pass filter in the form of LC filter was proposed. Based on experimental results, the application of LC filter at input side of LED lamp has successfully reduced THD current in the range of 85%-88%.

  1. New Analysis and Design of a RF Rectifier for RFID and Implantable Devices

    PubMed Central

    Liu, Dong-Sheng; Li, Feng-Bo; Zou, Xue-Cheng; Liu, Yao; Hui, Xue-Mei; Tao, Xiong-Fei

    2011-01-01

    New design and optimization of charge pump rectifiers using diode-connected MOS transistors is presented in this paper. An analysis of the output voltage and Power Conversion Efficiency (PCE) is given to guide and evaluate the new design. A novel diode-connected MOS transistor for UHF rectifiers is presented and optimized, and a high efficiency N-stage charge pump rectifier based on this new diode-connected MOS transistor is designed and fabricated in a SMIC 0.18-μm 2P3M CMOS embedded EEPROM process. The new diode achieves 315 mV turn-on voltage and 415 nA reverse saturation leakage current. Compared with the traditional rectifier, the one based on the proposed diode-connected MOS has higher PCE, higher output voltage and smaller ripple coefficient. When the RF input is a 900-MHz sinusoid signal with the power ranging from −15 dBm to −4 dBm, PCEs of the charge pump rectifier with only 3-stage are more than 30%, and the maximum output voltage is 5.5 V, and its ripple coefficients are less than 1%. Therefore, the rectifier is especially suitableto passive UHF RFID tag IC and implantable devices. PMID:22163968

  2. New analysis and design of a RF rectifier for RFID and implantable devices.

    PubMed

    Liu, Dong-Sheng; Li, Feng-Bo; Zou, Xue-Cheng; Liu, Yao; Hui, Xue-Mei; Tao, Xiong-Fei

    2011-01-01

    New design and optimization of charge pump rectifiers using diode-connected MOS transistors is presented in this paper. An analysis of the output voltage and Power Conversion Efficiency (PCE) is given to guide and evaluate the new design. A novel diode-connected MOS transistor for UHF rectifiers is presented and optimized, and a high efficiency N-stage charge pump rectifier based on this new diode-connected MOS transistor is designed and fabricated in a SMIC 0.18-μm 2P3M CMOS embedded EEPROM process. The new diode achieves 315 mV turn-on voltage and 415 nA reverse saturation leakage current. Compared with the traditional rectifier, the one based on the proposed diode-connected MOS has higher PCE, higher output voltage and smaller ripple coefficient. When the RF input is a 900-MHz sinusoid signal with the power ranging from -15 dBm to -4 dBm, PCEs of the charge pump rectifier with only 3-stage are more than 30%, and the maximum output voltage is 5.5 V, and its ripple coefficients are less than 1%. Therefore, the rectifier is especially suitable to passive UHF RFID tag IC and implantable devices.

  3. Specification, Measurement, and Control of Electrical Switching Transients

    NASA Technical Reports Server (NTRS)

    Javor, K.

    1999-01-01

    There have been several instances of susceptibility to switching transients. The Space Shuttle Spacelab Remote Acquisition Unit (RAU-A standard interface between Spacelab payloads and the Shuttle communications system) will shut down if the input 28 Vdc bus drops below 22 volts for more than 80 gs. Although a MIL-STD-461 derivative CS06 requirement was levied on the RAU, it failed to find this susceptibility. A heavy payload on one aircraft sags the 28 volt bus below 20 volts for milliseconds. Dc-dc converters have an operating voltage. A typical 28 Vdc-to-5 Vdc converter operates within tolerance when input potential is between 17-40 Vdc, A hold-up capacitor can be used to extend the time this range is presented to the convener when the line potential sags or surges outside this range. The designer must know the range of normal transients in order to choose the correct value of hold-up. This report describes the phenomena of electrical power bus transients induced by the switching of loads both on and off the bus, and control thereof.

  4. Hearing aid malfunction detection system

    NASA Technical Reports Server (NTRS)

    Kessinger, R. L. (Inventor)

    1977-01-01

    A malfunction detection system for detecting malfunctions in electrical signal processing circuits is disclosed. Malfunctions of a hearing aid in the form of frequency distortion and/or inadequate amplification by the hearing aid amplifier, as well as weakening of the hearing aid power supply are detectable. A test signal is generated and a timed switching circuit periodically applies the test signal to the input of the hearing aid amplifier in place of the input signal from the microphone. The resulting amplifier output is compared with the input test signal used as a reference signal. The hearing aid battery voltage is also periodically compared to a reference voltage. Deviations from the references beyond preset limits cause a warning system to operate.

  5. Full-wave receiver architecture for the homodyne motion sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haugen, Peter C.; Dallum, Gregory E.; Welsh, Patrick A.

    A homodyne motion sensor or detector based on ultra-wideband radar utilizes the entire received waveform through implementation of a voltage boosting receiver. The receiver includes a receiver input and a receiver output. A first diode is connected to the receiver output. A first charge storage capacitor is connected from between the first diode and the receiver output to ground. A second charge storage capacitor is connected between the receiver input and the first diode. A second diode is connected from between the second charge storage capacitor and the first diode to ground. The dual diode receiver performs voltage boosting ofmore » a RF signal received at the receiver input, thereby enhancing receiver sensitivity.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chinthavali, Madhu Sudhan; Campbell, Steven L

    This paper presents an analytical model for wireless power transfer system used in electric vehicle application. The equivalent circuit model for each major component of the system is described, including the input voltage source, resonant network, transformer, nonlinear diode rectifier load, etc. Based on the circuit model, the primary side compensation capacitance, equivalent input impedance, active / reactive power are calculated, which provides a guideline for parameter selection. Moreover, the voltage gain curve from dc output to dc input is derived as well. A hardware prototype with series-parallel resonant stage is built to verify the developed model. The experimental resultsmore » from the hardware are compared with the model predicted results to show the validity of the model.« less

  7. Full-wave receiver architecture for the homodyne motion sensor

    DOEpatents

    Haugen, Peter C; Dallum, Gregory E; Welsh, Patrick A; Romero, Carlos E

    2013-11-19

    A homodyne motion sensor or detector based on ultra-wideband radar utilizes the entire received waveform through implementation of a voltage boosting receiver. The receiver includes a receiver input and a receiver output. A first diode is connected to the receiver output. A first charge storage capacitor is connected from between the first diode and the receiver output to ground. A second charge storage capacitor is connected between the receiver input and the first diode. A second diode is connected from between the second charge storage capacitor and the first diode to ground. The dual diode receiver performs voltage boosting of a RF signal received at the receiver input, thereby enhancing receiver sensitivity.

  8. Compensation of PVT Variations in ToF Imagers with In-Pixel TDC

    PubMed Central

    Vornicu, Ion; Carmona-Galán, Ricardo; Rodríguez-Vázquez, Ángel

    2017-01-01

    The design of a direct time-of-flight complementary metal-oxide-semiconductor (CMOS) image sensor (dToF-CIS) based on a single-photon avalanche-diode (SPAD) array with an in-pixel time-to-digital converter (TDC) must contemplate system-level aspects that affect its overall performance. This paper provides a detailed analysis of the impact of process parameters, voltage supply, and temperature (PVT) variations on the time bin of the TDC array. Moreover, the design and characterization of a global compensation loop is presented. It is based on a phase locked loop (PLL) that is integrated on-chip. The main building block of the PLL is a voltage-controlled ring-oscillator (VCRO) that is identical to the ones employed for the in-pixel TDCs. The reference voltage that drives the master VCRO is distributed to the voltage control inputs of the slave VCROs such that their multiphase outputs become invariant to PVT changes. These outputs act as time interpolators for the TDCs. Therefore the compensation scheme prevents the time bin of the TDCs from drifting over time due to the aforementioned factors. Moreover, the same scheme is used to program different time resolutions of the direct time-of-flight (ToF) imager aimed at 3D ranging or depth map imaging. Experimental results that validate the analysis are provided as well. The compensation loop proves to be remarkably effective. The spreading of the TDCs time bin is lowered from: (i) 20% down to 2.4% while the temperature ranges from 0 °C to 100 °C; (ii) 27% down to 0.27%, when the voltage supply changes within ±10% of the nominal value; (iii) 5.2 ps to 2 ps standard deviation over 30 sample chips, due to process parameters’ variation. PMID:28486405

  9. Compensation of PVT Variations in ToF Imagers with In-Pixel TDC.

    PubMed

    Vornicu, Ion; Carmona-Galán, Ricardo; Rodríguez-Vázquez, Ángel

    2017-05-09

    The design of a direct time-of-flight complementary metal-oxide-semiconductor (CMOS) image sensor (dToF-CIS) based on a single-photon avalanche-diode (SPAD) array with an in-pixel time-to-digital converter (TDC) must contemplate system-level aspects that affect its overall performance. This paper provides a detailed analysis of the impact of process parameters, voltage supply, and temperature (PVT) variations on the time bin of the TDC array. Moreover, the design and characterization of a global compensation loop is presented. It is based on a phase locked loop (PLL) that is integrated on-chip. The main building block of the PLL is a voltage-controlled ring-oscillator (VCRO) that is identical to the ones employed for the in-pixel TDCs. The reference voltage that drives the master VCRO is distributed to the voltage control inputs of the slave VCROs such that their multiphase outputs become invariant to PVT changes. These outputs act as time interpolators for the TDCs. Therefore the compensation scheme prevents the time bin of the TDCs from drifting over time due to the aforementioned factors. Moreover, the same scheme is used to program different time resolutions of the direct time-of-flight (ToF) imager aimed at 3D ranging or depth map imaging. Experimental results that validate the analysis are provided as well. The compensation loop proves to be remarkably effective. The spreading of the TDCs time bin is lowered from: (i) 20% down to 2.4% while the temperature ranges from 0 °C to 100 °C; (ii) 27% down to 0.27%, when the voltage supply changes within ±10% of the nominal value; (iii) 5.2 ps to 2 ps standard deviation over 30 sample chips, due to process parameters' variation.

  10. A prepositioned areal electrofishing apparatus for sampling stream habitats

    USGS Publications Warehouse

    Fisher, William L.; Brown, Marshall E.

    1993-01-01

    We describe the design, use, and sampling characteristics ofan electrofishing apparatus used to sample fish in stream habitats. The apparatus uses two prepositioned areal electrofishing devices (PAED) of different designs, a bottom parallel electrode PAED and a suspended dropper electrode PAED. To determine the effective immobilization ranges of the PAEDs, we evaluated intensities and shapes of the PAEDs' electrical fields, and the electroshock responses of fish in cages in concrete tanks and in four streams in Alabama with different water conductivities. Electroshock responses indicated that complete immobilization occurred at voltage gradients of 1.0 V/cm or higher (voltage drop, 400 V AC), as far as 35 cm from the PAED electrodes, although some fish were immobilized up to 65 cm away at 0.3 V/cm. We estimated the immobilization (stun) power density threshold to be about 10 μW/cm3. Stream evaluations of the PAEDs revealed that higher voltages were needed to immobilize fish at lower (35 μS/cm) and higher (120 and 125 μS/cm) water conductivities, whereas lower voltages were required at an intermediate conductivity (60 μS/cm). These results conformed with the predictions of power transfer theory and underscored the need to calibrate PAEDs to stream conductivities to standardize the effective sampling range.

  11. Single-Event Transient Response of Comparator Pre-Amplifiers in a Complementary SiGe Technology

    NASA Astrophysics Data System (ADS)

    Ildefonso, Adrian; Lourenco, Nelson E.; Fleetwood, Zachary E.; Wachter, Mason T.; Tzintzarov, George N.; Cardoso, Adilson S.; Roche, Nicolas J.-H.; Khachatrian, Ani; McMorrow, Dale; Buchner, Stephen P.; Warner, Jeffrey H.; Paki, Pauline; Kaynak, Mehmet; Tillack, Bernd; Cressler, John D.

    2017-01-01

    The single-event transient (SET) response of the pre-amplification stage of two latched comparators designed using either npn or pnp silicon-germanium heterojunction bipolar transistors (SiGe HBTs) is investigated via two-photon absorption (TPA) carrier injection and mixed-mode TCAD simulations. Experimental data and TCAD simulations showed an improved SET response for the pnp comparator circuit. 2-D raster scans revealed that the devices in the pnp circuit exhibit a reduction in sensitive area of up to 80% compared to their npn counterparts. In addition, by sweeping the input voltage, the sensitive operating region with respect to SETs was determined. By establishing a figure-of-merit, relating the transient peaks and input voltage polarities, the pnp device was determined to have a 21.4% improved response with respect to input voltage. This study has shown that using pnp devices is an effective way to mitigate SETs, and could enable further radiation-hardening-by-design techniques.

  12. Method and apparatus for stabilizing pulsed microwave amplifiers

    DOEpatents

    Hopkins, Donald B.

    1993-01-01

    Phase and amplitude variations at the output of a high power pulsed microwave amplifier arising from instabilities of the driving electron beam are suppressed with a feed-forward system that can stabilize pulses which are too brief for regulation by conventional feedback techniques. Such variations tend to be similar during successive pulses. The variations are detected during each pulse by comparing the amplifier output with the low power input signal to obtain phase and amplitude error signals. This enables storage of phase and amplitude correction signals which are used to make compensating changes in the low power input signal during the following amplifier output pulse which suppress the variations. In the preferred form of the invention, successive increments of the correction signals for each pulse are stored in separate channels of a multi-channel storage. Sequential readout of the increments during the next pulse provides variable control voltages to a voltage controlled phase shifter and voltage controlled amplitude modulator in the amplifier input signal path.

  13. Electric generation and ratcheted transport of contact-charged drops

    NASA Astrophysics Data System (ADS)

    Cartier, Charles A.; Graybill, Jason R.; Bishop, Kyle J. M.

    2017-10-01

    We describe a simple microfluidic system that enables the steady generation and efficient transport of aqueous drops using only a constant voltage input. Drop generation is achieved through an electrohydrodynamic dripping mechanism by which conductive drops grow and detach from a grounded nozzle in response to an electric field. The now-charged drops are transported down a ratcheted channel by contact charge electrophoresis powered by the same voltage input used for drop generation. We investigate how the drop size, generation frequency, and transport velocity depend on system parameters such as the liquid viscosity, interfacial tension, applied voltage, and channel dimensions. The observed trends are well explained by a series of scaling analyses that provide insight into the dominant physical mechanisms underlying drop generation and ratcheted transport. We identify the conditions necessary for achieving reliable operation and discuss the various modes of failure that can arise when these conditions are violated. Our results demonstrate that simple electric inputs can power increasingly complex droplet operations with potential opportunities for inexpensive and portable microfluidic systems.

  14. Electric generation and ratcheted transport of contact-charged drops.

    PubMed

    Cartier, Charles A; Graybill, Jason R; Bishop, Kyle J M

    2017-10-01

    We describe a simple microfluidic system that enables the steady generation and efficient transport of aqueous drops using only a constant voltage input. Drop generation is achieved through an electrohydrodynamic dripping mechanism by which conductive drops grow and detach from a grounded nozzle in response to an electric field. The now-charged drops are transported down a ratcheted channel by contact charge electrophoresis powered by the same voltage input used for drop generation. We investigate how the drop size, generation frequency, and transport velocity depend on system parameters such as the liquid viscosity, interfacial tension, applied voltage, and channel dimensions. The observed trends are well explained by a series of scaling analyses that provide insight into the dominant physical mechanisms underlying drop generation and ratcheted transport. We identify the conditions necessary for achieving reliable operation and discuss the various modes of failure that can arise when these conditions are violated. Our results demonstrate that simple electric inputs can power increasingly complex droplet operations with potential opportunities for inexpensive and portable microfluidic systems.

  15. Method and apparatus for stabilizing pulsed microwave amplifiers

    DOEpatents

    Hopkins, D.B.

    1993-01-26

    Phase and amplitude variations at the output of a high power pulsed microwave amplifier arising from instabilities of the driving electron beam are suppressed with a feed-forward system that can stabilize pulses which are too brief for regulation by conventional feedback techniques. Such variations tend to be similar during successive pulses. The variations are detected during each pulse by comparing the amplifier output with the low power input signal to obtain phase and amplitude error signals. This enables storage of phase and amplitude correction signals which are used to make compensating changes in the low power input signal during the following amplifier output pulse which suppress the variations. In the preferred form of the invention, successive increments of the correction signals for each pulse are stored in separate channels of a multi-channel storage. Sequential readout of the increments during the next pulse provides variable control voltages to a voltage controlled phase shifter and voltage controlled amplitude modulator in the amplifier input signal path.

  16. Input integration around the dendritic branches in hippocampal dentate granule cells.

    PubMed

    Kamijo, Tadanobu Chuyo; Hayakawa, Hirofumi; Fukushima, Yasuhiro; Kubota, Yoshiyuki; Isomura, Yoshikazu; Tsukada, Minoru; Aihara, Takeshi

    2014-08-01

    Recent studies have shown that the dendrites of several neurons are not simple translators but are crucial facilitators of excitatory postsynaptic potential (EPSP) propagation and summation of synaptic inputs to compensate for inherent voltage attenuation. Granule cells (GCs)are located at the gateway for valuable information arriving at the hippocampus from the entorhinal cortex. However, the underlying mechanisms of information integration along the dendrites of GCs in the hippocampus are still unclear. In this study, we investigated the input integration around dendritic branches of GCs in the rat hippocampus. We applied differential spatiotemporal stimulations to the dendrites using a high-speed glutamate-uncaging laser. Our results showed that when two sites close to and equidistant from a branching point were simultaneously stimulated, a nonlinear summation of EPSPs was observed at the soma. In addition, nonlinear summation (facilitation) depended on the stimulus location and was significantly blocked by the application of a voltage-dependent Ca(2+) channel antagonist. These findings suggest that the nonlinear summation of EPSPs around the dendritic branches of hippocampal GCs is a result of voltage-dependent Ca(2+) channel activation and may play a crucial role in the integration of input information.

  17. Hybrid zero-voltage switching (ZVS) control for power inverters

    DOEpatents

    Amirahmadi, Ahmadreza; Hu, Haibing; Batarseh, Issa

    2016-11-01

    A power inverter combination includes a half-bridge power inverter including first and second semiconductor power switches receiving input power having an intermediate node therebetween providing an inductor current through an inductor. A controller includes input comparison circuitry receiving the inductor current having outputs coupled to first inputs of pulse width modulation (PWM) generation circuitry, and a predictive control block having an output coupled to second inputs of the PWM generation circuitry. The predictive control block is coupled to receive a measure of Vin and an output voltage at a grid connection point. A memory stores a current control algorithm configured for resetting a PWM period for a switching signal applied to control nodes of the first and second power switch whenever the inductor current reaches a predetermined upper limit or a predetermined lower limit.

  18. Binary selectable detector holdoff circuit: Design, testing, and application. [to laser radar data acquisition system

    NASA Technical Reports Server (NTRS)

    Kadrmas, K. A.

    1973-01-01

    A very high speed switching circuit, part of a laser radar data acquisition system, has been designed and tested. The primary function of this circuit was to provide computer controlled switching of photodiode detector preamplifier power supply voltages, typically less than plus or minus 20 volts, in approximately 10 nanoseconds. Thus, in actual use, detector and/or detector preamplifier damage can be avoided as a result of sudden extremely large values of backscattered radiation being detected, such as might be due to short range, very thin atmospheric dust layers. Switching of the power supply voltages was chosen over direct switching the photodiode detector input to the preamplifier, based on system noise considerations. Also, the circuit provides a synchronized trigger pulse output for triggering devices such as the Biomation Model 8100 100 MHz analog to digital converter.

  19. Electronic circuit provides accurate sensing and control of dc voltage

    NASA Technical Reports Server (NTRS)

    Loftus, W. D.

    1966-01-01

    Electronic circuit used relay coil to sense and control dc voltage. The control relay is driven by a switching transistor that is biased to cutoff for all input up to slightly less than the threshold level.

  20. Integrated circuit electrometer and sweep circuitry for an atmospheric probe

    NASA Technical Reports Server (NTRS)

    Zimmerman, L. E.

    1971-01-01

    The design of electrometer circuitry using an integrated circuit operational amplifier with a MOSFET input is described. Input protection against static voltages is provided by a dual ultra low leakage diode or a neon lamp. Factors affecting frequency response leakage resistance, and current stability are discussed, and methods are suggested for increasing response speed and for eliminating leakage resistance and current instabilities. Based on the above, two practical circuits, one having a linear response and the other a logarithmic response, were designed and evaluated experimentally. The design of a sweep circuit to implement mobility measurements using atmospheric probes is presented. A triangular voltage waveform is generated and shaped to contain a step in voltage from zero volts in both positive and negative directions.

  1. Geologic fracturing method and resulting fractured geologic structure

    DOEpatents

    Mace, Jonathan L.; Bradley, Christopher R.; Greening, Doran R.; Steedman, David W.

    2016-11-08

    Detonation control modules and detonation control circuits are provided herein. A trigger input signal can cause a detonation control module to trigger a detonator. A detonation control module can include a timing circuit, a light-producing diode such as a laser diode, an optically triggered diode, and a high-voltage capacitor. The trigger input signal can activate the timing circuit. The timing circuit can control activation of the light-producing diode. Activation of the light-producing diode illuminates and activates the optically triggered diode. The optically triggered diode can be coupled between the high-voltage capacitor and the detonator. Activation of the optically triggered diode causes a power pulse to be released from the high-voltage capacitor that triggers the detonator.

  2. Four-gate transistor analog multiplier circuit

    NASA Technical Reports Server (NTRS)

    Mojarradi, Mohammad M. (Inventor); Blalock, Benjamin (Inventor); Cristoloveanu, Sorin (Inventor); Chen, Suheng (Inventor); Akarvardar, Kerem (Inventor)

    2011-01-01

    A differential output analog multiplier circuit utilizing four G.sup.4-FETs, each source connected to a current source. The four G.sup.4-FETs may be grouped into two pairs of two G.sup.4-FETs each, where one pair has its drains connected to a load, and the other par has its drains connected to another load. The differential output voltage is taken at the two loads. In one embodiment, for each G.sup.4-FET, the first and second junction gates are each connected together, where a first input voltage is applied to the front gates of each pair, and a second input voltage is applied to the first junction gates of each pair. Other embodiments are described and claimed.

  3. NEXT Ion Engine 2000 Hour Wear Test Results

    NASA Technical Reports Server (NTRS)

    Soulas, George C.; Kamhawi, Hani; Patterson, Michael J.; Britton, Melissa A.; Frandina, Michael M.

    2004-01-01

    The results of the NEXT 2000 h wear test are presented. This test was conducted with a 40 cm engineering model ion engine, designated EM1, at a 3.52 A beam current and 1800 V beam power supply voltage. Performance tests, which were conducted over a throttling range of 1.1 to 6.9 kW throughout the wear test, demonstrated that EM1 satisfied all thruster performance requirements. The ion engine accumulated 2038 h of operation at a thruster input power of 6.9 kW, processing 43 kg of xenon. Overall ion engine performance, which includes thrust, thruster input power, specific impulse, and thrust efficiency, was steady with no indications of performance degradation. The ion engine was also inspected following the test. This paper presents these findings.

  4. High temperature charge amplifier for geothermal applications

    DOEpatents

    Lindblom, Scott C.; Maldonado, Frank J.; Henfling, Joseph A.

    2015-12-08

    An amplifier circuit in a multi-chip module includes a charge to voltage converter circuit, a voltage amplifier a low pass filter and a voltage to current converter. The charge to voltage converter receives a signal representing an electrical charge and generates a voltage signal proportional to the input signal. The voltage amplifier receives the voltage signal from the charge to voltage converter, then amplifies the voltage signal by the gain factor to output an amplified voltage signal. The lowpass filter passes low frequency components of the amplified voltage signal and attenuates frequency components greater than a cutoff frequency. The voltage to current converter receives the output signal of the lowpass filter and converts the output signal to a current output signal; wherein an amplifier circuit output is selectable between the output signal of the lowpass filter and the current output signal.

