Sample records for inputs document boiling

  1. Transient boiling heat transfer in saturated liquid nitrogen and F113 at standard and zero gravity

    NASA Technical Reports Server (NTRS)

    Oker, E.; Merte, H., Jr.

    1973-01-01

    Transient and steady state nucleate boiling in saturated LN2 and F113 at standard and near zero gravity conditions were investigated for the horizontal up, vertical and horizontal down orientations of the heating surface. Two distinct regimes of heat transfer mechanisms were observed during the interval from the step increase of power input to the onset of nucleate boiling: the conduction and convection dominated regimes. The time duration in each regime was considerably shorter with LN2 than with F113, and decreased as heat flux increased, as gravity was reduced, and as the orientation was changed from horizontal up to horizontal down. In transient boiling, boiling initiates at a single point following the step increase in power, and then spreads over the surface. The delay time for the inception of boiling at the first site, and the velocity of spread of boiling varies depending upon the heat flux, orientation, body force, surface roughness and liquid properties, and are a consequence of changes in boundary layer temperature levels associated with changes in natural convection. Following the step increase in power input, surface temperature overshoot and undershoot occur before the steady state boiling temperature level is established.

  2. Turning bubbles on and off during boiling using charged surfactants

    PubMed Central

    Cho, H. Jeremy; Mizerak, Jordan P.; Wang, Evelyn N.

    2015-01-01

    Boiling—a process that has powered industries since the steam age—is governed by bubble formation. State-of-the-art boiling surfaces often increase bubble nucleation via roughness and/or wettability modification to increase performance. However, without active in situ control of bubbles, temperature or steam generation cannot be adjusted for a given heat input. Here we report the ability to turn bubbles ‘on and off' independent of heat input during boiling both temporally and spatially via molecular manipulation of the boiling surface. As a result, we can rapidly and reversibly alter heat transfer performance up to an order of magnitude. Our experiments show that this active control is achieved by electrostatically adsorbing and desorbing charged surfactants to alter the wettability of the surface, thereby affecting nucleation. This approach can improve performance and flexibility in existing boiling technologies as well as enable emerging or unprecedented energy applications. PMID:26486275

  3. RAMONA-4B a computer code with three-dimensional neutron kinetics for BWR and SBWR system transient - user`s manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohatgi, U.S.; Cheng, H.S.; Khan, H.J.

    This document is the User`s Manual for the Boiling Water Reactor (BWR), and Simplified Boiling Water Reactor (SBWR) systems transient code RAMONA-4B. The code uses a three-dimensional neutron-kinetics model coupled with a multichannel, nonequilibrium, drift-flux, phase-flow model of the thermal hydraulics of the reactor vessel. The code is designed to analyze a wide spectrum of BWR core and system transients. Chapter 1 gives an overview of the code`s capabilities and limitations; Chapter 2 describes the code`s structure, lists major subroutines, and discusses the computer requirements. Chapter 3 is on code, auxillary codes, and instructions for running RAMONA-4B on Sun SPARCmore » and IBM Workstations. Chapter 4 contains component descriptions and detailed card-by-card input instructions. Chapter 5 provides samples of the tabulated output for the steady-state and transient calculations and discusses the plotting procedures for the steady-state and transient calculations. Three appendices contain important user and programmer information: lists of plot variables (Appendix A) listings of input deck for sample problem (Appendix B), and a description of the plotting program PAD (Appendix C). 24 refs., 18 figs., 11 tabs.« less

  4. Film Boiling Heat Transfer Properties of Liquid Hydrogen in Natural Convection

    NASA Astrophysics Data System (ADS)

    Horie, Y.; Shirai, Y.; Shiotsu, M.; Matsuzawa, T.; Yoneda, K.; Shigeta, H.; Tatsumoto, H.; Hata, K.; Naruo, Y.; Kobayashi, H.; Inatani, Y.

    Film boiling heat transfer properties of LH2 for various pressures and subcooling conditions were measured by applying electric current to give an exponential heat input to a PtCo wire with a diameter of 1.2 mm submerged in LH2. The heated wire was set to be horizontal to the ground. The heat transfer coefficient in the film boiling region was higher for higher pressure and higher subcooling. The experimental results are compared with the equation of pool film boiling heat transfer. It is confirmed that the pool film boiling heat transfer coefficients in LH2 can be expressed by this equation.

  5. Critical heat flux phenomena depending on pre-pressurization in transient heat input

    NASA Astrophysics Data System (ADS)

    Park, Jongdoc; Fukuda, Katsuya; Liu, Qiusheng

    2017-07-01

    The critical heat flux (CHF) levels that occurred due to exponential heat inputs for varying periods to a 1.0-mm diameter horizontal cylinder immersed in various liquids were measured to develop an extended database on the effect of various pressures and subcoolings by photographic study. Two main mechanisms of CHF were found. One mechanism is due to the time lag of the hydrodynamic instability (HI) which starts at steady-state CHF upon fully developed nucleate boiling, and the other mechanism is due to the explosive process of heterogeneous spontaneous nucleation (HSN) which occurs at a certain HSN superheat in originally flooded cavities on the cylinder surface. The incipience of boiling processes was completely different depending on pre-pressurization. Also, the dependence of pre-pressure in transient CHFs changed due to the wettability of boiling liquids. The objective of this work is to clarify the transient CHF phenomena due to HI or HSN by photographic.

  6. Bench-scale screening tests for a boiling sodium-potassium alloy solar receiver

    NASA Astrophysics Data System (ADS)

    Moreno, J. B.; Moss, T. A.

    1993-06-01

    Bench-scale tests were carried out in support of the design of a second-generation 75-kW(sub t) reflux pool-boiler solar receiver. The receiver will be made from Haynes Alloy 230 and will contain the sodium-potassium alloy NaK-78. The bench-scale tests used quartz lamp heated boilers to screen candidate boiling stabilization materials and methods at temperatures up to 750 degree C. Candidates that provided stable boiling were tested for hot-restart behavior. Poor stability was obtained with single 1/4-inch diameter patches of powdered metal hot press sintered onto the wetted side of the heat-input area. Laser-drilled and electric discharge machined cavities in the heated surface also performed poorly. Small additions of xenon, and heated-surface tilt out of the vertical, dramatically improved poor boiling stability; additions of helium or oxygen did not. The most stable boiling was obtained when the entire heat-input area was covered by a powdered-metal coating. The effect of heated-area size was assessed for one coating: at low incident fluxes, when even this coating performed poorly, increasing the heated-area size markedly improved boiling stability. Good hot-restart behavior was not observed with any candidate, although results were significantly better with added xenon in a boiler shortened from 3 to 2 feet. In addition to the screening tests, flash-radiography imaging of metal-vapor bubbles during boiling was attempted. Contrary to the Cole-Rohsenow correlation, these bubble-size estimates did not vary with pressure; instead they were constant, consistent with the only other alkali metal measurements, but about 1/2 their size.

  7. BOILING HEAT TRANSFER IN ZERO GRAVITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zara, E.A.

    1964-01-01

    The preliminary results of a research program to determine the effects of zero and near zero gravity on boiling heat transfer are presented. Zero gravity conditions were obtained on the ASD KC-135 zero gravity test aircraft, capable of providing 30-seconds of zero gravity. Results of the program to date indicate that nucleate (bubble) boiling heat transfer rates are not greatly affected by the absence of gravity forces. However, radical pressure increases were observed that will dictate special design considerations to space vehicle systems utilizing pool boiling processes, such as cryogenic or other fluid storage vessels where thermal input to themore » fluid is used for vessel pressurization. (auth)« less

  8. MSG test report-steady-state heat transfer. [LMFBR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harty, R.B.

    This report documents the results of the Steady-State Heat Transfer Tests conducted on the AI Modular Steam Generator (MSG), at the Sodium Component Test Installation (SCTI) of the Liquid Metal Engineering Center. Heat transfer and pressure drop performance data are given along with current predictions of performance. Departure from nucleate boiling characteristics is given. A dispersed flow film boiling model, employing thermal nonequilibrium, was used to analyze data in the film boiling region.

  9. Conceptual design for spacelab pool boiling experiment

    NASA Technical Reports Server (NTRS)

    Lienhard, J. H.; Peck, R. E.

    1978-01-01

    A pool boiling heat transfer experiment to be incorporated with a larger two-phase flow experiment on Spacelab was designed to confirm (or alter) the results of earth-normal gravity experiments which indicate that the hydrodynamic peak and minimum pool boiling heat fluxes vanish at very low gravity. Twelve small sealed test cells containing water, methanol or Freon 113 and cylindrical heaters of various sizes are to be built. Each cell will be subjected to one or more 45 sec tests in which the surface heat flux on the heaters is increased linearly until the surface temperature reaches a limiting value of 500 C. The entire boiling process will be photographed in slow-motion. Boiling curves will be constructed from thermocouple and electric input data, for comparison with the motion picture records. The conduct of the experiment will require no more than a few hours of operator time.

  10. Noise analysis of nucleate boiling

    NASA Technical Reports Server (NTRS)

    Mcknight, R. D.; Ram, K. S.

    1971-01-01

    The techniques of noise analysis have been utilized to investigate nucleate pool boiling. A simple experimental setup has been developed for obtaining the power spectrum of a nucleate boiling system. These techniques were first used to study single bubbles, and a method of relating the two-dimensional projected size and the local velocity of the bubbles to the auto-correlation functions is presented. This method is much less time consuming than conventional methods of measurement and has no probes to disturb the system. These techniques can be used to determine the contribution of evaporation to total heat flux in nucleate boiling. Also, these techniques can be used to investigate the effect of various parameters upon the frequency response of nucleate boiling. The predominant frequencies of the power spectrum correspond to the frequencies of bubble generation. The effects of heat input, degree of subcooling, and liquid surface tension upon the power spectra of a boiling system are presented. It was found that the degree of subcooling has a more pronounced effect upon bubble size than does heat flux. Also the effect of lowering surface tension can be sufficient to reduce the effect of the degree of subcooling upon the size of the bubbles.

  11. Effects of Ultrasonic Vibration on Heat Transfer Characteristics of Lithium Bromide Aqueous Solution under the Reduced Pressure

    NASA Astrophysics Data System (ADS)

    Yamashiro, Hikaru; Nakashima, Ryou

    The effects of ultrasonic vibration on heat transfer characteristics of lithium bromide aqueous solution under the reduced pressures are studied experimentally. Pool boiling curves on horizontal smooth tube are obtained using distilled water and 50 % LiBr aqueous solution as test liquids. The system pressure p is varied from 12 to 101 kPa and the liquid subcooling ΔTsub ranges from 0 to 70 K. The frequency of ultrasonic vibration vi s set at 24 and 44 kHz, and the power input to the vibrator P is varied from 0 to 35 W. The wall superheat at the boiling incipience is found to decrease with increasing P, and the nucleate boiling curve shifts toward the lower wall temperature region. However, the effect of P is not found to be very significant in the high heat flux region, especially in the case of small liquid subcooling. Ultrasonic vibration is also found to improve the nucleate boiling heat transfer coefficient by up to a maximum of 3.5 times and to prevent crystallization of the solution and precipitation of additives.

  12. A 4 K tactical cryocooler using reverse-Brayton machines

    NASA Astrophysics Data System (ADS)

    Zagarola, M.; Cragin, K.; McCormick, J.; Hill, R.

    2017-12-01

    Superconducting electronics and spectral-spatial holography have the potential to revolutionize digital communications, but must operate at cryogenic temperatures, near 4 K. Liquid helium is undesirable for military missions due to logistics and scarcity, and commercial low temperature cryocoolers are unable to meet size, weight, power, and environmental requirements for many missions. To address this need, Creare is developing a reverse turbo-Brayton cryocooler that provides refrigeration at 4.2 K and rejects heat at 77 K to an upper-stage cryocooler or through boil-off of liquid nitrogen. The cooling system is predicted to reduce size, weight, and input power by at least an order of magnitude as compared to the current state-of-the-art 4.2 K cryocooler. For systems utilizing nitrogen boil-off, the boil-off rate is reasonable. This paper reviews the design of the cryocooler, the key components, and component test results.

  13. Development and Testing of a Novel Standard Particle for Performance Verification of Biodefense/Bioterrorism Detection Systems

    DTIC Science & Technology

    2003-11-19

    Higher boiling point (29.4o F) 39.5 1.36 1,1- difluoroethane HFA 152a – Not used for pharmaceutical inhalers , is used for personal products Boiling...technologies have been implemented. One aspect of this rapid development that has kept biodetection Page 1 Report Documentation Page Form...ApprovedOMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for

  14. CTF Theory Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avramova, Maria N.; Salko, Robert K.

    Coolant-Boiling in Rod Arrays|Two Fluids (COBRA-TF) is a thermal/ hydraulic (T/H) simulation code designed for light water reactor (LWR) vessel analysis. It uses a two-fluid, three-field (i.e. fluid film, fluid drops, and vapor) modeling approach. Both sub-channel and 3D Cartesian forms of 9 conservation equations are available for LWR modeling. The code was originally developed by Pacific Northwest Laboratory in 1980 and had been used and modified by several institutions over the last few decades. COBRA-TF also found use at the Pennsylvania State University (PSU) by the Reactor Dynamics and Fuel Management Group (RDFMG) and has been improved, updated, andmore » subsequently re-branded as CTF. As part of the improvement process, it was necessary to generate sufficient documentation for the open-source code which had lacked such material upon being adopted by RDFMG. This document serves mainly as a theory manual for CTF, detailing the many two-phase heat transfer, drag, and important accident scenario models contained in the code as well as the numerical solution process utilized. Coding of the models is also discussed, all with consideration for updates that have been made when transitioning from COBRA-TF to CTF. Further documentation outside of this manual is also available at RDFMG which focus on code input deck generation and source code global variable and module listings.« less

  15. Results of an Advanced Development Zero Boil-Off Cryogenic Propellant Storage Test

    NASA Technical Reports Server (NTRS)

    Plachta, David

    2004-01-01

    A zero boil-off (ZBO) cryogenic propellant storage concept was recently tested in a thermally relevant low-earth orbit environment, an important development in the effort to apply this concept to flight projects. Previous efforts documented the benefits of ZBO for launch vehicle upper stages in a low-earth orbit (LEO). Central to that analysis is a ZBO Cryogenic Analysis Tool that estimates the performance of each component and the ZBO system. This test is essential to the validation of that tool, and was the first flight representative configuration tested in a thermally representative environment. The test article was comprised of a spherical 1.4 m diameter insulated propellant tank, with a submerged mixer, a cryogenic heat pipe, flight design cryocooler, and a radiator. All were enclosed in a thermal shroud and inserted into and tested in a vacuum chamber that simulated an LEO thermal environment. Thermal and pressure control tests were performed at sub-critical LN2 temperatures and approximately 2 atmospheres pressure. The cold side of the ZBO system performed well. In particular, the heat pipe performed better than expected, which suggests that the cryocooler could be located further from the tank than anticipated, i.e. on a spacecraft bus, while maintaining the desired efficiency. Also, the mixer added less heat than expected. The tank heating rate through the insulation was higher than expected; also the temperatures on the cryocooler hot side were higher than planned. This precluded the cryocooler from eliminating the boil-off. The results show the cryocooler was successful at removing 6.8 W of heat at approximately 75 K and 150 W of input power, with a heat rejection temperature of 311 K. The data generated on the ZBO components is essential for the upgrade of the ZBO Cryogenic Analysis Tool to more accurately apply the concept to future missions.

  16. Steady State Film Boiling Heat Transfer Simulated With Trace V4.160

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Audrius Jasiulevicius; Rafael Macian-Juan

    2006-07-01

    This paper presents the results of the assessment and analysis of TRACE v4.160 heat transfer predictions in the post-CHF (critical heat flux) region and discusses the possibilities to improve the TRACE v4.160 code predictions in the film boiling heat transfer when applying different film boiling correlations. For this purpose, the TRACE v4.160-calculated film boiling heat flux and the resulting maximum inner wall temperatures during film boiling in single tubes were compared with experimental data obtained at the Royal Institute of Technology (KTH) in Stockholm, Sweden. The experimental database included measurements for pressures ranging from 30 to 200 bar and coolantmore » mass fluxes from 500 to 3000 kg/m{sup 2}s. It was found that TRACE v4.160 does not produce correct predictions of the film boiling heat flux, and consequently of the maximum inner wall temperature in the test section, under the wide range of conditions documented in the KTH experiments. In particular, it was found that the standard TRACE v4.160 under-predicts the film boiling heat transfer coefficient at low pressure-low mass flux and high pressure-high mass flux conditions. For most of the rest of the investigated range of parameters, TRACE v4.160 over-predicts the film boiling heat transfer coefficient, which can lead to non-conservative predictions in applications to nuclear power plant analyses. Since no satisfactory agreement with the experimental database was obtained with the standard TRACE v4.160 film boiling heat transfer correlations, we have added seven film boiling correlations to TRACE v4.160 in order to investigate the possibility to improve the code predictions for the conditions similar to the KTH tests. The film boiling correlations were selected among the most commonly used film boiling correlations found in the open literature, namely Groeneveld 5.7, Bishop (2 correlations), Tong, Konkov, Miropolskii and Groeneveld-Delorme correlations. The only correlation among the investigated, which resulted in a significant improvement of TRACE predictions, was the Groeneveld 5.7. It was found, that replacing the current film boiling correlation (Dougall-Rohsenow) for the wall-togas heat transfer with Groeneveld 5.7 improves the code predictions for the film boiling heat transfer at high qualities in single tubes in the entire range of pressure and coolant mass flux considered. (authors)« less

  17. Microwave-Assisted Superheating and/or Microwave-Specific Superboiling (Nucleation-Limited Boiling) of Liquids Occurs under Certain Conditions but is Mitigated by Stirring.

    PubMed

    Ferrari, Anthony; Hunt, Jacob; Stiegman, Albert; Dudley, Gregory B

    2015-12-04

    Temporary superheating and sustained nucleation-limited "superboiling" of unstirred liquids above the normal atmospheric boiling point have been documented during microwave heating. These phenomena are reliably observed under prescribed conditions, although the duration (of superheating) and magnitude (of superheating and superboiling) vary according to system parameters such as volume of the liquid and the size and shape of the vessel. Both phenomena are mitigated by rapid stirring with an appropriate stir bar and/or with the addition of boiling chips, which provide nucleation sites to support the phase-change from liquid to gas. With proper experimental design and especially proper stirring, the measured temperature of typical organic reaction mixtures heated at reflux will be close to the normal boiling point temperature of the solvent, whether heated using microwave radiation or conventional convective heat transfer. These observations are important to take into consideration when comparing reaction rates under conventional and microwave heating.

  18. Waste Package Component Design Methodology Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D.C. Mecham

    2004-07-12

    This Executive Summary provides an overview of the methodology being used by the Yucca Mountain Project (YMP) to design waste packages and ancillary components. This summary information is intended for readers with general interest, but also provides technical readers a general framework surrounding a variety of technical details provided in the main body of the report. The purpose of this report is to document and ensure appropriate design methods are used in the design of waste packages and ancillary components (the drip shields and emplacement pallets). The methodology includes identification of necessary design inputs, justification of design assumptions, and usemore » of appropriate analysis methods, and computational tools. This design work is subject to ''Quality Assurance Requirements and Description''. The document is primarily intended for internal use and technical guidance for a variety of design activities. It is recognized that a wide audience including project management, the U.S. Department of Energy (DOE), the U.S. Nuclear Regulatory Commission, and others are interested to various levels of detail in the design methods and therefore covers a wide range of topics at varying levels of detail. Due to the preliminary nature of the design, readers can expect to encounter varied levels of detail in the body of the report. It is expected that technical information used as input to design documents will be verified and taken from the latest versions of reference sources given herein. This revision of the methodology report has evolved with changes in the waste package, drip shield, and emplacement pallet designs over many years and may be further revised as the design is finalized. Different components and analyses are at different stages of development. Some parts of the report are detailed, while other less detailed parts are likely to undergo further refinement. The design methodology is intended to provide designs that satisfy the safety and operational requirements of the YMP. Four waste package configurations have been selected to illustrate the application of the methodology during the licensing process. These four configurations are the 21-pressurized water reactor absorber plate waste package (21-PWRAP), the 44-boiling water reactor waste package (44-BWR), the 5 defense high-level radioactive waste (HLW) DOE spent nuclear fuel (SNF) codisposal short waste package (5-DHLWDOE SNF Short), and the naval canistered SNF long waste package (Naval SNF Long). Design work for the other six waste packages will be completed at a later date using the same design methodology. These include the 24-boiling water reactor waste package (24-BWR), the 21-pressurized water reactor control rod waste package (21-PWRCR), the 12-pressurized water reactor waste package (12-PWR), the 5 defense HLW DOE SNF codisposal long waste package (5-DHLWDOE SNF Long), the 2 defense HLW DOE SNF codisposal waste package (2-MC012-DHLW), and the naval canistered SNF short waste package (Naval SNF Short). This report is only part of the complete design description. Other reports related to the design include the design reports, the waste package system description documents, manufacturing specifications, and numerous documents for the many detailed calculations. The relationships between this report and other design documents are shown in Figure 1.« less

  19. Dynamics of face and annular seals with two-phase flow

    NASA Technical Reports Server (NTRS)

    Hughes, William F.; Basu, Prithwish; Beatty, Paul A.; Beeler, Richard M.; Lau, Stephen

    1988-01-01

    A detailed study was made of face and annular seals under conditions where boiling, i.e., phase change of the leaking fluid, occurs within the seal. Many seals operate in this mode because of flashing due to pressure drop and/or heat input from frictional heating. Some of the distinctive behavior characteristics of two phase seals are discussed, particularly their axial stability. The main conclusions are that seals with two phase flow may be unstable if improperly balanced. Detailed theoretical analyses of low (laminar) and high (turbulent) leakage seals are presented along with computer codes, parametric studies, and in particular a simplified PC based code that allows for rapid performance prediction: calculations of stiffness coefficients, temperature and pressure distributions, and leakage rates for parallel and coned face seals. A simplified combined computer code for the performance prediction over the laminar and turbulent ranges of a two phase flow is described and documented. The analyses, results, and computer codes are summarized.

  20. Biofuel by isomerizing metathesis of rapeseed oil esters with (bio)ethylene for use in contemporary diesel engines

    PubMed Central

    Pfister, Kai F.; Baader, Sabrina; Baader, Mathias; Berndt, Silvia; Goossen, Lukas J.

    2017-01-01

    Rapeseed oil methyl ester (RME) and (bio)ethylene are converted into biofuel with an evenly rising boiling point curve, which fulfills the strict boiling specifications prescribed by the fuel standard EN 590 for modern (petro)diesel engines. Catalyzed by a Pd/Ru system, RME undergoes isomerizing metathesis in a stream of ethylene gas, leading to a defined olefin, monoester, and diester blend. This innovative refining concept requires negligible energy input (60°C) and no solvents and does not produce waste. It demonstrates that the pressing challenge of increasing the fraction of renewables in engine fuel may be addressed purely chemically rather than by motor engineering. PMID:28630908

  1. Biofuel by isomerizing metathesis of rapeseed oil esters with (bio)ethylene for use in contemporary diesel engines.

    PubMed

    Pfister, Kai F; Baader, Sabrina; Baader, Mathias; Berndt, Silvia; Goossen, Lukas J

    2017-06-01

    Rapeseed oil methyl ester (RME) and (bio)ethylene are converted into biofuel with an evenly rising boiling point curve, which fulfills the strict boiling specifications prescribed by the fuel standard EN 590 for modern (petro)diesel engines. Catalyzed by a Pd/Ru system, RME undergoes isomerizing metathesis in a stream of ethylene gas, leading to a defined olefin, monoester, and diester blend. This innovative refining concept requires negligible energy input (60°C) and no solvents and does not produce waste. It demonstrates that the pressing challenge of increasing the fraction of renewables in engine fuel may be addressed purely chemically rather than by motor engineering.

  2. Zero Boil-Off Tank (ZBOT) Experiment

    NASA Technical Reports Server (NTRS)

    Mcquillen, John

    2016-01-01

    The Zero-Boil-Off Tank (ZBOT) experiment has been developed as a small scale ISS experiment aimed at delineating important fluid flow, heat and mass transport, and phase change phenomena that affect cryogenic storage tank pressurization and pressure control in microgravity. The experiments use a simulant transparent low boiling point fluid (PnP) in a sealed transparent Dewar to study and quantify: (a) fluid flow and thermal stratification during pressurization; (b) mixing, thermal destratification, depressurization, and jet-ullage penetration during pressure control by jet mixing. The experiment will provide valuable microgravity empirical two-phase data associated with the above-mentioned physical phenomena through highly accurate local wall and fluid temperature and pressure measurements, full-field phase-distribution and flow visualization. Moreover, the experiments are performed under tightly controlled and definable heat transfer boundary conditions to provide reliable high-fidelity data and precise input as required for validation verification of state-of-the-art two-phase CFD models developed as part of this research and by other groups in the international scientific and cryogenic fluid management communities.

  3. An Investigation Into: I) Active Flow Control for Cold-Start Performance Enhancement of a Pump-Assisted, Capillary-Driven, Two-Phase Cooling Loop II) Surface Tension of n-Pentanol + Water, a Self-Rewetting Working Fluid, From 25 °C to 85 °C

    NASA Astrophysics Data System (ADS)

    Bejarano, Roberto Villa

    Cold-start performance enhancement of a pump-assisted, capillary-driven, two-phase cooling loop was attained using proportional integral and fuzzy logic controls to manage the boiling condition inside the evaporator. The surface tension of aqueous solutions of n-Pentanol, a self-rewetting fluid, was also investigated for enhancing heat transfer performance of capillary driven (passive) thermal devices was also studied. A proportional-integral control algorithm was used to regulate the boiling condition (from pool boiling to thin-film boiling) and backpressure in the evaporator during cold-start and low heat input conditions. Active flow control improved the thermal resistance at low heat inputs by 50% compared to the baseline (constant flow rate) case, while realizing a total pumping power savings of 56%. Temperature overshoot at start-up was mitigated combining fuzzy-logic with a proportional-integral controller. A constant evaporator surface temperature of 60°C with a variation of +/-8°C during start-up was attained with evaporator thermal resistances as low as 0.10 cm2--K/W. The surface tension of aqueous solutions of n-Pentanol, a self-rewetting working fluid, as a function of concentration and temperature were also investigated. Self-rewetting working fluids are promising in two-phase heat transfer applications because they have the ability to passively drive additional working fluid towards the heated surface; thereby increasing the dryout limitations of the thermal device. Very little data is available in literature regarding the surface tension of these fluids due to the complexity involved in fluid handling, heating, and experimentation. Careful experiments were performed to investigate the surface tension of n-Pentanol + water. The concentration and temperature range investigated were from 0.25%wt. to1.8%wt and 25°C to 85°C, respectively.

  4. TEMperature Pressure ESTimation of a homogeneous boiling fuel-steel mixture in an LMFBR core. [TEMPEST code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pyun, J.J.; Majumdar, D.

    The paper describes TEMPEST, a simple computer program for the temperature and pressure estimation of a boiling fuel-steel pool in an LMFBR core. The time scale of interest of this program is large, of the order of ten seconds. Further, the vigorous boiling in the pool will generate a large contact, and hence a large heat transfer between fuel and steel. The pool is assumed to be a uniform mixture of fuel and steel, and consequently vapor production is also assumed to be uniform throughout the pool. The pool is allowed to expand in volume if there is steel meltingmore » at the walls. In this program, the total mass of liquid and vapor fuel is always kept constant, but the total steel mass in the pool may change by steel wall melting. Because of a lack of clear understanding of the physical phenomena associated with the progression of a fuel-steel mixture at high temperature, various input options have been built-in to enable one to perform parametric studies. For example, the heat transfer from the pool to the surrounding steel structure may be controlled by input values for the heat transfer coefficients, or, the heat transfer may be calculated by a correlation obtained from the literature. Similarly, condensation of vapor on the top wall can be specified by input values of the condensation coefficient; the program can otherwise calculate condensation according to the non-equilibrium model predictions. Meltthrough rates of the surrounding steel walls can be specified by a fixed melt-rate or can be determined by a fraction of the heat loss that goes to steel-melting. The melted steel is raised to the pool temperature before it is joined with the pool material. Several applications of this program to various fuel-steel pools in the FFTF and the CRBR cores are discussed.« less

  5. Review of subcooled flow boiling critical heat flux (CHF) and its application to fusion energy system components part II: microconvective, experimental and correlational aspects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd, R.D.

    This paper reviews the present understanding of critical heat flux (CHF) in subcooled flow boiling and outlines research directions which will permit the accommodation of higher heat fluxes. This survey, which covers the last 30 years, is concerned only with CHF in the subcooled flow boiling regime and unless otherwise noted, all references to CHF will be confined to that regime. This paper (Part II) summarizes microconvective, instability, experimental and correlational aspects of CHF. Section II covers microconvection and instabilities, section III covers representative experimental work, and section IV summarizes and compares selected CHF correlations. Section V documents previous flowmore » visualization work and section VI contains conclusions and recommendations concerning problem areas and suggested research directions essential to the HHFCDP, which involves extending steady state and transient CHF towards 30 kW/cm/sup 2/.« less

  6. Investigation of Homogeneous Relaxation Model Parameters and their Implications for Gasoline Injectors

    DOE PAGES

    Saha, Kaushik; Som, Sibendu; Battistoni, Michele

    2017-01-01

    Flash boiling is known to be a common phenomenon for gasoline direct injection (GDI) engine sprays. The Homogeneous Relaxation Model has been adopted in many recent numerical studies for predicting cavitation and flash boiling. The Homogeneous Relaxation Model is assessed in this study. Sensitivity analysis of the model parameters has been documented to infer the driving factors for the flash-boiling predictions. The model parameters have been varied over a range and the differences in predictions of the extent of flashing have been studied. Apart from flashing in the near nozzle regions, mild cavitation is also predicted inside the gasoline injectors.more » The variation in the predicted time scales through the model parameters for predicting these two different thermodynamic phenomena (cavitation, flash) have been elaborated in this study. Turbulence model effects have also been investigated by comparing predictions from the standard and Re-Normalization Group (RNG) k-ε turbulence models.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saha, Kaushik; Som, Sibendu; Battistoni, Michele

    Flash boiling is known to be a common phenomenon for gasoline direct injection (GDI) engine sprays. The Homogeneous Relaxation Model has been adopted in many recent numerical studies for predicting cavitation and flash boiling. The Homogeneous Relaxation Model is assessed in this study. Sensitivity analysis of the model parameters has been documented to infer the driving factors for the flash-boiling predictions. The model parameters have been varied over a range and the differences in predictions of the extent of flashing have been studied. Apart from flashing in the near nozzle regions, mild cavitation is also predicted inside the gasoline injectors.more » The variation in the predicted time scales through the model parameters for predicting these two different thermodynamic phenomena (cavitation, flash) have been elaborated in this study. Turbulence model effects have also been investigated by comparing predictions from the standard and Re-Normalization Group (RNG) k-ε turbulence models.« less

  8. 77 FR 27097 - LaCrosse Boiling Water Reactor, Exemption From Certain Requirements, Vernon County, WI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-08

    ... status of LACBWR means that there are no longer interconnected operating systems which require security... System (ADAMS), which provides text and image files of NRC's public documents. If you do not have access...

  9. An Active Broad Area Cooling Model of a Cryogenic Propellant Tank with a Single Stage Reverse Turbo-Brayton Cycle Cryocooler

    NASA Technical Reports Server (NTRS)

    Guzik, Monica C.; Tomsik, Thomas M.

    2011-01-01

    As focus shifts towards long-duration space exploration missions, an increased interest in active thermal control of cryogenic propellants to achieve zero boil-off of cryogens has emerged. An active thermal control concept of considerable merit is the integration of a broad area cooling system for a cryogenic propellant tank with a combined cryocooler and circulator system that can be used to reduce or even eliminate liquid cryogen boil-off. One prospective cryocooler and circulator combination is the reverse turbo-Brayton cycle cryocooler. This system is unique in that it has the ability to both cool and circulate the coolant gas efficiently in the same loop as the broad area cooling lines, allowing for a single cooling gas loop, with the primary heat rejection occurring by way of a radiator and/or aftercooler. Currently few modeling tools exist that can size and characterize an integrated reverse turbo-Brayton cycle cryocooler in combination with a broad area cooling design. This paper addresses efforts to create such a tool to assist in gaining a broader understanding of these systems, and investigate their performance in potential space missions. The model uses conventional engineering and thermodynamic relationships to predict the preliminary design parameters, including input power requirements, pressure drops, flow rate, cycle performance, cooling lift, broad area cooler line sizing, and component operating temperatures and pressures given the cooling load operating temperature, heat rejection temperature, compressor inlet pressure, compressor rotational speed, and cryogenic tank geometry. In addition, the model allows for the preliminary design analysis of the broad area cooling tubing, to determine the effect of tube sizing on the reverse turbo-Brayton cycle system performance. At the time this paper was written, the model was verified to match existing theoretical documentation within a reasonable margin. While further experimental data is needed for full validation, this tool has already made significant steps towards giving a clearer understanding of the performance of a reverse turbo-Brayton cycle cryocooler integrated with broad area cooling technology for zero boil-off active thermal control.

  10. The present status and problems in document retrieval system : document input type retrieval system

    NASA Astrophysics Data System (ADS)

    Inagaki, Hirohito

    The office-automation (OA) made many changes. Many documents were begun to maintained in an electronic filing system. Therefore, it is needed to establish efficient document retrieval system to extract useful information. Current document retrieval systems are using simple word-matching, syntactic-matching, semantic-matching to obtain high retrieval efficiency. On the other hand, the document retrieval systems using special hardware devices, such as ISSP, were developed for aiming high speed retrieval. Since these systems can accept a single sentence or keywords as input, it is difficult to explain searcher's request. We demonstrated document input type retrieval system, which can directly accept document as an input, and can search similar documents from document data-base.

  11. Numerical and experimental study of the dynamics of a superheated jet

    NASA Astrophysics Data System (ADS)

    Sinha, Avick; Gopalakrishnan, Shivasubramanian; Balasubramanian, Sridhar

    2015-11-01

    Flash-boiling is a phenomenon where a liquid experiences low pressures in a system resulting in it getting superheated. The sudden drop in pressures results in accelerated expansion and violent vapour formation. Understanding the physics behind the jet disintegration and flash-boiling phenomenon is still an open problem, with applications in automotive and aerospace combustors. The behaviour of a flash-boiling jet is highly dependent on the input parameters, inlet temperature and pressure. In the present study, the external (outside nozzle) and the internal (inside nozzle) flow characteristics of the two-phase flow has been studied numerically and experimentally. The phase change from liquid to vapour takes place over a finite period of time, modeled sing Homogeneous Relaxation Model (HRM). In order to validate the numerical results, controlled experiments were performed. Optical diagnostic techniques such as Particle Image Velocimetry (PIV) and Shadowgraphy were used to study the flow characteristics. Spray angle, penetration depth, droplet spectra were obtained which provides a better understanding of the break-up mechanism. Linear stability analysis is performed to study the stability characteristics of the jet.

  12. 76 FR 73733 - Union Electric Company; Callaway Plant, Unit 1; Notice of Consideration of Issuance of Amendment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-29

    ... nucleate boiling ratio (DNBR) limits, heat flux hot channel factor (F Q ), nuclear enthalpy rise hot.... Upon receipt of a transmission, the E-Filing system time-stamps the document and sends the submitter an...

  13. Design and test of a compact optics system for the pool boiling experiment

    NASA Technical Reports Server (NTRS)

    Ling, Jerri S.; Laubenthal, James R.

    1990-01-01

    The experiment described seeks to improve the understanding of the fundamental mechanisms that constitute nucleate pool boiling. The vehicle for accomplishing this is an investigation, including tests to be conducted in microgravity and coupled with appropriate analyses, of the heat transfer and vapor bubble dynamics associated with nucleation, bubble growth/collapse and subsequent motion, considering the interrelations between buoyancy, momentum and surface tension which will govern the motion of the vapor and surrounding liquid, as a function of the heating rate at the heat transfer surface and the temperature level and distribution in the bulk liquid. The experiment is designed to be contained within the confines of a Get-Away-Special Canister (GAS Can) installed in the bay of the space shuttle. When the shuttle reaches orbit, the experiment will be turned on and testing will proceed automatically. In the proposed Pool Boiling Experiment a pool of liquid, initially at a precisely defined pressure and temperature, will be subjected to a step imposed heat flux from a semitransparent thin-film heater forming part of one wall of the container such that boiling is initiated and maintained for a defined period of time at a constant pressure level. Transient measurements of the heater surface and fluid temperatures near the surface will be made, noting especially the conditions at the onset of boiling, along with motion photography of the boiling process in two simultaneous views, from beneath the heating surface and from the side. The conduct of the experiment and the data acquisition will be completely automated and self-contained. For the initial flight, a total of nine tests are proposed, with three levels of heat flux and three levels of subcooling. The design process used in the development and check-out of the compact photographic/optics system for the Pool Boiling Experiment is documented.

  14. In-vessel coolability and retention of a core melt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Theofanous, T.G.; Liu, C.; Additon, S.

    1997-02-01

    The efficacy of external flooding of a reactor vessel as a severe accident management strategy is assessed for an AP600-like reactor design. The overall approach is based on the Risk Oriented Accident Analysis Methodology (ROAAM), and the assessment includes consideration of bounding scenarios and sensitivity studies, as well as arbitrary parametric evaluations that allow the delineation of the failure boundaries. The technical treatment in this assessment includes: (a) new data on energy flow from either volumetrically heated pools or non-heated layers on top, boiling and critical heat flux in inverted, curved geometries, emissivity of molten (superheated) samples of steel, andmore » chemical reactivity proof tests, (b) a simple but accurate mathematical formulation that allows prediction of thermal loads by means of convenient hand calculations, (c) a detailed model programmed on the computer to sample input parameters over the uncertainty ranges, and to produce probability distributions of thermal loads and margins for departure from nucleate boiling at each angular position on the lower head, and (d) detailed structural evaluations that demonstrate that departure from nucleate boiling is a necessary and sufficient criterion for failure. Quantification of the input parameters is carried out for an AP600-like design, and the results of the assessment demonstrate that lower head failure is {open_quotes}physically unreasonable.{close_quotes} Use of this conclusion for any specific application is subject to verifying the required reliability of the depressurization and cavity-flooding systems, and to showing the appropriateness (in relation to the database presented here, or by further testing as necessary) of the thermal insulation design and of the external surface properties of the lower head, including any applicable coatings.« less

  15. Hydrocarbonaceous material processing methods and apparatus

    DOEpatents

    Brecher, Lee E [Laramie, WY

    2011-07-12

    Methods and apparatus are disclosed for possibly producing pipeline-ready heavy oil from substantially non-pumpable oil feeds. The methods and apparatus may be designed to produce such pipeline-ready heavy oils in the production field. Such methods and apparatus may involve thermal soaking of liquid hydrocarbonaceous inputs in thermal environments (2) to generate, though chemical reaction, an increased distillate amount as compared with conventional boiling technologies.

  16. 77 FR 55877 - Initial Test Program of Condensate and Feedwater Systems for Light-Water Reactors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-11

    ...-492- 3668; email: [email protected] . NRC's Agencywide Documents Access and Management System... Systems for Light-Water Reactors AGENCY: Nuclear Regulatory Commission. ACTION: Regulatory guide; issuance... Systems for Boiling Water Reactor Power Plants.'' This regulatory guide is being revised to: (1) Expand...

  17. Boiling Experiment Facility (BXF): Post Flight Assessment Anomaly Investigation Report

    NASA Technical Reports Server (NTRS)

    Booth, Wendell H.

    2012-01-01

    This document serves as the report for presenting the results and conclusions of investigation activities that were performed to determine the root causes of the anomaly, camera misalignment, and dissolved gas concentration issues and to verify the calibration and accuracy of the pressure and temperature measurements.

  18. Zero Boil-Off System Testing

    NASA Technical Reports Server (NTRS)

    Plachta, David W.; Johnson, Wesley L.; Feller, Jeffrey R.

    2015-01-01

    Cryogenic propellants such as liquid hydrogen (LH2) and liquid oxygen (LO2) are a part of NASA's future space exploration due to their high specific impulse for rocket motors of upper stages suitable for transporting 10s to 100s of metric tons of payload mass to destinations outside of low earth orbit and for their return. However, the low storage temperatures of LH2 and LO2 cause substantial boil-off losses for missions with durations greater than several months. These losses can be eliminated by incorporating high performance cryocooler technology to intercept heat load to the propellant tanks and modulating the cryocooler to control tank pressure. The active thermal control technology being developed by NASA is the reverse turbo-Brayton cycle cryocooler and its integration to the propellant tank through a distributed cooling tubing network coupled to the tank wall. This configuration was recently tested at NASA Glenn Research Center, in a vacuum chamber and cryoshroud that simulated the essential thermal aspects of low Earth orbit, its vacuum and temperature. Testing consisted of three passive tests with the active cryocooler system off, and 7 active tests, with the cryocooler powered up. The test matrix included zero boil-off tests performed at 90 full and 25 full, and several demonstrations at excess cooling capacity and reduced cooling capacity. From this, the tank pressure response with varied cryocooler power inputs was determined. This test series established that the active cooling system integrated with the propellant tank eliminated boil-off and robustly controlled tank pressure.

  19. El Cobreloa: A geyser with two distinct eruption styles

    NASA Astrophysics Data System (ADS)

    Namiki, A.; Munoz, C.; Manga, M.; Hurwitz, S.; King, E.; Negri, A.; Ortega, P.; Patel, A.; Rudolph, M.

    2013-12-01

    El Cobreloa geyser has two distinct eruption styles: vigorous major eruptions, and less energetic minor eruptions. Minor eruptions splash hot water intermittently over an approximately 4 minute time period. Major eruptions begin with an eruption style similar to minor eruptions, but then transition to a voluminous and water-dominated eruption, and finally end with energetic steam discharge. The steam discharge continues for approximately 1 hour. We calculated the eruption intervals by visual observations, acoustic measurements, and ground temperature measurements. All of measurements consistently show that each eruption style has a regular interval: 4 hours and 40 minutes for major eruptions, and ~13 minutes for minor eruptions. From these observations, we infer that there are two boiling loci that source each type of eruption, one at the bottom and the other at the top of the conduit. If the bottom of the conduit is hot enough, boiling begins at the bottom of the conduit to make a steam slug. As this slug ascends in the conduit, it heats the surrounding water. If the slug rises fast enough it splashes water when it reaches the surface, creating minor eruptions. Each successive steam slug continues to heat water in the conduit until it eventually reaches the boiling temperature everywhere. Once the top of the conduit begins boiling, the energetic steam discharge begins and the boiling propagates downward. Such a process causes major eruption. Geysers are often studied as an analogue to magmatic volcanoes because it is easier to document how mass and energy transfer lead to eruptions. El Cobreloa provides insight into how the system becomes primed for large eruptions.

  20. Superfund record of decision (EPA region 10): Idaho National Engineering Lab, (USDOE) Operable Unit 26 (Stationary Low-Power Reactor-1 and Boiling Water Reactor Experiment-I Burial Grounds), Idaho Falls, ID, December 1, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-03-01

    This document presents the selected remedial action for the Stationary Low-Power Reactor-1 (SL-1) burial ground, the Boiling Water Reactor Experiment-I (BORAX-I) burial ground, and 10 no action sites in Waste Area Group 5. Actual or threatened releases of hazardous substances from the SL-1 and BORAX-I burial grounds, if not addressed by implementing the response action selected in this Record of Decision, may present a current or potential threat to public health, welfare, or the environment. The 10 no action sites do not present a threat to human health or the environment.

  1. An evaluation of alternative reactor vessel cutting technologies for the experimental boiling water reactor at Argonne National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boing, L.E.; Henley, D.R.; Manion, W.J.

    1989-12-01

    Metal cutting techniques that can be used to segment the reactor pressure vessel of the Experimental Boiling Water Reactor (EBWR) at Argonne National Laboratory (ANL) have been evaluated by Nuclear Energy Services. Twelve cutting technologies are described in terms of their ability to perform the required task, their performance characteristics, environmental and radiological impacts, and cost and schedule considerations. Specific recommendations regarding which technology should ultimately be used by ANL are included. The selection of a cutting method was the responsibility of the decommissioning staff at ANL, who included a relative weighting of the parameters described in this document inmore » their evaluation process. 73 refs., 26 figs., 69 tabs.« less

  2. Vitrification of MSWI Fly Ash by Thermal Plasma Melting and Fate of Heavy Metals

    NASA Astrophysics Data System (ADS)

    Ni, Guohua; Zhao, Peng; Jiang, Yiman; Meng, Yuedong

    2012-09-01

    Municipal solid waste incinerator (MSWI) fly ash with high basicity (about 1.68) was vitrified in a thermal plasma melting furnace system. Through the thermal plasma treatment, the vitrified product (slag) with amorphous dark glassy structure was obtained, and the leachability of hazardous metals in slag was significantly reduced. Meanwhile, it was found that the cooling rate affects significantly the immobility of heavy metals in slag. The mass distribution of heavy metals (Zn, Cd, Cr, Pb, As, Hg) was investigated in residual products (slag, secondary residues and flue gas), in order to analyze the behavior of heavy metals in thermal plasma atmosphere. Heavy metal species with low boiling points accounting for the major fraction of their input-mass were adsorbed in secondary residues by pollution abatement devices, while those with high boiling points tended to be encapsulated in slag.

  3. Sodium reflux pool-boiler solar receiver on-sun test results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andraka, C E; Moreno, J B; Diver, R B

    1992-06-01

    The efficient operation of a Stirling engine requires the application of a high heat flux to the relatively small area occupied by the heater head tubes. Previous attempts to couple solar energy to Stirling engines generally involved directly illuminating the heater head tubes with concentrated sunlight. In this study, operation of a 75-kW{sub t} sodium reflux pool-boiler solar receiver has been demonstrated and its performance characterized on Sandia's nominal 75-kW{sub t} parabolic-dish concentrator, using a cold-water gas-gap calorimeter to simulate Stirling engine operation. The pool boiler (and more generally liquid-metal reflux receivers) supplies heat to the engine in the formmore » of latent heat released from condensation of the metal vapor on the heater head tubes. The advantages of the pool boiler include uniform tube temperature, leading to longer life and higher temperature available to the engine, and decoupling of the design of the solar absorber from the engine heater head. The two-phase system allows high input thermal flux, reducing the receiver size and losses, therefore improving system efficiency. The receiver thermal efficiency was about 90% when operated at full power and 800{degree}C. Stable sodium boiling was promoted by the addition of 35 equally spaced artificial cavities in the wetted absorber surface. High incipient boiling superheats following cloud transients were suppressed passively by the addition of small amounts of xenon gas to the receiver volume. Stable boiling without excessive incipient boiling superheats was observed under all operating conditions. The receiver developed a leak during performance evaluation, terminating the testing after accumulating about 50 hours on sun. The receiver design is reported here along with test results including transient operations, steady-state performance evaluation, operation at various temperatures, infrared thermography, x-ray studies of the boiling behavior, and a postmortem analysis.« less

  4. NaK pool-boiler bench-scale receiver durability test: Test results and materials analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andraka, C.E.; Goods, S.H.; Bradshaw, R.W.

    1994-06-01

    Pool-boiler reflux receivers have been considered as an alternative to heat pipes for the input of concentrated solar energy to Stirling-cycle engines in dish-Stirling electric generation systems. Pool boilers offer simplicity in design and fabrication. The operation of a full-scale pool-boiler receiver has been demonstrated for short periods of time. However, to generate cost-effective electricity, the receiver must operate Without significant maintenance for the entire system life, as much as 20 to 30 years. Long-term liquid-metal boiling stability and materials compatibility with refluxing NaK-78 is not known and must be determined for the pool boiler receiver. No boiling system hasmore » been demonstrated for a significant duration with the current porous boiling enhancement surface and materials. Therefore, it is necessary to simulate the full-scale pool boiler design as much as possible, including flux levels, materials, and operating cycles. On-sun testing is impractical because of the limited test time available. A test vessel was constructed with a porous boiling enhancement surface. The boiling surface consisted of a brazed stainless steel powder with about 50% porosity. The vessel was heated with a quartz lamp array providing about go W/CM2 peak incident thermal flux. The vessel was charged with NaK-78. This allows the elimination of costly electric preheating, both on this test and on fullscale receivers. The vessel was fabricated from Haynes 230 alloy. The vessel operated at 750{degrees}C around the clock, with a 1/2-hour shutdown cycle to ambient every 8 hours. The test completed 7500 hours of lamp-on operation time, and over 1000 startups from ambient. The test was terminated when a small leak in an Inconel 600 thermowell was detected. The test design and data are presented here. Metallurgical analysis of virgin and tested materials has begun, and initial results are also presented.« less

  5. SINDA/FLUINT Stratified Tank Modeling for Cryrogenic Propellant Tanks

    NASA Technical Reports Server (NTRS)

    Sakowski, Barbara

    2014-01-01

    A general purpose SINDA/FLUINT (S/F) stratified tank model was created to simulate self-pressurization and axial jet TVS; Stratified layers in the vapor and liquid are modeled using S/F lumps.; The stratified tank model was constructed to permit incorporating the following additional features:, Multiple or singular lumps in the liquid and vapor regions of the tank, Real gases (also mixtures) and compressible liquids, Venting, pressurizing, and draining, Condensation and evaporation/boiling, Wall heat transfer, Elliptical, cylindrical, and spherical tank geometries; Extensive user logic is used to allow detailed tailoring - Don't have to rebuilt everything from scratch!!; Most code input for a specific case is done through the Registers Data Block:, Lump volumes are determined through user input:; Geometric tank dimensions (height, width, etc); Liquid level could be input as either a volume percentage of fill level or actual liquid level height

  6. STAR-CCM+ Verification and Validation Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pointer, William David

    2016-09-30

    The commercial Computational Fluid Dynamics (CFD) code STAR-CCM+ provides general purpose finite volume method solutions for fluid dynamics and energy transport. This document defines plans for verification and validation (V&V) of the base code and models implemented within the code by the Consortium for Advanced Simulation of Light water reactors (CASL). The software quality assurance activities described herein are port of the overall software life cycle defined in the CASL Software Quality Assurance (SQA) Plan [Sieger, 2015]. STAR-CCM+ serves as the principal foundation for development of an advanced predictive multi-phase boiling simulation capability within CASL. The CASL Thermal Hydraulics Methodsmore » (THM) team develops advanced closure models required to describe the subgrid-resolution behavior of secondary fluids or fluid phases in multiphase boiling flows within the Eulerian-Eulerian framework of the code. These include wall heat partitioning models that describe the formation of vapor on the surface and the forces the define bubble/droplet dynamic motion. The CASL models are implemented as user coding or field functions within the general framework of the code. This report defines procedures and requirements for V&V of the multi-phase CFD capability developed by CASL THM. Results of V&V evaluations will be documented in a separate STAR-CCM+ V&V assessment report. This report is expected to be a living document and will be updated as additional validation cases are identified and adopted as part of the CASL THM V&V suite.« less

  7. MELCOR computer code manuals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Summers, R.M.; Cole, R.K. Jr.; Smith, R.C.

    1995-03-01

    MELCOR is a fully integrated, engineering-level computer code that models the progression of severe accidents in light water reactor nuclear power plants. MELCOR is being developed at Sandia National Laboratories for the U.S. Nuclear Regulatory Commission as a second-generation plant risk assessment tool and the successor to the Source Term Code Package. A broad spectrum of severe accident phenomena in both boiling and pressurized water reactors is treated in MELCOR in a unified framework. These include: thermal-hydraulic response in the reactor coolant system, reactor cavity, containment, and confinement buildings; core heatup, degradation, and relocation; core-concrete attack; hydrogen production, transport, andmore » combustion; fission product release and transport; and the impact of engineered safety features on thermal-hydraulic and radionuclide behavior. Current uses of MELCOR include estimation of severe accident source terms and their sensitivities and uncertainties in a variety of applications. This publication of the MELCOR computer code manuals corresponds to MELCOR 1.8.3, released to users in August, 1994. Volume 1 contains a primer that describes MELCOR`s phenomenological scope, organization (by package), and documentation. The remainder of Volume 1 contains the MELCOR Users Guides, which provide the input instructions and guidelines for each package. Volume 2 contains the MELCOR Reference Manuals, which describe the phenomenological models that have been implemented in each package.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryan, Charles R.; Weck, Philippe F.; Vaughn, Palmer

    Report RWEV-REP-001, Analysis of Postclosure Groundwater Impacts for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High Level Radioactive Waste at Yucca Mountain, Nye County, Nevada was issued by the DOE in 2009 and is currently being updated. Sandia National Laboratories (SNL) provided support for the original document, performing calculations and extracting data from the Yucca Mountain Performance Assessment Model that were used as inputs to the contaminant transport and dose calculations by Jason Associates Corporation, the primary developers of the DOE report. The inputs from SNL were documented in LSA-AR-037, Inputs to Jason Associates Corporation inmore » Support of the Postclosure Repository Supplemental Environmental Impact Statement. To support the updating of the original Groundwater Impacts document, SNL has reviewed the inputs provided in LSA-AR-037 to verify that they are current and appropriate for use. The results of that assessment are documented here.« less

  9. Liquid Nitrogen Zero Boiloff Testing

    NASA Technical Reports Server (NTRS)

    Plachta, David; Feller, Jeffrey; Johnson, Wesley; Robinson, Craig

    2017-01-01

    Cryogenic propellants such as liquid hydrogen (LH2) and liquid oxygen (LO2) are a part of NASAs future space exploration due to their high specific impulse for rocket motors of upper stages suitable for transporting 10s to 100s of metric tons of payload mass to destinations outside of low earth orbit and for their return. However, the low storage temperatures of LH2 and LO2 cause substantial boil-off losses for missions with durations greater than several months. These losses can be eliminated by incorporating high performance cryocooler technology to intercept heat load to the propellant tanks and modulating the cryocooler to control tank pressure. The active thermal control technology being developed by NASA is the reverse turbo-Brayton cycle cryocooler and its integration to the propellant tank through a distributed cooling tubing network coupled to the tank wall. This configuration was recently tested at NASA Glenn Research Center, in a vacuum chamber and cryo-shroud that simulated the essential thermal aspects of low Earth orbit, its vacuum and temperature. Testing consisted of three passive tests with the active cryo-cooler system off, and 7 active tests, with the cryocooler powered up. The test matrix included zero boil-off tests performed at 90 full and 25 full, and several demonstrations at excess cooling capacity and reduced cooling capacity. From this, the tank pressure response with varied cryocooler power inputs was determined. This test series established that the active cooling system integrated with the propellant tank eliminated boil-off and robustly controlled tank pressure.

  10. An investigation of transition boiling mechanisms of subcooled water under forced convective conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwang-Won, Lee; Sang-Yong, Lee

    1995-09-01

    A mechanistic model for forced convective transition boiling has been developed to investigate transition boiling mechanisms and to predict transition boiling heat flux realistically. This model is based on a postulated multi-stage boiling process occurring during the passage time of the elongated vapor blanket specified at a critical heat flux (CHF) condition. Between the departure from nucleate boiling (DNB) and the departure from film boiling (DFB) points, the boiling heat transfer is established through three boiling stages, namely, the macrolayer evaporation and dryout governed by nucleate boiling in a thin liquid film and the unstable film boiling characterized by themore » frequent touches of the interface and the heated wall. The total heat transfer rates after the DNB is weighted by the time fractions of each stage, which are defined as the ratio of each stage duration to the vapor blanket passage time. The model predictions are compared with some available experimental transition boiling data. The parametric effects of pressure, mass flux, inlet subcooling on the transition boiling heat transfer are also investigated. From these comparisons, it can be seen that this model can identify the crucial mechanisms of forced convective transition boiling, and that the transition boiling heat fluxes including the maximum heat flux and the minimum film boiling heat flux are well predicted at low qualities/high pressures near 10 bar. In future, this model will be improved in the unstable film boiling stage and generalized for high quality and low pressure situations.« less

  11. Post-test examination of a pool boiler receiver

    NASA Technical Reports Server (NTRS)

    Dreshfield, Robert L.; Moore, Thomas J.; Bartolotta, Paul A.

    1992-01-01

    A subscale pool boiler test apparatus to evaluate boiling stability developed a leak after being operated with boiling NaK for 791.4 hr at temperatures from 700 to 750 C. The boiler was constructed using Inconel 625 with a type 304L stainless steel wick for the boiler and type 316 stainless steel for the condenser. The boiler assembly was metallurgically evaluated to determine the cause of the leak and to assess the effects of the NaK on the materials. It was found that the leak was caused by insufficient (about 30 pct.) joint penetration in a butt joint. There was no general corrosion of the construction materials, but the room temperature ductility of the Inconel 625 was only about 6.5 pct. A crack in the heat affected zone of the Inconel 625 near the Inconel 625 to type 316 stainless steel butt joint was probably caused by excessive heat input. The crack was observed to have a zone depleted of iron at the crack surface and porosity below that zone. The mechanism of the iron depletion was not conclusively determined.

  12. Lattice Boltzmann modeling of boiling heat transfer: The boiling curve and the effects of wettability

    DOE PAGES

    Li, Q.; Kang, Q. J.; Francois, M. M.; ...

    2015-03-03

    A hybrid thermal lattice Boltzmann (LB) model is presented to simulate thermal multiphase flows with phase change based on an improved pseudopotential LB approach (Li et al., 2013). The present model does not suffer from the spurious term caused by the forcing-term effect, which was encountered in some previous thermal LB models for liquid–vapor phase change. Using the model, the liquid–vapor boiling process is simulated. The boiling curve together with the three boiling stages (nucleate boiling, transition boiling, and film boiling) is numerically reproduced in the LB community for the first time. The numerical results show that the basic featuresmore » and the fundamental characteristics of boiling heat transfer are well captured, such as the severe fluctuation of transient heat flux in the transition boiling and the feature that the maximum heat transfer coefficient lies at a lower wall superheat than that of the maximum heat flux. Moreover, the effects of the heating surface wettability on boiling heat transfer are investigated. It is found that an increase in contact angle promotes the onset of boiling but reduces the critical heat flux, and makes the boiling process enter into the film boiling regime at a lower wall superheat, which is consistent with the findings from experimental studies.« less

  13. Dynamics of face and annular seals with two-phase flow

    NASA Technical Reports Server (NTRS)

    Hughes, William F.; Basu, Prithwish; Beatty, Paul A.; Beeler, Richard M.; Lau, Stephen

    1989-01-01

    A detailed study was made of face and annular seals under conditions where boiling, i.e., phase change of the leaking fluid, occurs within the seal. Many seals operate in this mode because of flashing due to pressure drop and/or heat input from frictional heating. High pressure, water pumps, industrial chemical pumps, and cryogenic pumps are mentioned as a few of many applications. The initial motivation was the LOX-GOX seals for the space shuttle main engine, but the study was expanded to include any face or annular seal where boiling occurs. Some of the distinctive behavior characteristics of two-phase seals were discussed, particularly their axial stability. While two-phase seals probably exhibit instability to disturbances of other degrees of freedom such as wobble, etc., under certain conditions, such analyses are too complex to be treated at present. Since an all liquid seal (with parallel faces) has a neutral axial stiffness curve, and is stabilized axially by convergent coning, other degrees of freedom stability analyses are necessary. However, the axial stability behavior of the two-phase seal is always a consideration no matter how well the seal is aligned and regardless of the speed. Hence, axial stability is thought of as the primary design consideration for two-phase seals and indeed the stability behavior under sub-cooling variations probably overshadows other concerns. The main thrust was the dynamic analysis of axial motion of two-phase face seals, principally the determination of axial stiffness, and the steady behavior of two-phase annular seals. The main conclusions are that seals with two-phase flow may be unstable if improperly balanced. Detailed theoretical analyses of low (laminar) and high (turbulent) leakage seals are presented along with computer codes, parametric studies, and in particular a simplified PC based code that allows for rapid performance prediction. A simplified combined computer code for the performance prediction over the laminar and turbulent ranges of a two-phase seal is described and documented. The analyses, results, and computer codes are summarized.

  14. The MELTSPREAD Code for Modeling of Ex-Vessel Core Debris Spreading Behavior, Code Manual – Version3-beta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, M. T.

    MELTSPREAD3 is a transient one-dimensional computer code that has been developed to predict the gravity-driven flow and freezing behavior of molten reactor core materials (corium) in containment geometries. Predictions can be made for corium flowing across surfaces under either dry or wet cavity conditions. The spreading surfaces that can be selected are steel, concrete, a user-specified material (e.g., a ceramic), or an arbitrary combination thereof. The corium can have a wide range of compositions of reactor core materials that includes distinct oxide phases (predominantly Zr, and steel oxides) plus metallic phases (predominantly Zr and steel). The code requires input thatmore » describes the containment geometry, melt “pour” conditions, and cavity atmospheric conditions (i.e., pressure, temperature, and cavity flooding information). For cases in which the cavity contains a preexisting water layer at the time of RPV failure, melt jet breakup and particle bed formation can be calculated mechanistically given the time-dependent melt pour conditions (input data) as well as the heatup and boiloff of water in the melt impingement zone (calculated). For core debris impacting either the containment floor or previously spread material, the code calculates the transient hydrodynamics and heat transfer which determine the spreading and freezing behavior of the melt. The code predicts conditions at the end of the spreading stage, including melt relocation distance, depth and material composition profiles, substrate ablation profile, and wall heatup. Code output can be used as input to other models such as CORQUENCH that evaluate long term core-concrete interaction behavior following the transient spreading stage. MELTSPREAD3 was originally developed to investigate BWR Mark I liner vulnerability, but has been substantially upgraded and applied to other reactor designs (e.g., the EPR), and more recently to the plant accidents at Fukushima Daiichi. The most recent round of improvements that are documented in this report have been specifically implemented to support industry in developing Severe Accident Water Management (SAWM) strategies for Boiling Water Reactors.« less

  15. Summary and bibliography of safety-related events at boiling-water nuclear power plants as reported in 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCormack, K.E.; Gallaher, R.B.

    1982-03-01

    This document presents a bibliography that contains 100-word abstracts of event reports submitted to the US Nuclear Regulatory Commission concerning operational events that occurred at boiling-water-reactor nuclear power plants in 1980. The 1547 abstracts included on microfiche in this bibliography describe incidents, failures, and design or construction deficiencies that were experienced at the facilities. These abstracts are arranged alphabetically by reactor name and then chronologically for each reactor. Full-size keyword and permuted-title indexes to facilitate location of individual abstracts are provided following the text. Tables that summarize the information contained in the bibliography are also provided. The information in themore » tables includes a listing of the equipment items involved in the reported events and the associated number of reports for each item. Similar information is given for the various kinds of instrumentation and systems, causes of failures, deficiencies noted, and the time of occurrence (i.e., during refueling, operation, testing, or construction).« less

  16. MELCOR computer code manuals: Primer and user`s guides, Version 1.8.3 September 1994. Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Summers, R.M.; Cole, R.K. Jr.; Smith, R.C.

    1995-03-01

    MELCOR is a fully integrated, engineering-level computer code that models the progression of severe accidents in light water reactor nuclear power plants. MELCOR is being developed at Sandia National Laboratories for the US Nuclear Regulatory Commission as a second-generation plant risk assessment tool and the successor to the Source Term Code Package. A broad spectrum of severe accident phenomena in both boiling and pressurized water reactors is treated in MELCOR in a unified framework. These include: thermal-hydraulic response in the reactor coolant system, reactor cavity, containment, and confinement buildings; core heatup, degradation, and relocation; core-concrete attack; hydrogen production, transport, andmore » combustion; fission product release and transport; and the impact of engineered safety features on thermal-hydraulic and radionuclide behavior. Current uses of MELCOR include estimation of severe accident source terms and their sensitivities and uncertainties in a variety of applications. This publication of the MELCOR computer code manuals corresponds to MELCOR 1.8.3, released to users in August, 1994. Volume 1 contains a primer that describes MELCOR`s phenomenological scope, organization (by package), and documentation. The remainder of Volume 1 contains the MELCOR Users` Guides, which provide the input instructions and guidelines for each package. Volume 2 contains the MELCOR Reference Manuals, which describe the phenomenological models that have been implemented in each package.« less

  17. Documentation of model input and output values for simulation of pumping effects in Paradise Valley, a basin tributary to the Humboldt River, Humboldt County, Nevada

    USGS Publications Warehouse

    Carey, A.E.; Prudic, David E.

