Sample records for inquiry learning environments

  1. Learning Environments and Inquiry Behaviors in Science Inquiry Learning: How Their Interplay Affects the Development of Conceptual Understanding in Physics

    ERIC Educational Resources Information Center

    Bumbacher, Engin; Salehi, Shima; Wierzchula, Miriam; Blikstein, Paulo

    2015-01-01

    Studies comparing virtual and physical manipulative environments (VME and PME) in inquiry-based science learning have mostly focused on students' learning outcomes but not on the actual processes they engage in during the learning activities. In this paper, we examined experimentation strategies in an inquiry activity and their relation to…

  2. My Pocket Technology: Introducing a Mobile Assisted Inquiry Learning Environment (MAILE) to Promote Inquiries among Secondary Students

    ERIC Educational Resources Information Center

    Leelamma, Sreelekha; Indira, Uma Devi

    2017-01-01

    This paper introduces the Mobile Assisted Inquiry Learning Environment (MAILE), an Experimental Instructional Strategy (EIS) which employs an inquiry-based learning approach to guide secondary school students to learn environmental science in an engaging way supported by mobile phones. The students are situated in both the real world and the…

  3. Learning with Collaborative Inquiry: A Science Learning Environment for Secondary Students

    ERIC Educational Resources Information Center

    Sun, Daner; Looi, Chee-Kit; Xie, Wenting

    2017-01-01

    When inquiry-based learning is designed for a collaborative context, the interactions that arise in the learning environment can become fairly complex. While the learning effectiveness of such learning environments has been reported in the literature, there have been fewer studies on the students' learning processes. To address this, the article…

  4. Learning Environment, Attitudes and Achievement among Middle-School Science Students Using Inquiry-Based Laboratory Activities

    ERIC Educational Resources Information Center

    Wolf, Stephen J.; Fraser, Barry J.

    2008-01-01

    This study compared inquiry and non-inquiry laboratory teaching in terms of students' perceptions of the classroom learning environment, attitudes toward science, and achievement among middle-school physical science students. Learning environment and attitude scales were found to be valid and related to each other for a sample of 1,434 students in…

  5. An Evaluation of an Inquiry-Based Computer-Assisted Learning Environment.

    ERIC Educational Resources Information Center

    Maor, Dorit; Fraser, Barry

    1994-01-01

    This study focused on students' development of inquiry skills in a computerized learning environment. Seven Year-11 classes (n=120) interacted with a computerized database, "Birds of Antarctica," and curriculum materials while the teacher used an inquiry approach to learning. Students perceived their classes as more investigative and…

  6. Modeling and Intervening across Time in Scientific Inquiry Exploratory Learning Environment

    ERIC Educational Resources Information Center

    Ting, Choo-Yee; Phon-Amnuaisuk, Somnuk; Chong, Yen-Kuan

    2008-01-01

    This article aims at discussing how Dynamic Decision Network (DDN) can be employed to tackle the challenges in modeling temporally variable scientific inquiry skills and provision of adaptive pedagogical interventions in INQPRO, a scientific inquiry exploratory learning environment for learning O'level Physics. We begin with an overview of INQPRO…

  7. The Effects of a Concept Map-Based Support Tool on Simulation-Based Inquiry Learning

    ERIC Educational Resources Information Center

    Hagemans, Mieke G.; van der Meij, Hans; de Jong, Ton

    2013-01-01

    Students often need support to optimize their learning in inquiry learning environments. In 2 studies, we investigated the effects of adding concept-map-based support to a simulation-based inquiry environment on kinematics. The concept map displayed the main domain concepts and their relations, while dynamic color coding of the concepts displayed…

  8. Supporting Inquiry in Science Classrooms with the Web

    ERIC Educational Resources Information Center

    Simons, Krista; Clark, Doug

    2005-01-01

    This paper focuses on Web-based science inquiry and five representative science learning environments. The discussion centers around features that sustain science inquiry, namely, data-driven investigation, modeling, collaboration, and scaffolding. From the perspective of these features five science learning environments are detailed: Whyville,…

  9. A Web-Based Learning Support System for Inquiry-Based Learning

    NASA Astrophysics Data System (ADS)

    Kim, Dong Won; Yao, Jingtao

    The emergence of the Internet and Web technology makes it possible to implement the ideals of inquiry-based learning, in which students seek truth, information, or knowledge by questioning. Web-based learning support systems can provide a good framework for inquiry-based learning. This article presents a study on a Web-based learning support system called Online Treasure Hunt. The Web-based learning support system mainly consists of a teaching support subsystem, a learning support subsystem, and a treasure hunt game. The teaching support subsystem allows instructors to design their own inquiry-based learning environments. The learning support subsystem supports students' inquiry activities. The treasure hunt game enables students to investigate new knowledge, develop ideas, and review their findings. Online Treasure Hunt complies with a treasure hunt model. The treasure hunt model formalizes a general treasure hunt game to contain the learning strategies of inquiry-based learning. This Web-based learning support system empowered with the online-learning game and founded on the sound learning strategies furnishes students with the interactive and collaborative student-centered learning environment.

  10. Effects of Explicit and Implicit Prompts on Students' Inquiry Practices in Computer-Supported Learning Environments in High School Earth Science

    ERIC Educational Resources Information Center

    Fang, Su-Chi; Hsu, Ying-Shao; Hsu, Wei Hsiu

    2016-01-01

    The study explored how to best use scaffolds for supporting students' inquiry practices in computer-supported learning environments. We designed a series of inquiry units assisted with three versions of written inquiry prompts (generic and context-specific); that is, three scaffold-fading conditions: implicit, explicit, and fading. We then…

  11. Learning How to Design a Technology Supported Inquiry-Based Learning Environment

    ERIC Educational Resources Information Center

    Hakverdi-Can, Meral; Sonmez, Duygu

    2012-01-01

    This paper describes a study focusing on pre-service teachers' experience of learning how to design a technology supported inquiry-based learning environment using the Internet. As part of their elective course, pre-service science teachers were asked to develop a WebQuest environment targeting middle school students. A WebQuest is an…

  12. Do individual differences in children's curiosity relate to their inquiry-based learning?

    NASA Astrophysics Data System (ADS)

    van Schijndel, Tessa J. P.; Jansen, Brenda R. J.; Raijmakers, Maartje E. J.

    2018-06-01

    This study investigates how individual differences in 7- to 9-year-olds' curiosity relate to the inquiry-learning process and outcomes in environments differing in structure. The focus on curiosity as individual differences variable was motivated by the importance of curiosity in science education, and uncertainty being central to both the definition of curiosity and the inquiry-learning environment. Curiosity was assessed with the Underwater Exploration game (Jirout, J., & Klahr, D. (2012). Children's scientific curiosity: In search of an operational definition of an elusive concept. Developmental Review, 32, 125-160. doi:10.1016/j.dr.2012.04.002), and inquiry-based learning with the newly developed Scientific Discovery task, which focuses on the principle of designing informative experiments. Structure of the inquiry-learning environment was manipulated by explaining this principle or not. As intelligence relates to learning and possibly curiosity, it was taken into account. Results showed that children's curiosity was positively related to their knowledge acquisition, but not to their quality of exploration. For low intelligent children, environment structure positively affected their quality of exploration, but not their knowledge acquisition. There was no interaction between curiosity and environment structure. These results support the existence of two distinct inquiry-based learning processes - the designing of experiments, on the one hand, and the reflection on performed experiments, on the other - and link children's curiosity to the latter process.

  13. Comparing Two Types of Model Progression in an Inquiry Learning Environment with Modelling Facilities

    ERIC Educational Resources Information Center

    Mulder, Yvonne G.; Lazonder, Ard W.; de Jong, Ton

    2011-01-01

    The educational advantages of inquiry learning environments that incorporate modelling facilities are often challenged by students' poor inquiry skills. This study examined two types of model progression as means to compensate for these skill deficiencies. Model order progression (MOP), the predicted optimal variant, gradually increases the…

  14. Enabling People Who Are Blind to Experience Science Inquiry Learning through Sound-Based Mediation

    ERIC Educational Resources Information Center

    Levy, S. T.; Lahav, O.

    2012-01-01

    This paper addresses a central need among people who are blind, access to inquiry-based science learning materials, which are addressed by few other learning environments that use assistive technologies. In this study, we investigated ways in which learning environments based on sound mediation can support science learning by blind people. We used…

  15. Impacts and Characteristics of Computer-Based Science Inquiry Learning Environments for Precollege Students

    ERIC Educational Resources Information Center

    Donnelly, Dermot F.; Linn, Marcia C.; Ludvigsen, Sten

    2014-01-01

    The National Science Foundation-sponsored report "Fostering Learning in the Networked World" called for "a common, open platform to support communities of developers and learners in ways that enable both to take advantage of advances in the learning sciences." We review research on science inquiry learning environments (ILEs)…

  16. Learning Design and Inquiry in Australian History Classrooms

    ERIC Educational Resources Information Center

    Carroll, Kay

    2012-01-01

    Global and digital connectivity transform Australian classrooms by creating rich environments for inquiry learning. Developing inquiry learning in this Information Communication Technology (ICT) context is an Australian educational goal. Recently the Australian Curriculum reform and the Digital Education Revolution has become a catalyst for…

  17. Modeling Student Learning Behavior Patterns in an Online Science Inquiry Environment

    ERIC Educational Resources Information Center

    Brenner, Daniel G.; Matlen, Bryan J.; Timms, Michael J.; Gochyyev, Perman; Grillo-Hill, Andrew; Luttgen, Kim; Varfolomeeva, Marina

    2017-01-01

    This study investigated how the frequency and level of assistance provided to students interacted with prior knowledge to affect learning in the "Voyage to Galapagos" ("VTG") science inquiry-learning environment. "VTG" provides students with the opportunity to do simulated science field work in Galapagos as they…

  18. Story-Based Pedagogical Agents: A Scaffolding Design Approach for the Process of Historical Inquiry in a Web-Based Self-Learning Environment

    ERIC Educational Resources Information Center

    Fujimoto, Toru

    2010-01-01

    The purpose of this research was to design and evaluate a web-based self-learning environment for historical inquiry embedded with different types of instructional support featuring story-based pedagogical agents. This research focused on designing a learning environment by integrating story-based instruction and pedagogical agents as a means to…

  19. Researching Photographic Participatory Inquiry in an E-Learning Environment

    ERIC Educational Resources Information Center

    Grushka, Kathryn Meyer; Bellette, Aaron; Holbrook, Allyson

    2014-01-01

    This article focuses on the use of Photographic Participatory Inquiry (PPI) in researching the teaching and learning of photography in the e-learning environment. It is an arts-informed method drawing on digital tools to capture collective information as digital artefacts, which can then be accessed and harnessed to build critical and reflective…

  20. Fostering Creativity through Inquiry and Adventure in Informal Learning Environment Design

    ERIC Educational Resources Information Center

    Doering, Aaron; Henrickson, Jeni

    2015-01-01

    Self-directed, inquiry-based learning opportunities focused on transdisciplinary real-world problem solving have been shown to foster creativity in learners. What tools might we provide classroom teachers to scaffold them and their students through this creative process? This study examines an online informal learning environment and the role the…

  1. Knowledge Ecologies in Fragile Online Learning Environments. Research: Information and Communication Technologies

    ERIC Educational Resources Information Center

    Henning, Elizabeth; Van der Westhuizen, Duan; Diseko, Rabaitse

    2005-01-01

    This article gives an account of an inquiry into two different postgraduate student groups' ways of engaging with a virtual learning environment. Using a variety of data sources, including learning artefacts, interview data, open-ended qualitative questionnaires and online discussion postings, the inquiry captured processes of engagement of the…

  2. Deaf, Hard-of-Hearing, and Hearing Signing Undergraduates’ Attitudes toward Science in Inquiry-Based Biology Laboratory Classes

    PubMed Central

    Gormally, Cara

    2017-01-01

    For science learning to be successful, students must develop attitudes toward support future engagement with challenging social issues related to science. This is especially important for increasing participation of students from underrepresented populations. This study investigated how participation in inquiry-based biology laboratory classes affected students’ attitudes toward science, focusing on deaf, hard-of-hearing, and hearing signing students in bilingual learning environments (i.e., taught in American Sign Language and English). Analysis of reflection assignments and interviews revealed that the majority of students developed positive attitudes toward science and scientific attitudes after participating in inquiry-based biology laboratory classes. Attitudinal growth appears to be driven by student value of laboratory activities, repeated direct engagement with scientific inquiry, and peer collaboration. Students perceived that hands-on experimentation involving peer collaboration and a positive, welcoming learning environment were key features of inquiry-based laboratories, affording attitudinal growth. Students who did not perceive biology as useful for their majors, careers, or lives did not develop positive attitudes. Students highlighted the importance of the climate of the learning environment for encouraging student contribution and noted both the benefits and pitfalls of teamwork. Informed by students’ characterizations of their learning experiences, recommendations are made for inquiry-based learning in college biology. PMID:28188279

  3. Using Videoconferencing to Provide Mentorship in Inquiry-Based Urban and Rural Secondary Classrooms

    ERIC Educational Resources Information Center

    Li, Qing; Dyjur, Patricia; Nicholson, Natalya; Moorman, Lynn

    2009-01-01

    The main purpose of this design-based research study is to examine the effects of an inquiry-based learning environment, with the support of videoconferencing, on both rural and urban secondary students' mathematics and science learning. An important aspect of this learning environment is the use of videoconferencing to connect classes with…

  4. Virtual Solar System Project: Learning through a Technology-Rich, Inquiry-Based, Participatory Learning Environment.

    ERIC Educational Resources Information Center

    Barab, Sasha A.; Hay, Kenneth E.; Squire, Kurt; Barnett, Michael; Schmidt, Rae; Karrigan, Kristen; Yamagata-Lynch, Lisa; Johnson, Christine

    2000-01-01

    Describes an introductory undergraduate astronomy course in which the large-lecture format was moved to one in which students were immersed in a technologically-rich, inquiry-based, participatory learning environment. Finds that virtual reality can be used effectively in regular undergraduate university courses as a tool through which students can…

  5. An Exploration into First-Year University Students' Approaches to Inquiry and Online Learning Technologies in Blended Environments

    ERIC Educational Resources Information Center

    Ellis, Robert A.; Bliuc, Ana-Maria

    2016-01-01

    The use of online learning technologies in experiences of inquiry is increasingly ubiquitous in university contexts. In blended environments, research into university experiences suggests that student approaches to learning are a key determiner of the quality of outcomes. The purpose of this study was to develop relevant measures which help…

  6. Dataset of Scientific Inquiry Learning Environment

    ERIC Educational Resources Information Center

    Ting, Choo-Yee; Ho, Chiung Ching

    2015-01-01

    This paper presents the dataset collected from student interactions with INQPRO, a computer-based scientific inquiry learning environment. The dataset contains records of 100 students and is divided into two portions. The first portion comprises (1) "raw log data", capturing the student's name, interfaces visited, the interface…

  7. Collaboration Modality, Cognitive Load, and Science Inquiry Learning in Virtual Inquiry Environments

    ERIC Educational Resources Information Center

    Erlandson, Benjamin E.; Nelson, Brian C.; Savenye, Wilhelmina C.

    2010-01-01

    Educational multi-user virtual environments (MUVEs) have been shown to be effective platforms for situated science inquiry curricula. While researchers find MUVEs to be supportive of collaborative scientific inquiry processes, the complex mix of multi-modal messages present in MUVEs can lead to cognitive overload, with learners unable to…

  8. Seeking the Trace of Argumentation in Turkish Science Curriculum

    ERIC Educational Resources Information Center

    Cetin, Pinar Seda; Metin, Duygu; Capkinoglu, Esra; Leblebicioglu, Gulsen

    2016-01-01

    Providing students with inquiry-oriented learning environments is a major concern in science education. Argumentation discourse can enhance the effectiveness of inquiry-oriented learning environments. This study seeks the trace of argumentation in Turkish Elementary and Secondary Science Curriculum developed by the Turkish Ministry of Education…

  9. Inquiry-based Learning and Digital Libraries in Undergraduate Science Education

    NASA Astrophysics Data System (ADS)

    Apedoe, Xornam S.; Reeves, Thomas C.

    2006-12-01

    The purpose of this paper is twofold: to describe robust rationales for integrating inquiry-based learning into undergraduate science education, and to propose that digital libraries are potentially powerful technological tools that can support inquiry-based learning goals in undergraduate science courses. Overviews of constructivism and situated cognition are provided with regard to how these two theoretical perspectives have influenced current science education reform movements, especially those that involve inquiry-based learning. The role that digital libraries can play in inquiry-based learning environments is discussed. Finally, the importance of alignment among critical pedagogical dimensions of an inquiry-based pedagogical framework is stressed in the paper, and an example of how this can be done is presented using earth science education as a context.

  10. Animated Pedagogical Agents Effects on Enhancing Student Motivation and Learning in a Science Inquiry Learning Environment

    ERIC Educational Resources Information Center

    van der Meij, Hans; van der Meij, Jan; Harmsen, Ruth

    2015-01-01

    This study focuses on the design and testing of a motivational animated pedagogical agent (APA) in an inquiry learning environment on kinematics. The aim of including the APA was to enhance students' perceptions of task relevance and self-efficacy. Given the under-representation of girls in science classrooms, special attention was given to…

  11. Scientific Inquiry, Digital Literacy, and Mobile Computing in Informal Learning Environments

    ERIC Educational Resources Information Center

    Marty, Paul F.; Alemanne, Nicole D.; Mendenhall, Anne; Maurya, Manisha; Southerland, Sherry A.; Sampson, Victor; Douglas, Ian; Kazmer, Michelle M.; Clark, Amanda; Schellinger, Jennifer

    2013-01-01

    Understanding the connections between scientific inquiry and digital literacy in informal learning environments is essential to furthering students' critical thinking and technology skills. The Habitat Tracker project combines a standards-based curriculum focused on the nature of science with an integrated system of online and mobile computing…

  12. Effects of Web based inquiry on physical science teachers and students in an urban school district

    NASA Astrophysics Data System (ADS)

    Stephens, Joanne

    An inquiry approach in teaching science has been advocated by many science educators for the past few decades. Due to insufficient district funding for science teaching, inadequate science laboratory facilities, and outdated science materials, inquiry teaching has been difficult for many science teachers, particularly science teachers in urban settings. However, research shows that the availability of computers with high speed Internet access has increased in all school districts. This study focused on the effects of inservice training on teachers and using web based science inquiry activities with ninth grade physical science students. Participants were 16 science teachers and 474 physical science students in an urban school district of a large southern U.S. city. Students were divided into control and experimental groups. The students in the experimental group participated in web based inquiry activities. Students in the control group were taught using similar methods, but not web based science activities. Qualitative and quantitative data were collected over a nine-week period using instruments and focus group interviews of students' and teachers' perceptions of the classroom learning environment, students' achievement, lesson design and classroom implementation, science content of lesson, and classroom culture. The findings reported that there were no significant differences in teachers' perception of the learning environment before and after implementing web based inquiry activities. The findings also reported that there were no overall significant differences in students' perceptions of the learning environment and achievement, pre-survey to post-survey, pre-test to post-test, between the control group and experimental group. Additional findings disclosed that students in the experimental group learned in a collaborative environment. The students confirmed that collaborating with others contributed to a deeper understanding of the science content. This study provides insights about utilizing technology to promote science inquiry teaching and learning. This study describes students' and teachers' perceptions of using web based inquiry to support scientific inquiry.