  5. Differential Amplifier with Current-Mirror Load: Influence of Current Gain, Early Voltage, and Supply Voltage on the DC Output Voltage

    ERIC Educational Resources Information Center

    Paulik, G. F.; Mayer, R. P.

    2012-01-01

    A differential amplifier composed of an emitter-coupled pair is useful as an example in lecture presentations and laboratory experiments in electronic circuit analysis courses. However, in an active circuit with zero input load V[subscript id], both laboratory measurements and PSPICE and LTspice simulation results for the output voltage…

  6. Differential comparator cirucit

    DOEpatents

    Hickling, Ronald M.

    1996-01-01

    A differential comparator circuit for an Analog-to-Digital Converter (ADC) or other application includes a plurality of differential comparators and a plurality of offset voltage generators. Each comparator includes first and second differentially connected transistor pairs having equal and opposite voltage offsets. First and second offset control transistors are connected in series with the transistor pairs respectively. The offset voltage generators generate offset voltages corresponding to reference voltages which are compared with a differential input voltage by the comparators. Each offset voltage is applied to the offset control transistors of at least one comparator to set the overall voltage offset of the comparator to a value corresponding to the respective reference voltage. The number of offset voltage generators required in an ADC application can be reduced by a factor of approximately two by applying the offset voltage from each offset voltage generator to two comparators with opposite logical sense such that positive and negative offset voltages are produced by each offset voltage generator.

  7. Method and apparatus to provide power conversion with high power factor

    DOEpatents

    Perreault, David J.; Lim, Seungbum; Otten, David M.

    2017-05-23

    A power converter circuit rectifies a line voltage and applies the rectified voltage to a stack of capacitors. Voltages on the capacitors are coupled to a plurality of regulating converters to be converted to regulated output signals. The regulated output signals are combined and converted to a desired DC output voltage of the power converter. Input currents of the regulating converters are modulated in a manner that enhances the power factor of the power converter.

  8. OBSAPS Data Acquisition System: Operator’s Manual and System Overview

    DTIC Science & Technology

    2011-05-01

    Explanation of Druck Voltage to Depth Conversion used during OBSAPS (April-May’11)   25   Druck  Pressure  sensor  conversion  from...for H-91, PA Voltage, PA Current and Sonobuoy and Druck pressure sensor analog inputs. 6. Software settable thresholds for H-91, PA Voltage, PA...17. Custom dry side box for Druck Pressure Sensor supply voltage and dropping resistor. 18. Battery 9-30VDC for supplying Druck power 19. Druck PTX

  9. A 2-to-48-MHz Phase-Locked Loop

    NASA Technical Reports Server (NTRS)

    Koudelka, Robert D.

    2004-01-01

    A 2-to-48-MHz phase-locked loop (PLL), developed for the U.S. space program, meets or exceeds all space shuttle clock electrical interface requirements by taking as its reference a 2-to-48-MHz clock signal and outputting a phaselocked clock signal set at the same frequency as the reference clock with transistor- transistor logic (TTL) voltage levels. Because it is more adaptable than other PLLs, the new PLL can be used in industries that employ signaling devices and as a tool in future space missions. A conventional PLL consists of a phase/frequency detector, loop filter, and voltage-controlled oscillator in which each component exists individually and is integrated into a single device. PLL components phase-lock to a single frequency or to a narrow bandwidth of frequencies. It is this design, however, that prohibits them from maintaining phase lock to a dynamically changing reference clock when a large bandwidth is required a deficiency the new PLL overcomes. Since most PLL components require their voltage-controlled oscillators to operate at greater than 2-MHz frequencies, conventional PLLs often cannot achieve the low-frequency phase lock allowed by the new PLL. The 2-to-48-MHz PLL is built on a wire-wrap board with pins wired to three position jumpers; this makes changing configurations easy. It responds to variations in voltage-controlled oscillator (VCO) ranges, duty cycle, signal-to-noise ratio (SNR), amplitude, and jitter, exceeding design specifications. A consensus state machine, implemented in a VCO range detector which assures the PLL continues to operate in the correct range, is the primary control state machine for the 2-to-48-MHz PLL circuit. By using seven overlapping frequency ranges with hysteresis, the PLL output sets the resulting phase-locked clock signal at a frequency that agrees with the reference clock with TTL voltage levels. As a space-shuttle tool, the new PLL circuit takes the noisy, degraded reference clock signals as input and outputs phase-locked clock signals of the same frequency but with a corrected wave shape. Since its configuration circuit can be easily changed, the new PLL can do the following: readily respond to variations in VCO ranges, duty cycle, SNR, amplitude, and jitter; continuously operate in the correct VCO range because of its consensus state machine; and use its range detector implements to overlap seven frequency ranges with hysteresis, thus giving the current design a flexibility that exceeds anything available at the time of this development. These features will benefit any industry in which safe and timely clock signals are vital to operation.

  10. Diplexer switch

    NASA Technical Reports Server (NTRS)

    Grauling, C. H., Jr.; Parker, T. W.

    1977-01-01

    Switch achieves high isolation and continuous input/output matching by using resonant coupling structure of diplexer. Additionally, dc bias network used to control switch is decoupled from RF input and output lines. Voltage transients in external circuits are thus minimized.

  11. Shock Ignition Sensitivity of Multiply-Shocked TNT

    DTIC Science & Technology

    1982-07-01

    inynsj’ea prodaat. UNCLASSI FIED SECURITY CLASSIFICATION OF THIS PAGE MUert Date Emo REPOR DOCMENTTIONPAGEREAL) INSTRUCTIONS REPORT___...pressure through the following equation, (0.027) (12) where Av = signal voltage (volts) e = input voltage (volts) P = shock pressure (GPa). Fig. 17

  12. Input Power Characteristics of the Thyristor Variable Voltage Power Conditioner

    DOT National Transportation Integrated Search

    1973-11-01

    A laboratory study was made of transformer and thyristor voltage control for speed control of a rotary induction motor. The test program consisted of two parts; the first dealing with measurements of the induction motor characteristics and the second...

  13. Low noise charge sensitive preamplifier DC stabilized without a physical resistor

    DOEpatents

    Bertuccio, Giuseppe; Rehak, Pavel; Xi, Deming

    1994-09-13

    The invention is a novel charge sensitive preamplifier (CSP) which has no resistor in parallel with the feedback capacitor. No resetting circuit is required to discharge the feedback capacitor. The DC stabilization of the preamplifier is obtained by means of a second feedback loop between the preamplifier output and the common base transistor of the input cascode. The input transistor of the preamplifier is a Junction Field Transistor (JFET) with the gate-source junction forward biased. The detector leakage current flows into this junction. This invention is concerned with a new circuit configuration for a charge sensitive preamplifier and a novel use of the input Field Effect Transistor of the CSP itself. In particular this invention, in addition to eliminating the feedback resistor, eliminates the need for external devices between the detector and the preamplifier, and it eliminates the need for external circuitry to sense the output voltage and reset the CSP. Furthermore, the noise level of the novel CSP is very low, comparable with the performance achieved with other solutions. Experimental tests prove that this configuration for the charge sensitive preamplifier permits an excellent noise performance at temperatures including room temperature. An equivalent noise charge of less than 20 electrons r.m.s. has been measured at room temperature by using a commercial JFET as input device of the preamplifier.

  14. Low noise charge sensitive preamplifier DC stabilized without a physical resistor

    DOEpatents

    Bertuccio, G.; Rehak, P.; Xi, D.

    1994-09-13

    The invention is a novel charge sensitive preamplifier (CSP) which has no resistor in parallel with the feedback capacitor. No resetting circuit is required to discharge the feedback capacitor. The DC stabilization of the preamplifier is obtained by means of a second feedback loop between the preamplifier output and the common base transistor of the input cascode. The input transistor of the preamplifier is a Junction Field Transistor (JFET) with the gate-source junction forward biased. The detector leakage current flows into this junction. This invention is concerned with a new circuit configuration for a charge sensitive preamplifier and a novel use of the input Field Effect Transistor of the CSP itself. In particular this invention, in addition to eliminating the feedback resistor, eliminates the need for external devices between the detector and the preamplifier, and it eliminates the need for external circuitry to sense the output voltage and reset the CSP. Furthermore, the noise level of the novel CSP is very low, comparable with the performance achieved with other solutions. Experimental tests prove that this configuration for the charge sensitive preamplifier permits an excellent noise performance at temperatures including room temperature. An equivalent noise charge of less than 20 electrons r.m.s. has been measured at room temperature by using a commercial JFET as input device of the preamplifier. 6 figs.

  15. Characterization and Modeling of High Power Microwave Effects in CMOS Microelectronics

    DTIC Science & Technology

    2010-01-01

    margin measurement 28 Any voltage above the line marked VIH is considered a valid logic high on the input of the gate. VIH and VIL are defined...can handle any voltage noise level at the input up to VIL without changing state. The region in between VIL and VIH is considered an invalid logic...29 Table 2.2: Intrinsic device characteristics derived from SPETCRE simulations   VIH  (V)  VIL (V)  High Noise Margin  (V)  Low Noise Margin (V

  16. Synaptic integration in dendrites: exceptional need for speed

    PubMed Central

    Golding, Nace L; Oertel, Donata

    2012-01-01

    Some neurons in the mammalian auditory system are able to detect and report the coincident firing of inputs with remarkable temporal precision. A strong, low-voltage-activated potassium conductance (gKL) at the cell body and dendrites gives these neurons sensitivity to the rate of depolarization by EPSPs, allowing neurons to assess the coincidence of the rising slopes of unitary EPSPs. Two groups of neurons in the brain stem, octopus cells in the posteroventral cochlear nucleus and principal cells of the medial superior olive (MSO), extract acoustic information by assessing coincident firing of their inputs over a submillisecond timescale and convey that information at rates of up to 1000 spikes s−1. Octopus cells detect the coincident activation of groups of auditory nerve fibres by broadband transient sounds, compensating for the travelling wave delay by dendritic filtering, while MSO neurons detect coincident activation of similarly tuned neurons from each of the two ears through separate dendritic tufts. Each makes use of filtering that is introduced by the spatial distribution of inputs on dendrites. PMID:22930273

  17. Rail-to-rail differential input amplification stage with main and surrogate differential pairs

    DOEpatents

    Britton, Jr., Charles Lanier; Smith, Stephen Fulton

    2007-03-06

    An operational amplifier input stage provides a symmetrical rail-to-rail input common-mode voltage without turning off either pair of complementary differential input transistors. Secondary, or surrogate, transistor pairs assume the function of the complementary differential transistors. The circuit also maintains essentially constant transconductance, constant slew rate, and constant signal-path supply current as it provides rail-to-rail operation.

  18. High-frequency high-voltage high-power DC-to-DC converters

    NASA Astrophysics Data System (ADS)

    Wilson, T. G.; Owen, H. A., Jr.; Wilson, P. M.

    1981-07-01

    The current and voltage waveshapes associated with the power transitor and the power diode in an example current-or-voltage step-up (buck-boost) converter were analyzed to highlight the problems and possible tradeoffs involved in the design of high voltage high power converters operating at switching frequencies in the range of 100 Khz. Although the fast switching speeds of currently available power diodes and transistors permit converter operation at high switching frequencies, the resulting time rates of changes of current coupled with parasitic inductances in series with the semiconductor switches, produce large repetitive voltage transients across the semiconductor switches, potentially far in excess of the device voltage ratings. The need is established for semiconductor switch protection circuitry to control the peak voltages appearing across the semiconductor switches, as well as to provide the waveshaping action require for a given semiconductor device. The possible tradeoffs, as well as the factors affecting the tradeoffs that must be considered in order to maximize the efficiency of the converters are enumerated.

  19. High-frequency high-voltage high-power DC-to-DC converters

    NASA Technical Reports Server (NTRS)

    Wilson, T. G.; Owen, H. A., Jr.; Wilson, P. M.

    1981-01-01

    The current and voltage waveshapes associated with the power transitor and the power diode in an example current-or-voltage step-up (buck-boost) converter were analyzed to highlight the problems and possible tradeoffs involved in the design of high voltage high power converters operating at switching frequencies in the range of 100 Khz. Although the fast switching speeds of currently available power diodes and transistors permit converter operation at high switching frequencies, the resulting time rates of changes of current coupled with parasitic inductances in series with the semiconductor switches, produce large repetitive voltage transients across the semiconductor switches, potentially far in excess of the device voltage ratings. The need is established for semiconductor switch protection circuitry to control the peak voltages appearing across the semiconductor switches, as well as to provide the waveshaping action require for a given semiconductor device. The possible tradeoffs, as well as the factors affecting the tradeoffs that must be considered in order to maximize the efficiency of the converters are enumerated.

  20. Temperature dependence of quasi-three level laser transition for long pulse Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Bidin, Noriah; Pourmand, Seyed Ebrahim; Sidi Ahmad, Muhamad Fakaruddin; Khrisnan, Ganesan; Mohd Taib, Nur Athirah; Nadia Adnan, Nurul; Bakhtiar, Hazri

    2013-02-01

    The influence of temperature and pumping energy on stimulated emission cross section and the laser output of quasi-three level laser transition are reported. Flashlamp is used to pump Nd:YAG laser rod. Distilled water is mixed with ethylene glycol to vary the temperature of the cooling system between -30 and 60 °C. The capacitor voltage of flashlamp driver is verified to manipulate the input energy within the range of 10-70 J. The line of interest in quasi-three level laser comprised of 938.5 and 946 nm. The stimulated emission cross section of both lines is found to be inversely proportional to the temperature but directly proportional to the input energy. This is attributed from thermal broadening effect. The changes of stimulated emission cross section and the output laser with respect to the temperature and input energy on line 946 nm are realized to be more dominant in comparison to 938.5 nm.

  1. On a low-dimensional model for magnetostriction

    NASA Astrophysics Data System (ADS)

    Iyer, R. V.; Manservisi, S.

    2006-02-01

    In recent years, a low-dimensional model for thin magnetostrictive actuators that incorporated magneto-elastic coupling, inertial and damping effects, ferromagnetic hysteresis and classical eddy current losses was developed using energy-balance principles by Venkataraman and Krishnaprasad. This model, with the classical Preisach operator representing the hysteretic constitutive relation between the magnetic field and magnetization in the axial direction, proved to be very successful in capturing dynamic hysteresis effects with electrical inputs in the 0-50 Hz range and constant mechanical loading. However, it is well known that for soft ferromagnetic materials there exist excess losses in addition to the classical eddy current losses. In this work, we propose to extend the above mentioned model for a magnetostrictive rod actuator by including excess losses via a nonlinear resistive element in the actuator circuit. We then show existence and uniqueness of solutions for the proposed model for electrical voltage input in the space L2(0,T)∩L∞(0,T) and mechanical force input in the space L2(0,T).

  2. Systems and methods for process and user driven dynamic voltage and frequency scaling

    DOEpatents

    Mallik, Arindam [Evanston, IL; Lin, Bin [Hillsboro, OR; Memik, Gokhan [Evanston, IL; Dinda, Peter [Evanston, IL; Dick, Robert [Evanston, IL

    2011-03-22

    Certain embodiments of the present invention provide a method for power management including determining at least one of an operating frequency and an operating voltage for a processor and configuring the processor based on the determined at least one of the operating frequency and the operating voltage. The operating frequency is determined based at least in part on direct user input. The operating voltage is determined based at least in part on an individual profile for processor.

  3. Cryogenic transimpedance amplifier for micromechanical capacitive sensors.

    PubMed

    Antonio, D; Pastoriza, H; Julián, P; Mandolesi, P

    2008-08-01

    We developed a cryogenic transimpedance amplifier that works at a broad range of temperatures, from room temperature down to 4 K. The device was realized with a standard complementary metal oxide semiconductor 1.5 mum process. Measurements of current-voltage characteristics, open-loop gain, input referred noise current, and power consumption are presented as a function of temperature. The transimpedance amplifier has been successfully applied to sense the motion of a polysilicon micromechanical oscillator at low temperatures. The whole device is intended to serve as a magnetometer for microscopic superconducting samples.

  4. Input-current shaped ac to dc converters

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The problem of achieving near unity power factor while supplying power to a dc load from a single phase ac source of power is examined. Power processors for this application must perform three functions: input current shaping, energy storage, and output voltage regulation. The methods available for performing each of these three functions are reviewed. Input current shaping methods are either active or passive, with the active methods divided into buck-like and boost-like techniques. In addition to large reactances, energy storage methods include resonant filters, active filters, and active storage schemes. Fast voltage regulation can be achieved by post regulation or by supplementing the current shaping topology with an extra switch. Some indications of which methods are best suited for particular applications concludes the discussion.

  5. Background-free balanced optical cross correlator

    DOEpatents

    Nejadmalayeri, Amir Hossein; Kaertner, Franz X

    2014-12-23

    A balanced optical cross correlator includes an optical waveguide, a first photodiode including a first n-type semiconductor and a first p-type semiconductor positioned about the optical waveguide on a first side of the optical waveguide's point of symmetry, and a second photodiode including a second n-type semiconductor and a second p-type semiconductor positioned about the optical waveguide on a second side of the optical waveguide's point of symmetry. A balanced receiver including first and second inputs is configured to produce an output current or voltage that reflects a difference in currents or voltages, originating from the first and the second photodiodes of the balanced cross correlator and fed to the first input and to the second input of the balanced receiver.

  6. Gas tube-switched high voltage DC power converter

    DOEpatents

    She, Xu; Bray, James William; Sommerer, Timothy John; Chokhawala, Rahul

    2018-05-15

    A direct current (DC)-DC converter includes a transformer and a gas tube-switched inverter circuit. The transformer includes a primary winding and a secondary winding. The gas tube-switched inverter circuit includes first and second inverter load terminals and first and second inverter input terminals. The first and second inverter load terminals are coupled to the primary winding. The first and second inverter input terminals are couplable to a DC node. The gas tube-switched inverter circuit further includes a plurality of gas tube switches respectively coupled between the first and second inverter load terminals and the first and second inverter input terminals. The plurality of gas tube switches is configured to operate to generate an alternating current (AC) voltage at the primary winding.

  7. A 11 mW 2.4 GHz 0.18 µm CMOS Transceivers for Wireless Sensor Networks.

    PubMed

    Hou, Bing; Chen, Hua; Wang, Zhiyu; Mo, Jiongjiong; Chen, Junli; Yu, Faxin; Wang, Wenbo

    2017-01-24

    In this paper, a low power transceiver for wireless sensor networks (WSN) is proposed. The system is designed with fully functional blocks including a receiver, a fractional-N frequency synthesizer, and a class-E transmitter, and it is optimized with a good balance among output power, sensitivity, power consumption, and silicon area. A transmitter and receiver (TX-RX) shared input-output matching network is used so that only one off-chip inductor is needed in the system. The power and area efficiency-oriented, fully-integrated frequency synthesizer is able to provide programmable output frequencies in the 2.4 GHz range while occupying a small silicon area. Implemented in a standard 0.18 μm RF Complementary Metal Oxide Semiconductor (CMOS) technology, the whole transceiver occupies a chip area of 0.5 mm² (1.2 mm² including bonding pads for a QFN package). Measurement results suggest that the design is able to work at amplitude shift keying (ASK)/on-off-keying (OOK) and FSK modes with up to 500 kbps data rate. With an input sensitivity of -60 dBm and an output power of 3 dBm, the receiver, transmitter and frequency synthesizer consumes 2.3 mW, 4.8 mW, and 3.9 mW from a 1.8 V supply voltage, respectively.

  8. Modularized multilevel and z-source power converter as renewable energy interface for vehicle and grid-connected applications

    NASA Astrophysics Data System (ADS)

    Cao, Dong

    Due the energy crisis and increased oil price, renewable energy sources such as photovoltaic panel, wind turbine, or thermoelectric generation module, are used more and more widely for vehicle and grid-connected applications. However, the output of these renewable energy sources varies according to different solar radiation, wind speed, or temperature difference, a power converter interface is required for the vehicle or grid-connected applications. Thermoelectric generation (TEG) module as a renewable energy source for automotive industry is becoming very popular recently. Because of the inherent characteristics of TEG modules, a low input voltage, high input current and high voltage gain dc-dc converters are needed for the automotive load. Traditional high voltage gain dc-dc converters are not suitable for automotive application in terms of size and high temperature operation. Switched-capacitor dc-dc converters have to be used for this application. However, high voltage spike and EMI problems exist in traditional switched-capacitor dc-dc converters. Huge capacitor banks have to be utilized to reduce the voltage ripple and achieve high efficiency. A series of zero current switching (ZCS) or zero voltage switching switched-capacitor dc-dc converters have been proposed to overcome the aforementioned problems of the traditional switched-capacitor dc-dc converters. By using the proposed soft-switching strategy, high voltage spike is reduced, high EMI noise is restricted, and the huge capacitor bank is eliminated. High efficiency, high power density and high temperature switched-capacitor dc-dc converters could be made for the TEG interface in vehicle applications. Several prototypes have been made to validate the proposed circuit and confirm the circuit operation. In order to apply PV panel for grid-connected application, a low cost dc-ac inverter interface is required. From the use of transformer and safety concern, two different solutions can be implemented, non-isolated or isolated PV inverter. For the non-isolated transformer-less solution, a semi-Z-source inverter for single phase photovoltaic systems has been proposed. The proposed semi-Z-source inverter utilizes only two switching devices with doubly grounded feature. The total cost have been reduced, the safety and EMI issues caused by the high frequency ground current are solved. For the transformer isolated solution, a boost half-bridge dc-ac micro-inverter has been proposed. The proposed boost half-bridge dc-dc converter utilizes only two switching devices with zero voltage switching features which is able to reduce the total system cost and power loss.

  9. Power inverter with optical isolation

    DOEpatents

    Duncan, Paul G.; Schroeder, John Alan

    2005-12-06

    An optically isolated power electronic power conversion circuit that includes an input electrical power source, a heat pipe, a power electronic switch or plurality of interconnected power electronic switches, a mechanism for connecting the switch to the input power source, a mechanism for connecting comprising an interconnecting cable and/or bus bar or plurality of interconnecting cables and/or input bus bars, an optically isolated drive circuit connected to the switch, a heat sink assembly upon which the power electronic switch or switches is mounted, an output load, a mechanism for connecting the switch to the output load, the mechanism for connecting including an interconnecting cable and/or bus bar or plurality of interconnecting cables and/or output bus bars, at least one a fiber optic temperature sensor mounted on the heat sink assembly, at least one fiber optic current sensor mounted on the load interconnection cable and/or output bus bar, at least one fiber optic voltage sensor mounted on the load interconnection cable and/or output bus bar, at least one fiber optic current sensor mounted on the input power interconnection cable and/or input bus bar, and at least one fiber optic voltage sensor mounted on the input power interconnection cable and/or input bus bar.

  10. Voltages induced on a power distribution line by overhead cloud lightning

    NASA Technical Reports Server (NTRS)

    Yacoub, Ziad; Rubinstein, Marcos; Uman, Martin A.; Thomson, Ewen M.; Medelius, Pedro J.

    1991-01-01

    Voltages induced by overhead cloud lightning on a 448 m open circuited power distribution line and the corresponding north-south component of the lightning magnetic field were simultaneously measured at the NASA Kennedy Space Center during the summer of 1986. The incident electric field was calculated from the measured magnetic field. The electric field was then used as an input to the computer program, EMPLIN, that calculated the voltages at the two ends of the power line. EMPLIN models the frequency domain field/power coupling theory found, for example, in Ianoz et al. The direction of the source, which is also one of the inputs to EMPLIN, was crudely determined from a three station time delay technique. The authors found reasonably good agreement between calculated and measured waveforms.