    1996-01-01

    Documentation is provided of model input and sample output used in a previous report for analysis of ground-water flow and simulated pumping scenarios in Paradise Valley, Humboldt County, Nevada.Documentation includes files containing input values and listings of sample output. The files, in American International Standard Code for Information Interchange (ASCII) or binary format, are compressed and put on a 3-1/2-inch diskette. The decompressed files require approximately 8.4 megabytes of disk space on an International Business Machine (IBM)- compatible microcomputer using the MicroSoft Disk Operating System (MS-DOS) operating system version 5.0 or greater.

  18. Broad Area Cooler Concepts for Cryogenic Propellant Tanks

    NASA Technical Reports Server (NTRS)

    Christie, R. J.; Tomsik, T. M.; Elchert, J. P.; Guzik, M. C.

    2011-01-01

    Numerous studies and ground tests have shown that broad area cooling (also known as distributed cooling) can reduce or eliminate cryogenic propellant boil-off and enable long duration storage in space. Various combinations of cryocoolers, circulators, heat exchangers and other hardware could be used to build the system. In this study, several configurations of broad area cooling systems were compared by weighing hardware combinations, input power requirements, component availability, and Technical Readiness Level (TRL). The preferred system has a high TRL and can be scaled up to provide cooling capacities on the order of 150W at 90K

  19. Probabilistic margin evaluation on accidental transients for the ASTRID reactor project

    NASA Astrophysics Data System (ADS)

    Marquès, Michel

    2014-06-01

    ASTRID is a technological demonstrator of Sodium cooled Fast Reactor (SFR) under development. The conceptual design studies are being conducted in accordance with the Generation IV reactor objectives, particularly in terms of improving safety. For the hypothetical events, belonging to the accidental category "severe accident prevention situations" having a very low frequency of occurrence, the safety demonstration is no more based on a deterministic demonstration with conservative assumptions on models and parameters but on a "Best-Estimate Plus Uncertainty" (BEPU) approach. This BEPU approach ispresented in this paper for an Unprotected Loss-of-Flow (ULOF) event. The Best-Estimate (BE) analysis of this ULOFt ransient is performed with the CATHARE2 code, which is the French reference system code for SFR applications. The objective of the BEPU analysis is twofold: first evaluate the safety margin to sodium boiling in taking into account the uncertainties on the input parameters of the CATHARE2 code (twenty-two uncertain input parameters have been identified, which can be classified into five groups: reactor power, accident management, pumps characteristics, reactivity coefficients, thermal parameters and head losses); secondly quantify the contribution of each input uncertainty to the overall uncertainty of the safety margins, in order to refocusing R&D efforts on the most influential factors. This paper focuses on the methodological aspects of the evaluation of the safety margin. At least for the preliminary phase of the project (conceptual design), a probabilistic criterion has been fixed in the context of this BEPU analysis; this criterion is the value of the margin to sodium boiling, which has a probability 95% to be exceeded, obtained with a confidence level of 95% (i.e. the M5,95percentile of the margin distribution). This paper presents two methods used to assess this percentile: the Wilks method and the Bootstrap method ; the effectiveness of the two methods is compared on the basis of 500 simulations performed with theCATHARE2 code. We conclude that, with only 100 simulations performed with the CATHARE2 code, which is a number of simulations workable in the conceptual design phase of the ASTRID project where the models and the hypothesis are often modified, it is best in order to evaluate the percentile M5,95 of the margin to sodium boiling to use the bootstrap method, which will provide a slightly conservative result. On the other hand, in order to obtain an accurate estimation of the percentileM5,95, for the safety report for example, it will be necessary to perform at least 300 simulations with the CATHARE2 code. In this case, both methods (Wilks and Bootstrap) would give equivalent results.

  20. Boiling of the interface between two immiscible liquids below the bulk boiling temperatures of both components.

    PubMed

    Pimenova, Anastasiya V; Goldobin, Denis S

    2014-11-01

    We consider the problem of boiling of the direct contact of two immiscible liquids. An intense vapour formation at such a direct contact is possible below the bulk boiling points of both components, meaning an effective decrease of the boiling temperature of the system. Although the phenomenon is known in science and widely employed in technology, the direct contact boiling process was thoroughly studied (both experimentally and theoretically) only for the case where one of liquids is becoming heated above its bulk boiling point. On the contrary, we address the case where both liquids remain below their bulk boiling points. In this paper we construct the theoretical description of the boiling process and discuss the actualisation of the case we consider for real systems.

  1. A Handbook for Producing Classroom Vugraphs

    DTIC Science & Technology

    1988-09-01

    UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704-0188 la . REPORT SECURITY CLASSIFICATION lb...or can do with the information. Students try to boil down the informacion presented visually to some compact form, usually by taking notes for later...EtSm firam ta, 1019 DriveSyste Maor era dffrencmpnns fiure1) wr rt shaft asran o ispt ea ul-p Il ~01 4 00 1 J ~~W~ Driv Syte1MjoiCmpnet to tranmft engine

  2. Universality of oscillating boiling in Leidenfrost transition

    NASA Astrophysics Data System (ADS)

    Tran, Tuan; Khavari, Mohammad

    2017-11-01

    The Leidenfrost transition leads a boiling system to the boiling crisis, a state in which the liquid loses contact with the heated surface due to excessive vapor generation. Here, using experiments of liquid droplets boiling on a heated surface, we report a new phenomenon, termed oscillating boiling, at the Leidenfrost transition. We show that oscillating boiling results from the competition between two effects: separation of liquid from the heated surface due to localized boiling, and rewetting. We argue theoretically that the Leidenfrost transition can be predicted based on its link with the oscillating boiling phenomenon, and verify the prediction experimentally for various liquids. This work was funded by Nanyang Technological University and A*STAR, Singapore.

  3. Boiling Experiment Facility for Heat Transfer Studies in Microgravity

    NASA Technical Reports Server (NTRS)

    Delombard, Richard; McQuillen, John; Chao, David

    2008-01-01

    Pool boiling in microgravity is an area of both scientific and practical interest. By conducting tests in microgravity, it is possible to assess the effect of buoyancy on the overall boiling process and assess the relative magnitude of effects with regards to other "forces" and phenomena such as Marangoni forces, liquid momentum forces, and microlayer evaporation. The Boiling eXperiment Facility is now being built for the Microgravity Science Glovebox that will use normal perfluorohexane as a test fluid to extend the range of test conditions to include longer test durations and less liquid subcooling. Two experiments, the Microheater Array Boiling Experiment and the Nucleate Pool Boiling eXperiment will use the Boiling eXperiment Facility. The objectives of these studies are to determine the differences in local boiling heat transfer mechanisms in microgravity and normal gravity from nucleate boiling, through critical heat flux and into the transition boiling regime and to examine the bubble nucleation, growth, departure and coalescence processes. Custom-designed heaters will be utilized to achieve these objectives.

  4. Implementing the EuroFIR Document and Data Repositories as accessible resources of food composition information.

    PubMed

    Unwin, Ian; Jansen-van der Vliet, Martine; Westenbrink, Susanne; Presser, Karl; Infanger, Esther; Porubska, Janka; Roe, Mark; Finglas, Paul

    2016-02-15

    The EuroFIR Document and Data Repositories are being developed as accessible collections of source documents, including grey literature, and the food composition data reported in them. These Repositories will contain source information available to food composition database compilers when selecting their nutritional data. The Document Repository was implemented as searchable bibliographic records in the Europe PubMed Central database, which links to the documents online. The Data Repository will contain original data from source documents in the Document Repository. Testing confirmed the FoodCASE food database management system as a suitable tool for the input, documentation and quality assessment of Data Repository information. Data management requirements for the input and documentation of reported analytical results were established, including record identification and method documentation specifications. Document access and data preparation using the Repositories will provide information resources for compilers, eliminating duplicated work and supporting unambiguous referencing of data contributing to their compiled data. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Effect of Heat Input on Microstructural Changes and Corrosion Behavior of Commercially Pure Titanium Welds in Nitric Acid Medium

    NASA Astrophysics Data System (ADS)

    Ravi Shankar, A.; Gopalakrishnan, G.; Balusamy, V.; Kamachi Mudali, U.

    2009-11-01

    Commercially pure titanium (Ti) has been selected for the fabrication of dissolver for the proposed fast reactor fuel reprocessing plant at Kalpakkam, India. In the present investigation, microstructural changes and corrosion behavior of tungsten inert gas (TIG) welds of Ti grade-1 and grade-2 with different heat inputs were carried out. A wider heat affected zone was observed with higher heat inputs and coarse grains were observed from base metal toward the weld zone with increasing heat input. Fine and more equiaxed prior β grains were observed at lower heat input and the grain size increased toward fusion zone. The results indicated that Ti grade-1 and grade-2 with different heat inputs and different microstructures were insensitive to corrosion in liquid, vapor, and condensate phases of 11.5 M nitric acid tested up to 240 h. The corrosion rate in boiling liquid phase (0.60-0.76 mm/year) was higher than that in vapor (0.012-0.039 mm/year) and condensate phases (0.04-0.12 mm/year) of nitric acid for Ti grade-1 and grade-2, as well as for base metal for all heat inputs. Potentiodynamic polarization experiment carried out at room temperature indicated higher current densities and better passivation in 11.5 M nitric acid. SEM examination of Ti grade-1 welds for all heat inputs exposed to liquid phase after 240 h showed corrosion attack on the surface, exposing Widmanstatten microstructure containing acicular alpha. The continuous dissolution of the liquid-exposed samples was attributed to the heterogeneous microstructure and non-protective passive film formation.

  6. 21 CFR 872.6710 - Boiling water sterilizer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Boiling water sterilizer. 872.6710 Section 872...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6710 Boiling water sterilizer. (a) Identification. A boiling water sterilizer is an AC-powered device that consists of a container for boiling water...

  7. 21 CFR 872.6710 - Boiling water sterilizer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Boiling water sterilizer. 872.6710 Section 872...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6710 Boiling water sterilizer. (a) Identification. A boiling water sterilizer is an AC-powered device that consists of a container for boiling water...

  8. 21 CFR 872.6710 - Boiling water sterilizer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Boiling water sterilizer. 872.6710 Section 872...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6710 Boiling water sterilizer. (a) Identification. A boiling water sterilizer is an AC-powered device that consists of a container for boiling water...

  9. 21 CFR 872.6710 - Boiling water sterilizer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Boiling water sterilizer. 872.6710 Section 872...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6710 Boiling water sterilizer. (a) Identification. A boiling water sterilizer is an AC-powered device that consists of a container for boiling water...

  10. Secondary pool boiling effects

    NASA Astrophysics Data System (ADS)

    Kruse, C.; Tsubaki, A.; Zuhlke, C.; Anderson, T.; Alexander, D.; Gogos, G.; Ndao, S.

    2016-02-01

    A pool boiling phenomenon referred to as secondary boiling effects is discussed. Based on the experimental trends, a mechanism is proposed that identifies the parameters that lead to this phenomenon. Secondary boiling effects refer to a distinct decrease in the wall superheat temperature near the critical heat flux due to a significant increase in the heat transfer coefficient. Recent pool boiling heat transfer experiments using femtosecond laser processed Inconel, stainless steel, and copper multiscale surfaces consistently displayed secondary boiling effects, which were found to be a result of both temperature drop along the microstructures and nucleation characteristic length scales. The temperature drop is a function of microstructure height and thermal conductivity. An increased microstructure height and a decreased thermal conductivity result in a significant temperature drop along the microstructures. This temperature drop becomes more pronounced at higher heat fluxes and along with the right nucleation characteristic length scales results in a change of the boiling dynamics. Nucleation spreads from the bottom of the microstructure valleys to the top of the microstructures, resulting in a decreased surface superheat with an increasing heat flux. This decrease in the wall superheat at higher heat fluxes is reflected by a "hook back" of the traditional boiling curve and is thus referred to as secondary boiling effects. In addition, a boiling hysteresis during increasing and decreasing heat flux develops due to the secondary boiling effects. This hysteresis further validates the existence of secondary boiling effects.

  11. Format( )MEDIC( )Input

    NASA Astrophysics Data System (ADS)

    Foster, K.

    1994-09-01

    This document is a description of a computer program called Format( )MEDIC( )Input. The purpose of this program is to allow the user to quickly reformat wind velocity data in the Model Evaluation Database (MEDb) into a reasonable 'first cut' set of MEDIC input files (MEDIC.nml, StnLoc.Met, and Observ.Met). The user is cautioned that these resulting input files must be reviewed for correctness and completeness. This program will not format MEDb data into a Problem Station Library or Problem Metdata File. A description of how the program reformats the data is provided, along with a description of the required and optional user input and a description of the resulting output files. A description of the MEDb is not provided here but can be found in the RAS Division Model Evaluation Database Description document.

  12. Vapor bubble evolution on a heated surface containing open microchannels

    NASA Astrophysics Data System (ADS)

    Forster, Christopher J.; Glezer, Ari; Smith, Marc K.

    2011-11-01

    Power electronics require cooling technologies capable of high heat fluxes at or below the operating temperatures of these devices. Boiling heat transfer is an effective choice for such cooling, but it is limited by the critical heat flux (CHF), which is typically near 125 W/cm2 for pool boiling of water on a flat plate at standard pressure and gravity. One method of increasing CHF is to incorporate an array of microchannels into the heated surface. Microchannels have been experimentally shown to improve CHF, and the goal of this study is to determine the primary mechanisms associated with the microchannels that allow for the increased CHF. While the use of various microstructures is not new, the emphasis of previous work has been on heat transfer aspects, as opposed to the fluid dynamics inside and in the vicinity of the microchannels. This work considers the non-isothermal fluid motion during bubble growth and departure by varying channel geometry, spacing, and heat flux input using a level-set method including vaporization and condensation. These results and the study of the underlying mechanisms will aid in the design optimization of microchannel-based cooling devices. Supported by ONR.

  13. Environmental qualification testing of the prototype pool boiling experiment

    NASA Technical Reports Server (NTRS)

    Sexton, J. Andrew

    1992-01-01

    The prototype Pool Boiling Experiment (PBE) flew on the STS-47 mission in September 1992. This report describes the purpose of the experiment and the environmental qualification testing program that was used to prove the integrity of the prototype hardware. Component and box level vibration and thermal cycling tests were performed to give an early level of confidence in the hardware designs. At the system level, vibration, thermal extreme soaks, and thermal vacuum cycling tests were performed to qualify the complete design for the expected shuttle environment. The system level vibration testing included three axis sine sweeps and random inputs. The system level hot and cold soak tests demonstrated the hardware's capability to operate over a wide range of temperatures and gave the project team a wider latitude in determining which shuttle thermal altitudes were compatible with the experiment. The system level thermal vacuum cycling tests demonstrated the hardware's capability to operate in a convection free environment. A unique environmental chamber was designed and fabricated by the PBE team and allowed most of the environmental testing to be performed within the project's laboratory. The completion of the test program gave the project team high confidence in the hardware's ability to function as designed during flight.

  14. Optimizing the Combination of Smoking and Boiling on Quality of Korean Traditional Boiled Loin (M. longissimus dorsi)

    PubMed Central

    Choi, Yun-Sang; Kim, Hyun-Wook; Kim, Young-Boong; Kim, Cheon-Jei

    2015-01-01

    The combined effects of smoking and boiling on the proximate composition, technological quality traits, shear force, and sensory characteristics of the Korean traditional boiled loin were studied. Cooking loss, processing loss, and shear force were lower in the smoked/boiled samples than those in the control (without smoking treatment) (p<0.05). The results showed that the boiled loin samples between the control and treatment did not differ significantly in protein, fat, or ash contents, or pH values (p>0.05). The treated samples had higher score for overall acceptability than the control (p<0.05). Thus, these results show that the Korean traditional boiled loin treated with smoking for 60 min before boiling had improved physicochemical properties and sensory characteristics. PMID:26761822

  15. Heat Transfer Performances of Pool Boiling on Metal-Graphite Composite Surfaces

    NASA Technical Reports Server (NTRS)

    Zhang, Nengli; Chao, David F.; Yang, Wen-Jei

    2000-01-01

    Nucleate boiling, especially near the critical heat flux (CHF), can provide excellent economy along with high efficiency of heat transfer. However, the performance of nucleate boiling may deteriorate in a reduced gravity environment and the nucleate boiling usually has a potentially dangerous characteristic in CHF regime. That is, any slight overload can result in burnout of the boiling surface because the heat transfer will suddenly move into the film-boiling regime. Therefore, enhancement of nucleate boiling heat transfer becomes more important in reduced gravity environments. Enhancing nucleate boiling and critical heat flux can be reached using micro-configured metal-graphite composites as the boiling surface. Thermocapillary force induced by temperature difference between the graphite-fiber tips and the metal matrix, which is independent of gravity, will play an important role in bubble detachment. Thus boiling heat transfer performance does not deteriorate in a reduced-gravity environment. Based on the existing experimental data, and a two-tier theoretical model, correlation formulas are derived for nucleate boiling on the copper-graphite and aluminum-graphite composite surfaces, in both the isolated and coalesced bubble regimes. Experimental studies were performed on nucleate pool boiling of pentane on cooper-graphite (Cu-Gr) and aluminum-graphite (Al-Gr) composite surfaces with various fiber volume concentrations for heat fluxes up to 35 W per square centimeter. It is revealed that a significant enhancement in boiling heat transfer performance on the composite surfaces is achieved, due to the presence of micro-graphite fibers embedded in the matrix. The onset of nucleate boiling (the isolated bubble regime) occurs at wall superheat of about 10 C for the Cu-Gr surface and 15 C for the Al-Gr surface, much lower than their respective pure metal surfaces. Transition from an isolated bubble regime to a coalesced bubble regime in boiling occurs at a superheat of about 14 C on Cu-Gr surface and 19 C on Al-Gr surface.

  16. Coal liquefaction process with increased naphtha yields

    DOEpatents

    Ryan, Daniel F.

    1986-01-01

    An improved process for liquefying solid carbonaceous materials wherein the solid carbonaceous material is slurried with a suitable solvent and then subjected to liquefaction at elevated temperature and pressure to produce a normally gaseous product, a normally liquid product and a normally solid product. The normally liquid product is further separated into a naphtha boiling range product, a solvent boiling range product and a vacuum gas-oil boiling range product. At least a portion of the solvent boiling-range product and the vacuum gas-oil boiling range product are then combined and passed to a hydrotreater where the mixture is hydrotreated at relatively severe hydrotreating conditions and the liquid product from the hydrotreater then passed to a catalytic cracker. In the catalytic cracker, the hydrotreater effluent is converted partially to a naphtha boiling range product and to a solvent boiling range product. The naphtha boiling range product is added to the naphtha boiling range product from coal liquefaction to thereby significantly increase the production of naphtha boiling range materials. At least a portion of the solvent boiling range product, on the other hand, is separately hydrogenated and used as solvent for the liquefaction. Use of this material as at least a portion of the solvent significantly reduces the amount of saturated materials in said solvent.

  17. 40 CFR 180.1056 - Boiled linseed oil; exemption from requirement of tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... “boiled linseed oil.” This exemption is limited to use on rice before edible parts form. [46 FR 33270... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Boiled linseed oil; exemption from... From Tolerances § 180.1056 Boiled linseed oil; exemption from requirement of tolerance. Boiled linseed...

  18. Pool Boiling Experiment Has Five Successful Flights

    NASA Technical Reports Server (NTRS)

    Chiaramonte, Fran

    1997-01-01

    The Pool Boiling Experiment (PBE) is designed to improve understanding of the fundamental mechanisms that constitute nucleate pool boiling. Nucleate pool boiling is a process wherein a stagnant pool of liquid is in contact with a surface that can supply heat to the liquid. If the liquid absorbs enough heat, a vapor bubble can be formed. This process occurs when a pot of water boils. On Earth, gravity tends to remove the vapor bubble from the heating surface because it is dominated by buoyant convection. In the orbiting space shuttle, however, buoyant convection has much less of an effect because the forces of gravity are very small. The Pool Boiling Experiment was initiated to provide insight into this nucleate boiling process, which has many earthbound applications in steamgeneration power plants, petroleum plants, and other chemical plants. In addition, by using the test fluid R-113, the Pool Boiling Experiment can provide some basic understanding of the boiling behavior of cryogenic fluids without the large cost of an experiment using an actual cryogen.

  19. Life cycle inventory for palm based plywood: A gate-to-gate case study

    NASA Astrophysics Data System (ADS)

    Ahmad, Shamim; Sahid, Ismail; Subramaniam, Vijaya; Muhamad, Halimah; Mokhtar, Anis

    2013-11-01

    The oil palm industry heavily relies on the world market. It is essential to ensure that the oil palm industry is ready to meet the demands and expectation of these overseas customers on the environmental performance of the oil palm industry. Malaysia produces 13.9 million tons of oil palm biomass including oil palm trunk (OPT), frond and empty fruits bunches (EFB) annually. OPT felled in some oil palm plantations during replanting is transported to various industries and one such industry is the plywood factories. In order to gauge the environmental performance of the use of OPT as plywood a Life Cycle Assessment (LCA) study was conducted for palm based plywood. LCA is an important tool to assess the environmental performance of a product or process. Life cycle inventory (LCI) is the heart of a LCA study. This LCI study has a gate-to-gate system boundary and the functional unit is 1 m3 palm plywood produced and covers three types of plywood; Moisture Resistance Plywood (MR), Weather Boiling Proof Plywood Grade 1 (WBP Grade 1) at Factory D and Weather Boiling Proof Plywood Grade 2 (WBP Grade 2) at Factory E. Both factories use two different types of drying processes; conventional drying at Factory D and kiln drying at Factory E. This inventory data was collected from two factories (D and E) representing 40% of Malaysia palm plywood industry. The inputs are mainly the raw materials which are the oil palm trunks and tropical wood veneers and the energy from diesel and electricity from grid which is mainly used for the drying process. The other inputs include water, urea formaldehyde, phenol formaldehyde, flour and melamine powder. The outputs are the biomass waste which consists of oil palm trunk off-cut and emission from boiler. Generally, all types of plywood production use almost same materials and processing methods in different quantities. Due to the different process efficiency, Factory D uses less input of raw materials and energy compared to Factory E.

  20. Code manual for CONTAIN 2.0: A computer code for nuclear reactor containment analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murata, K.K.; Williams, D.C.; Griffith, R.O.

    1997-12-01

    The CONTAIN 2.0 computer code is an integrated analysis tool used for predicting the physical conditions, chemical compositions, and distributions of radiological materials inside a containment building following the release of material from the primary system in a light-water reactor accident. It can also predict the source term to the environment. CONTAIN 2.0 is intended to replace the earlier CONTAIN 1.12, which was released in 1991. The purpose of this Code Manual is to provide full documentation of the features and models in CONTAIN 2.0. Besides complete descriptions of the models, this Code Manual provides a complete description of themore » input and output from the code. CONTAIN 2.0 is a highly flexible and modular code that can run problems that are either quite simple or highly complex. An important aspect of CONTAIN is that the interactions among thermal-hydraulic phenomena, aerosol behavior, and fission product behavior are taken into account. The code includes atmospheric models for steam/air thermodynamics, intercell flows, condensation/evaporation on structures and aerosols, aerosol behavior, and gas combustion. It also includes models for reactor cavity phenomena such as core-concrete interactions and coolant pool boiling. Heat conduction in structures, fission product decay and transport, radioactive decay heating, and the thermal-hydraulic and fission product decontamination effects of engineered safety features are also modeled. To the extent possible, the best available models for severe accident phenomena have been incorporated into CONTAIN, but it is intrinsic to the nature of accident analysis that significant uncertainty exists regarding numerous phenomena. In those cases, sensitivity studies can be performed with CONTAIN by means of user-specified input parameters. Thus, the code can be viewed as a tool designed to assist the knowledge reactor safety analyst in evaluating the consequences of specific modeling assumptions.« less

  1. New Folklore about Water.

    ERIC Educational Resources Information Center

    LeMaire, Peter; Waiveris, Charles

    1995-01-01

    Describes experiments designed to investigate the cooling rate of microwave-boiled water as compared to that of stove-boiled water. Concludes that within experimental limits, microwave-boiled water and stove-boiled water cool at the same rate. (JRH)

  2. Visualisation of flow patterns in straight and C-shape thermosyphons

    NASA Astrophysics Data System (ADS)

    Ong, K. S.; Tshai, K. H.; Firwana, A.

    2017-04-01

    A heat pipe is a passive heat transfer device capable of transferring a large quantity of heat effectively and efficiently over a long distance and with a small temperature difference between the heat source and heat sink. A heat pipe consists of a metal pipe initially vacuumed and then filled with a small quantity of fluid inside. The pipe is separated into a heating (evaporator) section and a cooling (condenser) section by an adiabatic section. In a run-around-coil heating, ventilation and air conditioning system, a wrap-around heat pipe heat exchanger could be employed to increase dehumidification and to reduce cooling costs. The thermal performance of a thermosyphon is dependent upon type of fill liquid, fill ratio, power input, pipe inclination and pipe dimensions. The boiling and condensation processes that occur inside a thermosyphon are quite complex. During operation, dry-out, burn-out or boiling limit, entrainment or flooding limit and geysering occur. These phenomena would lead to non-uniform axial wall temperature distribution in the pipe, or worse still, ineffective operation. In order to have a better understanding of the internal heat transfer phenomena, a visual study using transparent glass tubes and high speed camera recording of the internal flow patterns would be most helpful. This paper reports on an experimental investigation conducted to visualise the flow patterns in straight and C-shape thermosyphons. The pictures recorded enabled the internal flow boiling and condensation pattern occurring inside a straight and a C-shape thermosyphon to be observed. The thermosyphons were fabricated from 10 mm O/D × 8 mm I/D × 300 mm long glass tubes and filled with water with fill ratios from 0.5 - 1.5. The evaporator sections of the thermosyphons were immersed into a hot water tank that was electrically heated from cold at ambient temperature till boiling. Cooling of the condenser section was achieved using a fan. Preliminary results showed that dry-out occurred earlier at lower evaporator temperatures with small fill ratios. Further investigations to determine saturation and thermosyphon wall temperatures with various fill liquids and at different fill ratios, inclinations and pipe sizes are necessary with a more sophisticated video recording system.

  3. Corresponding states correlation for temperature dependent surface tension of normal saturated liquids

    NASA Astrophysics Data System (ADS)

    Yi, Huili; Tian, Jianxiang

    2014-07-01

    A new simple correlation based on the principle of corresponding state is proposed to estimate the temperature-dependent surface tension of normal saturated liquids. The correlation is a linear one and strongly stands for 41 saturated normal liquids. The new correlation requires only the triple point temperature, triple point surface tension and critical point temperature as input and is able to represent the experimental surface tension data for these 41 saturated normal liquids with a mean absolute average percent deviation of 1.26% in the temperature regions considered. For most substances, the temperature covers the range from the triple temperature to the one beyond the boiling temperature.

  4. Chemicals identified in human biological media: a data base. Third annual report, October 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cone, M.V.; Baldauf, M.F.; Martin, F.M.

    1981-12-01

    Part 2 contains the data base in tabular format. There are two sections, the first with records on nondrug substances, and the second with records on drugs. Chemicals in each section are arranged alphabetically by CAS preferred name, CAS registry number, formula, atomic weight, melting point, boiling point, and vapor pressure. Tissues are listed alphabetically with exposure route, analytical method, number of cases, range, and mean - when available in the source document. A variety of information may also be included that is pertinent to the range and mean as well as experimental design, demography, health effects, pathology, morphology, andmore » toxicity. Review articles are included in the data base; however, no data have been extracted from such documents because the original research articles are included.« less

  5. Boiling incipience and convective boiling of neon and nitrogen

    NASA Technical Reports Server (NTRS)

    Papell, S. S.; Hendricks, R. C.

    1977-01-01

    Forced convection and subcooled boiling heat transfer data for liquid nitrogen and liquid neon were obtained in support of a design study for a 30 tesla cryomagnet cooled by forced convection of liquid neon. This design precludes nucleate boiling in the flow channels as they are too small to handle vapor flow. Consequently, it was necessary to determine boiling incipience under the operating conditions of the magnet system. The cryogen data obtained over a range of system pressures, fluid flow rates, and applied heat fluxes were used to develop correlations for predicting boiling incipience and convective boiling heat transfer coefficients in uniformly heated flow channels. The accuracy of the correlating equations was then evaluated. A technique was also developed to calculate the position of boiling incipience in a uniformly heated flow channel. Comparisons made with the experimental data showed a prediction accuracy of plus or minus 15 percent

  6. Automated Generation of Technical Documentation and Provenance for Reproducible Research

    NASA Astrophysics Data System (ADS)

    Jolly, B.; Medyckyj-Scott, D.; Spiekermann, R.; Ausseil, A. G.

    2017-12-01

    Data provenance and detailed technical documentation are essential components of high-quality reproducible research, however are often only partially addressed during a research project. Recording and maintaining this information during the course of a project can be a difficult task to get right as it is a time consuming and often boring process for the researchers involved. As a result, provenance records and technical documentation provided alongside research results can be incomplete or may not be completely consistent with the actual processes followed. While providing access to the data and code used by the original researchers goes some way toward enabling reproducibility, this does not count as, or replace, data provenance. Additionally, this can be a poor substitute for good technical documentation and is often more difficult for a third-party to understand - particularly if they do not understand the programming language(s) used. We present and discuss a tool built from the ground up for the production of well-documented and reproducible spatial datasets that are created by applying a series of classification rules to a number of input layers. The internal model of the classification rules required by the tool to process the input data is exploited to also produce technical documentation and provenance records with minimal additional user input. Available provenance records that accompany input datasets are incorporated into those that describe the current process. As a result, each time a new iteration of the analysis is performed the documentation and provenance records are re-generated to provide an accurate description of the exact process followed. The generic nature of this tool, and the lessons learned during its creation, have wider application to other fields where the production of derivative datasets must be done in an open, defensible, and reproducible way.

  7. Subcooled forced convection boiling of trichlorotrifluoroethane

    NASA Technical Reports Server (NTRS)

    Dougall, R. S.; Panian, D. J.

    1972-01-01

    Experimental heat-transfer data were obtained for the forced-convection boiling of trichlorotrifluoroethane (R-113 or Freon-113) in a vertical annular test annular test section. The 97 data points obtained covered heat transfer by forced convection, local boiling, and fully-developed boiling. Correlating methods were obtained which accurately predicted the heat flux as a function of wall superheat (boiling curve) over the range of parameters studied.

  8. Thermodynamic and experimental study on heat transfer mechanism of miniature loop heat pipe with water-copper nanofluid

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-wu; Wan, Zhen-ping; Tang, Yong

    2018-02-01

    A miniature loop heat pipe (mLHP) is a promising device for heat dissipation of electronic products. Experimental study of heat transfer performance of an mLHP employing Cu-water nanofluid as working fluid was conducted. It is found that, when input power is above 25 W, the temperature differences between the evaporator wall and vapor of nanofluid, Te - Tv, and the total heat resistance of mLHP using nanofluid are always lower than those of mLHP using de-ionized water. The values of Te - Tv and total heat resistance of mLHP using nanofluid with concentration 1.5 wt. % are the lowest, while when the input power is 25 W, the values of Te - Tv and total heat resistance of mLHP using de-ionized water are even lower than those of mLHP using nanofluid with concentration 2.0 wt. %. At larger input power, the dominant interaction is collision between small bubbles and nanoparticles which can facilitate heat transfer. While at lower input power, nanoparticles adhere to the surface of large bubble. This does not benefit boiling heat transfer. For mLHP using nanofluid with larger concentration, for example 2.0%, the heat transfer may even be worse compared with using de-ionized water at lower input power. The special structure of the mLHP in this study, two separated chambers in the evaporator, produces an extra pressure difference and contributes to the heat transfer performance of the mLHP.

  9. A review on boiling heat transfer enhancement with nanofluids

    PubMed Central

    2011-01-01

    There has been increasing interest of late in nanofluid boiling and its use in heat transfer enhancement. This article covers recent advances in the last decade by researchers in both pool boiling and convective boiling applications, with nanofluids as the working fluid. The available data in the literature is reviewed in terms of enhancements, and degradations in the nucleate boiling heat transfer and critical heat flux. Conflicting data have been presented in the literature on the effect that nanofluids have on the boiling heat-transfer coefficient; however, almost all researchers have noted an enhancement in the critical heat flux during nanofluid boiling. Several researchers have observed nanoparticle deposition at the heater surface, which they have related back to the critical heat flux enhancement. PMID:21711794

  10. Physical quality of Simental Ongole crossbred silverside meat at various boiling times

    NASA Astrophysics Data System (ADS)

    Riyanto, J.; Cahyadi, M.; Guntari, W. S.

    2018-03-01

    This study aims to determine the physical quality of silverside beef meat at various boiling times. Samples that have been used are the back thigh or silverside meat. Treatment of boiling meat included TR (meat without boiled), R15 (boiled 15 minutes), and R30 (boiled for 30 minutes). The experimental design using Completely Randomized Design with 3 replications. Each replication was done in triple physical quality test. Determination of physical quality was performed at the Livestock Industry and Processing Laboratory at Sebelas Maret University Surakarta and the Meat Technology Laboratory at the Faculty of Animal Husbandry of Gadjah Mada University. The result of variance analysis showed that boiling affect cooking loss (P≥0.05) and but did not affect (P≤0,05) pH, water holding capacity and meat tenderness. The conclusions of the study showed that boiling for 15 minutes and 30 minutes decreased the cooking loss of Simental Ongole Crossbred silverside meat. Meat physical quality of pH, water holding capacity and the value of tenderness is not affected by boiling for 15 and 30 minutes.

  11. Explosive Boiling at Very Low Heat Fluxes: A Microgravity Phenomenon

    NASA Technical Reports Server (NTRS)

    Hasan, M. M.; Lin, C. S.; Knoll, R. H.; Bentz, M. D.

    1993-01-01

    The paper presents experimental observations of explosive boiling from a large (relative to bubble sizes) flat heating surface at very low heat fluxes in microgravity. The explosive boiling is characterized as either a rapid growth of vapor mass over the entire heating surface due to the flashing of superheated liquid or a violent boiling spread following the appearance of single bubbles on the heating surface. Pool boiling data with saturated Freon 113 was obtained in the microgravity environment of the space shuttle. The unique features of the experimental results are the sustainability of high liquid superheat for long periods and the occurrence of explosive boiling at low heat fluxes (0.2 to 1.2 kW/sq m). For a heat flux of 1.0 kW/sq m a wall superheat of 17.9 degrees C was attained in ten minutes of heating. This was followed by an explosive boiling accompanied with a pressure spike and a violent bulk liquid motion. However, at this heat flux the vapor blanketing the heating surface could not be sustained. Stable nucleate boiling continued following the explosive boiling.

  12. An Analytical Approach for Relating Boiling Points of Monofunctional Organic Compounds to Intermolecular Forces

    ERIC Educational Resources Information Center

    Struyf, Jef

    2011-01-01

    The boiling point of a monofunctional organic compound is expressed as the sum of two parts: a contribution to the boiling point due to the R group and a contribution due to the functional group. The boiling point in absolute temperature of the corresponding RH hydrocarbon is chosen for the contribution to the boiling point of the R group and is a…

  13. Correlational approach to turbulent saturated film boiling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, T.Y.

    A correlation method for saturated film boiling is proposed. The correlation is based on the analogy between film boiling and natural convection. As in the case of natural convection, the turbulent film boiling correlation takes the form of a Nusselt number versus the Raleigh number power law, Nu[sub B] [proportional to] Ra[sub B][sup 1.3]. The proposed correlation shows very good agreement with current data for film boiling of water from vertical surfaces. The general applicability of the correlation is established by comparisons with film boiling data from R-113 and cryogenic fluids. 25 refs., 8 figs.

  14. The myth of the boiling point.

    PubMed

    Chang, Hasok

    2008-01-01

    Around 1800, many reputable scientists reported significant variations in the temperature of pure water boiling under normal atmospheric pressure. The reported variations included a difference of over 1 degree C between boiling in metallic and glass vessels (Gay-Lussac), and "superheating" up to 112 degrees C on extracting dissolved air out of water (De Luc). I have confirmed most of these observations in my own experiments, many of which are described in this paper. Water boils at the "boiling point" only under very particular circumstances. Our common-sense intuition about the fixedness of the boiling point is only sustained by our limited experience.

  15. Size-exclusion chromatography for the determination of the boiling point distribution of high-boiling petroleum fractions.

    PubMed

    Boczkaj, Grzegorz; Przyjazny, Andrzej; Kamiński, Marian

    2015-03-01

    The paper describes a new procedure for the determination of boiling point distribution of high-boiling petroleum fractions using size-exclusion chromatography with refractive index detection. Thus far, the determination of boiling range distribution by chromatography has been accomplished using simulated distillation with gas chromatography with flame ionization detection. This study revealed that in spite of substantial differences in the separation mechanism and the detection mode, the size-exclusion chromatography technique yields similar results for the determination of boiling point distribution compared with simulated distillation and novel empty column gas chromatography. The developed procedure using size-exclusion chromatography has a substantial applicability, especially for the determination of exact final boiling point values for high-boiling mixtures, for which a standard high-temperature simulated distillation would have to be used. In this case, the precision of final boiling point determination is low due to the high final temperatures of the gas chromatograph oven and an insufficient thermal stability of both the gas chromatography stationary phase and the sample. Additionally, the use of high-performance liquid chromatography detectors more sensitive than refractive index detection allows a lower detection limit for high-molar-mass aromatic compounds, and thus increases the sensitivity of final boiling point determination. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Effect of soaking, boiling, and steaming on total phenolic contentand antioxidant activities of cool season food legumes.

    PubMed

    Xu, Baojun; Chang, Sam K C

    2008-09-01

    The effects of soaking, boiling and steaming processes on the total phenolic components and antioxidant activity in commonly consumed cool season food legumes (CSFL's), including green pea, yellow pea, chickpea and lentil were investigated. As compared to original unprocessed legumes, all processing steps caused significant (p<0.05) decreases in total phenolic content (TPC), DPPH free radical scavenging activity (DPPH) in all tested CSFL's. All soaking and atmospheric boiling treatments caused significant (p<0.05) decreases in oxygen radical absorbing capacity (ORAC). However, pressure boiling and pressure steaming caused significant (p<0.05) increases in ORAC values. Steaming treatments resulted in a greater retention of TPC, DPPH, and ORAC values in all tested CSFL's as compared to boiling treatments. To obtain cooked legumes with similar palatability and firmness, pressure boiling shortened processing time as compared to atmospheric boiling, resulted in insignificant differences in TPC, DPPH for green and yellow pea. However, TPC and DPPH in cooked lentils differed significantly between atmospheric and pressure boiling. As compared to atmospheric processes, pressure processes significantly increased ORAC values in both boiled and steamed CSFL's. Greater TPC, DPPH and ORAC values were detected in boiling water than that in soaking and steaming water. Boiling also caused more solid loss than steaming. Steam processing exhibited several advantages in retaining the integrity of the legume appearance and texture of the cooked product, shortening process time, and greater retention of antioxidant components and activities. Copyright © 2008 Elsevier Ltd. All rights reserved.

  17. The Input and Process Batteries for MISOE [Management Information System for Occupational Education] Sample Data Systems.

    ERIC Educational Resources Information Center

    Weinberger, Elizabeth

    The document contains optical scannable forms for some of the instruments in the Input and Process Batteries, and guidelines for administration of the instruments in the Input Batteries of the Management Information System for Occupational Education (MISOE) Sample Data Systems. Input information describes the characteristics of the students at…

  18. Experimental investigation of the latent heat of vaporization in aqueous nanofluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Soochan; Phelan, Patrick E., E-mail: phelan@asu.edu; Dai, Lenore

    2014-04-14

    This paper reports an experimental investigation of the latent heat of vaporization (h{sub fg}) in nanofluids. Two different types of nanoparticles, graphite and silver, suspended in deionized water were exposed to a continuous laser beam (130 mW, 532 nm) to generate boiling. The latent heat of vaporization in the nanofluids was determined by the measured vapor mass generation and the heat input. To ensure that the measured h{sub fg} values are independent of heating method, the experiments were repeated with an electrically heated hot wire as a primary heat input. These experiments show considerable variation in the h{sub fg} of nanofluids.more » That is, graphite nanofluid exhibits an increased h{sub fg} and silver nanofluid shows a decrease in h{sub fg} compared to the value for pure water. As such, these results indicate that relatively low mass fractions of nanoparticles can apparently create large changes in h{sub fg}.« less

  19. Fluid inclusion from drill hole DW-5, Hohi geothermal area, Japan: Evidence of boiling and procedure for estimating CO2 content

    USGS Publications Warehouse

    Sasada, M.; Roedder, E.; Belkin, H.E.

    1986-01-01

    Fluid inclusion studies have been used to derive a model for fluid evolution in the Hohi geothermal area, Japan. Six types of fluid inclusions are found in quartz obtained from the drill core of DW-5 hole. They are: (I) primary liquid-rich with evidence of boiling; (II) primary liquid-rich without evidence of boiling; (III) primary vapor-rich (assumed to have been formed by boiling); (IV) secondary liquid-rich with evidence of boiling; (V) secondary liquid-rich without evidence of boiling; (VI) secondary vapor-rich (assumed to have been formed by boiling). Homogenization temperatures (Th) range between 196 and 347??C and the final melting point of ice (Tm) between -0.2 and -4.3??C. The CO2 content was estimated semiquantitatively to be between 0 and 0.39 wt. % based on the bubble behavior on crushing. NaCl equivalent solid solute salinity of fluid inclusions was determined as being between 0 and 6.8 wt. % after minor correction for CO2 content. Fluid inclusions in quartz provide a record of geothermal activity of early boiling and later cooling. The CO2 contents and homogenization temperatures of fluid inclusions with evidence of boiling generally increase with depth; these changes, and NaCl equivalent solid solute salinity of the fluid can be explained by an adiabatic boiling model for a CO2-bearing low-salinity fluid. Some high-salinity inclusions without CO2 are presumed to have formed by a local boiling process due to a temperature increase or a pressure decrease. The liquid-rich primary and secondary inclusions without evidence of boiling formed during the cooling process. The salinity and CO2 content of these inclusions are lower than those in the boiling fluid at the early stage, probably as a result of admixture with groundwater. ?? 1986.

  20. Transition boiling heat transfer and the film transition regime

    NASA Technical Reports Server (NTRS)

    Ramilison, J. M.; Lienhard, J. H.

    1987-01-01

    The Berenson (1960) flat-plate transition-boiling experiment has been recreated with a reduced thermal resistance in the heater, and an improved access to those portions of the transition boiling regime that have a steep negative slope. Tests have been made in Freon-113, acetone, benzene, and n-pentane boiling on horizontal flat copper heaters that have been mirror-polished, 'roughened', or teflon-coated. The resulting data reproduce and clarify certain features observed by Berenson: the modest surface finish dependence of boiling burnout, and the influence of surface chemistry on both the minimum heat flux and the mode of transition boiling, for example. A rational scheme of correlation yields a prediction of the heat flux in what Witte and Lienhard (1982) previously identified as the 'film-transition boiling' region. It is also shown how to calculate the heat flux at the boundary between the pure-film, and the film-transition, boiling regimes, as a function of the advancing contact angle.

  1. Feasibility study of a brine boiling machine by solar energy

    NASA Astrophysics Data System (ADS)

    Phayom, W.

    2018-06-01

    This study presented the technical and operational feasibility of brine boiling machine by using solar energy instead of firewood or husk for salt production. The solar salt brine boiling machine consisted of a boiling chamber with an enhanced thermal efficiency through use of a solar brine heater. The stainless steel solar salt brine boiling chamber had dimensions of 60 cm x 70 cm x 20 cm. The steel brine heater had dimensions of 70 cm x 80 cm x 20 cm. The tilt angle of both the boiling chamber and brine heater was 20 degrees from horizontal. The brine temperature in the reservoir tank was 42°C with a flow rate of 6.64 L/h discharging into the solar boiling machine. It was found that the thermal efficiency and overall efficiency of the solar salt brine boiling machine were 0.63 and 0.38, respectively at a solar irradiance of 787.6 W/m2. The results shows that the potential of using solar energy for salt production system is feasible.

  2. Cost Effectiveness Study of Wastewater Management Systems for Selected U.S. Coast Guard Vessels. Volume 2. Effectiveness Assessment of Candidate Systems

    DTIC Science & Technology

    1977-03-01

    267 Input Layout for Each Card Type ...................... 269 Input Sequence .......................... 271 SAMPLE PROBLEM...13 3 Sample Data rormn Used for Documenting MSD Effectiveness Attribute Data ........................... 15 -1 Sample Form Used for Documenting WMS...from commodes, urinals and garbage grinder) and gray (galley and turbid, i.e., output from sinks, showers, laundry, deck, drains, etc.) wastewaters

  3. Nucleate pool boiling in subcooled liquid under microgravity: Results of TEXUS experimental investigations

    NASA Astrophysics Data System (ADS)

    Zell, M.; Straub, J.; Weinzierl, A.

    1984-12-01

    Experiments on subcooled nucleate pool boiling in microgravity were carried out to separate gravity driven effects on heat transfer within the boiling process. A ballistic trajectory by sounding rocket flight (TEXUS 5 and 10) achieved a gravity level of a/g = 0.0001 for 360 sec. For determination of geometrical effects on heat transport two different experimental configurations (platinum wire and flat plate) were employed. Boiling curves and bubble dynamics recorded by cinematography lead to gravity independent modelling of the boiling phenomena. The results ensure the applicability and high efficiency of nucleate pool boiling for heat exchangers in space laboratories.

  4. Household Water Disinfection in Hurricane-Affected Communities of Louisiana: Implications for Disaster Preparedness for the General Public

    PubMed Central

    Ram, Pavani K.; Blanton, Elizabeth; Klinghoffer, Debra; Platek, Mary; Piper, Janet; Straif-Bourgeois, Susanne; Bonner, Matthew R.; Mintz, Eric D.

    2007-01-01

    Objectives. Thousands of Louisiana residents were asked to boil water because of widespread disruptions in electricity and natural gas services after Hurricane Rita. We sought to assess awareness of boil water orders and familiarity with household water disinfection techniques other than boiling. Methods. We conducted a cross-sectional survey in randomly selected mobile home communities in Louisiana. Results. We interviewed 196 respondents from 8 communities, which had boil water orders instituted. Of 97 who were home while communities were still under orders to boil water, 30 (31%) were aware of the orders and, of those, 24 (80%) said the orders were active while they were living at home; of the 24, 10 (42%) reported boiling water. Overall, 163 (83%) respondents were aware of a method of water disinfection at the household level: boiling (78%), chlorination (27%), and filtration (25%); 87% had a container of chlorine bleach at home. Conclusions. Few hurricane-affected respondents were aware of boil water orders and of alternate water disinfection techniques. Most had access to chlorine and could have practiced household chlorination if disruption in natural gas and electricity made boiling impossible. PMID:17413065

  5. Acoustic emission feedback control for control of boiling in a microwave oven

    DOEpatents

    White, Terry L.

    1991-01-01

    An acoustic emission based feedback system for controlling the boiling level of a liquid medium in a microwave oven is provided. The acoustic emissions from the medium correlated with surface boiling is used to generate a feedback control signal proportional to the level of boiling of the medium. This signal is applied to a power controller to automatically and continuoulsly vary the power applied to the oven to control the boiling at a selected level.

  6. Water boiling inside carbon nanotubes: toward efficient drug release.

    PubMed

    Chaban, Vitaly V; Prezhdo, Oleg V

    2011-07-26

    We show using molecular dynamics simulation that spatial confinement of water inside carbon nanotubes (CNTs) substantially increases its boiling temperature and that a small temperature growth above the boiling point dramatically raises the inside pressure. Capillary theory successfully predicts the boiling point elevation down to 2 nm, below which large deviations between the theory and atomistic simulation take place. Water behaves qualitatively different inside narrow CNTs, exhibiting transition into an unusual phase, where pressure is gas-like and grows linearly with temperature, while the diffusion constant is temperature-independent. Precise control over boiling by CNT diameter, together with the rapid growth of inside pressure above the boiling point, suggests a novel drug delivery protocol. Polar drug molecules are packaged inside CNTs; the latter are delivered into living tissues and heated by laser. Solvent boiling facilitates drug release.

  7. Dynamical Behavior of Discrete Bubble and Heat Transfer of Nucleate Pool Boiling in Short-Term Microgravity

    NASA Astrophysics Data System (ADS)

    Zhao, Jian-Fu

    2012-07-01

    Boiling in microgravity is an increasing significant subject of investigation. Motivation for the study comes not only from many potential space applications due to its high efficiency to transfer high heat flux with liquid-vapor phase change, but also from powerful platform of microgravity to reveal the mechanism of heat transfer underneath the phenomenon of boiling. In the present paper, the growth of a discrete bubble during nucleate pool boiling and heat transfer in short-term microgravity is studied experimentally utilizing the drop tower Beijing. A P-doped N-type square silicon chip with the dimensions of 10x10x0.5 mm ^{3} was used as the heater. Two 0.25-mm diameters copper wires for power supply was soldered to the side surfaces of the chip at the opposite ends. The normal resistant of the chip is 75 Ω. The chip was heated by using Joule effect. A D.C. power supply of constant current was used to input energy to the heater element. A 0.12-mm diameter, T-type thermocouple adhered on the centre of the backside of the chip was used for the measurement of wall temperature, while two other T-type thermocouples were used for the bulk liquid temperature. FC-72 was used as working fluid. The concentration of air was determined by using Henry law as 0.0046 moles gas/mole liquid. The pressure and the bulk liquid temperature in the boiling chamber were nominally 102.0 kPa and 12.0 °C, respectively. The shapes of the bubbles were recorded using a high speed camera at a speed of 250 fps with a shutter speed of 1/2000 s. Based on the image manipulation, the effective diameter of the discrete bubble is obtained. The experiments were conducted utilizing the drop tower Beijing, which can provide a short-term microgravity condition. The residual gravity of 10 ^{-2 ... -3} g _{0} can be maintained throughout the short duration of 3.6 s. To avoid the influence of natural convection in normal gravity environment, the heating switched on at the release of the drop capsule. Moreover, careful choice of the experimental parameters was made to keep the boiling delay time, namely the duration from the beginning of heating to that of steady boiling, no more than 3.0 s. A typical growth of discrete bubble was observed with the heating current of 0.33 A. A discrete bubble appeared at the center of heater surface at 0.644 s after the heating current switched on. It grew gradually at first, and then stayed constantly, even decreases. Finally, it coalesced with other bubbles, and formed a larger coalesced bubble at 0.944 s. It is found that the bubble effective diameter is proportional to the square root of the time at the first stage, which is consistent with the bubble growth model based on classical thermal-controlled mechanism. The proportional coefficient is estimates as 5.6, which is located inside the range reported in the literature, indicating that gravity has a much slight influence on the early period of bubble growth. Large bubble size in microgravity, however, can provide much accurate measurement.

  8. When water does not boil at the boiling point.

    PubMed

    Chang, Hasok

    2007-03-01

    Every schoolchild learns that, under standard pressure, pure water always boils at 100 degrees C. Except that it does not. By the late 18th century, pioneering scientists had already discovered great variations in the boiling temperature of water under fixed pressure. So, why have most of us been taught that the boiling point of water is constant? And, if it is not constant, how can it be used as a 'fixed point' for the calibration of thermometers? History of science has the answers.

  9. Nucleate Pool Boiling Performance of Smooth and Finned Tube Bundles in R-113 and R-114/Oil Mixtures

    DTIC Science & Technology

    1989-06-01

    tfilm Film thermodynamic temperature (K) Tfilm Film Celcius temperature (C) Tldl Liquid temperature (C) Tld2 Liquid temperature (C) Tn Tube wall local...surface immersed in a pool of saturated liquid is the most thoroughly studied boiling heat-transfer mechanism, when compared to partial film boiling and... film boiling. Figure 2.1 shows the characteristic boiling curve of a heated surface immersed in a froon. As the surface is heated up, heat is

  10. Degraded character recognition based on gradient pattern

    NASA Astrophysics Data System (ADS)

    Babu, D. R. Ramesh; Ravishankar, M.; Kumar, Manish; Wadera, Kevin; Raj, Aakash

    2010-02-01

    Degraded character recognition is a challenging problem in the field of Optical Character Recognition (OCR). The performance of an optical character recognition depends upon printed quality of the input documents. Many OCRs have been designed which correctly identifies the fine printed documents. But, very few reported work has been found on the recognition of the degraded documents. The efficiency of the OCRs system decreases if the input image is degraded. In this paper, a novel approach based on gradient pattern for recognizing degraded printed character is proposed. The approach makes use of gradient pattern of an individual character for recognition. Experiments were conducted on character image that is either digitally written or a degraded character extracted from historical documents and the results are found to be satisfactory.

  11. Boiling incipience and convective boiling of neon and nitrogen

    NASA Technical Reports Server (NTRS)

    Papell, S. S.; Hendricks, R. C.

    1977-01-01

    Forced convection and subcooled boiling heat transfer data for liquid nitrogen and liquid neon were obtained in support of a design study for a 30 tesla cryomagnet cooled by forced convection of liquid neon. The cryogen data obtained over a range of system pressures, fluid flow rates, and applied heat fluxes were used to develop correlations for predicting boiling incipience and convective boiling heat transfer coefficients in uniformly heated flow channels. The accuracy of the correlating equations was then evaluated. A technique was also developed to calculate the position of boiling incipience in a uniformly heated flow channel. Comparisons made with the experimental data showed a prediction accuracy of + or - 15 percent.

  12. A numerical investigation of the effect of surface wettability on the boiling curve.

    PubMed

    Hsu, Hua-Yi; Lin, Ming-Chieh; Popovic, Bridget; Lin, Chii-Ruey; Patankar, Neelesh A

    2017-01-01

    Surface wettability is recognized as playing an important role in pool boiling and the corresponding heat transfer curve. In this work, a systematic study of pool boiling heat transfer on smooth surfaces of varying wettability (contact angle range of 5° - 180°) has been conducted and reported. Based on numerical simulations, boiling curves are calculated and boiling dynamics in each regime are studied using a volume-of-fluid method with contact angle model. The calculated trends in critical heat flux and Leidenfrost point as functions of surface wettability are obtained and compared with prior experimental and theoretical predictions, giving good agreement. For the first time, the effect of contact angle on the complete boiling curve is shown. It is demonstrated that the simulation methodology can be used for studying pool boiling and related dynamics and providing more physical insights.

  13. A numerical investigation of the effect of surface wettability on the boiling curve

    PubMed Central

    Lin, Ming-Chieh; Popovic, Bridget; Lin, Chii-Ruey; Patankar, Neelesh A.

    2017-01-01

    Surface wettability is recognized as playing an important role in pool boiling and the corresponding heat transfer curve. In this work, a systematic study of pool boiling heat transfer on smooth surfaces of varying wettability (contact angle range of 5° − 180°) has been conducted and reported. Based on numerical simulations, boiling curves are calculated and boiling dynamics in each regime are studied using a volume-of-fluid method with contact angle model. The calculated trends in critical heat flux and Leidenfrost point as functions of surface wettability are obtained and compared with prior experimental and theoretical predictions, giving good agreement. For the first time, the effect of contact angle on the complete boiling curve is shown. It is demonstrated that the simulation methodology can be used for studying pool boiling and related dynamics and providing more physical insights. PMID:29125847

  14. A Novel Role of Three Dimensional Graphene Foam to Prevent Heater Failure during Boiling

    PubMed Central

    Ahn, Ho Seon; Kim, Ji Min; Park, Chibeom; Jang, Ji-Wook; Lee, Jae Sung; Kim, Hyungdae; Kaviany, Massoud; Kim, Moo Hwan

    2013-01-01

    We report a novel boiling heat transfer (NBHT) in reduced graphene oxide (RGO) suspended in water (RGO colloid) near critical heat flux (CHF), which is traditionally the dangerous limitation of nucleate boiling heat transfer because of heater failure. When the heat flux reaches the maximum value (CHF) in RGO colloid pool boiling, the wall temperature increases gradually and slowly with an almost constant heat flux, contrary to the rapid wall temperature increase found during water pool boiling. The gained time by NBHT would provide the safer margin of the heat transfer and the amazing impact on the thermal system as the first report of graphene application. In addition, the CHF and boiling heat transfer performance also increase. This novel boiling phenomenon can effectively prevent heater failure because of the role played by the self-assembled three-dimensional foam-like graphene network (SFG). PMID:23743619

  15. FMS: A Format Manipulation System for Automatic Production of Natural Language Documents, Second Edition. Final Report.

    ERIC Educational Resources Information Center

    Silver, Steven S.

    FMS/3 is a system for producing hard copy documentation at high speed from free format text and command input. The system was originally written in assembler language for a 12K IBM 360 model 20 using a high speed 1403 printer with the UCS-TN chain option (upper and lower case). Input was from an IBM 2560 Multi-function Card Machine. The model 20…

  16. Method of Characteristic (MOC) Nozzle Flowfield Solver - User’s Guide and Input Manual Version 2.0

    DTIC Science & Technology

    2018-01-01

    TECHNICAL REPORT RDMR-SS-17-13 METHOD OF CHARACTERISTIC (MOC) NOZZLE FLOWFIELD SOLVER—USER’S GUIDE AND INPUT MANUAL VERSION 2.0 Kevin D. Kennedy...System Simulation and Development Directorate Aviation and Missile Research , Development, and Engineering Center January 2018 Distribution Statement...DOCUMENTS, DESTROY BY ANY METHOD THAT WILL PREVENT DISCLOSURE OF CONTENTS OR RECONSTRUCTION OF THE DOCUMENT. DISCLAIMER THE FINDINGS IN THIS REPORT

  17. 75 FR 16202 - Office of New Reactors; Interim Staff Guidance on Ensuring Hazard-Consistent Seismic Input for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-31

    ... Staff Guidance on Ensuring Hazard-Consistent Seismic Input for Site Response and Soil Structure...-Consistent Seismic Input for Site Response and Soil Structure Interaction Analyses,'' (Agencywide Documents... Soil Structure Interaction Analyses,'' (ADAMS Accession No. ML092230455) to solicit public and industry...

  18. CTF User's Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avramova, Maria; Blyth, Taylor S.; Salko, Robert K.

    This document describes how to make a CTF input deck. A CTF input deck is organized into Card Groups and Cards. A Card Group is a collection of Cards. A Card is defined as a line of input. Each Card may contain multiple data. A Card is terminated by making a new line.

  19. Determination of the boiling-point distribution by simulated distillation from n-pentane through n-tetratetracontane in 70 to 80 seconds.

    PubMed

    Lubkowitz, Joaquin A; Meneghini, Roberto I

    2002-01-01

    This work presents the carrying out of boiling-point distributions by simulated distillation with direct-column heating rather than oven-column heating. Column-heating rates of 300 degrees C/min are obtained yielding retention times of 73 s for n-tetratetracontane. The calibration curves of the retention time versus the boiling point, in the range of n-pentane to n-tetratetracontane, are identical to those obtained by slower oven-heating rates. The boiling-point distribution of the reference gas oil is compared with that obtained with column oven heating at rates of 15 to 40 degrees C/min. The results show boiling-point distribution values nearly the same (1-2 degrees F) as those obtained with oven column heating from the initial boiling point to 80% distilled off. Slightly higher differences are obtained (3-4 degrees F) for the 80% distillation to final boiling-point interval. Nonetheless, allowed consensus differences are never exceeded. Precision of the boiling-point distributions (expressed as standard deviations) are 0.1-0.3% for the data obtained in the direct column-heating mode.

  20. Experimental investigation on the phenomena around the onset nucleate boiling during the impacting of a droplet on the hot surface

    NASA Astrophysics Data System (ADS)

    Mitrakusuma, Windy H.; Deendarlianto, Kamal, Samsul; Indarto, Nuriyadi, M.

    2016-06-01

    Onset of nucleate boiling of a droplet when impacted onto hot surface was investigated. Three kinds of surfaces, normal stainless steel (NSS), stainless steel with TiO2 coating (UVN), and stainless steel with TiO2 coating and radiated by ultraviolet ray were employed to examine the effect of wettability. The droplet size was 2.4 mm diameter, and dropped under different We number. The image is generated by high speed camera with the frame speed of 1000 fps. The boiling conditions are identified as natural convection, nucleate boiling, critical heat flux, transition, and film boiling. In the present report, the discussion will be focused on the beginning of nucleate boiling on the droplet. Nucleate boiling occurs when bubbles are generated. These bubbles are probably caused by nucleation on the impurities within the liquid rather than at nucleation sites on the heated surface because the bubbles appear to be in the bulk of the liquid instead of at the liquid-solid interface. In addition, the smaller the contact angle, the fastest the boiling.

  1. Alkali metal pool boiler life tests for a 25 kWe advanced Stirling conversion system

    NASA Technical Reports Server (NTRS)

    Anderson, W. G.; Rosenfeld, J. H.; Noble, J.

    1991-01-01

    The overall operating temperature and efficiency of solar-powered Stirling engines can be improved by adding an alkali metal pool boiler heat transport system to supply heat more uniformly to the heater head tubes. One issue with liquid metal pool boilers is unstable boiling. Stable boiling is obtained with an enhanced boiling surface containing nucleation sites that promote continuous boiling. Over longer time periods, it is possible that the boiling behavior of the system will change. An 800-h life test was conducted to verify that pool boiling with the chosen fluid/surface combination remains stable as the system ages. The apparatus uses NaK boiling on a - 100 + 140 stainless steel sintered porous layer, with the addition of a small amount of xenon. Pool boiling remained stable to the end of life test. The pool boiler life test included a total of 82 cold starts, to simulate startup each morning, and 60 warm restarts, to simulate cloud cover transients. The behavior of the cold and warm starts showed no significant changes during the life test. In the experiments, the fluid/surface combination provided stable, high-performance boiling at the operating temperature of 700 C. Based on these experiments, a pool boiler was designed for a full-scale 25-kWe Stirling system.

  2. Evaluation of fresh pasta-making properties of extra-strong common wheat (Triticum aestivum L.).

    PubMed

    Ito, Miwako; Maruyama-Funatsuki, Wakako; Ikeda, Tatsuya M; Nishio, Zenta; Nagasawa, Koichi; Tabiki, Tadashi; Yamauchi, Hiroaki

    2012-12-01

    The relationship between characterictics of flour of common wheat varieties and fresh pasta-making qualitites was examined, and the fresh pasta-making properties of extra-strong varieties that have extra-strong dough were evaluated. There was a positive correlation between mixing time (PT) and hardness of boiled pasta, indicating that the hardness of boiled pasta was affected by dough properties. Boiled pasta made from extra-strong varieties, Yumechikara, Hokkai 262 and Hokkai 259, was harder than that from other varieties and commercial flour. There was a negative correlation between flour protein content and brightness of boiled pasta. The colors of boiled pasta made from Yumechikara and Hokkai 262 grown under the condition of standard manuring culture were superior to those of boiled pasta made from other varieties. Discoloration of boiled pasta made from Yumechikara grown under the condition of heavy manuring culture was caused by increase of flour protein content. On the other hand, discoloration of boiled pasta made from Hokkai 262 grown under the condition of heavy manuring culture was less than that of boiled pasta made from Yumechikara. These results indicate that pasta made from extra-strong wheat varieties has good hardness and that Hokkai 262 has extraordinary fresh pasta-making properties.

  3. Evaluation of fresh pasta-making properties of extra-strong common wheat (Triticum aestivum L.)

    PubMed Central

    Ito, Miwako; Maruyama-Funatsuki, Wakako; Ikeda, Tatsuya M.; Nishio, Zenta; Nagasawa, Koichi; Tabiki, Tadashi; Yamauchi, Hiroaki

    2012-01-01

    The relationship between characterictics of flour of common wheat varieties and fresh pasta-making qualitites was examined, and the fresh pasta-making properties of extra-strong varieties that have extra-strong dough were evaluated. There was a positive correlation between mixing time (PT) and hardness of boiled pasta, indicating that the hardness of boiled pasta was affected by dough properties. Boiled pasta made from extra-strong varieties, Yumechikara, Hokkai 262 and Hokkai 259, was harder than that from other varieties and commercial flour. There was a negative correlation between flour protein content and brightness of boiled pasta. The colors of boiled pasta made from Yumechikara and Hokkai 262 grown under the condition of standard manuring culture were superior to those of boiled pasta made from other varieties. Discoloration of boiled pasta made from Yumechikara grown under the condition of heavy manuring culture was caused by increase of flour protein content. On the other hand, discoloration of boiled pasta made from Hokkai 262 grown under the condition of heavy manuring culture was less than that of boiled pasta made from Yumechikara. These results indicate that pasta made from extra-strong wheat varieties has good hardness and that Hokkai 262 has extraordinary fresh pasta-making properties. PMID:23341748

  4. Instruction in Documentation for Computer Programming

    ERIC Educational Resources Information Center

    Westley, John W.