  13. WISE Science: Web-based Inquiry in the Classroom. Technology, Education--Connections

    ERIC Educational Resources Information Center

    Slotta, James D.; Linn, Marcia C.

    2009-01-01

    This book shares the lessons learned by a large community of educational researchers and science teachers as they designed, developed, and investigated a new technology-enhanced learning environment known as WISE: The Web-Based Inquiry Science Environment. WISE offers a collection of free, customizable curriculum projects on topics central to the…

  14. "We Found the 'Black Spots' on Campus on Our Own": Development of Inquiry Skills in Primary Science Learning with BYOD (Bring Your Own Device)

    ERIC Educational Resources Information Center

    Song, Yanjie

    2016-01-01

    This paper reports on a study situated in a one-year project "Bring Your Own Device (BYOD) for Mobile Knowledge Building," aiming at investigating how primary school students developed their inquiry skills in science learning in BYOD-supported learning environments. Student perceptions of the BYOD-supported inquiry experience were also…

  15. Instructional Approaches on Science Performance, Attitude and Inquiry Ability in a Computer-Supported Collaborative Learning Environment

    ERIC Educational Resources Information Center

    Chen, Ching-Huei; Chen, Chia-Ying

    2012-01-01

    This study examined the effects of an inquiry-based learning (IBL) approach compared to that of a problem-based learning (PBL) approach on learner performance, attitude toward science and inquiry ability. Ninety-six students from three 7th-grade classes at a public school were randomly assigned to two experimental groups and one control group. All…

  16. Actively Teaching Research Methods with a Process Oriented Guided Inquiry Learning Approach

    ERIC Educational Resources Information Center

    Mullins, Mary H.

    2017-01-01

    Active learning approaches have shown to improve student learning outcomes and improve the experience of students in the classroom. This article compares a Process Oriented Guided Inquiry Learning style approach to a more traditional teaching method in an undergraduate research methods course. Moving from a more traditional learning environment to…

  17. The Effects of Socio-Scientific Issue Based Inquiry Learning on Pupils' Representations of Landscape

    ERIC Educational Resources Information Center

    Kärkkäinen, Sirpa; Keinonen, Tuula; Kukkonen, Jari; Juntunen, Seija; Ratinen, Ilkka

    2017-01-01

    Research has demonstrated that socio-scientific issues based inquiry learning has significant advantages for learning outcomes and students' motivation. Further, a successful understanding of landscapes in environmental and geographical education can be achieved by combining informal learning environments with school education. Therefore this case…

  18. Science inquiry learning environments created by National Board Certified Teachers

    NASA Astrophysics Data System (ADS)

    Saderholm, Jon

    The purpose of this study was to discern what differences exist between the science inquiry learning environments created by National Board Certified Teachers (NBCTs) and non-NBCTs. Four research questions organized the data collection and analysis: (a) How do National Board Certified science teachers' knowledge of the nature of science differ from that of their non-NBCT counterparts? (b) How do the frequencies of student science inquiry behaviors supported by in middle/secondary learning environments created by NBCTs differ from those created by their non-NBCT counterparts? (c) What is the relationship between the frequency of students' science inquiry behaviors and their science reasoning and understanding of the nature of science? (d) What is the impact of teacher perceptions factors impacting curriculum and limiting inquiry on the existence of inquiry learning environments? The setting in which this study was conducted was middle and high schools in Kentucky during the period between October 2006 and January 2007. The population sampled for the study was middle and secondary science teachers certified to teach in Kentucky. Of importance among those were the approximately 70 National Board Certified middle and high school science teachers. The teacher sample consisted of 50 teachers, of whom 19 were NBCTs and 31 were non-NBCTs. This study compared the science inquiry teaching environments created by NBCTs and non-NBCTs along with their consequent effect on the science reasoning and nature of science (NOS) understanding of their students. In addition, it examined the relationship with these science inquiry environments of other teacher characteristics along with teacher perception of factors influencing curriculum and factors limiting inquiry. This study used a multi-level mixed methodology study incorporating both quantitative and qualitative measures of both teachers and their students. It was a quasi-experimental design using non-random assignment of participants to treatment and control groups and dependent pre- and post-tests (Shadish, Cook, & Campbell, 2002). Teacher and student NOS understanding was measured using the Student Understanding of Science and Science Inquiry (SUSSI) instrument (Liang, et. al, 2006). Science inquiry environment was measured with the Elementary Science Inquiry Survey (ESIS) (Dunbar, 2002) which was given both to teachers and their students. Science inquiry environment measurements were triangulated with observations of a stratified random sub-sample of participating teachers. Observations were structured using the low-inference Collaboratives for Excellence in Teaching Practice (CETP) Classroom Observation Protocol (COP) (Lawrenz, Huffman, & Appleldoorn 2002), and the high-inference Reform Teaching Observation Protocol (RTOP) (Piburn & Sawada, 2000). NBCTs possessed more informed view of NOS than did non-NBCTs. Additionally, high school science teachers possessed more informed views regarding NOS than did middle school science teachers, with the most informed views belonging to high school science NBCTs. High school science NBCTs created learning environments in which students engaged in science inquiry behaviors significantly more frequently than did high school science non-NBCTs. Middle school science NBCTs, on the other hand, did not create learning environments that differed in significant ways from those of middle school science non-NBCTs. Students of high school science NBCTs possessed significantly higher science reasoning than did students of high school science non-NBCTs. Middle school students of science NBCTs possessed no more science reasoning ability than did middle school students of science non-NBCTs. NOS understanding displayed by students of both middle school and high school science NBCTs was not distinguished from students of non-NBCTs. Classroom science inquiry environment created by non-NBCTs were correlated with science teachers' perceptions of factors determining the curriculum, and the factors limiting inquiry. NBCT classroom science inquiry environment were not correlated with science teacher perceptions. They were, however, strongly correlated with science teacher attendance at science workshops and negatively correlated with teacher perception that experience limits inquiry. The results of this study have implications for policy, practice, and research. Having a science teacher who is an NBCT appears to benefit high school students; however, the benefit for students of middle school science NBCTs appears only when the teacher is also experienced. Additionally, science NBCTs appear to be able to create more controlled science inquiry learning environments than do science non-NBCTs. At the high school level the practice of using data to explain patterns appears to positively affect student science reasoning. Implications results of this study have for further research include examining the differences of the NBPTS certification process for middle and high school teachers; deeper investigation of the causes of the differences in science reasoning between students of NBCTs and non-NBCTs; and studies of the relationship between the NBPTS certification process and teacher efficacy and personal agency.

  19. Applying Technology to Inquiry-Based Learning in Early Childhood Education

    ERIC Educational Resources Information Center

    Wang, Feng; Kinzie, Mable B.; McGuire, Patrick; Pan, Edward

    2009-01-01

    Children naturally explore and learn about their environments through inquiry, and computer technologies offer an accessible vehicle for extending the domain and range of this inquiry. Over the past decade, a growing number of interactive games and educational software packages have been implemented in early childhood education and addressed a…

  20. Using Technology-Enhanced Learning Environments to Support Problem-Based Historical Inquiry in Secondary School Classrooms

    ERIC Educational Resources Information Center

    Saye, John W.; Brush, Thomas

    2007-01-01

    This article summarizes findings from a nine-year research program investigating how technological affordances might be used as a part of holistic learning environments to support teachers and learners in disciplined inquiry about persistent social issues. We discuss what our findings suggest about the potential and the limitations of…

  1. Designing a Web-Based Science Learning Environment for Model-Based Collaborative Inquiry

    ERIC Educational Resources Information Center

    Sun, Daner; Looi, Chee-Kit

    2013-01-01

    The paper traces a research process in the design and development of a science learning environment called WiMVT (web-based inquirer with modeling and visualization technology). The WiMVT system is designed to help secondary school students build a sophisticated understanding of scientific conceptions, and the science inquiry process, as well as…

  2. Designing a Web-Based Science Learning Environment for Model-Based Collaborative Inquiry

    NASA Astrophysics Data System (ADS)

    Sun, Daner; Looi, Chee-Kit

    2013-02-01

    The paper traces a research process in the design and development of a science learning environment called WiMVT (web-based inquirer with modeling and visualization technology). The WiMVT system is designed to help secondary school students build a sophisticated understanding of scientific conceptions, and the science inquiry process, as well as develop critical learning skills through model-based collaborative inquiry approach. It is intended to support collaborative inquiry, real-time social interaction, progressive modeling, and to provide multiple sources of scaffolding for students. We first discuss the theoretical underpinnings for synthesizing the WiMVT design framework, introduce the components and features of the system, and describe the proposed work flow of WiMVT instruction. We also elucidate our research approach that supports the development of the system. Finally, the findings of a pilot study are briefly presented to demonstrate of the potential for learning efficacy of the WiMVT implementation in science learning. Implications are drawn on how to improve the existing system, refine teaching strategies and provide feedback to researchers, designers and teachers. This pilot study informs designers like us on how to narrow the gap between the learning environment's intended design and its actual usage in the classroom.

  3. Opportunities for Inquiry Science in Montessori Classrooms: Learning from a Culture of Interest, Communication, and Explanation

    ERIC Educational Resources Information Center

    Rinke, Carol R.; Gimbel, Steven J.; Haskell, Sophie

    2013-01-01

    Although classroom inquiry is the primary pedagogy of science education, it has often been difficult to implement within conventional classroom cultures. This study turned to the alternatively structured Montessori learning environment to better understand the ways in which it fosters the essential elements of classroom inquiry, as defined by…

  4. The Role of Computer Simulation in an Inquiry-Based Learning Environment: Reconstructing Geological Events as Geologists

    ERIC Educational Resources Information Center

    Lin, Li-Fen; Hsu, Ying-Shao; Yeh, Yi-Fen

    2012-01-01

    Several researchers have investigated the effects of computer simulations on students' learning. However, few have focused on how simulations with authentic contexts influences students' inquiry skills. Therefore, for the purposes of this study, we developed a computer simulation (FossilSim) embedded in an authentic inquiry lesson. FossilSim…

  5. Effects of explicit and implicit prompts on students' inquiry practices in computer-supported learning environments in high school earth science

    NASA Astrophysics Data System (ADS)

    Fang, Su-Chi; Hsu, Ying-Shao; Hsu, Wei Hsiu

    2016-07-01

    The study explored how to best use scaffolds for supporting students' inquiry practices in computer-supported learning environments. We designed a series of inquiry units assisted with three versions of written inquiry prompts (generic and context-specific); that is, three scaffold-fading conditions: implicit, explicit, and fading. We then examined how the three scaffold-fading conditions influenced students' conceptual understanding, understanding of scientific inquiry, and inquiry abilities. Three grade-10 classes (N = 105) participated in this study; they were randomly assigned to and taught in the three conditions. Data-collection procedures included a pretest-posttest approach and in-depth observations of the target students. The findings showed that after these inquiry units, all of the students exhibited significant learning gains in conceptual knowledge and performed better inquiry abilities regardless of which condition was used. The explicit and fading conditions were more effective in enhancing students' understanding of scientific inquiry. The fading condition tended to better support the students' development of inquiry abilities and help transfer these abilities to a new setting involving an independent socioscientific task about where to build a dam. The results suggest that fading plays an essential role in enhancing the effectiveness of scaffolds.

  6. Applying a Framework for Student Modeling in Exploratory Learning Environments: Comparing Data Representation Granularity to Handle Environment Complexity

    ERIC Educational Resources Information Center

    Fratamico, Lauren; Conati, Cristina; Kardan, Samad; Roll, Ido

    2017-01-01

    Interactive simulations can facilitate inquiry learning. However, similarly to other Exploratory Learning Environments, students may not always learn effectively in these unstructured environments. Thus, providing adaptive support has great potential to help improve student learning with these rich activities. Providing adaptive support requires a…

  7. The experiment editor: supporting inquiry-based learning with virtual labs

    NASA Astrophysics Data System (ADS)

    Galan, D.; Heradio, R.; de la Torre, L.; Dormido, S.; Esquembre, F.

    2017-05-01

    Inquiry-based learning is a pedagogical approach where students are motivated to pose their own questions when facing problems or scenarios. In physics learning, students are turned into scientists who carry out experiments, collect and analyze data, formulate and evaluate hypotheses, and so on. Lab experimentation is essential for inquiry-based learning, yet there is a drawback with traditional hands-on labs in the high costs associated with equipment, space, and maintenance staff. Virtual laboratories are helpful to reduce these costs. This paper enriches the virtual lab ecosystem by providing an integrated environment to automate experimentation tasks. In particular, our environment supports: (i) scripting and running experiments on virtual labs, and (ii) collecting and analyzing data from the experiments. The current implementation of our environment supports virtual labs created with the authoring tool Easy Java/Javascript Simulations. Since there are public repositories with hundreds of freely available labs created with this tool, the potential applicability to our environment is considerable.

  8. Shifting more than the goal posts: developing classroom norms of inquiry-based learning in mathematics

    NASA Astrophysics Data System (ADS)

    Makar, Katie; Fielding-Wells, Jill

    2018-03-01

    The 3-year study described in this paper aims to create new knowledge about inquiry norms in primary mathematics classrooms. Mathematical inquiry addresses complex problems that contain ambiguities, yet classroom environments often do not adopt norms that promote curiosity, risk-taking and negotiation needed to productively engage with complex problems. Little is known about how teachers and students initiate, develop and maintain norms of mathematical inquiry in primary classrooms. The research question guiding this study is, "How do classroom norms develop that facilitate student learning in primary classrooms which practice mathematical inquiry?" The project will (1) analyse a video archive of inquiry lessons to identify signature practices that enhance productive classroom norms of mathematical inquiry and facilitate learning, (2) engage expert inquiry teachers to collaborate to identify and design strategies for assisting teachers to develop and sustain norms over time that are conducive to mathematical inquiry and (3) support and study teachers new to mathematical inquiry adopting these practices in their classrooms. Anticipated outcomes include identification and illustration of classroom norms of mathematical inquiry, signature practices linked to these norms and case studies of primary teachers' progressive development of classroom norms of mathematical inquiry and how they facilitate learning.

  9. Assessment of the Laboratory Learning Environment in an Inquiry-Oriented Chemistry Laboratory in Arab and Jewish High Schools in Israel

    ERIC Educational Resources Information Center

    Dkeidek, Iyad; Mamlok-Naaman, Rachel; Hofstein, Avi

    2012-01-01

    An inquiry-oriented laboratory in chemistry was integrated into the chemistry curriculum in Jewish high schools in Israel, and after a short period was also implemented in Arab sector. In this study, we investigated the effect of culture on the perceptions of laboratory classroom learning environments by comparing the perceptions of Arab and…

  10. The Impact of Integrated Coaching and Collaboration within an Inquiry Learning Environment

    ERIC Educational Resources Information Center

    Dragon, Toby

    2013-01-01

    This thesis explores the design and evaluation of a collaborative, inquiry learning Intelligent Tutoring System for ill-defined problem spaces. The common ground in the fields of Artificial Intelligence in Education and Computer-Supported Collaborative Learning is investigated to identify ways in which tutoring systems can employ both automated…

  11. Curriculum at Forty below: A Phenomenological Inquiry of an Educator/Explorer's Experience with Adventure Learning in the Arctic

    ERIC Educational Resources Information Center

    Miller, Charles; Veletsianos, George; Doering, Aaron

    2008-01-01

    Grounded in the theoretical approaches of experiential learning and inquiry-based learning, adventure learning (AL) is a hybrid distance education approach that seeks to transform the experiences of students by having learners explore real-world issues and pursue answers to their own questions in an authentic, anchor-based environment. In this…

  12. Deaf, Hard-of-Hearing, and Hearing Signing Undergraduates' Attitudes toward Science in Inquiry-Based Biology Laboratory Classes.

    PubMed

    Gormally, Cara

    2017-01-01

    For science learning to be successful, students must develop attitudes toward support future engagement with challenging social issues related to science. This is especially important for increasing participation of students from underrepresented populations. This study investigated how participation in inquiry-based biology laboratory classes affected students' attitudes toward science, focusing on deaf, hard-of-hearing, and hearing signing students in bilingual learning environments (i.e., taught in American Sign Language and English). Analysis of reflection assignments and interviews revealed that the majority of students developed positive attitudes toward science and scientific attitudes after participating in inquiry-based biology laboratory classes. Attitudinal growth appears to be driven by student value of laboratory activities, repeated direct engagement with scientific inquiry, and peer collaboration. Students perceived that hands-on experimentation involving peer collaboration and a positive, welcoming learning environment were key features of inquiry-based laboratories, affording attitudinal growth. Students who did not perceive biology as useful for their majors, careers, or lives did not develop positive attitudes. Students highlighted the importance of the climate of the learning environment for encouraging student contribution and noted both the benefits and pitfalls of teamwork. Informed by students' characterizations of their learning experiences, recommendations are made for inquiry-based learning in college biology. © 2017 C. Gormally. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  13. Citizen Science as a REAL Environment for Authentic Scientific Inquiry

    ERIC Educational Resources Information Center

    Meyer, Nathan J.; Scott, Siri; Strauss, Andrea Lorek; Nippolt, Pamela L.; Oberhauser, Karen S.; Blair, Robert B.

    2014-01-01

    Citizen science projects can serve as constructivist learning environments for programming focused on science, technology, engineering, and math (STEM) for youth. Attributes of "rich environments for active learning" (REALs) provide a framework for design of Extension STEM learning environments. Guiding principles and design strategies…

  14. Peer Assessment among Secondary School Students: Introducing a Peer Feedback Tool in the Context of a Computer Supported Inquiry Learning Environment in Science

    ERIC Educational Resources Information Center

    Tsivitanidou, Olia; Zacharia, Zacharias C.; Hovardas, Tasos; Nicolaou, Aphrodite

    2012-01-01

    In this study we introduced a peer feedback tool to secondary school students while aiming at investigating whether this tool leads to a feedback dialogue when using a computer supported inquiry learning environment in science. Moreover, we aimed at examining what type of feedback students ask for and receive and whether the students use the…

  15. Changing the Instructional Model: Utilizing Blended Learning as a Tool of Inquiry Instruction in Middle School Science

    ERIC Educational Resources Information Center

    Longo, Christopher M.