  11. Heliocentric interplanetary low thrust trajectory optimization program, supplement 1, part 2

    NASA Technical Reports Server (NTRS)

    Mann, F. I.; Horsewood, J. L.

    1978-01-01

    The improvements made to the HILTOP electric propulsion trajectory computer program are described. A more realistic propulsion system model was implemented in which various thrust subsystem efficiencies and specific impulse are modeled as variable functions of power available to the propulsion system. The number of operating thrusters are staged, and the beam voltage is selected from a set of five (or less) constant voltages, based upon the application of variational calculus. The constant beam voltages may be optimized individually or collectively. The propulsion system logic is activated by a single program input key in such a manner as to preserve the HILTOP logic. An analysis describing these features, a complete description of program input quantities, and sample cases of computer output illustrating the program capabilities are presented.

  12. ELECTRONIC TRIGGER CIRCUIT

    DOEpatents

    Russell, J.A.G.

    1958-01-01

    An electronic trigger circuit is described of the type where an output pulse is obtained only after an input voltage has cqualed or exceeded a selected reference voltage. In general, the invention comprises a source of direct current reference voltage in series with an impedance and a diode rectifying element. An input pulse of preselected amplitude causes the diode to conduct and develop a signal across the impedance. The signal is delivered to an amplifier where an output pulse is produced and part of the output is fed back in a positive manner to the diode so that the amplifier produces a steep wave front trigger pulsc at the output. The trigger point of the described circuit is not subject to variation due to the aging, etc., of multi-electrode tabes, since the diode circuit essentially determines the trigger point.

  13. A ROIC for Mn(TPP)Cl-DOP-THF-Polyhema PVC membrane modified n-channel Si3N4 ISFET sensitive to histamine.

    PubMed

    Samah, N L M A; Lee, Khuan Y; Sulaiman, S A; Jarmin, R

    2017-07-01

    Intolerance of histamine could lead to scombroid poisoning with fatal consequences. Current detection methods for histamine are wet laboratory techniques which employ expensive equipment that depends on skills of seasoned technicians and produces delayed test analysis result. Previous works from our group has established that ISFETs can be adapted for detecting histamine with the use of a novel membrane. However, work to integrate ISFETs with a readout interfacing circuit (ROIC) circuit to display the histamine concentration has not been reported so far. This paper concerns the development of a ROIC specifically to integrate with a Mn(TPP)Cl-DOP-THF-Polyhema PVC membrane modified n-channel Si3N4 ISFET to display the histamine concentration. It embodies the design of constant voltage constant current (CVCC) circuit, amplification circuit and micro-controller based display circuit. A DC millivolt source is used to substitute the membrane modified ISFET as preliminary work. Input is histamine concentration corresponding to the safety level designated by the Food and Drugs Administration (FDA). Results show the CVCC circuit makes the output follows the input and keeps VDS constant. The amplification circuit amplifies the output from the CVCC circuit to the range 2.406-4.888V to integrate with the microcontroller, which is programmed to classify and display the histamine safety level and its corresponding voltage on a LCD panel. The ROIC could be used to produce direct output voltages corresponding to histamine concentrations, for in-situ applications.

  14. Global versus local mechanisms of temperature sensing in ion channels.

    PubMed

    Arrigoni, Cristina; Minor, Daniel L

    2018-05-01

    Ion channels turn diverse types of inputs, ranging from neurotransmitters to physical forces, into electrical signals. Channel responses to ligands generally rely on binding to discrete sensor domains that are coupled to the portion of the channel responsible for ion permeation. By contrast, sensing physical cues such as voltage, pressure, and temperature arises from more varied mechanisms. Voltage is commonly sensed by a local, domain-based strategy, whereas the predominant paradigm for pressure sensing employs a global response in channel structure to membrane tension changes. Temperature sensing has been the most challenging response to understand and whether discrete sensor domains exist for pressure and temperature has been the subject of much investigation and debate. Recent exciting advances have uncovered discrete sensor modules for pressure and temperature in force-sensitive and thermal-sensitive ion channels, respectively. In particular, characterization of bacterial voltage-gated sodium channel (BacNa V ) thermal responses has identified a coiled-coil thermosensor that controls channel function through a temperature-dependent unfolding event. This coiled-coil thermosensor blueprint recurs in other temperature sensitive ion channels and thermosensitive proteins. Together with the identification of ion channel pressure sensing domains, these examples demonstrate that "local" domain-based solutions for sensing force and temperature exist and highlight the diversity of both global and local strategies that channels use to sense physical inputs. The modular nature of these newly discovered physical signal sensors provides opportunities to engineer novel pressure-sensitive and thermosensitive proteins and raises new questions about how such modular sensors may have evolved and empowered ion channel pores with new sensibilities.

  15. Novel concept for driving the linear compressor of a micro-miniature split Stirling cryogenic cooler

    NASA Astrophysics Data System (ADS)

    Maron, V.; Veprik, A.; Finkelstein, L.; Vilenchik, H.; Ziv, I.; Pundak, N.

    2009-05-01

    New methods of carrying out homeland security and antiterrorist operations call for the development of a new generation of mechanically cooled, portable, battery powered infrared imagers, relying on micro-miniature Stirling cryogenic coolers of rotary or linear types. Since split Stirling linearly driven micro-miniature cryogenic coolers have inherently longer life spans, low vibration export and better aural stealth as compared to their rotary driven rivals, they are more suitable for the above applications. The performance of such cryogenic coolers depends strongly on the efficacy of their electronic drivers. In a traditional approach, the PWM power electronics produce the fixed frequency tonal driving voltage/current, the magnitude of which is modulated via a PID control law so as to maintain the desired focal plane array temperature. The disadvantage of such drivers is that they draw high ripple current from the system's power bus. This results in the need for an oversized DC power supply (battery packs) and power electronic components, low efficiency due to excessive conductive losses and high residual electromagnetic interference which in turn degrades the performance of other systems connected to the same power bus. Without either an active line filter or large and heavy passive filtering, other electronics can not be powered from the same power bus, unless they incorporate heavy filtering at their inputs. The authors present the results of a feasibility study towards developing a novel "pumping" driver consuming essentially constant instant battery power/current without making use of an active or passive filter. In the tested setup, the driver relies on a bidirectional controllable bridge, invertible with the driving frequency, and a fast regulated DC/DC converter which maintains a constant level of current consumed from the DC power supply and thus operates in input current control mode. From the experimental results, the steady-state power consumed by the linear compressor remains the same as compared with the traditional sine wave driver, the voltage and current drawn from the battery pack is essentially free of low frequency ripple (this without use of any kind of filtering) and the overall coefficient of performance of the driver is in excess of 94% over the entire working range of supply voltages. Such a driver free of sine forming PWM stage and have reduced power peaks in all power conversion components.

  16. Variable anodic thermal control coating on aluminum

    NASA Technical Reports Server (NTRS)

    Duckett, R. J.; Gilliland, C. S.

    1983-01-01

    A variable thermal control coating (modified chromic acid anodizing) has been developed to meet the needs for the thermal control of spacecraft. This coating, with controlled variable ranges of 0.10 to 0.72 thermal emittance and 0.2 to 0.4 solar absorptance, allows the user to select any value of thermal emittance and solar absorptance within the range specified and obtain both values within + or - 0.02. Preliminary solar stability has shown less than 15 percent degradation over 2000 hours of vacuum solar exposure. The technique has been determined to be sensitive to the parameters of voltage, rate of voltage application, time, temperature, acid concentration, and material pretreatment.

  17. An isolated bridgeless AC-DC PFC converter using a LC resonant voltage doubler rectifier

    NASA Astrophysics Data System (ADS)

    Lee, Sin-woo; Do, Hyun-Lark

    2016-12-01

    This paper proposed an isolated bridgeless AC-DC power factor correction (PFC) converter using a LC resonant voltage doubler rectifier. The proposed converter is based on isolated conventional single-ended primary inductance converter (SEPIC) PFC converter. The conduction loss of rectification is reduced than a conventional one because the proposed converter is designed to eliminate a full-bridge rectifier at an input stage. Moreover, for zero-current switching (ZCS) operation and low voltage stresses of output diodes, the secondary of the proposed converter is designed as voltage doubler with a LC resonant tank. Additionally, an input-output electrical isolation is provided for safety standard. In conclusion, high power factor is achieved and efficiency is improved. The operational principles, steady-state analysis and design equations of the proposed converter are described in detail. Experimental results from a 60 W prototype at a constant switching frequency 100 kHz are presented to verify the performance of the proposed converter.

  18. Active Mechanisms of Vibration Encoding and Frequency Filtering in Central Mechanosensory Neurons.

    PubMed

    Azevedo, Anthony W; Wilson, Rachel I

    2017-10-11

    To better understand biophysical mechanisms of mechanosensory processing, we investigated two cell types in the Drosophila brain (A2 and B1 cells) that are postsynaptic to antennal vibration receptors. A2 cells receive excitatory synaptic currents in response to both directions of movement: thus, twice per vibration cycle. The membrane acts as a low-pass filter, so that voltage and spiking mainly track the vibration envelope rather than individual cycles. By contrast, B1 cells are excited by only forward or backward movement, meaning they are sensitive to vibration phase. They receive oscillatory synaptic currents at the stimulus frequency, and they bandpass filter these inputs to favor specific frequencies. Different cells prefer different frequencies, due to differences in their voltage-gated conductances. Both Na + and K + conductances suppress low-frequency synaptic inputs, so cells with larger voltage-gated conductances prefer higher frequencies. These results illustrate how membrane properties and voltage-gated conductances can extract distinct stimulus features into parallel channels. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Design of an Auto-zeroed, Differential, Organic Thin-film Field-effect Transistor Amplifier for Sensor Applications

    NASA Technical Reports Server (NTRS)

    Binkley, David M.; Verma, Nikhil; Crawford, Robert L.; Brandon, Erik; Jackson, Thomas N.

    2004-01-01

    Organic strain gauge and other sensors require high-gain, precision dc amplification to process their low-level output signals. Ideally, amplifiers would be fabricated using organic thin-film field-effect transistors (OTFT's) adjacent to the sensors. However, OTFT amplifiers exhibit low gain and high input-referred dc offsets that must be effectively managed. This paper presents a four-stage, cascaded differential OTFT amplifier utilizing switched capacitor auto-zeroing. Each stage provides a nominal voltage gain of four through a differential pair driving low-impedance active loads, which provide common-mode output voltage control. p-type pentacence OTFT's are used for the amplifier devices and auto-zero switches. Simulations indicate the amplifier provides a nominal voltage gain of 280 V/V and effectively amplifies a 1-mV dc signal in the presence of 500-mV amplifier input-referred dc offset voltages. Future work could include the addition of digital gain calibration and offset correction of residual offsets associated with charge injection imbalance in the differential circuits.

  20. Design and implementation of a RF powering circuit for RFID tags or other batteryless embedded devices.

    PubMed

    Liu, Dongsheng; Wang, Rencai; Yao, Ke; Zou, Xuecheng; Guo, Liang

    2014-08-13

    A RF powering circuit used in radio-frequency identification (RFID) tags and other batteryless embedded devices is presented in this paper. The RF powering circuit harvests energy from electromagnetic waves and converts the RF energy to a stable voltage source. Analysis of a NMOS gate-cross connected bridge rectifier is conducted to demonstrate relationship between device sizes and power conversion efficiency (PCE) of the rectifier. A rectifier with 38.54% PCE under normal working conditions is designed. Moreover, a stable voltage regulator with a temperature and voltage optimizing strategy including adoption of a combination resistor is developed, which is able to accommodate a large input range of 4 V to 12 V and be immune to temperature variations. Latch-up prevention and noise isolation methods in layout design are also presented. Designed with the HJTC 0.25 μm process, this regulator achieves 0.04 mV/°C temperature rejection ratio (TRR) and 2.5 mV/V voltage rejection ratio (VRR). The RF powering circuit is also fabricated in the HJTC 0.25 μm process. The area of the RF powering circuit is 0.23 × 0.24 mm². The RF powering circuit is successfully integrated with ISO/IEC 15693-compatible and ISO/IEC 14443-compatible RFID tag chips.

  1. Design and Implementation of a RF Powering Circuit for RFID Tags or Other Batteryless Embedded Devices

    PubMed Central

    Liu, Dongsheng; Wang, Rencai; Yao, Ke; Zou, Xuecheng; Guo, Liang

    2014-01-01

    A RF powering circuit used in radio-frequency identification (RFID) tags and other batteryless embedded devices is presented in this paper. The RF powering circuit harvests energy from electromagnetic waves and converts the RF energy to a stable voltage source. Analysis of a NMOS gate-cross connected bridge rectifier is conducted to demonstrate relationship between device sizes and power conversion efficiency (PCE) of the rectifier. A rectifier with 38.54% PCE under normal working conditions is designed. Moreover, a stable voltage regulator with a temperature and voltage optimizing strategy including adoption of a combination resistor is developed, which is able to accommodate a large input range of 4 V to 12 V and be immune to temperature variations. Latch-up prevention and noise isolation methods in layout design are also presented. Designed with the HJTC 0.25 μm process, this regulator achieves 0.04 mV/°C temperature rejection ratio (TRR) and 2.5 mV/V voltage rejection ratio (VRR). The RF powering circuit is also fabricated in the HJTC 0.25 μm process. The area of the RF powering circuit is 0.23 × 0.24 mm2. The RF powering circuit is successfully integrated with ISO/IEC 15693-compatible and ISO/IEC 14443-compatible RFID tag chips. PMID:25123466

  2. Design and testing of 45 kV, 50 kHz pulse power supply for dielectric barrier discharges

    NASA Astrophysics Data System (ADS)

    Sharma, Surender Kumar; Shyam, Anurag

    2016-10-01

    The design, construction, and testing of high frequency, high voltage pulse power supply are reported. The purpose of the power supply is to generate dielectric barrier discharges for industrial applications. The power supply is compact and has the advantage of low cost, over current protection, and convenient control for voltage and frequency selection. The power supply can generate high voltage pulses of up to 45 kV at the repetitive frequency range of 1 kHz-50 kHz with 1.2 kW input power. The output current of the power supply is limited to 500 mA. The pulse rise time and fall time are less than 2 μs and the pulse width is 2 μs. The power supply is short circuit proof and can withstand variable plasma load conditions. The power supply mainly consists of a half bridge series resonant converter to charge an intermediate capacitor, which discharges through a step-up transformer at high frequency to generate high voltage pulses. Semiconductor switches and amorphous cores are used for power modulation at higher frequencies. The power supply is tested with quartz tube dielectric barrier discharge load and worked stably. The design details and the performance of the power supply on no load and dielectric barrier discharge load are presented.

  3. Design and testing of 45 kV, 50 kHz pulse power supply for dielectric barrier discharges.

    PubMed

    Sharma, Surender Kumar; Shyam, Anurag

    2016-10-01

    The design, construction, and testing of high frequency, high voltage pulse power supply are reported. The purpose of the power supply is to generate dielectric barrier discharges for industrial applications. The power supply is compact and has the advantage of low cost, over current protection, and convenient control for voltage and frequency selection. The power supply can generate high voltage pulses of up to 45 kV at the repetitive frequency range of 1 kHz-50 kHz with 1.2 kW input power. The output current of the power supply is limited to 500 mA. The pulse rise time and fall time are less than 2 μs and the pulse width is 2 μs. The power supply is short circuit proof and can withstand variable plasma load conditions. The power supply mainly consists of a half bridge series resonant converter to charge an intermediate capacitor, which discharges through a step-up transformer at high frequency to generate high voltage pulses. Semiconductor switches and amorphous cores are used for power modulation at higher frequencies. The power supply is tested with quartz tube dielectric barrier discharge load and worked stably. The design details and the performance of the power supply on no load and dielectric barrier discharge load are presented.

  4. Model based analysis of piezoelectric transformers.

    PubMed

    Hemsel, T; Priya, S

    2006-12-22

    Piezoelectric transformers are increasingly getting popular in the electrical devices owing to several advantages such as small size, high efficiency, no electromagnetic noise and non-flammable. In addition to the conventional applications such as ballast for back light inverter in notebook computers, camera flash, and fuel ignition several new applications have emerged such as AC/DC converter, battery charger and automobile lighting. These new applications demand high power density and wide range of voltage gain. Currently, the transformer power density is limited to 40 W/cm(3) obtained at low voltage gain. The purpose of this study was to investigate a transformer design that has the potential of providing higher power density and wider range of voltage gain. The new transformer design utilizes radial mode both at the input and output port and has the unidirectional polarization in the ceramics. This design was found to provide 30 W power with an efficiency of 98% and 30 degrees C temperature rise from the room temperature. An electro-mechanical equivalent circuit model was developed to describe the characteristics of the piezoelectric transformer. The model was found to successfully predict the characteristics of the transformer. Excellent matching was found between the computed and experimental results. The results of this study will allow to deterministically design unipoled piezoelectric transformers with specified performance. It is expected that in near future the unipoled transformer will gain significant importance in various electrical components.

  5. Third-Order Elliptic Lowpass Filter for Multi-Standard Baseband Chain Using Highly Linear Digitally Programmable OTA

    NASA Astrophysics Data System (ADS)

    Elamien, Mohamed B.; Mahmoud, Soliman A.

    2018-03-01

    In this paper, a third-order elliptic lowpass filter is designed using highly linear digital programmable balanced OTA. The filter exhibits a cutoff frequency tuning range from 2.2 MHz to 7.1 MHz, thus, it covers W-CDMA, UMTS, and DVB-H standards. The programmability concept in the filter is achieved by using digitally programmable operational transconductors amplifier (DPOTA). The DPOTA employs three linearization techniques which are the source degeneration, double differential pair and the adaptive biasing. Two current division networks (CDNs) are used to control the value of the transconductance. For the DPOTA, the third-order harmonic distortion (HD3) remains below -65 dB up to 0.4 V differential input voltage at 1.2 V supply voltage. The DPOTA and the filter are designed and simulated in 90 nm CMOS technology with LTspice simulator.

  6. A Review on Parametric Analysis of Magnetic Abrasive Machining Process

    NASA Astrophysics Data System (ADS)

    Khattri, Krishna; Choudhary, Gulshan; Bhuyan, B. K.; Selokar, Ashish

    2018-03-01

    The magnetic abrasive machining (MAM) process is a highly developed unconventional machining process. It is frequently used in manufacturing industries for nanometer range surface finishing of workpiece with the help of Magnetic abrasive particles (MAPs) and magnetic force applied in the machining zone. It is precise and faster than conventional methods and able to produce defect free finished components. This paper provides a comprehensive review on the recent advancement of MAM process carried out by different researcher till date. The effect of different input parameters such as rotational speed of electromagnet, voltage, magnetic flux density, abrasive particles size and working gap on the performances of Material Removal Rate (MRR) and surface roughness (Ra) have been discussed. On the basis of review, it is observed that the rotational speed of electromagnet, voltage and mesh size of abrasive particles have significant impact on MAM process.

  7. Dual-range linearized transimpedance amplifier system

    DOEpatents

    Wessendorf, Kurt O.

    2010-11-02

    A transimpedance amplifier system is disclosed which simultaneously generates a low-gain output signal and a high-gain output signal from an input current signal using a single transimpedance amplifier having two different feedback loops with different amplification factors to generate two different output voltage signals. One of the feedback loops includes a resistor, and the other feedback loop includes another resistor in series with one or more diodes. The transimpedance amplifier system includes a signal linearizer to linearize one or both of the low- and high-gain output signals by scaling and adding the two output voltage signals from the transimpedance amplifier. The signal linearizer can be formed either as an analog device using one or two summing amplifiers, or alternately can be formed as a digital device using two analog-to-digital converters and a digital signal processor (e.g. a microprocessor or a computer).

  8. Electrical description of N2 capacitively coupled plasmas with the global model

    NASA Astrophysics Data System (ADS)

    Cao, Ming-Lu; Lu, Yi-Jia; Cheng, Jia; Ji, Lin-Hong; Engineering Design Team

    2016-10-01

    N2 discharges in a commercial capacitively coupled plasma reactor are modelled by a combination of an equivalent circuit and the global model, for a range of gas pressure at 1 4 Torr. The ohmic and inductive plasma bulk and the capacitive sheath are represented as LCR elements, with electrical characteristics determined by plasma parameters. The electron density and electron temperature are obtained from the global model in which a Maxwellian electron distribution is assumed. Voltages and currents are recorded by a VI probe installed after the match network. Using the measured voltage as an input, the current flowing through the discharge volume is calculated from the electrical model and shows excellent agreement with the measurements. The experimentally verified electrical model provides a simple and accurate description for the relationship between the external electrical parameters and the plasma properties, which can serve as a guideline for process window planning in industrial applications.

  9. Electrical filtering in gerbil isolated type I semicircular canal hair cells

    NASA Technical Reports Server (NTRS)

    Rennie, K. J.; Ricci, A. J.; Correia, M. J.

    1996-01-01

    1. Membrane potential responses of dissociated gerbil type I semicircular canal hair cells to current injections in whole cell current-clamp have been measured. The input resistance of type I cells was 21.4 +/- 14.3 (SD) M omega, (n = 25). Around the zero-current potential (Vz = -66.6 +/- 9.3 mV, n = 25), pulsed current injections (from approximately -200 to 750 pA) produced only small-amplitude, pulse-like changes in membrane potential. 2. Injecting constant current to hyperpolarize the membrane to around -100 mV resulted in a approximately 10-fold increase in membrane resistance. Current pulses superimposed on this constant hyperpolarization produced larger and more complex membrane potential changes. Depolarizing currents > or = 200 pA caused a rapid transient peak voltage before a plateau. 3. Membrane voltage was able to faithfully follow sine-wave current injections around Vz over the range 1-1,000 Hz with < 25% attenuation at 1 kHz. A previously described K conductance, IKI, which is active at Vz, produces the low input resistance and frequency response. This was confirmed by pharmacologically blocking IKI. This conductance, present in type I cells but not type II hair cells, would appear to confer on type I cells a lower gain, but a much broader bandwidth at Vz, than seen in type II cells.

  10. A low-power CMOS trans-impedance amplifier for FM/cw ladar imaging system

    NASA Astrophysics Data System (ADS)

    Hu, Kai; Zhao, Yi-qiang; Sheng, Yun; Zhao, Hong-liang; Yu, Hai-xia

    2013-09-01

    A scannerless ladar imaging system based on a unique frequency modulation/continuous wave (FM/cw) technique is able to entirely capture the target environment, using a focal plane array to construct a 3D picture of the target. This paper presents a low power trans-impedance amplifier (TIA) designed and implemented by 0.18 μm CMOS technology, which is used in the FM/cw imaging ladar with a 64×64 metal-semiconductor-metal(MSM) self-mixing detector array. The input stage of the operational amplifier (op amp) in TIA is realized with folded cascade structure to achieve large open loop gain and low offset. The simulation and test results of TIA with MSM detectors indicate that the single-end trans-impedance gain is beyond 100 kΩ, and the -3 dB bandwidth of Op Amp is beyond 60 MHz. The input common mode voltage ranges from 0.2 V to 1.5 V, and the power dissipation is reduced to 1.8 mW with a supply voltage of 3.3 V. The performance test results show that the TIA is a candidate for preamplifier of the read-out integrated circuit (ROIC) in the FM/cw scannerless ladar imaging system.