    1976-01-01

    In addition to the input/output record format, the program flowchart, the program listing, and the program test output, eight documentation items are suggested in order that they may serve as a base from which to start teaching program documentation. (Author/AG)

  5. Enabling Highly Effective Boiling from Superhydrophobic Surfaces

    NASA Astrophysics Data System (ADS)

    Allred, Taylor P.; Weibel, Justin A.; Garimella, Suresh V.

    2018-04-01

    A variety of industrial applications such as power generation, water distillation, and high-density cooling rely on heat transfer processes involving boiling. Enhancements to the boiling process can improve the energy efficiency and performance across multiple industries. Highly wetting textured surfaces have shown promise in boiling applications since capillary wicking increases the maximum heat flux that can be dissipated. Conversely, highly nonwetting textured (superhydrophobic) surfaces have been largely dismissed for these applications as they have been shown to promote formation of an insulating vapor film that greatly diminishes heat transfer efficiency. The current Letter shows that boiling from a superhydrophobic surface in an initial Wenzel state, in which the surface texture is infiltrated with liquid, results in remarkably low surface superheat with nucleate boiling sustained up to a critical heat flux typical of hydrophilic wetting surfaces, and thus upends this conventional wisdom. Two distinct boiling behaviors are demonstrated on both micro- and nanostructured superhydrophobic surfaces based on the initial wetting state. For an initial surface condition in which vapor occupies the interstices of the surface texture (Cassie-Baxter state), premature film boiling occurs, as has been commonly observed in the literature. However, if the surface texture is infiltrated with liquid (Wenzel state) prior to boiling, drastically improved thermal performance is observed; in this wetting state, the three-phase contact line is pinned during vapor bubble growth, which prevents the development of a vapor film over the surface and maintains efficient nucleate boiling behavior.

  6. Application of the DG-1199 methodology to the ESBWR and ABWR.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalinich, Donald A.; Gauntt, Randall O.; Walton, Fotini

    2010-09-01

    Appendix A-5 of Draft Regulatory Guide DG-1199 'Alternative Radiological Source Term for Evaluating Design Basis Accidents at Nuclear Power Reactors' provides guidance - applicable to RADTRAD MSIV leakage models - for scaling containment aerosol concentration to the expected steam dome concentration in order to preserve the simplified use of the Accident Source Term (AST) in assessing containment performance under assumed design basis accident (DBA) conditions. In this study Economic and Safe Boiling Water Reactor (ESBWR) and Advanced Boiling Water Reactor (ABWR) RADTRAD models are developed using the DG-1199, Appendix A-5 guidance. The models were run using RADTRAD v3.03. Low Populationmore » Zone (LPZ), control room (CR), and worst-case 2-hr Exclusion Area Boundary (EAB) doses were calculated and compared to the relevant accident dose criteria in 10 CFR 50.67. For the ESBWR, the dose results were all lower than the MSIV leakage doses calculated by General Electric/Hitachi (GEH) in their licensing technical report. There are no comparable ABWR MSIV leakage doses, however, it should be noted that the ABWR doses are lower than the ESBWR doses. In addition, sensitivity cases were evaluated to ascertain the influence/importance of key input parameters/features of the models.« less

  7. Environmental qualification testing of payload G-534, the Pool Boiling Experiment

    NASA Technical Reports Server (NTRS)

    Sexton, J. Andrew

    1992-01-01

    Payload G-534, the prototype Pool Boiling Experiment (PBE), is scheduled to fly on the STS-47 mission in September 1992. This paper describes the purpose of the experiment and the environmental qualification testing program that was used to prove the integrity of the hardware. Component and box level vibration and thermal cycling tests were performed to give an early level of confidence in the hardware designs. At the system level, vibration, thermal extreme soaks, and thermal vacuum cycling tests were performed to qualify the complete design for the expected shuttle environment. The system level vibration testing included three axis sine sweeps and random inputs. The system level hot and cold soak tests demonstrated the hardware's capability to operate over a wide range of temperatures and gave wider latitude in determining which shuttle thermal attitudes were compatible with the experiment. The system level thermal vacuum cycling tests demonstrated the hardware's capability to operate in a convection free environment. A unique environmental chamber was designed and fabricated by the PBE team and allowed most of the environmental testing to be performed within the hardware build laboratory. The completion of the test program gave the project team high confidence in the hardware's ability to function as designed during flight.

  8. Development of Flow Boiling and Condensation Experiment on the International Space Station- Normal and Low Gravity Flow Boiling Experiment Development and Test Results

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.; Hall, Nancy R.; Hasan, Mohammad M.; Wagner, James D.; May, Rochelle L.; Mackey, Jeffrey R.; Kolacz, John S.; Butcher, Robert L.; Frankenfield, Bruce J.; Mudawar, Issam; hide

    2013-01-01

    Flow boiling and condensation have been identified as two key mechanisms for heat transport that are vital for achieving weight and volume reduction as well as performance enhancement in future space systems. Since inertia driven flows are demanding on power usage, lower flows are desirable. However, in microgravity, lower flows are dominated by forces other than inertia (like the capillary force). It is of paramount interest to investigate limits of low flows beyond which the flow is inertial enough to be gravity independent. One of the objectives of the Flow Boiling and Condensation Flight Experiment sets to investigate these limits for flow boiling and condensation. A two-phase flow loop consisting of a Flow Boiling Module and two Condensation Modules has been developed to experimentally study flow boiling condensation heat transfer in the reduced gravity environment provided by the reduced gravity platform. This effort supports the development of a flow boiling and condensation facility for the International Space Station (ISS). The closed loop test facility is designed to deliver the test fluid, FC-72 to the inlet of any one of the test modules at specified thermodynamic and flow conditions. The zero-g-aircraft tests will provide subcooled and saturated flow boiling critical heat flux and flow condensation heat transfer data over wide range of flow velocities. Additionally, these tests will verify the performance of all gravity sensitive components, such as evaporator, condenser and accumulator associated with the two-phase flow loop. We will present in this paper the breadboard development and testing results which consist of detailed performance evaluation of the heater and condenser combination in reduced and normal gravity. We will also present the design of the reduced gravity aircraft rack and the results of the ground flow boiling heat transfer testing performed with the Flow Boiling Module that is designed to investigate flow boiling heat transfer and Critical Heat Flux (CHF) phenomena.

  9. Pool and flow boiling in variable and microgravity

    NASA Technical Reports Server (NTRS)

    Merte, Herman, Jr.

    1994-01-01

    As is well known, boiling is an effective mode of heat transfer in that high heat flux levels are possible with relatively small temperature differences. Its optimal application requires that the process be adequately understood. A measure of the understanding of any physical event lies in the ability to predict its behavior in terms of the relevant parameters. Despite many years of research the predictability of boiling is currently possible only for quite specialized circumstances, e.g., the critical heat flux and film boiling for the pool boiling case, and then only with special geometries. Variable gravity down to microgravity provides the opportunity to test this understanding, but possibly more important, by changing the dimensional and time scales involved permits more detailed observations of elements involved in the boiling process, and perhaps discloses phenomena heretofore unknown. The focus here is on nucleate boiling although, as will be demonstrated below, under but certain circumstances in microgravity it can take place concurrently with the dryout process. In the presence of earth gravity or forced convection effects, the latter process is usually referred to as film boiling. However, no vapor film as such forms with pool boiling in microgravity, only dryout. Initial results are presented here for pool boiling in microgravity, and were made possible at such an early date by the availability of the Get-Away-Specials (GAS). Also presented here are some results of ground testing of a flow loop for the study of low velocity boiling, eventually to take place also in microgravity. In the interim, variable buoyancy normal to the heater surface is achieved by rotation of the entire loop relative to earth gravity. Of course, this is at the expense of varying the buoyancy parallel to the heater surface. Two questions which must be resolved early in the study of flow boiling in microgravity are (1) the lower limits of liquid flow velocity where buoyancy effects become significant to the boiling process (2) the effect of lower liquid flow velocities on the Critical Heat Flux when buoyancy is removed. Results of initial efforts in these directions are presented, albeit restricted currently to the ever present earth gravity.

  10. Three-stage sorption type cryogenic refrigeration systems and methods employing heat regeneration

    NASA Technical Reports Server (NTRS)

    Bard, Steven (Inventor); Jones, Jack A. (Inventor)

    1992-01-01

    A three-stage sorption type cryogenic refrigeration system, each stage containing a fluid having a respectively different boiling point, is presented. Each stage includes a compressor in which a respective fluid is heated to be placed in a high pressure gaseous state. The compressor for that fluid which is heated to the highest temperature is enclosed by the other two compressors to permit heat to be transferred from the inner compressor to the surrounding compressors. The system may include two sets of compressors, each having the structure described above, with the interior compressors of the two sets coupled together to permit selective heat transfer therebetween, resulting in more efficient utilization of input power.

  11. Experimental evidence of the vapor recoil mechanism in the boiling crisis.

    PubMed

    Nikolayev, V S; Chatain, D; Garrabos, Y; Beysens, D

    2006-11-03

    Boiling crisis experiments are carried out in the vicinity of the liquid-gas critical point of H2. A magnetic gravity compensation setup is used to enable nucleate boiling at near critical pressure. The measurements of the critical heat flux that defines the threshold for the boiling crisis are carried out as a function of the distance from the critical point. The obtained power law behavior and the boiling crisis dynamics agree with the predictions of the vapor recoil mechanism and disagree with the classical vapor column mechanism.

  12. Conversion of direct process high-boiling residue to monosilanes

    DOEpatents

    Brinson, Jonathan Ashley; Crum, Bruce Robert; Jarvis, Jr., Robert Frank

    2000-01-01

    A process for the production of monosilanes from the high-boiling residue resulting from the reaction of hydrogen chloride with silicon metalloid in a process typically referred to as the "direct process." The process comprises contacting a high-boiling residue resulting from the reaction of hydrogen chloride and silicon metalloid, with hydrogen gas in the presence of a catalytic amount of aluminum trichloride effective in promoting conversion of the high-boiling residue to monosilanes. The present process results in conversion of the high-boiling residue to monosilanes. At least a portion of the aluminum trichloride catalyst required for conduct of the process may be formed in situ during conduct of the direct process and isolation of the high-boiling residue.

  13. VERA 3.6 - CTF User's Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avramova, Maria; Toptan, Aysenur; Porter, Nathan

    This document describes how to make a CTF input deck. A CTF input deck is organized into Card Groups and Cards. A Card Group is a collection of Cards. A Card is de ned as a line of input. Each Card may contain multiple data. A Card is terminated by making a new line. This document has been organized so that each Card Group is discussed in its own dedicated chapter. Each card is discused in its own dedicated section. Each data in the card is discussed in its own block. The block gives information about the data, including themore » number of the input, the title, a description of the meaning of the data, units, data type, and so on. An example block is shown below to discuss the meaning of each entry in the block.« less

  14. Redundancy-Aware Topic Modeling for Patient Record Notes

    PubMed Central

    Cohen, Raphael; Aviram, Iddo; Elhadad, Michael; Elhadad, Noémie

    2014-01-01

    The clinical notes in a given patient record contain much redundancy, in large part due to clinicians’ documentation habit of copying from previous notes in the record and pasting into a new note. Previous work has shown that this redundancy has a negative impact on the quality of text mining and topic modeling in particular. In this paper we describe a novel variant of Latent Dirichlet Allocation (LDA) topic modeling, Red-LDA, which takes into account the inherent redundancy of patient records when modeling content of clinical notes. To assess the value of Red-LDA, we experiment with three baselines and our novel redundancy-aware topic modeling method: given a large collection of patient records, (i) apply vanilla LDA to all documents in all input records; (ii) identify and remove all redundancy by chosing a single representative document for each record as input to LDA; (iii) identify and remove all redundant paragraphs in each record, leaving partial, non-redundant documents as input to LDA; and (iv) apply Red-LDA to all documents in all input records. Both quantitative evaluation carried out through log-likelihood on held-out data and topic coherence of produced topics and qualitative assessement of topics carried out by physicians show that Red-LDA produces superior models to all three baseline strategies. This research contributes to the emerging field of understanding the characteristics of the electronic health record and how to account for them in the framework of data mining. The code for the two redundancy-elimination baselines and Red-LDA is made publicly available to the community. PMID:24551060

  15. Redundancy-aware topic modeling for patient record notes.

    PubMed

    Cohen, Raphael; Aviram, Iddo; Elhadad, Michael; Elhadad, Noémie

    2014-01-01

    The clinical notes in a given patient record contain much redundancy, in large part due to clinicians' documentation habit of copying from previous notes in the record and pasting into a new note. Previous work has shown that this redundancy has a negative impact on the quality of text mining and topic modeling in particular. In this paper we describe a novel variant of Latent Dirichlet Allocation (LDA) topic modeling, Red-LDA, which takes into account the inherent redundancy of patient records when modeling content of clinical notes. To assess the value of Red-LDA, we experiment with three baselines and our novel redundancy-aware topic modeling method: given a large collection of patient records, (i) apply vanilla LDA to all documents in all input records; (ii) identify and remove all redundancy by chosing a single representative document for each record as input to LDA; (iii) identify and remove all redundant paragraphs in each record, leaving partial, non-redundant documents as input to LDA; and (iv) apply Red-LDA to all documents in all input records. Both quantitative evaluation carried out through log-likelihood on held-out data and topic coherence of produced topics and qualitative assessment of topics carried out by physicians show that Red-LDA produces superior models to all three baseline strategies. This research contributes to the emerging field of understanding the characteristics of the electronic health record and how to account for them in the framework of data mining. The code for the two redundancy-elimination baselines and Red-LDA is made publicly available to the community.

  16. Characterizing preferential groundwater discharge through boils using temperature

    NASA Astrophysics Data System (ADS)

    Vandenbohede, A.; de Louw, P. G. B.; Doornenbal, P. J.

    2014-03-01

    In The Netherlands, preferential groundwater discharge trough boils is a key process in the salinization of deep polders. Previous work showed that boils also influence the temperature in the subsurface and of surface water. This paper elaborates on this process combining field observations with numerical modeling. As is the case for salinity, a distinct anomaly in the subsurface and surface water temperature can be attributed to boils. Lines of equal temperature are distorted towards the boil, which can be considered as an upconing of the temperature profile by analogy of the upconing of a fresh-saltwater interface. The zone of this distortion is limited to the immediate vicinity of the boil, being about 5 m in the aquitard which holds the boil's conduit, or maximum a few dozens of meters in the underlying aquifer. In the aquitard, heat transport is conduction dominated whereas this is convection dominated in the aquifer. The temperature anomaly differs from the salinity anomaly by the smaller radius of influence and faster time to reach a new steady-state of the former. Boils discharge water with a temperature equal to the mean groundwater temperature. This influences the yearly and diurnal variation of ditch water temperature in the immediate vicinity of the boil importantly but also the temperature in the downstream direction. Temporary nature of the boil (e.g. stability of the conduit, discharge rate), uncertainty on the 3D construction of the conduit and heterogeneity of the subsoil make it unlikely that temperature measurements can be interpreted further than a qualitative level.

  17. A fundamental study of nucleate pool boiling under microgravity

    NASA Technical Reports Server (NTRS)

    Ervin, Jamie S.; Merte, Herman, Jr.

    1991-01-01

    An experimental study of incipient boiling in short-term microgravity and with a/g = +/- 1 for pool boiling was performed. Calibrated thin gold films sputtered on a smoothly polished quartz surface were used simultaneously for thermal resistance measurements and heating of the boiling surface. The gold films were used for both transient and quasi-steady heating surface temperature measurements. Two test vessels were constructed for precise measurement and control of fluid temperature and pressure: a laboratory pool boiling vessel for the a/g = +/- experiments and a pool boiling vessel designed for the 131 m free-fall in the NASA Lewis Research Center Microgravity Research Facility for the microgravity tests. Measurements included the heater surface temperature, the pressure near the heating surface, and the bulk liquid temperatures. High speed photography was used in the experiments. With high quality microgravity and the measured initial temperature of the quiescent test fluid, R113, the temperature distribution in the liquid at the moment of boiling inception resulting from an imposed step in heat flux is known with a certainty not possible previously. The types of boiling propagation across the large flat heating surface are categorized; the conditions necessary for their occurrence are described. Explosive boiling propagation with a striking pattern of small scale protuberances over the entire vapor mass periphery not observed previously at low heat flux levels is described. For the heater surface with a/g = -1, a step in the heater surface temperature of short duration was imposed. The resulting liquid temperature distribution at the moment of boiling inception was different from that obtained with a step in heat flux.

  18. Nucleate pool boiling in the long duration low gravity environment of the space shuttle

    NASA Technical Reports Server (NTRS)

    Hasan, M. M.; Lin, C. S.; Knoll, R. H.; Bentz, M. D.; Meserole, J. S.

    1993-01-01

    The results are presented of an experimental study of nucleate pool boiling performed in the low gravity environment of the space shuttle. Photographic observations of pool boiling in Freon 113 were obtained during the 'Tank Pressure Control Experiment', flown on the Space Transportation System STS-43 in August 1991. Nucleate boiling data from large (relative to bubble size) flat heating surfaces (0.1046 by 0.0742 m) was obtained at very low heat fluxes (0.22 to 1.19 kw/so m). The system pressure and the bulk liquid subcooling varied in the range of 40 to 60 kPa and 3 to 5 C respectively. Thirty-eight boiling tests, each of 10 min duration for a given heat flux, were conducted. Measurements included the heater power, heater surface temperature, the liquid temperature and the system pressure as functions of heating time. Video data of the first 2 min of heating was recorded for each test. In some tests the video clearly shows the inception of boiling and the growth and departure of bubbles from the surface during the first 2 min of heating. In the absence of video data, the heater temperature variation during heating shows the inception of boiling and stable nucleate boiling. During the stable nucleate boiling, the wall superheat varied between 2.8 to 3.8 C for heat fluxes in the range of 0.95 to 1.19 kw/so m. The wall superheat at the inception of boiling varied between 2 to 13 C.

  19. Nucleate pool boiling in the long duration low gravity environment of the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Hasan, M. M.; Lin, C. S.; Knoll, R. H.; Bentz, M. D.; Meserole, J. S.

    1993-01-01

    The results are presented of an experimental study of nucleate pool boiling performed in the low gravity environment of the space shuttle. Photographic observations of pool boiling in Freon 113 were obtained during the 'Tank Pressure Control Experiment,' flown on the Space Transportation System, STS-43 in August 1991. Nucleate boiling data from large (relative to bubble size) flat heating surfaces (0.1046 by 0.0742 m) was obtained at very low heat fluxes (0.22 to 1.19 kW/sq m). The system pressure and the bulk liquid subcooling varied in the range of 40 to 60 kPa and 3 to 5 C respectively. Thirty-eight boiling tests, each of 10-min duration for a given heat flux, were conducted. Measurements included the heater power, heater surface temperature, the liquid temperature and the system pressure as functions of heating time. Video data of the first 2 min of heating was recorded for each test. In some tests the video clearly shows the inception of boiling and the growth and departure of bubbles from the surface during the first 2 min of heating. In the absence of video data, the heater temperature variation during heating shows the inception of boiling and stable nucleate boiling. During the stable nucleate boiling, the wall superheat varied between 2.8 to 3.8 C for heat fluxes in the range of 0.95 to 1.19 kW/sq m. The wall superheat at the inception of boiling varied between 2 to 13 C.

  20. Determination of Sodium, Potassium, Magnesium, and Calcium Minerals Level in Fresh and Boiled Broccoli and Cauliflower by Atomic Absorption Spectrometry

    NASA Astrophysics Data System (ADS)

    Nerdy

    2018-01-01

    Vegetables from the cabbage family vegetables consumed by many people, which is known healthful, by eaten raw, boiled, or cooked (stir fry or soup). Vegetables like broccoli and cauliflower contain vitamins, minerals, and fiber. This study aims to determine the decrease percentage of sodium, potassium, magnesium, and calcium minerals level caused by boiled broccoli and cauliflower by atomic absorption spectrometry. Boiled broccoli and cauliflower prepared by given boiled treatment in boiling water for 3 minutes. Fresh and boiled broccoli and cauliflower carried out dry destruction, followed by quantitative analysis of sodium, potassium, magnesium, and calcium minerals respectively at a wavelength of 589.0 nm; 766.5 nm; 285.2 nm; and 422.7 nm, using atomic absorption spectrometry methods. After the determination of the sodium, potassium, magnesium, and calcium minerals level followed by validation of analytical methods with accuracy, precision, linearity, range, limit of detection (LOD), and limit of quantitation (LOQ) parameters. Research results show a decrease in the sodium, potassium, magnesium, and calcium minerals level in boiled broccoli and cauliflower compared with fresh broccoli and cauliflower. Validation of analytical methods gives results that spectrometry methods used for determining sodium, potassium, magnesium, and calcium minerals level are valid. It concluded that the boiled gives the effect of decreasing the minerals level significantly in broccoli and cauliflower.

  1. Experimental investigation on the phenomena around the onset nucleate boiling during the impacting of a droplet on the hot surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitrakusuma, Windy H., E-mail: windyhm@polban.ac.id; Refrigeration and Airconditioning Department, Politeknik Negeri Bandung, Jl. Gegerkalong Hilir, Ds. Ciwaruga Kotak Pos 1234 Bandung; Deendarlianto,

    2016-06-03

    Onset of nucleate boiling of a droplet when impacted onto hot surface was investigated. Three kinds of surfaces, normal stainless steel (NSS), stainless steel with TiO{sub 2} coating (UVN), and stainless steel with TiO{sub 2} coating and radiated by ultraviolet ray were employed to examine the effect of wettability. The droplet size was 2.4 mm diameter, and dropped under different We number. The image is generated by high speed camera with the frame speed of 1000 fps. The boiling conditions are identified as natural convection, nucleate boiling, critical heat flux, transition, and film boiling. In the present report, the discussionmore » will be focused on the beginning of nucleate boiling on the droplet. Nucleate boiling occurs when bubbles are generated. These bubbles are probably caused by nucleation on the impurities within the liquid rather than at nucleation sites on the heated surface because the bubbles appear to be in the bulk of the liquid instead of at the liquid-solid interface. In addition, the smaller the contact angle, the fastest the boiling.« less

  2. On the pulse boiling frequency in thermosyphons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, J.F.; Wang, J.C.Y.

    1992-02-01

    The unsteady periodic boiling phenomenon, pulse boiling, appearing in the evaporator of thermosyphons has been mentioned and investigated by many researchers. The heat transfer coefficient in evaporators was predicted according to different considerations of flow patterns. For instance, Shiraishi et al. proposed a method based on a combination flow pattern: the nucleate boiling in a liquid pool and the evaporation from a falling condensate film. Liu et al. only considered a pure pulse boiling flow pattern, and Xin et al. focused on the flow pattern of the continuous boiling process without pulse phenomenon. Besides, the forming conditions of pulse boilingmore » were also described differently. Xin et al. also reported that pulse boiling cannot occur in a carbon-steel/water heat pipe; Ma et al., however, observed this phenomenon in a carbon-steel/water thermosyphon. Nearly all researchers mentioned that this phenomenon indeed exists in glass/water thermosyphons. Although the influential factors have been discussed qualitatively, the quantitative analysis has yet to be conducted. This study focuses on the pulse boiling frequency as a criterion for the determination of flow patterns, and attempts are made to predict the frequency both experimentally and theoretically.« less

  3. The use of preservatives consist of green tea, piper betel and potassium sorbate on boiled salted fish processing

    NASA Astrophysics Data System (ADS)

    Ariyani, F.; Hermana, I.; Hidayah, I.

    2018-03-01

    The main problem in boiled salted fish ikan pindang is mucus and mold on the surface of the fish which is produced relatively fast as well as the high level of histamine content especially when scombroid fish species are used as raw material. This study was performed to evaluate the effectiveness of various preservatives to overcome such problems. Three combinations of preservatives P1 (green tea and sorbate), P3 (green tea, piper betel, sorbate), P4 (green tea and piper betel) and P0 (no preservative/control) resulted from the previous study were used in this study. Before being used, the preservatives were tested against deteriorating microorganisms commonly found in boiled salted products, of which the result showed that all microorganisms were inhibited. The preservatives were then applied at three different stages of the process of boiled salted fish, i.e. before boiling, during boiling and after boiling. Sensory attributes and microbial characteristics of the products were then evaluated. The results showed that the performance of all tested preservatives against deteriorating microorganisms was relatively similar. It was also shown that the application before and during boiling performed better.

  4. Cooling of hot bubbles by surface texture during the boiling crisis

    NASA Astrophysics Data System (ADS)

    Dhillon, Navdeep; Buongiorno, Jacopo; Varanasi, Kripa

    2015-11-01

    We report the existence of maxima in critical heat flux (CHF) enhancement for pool boiling on textured hydrophilic surfaces and reveal the interaction mechanism between bubbles and surface texture that governs the boiling crisis phenomenon. Boiling is a process of fundamental importance in many engineering and industrial applications but the maximum heat flux that can be absorbed by the boiling liquid (or CHF) is limited by the boiling crisis. Enhancing the CHF of industrial boilers by surface texturing can lead to substantial energy savings and reduction in greenhouse gas emissions on a global scale. However, the fundamental mechanisms behind this enhancement are not well understood, with some previous studies indicating that CHF should increase monotonically with increasing texture density. However, using pool boiling experiments on a parametrically designed set of plain and nano-textured micropillar surfaces, we show that there is an optimum intermediate texture density that maximizes CHF and further that the length scale of this texture is of fundamental significance. Using imbibition experiments and high-speed optical and infrared imaging, we reveal the fundamental mechanisms governing the CHF enhancement maxima in boiling crisis. We acknowledge funding from the Chevron corporation.

  5. Fundamental Boiling and RP-1 Freezing Experiments

    NASA Technical Reports Server (NTRS)

    Goode, Brian

    2002-01-01

    The prestart thermal conditioning of the hardware in LOX (liquid oxygen) systems involve heat transfer between LOX and metal where boiling plays a large role. Information is easily found on nucleate boiling, maximum heat flux, minimum heat flux and film boiling for common fluids like water. After looking at these standard correlations it was felt more data was needed for the cool down side transition boiling for the LN2 and LOX. In particular interest is the film boiling values, the temperature at which transition begins and the slope as peak heat flux is approached. The ultimate goal is an array of boiling heat transfer coefficient as a function of surface temperature which can be used in the chilldown model of the feed system, engine and bleed system for X-34. The first experiment consisted of an actual MC-1 LOX Impeller which had been machined backwards, that was instrumented with 17 surface thermocouples and submerged in liquid nitrogen. The thermocouples were installed on metal thicknesses varying from the thin inducer to the thick hub.

  6. Boiling points of halogenated ethanes: an explanatory model implicating weak intermolecular hydrogen-halogen bonding.

    PubMed

    Beauchamp, Guy

    2008-10-23

    This study explores via structural clues the influence of weak intermolecular hydrogen-halogen bonds on the boiling point of halogenated ethanes. The plot of boiling points of 86 halogenated ethanes versus the molar refraction (linked to polarizability) reveals a series of straight lines, each corresponding to one of nine possible arrangements of hydrogen and halogen atoms on the two-carbon skeleton. A multiple linear regression model of the boiling points could be designed based on molar refraction and subgroup structure as independent variables (R(2) = 0.995, standard error of boiling point 4.2 degrees C). The model is discussed in view of the fact that molar refraction can account for approximately 83.0% of the observed variation in boiling point, while 16.5% could be ascribed to weak C-X...H-C intermolecular interactions. The difference in the observed boiling point of molecules having similar molar refraction values but differing in hydrogen-halogen intermolecular bonds can reach as much as 90 degrees C.

  7. Folate content and retention in commonly consumed vegetables in the South Pacific.

    PubMed

    Maharaj, Prayna P P; Prasad, Surendra; Devi, Riteshma; Gopalan, Romila

    2015-09-01

    This paper reports the effect of boiling and frying on the retention of folate in commonly consumed Fijian vegetables (drumstick leaves, taro leaves, bele leaves, amaranth leaves, fern/ota, okra and French bean). The folate content was determined by microbiological assay (Lactobacillus casei rhamnosus) and tri-enzyme (protease, α-amylase and chicken pancreas conjugase) extraction treatment. The folate loss varied among the vegetables from 10-64% on boiling while 1-36% on frying. The higher folate loss was observed during boiling. The folate content in the water derived after boiling different vegetables ranged from 11.9 ± 0.5 to 61.6 ± 2.5 μg/100mL. The folate loss on boiling was accounted for in the cooking water. The predominant way of folate loss on boiling was leaching rather than thermal degradation which makes boiling the better choice of cooking the studied vegetables for folate intake, provided the cooking water is consumed together with the vegetables. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Toward Scientific Numerical Modeling

    NASA Technical Reports Server (NTRS)

    Kleb, Bil

    2007-01-01

    Ultimately, scientific numerical models need quantified output uncertainties so that modeling can evolve to better match reality. Documenting model input uncertainties and verifying that numerical models are translated into code correctly, however, are necessary first steps toward that goal. Without known input parameter uncertainties, model sensitivities are all one can determine, and without code verification, output uncertainties are simply not reliable. To address these two shortcomings, two proposals are offered: (1) an unobtrusive mechanism to document input parameter uncertainties in situ and (2) an adaptation of the Scientific Method to numerical model development and deployment. Because these two steps require changes in the computational simulation community to bear fruit, they are presented in terms of the Beckhard-Harris-Gleicher change model.

  9. Extended hydrodynamic theory of the peak and minimum pool boiling heat fluxes

    NASA Technical Reports Server (NTRS)

    Linehard, J. H.; Dhir, V. K.

    1973-01-01

    The hydrodynamic theory of the extreme pool boiling heat fluxes is expanded to embrace a variety of problems that have not previously been analyzed. These problems include the prediction of the peak heat flux on a variety of finite heaters, the influence of viscosity on the Taylor and Helmoltz instability mechanisms with application to film boiling and to the peak heat flux in viscous liquids, the formalization of the analogy between high-current-density electrolysis and boiling, and the description of boiling in the low-gravity limit. The predictions are verified with a large number of new data.

  10. Marangoni Effects on Near-Bubble Microscale Transport During Boiling of Binary Fluid Mixtures

    NASA Technical Reports Server (NTRS)

    V. Carey; Sun, C.; Carey, V. P.

    2000-01-01

    In earlier investigations, Marangoni effects were observed to be the dominant mechanism of boiling transport in 2-propanol/water mixtures under reduced gravity conditions. In this investigation we have examined the mechanisms of binary mixture boiling by exploring the transport near a single bubble generated in a binary mixture between a heated surface and cold surface. The temperature field created in the liquid around the bubble produces vaporization over the portion of its interface near the heated surface and condensation over portions of its interface near the cold surface. Experiments were conducted using different mixtures of water and 2-propanol under 1g conditions and under reduced gravity conditions aboard the KC135 aircraft. Since 2-propanol is more volatile than water, there is a lower concentration of 2-propanol near the hot surface and a higher concentration of 2-propanol near the cold plate relative to the bulk quantity. This difference in interface concentration gives rise to strong Marangoni effects that move liquid toward the hot plate in the near bubble region for 2-propanol and water mixtures. In the experiments in this study, the pressure of the test system was maintained at about 5 kPa to achieve the full spectrum of boiling behavior (nucleate boiling, critical heat flux and film boiling) at low temperature and heat flux levels. Heat transfer data and visual documentation of the bubble shape were extracted from the experimental results. In the 1-g experiments at moderate to high heat flux levels, the bubble was observed to grow into a mushroom shape with a larger top portion near the cold plate due to the buoyancy effect. The shape of the bubble was somewhat affected by the cold plate subcooling and the superheat of the heated surface. At low superheat levels for the heated surface, several active nucleation sites were observed, and the vapor stems from them merged to form a larger bubble. The generation rate of vapor is moderate in this regime and the bubble shape is cylindrical in appearance. In some instances, the bubble interface appeared to oscillate. At higher applied heat flux levels, the top of the bubble became larger, apparently to provide more condensing interface area adjacent to the cold plate. Increasing the applied heat flux ultimately led to dry-out of the heated surface, with conditions just prior to dryout corresponding to the maximum heat flux (CHF). A more stable bubble was observed when the system attained the minimum heat flux (for film boiling). In this regime, most of the surface under the bottom of the bubble was dry with nucleate boiling sometimes occuring around the contact perimeter of the bubble at heated surface. Different variations (e.g. gap between two plates, molar concentration of the liquid mixture) of the experiments were examined to determine parametric effects on the boiling process and to determine the best conditions for the KC135 reduced gravity tests. Variation of the gap was found to have a minor impact on the CHF. However, reducing the gap between the hot and cold surface was observed to significantly reduce the minimum heat flux for fixed molar concentration of 2-propanol. In the reduced gravity experiments aboard the KC135 aircraft, the bubble formed in the 6.4 mm gap was generally cylindrical or barrel shaped and it increased its extent laterally as the surface superheat increased. In reduced gravity experiments, dryout of the heated surface under the bubble was observed to occur at a lower superheated temperature than for 1g conditions. Observed features of the boiling process and heat transfer data under reduced gravity will be discussed in detail. The results of the reduced gravity experiments will also be compared to those obtained in comparable 1g experiments. In tandem with the experiments we are also developing a computational model of the transport in the liquid surrounding the bubble during the boiling process. The computational model uses a level set method to model motion of the interface. It will incorporate a macroscale treatment of the transport in the liquid gap between the surfaces and a microscale treatment of transport in the regions between the bubble interface and the solid surfaces. The features of the model will be described in detail. Future research directions suggested by the results to date will also be discussed.

  11. Incorporating Water Boiling in the Numerical Modelling of Thermal Remediation by Electrical Resistance Heating

    NASA Astrophysics Data System (ADS)

    Molnar, I. L.; Krol, M.; Mumford, K. G.

    2017-12-01

    Developing numerical models for subsurface thermal remediation techniques - such as Electrical Resistive Heating (ERH) - that include multiphase processes such as in-situ water boiling, gas production and recovery has remained a significant challenge. These subsurface gas generation and recovery processes are driven by physical phenomena such as discrete and unstable gas (bubble) flow as well as water-gas phase mass transfer rates during bubble flow. Traditional approaches to multiphase flow modeling soil remain unable to accurately describe these phenomena. However, it has been demonstrated that Macroscopic Invasion Percolation (MIP) can successfully simulate discrete and unstable gas transport1. This has lead to the development of a coupled Electro Thermal-MIP Model2 (ET-MIP) capable of simulating multiple key processes in the thermal remediation and gas recovery process including: electrical heating of soil and groundwater, water flow, geological heterogeneity, heating-induced buoyant flow, water boiling, gas bubble generation and mobilization, contaminant mass transport and removal, and additional mechanisms such as bubble collapse in cooler regions. This study presents the first rigorous validation of a coupled ET-MIP model against two-dimensional water boiling and water/NAPL co-boiling experiments3. Once validated, the model was used to explore the impact of water and co-boiling events and subsequent gas generation and mobilization on ERH's ability to 1) generate, expand and mobilize gas at boiling and NAPL co-boiling temperatures, 2) efficiently strip contaminants from soil during both boiling and co-boiling. In addition, a quantification of the energy losses arising from steam generation during subsurface water boiling was examined with respect to its impact on the efficacy of thermal remediation. While this study specifically targets ERH, the study's focus on examining the fundamental mechanisms driving thermal remediation (e.g., water boiling) renders these results applicable to a wide range of thermal and gas-based remediation techniques. 1. Mumford, K. G., et al. (2010), Adv. Water Resour. 2010, 33 (4), 504-513. 2. Krol, M. M., et al. (2011), Adv. Water Resour. 2011, 34 (4), 537-549. 3. Hegele, P. R. and Mumford, K. G. Journal of Contaminant Hydrology 2014, 165, 24-36.

  12. Origins of geothermal gases at Yellowstone

    USGS Publications Warehouse

    Lowenstern, Jacob B.; Bergfeld, Deborah; Evans, William C.; Hunt, Andrew G.

    2015-01-01

    Gas emissions at the Yellowstone Plateau Volcanic Field (YPVF) reflect open-system mixing of gas species originating from diverse rock types, magmas, and crustal fluids, all combined in varying proportions at different thermal areas. Gases are not necessarily in chemical equilibrium with the waters through which they vent, especially in acid sulfate terrain where bubbles stream through stagnant acid water. Gases in adjacent thermal areas often can be differentiated by isotopic and gas ratios, and cannot be tied to one another solely by shallow processes such as boiling-induced fractionation of a parent liquid. Instead, they inherit unique gas ratios (e.g., CH4/He) from the dominant rock reservoirs where they originate, some of which underlie the Quaternary volcanic rocks. Steam/gas ratios (essentially H2O/CO2) of Yellowstone fumaroles correlate with Ar/He and N2/CO2, strongly suggesting that H2O/CO2 is controlled by addition of steam boiled from water rich in atmospheric gases. Moreover, H2O/CO2 varies systematically with geographic location, such that boiling is more enhanced in some areas than others. The δ13C and 3He/CO2 of gases reflect a dominant mantle origin for CO2 in Yellowstone gas. The mantle signature is most evident at Mud Volcano, which hosts gases with the lowest H2O/CO2, lowest CH4 concentrations and highest He isotope ratios (~16Ra), consistent with either a young subsurface intrusion or less input of crustal and meteoric gas than any other location at Yellowstone. Across the YPVF, He isotope ratios (3He/4He) inversely vary with He concentrations, and reflect varied amounts of long- stored, radiogenic He added to the magmatic endmember within the crust. Similarly, addition of CH4 from organic-rich sediments is common in the eastern thermal areas at Yellowstone. Overall, Yellowstone gases reflect addition of deep, high-temperature magmatic gas (CO2-rich), lower-temperatures crustal gases (4He- and CH4-bearing), and those gases (N2, Ne, Ar) added principally through boiling of the meteoric-water-derived geothermal liquid found in the upper few kilometers. We also briefly explore the pathways by which Cl, F, and S, move through the crust.

  13. A Fundamental Study of Nucleate Pool Boiling Under Microgravity

    NASA Technical Reports Server (NTRS)

    Ervin, Jamie S.; Merte, Herman, Jr.

    1996-01-01

    An experimental study of incipient boiling in short-term microgravity and with a/g = +/- 1 for pool boiling was performed. Calibrated thin gold films sputtered on a smoothly polished quartz surface were used simultaneously for thermal-resistance measurements and heating of the boiling surface. The gold films were used for both transient and quasi-steady heating surface temperature measurements. Two test vessels were constructed for precise measurement and control of fluid temperature and pressure: a laboratory pool boiling vessel for the a/g = +/- 1 experiments and a pool boiling vessel designed for the 131 m free-fall in the NASA Lewis Research Center Microgravity Research Facility for the microgravity tests. Measurements included the heater surface temperature, the pressure near the heating surface, the bulk liquid temperatures. High speed photography (up to 1,000 frames per second) was used in the experiments. With high quality microgravity and the measured initial temperature of the quiescent test fluid, R113, the temperature distribution in the liquid at the moment of boiling inception resulting from an imposed step in heat flux is known with a certainty not possible previously. The types of boiling propagation across the large flat heating surface, some observed here for the first time, are categorized; the conditions necessary for their occurrence are described. Explosive boiling propagation with a striking pattern of small scale protuberances over the entire vapor mass periphery not observed previously at low heat flux levels (on the order of 5 W/cm(exp 2)) is described. For the heater surface with a/g = -1, a step in the heater surface temperature of short duration was imposed. The resulting liquid temperature distribution at the moment of boiling inception was different from that obtained with a step in heat flux.

  14. Can we remove iodine-131 from tap water in Japan by boiling? - Experimental testing in response to the Fukushima Daiichi Nuclear Power Plant accident.

    PubMed

    Tagami, K; Uchida, S

    2011-08-01

    Iodine-131 concentrations in tap water higher than 100 BqL(-1) were reported by several local governments in Japan following the Fukushima Daiichi Nuclear Power Plant accident. Some individuals in the emergency-response community recommended the boiling of tap water to remove iodine-131. However, the tap water boiling tests in this study showed no iodine-131 loss from the tap water with either short-term boiling (1-10 min) or prolonged boiling (up to 30 min) resulting in up to 3-fold volume reductions. In this situation, boiling was shown to be not effective in removing iodine-131 from tap water; indeed even higher concentrations may result from the liquid-volume reduction accompanying this process. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Food-cooking processes modulate allergenic properties of hen's egg white proteins.

    PubMed

    Liu, Xiaoyu; Feng, Bai-Sui; Kong, Xiaoli; Xu, Hong; Li, Xiumin; Yang, Ping-Chang; Liu, Zhigang

    2013-01-01

    Reducing the allergenicity of food allergens can suppress the clinical symptoms of food allergy. The objective of the present study was to investigate the effects of processing on the allergenic properties of hen's egg white proteins. Eggs were processed by traditional Chinese cooking, including steaming, water boiling, frying, spicing and tea boiling. The contents of processed egg protein were assessed by sodium dodecyl sulfate polyacrylamide gel electrophoresis; the allergenicity was evaluated by Western blotting, enzyme-linked immunosorbent assay and enzyme allergosorbent test inhibition. Circular dichroism spectrum analysis of four major egg allergens from various egg products was performed as well. A mouse model of food allergy was developed to test the allergenicity of processed egg protein in vivo. Protein degradation was significant following tea boiling and spiced-tea boiling. The total allergenic potential of water-boiled egg and fried egg was relatively higher than that of steamed egg, spiced egg and tea-boiled egg. Challenge with proteins from raw egg, water-boiled egg and fried egg induced skewed T-helper 2 pattern responses (Th2 responses) in the intestine of mice sensitized to egg proteins; however, when the mice sensitized to egg proteins were challenged with proteins from steamed egg, spiced egg and tea-boiled egg, respectively, only weak Th2 responses were induced in their intestine. Processing by steaming, spicing, or tea boiling can weaken the allergenicity of egg proteins. Copyright © 2012 S. Karger AG, Basel.

  16. The Boiling eXperiment Facility (BXF) for the Microgravity Science Glovebox (MSG)

    NASA Technical Reports Server (NTRS)

    McQuillen, John; Chao, David; Vergilii, Frank

    2006-01-01

    Boiling is an effective means of cooling by removing heat from surfaces through vaporization of a working fluid. It is also affected by both the magnitude and direction of gravity. By conducting pool boiling tests in microgravity, the effect of buoyancy n the overall boiling process and the relative magnitude of other phenomena can be assessed. The Boiling eXperiment Facility (BXF) is being built for the Microgravity Science Glovebox. This facility will conduct two pool boiling studies. The first study the Microheater Array Boiling Experiment (MABE) uses two 96 element microheater arrays, 2.7 mm and 7.0 mm in size, to measure localized hear fluxes while operating at a constant temperature. The other experiment, the Nucleate Pool Boiling eXperiment (NPBX) uses a 85 mm diameter heater wafer that has been "seeded" with five individually-controlled nucleation sites to study bubble nucleation, growth, coalescence and departure. The BXF uses normal-perfluorohexane as the test fluid and will operate between pressures of 60 to 244 Pa. and temperatures of 35 to 60 C. Both sets of experimental heaters are highly instrumented. Pressure and bulk fluid temperature measurements will be made with standard rate video. A high speed video system will be used to visualize the boiling process through the bottom of the MABE heater arrays. The BXF is currently scheduled to fly on Utilization Flight-13A.1 to the ISS with facility integration into the MSG and operation during Increment 15

  17. Scientific and technical advisory committee review of the nutrient inputs to the watershed model

    USDA-ARS?s Scientific Manuscript database

    The following is a report by a STAC Review Team concerning the methods and documentation used by the Chesapeake Bay Partnership for evaluation of nutrient inputs to Phase 6 of the Chesapeake Bay Watershed Model. The “STAC Review of the Nutrient Inputs to the Watershed Model” (previously referred to...

  18. 2014 Version 7.0 Technical Support Document (TSD)

    EPA Pesticide Factsheets

    The 2014 Version 7 document describes the processing of emission inventories into inputs for the Community Multiscale Air Quality model for use in the 2014 National Air Toxics Assessment initial modeling.

  19. Transport Phenomena in Fluid Dynamics: Matrix Heat Exchangers and Their Applications in Energy Systems

    DTIC Science & Technology

    2009-07-01

    presented a summary of recent research on boiling in microchannels . He addressed the topics of macro scale versus micro scale heat transfer , two phase...flow regime, flow boiling 14 heat transfer results for microchannels , heat transfer mechanisms in microchannels , and flow boiling models for... Heat Transfer Boiling In Minichannel And Microchannel Flow Passages Of Compact Evaporators, Keynote Lecture Presented at the Engineering Foundation

  20. Criticality in the slowed-down boiling crisis at zero gravity.

    PubMed

    Charignon, T; Lloveras, P; Chatain, D; Truskinovsky, L; Vives, E; Beysens, D; Nikolayev, V S

    2015-05-01

    Boiling crisis is a transition between nucleate and film boiling. It occurs at a threshold value of the heat flux from the heater called CHF (critical heat flux). Usually, boiling crisis studies are hindered by the high CHF and short transition duration (below 1 ms). Here we report on experiments in hydrogen near its liquid-vapor critical point, in which the CHF is low and the dynamics slow enough to be resolved. As under such conditions the surface tension is very small, the experiments are carried out in the reduced gravity to preserve the conventional bubble geometry. Weightlessness is created artificially in two-phase hydrogen by compensating gravity with magnetic forces. We were able to reveal the fractal structure of the contour of the percolating cluster of the dry areas at the heater that precedes the boiling crisis. We provide a direct statistical analysis of dry spot areas that confirms the boiling crisis at zero gravity as a scale-free phenomenon. It was observed that, in agreement with theoretical predictions, saturated boiling CHF tends to zero (within the precision of our thermal control system) in zero gravity, which suggests that the boiling crisis may be observed at any heat flux provided the experiment lasts long enough.

  1. Multicomponent gas sorption Joule-Thomson refrigeration

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor); Petrick, S. Walter (Inventor); Bard, Steven (Inventor)

    1991-01-01

    The present invention relates to a cryogenic Joule-Thomson refrigeration capable of pumping multicomponent gases with a single stage sorption compressor system. Alternative methods of pumping a multicomponent gas with a single stage compressor are disclosed. In a first embodiment, the sorbent geometry is such that a void is defined near the output of the sorption compressor. When the sorbent is cooled, the sorbent primarily adsorbs the higher boiling point gas such that the lower boiling point gas passes through the sorbent to occupy the void. When the sorbent is heated, the higher boiling point gas is desorbed at high temperature and pressure and thereafter propels the lower boiling point gas out of the sorption compressor. A mixing chamber is provided to remix the constituent gases prior to expansion of the gas through a Joule-Thomson valve. Other methods of pumping a multicomponent gas are disclosed. For example, where the sorbent is porous and the low boiling point gas does not adsorb very well, the pores of the sorbent will act as a void space for the lower boiling point gas. Alternatively, a mixed sorbent may be used where a first sorbent component physically adsorbs the high boiling point gas and where the second sorbent component chemically absorbs the low boiling point gas.

  2. Comparison of lipids in organs of the starfish Asterias amurensis associated with different treatments

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Ikegame, Keita; Takahashi, Koretaro; Xue, Changhu; Zhang, Weinong; Wang, Hongxun; Hou, Wenfu; Wang, Yuming

    2013-09-01

    Lipids were extracted from organs of the starfish Asterias amurensis associated with different treatments (raw-control, boiling and heating), and then analyzed for lipid content, lipid oxidation index, lipid classes and fatty acid composition. Results showed that boiling softened the hard starfish shells, thus facilitating the collection of starfish organs. As compared with raw organs, the boiled organs had lower water content and higher lipid content, possibly due to the loss of water-holding capacity caused by protein denaturation. Both boiling and heating increased the peroxide value (PV), thiobarbituric acid (TBA) value and carbon value (CV) of lipids. Despite slight increases in the content of complex lipids, associated lipid composition had no substantial variations upon boiling and heating. For simple lipids, the content of 1, 2-diglyceride decreased in boiled and heated organs, with free fatty acids observed on thin layer chromatography (TLC). However, neither boiling nor heating significantly changed the fatty acid compositions of simple or complex lipids in starfish organs, suggesting that these two treatments had no significant effects on complex lipids in starfish organs. Together, our results indicated that boiling of starfish soon after capture facilitated the handling and extraction of useful complex lipids consisting of abundant glucosylceramide and eicosapentaenoic acid (EPA)-bounded phospholipids.

  3. Theoretical modeling of CHF for near-saturated pool boiling and flow boiling from short heaters using the interfacial lift-off criterion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mudawar, I.; Galloway, J.E.; Gersey, C.O.

    Pool boiling and flow boiling were examined for near-saturated bulk conditions in order to determine the critical heat flux (CHF) trigger mechanism for each. Photographic studies of the wall region revealed features common to both situations. At fluxes below CHF, the vapor coalesces into a wavy layer which permits wetting only in wetting fronts, the portions of the liquid-vapor interface which contact the wall as a result of the interfacial waviness. Close examination of the interfacial features revealed the waves are generated from the lower edge of the heater in pool boiling and the heater`s upstream region in flow boiling.more » Wavelengths follow predictions based upon the Kelvin-Helmholtz instability criterion. Critical heat flux in both cases occurs when the pressure force exerted upon the interface due to interfacial curvature, which tends to preserve interfacial contact with the wall prior to CHF, is overcome by the momentum of vapor at the site of the first wetting front, causing the interface to lift away from the wall. It is shown this interfacial lift-off criterion facilitates accurate theoretical modeling of CHF in pool boiling and in flow boiling in both straight and curved channels.« less

  4. Unesco Integrated Documentation Network; Computerized Documentation System (CDS).

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific, and Cultural Organization, Paris (France). Dept. of Documentation, Libraries, and Archives.

    Intended for use by the Computerized Documentation System (CDS), the Unesco version of ISIS (Integrated Set of Information Systems)--originally developed by the International Labour Organization--was developed in 1975 and named CDS/ISIS. This system has a comprehensive collection of programs for input, management, and output, running in batch or…

  5. 46 CFR 154.705 - Cargo boil-off as fuel: General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.705 Cargo boil-off as fuel: General. (a) Each cargo boil-off fuel...

  6. 46 CFR 154.705 - Cargo boil-off as fuel: General.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.705 Cargo boil-off as fuel: General. (a) Each cargo boil-off fuel...

  7. 46 CFR 154.705 - Cargo boil-off as fuel: General.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.705 Cargo boil-off as fuel: General. (a) Each cargo boil-off fuel...

  8. 46 CFR 154.705 - Cargo boil-off as fuel: General.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.705 Cargo boil-off as fuel: General. (a) Each cargo boil-off fuel...

  9. 46 CFR 154.705 - Cargo boil-off as fuel: General.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.705 Cargo boil-off as fuel: General. (a) Each cargo boil-off fuel...

  10. Experimental investigation of time and repeated cycles in nucleate pool boiling of alumina/water nanofluid on polished and machined surfaces

    NASA Astrophysics Data System (ADS)

    Rajabzadeh Dareh, F.; Haghshenasfard, M.; Nasr Esfahany, M.; Salimi Jazi, H.

    2018-06-01

    Pool boiling heat transfer of pure water and nanofluids on a copper block has been studied experimentally. Nanofluids with various concentrations of 0.0025, 0.005 and 0.01 vol.% are employed and two simple surfaces (polished and machined copper surface) are used as the heating surfaces. The results indicated that the critical heat flux (CHF) in boiling of fluids on the polished surface is 7% higher than CHF on the machined surface. In the case of machined surface, the heat transfer coefficient (HTC) of 0.01 vol.% nanofluid is about 37% higher than HTC of base fluid, while in the polished surface the average HTC of 0.01% nanofluid is about 19% lower than HTC of the pure water. The results also showed that the boiling time and boiling cycles on the polished surface changes the heat transfer performance. By increasing the boiling time from 5 to 10 min, the roughness enhances about 150%, but by increasing the boiling time to 15 min, the roughness enhancement is only 8%.

  11. Minimum Hamiltonian ascent trajectory evaluation (MASTRE) program (update to automatic flight trajectory design, performance prediction, and vehicle sizing for support of shuttle and shuttle derived vehicles) users manual

    NASA Technical Reports Server (NTRS)

    Lyons, J. T.; Borchers, William R.

    1993-01-01

    Documentation for the User Interface Program for the Minimum Hamiltonian Ascent Trajectory Evaluation (MASTRE) is provided. The User Interface Program is a separate software package designed to ease the user input requirements when using the MASTRE Trajectory Program. This document supplements documentation on the MASTRE Program that consists of the MASTRE Engineering Manual and the MASTRE Programmers Guide. The User Interface Program provides a series of menus and tables using the VAX Screen Management Guideline (SMG) software. These menus and tables allow the user to modify the MASTRE Program input without the need for learning the various program dependent mnemonics. In addition, the User Interface Program allows the user to modify and/or review additional input Namelist and data files, to build and review command files, to formulate and calculate mass properties related data, and to have a plotting capability.

  12. ASRDI oxygen technology survey. Volume 3: Heat transfer and fluid dynamics. Abstracts of selected technical reports and publications

    NASA Technical Reports Server (NTRS)

    Schmidt, A. F. (Editor)

    1972-01-01

    Selected information is presented from an assemblage of reports and publications on heat transfer and fluid dynamics with direct applicability to oxygen systems. For each document cited, an abstract has been prepared together with key words and a listing of most important references found in the document. Additionally, an author index, a subject index, and a key word index have been provided to simplify the retrieval of specific information from this work. In each subject area - e.g., boiling heat transfer - the individual citations are listed alphabetically by first author, with review papers dually noted under the appropriate subject category and under review papers. Of the documents reviewed and evaluated for inclusion in this publication, coverage of existing information directly concerned with oxygen was given primary emphasis. However, work not specifically oxygen-designated but considered applicable to oxygen by the reviewer e.g., a two-phase friction factor correlation derived from nitrogen experiments is occasionally given where no actual oxygen data exist, as an aid to the reader. Approximately 130 abstracts are listed.

  13. Direct production of fractionated and upgraded hydrocarbon fuels from biomass

    DOEpatents

    Felix, Larry G.; Linck, Martin B.; Marker, Terry L.; Roberts, Michael J.

    2014-08-26

    Multistage processing of biomass to produce at least two separate fungible fuel streams, one dominated by gasoline boiling-point range liquids and the other by diesel boiling-point range liquids. The processing involves hydrotreating the biomass to produce a hydrotreatment product including a deoxygenated hydrocarbon product of gasoline and diesel boiling materials, followed by separating each of the gasoline and diesel boiling materials from the hydrotreatment product and each other.

  14. Microbiological effectiveness of disinfecting water by boiling in rural Guatemala.

    PubMed

    Rosa, Ghislaine; Miller, Laura; Clasen, Thomas

    2010-03-01

    Boiling is the most common means of treating water in the home and the benchmark against which alternative point-of-use water treatment options must be compared. In a 5-week study in rural Guatemala among 45 households who claimed they always or almost always boiled their drinking water, boiling was associated with a 86.2% reduction in geometric mean thermotolerant coliforms (TTC) (N = 206, P < 0.0001). Despite consistent levels of fecal contamination in source water, 71.2% of stored water samples from self-reported boilers met the World Health Organization guidelines for safe drinking water (0 TTC/100 mL), and 10.7% fell within the commonly accepted low-risk category of (1-10 TTC/100 mL). As actually practiced in the study community, boiling significantly improved the microbiological quality of drinking water, though boiled and stored drinking water is not always free of fecal contaminations.

  15. Evaluation of correlations of flow boiling heat transfer of R22 in horizontal channels.

    PubMed

    Zhou, Zhanru; Fang, Xiande; Li, Dingkun

    2013-01-01

    The calculation of two-phase flow boiling heat transfer of R22 in channels is required in a variety of applications, such as chemical process cooling systems, refrigeration, and air conditioning. A number of correlations for flow boiling heat transfer in channels have been proposed. This work evaluates the existing correlations for flow boiling heat transfer coefficient with 1669 experimental data points of flow boiling heat transfer of R22 collected from 18 published papers. The top two correlations for R22 are those of Liu and Winterton (1991) and Fang (2013), with the mean absolute deviation of 32.7% and 32.8%, respectively. More studies should be carried out to develop better ones. Effects of channel dimension and vapor quality on heat transfer are analyzed, and the results provide valuable information for further research in the correlation of two-phase flow boiling heat transfer of R22 in channels.

  16. Evaluation of Correlations of Flow Boiling Heat Transfer of R22 in Horizontal Channels

    PubMed Central

    Fang, Xiande; Li, Dingkun

    2013-01-01

    The calculation of two-phase flow boiling heat transfer of R22 in channels is required in a variety of applications, such as chemical process cooling systems, refrigeration, and air conditioning. A number of correlations for flow boiling heat transfer in channels have been proposed. This work evaluates the existing correlations for flow boiling heat transfer coefficient with 1669 experimental data points of flow boiling heat transfer of R22 collected from 18 published papers. The top two correlations for R22 are those of Liu and Winterton (1991) and Fang (2013), with the mean absolute deviation of 32.7% and 32.8%, respectively. More studies should be carried out to develop better ones. Effects of channel dimension and vapor quality on heat transfer are analyzed, and the results provide valuable information for further research in the correlation of two-phase flow boiling heat transfer of R22 in channels. PMID:23956695

  17. Microbiological Effectiveness of Disinfecting Water by Boiling in Rural Guatemala

    PubMed Central

    Rosa, Ghislaine; Miller, Laura; Clasen, Thomas

    2010-01-01

    Boiling is the most common means of treating water in the home and the benchmark against which alternative point-of-use water treatment options must be compared. In a 5-week study in rural Guatemala among 45 households who claimed they always or almost always boiled their drinking water, boiling was associated with a 86.2% reduction in geometric mean thermotolerant coliforms (TTC) (N = 206, P < 0.0001). Despite consistent levels of fecal contamination in source water, 71.2% of stored water samples from self-reported boilers met the World Health Organization guidelines for safe drinking water (0 TTC/100 mL), and 10.7% fell within the commonly accepted low-risk category of (1–10 TTC/100 mL). As actually practiced in the study community, boiling significantly improved the microbiological quality of drinking water, though boiled and stored drinking water is not always free of fecal contaminations. PMID:20207876

  18. Bubble dynamics, two-phase flow, and boiling heat transfer in a microgravity environment

    NASA Technical Reports Server (NTRS)

    Chung, Jacob N.

    1994-01-01

    The two-phase bubbly flow and boiling heat transfer in microgravity represents a substantial challenge to scientists and engineers and yet there is an urgent need to seek fundamental understanding in this area for future spacecraft design and space missions. At Washington State University, we have successfully designed, built and tested a 2.1 second drop tower with an innovation airbag deceleration system. Microgravity boiling experiments performed in our 0.6 second Drop Tower produced data flow visualizations that agree with published results and also provide some new understanding concerning flow boiling and microgravity bubble behavior. On the analytical and numerical work, the edge effects of finite divergent electrode plates on the forces experienced by bubbles were investigated. Boiling in a concentric cylinder microgravity and an electric field was numerically predicted. We also completed a feasibility study for microgravity boiling in an acoustic field.

  19. Ultrasound-assisted extraction of hemicellulose and phenolic compounds from bamboo bast fiber powder

    PubMed Central

    Su, Jing; Vielnascher, Robert; Silva, Carla; Cavaco-Paulo, Artur; Guebitz, Georg M.

    2018-01-01

    Ultrasound-assisted extraction of hemicellulose and phenolic compounds from bamboo bast fibre powder was investigated. The effect of ultrasonic probe depth and power input parameters on the type and amount of products extracted was assessed. The results of input energy and radical formation correlated with the calculated values for the anti-nodal point (λ/4; 16.85 mm, maximum amplitude) of the ultrasonic wave in aqueous medium. Ultrasonic treatment at optimum probe depth of 15 mm improve 2.6-fold the extraction efficiencies of hemicellulose and phenolic lignin compounds from bamboo bast fibre powder. LC-Ms-Tof (liquid chromatography-mass spectrometry-time of flight) analysis indicated that ultrasound led to the extraction of coniferyl alcohol, sinapyl alcohol, vanillic acid, cellobiose, in contrast to boiling water extraction only. At optimized conditions, ultrasound caused the formation of radicals confirmed by the presence of (+)-pinoresinol which resulted from the radical coupling of coniferyl alcohol. Ultrasounds revealed to be an efficient methodology for the extraction of hemicellulosic and phenolic compounds from woody bamboo without the addition of harmful solvents. PMID:29856764

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, C. S.; Zhang, Hongbin

    Uncertainty quantification and sensitivity analysis are important for nuclear reactor safety design and analysis. A 2x2 fuel assembly core design was developed and simulated by the Virtual Environment for Reactor Applications, Core Simulator (VERA-CS) coupled neutronics and thermal-hydraulics code under development by the Consortium for Advanced Simulation of Light Water Reactors (CASL). An approach to uncertainty quantification and sensitivity analysis with VERA-CS was developed and a new toolkit was created to perform uncertainty quantification and sensitivity analysis with fourteen uncertain input parameters. Furthermore, the minimum departure from nucleate boiling ratio (MDNBR), maximum fuel center-line temperature, and maximum outer clad surfacemore » temperature were chosen as the selected figures of merit. Pearson, Spearman, and partial correlation coefficients were considered for all of the figures of merit in sensitivity analysis and coolant inlet temperature was consistently the most influential parameter. We used parameters as inputs to the critical heat flux calculation with the W-3 correlation were shown to be the most influential on the MDNBR, maximum fuel center-line temperature, and maximum outer clad surface temperature.« less

  1. Uncertainty quantification and sensitivity analysis with CASL Core Simulator VERA-CS

    DOE PAGES

    Brown, C. S.; Zhang, Hongbin

    2016-05-24

    Uncertainty quantification and sensitivity analysis are important for nuclear reactor safety design and analysis. A 2x2 fuel assembly core design was developed and simulated by the Virtual Environment for Reactor Applications, Core Simulator (VERA-CS) coupled neutronics and thermal-hydraulics code under development by the Consortium for Advanced Simulation of Light Water Reactors (CASL). An approach to uncertainty quantification and sensitivity analysis with VERA-CS was developed and a new toolkit was created to perform uncertainty quantification and sensitivity analysis with fourteen uncertain input parameters. Furthermore, the minimum departure from nucleate boiling ratio (MDNBR), maximum fuel center-line temperature, and maximum outer clad surfacemore » temperature were chosen as the selected figures of merit. Pearson, Spearman, and partial correlation coefficients were considered for all of the figures of merit in sensitivity analysis and coolant inlet temperature was consistently the most influential parameter. We used parameters as inputs to the critical heat flux calculation with the W-3 correlation were shown to be the most influential on the MDNBR, maximum fuel center-line temperature, and maximum outer clad surface temperature.« less

  2. Boiling-induced formation of colloidal gold in black smoker hydrothermal fluids

    USGS Publications Warehouse

    Gartman, Amy; Hannington, Mark; Jamieson, John W.; Peterkin, Ben; Garbe-Schönberg, Dieter; Findlay, Alyssa J; Fuchs, Sebastian; Kwasnitschka, Tom

    2017-01-01

    Gold colloids occur in black smoker fluids from the Niua South hydrothermal vent field, Lau Basin (South Pacific Ocean), confirming the long-standing hypothesis that gold may undergo colloidal transport in hydrothermal fluids. Six black smoker vents, varying in temperature from 250 °C to 325 °C, were sampled; the 325 °C vent was boiling at the time of sampling and the 250 °C fluids were diffusely venting. Native gold particles ranging from <50 nm to 2 µm were identified in 4 of the fluid samples and were also observed to precipitate on the sampler during collection from the boiling vent. Total gold concentrations (dissolved and particulate) in the fluid samples range from 1.6 to 5.4 nM in the high-temperature, focused flow vents. Although the gold concentrations in the focused flow fluids are relatively high, they are lower than potential solubilities prior to boiling and indicate that precipitation was boiling induced, with sulfide lost upon boiling to exsolution and metal sulfide formation. Gold concentrations reach 26.7 nM in the 250 °C diffuse flow sample, and abundant native gold particles were also found in the fluids and associated sulfide chimney and are interpreted to be a product of colloid accumulation and growth following initial precipitation upon boiling. These results indicate that colloid-driven precipitation as a result of boiling, the persistence of colloids after boiling, and the accumulation of colloids in diffuse flow fluids are important mechanisms for the enrichment of gold in seafloor hydrothermal systems.