    2016-01-01

    Educators need to delve further into effective ways to spark student interest, motivation, and curiosity both in the middle school classroom and in the online environment. A thoughtfully crafted blended learning process, infused with inquiry learning, can provide students with opportunities to collaborate, think critically, and pose questions,…

  16. A Response to the Review of the Community of Inquiry Framework

    ERIC Educational Resources Information Center

    Akyol, Zehra; Arbaugh, J. Ben; Cleveland-Innes, Marti; Garrison, D. Randy; Ice, Phil; Richardson, Jennifer C.; Swan, Karen

    2009-01-01

    The Community of Inquiry (CoI) framework has become a prominent model of teaching and learning in online and blended learning environments. Considerable research has been conducted which employs the framework with promising results, resulting in wide use to inform the practice of online and blended teaching and learning. For the CoI model to…

  17. New Evaluation Vector through the Stanford Mobile Inquiry-Based Learning Environment (SMILE) for Participatory Action Research

    PubMed Central

    An, Ji-Young

    2016-01-01

    Objectives This article reviews an evaluation vector model driven from a participatory action research leveraging a collective inquiry system named SMILE (Stanford Mobile Inquiry-based Learning Environment). Methods SMILE has been implemented in a diverse set of collective inquiry generation and analysis scenarios including community health care-specific professional development sessions and community-based participatory action research projects. In each scenario, participants are given opportunities to construct inquiries around physical and emotional health-related phenomena in their own community. Results Participants formulated inquiries as well as potential clinical treatments and hypothetical scenarios to address health concerns or clarify misunderstandings or misdiagnoses often found in their community practices. From medical universities to rural village health promotion organizations, all participatory inquiries and potential solutions can be collected and analyzed. The inquiry and solution sets represent an evaluation vector which helps educators better understand community health issues at a much deeper level. Conclusions SMILE helps collect problems that are most important and central to their community health concerns. The evaluation vector, consisting participatory and collective inquiries and potential solutions, helps the researchers assess the participants' level of understanding on issues around health concerns and practices while helping the community adequately formulate follow-up action plans. The method used in SMILE requires much further enhancement with machine learning and advanced data visualization. PMID:27525157

  18. Internal and External Scripts in Computer-Supported Collaborative Inquiry Learning

    ERIC Educational Resources Information Center

    Kollar, Ingo; Fischer, Frank; Slotta, James D.

    2007-01-01

    We investigated how differently structured external scripts interact with learners' internal scripts with respect to individual knowledge acquisition in a Web-based collaborative inquiry learning environment. Ninety students from two secondary schools participated. Two versions of an external collaboration script (high vs. low structured)…

  19. Presence and Learning in a Community of Inquiry

    ERIC Educational Resources Information Center

    Maddrell, Jennifer A.; Morrison, Gary R.; Watson, Ginger S.

    2017-01-01

    The community of inquiry (CoI) framework suggests social presence, teaching presence, and cognitive presence are essential elements to foster successful educational experiences in computer-mediated distance learning environments. Although thousands of CoI-based articles have been published, those critical of the framework and related research…

  20. Educational Communities of Inquiry: Theoretical Framework, Research and Practice

    ERIC Educational Resources Information Center

    Akyol, Zehra; Garrison, D. Randy

    2013-01-01

    Communications technologies have been continuously integrated into learning and training environments which has revealed the need for a clear understanding of the process. The Community of Inquiry (COI) Theoretical Framework has a philosophical foundation which provides planned guidelines and principles to development useful learning environments…

  1. Creating a Community of Inquiry in Online Library Instruction

    ERIC Educational Resources Information Center

    Rapchak, Marcia E.

    2017-01-01

    According to the Community of Inquiry (CoI) model (Garrison, Anderson, & Archer, 2000), an enriching educational experience online in a collaborative learning environment requires three interdependent elements: social presence, teaching presence, and cognitive presence. Social presence provides interaction in the online environment that allows…

  2. Encouraging Greater Student Inquiry Engagement in Science through Motivational Support by Online Scientist-Mentors

    ERIC Educational Resources Information Center

    Scogin, Stephen C.; Stuessy, Carol L.

    2015-01-01

    Next Generation Science Standards (NGSS) call for integrating knowledge and practice in learning experiences in K-12 science education. "PlantingScience" (PS), an ideal curriculum for use as an NGSS model, is a computer-mediated collaborative learning environment intertwining scientific inquiry, classroom instruction, and online…

  3. Preservice Elementary Teachers' Adaptation of Science Curriculum Materials for Inquiry-Based Elementary Science

    ERIC Educational Resources Information Center

    Forbes, Cory T.

    2011-01-01

    Curriculum materials are important resources with which teachers make pedagogical decisions about the design of science learning environments. To become well-started beginning elementary teachers capable of engaging their students in inquiry-based science, preservice elementary teachers need to learn to use science curriculum materials…

  4. Cultivating a Doctoral Community of Inquiry and Practice: Designing and Facilitating Discussion Board Online Learning Communities

    ERIC Educational Resources Information Center

    Hauser, Linda; Darrow, Rob

    2013-01-01

    This paper presents a promising and powerful approach used to cultivate a doctoral community of inquiry and practice and harness the intelligence, commitment, and energy of all of its members in a blended learning environment. The discussion board online learning community approach was developed to transform a traditional face-to-face doctoral…

  5. Investigating Human Impact in the Environment with Faded Scaffolded Inquiry Supported by Technologies

    ERIC Educational Resources Information Center

    Campbell, Todd; Longhurst, Max; Duffy, Aaron M.; Wolf, Paul G.; Nagy, Robin

    2012-01-01

    Teaching science as inquiry is advocated in all national science education documents and by leading science and science teaching organizations. In addition to teaching science as inquiry, we recognize that learning experiences need to connect to students' lives. This article details how we use a sequence of faded scaffolded inquiry supported by…

  6. Bridging Inquiry-Based Science and Constructionism: Exploring the Alignment between Students Tinkering with Code of Computational Models and Goals of Inquiry

    ERIC Educational Resources Information Center

    Wagh, Aditi; Cook-Whitt, Kate; Wilensky, Uri

    2017-01-01

    Research on the design of learning environments for K-12 science education has been informed by two bodies of literature: inquiry-based science and Constructionism. Inquiry-based science has emphasized engagement in activities that reflect authentic scientific practices. Constructionism has focused on designing intuitively accessible authoring…

  7. Using articulation and inscription as catalysts for reflection: Design principles for reflective inquiry

    NASA Astrophysics Data System (ADS)

    Loh, Ben Tun-Bin

    2003-07-01

    The demand for students to engage in complex student-driven and information-rich inquiry investigations poses challenges to existing learning environments. Students are not familiar with this style of work, and lack the skills, tools, and expectations it demands, often forging blindly forward in the investigation. If students are to be successful, they need to learn to be reflective inquirers, periodically stepping back from an investigation to evaluate their work. The fundamental goal of my dissertation is to understand how to design learning environments to promote and support reflective inquiry. I have three basic research questions: how to define this mode of work, how to help students learn it, and understanding how it facilitates reflection when enacted in a classroom. I take an exploratory approach in which, through iterative cycles of design, development, and reflection, I develop principles of design for reflective inquiry, instantiate those principles in the design of a software environment, and test that software in the context of classroom work. My work contributes to the understanding of reflective inquiry in three ways: First, I define a task model that describes the kinds of operations (cognitive tasks) that students should engage in as reflective inquirers. These operations are defined in terms of two basic tasks: articulation and inscription, which serve as catalysts for externalizing student thinking as objects of and triggers for reflection. Second, I instantiate the task model in the design of software tools (the Progress Portfolio). And, through proof of concept pilot studies, I examine how the task model and tools helped students with their investigative classroom work. Finally, I take a step back from these implementations and articulate general design principles for reflective inquiry with the goal of informing the design of other reflective inquiry learning environments. There are three design principles: (1) Provide a designated work space for reflection activities to focus student attention on reflection. (2) Help students create and use artifacts that represent their work and their thinking as a means to create referents for reflection. (3) Support and take advantage of social processes that help students reflect on their own work.

  8. Relating Narrative, Inquiry, and Inscriptions: Supporting Consequential Play

    NASA Astrophysics Data System (ADS)

    Barab, Sasha A.; Sadler, Troy D.; Heiselt, Conan; Hickey, Daniel; Zuiker, Steven

    2007-02-01

    In this paper we describe our research using a multi-user virtual environment, Quest Atlantis, to embed fourth grade students in an aquatic habitat simulation. Specifically targeted towards engaging students in a rich inquiry investigation, we layered a socio-scientific narrative and an interactive rule set into a multi-user virtual environment gaming engine to establish a virtual world through which students learned about science inquiry, water quality concepts, and the challenges in balancing scientific and socio-economic factors. Overall, students were clearly engaged, participated in rich scientific discourse, submitted quality work, and learned science content. Further, through participation in this narrative, students developed a rich perceptual, conceptual, and ethical understanding of science. This study suggests that multi-user virtual worlds can be effectively leveraged to support academic content learning.

  9. Erratum to: Relating Narrative, Inquiry, and Inscriptions: Supporting Consequential Play

    NASA Astrophysics Data System (ADS)

    Barab, Sasha A.; Sadler, Troy D.; Heiselt, Conan; Hickey, Daniel; Zuiker, Steven

    2010-08-01

    In this paper we describe our research using a multi-user virtual environment, Quest Atlantis, to embed fourth grade students in an aquatic habitat simulation. Specifically targeted towards engaging students in a rich inquiry investigation, we layered a socio-scientific narrative and an interactive rule set into a multi-user virtual environment gaming engine to establish a virtual world through which students learned about science inquiry, water quality concepts, and the challenges in balancing scientific and socio-economic factors. Overall, students were clearly engaged, participated in rich scientific discourse, submitted quality work, and learned science content. Further, through participation in this narrative, students developed a rich perceptual, conceptual, and ethical understanding of science. This study suggests that multi-user virtual worlds can be effectively leveraged to support academic content learning.

  10. Abductive Science Inquiry Using Mobile Devices in the Classroom

    ERIC Educational Resources Information Center

    Ahmed, Sohaib; Parsons, David

    2013-01-01

    Recent advancements in digital technology have attracted the interest of educators and researchers to develop technology-assisted inquiry-based learning environments in the domain of school science education. Traditionally, school science education has followed deductive and inductive forms of inquiry investigation, while the abductive form of…

  11. Variations on an Historical Case Study

    ERIC Educational Resources Information Center

    Field, Patrick

    2006-01-01

    The National Inquiry Standard for Science Education Preparation requires science teachers to introduce students to scientific inquiry to solve problems by various methods, including active learning in a collaborative environment. In order for science teachers to comply with this inquiry standard, activities must be designed for students to…

  12. Key Skills for Co-Learning and Co-Inquiry in Two Open Platforms: A Massive Portal (EDUCARED) and a Personal Environment (weSPOT)

    ERIC Educational Resources Information Center

    Okada, Alexandra; Serra, Antonio Roberto Coelho; Ribeiro, Silvar Ferreira; da Conceição Pinto, Sônia Maria

    2015-01-01

    This paper presents a qualitative investigation on key skills for co-learning and co-inquiry in the digital age. The method applied was cyber-ethnography with asynchronous observation (forum and wiki) and synchronous discussions (webconference) for analysing skills developed by a co-learning community. This study focuses on participants from…

  13. Inquiry Learning: Students' Perception of Light Wave Phenomena in an Informal Environment

    ERIC Educational Resources Information Center

    Ford, Ken

    2011-01-01

    This study involved identifying students' perception of light phenomena and determined if they learned the scientific concepts of light that were presented to them by an interactive science exhibit. The participants in this study made scientific inquiry about light by using a powerful white light source, a prism, converging lenses, diverging…

  14. Investigating the Effectiveness of Inquiry-Based Instruction on Students with Different Prior Knowledge and Reading Abilities

    ERIC Educational Resources Information Center

    Wang, Jing-Ru; Wang, Yuh-Chao; Tai, Hsin-Jung; Chen, Wen-Ju

    2010-01-01

    This study examined the differential impacts of an inquiry-based instruction on conceptual changes across levels of prior knowledge and reading ability. The instrument emphasized four simultaneously important components: conceptual knowledge, reading ability, attitude toward science, and learning environment. Although the learning patterns and…

  15. Does Inquiry Based Learning Affect Students' Beliefs and Attitudes towards Mathematics?

    ERIC Educational Resources Information Center

    McGregor, Darren

    2014-01-01

    Ill-structured tasks presented in an inquiry learning environment have the potential to affect students' beliefs and attitudes towards mathematics. This empirical research followed a Design Experiment approach to explore how aspects of using ill-structured tasks may have affected students' beliefs and attitudes. Results showed this task type and…

  16. Inquiry-Based Learning and the Flipped Classroom Model

    ERIC Educational Resources Information Center

    Love, Betty; Hodge, Angie; Corritore, Cynthia; Ernst, Dana C.

    2015-01-01

    The flipped classroom model of teaching can be an ideal venue for turning a traditional classroom into an engaging, inquiry-based learning (IBL) environment. In this paper, we discuss how two instructors at different universities made their classrooms come to life by moving the acquisition of basic course concepts outside the classroom and using…

  17. Students' Use of Self-Regulatory Tool and Critical Inquiry in Online Discussions

    ERIC Educational Resources Information Center

    Bai, Hua

    2012-01-01

    Facilitating students' critical thinking in asynchronous discussions is important in online learning environments. Since students need to be self-regulated in online learning, the instructors are expected to scaffold students by providing structure and guidance. This paper discusses critical inquiry in two groups of students' online discussions.…

  18. Blended Online Learning in Initial Teacher Education: A Professional Inquiry into Pre-Service Teachers' Inquiry Projects

    ERIC Educational Resources Information Center

    Hunt, Anne-Marie

    2015-01-01

    Online and blended learning bring opportunities and challenges, including more opportunities for authentic activities (Gikandi, Morrow, & Davis, 2011). Blended online environments are now a common mode for pre-service teacher education, providing interesting opportunities to develop and showcase alternative approaches that blend with practice…

  19. Student Outcomes in Inquiry Instruction: A Literature-Derived Inventory

    ERIC Educational Resources Information Center

    Saunders-Stewart, Katie S.; Gyles, Petra D. T.; Shore, Bruce M.

    2012-01-01

    Curricular reform efforts are underway in many countries, focused on adopting inquiry-based approaches to teaching and learning. Therefore, it is increasingly important to understand what outcomes students attain in inquiry environments. Derived from a literature review, a 23-item, criterion-referenced inventory is presented for theoretically…

  20. Facilitating Family Group Inquiry at Science Museum Exhibits

    ERIC Educational Resources Information Center

    Gutwill, Joshua P.; Allen, Sue

    2010-01-01

    We describe a study of programs to deepen families' scientific inquiry practices in a science museum setting. The programs incorporated research-based learning principles from formal and informal educational environments. In a randomized experimental design, two versions of the programs, called "inquiry games," were compared to two control…

  1. Adventure Learning: Theory and Implementation of Hybrid Learning

    NASA Astrophysics Data System (ADS)

    Doering, A.

    2008-12-01

    Adventure Learning (AL), a hybrid distance education approach, provides students and teachers with the opportunity to learn about authentic curricular content areas while interacting with adventurers, students, and content experts at various locations throughout the world within an online learning environment (Doering, 2006). An AL curriculum and online environment provides collaborative community spaces where traditional hierarchical classroom roles are blurred and learning is transformed. AL has most recently become popular in K-12 classrooms nationally and internationally with millions of students participating online. However, in the literature, the term "adventure learning" many times gets confused with phrases such as "virtual fieldtrip" and activities where someone "exploring" is posting photos and text. This type of "adventure learning" is not "Adventure Learning" (AL), but merely a slideshow of their activities. The learning environment may not have any curricular and/or social goals, and if it does, the environment design many times does not support these objectives. AL, on the other hand, is designed so that both teachers and students understand that their online and curriculum activities are in synch and supportive of the curricular goals. In AL environments, there are no disparate activities as the design considers the educational, social, and technological affordances (Kirschner, Strijbos, Kreijns, & Beers, 2004); in other words, the artifacts of the learning environment encourage and support the instructional goals, social interactions, collaborative efforts, and ultimately learning. AL is grounded in two major theoretical approaches to learning - experiential and inquiry-based learning. As Kolb (1984) noted, in experiential learning, a learner creates meaning from direct experiences and reflections. Such is the goal of AL within the classroom. Additionally, AL affords learners a real-time authentic online learning experience concurrently as they study the AL curriculum. AL is also grounded in an inquiry- based approach to learning where learners are pursuing answers to questions they have posed rather than focusing on memorizing and regurgitating isolated, irrelevant facts. Both the curriculum and the online classroom are developed to foster students' abilities to inquire via "identifying and posing questions, designing and conducting investigations, analyzing data and evidence, using models and explanations, and communicating findings" (Keys and Bryan, 2001, p 121). The union of experiential and inquiry-based learning is the foundation of AL, guiding and supporting authentic learning endeavors. Based on these theoretical foundations, the design of the adventure learning experiences follows seven interdependent principles that further operationalize AL: researched curriculum grounded in inquiry; collaboration and interaction opportunities between students, experts, peers, and content; utilization of the Internet for curriculum and learning environment delivery; enhancement of curriculum with media and text from the field delivered in a timely manner; synched learning opportunities with the AL curriculum; pedagogical guidelines of the curriculum and the online learning environment; and adventure-based education. (Doering, 2006).

  2. An Environment for Mobile Experiential Learning

    ERIC Educational Resources Information Center

    Petrovic, Otto; Babcicky, Philipp; Puchleitner, Thomas

    2014-01-01

    In experiential learning courses students acquire new knowledge through learning that takes place in real-life scenarios. By utilizing mobile devices to conduct observations outside of the classroom, learners can arrive at a broader and deeper understanding of their inquiries. In this paper, we propose a learning environment that integrates mobile…

  3. Do Individual Differences in Children's Curiosity Relate to Their Inquiry-Based Learning?

    ERIC Educational Resources Information Center

    van Schijndel, Tessa J. P.; Jansen, Brenda R. J.; Raijmakers, Maartje E. J.