  11. TECHNICAL NOTE: Portable audio electronics for impedance-based measurements in microfluidics

    NASA Astrophysics Data System (ADS)

    Wood, Paul; Sinton, David

    2010-08-01

    We demonstrate the use of audio electronics-based signals to perform on-chip electrochemical measurements. Cell phones and portable music players are examples of consumer electronics that are easily operated and are ubiquitous worldwide. Audio output (play) and input (record) signals are voltage based and contain frequency and amplitude information. A cell phone, laptop soundcard and two compact audio players are compared with respect to frequency response; the laptop soundcard provides the most uniform frequency response, while the cell phone performance is found to be insufficient. The audio signals in the common portable music players and laptop soundcard operate in the range of 20 Hz to 20 kHz and are found to be applicable, as voltage input and output signals, to impedance-based electrochemical measurements in microfluidic systems. Validated impedance-based measurements of concentration (0.1-50 mM), flow rate (2-120 µL min-1) and particle detection (32 µm diameter) are demonstrated. The prevailing, lossless, wave audio file format is found to be suitable for data transmission to and from external sources, such as a centralized lab, and the cost of all hardware (in addition to audio devices) is ~10 USD. The utility demonstrated here, in combination with the ubiquitous nature of portable audio electronics, presents new opportunities for impedance-based measurements in portable microfluidic systems.

  12. Coupled interactions between tungsten surfaces and transient high-heat-flux deuterium plasmas

    NASA Astrophysics Data System (ADS)

    Takamura, S.; Uesugi, Y.

    2015-03-01

    Fundamental studies on the interactions between transient deuterium-plasma heat pulses and tungsten surfaces were carried out in terms of electrical, mechanical and thermal response in a compact plasma device AIT-PID (Aichi Institute of Technology-Plasma Irradiation Device). Firstly, electron-emission-induced surface-temperature increase is discussed in the surface-temperature range near tungsten's melting point, which is accomplished by controlling the sheath voltage and power transmission factor. Secondly, anomalous penetration of tungsten atomic efflux into the surrounding plasma was observed in addition to a normal layered population; it is discussed in terms of the effect of substantial tungsten influx into the deuterium plasma, which causes dissipation of plasma electron energy. Thirdly, a momentum input from pulsed plasma onto a tungsten target was observed visually. The force is estimated numerically by the accelerated ion flow to the target as well as the reaction of tungsten-vapour efflux. Finally, a discussion follows on the effects of the plasma heat pulses on the morphology of tungsten surface (originally a helium-induced ‘fuzzy’ nanostructure). A kind of bifurcated effect is obtained: melting and annealing. Open questions remain for all the phenomena observed, although sheath-voltage-dependent plasma-heat input may be a key parameter. Discussions on all these phenomena are provided by considering their implications to tokamak fusion devices.

  13. Activation of Ih and TTX-sensitive sodium current at subthreshold voltages during CA1 pyramidal neuron firing

    PubMed Central

    Yamada-Hanff, Jason

    2015-01-01

    We used dynamic clamp and action potential clamp techniques to explore how currents carried by tetrodotoxin-sensitive sodium channels and HCN channels (Ih) regulate the behavior of CA1 pyramidal neurons at resting and subthreshold voltages. Recording from rat CA1 pyramidal neurons in hippocampal slices, we found that the apparent input resistance and membrane time constant were strongly affected by both conductances, with Ih acting to decrease apparent input resistance and time constant and sodium current acting to increase both. We found that both Ih and sodium current were active during subthreshold summation of artificial excitatory postsynaptic potentials (EPSPs) generated by dynamic clamp, with Ih dominating at less depolarized voltages and sodium current at more depolarized voltages. Subthreshold sodium current—which amplifies EPSPs—was most effectively recruited by rapid voltage changes, while Ih—which blunts EPSPs—was maximal for slow voltage changes. The combined effect is to selectively amplify rapid EPSPs. We did similar experiments in mouse CA1 pyramidal neurons, doing voltage-clamp experiments using experimental records of action potential firing of CA1 neurons previously recorded in awake, behaving animals as command voltages to quantify flow of Ih and sodium current at subthreshold voltages. Subthreshold sodium current was larger and subthreshold Ih was smaller in mouse neurons than in rat neurons. Overall, the results show opposing effects of subthreshold sodium current and Ih in regulating subthreshold behavior of CA1 neurons, with subthreshold sodium current prominent in both rat and mouse CA1 pyramidal neurons and additional regulation by Ih in rat neurons. PMID:26289465

  14. 5-Gb/s 0.18-μm CMOS 2:1 multiplexer with integrated clock extraction

    NASA Astrophysics Data System (ADS)

    Changchun, Zhang; Zhigong, Wang; Si, Shi; Peng, Miao; Ling, Tian

    2009-09-01

    A 5-Gb/s 2:1 MUX (multiplexer) with an on-chip integrated clock extraction circuit which possesses the function of automatic phase alignment (APA), has been designed and fabricated in SMIC's 0.18 μm CMOS technology. The chip area is 670 × 780 μm2. At a single supply voltage of 1.8 V, the total power consumption is 112 mW with an input sensitivity of less than 50 mV and an output single-ended swing of above 300 mV. The measurement results show that the IC can work reliably at any input data rate between 1.8 and 2.6 Gb/s with no need for external components, reference clock, or phase alignment between data and clock. It can be used in a parallel optic-fiber data interconnecting system.

  15. Assumption or Fact? Line-to-Neutral Voltage Expression in an Unbalanced 3-Phase Circuit during Inverter Switching

    ERIC Educational Resources Information Center

    Masrur, M. A.

    2009-01-01

    This paper discusses the situation in a 3-phase motor or any other 3-phase system operating under unbalanced operating conditions caused by an open fault in an inverter switch. A dc voltage source is assumed as the input to the inverter, and under faulty conditions of the inverter switch, the actual voltage applied between the line to neutral…

  16. Ground potential rise monitor

    DOEpatents

    Allen, Zachery W [Mandan, ND; Zevenbergen, Gary A [Arvada, CO

    2012-04-03

    A device and method for detecting ground potential rise (GPR) comprising positioning a first electrode and a second electrode at a distance from each other into the earth. The voltage of the first electrode and second electrode is attenuated by an attenuation factor creating an attenuated voltage. The true RMS voltage of the attenuated voltage is determined creating an attenuated true RMS voltage. The attenuated true RMS voltage is then multiplied by the attenuation factor creating a calculated true RMS voltage. If the calculated true RMS voltage is greater than a first predetermined voltage threshold, a first alarm is enabled at a local location. If user input is received at a remote location acknowledging the first alarm, a first alarm acknowledgment signal is transmitted. The first alarm acknowledgment signal is then received at which time the first alarm is disabled.

  17. Sliding-mode control of single input multiple output DC-DC converter

    NASA Astrophysics Data System (ADS)

    Zhang, Libo; Sun, Yihan; Luo, Tiejian; Wan, Qiyang

    2016-10-01

    Various voltage levels are required in the vehicle mounted power system. A conventional solution is to utilize an independent multiple output DC-DC converter whose cost is high and control scheme is complicated. In this paper, we design a novel SIMO DC-DC converter with sliding mode controller. The proposed converter can boost the voltage of a low-voltage input power source to a controllable high-voltage DC bus and middle-voltage output terminals, which endow the converter with characteristics of simple structure, low cost, and convenient control. In addition, the sliding mode control (SMC) technique applied in our converter can enhance the performances of a certain SIMO DC-DC converter topology. The high-voltage DC bus can be regarded as the main power source to the high-voltage facility of the vehicle mounted power system, and the middle-voltage output terminals can supply power to the low-voltage equipment on an automobile. In the respect of control algorithm, it is the first time to propose the SMC-PID (Proportion Integration Differentiation) control algorithm, in which the SMC algorithm is utilized and the PID control is attended to the conventional SMC algorithm. The PID control increases the dynamic ability of the SMC algorithm by establishing the corresponding SMC surface and introducing the attached integral of voltage error, which endow the sliding-control system with excellent dynamic performance. At last, we established the MATLAB/SIMULINK simulation model, tested performance of the system, and built the hardware prototype based on Digital Signal Processor (DSP). Results show that the sliding mode control is able to track a required trajectory, which has robustness against the uncertainties and disturbances.

  18. Sliding-mode control of single input multiple output DC-DC converter.

    PubMed

    Zhang, Libo; Sun, Yihan; Luo, Tiejian; Wan, Qiyang

    2016-10-01

    Various voltage levels are required in the vehicle mounted power system. A conventional solution is to utilize an independent multiple output DC-DC converter whose cost is high and control scheme is complicated. In this paper, we design a novel SIMO DC-DC converter with sliding mode controller. The proposed converter can boost the voltage of a low-voltage input power source to a controllable high-voltage DC bus and middle-voltage output terminals, which endow the converter with characteristics of simple structure, low cost, and convenient control. In addition, the sliding mode control (SMC) technique applied in our converter can enhance the performances of a certain SIMO DC-DC converter topology. The high-voltage DC bus can be regarded as the main power source to the high-voltage facility of the vehicle mounted power system, and the middle-voltage output terminals can supply power to the low-voltage equipment on an automobile. In the respect of control algorithm, it is the first time to propose the SMC-PID (Proportion Integration Differentiation) control algorithm, in which the SMC algorithm is utilized and the PID control is attended to the conventional SMC algorithm. The PID control increases the dynamic ability of the SMC algorithm by establishing the corresponding SMC surface and introducing the attached integral of voltage error, which endow the sliding-control system with excellent dynamic performance. At last, we established the MATLAB/SIMULINK simulation model, tested performance of the system, and built the hardware prototype based on Digital Signal Processor (DSP). Results show that the sliding mode control is able to track a required trajectory, which has robustness against the uncertainties and disturbances.

  19. A 5.2 mu text{A} Quiescent Current LDO Regulator With High Stability and Wide Load Range for CZT Detectors

    NASA Astrophysics Data System (ADS)

    Fan, Shiquan; Li, Haiqi; Guo, Zhuoqi; Geng, Li

    2017-04-01

    Cadmium zinc telluride detectors are the highly considered for room-temperature hard X-ray and gamma-ray detection. The readout systems are needed in the detectors to output the detecting data. The features of power supplies are very important for the readout circuits. In this paper, a low-dropout (LDO) regulator with very low power consumption and wide load variation is presented. A combining compensation method which includes partially controlled load-tracking technique and equivalent series resistance compensation technique are proposed to enhance the loop stability of the LDO regulator. Meanwhile, high dc gain is obtained to improve the power supply ripple rejection (PSRR), which can decrease the noise from the power supply. The prototype LDO chip has been fabricated and tested with a standard 0.18-μm CMOS technology. The measured results show that the LDO regulator can provide up to 150 mA load current with a stable output voltage of 2.8 V under an input voltage scope from 2.9 to 3.6 V. The measured PSRR is up to -60 dB. The output noise spectral densities are 1.16 μVRMS/√Hz and 211 nVRMS/√Hz at 1 and 100 kHz, respectively, at load current of 150 mA. Especially, the ultralow quiescent currents of 5.2 μA at no load and 18.2 μA at full load bring great benefit to the ultralow power integrated readout systems.

  20. System and method for determining stator winding resistance in an AC motor

    DOEpatents

    Lu, Bin [Kenosha, WI; Habetler, Thomas G [Snellville, GA; Zhang, Pinjia [Atlanta, GA; Theisen, Peter J [West Bend, WI

    2011-05-31

    A system and method for determining stator winding resistance in an AC motor is disclosed. The system includes a circuit having an input connectable to an AC source and an output connectable to an input terminal of an AC motor. The circuit includes at least one contactor and at least one switch to control current flow and terminal voltages in the AC motor. The system also includes a controller connected to the circuit and configured to modify a switching time of the at least one switch to create a DC component in an output of the system corresponding to an input to the AC motor and determine a stator winding resistance of the AC motor based on the injected DC component of the voltage and current.

  1. Low-noise pulse conditioner

    DOEpatents

    Bird, David A.

    1983-01-01

    A low-noise pulse conditioner is provided for driving electronic digital processing circuitry directly from differentially induced input pulses. The circuit uses a unique differential-to-peak detector circuit to generate a dynamic reference signal proportional to the input peak voltage. The input pulses are compared with the reference signal in an input network which operates in full differential mode with only a passive input filter. This reduces the introduction of circuit-induced noise, or jitter, generated in ground referenced input elements normally used in pulse conditioning circuits, especially speed transducer processing circuits.

  2. Performance Testing of a Prototypic Annular Linear Induction Pump for Fission Surface Power

    NASA Technical Reports Server (NTRS)

    Polzin, K. A.; Pearson, J. B.; Schoenfeld, M. P.; Webster, K.; Houts, M. G.; Godfroy, T. J.; Bossard, J. A.

    2010-01-01

    Results of performance testing of an annular linear induction pump are presented. The pump electromagnetically pumps liquid metal (NaK) through a circuit specially designed to allow for quantification of the performance. Testing was conducted over a range of conditions, including frequencies of 33, 36, 39, and 60 Hz, liquid metal temperatures from 25 to 525 C, and input voltages from 5 to 120 V. Pump performance spanned a range of flow rates from roughly 0.16 to 5.7 L/s (2.5 to 90 gpm), and pressure head <1 to 90 kPa (<0.145 to 13 psi). The maximum efficiency measured during testing was slightly greater than 6%. The efficiency was fairly insensitive to input frequency from 33 to 39 Hz, and was markedly lower at 60 Hz. In addition, the efficiency decreased as the NaK temperature was raised. While the pump was powered, the fluid responded immediately to changes in the input power level, but when power was removed altogether, there was a brief slow-down period before the fluid would come to rest. The performance of the pump operating on a variable frequency drive providing 60 Hz power compared favorably with the same pump operating on 60 Hz power drawn directly from the electrical grid.

  3. Switching Characteristics of Ferroelectric Transistor Inverters

    NASA Technical Reports Server (NTRS)

    Laws, Crystal; Mitchell, Coey; MacLeod, Todd C.; Ho, Fat D.

    2010-01-01

    This paper presents the switching characteristics of an inverter circuit using a ferroelectric field effect transistor, FeFET. The propagation delay time characteristics, phl and plh are presented along with the output voltage rise and fall times, rise and fall. The propagation delay is the time-delay between the V50% transitions of the input and output voltages. The rise and fall times are the times required for the output voltages to transition between the voltage levels V10% and V90%. Comparisons are made between the MOSFET inverter and the ferroelectric transistor inverter.

  4. Charge control microcomputer device for vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morishita, M.; Kouge, S.

    1986-10-14

    This patent describes a charge control microcomputer device for a vehicle, comprising: speed changing means for transmitting the output torque of an engine. The speed changing means includes a slip clutch means having an output with a variable slippage amount with respect to its input and controlled in accordance with an operating instruction. The speed changing means further includes a speed change gear for changing the rotational speed input thereto at an output thereto, the speed change gear receiving the output of the slip clutch means; a charging generator driven by the output of the speed change gear; a batterymore » charged by an output voltage of the charging generator; a voltage regulator for controlling the output voltage of the charging generator to a predetermined value; an engine controlling microcomputer for receiving data from the engine, to control the engine, the engine data comprising at least an engine speed signal; a charge control microcomputer for processing engine data from the engine controlling microcomputer and charge system data including terminal voltage data from the battery and generated voltage data from the changing generator; and a display unit for displaying detection data, including fault detection data, form the charge control microcomputer.« less

  5. Thermal Aspects of Lithium-Ion Cells

    NASA Technical Reports Server (NTRS)

    Frank, H.; Shakkottai, P.; Ratnakumar, B. V.; Smart, M. C.; Huang, C. K.; Timmerman, P.; Surampudi, S.

    2000-01-01

    Objective of this investigation is to provide the necessary inputs for a thermal model of the Li-ion battery for the Mars 2001 Lander. Two alternate configurations of this battery are under development: a) prismatic parallel plate, and b) cylindrical spiral wound. Required thermal inputs for both consist of the following: a) heat generation rates, b) thermal mass, and c) thermal conductivity. Thermal mass and conductivity were computed on the basis of known properties and configuration of the cell components. The heat generation rates were taken as the product of current and difference between open circuit voltage (OCV) and operating voltages (CCV) at a given state-of charge (SOC). Herein, it was assumed that the enthalpy voltage was equal to the OCV. OCV vs SOC data were obtained experimentally and CCV vs SOC were taken from previously obtained discharge data.

  6. Hybrid circuit achieves pulse regeneration with low power drain

    NASA Technical Reports Server (NTRS)

    Cancro, C. A.

    1965-01-01

    Hybrid tunnel diode-transistor circuit provides a solid-state, low power drain pulse regenerator, frequency limiter, or gated oscillator. When the feedback voltage exceeds the input voltage, the circuit functions as a pulse normalizer or a frequency limiter. If the circuit is direct coupled, it functions as a gated oscillator.

  7. VOLTAGE REGULATOR

    DOEpatents

    Von Eschen, R.L.; Scheele, P.F.

    1962-04-24

    A transistorized voltage regulator which provides very close voitage regulation up to about 180 deg F is described. A diode in the positive line provides a constant voltage drop from the input to a regulating transistor emitter. An amplifier is coupled to the positive line through a resistor and is connected between a difference circuit and the regulating transistor base which is negative due to the difference in voltage drop across thc diode and the resistor so that a change in the regulator output causes the amplifier to increase or decrease the base voltage and current and incrcase or decrease the transistor impedance to return the regulator output to normal. (AEC)

  8. An Efficient Modulation Strategy for Cascaded Photovoltaic Systems Suffering From Module Mismatch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Cheng; Zhang, Kai; Xiong, Jian

    Modular multilevel cascaded converter (MMCC) is a promising technique for medium/high-voltage high-power photovoltaic systems due to its modularity, scalability, and capability of distributed maximum power point tracking (MPPT) etc. However, distributed MPPT under module-mismatch might polarize the distribution of ac output voltages as well as the dc-link voltages among the modules, distort grid currents, and even cause system instability. For the better acceptance in practical applications, such issues need to be well addressed. Based on mismatch degree that is defined to consider both active power distribution and maximum modulation index, this paper presents an efficient modulation strategy for a cascaded-H-bridge-basedmore » MMCC under module mismatch. It can operate in loss-reducing mode or range-extending mode. By properly switching between the two modes, performance indices such as system efficiency, grid current quality, and balance of dc voltages, can be well coordinated. In this way, the MMCC system can maintain high-performance over a wide range of operating conditions. As a result, effectiveness of the proposed modulation strategy is proved with experiments.« less

  9. An Efficient Modulation Strategy for Cascaded Photovoltaic Systems Suffering From Module Mismatch

    DOE PAGES

    Wang, Cheng; Zhang, Kai; Xiong, Jian; ...

    2017-09-26

    Modular multilevel cascaded converter (MMCC) is a promising technique for medium/high-voltage high-power photovoltaic systems due to its modularity, scalability, and capability of distributed maximum power point tracking (MPPT) etc. However, distributed MPPT under module-mismatch might polarize the distribution of ac output voltages as well as the dc-link voltages among the modules, distort grid currents, and even cause system instability. For the better acceptance in practical applications, such issues need to be well addressed. Based on mismatch degree that is defined to consider both active power distribution and maximum modulation index, this paper presents an efficient modulation strategy for a cascaded-H-bridge-basedmore » MMCC under module mismatch. It can operate in loss-reducing mode or range-extending mode. By properly switching between the two modes, performance indices such as system efficiency, grid current quality, and balance of dc voltages, can be well coordinated. In this way, the MMCC system can maintain high-performance over a wide range of operating conditions. As a result, effectiveness of the proposed modulation strategy is proved with experiments.« less

  10. OBIST methodology incorporating modified sensitivity of pulses for active analogue filter components

    NASA Astrophysics Data System (ADS)

    Khade, R. H.; Chaudhari, D. S.

    2018-03-01

    In this paper, oscillation-based built-in self-test method is used to diagnose catastrophic and parametric faults in integrated circuits. Sallen-Key low pass filter and high pass filter circuits with different gains are used to investigate defects. Variation in seven parameters of operational amplifier (OP-AMP) like gain, input impedance, output impedance, slew rate, input bias current, input offset current, input offset voltage and catastrophic as well as parametric defects in components outside OP-AMP are introduced in the circuit and simulation results are analysed. Oscillator output signal is converted to pulses which are used to generate a signature of the circuit. The signature and pulse count changes with the type of fault present in the circuit under test (CUT). The change in oscillation frequency is observed for fault detection. Designer has flexibility to predefine tolerance band of cut-off frequency and range of pulses for which circuit should be accepted. The fault coverage depends upon the required tolerance band of the CUT. We propose a modification of sensitivity of parameter (pulses) to avoid test escape and enhance yield. Result shows that the method provides 100% fault coverage for catastrophic faults.

  11. Reconfigurable, Bi-Directional Flexfet Level Shifter for Low-Power, Rad-Hard Integration

    NASA Technical Reports Server (NTRS)

    DeGregorio, Kelly; Wilson, Dale G.

    2009-01-01

    Two prototype Reconfigurable, Bi-directional Flexfet Level Shifters (ReBiLS) have been developed, where one version is a stand-alone component designed to interface between external low voltage and high voltage, and the other version is an embedded integrated circuit (IC) for interface between internal low-voltage logic and external high-voltage components. Targeting stand-alone and embedded circuits separately allows optimization for these distinct applications. Both ReBiLS designs use the commercially available 180-nm Flex fet Independently Double-Gated (IDG) SOI CMOS (silicon on insulator, complementary metal oxide semiconductor) technology. Embedded ReBiLS circuits were integrated with a Reed-Solomon (RS) encoder using CMOS Ultra-Low-Power Radiation Tolerant (CULPRiT) double-gated digital logic circuits. The scope of the project includes: creation of a new high-voltage process, development of ReBiLS circuit designs, and adjustment of the designs to maximize performance through simulation, layout, and manufacture of prototypes. The primary technical objectives were to develop a high-voltage, thick oxide option for the 180-nm Flexfet process, and to develop a stand-alone ReBiLS IC with two 8-channel I/O busses, 1.8 2.5 I/O on the low-voltage pins, 5.0-V-tolerant input and 3.3-V output I/O on the high-voltage pins, and 100-MHz minimum operation with 10-pF external loads. Another objective was to develop an embedded, rad-hard ReBiLS I/O cell with 0.5-V low-voltage operation for interface with core logic, 5.0-V-tolerant input and 3.3-V output I/O pins, and 100-MHz minimum operation with 10- pF external loads. A third objective was to develop a 0.5- V Reed-Solomon Encoder with embedded ReBilS I/O: Transfer the existing CULPRiT RS encoder from a 0.35-micron bulk-CMOS process to the ASI 180-nm Flexfet, rad-hard SOI Process. 0.5-V low-voltage core logic. 5.0-V-tolerant input and 3.3-V output I/O pins. 100-MHz minimum operation with 10- pF external loads. The stand-alone ReBiLS chip will allow system designers to provide efficient bi-directional communication between components operating at different voltages. Embedding the ReBiLS cells into the proven Reed-Solomon encoder will demonstrate the ability to support new product development in a commercially viable, rad-hard, scalable 180-nm SOI CMOS process.

  12. Solid-state repetitive generator with a gyromagnetic nonlinear transmission line operating as a peak power amplifier

    NASA Astrophysics Data System (ADS)

    Gusev, A. I.; Pedos, M. S.; Rukin, S. N.; Timoshenkov, S. P.

    2017-07-01

    In this work, experiments were made in which gyromagnetic nonlinear transmission line (NLTL) operates as a peak power amplifier of the input pulse. At such an operating regime, the duration of the input pulse is close to the period of generated oscillations, and the main part of the input pulse energy is transmitted only to the first peak of the oscillations. Power amplification is achieved due to the voltage amplitude of the first peak across the NLTL output exceeding the voltage amplitude of the input pulse. In the experiments, the input pulse with an amplitude of 500 kV and a half-height pulse duration of 7 ns is applied to the NLTL with a natural oscillation frequency of ˜300 MHz. At the output of the NLTL in 40 Ω coaxial transmission line, the pulse amplitude is increased to 740 kV and the pulse duration is reduced to ˜2 ns, which correspond to power amplification of the input pulse from ˜6 to ˜13 GW. As a source of input pulses, a solid-state semiconductor opening switch generator was used, which allowed carrying out experiments at pulse repetition frequency up to 1 kHz in the burst mode of operation.