  3. The effect of ginger and garlic addition during cooking on the volatile profile of grass carp (Ctenopharyngodon idella) soup.

    PubMed

    Li, Jin-Lin; Tu, Zong-Cai; Zhang, Lu; Sha, Xiao-Mei; Wang, Hui; Pang, Juan-Juan; Tang, Ping-Ping

    2016-08-01

    Ginger and garlic have long been used in Asian countries to enhance the flavor and to neutralize any unpleasant odors present in fish soup. The purpose of this study was to evaluate the change in the amount of volatile components present in fish soup compared to boiled water solutions of ginger and garlic. The fish soup was prepared by boiling oil-fried grass carp ( Ctenopharyngodon idella ) with or without ginger and/or garlic. Generally, boiling garlic and ginger in water led to a decrease in the amount of the principal volatile constituents of these spices, together with the formation of some new volatiles such as pentanal, hexanal, and nonanal. The results showed that 16 terpenes present in raw ginger, predominantly camphene, β -phellandrene, β -citral, α -zingiberene, and ( E )-neral, were detected in fish soup with added ginger and thus remained in the solution even after boiling. Similarly, 2-propen-1-ol and three sulfur compounds (allyl sulfide, diallyl disulfide, and diallyl trisulfide) present in raw garlic, were present in trace amounts in the boiled garlic solution, but were present in considerably larger amounts in the boiled fish solution with garlic or garlic plus ginger. In conclusion, the effect of adding spices on the volatile profile of grass carp soup can be attributed to the dissolution of flavor volatiles mainly derived from raw spices into the solution, with few additional volatiles being formed during boiling. In addition, boiling previously fried grass carp with spices led to enhanced volatile levels compared to boiled spice solutions.

  4. Science 101: Why Does It Take Longer to Boil Potatoes at High Altitudes?

    ERIC Educational Resources Information Center

    Robertson, Bill

    2017-01-01

    Why Does It Take Longer to Boil Potatoes at High Altitudes? This column provides background science information for elementary teachers. This month's issue looks at why water boils at different temperatures at different altitudes.

  5. An Investigation of Graduate Scientists' Understandings of Evaporation and Boiling.

    ERIC Educational Resources Information Center

    Goodwin, Alan; Orlik, Yuri

    2000-01-01

    Uses a video presentation of six situations relating to the evaporation and boiling of liquids and the escape of dissolved gases from solution and investigates graduate scientists' understanding of the concepts of boiling and evaporation. (Author/YDS)

  6. Pool boiling of water on nano-structured micro wires at sub-atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Arya, Mahendra; Khandekar, Sameer; Pratap, Dheeraj; Ramakrishna, S. Anantha

    2016-09-01

    Past decades have seen active research in enhancement of boiling heat transfer by surface modifications. Favorable surface modifications are expected to enhance boiling efficiency. Several interrelated mechanisms such as capillarity, surface energy alteration, wettability, cavity geometry, wetting transitions, geometrical features of surface morphology, etc., are responsible for change in the boiling behavior of modified surfaces. Not much work is available on pool boiling at low pressures on microscale/nanoscale geometries; low pressure boiling is attractive in many applications wherein low operating temperatures are desired for a particular working fluid. In this background, an experimental setup was designed and developed to investigate the pool boiling performance of water on (a) plain aluminum micro wire (99.999 % pure) and, (b) nano-porous alumina structured aluminum micro wire, both having diameter of 250 µm, under sub-atmospheric pressure. Nano-structuring on the plain wire surface was achieved via anodization. Two samples, A and B of anodized wires, differing by the degree of anodization were tested. The heater length scale (wire diameter) was much smaller than the capillary length scale. Pool boiling characteristics of water were investigated at three different sub-atmospheric pressures of 73, 123 and 199 mbar (corresponding to T sat = 40, 50 and 60 °C). First, the boiling characteristics of plain wire were measured. It was noticed that at sub-atmospheric pressures, boiling heat transfer performance for plain wire was quite low due to the increased bubble sizes and low nucleation site density. Subsequently, boiling performance of nano-structured wires (both Sample A and Sample B) was compared with plain wire and it was noted that boiling heat transfer for the former was considerably enhanced as compared to the plain wire. This enhancement is attributed to increased nucleation site density, change in wettability and possibly due to enhanced pore scale evaporation. A preliminary estimation of the bubble growth rates, measured by high speed videography, was undertaken and compared with classical bubble growth rate correlations. It was observed that the average bubble departure sizes on Sample B were larger as compared to plain wire, due to larger surface forces holding the bubble before departure. Bubble condensation in the thermal boundary layer was also captured.

  7. 39 CFR 3050.2 - Documentation of periodic reports.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... traced back to public documents or to primary data sources; and (3) Be submitted in a form, and be... Postal Service shall identify any input data that have changed, list any quantification techniques that...

  8. Integrated Nuclear and Conventional Theater Warfare Simulation (INWARS) Documentation. Part IV. User’s Manual Component. Volume III. EAD C2I Inputs.

    DTIC Science & Technology

    1980-02-08

    hours 0 Input Format: Integer b. Creatina Rescource Allocation Blocks The creation of a specific resource allocation block as a directive component is...is directed. 0 Range: N/A . Input Format: INT/NUC/CHM b. Creatina Employment Packages An employment package block has the structure portrayed in Figure

  9. Electric kettles as a source of human lead exposure.

    PubMed

    Wigle, D T; Charlebois, E J

    1978-01-01

    Five hundred and seventy-four households in Ottawa were surveyed to evaluate water boiled in electric kettles as a source of lead exposure. Samples of boiled water exceeded the World Health Organization mandatory limit for drinking water (50 microgram/l) in 42.5% of the households. Excessive lead concentrations were observed in 62.8% of water samples from kettles more than 5 years old. Multiple regression analysis indicated that age, sex, and cigarette smoking habits, but not lead concentration in boiled water, nor weekly consumption of boiled water were significantly associated with blood-lead concentration. Lead exposure from electric kettles may be a significant problem only in infants receiving formula prepared with boiled water.

  10. An efficient reliable method to estimate the vaporization enthalpy of pure substances according to the normal boiling temperature and critical properties

    PubMed Central

    Mehmandoust, Babak; Sanjari, Ehsan; Vatani, Mostafa

    2013-01-01

    The heat of vaporization of a pure substance at its normal boiling temperature is a very important property in many chemical processes. In this work, a new empirical method was developed to predict vaporization enthalpy of pure substances. This equation is a function of normal boiling temperature, critical temperature, and critical pressure. The presented model is simple to use and provides an improvement over the existing equations for 452 pure substances in wide boiling range. The results showed that the proposed correlation is more accurate than the literature methods for pure substances in a wide boiling range (20.3–722 K). PMID:25685493

  11. An efficient reliable method to estimate the vaporization enthalpy of pure substances according to the normal boiling temperature and critical properties.

    PubMed

    Mehmandoust, Babak; Sanjari, Ehsan; Vatani, Mostafa

    2014-03-01

    The heat of vaporization of a pure substance at its normal boiling temperature is a very important property in many chemical processes. In this work, a new empirical method was developed to predict vaporization enthalpy of pure substances. This equation is a function of normal boiling temperature, critical temperature, and critical pressure. The presented model is simple to use and provides an improvement over the existing equations for 452 pure substances in wide boiling range. The results showed that the proposed correlation is more accurate than the literature methods for pure substances in a wide boiling range (20.3-722 K).

  12. Heat Transfer Enhancement due to Bubble Pumping in FC-72 Near the Saturation Temperature

    DTIC Science & Technology

    1991-03-01

    boiling, (2) reducing wall superheat during nucleate boiling and (3) enhancing critical heat flux ( Mudawar , 1990) . Since the heat transfer potential of...flux from a simulated electronic chip attached to the wall of a vertical rectangular channel was determined by Mudawar and Madox (1988). They concluded...Surface Boiling," Industrial and Engineering Chemistry, vol. 41, No. 9, 1949. Mudawar , I., and D.E. Maddox, Critical Heat Flux in Subcooled Flow Boiling

  13. Boiling regimes of impacting drops on a heated substrate under reduced pressure

    NASA Astrophysics Data System (ADS)

    van Limbeek, Michiel A. J.; Hoefnagels, Paul B. J.; Shirota, Minori; Sun, Chao; Lohse, Detlef

    2018-05-01

    We experimentally investigate the boiling behavior of impacting ethanol drops on a heated smooth sapphire substrate at pressures ranging from P =0.13 bar to atmospheric pressure. We employ frustrated total internal reflection imaging to study the wetting dynamics of the contact between the drop and the substrate. The spreading drop can be in full contact (contact boiling), it can partially touch (transition boiling), or the drop can be fully levitated (Leidenfrost boiling). We show that the temperature of the boundary between contact and transition boiling shows at most a weak dependence on the impact velocity, but a significant decrease with decreasing ambient gas pressure. A striking correspondence is found between the temperature of this boundary and the static Leidenfrost temperature for all pressures. We therefore conclude that both phenomena share the same mechanism and are dominated by the dynamics taking place at the contact line. On the other hand, the boundary between transition boiling and Leidenfrost boiling, i.e., the dynamic Leidenfrost temperature, increases for increasing impact velocity for all ambient gas pressures. Moreover, the dynamic Leidenfrost temperature coincides for pressures between P =0.13 and 0.54 bar, whereas for atmospheric pressure the dynamic Leidenfrost temperature is slightly elevated. This indicates that the dynamic Leidenfrost temperature is at most weakly dependent on the enhanced evaporation by the lower saturation temperature of the liquid.

  14. Transient nucleate pool boiling in microgravity: Some initial results

    NASA Technical Reports Server (NTRS)

    Merte, Herman, Jr.; Lee, H. S.; Ervin, J. S.

    1994-01-01

    Variable gravity provides an opportunity to test the understanding of phenomena which are considered to depend on buoyancy, such as nucleate pool boiling. The active fundamental research in nucleate boiling has sought to determine the mechanisms or physical processes responsible for its high effectiveness, manifested by the high heat flux levels possible with relatively low temperature differences. Earlier research on nucleate pool boiling at high gravity levels under steady conditions demonstrated quantitatively that the heat transfer is degraded as the buoyancy normal to the heater surfaced increases. Correspondingly, it was later shown, qualitatively for short periods of time only, that nucleate boiling heat transfer is enhanced as the buoyancy normal to the heater surface is reduced. It can be deduced that nucleate pool boiling can be sustained as a quasi-steady process provided that some means is available to remove the vapor generated from the immediate vicinity of the heater surface. One of the objectives of the research, the initial results of which are presented here, is to quantify the heat transfer associated with boiling in microgravity. Some quantitative results of nucleate pool boiling in high quality microgravity (a/g approximately 10(exp -5)) of 5s duration, obtained in an evacuated drop tower, are presented here. These experiments were conducted as precursors of longer term space experiments. A transient heating technique is used, in which the heater surface is a transparent gold film sputtered on a qua rtz substrate, simultaneously providing the mean surface temperature from resistance thermometry and viewing of the boiling process both from beneath and across the surface. The measurement of the transient mean heater surface temperature permits the computation, by numerical means, of the transient mean heat transfer coefficient. The preliminary data obtained demonstrates that a quasi-steady boiling process can occur in microgravity if the bulk liquid subcooling is sufficiently high and if the imposed heat flux is sufficiently low. This is attributed to suface tension effects at the liquid-vapor-solid junction causing rewetting to take place, sustaining the nucleate boiling. Otherwise, dryout at the heater surface will occur, as observed.

  15. PHYSICAL PROPERTIES OF FLUORINATED PROPANE AND BUTANE DERIVATIVES AS ALTERNATIVE REFRIGERANTS

    EPA Science Inventory

    Physical property measurements are presented for 24 fluorinated propane and butane derivatives and one fluorinated ether. These measurements include melting point, boiling point, vapor pressure below the boiling point, heat of vaporization at the boiling point, critical propertie...

  16. Search and Graph Database Technologies for Biomedical Semantic Indexing: Experimental Analysis.

    PubMed

    Segura Bedmar, Isabel; Martínez, Paloma; Carruana Martín, Adrián

    2017-12-01

    Biomedical semantic indexing is a very useful support tool for human curators in their efforts for indexing and cataloging the biomedical literature. The aim of this study was to describe a system to automatically assign Medical Subject Headings (MeSH) to biomedical articles from MEDLINE. Our approach relies on the assumption that similar documents should be classified by similar MeSH terms. Although previous work has already exploited the document similarity by using a k-nearest neighbors algorithm, we represent documents as document vectors by search engine indexing and then compute the similarity between documents using cosine similarity. Once the most similar documents for a given input document are retrieved, we rank their MeSH terms to choose the most suitable set for the input document. To do this, we define a scoring function that takes into account the frequency of the term into the set of retrieved documents and the similarity between the input document and each retrieved document. In addition, we implement guidelines proposed by human curators to annotate MEDLINE articles; in particular, the heuristic that says if 3 MeSH terms are proposed to classify an article and they share the same ancestor, they should be replaced by this ancestor. The representation of the MeSH thesaurus as a graph database allows us to employ graph search algorithms to quickly and easily capture hierarchical relationships such as the lowest common ancestor between terms. Our experiments show promising results with an F1 of 69% on the test dataset. To the best of our knowledge, this is the first work that combines search and graph database technologies for the task of biomedical semantic indexing. Due to its horizontal scalability, ElasticSearch becomes a real solution to index large collections of documents (such as the bibliographic database MEDLINE). Moreover, the use of graph search algorithms for accessing MeSH information could provide a support tool for cataloging MEDLINE abstracts in real time. ©Isabel Segura Bedmar, Paloma Martínez, Adrián Carruana Martín. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 01.12.2017.

  17. Possible Mechanism for Formation of Nonwettable "Dry Spots" on a Heated Surface during Nucleate Pool Boiling: II. Feedwater Stop Regime

    NASA Astrophysics Data System (ADS)

    Zhukov, Yu. M.; Urtenov, D. S.

    2017-12-01

    The problems of simulation of heterogeneous nucleate pool boiling on a horizontal surface on the ascending branch of the boiling curve from the formation of a steam lens (SL) to the boiling crisis are considered. The proposed hypothesis provides in a number of cases a logically consistent interpretation of experiments and outlines the organizational principle of transferring the wall-liquid-steam system into the regime of nonwettable "dry spot" formation. The model includes the following types of nucleate boiling: (a) cyclic boiling with the contact line reverse to the bubble bottom center and bubble departure from the surface (at low heat flux q and the contact angle θ < 90°); (b) single steam bubble conversion into a steam lens, i.e., local film boiling with the possibility of spreading of a single "dry spot" at the variation of the contact angle θ ≥ 90°, and substantial growth of the departure diameter D d and SL lifetime τd; (c) formation of a single steam cluster of four SLs at a given pressure, the liquid underheating, and the average wall overheating.

  18. Impact of Fe powder sintering and soldering in production of porous heating surface on flow boiling heat transfer in minichannels

    NASA Astrophysics Data System (ADS)

    Depczyński, Wojciech; Piasecki, Artur; Piasecka, Magdalena; Strąk, Kinga

    2017-10-01

    This paper focuses on identification of the impact of porous heated surface on flow boiling heat transfer in a rectangular minichannel. The heated element for Fluorinert FC-72 was a thin plate made of Haynes-230. Infrared thermography was used to determine changes in the temperature on its outer smooth side. The porous surface in contact with the fluid in the minichannel was produced in two processes: sintering or soldering of Fe powder to the plate. The results were presented as relationships between the heat transfer coefficient and the distance from the minichannel inlet and as boiling curves. Results obtained for using a smooth heated plate at the saturated boiling region were also presented to compare. In the subcooled boiling region, at a higher heat flux, the heat transfer coefficient was slightly higher for the surface prepared via soldering. In the saturated boiling region, the local heat transfer coefficients obtained for the smooth plate surface were slightly higher than those achieved from the sintered plate surface. The porous structures formed have low thermal conductivity. This may induce noticeable thermal resistance at the diffusion bridges of the sintered structures, in particular within the saturated boiling region.

  19. Sensory quality and appropriateness of raw and boiled Jerusalem artichoke tubers (Helianthus tuberosus L.).

    PubMed

    Bach, Vibe; Kidmose, Ulla; Thybo, Anette K; Edelenbos, Merete

    2013-03-30

    The aim of the present study was to investigate the sensory attributes, dry matter and sugar content of five varieties of Jerusalem artichoke tubers and their relation to the appropriateness of the tubers for raw and boiled preparation. Sensory evaluation of raw and boiled Jerusalem artichoke tubers was performed by a trained sensory panel and a semi-trained consumer panel of 49 participants, who also evaluated the appropriateness of the tubers for raw and boiled preparation. The appropriateness of raw Jerusalem artichoke tubers was related to Jerusalem artichoke flavour, green nut flavour, sweetness and colour intensity, whereas the appropriateness of boiled tubers was related to celeriac aroma, sweet aroma, sweetness and colour intensity. In both preparations the variety Dwarf stood out from the others by being the least appropriate tuber. A few sensory attributes can be used as predictors of the appropriateness of Jerusalem artichoke tubers for raw and boiled consumption. Knowledge on the quality of raw and boiled Jerusalem artichoke tubers can be used to inform consumers on the right choice of raw material and thereby increase the consumption of the vegetable. © 2012 Society of Chemical Industry.

  20. Film boiling of mercury droplets

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.; Schoessow, G. J.; Chmielewski, C. E.

    1975-01-01

    Vaporization times of mercury droplets in Leidenfrost film boiling on a flat horizontal plate are measured in an air atmosphere. Extreme care was used to prevent large amplitude droplet vibrations and surface wetting; therefore, these data can be compared to film boiling theory. Diffusion from the upper surface of the drop appears as a dominant mode of mass transfer from the drop. A closed-form analytical film boiling theory is developed to account for the diffusive evaporation. Reasonable agreement between data and theory is seen.

  1. Information Management Platform for Data Analytics and Aggregation (IMPALA) System Design Document

    NASA Technical Reports Server (NTRS)

    Carnell, Andrew; Akinyelu, Akinyele

    2016-01-01

    The System Design document tracks the design activities that are performed to guide the integration, installation, verification, and acceptance testing of the IMPALA Platform. The inputs to the design document are derived from the activities recorded in Tasks 1 through 6 of the Statement of Work (SOW), with the proposed technical solution being the completion of Phase 1-A. With the documentation of the architecture of the IMPALA Platform and the installation steps taken, the SDD will be a living document, capturing the details about capability enhancements and system improvements to the IMPALA Platform to provide users in development of accurate and precise analytical models. The IMPALA Platform infrastructure team, data architecture team, system integration team, security management team, project manager, NASA data scientists and users are the intended audience of this document. The IMPALA Platform is an assembly of commercial-off-the-shelf (COTS) products installed on an Apache-Hadoop platform. User interface details for the COTS products will be sourced from the COTS tools vendor documentation. The SDD is a focused explanation of the inputs, design steps, and projected outcomes of every design activity for the IMPALA Platform through installation and validation.

  2. Minimizing structural vibrations with Input Shaping (TM)

    NASA Technical Reports Server (NTRS)

    Singhose, Bill; Singer, Neil

    1995-01-01

    A new method for commanding machines to move with increased dynamic performance was developed. This method is an enhanced version of input shaping, a patented vibration suppression algorithm. This technique intercepts a command input to a system command that moves the mechanical system with increased performance and reduced residual vibration. This document describes many advanced methods for generating highly optimized shaping sequences which are tuned to particular systems. The shaping sequence is important because it determines the trade off between move/settle time of the system and the insensitivity of the input shaping algorithm to variations or uncertainties in the machine which can be controlled. For example, a system with a 5 Hz resonance that takes 1 second to settle can be improved to settle instantaneously using a 0.2 shaping sequence (thus improving settle time by a factor of 5). This system could vary by plus or minus 15% in its natural frequency and still have no apparent vibration. However, the same system shaped with a 0.3 second shaping sequence could tolerate plus or minus 40% or more variation in natural frequency. This document describes how to generate sequences that maximize performance, sequences that maximize insensitivity, and sequences that trade off between the two. Several software tools are documented and included.

  3. Stability and potency of raw and boiled shrimp extracts for skin prick test.

    PubMed

    Pariyaprasert, Wipada; Piboonpocanun, Surapon; Jirapongsananuruk, Orathai; Visitsunthorn, Nualanong

    2015-06-01

    The difference of stability between raw and boiled shrimp extracts used in prick tests has never been investigated despite its potential consequences in tests development. The aim of this study was to compare the raw and boiled shrimp extracts of two species; Macrobrachium rosenbergii (freshwater shrimp) and Penaeus monodon (seawater shrimp) held at 4 ?C for different periods of time for their stability and potency in vivo by using the skin prick test (SPT) method. Raw and boiled M. rosenbergii and P. monodon extracts were prepared and stored at 4 ?C for 1, 7, 14 and 30 days. Thirty patients were pricked with raw and boiled shrimp extracts at all storage times, as well as prick to prick skin test (PTP) to fresh raw and boiled shrimps of both species. The mean wheal diameter (MWD) resulting from prick tests for all shrimp extracts was measured and compared. The shrimp extracts of all storage times yielded positive skin test results in the range of 90% - 100%. Raw P. monodon extracts induced larger wheals than boiled extracts at all storage times. There was no significant difference of MWD between raw and boiled M. rosenbergii extracts on day 1, 7, and 14. Significant correlations between MWD of PTP to fresh shrimps and SPT to all shrimp extracts were observed. All shrimp extracts were sterile at all storage times. Raw and boiled M. rosenbergii and P. monodon extracts were stable and sterile at 4 ?C for at most 30 days. SPT with these extracts induced more than 10 mm in shrimp allergy patients and the results were comparable with PTP to fresh shrimps.

  4. Correlation of physical properties with molecular structure for some dicyclic hydrocarbons having high thermal-energy release per unit volume -- 2-alkylbiphenyl and the two isomeric 2-alkylbicyclohexyl series

    NASA Technical Reports Server (NTRS)

    Goodman, Irving A; Wise, Paul H

    1952-01-01

    Three homologous series of related dicyclic hydrocarbons are presented for comparison on the basis of their physical properties, which include net heat of combustion, density, melting point, boiling point, and kinematic viscosity. The three series investigated include the 2-n-alkylbiphenyl, 2-n-alkylbicyclohexyl (high boiling), and 2-n-alkylbiphenyls (low boiling) series through c sub 16, in addition to three branched-chain (isopropyl, sec-butyl, and isobutyl) 2-alkylbiphenyls and their corresponding 2-alkylbicyclohexyls. The physical properties of the low-boiling and high-boiling isomers of 2-sec-butylbicyclohexyl and 2-isobutylbicyclohexyl are reported herein for the first time.

  5. Detection of vapor nanobubbles by small angle neutron scattering (SANS)

    NASA Astrophysics Data System (ADS)

    Popov, Emilian; He, Lilin; Dominguez-Ontiveros, Elvis; Melnichenko, Yuri

    2018-04-01

    Experiments using boiling water on untreated (roughness 100-300 nm) metal surfaces using small-angle neutron scattering (SANS) show the appearance of structures that are 50-70 nm in size when boiling is present. The scattering signal disappears when the boiling ceases, and no change in the signal is detected at any surface temperature condition below saturation. This confirms that the signal is caused by vapor nanobubbles. Two boiling regimes are evaluated herein that differ by the degree of subcooling (3-10 °C). A polydisperse spherical model with a log-normal distribution fits the SANS data well. The size distribution indicates that a large number of nanobubbles exist on the surface during boiling, and some of them grow into large bubbles.

  6. Pretest thermal analysis of the Tuff Water Migration/In-Situ Heater Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bulmer, B.M.

    This report describes the pretest thermal analysis for the Tuff Water Migration/In-Situ Heater Experiment to be conducted in welded tuff in G-tunnel, Nevada Test Site. The parametric thermal modeling considers variable boiling temperature, tuff thermal conductivity, tuff emissivity, and heater operating power. For nominal tuff properties, some near field boiling is predicted for realistic operating power. However, the extent of boiling will be strongly determined by the ambient (100% water saturated) rock thermal conductivity. In addition, the thermal response of the heater and of the tuff within the dry-out zone (i.e., bounded by boiling isotherm) is dependent on the temperaturemore » variation of rock conductivity as well as the extent of induced boiling.« less

  7. The Fentanyl Patch Boil-Up - A Novel Method of Opioid Abuse.

    PubMed

    Schauer, Cameron K M W; Shand, James A D; Reynolds, Thomas M

    2015-11-01

    Fentanyl is a potent opioid analgesic used in the treatment of pain. Transdermal fentanyl patches are now widely utilized as an acceptable and efficacious method of medication delivery. Unfortunately, the potential for their abuse is well recognized. Previous case reports have documented deaths after intravenous (IV) misuse of fentanyl which had been extracted from Duragesic (liquid reservoir type) patches. We present a case of IV fentanyl abuse after the extraction from a Mylan (matrix type) patch. This method of abuse has not previously been described in the literature. © 2015 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  8. External Cooling of the BWR Mark I and II Drywell Head as a Potential Accident Mitigation Measure – Scoping Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robb, Kevin R.

    This report documents a scoping assessment of a potential accident mitigation action applicable to the US fleet of boiling water reactors with Mark I and II containments. The mitigation action is to externally flood the primary containment vessel drywell head using portable pumps or other means. A scoping assessment of the potential benefits of this mitigation action was conducted focusing on the ability to (1) passively remove heat from containment, (2) prevent or delay leakage through the drywell head seal (due to high temperatures and/or pressure), and (3) scrub radionuclide releases if the drywell head seal leaks.

  9. 17. RW Meyer Sugar Mill: 18761889. Boiling House, 1878. View: ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. RW Meyer Sugar Mill: 1876-1889. Boiling House, 1878. View: Southwest corner of boiling house. The amimal-powered cane mill is located in the undergrowth in the right foreground, - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  10. Structural changes of malt proteins during boiling.

    PubMed

    Jin, Bei; Li, Lin; Liu, Guo-Qin; Li, Bing; Zhu, Yu-Kui; Liao, Liao-Ning

    2009-03-09

    Changes in the physicochemical properties and structure of proteins derived from two malt varieties (Baudin and Guangmai) during wort boiling were investigated by differential scanning calorimetry, SDS-PAGE, two-dimensional electrophoresis, gel filtration chromatography and circular dichroism spectroscopy. The results showed that both protein content and amino acid composition changed only slightly during boiling, and that boiling might cause a gradual unfolding of protein structures, as indicated by the decrease in surface hydrophobicity and free sulfhydryl content and enthalpy value, as well as reduced alpha-helix contents and markedly increased random coil contents. It was also found that major component of both worts was a boiling-resistant protein with a molecular mass of 40 kDa, and that according to the two-dimensional electrophoresis and SE-HPLC analyses, a small amount of soluble aggregates might be formed via hydrophobic interactions. It was thus concluded that changes of protein structure caused by boiling that might influence beer quality are largely independent of malt variety.

  11. The Impact of Input Quality on Early Sign Development in Native and Non-Native Language Learners

    ERIC Educational Resources Information Center

    Lu, Jenny; Jones, Anna; Morgan, Gary

    2016-01-01

    There is debate about how input variation influences child language. Most deaf children are exposed to a sign language from their non-fluent hearing parents and experience a delay in exposure to accessible language. A small number of children receive language input from their deaf parents who are fluent signers. Thus it is possible to document the…

  12. Comparison of direct boiling method with commercial kits for extracting fecal microbiome DNA by Illumina sequencing of 16S rRNA tags.

    PubMed

    Peng, Xin; Yu, Ke-Qiang; Deng, Guan-Hua; Jiang, Yun-Xia; Wang, Yu; Zhang, Guo-Xia; Zhou, Hong-Wei

    2013-12-01

    Low cost and high throughput capacity are major advantages of using next generation sequencing (NGS) techniques to determine metagenomic 16S rRNA tag sequences. These methods have significantly changed our view of microorganisms in the fields of human health and environmental science. However, DNA extraction using commercial kits has shortcomings of high cost and time constraint. In the present study, we evaluated the determination of fecal microbiomes using a direct boiling method compared with 5 different commercial extraction methods, e.g., Qiagen and MO BIO kits. Principal coordinate analysis (PCoA) using UniFrac distances and clustering showed that direct boiling of a wide range of feces concentrations gave a similar pattern of bacterial communities as those obtained from most of the commercial kits, with the exception of the MO BIO method. Fecal concentration by boiling method affected the estimation of α-diversity indices, otherwise results were generally comparable between boiling and commercial methods. The operational taxonomic units (OTUs) determined through direct boiling showed highly consistent frequencies with those determined through most of the commercial methods. Even those for the MO BIO kit were also obtained by the direct boiling method with high confidence. The present study suggested that direct boiling could be used to determine the fecal microbiome and using this method would significantly reduce the cost and improve the efficiency of the sample preparation for studying gut microbiome diversity. © 2013 Elsevier B.V. All rights reserved.

  13. Initial fuel temperature effects on burning rate of pool fire.

    PubMed

    Chen, Bing; Lu, Shou-Xiang; Li, Chang-Hai; Kang, Quan-Sheng; Lecoustre, Vivien

    2011-04-15

    The influence of the initial fuel temperature on the burning behavior of n-heptane pool fire was experimentally studied at the State Key Laboratory of Fire Science (SKLFS) large test hall. Circular pool fires with diameters of 100mm, 141 mm, and 200 mm were considered with initial fuel temperatures ranging from 290 K to 363 K. Burning rate and temperature distributions in fuel and vessel wall were recorded during the combustion. The burning rate exhibited five typical stages: initial development, steady burning, transition, bulk boiling burning, and decay. The burning rate during the steady burning stage was observed to be relatively independent of the initial fuel temperature. In contrast, the burning rate of the bulk boiling burning stage increases with increased initial fuel temperature. It was also observed that increased initial fuel temperature decreases the duration of steady burning stage. When the initial temperature approaches the boiling point, the steady burning stage nearly disappears and the burning rate moves directly from the initial development stage to the transition stage. The fuel surface temperature increases to its boiling point at the steady burning stage, shortly after ignition, and the bulk liquid reaches boiling temperature at the bulk boiling burning stage. No distinguished cold zone is formed in the fuel bed. However, boiling zone is observed and the thickness increases to its maximum value when the bulk boiling phenomena occurs. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Numerical and Experimental Study of Mechanisms Involved in Boiling Histotripsy.

    PubMed

    Pahk, Ki Joo; Gélat, Pierre; Sinden, David; Dhar, Dipok Kumar; Saffari, Nader

    2017-12-01

    The aim of boiling histotripsy is to mechanically fractionate tissue as an alternative to thermal ablation for therapeutic applications. In general, the shape of a lesion produced by boiling histotripsy is tadpole like, consisting of a head and a tail. Although many studies have demonstrated the efficacy of boiling histotripsy for fractionating solid tumors, the exact mechanisms underpinning this phenomenon are not yet well understood, particularly the interaction of a boiling vapor bubble with incoming incident shockwaves. To investigate the mechanisms involved in boiling histotripsy, a high-speed camera with a passive cavitation detection system was used to observe the dynamics of bubbles produced in optically transparent tissue-mimicking gel phantoms exposed to the field of a 2.0-MHz high-intensity focused ultrasound (HIFU) transducer. We observed that boiling bubbles were generated in a localized heated region and cavitation clouds were subsequently induced ahead of the expanding bubble. This process was repeated with HIFU pulses and eventually resulted in a tadpole-shaped lesion. A simplified numerical model describing the scattering of the incident ultrasound wave by a vapor bubble was developed to help interpret the experimental observations. Together with the numerical results, these observations suggest that the overall size of a lesion induced by boiling histotripsy is dependent on the sizes of (i) the heated region at the HIFU focus and (ii) the backscattered acoustic field by the original vapor bubble. Copyright © 2017 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  15. Nutrient changes and antinutrient contents of beniseed and beniseed soup during cooking using a Nigerian traditional method.

    PubMed

    Agiang, M A; Umoh, I B; Essien, A I; Eteng, M U

    2010-10-15

    Evaluations of the effect of prolong cooking on the nutrient and antinutrient composition ofbeniseed and beniseed soup were carried out in this study. Proximate, mineral, vitamin A and C and antinutrient compositions of raw beniseed (BS-R), beniseed boiled (BSB) for 15, 30, 45 and 60 min and beniseed soup (BSS) cooked for the same intervals of time were assessed. Results of the proximate composition analyses showed that raw and boiled beniseed had lower moisture content (5.39-5.51%) than beniseed soups (10.06-15.20%). Nitrogen-free extract (total carbohydrates), fats and phosphorus contents were improved in both the boiled beniseed and beniseed soup while calcium and potassium were increased in the boiled seeds and soup samples respectively. Moisture (in the raw and boiled beniseed), ash, magnesium, zinc, iron contents in both the seed and soup were unchanged in all the samples. Vitamins A and C levels of both boiled beniseed and beniseed soup samples were reduced with increase in cooking time. Beniseed soup had higher protein contents than both the raw and boiled beniseed which decreased with increase in cooking time. Beniseed samples provided good sources of energy (572.97-666.05 kcal/100 g). Except for phytate, the levels of antinutrients tested were lower in the raw and boiled beniseed than in the soup samples which decreased with increase in cooking time. The results are discussed with reference to the effect of prolonged cooking on the nutrient requirements of consumers.

  16. Effects of preparation methods on protein and amino acid contents of various eggs available in Malaysian local markets.

    PubMed

    Ismail, Maznah; Mariod, Abdalbasit; Pin, Sia Soh

    2013-01-01

    The effect of preparation methods (raw, half-boiled and hard-boiled) on protein and amino acid contents, as well as the protein quality (amino acid score) of regular, kampung and nutrient enriched Malaysian eggs was investigated. The protein content was determined using a semi-micro Kjeldahl method whereas the amino acid composition was determined using HPLC. The protein content of raw regular, kampung and nutrient enriched eggs were 49.9 ±0.2%, 55.8 ±0.2% and 56.5 ±0.5%, respectively. The protein content of hard-boiled eggs of regular, kampung and nutrient enriched eggs was 56.8 ±0.1%, 54.7 ±0.1%, and 53.7 ±0.5%, while that for half-boiled eggs of regular, kampung and nutrient enriched eggs was 54.7 ±0.6%, 53.4 ±0.4%, and 55.1 ±0.7%, respectively. There were significant differences (p < 0.05) in protein and amino acid contents of half-boiled, hard-boiled as compared with raw samples, and valine was found as the limiting amino acid. It was found that there were significant differences (p < 0.05) of total amino score in regular, kampung and nutrient enriched eggs after heat treatments.Furthermore, hard-boiling (100°C) for 10 minutes and half-boiling (100°C) for 5 minutes affects the total amino score, which in turn alter the protein quality of the egg.

  17. ATMOSPHERIC DISPERSAL AND DEPOSITION OF TEPHRA FROM A POTENTIAL VOLCANIC ERUPTION AT YUCCA MOUNTAIN, NEVADA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C. Harrington

    2004-10-25

    The purpose of this model report is to provide documentation of the conceptual and mathematical model (Ashplume) for atmospheric dispersal and subsequent deposition of ash on the land surface from a potential volcanic eruption at Yucca Mountain, Nevada. This report also documents the ash (tephra) redistribution conceptual model. These aspects of volcanism-related dose calculation are described in the context of the entire igneous disruptive events conceptual model in ''Characterize Framework for Igneous Activity'' (BSC 2004 [DIRS 169989], Section 6.1.1). The Ashplume conceptual model accounts for incorporation and entrainment of waste fuel particles associated with a hypothetical volcanic eruption through themore » Yucca Mountain repository and downwind transport of contaminated tephra. The Ashplume mathematical model describes the conceptual model in mathematical terms to allow for prediction of radioactive waste/ash deposition on the ground surface given that the hypothetical eruptive event occurs. This model report also describes the conceptual model for tephra redistribution from a basaltic cinder cone. Sensitivity analyses and model validation activities for the ash dispersal and redistribution models are also presented. Analyses documented in this model report update the previous documentation of the Ashplume mathematical model and its application to the Total System Performance Assessment (TSPA) for the License Application (TSPA-LA) igneous scenarios. This model report also documents the redistribution model product outputs based on analyses to support the conceptual model. In this report, ''Ashplume'' is used when referring to the atmospheric dispersal model and ''ASHPLUME'' is used when referencing the code of that model. Two analysis and model reports provide direct inputs to this model report, namely ''Characterize Eruptive Processes at Yucca Mountain, Nevada and Number of Waste Packages Hit by Igneous Intrusion''. This model report provides direct inputs to the TSPA, which uses the ASHPLUME software described and used in this model report. Thus, ASHPLUME software inputs are inputs to this model report for ASHPLUME runs in this model report. However, ASHPLUME software inputs are outputs of this model report for ASHPLUME runs by TSPA.« less

  18. Anti-obesity effects of boiled tuna extract in mice with obesity induced by a high-fat diet.

    PubMed

    Kim, Youngmin; Kwon, Mi-Jin; Choi, Jeong-Wook; Lee, Min-Kyeong; Kim, Chorong; Jung, Jaehun; Aprianita, Heny; Nam, Heesop; Nam, Taek-Jeong

    2016-10-01

    The aim of this study was to examine the anti-obesity effects of boiled tuna extract in C57BL/6N mice with obesity induced by a high-fat diet (HFD). We determined the anti-obesity effects of boiled tuna extract (100, 200, or 400 mg/kg) on the progression of HFD-induced obesity for 10 weeks. The mice were divided into 5 groups as follows: the normal diet (ND) group (n=10); the HFD group (n=10); the mice fed HFD and 100 mg/kg boiled tuna extract group (n=10); those fed a HFD and 200 mg/kg boiled tuna extract group (n=10); and those fed a HFD and 400 mg/kg boiled tuna extract group (n=10). Changes in body weight, fat content, serum lipid levels and lipogenic enzyme levels were measured. The consumption of boiled tuna extract lowered epididymal tissue weight and exerted anti-obesity effects, as reflected by the serum glucose, triglyceride (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL‑C), low-density lipoprotein cholesterol (LDL-C), insulin and leptin levels. In addition, we demonstrated changes in liver adipogenic- and lipogenic-related protein expression by western blot analysis. Boiled tuna extract downregulated the levels of the CCAAT/enhancer-binding protein α, β and δ (C/EBPα, β, δ), and peroxisome proliferator-activated receptor-γ (PPAR-γ) adipocyte marker genes. Boiled tuna extract also attenuated adipogenic and lipogenic gene expression, namely the levels of fatty acid synthase (FAS), lipoprotein lipase (LPL), acetyl-CoA carboxylase (ACC), glucose transporter type 4 (Glut4) and phosphorylated adenosine monophosphate-activated protein kinase α and β (AMPKα, β) in a dose-dependent manner. Moreover, the consumption of boiled tuna extract restored the levels of superoxide dismutase (SOD), catalase (CAT), glutamic oxaloacetic transaminase (GOT), glutamic-pyruvate transaminase (GPT), aspartate transaminase (AST) and alanine transaminase (ALT) to those of the control group. These results suggest that boiled tuna extract attenuates the progression of obesity by stimulating fatty acid oxidation through the upregulation of AMPK genes, as well as by inhibiting the synthesis of adipogenic and lipogenic enzymes. These characteristics of boiled tuna extract highlight its potential anti-obesity effects.

  19. 10 CFR 50.55a - Codes and standards.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... specified in § 50.55, except that each combined license for a boiling or pressurized water-cooled nuclear... boiling or pressurized water-cooled nuclear power facility is subject to the conditions in paragraphs (f... performed. (2) Systems and components of boiling and pressurized water-cooled nuclear power reactors must...

  20. Assessment of in situ butanol recovery by vacuum during acetone butanol ethanol (ABE) fermentation

    USDA-ARS?s Scientific Manuscript database

    Butanol fermentation is product limiting due to butanol toxicity to microbial cells. Butanol (boiling point: 118 deg C) boils at a greater temperature than water (boiling point: 100 deg C) and application of vacuum technology to integrated acetone-butanol-ethanol (ABE) fermentation and recovery may ...

  1. Investigation on the heat transfer characteristics during flow boiling of liquefied natural gas in a vertical micro-fin tube

    NASA Astrophysics Data System (ADS)

    Xu, Bin; Shi, Yumei; Chen, Dongsheng

    2014-03-01

    This paper presents an experimental investigation on the heat transfer characteristics of liquefied natural gas flow boiling in a vertical micro-fin tube. The effect of heat flux, mass flux and inlet pressure on the flow boiling heat transfer coefficients was analyzed. The Kim, Koyama, and two kinds of Wellsandt correlations with different Ftp coefficients were used to predict the flow boiling heat transfer coefficients. The predicted results showed that the Koyama correlation was the most accurate over the range of experimental conditions.

  2. Occurrence of nitrate, nitrite and volatile nitrosamines in certain feedstuffs and animal products.

    PubMed

    Ologhobo, A D; Adegede, H I; Maduagiwu, E N

    1996-01-01

    Nitrate, nitrite and nitrosamines were analysed in poultry feeds, meat and eggs. The poultry meat was boiled and roasted while the eggs were raw and boiled, and the effects of these processing treatments on the level of these compounds were investigated. Nitrate levels in the meat samples were significantly (P < 0.05) reduced by boiling and roasting, with boiling being more effective. Nitrite levels were also reduced significantly by processing (P < 0.05). The feed samples contained levels of nitrate which were significantly different (P < 0.05) from one producer to another. Nitrite levels were generally low in all feed samples. Nitrosamines were not detected in any of the feed samples and in the meat samples except in two samples of boiled meat which contained 0.001 g/kg each.

  3. 20. RW Meyer Sugar Mill: 18761889. Boiling House Interior, 1878. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. RW Meyer Sugar Mill: 1876-1889. Boiling House Interior, 1878. View: Remains of south wall. The molasses storage pits are below the floor in the foreground. The remaining piece of floor indicates the form of the entire floor. The sorghum pan and boiling range flue slope from left to right (east to west) and permitted batches of cane juice to flow through the boiling pan by gravity. The beams, joists, truss work are built of northwest pine. The sides and floor boards are built of redwood. The boiling range flue is built of fire-brick, masonry, and portland cement. The corrugated roof appears to be a later addition, not contemporary with mill operation. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  4. Capillary hydrodynamics and transport processes during phase change in microscale systems

    NASA Astrophysics Data System (ADS)

    Kuznetsov, V. V.

    2017-09-01

    The characteristics of two-phase gas-liquid flow and heat transfer during flow boiling and condensing in micro-scale heat exchangers are discussed in this paper. The results of numerical simulation of the evaporating liquid film flowing downward in rectangular minichannel of the two-phase compact heat exchanger are presented and the peculiarities of microscale heat transport in annular flow with phase changes are discussed. Presented model accounts the capillarity induced transverse flow of liquid and predicts the microscale heat transport processes when the nucleate boiling becomes suppressed. The simultaneous influence of the forced convection, nucleate boiling and liquid film evaporation during flow boiling in plate-fin heat exchangers is considered. The equation for prediction of the flow boiling heat transfer at low flux conditions is presented and verified using experimental data.

  5. Nutrition content of brisket point end of part Simental Ongole Crossbred meat in boiled various temperature

    NASA Astrophysics Data System (ADS)

    Riyanto, J.; Sudibya; Cahyadi, M.; Aji, A. P.

    2018-01-01

    This aim of this study was to determine the quality of nutritional contents of beef brisket point end of Simental Ongole Crossbred meat in various boiling temperatures. Simental Ongole Crossbred had been fattened for 9 months. Furthermore, they were slaughtered at slaughterhouse and brisket point end part of meat had been prepared to analyse its nutritional contents using Food Scan. These samples were then boiled at 100°C for 0 (TR), 15 (R15), and 30 (R30) minutes, respectively. The data was analysed using Randomized Complete Design (CRD) and Duncan’s multiple range test (DMRT) had been conducted to differentiate among three treatments. The results showed that boiling temperatures significantly affected moisture, and cholesterol contents of beef (P<0.05) while fat content was not significantly affected by boiling temperatures. The boiling temperature decreased beef water contents from 72.77 to 70.84%, on the other hand, the treatment increased beef protein and cholesterol contents from 20.77 to 25.14% and 47.55 to 50.45 mg/100g samples, respectively. The conclusion of this study was boiling of beef at 100°C for 15 minutes and 30 minutes decreasing water content and increasing protein and cholesterol contents of brisket point end of Simental Ongole Crossbred beef.

  6. Controlled tissue emulsification produced by high intensity focused ultrasound shock waves and millisecond boiling

    PubMed Central

    Khokhlova, Tatiana D.; Canney, Michael S.; Khokhlova, Vera A.; Sapozhnikov, Oleg A.; Crum, Lawrence A.; Bailey, Michael R.

    2011-01-01

    In high intensity focused ultrasound (HIFU) applications, tissue may be thermally necrosed by heating, emulsified by cavitation, or, as was recently discovered, emulsified using repetitive millisecond boiling caused by shock wave heating. Here, this last approach was further investigated. Experiments were performed in transparent gels and ex vivo bovine heart tissue using 1, 2, and 3 MHz focused transducers and different pulsing schemes in which the pressure, duty factor, and pulse duration were varied. A previously developed derating procedure to determine in situ shock amplitudes and the time-to-boil was refined. Treatments were monitored using B-mode ultrasound. Both inertial cavitation and boiling were observed during exposures, but emulsification occurred only when shocks and boiling were present. Emulsified lesions without thermal denaturation were produced with shock amplitudes sufficient to induce boiling in less than 20 ms, duty factors of less than 0.02, and pulse lengths shorter than 30 ms. Higher duty factors or longer pulses produced varying degrees of thermal denaturation combined with mechanical emulsification. Larger lesions were obtained using lower ultrasound frequencies. The results show that shock wave heating and millisecond boiling is an effective and reliable way to emulsify tissue while monitoring the treatment with ultrasound. PMID:22088025

  7. Enhancement of Pool Boiling Heat Transfer and Control of Bubble Motion in Microgravity Using Electric Fields - BCOEL

    NASA Technical Reports Server (NTRS)

    Herman, Cila; Iacona, Estelle; Acquaviva, Tom; Coho, Bill; Grant, Nechelle; Nahra, Henry; Sankaran, Subramanian; Taylor, Al; Julian, Ed; Robinson, Dale; hide

    2001-01-01

    The BCOEL project focuses on improving pool boiling heat transfer and bubble control in microgravity by exposing the fluid to electric fields. The electric fields induce a body force that can replace gravity in the low gravity environment, and enhance bubble removal from thc heated surface. A better understanding of microgravity effects on boiling with and without electric fields is critical to the proper design of the phase-change-heat-removal equipment for use in space-based applications. The microgravity experiments will focus on the visualization of bubble formation and shape during boiling. Heat fluxes on the boiling surface will be measured, and, together with the measured driving temperature differences, used to plot boiling curvcs for different electric field magnitudes. Bubble formation and boiling processes were found to be extremely sensitive to g-jitter. The duration of the experimental run is critical in order to achieve steady state in microgravity experiments. The International Space Station provides conditions suitable for such experiments. The experimental appararus to be used in the study is described in the paper. The apparatus will be tested in the KC-135 first, and microgravity experiments will be conducted on board of the International Space Station using the Microgravity Science Glovebox as the experimental platform.

  8. The changes of astaxanthin content and chemical characteristics of tiger prawn (Penaeus monodon) due to processing: boiling, smoking and frying

    NASA Astrophysics Data System (ADS)

    Swastawati, F.

    2018-03-01

    Food processing using high temperatures can cause changes in pigment color and chemical characteristics in food stuffs, including prawn. The aim of this research was to evaluate the changes in pigment and chemical characteristics of tiger prawn caused by boiling, smoking and frying. Ten kg of tiger prawn was boiled, smoked and fried at the temperature of ± 100 °C for ± 10 min. The results showed that boiling, smoking and frying gave a significant effect (P < 0.05) on the astaxanthin pigment, pH, moisture, protein, salt content, Aw and color. The content of astaxanthin pigments in fresh prawn, boiled prawn, smoked prawn and fried prawn was: 132.79 ± 1.5 μg·g-1 82.89 ± 0.92 μg·g-1 78.28 ± 0.1 μg·g-1 and 91.35 ± 2.59 μg·g-1, respectively. The value of °Hue on fresh prawn, boiled prawn, smoked prawn and fried prawn was: 87.85° 52.5° 55.94° and 53.98°. The tiger prawn processed by the smoking method has preferable by panelist rather than processed by boiling and frying.

  9. Infrared thermometry study of nanofluid pool boiling phenomena

    PubMed Central

    2011-01-01

    Infrared thermometry was used to obtain first-of-a-kind, time- and space-resolved data for pool boiling phenomena in water-based nanofluids with diamond and silica nanoparticles at low concentration (<0.1 vol.%). In addition to macroscopic parameters like the average heat transfer coefficient and critical heat flux [CHF] value, more fundamental parameters such as the bubble departure diameter and frequency, growth and wait times, and nucleation site density [NSD] were directly measured for a thin, resistively heated, indium-tin-oxide surface deposited onto a sapphire substrate. Consistent with other nanofluid studies, the nanoparticles caused deterioration in the nucleate boiling heat transfer (by as much as 50%) and an increase in the CHF (by as much as 100%). The bubble departure frequency and NSD were found to be lower in nanofluids compared with water for the same wall superheat. Furthermore, it was found that a porous layer of nanoparticles built up on the heater surface during nucleate boiling, which improved surface wettability compared with the water-boiled surfaces. Using the prevalent nucleate boiling models, it was possible to correlate this improved surface wettability to the experimentally observed reductions in the bubble departure frequency, NSD, and ultimately to the deterioration in the nucleate boiling heat transfer and the CHF enhancement. PMID:21711754

  10. Predictors of Drinking Water Boiling and Bottled Water Consumption in Rural China: A Hierarchical Modeling Approach.

    PubMed

    Cohen, Alasdair; Zhang, Qi; Luo, Qing; Tao, Yong; Colford, John M; Ray, Isha

    2017-06-20

    Approximately two billion people drink unsafe water. Boiling is the most commonly used household water treatment (HWT) method globally and in China. HWT can make water safer, but sustained adoption is rare and bottled water consumption is growing. To successfully promote HWT, an understanding of associated socioeconomic factors is critical. We collected survey data and water samples from 450 rural households in Guangxi Province, China. Covariates were grouped into blocks to hierarchically construct modified Poisson models and estimate risk ratios (RR) associated with boiling methods, bottled water, and untreated water. Female-headed households were most likely to boil (RR = 1.36, p < 0.01), and among boilers those using electric kettles rather than pots had higher income proxies (e.g., per capita TV ownership RR = 1.42, p < 0.01). Higher-income households with younger, literate, and male heads were more likely to purchase (frequently contaminated) bottled water, or use electric kettles if they boiled. Our findings show that boiling is not an undifferentiated practice, but one with different methods of varying effectiveness, environmental impact, and adoption across socioeconomic strata. Our results can inform programs to promote safer and more efficient boiling using electric kettles, and suggest that if rural China's economy continues to grow then bottled water use will increase.

  11. Enhancement of Pool Boiling Heat Transfer and Control of Bubble Motion in Microgravity Using Electric Fields (BCOEL)

    NASA Technical Reports Server (NTRS)

    Herman, Cila; Iacona, Estelle; Acquaviva, Tom; Coho, Bill; Grant, Nechelle; Nahra, Henry; Taylor, Al; Julian, Ed; Robinson, Dale; VanZandt, Dave

    2001-01-01

    The BCOEL project focuses on improving pool boiling heat transfer and bubble control in microgravity by exposing the fluid to electric fields. The electric fields induce a body force that can replace gravity in the low gravity environment, and enhance bubble removal from the heated surface. A better understanding of microgravity effects on boiling with and without electric fields is critical to the proper design of the phase-change-heat-removal equipment for use in spacebased applications. The microgravity experiments will focus on the visualization of bubble formation and shape during boiling. Heat fluxes on the boiling surface will be measured, and, together with the measured driving temperature differences, used to plot boiling curves for different electric field magnitudes. Bubble formation and boiling processes were found to be extremely sensitive to g-jitter. The duration of the experimental run is critical in order to achieve steady state in microgravity experiments. The International Space Station provides conditions suitable for such experiments. The experimental apparatus to be used in the study is described in the paper. The apparatus will be tested in the KC-135 first, and microgravity experiments will be conducted on board of the International Space Station using the Microgravity Science Glovebox as the experimental platform.

  12. Boiling-Water Reactor internals aging degradation study. Phase 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luk, K.H.

    1993-09-01

    This report documents the results of an aging assessment study for boiling water reactor (BWR) internals. Major stressors for BWR internals are related to unsteady hydrodynamic forces generated by the primary coolant flow in the reactor vessel. Welding and cold-working, dissolved oxygen and impurities in the coolant, applied loads and exposures to fast neutron fluxes are other important stressors. Based on results of a component failure information survey, stress corrosion cracking (SCC) and fatigue are identified as the two major aging-related degradation mechanisms for BWR internals. Significant reported failures include SCC in jet-pump holddown beams, in-core neutron flux monitor drymore » tubes and core spray spargers. Fatigue failures were detected in feedwater spargers. The implementation of a plant Hydrogen Water Chemistry (HWC) program is considered as a promising method for controlling SCC problems in BWR. More operating data are needed to evaluate its effectiveness for internal components. Long-term fast neutron irradiation effects and high-cycle fatigue in a corrosive environment are uncertainty factors in the aging assessment process. BWR internals are examined by visual inspections and the method is access limited. The presence of a large water gap and an absence of ex-core neutron flux monitors may handicap the use of advanced inspection methods, such as neutron noise vibration measurements, for BWR.« less

  13. Influence of Boiling Duration of GCSB-5 on Index Compound Content and Antioxidative and Anti-inflammatory Activity.

    PubMed

    Lee, In-Hee; Chung, Hwa-Jin; Shin, Joon-Shik; Ha, In-Hyuk; Kim, Me-Riong; Koh, Wonil; Lee, Jinho

    2017-01-01

    GCSB-5, an herbal drug composition with an anti-inflammatory effect, is prepared by boiling, which is the most common herbal extraction method in traditional Korean medicine. Several parameters are involved in the process, i.e., extractant type, herb-to-extractant ratio, extraction temperature and pressure, and total boiling time. The aim of this study was to examine the influence of boiling time on index compound amount and the antioxidative and anti-inflammatory activities of GCSB-5. Different samples of GCSB-5 were obtained by decocting for 30, 60, 90, 120, 150, and 240 min. Each sample was tested for hydrogen ion concentration (pH), total soluble solid content (TSSC), marker compound profiles, and antioxidative and anti-inflammatory activity. pH was found to decrease while TSSC increased with extended decoction. Marker compound contents for GCSB-5 (acanthoside D for Acanthopanax sessiliflorus Seem, 20-hydroxyecdysone for Achyranthes japonica Nakai, and pinoresinol diglucoside for Eucommia ulmoides Oliver) remained relatively constant regardless of the length of boiling. Total D-glucose amount increased with longer boiling. The antioxidative and anti-inflammatory potentials of GCSB-5 were not substantially affected by decoction duration. Biological characteristics and marker compound content of GCSB-5 were not altered significantly in prolonged boiling. Longer boiling duration of GCSB-5 did not increase yield in a time-dependent manner, but yields of 210 and 240 min samples were significantly higherHydrogen ion concentration of GCSB-5 samples decreased while total soluble solid content and D-glucose concentration levels increased with boiling durationAlthough concentrations of some index compounds increased with extended boiling duration of GCSB-5, increase was small and not in a direct proportional relationshipAntioxidative and anti-inflammatory properties of GCSB-5 were not substantially affected by decoction duration. Abbreviations used: CAM: Complementary and alternative medicine; KIOM: Korea Institute of Oriental Medicine; KMD: Korean medicine doctor; TSSC: Total soluble solid content; pH: Hydrogen ion concentration; HPLC: High-performance liquid chromatography; NO: Nitric oxide; NO 2 : Nitric dioxide; LPS: Lipopolysaccharide; DMSO: Dimethyl sulfoxide.

  14. Incidence and recurrence of boils and abscesses within the first year: a cohort study in UK primary care

    PubMed Central

    Shallcross, Laura J; Hayward, Andrew C; Johnson, Anne M; Petersen, Irene

    2015-01-01

    Background Boils and abscesses are common in primary care but the burden of recurrent infection is unknown. Aim To investigate the incidence of and risk factors for recurrence of boil or abscess for individuals consulting primary care. Design and setting Cohort study using electronic health records from primary care in the UK. Method The Health Improvement Network (THIN) database was used to identify patients who had consulted their GP for a boil or abscess. Poisson regression was used to examine the relationship between age, sex, social deprivation, and consultation and to calculate the incidence of, and risk factors for, repeat consultation for a boil or abscess. Results Overall, 164 461 individuals were identified who consulted their GP for a boil or abscess between 1995 and 2010. The incidence of first consultation for a boil or abscess was 512 (95% CI = 509 to 515) per 100 000 person-years in females and 387 (95% CI = 385 to 390) per 100 000 person-years in males. First consultations were most frequent in younger age groups (16–34 years) and those with the greatest levels of social deprivation. The rate of repeat consultation for a new infection during follow up was 107.5 (95% confidence interval [CI] = 105.6 to 109.4) per 1000 person-years. Obesity (relative risk [RR] 1.3, 95% CI = 1.2 to 1.3), diabetes (RR 1.3, 95% CI = 1.2 to 1.3), smoking (RR 1.3, 95% CI = 1.2 to 1.4), age <30 years (RR 1.2, 95% CI = 1.2 to 1.3), and prior antibiotic use (RR 1.4, 95% CI = 1.3–1.4) were all associated with repeat consultation for a boil or abscess. Conclusion Ten percent of patients with a boil or abscess develop a repeat boil or abscess within 12 months. Obesity, diabetes, young age, smoking, and prescription of an antibiotic in the 6 months before initial presentation were independently associated with recurrent infection, and may represent options for prevention. PMID:26412844

  15. Graphics and composite material computer program enhancements for SPAR

    NASA Technical Reports Server (NTRS)

    Farley, G. L.; Baker, D. J.

    1980-01-01

    User documentation is provided for additional computer programs developed for use in conjunction with SPAR. These programs plot digital data, simplify input for composite material section properties, and compute lamina stresses and strains. Sample problems are presented including execution procedures, program input, and graphical output.

  16. Contingency Contractor Optimization Phase 3 Sustainment Database Design Document - Contingency Contractor Optimization Tool - Prototype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frazier, Christopher Rawls; Durfee, Justin David; Bandlow, Alisa

    The Contingency Contractor Optimization Tool – Prototype (CCOT-P) database is used to store input and output data for the linear program model described in [1]. The database allows queries to retrieve this data and updating and inserting new input data.

  17. Assessing the microbiological performance and potential cost of boiling drinking water in urban Zambia.

    PubMed

    Psutka, Rebecca; Peletz, Rachel; Michelo, Sandford; Kelly, Paul; Clasen, Thomas

    2011-07-15

    Boiling is the most common method of disinfecting water in the home and the benchmark against which other point-of-use water treatment is measured. In a six-week study in peri-urban Zambia, we assessed the microbiological effectiveness and potential cost of boiling among 49 households without a water connection who reported "always" or "almost always" boiling their water before drinking it. Source and household drinking water samples were compared weekly for thermotolerant coliforms (TTC), an indicator of fecal contamination. Demographics, costs, and other information were collected through surveys and structured observations. Drinking water samples taken at the household (geometric mean 7.2 TTC/100 mL, 95% CI, 5.4-9.7) were actually worse in microbiological quality than source water (geometric mean 4.0 TTC/100 mL, 95% CI, 3.1-5.1) (p < 0.001), although both are relatively low levels of contamination. Only 60% of drinking water samples were reported to have actually been boiled at the time of collection from the home, suggesting over-reporting and inconsistent compliance. However, these samples were of no higher microbiological quality. Evidence suggests that water quality deteriorated after boiling due to lack of residual protection and unsafe storage and handling. The potential cost of fuel or electricity for boiling was estimated at 5% and 7% of income, respectively. In this setting where microbiological water quality was relatively good at the source, safe-storage practices that minimize recontamination may be more effective in managing the risk of disease from drinking water at a fraction of the cost of boiling.

  18. Boiling behavior of sodium-potassium alloy in a bench-scale solar receiver

    NASA Astrophysics Data System (ADS)

    Moreno, J. B.; Andraka, C. E.; Moss, T. A.

    During 1989-90, a 75-kW(sub t) sodium reflux pool-boiler solar receiver was successfully demonstrated at Sandia National Laboratories. Significant features of this receiver include the following: (1) boiling sodium as the heat transfer medium, and (2) electric-discharge-machined (EDM) cavities as artificial nucleation sites to stabilize boiling. Since this first demonstration, design of a second-generation pool-boiler receiver that will bring the concept closer to commercialization has begun. For long life, the new receiver uses Haynes Alloy 230. For increased safety factors against film boiling and flooding, it has a refined shape and somewhat larger dimensions. To eliminate the need for trace heating, the receiver will boil the sodium-potassium alloy NaK-78 instead of sodium. To reduce manufacturing costs, it will use one of a number of alternatives to EDM cavities for stabilization of boiling. To control incipient-boiling superheats, especially during hot restarts, it will contain a small amount of inert gas. Before the new receiver design could be finalized, bench-scale tests of some of the proposed changes were necessary. A series of bench-scale pool boilers were built from Haynes Alloy 230 and filled with NaK-78. Various boiling-stabilizer candidates were incorporated into them, including laser-drilled cavities and a number of different sintered-powder-metal coatings. These bench-scale pool boilers have been operated at temperatures up to 750 C, heated by quartz lamps with incident radiant fluxes up to 95 W/sq cm. The effects of various orientations and added gases have been studied. Results of these studies are presented.

  19. Teaching Structure-Property Relationships: Investigating Molecular Structure and Boiling Point

    ERIC Educational Resources Information Center

    Murphy, Peter M.

    2007-01-01

    A concise, well-organized table of the boiling points of 392 organic compounds has facilitated inquiry-based instruction in multiple scientific principles. Many individual or group learning activities can be derived from the tabulated data of molecular structure and boiling point based on the instructor's education objectives and the students'…

  20. 16 CFR 1511.5 - Structural integrity tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... pounds for an additional 10 seconds. (c) Heat cycle deterioration. After the testing prescribed in... pacifier in boiling water for 5 minutes and then remove the pacifier and allow it to cool for 5 minutes in... in the boiling water for 5 minutes. The process shall be repeated for a total of 6 boiling/cooling...

  1. 16 CFR 1511.5 - Structural integrity tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... pounds for an additional 10 seconds. (c) Heat cycle deterioration. After the testing prescribed in... pacifier in boiling water for 5 minutes and then remove the pacifier and allow it to cool for 5 minutes in... in the boiling water for 5 minutes. The process shall be repeated for a total of 6 boiling/cooling...

  2. 16 CFR § 1511.5 - Structural integrity tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... pounds for an additional 10 seconds. (c) Heat cycle deterioration. After the testing prescribed in... pacifier in boiling water for 5 minutes and then remove the pacifier and allow it to cool for 5 minutes in... in the boiling water for 5 minutes. The process shall be repeated for a total of 6 boiling/cooling...

  3. 16 CFR 1511.5 - Structural integrity tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... pounds for an additional 10 seconds. (c) Heat cycle deterioration. After the testing prescribed in... pacifier in boiling water for 5 minutes and then remove the pacifier and allow it to cool for 5 minutes in... in the boiling water for 5 minutes. The process shall be repeated for a total of 6 boiling/cooling...

  4. Acoustic Behavior of Vapor Bubbles

    NASA Technical Reports Server (NTRS)

    Prosperetti, Andrea; Oguz, Hasan N.

    1996-01-01

    In a microgravity environment vapor bubbles generated at a boiling surface tend to remain near it for a long time. This affects the boiling heat transfer and in particular promotes an early transition to the highly inefficient film boiling regime. This paper describes the physical basis underlying attempts to remove the bubbles by means of pressure radiation forces.