    2018-01-01

    This study investigates how individual differences in 7- to 9-year-olds' curiosity relate to the inquiry-learning process and outcomes in environments differing in structure. The focus on curiosity as individual differences variable was motivated by the importance of curiosity in science education, and uncertainty being central to both the…

  4. Learning Management Systems in Traditional Face-to-Face Courses: A Narrative Inquiry Study

    ERIC Educational Resources Information Center

    Washington, Gloria

    2017-01-01

    The purpose of the qualitative narrative inquiry study was to explore accounts of individual higher education instructors' experiences utilizing LMSs as a potential platform for teaching and learning in the traditional face-to-face classroom environment. The pedagogical use of LMSs in traditional face-to-face courses from real life experiences of…

  5. Helping Students Make Meaning of Authentic Investigations: Findings from a Student-Teacher-Scientist Partnership

    ERIC Educational Resources Information Center

    Peker, Deniz; Dolan, Erin

    2012-01-01

    As student-teacher-scientist partnerships become more widespread, there is a need for research to understand the roles assumed by scientists and teachers as they interact with students in general and in inquiry learning environments in particular. Although teacher roles during inquiry learning have been studied, there is a paucity of research…

  6. An Inquiry-Based Augmented Reality Mobile Learning Approach to Fostering Primary School Students' Historical Reasoning in Non-Formal Settings

    ERIC Educational Resources Information Center

    Efstathiou, Irene; Kyza, Eleni A.; Georgiou, Yiannis

    2018-01-01

    This study investigated the contribution of a location-based augmented reality (AR) inquiry-learning environment in developing 3rd grade students' historical empathy and conceptual understanding. Historical empathy is an important element of historical thinking, which is considered to improve conceptual understanding and support the development of…

  7. Integrating Technology and Pedagogy for Inquiry-Based Learning: The Stanford Mobile Inquiry-Based Learning Environment (SMILE)

    ERIC Educational Resources Information Center

    Buckner, Elizabeth; Kim, Paul

    2014-01-01

    Despite the long-standing interest in educational technology reforms, many researchers have found that it is difficult to incorporate advanced information and communications technologies (ICT) in classrooms. Many ICT projects, particularly in the developing world, are limited by the lack of integration between pedagogy and technology. This article…

  8. Examining Authentic Intellectual Work with a Historical Digital Documentary Inquiry Project in a Mandated State Testing Environment

    ERIC Educational Resources Information Center

    Swan, Kathy; Hofer, Mark; Swan, Gerry

    2011-01-01

    Three criteria for meaningful student learning--construction of knowledge, disciplined inquiry, and value beyond school--are assessed as authentic learning outcomes for an implementation of a digital documentary project in two fifth grade history classrooms where teachers' practices are constrained by a high-stakes testing climate. In all three…

  9. Scaffolding Students' Use of Learner-Generated Content in a Technology-Enhanced Inquiry Learning Environment

    ERIC Educational Resources Information Center

    van Dijk, Alieke M.; Lazonder, Ard W.

    2016-01-01

    Having students inspect and use each other's work is a promising way to advance inquiry-based science learning. Research has nevertheless shown that additional guidance is needed for students to take full advantage of the work produced by their peers. The present study investigated whether scaffolding through an integrated support tool could bring…

  10. The Impact of an Inquiry Approach to Learning in a Technology-Rich Environment.

    ERIC Educational Resources Information Center

    Peck, Jacqueline K.; Hughes, Sharon V.

    The impact of an inquiry approach on both teaching and learning in a technology-rich grade-1 classroom participating in the Cooperative Alliance for Gifted Education (CAGE) is described. CAGE is a partnership project that combines the resources of the Cleveland (Ohio) public schools, Kent State University, and International Business Machines Corp.…

  11. Interaction between Tool and Talk: How Instruction and Tools Support Consensus Building in Collaborative Inquiry-Learning Environments

    ERIC Educational Resources Information Center

    Gijlers, H.; Saab, N.; Van Joolingen, W. R.; De Jong, T.; Van Hout-Wolters, B. H. A. M.

    2009-01-01

    The process of collaborative inquiry learning requires maintaining a mutual understanding of the task, along with reaching consensus on strategies, plans and domain knowledge. In this study, we explore how different supportive measures affect students' consensus-building process, based on a re-analysis of data from four studies. We distinguish…

  12. Evaluating Students' Perceptions of Library and Science Inquiry: Validation of Two New Learning Environment Questionnaires

    ERIC Educational Resources Information Center

    Schultz-Jones, Barbara A.; Ledbetter, Cynthia E.

    2013-01-01

    As part of a larger study, the How My Library Supports Inquiry and the How My Science Class Supports Inquiry questionnaires were developed for evaluating the extent of inquiry-based teaching in classrooms and school libraries and the effect of this instruction on student literacy and, by extension, the social good. Each has 28 items in seven…

  13. Students' Participation in an Interdisciplinary, Socioscientific Issues Based Undergraduate Human Biology Major and Their Understanding of Scientific Inquiry

    ERIC Educational Resources Information Center

    Eastwood, Jennifer L.; Sadler, Troy D.; Sherwood, Robert D.; Schlegel, Whitney M.

    2013-01-01

    The purpose of this study was to examine whether Socioscientific Issues (SSI) based learning environments affect university students' epistemological understanding of scientific inquiry differently from traditional science educational contexts. We identify and compare conceptions of scientific inquiry of students participating in an…

  14. Integrating Various Apps on BYOD (Bring Your Own Device) into Seamless Inquiry-Based Learning to Enhance Primary Students' Science Learning

    NASA Astrophysics Data System (ADS)

    Song, Yanjie; Wen, Yun

    2018-04-01

    Despite that BYOD (Bring Your Own Device) technology model has been increasingly adopted in education, few studies have been reported on how to integrate various apps on BYOD into inquiry-based pedagogical practices in primary schools. This article reports a case study, examining what apps on BYOD can help students enhance their science learning, and how students develop their science knowledge in a seamless inquiry-based learning environment supported by these apps. A variety of qualitative data were collected and analyzed. The findings show that the affordances of the apps on BYOD could help students improve their science knowledge without time and place constraints and gain a better sense of ownership in learning.

  15. Learning Genetics through an Authentic Research Simulation in Bioinformatics

    ERIC Educational Resources Information Center

    Gelbart, Hadas; Yarden, Anat

    2006-01-01

    Following the rationale that learning is an active process of knowledge construction as well as enculturation into a community of experts, we developed a novel web-based learning environment in bioinformatics for high-school biology majors in Israel. The learning environment enables the learners to actively participate in a guided inquiry process…

  16. Literacy Learning in Limpopo--A Multilingual Environment

    ERIC Educational Resources Information Center

    Cherian, Lily; Du Toit, Cecilia

    2008-01-01

    This article is a report on research conducted to support the development of a multilingual literacy learning software programme for adult learners in rural Limpopo Province, South Africa. The topic of inquiry for the research was literacy learning in a multilingual environment, with special attention paid to attitudinal and metacognitive aspects.…

  17. Person-Oriented Approaches to Profiling Learners in Technology-Rich Learning Environments for Ecological Learner Modeling

    ERIC Educational Resources Information Center

    Jang, Eunice Eunhee; Lajoie, Susanne P.; Wagner, Maryam; Xu, Zhenhua; Poitras, Eric; Naismith, Laura

    2017-01-01

    Technology-rich learning environments (TREs) provide opportunities for learners to engage in complex interactions involving a multitude of cognitive, metacognitive, and affective states. Understanding learners' distinct learning progressions in TREs demand inquiry approaches that employ well-conceived theoretical accounts of these multiple facets.…

  18. Shifting More than the Goal Posts: Developing Classroom Norms of Inquiry-Based Learning in Mathematics

    ERIC Educational Resources Information Center

    Makar, Katie; Fielding-Wells, Jill

    2018-01-01

    The 3-year study described in this paper aims to create new knowledge about inquiry norms in primary mathematics classrooms. Mathematical inquiry addresses complex problems that contain ambiguities, yet classroom environments often do not adopt norms that promote curiosity, risk-taking and negotiation needed to productively engage with complex…

  19. Opportunities for Inquiry Science in Montessori Classrooms: Learning from a Culture of Interest, Communication, and Explanation

    NASA Astrophysics Data System (ADS)

    Rinke, Carol R.; Gimbel, Steven J.; Haskell, Sophie

    2013-08-01

    Although classroom inquiry is the primary pedagogy of science education, it has often been difficult to implement within conventional classroom cultures. This study turned to the alternatively structured Montessori learning environment to better understand the ways in which it fosters the essential elements of classroom inquiry, as defined by prominent policy documents. Specifically, we examined the opportunities present in Montessori classrooms for students to develop an interest in the natural world, generate explanations in science, and communicate about science. Using ethnographic research methods in four Montessori classrooms at the primary and elementary levels, this research captured a range of scientific learning opportunities. The study found that the Montessori learning environment provided opportunities for students to develop enduring interests in scientific topics and communicate about science in various ways. The data also indicated that explanation was largely teacher-driven in the Montessori classroom culture. This study offers lessons for both conventional and Montessori classrooms and suggests further research that bridges educational contexts.

  20. Teaching Inquiry using NASA Earth-System Science: Preparing Pre- and Inservice K-12 Educators to Use Authentic Inquiry in the Classroom

    NASA Astrophysics Data System (ADS)

    Ellis, T. D.; Tebockhorst, D.

    2012-12-01

    Teaching Inquiry using NASA Earth-System Science (TINES) is a comprehensive program to train and support pre-service and in-service K-12 teachers, and to provide them with an opportunity to use NASA Earth Science mission data and Global Learning and Observations to Benefit the Environment (GLOBE) observations to incorporate scientific inquiry-based learning in the classroom. It uses an innovative blended-learning professional development approach that combines a peer-reviewed pedagogical technique called backward-faded scaffolding (BFS), which provides a more natural entry path to understanding the scientific process, with pre-workshop online content learning and in-situ and online data resources from NASA and GLOBE. This presentation will describe efforts to date, share our impressions and evaluations, and discuss the effectiveness of the BFS approach to both professional development and classroom pedagogy.

  1. Networked Environments that Create Hybrid Spaces for Learning Science

    ERIC Educational Resources Information Center

    Otrel-Cass, Kathrin; Khoo, Elaine; Cowie, Bronwen

    2014-01-01

    Networked learning environments that embed the essence of the Community of Inquiry (CoI) framework utilise pedagogies that encourage dialogic practices. This can be of significance for classroom teaching across all curriculum areas. In science education, networked environments are thought to support student investigations of scientific problems,…

  2. Tools for Science Inquiry Learning: Tool Affordances, Experimentation Strategies, and Conceptual Understanding

    NASA Astrophysics Data System (ADS)

    Bumbacher, Engin; Salehi, Shima; Wieman, Carl; Blikstein, Paulo

    2017-12-01

    Manipulative environments play a fundamental role in inquiry-based science learning, yet how they impact learning is not fully understood. In a series of two studies, we develop the argument that manipulative environments (MEs) influence the kind of inquiry behaviors students engage in, and that this influence realizes through the affordances of MEs, independent of whether they are physical or virtual. In particular, we examine how MEs shape college students' experimentation strategies and conceptual understanding. In study 1, students engaged in two consecutive inquiry tasks, first on mass and spring systems and then on electric circuits. They either used virtual or physical MEs. We found that the use of experimentation strategies was strongly related to conceptual understanding across tasks, but that students engaged differently in those strategies depending on what ME they used. More students engaged in productive strategies using the virtual ME for electric circuits, and vice versa using the physical ME for mass and spring systems. In study 2, we isolated the affordance of measurement uncertainty by comparing two versions of the same virtual ME for electric circuits—one with and one without noise—and found that the conditions differed in terms of productive experimentation strategies. These findings indicate that measures of inquiry processes may resolve apparent ambiguities and inconsistencies between studies on MEs that are based on learning outcomes alone.

  3. Effects of Face-to-Face versus Chat Communication on Performance in a Collaborative Inquiry Modeling Task

    ERIC Educational Resources Information Center

    Sins, Patrick H. M.; Savelsbergh, Elwin R.; van Joolingen, Wouter R.; van Hout-Wolters, Bernadette H. A. M.

    2011-01-01

    In many contemporary collaborative inquiry learning environments, chat is being used as a means for communication. Still, it remains an open issue whether chat communication is an appropriate means to support the deep reasoning process students need to perform in such environments. Purpose of the present study was to compare the impact of chat…

  4. The Effect of Mind-Mapping Applications on Upper Primary Students' Success and Inquiry-Learning Skills in Science and Environment Education

    ERIC Educational Resources Information Center

    Balim, Ali Günay

    2013-01-01

    This study aims at identifying the effects of the mind-mapping technique upon students' perceptions of inquiry-learning skills, academic achievement, and retention of knowledge. The study was carried out in the Science and Technology course. A quasi-experimental research design with a pre-test and post-test control group, which was selected from…

  5. Science Teacher Educators' Engagement with Pedagogical Content Knowledge and Scientific Inquiry in Predominantly Paper-Based Distance Learning Programs

    ERIC Educational Resources Information Center

    Fraser, William J.

    2017-01-01

    This article focuses on the dilemmas science educators face when having to introduce Pedagogical Content Knowledge (PCK) to science student teachers in a predominantly paper-based distance learning environment. It draws on the premise that science education is bound by the Nature of Science (NOS), and by the Nature of Scientific Inquiry (NOSI).…

  6. Generation of Student Interest in an Inquiry-Based Mobile Learning Environment

    ERIC Educational Resources Information Center

    Laine, Erkka; Veermans, Marjaana; Lahti, Aleksi; Veermans, Koen

    2017-01-01

    A declining trend in adolescents' interest in science learning and attitudes towards science-related careers has been reported during recent years. There has been a call for more motivating learning environments that inspire students to develop interest towards science. This study examines students' interest development in STEM subjects in an…

  7. Assessment in Immersive Virtual Environments: Cases for Learning, of Learning, and as Learning

    ERIC Educational Resources Information Center

    Code, Jillianne; Zap, Nick

    2017-01-01

    The key to education reform lies in exploring alternative forms of assessment. Alternative performance assessments provide a more valid measure than multiple-choice tests of students' conceptual understanding and higher-level skills such as problem solving and inquiry. Advances in game-based and virtual environment technologies are creating new…

  8. Web-Based History Learning Environments: Helping All Students Learn and Like History

    ERIC Educational Resources Information Center

    Okolo, Cynthia M.; Englert, Carol Sue; Bouck, Emily C.; Heutsche, Anne M.

    2007-01-01

    This article explores the benefits of the Internet to enhance history instruction for all learners. The authors describe a Web-based learning environment, the Virtual History Museum (VHM), that helps teachers create motivating, inquiry-based history units. VHM also allows teachers to build supports for learners with disabilities or other learning…

  9. Self-Regulation and Gender within a Game-Based Learning Environment

    ERIC Educational Resources Information Center

    Nietfeld, John L.; Shores, Lucy R.; Hoffmann, Kristin F.

    2014-01-01

    In this study, we examined how self-regulated learning (SRL) and gender influences performance in an educational game for 8th-grade students (N = 130). Crystal Island--Outbreak is an immersive, inquiry-based, narrative-centered learning environment featuring a microbiology science mystery aligned with 8th-grade science curriculum. SRL variables…

  10. Exploring the Impacts of Cognitive and Metacognitive Prompting on Students' Scientific Inquiry Practices within an E-Learning Environment

    ERIC Educational Resources Information Center

    Zhang, Wen-Xin; Hsu, Ying-Shao; Wang, Chia-Yu; Ho, Yu-Ting

    2015-01-01

    This study explores the effects of metacognitive and cognitive prompting on the scientific inquiry practices of students with various levels of initial metacognition. Two junior high school classes participated in this study. One class, the experimental group (n?=?26), which received an inquiry-based curriculum with a combination of cognitive and…

  11. Rocks in the River: The Challenge of Piloting the Inquiry Process in Today's Learning Environment

    ERIC Educational Resources Information Center

    Lambusta, Patrice; Graham, Sandy; Letteri-Walker, Barbara

    2014-01-01

    School librarians in Newport News, Virginia, are meeting the challenges of integrating an Inquiry Process Model into instruction. In the original model the process began by asking students to develop questions to start their inquiry journey. As this model was taught it was discovered that students often did not have enough background knowledge to…

  12. Reflections as near-peer facilitators of an inquiry project for undergraduate anatomy: Successes and challenges from a term of trial-and-error.

    PubMed

    Anstey, Lauren M; Michels, Alison; Szymus, Julianna; Law, Wyanne; Edwin Ho, Man-Hymn; Qu, Fei; Yeung, Ralph T T; Chow, Natalie

    2014-01-01

    Near-peer facilitators (senior students serving as facilitators to their more junior peers) bring a unique student-based perspective to teaching. With fewer years of teaching experience however, students who become involved in a facilitator role typically develop related skills quickly through a process of trial-and-error within the classroom. The aim of this paper is to report on the authors' own experiences and reflections as student near-peer facilitators for an inquiry-based project in an undergraduate anatomy course. Three areas of the facilitator experience are explored: (1) offering adequate guidance as facilitators of inquiry, (2) motivating students to engage in the inquiry process, and (3) fostering creativity in learning. A practical framework for providing guidance to students is discussed which offers facilitators a scaffold for asking questions and assisting students through the inquiry process. Considerations for stimulating intrinsic motivations toward inquiry learning are made, paying attention to ways in which facilitators might influence feelings of motivation towards learning. Also, the role of creativity in inquiry learning is explored by highlighting the actions facilitators can take to foster a creative learning environment. Finally, recommendations are made for the development of formalized training programs that aid near-peer facilitators in the acquisition of facilitation skills before entering into a process of trial-and-error within the classroom. © 2013 American Association of Anatomists.

  13. Teaching Neuroscience to Science Teachers: Facilitating the Translation of Inquiry-Based Teaching Instruction to the Classroom

    PubMed Central

    Roehrig, G. H.; Michlin, M.; Schmitt, L.; MacNabb, C.; Dubinsky, J. M.

    2012-01-01

    In science education, inquiry-based approaches to teaching and learning provide a framework for students to building critical-thinking and problem-solving skills. Teacher professional development has been an ongoing focus for promoting such educational reforms. However, despite a strong consensus regarding best practices for professional development, relatively little systematic research has documented classroom changes consequent to these experiences. This paper reports on the impact of sustained, multiyear professional development in a program that combined neuroscience content and knowledge of the neurobiology of learning with inquiry-based pedagogy on teachers’ inquiry-based practices. Classroom observations demonstrated the value of multiyear professional development in solidifying adoption of inquiry-based practices and cultivating progressive yearly growth in the cognitive environment of impacted classrooms. PMID:23222837

  14. Teaching neuroscience to science teachers: facilitating the translation of inquiry-based teaching instruction to the classroom.