  13. [Development of residual voltage testing equipment].

    PubMed

    Zeng, Xiaohui; Wu, Mingjun; Cao, Li; He, Jinyi; Deng, Zhensheng

    2014-07-01

    For the existing measurement methods of residual voltage which can't turn the power off at peak voltage exactly and simultaneously display waveforms, a new residual voltage detection method is put forward in this paper. First, the zero point of the power supply is detected with zero cross detection circuit and is inputted to a single-chip microcomputer in the form of pulse signal. Secend, when the zero point delays to the peak voltage, the single-chip microcomputer sends control signal to power off the relay. At last, the waveform of the residual voltage is displayed on a principal computer or oscilloscope. The experimental results show that the device designed in this paper can turn the power off at peak voltage and is able to accurately display the voltage waveform immediately after power off and the standard deviation of the residual voltage is less than 0.2 V at exactly one second and later.

  14. RF rectifiers for EM power harvesting in a Deep Brain Stimulating device.

    PubMed

    Hosain, Md Kamal; Kouzani, Abbas Z; Tye, Susannah; Kaynak, Akif; Berk, Michael

    2015-03-01

    A passive deep brain stimulation (DBS) device can be equipped with a rectenna, consisting of an antenna and a rectifier, to harvest energy from electromagnetic fields for its operation. This paper presents optimization of radio frequency rectifier circuits for wireless energy harvesting in a passive head-mountable DBS device. The aim is to achieve a compact size, high conversion efficiency, and high output voltage rectifier. Four different rectifiers based on the Delon doubler, Greinacher voltage tripler, Delon voltage quadrupler, and 2-stage charge pumped architectures are designed, simulated, fabricated, and evaluated. The design and simulation are conducted using Agilent Genesys at operating frequency of 915 MHz. A dielectric substrate of FR-4 with thickness of 1.6 mm, and surface mount devices (SMD) components are used to fabricate the designed rectifiers. The performance of the fabricated rectifiers is evaluated using a 915 MHz radio frequency (RF) energy source. The maximum measured conversion efficiency of the Delon doubler, Greinacher tripler, Delon quadrupler, and 2-stage charge pumped rectifiers are 78, 75, 73, and 76 % at -5 dBm input power and for load resistances of 5-15 kΩ. The conversion efficiency of the rectifiers decreases significantly with the increase in the input power level. The Delon doubler rectifier provides the highest efficiency at both -5 and 5 dBm input power levels, whereas the Delon quadrupler rectifier gives the lowest efficiency for the same inputs. By considering both efficiency and DC output voltage, the charge pump rectifier outperforms the other three rectifiers. Accordingly, the optimised 2-stage charge pumped rectifier is used together with an antenna to harvest energy in our DBS device.

  15. Performance of an Annular Linear Induction Pump with Applications to Space Nuclear Power Systems

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Schoenfeld, Michael; Pearson, J. Boise; Webster, Kenneth; Godfroy, Thomas; Adkins, Harold E., Jr.; Werner, James E.

    2010-01-01

    Results of performance testing of an annular linear induction pump are presented. The pump electromagnetically pumps liquid metal through a circuit specially designed to allow for quantification of the performance. Testing was conducted over a range of conditions, including frequencies of 33, 36, 39, and 60 Hz, liquid metal temperatures from 125 to 525 C, and input voltages from 5 to 120 V. Pump performance spanned a range of flow rates from roughly 0.16 to 5.7 L/s (2.5 to 90 gpm), and pressure head less than 1 to 90 kPa (less than 0.145 to 13 psi). The maximum efficiency measured during testing was slightly greater than 6%. The efficiency was fairly insensitive to input frequency from 33 to 39 Hz, and was markedly lower at 60 Hz. In addition, the efficiency decreased as the NaK temperature was raised. The performance of the pump operating on a variable frequency drive providing 60 Hz power compared favorably with the same pump operating on 60 Hz power drawn directly from the electrical grid.

  16. Stress-Dependent Voltage Offsets From Polymer Insulators Used in Rock Mechanics and Material Testing

    NASA Technical Reports Server (NTRS)

    Carlson, G. G.; Dahlgren, Robert; Gray, Amber; Vanderbilt, V. C.; Freund, F.; Johnston, M. J.; Dunson, C.

    2013-01-01

    Dielectric insulators are used in a variety of laboratory settings when performing experiments in rock mechanics, petrology, and electromagnetic studies of rocks in the fields of geophysics,material science, and civil engineering. These components may be used to electrically isolate geological samples from the experimental equipment, to perform a mechanical compliance function between brittle samples and the loading equipment, to match ultrasonic transducers, or perform other functions. In manyexperimental configurations the insulators bear the full brunt of force applied to the sample but do not need to withstand high voltages, therefore the insulators are often thin sheets of mechanically tough polymers. From an instrument perspective, transduction from various types of mechanical perturbation has beenqualitatively compared for a number of polymers [1, 2] and these error sources are readily apparent duringhigh-impedance measurements if not mitigated. However even when following best practices, a force dependent voltage signal still remains and its behavior is explored in this presentation. In this experimenttwo thin sheets (0.25 mm) of high-density polyethylene (HDPE) were set up in a stack, held alternatelybetween three aluminum bars; this stack was placed on the platen of a 60T capacity hydraulic testingmachine. The surface area, A, over which the force is applied to the PE sheets in this sandwich is roughly 40 square cm, each sheet forming a parallel-plate capacitor having roughly 320 pF [3], assuming therelative dielectric permittivity of PE is approximately 2.3. The outer two aluminum bars were connected to the LO input ofthe electrometer and the central aluminum bar was connected to the HI input of a Keithley model 617 electrometer. Once the stack is mechanically well-seated with no air gaps, the voltage offset is observed tobe a linear function of the baseline voltage for a given change in applied force. For a periodically appliedforce of 66.7 kN the voltage offsets were measured as a function of initial voltage, and these data were fitwith a linear function that was constrained to pass through the origin. The best fit solution had a correlation coefficient of R=0.85 and a slope of approximately -0.0228 volts/volt. The voltage offset when normalizedis demonstrated to be constant -2.28% for both positive and negative polarities over nearly 3 orders ofbaseline voltage magnitude. From this, the voltage-force coefficient is derived to be -0.34 ppm/N. Thiscorrelates well to a first-order parallel plate capacitor model that assumes constant area, and smalldeformation such that the polymer may be mechanically modeled by a spring that obeys Hookes law. Thissimple model predicts that the coefficient of proportionality is a function of Youngs modulus E= 0.8 GPaand surface area of the insulator, theoretically -1EA= -0.31 ppm/N. The outcome of this work is animproved insulator made from ultra-high molecular weight (UHMW) polyethylene and other approachestoward the minimization of and compensation for these experimental artifacts.

  17. Two new families of high-gain dc-dc power electronic converters for dc-microgrids

    NASA Astrophysics Data System (ADS)

    Prabhala, Venkata Anand Kishore

    Distributing the electric power in dc form is an appealing solution in many applications such as telecommunications, data centers, commercial buildings, and microgrids. A high gain dc-dc power electronic converter can be used to individually link low-voltage elements such as solar panels, fuel cells, and batteries to the dc voltage bus which is usually 400 volts. This way, it is not required to put such elements in a series string to build up their voltages. Consequently, each element can function at it optimal operating point regardless of the other elements in the system. In this dissertation, first a comparative study of dc microgrid architectures and their advantages over their ac counterparts is presented. Voltage level selection of dc distribution systems is discussed from the cost, reliability, efficiency, and safety standpoints. Next, a new family of non-isolated high-voltage-gain dc-dc power electronic converters with unidirectional power flow is introduced. This family of converters benefits from a low voltage stress across its switches. The proposed topologies are versatile as they can be utilized as single-input or double-input power converters. In either case, they draw continuous currents from their sources. Lastly, a bidirectional high-voltage-gain dc-dc power electronic converter is proposed. This converter is comprised of a bidirectional boost converter which feeds a switched-capacitor architecture. The switched-capacitor stage suggested here has several advantages over the existing approaches. For example, it benefits from a higher voltage gain while it uses less number of capacitors. The proposed converters are highly efficient and modular. The operating modes, dc voltage gain, and design procedure for each converter are discussed in details. Hardware prototypes have been developed in the lab. The results obtained from the hardware agree with those of the simulation models.

  18. Automated Cryocooler Monitor and Control System

    NASA Technical Reports Server (NTRS)

    Britcliffe, Michael J.; Hanscon, Theodore R.; Fowler, Larry E.

    2011-01-01

    A system was designed to automate cryogenically cooled low-noise amplifier systems used in the NASA Deep Space Network. It automates the entire operation of the system including cool-down, warm-up, and performance monitoring. The system is based on a single-board computer with custom software and hardware to monitor and control the cryogenic operation of the system. The system provides local display and control, and can be operated remotely via a Web interface. The system controller is based on a commercial single-board computer with onboard data acquisition capability. The commercial hardware includes a microprocessor, an LCD (liquid crystal display), seven LED (light emitting diode) displays, a seven-key keypad, an Ethernet interface, 40 digital I/O (input/output) ports, 11 A/D (analog to digital) inputs, four D/A (digital to analog) outputs, and an external relay board to control the high-current devices. The temperature sensors used are commercial silicon diode devices that provide a non-linear voltage output proportional to temperature. The devices are excited with a 10-microamp bias current. The system is capable of monitoring and displaying three temperatures. The vacuum sensors are commercial thermistor devices. The output of the sensors is a non-linear voltage proportional to vacuum pressure in the 1-Torr to 1-millitorr range. Two sensors are used. One measures the vacuum pressure in the cryocooler and the other the pressure at the input to the vacuum pump. The helium pressure sensor is a commercial device that provides a linear voltage output from 1 to 5 volts, corresponding to a gas pressure from 0 to 3.5 MPa (approx. = 500 psig). Control of the vacuum process is accomplished with a commercial electrically operated solenoid valve. A commercial motor starter is used to control the input power of the compressor. The warm-up heaters are commercial power resistors sized to provide the appropriate power for the thermal mass of the particular system, and typically provide 50 watts of heat. There are four basic operating modes. "Cool " mode commands the system to cool to normal operating temperature. "Heat " mode is used to warm the device to a set temperature near room temperature. "Pump " mode is a maintenance function that allows the vacuum system to be operated alone to remove accumulated contaminants from the vacuum area. In "Off " mode, no power is applied to the system.

  19. Development of High-Power Hall Thruster Power Processing Units at NASA GRC

    NASA Technical Reports Server (NTRS)

    Pinero, Luis R.; Bozak, Karin E.; Santiago, Walter; Scheidegger, Robert J.; Birchenough, Arthur G.

    2015-01-01

    NASA GRC successfully designed, built and tested four different power processor concepts for high power Hall thrusters. Each design satisfies unique goals including the evaluation of a novel silicon carbide semiconductor technology, validation of innovative circuits to overcome the problems with high input voltage converter design, development of a direct-drive unit to demonstrate potential benefits, or simply identification of lessonslearned from the development of a PPU using a conventional design approach. Any of these designs could be developed further to satisfy NASA's needs for high power electric propulsion in the near future.

  20. Performances estimation of a rotary traveling wave ultrasonic motor based on two-dimension analytical model.

    PubMed

    Ming, Y; Peiwen, Q

    2001-03-01

    The understanding of ultrasonic motor performances as a function of input parameters, such as the voltage amplitude, driving frequency, the preload on the rotor, is a key to many applications and control of ultrasonic motor. This paper presents performances estimation of the piezoelectric rotary traveling wave ultrasonic motor as a function of input voltage amplitude and driving frequency and preload. The Love equation is used to derive the traveling wave amplitude on the stator surface. With the contact model of the distributed spring-rigid body between the stator and rotor, a two-dimension analytical model of the rotary traveling wave ultrasonic motor is constructed. Then the performances of stead rotation speed and stall torque are deduced. With MATLAB computational language and iteration algorithm, we estimate the performances of rotation speed and stall torque versus input parameters respectively. The same experiments are completed with the optoelectronic tachometer and stand weight. Both estimation and experiment results reveal the pattern of performance variation as a function of its input parameters.

  1. Democracy-independence trade-off in oscillating dendrites and its implications for grid cells.

    PubMed

    Remme, Michiel W H; Lengyel, Máté; Gutkin, Boris S

    2010-05-13

    Dendritic democracy and independence have been characterized for near-instantaneous processing of synaptic inputs. However, a wide class of neuronal computations requires input integration on long timescales. As a paradigmatic example, entorhinal grid fields have been thought to be generated by the democratic summation of independent dendritic oscillations performing direction-selective path integration. We analyzed how multiple dendritic oscillators embedded in the same neuron integrate inputs separately and determine somatic membrane voltage jointly. We found that the interaction of dendritic oscillations leads to phase locking, which sets an upper limit on the timescale for independent input integration. Factors that increase this timescale also decrease the influence that the dendritic oscillations exert on somatic voltage. In entorhinal stellate cells, interdendritic coupling dominates and causes these cells to act as single oscillators. Our results suggest a fundamental trade-off between local and global processing in dendritic trees integrating ongoing signals. Copyright 2010 Elsevier Inc. All rights reserved.

  2. Complementary Paired G4FETs as Voltage-Controlled NDR Device

    NASA Technical Reports Server (NTRS)

    Mojarradi, Mohammad; Chen, Suheng; Blalock, Ben; Britton, Chuck; Prothro, Ben; Vandersand, James; Schrimph, Ron; Cristoloveanu, Sorin; Akavardar, Kerem; Gentil, P.

    2009-01-01

    It is possible to synthesize a voltage-controlled negative-differential-resistance (NDR) device or circuit by use of a pair of complementary G4FETs (four-gate field-effect transistors). [For more information about G4FETs, please see the immediately preceding article]. As shown in Figure 1, the present voltage-controlled NDR device or circuit is an updated version of a prior NDR device or circuit, known as a lambda diode, that contains a pair of complementary junction field-effect transistors (JFETs). (The lambda diode is so named because its current-versus- voltage plot bears some resemblance to an upper-case lambda.) The present version can be derived from the prior version by substituting G4FETs for the JFETs and connecting both JFET gates of each G4FET together. The front gate terminals of the G4FETs constitute additional terminals (that is, terminals not available in the older JFET version) to which one can apply control voltages VN and VP. Circuits in which NDR devices have been used include (1) Schmitt triggers and (2) oscillators containing inductance/ capacitance (LC) resonant circuits. Figure 2 depicts such circuits containing G4FET NDR devices like that of Figure 1. In the Schmitt trigger shown here, the G4FET NDR is loaded with an ordinary inversion-mode, p-channel, metal oxide/semiconductor field-effect transistor (inversion-mode PMOSFET), the VN terminal of the G4FET NDR device is used as an input terminal, and the input terminals of the PMOSFET and the G4FET NDR device are connected. VP can be used as an extra control voltage (that is, a control voltage not available in a typical prior Schmitt trigger) for adjusting the pinch-off voltage of the p-channel G4FET and thereby adjusting the trigger-voltage window. In the oscillator, a G4FET NDR device is loaded with a conventional LC tank circuit. As in other LC NDR oscillators, oscillation occurs because the NDR counteracts the resistance in the tank circuit. The advantage of this G4FET-NDR LC oscillator over a conventional LC NDR oscillator is that one can apply a time-varying signal to one of the extra control input terminals (VN or VP) to modulate the conductance of the NDR device and thereby amplitude-modulate the output signal.

  3. Integrated circuits for accurate linear analogue electric signal processing

    NASA Astrophysics Data System (ADS)

    Huijsing, J. H.

    1981-11-01

    The main lines in the design of integrated circuits for accurate analog linear electric signal processing in a frequency range including DC are investigated. A categorization of universal active electronic devices is presented on the basis of the connections of one of the terminals of the input and output ports to the common ground potential. The means for quantifying the attributes of four types of universal active electronic devices are included. The design of integrated operational voltage amplifiers (OVA) is discussed. Several important applications in the field of general instrumentation are numerically evaluated, and the design of operatinal floating amplifiers is presented.

  4. High power density dc/dc converter: Component selection and design

    NASA Technical Reports Server (NTRS)

    Divan, Deepakraj M.

    1989-01-01

    Further work pertaining to design considerations for the new high power, high frequency dc/dc converters is discussed. The goal of the project is the development of high power, high power density dc/dc converters at power levels in the multi-kilowatt to megawatt range for aerospace applications. The prototype converter is rated for 50 kW at a switching frequency of 50 kHz, with an input voltage of 200 Vdc and an output of 2000 Vdc. The overall power density must be in the vicinity of 0.2 to 0.3 kg/kW.

  5. Voltage controlled spintronic devices for logic applications

    DOEpatents

    You, Chun-Yeol; Bader, Samuel D.

    2001-01-01

    A reprogrammable logic gate comprising first and second voltage-controlled rotation transistors. Each transistor comprises three ferromagnetic layers with a spacer and insulating layer between the first and second ferromagnetic layers and an additional insulating layer between the second and third ferromagnetic layers. The third ferromagnetic layer of each transistor is connected to each other, and a constant external voltage source is applied to the second ferromagnetic layer of the first transistor. As input voltages are applied to the first ferromagnetic layer of each transistor, the relative directions of magnetization of the ferromagnetic layers and the magnitude of the external voltage determines the output voltage of the gate. By altering these parameters, the logic gate is capable of behaving as AND, OR, NAND, or NOR gates.

  6. Simulation of continuously logical base cells (CL BC) with advanced functions for analog-to-digital converters and image processors

    NASA Astrophysics Data System (ADS)

    Krasilenko, Vladimir G.; Lazarev, Alexander A.; Nikitovich, Diana V.

    2017-10-01

    The paper considers results of design and modeling of continuously logical base cells (CL BC) based on current mirrors (CM) with functions of preliminary analogue and subsequent analogue-digital processing for creating sensor multichannel analog-to-digital converters (SMC ADCs) and image processors (IP). For such with vector or matrix parallel inputs-outputs IP and SMC ADCs it is needed active basic photosensitive cells with an extended electronic circuit, which are considered in paper. Such basic cells and ADCs based on them have a number of advantages: high speed and reliability, simplicity, small power consumption, high integration level for linear and matrix structures. We show design of the CL BC and ADC of photocurrents and their various possible implementations and its simulations. We consider CL BC for methods of selection and rank preprocessing and linear array of ADCs with conversion to binary codes and Gray codes. In contrast to our previous works here we will dwell more on analogue preprocessing schemes for signals of neighboring cells. Let us show how the introduction of simple nodes based on current mirrors extends the range of functions performed by the image processor. Each channel of the structure consists of several digital-analog cells (DC) on 15-35 CMOS. The amount of DC does not exceed the number of digits of the formed code, and for an iteration type, only one cell of DC, complemented by the device of selection and holding (SHD), is required. One channel of ADC with iteration is based on one DC-(G) and SHD, and it has only 35 CMOS transistors. In such ADCs easily parallel code can be realized and also serial-parallel output code. The circuits and simulation results of their design with OrCAD are shown. The supply voltage of the DC is 1.8÷3.3V, the range of an input photocurrent is 0.1÷24μA, the transformation time is 20÷30nS at 6-8 bit binary or Gray codes. The general power consumption of the ADC with iteration is only 50÷100μW, if the maximum input current is 4μA. Such simple structure of linear array of ADCs with low power consumption and supply voltage 3.3V, and at the same time with good dynamic characteristics (frequency of digitization even for 1.5μm CMOS-technologies is 40÷50 MHz, and can be increased up to 10 times) and accuracy characteristics are show. The SMC ADCs based on CL BC and CM opens new prospects for realization of linear and matrix IP and photo-electronic structures with matrix operands, which are necessary for neural networks, digital optoelectronic processors, neural-fuzzy controllers.

  7. Power electronics for low power arcjets

    NASA Technical Reports Server (NTRS)

    Hamley, John A.; Hill, Gerald M.

    1991-01-01

    In anticipation of the needs of future light-weight, low-power spacecraft, arcjet power electronics in the 100 to 400 W operating range were developed. Limited spacecraft power and thermal control capacity of these small spacecraft emphasized the need for high efficiency. Power topologies similar to those in the higher 2 kW and 5 to 30 kW power range were implemented, including a four transistor bridge switching circuit, current mode pulse-width modulated control, and an output current averaging inductor with an integral pulse generation winding. Reduction of switching transients was accomplished using a low inductance power distribution network, and no passive snubber circuits were necessary for power switch protection. Phase shift control of the power bridge was accomplished using an improved pulse width modulation to phase shift converter circuit. These features, along with conservative magnetics designs allowed power conversion efficiencies of greater than 92.5 percent to be achieved into resistive loads over the entire operating range of the converter. Electromagnetic compatibility requirements were not considered in this work, and control power for the converter was derived from AC mains. Addition of input filters and control power converters would result in an efficiency of on the order of 90 percent for a flight unit. Due to the developmental nature of arcjet systems at this power level, the exact nature of the thruster/power processor interface was not quantified. Output regulation and current ripple requirements of 1 and 20 percent respectively, as well as starting techniques, were derived from the characteristics of the 2 kW system but an open circuit voltage in excess of 175 V was specified. Arcjet integration tests were performed, resulting in successful starts and stable arcjet operation at power levels as low as 240 W with simulated hydrazine propellants.

  8. Calibration of Voltage Transformers and High- Voltage Capacitors at NIST

    PubMed Central

    Anderson, William E.

    1989-01-01

    The National Institute of Standards and Technology (NIST) calibration service for voltage transformers and high-voltage capacitors is described. The service for voltage transformers provides measurements of ratio correction factors and phase angles at primary voltages up to 170 kV and secondary voltages as low as 10 V at 60 Hz. Calibrations at frequencies from 50–400 Hz are available over a more limited voltage range. The service for high-voltage capacitors provides measurements of capacitance and dissipation factor at applied voltages ranging from 100 V to 170 kV at 60 Hz depending on the nominal capacitance. Calibrations over a reduced voltage range at other frequencies are also available. As in the case with voltage transformers, these voltage constraints are determined by the facilities at NIST. PMID:28053409

  9. High-power microstrip RF switch

    NASA Technical Reports Server (NTRS)

    Choi, S. D.

    1971-01-01

    A microstrip-type single-pole double-throw (SPDT) switch whose RF and bias portions contain only a metallized alumina substrate and two PIN diodes has been developed. A technique developed to eliminate the dc blocking capacitors needed for biasing the diodes is described. These capacitors are extra components and could lower the reliability significantly. An SPDT switch fabricated on a 5.08 x 5.08 x 0.127-cm (2 x 2 x 0.050-in.) substrate has demonstrated an RF power-handling capability greater than 50 W at S-band. The insertion loss is less than 0.25 db and the input-to-off port isolation is greater than 36 db over a bandwidth larger than 30 MHz. The input voltage standing-wave ratio is lower than 1.07 over the same bandwidth. Theoretical development of the switch characteristics and experimental results, which are in good agreement with theory, are presented.

  10. Thermocouple-Signal-Conditioning Circuit

    NASA Technical Reports Server (NTRS)

    Simon, Richard A.

    1991-01-01

    Thermocouple-signal-conditioning circuit acting in conjunction with thermocouple, exhibits electrical behavior of voltage in series with resistance. Combination part of input bridge circuit of controller. Circuit configured for either of two specific applications by selection of alternative resistances and supply voltages. Includes alarm circuit detecting open circuit in thermocouple and provides off-scale output to signal malfunctions.

  11. Deflection amplifier for image dissectors

    NASA Technical Reports Server (NTRS)

    Salomon, P. M.

    1977-01-01

    Balanced symmetrical y-axis amplifier uses zener-diode level shifting to interface operational amplifiers to high voltage bipolar output stages. Nominal voltage transfer characteristic is 40 differential output volts per input volt; bandwidth, between -3-dB points, is approximately 8 kHz; loop gain is nominally 89 dB with closed loop gain of 26 dB.