  5. 78 FR 63516 - Initial Test Program of Emergency Core Cooling Systems for New Boiling-Water Reactors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-24

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0134] Initial Test Program of Emergency Core Cooling....79.1, ``Initial Test Program of Emergency Core Cooling Systems for New Boiling-Water Reactors.'' This... emergency core cooling systems (ECCSs) for boiling- water reactors (BWRs) whose licenses are issued after...

  6. Evaporation, Boiling and Bubbles

    ERIC Educational Resources Information Center

    Goodwin, Alan

    2012-01-01

    Evaporation and boiling are both terms applied to the change of a liquid to the vapour/gaseous state. This article argues that it is the formation of bubbles of vapour within the liquid that most clearly differentiates boiling from evaporation although only a minority of chemistry textbooks seems to mention bubble formation in this context. The…

  7. Generation of shockwave and vortex structures at the outflow of a boiling water jet

    NASA Astrophysics Data System (ADS)

    Alekseev, M. V.; Lezhnin, S. I.; Pribaturin, N. A.; Sorokin, A. L.

    2014-12-01

    Results of numerical simulation for shock waves and generation of vortex structures during unsteady outflow of boiling liquid jet are presented. The features of evolution of shock waves and vortex structures formation during unsteady outflow of boiling water are compared with corresponding structures during unsteady gas outflow.

  8. Early Onset of Nucleate Boiling on Gas-covered Biphilic Surfaces.

    PubMed

    Shen, Biao; Yamada, Masayuki; Hidaka, Sumitomo; Liu, Jiewei; Shiomi, Junichiro; Amberg, Gustav; Do-Quang, Minh; Kohno, Masamichi; Takahashi, Koji; Takata, Yasuyuki

    2017-05-17

    For phase-change cooling schemes for electronics, quick activation of nucleate boiling helps safeguard the electronics components from thermal shocks associated with undesired surface superheating at boiling incipience, which is of great importance to the long-term system stability and reliability. Previous experimental studies show that bubble nucleation can occur surprisingly early on mixed-wettability surfaces. In this paper, we report unambiguous evidence that such unusual bubble generation at extremely low temperatures-even below the boiling point-is induced by a significant presence of incondensable gas retained by the hydrophobic surface, which exhibits exceptional stability even surviving extensive boiling deaeration. By means of high-speed imaging, it is revealed that the consequently gassy boiling leads to unique bubble behaviour that stands in sharp contrast with that of pure vapour bubbles. Such findings agree qualitatively well with numerical simulations based on a diffuse-interface method. Moreover, the simulations further demonstrate strong thermocapillary flows accompanying growing bubbles with considerable gas contents, which is associated with heat transfer enhancement on the biphilic surface in the low-superheat region.

  9. Hydrolysis of Glycosidic Flavonoids during the Preparation of Danggui Buxue Tang: An Outcome of Moderate Boiling of Chinese Herbal Mixture

    PubMed Central

    Zhang, Wendy Li; Chen, Jian-Ping; Lam, Kelly Yin-Ching; Zhan, Janis Ya-Xian; Yao, Ping; Dong, Tina Ting-Xia; Tsim, Karl Wah-Keung

    2014-01-01

    Chemical change during boiling of herbal mixture is a puzzle. By using Danggui Buxue Tang (DBT), a herbal decoction that contains Astragali Radix (AR) and Angelicae Sinensis Radix (ASR), we developed a model in analyzing the hydrolysis of flavonoid glycosides during the boiling of herbal mixture in water. A proper preparation of DBT is of great benefit to the complete extraction of bioactive ingredients. Boiling of DBT in water increased the solubility of AR-derived astragaloside IV, calycosin, formononetin, calycosin-7-O-β-D-glucoside, and ononin in a time- and temperature-dependent manner: the amounts of these chemicals reached a peak at 2 h. The glycosidic resides of AR, calycosin-7-O-β-D-glucoside, and ononin could be hydrolyzed during the moderate boiling process to form calycosin and formononetin, respectively. The hydrolysis efficiency was strongly affected by pH, temperature, and amount of herbs. Interestingly, the preheated herbs were not able to show this hydrolytic activity. The current results supported the rationality of ancient preparation of DBT in boiling water by moderate heat. PMID:24744813

  10. Nucleate pool boiling: High gravity to reduced gravity; liquid metals to cryogens

    NASA Technical Reports Server (NTRS)

    Merte, Herman, Jr.

    1988-01-01

    Requirements for the proper functioning of equipment and personnel in reduced gravity associated with space platforms and future space station modules introduce unique problems in temperature control; power generation; energy dissipation; the storage, transfer, control and conditioning of fluids; and liquid-vapor separation. The phase change of boiling is significant in all of these. Although both pool and flow boiling would be involved, research results to date include only pool boiling because buoyancy effects are maximized for this case. The effective application of forced convection boiling heat transfer in the microgravity of space will require a well grounded and cogent understanding of the mechanisms involved. Experimental results are presented for pool boiling from a single geometrical configuration, a flat surface, covering a wide range of body forces from a/g = 20 to 1 to a/g = 0 to -1 for a cryogenic liquid, and from a/g = 20 to 1 for water and a liquid metal. Similarities in behavior are noted for these three fluids at the higher gravity levels, and may reasonably be expected to continue at reduced gravity levels.

  11. Large-scale Generation of Patterned Bubble Arrays on Printed Bi-functional Boiling Surfaces

    NASA Astrophysics Data System (ADS)

    Choi, Chang-Ho; David, Michele; Gao, Zhongwei; Chang, Alvin; Allen, Marshall; Wang, Hailei; Chang, Chih-Hung

    2016-04-01

    Bubble nucleation control, growth and departure dynamics is important in understanding boiling phenomena and enhancing nucleate boiling heat transfer performance. We report a novel bi-functional heterogeneous surface structure that is capable of tuning bubble nucleation, growth and departure dynamics. For the fabrication of the surface, hydrophobic polymer dot arrays are first printed on a substrate, followed by hydrophilic ZnO nanostructure deposition via microreactor-assisted nanomaterial deposition (MAND) processing. Wettability contrast between the hydrophobic polymer dot arrays and aqueous ZnO solution allows for the fabrication of heterogeneous surfaces with distinct wettability regions. Heterogeneous surfaces with various configurations were fabricated and their bubble dynamics were examined at elevated heat flux, revealing various nucleate boiling phenomena. In particular, aligned and patterned bubbles with a tunable departure frequency and diameter were demonstrated in a boiling experiment for the first time. Taking advantage of our fabrication method, a 6 inch wafer size heterogeneous surface was prepared. Pool boiling experiments were also performed to demonstrate a heat flux enhancement up to 3X at the same surface superheat using bi-functional surfaces, compared to a bare stainless steel surface.

  12. Cooking impact in color, pigments and volatile composition of grapevine leaves (Vitis vinifera L. var. Malvasia Fina and Touriga Franca).

    PubMed

    Lima, Adriano; Pereira, José Alberto; Baraldi, Ilton; Malheiro, Ricardo

    2017-04-15

    Grapevine leaves (Vitis vinifera L. var. Malvasia Fina and Touriga Franca) under culinary treatment (blanching and boiling at 60, 75 and 90min) were studied for their color, pigments and volatile fraction changes. Blanching and boiling caused a decrease in luminosity and a loss of green coloration in both varieties, while a yellow-brownish color arose. Significant correlations were established between the loss of green color (monochromatic variable a ∗ ) and the total chlorophylls content. The main volatiles in fresh leaves [(Z)-3-hexenal, (Z)-3-hexen-1-ol, and (Z)-3-hexenyl acetate] were drastically reduced by blanching and suppressed by boiling. Other compounds like pentanal and 6-methyl-5-hepten-2 one arose from blanching and boiling. A boiling time of 60min is adequate for the culinary process of grapevine leaves, since the product is considered edible and the pigments and volatile changes are not as drastic as observed at 75 and 90min of boiling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Dryout-type critical heat flux in vertical upward annular flow: effects of entrainment rate, initial entrained fraction and diameter

    NASA Astrophysics Data System (ADS)

    Wu, Zan; Wadekar, Vishwas; Wang, Chenglong; Sunden, Bengt

    2018-01-01

    This study aims to reveal the effects of liquid entrainment, initial entrained fraction and tube diameter on liquid film dryout in vertical upward annular flow for flow boiling. Entrainment and deposition rates of droplets were included in mass conservation equations to estimate the local liquid film mass flux in annular flow, and the critical vapor quality at dryout conditions. Different entrainment rate correlations were evaluated using flow boiling data of water and organic liquids including n-pentane, iso-octane and R134a. Effect of the initial entrained fraction (IEF) at the churn-to-annular flow transition was also investigated. A transitional Boiling number was proposed to separate the IEF-sensitive region at high Boiling numbers and the IEF-insensitive region at low Boiling numbers. Besides, the diameter effect on dryout vapor quality was studied. The dryout vapor quality increases with decreasing tube diameter. It needs to be pointed out that the dryout characteristics of submillimeter channels might be different because of different mechanisms of dryout, i.e., drying of liquid film underneath long vapor slugs and flow boiling instabilities.

  14. Formation and Growth of Micro and Macro Bubbles on Copper-Graphite Composite Surfaces

    NASA Technical Reports Server (NTRS)

    Chao, David F.; Sankovic, John M.; Motil, Brian J.; Zhang, Nengli

    2007-01-01

    Micro scale boiling behavior in the vicinity of graphite micro-fiber tips on the coppergraphite composite boiling surfaces is investigated. It is discovered that a large number of micro bubbles are formed first at the micro scratches and cavities on the copper matrix in pool boiling. In virtue of the non-wetting property of graphite, once the growing micro bubbles touch the graphite tips, the micro bubbles are sucked by the tips and merged into larger micro bubbles sitting on the tips. The micro bubbles grow rapidly and coalesce to form macro bubbles, each of which sitting on several tips. The growth processes of the micro and macro bubbles are analyzed and formulated followed by an analysis of bubble departure on the composite surfaces. Based on these analyses, the enhancement mechanism of the pool boiling heat transfer on the composite surfaces is clearly revealed. Experimental results of pool boiling heat transfer both for water and Freon-113 on the composite surfaces convincingly demonstrate the enhancement effects of the unique structure of Cu-Gr composite surfaces on boiling heat transfer.

  15. Model Documentation of Base Case Data | Regional Energy Deployment System

    Science.gov Websites

    Model | Energy Analysis | NREL Documentation of Base Case Data Model Documentation of Base Case base case of the model. The base case was developed simply as a point of departure for other analyses Base Case derives many of its inputs from the Energy Information Administration's (EIA's) Annual Energy

  16. Multiphase flow and phase change in microgravity: Fundamental research and strategic research for exploration of space

    NASA Technical Reports Server (NTRS)

    Singh, Bhim S.

    2003-01-01

    NASA is preparing to undertake science-driven exploration missions. The NASA Exploration Team's vision is a cascade of stepping stones. The stepping-stone will build the technical capabilities needed for each step with multi-use technologies and capabilities. An Agency-wide technology investment and development program is necessary to implement the vision. The NASA Exploration Team has identified a number of areas where significant advances are needed to overcome all engineering and medical barriers to the expansion of human space exploration beyond low-Earth orbit. Closed-loop life support systems and advanced propulsion and power technologies are among the areas requiring significant advances from the current state-of-the-art. Studies conducted by the National Academy of Science's National Research Council and Workshops organized by NASA have shown that multiphase flow and phase change play a crucial role in many of these advanced technology concepts. Lack of understanding of multiphase flow, phase change, and interfacial phenomena in the microgravity environment has been a major hurdle. An understanding of multiphase flow and phase change in microgravity is, therefore, critical to advancing many technologies needed. Recognizing this, the Office of Biological and Physical Research (OBPR) has initiated a strategic research thrust to augment the ongoing fundamental research in fluid physics and transport phenomena discipline with research especially aimed at understanding key multiphase flow related issues in propulsion, power, thermal control, and closed-loop advanced life support systems. A plan for integrated theoretical and experimental research that has the highest probability of providing data, predictive tools, and models needed by the systems developers to incorporate highly promising multiphase-based technologies is currently in preparation. This plan is being developed with inputs from scientific community, NASA mission planners and industry personnel. The fundamental research in multiphase flow and phase change in microgravity is aimed at developing better mechanistic understanding of pool boiling and ascertaining the effects of gravity on heat transfer and the critical heat flux. Space flight experiments conducted in space have shown that nucleate pool boiling can be sustained under certain conditions in the microgravity environment. New space flight experiments are being developed to provide more quantitative information on pool boiling in microgravity. Ground-based investigations are also being conducted to develop mechanistic models for flow and pool boiling. An overview of the research plan and roadmap for the strategic research in multiphase flow and phase change as well as research findings from the ongoing program will be presented.

  17. Experimental and numerical investigation of HyperVapotron heat transfer

    NASA Astrophysics Data System (ADS)

    Wang, Weihua; Deng, Haifei; Huang, Shenghong; Chu, Delin; Yang, Bin; Mei, Luoqin; Pan, Baoguo

    2014-12-01

    The divertor first wall and neutral beam injection (NBI) components of tokamak devices require high heat flux removal up to 20-30 MW m-2 for future fusion reactors. The water cooled HyperVapotron (HV) structure, which relies on internal grooves or fins and boiling heat transfer to maximize the heat transfer capability, is the most promising candidate. The HV devices, that are able to transfer large amounts of heat (1-20 MW m-2) efficiently, have therefore been developed specifically for this application. Until recently, there have been few attempts to observe the detailed bubble characteristics and vortex evolvement of coolant flowing inside their various parts and understand of the internal two-phase complex heat transfer mechanism behind the vapotron effect. This research builds the experimental facilities of HyperVapotron Loop-I (HVL-I) and Pressure Water HyperVapotron Loop-II (PWHL-II) to implement the subcooled boiling principle experiment in terms of typical flow parameters, geometrical parameters of test section and surface heat flux, which are similar to those of the ITER-like first wall and NBI components (EAST and MAST). The multiphase flow and heat transfer phenomena on the surface of grooves and triangular fins when the subcooled water flowed through were observed and measured with the planar laser induced fluorescence (PLIF) and high-speed photography (HSP) techniques. Particle image velocimetry (PIV) was selected to reveal vortex formation, the flow structure that promotes the vapotron effect during subcooled boiling. The coolant flow data for contributing to the understanding of the vapotron phenomenon and the assessment of how the design and operational conditions that might affect the thermal performance of the devices were collected and analysed. The subcooled flow boiling model and methods of HV heat transfer adopted in the considered computational fluid dynamics (CFD) code were evaluated by comparing the calculated wall temperatures with the experimentally measured values. It was discovered that the bubble and vortex characteristics in the HV are clearly heavily dependent on the internal geometry, flow conditions and input heat flux. The evaporation latent heat is the primary heat transfer mechanism of HV flow under the condition of high heat flux, and the heat transfer through convection is very limited. The percentage of wall heat flux going into vapour production is almost 70%. These relationships between the flow phenomena and thermal performance of the HV device are essential to study the mechanisms for the flow structure alterations for design optimization and improvements of the ITER-like devices' water cooling structure and plasma facing components for future fusion reactors.

  18. Prediction of gas chromatographic retention indices by the use of radial basis function neural networks.

    PubMed

    Yao, Xiaojun; Zhang, Xiaoyun; Zhang, Ruisheng; Liu, Mancang; Hu, Zhide; Fan, Botao

    2002-05-16

    A new method for the prediction of retention indices for a diverse set of compounds from their physicochemical parameters has been proposed. The two used input parameters for representing molecular properties are boiling point and molar volume. Models relating relationships between physicochemical parameters and retention indices of compounds are constructed by means of radial basis function neural networks. To get the best prediction results, some strategies are also employed to optimize the topology and learning parameters of the RBFNNs. For the test set, a predictive correlation coefficient R=0.9910 and root mean squared error of 14.1 are obtained. Results show that radial basis function networks can give satisfactory prediction ability and its optimization is less-time consuming and easy to implement.

  19. Capabilities and applications of the Program to Optimize Simulated Trajectories (POST). Program summary document

    NASA Technical Reports Server (NTRS)

    Brauer, G. L.; Cornick, D. E.; Stevenson, R.

    1977-01-01

    The capabilities and applications of the three-degree-of-freedom (3DOF) version and the six-degree-of-freedom (6DOF) version of the Program to Optimize Simulated Trajectories (POST) are summarized. The document supplements the detailed program manuals by providing additional information that motivates and clarifies basic capabilities, input procedures, applications and computer requirements of these programs. The information will enable prospective users to evaluate the programs, and to determine if they are applicable to their problems. Enough information is given to enable managerial personnel to evaluate the capabilities of the programs and describes the POST structure, formulation, input and output procedures, sample cases, and computer requirements. The report also provides answers to basic questions concerning planet and vehicle modeling, simulation accuracy, optimization capabilities, and general input rules. Several sample cases are presented.

  20. Hierarchic Agglomerative Clustering Methods for Automatic Document Classification.

    ERIC Educational Resources Information Center

    Griffiths, Alan; And Others

    1984-01-01

    Considers classifications produced by application of single linkage, complete linkage, group average, and word clustering methods to Keen and Cranfield document test collections, and studies structure of hierarchies produced, extent to which methods distort input similarity matrices during classification generation, and retrieval effectiveness…

  1. Culture Shock!! "Lesson" the Blow.

    ERIC Educational Resources Information Center

    Duffin, Ken

    1996-01-01

    Designing, developing, and implementing an electronic document management system involves preparation. Areas to consider when facilitating technological change include staff input and business and customer needs and wants. Further discussion addresses value assessment of document type, providing a pilot system for staff experiment and practice,…

  2. Airport Performance Model : Volume 2 - User's Manual and Program Documentation

    DOT National Transportation Integrated Search

    1978-10-01

    Volume II contains a User's manual and program documentation for the Airport Performance Model. This computer-based model is written in FORTRAN IV for the DEC-10. The user's manual describes the user inputs to the interactive program and gives sample...

  3. Experimental study of flash boiling spray vaporization through quantitative vapor concentration and liquid temperature measurements

    NASA Astrophysics Data System (ADS)

    Zhang, Gaoming; Hung, David L. S.; Xu, Min

    2014-08-01

    Flash boiling sprays of liquid injection under superheated conditions provide the novel solutions of fast vaporization and better air-fuel mixture formation for internal combustion engines. However, the physical mechanisms of flash boiling spray vaporization are more complicated than the droplet surface vaporization due to the unique bubble generation and boiling process inside a superheated bulk liquid, which are not well understood. In this study, the vaporization of flash boiling sprays was investigated experimentally through the quantitative measurements of vapor concentration and liquid temperature. Specifically, the laser-induced exciplex fluorescence technique was applied to distinguish the liquid and vapor distributions. Quantitative vapor concentration was obtained by correlating the intensity of vapor-phase fluorescence with vapor concentration through systematic corrections and calibrations. The intensities of two wavelengths were captured simultaneously from the liquid-phase fluorescence spectra, and their intensity ratios were correlated with liquid temperature. The results show that both liquid and vapor phase of multi-hole sprays collapse toward the centerline of the spray with different mass distributions under the flash boiling conditions. Large amount of vapor aggregates along the centerline of the spray to form a "gas jet" structure, whereas the liquid distributes more uniformly with large vortexes formed in the vicinity of the spray tip. The vaporization process under the flash boiling condition is greatly enhanced due to the intense bubble generation and burst. The liquid temperature measurements show strong temperature variations inside the flash boiling sprays with hot zones present in the "gas jet" structure and vortex region. In addition, high vapor concentration and closed vortex motion seem to have inhibited the heat and mass transfer in these regions. In summary, the vapor concentration and liquid temperature provide detailed information concerning the heat and mass transfer inside flash boiling sprays, which is important for the understanding of its unique vaporization process.

  4. Experimental Study of Subcooled Flow Boiling Heat Transfer on a Smooth Surface in Short-Term Microgravity

    NASA Astrophysics Data System (ADS)

    Zhang, Yonghai; Liu, Bin; Zhao, Jianfu; Deng, Yueping; Wei, Jinjia

    2018-06-01

    The flow boiling heat transfer characteristics of subcooled air-dissolved FC-72 on a smooth surface (chip S) were studied in microgravity by utilizing the drop tower facility in Beijing. The heater, with dimensions of 40 × 10 × 0.5 mm3 (length × width × thickness), was combined with two silicon chips with the dimensions of 20 × 10 × 0.5 mm3. High-speed visualization was used to supplement observation in the heat transfer and vapor-liquid two-phase flow characteristics. In the low and moderate heat fluxes region, the flow boiling of chip S at inlet velocity V = 0.5 m/s shows almost the same regulations as that in pool boiling. All the wall temperatures at different positions along the heater in microgravity are slightly lower than that in normal gravity, which indicates slight heat transfer enhancement. However, in the high heat flux region, the pool boiling of chip S shows much evident deterioration of heat transfer compared with that of flow boiling in microgravity. Moreover, the bubbles of flow boiling in microgravity become larger than that in normal gravity due to the lack of buoyancy Although the difference of the void fraction in x-y plain becomes larger with increasing heat flux under different gravity levels, it shows nearly no effect on heat transfer performance except for critical heat flux (CHF). Once the void fraction in y-z plain at the end of the heater equals 1, the vapor blanket will be formed quickly and transmit from downstream to upstream along the heater, and CHF occurs. Thus, the height of channel is an important parameter to determine CHF in microgravity at a fixed velocity. The flow boiling of chip S at inlet velocity V = 0.5 m/s shows higher CHF than that of pool boiling because of the inertia force, and the CHF under microgravity is about 78-92% of that in normal gravity.

  5. Nucleate Boiling Heat Transfer Studied Under Reduced-Gravity Conditions

    NASA Technical Reports Server (NTRS)

    Chao, David F.; Hasan, Mohammad M.

    2000-01-01

    Boiling is known to be a very efficient mode of heat transfer, and as such, it is employed in component cooling and in various energy-conversion systems. In space, boiling heat transfer may be used in thermal management, fluid handling and control, power systems, and on-orbit storage and supply systems for cryogenic propellants and life-support fluids. Recent interest in the exploration of Mars and other planets and in the concept of in situ resource utilization on the Martian and Lunar surfaces highlights the need to understand how gravity levels varying from the Earth's gravity to microgravity (1g = or > g/g(sub e) = or > 10(exp -6)g) affect boiling heat transfer. Because of the complex nature of the boiling process, no generalized prediction or procedure has been developed to describe the boiling heat transfer coefficient, particularly at reduced gravity levels. Recently, Professor Vijay K. Dhir of the University of California at Los Angeles proposed a novel building-block approach to investigate the boiling phenomena in low-gravity to microgravity environments. This approach experimentally investigates the complete process of bubble inception, growth, and departure for single bubbles formed at a well-defined and controllable nucleation site. Principal investigator Professor Vijay K. Dhir, with support from researchers from the NASA Glenn Research Center at Lewis Field, is performing a series of pool boiling experiments in the low-gravity environments of the KC 135 microgravity aircraft s parabolic flight to investigate the inception, growth, departure, and merger of bubbles from single- and multiple-nucleation sites as a function of the wall superheat and the liquid subcooling. Silicon wafers with single and multiple cavities of known characteristics are being used as test surfaces. Water and PF5060 (an inert liquid) were chosen as test liquids so that the role of surface wettability and the magnitude of the effect of interfacial tension on boiling in reduced gravity can be investigated.

  6. Study to evaluate the impact of heat treatment on water soluble vitamins in milk.

    PubMed

    Asadullah; Khair-un-nisa; Tarar, Omer Mukhtar; Ali, Syed Abdul; Jamil, Khalid; Begum, Askari

    2010-11-01

    To evaluate the effect of domestic boiling practice on the contents of water soluble vitamins of loose milk and quantitative comparison of these vitamins in Ultra High Temperature (UHT) treated packaged milk with that of boiled loose milk. Loose milk samples were collected from various localities of Karachi city (Pakistan). These samples were boiled in simulated household conditions for 5, 10 and 15 minutes. Ultra High Temperature (UHT) treated packaged milk samples of various brands were obtained from the local market. The aliquots were analyzed for water-soluble vitamins using High Performance Liquid Chromatography (HPLC) technique. The mean values and standard deviations for data were computed and compared as well as level of variations were also determined. Conventional boiling caused destruction of water soluble vitamins in milk i.e. vitamin 81 content in fresh milk decreased from 0.037 mg/100 g to 0.027 mg/100 g after 15 min boiling, whereas vitamin B2 from 0.115 to 0.084 mg/100 g, vitamin B3 0.062 to 0.044 mg/100 g, vitamin B6 0.025 to 0.019 mg/100 g and folic acid 3.38 to 2.40 microg/100 g. This accounted for a post-boiling decrease of about 27, 27, 29, 24 and 36% in vitamins B1, B2, B3, B6 and folic acid respectively. The values for vitamins B1, B2, B3, B6 and folic acid determined in boiled milk were significantly lower than UHT treated packaged milk samples by 25.9, 75.0, 54.5, 63.16 and 38.1% respectively. Conventional boiling caused drastic reduction in vitamin levels of loose milk samples. In comparison to this, UHT milk retained high levels of water soluble B-vitamins. Thus it could be envisaged that UHT treated milk provides better water soluble vitamins' nourishment than conventionally boiled milk (JPMA 60:909; 2010).

  7. Subcooled flow boiling critical heat flux (CHF) and its application to fusion energy components. Part II. A review of microconvective, experimental, and correlational aspects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd, R.D.

    Microconvective, instability, experimental, and correlational aspects of subcooled flow boiling critical heat flux (CHF) are summarized. The present understanding of CHF in subcooled flow boiling is reviewed and research directions that will permit the accommodation of higher heat fluxes are outlined. This survey (Parts I and II), which contains a representative coverage of the literature over the last 30 years, is concerned only with CHF in the subcooled flow boiling regime, and unless otherwise noted, all references to CHF are confined to that regime.

  8. A decade of evaluating the ecological effects of grass filter strips on channelized agricultural headwater streams

    USDA-ARS?s Scientific Manuscript database

    Grass filter strips are a widely used conservation practice in the Midwestern United States for reducing nutrient, pesticide, and sediment inputs into agricultural streams. Previous studies have documented the effectiveness of grass filter strips in reducing the input of agricultural pollutants, bu...

  9. Identification of quantitative trait loci associated with boiled seed hardness in soybean

    PubMed Central

    Hirata, Kaori; Masuda, Ryoichi; Tsubokura, Yasutaka; Yasui, Takeshi; Yamada, Tetsuya; Takahashi, Koji; Nagaya, Taiko; Sayama, Takashi; Ishimoto, Masao; Hajika, Makita

    2014-01-01

    Boiled seed hardness is an important factor in the processing of soybean food products such as nimame and natto. Little information is available on the genetic basis for boiled seed hardness, despite the wide variation in this trait. DNA markers linked to the gene controlling this trait should be useful in soybean breeding programs because of the difficulty of its evaluation. In this report, quantitative trait locus (QTL) analysis was performed to reveal the genetic factors associated with boiled seed hardness using a recombinant inbred line population developed from a cross between two Japanese cultivars, ‘Natto-shoryu’ and ‘Hyoukei-kuro 3’, which differ largely in boiled seed hardness, which in ‘Natto-shoryu’ is about twice that of ‘Hyoukei-kuro 3’. Two significantly stable QTLs, qHbs3-1 and qHbs6-1, were identified on chromosomes 3 and 6, for which the ‘Hyoukei-kuro 3’ alleles contribute to decrease boiled seed hardness for both QTLs. qHbs3-1 also showed significant effects in progeny of a residual heterozygous line and in a different segregating population. Given its substantial effect on boiled seed hardness, SSR markers closely linked to qHbs3-1, such as BARCSOYSSR_03_0165 and BARCSOYSSR_03_0185, could be useful for marker-assisted selection in soybean breeding. PMID:25914591

  10. 10 CFR Appendix A to Part 52 - Design Certification Rule for the U.S. Advanced Boiling Water Reactor

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Water Reactor A Appendix A to Part 52 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSES... Rule for the U.S. Advanced Boiling Water Reactor I. Introduction Appendix A constitutes the standard design certification for the U.S. Advanced Boiling Water Reactor (ABWR) design, in accordance with 10 CFR...

  11. 10 CFR Appendix A to Part 52 - Design Certification Rule for the U.S. Advanced Boiling Water Reactor

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Water Reactor A Appendix A to Part 52 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSES... Rule for the U.S. Advanced Boiling Water Reactor I. Introduction Appendix A constitutes the standard design certification for the U.S. Advanced Boiling Water Reactor (ABWR) design, in accordance with 10 CFR...

  12. 4. RW Meyer Sugar Mill: 18761889. Furnace doer for sugar ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. RW Meyer Sugar Mill: 1876-1889. Furnace doer for sugar boiling range. Manufactured by Honolulu Iron Works, Honolulu, 1879. Cost: $15.30. View: the furnace for the sugar boiling range was stoked from outside of the east wall of the boiling house. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  13. 76 FR 70331 - List of Approved Spent Fuel Storage Casks: MAGNASTOR ® System, Revision 2

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-14

    ... various boron-10 areal densities for use with Pressurized Water Reactor and Boiling Water Reactor baskets... add various boron-10 areal densities for use with Pressurized Water Reactor and Boiling Water Reactor....1.1 to add various boron-10 areal densities for use with Pressurized Water Reactor and Boiling Water...

  14. Mad Kids: How To Help Your Child Manage Anger.

    ERIC Educational Resources Information Center

    Beekman, Susan; Holmes, Jeanne

    2002-01-01

    Children move through the same anger cycle as adults and need similar coping strategies and problem solving skills. This paper presents pre-anger approaches, discussing what to do before the "boil-over" occurs, when the boiling point is reached, and after the boil-over. A sidebar presents a list of questions and activities parents can use with…

  15. Cooking under Pressure: Applying the Ideal Gas Law in the Kitchen

    ERIC Educational Resources Information Center

    Chen, Ling; Anderson, Jennifer Y.; Wang, Diane R.

    2010-01-01

    This case study uses a daily cooking scenario to demonstrate how the boiling point of water is directly related to the external pressures in order to reinforce the concepts of boiling and boiling point, apply ideal gas law, and relate chemical reaction rates with temperatures. It also extends its teaching to autoclaves used to destroy…

  16. Development of heat transfer enhancement techniques for external cooling of an advanced reactor vessel

    NASA Astrophysics Data System (ADS)

    Yang, Jun

    Nucleate boiling is a well-recognized means for passively removing high heat loads (up to ˜106 W/m2) generated by a molten reactor core under severe accident conditions while maintaining relatively low reactor vessel temperature (<800 °C). With the upgrade and development of advanced power reactors, however, enhancing the nucleate boiling rate and its upper limit, Critical Heat Flux (CHF), becomes the key to the success of external passive cooling of reactor vessel undergoing core disrupture accidents. In the present study, two boiling heat transfer enhancement methods have been proposed, experimentally investigated and theoretically modelled. The first method involves the use of a suitable surface coating to enhance downward-facing boiling rate and CHF limit so as to substantially increase the possibility of reactor vessel surviving high thermal load attack. The second method involves the use of an enhanced vessel/insulation design to facilitate the process of steam venting through the annular channel formed between the reactor vessel and the insulation structure, which in turn would further enhance both the boiling rate and CHF limit. Among the various available surface coating techniques, metallic micro-porous layer surface coating has been identified as an appropriate coating material for use in External Reactor Vessel Cooling (ERVC) based on the overall consideration of enhanced performance, durability, the ease of manufacturing and application. Since no previous research work had explored the feasibility of applying such a metallic micro-porous layer surface coating on a large, downward facing and curved surface such as the bottom head of a reactor vessel, a series of characterization tests and experiments were performed in the present study to determine a suitable coating material composition and application method. Using the optimized metallic micro-porous surface coatings, quenching and steady-state boiling experiments were conducted in the Sub-scale Boundary Layer Boiling (SBLB) test facility at Penn State to investigate the nucleate boiling and CHF enhancement effects of the surface coatings by comparing the measurements with those for a plain vessel without coatings. An overall enhancement in nucleate boiling rates and CHF limits up to 100% were observed. Moreover, combination of data from quenching experiments and steady-state experiments produced new sets of boiling curves, which covered both the nucleate and transient boiling regimes with much greater accuracy. Beside the experimental work, a theoretical CHF model has also been developed by considering the vapor dynamics and the boiling-induced two-phase motions in three separate regions adjacent to the heating surface. The CHF model is capable of predicting the performance of micro-porous coatings with given particle diameter, porosity, media permeability and thickness. It is found that the present CHF model agrees favorably with the experimental data. Effects of an enhanced vessel/insulation structure on the local nucleate boiling rate and CHF limit have also been investigated experimentally. It is observed that the local two-phase flow quantities such as the local void fraction, quality, mean vapor velocity, mean liquid velocity, and mean vapor and liquid mass flow rates could have great impact on the local surface heat flux as boiling of water takes place on the vessel surface. An upward co-current two-phase flow model has been developed to predict the local two-phase flow behavior for different flow channel geometries, which are set by the design of insulation structures. It is found from the two-phase flow visualization experiments and the two-phase flow model calculations that the enhanced vessel/insulation structure greatly improved the steam venting process at the minimum gap location compared to the performance of thermal insulation structures without enhancement. Moveover, depending on the angular location, steady-state boiling experiments with the enhanced insulation design showed an enhancement of 1.8 to 3.0 times in the local critical heat flux. Finally, nucleate boiling and CHF correlations were developed based on the data obtained from various quenching and steady-state boiling experiments. Additionally, CHF enhancement factors were determined and examined to show the separate and integral effects of the two ERVC enhancement methods. When both vessel coating and insulation structure were used simultaneously, the integral effect on CHF enhancement was found much less than the product of the two separate effects, indicating possible competing mechanisms (i.e., interference) between the two enhancement methods.

  17. DRI Model of the U.S. Economy -- Model Documentation

    EIA Publications

    1993-01-01

    Provides documentation on Data Resources, Inc., DRI Model of the U.S. Economy and the DRI Personal Computer Input/Output Model. It also describes the theoretical basis, structure and functions of both DRI models; and contains brief descriptions of the models and their equations.

  18. Cryogenic Boil-Off Reduction System

    NASA Astrophysics Data System (ADS)

    Plachta, David W.; Guzik, Monica C.

    2014-03-01

    A computational model of the cryogenic boil-off reduction system being developed by NASA as part of the Cryogenic Propellant Storage and Transfer technology maturation project has been applied to a range of propellant storage tanks sizes for high-performing in-space cryogenic propulsion applications. This effort focuses on the scaling of multi-layer insulation (MLI), cryocoolers, broad area cooling shields, radiators, solar arrays, and tanks for liquid hydrogen propellant storage tanks ranging from 2 to 10 m in diameter. Component scaling equations were incorporated into the Cryogenic Analysis Tool, a spreadsheet-based tool used to perform system-level parametric studies. The primary addition to the evolution of this updated tool is the integration of a scaling method for reverse turbo-Brayton cycle cryocoolers, as well as the development and inclusion of Self-Supporting Multi-Layer Insulation. Mass, power, and sizing relationships are traded parametrically to establish the appropriate loiter period beyond which this boil-off reduction system application reduces mass. The projected benefit compares passive thermal control to active thermal control, where active thermal control is evaluated for reduced boil-off with a 90 K shield, zero boil-off with a single heat interception stage at the tank wall, and zero boil-off with a second interception stage at a 90 K shield. Parametric studies show a benefit over passive storage at loiter durations under one month, in addition to showing a benefit for two-stage zero boil-off in terms of reducing power and mass as compared to single stage zero boil-off. Furthermore, active cooling reduces the effect of varied multi-layer insulation performance, which, historically, has been shown to be significant.

  19. An Experimental Study of Boiling in Reduced and Zero Gravity Fields

    NASA Technical Reports Server (NTRS)

    Usiskin, C. M.; Siegel, R.

    1961-01-01

    A pool boiling apparatus was mounted on a counterweighted platform which could be dropped a distance of nine feet. By varying the size of the counterweight, the effective gravity field on the equipment was adjusted between zero and unity. A study of boiling burnout in water indicated that a variation in the critical heat flux according to the one quarter power of gravity was reasonable. A consideration of the transient burnout process was necessary in order to properly interpret the data. A photographic study of nucleate boiling showed how the velocity of freely rising vapor bubbles decreased as gravity was reduced. The bubble diameters at the time of breakoff from the heated surface were found to vary inversely as gravity to the 1/3.5 power. Motion pictures were taken to illustrate both nucleate and film boiling in the low gravity range.

  20. Boiling point measurement of a small amount of brake fluid by thermocouple and its application.

    PubMed

    Mogami, Kazunari

    2002-09-01

    This study describes a new method for measuring the boiling point of a small amount of brake fluid using a thermocouple and a pear shaped flask. The boiling point of brake fluid was directly measured with an accuracy that was within approximately 3 C of that determined by the Japanese Industrial Standards method, even though the sample volume was only a few milliliters. The method was applied to measure the boiling points of brake fluid samples from automobiles. It was clear that the boiling points of brake fluid from some automobiles dropped to approximately 140 C from about 230 C, and that one of the samples from the wheel cylinder was approximately 45 C lower than brake fluid from the reserve tank. It is essential to take samples from the wheel cylinder, as this is most easily subjected to heating.

  1. Quantification of meat proportions by measuring DNA contents in raw and boiled sausages using matrix-adapted calibrators and multiplex real-time PCR.

    PubMed

    Köppel, René; Eugster, Albert; Ruf, Jürg; Rentsch, Jürg

    2012-01-01

    The quantification of meat proportions in raw and boiled sausage according to the recipe was evaluated using three different calibrators. To measure the DNA contents from beef, pork, sheep (mutton), and horse, a tetraplex real-time PCR method was applied. Nineteen laboratories analyzed four meat products each made of different proportions of beef, pork, sheep, and horse meat. Three kinds of calibrators were used: raw and boiled sausages of known proportions ranging from 1 to 55% of meat, and a dilution series of DNA from muscle tissue. In general, results generated using calibration sausages were more accurate than those resulting from the use of DNA from muscle tissue, and exhibited smaller measurement uncertainties. Although differences between uses of raw and boiled calibration sausages were small, the most precise and accurate results were obtained by calibration with fine-textured boiled reference sausages.

  2. Effects of different cooking methods on health-promoting compounds of broccoli*

    PubMed Central

    Yuan, Gao-feng; Sun, Bo; Yuan, Jing; Wang, Qiao-mei

    2009-01-01

    The effects of five domestic cooking methods, including steaming, microwaving, boiling, stir-frying, and stir-frying followed by boiling (stir-frying/boiling), on the nutrients and health-promoting compounds of broccoli were investigated. The results show that all cooking treatments, except steaming, caused significant losses of chlorophyll and vitamin C and significant decreases of total soluble proteins and soluble sugars. Total aliphatic and indole glucosinolates were significantly modified by all cooking treatments but not by steaming. In general, the steaming led to the lowest loss of total glucosinolates, while stir-frying and stir-frying/boiling presented the highest loss. Stir-frying and stir-frying/boiling, the two most popular methods for most homemade dishes in China, cause great losses of chlorophyll, soluble protein, soluble sugar, vitamin C, and glucosinolates, but the steaming method appears the best in retention of the nutrients in cooking broccoli. PMID:19650196

  3. Boiling local heat transfer enhancement in minichannels using nanofluids

    PubMed Central

    2013-01-01

    This paper reports an experimental study on nanofluid convective boiling heat transfer in parallel rectangular minichannels of 800 μm hydraulic diameter. Experiments are conducted with pure water and silver nanoparticles suspended in water base fluid. Two small volume fractions of silver nanoparticles suspended in water are tested: 0.000237% and 0.000475%. The experimental results show that the local heat transfer coefficient, local heat flux, and local wall temperature are affected by silver nanoparticle concentration in water base fluid. In addition, different correlations established for boiling flow heat transfer in minichannels or macrochannels are evaluated. It is found that the correlation of Kandlikar and Balasubramanian is the closest to the water boiling heat transfer results. The boiling local heat transfer enhancement by adding silver nanoparticles in base fluid is not uniform along the channel flow. Better performances and highest effect of nanoparticle concentration on the heat transfer are obtained at the minichannels entrance. PMID:23506445

  4. Metal behavior during vitrification of incinerator ash in a coke bed furnace.

    PubMed

    Kuo, Yi-Ming; Lin, Ta-Chang; Tsai, Perng-Jy

    2004-06-18

    In this study, municipal waste incinerator ash was vitrified in a coke bed furnace system and the behavior of metals was investigated. Coke and lime were added to provide heat which facilitated vitrification. Ash contributed more than 90% of metal (except for Ca) input-mass. Metal species with low boiling points accounted for the major fraction of their input-mass adsorbed by air pollution control devices (APCDs) fly ash. Among the remaining metals, those species with light specific weights in this furnace tended to be encapsulated in slag, while heavier species were mainly discharged by ingot. Meanwhile, the leachability of hazardous metals in slag was significantly reduced. The distribution index (DI) was defined and used as an index for distribution of heavy metals in the system. A high DI assures safe slag reuse and implies feasibility of recovering hazardous heavy metals such as Cr, Cu, Fe, Pb and Zn. The vitrification in a coke bed furnace proved to be a useful technology for the final disposal of MSW incinerator ash. The heavy metals are separated into the slag, ingot and fly ash, allowing safe reuse of the slag and possible recovery of the metals contained in the ingot and ash fractions.

  5. The distribution and composition of hydrocarbons in sediments from the Fladen Ground, North Sea, an area of oil production.

    PubMed

    Ahmed, Abdulwaheed S; Webster, Lynda; Pollard, Pat; Davies, Ian M; Russell, Marie; Walsham, Pam; Packer, Gill; Moffat, Colin F

    2006-02-01

    The distribution and composition of hydrocarbons in sediment from the Fladen Ground oilfield in the northern North Sea have been investigated. The total PAH concentrations (2- to 6-ring parent and alkylated PAHs, including the 16 US EPA PAHs) in sediments were relatively low (<100 microg kg(-1) dry weight). The PAH, the Forties crude and diesel oil equivalent concentrations were generally higher in sediment of fine grain size and higher organic carbon concentration. PAH distributions and concentration ratios indicated a predominantly pyrolytic input, being dominated by the heavier, more persistent, 5- and 6-ring compounds, and with a high proportion of parent PAHs. The n-alkane profiles of a number of the sediments contained small, high boiling point, UCMs, indicative of weathered oil arising from a limited petrogenic input. The geochemical biomarker profiles of the sediments that contained UCMs showed a small bisnorhopane peak and a high proportion of norhopane relative to hopane, indicating that there was contamination from both Middle Eastern and North Sea oils. Therefore contamination was not directly as a result of oil exploration activity in the area. The most likely source of petrogenic contamination was from general shipping activity.

  6. Live Virtual Constructive (LVC): Interface Control Document (ICD) for the LVC Gateway. [Flight Test 3

    NASA Technical Reports Server (NTRS)

    Jovic, Srba

    2015-01-01

    This Interface Control Document (ICD) documents and tracks the necessary information required for the Live Virtual and Constructive (LVC) systems components as well as protocols for communicating with them in order to achieve all research objectives captured by the experiment requirements. The purpose of this ICD is to clearly communicate all inputs and outputs from the subsystem components.

  7. Aeroacoustic Codes for Rotor Harmonic and BVI Noise. CAMRAD.Mod1/HIRES: Methodology and Users' Manual

    NASA Technical Reports Server (NTRS)

    Boyd, D. Douglas, Jr.; Brooks, Thomas F.; Burley, Casey L.; Jolly, J. Ralph, Jr.

    1998-01-01

    This document details the methodology and use of the CAMRAD.Mod1/HIRES codes, which were developed at NASA Langley Research Center for the prediction of helicopter harmonic and Blade-Vortex Interaction (BVI) noise. CANMAD.Mod1 is a substantially modified version of the performance/trim/wake code CANMAD. High resolution blade loading is determined in post-processing by HIRES and an associated indicial aerodynamics code. Extensive capabilities of importance to noise prediction accuracy are documented, including a new multi-core tip vortex roll-up wake model, higher harmonic and individual blade control, tunnel and fuselage correction input, diagnostic blade motion input, and interfaces for acoustic and CFD aerodynamics codes. Modifications and new code capabilities are documented with examples. A users' job preparation guide and listings of variables and namelists are given.

  8. Forced convection flow boiling and two-phase flow phenomena in a microchannel

    NASA Astrophysics Data System (ADS)

    Na, Yun Whan

    2008-07-01

    The present study was performed to numerically analyze the evaporation phenomena through the liquid-vapor interface and to investigate bubble dynamics and heat transfer behavior during forced convective flow boiling in a microchannel. Flow instabilities of two-phase flow boiling in a microchannel were studied as well. The main objective of this research is to investigate the fundamental mechanisms of two-phase flow boiling in a microchannel and provide predictive tools to design thermal management systems, for example, microchannel heat sinks. The numerical results obtained from this study were qualitatively and quantitatively compared with experimental results in the open literature. Physical and mathematical models, accounting for evaporating phenomena through the liquid-vapor interface in a microchannel at constant heat flux and constant wall temperature, have been developed, respectively. The heat transfer mechanism is affected by the dominant heat conduction through the thin liquid film and vaporization at the liquid-vapor interface. The thickness of the liquid film and the pressure of the liquid and vapor phases were simultaneously solved by the governing differential equations. The developed semi-analytical evaporation model that takes into account of the interfacial phenomena and surface tension effects was used to obtain solutions numerically using the fourth-order Runge-Kutta method. The effects of heat flux 19 and wall temperature on the liquid film were evaluated. The obtained pressure drops in a microchannel were qualitatively consistent with the experimental results of Qu and Mudawar (2004). Forced convective flow boiling in a single microchannel with different channel heights was studied through a numerical simulation to investigate bubble dynamics, flow patterns, and heat transfer. The momentum and energy equations were solved using the finite volume method while the liquid-vapor interface of a bubble is captured using the VOF (Volume of Fluid) technique. The effects of different constant heat fluxes and different channel heights on the boiling mechanisms were investigated. The effects of liquid velocity on the bubble departure diameter were analyzed. The obtained results showed that the wall superheats at the position of nucleate boiling are relatively independent of the mass flow rates at the same channel height. The obtained results, however, showed that the heat flux at the onset of nucleate boiling strongly depends on the channel height. With a decrease of the channel height and an increase of the liquid velocity at the channel inlet, the departure diameter of a bubble was smaller. The periodic flow patterns, such as the bubbly flow, elongated slug flow, and churn flow were observed in the microchannel. Flow instabilities of two-phase flow boiling in a trapezoidal microchannel using a three-dimensional model were investigated. Fluctuation behaviors of flow boiling parameters such as wall temperature and inlet pressure caused by periodic flow patterns were studied at different heat fluxes and mass fluxes. The numerical results showed large amplitude and short period oscillations for wall temperature and inlet pressure fluctuations. Stable and unstable flow boiling regime with short period oscillations were investigated. Those flow boiling regimes were not listed in stable and unstable boiling regime map proposed by Wang et al. (2007).

  9. The Gibbs Energy Basis and Construction of Boiling Point Diagrams in Binary Systems

    ERIC Educational Resources Information Center

    Smith, Norman O.

    2004-01-01

    An illustration of how excess Gibbs energies of the components in binary systems can be used to construct boiling point diagrams is given. The underlying causes of the various types of behavior of the systems in terms of intermolecular forces and the method of calculating the coexisting liquid and vapor compositions in boiling point diagrams with…

  10. Production of High Density Aviation Fuels via Novel Zeolite Catalyst Routes

    DTIC Science & Technology

    1989-10-23

    range fraction of a naphthenic crude; saturation of an aromatic FCC cycle stock I the appropriate boiling range: saturation of an appropriate boiling...aromatic hydrocarbons and selected aromatic feedstocks to the corresponding mono- and dicyclic naphthenes in the aviation turbine fuel boiling range; and...Paraffins from Naphthenic Refinery Feed Streams .......... 8 Solvent Extraction ........................................... 8 Shape Selective Catalytic

  11. Exploring the Role of a Discrepant Event in Changing the Conceptions of Evaporation and Boiling in Elementary School Students

    ERIC Educational Resources Information Center

    Paik, Seoung-Hey

    2015-01-01

    The purpose of this study was to explore how examples used in teaching may influence elementary school students' conceptions of evaporation and boiling. To this end, the examples traditionally used to explain evaporation and boiling in Korean 4th grade science textbooks were analyzed. The functions of these published examples were explanation…

  12. QSPR using MOLGEN-QSPR: the challenge of fluoroalkane boiling points.

    PubMed

    Rücker, Christoph; Meringer, Markus; Kerber, Adalbert

    2005-01-01

    By means of the new software MOLGEN-QSPR, a multilinear regression model for the boiling points of lower fluoroalkanes is established. The model is based exclusively on simple descriptors derived directly from molecular structure and nevertheless describes a broader set of data more precisely than previous attempts that used either more demanding (quantum chemical) descriptors or more demanding (nonlinear) statistical methods such as neural networks. The model's internal consistency was confirmed by leave-one-out cross-validation. The model was used to predict all unknown boiling points of fluorobutanes, and the quality of predictions was estimated by means of comparison with boiling point predictions for fluoropentanes.

  13. Issue a Boil-Water Advisory or Wait for Definitive Information? A Decision Analysis

    PubMed Central

    Wagner, Michael M.; Wallstrom, Garrick L.; Onisko, Agnieszka

    2005-01-01

    Objective Study the decision to issue a boil-water advisory in response to a spike in sales of diarrhea remedies or wait 72 hours for the results of definitive testing of water and people. Methods Decision analysis. Results In the base-case analysis, the optimal decision is test-and-wait. If the cost of issuing a boil-water advisory is less than 13.92 cents per person per day, the optimal decision is to issue the boil-water advisory immediately. Conclusions Decisions based on surveillance data that are suggestive but not conclusive about the existence of a disease outbreak can be modeled. PMID:16779145

  14. Enhancements of Nucleate Boiling Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Zhang, Nengli; Chao, David F.; Yang, W. J.

    2000-01-01

    This paper presents two means for enhancing nucleate boiling and critical heat flux under microgravity conditions: using micro-configured metal-graphite composites as the boiling surface and dilute aqueous solutions of long-chain alcohols as the working fluid. In the former, thermocapillary force induced by temperature difference between the graphite-fiber tips and the metal matrix plays an important role in bubble detachment. Thus boiling-heat transfer performance does not deteriorate in a reduced-gravity environment. In the latter cases, the surface tension-temperature gradient of the long-chain alcohol solutions turns positive as the temperature exceeds a certain value. Consequently, the Marangoni effect does not impede, but rather aids in bubble departure from the heating surface. This feature is most favorable in microgravity. As a result, the bubble size of departure is substantially reduced at higher frequencies. Based on the existing experimental data, and a two-tier theoretical model, correlation formulas are derived for nucleate boiling on the copper-graphite and aluminum-graphite composite surfaces, in both the isolated and coalesced bubble regimes. In addition, performance equations for nucleate boiling and critical heat flux in dilute aqueous solutions of long-chain alcohols are obtained.

  15. Estimation of boiling points using density functional theory with polarized continuum model solvent corrections.

    PubMed

    Chan, Poh Yin; Tong, Chi Ming; Durrant, Marcus C

    2011-09-01

    An empirical method for estimation of the boiling points of organic molecules based on density functional theory (DFT) calculations with polarized continuum model (PCM) solvent corrections has been developed. The boiling points are calculated as the sum of three contributions. The first term is calculated directly from the structural formula of the molecule, and is related to its effective surface area. The second is a measure of the electronic interactions between molecules, based on the DFT-PCM solvation energy, and the third is employed only for planar aromatic molecules. The method is applicable to a very diverse range of organic molecules, with normal boiling points in the range of -50 to 500 °C, and includes ten different elements (C, H, Br, Cl, F, N, O, P, S and Si). Plots of observed versus calculated boiling points gave R²=0.980 for a training set of 317 molecules, and R²=0.979 for a test set of 74 molecules. The role of intramolecular hydrogen bonding in lowering the boiling points of certain molecules is quantitatively discussed. Crown Copyright © 2011. Published by Elsevier Inc. All rights reserved.

  16. Large-scale Generation of Patterned Bubble Arrays on Printed Bi-functional Boiling Surfaces

    PubMed Central

    Choi, Chang-Ho; David, Michele; Gao, Zhongwei; Chang, Alvin; Allen, Marshall; Wang, Hailei; Chang, Chih-hung

    2016-01-01

    Bubble nucleation control, growth and departure dynamics is important in understanding boiling phenomena and enhancing nucleate boiling heat transfer performance. We report a novel bi-functional heterogeneous surface structure that is capable of tuning bubble nucleation, growth and departure dynamics. For the fabrication of the surface, hydrophobic polymer dot arrays are first printed on a substrate, followed by hydrophilic ZnO nanostructure deposition via microreactor-assisted nanomaterial deposition (MAND) processing. Wettability contrast between the hydrophobic polymer dot arrays and aqueous ZnO solution allows for the fabrication of heterogeneous surfaces with distinct wettability regions. Heterogeneous surfaces with various configurations were fabricated and their bubble dynamics were examined at elevated heat flux, revealing various nucleate boiling phenomena. In particular, aligned and patterned bubbles with a tunable departure frequency and diameter were demonstrated in a boiling experiment for the first time. Taking advantage of our fabrication method, a 6 inch wafer size heterogeneous surface was prepared. Pool boiling experiments were also performed to demonstrate a heat flux enhancement up to 3X at the same surface superheat using bi-functional surfaces, compared to a bare stainless steel surface. PMID:27034255

  17. Gravity and Heater Size Effects on Pool Boiling Heat Transfer

    NASA Technical Reports Server (NTRS)

    Kim, Jungho; Raj, Rishi

    2014-01-01

    The current work is based on observations of boiling heat transfer over a continuous range of gravity levels between 0g to 1.8g and varying heater sizes with a fluorinert as the test liquid (FC-72/n-perfluorohexane). Variable gravity pool boiling heat transfer measurements over a wide range of gravity levels were made during parabolic flight campaigns as well as onboard the International Space Station. For large heaters and-or higher gravity conditions, buoyancy dominated boiling and heat transfer results were heater size independent. The power law coefficient for gravity in the heat transfer equation was found to be a function of wall temperature under these conditions. Under low gravity conditions and-or for smaller heaters, surface tension forces dominated and heat transfer results were heater size dependent. A pool boiling regime map differentiating buoyancy and surface tension dominated regimes was developed along with a unified framework that allowed for scaling of pool boiling over a wide range of gravity levels and heater sizes. The scaling laws developed in this study are expected to allow performance quantification of phase change based technologies under variable gravity environments eventually leading to their implementation in space based applications.

  18. Effect of Different Cooking Methods on Histamine Levels in Selected Foods

    PubMed Central

    Chung, Bo Young; Park, Sook Young; Byun, Yun Sun; Son, Jee Hee; Choi, Yong Won; Cho, Yong Se

    2017-01-01

    Background Histamine in food is known to cause food poisoning and allergic reactions. We usually ingest histamine in cooked food, but there are few studies about the influence of cooking method on the histamine level. Objective The purpose of this study was to determine the influence of cooking methods on the concentration of histamine in foods. Methods The foods chosen were those kinds consumed frequently and cooked by grilling, boiling, and frying. The histamine level of the food was measured using enzyme-linked immunosorbent assay. Results Grilled seafood had higher histamine levels than raw or boiled seafood. For meat, grilling increased the histamine level, whereas boiling decreased it. For eggs, there was not much difference in histamine level according to cooking method. Fried vegetables had higher histamine levels than raw vegetables. And fermented foods didn't show much difference in histamine level after being boiled. Conclusion The histamine level in food has changed according to the cooking method used to prepare it. Frying and grilling increased histamine level in foods, whereas boiling had little influence or even decreased it. The boiling method might be helpful to control the effect of histamine in histamine-sensitive or susceptible patients, compared with frying and grilling. PMID:29200758

  19. Flow Boiling and Condensation Experiment (FBCE) for the International Space Station

    NASA Technical Reports Server (NTRS)

    Mudawar, Issam; O'Neill, Lucas; Hasan, Mohammad; Nahra, Henry; Hall, Nancy; Balasubramaniam, R.; Mackey, Jeffrey

    2016-01-01

    An effective means to reducing the size and weight of future space vehicles is to replace present mostly single-phase thermal management systems with two-phase counterparts. By capitalizing upon both latent and sensible heat of the coolant rather than sensible heat alone, two-phase thermal management systems can yield orders of magnitude enhancement in flow boiling and condensation heat transfer coefficients. Because the understanding of the influence of microgravity on two-phase flow and heat transfer is quite limited, there is an urgent need for a new experimental microgravity facility to enable investigators to perform long-duration flow boiling and condensation experiments in pursuit of reliable databases, correlations and models. This presentation will discuss recent progress in the development of the Flow Boiling and Condensation Experiment (FBCE) for the International Space Station (ISS) in collaboration between Purdue University and NASA Glenn Research Center. Emphasis will be placed on the design of the flow boiling module and on new flow boiling data that were measured in parabolic flight, along with extensive flow visualization of interfacial features at heat fluxes up to critical heat flux (CHF). Also discussed a theoretical model that will be shown to predict CHF with high accuracy.

  20. Large-scale boiling experiments of the flooded cavity concept for in-vessel core retention

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, T.Y.; Slezak, S.E.; Bentz, J.H.

    1994-03-01

    This paper presents results of ex-vessel boiling experiments performed in the CYBL (CYlindrical BoiLing) facility. CYBL is a reactor-scale facility for confirmatory research of the flooded cavity concept for accident management. CYBL has a tank-within-a-tank design; the inner tank simulates the reactor vessel and the outer tank simulates the reactor cavity. Experiments with uniform and edge-peaked heat flux distributions up to 20 W/cm{sup 2} across the vessel bottom were performed. Boiling outside the reactor vessel was found to be subcooled nucleate boiling. The subcooling is mainly due to the gravity head which results from flooding the sides of the reactormore » vessel. The boiling process exhibits a cyclic pattern with four distinct phases: direct liquid/solid contact, bubble nucleation and growth, coalescence, and vapor mass dispersion (ejection). The results suggest that under prototypic heat load and heat flux distributions, the flooded cavity in a passive pressurized water reactor like the AP-600 should be capable of cooling the reactor pressure vessel in the central region of the lower head that is addressed by these tests.« less

  1. Overnight soaking or boiling of "Matooke" to reduce potassium content for patients with chronic kidney disease: does it really work?

    PubMed

    Asiimwe, J; Sembajwe, L F; Senoga, A; Bakiika, E; Muwonge, H; Kalyesubula, R

    2013-09-01

    There is an increase in number of patients with chronic kidney disease (CKD) in Uganda's health facilities looking for different options of preparing matooke (bananas), their staple food. To establish and evaluate an effective method of removing potassium from bananas (matooke). Bananas were sampled from 5 markets in Kampala, Uganda. Deionized water was used to soak the bananas and the potassium concentration was determined using an atomic absorption spectrophotometer in both the bananas and water after soaking for varying time intervals. We also determined the potassium concentrations in the bananas and the water after boiling the bananas at 200 degrees Celsius at intervals of 10 minutes (for 60 minutes). The potassium concentration did not appear to change on soaking alone without boiling. However, on boiling, the concentration in the bananas decreased from about 1.4 ppm to approx. 1 ppm after 60 min; yet the concentration of potassium released into deionized water increased steadily from 0.0 ppm to about 1.2 ppm after 60 min of boiling. This study demonstrates that boiling the bananas is a more effective way of removing the potassium from bananas than simply soaking them.

  2. A genetic algorithm-based optimization model for pool boiling heat transfer on horizontal rod heaters at isolated bubble regime

    NASA Astrophysics Data System (ADS)

    Alavi Fazel, S. Ali

    2017-09-01

    A new optimized model which can predict the heat transfer in the nucleate boiling at isolated bubble regime is proposed for pool boiling on a horizontal rod heater. This model is developed based on the results of direct observations of the physical boiling phenomena. Boiling heat flux, wall temperature, bubble departing diameter, bubble generation frequency and bubble nucleation site density have been experimentally measured. Water and ethanol have been used as two different boiling fluids. Heating surface was made by several metals and various degrees of roughness. The mentioned model considers various mechanisms such as latent heat transfer due to micro-layer evaporation, transient conduction due to thermal boundary layer reformation, natural convection, heat transfer due to the sliding bubbles and bubble super-heating. The fractional contributions of individual mentioned heat transfer mechanisms have been calculated by genetic algorithm. The results show that at wall temperature difference more that about 3 K, bubble sliding transient conduction, non-sliding transient conduction, micro-layer evaporation, natural convection, radial forced convection and bubble super-heating have higher to lower fractional contributions respectively. The performance of the new optimized model has been verified by comparison of the existing experimental data.

  3. A high-sensitivity magnetocardiography system with a divided gradiometer array inside a low boil-off Dewar

    NASA Astrophysics Data System (ADS)

    Lee, Y. H.; Yu, K. K.; Kim, J. M.; Kwon, H.; Kim, K.

    2009-11-01

    We fabricated a low-noise 64-channel first-order axial gradiometer system for measuring magnetocardiography (MCG) signals. The key technical features of the system are the compact structure of the gradiometer, division of the sensor array plate, direct mounting of the sensor plates into the Dewar bottom, reduced neck diameter of the liquid He Dewar, and compact readout electronics. To make the refill interval of liquid He longer, the distance between the compensation coil of the gradiometer and the input coil pads of the superconducting quantum interference device (SQUID) was reduced to 20 mm. By using direct ultrasonic bonding of Nb wires between the pickup coil wires and input coil pads, the superconductive connection structure became simple. The baseline of the first-order gradiometer is 70 mm, a little longer than for typical conventional axial gradiometers, to provide a larger signal amplitude for deep sources. The 64-channel gradiometer array consists of four blocks, and each block is fixed separately onto the bottom of the Dewar. The neck diameter of the He Dewar (192 mm) is smaller than the bottom diameter (280 mm) in which the gradiometers are distributed. The average boil-off rate of the Dewar is 3 l per day when the 64-channel system is in operation every day. Double relaxation oscillation SQUIDs (DROSs) having large flux-to-voltage transfer coefficients were used to operate SQUIDs via compact electronics. The magnetically shielded room (MSR) has a wall thickness of 80 mm, and consists of two layers of permalloy and one layer of aluminum. When the 64-channel system was installed inside the MSR, the field noise level of the system was about 3.5 fTrms Hz-1/2 at 100 Hz. MCG measurements with high signal quality were done successfully using the developed system. In addition to the parameter analysis method, we developed software for the three-dimensional imaging of the myocardial current on a realistic image of the heart based on the anatomical image of the torso.

  4. Characterization of Single Phase and Two Phase Heat and Momentum Transport in a Spiraling Radial Inow Microchannel Heat Sink

    NASA Astrophysics Data System (ADS)

    Ruiz, Maritza

    Thermal management of systems under high heat fluxes on the order of hundreds of W/cm2 is important for the safety, performance and lifetime of devices, with innovative cooling technologies leading to improved performance of electronics or concentrating solar photovoltaics. A novel, spiraling radial inflow microchannel heat sink for high flux cooling applications, using a single phase or vaporizing coolant, has demonstrated enhanced heat transfer capabilities. The design of the heat sink provides an inward swirl flow between parallel, coaxial disks that form a microchannel of 1 cm radius and 300 micron channel height with a single inlet and a single outlet. The channel is heated on one side through a conducting copper surface, and is essentially adiabatic on the opposite side to simulate a heat sink scenario for electronics or concentrated photovoltaics cooling. Experimental results on the heat transfer and pressure drop characteristics in the heat sink, using single phase water as a working fluid, revealed heat transfer enhancements due to flow acceleration and induced secondary flows when compared to unidirectional laminar fully developed flow between parallel plates. Additionally, thermal gradients on the surface are small relative to the bulk fluid temperature gain, a beneficial feature for high heat flux cooling applications. Heat flux levels of 113 W/cm2 at a surface temperature of 77 deg C were reached with a ratio of pumping power to heat rate of 0.03%. Analytical models on single phase flow are used to explore the parametric trends of the flow rate and passage geometry on the streamlines and pressure drop through the device. Flow boiling heat transfer and pressure drop characteristics were obtained for this heat sink using water at near atmospheric pressure as the working fluid for inlet subcooling levels ranging from 20 to 80 deg C and mean mass flux levels ranging from 184-716 kg/m. 2s. Flow enhancements similar to singlephase flow were expected, as well as enhancements due to increased buoyant forces on vapor bubbles resulting from centripetal acceleration in the flow which will tend to draw the vapor towards the outlet. This can also aid in the reduction of vapor obstruction of the flow. The flow was identified as transitioning through three regimes as the heat rate was increased: partial subcooled flow boiling, oscillating boiling and fully developed flow boiling. During partial subcooled flow boiling, both forced convective and nucleate boiling effects are important. During oscillating boiling, the system fluctuated between partial subcooled flow boiling and fully developed nucleate boiling. Temperature and pressure oscillations were significant in this regime and are likely due to bubble constriction of flow in the microchannel. This regime of boiling is generally undesirable due to the large oscillations in temperatures and pressure and design constraints should be established to avoid large oscillations from occurring. During fully developed flow boiling, water vapor rapidly leaves the surface and the flow does not sustain large oscillations. Reducing inlet subcooling levels was found to reduce the magnitude of oscillations in the oscillating boiling regime. Additionally, reduced inlet subcooling levels reduced the average surface temperature at the highest heat flux levels tested when heat transfer was dominated by nucleate boiling, yet increased the average surface temperatures at low heat flux levels when heat transfer was dominated by forced convection. Experiments demonstrated heat fluxes up to 301 W/cm. 2at an average surface temperature of 134 deg C under partial subcooled flow boiling conditions. At this peak heat flux, the system required a pumping power to heat rate ratio of 0.01%. This heat flux is 2.4 times the typical values for critical heat flux in pool boiling under similar conditions.