    PubMed

    Roehrig, G H; Michlin, M; Schmitt, L; MacNabb, C; Dubinsky, J M

    2012-01-01

    In science education, inquiry-based approaches to teaching and learning provide a framework for students to building critical-thinking and problem-solving skills. Teacher professional development has been an ongoing focus for promoting such educational reforms. However, despite a strong consensus regarding best practices for professional development, relatively little systematic research has documented classroom changes consequent to these experiences. This paper reports on the impact of sustained, multiyear professional development in a program that combined neuroscience content and knowledge of the neurobiology of learning with inquiry-based pedagogy on teachers' inquiry-based practices. Classroom observations demonstrated the value of multiyear professional development in solidifying adoption of inquiry-based practices and cultivating progressive yearly growth in the cognitive environment of impacted classrooms.

  15. Enhancing Teachers' Application of Inquiry-Based Strategies Using a Constructivist Sociocultural Professional Development Model

    NASA Astrophysics Data System (ADS)

    Brand, Brenda R.; Moore, Sandra J.

    2011-05-01

    This two-year school-wide initiative to improve teachers' pedagogical skills in inquiry-based science instruction using a constructivist sociocultural professional development model involved 30 elementary teachers from one school, three university faculty, and two central office content supervisors. Research was conducted for investigating the impact of the professional development activities on teachers' practices, documenting changes in their philosophies, instruction, and the learning environment. This report includes teachers' accounts of philosophical as well as instructional changes and how these changes shaped the learning environment. For the teachers in this study, examining their teaching practices in learner-centered collaborative group settings encouraged them to critically analyze their instructional practices, challenging their preconceived ideas on inquiry-based strategies. Additionally, other factors affecting teachers' understanding and use of inquiry-based strategies were highlighted, such as self-efficacy beliefs, prior experiences as students in science classrooms, teacher preparation programs, and expectations due to federal, state, and local mandates. These factors were discussed and reconciled, as they constructed new understandings and adapted their strategies to become more student-centered and inquiry-based.

  16. Science Laboratory Learning Environments in Junior Secondary Schools

    ERIC Educational Resources Information Center

    Kwok, Ping Wai

    2015-01-01

    A Chinese version of the Science Laboratory Environment Inventory (SLEI) was used to study the students' perceptions of the actual and preferred laboratory learning environments in Hong Kong junior secondary science lessons. Valid responses of the SLEI from 1932 students of grade 7 to grade 9 indicated that an open-ended inquiry approach seldom…

  17. A Review of Global Learning & Observations to Benefit the Environment (GLOBE)

    ERIC Educational Resources Information Center

    Executive Office of the President, 2010

    2010-01-01

    The Global Learning and Observations to Benefit the Environment (GLOBE) program is a worldwide, hands-on, primary and secondary school-based science and education program. GLOBE supports students, teachers, and scientists in collaborations using inquiry-based investigations of the environment and the earth system. GLOBE currently works in close…

  18. Working Memory Capacity and Mobile Multimedia Learning Environments: Individual Differences in Learning While Mobile

    ERIC Educational Resources Information Center

    Doolittle, Peter E.; Mariano, Gina J.

    2008-01-01

    The present study examined the effects of individual differences in working memory capacity (WMC) on learning from an historical inquiry multimedia tutorial in stationary versus mobile learning environments using a portable digital media player (i.e., iPod). Students with low (n = 44) and high (n = 40) working memory capacity, as measured by the…

  19. From the Perspective of Community of Inquiry Framework: An Examination of Facebook Uses by Pre-Service Teachers as a Learning Environment

    ERIC Educational Resources Information Center

    Kucuk, Sirin; Sahin, Ismail

    2013-01-01

    Online and blended learning, developed with advances in technology, have gained relative importance in modern communities. In recent years, the concept of creating learning communities has been coined to increase effectiveness of these learning environments. Based on this concept, Garrison, Anderson, and Archer (2000) developed the Community of…

  20. A Networked Learning Model for Construction of Personal Learning Environments in Seventh Grade Life Science

    ERIC Educational Resources Information Center

    Drexler, Wendy

    2010-01-01

    The purpose of this design-based research case study was to apply a networked learning approach to a seventh grade science class at a public school in the southeastern United States. Students adapted Web applications to construct personal learning environments for in-depth scientific inquiry of poisonous and venomous life forms. API widgets were…

  1. Inquiry identity and science teacher professional development

    NASA Astrophysics Data System (ADS)

    Bryce, Nadine; Wilmes, Sara E. D.; Bellino, Marissa

    2016-06-01

    An effective inquiry-oriented science teacher possesses more than the skills of teaching through investigation. They must address philosophies, and ways of interacting as a member of a group of educators who value and practice science through inquiry. Professional development opportunities can support inquiry identity development, but most often they address teaching practices from limited cognitive perspectives, leaving unexplored the shifts in identity that may accompany teachers along their journey in becoming skilled in inquiry-oriented instruction. In this forum article, we envision Victoria Deneroff's argument that "professional development could be designed to facilitate reflexive transformation of identity within professional learning environments" (2013, p. 33). Instructional coaching, cogenerative dialogues, and online professional communities are discussed as ways to promote inquiry identity formation and collaboration in ways that empower and deepen science teachers' conversations related to personal and professional efficacy in the service of improved science teaching and learning.

  2. There Is Still Nothing Better than Quality Play Experiences for Young Children's Learning and Development: Building the Foundation for Inquiry in Our Educational Practices

    ERIC Educational Resources Information Center

    Pistorova, Stacey; Slutsky, Ruslan

    2018-01-01

    Teachers face a growing call for implementing inquiry-based teaching and learning in a current pedagogical environment that contradicts this through educational practices that silo content, disseminate knowledge, and produce classrooms of passive learners. We address a hot topic in the United States on how a push for more "academics" is…

  3. Elucidating the electron transport in semiconductors via Monte Carlo simulations: an inquiry-driven learning path for engineering undergraduates

    NASA Astrophysics Data System (ADS)

    Persano Adorno, Dominique; Pizzolato, Nicola; Fazio, Claudio

    2015-09-01

    Within the context of higher education for science or engineering undergraduates, we present an inquiry-driven learning path aimed at developing a more meaningful conceptual understanding of the electron dynamics in semiconductors in the presence of applied electric fields. The electron transport in a nondegenerate n-type indium phosphide bulk semiconductor is modelled using a multivalley Monte Carlo approach. The main characteristics of the electron dynamics are explored under different values of the driving electric field, lattice temperature and impurity density. Simulation results are presented by following a question-driven path of exploration, starting from the validation of the model and moving up to reasoned inquiries about the observed characteristics of electron dynamics. Our inquiry-driven learning path, based on numerical simulations, represents a viable example of how to integrate a traditional lecture-based teaching approach with effective learning strategies, providing science or engineering undergraduates with practical opportunities to enhance their comprehension of the physics governing the electron dynamics in semiconductors. Finally, we present a general discussion about the advantages and disadvantages of using an inquiry-based teaching approach within a learning environment based on semiconductor simulations.

  4. Making learning whole: an instructional approach for mediating the practices of authentic science inquiries

    NASA Astrophysics Data System (ADS)

    Liljeström, Anu; Enkenberg, Jorma; Pöllänen, Sinikka

    2013-03-01

    This design experiment aimed to answer the question of how to mediate the practices of authentic science inquiries in primary education. An instructional approach based on activity theory was designed and carried out with multi-age students in a small village school. An open-ended learning task was offered to the older students. Their task was to design and implement instruction about the Ice Age to their younger fellows. The objective was collaborative learning among students, the teacher, and outside domain experts. Mobile phones and GPS technologies were applied as the main technological mediators in the learning process. Technology provided an opportunity to expand the learning environment outside the classroom, including the natural environment. Empirically, the goal was to answer the following questions: What kind of learning project emerged? How did the students' knowledge develop? What kinds of science learning processes, activities, and practices were represented? Multiple and parallel data were collected to achieve this aim. The data analysis revealed that the learning project both challenged the students to develop explanations for the phenomena and generated high quality conceptual and physical models in question. During the learning project, the roles of the community members were shaped, mixed, and integrated. The teacher also repeatedly evaluated and adjusted her behavior. The confidence of the learners in their abilities raised the quality of their learning outcomes. The findings showed that this instructional approach can not only mediate the kind of authentic practices that scientists apply but also make learning more holistic than it has been. Thus, it can be concluded that nature of the task, the tool-integrated collaborative inquiries in the natural environment, and the multiage setting can make learning whole.

  5. Using Asynchronous AV Communication Tools to Increase Academic Self-Efficacy

    ERIC Educational Resources Information Center

    Girasoli, Anthony J.; Hannafin, Robert D.

    2008-01-01

    Technology-enhanced learning environments (TELEs) deliver instructional content and provide an array of scaffolding features designed to support independent student learning. TELEs also support teacher efforts to guide student inquiry within these sometimes complex environments. Self-efficacy, defined by Bandura [Bandura, A. (1994). Self-efficacy.…

  6. Spaces for Learning: Development and Validation of the School Physical and Campus Environment Survey

    ERIC Educational Resources Information Center

    Zandvliet, David; Broekhuizen, Avril

    2017-01-01

    The study of learning environments involves describing educational contexts and identifying empirical relationships among subject matter (curriculum), teaching practices and other environmental variables. In recent years, this has become a growing field of academic inquiry within elementary, secondary and post-secondary research. Investigations of…

  7. Focusing on the Processes of Science Using Inquiry-oriented Astronomy Labs for Learning Astronomy

    NASA Astrophysics Data System (ADS)

    Speck, Angela; Ruzhitskaya, L.; Whittington, A.; Witzig, S.

    2010-01-01

    The U.S. National Science Education Standards provide guidelines for teaching science through inquiry, where students actively develop their understanding of science by combining scientific knowledge with reasoning and thinking skills. Inquiry activities include reading scientific literature, generating hypotheses, designing and carrying out investigations, interpreting data, and formulating conclusions. Inquiry-based instruction emphasizes questions, evidence, and explanation, the essential features of inquiry. We present two projects designed to develop learning materials for laboratory experiences in an undergraduate astronomy course. First, we engage students in inquiry-based learning by using "mini-journal” articles that follow the format of a scientific journal article, including a title, authors, abstract, introduction, methods, results, discussion and citations to peer-reviewed literature. The mini-journal provides a scaffold and serves as a springboard for students to develop and carry out their own follow-up investigation. They then present their findings in the form of their own mini-journal. This mini-journal format more directly reflects and encourages scientific practice. We use this technique in both introductory and upper level courses. The second project develops 3D virtual reality environments to help students interact with scientific constructs, and the use of collaborative learning tools to motivate student activity, deepen understanding and support knowledge building.

  8. A Study of Building a Resource-Based Learning Environment with the Inquiry Learning Approach: Knowledge of Family Trees

    ERIC Educational Resources Information Center

    Kong, Siu Cheung; So, Wing Mui Winnie

    2008-01-01

    This study aims to provide teachers with ways and means to facilitate learners to develop nomenclature knowledge of family trees through the establishment of resource-based learning environments (RBLEs). It discusses the design of an RBLE in the classroom by selecting an appropriate context with the assistance of computer-mediated learning…

  9. Assessing High Order Thinking of Students Participating in the "WISE" Project in Israel.

    ERIC Educational Resources Information Center

    Tal, Revital; Hochberg, Nurit

    2003-01-01

    Studied the higher order thinking of 53 Israeli ninth graders in 3 schools using the Web-Based Inquiry Science Environment (WISE) learning environment to study about malaria. Findings show that all students used higher order thinking skills and that their English was good enough to use the WISE learning environment in the Israeli setting. (SLD)

  10. Supporting Scientific Experimentation and Reasoning in Young Elementary School Students

    NASA Astrophysics Data System (ADS)

    Varma, Keisha

    2014-06-01

    Researchers from multiple perspectives have shown that young students can engage in the scientific reasoning involved in science experimentation. However, there is little research on how well these young students learn in inquiry-based learning environments that focus on using scientific experimentation strategies to learn new scientific information. This work investigates young children's science concept learning via inquiry-based instruction on the thermodynamics system in a developmentally appropriate, technology-supported learning environment. First- and third-grade students participate in three sets of guided experimentation activities that involve using handheld computers to measure change in temperature given different types of insulation materials. Findings from pre- and post-comparisons show that students at both grade levels are able to learn about the thermodynamics system through engaging in the guided experiment activities. The instruction groups outperformed the control groups on multiple measures of thermodynamics knowledge, and the older children outperform the younger children. Knowledge gains are discussed in the context of mental models of the thermodynamics system that include the individual concepts mentioned above and the relationships between them. This work suggests that young students can benefit from science instruction centered on experimentation activities. It shows the benefits of presenting complex scientific information authentic contexts and the importance of providing the necessary scaffolding for meaningful scientific inquiry and experimentation.

  11. Telling Active Learning Pedagogies Apart: From Theory to Practice

    ERIC Educational Resources Information Center

    Cattaneo, Kelsey Hood

    2017-01-01

    Designing learning environments to incorporate active learning pedagogies is difficult as definitions are often contested and intertwined. This article seeks to determine whether classification of active learning pedagogies (i.e., project-based, problem-based, inquiry-based, case-based, and discovery-based), through theoretical and practical…

  12. Pre-service elementary teachers' understanding of scientific inquiry and its role in school science

    NASA Astrophysics Data System (ADS)

    Macaroglu, Esra

    The purpose of this research was to explore pre-service elementary teachers' developing understanding of scientific inquiry within the context of their elementary science teaching and learning. More specifically, the study examined 24 pre-service elementary teachers' emerging understanding of (1) the nature of science and scientific inquiry; (2) the "place" of scientific inquiry in school science; and (3) the roles and responsibilities of teachers and students within an inquiry-based learning environment. Data sources consisted primarily of student-generated artifacts collected throughout the semester, including pre/post-philosophy statements and text-based materials collected from electronic dialogue journals. Individual data sources were open-coded to identify concepts and categories expressed by students. Cross-comparisons were conducted and patterns were identified. Assertions were formed with these patterns. Findings are hopeful in that they suggest pre-service teachers can develop a more contemporary view of scientific inquiry when immersed in a context that promotes this perspective. Not surprisingly, however, the prospective teachers encountered a number of barriers when attempting to translate their emerging ideas into practice. More research is needed to determine which teacher preparation experiences are most powerful in supporting pre-service teachers as they construct a framework for science teaching and learning that includes scientific inquiry as a central component.

  13. A "Second Life" for Gross Anatomy: Applications for Multiuser Virtual Environments in Teaching the Anatomical Sciences

    ERIC Educational Resources Information Center

    Richardson, April; Hazzard, Matthew; Challman, Sandra D.; Morgenstein, Aaron M.; Brueckner, Jennifer K.

    2011-01-01

    This article describes the emerging role of educational multiuser virtual environments, specifically Second Life[TM], in anatomical sciences education. Virtual worlds promote inquiry-based learning and conceptual understanding, potentially making them applicable for teaching and learning gross anatomy. A short introduction to Second Life as an…

  14. Prospective Elementary Teachers' Understanding of the Nature of Science and Perceptions of the Classroom Learning Environment

    ERIC Educational Resources Information Center

    Martin-Dunlop, Catherine S.

    2013-01-01

    This study investigated prospective elementary teachers' understandings of the nature of science and explored associations with their guided-inquiry science learning environment. Over 500 female students completed the Nature of Scientific Knowledge Survey (NSKS), although only four scales were analyzed-Creative, Testable, Amoral, and Unified. The…

  15. The Brink of Change: Gender in Technology-Rich Collaborative Learning Environments

    ERIC Educational Resources Information Center

    Goldstein, Jessica; Puntambeka, Sadhana

    2004-01-01

    This study was designed to contribute to a small but growing body of knowledge on the influence of gender in technology-rich collaborative learning environments. The study examined middle school students attitudes towards using computers and working in groups during scientific inquiry. Students attitudes towards technology and group work were…

  16. Students' Socio-Scientific Reasoning in an Astrobiological Context during Work with a Digital Learning Environment

    ERIC Educational Resources Information Center

    Hansson, Lena; Redfors, Andreas; Rosberg, Maria

    2011-01-01

    In a European project--CoReflect--researchers in seven countries are developing, implementing and evaluating teaching sequences using a web-based platform (STOCHASMOS). The interactive web-based inquiry materials support collaborative and reflective work. The learning environments will be iteratively tested and refined, during different phases of…

  17. A Review of Adventure Learning

    ERIC Educational Resources Information Center

    Veletsianos, George; Kleanthous, Irene

    2009-01-01

    Adventure learning (AL) is an approach for the design of digitally-enhanced teaching and learning environments driven by a framework of guidelines grounded on experiential and inquiry-based education. The purpose of this paper is to review the adventure learning literature and to describe the status quo of the practice by identifying the current…

  18. Beyond Performance Data: Improving Student Help Seeking by Collecting and Displaying Influential Data in an Online Middle-School Science Curriculum

    ERIC Educational Resources Information Center

    Daley, Samantha G.; Hillaire, Garron; Sutherland, LeeAnn M.

    2016-01-01

    Technology makes possible abundant new opportunities to capture and display data in online learning environments. We describe here an example of using these opportunities to improve students' use of the rich supports available in online learning environments. We describe an example of a blended learning experience that uses an online inquiry-based…

  19. Exploring Students' Progression in an Inquiry Science Curriculum Enabled by Mobile Learning

    ERIC Educational Resources Information Center

    Looi, Chee-Kit; Sun, Daner; Xie, Wenting

    2015-01-01

    The research literature reports on designs of ubiquitous and seamless learning environments enabled by the integration of mobile technology into learning. However, the lack of good pedagogical designs that provide for sustainability and the inadequate investigation of learning outcomes remain major gaps in the current studies on mobile learning.…

  20. Acting Out! Combating Homophobia through Teacher Activism. Practitioner Inquiry Series

    ERIC Educational Resources Information Center

    Blackburn, Mollie V., Ed.; Clark, Caroline T., Ed.; Kenney, Lauren M., Ed.; Smith, Jill M., Ed.

    2009-01-01

    In this volume, teachers from urban, suburban, and rural districts join together in a teacher inquiry group to challenge homophobia and heterosexism in schools and classrooms. To create safe learning environments for all students they address key topics, including seizing teachable moments, organizing faculty, deciding whether to come out in the…

  1. Making Choices: Simultaneous Report and Provocative Statements, Tools for Appreciative Inquiry

    ERIC Educational Resources Information Center

    Nelson, Eric M.; Wright, Christine M.