  12. 47 CFR 73.51 - Determining operating power.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...'s input power directly from the RF voltage, RF current, and phase angle; or (2) calculating the... dissipative network in the antenna system shall be made on FCC Form 302. The technical information supplied on... transmitter output within a tolerance of ±10 percent, to compensate for variations in line voltage or other...

  13. 47 CFR 73.51 - Determining operating power.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...'s input power directly from the RF voltage, RF current, and phase angle; or (2) calculating the... dissipative network in the antenna system shall be made on FCC Form 302. The technical information supplied on... transmitter output within a tolerance of ±10 percent, to compensate for variations in line voltage or other...

  14. 47 CFR 73.51 - Determining operating power.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...'s input power directly from the RF voltage, RF current, and phase angle; or (2) calculating the... dissipative network in the antenna system shall be made on FCC Form 302. The technical information supplied on... transmitter output within a tolerance of ±10 percent, to compensate for variations in line voltage or other...

  15. Power factor control system for AC induction motors

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1977-01-01

    A power factor control system for use with ac induction motors was designed which samples lines voltage and current through the motor and decreases power input to the motor proportional to the detected phase displacement between current and voltage. This system provides, less power to the motor, as it is less loaded.

  16. High Input Voltage Discharge Supply for High Power Hall Thrusters Using Silicon Carbide Devices

    NASA Technical Reports Server (NTRS)

    Pinero, Luis R.; Scheidegger, Robert J.; Aulsio, Michael V.; Birchenough, Arthur G.

    2014-01-01

    A power processing unit for a 15 kW Hall thruster is under development at NASA Glenn Research Center. The unit produces up to 400 VDC with two parallel 7.5 kW discharge modules that operate from a 300 VDC nominal input voltage. Silicon carbide MOSFETs and diodes were used in this design because they were the best choice to handle the high voltage stress while delivering high efficiency and low specific mass. Efficiencies in excess of 97 percent were demonstrated during integration testing with the NASA-300M 20 kW Hall thruster. Electromagnet, cathode keeper, and heater supplies were also developed and will be integrated with the discharge supply into a vacuum-rated brassboard power processing unit with full flight functionality. This design could be evolved into a flight unit for future missions that requires high power electric propulsion.

  17. Straight and chopped dc performance data for a Prestolite MTC-4001 motor and a general electric EV-1 controller

    NASA Technical Reports Server (NTRS)

    Edie, P. C.

    1981-01-01

    Performance data on the Prestolite MTC-4001 series wound dc motor and General Electric EV-1 Chopper Controller is supplied for the electric vehicle manufacturer. Data are provided for both straight and chopped dc input to the motor, at 2 motor temperature levels. Testing was done at 6 voltage increments to the motor, and 2 voltage increments to the controller. Data results are presented in both tabular and graphical forms. Tabular information includes motor voltage and current input data, motor speed and torque output data, power data and temperature data. Graphical information includes torque-speed, motor power output-speed, torque-current, and efficiency-speed plots under the various operating conditions. The data resulting from this testing show the speed-torque plots to have the most variance with operating temperature. The maximum motor efficiency is between 76% and 82%, regardless of temperature or mode of operation.

  18. Attofarad resolution potentiostat for electrochemical measurements on nanoscale biomolecular interfacial systems.

    PubMed

    Carminati, Marco; Ferrari, Giorgio; Sampietro, Marco

    2009-12-01

    We present an instrument that enables electrochemical measurements (cyclic voltammetry, impedance tracking, and impedance spectroscopy) on submicrometric samples. The system features a frequency range from dc to 1 MHz and a current resolution of 10 fA for a measurement time of 1 s, giving a sensitivity of few attofarads in terms of measurable capacitance with an applied voltage of only 100 mV. These performances are obtained using a low-noise wide-bandwidth integrator/differentiator stage to sense the input current and a modular approach to minimize the effect of input stray capacitances. A digitally implemented lock-in filter optimally extracts the impedance of the sample, providing time tracking and spectroscopy operating modes. This computer-based and flexible instrument is well suited for characterizing and tracking the electrical properties of biomolecules kept in the physiological solution down to the nanoscale.

  19. A prototype stationary Fourier transform spectrometer for near-infrared absorption spectroscopy.

    PubMed

    Li, Jinyang; Lu, Dan-feng; Qi, Zhi-mei

    2015-09-01

    A prototype stationary Fourier transform spectrometer (FTS) was constructed with a fiber-coupled lithium niobate (LiNbO3) waveguide Mach-Zehnder interferometer (MZI) for the purpose of rapid on-site spectroscopy of biological and chemical measurands. The MZI contains push-pull electrodes for electro-optic modulation, and its interferogram as a plot of intensity against voltage was obtained by scanning the modulating voltage from -60 to +60 V in 50 ms. The power spectrum of input signal was retrieved by Fourier transform processing of the interferogram combined with the wavelength dispersion of half-wave voltage determined for the MZI used. The prototype FTS operates in the single-mode wavelength range from 1200 to 1700 nm and allows for reproducible spectroscopy. A linear concentration dependence of the absorbance at λmax = 1451 nm for water in ethanolic solution was obtained using the prototype FTS. The near-infrared spectroscopy of solid samples was also implemented, and the different spectra obtained with different materials evidenced the chemical recognition capability of the prototype FTS. To make this prototype FTS practically applicable, work on improving its spectral resolution by increasing the maximum optical path length difference is in progress.

  20. Synaptic characteristics with strong analog potentiation, depression, and short-term to long-term memory transition in a Pt/CeO2/Pt crossbar array structure

    NASA Astrophysics Data System (ADS)

    Kim, Hyung Jun; Park, Daehoon; Yang, Paul; Beom, Keonwon; Kim, Min Ju; Shin, Chansun; Kang, Chi Jung; Yoon, Tae-Sik

    2018-06-01

    A crossbar array of Pt/CeO2/Pt memristors exhibited the synaptic characteristics such as analog, reversible, and strong resistance change with a ratio of ∼103, corresponding to wide dynamic range of synaptic weight modulation as potentiation and depression with respect to the voltage polarity. In addition, it presented timing-dependent responses such as paired-pulse facilitation and the short-term to long-term memory transition by increasing amplitude, width, and repetition number of voltage pulse and reducing the interval time between pulses. The memory loss with a time was fitted with a stretched exponential relaxation model, revealing the relation of memory stability with the input stimuli strength. The resistance change was further enhanced but its stability got worse as increasing measurement temperature, indicating that the resistance was changed as a result of voltage- and temperature-dependent electrical charging and discharging to alter the energy barrier for charge transport. These detailed synaptic characteristics demonstrated the potential of crossbar array of Pt/CeO2/Pt memristors as artificial synapses in highly connected neuron-synapse network.

  1. Synaptic characteristics with strong analog potentiation, depression, and short-term to long-term memory transition in a Pt/CeO2/Pt crossbar array structure.

    PubMed

    Kim, Hyung Jun; Park, Daehoon; Yang, Paul; Beom, Keonwon; Kim, Min Ju; Shin, Chansun; Kang, Chi Jung; Yoon, Tae-Sik

    2018-06-29

    A crossbar array of Pt/CeO 2 /Pt memristors exhibited the synaptic characteristics such as analog, reversible, and strong resistance change with a ratio of ∼10 3 , corresponding to wide dynamic range of synaptic weight modulation as potentiation and depression with respect to the voltage polarity. In addition, it presented timing-dependent responses such as paired-pulse facilitation and the short-term to long-term memory transition by increasing amplitude, width, and repetition number of voltage pulse and reducing the interval time between pulses. The memory loss with a time was fitted with a stretched exponential relaxation model, revealing the relation of memory stability with the input stimuli strength. The resistance change was further enhanced but its stability got worse as increasing measurement temperature, indicating that the resistance was changed as a result of voltage- and temperature-dependent electrical charging and discharging to alter the energy barrier for charge transport. These detailed synaptic characteristics demonstrated the potential of crossbar array of Pt/CeO 2 /Pt memristors as artificial synapses in highly connected neuron-synapse network.

  2. Differential CMOS Sub-Terahertz Detector with Subthreshold Amplifier.

    PubMed

    Yang, Jong-Ryul; Han, Seong-Tae; Baek, Donghyun

    2017-09-09

    We propose a differential-type complementary metal-oxide-semiconductor (CMOS) sub-terahertz (THz) detector with a subthreshold preamplifier. The proposed detector improves the voltage responsivity and effective signal-to-noise ratio (SNR) using the subthreshold preamplifier, which is located between the differential detector device and main amplifier. The overall noise of the detector for the THz imaging system is reduced by the preamplifier because it diminishes the noise contribution of the main amplifier. The subthreshold preamplifier is self-biased by the output DC voltage of the detector core and has a dummy structure that cancels the DC offsets generated by the preamplifier itself. The 200 GHz detector fabricated using 0.25 μm CMOS technology includes a low drop-out regulator, current reference blocks, and an integrated antenna. A voltage responsivity of 2020 kV/W and noise equivalent power of 76 pW/√Hz are achieved using the detector at a gate bias of 0.5 V, respectively. The effective SNR at a 103 Hz chopping frequency is 70.9 dB with a 0.7 W/m² input signal power density. The dynamic range of the raster-scanned THz image is 44.59 dB.

  3. Differential CMOS Sub-Terahertz Detector with Subthreshold Amplifier

    PubMed Central

    Han, Seong-Tae; Baek, Donghyun

    2017-01-01

    We propose a differential-type complementary metal-oxide-semiconductor (CMOS) sub-terahertz (THz) detector with a subthreshold preamplifier. The proposed detector improves the voltage responsivity and effective signal-to-noise ratio (SNR) using the subthreshold preamplifier, which is located between the differential detector device and main amplifier. The overall noise of the detector for the THz imaging system is reduced by the preamplifier because it diminishes the noise contribution of the main amplifier. The subthreshold preamplifier is self-biased by the output DC voltage of the detector core and has a dummy structure that cancels the DC offsets generated by the preamplifier itself. The 200 GHz detector fabricated using 0.25 μm CMOS technology includes a low drop-out regulator, current reference blocks, and an integrated antenna. A voltage responsivity of 2020 kV/W and noise equivalent power of 76 pW/√Hz are achieved using the detector at a gate bias of 0.5 V, respectively. The effective SNR at a 103 Hz chopping frequency is 70.9 dB with a 0.7 W/m2 input signal power density. The dynamic range of the raster-scanned THz image is 44.59 dB. PMID:28891927

  4. Transistor biased amplifier minimizes diode discriminator threshold attenuation

    NASA Technical Reports Server (NTRS)

    Larsen, R. N.

    1967-01-01

    Transistor biased amplifier has a biased diode discriminator driven by a high impedance /several megohms/ current source, rather than a voltage source with several hundred ohms output impedance. This high impedance input arrangement makes the incremental impedance of the threshold diode negligible relative to the input impedance.

  5. Determination of nonlinear resistance voltage-current relationships by measuring harmonics

    NASA Technical Reports Server (NTRS)

    Stafford, J. M.

    1971-01-01

    Test configuration measures harmonic signal amplitudes generated in nonlinear resistance. Vacuum-type voltmeter measures low frequency sinusoidal input signal amplitude and wave-analyzer measures amplitude of harmonic signals generated in junction. Input signal harmonics amplitude must not exceed that of harmonics generated in nonlinear resistance.

  6. Low-Power Low-Noise Amplifier Using Attenuation-Adaptive Noise Control for Ultrasound Imaging Systems.

    PubMed

    Jung, Sung-Jin; Hong, Seong-Kwan; Kwon, Oh-Kyong

    2017-02-01

    This paper presents a low-noise amplifier (LNA) using attenuation-adaptive noise control (AANC) for ultrasound imaging systems. The proposed AANC reduces unnecessary power consumption of the LNA, which arises from useless noise floor, by controlling the noise floor of the LNA with respect to the attenuation of the ultrasound. In addition, a current feedback amplifier with a source-degenerated input stage reduces variations of the bandwidth and the closed loop gain, which are caused by the AANC. The proposed LNA was fabricated using a 0.18-[Formula: see text] CMOS process. The input-referred voltage noise density of the fabricated LNA is 1.01 [Formula: see text] at the frequency of 5 MHz. The second harmonic distortion is -53.5 dB when the input signal frequency is 5 MHz and the output voltage swing is 2 [Formula: see text]. The power consumption of the LNA using the AANC is 16.2 mW at the supply voltage of 1.8 V, which is reduced to 64% of that without using the AANC. The noise efficiency factor (NEF) of the proposed LNA is 3.69, to our knowledge, which is the lowest NEF compared with previous LNAs for ultrasound imaging.

  7. Jitter compensation circuit

    DOEpatents

    Sullivan, James S.; Ball, Don G.

    1997-01-01

    The instantaneous V.sub.co signal on a charging capacitor is sampled and the charge voltage on capacitor C.sub.o is captured just prior to its discharge into the first stage of magnetic modulator. The captured signal is applied to an averaging circuit with a long time constant and to the positive input terminal of a differential amplifier. The averaged V.sub. co signal is split between a gain stage (G=0.975) and a feedback stage that determines the slope of the voltage ramp applied to the high speed comparator. The 97.5% portion of the averaged V.sub.co signal is applied to the negative input of a differential amplifier gain stage (G=10). The differential amplifier produces an error signal by subtracting 97.5% of the averaged V.sub.co signal from the instantaneous value of sampled V.sub.co signal and multiplying the difference by ten. The resulting error signal is applied to the positive input of a high speed comparator. The error signal is then compared to a voltage ramp that is proportional to the averaged V.sub.co values squared divided by the total volt-second product of the magnetic compression circuit.

  8. Jitter compensation circuit

    DOEpatents

    Sullivan, J.S.; Ball, D.G.

    1997-09-09

    The instantaneous V{sub co} signal on a charging capacitor is sampled and the charge voltage on capacitor C{sub o} is captured just prior to its discharge into the first stage of magnetic modulator. The captured signal is applied to an averaging circuit with a long time constant and to the positive input terminal of a differential amplifier. The averaged V{sub co} signal is split between a gain stage (G = 0.975) and a feedback stage that determines the slope of the voltage ramp applied to the high speed comparator. The 97.5% portion of the averaged V{sub co} signal is applied to the negative input of a differential amplifier gain stage (G = 10). The differential amplifier produces an error signal by subtracting 97.5% of the averaged V{sub co} signal from the instantaneous value of sampled V{sub co} signal and multiplying the difference by ten. The resulting error signal is applied to the positive input of a high speed comparator. The error signal is then compared to a voltage ramp that is proportional to the averaged V{sub co} values squared divided by the total volt-second product of the magnetic compression circuit. 11 figs.

  9. Modeling of a Metal-Ferroelectric-Semiconductor Field-Effect Transistor NAND Gate

    NASA Technical Reports Server (NTRS)

    Phillips, Thomas A.; MacLeod, Todd C.; Ho, Fat Duen

    2005-01-01

    Considerable research has been performed by several organizations in the use of the Metal- Ferroelectric-Semiconductor Field-Effect Transistors (MFSFET) in memory circuits. However, research has been limited in expanding the use of the MFSFET to other electronic circuits. This research project investigates the modeling of a NAND gate constructed from MFSFETs. The NAND gate is one of the fundamental building blocks of digital electronic circuits. The first step in forming a NAND gate is to develop an inverter circuit. The inverter circuit was modeled similar to a standard CMOS inverter. A n-channel MFSFET with positive polarization was used for the n-channel transistor, and a n-channel MFSFET with negative polarization was used for the p-channel transistor. The MFSFETs were simulated by using a previously developed current model which utilized a partitioned ferroelectric layer. The inverter voltage transfer curve was obtained over a standard input of zero to five volts. Then a 2-input NAND gate was modeled similar to the inverter circuit. Voltage transfer curves were obtained for the NAND gate for various configurations of input voltages. The resultant data shows that it is feasible to construct a NAND gate with MFSFET transistors.

  10. Graphene ballistic nano-rectifier with very high responsivity

    PubMed Central

    Auton, Gregory; Zhang, Jiawei; Kumar, Roshan Krishna; Wang, Hanbin; Zhang, Xijian; Wang, Qingpu; Hill, Ernie; Song, Aimin

    2016-01-01

    Although graphene has the longest mean free path of carriers of any known electronic material, very few novel devices have been reported to harness this extraordinary property. Here we demonstrate a ballistic nano-rectifier fabricated by creating an asymmetric cross-junction in single-layer graphene sandwiched between boron nitride flakes. A mobility ∼200,000 cm2 V−1 s−1 is achieved at room temperature, well beyond that required for ballistic transport. This enables a voltage responsivity as high as 23,000 mV mW−1 with a low-frequency input signal. Taking advantage of the output channels being orthogonal to the input terminals, the noise is found to be not strongly influenced by the input. Hence, the corresponding noise-equivalent power is as low as 0.64 pW Hz−1/2. Such performance is even comparable to superconducting bolometers, which however need to operate at cryogenic temperatures. Furthermore, output oscillations are observed at low temperatures, the period of which agrees with the lateral size quantization. PMID:27241162

  11. Transient Performance Improvement Circuit (TPIC)s for DC-DC converter applications

    NASA Astrophysics Data System (ADS)

    Lim, Sungkeun

    Gordon Moore famously predicted the exponential increase in transistor integration and computing power that has been witnessed in recent decades [1]. In the near future, it is expected that more than one billion transistors will be integrated per chip, and advanced microprocessors will require clock speeds in excess of several GHz. The increasing number of transistors and high clock speeds will necessitate the consumption of more power. By 2014, it is expected that the maximum power consumption of the microprocessor will reach approximately 150W, and the maximum load current will be around 150A. Today's trend in power and thermal management is to reduce supply voltage as low as possible to reduce delivered power. It is anticipated that the Intel cores will operate on 0.8V of supply voltage by 2014 [2]. A significant challenge in Voltage Regulator Module (VRM) development for next generation microprocessors is to regulate the supply voltage within a certain tolerance band during high slew rate load transitions, since the required supply voltage tolerance band will be much narrower than the current requirement. If VR output impedance is maintained at a constant value from DC to high frequency, large output voltage spikes can be avoided during load cur- rent transients. Based on this, the Adaptive Voltage Position (AVP) concept was developed to achieve constant VR output impedance to improve transient response performance [3]. However, the VR output impedance can not be made constant over the entire frequency range with AVP design, because the AVP design makes the VR output impedance constant only at low frequencies. To make the output impedance constant at high frequencies, many bulk capacitors and ceramic capacitors are required. The tight supply voltage tolerance for the next generation of microprocessors during high slew rate load transitions requires fast transient response power supplies. A VRM can not follow the high slew rate load current transients, because of the slow inductor current slew rate which is determined by the input voltage, output voltage, and the inductance. The remaining inductor current in the power delivery path will charge the output capacitors and develop a voltage across the ESR. As a result, large output voltage spikes occur during load current transients. Due to their limited control bandwidth, traditional VRs can not sufficiently respond rapidly to certain load transients. As a result, a large output voltage spike can occur during load transients, hence requiring a large amount of bulk capacitance to decouple the VR from the load [2]. If the remaining inductor current is removed from the power stage or the inductor current slew rate is changed, the output voltage spikes can be clamped, allowing the output capacitance to be reduced. A new design methodology for a Transient Performance Improvement Circuit(TPIC) based on controlling the output impedance of a regulator is presented. The TPIC works in parallel with a voltage regulator (VR)'s ceramic capacitors to achieve faster voltage regulation without the need for a large bulk capacitance, and can serve as a replacement for bulk capacitors. The specific function of the TPIC is to mimic the behavior of the bulk capacitance in a traditional VRM by sinking and sourcing large currents during transients, allowing the VR to respond quickly to current transients without the need for a large bulk capacitance. This will allow fast transient response without the need for a large bulk capacitor. The main challenge in applying the TPIC is creating a design which will not interfere with VR operation. A TPIC for a 4 Switch Buck-Boost (4SBB) converter is presented which functions by con- trolling the inductor current slew rate during load current transients. By increasing the inductor current slew rate, the remaining inductor current can be removed from the 4SBB power delivery path and the output voltage spike can be clamped. A second TPIC is presented which is designed to improve the performance of an LDO regulator during output current transients. A TPIC for a LDO regulator is proposed to reduce the over voltage spike settling time. During a load current step down transient, the only current discharging path is a light load current. However, it takes a long time to discharge the current charged in the output capacitors with the light load current. The proposed TPIC will make an additional current discharging path to reduce the long settling time. By reducing the settling time, the load current transient frequency of the LDO regulator can be increased. A Ripple Cancellation Circuit (RCC) is proposed to reduce the output voltage ripple. The RCC has a very similar concept with the TPIC which is sinking or injecting additional current to the power stage to compensate the inductor ripple current. The proposed TPICs and RCC have been implemented with a 0.6m CMOS process. A single-phase VR, a 4SBB converter, and a LDO regulator have been utilized with the proposed TPIC to evaluate its performance. The theoretical analysis will be confirmed by Cadence simulation results and experimental results.

  12. Comprehensive Evaluation of Power Supplies at Cryogenic Temperatures for Deep Space Applications

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Gerber, Scott; Hammoud, Ahmad; Elbuluk, Malik E.; Lyons, Valerie (Technical Monitor)

    2002-01-01

    The operation of power electronic systems at cryogenic temperatures is anticipated in many future space missions such as planetary exploration and deep space probes. In addition to surviving the space hostile environments, electronics capable of low temperature operation would contribute to improving circuit performance, increasing system efficiency, and reducing development and launch costs. DC/DC converters are widely used in space power systems in the areas of power management, conditioning, and control. As part of the on-going Low Temperature Electronics Program at NASA, several commercial-off-the-shelf (COTS) DC/DC converters, with specifications that might fit the requirements of specific future space missions have been selected for investigation at cryogenic temperatures. The converters have been characterized in terms of their performance as a function of temperature in the range of 20 C to - 180 C. These converters ranged in electrical power from 8 W to 13 W, input voltage from 9 V to 72 V and an output voltage of 3.3 V. The experimental set-up and procedures along with the results obtained on the converters' steady state and dynamic characteristics are presented and discussed.

  13. KLauS: an ASIC for silicon photomultiplier readout and its application in a setup for production testing of scintillating tiles

    NASA Astrophysics Data System (ADS)

    Briggl, K.; Dorn, M.; Hagdorn, R.; Harion, T.; Schultz-Coulon, H. C.; Shen, W.

    2014-02-01

    KLauS is an ASIC produced in the AMS 0.35 μm SiGe process to read out the charge signals from silicon photomultipliers. Developed as an analog front-end for future calorimeters with high granularity as pursued by the AHCAL concept in the CALICE collaboration, the ASIC is designed to measure the charge signal of the sensors in a large dynamic range and with low electronic noise contributions. In order to tune the operation voltage of each sensor individually, an 8-bit DAC to tune the voltage at the input terminal within a range of 2V is implemented. Using an integrated fast comparator with low jitter, the time information can be measured with sub-nanosecond resolution. The low power consumption of the ASIC can be further decreased using power gating techniques. Future versions of KLauS are under development and will incorporate an ADC with a resolution of up to 12-bits and blocks for digital data transmission. The chip is used in a setup for mass testing and characterization of scintillator tiles for the AHCAL test beam program.