  5. Enhanced capabilities and modified users manual for axial-flow compressor conceptual design code CSPAN

    NASA Technical Reports Server (NTRS)

    Glassman, Arthur J.; Lavelle, Thomas M.

    1995-01-01

    Modifications made to the axial-flow compressor conceptual design code CSPAN are documented in this report. Endwall blockage and stall margin predictions were added. The loss-coefficient model was upgraded. Default correlations for rotor and stator solidity and aspect-ratio inputs and for stator-exit tangential velocity inputs were included in the code along with defaults for aerodynamic design limits. A complete description of input and output along with sample cases are included.

  6. Input Files and Procedures for Analysis of SMA Hybrid Composite Beams in MSC.Nastran and ABAQUS

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.; Patel, Hemant D.

    2005-01-01

    A thermoelastic constitutive model for shape memory alloys (SMAs) and SMA hybrid composites (SMAHCs) was recently implemented in the commercial codes MSC.Nastran and ABAQUS. The model is implemented and supported within the core of the commercial codes, so no user subroutines or external calculations are necessary. The model and resulting structural analysis has been previously demonstrated and experimentally verified for thermoelastic, vibration and acoustic, and structural shape control applications. The commercial implementations are described in related documents cited in the references, where various results are also shown that validate the commercial implementations relative to a research code. This paper is a companion to those documents in that it provides additional detail on the actual input files and solution procedures and serves as a repository for ASCII text versions of the input files necessary for duplication of the available results.

  7. AN OPTICAL CHARACTER RECOGNITION RESEARCH AND DEMONSTRATION PROJECT.

    ERIC Educational Resources Information Center

    1968

    RESEARCH AND DEVELOPMENT OF PROTOTYPE LIBRARY SYSTEMS WHICH UTILIZE OPTICAL CHARACTER RECOGNITION INPUT HAS CENTERED AROUND OPTICAL PAGE READERS AND DOCUMENT READERS. THE STATE-OF-THE-ART OF BOTH THESE OPTICAL SCANNERS IS SUCH THAT BOTH ARE ACCEPTABLE FOR LIBRARY INPUT PREPARATION. A DEMONSTRATION PROJECT UTILIZING THE TWO TYPES OF READERS, SINCE…

  8. Concept development and needs identification for INFLO : report on stakeholder input on transformative goals, performance measures and high level user needs for INFLO.

    DOT National Transportation Integrated Search

    2012-04-01

    The purpose of this report is to document the stakeholder input received at the February 8, 2012, stakeholder workshop at the Hall of States in Washington, D.C. on goals, performance measures, transformative performance targets, and high-level user n...

  9. 77 FR 38804 - Wireline Competition Bureau Seeks Comment on Model Design and Data Inputs for Phase II of the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-29

    ...In this document, the Wireline Competition Bureau (the Bureau) seeks comment on a number of threshold decisions regarding the design of and data inputs to the forward looking cost model, and on other assumptions in the cost models currently in the record.

  10. Adaptive Core Simulation Employing Discrete Inverse Theory - Part I: Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdel-Khalik, Hany S.; Turinsky, Paul J.

    2005-07-15

    Use of adaptive simulation is intended to improve the fidelity and robustness of important core attribute predictions such as core power distribution, thermal margins, and core reactivity. Adaptive simulation utilizes a selected set of past and current reactor measurements of reactor observables, i.e., in-core instrumentation readings, to adapt the simulation in a meaningful way. A meaningful adaption will result in high-fidelity and robust adapted core simulator models. To perform adaption, we propose an inverse theory approach in which the multitudes of input data to core simulators, i.e., reactor physics and thermal-hydraulic data, are to be adjusted to improve agreement withmore » measured observables while keeping core simulator models unadapted. At first glance, devising such adaption for typical core simulators with millions of input and observables data would spawn not only several prohibitive challenges but also numerous disparaging concerns. The challenges include the computational burdens of the sensitivity-type calculations required to construct Jacobian operators for the core simulator models. Also, the computational burdens of the uncertainty-type calculations required to estimate the uncertainty information of core simulator input data present a demanding challenge. The concerns however are mainly related to the reliability of the adjusted input data. The methodologies of adaptive simulation are well established in the literature of data adjustment. We adopt the same general framework for data adjustment; however, we refrain from solving the fundamental adjustment equations in a conventional manner. We demonstrate the use of our so-called Efficient Subspace Methods (ESMs) to overcome the computational and storage burdens associated with the core adaption problem. We illustrate the successful use of ESM-based adaptive techniques for a typical boiling water reactor core simulator adaption problem.« less

  11. Odd-Boiled Eggs

    ERIC Educational Resources Information Center

    Kaminsky, Kenneth; Scheman, Naomi

    2010-01-01

    At a Shabbat lunch in Madrid not long ago, the conversation turned to the question of boiling eggs. One of the guests mentioned that a Dutch rabbi he knew had heard that in order to make it more likely that boiled eggs be kosher, you should add an egg to the pot if the number you began with was even. According to the laws of Kashruth, Jews may not…

  12. The Influence of a Lower Heated Tube on Nucleate Pool Boiling from a Horizontal Tube

    DTIC Science & Technology

    1992-06-01

    9 C. CONDENSER SECTION .................................... 12 D. COOLING SECTION...lower tube kc thermal conductivity of copper L active boiling tube length Lu non-boiling tube length x Nu Nusselt number p tube outside wall perimeter Pr...teflon endplates. 2. A condenser , assembled using a similar Pyrex-glass tee with aluminum endplates. 3. A reservoir for R- 114 liquid storage. 4. A

  13. 18. RW Meyer Sugar Mill: 18761889. Boiling House Interior, 1878. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. RW Meyer Sugar Mill: 1876-1889. Boiling House Interior, 1878. View: Detail of floor with molasses pits below floor level. The remaining floor boards indicate the structure of the floor covering the entire inside of the boiling house. In the left background the base of the centrifugals are in view. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  14. Heat Transfer in Boiling Dilute Emulsion with Strong Buoyancy

    NASA Astrophysics Data System (ADS)

    Freeburg, Eric Thomas

    Little attention has been given to the boiling of emulsions compared to that of boiling in pure liquids. The advantages of using emulsions as a heat transfer agent were first discovered in the 1970s and several interesting features have since been studied by few researchers. Early research focuses primarily on pool and flow boiling and looks to determine a mechanism by which the boiling process occurs. This thesis looks at the boiling of dilute emulsions in fluids with strong buoyant forces. The boiling of dilute emulsions presents many favorable characteristics that make it an ideal agent for heat transfer. High heat flux electronics, such as those seen in avionics equipment, produce high heat fluxes of 100 W/cm2 or more, but must be maintained at low temperatures. So far, research on single phase convection and flow boiling in small diameter channels have yet to provide an adequate solution. Emulsions allow the engineer to tailor the solution to the specific problem. The fluid can be customized to retain the high thermal conductivity and specific heat capacity of the continuous phase while enhancing the heat transfer coefficient through boiling of the dispersed phase component. Heat transfer experiments were carried out with FC-72 in water emulsions. FC-72 has a saturation temperature of 56 °C, far below that of water. The parameters were varied as follows: 0% ≤ epsilon ≤ 1% and 1.82 x 1012 ≤ RaH ≤ 4.42 x 1012. Surface temperatures along the heated surface reached temperature that were 20 °C in excess of the dispersed phase saturation temperature. An increase of ˜20% was seen in the average Nusselt numbers at the highest Rayleigh numbers. Holography was used to obtain images of individual and multiple FC-72 droplets in the boundary layer next to the heated surface. The droplet diameters ranged from 0.5 mm to 1.3 mm. The Magnus effect was observed when larger individual droplets were injected into the boundary layer, causing the droplets to be pushed outside the boundary layer. Vaporization of FC-72 droplets in the boundary layer next to the heated surface was not observed.

  15. Ovomucoid (Gal d 1) specific IgE detected by microarray system predict tolerability to boiled hen's egg and an increased risk to progress to multiple environmental allergen sensitisation.

    PubMed

    Alessandri, C; Zennaro, D; Scala, E; Ferrara, R; Bernardi, M Livia; Santoro, M; Palazzo, P; Mari, A

    2012-03-01

    Egg allergy is a very common finding in early childhood. Detecting hen's egg (HE) allergy outgrowing and reintroduction of food containing egg is a task for the allergist. We sought to evaluate the suitability of boiled egg food challenge compared with IgE to allergenic molecules from HE white using a microarray system. Sixty-eight children referring to our centre by the family paediatricians for a suspected egg allergy were enrolled. Patients underwent double-blind, placebo-controlled food challenge with boiled and raw eggs. Challenge outcomes were compared with skin tests performed using egg white and yolk commercial extracts, to prick-prick test with boiled and raw egg white and yolk, total IgE, egg white specific IgE detected using ImmunoCAP and IgE to egg allergens available on the immunosolid phase allergen chip (ISAC) 103 microarray. Nineteen subjects (28%) were reactive to both raw and boiled egg, 14 (20.5%) to raw egg only and 35 (51.4%) tolerated both boiled and raw egg. Efficiency analysis was carried out using both raw and boiled egg challenges as gold standard. Forty four of 47 Gal d 1 negative patients tolerated boiled egg (94%). Conversely, 20 of 21 Gal d 1 positive patients reacted to raw egg (95%). None of the other tests was able to discriminate patients' response to HE challenge. Furthermore, Gal d 1 positivity seems to lead to broader environmental allergen IgE sensitization. The Gal d 1 IgE reactivity appears to be a very good predictor of HE clinical allergy. Gal d 1 positive children have a high frequency of HE allergy, whereas Gal d 1 negative children have a high frequency of tolerance to boiled egg. Multiple specific IgE detection by means of ISAC improves the diagnostic approach in HE allergic children, disclosing other food and inhalant allergic sensitizations, anyhow requiring a comprehensive clinical evaluation. © 2011 Blackwell Publishing Ltd.

  16. AIR QUALITY CRITERIA FOR PARTICULATE MATTER DOCUMENT

    EPA Science Inventory

    A Planning Document was produced by NCEA/RTP and reviewed by the Clean Air Scientific Advisory Committee (CASAC) (62 FR 55201, October 23, 1997). In FY99, a workshop draft of the PM AQCD was completed, a peer input workshop held, and an External Review Draft released for public ...

  17. Boiling process modelling peculiarities analysis of the vacuum boiler

    NASA Astrophysics Data System (ADS)

    Slobodina, E. N.; Mikhailov, A. G.

    2017-06-01

    The analysis of the low and medium powered boiler equipment development was carried out, boiler units possible development directions with the purpose of energy efficiency improvement were identified. Engineering studies for the vacuum boilers applying are represented. Vacuum boiler heat-exchange processes where boiling water is the working body are considered. Heat-exchange intensification method under boiling at the maximum heat- transfer coefficient is examined. As a result of the conducted calculation studies, heat-transfer coefficients variation curves depending on the pressure, calculated through the analytical and numerical methodologies were obtained. The conclusion about the possibility of numerical computing method application through RPI ANSYS CFX for the boiling process description in boiler vacuum volume was given.

  18. Quantitative structure-property relationships for prediction of boiling point, vapor pressure, and melting point.

    PubMed

    Dearden, John C

    2003-08-01

    Boiling point, vapor pressure, and melting point are important physicochemical properties in the modeling of the distribution and fate of chemicals in the environment. However, such data often are not available, and therefore must be estimated. Over the years, many attempts have been made to calculate boiling points, vapor pressures, and melting points by using quantitative structure-property relationships, and this review examines and discusses the work published in this area, and concentrates particularly on recent studies. A number of software programs are commercially available for the calculation of boiling point, vapor pressure, and melting point, and these have been tested for their predictive ability with a test set of 100 organic chemicals.

  19. Estimating surface temperature in forced convection nucleate boiling - A simplified method

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Papell, S. S.

    1977-01-01

    A simplified expression to estimate surface temperatures in forced convection boiling was developed using a liquid nitrogen data base. Using the principal of corresponding states and the Kutateladze relation for maximum pool boiling heat flux, the expression was normalized for use with other fluids. The expression was applied also to neon and water. For the neon data base, the agreement was acceptable with the exclusion of one set suspected to be in the transition boiling regime. For the water data base at reduced pressure greater than 0.05 the agreement is generally good. At lower reduced pressures, the water data scatter and the calculated temperature becomes a function of flow rate.

  20. 3. RW Meyer Sugar Mill: 18761889. Sorghum pan and boiling ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. RW Meyer Sugar Mill: 1876-1889. Sorghum pan and boiling range flue. Manufactured by John Nott & Co., Honolulu, Hawaii, 1878. View: South side of sorghum pan and boiling range flue. In the sorghum pan heat was applied to the cane juice to clarify it, evaporate its water content, and concentrate the sugar crystals. Hot gasses moved through the flue underneath the entire copper bottom of the sorghum pan from the furnace (east) end to the smokestack (west) end of the boiling range. The sorghum pan sides are of redwood. The flue is built of fire-brick, masonry, and portland cement. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  1. Critical heat flux for free convection boiling in thin rectangular channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Lap Y.; Tichler, P.R.

    A review of the experimental data on free convection boiling critical heat flux (CHF) in vertical rectangular channels reveals three mechanisms of burnout. They are the pool boiling limit, the circulation limit, and the flooding limit associated with a transition in flow regime from churn to annular flow. The dominance of a particular mechanism depends on the dimensions of the channel. Analytical models were developed for each free convection boiling limit. Limited agreement with data is observed. A CHF correlation, which is valid for a wide range of gap sizes, was constructed from the CHFs calculated according to the threemore » mechanisms of burnout. 17 refs., 7 figs.« less

  2. The purity of water at hospital and at home as a problem of intercultural understanding.

    PubMed

    Burghart, R

    1996-03-01

    Women in a provincial town in southern Nepal were instructed by medical doctors and compounders to boil water, and to keep it boiling for 15 minutes before mixing it with infant formula or oral rehydration salts. Most women ignored the advice. Those who seemed to follow it merely brought the water to boil. This report describes how and why women boil water and assesses the health implications of their practices. The failure of women to adopt "proper" procedures procedures provides a point of entry into an analysis of the role of intercultural dialogue in exposing one's presuppositions about health and empowering one to change them.

  3. Decision & Management Tools for DNAPL Sites: Optimization of Chlorinated Solvent Source and Plume Remediation Considering Uncertainty

    DTIC Science & Technology

    2010-09-01

    differentiated between source codes and input/output files. The text makes references to a REMChlor-GoldSim model. The text also refers to the REMChlor...To the extent possible, the instructions should be accurate and precise. The documentation should differentiate between describing what is actually...Windows XP operating system Model Input Paran1eters. · n1e input parameters were identical to those utilized and reported by CDM (See Table .I .from

  4. Input from Key Stakeholders in the National Security Technology Incubator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This report documents the input from key stakeholders of the National Security Technology Incubator (NSTI) in developing a new technology incubator and related programs for southern New Mexico. The technology incubator is being developed as part of the National Security Preparedness Project (NSPP), funded by a Department of Energy (DOE)/National Nuclear Security Administration (NNSA) grant. This report includes identification of key stakeholders as well as a description and analysis of their input for the development of an incubator.

  5. Critical Heat Flux in Pool Boiling on Metal-Graphite Composite Surfaces

    NASA Technical Reports Server (NTRS)

    Zhang, Nengli; Yang, Wen-Jei; Chao, David F.; Chao, David F. (Technical Monitor)

    2000-01-01

    A study is conducted on high heat-flux pool boiling of pentane on micro-configured composite surfaces. The boiling surfaces are copper-graphite (Cu-Gr) and aluminum-graphite (Al-Gr) composites with a fiber volume concentration of 50%. The micro-graphite fibers embedded in the matrix contribute to a substantial enhancement in boiling heat-transfer performance. Correlation equations are obtained for both the isolated and coalesced bubble regimes, utilizing a mathematical model based on a metal-graphite, two-tier configuration with the aid of experimental data. A new model to predict the critical heat flux (CHF) on the composites is proposed to explain the fundamental aspects of the boiling phenomena. Three different factors affecting the CHF are considered in the model. Two of them are expected to become the main agents driving vapor volume detachment under microgravity conditions, using the metal-graphite composite surfaces as the heating surface and using liquids with an unusual Marangoni effect as the working fluid.

  6. A study of forced convection boiling under reduced gravity

    NASA Technical Reports Server (NTRS)

    Merte, Herman, Jr.

    1992-01-01

    This report presents the results of activities conducted over the period 1/2/85-12/31/90, in which the study of forced convection boiling under reduced gravity was initiated. The study seeks to improve the understanding of the basic processes that constitute forced convection boiling by removing the buoyancy effects which may mask other phenomena. Specific objectives may also be expressed in terms of the following questions: (1) what effects, if any, will the removal of body forces to the lowest possible levels have on the forced convection boiling heat transfer processes in well-defined and meaningful circumstances? (this includes those effects and processes associated with the nucleation or onset of boiling during the transient increase in heater surface temperature, as well as the heat transfer and vapor bubble behaviors with established or steady-state conditions); and (2) if such effects are present, what are the boundaries of the relevant parameters such as heat flux, heater surface superheat, fluid velocity, bulk subcooling, and geometric/orientation relationships within which such effects will be produced?

  7. Contamination of different portions of raw and boiled specimens of Norway lobster by mercury and selenium.

    PubMed

    Perugini, Monia; Visciano, Pierina; Manera, Maurizio; Abete, Maria Cesarina; Gavinelli, Stefania; Amorena, Michele

    2013-11-01

    The aim of this study was to evaluate mercury and selenium distribution in different portions (exoskeleton, white meat and brown meat) of Norway lobster (Nephrops norvegicus). Some samples were also analysed as whole specimens. The same portions were also examined after boiling, in order to observe if this cooking practice could affect mercury and selenium concentrations. The highest mercury concentrations were detected in white meat, exceeding in all cases the maximum levels established by European legislation. The brown meat reported the highest selenium concentrations. In all boiled samples, mercury levels showed a statistically significant increase compared to raw portions. On the contrary, selenium concentrations detected in boiled samples of white meat, brown meat and whole specimen showed a statistically significant decrease compared to the corresponding raw samples. These results indicate that boiling modifies mercury and selenium concentrations. The high mercury levels detected represent a possible risk for consumers, and the publication and diffusion of specific advisories concerning seafood consumption is recommended.

  8. Studies on sodium boiling phenomena in out of pile rod bundles for various accidental situations in Liquid Metal Fast Breeder Reactors (LMFBR) experiments and interpretations

    NASA Astrophysics Data System (ADS)

    Seiler, J. M.; Rameau, B.

    Bundle sodium boiling in nominal geometry for different accident conditions is reviewed. Voiding of a subassembly is controlled by not only hydrodynamic effects but mainly by thermal effects. There is a strong influence of the thermal inertia of the bundle material compared to the sodium thermal inertia. Flow instability, during a slow transient, can be analyzed with numerical tools and estimated using simplified approximations. Stable boiling operational conditions under bundle mixed convection (natural convection in the reactor) can be predicted. Voiding during a fast transient can be approximated from single channel calculations. The phenomenology of boiling behavior for a subassembly with inlet completely blocked, submitted to decay heat and lateral cooling; two-phase sodium flow pressure drop in a tube of large hydraulic diameter under adiabatic conditions; critical flow phenomena and voiding rate under high power, slow transient conditions; and onset of dry out under local boiling remains problematical.

  9. Low gravity quenching of hot tubes with cryogens

    NASA Technical Reports Server (NTRS)

    Antar, Basil N.; Collins, Frank G.; Kawaji, M.

    1992-01-01

    An experimental proceedure for examining flow boiling in low gravity environment is presented. The proceedure involves both ground based and KC-135 flight experiments. Two experimental apparati were employed, one for studying subcooled liquid boiling and another for examining saturated liquid boiling. For the saturated flow experiments, liquid nitrogen was used while freon 113 was used for the subcooled flow experiments. The boiling phenomenon was investigated in both cases using flow visualization techniques as well as tube wall temperature measurements. The flow field in both cases was established by injecting cold liquid in a heated tube whose temperature was set above the saturation values. The tubes were both vertically and horizontally supported with the liquid injected from the lower end of the tube. The results indicate substantial differences in the flow patterns established during boiling between the ground based, (1-g), experiments and the flight experiments, (low-g). These differences in the flow patterns will be discussed and some explanations will be offered.

  10. Narrow pH Range of Surface Water Bodies Receiving Pesticide Input in Europe.

    PubMed

    Bundschuh, Mirco; Weyers, Arnd; Ebeling, Markus; Elsaesser, David; Schulz, Ralf

    2016-01-01

    Fate and toxicity of the active ingredients (AI's) of plant protection products in surface waters is often influenced by pH. Although a general range of pH values is reported in literature, an evaluation targeting aquatic ecosystems with documented AI inputs is lacking at the larger scale. Results show 95% of European surface waters (n = 3075) with a documented history of AI exposure fall within a rather narrow pH range, between 7.0 and 8.5. Spatial and temporal variability in the data may at least be partly explained by the calcareous characteristics of parental rock material, the affiliation of the sampling site to a freshwater ecoregion, and the photosynthetic activity of macrophytes (i.e., higher pH values with photosynthesis). Nonetheless, the documented pH range fits well with the standard pH of most ecotoxicological test guidelines, confirming the fate and ecotoxicity of AIs are usually adequately addressed.

  11. Carbuncle

    MedlinePlus

    Skin infection - staphylococcal; Infection - skin - staph; Staph skin infection; Carbunculosis; Boil ... aureus ). A carbuncle is a cluster of several skin boils ( furuncles ). The infected mass is filled with ...

  12. Observations of the boiling process from a downward-facing torispherical surface: Confirmatory testing of the heavy water new production reactor flooded cavity design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, T.Y.; Bentz, J.H.; Simpson, R.B.

    1995-06-01

    Reactor-scale ex-vessel boiling experiments were performed in the CYBL facility at Sandia National Laboratories. The boiling flow pattern outside the RPV bottom head shows a center pulsating region and an outer steady two-phase boundary layer region. The local heat transfer data can be correlated in terms of a modified Rohsenow correlation.

  13. Hypocotyls of Lepidium meyenii (maca), a plant of the Peruvian highlands, prevent ultraviolet A-, B-, and C-induced skin damage in rats.

    PubMed

    Gonzales-Castañeda, Cynthia; Gonzales, Gustavo F

    2008-02-01

    Lepidium meyenii (maca) is a plant that grows exclusively in the Peruvian Central Andes, where ultraviolet radiation (UVR) is predominant. Determine if two extracts of maca can provide dermal protection against UVR. We have administered two maca extracts (0.13 mg/ml), one obtained after boiling and the other without boiling, on the dorsal surface of male Holtzman rats exposed to UVC radiation once a week during 3 consecutive weeks. A dose-response effect of an aqueous extract of maca after a boiling process under exposure of rats to UVA, UVB, or UVC was also studied. A commercial sunscreen was used as a positive control. UVR caused significant increase in skin epidermal thickness. The epidermal height in animals treated with maca was similar to those who did not receive UVR. The aqueous extract of maca after a boiling process had better effect than maca extract without a boiling process. A dose-response effect was observed with increasing doses of aqueous extract of maca after a boiling process. Maca extract had benzyl glucosinolates and polyphenols. Maca extracts protect the skin of rats against UV irradiations and can be suggested as an alternative means of solar protection.

  14. Ultrasonic atomization of tissue and its role in tissue fractionation by high intensity focused ultrasound

    PubMed Central

    Simon, Julianna C.; Sapozhnikov, Oleg A.; Khokhlova, Vera A.; Wang, Yak-Nam; Crum, Lawrence A.; Bailey, Michael R.

    2012-01-01

    Atomization and fountain formation is a well-known phenomenon that occurs when a focused ultrasound wave in liquid encounters an air interface. High intensity focused ultrasound (HIFU) has been shown to fractionate tissue into submicron-size fragments in a process termed boiling histotripsy, wherein the focused ultrasound wave superheats the tissue at the focus, producing a millimetre-size boiling or vapour bubble in several milliseconds. Yet the question of how this millimetre-size boiling bubble creates submicron-size tissue fragments remains. The hypothesis of this work is that tissue can behave as a liquid such that it forms a fountain and atomization within the vapour bubble produced in boiling histotripsy. We describe an experiment, in which a 2-MHz HIFU transducer (maximum in situ intensity of 24,000 W/cm2) was aligned with an air-tissue interface meant to simulate the boiling bubble. Atomization and fountain formation were observed with high-speed photography and resulted in tissue erosion. Histological examination of the atomized tissue showed whole and fragmented cells and nuclei. Air-liquid interfaces were also filmed. Our conclusion was that HIFU can fountain and atomize tissue. Although this process does not entirely mimic what was observed in liquids, it does explain many aspects of tissue fractionation in boiling histotripsy. PMID:23159812

  15. THE FREEZING POINT DEPRESSION OF MAMMALIAN TISSUES AFTER SUDDEN HEATING IN BOILING DISTILLED WATER

    PubMed Central

    Appelboom, Johannes W. Th.; Brodsky, William A.; Tuttle, William S.; Diamond, Israel

    1958-01-01

    The calculated freezing point depression of freshly excised boiled mammalian tissue is approximately the same as that of plasma. The boiling procedure was chosen to eliminate the influence of metabolism on the level of the freezing point depression. Problems created by the boiling, such as equilibrium between tissue and diluent, change in activity coefficient by dilution, and loss of CO2 content, are discussed. A frozen crushed tissue homogenate is hypertonic to plasma. Boiling and dilution of such hypertonic homogenate exposed to room temperature for 5 to 15 minutes did not produce significant or unexplicable decreases in its osmotic activity. Moreover, freezing and crushing of a boiled diluted tissue did not produce any increase of the isoosmotic level of freezing point depression. It is possible to explain these data either with the hypothesis of hypertonic cell fluid or with that of isotonic cell fluid. In the case of an assumed isotonic cell fluid, data can be explained with one assumption, experimentally backed. In the case of an assumed hypertonic theory data can be explained only with the help of at least three ad hoc postulates. The data support the validity of the classical concept which holds that cell fluid is isotonic to extracellular fluid. PMID:13563805

  16. Numerical Modeling of Propellant Boil-Off in a Cryogenic Storage Tank

    NASA Technical Reports Server (NTRS)

    Majumdar, A. K.; Steadman, T. E.; Maroney, J. L.; Sass, J. P.; Fesmire, J. E.

    2007-01-01

    A numerical model to predict boil-off of stored propellant in large spherical cryogenic tanks has been developed. Accurate prediction of tank boil-off rates for different thermal insulation systems was the goal of this collaboration effort. The Generalized Fluid System Simulation Program, integrating flow analysis and conjugate heat transfer for solving complex fluid system problems, was used to create the model. Calculation of tank boil-off rate requires simultaneous simulation of heat transfer processes among liquid propellant, vapor ullage space, and tank structure. The reference tank for the boil-off model was the 850,000 gallon liquid hydrogen tank at Launch Complex 39B (LC- 39B) at Kennedy Space Center, which is under study for future infrastructure improvements to support the Constellation program. The methodology employed in the numerical model was validated using a sub-scale model and tank. Experimental test data from a 1/15th scale version of the LC-39B tank using both liquid hydrogen and liquid nitrogen were used to anchor the analytical predictions of the sub-scale model. Favorable correlations between sub-scale model and experimental test data have provided confidence in full-scale tank boil-off predictions. These methods are now being used in the preliminary design for other cases including future launch vehicles

  17. IR-thermography-based investigation of critical heat flux in subcooled flow boiling of water at atmospheric and high pressure conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bucci, Matteo; Seong, Jee H.; Buongiorno, Jdacopo

    Here we report on MIT’s THM work in Q4 2016 and Q1 2017. The goal of this project is to design, construct and execute tests of flow boiling critical heat flux (CHF) at high-pressure using high-resolution and high-speed video and infrared (IR) thermometry, to generate unique data to inform the development of and validate mechanistic boiling heat transfer and CHF models. In FY2016, a new test section was designed and fabricated. Data was collected at atmospheric conditions at 10, 25 and 50 K subcoolings, and three mass fluxes, i.e. 500, 750 and 1000 kg/m2/s. Starting in Q4 2016 and continuingmore » forward, new post-processing techniques have been developed to analyze the data collected. These new algorithms analyze the time-dependent temperature and heat flux distributions to calculate nucleation site density, nucleation frequency, growth and wait time, dry area fraction, and the complete heat flux partitioning. In Q1 2017 a new flow boiling loop was designed and constructed to support flow boiling tests up 10 bar pressure and 180 °C. Initial shakedown and testing has been completed. The flow loop and test section are now ready to begin high-pressure flow boiling testing.« less

  18. Comparison of the Digestibility of the Major Peanut Allergens in Thermally Processed Peanuts and in Pure Form

    PubMed Central

    Maleki, Soheila J.; Schmitt, David A.; Galeano, Maria; Hurlburt, Barry K.

    2014-01-01

    It has been suggested that the boiling or frying of peanuts leads to less allergenic products than roasting. Here, we have compared the digestibility of the major peanut allergens in the context of peanuts subjected to boiling, frying or roasting and in purified form. The soluble peanut extracts and the purified allergens were digested with either trypsin or pepsin and analyzed by gel electrophoresis and western blot. T-cell proliferation was measured for the purified allergens. In most cases, boiled and raw peanut proteins were similarly digestible, but the Ara h 1 protein in the boiled extracts was more resistant to digestion. Most proteins from fried and roasted peanuts were more resistant to digestion than in raw and boiled samples, and more IgE binding fragments survived digestion. High-molecular-weight fragments of Ara h1 were resistant to digestion in fried and roasted samples. Ara h 1 and Ara h 2 purified from roasted peanuts were the most resistant to digestion, but differed in their ability to stimulate T-cells. The differences in digestibility and IgE binding properties of the major allergens in roasted, fried and boiled peanuts may not explain the difference between the prevalence of peanut allergy in different countries that consume peanut following these varied processing methods. PMID:28234320

  19. Microbiological effectiveness and cost of boiling to disinfect drinking water in rural Vietnam.

    PubMed

    Clasen, Thomas F; Thao, Do Hoang; Boisson, Sophie; Shipin, Oleg

    2008-06-15

    Despite certain shortcomings, boiling is still the most common means of treating water in the home and the benchmark against which alternative household-based disinfection and filtration methods must be measured. We assessed the microbiological effectiveness and cost of boiling among a vulnerable population relying on unimproved water sources and commonly practicing boiling as a means of disinfecting water. In a 12 week study among 50 households from a rural community in Vietnam, boiling was associated with a 97% reduction in geometric mean thermotolerant coliforms (TTCs) (p < 0.001). Despite high levels of faecal contamination in source water, 37% of stored water samples from self-reported boilers met the WHO standard for safe drinking water (0 TTC/100 mL), and 38.3% fell within the low risk category (1--10 TTC/100 mL). Nevertheless, 60.5% of stored drinking water samples were positive for TTC, with 22.2% falling into the medium risk category (11--100 TTC/100 mL). The estimated cost of wood used to boil water was US$ 0.272 per month for wood collectors and US$ 1.68 per month for wood purchasers, representing approximately 0.48% to 1.04%, respectively, of the average monthly income of participating households.

  20. Skin whitening and anti-corrugation activities of glycoprotein fractions from liquid extracts of boiled sea cucumber.

    PubMed

    Kim, So Jung; Park, So Yun; Hong, Sun-Mee; Kwon, Eun-Hye; Lee, Taek-Kyun

    2016-10-01

    To determine skin whitening and wrinkle improvement efficacy, glycoprotein fractions were extracted from liquid extracts of boiled sea cucumber and their effects on tyrosine and elastase inhibitory activities were assayed. Fractions above and below 50 kDa (>50 kDa and <50 kDa) were extracted via a series of steps involving: boiling, filtering, desalting and freeze drying. Cytotoxicity, skin whitening and wrinkle-removing effects of boiled liquid were determined. Our MTT data showed that neither glycoprotein fraction of boiled liquid induces cellular cytotoxicity up to a concentration of 10 mg/mL treatment of the mouse melanoma cell line, B16F10, with 10 mg/mL >50 kDa enhanced tyrosinase and elastase inhibitory activities by 50.84% and 28.78%, respectively. Correlations of the >50 kDa concentration with tyrosinase inhibitory (R2 = 0.968) and elastase inhibitory (R2 = 0.983) efficacy were significant. >50 kDa glycoprotein fraction isolated from liquid extracts of boiled sea cucumber, which can serve as a functional cosmetic ingredient for whitening and wrinkle improvement of skin. Copyright © 2016 Hainan Medical University. Production and hosting by Elsevier B.V. All rights reserved.

  1. Marangoni Effects in the Boiling of Binary Fluid Mixtures

    NASA Technical Reports Server (NTRS)

    Ahmed, Sayeed; Carey, Van P.; Motil, Brian

    1996-01-01

    Results of very recent experimental studies indicate that during nucleate boiling in some binary mixture, Marangoni effects augment the gravity driven flow of liquid towards the heated surface. With gravity present, it is impossible to separate the two effects. The reduced gravity environment gives an unique opportunity to explore th role of Marangoni effects on the boiling mechanisms free of gravitational body forces that obscure the role of such effects. However, recent experimental results suggest that under reduced gravity conditions, Marangoni effects is the dominant mechanism of vapor-liquid exchange at the surface for some binary mixture. To further explore such effects, experiments have been conducted with water/2-propanol mixtures at three different concentrations under normal gravity with different orientations of the heater surface and under reduce gravity aboard the DC-9 aircraft at NASA Lewis Research Center. The system pressure was sub atmospheric (approx. 8 kP at 1g(n)) and the bulk liquid temperature varied from low subcooling to near saturation. The molar concentrations of 2-propanol tested were 0.015, 0.025, and 0.1. Boiling curves were obtained both for high gravity (approx. 2g(n)) and reduce gravity (approx. 0.01g(n)). For each concentration of 2-propanol, the critical heat flux has been determined in the flight experiments only for reduced gravity conditions. Comparison of boiling curves and CHF obtained under l-g(n) an reduced gravity indicates that boiling mechanism in this mixtures is nearly independent of gravity. The results also indicate that the Marangoni mechanism is strong enough in these mixtures to sustain the boiling under reduced gravity conditions.

  2. Shock-induced heating and millisecond boiling in gels and tissue due to high intensity focused ultrasound

    PubMed Central

    Canney, Michael S.; Khokhlova, Vera A.; Bessonova, Olga V.; Bailey, Michael R.; Crum, Lawrence A.

    2009-01-01

    Nonlinear propagation causes high intensity ultrasound waves to distort and generate higher harmonics, which are more readily absorbed and converted to heat than the fundamental frequency. Although such nonlinear effects have previously been investigated and found not to significantly alter high intensity focused ultrasound (HIFU) treatments, two results reported here change this paradigm. One is that at clinically relevant intensity levels, HIFU waves not only become distorted but form shock waves in tissue. The other is that the generated shock waves heat the tissue to boiling in much less time than predicted for undistorted or weakly distorted waves. In this study, a 2-MHz HIFU source operating at peak intensities up to 25,000 W/cm2 was used to heat transparent tissue-mimicking phantoms and ex vivo bovine liver samples. Initiation of boiling was detected using high-speed photography, a 20-MHz passive cavitation detector, and fluctuation of the drive voltage at the HIFU source. The time to boil obtained experimentally was used to quantify heating rates and was compared to calculations using weak shock theory and the shock amplitudes obtained from nonlinear modeling and from measurements with a fiber optic hydrophone. As observed experimentally and predicted by calculations, shocked focal waveforms produced boiling in as little as 3 ms and the time to initiate boiling was sensitive to small changes in HIFU output. Nonlinear heating due to shock waves is therefore important to HIFU and clinicians should be aware of the potential for very rapid boiling since it alters treatments. PMID:20018433

  3. Evaluation of different cooking conditions on broccoli (Brassica oleracea var. italica) to improve the nutritional value and consumer acceptance.

    PubMed

    Bongoni, Radhika; Verkerk, Ruud; Steenbekkers, Bea; Dekker, Matthijs; Stieger, Markus

    2014-09-01

    The objective of this study was to gain insights into the effect of the cooking method on the liking as well as the retention of glucosinolates in broccoli. With this knowledge it can be concluded whether the health aspects of broccoli be improved by the cooking method without deteriorating sensory perception. For this, broccoli was cooked by methods commonly applied by consumers: boiling with a cold (water) start; boiling with a hot (water) start; and steaming. Firmness, greenness and amount of total glucosinolates in cooked broccoli were instrumentally determined. Sensory evaluation by untrained consumers (n = 99) for liking and sensory attributes intensity rating were performed on broccoli cooked by steaming and boiling-cold start at three time points, which resulted in 'high', 'medium', 'low' firm broccoli samples. At the end of cooking, steaming showed an increase in the amount of total glucosinolates (+17%). Boiling-hot start (-41%) and boiling-cold start (-50%) showed a decrease in amount of total glucosinolates. Sensory evaluation did not show statistically significant differences between steaming and boiling-cold start in liking at 'high' and 'medium' firmness; and in the attribute intensity ratings (except for juiciness at 'medium' firmness, and flavour at 'medium' and 'low' firmness). This study demonstrates that medium firm broccoli showed optimum liking and that steaming compared to boiled-cold start showed higher amount of glucosinolates. It is concluded that the health aspects of broccoli can be improved without reducing the sensory aspects by optimising the cooking method.

  4. Changes in the Microbial Composition of Microbrewed Beer during the Process in the Actual Manufacturing Line.

    PubMed

    Kim, S A; Jeon, S H; Kim, N H; Kim, H W; Lee, N Y; Cho, T J; Jung, Y M; Lee, S H; Hwang, I G; Rhee, M S

    2015-12-01

    This study investigated changes in the microbial composition of microbrewed beer during the manufacturing processes and identified potential microbial hazards, effective critical quality control points, and potential contamination routes. Comprehensive quantitative (aerobic plate count, lactic acid bacteria, fungi, acetic acid bacteria, coliforms, and Bacillus cereus) and qualitative (Escherichia coli and eight foodborne pathogens) microbiological analyses were performed using samples of raw materials (malt and manufacturing water), semiprocessed products (saccharified wort, boiled wort, and samples taken during the fermentation and maturation process), and the final product obtained from three plants. The initial aerobic plate count and lactic acid bacteria counts in malt were 5.2 and 4.3 log CFU/g, respectively. These counts were reduced to undetectable levels by boiling but were present at 2.9 and 0.9 log CFU/ml in the final product. Fungi were initially present at 3.6 log CFU/g, although again, the microbes were eliminated by boiling; however, the level in the final product was 4.6 log CFU/ml. No E. coli or foodborne pathogens (except B. cereus) were detected. B. cereus was detected at all stages, although it was not present in the water or boiled wort (total detection rate ¼ 16.4%). Results suggest that boiling of the wort is an effective microbial control measure, but careful management of raw materials and implementation of effective control measures after boiling are needed to prevent contamination of the product after the boiling step. The results of this study may constitute useful and comprehensive information regarding the microbiological quality of microbrewed beer.

  5. Concept Specification by PRECIS Role Operators: Some Technical Problems with Social Science and Humanities Literature.

    ERIC Educational Resources Information Center

    Mahapatra, M.; Biswas, S. C.

    1985-01-01

    Two hundred journal articles related to fields of taxation, genetic psychology, and Shakespearean drama published from 1970-1980 were analyzed and PRECIS input strings were drawn. Occasions when input string and index entries looked incomplete and unexpressive after losing context of document are provided with solutions. Role operator schema is…

  6. The Effect of Meaning-Focused Listening Input on Iranian Intermediate EFL Learners' Productive Vocabulary Size

    ERIC Educational Resources Information Center

    Noughabi, Mostafa Azari

    2017-01-01

    Vocabulary as a significant component of language learning has been widely researched. As well, it is well documented that vocabulary could be learned through listening and reading. In addition, measuring productive vocabulary has been a chief concern among scholars. However, few studies have focused on meaning-focused listening input and its…

  7. 39 CFR 3050.22 - Documentation supporting attributable cost estimates in the Postal Service's section 3652 report.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the updated factors and input data sets from the supporting data systems used, including: (1) The In... Determination. (b) The CRA report, including relevant data on international mail services; (c) The Cost Segments and Components (CSC) report; (d) All input data and processing programs used to produce the CRA report...

  8. 39 CFR 3050.22 - Documentation supporting attributable cost estimates in the Postal Service's section 3652 report.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the updated factors and input data sets from the supporting data systems used, including: (1) The In... Determination. (b) The CRA report, including relevant data on international mail services; (c) The Cost Segments and Components (CSC) report; (d) All input data and processing programs used to produce the CRA report...

  9. 39 CFR 3050.22 - Documentation supporting attributable cost estimates in the Postal Service's section 3652 report.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the updated factors and input data sets from the supporting data systems used, including: (1) The In... Determination. (b) The CRA report, including relevant data on international mail services; (c) The Cost Segments and Components (CSC) report; (d) All input data and processing programs used to produce the CRA report...

  10. 39 CFR 3050.22 - Documentation supporting attributable cost estimates in the Postal Service's section 3652 report.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the updated factors and input data sets from the supporting data systems used, including: (1) The In... Determination. (b) The CRA report, including relevant data on international mail services; (c) The Cost Segments and Components (CSC) report; (d) All input data and processing programs used to produce the CRA report...

  11. Pedagogical Ethical Dilemmas in a Responsive Evaluation of a Leadership Program for Youth

    ERIC Educational Resources Information Center

    Freeman, Melissa; Preissle, Judith

    2010-01-01

    How do responsive evaluators provide input to program planners when competing ethical principles point to different choices of effective feedback? A team of three evaluators used participant observation, individual and focus group interviews, and analysis of documents to provide input on the development and outcome of a summer program for high…

  12. 76 FR 14840 - Extension of Comment Period: EPA's Plan for Retrospective Review Under Executive Order 13563

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-18

    ... published in the Federal Register a document seeking public input on the design of a plan to use for periodic retrospective review of its regulations (76 FR 9988). This input is being solicited in response to...] Extension of Comment Period: EPA's Plan for Retrospective Review Under Executive Order 13563 AGENCY...

  13. Raw milk from vending machines: Effects of boiling, microwave treatment, and refrigeration on microbiological quality.

    PubMed

    Tremonte, Patrizio; Tipaldi, Luca; Succi, Mariantonietta; Pannella, Gianfranco; Falasca, Luisa; Capilongo, Valeria; Coppola, Raffaele; Sorrentino, Elena

    2014-01-01

    In Italy, the sale of raw milk from vending machines has been allowed since 2004. Boiling treatment before its use is mandatory for the consumer, because the raw milk could be an important source of foodborne pathogens. This study fits into this context with the aim to evaluate the microbiological quality of 30 raw milk samples periodically collected (March 2013 to July 2013) from 3 vending machines located in Molise, a region of southern Italy. Milk samples were stored for 72 h at 4 °C and then subjected to different treatments, such as boiling and microwaving, to simulate domestic handling. The results show that all the raw milk samples examined immediately after their collection were affected by high microbial loads, with values very close to or even greater than those acceptable by Italian law. The microbial populations increased during refrigeration, reaching after 72 h values of about 8.0 log cfu/mL for Pseudomonas spp., 6.5 log cfu/mL for yeasts, and up to 4.0 log cfu/mL for Enterobacteriaceae. Boiling treatment, applied after 72 h to refrigerated milk samples, caused complete decontamination, but negatively affected the nutritional quality of the milk, as demonstrated by a drastic reduction of whey proteins. The microwave treatment at 900 W for 75 s produced microbiological decontamination similar to that of boiling, preserving the content in whey proteins of milk. The microbiological characteristics of raw milk observed in this study fully justify the obligation to boil the raw milk from vending machines before consumption. However, this study also showed that domestic boiling causes a drastic reduction in the nutritional value of milk. Microwave treatment could represent a good alternative to boiling, on the condition that the process variables are standardized for safe domestic application. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. United States Department of Energy solar receiver technology development

    NASA Astrophysics Data System (ADS)

    Klimas, P. C.; Diver, R. B.; Chavez, J. M.

    The United States Department of Energy (DOE), through Sandia National Laboratories, has been conducting a Solar Thermal Receiver Technology Development Program, which maintains a balance between analytical modeling, bench and small scale testing, and experimentation conducted at scales representative of commercially-sized equipment. Central receiver activities emphasize molten salt-based systems on large scales and volumetric devices in the modeling and small scale testing. These receivers are expected to be utilized in solar power plants rated between 100 and 200 MW. Distributed receiver research focuses on liquid metal refluxing devices. These are intended to mate parabolic dish concentrators with Stirling cycle engines in the 5 to 25 kW(sub e) power range. The effort in the area of volumetric receivers is less intensive and highly cooperative in nature. A ceramic foam absorber of Sandia design was successfully tested on the 200 kW(sub t) test bed at Plataforma Solar during 1989. Material integrity during the approximately 90-test series was excellent. Significant progress has been made with parabolic dish concentrator-mounted receivers using liquid metals (sodium or a potassium/sodium mixture) as heat transport media. Sandia has successfully solar-tested a pool boiling reflux receiver sized to power a 25 kW Stirling engine. Boiling stability and transient operation were both excellent. This document describes these activities in detail and will outline plans for future development.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This safety evaluation report (SER) documents the technical review of the US Advanced Boiling Water Reactor (ABWR) standard design by the US Nuclear Regulatory Commission (NRC) staff. The application for the ABWR design was initially submitted by the General Electric Company, now GE Nuclear Energy (GE), in accordance with the procedures of Appendix O of Part 50 of Title 10 of the Code of Federal Regulations (10 CFR Part 50). Later GE requested that its application be considered as an application for design approval and subsequent design certification pursuant to 10 CFR {section} 52.45. The ABWR is a single-cycle, forced-circulation,more » boiling water reactor (BWR) with a rated power of 3,926 megawatts thermal (MWt) and a design power of 4,005 MWt. To the extent feasible and appropriate, the staff relied on earlier reviews for those ABWR design features that are substantially the same as those previously considered. Unique features of the ABWR design include internal recirculation pumps, fine-motion control rod drives, microprocessor-based digital logic and control systems, and digital safety systems. On the basis of its evaluation and independent analyses, the NRC staff concludes that, subject to satisfactory resolution of the confirmatory items identified in Section 1.8 of this SER, GE`s application for design certification meets the requirements of Subpart B of 10 CFR Part 52 that are applicable and technically relevant to the US ABWR standard design.« less

  16. Investigation of Critical Heat Flux in Reduced Gravity Using Photomicrographic Techniques

    NASA Technical Reports Server (NTRS)

    Mudawar, Issam; Zhang, Hui

    2003-01-01

    Experiments were performed to examine the effects of body force on flow boiling critical heat flux (CHF). FC-72 was boiled along one wall of a transparent rectangular flow channel that permitted photographic study of the vapor-liquid interface just prior to CHF. High-speed video imaging techniques were used to identify dominant CHF mechanisms corresponding to different flow orientations and liquid velocities. Six different CHF regimes were identified: Wavy Vapor Layer, Pool Boiling, Stratification, Vapor Counterflow, Vapor Stagnation, and Separated Concurrent Vapor Flow. CHF showed significant sensitivity to orientation for flow velocities below 0.2 m/s, where extremely low CHF values where measured, especially with downward-facing heated wall and downflow orientations. High flow velocities dampened the effects of orientation considerably. The CHF data were used to assess the suitability of previous CHF models and correlations. It is shown the Interfacial Lift-off Model is very effective at predicting CHF for high velocities at all orientations. The flooding limit, on the other hand, is useful at estimating CHF at low velocities and for downflow orientations. A new method consisting of three dimensionless criteria is developed for determining the minimum flow velocity required to overcome body force effects on near-saturated flow boiling CHF. Vertical upflow boiling experiments were performed in pursuit of identifying the trigger mechanism for subcooled flow boiling CHF. While virtually all prior studies on flow boiling CHF concern the prediction or measurement of conditions that lead to CHF, this study was focused on events that take place during the CHF transient. High-speed video imaging and photomicrographic techniques were used to record the transient behavior of interfacial features from the last steady-state power level before CHF until the moment of power cut-off following CHF. The video records show the development of a wavy vapor layer which propagates along the heated wall, permitting cooling prior to CHF only in wetting fronts corresponding to the wave troughs. Image analysis software was developed to estimate void fraction from the individual video images. The void fraction records for subcooled flow boiling show the CHF transient is accompanied by gradual lift-off of wetting fronts culminating in some maximum vapor layer mean thickness, following which the vapor layer begins to thin down as the transition to film boiling ensues. This study proves the Interfacial Lift-off Model, which has been validated for near-saturated flow boiling CHF, is equally valid for subcooled conditions.

  17. Enhanced Boiling on Micro-Configured Composite Surfaces Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Zhang, Nengli; Chai, An-Ti

    1999-01-01

    In order to accommodate the growing thermal management needs of future space platforms, several two-phase active thermal control systems (ATCSs) have evolved and were included in the designs of space stations. Compared to the pumped single-phase liquid loops used in the conventional Space Transportation System and Spacelab, ATCSs offer significant benefits that may be realized by adopting a two-phase fluid-loop system. Alternately, dynamic power systems (DPSs), based on the Rankine cycle, seem inevitably to be required to supply the electrical power requirements of expanding space activities. Boiling heat transfer is one of the key technologies for both ATCSs and DPSs. Nucleate boiling near critical heat flux (CHF) can transport very large thermal loads with much smaller device size and much lower pumping power. However, boiling performance deteriorates in a reduced gravity environment and operation in the CHF regime is precarious because any slight overload will cause the heat transfer to suddenly move to the film boiling regime, which in turn, will result in burnout of the heat transfer surfaces. New materials, such as micro-configured metal-graphite composites, can provide a solution for boiling enhancement. It has been shown experimentally that this type of material manifests outstanding boiling heat transfer performance and their CHF is also extended to higher values. Due to the high thermal conductivity of graphite fiber (up to 1,200 W/m-K in the fiber direction), the composite surfaces are non-isothermal during the boiling process. The composite surfaces are believed to have a much wider safe operating region (a more uniform boiling curve in the CHF regime) because non-isothermal surfaces have been found to be less sensitive to variations of wall superheat in the CHF regime. The thermocapillary forces formed by the temperature difference between the fiber tips and the metal matrix play a more important role than the buoyancy in the bubble detachment, for the bubble detachment manifests itself by a necking process which should not be weakened by reduced gravity. In addition, the composite surfaces introduce no extra pressure drop, no fouling and do not impose significant primary or maintenance costs. All of these suggest that this type of composite is an ideal material for the challenge of accounting for both reliability and economy of the relevant components applied in the ATCSs, the DPSs and other devices in future space missions. The aim of the proposed work is to experimentally investigate high nucleate pool boiling performance on a micro-configured metal-graphite composite surface and to determine the mechanisms of the nucleate boiling heat transfer both experimentally and theoretically. Freon-113 and water will be used as the test liquids to investigate wettability effects on boiling characteristics. The Cu-Gr and Al-Gr composites with various volume fractions of graphite fibers will be tested to obtain the heat transfer characteristic data in the nucleate boiling region and in the CHF regime. In the experiments, the bubble emission and coalescence processes will be recorded by a video camera with a magnifying borescope probe immersed in the working fluid. The temperature profile in the thermal boundary layer on the composite surfaces will be measured by a group of micro thermocouples consisting of four ultra fine micro thermocouples. This instrument was developed and successfully used to measure the temperature profile of evaporating liquid thin layers by the proposers in a study performed at the NASA/Lewis Research Center. A two tier model to explain the nucleate boiling process and the performance enhancement on the composite surfaces has been suggested by the authors. According to the model, the thicknesses of the microlayer and the macrolayer underneath the bubbles and mushrooms, can be estimated by the geometry of the composite surface. The experimental results will be compared to the predictions from the model, and in turn, to revise and improve it.

  18. Minnesota Department of Education Special Education Primer for Charter Schools

    ERIC Educational Resources Information Center

    Minnesota Department of Education, 2009

    2009-01-01

    The purpose of this document is to provide information and resources on special education for charter school sponsors and charter school directors. This document is the result of collaborative input from individuals who work in and with charter schools in Minnesota. It also represents the collaborative efforts of the following divisions of the…

  19. International directory of documentation services concerning forestry and forest products

    Treesearch

    Peter A. Evans; Gary L. Skupa

    1981-01-01

    This directory lists 120 documentation services concerned with forestry, forest products, or related fields in 28 countries. The entry for each service includes title of service, cost, publisher, subject coverage, formatting data, input sources, indexing and data-handling methods, and availability of special services other than the primary ones of indexing and...

  20. Nurses' Perceptions of Nursing Care Documentation in the Electronic Health Record

    ERIC Educational Resources Information Center

    Jensen, Tracey A.

    2013-01-01

    Electronic health records (EHRs) will soon become the standard for documenting nursing care. The EHR holds the promise of rapid access to complete records of a patient's encounter with the healthcare system. It is the expectation that healthcare providers input essential data that communicates important patient information to support quality…

  1. Institutional Commitment to Sustainability: An Evaluation of Natural Resource Extension Programs in Universities in Alabama and Oregon

    ERIC Educational Resources Information Center

    Broussard, Shorna R.; Bliss, John C.

    2007-01-01

    Purpose: The purpose of this research is to determine institutional commitment to sustainability by examining Natural Resource Extension program inputs, activities, and participation. Design/methodology/approach: A document analysis of Natural Resource Extension planning and reporting documents was conducted to provide contextual and historical…

  2. 77 FR 67340 - National Fire Codes: Request for Comments on NFPA's Codes and Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-09

    ... the process. The Code Revision Process contains four basic steps that are followed for developing new documents as well as revising existing documents. Step 1: Public Input Stage, which results in the First Draft Report (formerly ROP); Step 2: Comment Stage, which results in the Second Draft Report (formerly...

  3. A Closer Look at Trends in Boiling Points of Hydrides: Using an Inquiry-Based Approach to Teach Intermolecular Forces of Attraction

    ERIC Educational Resources Information Center

    Glazier, Samantha; Marano, Nadia; Eisen, Laura

    2010-01-01

    We describe how we use boiling-point trends of group IV-VII hydrides to introduce intermolecular forces in our first-year general chemistry classes. Starting with the idea that molecules in the liquid state are held together by some kind of force that must be overcome for boiling to take place, students use data analysis and critical reasoning to…

  4. Bubble Dynamics, Two-Phase Flow, and Boiling Heat Transfer in Microgravity

    NASA Technical Reports Server (NTRS)

    Chung, Jacob N.

    1996-01-01

    The objective of the research is to study the feasibility of employing an external force to replace the buoyancy force in order to maintain nucleate boiling in microgravity. We have found that a bulk velocity field, an electric field and an acoustic field could each play the role of the gravity field in microgravity. Nucleate boiling could be maintained by any one of the three external force fields in space.

  5. Boiling heat transfer to LN2 and LH2 - Influence of surface orientation and reduced body forces

    NASA Technical Reports Server (NTRS)

    Merte, H., Jr.; Oker, E.; Littles, J. W.

    1973-01-01

    The quantitative determination of the influence of heater surface orientation and gravity on nucleate pool boiling of liquid nitrogen and liquid hydrogen is described. A transient calorimeter technique, well suited for obtaining pool boiling data under reduced gravity and used earlier by Clark and Merte (1963), was employed after being adapted to flat a surface whose orientation could be varied. The obtained determination results are reviewed.

  6. SUPERHEATING IN A BOILING WATER REACTOR

    DOEpatents

    Treshow, M.

    1960-05-31

    A boiling-water reactor is described in which the steam developed in the reactor is superheated in the reactor. This is accomplished by providing means for separating the steam from the water and passing the steam over a surface of the fissionable material which is not in contact with the water. Specifically water is boiled on the outside of tubular fuel elements and the steam is superheated on the inside of the fuel elements.

  7. 16. RW Meyer Sugar Mill: 18761889. Boiling House Interior, 1878. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. RW Meyer Sugar Mill: 1876-1889. Boiling House Interior, 1878. View: Looking from west to east through boiling house. The sorghum pan is on the right. The beams; joists, and trusses are of northwest pine; side boards are of redwood. A foundation line of a loading dock and smokestack are in the foreground. Both end walls have deteriorated completely. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  8. Effect of Heat Input on Inclusion Evolution Behavior in Heat-Affected Zone of EH36 Shipbuilding Steel

    NASA Astrophysics Data System (ADS)

    Sun, Jincheng; Zou, Xiaodong; Matsuura, Hiroyuki; Wang, Cong

    2018-03-01

    The effects of heat input parameters on inclusion and microstructure characteristics have been investigated using welding thermal simulations. Inclusion features from heat-affected zones (HAZs) were profiled. It was found that, under heat input of 120 kJ/cm, Al-Mg-Ti-O-(Mn-S) composite inclusions can act effectively as nucleation sites for acicular ferrites. However, this ability disappears when the heat input is increased to 210 kJ/cm. In addition, confocal scanning laser microscopy (CSLM) was used to document possible inclusion-microstructure interactions, shedding light on how inclusions assist beneficial transformations toward property enhancement.

  9. Effect of Heat Input on Inclusion Evolution Behavior in Heat-Affected Zone of EH36 Shipbuilding Steel

    NASA Astrophysics Data System (ADS)

    Sun, Jincheng; Zou, Xiaodong; Matsuura, Hiroyuki; Wang, Cong

    2018-06-01

    The effects of heat input parameters on inclusion and microstructure characteristics have been investigated using welding thermal simulations. Inclusion features from heat-affected zones (HAZs) were profiled. It was found that, under heat input of 120 kJ/cm, Al-Mg-Ti-O-(Mn-S) composite inclusions can act effectively as nucleation sites for acicular ferrites. However, this ability disappears when the heat input is increased to 210 kJ/cm. In addition, confocal scanning laser microscopy (CSLM) was used to document possible inclusion-microstructure interactions, shedding light on how inclusions assist beneficial transformations toward property enhancement.

  10. Safety evaluation report on Tennessee Valley Authority: Browns Ferry nuclear performance plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-10-01

    This safety evaluation report (SER) on the information submitted by the Tennessee Valley Authority (TVA) in its Nuclear Performance Plan, through Revision 2, for the Browns Ferry Nuclear Plant and in supporting documents has been prepared by the US Nuclear Regulatory commission staff. The Browns Ferry Nuclear Plant consists of three boiling-water reactors at a site in Limestone County, Alabama. The plan addresses the plant-specific concerns requiring resolution before the startup of Unit 2. The staff will inspect implementation of those TVA programs that address these concerns. Where systems are common to Units 1 and 2 or to Units 2more » and 3, the staff safety evaluations of those systems are included herein. 85 refs.« less

  11. Boiling on Microconfigured Composite Surfaces Enhanced

    NASA Technical Reports Server (NTRS)

    Chao, David F.

    2000-01-01

    Boiling heat transfer is one of the key technologies for the two-phase active thermal-control system used on space platforms, as well as for the dynamic power systems aboard the International Space Station. Because it is an effective heat transfer mode, boiling is integral to many space applications, such as heat exchangers and other cooling devices. Nucleate boiling near the critical heat flux (CHF) can transport very large thermal loads with a much smaller device and much lower pumping power than for single-phase heat exchangers. However, boiling performance sharply deteriorates in a reduced-gravity environment, and operation in the CHF regime is somewhat perilous because of the risk of burnout to the device surface. New materials called microconfigured metal-graphite composites can enhance boiling. The photomicrograph shows the microconfiguration (x3000) of the copper-graphite (Cu-Gr) surface as viewed by scanning electronic microscope. The graphite fiber tips appear as plateaus with rugged surfaces embedded in the copper matrix. It has been experimentally demonstrated that this type of material manifests excellent boiling heat transfer performance characteristics and an increased CHF. Nonisothermal surfaces were less sensitive to variations of wall superheat in the CHF regime. Because of the great difference in conductivity between the copper base and the graphite fiber, the composite surfaces have a nonisothermal surface characteristic and, therefore, will have a much larger "safe" operating region in the CHF regime. In addition, the thermocapillary forces induced by the temperature differences between the fiber tips and the metal matrix play an important role in bubble detachment, and may not be adversely affected in a reduced-gravity environment. All these factors indicate that microconfigured composites may improve the reliability and economy (dominant factors in all space applications) of various thermal components found on spacecraft during future missions.

  12. Effects of Boiling Drinking Water on Diarrhea and Pathogen-Specific Infections in Low- and Middle-Income Countries: A Systematic Review and Meta-Analysis

    PubMed Central

    Cohen, Alasdair; Colford, John M.