    2011-01-01

    Many educators find that students do not participate actively in class, and are constantly seeking a variety of techniques to encourage student participation. The focus of this paper is to show how simultaneous report and provocative statements can be combined to foster appreciative inquiry, thereby, creating a learning environment with greater…

  2. Supporting Collective Inquiry: A Technology Framework for Distributed Learning

    NASA Astrophysics Data System (ADS)

    Tissenbaum, Michael

    This design-based study describes the implementation and evaluation of a technology framework to support smart classrooms and Distributed Technology Enhanced Learning (DTEL) called SAIL Smart Space (S3). S3 is an open-source technology framework designed to support students engaged in inquiry investigations as a knowledge community. To evaluate the effectiveness of S3 as a generalizable technology framework, a curriculum named PLACE (Physics Learning Across Contexts and Environments) was developed to support two grade-11 physics classes (n = 22; n = 23) engaged in a multi-context inquiry curriculum based on the Knowledge Community and Inquiry (KCI) pedagogical model. This dissertation outlines three initial design studies that established a set of design principles for DTEL curricula, and related technology infrastructures. These principles guided the development of PLACE, a twelve-week inquiry curriculum in which students drew upon their community-generated knowledge base as a source of evidence for solving ill-structured physics problems based on the physics of Hollywood movies. During the culminating smart classroom activity, the S3 framework played a central role in orchestrating student activities, including managing the flow of materials and students using real-time data mining and intelligent agents that responded to emergent class patterns. S3 supported students' construction of knowledge through the use individual, collective and collaborative scripts and technologies, including tablets and interactive large-format displays. Aggregate and real-time ambient visualizations helped the teacher act as a wondering facilitator, supporting students in their inquiry where needed. A teacher orchestration tablet gave the teacher some control over the flow of the scripted activities, and alerted him to critical moments for intervention. Analysis focuses on S3's effectiveness in supporting students' inquiry across multiple learning contexts and scales of time, and in making timely and effective use of the community's knowledge base, towards producing solutions to sophisticated, ill defined problems in the domain of physics. Video analysis examined whether S3 supported teacher orchestration, freeing him to focus less on classroom management and more on students' inquiry. Three important outcomes of this research are a set of design principles for DTEL environments, a specific technology infrastructure (S3), and a DTEL research framework.

  3. Development of inquiry-based learning activities integrated with the local learning resource to promote learning achievement and analytical thinking ability of Mathayomsuksa 3 student

    NASA Astrophysics Data System (ADS)

    Sukji, Paweena; Wichaidit, Pacharee Rompayom; Wichaidit, Sittichai

    2018-01-01

    The objectives of this study were to: 1) compare learning achievement and analytical thinking ability of Mathayomsuksa 3 students before and after learning through inquiry-based learning activities integrated with the local learning resource, and 2) compare average post-test score of learning achievement and analytical thinking ability to its cutting score. The target of this study was 23 Mathayomsuksa 3 students who were studying in the second semester of 2016 academic year from Banchatfang School, Chainat Province. Research instruments composed of: 1) 6 lesson plans of Environment and Natural Resources, 2) the learning achievement test, and 3) analytical thinking ability test. The results showed that 1) student' learning achievement and analytical thinking ability after learning were higher than that of before at the level of .05 statistical significance, and 2) average posttest score of student' learning achievement and analytical thinking ability were higher than its cutting score at the level of .05 statistical significance. The implication of this research is for science teachers and curriculum developers to design inquiry activities that relate to student's context.

  4. Improving Inquiry Teaching through Reflection on Practice

    NASA Astrophysics Data System (ADS)

    Lotter, Christine R.; Miller, Cory

    2017-08-01

    In this paper, we explore middle school science teachers' learning of inquiry-based instructional strategies through reflection on practice teaching sessions during a summer enrichment program with middle level students. The reflection sessions were part of a larger year-long inquiry professional development program in which teachers learned science content and inquiry pedagogy. The program included a 2-week summer institute in which teachers participated in science content sessions, practice teaching to middle level students, and small group-facilitated reflection sessions on their teaching. For this study, data collection focused on teachers' recorded dialogue during the facilitator - run reflection sessions, the teachers' daily written reflections, a final written reflection, and a written reflection on a videotaped teaching session. We investigated the teachers' reflection levels and the themes teachers focused on during their reflection sessions. Teachers were found to reflect at various reflection levels, from simple description to a more sophisticated focus on how to improve student learning. Recurrent themes point to the importance of providing situated learning environments, such as the practice teaching with immediate reflection for teachers to have time to practice new instructional strategies and gain insight from peers and science educators on how to handle student learning issues.

  5. The Collaboratory Notebook: A Networked Knowledge-Building Environment for Project Learning.

    ERIC Educational Resources Information Center

    O'Neill, D. Kevin; Gomez, Louis M.

    The Collaboratory Notebook, developed as part of the Learning Through Collaborative Visualization Project (CoVis), is a networked, multimedia knowledge-building environment which has been designed to help students, teachers and scientists share inquiry over the boundaries of time and space. CoVis is an attempt to change the way that science is…

  6. Shaping Self-Regulation in Science Teachers' Professional Growth: Inquiry Skills

    ERIC Educational Resources Information Center

    Michalsky, Tova

    2012-01-01

    This study examined 188 preservice science teachers' professional growth along three dimensions--self-regulated learning (SRL) in a science pedagogical context, pedagogical content knowledge, and self-efficacy in teaching science--comparing four learner-centered, active-learning, peer-collaborative environments for learning to teach higher order…

  7. Learning in 3-D Multiuser Virtual Environments: Exploring the Use of Unique 3-D Attributes for Online Problem-Based Learning

    ERIC Educational Resources Information Center

    Omale, Nicholas; Hung, Wei-Chen; Luetkehans, Lara; Cooke-Plagwitz, Jessamine

    2009-01-01

    The purpose of this article is to present the results of a study conducted to investigate how the attributes of 3-D technology such as avatars, 3-D space, and comic style bubble dialogue boxes affect participants' social, cognitive, and teaching presences in a blended problem-based learning environment. The community of inquiry model was adopted…

  8. Teaching for Meaningful Learning: A Review of Research on Inquiry-Based and Cooperative Learning. Book Excerpt

    ERIC Educational Resources Information Center

    Barron, Brigid; Darling-Hammond, Linda

    2008-01-01

    The George Lucas Educational Foundation began in 1991 with an ambitious mission: to demonstrate how innovative learning environments in classrooms, supported by powerful new technologies, could revolutionize learning. As an organization founded by George Lucas, its members believed that the same benefits of technology that were transforming…

  9. A Quantitative Inquiry into the Effects of Blended Learning on English Language Learning: The Case of Malaysian Undergraduates

    ERIC Educational Resources Information Center

    Thang, Siew Ming; Mustaffa, Rosniah; Wong, Fook Fei; Noor, Noorizah Mohd.; Mahmud, Najihah; Latif, Hafizah; Aziz, Mohd. Sallehhudin Abd.

    2013-01-01

    Blended learning has been described as a pedagogical approach that combines effectiveness and socialization opportunities of the classroom with the technologically enhanced active learning possibilities of the online environment (Dziuban, Hartman, & Moskal, 2004). It has also been depicted as an approach that combines traditional learning with…

  10. Seamless Connection between Learning and Assessment--Applying Progressive Learning Tasks in Mobile Ecology Inquiry

    ERIC Educational Resources Information Center

    Hung, Pi-Hsia; Hwang, Gwo-Jen; Lin, Yu-Fen; Wu, Tsung-Hsun; Su, I-Hsiang

    2013-01-01

    Mobile learning has been recommended for motivating students on field trips; nevertheless, owing to the complexity and the richness of the learning resources from both the real-world and the digital-world environments, information overload remains one of the major concerns. Most mobile learning designs provide feedback only for multiple choice…

  11. Pathways of professional learning for elementary science teachers using computer learning environments

    NASA Astrophysics Data System (ADS)

    Williams, Latonya Michelle

    This dissertation reports on a three year study designed to investigate the trajectories of two urban elementary school teachers---a novice and an experienced teacher---learning to teach a science curriculum unit using an inquiry approach supported by the Web-based Inquiry Science Environment (WISE). This research investigated teachers' development in knowledge and practice. Through analyses of video records of classroom instruction and professional development meetings, repeated interviews, and student assessments, I have produced case studies of teachers' journeys as they implement the technological inquiry-based instructional model. This study captures the interplay between the teachers' pedagogical content knowledge, enacted practice, and insights into students' thinking about complex science ideas. I trace the factors that encouraged and supported the teachers' development, in addition to the kinds of struggles they faced and overcame. I discuss the social supports I provided for the teachers, including scaffolding them in reflecting on their practice, assisting them with curriculum customizations, and supporting their learning such as arranging online interactions with scientists. I analyze spontaneous activities such as teachers' own reflections. The results suggest that the novice and experienced teacher's classroom practices became more inquiry oriented across time. For both teachers, use of technology accompanied an increase in science dialogue with small groups in years two and three. The novice teacher began asking inquiry questions in her second year of classroom experience, after a great deal of professional support. Both teachers improved in their pedagogical content knowledge from years one through three as a result of the varied professional development supports. The results suggest that teachers' improvement in instructional strategies and pedagogical content knowledge accompanied students' improvement in understanding of the science content.

  12. Instructional Uses of Podcasting in Online Learning Environments: A Cooperative Inquiry Study

    ERIC Educational Resources Information Center

    Brown, Abbie; Brown, Carol; Fine, Bethann; Luterbach, Kenneth; Sugar, William; Vinciguerra, David C.

    2009-01-01

    A report on the results of a year-long cooperative inquiry study in which 11 faculty members at a southeastern university examined their various uses of podcasting for instruction. Through participation in the study, members developed insights into what technologies are most commonly applied to the task of podcast production and dissemination as…

  13. Blended Inquiry with Hands-On and Virtual Laboratories: The Role of Perceptual Features during Knowledge Construction

    ERIC Educational Resources Information Center

    Toth, Eva Erdosne; Ludvico, Lisa R.; Morrow, Becky L.

    2014-01-01

    This study examined the characteristics of virtual and hands-on inquiry environments for the development of blended learning in a popular domain of bio-nanotechnology: the separation of different-sized DNA fragments using gel-electrophoresis, also known as DNA-fingerprinting. Since the latest scientific developments in nano- and micro-scale tools…

  14. Doing Science by Waving Hands: Talk, Symbiotic Gesture, and Interaction with Digital Content as Resources in Student Inquiry

    ERIC Educational Resources Information Center

    Gregorcic, Bor; Planinsic, Gorazd; Etkina, Eugenia

    2017-01-01

    In this paper, we investigate some of the ways in which students, when given the opportunity and an appropriate learning environment, spontaneously engage in collaborative inquiry. We studied small groups of high school students interacting around and with an interactive whiteboard equipped with Algodoo software, as they investigated orbital…

  15. Peak with Books: An Early Childhood Resource for Balanced Literacy. Third Edition.

    ERIC Educational Resources Information Center

    Nelsen, Marjorie R.; Nelsen-Parish, Jan

    This book shows how to use popular children's literature to build reading, writing, and cognitive skills in an inquiry-based environment. This third edition has been expanded to include first and second grades. New features include: (1) new emphasis on culturally diverse storybooks; (2) a description of the experiential learning inquiry process;…

  16. WISE Design for Knowledge Integration.

    ERIC Educational Resources Information Center

    Linn, Marcia C.; Clark, Douglas; Slotta, James D.

    2003-01-01

    Examines the implementation of Web-based Inquiry Science Environment (WISE), which can incorporate modeling tools and hand-held devices. Describes WISE design team practices, features of the WISE learning environment, and patterns of feature use in WISE library projects. (SOE)

  17. Technology Supported Facilitation and Assessment of Small Group Collaborative Inquiry Learning in Large First-Year Classes

    ERIC Educational Resources Information Center

    Lawrie, Gwendolyn A.; Gahan, Lawrence R.; Matthews, Kelly E.; Weaver, Gabriela C.; Bailey, Chantal; Adams, Peter; Kavanagh, Lydia J.; Long, Phillip D.; Taylor, Matthew

    2014-01-01

    Collaborative learning activities offer the potential to support mutual knowledge construction and shared understanding amongst students. Introducing collaborative tasks into large first-year undergraduate science classes to create learning environments that foster student engagement and enhance communication skills is appealing. However,…

  18. Supporting Scientific Experimentation and Reasoning in Young Elementary School Students

    ERIC Educational Resources Information Center

    Varma, Keisha

    2014-01-01

    Researchers from multiple perspectives have shown that young students can engage in the scientific reasoning involved in science experimentation. However, there is little research on how well these young students learn in inquiry-based learning environments that focus on using scientific experimentation strategies to learn new scientific…

  19. A Garden of Learning

    ERIC Educational Resources Information Center

    Kirby, Tasha

    2008-01-01

    In order to beautify the school environment and further student learning, fourth-graders cultivated a Native Plant Learning Garden. They were responsible for designing a layout, researching garden elements, preparing the area, and planting a variety of native plants. By the completion of this inquiry-based project, students were able to clearly…

  20. Analyzing Student Inquiry Data Using Process Discovery and Sequence Classification

    ERIC Educational Resources Information Center

    Emond, Bruno; Buffett, Scott

    2015-01-01

    This paper reports on results of applying process discovery mining and sequence classification mining techniques to a data set of semi-structured learning activities. The main research objective is to advance educational data mining to model and support self-regulated learning in heterogeneous environments of learning content, activities, and…

  1. The effect of inquiry-based, hands-on labs on achievement in middle school science

    NASA Astrophysics Data System (ADS)

    Miller, Donna Kaye Green

    The purpose of this quasi-experimental study was to measure the difference in science achievement between students who had been taught with an inquiry-based, hands-on pedagogical approach and those who had not. Improving student academic achievement and standardized test scores is the major objective of teachers, parents, school administrators, government entities, and students themselves. One major barrier to this academic success in Georgia, and the entire United States, has been the paucity of success in middle level science classes. Many studies have been conducted to determine the learning approaches that will best enable students to not only acquire a deeper understanding of science concepts, but to equip them to apply that new knowledge in their daily activities. Inquiry-based, hands-on learning involves students participating in activities that reflect methods of scientific investigation. The effective utilization of the inquiry-based learning approach demands inclusion of learners in a self-directed learning environment, the ability to think critically, and an understanding of how to reflect and reason scientifically. The treatment group using an inquiry-based, hands-on program did score slightly higher on the CRCT. However, the results revealed that there was not a significant difference in student achievement. This study showed that the traditionally instructed control group had slightly higher interest in science than the inquiry-based treatment group. The findings of this research study indicated that the NCLB mandates might need to be altered if there are no significant academic gains that result from the use of inquiry-based strategies.

  2. Influences of Gender and Computer Gaming Experience in Occupational Desktop Virtual Environments: A Cross-Case Analysis Study

    ERIC Educational Resources Information Center

    Ausburn, Lynna J.; Ausburn, Floyd B.; Kroutter, Paul J.

    2013-01-01

    This study used a cross-case analysis methodology to compare four line-of-inquiry studies of desktop virtual environments (DVEs) to examine the relationships of gender and computer gaming experience to learning performance and perceptions. Comparison was made of learning patterns in a general non-technical DVE with patterns in technically complex,…

  3. Education on an Island: Oklahoma Correctional Educators' Views of Internal Teacher Traits and Successful Learning Environments on Incarcerated Adult Students in an Institutional Setting

    ERIC Educational Resources Information Center

    Ely, Jeana Dawn

    2011-01-01

    Scope and method of study. This inquiry, using survey and interview techniques, demonstrated both quantitative and qualitative research methodologies. In this study, effective teacher traits related to successful classroom structure in the correctional environment for adult students with a wide variety of issues, problems and learning difficulties…

  4. Inquiry science as a discourse: New challenges for teachers, students, and the design of curriculum materials

    NASA Astrophysics Data System (ADS)

    Tzou, Carrie Teh-Li

    Science education reform emphasizes learning science through inquiry as a way to engage students in the processes of science at the same time that they learn scientific concepts. However, inquiry involves practices that are challenging for students because they have underlying norms with which students may be unfamiliar. We therefore cannot expect students to know how to engage in such practices simply by giving them opportunities to do so, especially if the norms for inquiry practices violate traditional classroom norms for engaging with scientific ideas. Teachers therefore play a key role in communicating expectations for inquiry. In this dissertation, I present an analytical framework for characterizing two teachers' enactments of an inquiry curriculum. This framework, based on Gee's (1996) notion of Discourses, describes inquiry practices in terms of three dimensions: cognitive, social, and linguistic. I argue that each of these dimensions presents challenges to students and, therefore, sites at which teachers' support is important for students' participation in inquiry practices. I use this framework to analyze two teachers' support of inquiry practices as they enact an inquiry-based curriculum. I explore three questions in my study: (1) what is the nature of teachers' support of inquiry practices? (2) how do teachers accomplish goals along multiple dimensions of inquiry?, and (3) what aspects of inquiry are in tension and how can we describe teachers' practice in terms of the tradeoff spaces between elements of inquiry in tension? In order to study these questions, I studied two eighth grade teachers who both enacted the same inquiry-based science curriculum developed by me and others in the context of a large design-based research project called IQWST (Investigating and Questioning my World through Science and Technology. I found that the teachers provided support for inquiry along all three dimensions, sometimes in ways in which the dimensions were synergistic and sometimes in ways in which the dimensions were in tension. These findings have implications for the design of inquiry science learning environments and for our understanding of what it means for teachers to be "cultural brokers" between students' everyday experiences and classroom science inquiry.

  5. Beyond the Didactic Classroom: Educational Models to Encourage Active Student Involvement in Learning

    PubMed Central

    Shreeve, Michael W.

    2008-01-01

    In a chiropractic college that utilizes a hybrid curriculum model composed of adult-based learning strategies along with traditional lecture-based course delivery, a literature search for educational delivery methods that would integrate the affective domain and the cognitive domain of learning provided some insights into the use of problem-based learning (PBL), experiential learning theory (ELT), and the emerging use of appreciative inquiry (AI) to enhance the learning experience. The purpose of this literature review is to provide a brief overview of key components of PBL, ELT, and AI in educational methodology and to discuss how these might be used within the chiropractic curriculum to supplement traditional didactic lecture courses. A growing body of literature describes the use of PBL and ELT in educational settings across many disciplines, both at the undergraduate and graduate levels. The use of appreciative inquiry as an instructional methodology presents a new area for exploration and study in the academic environment. Educational research in the chiropractic classroom incorporating ELT and appreciative inquiry might provide some valuable insights for future curriculum development. PMID:18483586

  6. Beyond the didactic classroom: educational models to encourage active student involvement in learning.

    PubMed

    Shreeve, Michael W

    2008-01-01

    In a chiropractic college that utilizes a hybrid curriculum model composed of adult-based learning strategies along with traditional lecture-based course delivery, a literature search for educational delivery methods that would integrate the affective domain and the cognitive domain of learning provided some insights into the use of problem-based learning (PBL), experiential learning theory (ELT), and the emerging use of appreciative inquiry (AI) to enhance the learning experience. The purpose of this literature review is to provide a brief overview of key components of PBL, ELT, and AI in educational methodology and to discuss how these might be used within the chiropractic curriculum to supplement traditional didactic lecture courses. A growing body of literature describes the use of PBL and ELT in educational settings across many disciplines, both at the undergraduate and graduate levels. The use of appreciative inquiry as an instructional methodology presents a new area for exploration and study in the academic environment. Educational research in the chiropractic classroom incorporating ELT and appreciative inquiry might provide some valuable insights for future curriculum development.