  14. Performance analysis of electronic power transformer based on neuro-fuzzy controller.

    PubMed

    Acikgoz, Hakan; Kececioglu, O Fatih; Yildiz, Ceyhun; Gani, Ahmet; Sekkeli, Mustafa

    2016-01-01

    In recent years, electronic power transformer (EPT), which is also called solid state transformer, has attracted great interest and has been used in place of the conventional power transformers. These transformers have many important functions as high unity power factor, low harmonic distortion, constant DC bus voltage, regulated output voltage and compensation capability. In this study, proposed EPT structure contains a three-phase pulse width modulation rectifier that converts 800 Vrms AC to 2000 V DC bus at input stage, a dual active bridge converter that provides 400 V DC bus with 5:1 high frequency transformer at isolation stage and a three-phase two level inverter that is used to obtain AC output at output stage. In order to enhance dynamic performance of EPT structure, neuro fuzzy controllers which have durable and nonlinear nature are used in input and isolation stages instead of PI controllers. The main aim of EPT structure with the proposed controller is to improve the stability of power system and to provide faster response against disturbances. Moreover, a number of simulation results are carried out to verify EPT structure designed in MATLAB/Simulink environment and to analyze compensation ability for voltage harmonics, voltage flicker and voltage sag/swell conditions.

  15. New low-level a-c amplifier provides adjustable noise cancellation and automatic temperature compensation

    NASA Technical Reports Server (NTRS)

    Smith, J. R., Jr.

    1964-01-01

    Circuit utilizing a transistorized differential amplifier is developed for biomedical use. This low voltage operating circuit provides adjustable cancellation at the input for unbalanced noise signals, and automatic temperature compensation is accomplished by a single active element across the input-output ends.

  16. 47 CFR 73.1820 - Station log.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... values): (A) Common point current. (B) When the operating power is determined by the indirect method, the efficiency factor F and either the product of the final amplifier input voltage and current or the calculated antenna input power. See § 73.51(e). (C) Antenna monitor phase or phase deviation indications. (D) Antenna...

  17. Modular Apparatus and Method for Attaching Multiple Devices

    NASA Technical Reports Server (NTRS)

    Okojie, Robert S (Inventor)

    2015-01-01

    A modular apparatus for attaching sensors and electronics is disclosed. The modular apparatus includes a square recess including a plurality of cavities and a reference cavity such that a pressure sensor can be connected to the modular apparatus. The modular apparatus also includes at least one voltage input hole and at least one voltage output hole operably connected to each of the plurality of cavities such that voltage can be applied to the pressure sensor and received from the pressure sensor.

  18. MULTIPLIER CIRCUIT

    DOEpatents

    Chase, R.L.

    1963-05-01

    An electronic fast multiplier circuit utilizing a transistor controlled voltage divider network is presented. The multiplier includes a stepped potentiometer in which solid state or transistor switches are substituted for mechanical wipers in order to obtain electronic switching that is extremely fast as compared to the usual servo-driven mechanical wipers. While this multiplier circuit operates as an approximation and in steps to obtain a voltage that is the product of two input voltages, any desired degree of accuracy can be obtained with the proper number of increments and adjustment of parameters. (AEC)

  19. The Noise Level Optimization for Induction Magnetometer of SEP System

    NASA Astrophysics Data System (ADS)

    Zhu, W.; Fang, G.

    2011-12-01

    The Surface Electromagnetic Penetration (SEP) System, subsidized by the SinoProbe Plan in China, is designed for 3D conductivity imaging in geophysical mineral exploration, underground water distribution exploration, oil and gas reservoir exploration. Both the Controlled Source Audio Magnetotellurics (CSAMT) method and Magnetotellurics (MT) method can be surveyed by SEP system. In this article, an optimization design is introduced, which can minimize the noise level of the induction magnetometer for SEP system magnetic field's acquisition. The induction magnetometer transfers the rate of the magnetic field's change to voltage signal by induction coil, and amplified it by Low Noise Amplifier The noise parts contributed to the magnetometer are: the coil's thermal noise, the equivalent input voltage and current noise of the pre-amplifier. The coil's thermal noise is decided by coil's DC resistance. The equivalent input voltage and current noise of the pre-amplifier depend on the amplifier's type and DC operation condition. The design here optimized the DC operation point of pre-amplifier, adjusted the DC current source, and realized the minimum of total noise level of magnetometer. The calculation and test results show that: the total noise is about 1pT/√Hz, the thermal noise of coils is 1.7nV/√Hz, the preamplifier equivalent input voltage and current noise is 3nV/ √Hz and 0.1pA/√Hz, the weight of the magnetometer is 4.5kg and meet the requirement of SEP system.

  20. Experimental Evaluation of Load Rejection Over-Voltage from Grid-Tied Solar Inverters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Austin; Hoke, Andy, Chakraborty, Sudipta; Ropp, Michael

    This paper investigates the impact of load rejection over-voltage (LRO) from commercially available grid-tied photovoltaic (PV) solar inverters. LRO can occur when a local feeder or breaker opens and the power output from a distributed energy resource exceeds the load power. Simplified models of current controlled inverters can over-predict over-voltage magnitudes, thus it is useful to quantify testing. The load rejection event was replicated using a hardware testbed at the National Renewable Energy Laboratory (NREL), and a set of commercially available PV inverters was tested to quantify the impact of LRO for a range of generation-to-load ratios. The magnitude andmore » duration of the over-voltage events are reported in this paper along with a discussion of characteristic inverter output behavior. The results for the inverters under test showed that maximum over-voltage magnitudes were less than 200 percent of nominal voltage, and much lower in many test cases. These research results are important because utilities that interconnect inverter-based DER need to understand their characteristics under abnormal grid conditions.« less

  1. Improved-Bandwidth Transimpedance Amplifier

    NASA Technical Reports Server (NTRS)

    Chapsky, Jacob

    2009-01-01

    The widest available operational amplifier, with the best voltage and current noise characteristics, is considered for transimpedance amplifier (TIA) applications where wide bandwidth is required to handle fast rising input signals (as for time-of-flight measurement cases). The added amplifier inside the TIA feedback loop can be configured to have slightly lower voltage gain than the bandwidth reduction factor.

  2. Changes in behavioral responses of Lygus lineolaris (Hemiptera: Miridae) from various applied signal voltages during EPG recordings

    USDA-ARS?s Scientific Manuscript database

    A 3rd-generation AC-DC electrical penetration graph (EPG) monitor was used to study feeding behaviors of pre-reproductive adult Lygus lineolaris (Hemiptera: Miridae) on pinhead (<3mm) cotton squares, applying different signal voltages at several input impedances. The AC-DC monitor allows a user to s...

  3. Intermediate conductance calcium-activated potassium channels modulate summation of parallel fiber input in cerebellar Purkinje cells.

    PubMed

    Engbers, Jordan D T; Anderson, Dustin; Asmara, Hadhimulya; Rehak, Renata; Mehaffey, W Hamish; Hameed, Shahid; McKay, Bruce E; Kruskic, Mirna; Zamponi, Gerald W; Turner, Ray W

    2012-02-14

    Encoding sensory input requires the expression of postsynaptic ion channels to transform key features of afferent input to an appropriate pattern of spike output. Although Ca(2+)-activated K(+) channels are known to control spike frequency in central neurons, Ca(2+)-activated K(+) channels of intermediate conductance (KCa3.1) are believed to be restricted to peripheral neurons. We now report that cerebellar Purkinje cells express KCa3.1 channels, as evidenced through single-cell RT-PCR, immunocytochemistry, pharmacology, and single-channel recordings. Furthermore, KCa3.1 channels coimmunoprecipitate and interact with low voltage-activated Cav3.2 Ca(2+) channels at the nanodomain level to support a previously undescribed transient voltage- and Ca(2+)-dependent current. As a result, subthreshold parallel fiber excitatory postsynaptic potentials (EPSPs) activate Cav3 Ca(2+) influx to trigger a KCa3.1-mediated regulation of the EPSP and subsequent after-hyperpolarization. The Cav3-KCa3.1 complex provides powerful control over temporal summation of EPSPs, effectively suppressing low frequencies of parallel fiber input. KCa3.1 channels thus contribute to a high-pass filter that allows Purkinje cells to respond preferentially to high-frequency parallel fiber bursts characteristic of sensory input.

  4. System and method for determining stator winding resistance in an AC motor using motor drives

    DOEpatents

    Lu, Bin; Habetler, Thomas G; Zhang, Pinjia

    2013-02-26

    A system and method for determining the stator winding resistance of AC motors is provided. The system includes an AC motor drive having an input connectable to an AC source and an output connectable to an input terminal of an AC motor, a pulse width modulation (PWM) converter having switches therein to control current flow and terminal voltages in the AC motor, and a control system connected to the PWM converter. The control system generates a command signal to cause the PWM converter to control an output of the AC motor drive corresponding to an input to the AC motor, selectively generates a modified command signal to cause the PWM converter to inject a DC signal into the output of the AC motor drive, and determines a stator winding resistance of the AC motor based on the DC signal of at least one of the voltage and current.

  5. Electric vehicle drive train with contactor protection

    DOEpatents

    Konrad, Charles E.; Benson, Ralph A.

    1994-01-01

    A drive train for an electric vehicle includes a traction battery, a power drive circuit, a main contactor for connecting and disconnecting the traction battery and the power drive circuit, a voltage detector across contacts of the main contactor, and a controller for controlling the main contactor to prevent movement of its contacts to the closed position when the voltage across the contacts exceeds a predetermined threshold, to thereby protect the contacts of the contactor. The power drive circuit includes an electric traction motor and a DC-to-AC inverter with a capacitive input filter. The controller also inhibits the power drive circuit from driving the motor and thereby discharging the input capacitor if the contacts are inadvertently opened during motoring. A precharging contactor is controlled to charge the input filter capacitor prior to closing the main contactor to further protect the contacts of the main contactor.

  6. Electric vehicle drive train with contactor protection

    DOEpatents

    Konrad, C.E.; Benson, R.A.

    1994-11-29

    A drive train for an electric vehicle includes a traction battery, a power drive circuit, a main contactor for connecting and disconnecting the traction battery and the power drive circuit, a voltage detector across contacts of the main contactor, and a controller for controlling the main contactor to prevent movement of its contacts to the closed position when the voltage across the contacts exceeds a predetermined threshold, to thereby protect the contacts of the contactor. The power drive circuit includes an electric traction motor and a DC-to-AC inverter with a capacitive input filter. The controller also inhibits the power drive circuit from driving the motor and thereby discharging the input capacitor if the contacts are inadvertently opened during motoring. A precharging contactor is controlled to charge the input filter capacitor prior to closing the main contactor to further protect the contacts of the main contactor. 3 figures.

  7. X-Band, 17-Watt Solid-State Power Amplifier

    NASA Technical Reports Server (NTRS)

    Mittskus, Anthony; Stone, Ernest; Boger, William; Burgess, David; Honda, Richard; Nuckolls, Carl

    2005-01-01

    An advanced solid-state power amplifier that can generate an output power of as much as 17 W at a design operating frequency of 8.4 GHz has been designed and constructed as a smaller, lighter, less expensive alternative to traveling-wave-tube X-band amplifiers and to prior solid-state X-band power amplifiers of equivalent output power. This amplifier comprises a monolithic microwave integrated circuit (MMIC) amplifier module and a power-converter module integrated into a compact package (see Figure 1). The amplifier module contains an input variable-gain amplifier (VGA), an intermediate driver stage, a final power stage, and input and output power monitors (see Figure 2). The VGA and the driver amplifier are 0.5-m GaAs-based metal semiconductor field-effect transistors (MESFETs). The final power stage contains four parallel high-efficiency, GaAs-based pseudomorphic high-electron-mobility transistors (PHEMTs). The gain of the VGA is voltage-variable over a range of 10 to 24 dB. To provide for temperature compensation of the overall amplifier gain, the gain-control voltage is generated by an operational-amplifier circuit that includes a resistor/thermistor temperature-sensing network. The driver amplifier provides a gain of 14 dB to an output power of 27 dBm to drive the four parallel output PHEMTs, each of which is nominally capable of putting out as much as 5 W. The driver output is sent to the input terminals of the four parallel PHEMTs through microstrip power dividers; the outputs of these PHEMTs are combined by microstrip power combiners (which are similar to the microstrip power dividers) to obtain the final output power of 17 W.

  8. Does voltage predict return to work and neuropsychiatric sequelae following electrical burn injury?

    PubMed

    Chudasama, Shruti; Goverman, Jeremy; Donaldson, Jeffrey H; van Aalst, John; Cairns, Bruce A; Hultman, Charles Scott

    2010-05-01

    Voltage has historically guided the acute management and long-term prognosis of physical morbidity in electrical injury patients; however, few large studies exist that include neuropsychiatric morbidity in final outcome analysis. This review compares high (>1000 V) to low (<1000 V) voltage injuries, focusing on return to work and neuropsychiatric sequelae following electrical burn injury. Patients with electrical injuries admitted to the University of North Carolina Jaycee Burn Center between 2000 and 2005 were prospectively entered into a trauma database, then retrospectively reviewed. Patients were divided into 4 cohorts: high voltage (>1000 V), low voltage (<1000 V), flash arc, and lightning. Demographics, hospital course, and follow-up were recorded to determine physical and neuropsychiatric morbidity. Differences among cohorts were tested for statistical significance. Over 5 years, 2548 patients were admitted to the burn center, including 115 patients with electrical injuries. There were 110 males and 5 females, with a mean age of 35 years (range, 0.75-65 years). The cause of the electrical injury was high voltage in 60 cases, low voltage in 25 cases, flash arc in 29 cases and lightning in 1 case. The mean total body surface area burn was 8% (range, 0%-52%). The etiology was work-related electrical injury in 85 patients. Mean follow-up period was 352 days with 13 (11%) patients lost to follow-up. Patients with high voltage injuries had significantly larger total body surface area burn, longer ICU stays, longer hospitalizations, and significantly higher rates of fasciotomy, amputation, nerve decompression and outpatient reconstruction, with 4 cases of renal failure and 2 deaths. In spite of these differences, high and low voltage groups experienced similar rates of neuropsychiatric sequelae, limited return to work and delays in return to work. Final impairment ratings for the high and low voltage groups were 17.5% and 5.3%, respectively. Electrical injuries often incur severe morbidity despite relatively small burn size and/or low voltage. When comparing high and low voltage injuries, similarities in endpoints such as neuropsychiatric sequelae, the need for late reconstruction, and failure to return to work challenge previous notions that voltage predicts outcome.

  9. Microwave Driven Actuators Power Allocation and Distribution

    NASA Technical Reports Server (NTRS)

    Forbes, Timothy; Song, Kyo D.

    2000-01-01

    Design, fabrication and test of a power allocation and distribution (PAD) network for microwave driven actuators is presented in this paper. Development of a circuit that would collect power from a rectenna array amplify and distribute the power to actuators was designed and fabricated for space application in an actuator array driven by a microwave. A P-SPICE model was constructed initially for data reduction purposes, and was followed by a working real-world model. A voltage up - converter (VUC) is used to amplify the voltage from the individual rectenna. The testing yielded a 26:1 voltage amplification ratio with input voltage at 9 volts and a measured output voltage 230VDC. Future work includes the miniaturization of the circuitry, the use of microwave remote control, and voltage amplification technology for each voltage source. The objective of this work is to develop a model system that will collect DC voltage from an array of rectenna and propagate the voltage to an array of actuators.

  10. Solid state safety jumper cables

    DOEpatents

    Kronberg, James W.

    1993-01-01

    Solid state jumper cables for connecting two batteries in parallel, having two bridge rectifiers for developing a reference voltage, a four-input decoder for determining which terminals are to be connected based on a comparison of the voltage at each of the four terminals to the reference voltage, and a pair of relays for effecting the correct connection depending on the determination of the decoder. No connection will be made unless only one terminal of each battery has a higher voltage than the reference voltage, indicating "positive" terminals, and one has a lower voltage than the reference voltage, indicating "negative" terminals, and that, therefore, the two high voltage terminals may be connected and the two lower voltage terminals may be connected. Current flows once the appropriate relay device is closed. The relay device is preferably a MOSFET (metal oxide semiconductor field effect transistor) combined with a series array of photodiodes that develop MOSFET gate-closing potential when the decoder output causes an LED to light.

  11. Solid state safety jumper cables

    DOEpatents

    Kronberg, J.W.

    1993-02-23

    Solid state jumper cables for connecting two batteries in parallel, having two bridge rectifiers for developing a reference voltage, a four-input decoder for determining which terminals are to be connected based on a comparison of the voltage at each of the four terminals to the reference voltage, and a pair of relays for effecting the correct connection depending on the determination of the decoder. No connection will be made unless only one terminal of each battery has a higher voltage than the reference voltage, indicating positive'' terminals, and one has a lower voltage than the reference voltage, indicating negative'' terminals, and that, therefore, the two high voltage terminals may be connected and the two lower voltage terminals may be connected. Current flows once the appropriate relay device is closed. The relay device is preferably a MOSFET (metal oxide semiconductor field effect transistor) combined with a series array of photodiodes that develop MOSFET gate-closing potential when the decoder output causes an LED to light.

  12. The Design of Operational Amplifier for Low Voltage and Low Current Sound Energy Harvesting System

    NASA Astrophysics Data System (ADS)

    Fang, Liew Hui; Rahim, Rosemizi Bin Abd; Isa, Muzamir; Idris Syed Hassan, Syed; Ismail, Baharuddin Bin

    2018-03-01

    The objective of this paper is to design a combination of an operational amplifier (op-amp) with a rectifier used in an alternate current (ac) to direct current (dc) power conversion. The op-amp was designed to specifically work at low voltage and low current for a sound energy harvesting system. The goal of the op-amp design with adjustable gain was to control output voltage based on the objectives of the experiment conducted. The op-amp was designed for minimum power dissipation performance, with the means of increasing the output current when receiving a large amount of load. The harvesting circuits which designed further improved the power output efficiency by shortening the fully charged time needed by a supercapacitor bank. It can fulfil the long-time power demands for low power device. Typically, a small amount of energy sources were converted to electricity and stored in the supercapacitor bank, which was built by 10 pieces of capacitors with 0.22 F each, arranged in parallel connection. The highest capacitance was chosen based on the characteristic that have the longest discharging time to support the applications of a supercapacitor bank. Testing results show that the op-amp can boost the low input ac voltage (∼3.89 V) to high output dc voltage (5.0 V) with output current of 30 mA and stored the electrical energy in a big supercapacitor bank having a total of 2.2 F, effectively. The measured results agree well with the calculated results.

  13. Position-insensitive long range inductive power transfer

    NASA Astrophysics Data System (ADS)

    Kwan, Christopher H.; Lawson, James; Yates, David C.; Mitcheson, Paul D.

    2014-11-01

    This paper presents results of an improved inductive wireless power transfer system for reliable long range powering of sensors with milliwatt-level consumption. An ultra-low power flyback impedance emulator operating in open loop is used to present the optimal load to the receiver's resonant tank. Transmitter power modulation is implemented in order to maintain constant receiver power and to prevent damage to the receiver electronics caused by excessive received voltage. Received power is steady up to 3 m at around 30 mW. The receiver electronics and feedback system consumes 3.1 mW and so with a transmitter input power of 163.3 W the receiver becomes power neutral at 4.75 m. Such an IPT system can provide a reliable alternative to energy harvesters for supplying power concurrently to multiple remote sensors.

  14. Frequency spectrum analyzer with phase-lock

    DOEpatents

    Boland, Thomas J.

    1984-01-01

    A frequency-spectrum analyzer with phase-lock for analyzing the frequency and amplitude of an input signal is comprised of a voltage controlled oscillator (VCO) which is driven by a ramp generator, and a phase error detector circuit. The phase error detector circuit measures the difference in phase between the VCO and the input signal, and drives the VCO locking it in phase momentarily with the input signal. The input signal and the output of the VCO are fed into a correlator which transfers the input signal to a frequency domain, while providing an accurate absolute amplitude measurement of each frequency component of the input signal.

  15. THE ECONOMICS OF REPROCESSING vs DIRECT DISPOSAL OF SPENT NUCLEAR FUEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthew Bunn; Steve Fetter; John P. Holdren

    This report assesses the economics of reprocessing versus direct disposal of spent nuclear fuel. The breakeven uranium price at which reprocessing spent nuclear fuel from existing light-water reactors (LWRs) and recycling the resulting plutonium and uranium in LWRs would become economic is assessed, using central estimates of the costs of different elements of the nuclear fuel cycle (and other fuel cycle input parameters), for a wide range of range of potential reprocessing prices. Sensitivity analysis is performed, showing that the conclusions reached are robust across a wide range of input parameters. The contribution of direct disposal or reprocessing and recyclingmore » to electricity cost is also assessed. The choice of particular central estimates and ranges for the input parameters of the fuel cycle model is justified through a review of the relevant literature. The impact of different fuel cycle approaches on the volume needed for geologic repositories is briefly discussed, as are the issues surrounding the possibility of performing separations and transmutation on spent nuclear fuel to reduce the need for additional repositories. A similar analysis is then performed of the breakeven uranium price at which deploying fast neutron breeder reactors would become competitive compared with a once-through fuel cycle in LWRs, for a range of possible differences in capital cost between LWRs and fast neutron reactors. Sensitivity analysis is again provided, as are an analysis of the contribution to electricity cost, and a justification of the choices of central estimates and ranges for the input parameters. The equations used in the economic model are derived and explained in an appendix. Another appendix assesses the quantities of uranium likely to be recoverable worldwide in the future at a range of different possible future prices.« less

  16. Summary of the 2012 Inductive Pulsed Plasma Thruster Development and Testing Program

    NASA Technical Reports Server (NTRS)

    Polzin, K. A.; Martin, A. K.; Eskridge, R. H.; Kimberlin, A. C.; Addona, B. M.; Devineni, A. P.; Dugal-Whitehead, N. R.; Hallock, A. K.

    2013-01-01

    Inductive pulsed plasma thrusters are spacecraft propulsion devices in which energy is capacitively stored and then discharged through an inductive coil. While these devices have shown promise for operation at high efficiency on a range of propellants, many technical issues remain before they can be used in flight applications. A conical theta-pinch thruster geometry was fabricated and tested to investigate potential improvements in propellant utilization relative to more common, flat-plate planar coil designs. A capacitor charging system is used to permit repetitive discharging of thrusters at multiple cycles per second, with successful testing accomplished at a repetition-rate of 5 Hz at power levels of 0.9, 1.6, and 2.5 kW. The conical theta-pinch thruster geometry was tested at cone angles of 20deg, 38deg, and 60deg, with single-pulse operation at 500 J/pulse and repetitionrate operation with the 38deg model quantified through direct thrust measurement using a hanging pendulum thrust stand. A long-lifetime valve was designed and fabricated, and initial testing was performed to measure the valve response and quantify the leak rate at beginning-of-life. Subscale design and testing of a capacitor charging system required for operation on a spacecraft is reported, providing insights into the types of components needed in the circuit topology employed. On a spacecraft, this system would accept as input a lower voltage from the spacecraft DC bus and boost the output to the high voltage required to charge the capacitors of the thruster.

  17. Low-voltage high-reliability MEMS switch for millimeter wave 5G applications

    NASA Astrophysics Data System (ADS)

    Shekhar, Sudhanshu; Vinoy, K. J.; Ananthasuresh, G. K.

    2018-07-01

    Lack of reliability of radio-frequency microelectromechanical systems (RF MEMS) switches has inhibited their commercial success. Dielectric stiction/breakdown and mechanical shock due to high actuation voltage are common impediments in capacitive MEMS switches. In this work, we report low-actuation voltage RF MEMS switch and its reliability test. Experimental characterization of fabricated devices demonstrate that proposed MEMS switch topology needs very low voltage (4.8 V) for actuation. The mechanical resonant frequency, f 0, quality factor, Q, and switching time are measured to be 8.35 kHz, 1.2, and 33 microsecond, respectively. These MEMS switches have high reliability in terms of switching cycles. Measurements are performed using pulse waveform of magnitude of 6 V under hot-switching condition. Temperature measurement results confirm that the reported switch topology has good thermal stability. The robustness in terms of the measured pull-in voltage shows a variation of 0.08 V °C‑1. Lifetime measurement results after 10 million switching cycles demonstrate insignificant change in the RF performance without any failure. Experimental results show that low voltage improves the lifetime. Low insertion loss (less than 0.6 dB) and improved isolation (above 40 dB) in the frequency range up to 60 GHz have been reported. Measured RF characteristics in the frequency range from 10 MHz to 60 GHz support that these MEMS switches are favorable choice for mm-wave 5G applications.