    2017-01-01

    Abstract. Globally, approximately 2 billion people lack microbiologically safe drinking water. Boiling is the most prevalent household water treatment method, yet evidence of its health impact is limited. To conduct this systematic review, we searched four online databases with no limitations on language or publication date. Studies were eligible if health outcomes were measured for participants who reported consuming boiled and untreated water. We used reported and calculated odds ratios (ORs) and random-effects meta-analysis to estimate pathogen-specific and pooled effects by organism group and nonspecific diarrhea. Heterogeneity and publication bias were assessed using I2, meta-regression, and funnel plots; study quality was also assessed. Of the 1,998 records identified, 27 met inclusion criteria and reported extractable data. We found evidence of a significant protective effect of boiling for Vibrio cholerae infections (OR = 0.31, 95% confidence interval [CI] = 0.13–0.79, N = 4 studies), Blastocystis (OR = 0.35, 95% CI = 0.17–0.69, N = 3), protozoal infections overall (pooled OR = 0.61, 95% CI = 0.43–0.86, N = 11), viral infections overall (pooled OR = 0.83, 95% CI = 0.7–0.98, N = 4), and nonspecific diarrheal outcomes (OR = 0.58, 95% CI = 0.45–0.77, N = 7). We found no evidence of a protective effect for helminthic infections. Although our study was limited by the use of self-reported boiling and non-experimental designs, the evidence suggests that boiling provides measureable health benefits for pathogens whose transmission routes are primarily water based. Consequently, we believe a randomized controlled trial of boiling adherence and health outcomes is needed. PMID:29016318

  13. A Ghost Fluid/Level Set Method for boiling flows and liquid evaporation: Application to the Leidenfrost effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rueda Villegas, Lucia; Alis, Romain; Lepilliez, Mathieu

    2016-07-01

    The development of numerical methods for the direct numerical simulation of two-phase flows with phase change, in the framework of interface capturing or interface tracking methods, is the main topic of this study. We propose a novel numerical method, which allows dealing with both evaporation and boiling at the interface between a liquid and a gas. Indeed, in some specific situations involving very heterogeneous thermodynamic conditions at the interface, the distinction between boiling and evaporation is not always possible. For instance, it can occur for a Leidenfrost droplet; a water drop levitating above a hot plate whose temperature is muchmore » higher than the boiling temperature. In this case, boiling occurs in the film of saturated vapor which is entrapped between the bottom of the drop and the plate, whereas the top of the water droplet evaporates in contact of ambient air. The situation can also be ambiguous for a superheated droplet or at the contact line between a liquid and a hot wall whose temperature is higher than the saturation temperature of the liquid. In these situations, the interface temperature can locally reach the saturation temperature (boiling point), for instance near a contact line, and be cooler in other places. Thus, boiling and evaporation can occur simultaneously on different regions of the same liquid interface or occur successively at different times of the history of an evaporating droplet. Standard numerical methods are not able to perform computations in these transient regimes, therefore, we propose in this paper a novel numerical method to achieve this challenging task. Finally, we present several accuracy validations against theoretical solutions and experimental results to strengthen the relevance of this new method.« less

  14. A high-fidelity approach towards simulation of pool boiling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yazdani, Miad; Radcliff, Thomas; Soteriou, Marios

    2016-01-15

    A novel numerical approach is developed to simulate the multiscale problem of pool-boiling phase change. The particular focus is to develop a simulation technique that is capable of predicting the heat transfer and hydrodynamic characteristics of nucleate boiling and the transition to critical heat flux on surfaces of arbitrary shape and roughness distribution addressing a critical need to design enhanced boiling heat transfer surfaces. The macro-scale of the phase change and bubble dynamics is addressed through employing off-the-shelf Computational Fluid Dynamics (CFD) methods for interface tracking and interphase mass and energy transfer. The micro-scale of the microlayer, which forms atmore » early stage of bubble nucleation near the wall, is resolved through asymptotic approximation of the thin-film theory which provides a closed-form solution for the distribution of the micro-layer and its influence on the evaporation process. In addition, the sub-grid surface roughness is represented stochastically through probabilistic density functions and its role in bubble nucleation and growth is then represented based on the thermodynamics of nucleation process. This combination of deterministic CFD, local approximation, and stochastic representation allows the simulation of pool boiling on any surface with known roughness and enhancement characteristics. The numerical model is validated for dynamics and hydrothermal characteristics of a single nucleated bubble on a flat surface against available literature data. In addition, the prediction of pool-boiling heat transfer coefficient is verified against experimental measurements as well as reputable correlations for various roughness distributions and different surface orientations. Finally, the model is employed to demonstrate pool-boiling phenomenon on enhanced structures with reentrance cavities and to explore the effect of enhancement feature design on thermal and hydrodynamic characteristics of these surfaces.« less

  15. Geologic framework for the national assessment of carbon dioxide storage resources: Permian and Palo Duro Basins and Bend Arch-Fort Worth Basin: Chapter K in Geologic framework for the national assessment of carbon dioxide storage resources

    USGS Publications Warehouse

    Merrill, Matthew D.; Slucher, Ernie R.; Roberts-Ashby, Tina L.; Warwick, Peter D.; Blondes, Madalyn S.; Freeman, P.A.; Cahan, Steven M.; DeVera, Christina A.; Lohr, Celeste D.; Warwick, Peter D.; Corum, Margo D.

    2015-01-01

    The U.S. Geological Survey has completed an assessment of the potential geologic carbon dioxide storage resource in the onshore areas of the United States. To provide geological context and input data sources for the resources numbers, framework documents are being prepared for all areas that were investigated as part of the national assessment. This report is the geologic framework document for the Permian and Palo Duro Basins, the combined Bend arch-Fort Worth Basin area, and subbasins therein of Texas, New Mexico, and Oklahoma. In addition to a summarization of the geology and petroleum resources of studied basins, the individual storage assessment units (SAUs) within the basins are described and explanations for their selection are presented. Though appendixes in the national assessment publications include the input values used to calculate the available storage resource, this framework document provides only the context and source of inputs selected by the assessment geologists. Spatial files of boundaries for the SAUs herein, as well as maps of the density of known well bores that penetrate the SAU seal, are available for download with the release of this report.

  16. Geologic framework for the national assessment of carbon dioxide storage resources—Southern Rocky Mountain Basins: Chapter M in Geologic framework for the national assessment of carbon dioxide storage resources

    USGS Publications Warehouse

    Merrill, Matthew D.; Drake, Ronald M.; Buursink, Marc L.; Craddock, William H.; East, Joseph A.; Slucher, Ernie R.; Warwick, Peter D.; Brennan, Sean T.; Blondes, Madalyn S.; Freeman, Philip A.; Cahan, Steven M.; DeVera, Christina A.; Lohr, Celeste D.; Warwick, Peter D.; Corum, Margo D.

    2016-06-02

    The U.S. Geological Survey has completed an assessment of the potential geologic carbon dioxide storage resources in the onshore areas of the United States. To provide geological context and input data sources for the resources numbers, framework documents are being prepared for all areas that were investigated as part of the national assessment. This report, chapter M, is the geologic framework document for the Uinta and Piceance, San Juan, Paradox, Raton, Eastern Great, and Black Mesa Basins, and subbasins therein of Arizona, Colorado, Idaho, Nevada, New Mexico, and Utah. In addition to a summary of the geology and petroleum resources of studied basins, the individual storage assessment units (SAUs) within the basins are described and explanations for their selection are presented. Although appendixes in the national assessment publications include the input values used to calculate the available storage resource, this framework document provides only the context and source of the input values selected by the assessment geologists. Spatial-data files of the boundaries for the SAUs, and the well-penetration density of known well bores that penetrate the SAU seal, are available for download with the release of this report.

  17. Statistics & Input-Output Measures for School Libraries in Colorado, 2002.

    ERIC Educational Resources Information Center

    Colorado State Library, Denver.

    This document presents statistics and input-output measures for K-12 school libraries in Colorado for 2002. Data are presented by type and size of school, i.e., high schools (six categories ranging from 2,000 and over to under 300), junior high/middle schools (five categories ranging from 1,000-1,999 to under 300), elementary schools (four…

  18. Optical mass memory system (AMM-13). AMM/DBMS interface control document

    NASA Technical Reports Server (NTRS)

    Bailey, G. A.

    1980-01-01

    The baseline for external interfaces of a 10 to the 13th power bit, optical archival mass memory system (AMM-13) is established. The types of interfaces addressed include data transfer; AMM-13, Data Base Management System, NASA End-to-End Data System computer interconnect; data/control input and output interfaces; test input data source; file management; and facilities interface.

  19. User Manual for SAHM package for VisTrails

    USGS Publications Warehouse

    Talbert, C.B.; Talbert, M.K.

    2012-01-01

    The Software for Assisted Habitat I\\•1odeling (SAHM) has been created to both expedite habitat modeling and help maintain a record of the various input data, pre-and post-processing steps and modeling options incorporated in the construction of a species distribution model. The four main advantages to using the combined VisTrail: SAHM package for species distribution modeling are: 1. formalization and tractable recording of the entire modeling process 2. easier collaboration through a common modeling framework 3. a user-friendly graphical interface to manage file input, model runs, and output 4. extensibility to incorporate future and additional modeling routines and tools. This user manual provides detailed information on each module within the SAHM package, their input, output, common connections, optional arguments, and default settings. This information can also be accessed for individual modules by right clicking on the documentation button for any module in VisTrail or by right clicking on any input or output for a module and selecting view documentation. This user manual is intended to accompany the user guide which provides detailed instructions on how to install the SAHM package within VisTrails and then presents information on the use of the package.

  20. The Effect of Dissolved Air on the Cooling Performance of a Partially Confined FC-72 Spray

    DTIC Science & Technology

    2008-07-01

    95 iv LIST OF FIGURES Figure 1: Heat transfer coefficients: various processes and coolants ( Mudawar , 2001) .....1 Figure 2...various processes and coolants ( Mudawar , 2001). 2 In two-phase cooling a phase change of liquid to vapor, or boiling, occurs. The boiling...possible in flow boiling is also affected by the velocity of the flow and the amount of subcooling of the fluid ( Mudawar and Maddox, 1989). One highly

  1. Effects of cooking on concentrations of polychlorinated dibenzo-p-dioxins and related compounds in fish and meat.

    PubMed

    Hori, Tsuguhide; Nakagawa, Reiko; Tobiishi, Kazuhiro; Iida, Takao; Tsutsumi, Tomoaki; Sasaki, Kumiko; Toyoda, Masatake

    2005-11-02

    We investigated the cooking-induced changes in concentrations of polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and dioxin-like polychlorinated biphenyls (PCBs) (dioxins) using mackerel and beef. The concentrations of dioxins (29 congeners) were determined by isomer specific analyses and were compared between uncooked and cooked samples. The cooking procedures examined in this study included grilling as a fillet, boiling as a fillet, and boiling as tsumire (small, hand-rolled balls) for mackerel and boiling as a slice, broiling as a slice, and broiling as a hamburger for beef. Three trials were carried out for each cooking method. Generally, concentrations of dioxins were reduced in every cooking trial. When nondetected congener concentrations were assumed to be half the limit of detection for mackerel, the maximum percentage reductions of total concentrations given as 2,3,7,8-tetraCDD equivalents (TEQ) were 31% in grilling as a slice, 14% in boiling as a slice, and 21% in boiling as tsumire under the conditions of this study. In contrast, for beef, the reductions were 42% in boiling as a slice, 42% in broiling as a slice, and 44% in broiling as a hamburger. These results suggest that ordinary cooking processes with heating undoubtedly reduce the dioxin content in animal products, and the reductions estimated should be considered when dioxin intake is evaluated using contamination data for individual food items.

  2. Cork boiling wastewater treatment and reuse through combination of advanced oxidation technologies.

    PubMed

    Ponce-Robles, L; Miralles-Cuevas, S; Oller, I; Agüera, A; Trinidad-Lozano, M J; Yuste, F J; Malato, S

    2017-03-01

    Industrial preparation of cork consists of its immersion for approximately 1 hour in boiling water. The use of herbicides and pesticides in oak tree forests leads to absorption of these compounds by cork; thus, after boiling process, they are present in wastewater. Cork boiling wastewater shows low biodegradability and high acute toxicity involving partial inhibition of their biodegradation when conventional biological treatment is applied. In this work, a treatment line strategy based on the combination of advanced physicochemical technologies is proposed. The final objective is the reuse of wastewater in the cork boiling process; thus, reducing consumption of fresh water in the industrial process itself. Coagulation pre-treatment with 0.5 g/L of FeCl 3 attained the highest turbidity elimination (86 %) and 29 % of DOC elimination. Similar DOC removal was attained when using 1 g/L of ECOTAN BIO (selected for ozonation tests), accompanied of 64 % of turbidity removal. Ozonation treatments showed less efficiency in the complete oxidation of cork boiling wastewater, compared to solar photo-Fenton process, under the studied conditions. Nanofiltration system was successfully employed as a final purification step with the aim of obtaining a high-quality reusable permeate stream. Monitoring of unknown compounds by LC-QTOF-MS allowed the qualitative evaluation of the whole process. Acute and chronic toxicity as well as biodegradability assays were performed throughout the whole proposed treatment line.

  3. High Intensity Focused Ultrasound Monitoring using Harmonic Motion Imaging for Focused Ultrasound (HMIFU) under boiling or slow denaturation conditions

    PubMed Central

    Hou, Gary Y.; Marquet, Fabrice; Wang, Shutao; Apostolakis, Iason-Zacharias; Konofagou, Elisa E.

    2015-01-01

    Harmonic Motion Imaging for Focused Ultrasound (HMIFU) is a recently developed High-Intensity Focused Ultrasound (HIFU) treatment monitoring method that utilizes an amplitude-modulated therapeutic ultrasound beam to induce an oscillatory radiation force at the HIFU focus and estimates the focal tissue displacement to monitor the HIFU thermal treatment. In this study, the performance of HMIFU under acoustic, thermal and mechanical effects were investigated. The performance of HMIFU was assessed in ex vivo canine liver specimens (n=13) under slow denaturation or boiling regimes. Passive Cavitation Detector (PCD) was used to assess the acoustic cavitation activity while a bare-wire thermocouple was used to monitor the focal temperature change. During lesioning with slow denaturation, high quality displacements (correlation coefficient above 0.97) were observed under minimum cavitation noise, indicating tissue the initial-softening-then-stiffening property change. During HIFU with boiling, HMIFU monitored a consistent change in lesion-to-background displacement contrast (0.46±0.37) despite the presence of strong cavitation noise due to boiling during lesion formation. Therefore, HMIFU effectively monitored softening-then-stiffening during lesioning under slow denaturation, and detected lesioning under boiling with a distinct change in displacement contrast under boiling in the presence of cavitation. In conclusion, HMIFU was shown effective in HIFU monitoring and lesioning identification without being significantly affected by cavitation noise. PMID:26168177

  4. Effects of thermal treatments during cooking, microwave oven and boiling, on the unconjugated microcystin concentration in muscle of fish (Oreochromis niloticus).

    PubMed

    Guzmán-Guillén, Remedios; Prieto, Ana I; Moreno, Isabel; Soria, Ma Eugenia; Cameán, Ana M

    2011-09-01

    Understanding the factors that contribute to the risk from fish consumption is a relevant public health concern due to potential adverse effects of cyanobacterial toxins. The aim of this work was to study the influence of two usual cooking practices, microwave oven and boiling, on the microcystin (MCs) concentration in fish muscle (Tilapia, Oreochromis niloticus) spiked with a stock solution (500 μL) containing a mixture of three toxins (MC-LR, MC-RR, and MC-YR) (1.5 μg/mL of each toxin). Two different variables were investigated: time of cooking in the microwaves treatment (1 or 5 min), and way of boiling, "boiled muscle" or "continuously heated muscle". All samples were then lyophilized and MCs were extracted and purified (Oasis HLB cartridge) and quantified by HPLC-MS. Furthermore, the waters in which the samples boiled were also analyzed after their purification. The results suggest a reduction on MC-LR (36%) and MC-YR (24.6%) in samples cooked in the microwave for 5 min. Major changes were found when the fish was cooked by the continuous boiling, with a decrease of 45.0% (MC-RR), 56.4% (MC-YR) and 59.3% (MC-LR). More studies are necessary to elucidate the mechanisms involved when aquatic food is submitted to usual cooking practices. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Iron release from the Lucky Iron Fish®: safety considerations.

    PubMed

    Armstrong, Gavin R; Dewey, Cate E; Summerlee, Alastair Js

    2017-01-01

    The principal objective was to explore in greater detail safety issues with regard to the use of the Lucky Iron Fish® (fish) as a treatment for iron deficiency and iron deficiency anaemia in women in rural Cambodia. Experiments were done to determine: (1) purity of the iron in the fish by mass spectroscopy; (2) release of iron and contaminants released during boiling in water using inductive-ly-coupled plasma optical emission spectroscopy; (3) the impact of cooking time, acidity and number of fish in acidified water and two types of Khmer soups; and (4) drinkability of the water after boiling with different num-bers of fish. The fish is composed primarily of ferrous iron with less than 12% non-ferrous iron. Contaminants were either not detectable or levels were below the acceptable standards set by the World Health Organization. The length of time boiling the fish and the acidity of the water increased iron release but even with 5 fish boiled for 60 minutes, iron levels only approached levels where side effects are observed. Boiling one fish in water did not affect the perception of colour, smell or taste of the water but boiling in water with two or more fish resulted in the water being unpalatable which further limits the potential for iron toxicity from using the fish. The results suggest that the Lucky Iron Fish™ may be a safe treatment for iron deficiency.

  6. DETERMINATION OF CONVECTIVE HEAT TRANSFER COEFFICIENT AT THE OUTER SURFACE OF A CRYOVIAL BEING PLUNGED INTO LIQUID NITROGEN.

    PubMed

    Wang, T; Zhao, G; Tang, H Y; Jiang, Z D

    2015-01-01

    Cell survival upon cryopreservation is affected by the cooling rate. However, it is difficult to model the heat transfer process or to predict the cooling curve of a cryoprotective agent (CPA) solution due to the uncertainty of its convective heat transfer coefficient (h). To measure the h and to better understand the heat transfer process of cryovials filled with CPA solution being plunged in liquid nitrogen. The temperatures at three locations of the CPA solution in a cryovial were measured. Different h values were selected after the cooling process was modeled as natural convection heat transfer, the film boiling and the nucleate boiling, respectively. And the temperatures of the selected points are simulated based on the selected h values. h was determined when the simulated temperature best fitted the experimental temperature. When the experimental results were best fitted, according to natural convection heat transfer model, h(1) = 120 W/(m(2)·K) while due to film boiling and nucleate boiling regimes h(f) = 5 W/(m(2)·K) followed by h(n) = 245 W/(m(2)·K). These values were verified by the differential cooling rates at the three locations of a cryovial. The heat transfer process during cooling in liquid nitrogen is better modeled as film boiling followed by nucleate boiling.

  7. Single-bubble boiling under Earth's and low gravity

    NASA Astrophysics Data System (ADS)

    Khusid, Boris; Elele, Ezinwa; Lei, Qian; Tang, John; Shen, Yueyang

    2017-11-01

    Miniaturization of electronic systems in terrestrial and space applications is challenged by a dramatic increase in the power dissipation per unit volume with the occurrence of localized hot spots where the heat flux is much higher than the average. Cooling by forced gas or liquid flow appears insufficient to remove high local heat fluxes. Boiling that involves evaporation of liquid in a hot spot and condensation of vapor in a cold region can remove a significantly larger amount of heat through the latent heat of vaporization than force-flow cooling can carry out. Traditional methods for enhancing boiling heat transfer in terrestrial and space applications focus on removal of bubbles from the heating surface. In contrast, we unexpectedly observed a new boiling regime of water under Earth's gravity and low gravity in which a bubble was pinned on a small heater up to 270°C and delivered a heat flux up to 1.2 MW/m2 that was as high as the critical heat flux in the classical boiling regime on Earth .Low gravity measurements conducted in parabolic flights in NASA Boeing 727. The heat flux in flight and Earth's experiments was found to rise linearly with increasing the heater temperature. We will discuss physical mechanisms underlying heat transfer in single-bubble boiling. The work supported by NASA Grants NNX12AM26G and NNX09AK06G.

  8. First on-sun test of NaK pool-boiler solar receiver

    NASA Astrophysics Data System (ADS)

    Moreno, J. B.; Andraka, C. E.; Moss, T. A.; Cordeiro, P. G.; Dudley, V. E.; Rawlinson, K. S.

    During 1989-1990, a refluxing liquid-metal pool-boiler solar receiver designed for dish/Stirling application at 75 kW(sub t) throughput was successfully demonstrated at Sandia National Laboratories. Significant features of this receiver included (1) boiling sodium as the heat transfer medium, and (2) electric-discharge-machined (EDM) cavities as artificial nucleation sites to stabilize boiling. Following this first demonstration, a second-generation pool-boiler receiver that brings the concept closer to commercialization has been designed, constructed, and successfully tested. For long life, the new receiver is built from Haynes Alloy 230. For increased safety factors against film boiling and flooding, the absorber area and vapor-flow passages have been enlarged. To eliminate the need for trace heating, sodium has been replaced by the sodium-potassium alloy NaK-78. To reduce manufacturing costs, the receiver has a powdered-metal coating instead of EDM cavities for stabilization of boiling. To control incipient-boiling superheats, especially during hot restarts, it contains a small amount of xenon. In this paper, we present the receiver design and report the results of on-sun tests using a nominal 75 kW(sub t) test-bed concentrator to characterize boiling stability, hot-restart behavior, and thermal efficiency at temperatures up to 750 C. We also report briefly on late results from an advanced-concepts pool-boiler receiver.

  9. Pool boiling of nanofluids on rough and porous coated tubes: experimental and correlation

    NASA Astrophysics Data System (ADS)

    Cieśliński, Janusz T.; Kaczmarczyk, Tomasz Z.

    2014-06-01

    The paper deals with pool boiling of water-Al2O3 and water- Cu nanofluids on rough and porous coated horizontal tubes. Commercially available stainless steel tubes having 10 mm outside diameter and 0.6 mm wall thickness were used to fabricate the test heater. The tube surface was roughed with emery paper 360 or polished with abrasive compound. Aluminium porous coatings of 0.15 mm thick with porosity of about 40% were produced by plasma spraying. The experiments were conducted under different absolute operating pressures, i.e., 200, 100, and 10 kPa. Nanoparticles were tested at the concentration of 0.01, 0.1, and 1% by weight. Ultrasonic vibration was used in order to stabilize the dispersion of the nanoparticles. It was observed that independent of operating pressure and roughness of the stainless steel tubes addition of even small amount of nanoparticles augments heat transfer in comparison to boiling of distilled water. Contrary to rough tubes boiling heat transfer coefficient of tested nanofluids on porous coated tubes was lower compared to that for distilled water while boiling on porous coated tubes. A correlation equation for prediction of the average heat transfer coefficient during boiling of nanofluids on smooth, rough and porous coated tubes is proposed. The correlation includes all tested variables in dimensionless form and is valid for low heat flux, i.e., below 100 kW/m2.

  10. Nanofluids for power engineering: Emergency cooling of overheated heat transfer surfaces

    NASA Astrophysics Data System (ADS)

    Bondarenko, B. I.; Moraru, V. N.; Sidorenko, S. V.; Komysh, D. V.

    2016-07-01

    The possibility of emergency cooling of an overheated heat transfer surface using nanofluids in the case of a boiling crisis is explored by means of synchronous recording of changes of main heat transfer parameters of boiling water over time. Two nanofluids are tested, which are derived from a mixture of natural aluminosilicates (AlSi-7) and titanium dioxide (NF-8). It is found that the introduction of a small portions of nanofluid into a boiling coolant (distilled water) in a state of film boiling ( t heater > 500°C) can dramatically decrease the heat transfer surface temperature to 130-150°C, which corresponds to a transition to a safe nucleate boiling regime without affecting the specific heat flux. The fact that this regime is kept for a long time at a specific heat load exceeding the critical heat flux for water and t heater = 125-130°C is particularly important. This makes it possible to prevent a potential accident emergency (heater burnout and failure of the heat exchanger) and to ensure the smooth operation of the equipment.

  11. Verification of rapid method for estimation of added food colorant type in boiled sausages based on measurement of cross section color

    NASA Astrophysics Data System (ADS)

    Jovanović, J.; Petronijević, R. B.; Lukić, M.; Karan, D.; Parunović, N.; Branković-Lazić, I.

    2017-09-01

    During the previous development of a chemometric method for estimating the amount of added colorant in meat products, it was noticed that the natural colorant most commonly added to boiled sausages, E 120, has different CIE-LAB behavior compared to artificial colors that are used for the same purpose. This has opened the possibility of transforming the developed method into a method for identifying the addition of natural or synthetic colorants in boiled sausages based on the measurement of the color of the cross-section. After recalibration of the CIE-LAB method using linear discriminant analysis, verification was performed on 76 boiled sausages, of either frankfurters or Parisian sausage types. The accuracy and reliability of the classification was confirmed by comparison with the standard HPLC method. Results showed that the LDA + CIE-LAB method can be applied with high accuracy, 93.42 %, to estimate food color type in boiled sausages. Natural orange colors can give false positive results. Pigments from spice mixtures had no significant effect on CIE-LAB results.

  12. Nucleate boiling performance on nano/microstructures with different wetting surfaces

    PubMed Central

    2012-01-01

    A study of nucleate boiling phenomena on nano/microstructures is a very basic and useful study with a view to the potential application of modified surfaces as heating surfaces in a number of fields. We present a detailed study of boiling experiments on fabricated nano/microstructured surfaces used as heating surfaces under atmospheric conditions, employing identical nanostructures with two different wettabilities (silicon-oxidized and Teflon-coated). Consequently, enhancements of both boiling heat transfer (BHT) and critical heat flux (CHF) are demonstrated in the nano/microstructures, independent of their wettability. However, the increment of BHT and CHF on each of the different wetting surfaces depended on the wetting characteristics of heating surfaces. The effect of water penetration in the surface structures by capillary phenomena is suggested as a plausible mechanism for the enhanced CHF on the nano/microstructures regardless of the wettability of the surfaces in atmospheric condition. This is supported by comparing bubble shapes generated in actual boiling experiments and dynamic contact angles under atmospheric conditions on Teflon-coated nano/microstructured surfaces. PMID:22559173

  13. Boiling enriches the linear polysulfides and the hydrogen sulfide-releasing activity of garlic.

    PubMed

    Tocmo, Restituto; Wu, Yuchen; Liang, Dong; Fogliano, Vincenzo; Huang, Dejian

    2017-04-15

    Garlic is rich in polysulfides, and some of them can be H 2 S donors. This study was conducted to explore the effect of cooking on garlic's organopolysulfides and H 2 S-releasing activity. Garlic bulbs were crushed and boiled for a period ranging from 3 to 30min and the solvent extracts were analyzed by GC-MS/FID and HPLC. A cell-based assay was used to measure the H 2 S-releasing activity of the extracts. Results showed that the amounts of allyl polysulfides increased in crushed garlic boiled for 6-10min; however, prolonging the thermal treatment to 20 or 30min decreased their concentrations. Data of the H 2 S-releasing activity, expressed as diallyl trisulfide equivalents (DATS-E), parallel this trend, being significantly higher at 6 and 10min boiling. Our results showed enhancement of H 2 S-releasing activity upon moderate boiling, suggesting that shorter cooking time may maximize its health benefits as a dietary source of natural H 2 S donors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Preliminary design of flight hardware for two-phase fluid research

    NASA Technical Reports Server (NTRS)

    Hustvedt, D. C.; Oonk, R. L.

    1982-01-01

    This study defined the preliminary designs of flight software for the Space Shuttle Orbiter for three two-phase fluid research experiments: (1) liquid reorientation - to study the motion of liquid in tanks subjected to small accelerations; (2) pool boiling - to study low-gravity boiling from horizontal cylinders; and (3) flow boiling - to study low-gravity forced flow boiling heat transfer and flow phenomena in a heated horizontal tube. The study consisted of eight major tasks: reassessment of the existing experiment designs, assessment of the Spacelab facility approach, assessment of the individual carry-on approach, selection of the preferred approach, preliminary design of flight hardware, safety analysis, preparation of a development plan, estimates of detailed design, fabrication and ground testing costs. The most cost effective design approach for the experiments is individual carry-ons in the Orbiter middeck. The experiments were designed to fit into one or two middeck lockers. Development schedules for the detailed design, fabrication and ground testing ranged from 15 1/2 to 18 months. Minimum costs (in 1981 dollars) ranged from $463K for the liquid reorientation experiment to $998K for the pool boiling experiment.

  15. Investigation into flow boiling heat transfer in a minichannel with enhanced heating surface

    NASA Astrophysics Data System (ADS)

    Piasecka, Magdalena

    2012-04-01

    The paper presents results of flow boiling in a minichannel of 1.0 mm depth. The heating element for the working fluid (FC-72) that flows along the minichannel is a single-sided enhanced alloy foil made from Haynes-230. Microrecesses were formed on the selected area of the heating foil by laser technology. The observations of the flow structure were carried out through a piece of glass. Simultaneously, owing to the liquid crystal layer placed on the opposite side of the enhanced foil surface, it was possible to measure temperature distribution on the heating wall through another piece of glass. The experimental research has been focused on the transition from single phase forced convection to nucleate boiling, i.e. the zone of boiling incipience and further development of boiling. The objective of the paper is determining of the void fraction for some cross-sections of selected images for increasing heat fluxes supplied to the heating surface. The flow structure photos were processed in Corel graphics software and binarized. The analysis of phase volumes was developed in Techystem Globe software.

  16. Effect of boiling, frying, and baking on recovery of aflatoxin from naturally contaminated corn grits or cornmeal.

    PubMed

    Stoloff, L; Trucksess, M W

    1981-05-01

    Corn grits naturally contaminated with aflatoxins were used for making boiled grits, and portions of the boiled grits were used for making pan-fried grits; cornmeal naturally contaminated with aflatoxins was used for making corn muffins. Procedures and recipes were derived from cookbook and market package recommendations. From analyses of the products for aflatoxins before and after preparation of the table-ready products, it was determined that 72 +/- 9% (n = 15) of the aflatoxin found in the original grits could be recovered after the grits were boiled. The recovery of aflatoxin B1 after the grits were fried was either 66 +/- 10% (n = 6) or 47 +/- 8% (n = 9), depending on whether 3 cups of water or 4 cups of water per cup of grits, respectively, were used for preparing the boiled grits before frying. Similarly, it was determined that 87 +/- 4% (n = 9) of the aflatoxin B1 found in the original cornmeal could be recovered from the baked muffins. No detectable aflatoxin B2 a was present in the extracts from any of the table-ready products.

  17. Heat transfer and structure of flow at boiling of refrigerant R134a in channels with inserts in the form of finned twisted tape

    NASA Astrophysics Data System (ADS)

    Shishkin, A. V.; Tarasevich, S. E.

    2018-03-01

    The paper presents the results of experimental study of heat transfer for the refrigerant R134a flow in the channels with finned twisted tape inserts at bubble boiling. The flow regimes implemented under the given conditions are shown. The stable cord-like flows appear at boiling in channels with twisted tape inserts and high vapor content when the liquid phase moves in the form of a stream (cord) along the central part of the tape, which is not an active heat exchange surface. At boiling this can lead to an increase in the length required for complete liquid evaporation. Existing geometric modifications of twisted tapes are used in the heat-exchange equipment at forced convection of the coolant and do not solve the problem of cord-like flows elimination. The present work discusses the experimental study of heat transfer at boiling of refrigerant R134a in the channels with twisted tape inserts that have fins on its surface.

  18. Recent Work on Flow Boiling and Condensation in a Single Microchannel

    NASA Astrophysics Data System (ADS)

    Quan, Xiaojun; Wang, Guodong; Cheng, Ping; Wu, Huiying

    2007-06-01

    Recent visualization and measurements results on flow boiling of water and condensation of steam in a single microchannel, carried out at Shanghai Jiaotong University, is summarized in this paper. For flow boiling of water, experiments were conducted in a single microchannel with a trapezoidal cross-section having a hydraulic diameter of 186 μm and a length of 30 mm. A boiling flow pattern map in terms of heat flux versus mass flux, showing the unstable and stable boiling flow regimes in the microchannel, is obtained. For the investigation of condensation, experiments were carried out for steam condensing inside a single microchannel with a length of 60mm having a hydraulic diameter of 87 μm and 120μm respectively. The location of transition from annular flow to plug/slug flow in a microchannel is found to be dependent on both the dimensionless condensation heat transfer rate as well as the Reynolds number of the steam. The frequency for the occurrence of the injection flow is found to increase with the increasing mass flux.

  19. A study of boiling heat transfer as applied to the cooling of ball bearings in the high pressure oxygen turbopump of the space shuttle main engine

    NASA Technical Reports Server (NTRS)

    Schreiber, Will

    1986-01-01

    Two sets of ball bearings support the main shaft within the High Pressure Oxygen Turbopump (HPOTP) in the Space Shuttle Main Engine (SSME). In operation, these bearings are cooled and lubricated with high pressure liquid oxygen (LOX) flowing axially through the bearing assembly. Currently, modifications in the assembly design are being contemplated in order to enhance the lifetime of the bearings and to allow the HPOTP to operate under larger loads. An understanding of the fluid dynamics and heat transfer characteristics of the flowing LOX is necessary for the implementation of these design changes. The proposed computational model of the LOX fluid dynamics, in addition to dealing with a turbulent flow in a complex geometry, must address the complication associated with boiling and two-phase flow. The feasibility of and possible methods for modeling boiling heat transfer are considered. The theory of boiling as pertains to this particular problem is reviewed. Recommendations are given for experiments which would be necessary to establish validity for correlations needed to model boiling.

  20. Consumers' perception and acceptance of boiled and fermented sausages from strongly boar tainted meat.

    PubMed

    Meier-Dinkel, Lisa; Gertheiss, Jan; Schnäckel, Wolfram; Mörlein, Daniel

    2016-08-01

    Characteristic off-flavours may occur in uncastrated male pigs depending on the accumulation of androstenone and skatole. Feasible processing of strongly tainted carcasses is challenging but gains in importance due to the European ban on piglet castration in 2018. This paper investigates consumers' acceptability of two sausage types: (a) emulsion-type (BOILED) and (b) smoked raw-fermented (FERM). Liking (9 point scales) and flavour perception (check-all-that-apply with both, typical and negatively connoted sensory terms) were evaluated by 120 consumers (within-subject design). Proportion of tainted boar meat (0, 50, 100%) affected overall liking of BOILED, F (2, 238)=23.22, P<.001, but not of FERM sausages, F (2, 238)=0.89, P=.414. Consumers described the flavour of BOILED-100 as strong and sweaty. In conclusion, FERM products seem promising for processing of tainted carcasses whereas formulations must be optimized for BOILED in order to eliminate perceptible off-flavours. Boar taint rejection thresholds may be higher for processed than those suggested for unprocessed meat cuts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Minimizing corrosion in coal liquid distillation

    DOEpatents

    Baumert, Kenneth L.; Sagues, Alberto A.; Davis, Burtron H.

    1985-01-01

    In an atmospheric distillation tower of a coal liquefaction process, tower materials corrosion is reduced or eliminated by introduction of boiling point differentiated streams to boiling point differentiated tower regions.

  2. Pad B Liquid Hydrogen Storage Tank

    NASA Technical Reports Server (NTRS)

    Hall, Felicia

    2007-01-01

    Kennedy Space Center is home to two liquid hydrogen storage tanks, one at each launch pad of Launch Complex 39. The liquid hydrogen storage tank at Launch Pad B has a significantly higher boil off rate that the liquid hydrogen storage tank at Launch Pad A. This research looks at various calculations concerning the at Launch Pad B in an attempt to develop a solution to the excess boil off rate. We will look at Perlite levels inside the tank, Boil off rates, conductive heat transfer, and radiant heat transfer through the tank. As a conclusion to the research, we will model the effects of placing an external insulation to the tank in order to reduce the boil off rate and increase the economic efficiency of the liquid hydrogen storage tanks.

  3. Proposal of experimental setup on boiling two-phase flow on-orbit experiments onboard Japanese experiment module "KIBO"

    NASA Astrophysics Data System (ADS)

    Baba, S.; Sakai, T.; Sawada, K.; Kubota, C.; Wada, Y.; Shinmoto, Y.; Ohta, H.; Asano, H.; Kawanami, O.; Suzuki, K.; Imai, R.; Kawasaki, H.; Fujii, K.; Takayanagi, M.; Yoda, S.

    2011-12-01

    Boiling is one of the efficient modes of heat transfer due to phase change, and is regarded as promising means to be applied for the thermal management systems handling a large amount of waste heat under high heat flux. However, gravity effects on the two-phase flow phenomena and corresponding heat transfer characteristics have not been clarified in detail. The experiments onboard Japanese Experiment Module "KIBO" in International Space Station on boiling two-phase flow under microgravity conditions are proposed to clarify both of heat transfer and flow characteristics under microgravity conditions. To verify the feasibility of ISS experiments on boiling two-phase flow, the Bread Board Model is assembled and its performance and the function of components installed in a test loop are examined.

  4. Enhancement of critical heat flux in nucleate boiling of nanofluids: a state-of-art review

    PubMed Central

    2011-01-01

    Nanofluids (suspensions of nanometer-sized particles in base fluids) have recently been shown to have nucleate boiling critical heat flux (CHF) far superior to that of the pure base fluid. Over the past decade, numerous experimental and analytical studies on the nucleate boiling CHF of nanofluids have been conducted. The purpose of this article is to provide an exhaustive review of these studies. The characteristics of CHF enhancement in nanofluids are systemically presented according to the effects of the primary boiling parameters. Research efforts to identify the effects of nanoparticles underlying irregular enhancement phenomena of CHF in nanofluids are then presented. Also, attempts to explain the physical mechanism based on available CHF theories are described. Finally, future research needs are identified. PMID:21711949

  5. Heat transfer enhancement at increasing water concentration in alcohol in the process of non-stationary film boiling

    NASA Astrophysics Data System (ADS)

    Kanin, P. K.; Ryazantsev, V. A.; Lexin, M. A.; Zabirov, A. R.; Yagov, V. V.

    2018-03-01

    New experimental data on heat transfer in pool film boiling of subcooled ethanol-water mixtures at spherical surfaces are considered. The water solutions with ethanol mass fraction from 10 to 91% and temperature of liquid 50°C were examined. All the experiments were conducted under atmospheric pressure, using the stainless steel sphere of 39 mm in diameter as a cooled body. The sphere was heated up to 450-750°C, depending on ethanol concentration, and immersed into the experimental vessel with subcooled mixture. As it is expected, boiling heat transfer intensifies with ethanol concentration decrease, and duration of cooling decreases. It means that stable film boiling duration decreases, and earlier transition to intensive heat transfer regime occurs.

  6. Acoustically enhanced boiling heat transfer on a heated surface containing open microchannels

    NASA Astrophysics Data System (ADS)

    Boziuk, Thomas R.; Smith, Marc K.; Glezer, Ari

    2011-11-01

    Acoustic actuation is used to enhance boiling heat transfer on a submerged heated surface containing an array of open microchannels by controlling the formation and evolution of vapor bubbles and inhibiting the instability that leads to film boiling at the critical heat flux. The effect of actuation at millimeter and micrometer scales is investigated with emphasis on the behavior of bubble nucleation, growth, contact-line motion, condensation, and detachment. The results show that microchannels control the location of boiling and reduce the mean surface superheat. In addition, acoustic actuation increases the heat flux at a given surface temperature and leads to a significant increase in the critical heat flux, a reduction of the vapor mass above the surface, and the breakup of low-frequency vapor slug formation. Supported by ONR.

  7. Model documentation, Coal Market Module of the National Energy Modeling System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This report documents the objectives and the conceptual and methodological approach used in the development of the National Energy Modeling System`s (NEMS) Coal Market Module (CMM) used to develop the Annual Energy Outlook 1998 (AEO98). This report catalogues and describes the assumptions, methodology, estimation techniques, and source code of CMM`s two submodules. These are the Coal Production Submodule (CPS) and the Coal Distribution Submodule (CDS). CMM provides annual forecasts of prices, production, and consumption of coal for NEMS. In general, the CDS integrates the supply inputs from the CPS to satisfy demands for coal from exogenous demand models. The internationalmore » area of the CDS forecasts annual world coal trade flows from major supply to major demand regions and provides annual forecasts of US coal exports for input to NEMS. Specifically, the CDS receives minemouth prices produced by the CPS, demand and other exogenous inputs from other NEMS components, and provides delivered coal prices and quantities to the NEMS economic sectors and regions.« less

  8. The Effect of Boiling on Seismic Properties of Water-Saturated Fractured Rock

    NASA Astrophysics Data System (ADS)

    Grab, Melchior; Quintal, Beatriz; Caspari, Eva; Deuber, Claudia; Maurer, Hansruedi; Greenhalgh, Stewart

    2017-11-01

    Seismic campaigns for exploring geothermal systems aim at detecting permeable formations in the subsurface and evaluating the energy state of the pore fluids. High-enthalpy geothermal resources are known to contain fluids ranging from liquid water up to liquid-vapor mixtures in regions where boiling occurs and, ultimately, to vapor-dominated fluids, for instance, if hot parts of the reservoir get depressurized during production. In this study, we implement the properties of single- and two-phase fluids into a numerical poroelastic model to compute frequency-dependent seismic velocities and attenuation factors of a fractured rock as a function of fluid state. Fluid properties are computed while considering that thermodynamic interaction between the fluid phases takes place. This leads to frequency-dependent fluid properties and fluid internal attenuation. As shown in a first example, if the fluid contains very small amounts of vapor, fluid internal attenuation is of similar magnitude as attenuation in fractured rock due to other mechanisms. In a second example, seismic properties of a fractured geothermal reservoir with spatially varying fluid properties are calculated. Using the resulting seismic properties as an input model, the seismic response of the reservoir is then computed while the hydrothermal structure is assumed to vary over time. The resulting seismograms demonstrate that anomalies in the seismic response due to fluid state variability are small compared to variations caused by geological background heterogeneity. However, the hydrothermal structure in the reservoir can be delineated from amplitude anomalies when the variations due to geology can be ruled out such as in time-lapse experiments.

  9. Thrust Chamber Modeling Using Navier-Stokes Equations: Code Documentation and Listings. Volume 2

    NASA Technical Reports Server (NTRS)

    Daley, P. L.; Owens, S. F.

    1988-01-01

    A copy of the PHOENICS input files and FORTRAN code developed for the modeling of thrust chambers is given. These copies are contained in the Appendices. The listings are contained in Appendices A through E. Appendix A describes the input statements relevant to thrust chamber modeling as well as the FORTRAN code developed for the Satellite program. Appendix B describes the FORTRAN code developed for the Ground program. Appendices C through E contain copies of the Q1 (input) file, the Satellite program, and the Ground program respectively.

  10. Turbomachinery Forced Response Prediction System (FREPS): User's Manual

    NASA Technical Reports Server (NTRS)

    Morel, M. R.; Murthy, D. V.

    1994-01-01

    The turbomachinery forced response prediction system (FREPS), version 1.2, is capable of predicting the aeroelastic behavior of axial-flow turbomachinery blades. This document is meant to serve as a guide in the use of the FREPS code with specific emphasis on its use at NASA Lewis Research Center (LeRC). A detailed explanation of the aeroelastic analysis and its development is beyond the scope of this document, and may be found in the references. FREPS has been developed by the NASA LeRC Structural Dynamics Branch. The manual is divided into three major parts: an introduction, the preparation of input, and the procedure to execute FREPS. Part 1 includes a brief background on the necessity of FREPS, a description of the FREPS system, the steps needed to be taken before FREPS is executed, an example input file with instructions, presentation of the geometric conventions used, and the input/output files employed and produced by FREPS. Part 2 contains a detailed description of the command names needed to create the primary input file that is required to execute the FREPS code. Also, Part 2 has an example data file to aid the user in creating their own input files. Part 3 explains the procedures required to execute the FREPS code on the Cray Y-MP, a computer system available at the NASA LeRC.

  11. 76 FR 2132 - Notice of Intent To Prepare Land Protection Plan and Associated NEPA Documents for the Proposed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-12

    ... suggestions and information on the scope of issues to include in the environmental documents. Special mailings, newspaper articles, and other media announcements will inform people of the opportunities for input... public that the U.S. Fish and Wildlife Service (Service) intends to gather information necessary to...

  12. Boils

    MedlinePlus

    ... boil is an infection that affects groups of hair follicles and nearby skin tissue. Related conditions include: Carbunculosis ... found on the skin's surface. Damage to the hair follicle allows the infection to grow deeper into the ...

  13. CONTINUOUS ANALYZER UTILIZING BOILING POINT DETERMINATION

    DOEpatents

    Pappas, W.S.

    1963-03-19

    A device is designed for continuously determining the boiling point of a mixture of liquids. The device comprises a distillation chamber for boiling a liquid; outlet conduit means for maintaining the liquid contents of said chamber at a constant level; a reflux condenser mounted above said distillation chamber; means for continuously introducing an incoming liquid sample into said reflux condenser and into intimate contact with vapors refluxing within said condenser; and means for measuring the temperature of the liquid flowing through said distillation chamber. (AEC)

  14. The Influences of Geologic Depositional Environments on Sand Boil Development, Tara Wildlife Lodge Area in Mississippi

    DTIC Science & Technology

    2016-03-01

    ER D C/ G SL T R- 16 -7 The Influences of Geologic Depositional Environments on Sand Boil Development, Tara Wildlife Lodge Area in...client/default. ERDC/GSL TR-16-7 March 2016 The Influences of Geologic Depositional Environments on Sand Boil Development, Tara Wildlife Lodge...Army Corps of Engineers Washington, DC 20314-1000 ERDC/GSL TR-16-7 ii Abstract A comprehensive study of the subsurface geology in the Tara Wildlife

  15. 2005 Tri-Service Infrastructure Systems Conference and Exhibition. Volume 8, Track 8 Continued

    DTIC Science & Technology

    2005-08-04

    Dennis Mekkers and Daniel M. Katz Current Research in Fate Current Research in Fate & Transport of Chemical and Biological Contaminants in Water...past boil activity, FSg = 1 • Minor boil or heavy seepage, FSg = 1.25 • Major boil activity, FSg = 1.5 The ratio 1:1.5 approximates (Critical State...prolonging life of road – SSB performed best under heavy traffic – If heavy traffic is possible, road should include a subbase Summary • Maintenance

  16. Insulation of Nitrocellulose Boiling Tubs at Radford Army Ammunition Plant

    DTIC Science & Technology

    1982-03-01

    control system. The amount of steam usea for the on-boil cycle with the single-sensor autocontrol averaged 647 kg/hr (1426 lb/hr) (test 1, table 2...This was a reduc- tion of 210 kg/hr (463 lb/hr) over the manually controlled uninsulated tub. Steam usage with the single sensor autocontrol and...uninsulated tub. At times durin)g the on- boil cycle of tests I and 2, the temperature of the manual sensor was different from the autocontrol sensor indicating

  17. Gas chemistry of Icelandic thermal fluids

    NASA Astrophysics Data System (ADS)

    Stefánsson, Andri

    2017-10-01

    The chemistry of gases in thermal fluids from Iceland was studied in order to evaluate the sources and processes affecting volatile concentrations in volcanic geothermal systems at divergent plate boundaries. The fluids included vapor fumaroles and two-phase well discharges with temperatures of 100-340 °C. The vapor was dominated by H2O accounting for 62-100 mol% and generally for > 99 mol%, with CO2, H2S and H2 being the dominant gases followed by N2, CH4, and Ar. Overall mineral-gas and gas-gas equilibria were not observed for the major gases, including CO2, H2S, H2 and CH4 within the geothermal reservoirs. Instead the system proved to be controlled by source(s) and their ratios and various metastable equilibria along a fluid-rock reaction progress with gas concentrations controlled by such metastable equilibria varying at particular temperatures as a functional extent of reaction. The concentrations of H2S and H2 closely reflect mineral-fluid metastable equilibria, whereas CO2 concentrations are controlled by the input of magma gas corresponding to > 0.1 to < 5% mass input. With fluid ascent to the surface, boiling and condensation may occur, further changing the gas concentrations and hence surface fumaroles may not reflect the reservoir fluid characteristics but rather secondary processes.

  18. Boils and Carbuncles

    MedlinePlus

    ... body. The spreading infection, commonly known as blood poisoning (sepsis), can lead to infections deep within your body, such as your heart (endocarditis) and bone (osteomyelitis). Prevention It's not always possible to prevent boils, especially ...

  19. Nanoparticle coating of a microchannel surface is an effective method for increasing the critical heat flux

    NASA Astrophysics Data System (ADS)

    Shustov, M. V.; Kuzma-Kichta, Yu. A.; Lavrikov, A. V.

    2017-04-01

    Results are presented of an investigation into water boiling in a single microchannel 0.2 mm high, 3 mm wide, and 13.7 mm long with a smooth heating surface or with a coating from aluminum oxide nanoparticles. The experimental procedure and the test setup are described. The top wall of the microchannel is made of glass so that video recording in the reflected light of the process can be made. A coating of Al2O3 particles is applied onto the heating surface before the experiments using a method developed by the authors of the paper. The experiments yielded data on heat transfer and void fraction and its fluctuations for the bubble and transient boiling in the microchannel. The dependence was established of the heat flux on the temperature of the microchannel wall with a smooth surface or a surface with Al2O3 nanoparticle coating for various mass flows in the microchannel. The boiling crisis has been found to occur in the microchannel with a nanoparticle coating at a considerably higher heat flux than that in the channel without coating. The experimental data also suggest that the nanoparticle coating improves heat transfer in the transition boiling region. Processing of the data obtained using a high-speed video revealed void fraction fluctuations enabling us to describe two-phase flow regimes with the flow boiling in a microchannel. It has been found that a return flow occurs in the microchannel under certain conditions. A hypothesis for its causes is proposed. The dependence of the void fraction on the steam quality in the microchannel with or without a nanoparticle coating was determined from the video records. The experimental data on void fraction for boiling in the microchannel without coating are approximated by an empirical correlation. The experiments demonstrate that the void fraction during boiling in the microchannel with a nanoparticle coating is higher than during boiling in the channel without coating (where φ and x are the void fraction and the steam quality, respectively) in the region of a sharp increase in the φ( x) curve.

  20. Sinus Rinsing and Neti Pots

    MedlinePlus

    ... that it contains distilled or sterile water. 2. Filter (if boiled, sterile, or distilled water not available) ... if no boiled or distilled water and no filter available) Disinfect: Learn how to disinfect your water ...

  1. Sinda/Fluint Stratfied Tank Modeling

    NASA Technical Reports Server (NTRS)

    Sakowski, Barbara A.

    2014-01-01

    A general purpose SINDA/FLUINT (S/F) stratified tank model was created and used to simulate the Ksite1 LH2 liquid self-pressurization tests as well as axial jet mixing within the liquid region of the tank. The S/F model employed the use of stratified layers, i.e. S/F lumps, in the vapor ullage as well as in the liquid region. The model was constructed to analyze a general purpose stratified tank that could incorporate the following features: Multiple or singular lumps in the liquid and vapor regions of the tank, Real gases (also mixtures) and compressible liquids, Venting, pressurizing, and draining, Condensation and evaporation/boiling, Wall heat transfer, Elliptical, cylindrical, and spherical tank geometries. Extensive user logic was used to allow for tailoring of the above features to specific cases. Most of the code input for a specific case could be done through the Registers Data Block.

  2. Operating characteristics of a single-stage Stirling cryocooler capable of providing 700 W cooling power at 77 K

    NASA Astrophysics Data System (ADS)

    Xu, Ya; Sun, Daming; Qiao, Xin; Yu, Yan S. W.; Zhang, Ning; Zhang, Jie; Cai, Yachao

    2017-04-01

    High cooling capacity Stirling cryocooler generally has hundreds to thousands watts of cooling power at liquid nitrogen temperature. It is promising in boil-off gas (BOG) recondensation and high temperature superconducting (HTS) applications. A high cooling capacity Stirling cryocooler driven by a crank-rod mechanism was developed and studied systematically. The pressure and frequency characteristics of the cryocooler, the heat rejection from the ambient heat exchanger, and the cooling performance are studied under different charging pressure. Energy conversion and distribution in the cryocooler are analyzed theoretically. With an electric input power of 10.9 kW and a rotating speed of 1450 r/min of the motor, a cooling power of 700 W at 77 K and a relative Carnot efficiency of 18.2% of the cryocooler have been achieved in the present study, and the corresponding pressure ratio in the compression space reaches 2.46.

  3. A thermosyphon heat pipe cooler for high power LEDs cooling

    NASA Astrophysics Data System (ADS)

    Li, Ji; Tian, Wenkai; Lv, Lucang

    2016-08-01

    Light emitting diode (LED) cooling is facing the challenge of high heat flux more seriously with the increase of input power and diode density. The proposed unique thermosyphon heat pipe heat sink is particularly suitable for cooling of high power density LED chips and other electronics, which has a heat dissipation potential of up to 280 W within an area of 20 mm × 22 mm (>60 W/cm2) under natural air convection. Meanwhile, a thorough visualization investigation was carried out to explore the two phase flow characteristics in the proposed thermosyphon heat pipe. Implementing this novel thermosyphon heat pipe heat sink in the cooling of a commercial 100 W LED integrated chip, a very low apparent thermal resistance of 0.34 K/W was obtained under natural air convection with the aid of the enhanced boiling heat transfer at the evaporation side and the enhanced natural air convection at the condensation side.

  4. 78 FR 7487 - National Emission Standards for Hazardous Air Pollutants for Area Sources: Industrial, Commercial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-01

    .... All documents in the docket are listed on the http://www.regulations.gov Web site. Although listed in... boilers (i.e., with a design heat input capacity of 10 MMBtu/hr or more). A review of the data has... small coal-fired units (i.e., with a design heat input capacity of less than 10 MMBtu/hr) are subject to...

  5. Approximation of Quantum Stochastic Differential Equations for Input-Output Model Reduction

    DTIC Science & Technology

    2016-02-25

    Approximation of Quantum Stochastic Differential Equations for Input-Output Model Reduction We have completed a short program of theoretical research...on dimensional reduction and approximation of models based on quantum stochastic differential equations. Our primary results lie in the area of...2211 quantum probability, quantum stochastic differential equations REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR

  6. Bubble Dynamics, Two-Phase Flow, and Boiling Heat Transfer in Microgravity

    NASA Technical Reports Server (NTRS)

    Chung, Jacob N.

    1998-01-01

    This report contains two independent sections. Part one is titled "Terrestrial and Microgravity Pool Boiling Heat Transfer and Critical heat flux phenomenon in an acoustic standing wave." Terrestrial and microgravity pool boiling heat transfer experiments were performed in the presence of a standing acoustic wave from a platinum wire resistance heater using degassed FC-72 Fluorinert liquid. The sound wave was created by driving a half wavelength resonator at a frequency of 10.15 kHz. Microgravity conditions were created using the 2.1 second drop tower on the campus of Washington State University. Burnout of the heater wire, often encountered with heat flux controlled systems, was avoided by using a constant temperature controller to regulate the heater wire temperature. The amplitude of the acoustic standing wave was increased from 28 kPa to over 70 kPa and these pressure measurements were made using a hydrophone fabricated with a small piezoelectric ceramic. Cavitation incurred during experiments at higher acoustic amplitudes contributed to the vapor bubble dynamics and heat transfer. The heater wire was positioned at three different locations within the acoustic field: the acoustic node, antinode, and halfway between these locations. Complete boiling curves are presented to show how the applied acoustic field enhanced boiling heat transfer and increased critical heat flux in microgravity and terrestrial environments. Video images provide information on the interaction between the vapor bubbles and the acoustic field. Part two is titled, "Design and qualification of a microscale heater array for use in boiling heat transfer." This part is summarized herein. Boiling heat transfer is an efficient means of heat transfer because a large amount of heat can be removed from a surface using a relatively small temperature difference between the surface and the bulk liquid. However, the mechanisms that govern boiling heat transfer are not well understood. Measurements of wall temperature and heat flux near the wall would add to the database of knowledge which is necessary to understand the mechanisms of nucleate boiling. A heater array has been developed which contains 96 heater elements within a 2.5 mm square area. The temperature of each heater element is held constant by an electronic control system similar to a hot-wire anemometer. The voltage that is being applied to each heater element can be measured and digitized using a high-speed Analog to Digital (A/D) converter, and this digital information can be compiled into a series of heat-flux maps. Information for up to 10,000 heat flux maps can be obtained each second. The heater control system, the A/D system and the heater array construction are described in detail. Results are presented which show that this is an effective method of measuring the local heat flux during nucleate and transition boiling. Heat flux maps are obtained for pool boiling in FC-72 on a horizontal surface. Local heat flux variations are shown to be three to six times larger than variations in the spatially averaged heat flux.

  7. Antioxidant capacity and fatty acids characterization of heat treated cow and buffalo milk.

    PubMed

    Khan, Imran Taj; Nadeem, Muhammad; Imran, Muhammad; Ayaz, Muhammad; Ajmal, Muhammad; Ellahi, Muhammad Yaqoob; Khalique, Anjum

    2017-08-24

    Antioxidant capacity of milk is largely due to vitamins A, E, carotenoids, zinc, selenium, superoxide dismutase, catalase, glutathione peroxidase and enzyme systems. Cow milk has antioxidant capacity while the antioxidant capacity of buffalo milk has been studied in a limited way. The information regarding the effect of pasteurization and boiling on antioxidant capacity of cow and buffalo milk is also scared. Cow and buffalo milk was exposed to two different heat treatments i.e. 65 °C for 30 min and boiling for 1 min. After heat treatments, milk samples were cooled down to 4 °C packaged in transparent 250 ml polyethylene PET bottles and stored at 4 °C for 6 days. Milk composition, total flavonoid content, total antioxidant capacity, reducing power, DPPH free radical scavenging activity, antioxidant activity in linoleic acid, vitamin C, A, E, selenium, Zinc, fatty acid profile, peroxide value and sensory characteristics were studied in raw, pasteurized and boiled cow and buffalo milk at 0, 3 and 6 days of storage period. Total antioxidant capacity (TAC) of raw, pasteurized and boiled milk for cow (42.1, 41.3 and 40.7%) and buffalo (58.4, 57.6 and 56.5%) samples was found, respectively. Reducing power (RP) of raw cow and buffalo milk was 6.74 and 13.7 while pasteurization and boiling did not showed significant effect on RP of both cow and buffalo milk. DPPH activity of raw, pasteurized and boiled milk for cow (24.3, 23.8 and 23.6%) and buffalo (31.8, 31.5 and 30.4%) samples was noted, respectively. Storage period up to 3 days was non-significant while DPPH assay after 6 days of storage period indicated significant decline in antioxidant activity of milk samples. Antioxidant activity in linoleic acid (AALA) of buffalo and cow milk were recorded 11.7 and 17.4%, respectively. Pasteurization and boiling did not showed any impact on antioxidant capacity of cow and buffalo milk. The Loss of vitamin C in pasteurization (40 and 42%) and boiling (82 and 61%) of cow and buffalo milk was recorded, respectively. Concentration of vitamin A and E in pasteurized cow and buffalo milk was not significantly different from raw milk samples of cow and buffalo. Concentration of selenium and zinc was not influenced by the heat treatment in both cow and buffalo milk samples. After 3 days of refrigerated storage, antioxidant capacity of both cow and buffalo milk decreased. Concentrations of short-chain and medium-chain fatty acids increased in pasteurized and boiled cow and buffalo milk, while long-chain fatty acids decreased in pasteurized and boiled cow and buffalo milk, with no effect on colour and flavor score. Peroxide value of pasteurized and boiled cow and buffalo milk was not influenced by the storage up to 3 days. These results suggest that buffalo milk had a higher antioxidant capacity than cow milk and pasteurized milk should be consumed within 3 days of refrigerated storage for better antioxidant perspectives.

  8. Apollo experience report: Mission evaluation team postflight documentation

    NASA Technical Reports Server (NTRS)

    Dodson, J. W.; Cordiner, D. H.

    1975-01-01

    The various postflight reports prepared by the mission evaluation team, including the final mission evaluation report, report supplements, anomaly reports, and the 5-day mission report, are described. The procedures for preparing each report from the inputs of the various disciplines are explained, and the general method of reporting postflight results is discussed. Recommendations for postflight documentation in future space programs are included. The official requirements for postflight documentation and a typical example of an anomaly report are provided as appendixes.

  9. Correlator optical wavefront sensor COWS

    NASA Astrophysics Data System (ADS)

    1991-02-01

    This report documents the significant upgrades and improvements made to the correlator optical wavefront sensor (COWS) optical bench during this phase of the program. Software for the experiment was reviewed and documented. Flowcharts showing the program flow are included as well as documentation for programs which were written to calculate and display Zernike polynomials. The system was calibrated and aligned and a series of experiments to determine the optimum settings for the input and output MOSLM polarizers were conducted. In addition, design of a simple aberration generation is included.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pattison, Morgan

    A 2017 update to the Solid-State Lighting R&D Plan that is divided into two documents. The first document describes a list of suggested SSL priority research topics and the second document provides context and background, including information drawn from technical, market, and economic studies. Widely referenced by industry and government both here and abroad, these documents reflect SSL stakeholder inputs on key R&D topics that will improve efficacy, reduce cost, remove barriers to adoption, and add value for LED and OLED lighting solutions over the next three to five years, and discuss those applications that drive and prioritize the specificmore » R&D.« less

  11. Emergency Disinfection of Drinking Water

    EPA Pesticide Factsheets

    How to boil and disinfect water to kill most disease-causing microorganisms during emergency situations where regular water service has been interrupted and local authorities recommend using only bottled water, boiled water, or disinfected water.

  12. 46 CFR 154.707 - Cargo boil-off as fuel: Ventilation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.707 Cargo boil-off as fuel: Ventilation. (a) A...

  13. 46 CFR 154.707 - Cargo boil-off as fuel: Ventilation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.707 Cargo boil-off as fuel: Ventilation. (a) A...

  14. 46 CFR 154.707 - Cargo boil-off as fuel: Ventilation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.707 Cargo boil-off as fuel: Ventilation. (a) A...

  15. 46 CFR 154.707 - Cargo boil-off as fuel: Ventilation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.707 Cargo boil-off as fuel: Ventilation. (a) A...

  16. 46 CFR 154.707 - Cargo boil-off as fuel: Ventilation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.707 Cargo boil-off as fuel: Ventilation. (a) A...

  17. The initiation of boiling during pressure transients. [water boiling on metal surfaces

    NASA Technical Reports Server (NTRS)

    Weisman, J.; Bussell, G.; Jashnani, I. L.; Hsieh, T.

    1973-01-01

    The initiation of boiling of water on metal surfaces during pressure transients has been investigated. The data were obtained by a new technique in which light beam fluctuations and a pressure signal were simultaneously recorded on a dual beam oscilloscope. The results obtained agreed with those obtained using high speed photography. It was found that, for water temperatures between 90-150 C, the wall superheat required to initiate boiling during a rapid pressure transient was significantly higher than required when the pressure was slowly reduced. This result is explained by assuming that a finite time is necessary for vapor to fill the cavity at which the bubble originates. Experimental measurements of this time are in reasonably good agreement with calculations based on the proposed theory. The theory includes a new procedure for estimating the coefficient of vaporization.

  18. Flow-Boiling Critical Heat Flux Experiments Performed in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Hasan, Mohammad M.; Mudawar, Issam

    2005-01-01

    Poor understanding of flow boiling in microgravity has recently emerged as a key obstacle to the development of many types of power generation and advanced life support systems intended for space exploration. The critical heat flux (CHF) is perhaps the most important thermal design parameter for boiling systems involving both heatflux-controlled devices and intense heat removal. Exceeding the CHF limit can lead to permanent damage, including physical burnout of the heat-dissipating device. The importance of the CHF limit creates an urgent need to develop predictive design tools to ensure both the safe and reliable operation of a two-phase thermal management system under the reduced-gravity (like that on the Moon and Mars) and microgravity environments of space. At present, very limited information is available on flow-boiling heat transfer and the CHF under these conditions.

  19. Comparative Study of Raw and Boiled Silver Pomfret Fish from Coastal Area and Retail Market in Relation to Trace Metals and Proximate Composition

    PubMed Central

    Huque, Roksana; Munshi, M. Kamruzzaman; Khatun, Afifa; Islam, Mahfuza; Hossain, Afzal; Hossain, Arzina; Akter, Shirin; Kabir, Jamiul; Nahar Jolly, Yeasmin; Islam, Ashraful

    2014-01-01

    Trace metals concentration and proximate composition of raw and boiled silver pomfret (Pampus argenteus) from coastal area and retail market were determined to gain the knowledge of the risk and benefits associated with indiscriminate consumption of marine fishes. The effects of cooking (boiling) on trace metal and proximate composition of silver pomfret fish were also investigated. Trace element results were determined by the Energy Dispersive X-ray Fluorescence (EDXRF) Spectrometer wherein fish samples from both areas exceeded the standard limits set by FAO/WHO for manganese, lead, cadmiumm and chromium and boiling has no significant effects on these three metal concentrations. Long-term intake of these contaminated fish samples can pose a health risk to humans who consume them. PMID:26904650

  20. Design, Construction, and Qualification of a Microscale Heater Array for Use in Boiling Heat Transfer

    NASA Technical Reports Server (NTRS)

    Rule, T. D.; Kim, J.; Kalkur, T. S.

    1998-01-01

    Boiling heat transfer is an efficient means of heat transfer because a large amount of heat can be removed from a surface using a relatively small temperature difference between the surface and the bulk liquid. However, the mechanisms that govern boiling heat transfer are not well understood. Measurements of wall temperature and heat flux near the wall would add to the database of knowledge which is necessary to understand the mechanisms of nucleate boiling. A heater array has been developed which contains 96 heater elements within a 2.5 mm square area. The temperature of each heater element is held constant by an electronic control system similar to a hot-wire anemometer. The voltage that is being applied to each heater element can be measured and digitized using a high-speed A/D converter, and this digital information can be compiled into a series of heat-flux maps. Information for up to 10,000 heat flux maps can be obtained each second. The heater control system, the A/D system and the heater array construction are described in detail. Results are presented which show that this is an effective method of measuring the local heat flux during nucleate and transition boiling. Heat flux maps are obtained for pool boiling in FC-72 on a horizontal surface. Local heat flux variations are shown to be three to six times larger than variations in the spatially averaged heat flux.

  1. Some investigations on the enhancement of boiling heat transfer from planer surface embedded with continuous open tunnels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, A.K.; Das, P.K.; Saha, P.