  7. The Effects of Training, Modality, and Redundancy on the Development of a Historical Inquiry Strategy in a Multimedia Learning Environment

    ERIC Educational Resources Information Center

    McNeill, Andrea L.; Doolittle, Peter E.; Hicks, David

    2009-01-01

    The purpose of this study was to assess the effects of training, modality, and redundancy on the participants' ability to apply and recall a historical inquiry strategy. An experimental research design was utilized with presentation mode as the independent variable and strategy application and strategy recall as the dependent variables. The…

  8. Mentoring Student Teachers Into The Profession: Intentionally Creating a Culture of Inquiry in the Context of Media and Technology Practice

    ERIC Educational Resources Information Center

    Jacobsen, Michele; Friesen, Sharon; Clifford, Pat

    2004-01-01

    What is the nature of onsite and online mentoring which enables student teachers to design inquiry-based, technology rich learning experiences? In this case study, faculty and expert teachers worked with fifteen student teachers during an elementary school practicum. An online intelligent design environment supported the development of a community…

  9. An Inquiry-Based Biochemistry Laboratory Structure Emphasizing Competency in the Scientific Process: A Guided Approach with an Electronic Notebook Format

    ERIC Educational Resources Information Center

    Hall, Mona L.; Vardar-Ulu, Didem

    2014-01-01

    The laboratory setting is an exciting and gratifying place to teach because you can actively engage the students in the learning process through hands-on activities; it is a dynamic environment amenable to collaborative work, critical thinking, problem-solving and discovery. The guided inquiry-based approach described here guides the students…

  10. Science Talk: Preservice Teachers Facilitating Science Learning in Diverse Afterschool Environments

    ERIC Educational Resources Information Center

    Cartwright, Tina Johnson

    2012-01-01

    The purpose of this study was to assess the impact a community-based service learning program might have on preservice teachers' science instruction during student teaching. Designed to promote science inquiry, preservice teachers learned how to offer students more opportunities to develop their own ways of thinking through utilization of an…

  11. An Emic Lens into Online Learning Environments in PPL in Undergraduate Dentistry

    ERIC Educational Resources Information Center

    Bridges, Susan

    2015-01-01

    Whilst face-to-face tutorial group interaction has been the focus of quantitative and qualitative studies in problem-based learning (PBL), little work has explored the independent learning phase of the PBL cycle from an interactionist perspective. An interactional ethnographic logic of inquiry guided collection and analysis of video recordings and…

  12. Learning Fraction Comparison by Using a Dynamic Mathematics Software--GeoGebra

    ERIC Educational Resources Information Center

    Poon, Kin Keung

    2018-01-01

    GeoGebra is a mathematics software system that can serve as a tool for inquiry-based learning. This paper deals with the application of a fraction comparison software, which is constructed by GeoGebra, for use in a dynamic mathematics environment. The corresponding teaching and learning issues have also been discussed.

  13. Influence of Participation, Facilitator Styles, and Metacognitive Reflection on Knowledge Building in Online University Courses

    ERIC Educational Resources Information Center

    Cacciamani, Stefano; Cesareni, Donatella; Martini, Francesca; Ferrini, Tiziana; Fujita, Nobuko

    2012-01-01

    Understanding how to foster knowledge building in online and blended learning environments is a key for computer-supported collaborative learning research. Knowledge building is a deeply constructivist pedagogy and kind of inquiry learning focused on theory building. A strong indicator of engagement in knowledge building activity is the…

  14. Learning fraction comparison by using a dynamic mathematics software - GeoGebra

    NASA Astrophysics Data System (ADS)

    Poon, Kin Keung

    2018-04-01

    GeoGebra is a mathematics software system that can serve as a tool for inquiry-based learning. This paper deals with the application of a fraction comparison software, which is constructed by GeoGebra, for use in a dynamic mathematics environment. The corresponding teaching and learning issues have also been discussed.

  15. Improving science inquiry with elementary students of diverse backgrounds

    NASA Astrophysics Data System (ADS)

    Cuevas, Peggy; Lee, Okhee; Hart, Juliet; Deaktor, Rachael

    2005-03-01

    This study examined the impact of an inquiry-based instructional intervention on (a) children's ability to conduct science inquiry overall and to use specific skills in inquiry, and (b) narrowing the gaps in children's ability among demographic subgroups of students. The intervention consisted of instructional units, teacher workshops, and classroom practices. The study involved 25 third- and fourth-grade students from six elementary schools representing diverse linguistic and cultural groups. Quantitative results demonstrated that the intervention enhanced the inquiry ability of all students regardless of grade, achievement, gender, ethnicity, socioeconomic status (SES), home language, and English proficiency. Particularly, low-achieving, low-SES, and English for Speakers of Other Languages (ESOL) exited students made impressive gains. The study adds to the existing literature on designing learning environments that foster science inquiry of all elementary students.

  16. Inquiry-Based Integrated Science Education: Implementation of Local Content “Soil Washing” Project To Improve Junior High School Students’ Environmental Literacy

    NASA Astrophysics Data System (ADS)

    Syifahayu

    2017-02-01

    The study was conducted based on teaching and learning problems led by conventional method that had been done in the process of learning science. It gave students lack opportunities to develop their competence and thinking skills. Consequently, the process of learning science was neglected. Students did not have opportunity to improve their critical attitude and creative thinking skills. To cope this problem, the study was conducted using Project-Based Learning model through inquiry-based science education about environment. The study also used an approach called Sains Lingkungan and Teknologi masyarakat - “Saling Temas” (Environmental science and Technology in Society) which promoted the local content in Lampung as a theme in integrated science teaching and learning. The study was a quasi-experimental with pretest-posttest control group design. Initially, the subjects were given a pre-test. The experimental group was given inquiry learning method while the control group was given conventional learning. After the learning process, the subjects of both groups were given post-test. Quantitative analysis was performed using the Mann-Whitney U-test and also a qualitative descriptive. Based on the result, environmental literacy skills of students who get inquiry learning strategy, with project-based learning model on the theme soil washing, showed significant differences. The experimental group is better than the control group. Data analysis showed the p-value or sig. (2-tailed) is 0.000 <α = 0.05 with the average N-gain of experimental group is 34.72 and control group is 16.40. Besides, the learning process becomes more meaningful.

  17. Instant Integration: Just Add Water

    ERIC Educational Resources Information Center

    Singletary, Ted; Miller, Rickie

    2009-01-01

    An instructional unit incorporating some of the Global Learning and Observation to Benefit the Environment (GLOBE) hydrology protocols provides an excellent way to connect academic learning, scientific inquiry, multiple subjects, and the values required for concerned citizenship in a democracy. This article describes the GLOBE hydrology protocols…

  18. Integrating Computers into the Problem-Solving Process.

    ERIC Educational Resources Information Center

    Lowther, Deborah L.; Morrison, Gary R.

    2003-01-01

    Asserts that within the context of problem-based learning environments, professors can encourage students to use computers as problem-solving tools. The ten-step Integrating Technology for InQuiry (NteQ) model guides professors through the process of integrating computers into problem-based learning activities. (SWM)

  19. Sandboxes for Model-Based Inquiry

    ERIC Educational Resources Information Center

    Brady, Corey; Holbert, Nathan; Soylu, Firat; Novak, Michael; Wilensky, Uri

    2015-01-01

    In this article, we introduce a class of constructionist learning environments that we call "Emergent Systems Sandboxes" ("ESSs"), which have served as a centerpiece of our recent work in developing curriculum to support scalable model-based learning in classroom settings. ESSs are a carefully specified form of virtual…

  20. "Martian Boneyards": Sustained Scientific Inquiry in a Social Digital Game

    NASA Astrophysics Data System (ADS)

    Asbell-Clarke, Jordis

    Social digital gaming is an explosive phenomenon where youth and adults are engaged in inquiry for the sake of fun. The complexity of learning evidenced in social digital games is attracting the attention of educators. Martian Boneyards is a proof-of-concept game designed to study how a community of voluntary gamers can be enticed to engage in sustained, high-quality scientific inquiry. Science educators and game designers worked together to create an educational game with the polish and intrigue of a professional-level game, striving to attract a new audience to scientific inquiry. Martian Boneyards took place in the high-definition, massively multiplayer online environment, Blue Mars, where players spent an average of 30 hours in the game over the 4-month implementation period, with some exceeding 200 hours. Most of the players' time was spent in scientific inquiry activities and about 30% of the players' in-game interactions were in the analysis and theory-building phases of inquiry. Female players conducted most of the inquiry, in particular analysis and theory building. The quality of scientific inquiry processes, which included extensive information gathering by players, and the resulting content were judged to be very good by a team of independent scientists. This research suggests that a compelling storyline, a highly aesthetic environment, and the emergent social bonds among players and between players and the characters played by designers were all responsible for sustaining high quality inquiry among gamers in this free-choice experience. The gaming environment developed for Martian Boneyards is seen as an evolving ecosystem with interactions among design, players' activity, and players' progress.

  1. Instructor Social Presence within the Community of Inquiry Framework and Its Impact on Classroom Community and the Learning Environment

    ERIC Educational Resources Information Center

    Pollard, Herbert; Minor, Maria; Swanson, Andree

    2014-01-01

    A change in the Community of Inquiry (COI) framework with an addition of an instructor social presence is suggested. The sample included 137 students in the School of Business of an online university. The independent variables were teaching and social presences from the COI framework and instructor social presence from an instrument developed for…

  2. A Collective Case Study of Secondary Students' Model-Based Inquiry on Natural Selection through Programming in an Agent-Based Modeling Environment

    ERIC Educational Resources Information Center

    Xiang, Lin

    2011-01-01

    This is a collective case study seeking to develop detailed descriptions of how programming an agent-based simulation influences a group of 8th grade students' model-based inquiry (MBI) by examining students' agent-based programmable modeling (ABPM) processes and the learning outcomes. The context of the present study was a biology unit on…

  3. Inquiry-Based Learning in China: Lesson Learned for School Science Practices

    ERIC Educational Resources Information Center

    Nuangchalerm, Prasart

    2014-01-01

    Inquiry-based learning is widely considered for science education in this era. This study aims to explore inquiry-based learning in teacher preparation program and the findings will help us to understanding what inquiry-based classroom is and how inquiry-based learning are. Data were collected by qualitative methods; classroom observation,…

  4. Human Health in the Balance. Hands-On! Developing Active Learning Modules on the Human Dimensions of Global Change.

    ERIC Educational Resources Information Center

    Meade, Melinda S.; Washburn, Sarah; Holman, Jeremy T.

    This learning module aims to engage students in problem solving, critical thinking, scientific inquiry, and cooperative learning. The module is appropriate for use in any introductory or intermediate undergraduate course that focuses on human-environment relationships. The module states that human health is a product of complex interactions among…

  5. The Geography of Greenhouse Gas Emissions: Hands-On! Developing Active Learning Modules on the Human Dimensions of Global Change.

    ERIC Educational Resources Information Center

    Liverman, Diana; Solem, Michael

    This learning module aims to engage students in problem solving, critical thinking, scientific inquiry, and cooperative learning. The module is appropriate for use in any introductory or intermediate undergraduate course that focuses on human-environment relationships. The module examines the geography of human activities that produce the major…

  6. Cultivating Attitudes and Trellising Learning: A Permaculture Approach to Science and Sustainability Education

    ERIC Educational Resources Information Center

    Lebo, Nelson; Eames, Chris

    2015-01-01

    This article reports on an inquiry that used permaculture design thinking to create a science and sustainability education intervention for a secondary science class. The aims were to cultivate student attitudes towards science, towards learning science in school, and towards the environment, and to trellis learning of science and sustainability.…

  7. WebQuest Learning as Perceived by Higher-Education Learners

    ERIC Educational Resources Information Center

    Zheng, Robert; Stucky, Bradd; McAlack, Matt; Menchaca, Mike; Stoddart, Sue

    2005-01-01

    The WebQuest as an inquiry-oriented approach in web learning has gained considerable attention from educators and has been integrated widely into curricula in K-12 and higher education. It is considered to be an effective way to organize chaotic internet resources and help learners gain new knowledge through a guided learning environment.…

  8. Acquisition and Retention of STEM Concepts through Inquiry Based Learning

    NASA Astrophysics Data System (ADS)

    Lombardi, Candice

    This study explores the integration of STEM (science, technology, engineering, and mathematics) concepts through inquiry based learning. Students are exposed to a constructivist style learning environment where they create understanding for themselves. This way of learning lets students plan and justify their ideas and beliefs while discussing and examining the ideas of their classmates. Students are engaged in solving a scientific problem in a meaningful, inquiry-based manner through hypothesis testing, experimentation, and investigation. This mode of learning introduces students to real life, authentic science experiences within the confines of a typical classroom. The focus of the unit is for the students to create connections and understanding about geography and the globe in order to ultimately identify the exact latitude and longitude of 10 mystery sites. The students learn about latitude and longitude and apply their knowledge through a set of clues to determine where their Mystery Class is located. Journey North provides an internationally accessed game of hide-and-seek called Mystery Class Seasons Challenge. Throughout this challenge, over the course of eleven weeks, students will record, graph, interpret and analysis data and research to ultimate identify the location of ten mystery locations. Students will track seasonal changes in sunlight while investigating, examining and researching clues to find these ten secret sites around the world. My research was done to prove the success of students' ability to learn new mathematics, science, technology and engineering concepts through inquiry based design.

  9. The Development of "Water Strider" Inquiry Learning Program for Improving Scientific Inquiry Learning Ability in the Chapter "The Little Creatures World" of the Korea Elementary School 5th Grade Science Textbook

    ERIC Educational Resources Information Center

    Kim, Dongryeul

    2017-01-01

    The purpose of this study was to develop a "Water strider" Inquiry Learning Program for improved inquiry learning, and to analyze the validity of the "Water strider." The Inquiry Learning Program's goal was to create an application for finding out an on-site applicability for the "Water strider" Inquiry Learning…

  10. Linking Immersive Virtual Field Trips with an Adaptive Learning Platform

    NASA Astrophysics Data System (ADS)

    Bruce, G.; Taylor, W.; Anbar, A. D.; Semken, S. C.; Buxner, S.; Mead, C.; El-Moujaber, E.; Summons, R. E.; Oliver, C.

    2016-12-01

    The use of virtual environments in science education has been constrained by the difficulty of guiding a learner's actions within the those environments. In this work, we demonstrate how advances in education software technology allow educators to create interactive learning experiences that respond and adapt intelligently to learner input within the virtual environment. This innovative technology provides a far greater capacity for delivering authentic inquiry-driven educational experiences in unique settings from around the world. Our immersive virtual field trips (iVFT) bring students virtually to geologically significant but inaccessible environments, where they learn through authentic practices of scientific inquiry. In one recent example, students explore the fossil beds in Nilpena, South Australia to learn about the Ediacaran fauna. Students interactively engage in 360° recreations of the environment, uncover the nature of the historical ecosystem by identifying fossils with a dichotomous key, explore actual fossil beds in high resolution imagery, and reconstruct what an ecosystem might have looked like millions of years ago in an interactive simulation. With the new capacity to connect actions within the iVFT to an intelligent tutoring system, these learning experiences can be tracked, guided, and tailored individually to the immediate actions of the student. This new capacity also has great potential for learning designers to take a data-driven approach to lesson improvement and for education researchers to study learning in virtual environments. Thus, we expect iVFT will be fertile ground for novel research. Such iVFT are currently in use in several introductory classes offered online at Arizona State University in anthropology, introductory biology, and astrobiology, reaching thousands of students to date. Drawing from these experiences, we are designing a curriculum for historical geology that will be built around iVFT-based exploration of Earth history.

  11. Behaviorism and the Construction of Knowledge

    ERIC Educational Resources Information Center

    Faryadi, Qais

    2007-01-01

    This paper attempts to discuss behaviorism and the construction of knowledge. This review investigates whether behaviorism methodology has any advantages in learning a language in our classroom. This assessment also observes the critics of behaviorism and its weaknesses in a learning environment. This inquiry concentrates on the view point of B.F.…

  12. Students' Views of Collaboration and Online Participation in Knowledge Forum

    ERIC Educational Resources Information Center

    Chan, Carol K. K.; Chan, Yuen-Yan

    2011-01-01

    This study examined students- views of collaboration and learning, and investigated how these predict students- online participation in a computer-supported learning environment. The participants were 521 secondary school students in Hong Kong, who took part in online collaborative inquiry conducted using Knowledge Forum[TM]. We developed a…

  13. Individual Differences in Learning from an Intelligent Discovery World: Smithtown.

    ERIC Educational Resources Information Center

    Shute, Valerie J.

    "Smithtown" is an intelligent computer program designed to enhance an individual's scientific inquiry skills as well as to provide an environment for learning principles of basic microeconomics. It was hypothesized that intelligent computer instruction on applying effective interrogative skills (e.g., changing one variable at a time…

  14. Scenario Educational Software: Design and Development of Discovery Learning.

    ERIC Educational Resources Information Center

    Keegan, Mark

    This book shows how and why the computer is so well suited to producing discovery learning environments. An examination of the literature outlines four basic modes of instruction: didactic, Socratic, inquiry, and discovery. Research from the fields of education, psychology, and physiology is presented to demonstrate the many strengths of…

  15. Next-Generation Environments for Assessing and Promoting Complex Science Learning

    ERIC Educational Resources Information Center

    Quellmalz, Edys S.; Davenport, Jodi L.; Timms, Michael J.; DeBoer, George E.; Jordan, Kevin A.; Huang, Chun-Wei; Buckley, Barbara C.