  18. An All-Digital Fast Tracking Switching Converter with a Programmable Order Loop Controller for Envelope Tracking RF Power Amplifiers

    PubMed Central

    Anabtawi, Nijad; Ferzli, Rony; Harmanani, Haidar M.

    2017-01-01

    This paper presents a step down, switched mode power converter for use in multi-standard envelope tracking radio frequency power amplifiers (RFPA). The converter is based on a programmable order sigma delta modulator that can be configured to operate with either 1st, 2nd, 3rd or 4th order loop filters, eliminating the need for a bulky passive output filter. Output ripple, sideband noise and spectral emission requirements of different wireless standards can be met by configuring the modulator’s filter order and converter’s sampling frequency. The proposed converter is entirely digital and is implemented in 14nm bulk CMOS process for post layout verification. For an input voltage of 3.3V, the converter’s output can be regulated to any voltage level from 0.5V to 2.5V, at a nominal switching frequency of 150MHz. It achieves a maximum efficiency of 94% at 1.5 W output power. PMID:28919657

  19. A Low-Noise Transimpedance Amplifier for BLM-Based Ion Channel Recording.

    PubMed

    Crescentini, Marco; Bennati, Marco; Saha, Shimul Chandra; Ivica, Josip; de Planque, Maurits; Morgan, Hywel; Tartagni, Marco

    2016-05-19

    High-throughput screening (HTS) using ion channel recording is a powerful drug discovery technique in pharmacology. Ion channel recording with planar bilayer lipid membranes (BLM) is scalable and has very high sensitivity. A HTS system based on BLM ion channel recording faces three main challenges: (i) design of scalable microfluidic devices; (ii) design of compact ultra-low-noise transimpedance amplifiers able to detect currents in the pA range with bandwidth >10 kHz; (iii) design of compact, robust and scalable systems that integrate these two elements. This paper presents a low-noise transimpedance amplifier with integrated A/D conversion realized in CMOS 0.35 μm technology. The CMOS amplifier acquires currents in the range ±200 pA and ±20 nA, with 100 kHz bandwidth while dissipating 41 mW. An integrated digital offset compensation loop balances any voltage offsets from Ag/AgCl electrodes. The measured open-input input-referred noise current is as low as 4 fA/√Hz at ±200 pA range. The current amplifier is embedded in an integrated platform, together with a microfluidic device, for current recording from ion channels. Gramicidin-A, α-haemolysin and KcsA potassium channels have been used to prove both the platform and the current-to-digital converter.

  20. A Low-Noise Transimpedance Amplifier for BLM-Based Ion Channel Recording

    PubMed Central

    Crescentini, Marco; Bennati, Marco; Saha, Shimul Chandra; Ivica, Josip; de Planque, Maurits; Morgan, Hywel; Tartagni, Marco

    2016-01-01

    High-throughput screening (HTS) using ion channel recording is a powerful drug discovery technique in pharmacology. Ion channel recording with planar bilayer lipid membranes (BLM) is scalable and has very high sensitivity. A HTS system based on BLM ion channel recording faces three main challenges: (i) design of scalable microfluidic devices; (ii) design of compact ultra-low-noise transimpedance amplifiers able to detect currents in the pA range with bandwidth >10 kHz; (iii) design of compact, robust and scalable systems that integrate these two elements. This paper presents a low-noise transimpedance amplifier with integrated A/D conversion realized in CMOS 0.35 μm technology. The CMOS amplifier acquires currents in the range ±200 pA and ±20 nA, with 100 kHz bandwidth while dissipating 41 mW. An integrated digital offset compensation loop balances any voltage offsets from Ag/AgCl electrodes. The measured open-input input-referred noise current is as low as 4 fA/√Hz at ±200 pA range. The current amplifier is embedded in an integrated platform, together with a microfluidic device, for current recording from ion channels. Gramicidin-A, α-haemolysin and KcsA potassium channels have been used to prove both the platform and the current-to-digital converter. PMID:27213382

  1. A nonlinear autoregressive Volterra model of the Hodgkin-Huxley equations.

    PubMed

    Eikenberry, Steffen E; Marmarelis, Vasilis Z

    2013-02-01

    We propose a new variant of Volterra-type model with a nonlinear auto-regressive (NAR) component that is a suitable framework for describing the process of AP generation by the neuron membrane potential, and we apply it to input-output data generated by the Hodgkin-Huxley (H-H) equations. Volterra models use a functional series expansion to describe the input-output relation for most nonlinear dynamic systems, and are applicable to a wide range of physiologic systems. It is difficult, however, to apply the Volterra methodology to the H-H model because is characterized by distinct subthreshold and suprathreshold dynamics. When threshold is crossed, an autonomous action potential (AP) is generated, the output becomes temporarily decoupled from the input, and the standard Volterra model fails. Therefore, in our framework, whenever membrane potential exceeds some threshold, it is taken as a second input to a dual-input Volterra model. This model correctly predicts membrane voltage deflection both within the subthreshold region and during APs. Moreover, the model naturally generates a post-AP afterpotential and refractory period. It is known that the H-H model converges to a limit cycle in response to a constant current injection. This behavior is correctly predicted by the proposed model, while the standard Volterra model is incapable of generating such limit cycle behavior. The inclusion of cross-kernels, which describe the nonlinear interactions between the exogenous and autoregressive inputs, is found to be absolutely necessary. The proposed model is general, non-parametric, and data-derived.

  2. A CMOS Pressure Sensor Tag Chip for Passive Wireless Applications

    PubMed Central

    Deng, Fangming; He, Yigang; Li, Bing; Zuo, Lei; Wu, Xiang; Fu, Zhihui

    2015-01-01

    This paper presents a novel monolithic pressure sensor tag for passive wireless applications. The proposed pressure sensor tag is based on an ultra-high frequency RFID system. The pressure sensor element is implemented in the 0.18 µm CMOS process and the membrane gap is formed by sacrificial layer release, resulting in a sensitivity of 1.2 fF/kPa within the range from 0 to 600 kPa. A three-stage rectifier adopts a chain of auxiliary floating rectifier cells to boost the gate voltage of the switching transistors, resulting in a power conversion efficiency of 53% at the low input power of −20 dBm. The capacitive sensor interface, using phase-locked loop archietcture, employs fully-digital blocks, which results in a 7.4 bits resolution and 0.8 µW power dissipation at 0.8 V supply voltage. The proposed passive wireless pressure sensor tag costs a total 3.2 µW power dissipation. PMID:25806868

  3. A CMOS pressure sensor tag chip for passive wireless applications.

    PubMed

    Deng, Fangming; He, Yigang; Li, Bing; Zuo, Lei; Wu, Xiang; Fu, Zhihui

    2015-03-23

    This paper presents a novel monolithic pressure sensor tag for passive wireless applications. The proposed pressure sensor tag is based on an ultra-high frequency RFID system. The pressure sensor element is implemented in the 0.18 µm CMOS process and the membrane gap is formed by sacrificial layer release, resulting in a sensitivity of 1.2 fF/kPa within the range from 0 to 600 kPa. A three-stage rectifier adopts a chain of auxiliary floating rectifier cells to boost the gate voltage of the switching transistors, resulting in a power conversion efficiency of 53% at the low input power of -20 dBm. The capacitive sensor interface, using phase-locked loop archietcture, employs fully-digital blocks, which results in a 7.4 bits resolution and 0.8 µW power dissipation at 0.8 V supply voltage. The proposed passive wireless pressure sensor tag costs a total 3.2 µW power dissipation.

  4. Plastic Optical Fibre Sensor for Spine Bending Monitoring with Power Fluctuation Compensation

    PubMed Central

    Zawawi, Mohd Anwar; O'Keeffe, Sinead; Lewis, Elfed

    2013-01-01

    This paper presents the implementation of power fluctuation compensation for an intensity-based optical fibre bending sensor aimed at monitoring human spine bending in a clinical environment. To compensate for the light intensity changes from the sensor light source, a reference signal was provided via the light reflection from an aluminum foil surface fixed at a certain distance from the source fibre end tips. From the results, it was found that the investigated sensor compensation technique was capable of achieving a 2° resolution for a bending angle working range between 0° and 20°. The study also suggested that the output voltage ratio has a 0.55% diversion due to input voltage variation between 2.9 V and 3.4 V and a 0.25% output drift for a 2 h measurement. With the achieved sensor properties, human spine monitoring in a clinical environment can potentially be implemented using this approach with power fluctuation compensation. PMID:24233073

  5. Application of automatic gain control for radiometer diagnostic in SST-1 tokamak.

    PubMed

    Makwana, Foram R; Siju, Varsha; Edappala, Praveenlal; Pathak, S K

    2017-12-01

    This paper describes the characterisation of a negative feedback type of automatic gain control (AGC) circuit that will be an integral part of the heterodyne radiometer system operating at a frequency range of 75-86 GHz at SST-1 tokamak. The developed AGC circuit is a combination of variable gain amplifier and log amplifier which provides both gain and attenuation typically up to 15 dB and 45 dB, respectively, at a fixed set point voltage and it has been explored for the first time in tokamak radiometry application. The other important characteristics are that it exhibits a very fast response time of 390 ns to understand the fast dynamics of electron cyclotron emission and can operate at very wide input RF power dynamic range of around 60 dB that ensures signal level within the dynamic range of the detection system.

  6. Charge control microcomputer device for vehicle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morishita, M.; Kouge, S.

    1986-08-26

    A charge control microcomputer device is described for a vehicle, comprising: an AC generator driven by an engine for generating an output current, the generator having armature coils and a field coil; a battery charged by a rectified output of the generator and generating a terminal voltage; a voltage regulator for controlling a current flowing in the field coil, to control an output voltage of the generator to a predetermined value; an engine controlling microcomputer for receiving engine parameter data from the engine, to control the operation of the engine; a charge control microcomputer for processing input data including datamore » on at least one engine parameter output from the engine controlling microcomputer, and charge system data including at least one of battery terminal voltage data, generator voltage data and generator output current data, to provide a reference voltage for the voltage regulator.« less

  7. High voltage stable liquid electrolytes for Li 1+ xMn 2O 4/carbon rocking-chair lithium batteries

    NASA Astrophysics Data System (ADS)

    Guyomard, D.; Tarascon, J. M.

    A high voltage oxidation-resistant electrolyte is required for Li 1+ xMn 2O 4/carbon rocking-chair cells that need to be charged up to a voltage higher than 4.3 V. Many electrolyte compositions have been tested for their ability to resist to high voltages on Li 1+ xMn 2O 4 electrodes and their ability to maintain high ionic conductivity in a wide temperature range. This survey allowed us to select new electrolyte compositions in the system dimethyl carbonate (DMC) + ethylene carbonate (EC) + lithium hexafluorophosphate (LiPF 6) that are kinetically stable up to almost 5 V versus lithium at 55 °C on Li 1+ xMn 2O 4 electrodes. Low rate potentiostatic experiments, coupled with coulombmetric measurements in the 4.25-5.1 V range, allowed to select the following compositions: (DMC + EC) (1:2) + 1 M LiPF 6 and (DMC + EC) (2:1) + 1.5 M LiPF 6 as the best. These compositions have been used in practical Li 1+ xMn 2O 4/carbon rocking-chair batteries and show better performance in terms of cycle life and self-discharge over a wider temperature range. They are compatible with rocking-chair batteries based on LiCoO 2 and LiNiO 2 as well.

  8. Study of a control strategy for grid side converter in doubly- fed wind power system

    NASA Astrophysics Data System (ADS)

    Zhu, D. J.; Tan, Z. L.; Yuan, F.; Wang, Q. Y.; Ding, M.

    2016-08-01

    The grid side converter is an important part of the excitation system of doubly-fed asynchronous generator used in wind power system. As a three-phase voltage source PWM converter, it can not only transfer slip power in the form of active power, but also adjust the reactive power of the grid. This paper proposed a control approach for improving its performance. In this control approach, the dc voltage is regulated by a sliding mode variable structure control scheme and current by a variable structure controller based on the input output linearization. The theoretical bases of the sliding mode variable structure control were introduced, and the stability proof was presented. Switching function of the system has been deduced, sliding mode voltage controller model has been established, and the output of the outer voltage loop is the instruction of the inner current loop. Affine nonlinear model of two input two output equations on d-q axis for current has been established its meeting conditions of exact linearization were proved. In order to improve the anti-jamming capability of the system, a variable structure control was added in the current controller, the control law was deduced. The dual-loop control with sliding mode control in outer voltage loop and linearization variable structure control in inner current loop was proposed. Simulation results demonstrate the effectiveness of the proposed control strategy even during the dc reference voltage and system load variation.

  9. Multiple high voltage output DC-to-DC power converter

    NASA Technical Reports Server (NTRS)

    Cronin, Donald L. (Inventor); Farber, Bertrand F. (Inventor); Gehm, Hartmut K. (Inventor); Goldin, Daniel S. (Inventor)

    1977-01-01

    Disclosed is a multiple output DC-to-DC converter. The DC input power is filtered and passed through a chopper preregulator. The chopper output is then passed through a current source inverter controlled by a squarewave generator. The resultant AC is passed through the primary winding of a transformer, with high voltages induced in a plurality of secondary windings. The high voltage secondary outputs are each solid-state rectified for passage to individual output loads. Multiple feedback loops control the operation of the chopper preregulator, one being responsive to the current through the primary winding and another responsive to the DC voltage level at a selected output.

  10. Voltage Stress on Y Capacitors from Indirect Lightning Pulses According to ED-14/DO-160

    NASA Astrophysics Data System (ADS)

    Meier, F.

    2012-05-01

    Transients due to lightning strikes on an aircraft's fuselage impose stress on the input filters of elec- tronic equipment. Permanent damage can occur when exceeding the voltage handling capacity of filter components causing a short circuit to ground. In ED-14/DO-160, section 22, a number of waveforms and levels are defined which are used to check the airworthiness of avionics equipment. Depending on pro- cedure and level, Y-capacitors are stressed by transient voltages which exceed their dielectric strength. The design engineer's task is a properly select the type and voltage rating of capacitors. With moderate simplifications, a LCR-series network is justified to calculate the peak voltage dependent on the capacitance.

  11. Fingerprinted circuits and methods of making and identifying the same

    NASA Technical Reports Server (NTRS)

    Ferguson, Michael Ian (Inventor)

    2011-01-01

    A circuit having a fingerprint for identification of a particular instantiation of the circuit is disclosed. The circuit may include a plurality of digital circuits or gates. Each of the digital circuits or gates is responsive to a configuration voltage applied to its analog input for controlling whether or not the digital circuit or gate performs its intended digital function and each of the digital circuits or gates transitioning between its functional state and its at least one other state when the configuration voltage equals a boundary voltage. The boundary voltage varies between different instantiations of the circuit for a majority of the digital circuits or gates and these differing boundary voltages serving to identify (or fingerprint) different instantiations of the same circuit.

  12. Fingerprinted circuits and methods of making and identifying the same

    NASA Technical Reports Server (NTRS)

    Ferguson, Michael Ian (Inventor)

    2012-01-01

    A circuit having a fingerprint for identification of a particular instantiation of the circuit is disclosed. The circuit may include a plurality of digital circuits or gates. Each of the digital circuits or gates is responsive to a configuration voltage applied to its analog input for controlling whether or not the digital circuit or gate performs its intended digital function and each of the digital circuits or gates transitioning between its functional state and its at least one other state when the configuration voltage equals a boundary voltage. The boundary voltage varies between different instantiations of the circuit for a majority of the digital circuits or gates and these differing boundary voltages serving to identify (or fingerprint) different instantiations of the same circuit.

  13. Switched-capacitor isolated LED driver

    DOEpatents

    Sanders, Seth R.; Kline, Mitchell

    2016-03-22

    A switched-capacitor voltage converter which is particularly well-suited for receiving a line voltage from which to drive current through a series of light emitting diodes (LEDs). Input voltage is rectified in a multi-level rectifier network having switched capacitors in an ascending-bank configuration for passing voltages in uniform steps between zero volts up to full received voltage V.sub.DC. A regulator section, operating on V.sub.DC, comprises switched-capacitor stages of H-bridge switching and flying capacitors. A current controlled oscillator drives the states of the switched-capacitor stages and changes its frequency to maintain a constant current to the load. Embodiments are described for isolating the load from the mains, utilizing an LC tank circuit or a multi-primary-winding transformer.

  14. Electroactive polymer actuator based on a reduced graphene electrode

    NASA Astrophysics Data System (ADS)

    Im, Ki Hong; Choi, Hyonkwang

    2014-03-01

    We report an electroactive polymer (EAP) actuator using a reduced graphene electrode for a ionic polymer-metal composite actuator. Aqueous-reduced graphene is deposited to both sides of the ionic polymer membranes by using a simple inkjet printing process. The electrical and the optical properties of the reduced graphene were evaluated by using a four-point probe system, Raman spectroscopy, and Fourier-transform infrared attenuated total reflection spectroscopy. The actuator properties were evaluated from the curvatures of the ionic polymer graphene composite (IPGC) for various input voltages. From the results, we propose a new and simple isosceles trapezoidal element model for analyzing the relations among the input voltage, thickness, and curvature of IPGC.

  15. Transient Response in a Dendritic Neuron Model for Current Injected at One Branch

    PubMed Central

    Rinzel, John; Rall, Wilfrid

    1974-01-01

    Mathematical expressions are obtained for the response function corresponding to an instantaneous pulse of current injected to a single dendritic branch in a branched dendritic neuron model. The theoretical model assumes passive membrane properties and the equivalent cylinder constraint on branch diameters. The response function when used in a convolution formula enables one to compute the voltage transient at any specified point in the dendritic tree for an arbitrary current injection at a given input location. A particular numerical example, for a brief current injection at a branch terminal, illustrates the attenuation and delay characteristics of the depolarization peak as it spreads throughout the neuron model. In contrast to the severe attenuation of voltage transients from branch input sites to the soma, the fraction of total input charge actually delivered to the soma and other trees is calculated to be about one-half. This fraction is independent of the input time course. Other numerical examples, which compare a branch terminal input site with a soma input site, demonstrate that, for a given transient current injection, the peak depolarization is not proportional to the input resistance at the injection site and, for a given synaptic conductance transient, the effective synaptic driving potential can be significantly reduced, resulting in less synaptic current flow and charge, for a branch input site. Also, for the synaptic case, the two inputs are compared on the basis of the excitatory post-synaptic potential (EPSP) seen at the soma and the total charge delivered to the soma. PMID:4424185

  16. High temperature current mirror amplifier

    DOEpatents

    Patterson, III, Raymond B.

    1984-05-22

    A high temperature current mirror amplifier having biasing means in the transdiode connection of the input transistor for producing a voltage to maintain the base-collector junction reversed-biased and a current means for maintaining a current through the biasing means at high temperatures so that the base-collector junction of the input transistor remained reversed-biased. For accuracy, a second current mirror is provided with a biasing means and current means on the input leg.

  17. Enhanced Passive RF-DC Converter Circuit Efficiency for Low RF Energy Harvesting

    PubMed Central

    Chaour, Issam; Fakhfakh, Ahmed; Kanoun, Olfa

    2017-01-01

    For radio frequency energy transmission, the conversion efficiency of the receiver is decisive not only for reducing sending power, but also for enabling energy transmission over long and variable distances. In this contribution, we present a passive RF-DC converter for energy harvesting at ultra-low input power at 868 MHz. The novel converter consists of a reactive matching circuit and a combined voltage multiplier and rectifier. The stored energy in the input inductor and capacitance, during the negative wave, is conveyed to the output capacitance during the positive one. Although Dickson and Villard topologies have principally comparable efficiency for multi-stage voltage multipliers, the Dickson topology reaches a better efficiency within the novel ultra-low input power converter concept. At the output stage, a low-pass filter is introduced to reduce ripple at high frequencies in order to realize a stable DC signal. The proposed rectifier enables harvesting energy at even a low input power from −40 dBm for a resistive load of 50 kΩ. It realizes a significant improvement in comparison with state of the art solutions. PMID:28282910

  18. Design and Implementation of RF Energy Harvesting System for Low-Power Electronic Devices

    NASA Astrophysics Data System (ADS)

    Uzun, Yunus

    2016-08-01

    Radio frequency (RF) energy harvester systems are a good alternative for energizing of low-power electronics devices. In this work, an RF energy harvester is presented to obtain energy from Global System for Mobile Communications (GSM) 900 MHz signals. The energy harvester, consisting of a two-stage Dickson voltage multiplier circuit and L-type impedance matching circuits, was designed, simulated, fabricated and tested experimentally in terms of its performance. Simulation and experimental works were carried out for various input power levels, load resistances and input frequencies. Both simulation and experimental works have been carried out for this frequency band. An efficiency of 45% is obtained from the system at 0 dBm input power level using the impedance matching circuit. This corresponds to the power of 450 μW and this value is sufficient for many low-power devices. The most important parameters affecting the efficiency of the RF energy harvester are the input power level, frequency band, impedance matching and voltage multiplier circuits, load resistance and the selection of diodes. RF energy harvester designs should be optimized in terms of these parameters.

  19. Enhanced Passive RF-DC Converter Circuit Efficiency for Low RF Energy Harvesting.

    PubMed

    Chaour, Issam; Fakhfakh, Ahmed; Kanoun, Olfa

    2017-03-09

    For radio frequency energy transmission, the conversion efficiency of the receiver is decisive not only for reducing sending power, but also for enabling energy transmission over long and variable distances. In this contribution, we present a passive RF-DC converter for energy harvesting at ultra-low input power at 868 MHz. The novel converter consists of a reactive matching circuit and a combined voltage multiplier and rectifier. The stored energy in the input inductor and capacitance, during the negative wave, is conveyed to the output capacitance during the positive one. Although Dickson and Villard topologies have principally comparable efficiency for multi-stage voltage multipliers, the Dickson topology reaches a better efficiency within the novel ultra-low input power converter concept. At the output stage, a low-pass filter is introduced to reduce ripple at high frequencies in order to realize a stable DC signal. The proposed rectifier enables harvesting energy at even a low input power from -40 dBm for a resistive load of 50 kΩ. It realizes a significant improvement in comparison with state of the art solutions.

  20. Independent variations of applied voltage and injection current for controlling the quantum-confined Stark effect in an InGaN/GaN quantum-well light-emitting diode.

    PubMed

    Chen, Horng-Shyang; Liu, Zhan Hui; Shih, Pei-Ying; Su, Chia-Ying; Chen, Chih-Yen; Lin, Chun-Han; Yao, Yu-Feng; Kiang, Yean-Woei; Yang, C C

    2014-04-07

    A reverse-biased voltage is applied to either device in the vertical configuration of two light-emitting diodes (LEDs) grown on patterned and flat Si (110) substrates with weak and strong quantum-confined Stark effects (QCSEs), respectively, in the InGaN/GaN quantum wells for independently controlling the applied voltage across and the injection current into the p-i-n junction in the lateral configuration of LED operation. The results show that more carrier supply is needed in the LED of weaker QCSE to produce a carrier screening effect for balancing the potential tilt in increasing the forward-biased voltage, when compared with the LED of stronger QCSE. The small spectral shift range in increasing injection current in the LED of weaker QCSE is attributed not only to the weaker QCSE, but also to its smaller device resistance such that a given increment of applied voltage leads to a larger increment of injection current. From a viewpoint of practical application in LED operation, by applying a reverse-biased voltage in the vertical configuration, the applied voltage and injection current in the lateral configuration can be independently controlled by adjusting the vertical voltage for keeping the emission spectral peak fixed.

Top