    2010-11-15

    Boiling heat transfer from a flat surface can be enhanced if continuous open tunnel type structures are embedded in it. Further, improvement of boiling heat transfer from such surfaces has been tried by two separate avenues. At first, inclined tunnels are embedded over the solid surface and an effort is made to optimize the tunnel inclination for boiling heat transfer. Surfaces are manufactured in house with four different inclinations of the tunnels with or without a reentrant circular pocket at the end of the tunnel. Experiments conducted in the nucleate boiling regime showed that 45 deg inclination of the tunnelsmore » for both with and without base geometry provides the highest heat transfer coefficient. Next, active fluid rotation was imposed to enhance the heat transfer from tunnel type surfaces with and without the base geometry. Rotational speed imparted by mechanical stirrer was varied over a wide range. It was observed that fluid rotation enhances the heat transfer coefficient only up to a certain value of stirrer speed. Rotational speed values, beyond this limit, reduce the boiling heat transfer severely. A comparison shows that embedding continuous tunnel turns out to be a better option for the increase of heat transfer coefficient compared to the imposition of fluid rotation. But the behavior of inclined tunnels under the action of fluid rotation is yet to be established and can be treated as a future scope of the work. (author)« less

  2. The impact of input quality on early sign development in native and non-native language learners.

    PubMed

    Lu, Jenny; Jones, Anna; Morgan, Gary

    2016-05-01

    There is debate about how input variation influences child language. Most deaf children are exposed to a sign language from their non-fluent hearing parents and experience a delay in exposure to accessible language. A small number of children receive language input from their deaf parents who are fluent signers. Thus it is possible to document the impact of quality of input on early sign acquisition. The current study explores the outcomes of differential input in two groups of children aged two to five years: deaf children of hearing parents (DCHP) and deaf children of deaf parents (DCDP). Analysis of child sign language revealed DCDP had a more developed vocabulary and more phonological handshape types compared with DCHP. In naturalistic conversations deaf parents used more sign tokens and more phonological types than hearing parents. Results are discussed in terms of the effects of early input on subsequent language abilities.

  3. Input Range Testing for the General Mission Analysis Tool (GMAT)

    NASA Technical Reports Server (NTRS)

    Hughes, Steven P.

    2007-01-01

    This document contains a test plan for testing input values to the General Mission Analysis Tool (GMAT). The plan includes four primary types of information, which rigorously define all tests that should be performed to validate that GMAT will accept allowable inputs and deny disallowed inputs. The first is a complete list of all allowed object fields in GMAT. The second type of information, is test input to be attempted for each field. The third type of information is allowable input values for all objects fields in GMAT. The final piece of information is how GMAT should respond to both valid and invalid information. It is VERY important to note that the tests below must be performed for both the Graphical User Interface and the script!! The examples are illustrated using a scripting perspective, because it is simpler to write up. However, the test must be performed for both interfaces to GMAT.

  4. Model-based document categorization employing semantic pattern analysis and local structure clustering

    NASA Astrophysics Data System (ADS)

    Fume, Kosei; Ishitani, Yasuto

    2008-01-01

    We propose a document categorization method based on a document model that can be defined externally for each task and that categorizes Web content or business documents into a target category in accordance with the similarity of the model. The main feature of the proposed method consists of two aspects of semantics extraction from an input document. The semantics of terms are extracted by the semantic pattern analysis and implicit meanings of document substructure are specified by a bottom-up text clustering technique focusing on the similarity of text line attributes. We have constructed a system based on the proposed method for trial purposes. The experimental results show that the system achieves more than 80% classification accuracy in categorizing Web content and business documents into 15 or 70 categories.

  5. Gstruct: a system for extracting schemas from GML documents

    NASA Astrophysics Data System (ADS)

    Chen, Hui; Zhu, Fubao; Guan, Jihong; Zhou, Shuigeng

    2008-10-01

    Geography Markup Language (GML) becomes the de facto standard for geographic information representation on the internet. GML schema provides a way to define the structure, content, and semantic of GML documents. It contains useful structural information of GML documents and plays an important role in storing, querying and analyzing GML data. However, GML schema is not mandatory, and it is common that a GML document contains no schema. In this paper, we present Gstruct, a tool for GML schema extraction. Gstruct finds the features in the input GML documents, identifies geometry datatypes as well as simple datatypes, then integrates all these features and eliminates improper components to output the optimal schema. Experiments demonstrate that Gstruct is effective in extracting semantically meaningful schemas from GML documents.

  6. Cryogenic thermal system analysis for orbital propellant depot

    NASA Astrophysics Data System (ADS)

    Chai, Patrick R.; Wilhite, Alan W.

    2014-09-01

    In any manned mission architecture, upwards of seventy percent of all payload delivered to orbit is propellant, and propellant mass fraction dominates almost all transportation segments of any mission requiring a heavy lift launch system like the Saturn V. To mitigate this, the use of an orbital propellant depot has been extensively studied. In this paper, a thermal model of an orbital propellant depot is used to examine the effects of passive and active thermal management strategies. Results show that an all passive thermal management strategy results in significant boil-off for both hydrogen and oxygen. At current launch vehicle prices, these boil-offs equate to millions of dollars lost per month. Zero boil-off of propellant is achievable with the use of active cryocoolers; however, the cooling power required to produce zero-boil-off is an order of magnitude higher than current state-of-the-art cryocoolers. This study shows a zero-boil-off cryocooler minimum power requirement of 80-100 W at 80 K for liquid oxygen, and 100-120 W at 20 K for liquid hydrogen for a representative Near-Earth Object mission. Research and development effort is required to improve the state-of-the-arts in-space cryogenic thermal management.

  7. Impact of different thickness of the smooth heated surface on flow boiling heat transfer

    NASA Astrophysics Data System (ADS)

    Strąk, Kinga; Piasecka, Magdalena

    2018-06-01

    This paper presents a comparison of the performance of three smooth heated surfaces with different thicknesses. Analysis was carried out on an experimental setup for flow boiling heat transfer. The most important element of the setup was the test section with a rectangular minichannel, 1.7 mm deep, 16 mm wide and 180 mm long, oriented vertically. The heated element for the FC-72 Fluorinert flowing in the minichannel was designated as a Haynes-230 alloy plate (0.10 mm and 0.45 mm thick) or a Hastelloy X alloy plate (0.65 mm thick). Infrared thermography was used to measure the temperature of the outer plate surface. The local values of the heat transfer coefficient for stationary state conditions were calculated using a simple one-dimensional method. The experimental results were presented as the relationship between the heat transfer coefficients in the subcooled boiling region and the distance along the minichannel length and boiling curves. The highest local heat transfer coefficients were recorded for the surface of 0.10 mm thick heated plate at the outlet and 0.45 mm thick plate at the minichannel inlet. All boiling curves were typical in shape.

  8. Comparison of methods for extracting DNA from formalin-fixed paraffin sections for nonisotopic PCR.

    PubMed

    Frank, T S; Svoboda-Newman, S M; Hsi, E D

    1996-09-01

    DNA was extracted from unstained 5-microns sections of neutral buffered 10% formalin-fixed paraffin-embedded tissue by proteinase K digestion without detergents followed by boiling, proteinase K digestion with ionic detergents with and without phenol chloroform extraction and ethanol precipitation, sonication with proteinase K followed by boiling, or boiling alone. Serial 1:10 dilutions of the extracted DNA were subject to polymerase chain reaction (PCR) amplification of a 255-bp portion of the p53 gene. Digestion with proteinase K without ionic detergents followed by boiling (without phenol chloroform extraction) gave the best yield, enabling visualization of ethidium bromide-stained PCR product from a DNA dilution corresponding to 0.1 mm2 of tissue containing of the order of 10(3) nuclear profiles. Proteinase K digestion with detergents followed by phenol-chloroform extraction was no more effective than simple boiling. Although the success of PCR from preserved tissue will vary with the fixative and size of the amplified fragment, DNA extracted with this optimized method can be used for identification of viruses, loss of heterozygosity, and immunoglobulin gene rearrangements in paraffin-embedded tissue without radioisotopes.

  9. Boiling point determination using adiabatic Gibbs ensemble Monte Carlo simulations: Application to metals described by embedded-atom potentials

    NASA Astrophysics Data System (ADS)

    Gelb, Lev D.; Chakraborty, Somendra Nath

    2011-12-01

    The normal boiling points are obtained for a series of metals as described by the "quantum-corrected Sutton Chen" (qSC) potentials [S.-N. Luo, T. J. Ahrens, T. Çağın, A. Strachan, W. A. Goddard III, and D. C. Swift, Phys. Rev. B 68, 134206 (2003)]. Instead of conventional Monte Carlo simulations in an isothermal or expanded ensemble, simulations were done in the constant-NPH adabatic variant of the Gibbs ensemble technique as proposed by Kristóf and Liszi [Chem. Phys. Lett. 261, 620 (1996)]. This simulation technique is shown to be a precise tool for direct calculation of boiling temperatures in high-boiling fluids, with results that are almost completely insensitive to system size or other arbitrary parameters as long as the potential truncation is handled correctly. Results obtained were validated using conventional NVT-Gibbs ensemble Monte Carlo simulations. The qSC predictions for boiling temperatures are found to be reasonably accurate, but substantially underestimate the enthalpies of vaporization in all cases. This appears to be largely due to the systematic overestimation of dimer binding energies by this family of potentials, which leads to an unsatisfactory description of the vapor phase.

  10. Zero boil-off methods for large-scale liquid hydrogen tanks using integrated refrigeration and storage

    NASA Astrophysics Data System (ADS)

    Notardonato, W. U.; Swanger, A. M.; E Fesmire, J.; Jumper, K. M.; Johnson, W. L.; Tomsik, T. M.

    2017-12-01

    NASA has completed a series of tests at the Kennedy Space Center to demonstrate the capability of using integrated refrigeration and storage (IRAS) to remove energy from a liquid hydrogen (LH2) tank and control the state of the propellant. A primary test objective was the keeping and storing of the liquid in a zero boil-off state, so that the total heat leak entering the tank is removed by a cryogenic refrigerator with an internal heat exchanger. The LH2 is therefore stored and kept with zero losses for an indefinite period of time. The LH2 tank is a horizontal cylindrical geometry with a vacuum-jacketed, multilayer insulation system and a capacity of 125,000 liters. The closed-loop helium refrigeration system was a Linde LR1620 capable of 390W cooling at 20K (without any liquid nitrogen pre-cooling). Three different control methods were used to obtain zero boil-off: temperature control of the helium refrigerant, refrigerator control using the tank pressure sensor, and duty cycling (on/off) of the refrigerator as needed. Summarized are the IRAS design approach, zero boil-off control methods, and results of the series of zero boil-off tests.

  11. Electrically Driven Liquid Film Boiling Experiment

    NASA Technical Reports Server (NTRS)

    Didion, Jeffrey R.

    2016-01-01

    This presentation presents the science background and ground based results that form the basis of the Electrically Driven Liquid Film Boiling Experiment. This is an ISS experiment that is manifested for 2021. Objective: Characterize the effects of gravity on the interaction of electric and flow fields in the presence of phase change specifically pertaining to: a) The effects of microgravity on the electrically generated two-phase flow. b) The effects of microgravity on electrically driven liquid film boiling (includes extreme heat fluxes). Electro-wetting of the boiling section will repel the bubbles away from the heated surface in microgravity environment. Relevance/Impact: Provides phenomenological foundation for the development of electric field based two-phase thermal management systems leveraging EHD, permitting optimization of heat transfer surface area to volume ratios as well as achievement of high heat transfer coefficients thus resulting in system mass and volume savings. EHD replaces buoyancy or flow driven bubble removal from heated surface. Development Approach: Conduct preliminary experiments in low gravity and ground-based facilities to refine technique and obtain preliminary data for model development. ISS environment required to characterize electro-wetting effect on nucleate boiling and CHF in the absence of gravity. Will operate in the FIR - designed for autonomous operation.

  12. Zero Boil-Off Methods for Large Scale Liquid Hydrogen Tanks Using Integrated Refrigeration and Storage

    NASA Technical Reports Server (NTRS)

    Notardonato, W. U.; Swanger, A. M.; Fesmire, J. E.; Jumper, K. M.; Johnson, W. L.; Tomsik, T. M.

    2017-01-01

    NASA has completed a series of tests at the Kennedy Space Center to demonstrate the capability of using integrated refrigeration and storage (IRAS) to remove energy from a liquid hydrogen (LH2) tank and control the state of the propellant. A primary test objective was the keeping and storing of the liquid in a zero boil-off state, so that the total heat leak entering the tank is removed by a cryogenic refrigerator with an internal heat exchanger. The LH2 is therefore stored and kept with zero losses for an indefinite period of time. The LH2 tank is a horizontal cylindrical geometry with a vacuum-jacketed, multi-layer insulation system and a capacity of 125,000 liters. The closed-loop helium refrigeration system was a Linde LR1620 capable of 390W cooling at 20K (without any liquid nitrogen pre-cooling). Three different control methods were used to obtain zero boil-off: temperature control of the helium refrigerant, refrigerator control using the tank pressure sensor, and duty cycling (on/off) of the refrigerator as needed. Summarized are the IRAS design approach, zero boil-off control methods, and results of the series of zero boil-off tests.

  13. Study on Fins' Effect of Boiling Flow in Millimeter Channel Heat Exchanger

    NASA Astrophysics Data System (ADS)

    Watanabe, Satoshi

    2005-11-01

    Recently, a lot of researches about compact heat exchangers with mini-channels have been carried out with the hope of obtaining a high-efficiency heat transfer, due to the higher ratio of surface area than existing heat exchangers. However, there are many uncertain phenomena in fields such as boiling flow in mini-channels. Thus, in order to understand the boiling flow in mini-channels to design high-efficiency heat exchangers, this work focused on the visualization measurement of boiling flow in a millimeter channel. A transparent acrylic channel (heat exchanger form), high-speed camera (2000 fps at 1024 x 1024 pixels), and halogen lamp (backup light) were used as the visualization system. The channel's depth is 2 mm, width is 30 mm, and length is 400 mm. In preparation for commercial use, two types of channels were experimented on: a fins type and a normal slit type (without fins). The fins are circular cylindrical obstacles (diameter is 5 mm) to promote heat transfer, set in a triangular array (distance between each center point is 10 mm). Especially in this work, boiling flow and heat transfer promotion in the millimeter channel heat exchanger with fins was evaluated using a high-speed camera.

  14. Bubble Departure from Metal-Graphite Composite Surfaces and Its Effects on Pool Boiling Heat Transfer

    NASA Technical Reports Server (NTRS)

    Chao, David F.; Sankovic, John M.; Motil, Brian J.; Yang, W-J.; Zhang, Nengli

    2010-01-01

    The formation and growth processes of a bubble in the vicinity of graphite micro-fiber tips on metal-graphite composite boiling surfaces and their effects on boiling behavior are investigated. It is discovered that a large number of micro bubbles are formed first at the micro scratches and cavities on the metal matrix in pool boiling. By virtue of the non-wetting property of graphite, once the growing micro bubbles touch the graphite tips, the micro bubbles are sucked by the tips and merged into larger micro bubbles sitting on the end of the tips. The micro bubbles grow rapidly and coalesce to form macro bubbles, each spanning several tips. The necking process of a detaching macro bubble is analyzed. It is revealed that a liquid jet is produced by sudden break-off of the bubble throat. The composite surfaces not only have higher temperatures in micro- and macrolayers but also make higher frequency of the bubble departure, which increase the average heat fluxes in both the bubble growth stage and in the bubble departure period. Based on these analyses, the enhancement mechanism of pool boiling heat transfer on composite surfaces is clearly revealed.

  15. 1 H NMR-based water-soluble lower molecule characterization and fatty acid composition of boiled Wuding chicken during processing.

    PubMed

    Xiao, Zhichao; Luo, Yuting; Wang, Guiying; Ge, Changrong; Zhou, Guanghong; Zhang, Wangang; Liao, Guozhou

    2018-06-13

    Boiled Wuding chicken was produced using whole chicken by washing, boiling 1 h with salt, deep frying and boiling 2 h. The effect of process on the WLOM (water-soluble lower molecule) profiles of products was characterized using proton nuclear magnetic resonance spectroscopy ( 1 H-NMR) and fatty acid composition of products was analyzed using gas chromatography-mass spectrometry (GC-MS). The metabonome was dominated by 49 WLOM and 22 fatty acid compounds were detected. PC1 and PC2 explained a total of 93.4% and 3% of variance, respectively. Compared with control group, the total WLOM and fatty acid content of the chicken breast were significantly decreased in other three processing stages (P<0.05). Comprehensive multivariate data analysis showed significant differences about precursor substance between the different processing including creatine, lactate, creatinine, glucose, taurine, anserine and acetate (P<0.05). These results contribute to a more accurate understanding of precursor substance changes of flavor in chicken meat during processing. Boiled treated chicken had significant effects on fatty acid and WLOM compounds. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  16. Kinetics-based phase change approach for VOF method applied to boiling flow

    NASA Astrophysics Data System (ADS)

    Cifani, Paolo; Geurts, Bernard; Kuerten, Hans

    2014-11-01

    Direct numerical simulations of boiling flows are performed to better understand the interaction of boiling phenomena with turbulence. The multiphase flow is simulated by solving a single set of equations for the whole flow field according to the one-fluid formulation, using a VOF interface capturing method. Interface terms, related to surface tension, interphase mass transfer and latent heat, are added at the phase boundary. The mass transfer rate across the interface is derived from kinetic theory and subsequently coupled with the continuum representation of the flow field. The numerical model was implemented in OpenFOAM and validated against 3 cases: evaporation of a spherical uniformly heated droplet, growth of a spherical bubble in a superheated liquid and two dimensional film boiling. The computational model will be used to investigate the change in turbulence intensity in a fully developed channel flow due to interaction with boiling heat and mass transfer. In particular, we will focus on the influence of the vapor bubble volume fraction on enhancing heat and mass transfer. Furthermore, we will investigate kinetic energy spectra in order to identify the dynamics associated with the wakes of vapor bubbles. Department of Applied Mathematics, 7500 AE Enschede, NL.

  17. The effect of heating direction on flow boiling heat transfer of R134a in micro-channels

    NASA Astrophysics Data System (ADS)

    Xu, Mingchen; Jia, Li; Dang, Chao; Peng, Qi

    2017-04-01

    This paper presents effects of heating directions on heat transfer performance of R134a flow boiling in micro- channel heat sink. The heat sink has 30 parallel rectangular channels with cross-sectional dimensions of 500μm width 500μm depth and 30mm length. The experimental operation condition ranges of the heat flux and the mass flux were 13.48 to 82.25 W/cm2 and 373.3 to 1244.4 kg/m2s respectively. The vapor quality ranged from 0.07 to 0.93. The heat transfer coefficients of top heating and bottom heating both were up to 25 kW/m2 K. Two dominate transfer mechanisms of nucleate boiling and convection boiling were observed according to boiling curves. The experimental results indicated that the heat transfer coefficient of bottom heating was 13.9% higher than top heating in low heat flux, while in high heat flux, the heat transfer coefficient of bottom heating was 9.9%.higher than the top heating, because bubbles were harder to divorce the heating wall. And a modified correlation was provided to predict heat transfer of top heating.

  18. Digital adaptive controllers for VTOL vehicles. Volume 2: Software documentation

    NASA Technical Reports Server (NTRS)

    Hartmann, G. L.; Stein, G.; Pratt, S. G.

    1979-01-01

    The VTOL approach and landing test (VALT) adaptive software is documented. Two self-adaptive algorithms, one based on an implicit model reference design and the other on an explicit parameter estimation technique were evaluated. The organization of the software, user options, and a nominal set of input data are presented along with a flow chart and program listing of each algorithm.

  19. Teachers as Human Capital or Human Beings? USAID's Perspective on Teachers

    ERIC Educational Resources Information Center

    Ginsburg, Mark

    2017-01-01

    This article analyzes three USAID education strategy documents (1998, 2005, and 2011) as well as USAID's requests for proposals for three projects to assess how teachers are represented. The main findings indicate that USAID education strategy documents a) treat teachers as human capital, a human resource input, rather than as human beings and b)…

  20. MODFLOW-2000, the U.S. Geological Survey modular ground-water model -- Documentation of MOD-PREDICT for predictions, prediction sensitivity analysis, and evaluation of uncertainty

    USGS Publications Warehouse

    Tonkin, M.J.; Hill, Mary C.; Doherty, John

    2003-01-01

    This document describes the MOD-PREDICT program, which helps evaluate userdefined sets of observations, prior information, and predictions, using the ground-water model MODFLOW-2000. MOD-PREDICT takes advantage of the existing Observation and Sensitivity Processes (Hill and others, 2000) by initiating runs of MODFLOW-2000 and using the output files produced. The names and formats of the MODFLOW-2000 input files are unchanged, such that full backward compatibility is maintained. A new name file and input files are required for MOD-PREDICT. The performance of MOD-PREDICT has been tested in a variety of applications. Future applications, however, might reveal errors that were not detected in the test simulations. Users are requested to notify the U.S. Geological Survey of any errors found in this document or the computer program using the email address available at the web address below. Updates might occasionally be made to this document, to the MOD-PREDICT program, and to MODFLOW- 2000. Users can check for updates on the Internet at URL http://water.usgs.gov/software/ground water.html/.

  1. BOILING HOUSE, INTERIOR, SECOND FLOOR, GARVER CLARIFIER IN FOREGROUND, TOPS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BOILING HOUSE, INTERIOR, SECOND FLOOR, GARVER CLARIFIER IN FOREGROUND, TOPS OF LONG TUBE EVAPORATORS IN BACKGROUND. VIEW FROM NORTHWEST - Kekaha Sugar Company, Sugar Mill Building, 8315 Kekaha Road, Kekaha, Kauai County, HI

  2. A Study of Nucleate Boiling with Forced Convection in Microgravity

    NASA Technical Reports Server (NTRS)

    Merte, Herman, Jr.

    1999-01-01

    The ultimate objective of basic studies of flow boiling in microgravity is to improve the understanding of the processes involved, as manifested by the ability to predict its behavior. This is not yet the case for boiling heat transfer even in earth gravity, despite the considerable research activity over the past 30 years. The elements that constitute the nucleate boiling process - nucleation, growth, motion, and collapse of the vapor bubbles (if the bulk liquid is subcooled) - are common to both pool and flow boiling. It is well known that the imposition of bulk liquid motion affects the vapor bubble behavior relative to pool boiling, but does not appear to significantly influence the heat transfer. Indeed, it has been recommended in the past that empirical correlations or experimental data of pool boiling be used for design purposes with forced convection nucleate boiling. It is anticipated that such will most certainly not be possible for boiling in microgravity, based on observations made with pool boiling in microgravity. In earth gravity buoyancy will act to remove the vapor bubbles from the vicinity of the heater surface regardless of how much the imposed bulk velocity is reduced, depending, of course, on the geometry of the system. Vapor bubbles have been observed to dramatically increase in size in pool boiling in microgravity, and the heat flux at which dryout took place was reduced considerably below what is generally termed the critical heat flux (CHF) in earth gravity, depending on the bulk liquid subcooling. However, at heat flux levels below dryout, the nucleate pool boiling process was enhanced considerably over that in earth gravity, in spite of the large vapor bubbles formed in microgravity and perhaps as a consequence. These large vapor bubbles tended to remain in the vicinity of the heater surface, and the enhanced heat transfer appeared to be associated with the presence of what variously has been referred to as a liquid microlayer between the bubble and the heater surface. The enhancement of the boiling process with low velocities in earth gravity for those orientations producing the formation of a liquid macrolayer described above, accompanied by "sliding" vapor bubbles, has been demonstrated. The enhancement was presented as a function of orientation, subcooling, and heated length, while a criterion for the heat transfer for mixed natural/forced convection nucleate boiling was given previously. A major unknown in the prediction and application of flow boiling heat transfer in microgravity is the upper limit of the heat flux for the onset of dryout (or critical heat flux - CHF), for given conditions of fluid-heater surfaces, including geometry, system pressure and bulk liquid subcooling. It is clearly understood that the behavior in microgravity will be no different than on earth with sufficiently high flow velocities, and would require no space experimentation. However, the boundary at which this takes place is still an unknown. Previous results of CHF measurements were presented for low velocity flow boiling at various orientations in earth gravity as a function of flow velocity and bulk liquid subcooling, along with preliminary measurements of bubble residence times on a flat heater surface. This showed promise as a parameter to be used in modeling the CHF, both in earth gravity and in microgravity. The objective of the work here is to draw attention to and show results of current modeling efforts for the CHF, with low velocities in earth gravity at different orientations and subcoolings. Many geometrical possibilities for a heater surface exist in flowing boiling, with boiling on the inner and outer surfaces of tubes perhaps being the most common. If the vapor bubble residence time on and departure size from the heater surface bear a relationship to the CHF, as results to be given indicate, it is important that visualization of and access to vapor bubble growth be conveniently available for research purposes. In addition, it is desirable to reduce the number of variables as much as possible in a fundamental study. These considerations dictated the use of a flat heater surface, which is rectangular in shape, 1.91 cm by 3.81 cm (0.75 x 1.5 inches), consisting either of a 400 Angstrom thick semi-transparent gold film sputtered on a quartz substrate which serves simultaneously as a heater and a resistance thermometer, or a copper substrate of the same size. The heater substrate is a disc which can be rotated so that the heated length in the flow direction can be changed from 1.91 to 3.81 cm (0.75 to 1.5 inches). The fluid is R-113, and the velocities can be varied between 0.5 cm/s and 60 cm/s. For a sufficiently low velocity the CHF can be modeled reasonably well at various orientations by the correlation for pool boiling corrected for the influence of bulk liquid subcooling, multiplied by the square root of q, the angle relative to horizontal. This arises from equating buoyancy and drag forces in the inverted positions where the vapor bubbles are held against the heater surface as they slide. A distortion of the measurements relative to pool boiling occurs as the flow velocity increases. In modeling this effect at different levels of subcooling it appeared appropriate to estimate the volumetric rate of vapor generation, using measurements of bubble frequency (or residence time), void fraction and average bubble boundary layer thickness. These were determined with the use of a platinum hot wire probe 0.025 mm in diameter by 1.3 mm long, applying a constant current to distinguish between contact with liquid or vapor. Two-dimensional spatial variations are obtained with a special mechanism to resolve displacements in increments of 0.025 mm. From such measurements it was determined that the fraction of the surface heat transfer resulting in evaporation varies inversely with the subcooling correction factor for the CHF. The measured inverse bubble residence time is normalized relative to that predicted for an infinite horizontal flat plate at the CHF, and is correlated well with the CHF normalized relative to that for pool boiling, for various orientation angles and subcooling levels. This correspondence is then combined with a normalizing factor for the energy flux leaving the heater surface at the CHF and the computed bubble radius at departure, determined from the balance between the outward velocity of the interface due to evaporation and the buoyance induced velocity of the center of mass of the bubble. The product of the CHF and the corresponding residence time was determined to be a constant for all orientations at a given bulk flow velocity and liquid subcooling, and must be determined empirically for each velocity and subcooling at present. It then becomes possible to predict the CHF for the different orientations, velocities, and subcoolings. These are compared with normalized measurements of the CHF for velocities ranging from 4 cm/s to 55 cm/s, subcoolings from 2.8 to 22.2 K, over orientations angles of 360 degrees.

  3. The sudden coalescene model of the boiling crisis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrica, P.M.; Clausse, A.

    1995-09-01

    A local two-phase flow integral model of nucleate boiling and crisis is presented. The model is based on average balances on a control volume, yielding to a set of three nonlinear differential equations for the local void fraction, bubble number density and velocity. Boiling crisis as critical heat flux is interpreted as a dynamic transition caused by the coalescence of bubbles near the heater. The theoretical dynamic model is compared with experimental results obtained for linear power ramps in a horizontal plate heater in R-113, showing an excellent qualitative agreement.

  4. Preliminary design and hazards report. Boiling Reactor Experiment V (BORAX V)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rice, R. E.

    1960-02-01

    The preliminary objectives of the proposed BORAX V program are to test nuclear superheating concepts and to advance the technology of boiling-water-reactor design by performing experiments which will improve the understanding of factors limiting the stability of boiling reactors at high power densities. The reactor vessel is a cylinder with ellipsoidal heads, made of carbon steel clad internally with stainless steel. Each of the three cores is 24 in. high and has an effective diameter of 39 in. This is a preliminary report. (W.D.M.)

  5. The boiling point of stratospheric aerosols.

    NASA Technical Reports Server (NTRS)

    Rosen, J. M.

    1971-01-01

    A photoelectric particle counter was used for the measurement of aerosol boiling points. The operational principle involves raising the temperature of the aerosol by vigorously heating a portion of the intake tube. At or above the boiling point, the particles disintegrate rather quickly, and a noticeable effect on the size distribution and concentration is observed. Stratospheric aerosols appear to have the same volatility as a solution of 75% sulfuric acid. Chemical analysis of the aerosols indicates that there are other substances present, but that the sulfate radical is apparently the major constituent.

  6. Carcinogenic N-nitro-dimethylamine from the reaction of the analgesic amidopyrine and nitrite extracted from foodstuffs.

    PubMed

    LaBar, J; Sander, J

    1975-11-25

    The reaction of the analgesic amidopyrine (100 mg) with nitrite extracted from cured meats and from spinach in varying degrees of spoilage was studied. Unde physiological conditions the carcinogenic dimethylnitrosamine was formed at milligram levels at nitrite concentrations as low as 4 mg (in 175 ml extracted from 100 g boiled ham). The rate of decrease in concentration in the human stomach after ingestion of amidopyrine and of nitrite contained in boiled ham or in a broth from boiled ham was also measured.

  7. Coal liquefaction process

    DOEpatents

    Wright, Charles H.

    1986-01-01

    A process for the liquefaction of coal wherein raw feed coal is dissolved in recycle solvent with a slurry containing recycle coal minerals in the presence of added hydrogen at elevated temperature and pressure. The highest boiling distillable dissolved liquid fraction is obtained from a vacuum distillation zone and is entirely recycled to extinction. Lower boiling distillable dissolved liquid is removed in vapor phase from the dissolver zone and passed without purification and essentially without reduction in pressure to a catalytic hydrogenation zone where it is converted to an essentially colorless liquid product boiling in the transportation fuel range.

  8. Henry`s law constant for selected volatile organic compounds in high-boiling oils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poddar, T.K.; Sirkar, K.K.

    Absorption systems are often used to remove and recover organic vapors from process air/gas streams. A high boiling and inert liquid like silicone oil is an excellent absorbent for volatile organic compounds in air. Henry`s law constants of four different volatile organic compounds, namely, acetone, methanol, methylene chloride, and toluene between air and high-boiling oils were determined experimentally by the headspace-GC technique over a temperature range. The Henry`s law constants were fitted as a function of temperature to an equation.

  9. Large outbreaks of Clostridium perfringens food poisoning associated with the consumption of boiled salmon.

    PubMed Central

    Hewitt, J. H.; Begg, N.; Hewish, J.; Rawaf, S.; Stringer, M.; Theodore-Gandi, B.

    1986-01-01

    Five large outbreaks of food poisoning are described in which clinical, epidemiological or laboratory data indicated Clostridium perfringens as the causative organism. The foodstuff common to all incidents was boiled salmon served cold as an hors d 'oeuvre. In all cases the fish had been subject to a long period of cooling or storage between boiling and consumption. It is thought that multiplication of the organism occurred during this time. Recommendations are made for the avoidance of further similar incidents. PMID:2874173

  10. 23. RW Meyer Sugar Mill: 18761889. Boiling House Interior, 1878. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. RW Meyer Sugar Mill: 1876-1889. Boiling House Interior, 1878. View: North Wall of boiling house. In the original structure the three windows on the right admitted light and air from the outside. A shed occupied the left side of the wall outside (hence no windows). in 1881 the construction of the cooling shed closed in the right three windows. The sorghum is in the foreground. The centrifugals are in the left rear. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  11. On Boiling of Crude Oil under Elevated Pressure

    NASA Astrophysics Data System (ADS)

    Pimenova, Anastasiya V.; Goldobin, Denis S.

    2016-02-01

    We construct a thermodynamic model for theoretical calculation of the boiling process of multicomponent mixtures of hydrocarbons (e.g., crude oil). The model governs kinetics of the mixture composition in the course of the distillation process along with the boiling temperature increase. The model heavily relies on the theory of dilute solutions of gases in liquids. Importantly, our results are applicable for modelling the process under elevated pressure (while the empiric models for oil cracking are not scalable to the case of extreme pressure), such as in an oil field heated by lava intrusions.

  12. Enhanced boiling in microchannels due to recirculation induced by repeated saw-toothed cross-sectional geometry

    NASA Astrophysics Data System (ADS)

    Gao, Le; Bhavnani, Sushil H.

    2017-10-01

    A saw-toothed shaped microchannel heat sink is investigated for enhancing flow boiling heat transfer. Tests are conducted at mass fluxes of 444-1776 kg/m2 s and an inlet subcooling of 15 °C. The effects of channel geometry on boiling curves, flow patterns, pressure drops, and heat transfer coefficient are discussed in this letter. It is found that heat transfer performance is enhanced by up to 50% especially at heat flux levels associated with the current generation of microprocessors.

  13. Steady-State Thermal-Hydraulics Analyses for the Conversion of the BR2 Reactor to LEU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Licht, J. R.; Bergeron, A.; Dionne, B.

    BR2 is a research reactor used for radioisotope production and materials testing. It’s a tank-in-pool type reactor cooled by light water and moderated by beryllium and light water. The reactor core consists of a beryllium moderator forming a matrix of 79 hexagonal prisms in a hyperboloid configuration; each having a central bore that can contain a variety of different components such as a fuel assembly, a control or regulating rod, an experimental device, or a beryllium or aluminum plug. Based on a series of tests, the BR2 operation is currently limited to a maximum allowable heat flux of 470 W/cmmore » 2 to ensure fuel plate integrity during steady-state operation and after a loss-of-flow/loss-of-pressure accident. A feasibility study for the conversion of the BR2 reactor from highly-enriched uranium (HEU) to low-enriched uranium (LEU) fuel was previously performed to verify it can operate safely at the same maximum nominal steady-state heat flux. An assessment was also performed to quantify the heat fluxes at which the onset of flow instability and critical heat flux occur for each fuel type. This document updates and expands these results for the current representative core configuration (assuming a fresh beryllium matrix) by evaluating the onset of nucleate boiling (ONB), onset of fully developed nucleate boiling (FDNB), onset of flow instability (OFI) and critical heat flux (CHF).« less

  14. The effect of vapor polarity and boiling point on breakthrough for binary mixtures on respirator carbon.

    PubMed

    Robbins, C A; Breysse, P N

    1996-08-01

    This research evaluated the effect of the polarity of a second vapor on the adsorption of a polar and a nonpolar vapor using the Wheeler model. To examine the effect of polarity, it was also necessary to observe the effect of component boiling point. The 1% breakthrough time (1% tb), kinetic adsorption capacity (W(e)), and rate constant (kv) of the Wheeler model were determined for vapor challenges on carbon beds for both p-xylene and pyrrole (referred to as test vapors) individually, and in equimolar binary mixtures with the polar and nonpolar vapors toluene, p-fluorotoluene, o-dichlorobenzene, and p-dichlorobenzene (referred to as probe vapors). Probe vapor polarity (0 to 2.5 Debye) did not systematically alter the 1% tb, W(e), or kv of the test vapors. The 1% tb and W(e) for test vapors in binary mixtures can be estimated reasonably well, using the Wheeler model, from single-vapor data (1% tb +/- 30%, W(e) +/- 20%). The test vapor 1% tb depended mainly on total vapor concentration in both single and binary systems. W(e) was proportional to test vapor fractional molar concentration (mole fraction) in mixtures. The kv for p-xylene was significantly different (p < or = 0.001) when compared according to probe boiling point; however, these differences were apparently of limited importance in estimating 1% tb for the range of boiling points tested (111 to 180 degrees C). Although the polarity and boiling point of chemicals in the range tested are not practically important in predicting 1% tb with the Wheeler model, an effect due to probe boiling point is suggested, and tests with chemicals of more widely ranging boiling point are warranted. Since the 1% tb, and thus, respirator service life, depends mainly on total vapor concentration, these data underscore the importance of taking into account the presence of other vapors when estimating respirator service life for a vapor in a mixture.

  15. Effect of boiling and roasting on the fermentation of soybeans into dawadawa (soy-dawadawa).

    PubMed

    Dakwa, Sarah; Sakyi-Dawson, Esther; Diako, Charles; Annan, Nana Takyiwa; Amoa-Awua, Wisdom Kofi

    2005-09-25

    Soybeans which had initially been dehulled by either boiling (boiled/dehulled) or roasting (roasted/dehulled) before peeling, were cooked and fermented into dawadawa, a traditional food condiment. The micropopulation, enzymatic activities, proximate composition, amino acid, and aroma profiles of the two types of soybean dawadawa were evaluated during fermentation. Only minor differences were found in the microbial profiles of the two types of soy-dawadawa. Although boiled/dehulled soy-dawadawa initially had lower microbial counts, it recorded higher counts at the advanced stages of fermentation. Proteolytic and amylolytic Bacillus species including Bacillus subtilis, Bacillus pumilus, Bacillus licheniformis, Bacillus cereus, and Bacillus firmus dominated the micropopulation of the two types of soy-dawadawa with Bacillus subtilis accounting for about 50% of the Bacillus species in all samples. Lactic acid bacteria and yeasts occurred in low numbers in the two types of soy-dawadawa. The proximate composition of the two types of soy-dawadawa were similar, and their contents of moisture and protein increased whilst fat and ash decreased during fermentation. Both types of fermenting soy-dawadawa recorded similar levels of alpha-amylase activity, but boiled/dehulled soy-dawadawa showed slightly higher protease activity. The levels of isoleucine, leucine, lysine, phenylalanine, arginine and proline increased significantly with fermentation time in both types of soy-dawadawa. With respect to differences in their aroma profiles, hexanodecanol, octadecyl acetate, 1,2-dimethyl benzene, tetradecene, (E)-5-eicosene, cyclohexadecane, and hexacosane were found only in the roasted/dehulled samples, whilst 1,2-ethanediol, ethyl acetate, dimethyl disulfide, cyclotetradecane, decene, indole , 2 butyl-octenal, acetophenone, and toluene were found only in the boiled/dehulled samples. A market focus group showed preference for roasted/dehulled soy-dawadawa over boiled/dehulled soy-dawadawa. Apart from the volatile aroma compounds, the biochemical and microbiological profiles of the two types of soy-dawadawa showed only minor differences and were also similar to the profiles reported for African locust bean dawadawa.

  16. Effects of processing and cooking on the reduction of dinotefuran concentration in Japanese rice samples.

    PubMed

    Watanabe, Minae; Ueyama, Jun; Ueno, Eiji; Ueda, Yuko; Oda, Masaya; Umemura, Yuko; Tanahashi, Takashi; Ikai, Yoshitomo; Saito, Isao

    2018-05-23

    Dinotefuran is an insecticide belonging to the neonicotinoid class, which is frequently used to control pests in paddy rice owing to its permeability and effectiveness against sucking insects. Since 2002, this insecticide has been commercially available in Japan, and has become controversial due to its high detection frequency in brown rice for primary consumption. In this study, the effects of processing and cooking on the reduction of dinotefuran residues in commercially available brown rice were investigated. Boiled rice is difficult to homogenise and extract with acetonitrile. Using pre-freezing and cryogenic milling with powdered dry ice, dinotefuran in boiled rice was extracted well. A measurement method comprising sample preparation (acetonitrile extraction, gel permeation chromatography, and SPE) and detection with anLC-MS/MS system was used. In 10 out of 25 commercial brown rice samples, dinotefuran was detected at a concentration of 0.04 μg/g (mean), which was more than the limit of quantitation of 0.01 μg/g. The dinotefuran levels were significantly less than the MRL of 2 μg/g in Japan. Even after polishing, washing, and boiling, dinotefuran was detected in 10 brown rice samples, with mean residue levels of 74.7%, 60.8%, and 39.6%, respectively, of the original concentration in brown rice. Based on these data, the processing factor of dinotefuran in boiled rice has been estimated to be approximately 0.4. Dinotefuran residues were reduced in the boiled rice, but less so than other pesticides. Although the maximum daily intake of dinotefuran in boiled rice was 0.0065 mg/person/day, its percent ratio to the ADI of dinotefuran in Japan was less than 0.05%. These results suggest that the daily intake of dinotefuran from rice might not be a critical problem at present, in spite of its relatively high detection frequency in boiled rice.

  17. Pre- and postprocessing for reservoir simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, W.L.; Ingalls, L.J.; Prasad, S.J.

    1991-05-01

    This paper describes the functionality and underlying programing paradigms of Shell's simulator-related reservoir-engineering graphics system. THis system includes the simulation postprocessing programs Reservoir Display System (RDS) and Fast Reservoir Engineering Displays (FRED), a hypertext-like on-line documentation system (DOC), and a simulator input preprocessor (SIMPLSIM). RDS creates displays of reservoir simulation results. These displays represent the areal or cross-section distribution of computer reservoir parameters, such as pressure, phase saturation, or temperature. Generation of these images at real-time animation rates is discussed. FRED facilitates the creation of plot files from reservoir simulation output. The use of dynamic memory allocation, asynchronous I/O, amore » table-driven screen manager, and mixed-language (FORTRAN and C) programming are detailed. DOC is used to create and access on-line documentation for the pre-and post-processing programs and the reservoir simulators. DOC can be run by itself or can be accessed from within any other graphics or nongraphics application program. DOC includes a text editor, which is that basis for a reservoir simulation tutorial and greatly simplifies the preparation of simulator input. The use of sharable images, graphics, and the documentation file network are described. Finally, SIMPLSIM is a suite of program that uses interactive graphics in the preparation of reservoir description data for input into reservoir simulators. The SIMPLSIM user-interface manager (UIM) and its graphic interface for reservoir description are discussed.« less

  18. Ground Water Rule - Boil Water Advisory - Public Notification Template

    EPA Pesticide Factsheets

    The Ground Water Rule - Boil Water Advisory - Public Notification Template can be use to issue a Tier 1 Public Notification when it has been determined that source ground water is contaminated with E. Coli bacteria.

  19. BOILING HOUSE, INTERIOR, SECOND FLOOR, SYRUP TANKS IN RIGHT FOREGROUND, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BOILING HOUSE, INTERIOR, SECOND FLOOR, SYRUP TANKS IN RIGHT FOREGROUND, HIGH GRADE VACUUM PANS BEYOND THE SYRUP TANKS. VIEW FROM THE SOUTH - Kekaha Sugar Company, Sugar Mill Building, 8315 Kekaha Road, Kekaha, Kauai County, HI

  20. Fecal contamination of drinking water within peri-urban households, Lima, Peru.

    PubMed

    Oswald, William E; Lescano, Andrés G; Bern, Caryn; Calderon, Maritza M; Cabrera, Lilia; Gilman, Robert H

    2007-10-01

    We assessed fecal contamination of drinking water in households in 2 peri-urban communities of Lima, Peru. We measured Escherichia coli counts in municipal source water and, within households, water from principal storage containers, stored boiled drinking water, and water in a serving cup. Source water was microbiologically clean, but 26 (28%) of 93 samples of water stored for cooking had fecal contamination. Twenty-seven (30%) of 91 stored boiled drinking water samples grew E. coli. Boiled water was more frequently contaminated when served in a drinking cup than when stored (P < 0.01). Post-source contamination increased successively through the steps of usage from source water to the point of consumption. Boiling failed to ensure safe drinking water at the point of consumption because of easily contaminated containers and poor domestic hygiene. Hygiene education, better point-of-use treatment and storage options, and in-house water connections are urgently needed.

  1. Specific interface area and self-stirring in a two-liquid system experiencing intense interfacial boiling below the bulk boiling temperatures of both components

    NASA Astrophysics Data System (ADS)

    Goldobin, Denis S.; Pimenova, Anastasiya V.

    2017-04-01

    We present an approach to theoretical assessment of the mean specific interface area (δ S/δ V) for a well-stirred system of two immiscible liquids experiencing interfacial boiling. The assessment is based on the balance of transformations of mechanical energy and the laws of the momentum and heat transfer in the turbulent boundary layer. The theory yields relations between the specific interface area and the characteristics of the system state. In particular, this allows us to derive the equations of self-cooling dynamics of the system in the absence of external heat supply. The results provide possibility for constructing a self-contained mathematical description of the process of interfacial boiling. In this study, we assume the volume fractions of two components to be similar as well as the values of their kinematic viscosity and molecular heat diffusivity.

  2. Thermal Design of Vapor Cooling of Flight Vehicle Structures Using LH2 Boil-Off

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen; Zoeckler, Joseph

    2015-01-01

    Using hydrogen boil-off vapor to cool the structure of a flight vehicle cryogenic upper stage can reduce heat loads to the stage and increase the usable propellant in the stage or extend the life of the stage. The hydrogen vapor can be used to absorb incoming heat as it increases in temperature before being vented overboard. In theory, the amount of heat leaking into the hydrogen tank from the structure will be reduced if the structure is cooled using the propellant boil-off vapor. However, the amount of boil-off vapor available to be used for cooling and the reduction in heat leak to the propellant tank are dependent to each other. The amount of heat leak reduction to the LH2 tank also depends on the total heat load on the stage and the vapor cooling configurations.

  3. Investigation of HCl-based surface treatment for GaN devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okada, Hiroshi, E-mail: okada@ee.tut.ac.jp; Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi 441-8580; Shinohara, Masatohi

    2016-02-01

    Surface treatments of GaN in HCl-based solutions are studied by X-ray photoelectron spectroscopy (XPS) and electrical characterization of fabricated GaN surfaces. A dilute-HCl treatment (HCl:H{sub 2}O=1:1) at room temperature and a boiled-HCl treatment (undiluted HCl) at 108°C are made on high-temperature annealed n-GaN. From the XPS study, removal of surface oxide by the dilute-HCl treatment was found, and more thoroughly oxide-removal was confirmed in the boiled-HCl treatment. Effect of the surface treatment on electrical characteristics on AlGaN/GaN transistor is also studied by applying treatment processes prior to the surface SiN deposition. Increase of drain current is found in boiled-HCl treatedmore » samples. The results suggest that the boiled-HCl treatment is effective for GaN device fabrication.« less

  4. NUCLEAR SUPERHEATER FOR BOILING WATER REACTOR

    DOEpatents

    Holl, R.J.; Klecker, R.W.; Graham, C.B.

    1962-05-15

    A description is given of a boiling water reactor having a superheating region integral with the core. The core consists essentially of an annular boiling region surrounding an inner superheating region. Both regions contain fuel elements and are separated by a cylindrical wall, perforations being provided in the lower portion of the cylindrical wall to permit circulation of a common water moderator between the two regions. The superheater region comprises a plurality of tubular fuel assemblies through which the steam emanating from the boiling region passes to the steam outlet. Each superheater fuel assembly has an outer double-walled cylinder, the double walls being concentrically spaced and connected together at their upper ends but open at the bottom to provide for differential thermal expansion of the inner and outer walls. Gas is entrapped in the annulus between the walls which acts as an insulating space between the fissionable material inside and the moderator outside. (AEC)

  5. Impact of boiling conditions on the molecular and sensory profile of a vegetable broth.

    PubMed

    Mougin, Alice; Mauroux, Olivier; Matthey-Doret, Walter; Barcos, Eugenia Maria; Beaud, Fernand; Bousbaine, Ahmed; Viton, Florian; Smarrito-Menozzi, Candice

    2015-02-11

    Low-pressure cooking has recently been identified as an alternative to ambient and high-pressure cooking to provide food with enhanced organoleptic properties. This work investigates the impact of the cooking process at different pressures on the molecular and sensory profile of a vegetable broth. Experimental results showed similar sensory and chemical profiles of vegetable broths when boiling at 0.93 and 1.5 bar, while an enhancement of sulfur volatile compounds correlated with a greater leek content and savory aroma was observed when boiling at low pressure (80 °C/0.48 bar). Thus, low-pressure cooking would allow preserving the most labile volatiles likely due to the lower water boiling temperature and the reduced level of oxygen. This study evidenced chemical and sensory impact of pressure during cooking and demonstrated that the flavor profile of culinary preparations can be enhanced by applying low-pressure conditions.

  6. A PROCESS FOR SEPARATING AZEOTROPIC MIXTURES BY EXTRACTIVE AND CONVECTIVE DISTILLATION

    DOEpatents

    Frazer, J.W.

    1961-12-19

    A method is described for separating an azeotrope of carbon tetrachloride and 1,1,2,2-tetrafluorodinitroethane boiling at 60 deg C. The ndethod comnprises, specifically, feeding azeotrope vapors admixed with a non- reactive gas into an extractive distillation column heated to a temperature preferably somewhat above the boiling point of the constant boiling mixture. A solvent, di-n-butylphthalate, is metered into the column above the gas inlet and permitted to flow downward, earrying with it the higher bomling fraction, while the constituent having the lower boiling point passes out of the top of the column with the non-reactive gas and is collected in a nitrogen cold trap. Other solvents which alter the vapor pressure relationship may be substituted. The method is generally applicable to azeotropic mixtures. A number of specific mixtures whicb may be separated are disclosed. (AEC)

  7. On mechanism of explosive boiling in nanosecond regime

    NASA Astrophysics Data System (ADS)

    Çelen, Serap

    2016-06-01

    Today laser-based machining is used to manufacture vital parts for biomedical, aviation and aerospace industries. The aim of the paper is to report theoretical, numerical and experimental investigations of explosive boiling under nanosecond pulsed ytterbium fiber laser irradiation. Experiments were performed in an effective peak power density range between 1397 and 1450 MW/cm2 on pure titanium specimens. The threshold laser fluence for phase explosion, the pressure and temperature at the target surface and the velocity of the expulsed material were reported. A narrow transition zone was realized between the normal vaporization and phase explosion fields. The proof of heterogeneous boiling was given with detailed micrographs. A novel thermal model was proposed for laser-induced splashing at high fluences. Packaging factor and scattering arc radius terms were proposed to state the level of the melt ejection process. Results of the present investigation explain the explosive boiling during high-power laser interaction with metal.

  8. Sierra Structural Dynamics User's Notes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reese, Garth M.

    2015-10-19

    Sierra/SD provides a massively parallel implementation of structural dynamics finite element analysis, required for high fidelity, validated models used in modal, vibration, static and shock analysis of weapons systems. This document provides a users guide to the input for Sierra/SD. Details of input specifications for the different solution types, output options, element types and parameters are included. The appendices contain detailed examples, and instructions for running the software on parallel platforms.

  9. Sierra/SD User's Notes.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munday, Lynn Brendon; Day, David M.; Bunting, Gregory

    Sierra/SD provides a massively parallel implementation of structural dynamics finite element analysis, required for high fidelity, validated models used in modal, vibration, static and shock analysis of weapons systems. This document provides a users guide to the input for Sierra/SD. Details of input specifications for the different solution types, output options, element types and parameters are included. The appendices contain detailed examples, and instructions for running the software on parallel platforms.

  10. Aging Management Guideline for commercial nuclear power plants: Motor control centers; Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toman, G.; Gazdzinski, R.; O`Hearn, E.

    1994-02-01

    This Aging Management Guideline (AMG) provides recommended methods for effective detection and mitigation of age-related degradation mechanisms in Boiling Water Reactor (BWR) and Pressurized Water Reactor (PWR) commercial nuclear power plant motor control centers important to license renewal. The intent of this AMG is to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR Part 54. This AMG is presented in a manner that allows personnel responsible for performance analysis and maintenance to compare their plant-specificmore » aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein.« less

  11. Effect of Control Blade History, and Axial Coolant Density and Burnup Profiles on BWR Burnup Credit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ade, Brian J; Marshall, William BJ J; Martinez-Gonzalez, Jesus S

    Oak Ridge National Laboratory (ORNL) and the US Nuclear Regulatory Commission (NRC) have initiated a multiyear project to investigate the application of burnup credit (BUC) for boiling water reactor (BWR) fuel in storage and transportation systems (often referred to as casks) and spent fuel pools (SFPs). This work is divided into two main phases. The first phase investigated the applicability of peak reactivity methods currently used in SFPs to transportation and storage casks and the validation of reactivity calculations and spent fuel compositions within these methods. The second phase focuses on extending BUC beyond peak reactivity. This paper documents themore » analysis of the effects of control blade insertion history, and moderator density and burnup axial profiles for extended BWR BUC.« less

  12. User guide for MODPATH version 6 - A particle-tracking model for MODFLOW

    USGS Publications Warehouse

    Pollock, David W.

    2012-01-01

    MODPATH is a particle-tracking post-processing model that computes three-dimensional flow paths using output from groundwater flow simulations based on MODFLOW, the U.S. Geological Survey (USGS) finite-difference groundwater flow model. This report documents MODPATH version 6. Previous versions were documented in USGS Open-File Reports 89-381 and 94-464. The program uses a semianalytical particle-tracking scheme that allows an analytical expression of a particle's flow path to be obtained within each finite-difference grid cell. A particle's path is computed by tracking the particle from one cell to the next until it reaches a boundary, an internal sink/source, or satisfies another termination criterion. Data input to MODPATH consists of a combination of MODFLOW input data files, MODFLOW head and flow output files, and other input files specific to MODPATH. Output from MODPATH consists of several output files, including a number of particle coordinate output files intended to serve as input data for other programs that process, analyze, and display the results in various ways. MODPATH is written in FORTRAN and can be compiled by any FORTRAN compiler that fully supports FORTRAN-2003 or by most commercially available FORTRAN-95 compilers that support the major FORTRAN-2003 language extensions.

  13. Energy-efficient drinking water disinfection for greenhouse gas mitigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gadgil, A.J.; Greene, D.M.; Rosenfeld, A.

    Anecdotal evidence suggests that approximately one billion people worldwide use cookstoves to boil their drinking water. About half of this population is in China. Some populations (e.g. Jakarta) spend 1% of their GDP on boiling drinking water. Impoverished and/or ignorant populations not yet boiling their drinking water will do so when they can both afford it and understand the risks of unsafe drinking water. A recently developed water disinfection technology (UV Waterworks) can produce safe drinking water while earning tradable carbon credits (or credit as a clean development mechanism) when implemented as part of national energy, health, and carbon emissionsmore » trading policy, UV Waterworks uses approximately 6,000 times less energy than boiling over a biomass cookstove. Each unit that replaces boiling may save up to 175 or 300 tons/year of carbon-equivalent GHG emissions, depending on if it replaces sustainably harvested biomass (SHB) or non-SHB. For the approximately 500M Chinese boiling their drinking water over biomass (assumed SHB), this suggests a technical potential (that is, potential under the limiting case of 100% market adoption) of saving 87M tons/year of carbon-equivalent non-CO{sub 2} GHG emissions. The energy savings and corresponding emissions reductions will vary with cookstove fuels and stove efficiency: non-SHB and kerosene represent the most and least GHG-producing cookstove fuels, respectively, among those readily available to the populations of interest. The authors bracket the global technical potential for carbon emission reductions resulting from implementation of UV Waterworks, and estimate the value of tradable carbon credits earned from these reductions.« less

  14. A geochemical model of the Platanares geothermal system, Honduras

    USGS Publications Warehouse

    Janik, C.J.; Truesdell, A.H.; Goff, F.; Shevenell, L.; Stallard, M.L.; Trujillo, P.E.; Counce, D.

    1991-01-01

    Results of exploration drilling combined with results of geologic, geophysical, and hydrogeochemical investigations have been used to construct a geochemical model of the Platanares geothermal system, Honduras. Three coreholes were drilled, two of which produced fluids from fractured Miocene andesite and altered Cretaceous to Eocene conglomerate at 450 to 680 m depth. Large volume artesian flows of 160-165??C, predominantly bicarbonate water are chemically similar to, but slightly less saline than widespread boiling hot-spring waters. The chemistry of the produced fluid is dominated by equilibrium reactions in sedimentary rocks at greater depths and higher temperatures than those measured in the wells. Chemical, isotope, and gas geothermometers indicate a deep fluid temperature of 200-245??C and reflect a relatively short residence time in the fractures feeding the wells. Chloride-enthalpy relations as well as isotopic and chemical compositions of well discharges, thermal springs, and local cold waters support a conceptual model of ascending high-temperature (minimum 225??C) parent fluid that has cooled conductively to form the 160-165??C shallow (to 680 m) fluid encountered by the wells. The hot-spring waters are formed by boiling and steam loss from more or less conductively cooled parent fluid. The more dilute boiling spring waters (Cl = ???32 mg/kg) have cooled from > 225??C to about 160??C by conduction and from 160??C to 98??C by boiling. The most concentrated boiling spring waters (Cl = 37 mg/kg) have cooled from > 225??C to about 200??C by conduction and from 200??C to 98??C by boiling. Intermediate concentrations reflect mixed cooling paths. ?? 1991.

  15. Multiphysics modeling of two-phase film boiling within porous corrosion deposits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Miaomiao, E-mail: mmjin@mit.edu; Short, Michael, E-mail: hereiam@mit.edu

    2016-07-01

    Porous corrosion deposits on nuclear fuel cladding, known as CRUD, can cause multiple operational problems in light water reactors (LWRs). CRUD can cause accelerated corrosion of the fuel cladding, increase radiation fields and hence greater exposure risk to plant workers once activated, and induce a downward axial power shift causing an imbalance in core power distribution. In order to facilitate a better understanding of CRUD's effects, such as localized high cladding surface temperatures related to accelerated corrosion rates, we describe an improved, fully-coupled, multiphysics model to simulate heat transfer, chemical reactions and transport, and two-phase fluid flow within these deposits.more » Our new model features a reformed assumption of 2D, two-phase film boiling within the CRUD, correcting earlier models' assumptions of single-phase coolant flow with wick boiling under high heat fluxes. This model helps to better explain observed experimental values of the effective CRUD thermal conductivity. Finally, we propose a more complete set of boiling regimes, or a more detailed mechanism, to explain recent CRUD deposition experiments by suggesting the new concept of double dryout specifically in thick porous media with boiling chimneys. - Highlights: • A two-phase model of CRUD's effects on fuel cladding is developed and improved. • This model eliminates the formerly erroneous assumption of wick boiling. • Higher fuel cladding temperatures are predicted when accounting for two-phase flow. • Double-peaks in thermal conductivity vs. heat flux in experiments are explained. • A “double dryout” mechanism in CRUD is proposed based on the model and experiments.« less

  16. Cryogenic Boil-Off Reduction System Testing

    NASA Technical Reports Server (NTRS)

    Plachta, David W.; Johnson, Wesley L.; Feller, Jeffrey R.

    2014-01-01

    Cryogenic propellants such as liquid hydrogen (LH2) and liquid oxygen (LO2) are a part of NASA's future space exploration due to the high specific impulse that can be achieved using engines suitable for moving 10's to 100's of metric tons of payload mass to destinations outside of low earth orbit. However, the low storage temperatures of LH2 and LO2 cause substantial boil-off losses for missions with durations greater than several days. The losses can be greatly reduced by incorporating high performance cryocooler technology to intercept heat load to the propellant tanks and by the integration of self-supporting multi-layer insulation. The active thermal control technology under development is the integration of the reverse turbo- Brayton cycle cryocooler to the propellant tank through a distributed cooling network of tubes coupled to a shield in the tank insulation and to the tank wall itself. Also, the self-supporting insulation technology was utilized under the shield to obtain needed tank applied LH2 performance. These elements were recently tested at NASA Glenn Research Center in a series of three tests, two that reduced LH2 boil-off and one to eliminate LO2 boil-off. This test series was conducted in a vacuum chamber that replicated the vacuum of space and the temperatures of low Earth orbit. The test results show that LH2 boil-off was reduced 60% by the cryocooler system operating at 90K and that robust LO2 zero boil-off storage, including full tank pressure control was achieved.

  17. System of closing relations of a two-fluid model for the HYDRA-IBRAE/LM/V1 code for calculation of sodium boiling in channels of power equipment

    NASA Astrophysics Data System (ADS)

    Usov, E. V.; Butov, A. A.; Dugarov, G. A.; Kudasov, I. G.; Lezhnin, S. I.; Mosunova, N. A.; Pribaturin, N. A.

    2017-07-01

    The system of equations from a two-fluid model is widely used in modeling thermohydraulic processes during accidents in nuclear reactors. The model includes conservation equations governing the balance of mass, momentum, and energy in each phase of the coolant. The features of heat and mass transfer, as well as of mechanical interaction between phases or with the channel wall, are described by a system of closing relations. Properly verified foreign and Russian codes with a comprehensive system of closing relations are available to predict processes in water coolant. As to the sodium coolant, only a few open publications on this subject are known. A complete system of closing relations used in the HYDRA-IBRAE/LM/V1 thermohydraulic code for calculation of sodium boiling in channels of power equipment is presented. The selection of these relations is corroborated on the basis of results of analysis of available publications with an account taken of the processes occurring in liquid sodium. A comparison with approaches outlined in foreign publications is presented. Particular attention has been given to the calculation of the sodium two-phase flow boiling. The flow regime map and a procedure for the calculation of interfacial friction and heat transfer in a sodium flow with account taken of high conductivity of sodium are described in sufficient detail. Correlations are presented for calculation of heat transfer for a single-phase sodium flow, sodium flow boiling, and sodium flow boiling crisis. A method is proposed for prediction of flow boiling crisis initiation.

  18. Pool boiling characteristics and critical heat flux mechanisms of microporous surfaces and enhancement through structural modification

    NASA Astrophysics Data System (ADS)

    Ha, Minseok; Graham, Samuel

    2017-08-01

    Experimental studies have shown that microporous surfaces induce one of the highest enhancements in critical heat flux (CHF) during pool boiling. However, microporous surfaces may also induce a very large surface superheat (>100 °C) which is not desirable for applications such as microelectronics cooling. While the understanding of the CHF mechanism is the key to enhancing boiling heat transfer, a comprehensive understanding is not yet available. So far, three different theories for the CHF of microporous surfaces have been suggested: viscous-capillary model, hydrodynamic instability model, and dryout of the porous coatings. In general, all three theories account for some aspects of boiling phenomena. In this study, the theories are examined through their correlations with experimental data on microporous surfaces during pool boiling using deionized (DI) water. It was found that the modulation of the vapor-jet through the pore network enables a higher CHF than that of a flat surface based on the hydrodynamic instability theory. In addition, it was found that as the heat flux increases, a vapor layer grows in the porous coatings described by a simple thermal resistance model which is responsible for the large surface superheat. Once the vapor layer grows to fill the microporous structure, transition to film boiling occurs and CHF is reached. By disrupting the formation of this vapor layer through the fabrication of channels to allow vapor escape, an enhancement in the CHF and heat transfer coefficient was observed, allowing CHF greater than 3500 kW/m2 at a superheat less than 50 °C.

  19. Comparison of boiling and chlorination on the quality of stored drinking water and childhood diarrhoea in Indonesian households

    PubMed Central

    FAGERLI, K.; TRIVEDI, K. K.; SODHA, S. V.; BLANTON, E.; ATI, A.; NGUYEN, T.; DELEA, K. C.; AINSLIE, R.; FIGUEROA, M. E.; KIM, S.; QUICK, R.

    2018-01-01

    SUMMARY We compared the impact of a commercial chlorination product (brand name Air RahMat) in stored drinking water to traditional boiling practices in Indonesia. We conducted a baseline survey of all households with children <5 years in four communities, made 11 subsequent weekly home visits to assess acceptability and use of water treatment methods, measured Escherichia coli concentration in stored water, and determined diarrhoea prevalence among children <5 years. Of 281 households surveyed, boiling (83%) and Air RahMat (7%) were the principal water treatment methods. Multivariable log-binomial regression analyses showed lower risk of E. coli in stored water treated with Air RahMat than boiling (risk ratio (RR) 0·75, 95% confidence interval (CI) 0·56–1·00). The risk of diarrhoea in children <5 years was lower among households using Air RahMat (RR 0·43, 95% CI 0·19–0·97) than boiling, and higher in households with E. coli concentrations of 1–1000 MPN/100 ml (RR 1·54, 95% CI 1·04–2·28) or >1000 MPN/100 ml (RR 1·86, 95% CI 1·09–3·19) in stored water than in households without detectable E. coli. Although results suggested that Air RahMat water treatment was associated with lower E. coli contamination and diarrhoeal rates among children <5 years than water treatment by boiling, Air RahMat use remained low. PMID:28942755

  20. CATPAC -- Catalogue Applications Package on UNIX

    NASA Astrophysics Data System (ADS)

    Wood, A. R.

    CATPAC is the STARLINK Catalogue and Table Package. This document describes the CATPAC applications available on UNIX. These include applications for inputing, processing and reporting tabular data including astronomical catalogues.

Top