    2013-01-01

    How can assessments measure complex science learning? Although traditional, multiple-choice items can effectively measure declarative knowledge such as scientific facts or definitions, they are considered less well suited for providing evidence of science inquiry practices such as making observations or designing and conducting investigations.…

  16. Using Cognitive Maps to Promote Self-Managed Learning in Online Communities of Inquiry

    ERIC Educational Resources Information Center

    Peacock, Susi; Cowan, John

    2016-01-01

    As online learners become more diverse and less well-prepared individually, particular help is required when transitioning into new, online learning environments, requiring engagement in collaborative, community-based educational activities. Cognitive maps provide one tool for tutors to support individuals in navigating the unfamiliar maze of…

  17. Designing ee-Learning Environments: Lessons from an Online Workshop

    ERIC Educational Resources Information Center

    Godwin, Lindsey; Kaplan, Soren

    2008-01-01

    Based on their work leading three experiential, online workshops with over 180 participants from around the world, Lindsey Godwin and Soren Kaplan share reflections on designing and conducting successful ee-learning courses. The workshops sought to translate a popular face-to-face seminar in appreciative inquiry, an increasingly popular…

  18. Design and Reflection Help Students Develop Scientific Abilities: Learning in Introductory Physics Laboratories

    ERIC Educational Resources Information Center

    Etkina, Eugenia; Karelina, Anna; Ruibal-Villasenor, Maria; Rosengrant, David; Jordan, Rebecca; Hmelo-Silver, Cindy E.

    2010-01-01

    Design activities, when embedded in an inquiry cycle and appropriately scaffolded and supplemented with reflection, can promote the development of the habits of mind (scientific abilities) that are an important part of scientific practice. Through the Investigative Science Learning Environment ("ISLE"), students construct physics knowledge by…

  19. Inverting an Introductory Statistics Classroom

    ERIC Educational Resources Information Center

    Kraut, Gertrud L.

    2015-01-01

    The inverted classroom allows more in-class time for inquiry-based learning and for working through more advanced problem-solving activities than does the traditional lecture class. The skills acquired in this learning environment offer benefits far beyond the statistics classroom. This paper discusses four ways that can make the inverted…

  20. Creating an Equitable Classroom Environment: A Case Study of a Preservice Elementary Teacher Learning What It Means to "Do Inquiry"

    ERIC Educational Resources Information Center

    Villa, Elsa Q.; Baptiste, H. Prentice

    2014-01-01

    In this article, the authors present a case study of a preservice teacher who participated in a two-semester course sequence of elementary science and mathematics methods spanning one academic year. These two courses were taught by the first author and embedded a pedagogical approach grounded in inquiry methods. The purpose of this study was to…

  1. Applying the Practical Inquiry Model to Investigate the Quality of Students' Online Discourse in an Information Ethics Course Based on Bloom's Teaching Goal and Bird's 3C Model

    ERIC Educational Resources Information Center

    Liu, Chien-Jen; Yang, Shu Ching

    2012-01-01

    The goal of this study is to better understand how the study participants' cognitive discourse is displayed in their learning transaction in an asynchronous, text-based conferencing environment based on Garrison's Practical Inquiry Model (2001). The authors designed an online information ethics course based on Bloom's taxonomy of educational…

  2. Students of the World Unite

    ERIC Educational Resources Information Center

    Bolch, Matt

    2008-01-01

    This article discusses Global Learning and Observations to Benefit the Environment (GLOBE), a worldwide, hands-on science and education program for primary and secondary students. GLOBE brings together students, teachers, scientists, and community members to collaborate on inquiry-based investigations of the environment. Now in its 13th year, more…

  3. Learner Engagement Strategies in Online Class Environment

    ERIC Educational Resources Information Center

    Chakraborty, Misha

    2017-01-01

    This dissertation explores the area of student engagement. Precisely, the dissertation attempts to find out the importance, roles, significance and factors involved in online student engagement and their consequences in achieving a positive learning environment. The first stream of inquiry investigated the perceived links between students'…

  4. Action Research Using Entomological Research to Promote Hands-On Science Inquiry in a High-Poverty, Midwest Urban High School

    NASA Astrophysics Data System (ADS)

    Stockmann, Dustin

    The purpose of this mixed-methods action research study was to examine to what extent entomological research can promote students' hands-on learning in a high-poverty, urban, secondary setting. In reviewing the literature, the researcher was not able to find a specific study that investigated how entomological research could promote the hands-on learning of students. The researcher did find evidence that research on learning in a secondary setting was important to student growth. It should also be noted that support was established for the implementation of hands-on science inquiry in the classroom setting. The study's purpose was to aid educators in their instruction by combining research-based strategies and hands-on science inquiry. The surveys asked 30 students to rate their understanding of three basic ideas. These core ideas were entomological research, hands-on science inquiry, and urban studies. These core ideas provided the foundation for the study. The questionnaires were based on follow-up ideas from the surveys. Two interview sessions were used to facilitate this one-on-one focus. Because the study included only 30 student participants, its findings may not be totally replicable. Further study investigating the links between entomological research and hands-on science learning in an urban environment is needed.

  5. Exploring the Impacts of Cognitive and Metacognitive Prompting on Students' Scientific Inquiry Practices Within an E-Learning Environment

    NASA Astrophysics Data System (ADS)

    Zhang, Wen-Xin; Hsu, Ying-Shao; Wang, Chia-Yu; Ho, Yu-Ting

    2015-02-01

    This study explores the effects of metacognitive and cognitive prompting on the scientific inquiry practices of students with various levels of initial metacognition. Two junior high school classes participated in this study. One class, the experimental group (n = 26), which received an inquiry-based curriculum with a combination of cognitive and metacognitive prompts, was compared to the other class, the comparison group (n = 25), which received only cognitive prompts in the same curriculum. Data sources included a test of inquiry practices, a questionnaire of metacognition, and worksheets. The results showed that the mixed cognitive and metacognitive prompts had significant impacts on the students' inquiry practices, especially their planning and analyzing abilities. Furthermore, the mixed prompts appeared to have a differential effect on those students with lower level metacognition, who showed significant improvement in their inquiry abilities. A combination of cognitive and metacognitive prompts during an inquiry cycle was found to promote students' inquiry practices.

  6. Using appreciative inquiry to help students identify strategies to overcome handicaps of their learning styles.

    PubMed

    Kumar, Latha Rajendra; Chacko, Thomas Vengail

    2012-01-01

    In India, as in some other neighboring Asian countries, students and teachers are generally unaware of the differences in the learning styles among learners, which can handicap students with learning styles alien to the common teaching/learning modality within the institution. This study aims to find out whether making students aware of their learning styles and then using the Appreciative Inquiry approach to help them discover learning strategies that worked for them and others with similar learning styles within the institution made them perceive that this experience improved their learning and performance in exams. The visual, auditory, read-write, and kinesthetic (VARK) inventory of learning styles questionnaire was administered to all 100 first-year medical students of the Father Muller's Medical College in Mangalore India to make them aware of their individual learning styles. An Appreciate Inquiry intervention was administered to 62 student volunteers who were counseled about the different learning styles and their adaptive strategies. Pre and post intervention change in student's perception about usefulness of knowing learning styles on their learning, learning behavior, and performance in examinations was collected from the students using a prevalidated questionnaire. Post intervention mean scores showed a significant change (P < 0.0001) in student's self-perceptions about usefulness of knowing one's learning style and discovering strategies that worked within the institutional environment. There was agreement among students that the intervention helped them become more confident in learning (84%), facilitating learning in general (100%), and in understanding concepts (100%). However, only 29% of the students agreed that the intervention has brought about their capability improvement in application of learning and 31% felt it improved their performance in exams. Appreciate Inquiry was perceived as useful in helping students discover learning strategies that work for different individual learning styles and sharing them within the group helped students choose strategies to help overcome the handicap presented by the school's teaching methods.

  7. Influences of Learning Environment Characteristics on Student Learning During Authentic Science Inquiry in an Introductory Physical Geology Course

    NASA Astrophysics Data System (ADS)

    Miller, H. R.; Sell, K. S.; Herbert, B. E.

    2004-12-01

    Shifts in learning goals in introductory earth science courses to greater emphasis on critical thinking and the nature of science has led to the adoption of new pedagogical techniques, including inquiry-based learning (IBL). IBL is thought to support understanding of the nature of science and foster development of scientific reasoning and critical thinking skills by modeling authentic science inquiry. Implementation of new pedagogical techniques do not occur without influence, instruction and learning occurs in a complex learning environment, referring to the social, physical, mental, and pedagogical contexts. This study characterized the impact of an IBL module verses a traditionally structured laboratory exercise in an introductory physical geology class at Texas A&M University. Student activities in this study included manipulation of large-scale data sets, use of multiple representations, and exposure to ill-constrained problems common to the Texas Gulf Coast system. Formative assessment data collected included an initial survey of self efficacy, student demographics, content knowledge and a pre-mental model expression. Summative data collected included a post-test, post-mental model expression, final laboratory report, and a post-survey on student attitudes toward the module. Mental model expressions and final reports were scored according to a validated rubric instrument (Cronbrach alpha: 0.84-0.98). Nine lab sections were randomized into experimental and control groups. Experimental groups were taught using IBL pedagogical techniques, while the control groups were taught using traditional laboratory "workbook" techniques. Preliminary assessment based on rubric scores for pre-tests using Student's t-test (N ˜ 140) indicated that the experimental and control groups were not significantly different (ρ > 0.05), therefore, the learning environment likely impacted student's ability to succeed. A non-supportive learning environment, including student attitudes, teaching assistant attitudes, the lack of scaffolded learning, limited pedagogical content knowledge, and departmental oversight, which were all encountered during this study, can have an affect on the students' attitudes and achievements during the course. Data collected showed an overall improvement in content knowledge (38% increase); while performance effort clearly declined as seen through post-mental model expressions (a decline in performance by 24.8%) and percentage of assignments turned in (39% of all students turned in the required final report). A non-supportive learning environment was also seen through student comments on the final survey, "I think that all the TA's and the professor have forgotten that we are an intro class". A non-supportive environment clearly does not encourage critical thinking and completion of work. This pilot study showed that the complex learning environment can play a significant role in student learning. It also illustrates the need for future studies in IBL with supportive learning environments in order for students to achieve academic excellence and develop scientific reasoning and critical thinking skills.

  8. Global Change and Environmental Hazards: Is the World Becoming More Disastrous? Hands-On! Developing Active Learning Modules on the Human Dimensions of Global Change.

    ERIC Educational Resources Information Center

    Mitchell, Jerry T.; Cutter, Susan L.

    This learning module aims to engage students in problem solving, critical thinking, scientific inquiry, and cooperative learning. The module is appropriate for use in any introductory or intermediate undergraduate course that focuses on human-environment relationships. The module introduces the complexities in the relationships among environmental…

  9. Hitting the TARGET? A Case Study of the Experiences of Teachers in Steel Mill Learning Centers.

    ERIC Educational Resources Information Center

    Rose, Amy D.; Jeris, Laurel; Smith, Robert

    Part of a larger study on the experience of teaching in the steel mill learning environment was an inquiry focused on professional development. Teachers and coordinators were all members of the Teachers Action Research Group for Educational Technology (TARGET), a group of adult educators interested in improving learning and teaching in career…

  10. The Poisons Project.

    ERIC Educational Resources Information Center

    Crawford, Barbara A.

    1998-01-01

    Details a project in which students explore and study the poisons in their environment by asking and finding answers to their own research questions. Includes some suggestions for involving students successfully in inquiry-based learning. (DDR)

  11. Primary Sources and Inquiry Learning

    ERIC Educational Resources Information Center

    Pappas, Marjorie L.

    2006-01-01

    In this article, the author discusses inquiry learning and primary sources. Inquiry learning puts students in the active role of investigators. Questioning, authentic and active learning, and interactivity are a few of the characteristics of inquiry learning that put the teacher and library media specialist in the role of coaches while students…

  12. Science inquiry and student diversity: Enhanced abilities and continuing difficulties after an instructional intervention

    NASA Astrophysics Data System (ADS)

    Lee, Okhee; Buxton, Cory; Lewis, Scott; Leroy, Kathryn

    2006-09-01

    This study examines elementary students' abilities to conduct science inquiry through their participation in an instructional intervention over a school year. The study involved 25 third and fourth grade students from six elementary schools representing diverse linguistic and cultural groups. Prior to and at the completion of the intervention, the students participated in elicitation sessions as they conducted a semistructured inquiry task on evaporation. The results indicate that students demonstrated enhanced abilities with some aspects of the inquiry task, but continued to have difficulties with other aspects of the task even after instruction. Although students from all demographic subgroups showed substantial gains, students from non-mainstream and less privileged backgrounds in science showed greater gains in inquiry abilities than their more privileged counterparts. The results contribute to the emerging literature on designing learning environments that foster science inquiry of elementary students from diverse backgrounds.

  13. SEAS (Student Experiments At Sea): Helping Teachers Foster Authentic Student Inquiry in the Science Classroom

    NASA Astrophysics Data System (ADS)

    Goehring, L.; Kelsey, K.; Carlson, J.

    2005-12-01

    Teacher professional development designed to promote authentic research in the classroom is ultimately aimed at improving student scientific literacy. In addition to providing teachers with opportunities to improve their understanding of science through research experiences, we need to help facilitate similar learning in students. This is the focus of the SEAS (Student Experiments At Sea) program: to help students learn science by doing science. SEAS offers teachers tools and a framework to help foster authentic student inquiry in the classroom. SEAS uses the excitement of deep-sea research, as well as the research facilities and human resources that comprise the deep-sea scientific community, to engage student learners. Through SEAS, students have the opportunity to practice inquiry skills and participate in research projects along side scientists. SEAS is a pilot program funded by NSF and sponsored by the Ridge 2000 research community. The pilot includes inquiry-based curricular materials, facilitated interaction with scientists, opportunities to engage students in research projects, and teacher training. SEAS offers a framework of resources designed to help translate inquiry skills and approaches to the classroom environment, recognizing the need to move students along the continuum of scientific inquiry skills. This framework includes hands-on classroom lessons, Classroom to Sea labs where students compare their investigations with at-sea investigations, and a student experiment competition. The program also uses the Web to create a virtual ``scientific community'' including students. Lessons learned from this two year pilot emphasize the importance of helping teachers feel knowledgeable and experienced in the process of scientific inquiry as well as in the subject. Teachers with experience in scientific research were better able to utilize the program. Providing teachers with access to scientists as a resource was also important, particularly given the challenges of working in the deep-sea environment. Also, fostering authentic student investigations (i.e., working through preparatory materials, developing proposals, analyzing data and writing summary reports) is challenging to fit within the academic year. Nonetheless, teacher feedback highlights that the excitement generated by participation in real research is highly motivating. Further, students experience a ``paradigm shift'' in understanding evidence-based reasoning and the process of scientific discovery.

  14. Students Learn How Nonprofits Utilize Volunteers through Inquiry-Based Learning

    ERIC Educational Resources Information Center

    Bolton, Elizabeth B.; Brennan, M. A.; Terry, Bryan D.

    2009-01-01

    This article highlights how undergraduate students implemented inquiry-based learning strategies to learn how nonprofit organizations utilize volunteers. In inquiry-based learning, students begin with a problem or question with some degree of focus or structure provided by the professor. The student inquiry showcased in this article was based on a…

  15. Empirical grounding of the nature of scientific inquiry: A study of developing researchers

    NASA Astrophysics Data System (ADS)

    Stucky, Amy Preece

    This work uses grounded theory methodology for developing theory about the nature of authentic scientific inquiry that occurs on a day-to-day basis in an academic research laboratory. Symbolic interaction and situated learning provide a theoretical framework. Data were collected from field notes, over 100 hours of videotape of researchers working in a chemical research laboratory, and interviews with participants. The phenomena of a research laboratory suggest that authentic daily work stretches scientists in three learning modalities: cognitive, affective and motivational beliefs and goals, which influence action to promote learning. A laboratory's line of research is divided into individual, thematic projects. Researchers are enabled in a specialized laboratory environment with sets of unique artifacts, substances, people and theoretical concepts to facilitate production of significant research goals. The work itself consists of chemical and mechanical processes facilitated by human actions, appropriate mental states, and theoretical explanations. The cognitive, affective (emotional), and conative (motivational) stretching then leads to explicit learning as well as implicit learning in the gain of experience and tacit knowledge. Implications of these findings about the nature of authentic scientific research on a day-to-day basis are applied to inquiry in science education in undergraduate and graduate education.

  16. Reading and Mathematics Bound Together: Creating a Home Environment for Preschool Learning

    ERIC Educational Resources Information Center

    Godwin, Amber J.; Rupley, William H.; Capraro, Robert M.; Capraro, Mary Margaret

    2016-01-01

    The combination of mathematics and reading in family reading time can positively impact children's ability to make sense of representations in both mathematics and reading. Four families volunteered to participate in this field based inquiry to learn how to integrate mathematics and reading in parent-supported activities. Four parents and their…

  17. Building Guided Inquiry Teams for 21st-Century Learners

    ERIC Educational Resources Information Center

    Kuhlthau, Carol C.; Maniotes, Leslie K.

    2010-01-01

    How can students learn to think for themselves, make good decisions, develop expertise, and become lifelong learners in a rapidly changing information environment? How can students learn, create, and find meaning from multiple sources of information? These are fundamental questions facing educators in designing schools for 21st-century learners.…

  18. People, Places, and Pandas: Engaging Preschoolers with Interactive Whiteboards

    ERIC Educational Resources Information Center

    Berson, Ilene R.; Cross, Megan D.; Ward, Jennifer; Berson, Michael J.

    2014-01-01

    In this article, the authors describe a recent project undertaken at the University of South Florida's (USF) Preschool for Creative Learning. To align with the inquiry approach of their laboratory school, the environment at the Preschool is designed so that children can learn through exploration and individual initiative. The administration and…

  19. The Optimum Blend: Affordances and Challenges of Blended Learning for Students

    ERIC Educational Resources Information Center

    Gedik, Nuray; Kiraz, Ercan; Ozden, M. Yasar

    2012-01-01

    The purpose of this study was to elicit students' perceptions regarding the most facilitative and most challenging features (affordances and barriers) in a blended course design. Following the phenomenological approach of qualitative inquiry, data were collected from ten undergraduate students who had experiences in a blended learning environment.…

  20. Scaffolding 6th Graders' Problem Solving in Technology-Enhanced Science Classrooms: A Qualitative Case Study

    ERIC Educational Resources Information Center

    Kim, Minchi C.; Hannafin, Michael J.

    2011-01-01

    In response to the calls to improve and deepen scientific understanding and literacy, considerable effort has been invested in developing sustainable technology-enhanced learning environments to improve science inquiry. Research has provided important guidance for scaffolding learning in mathematics and science. However, these reports have…

  1. Elements, Principles, and Critical Inquiry for Identity-Centered Design of Online Environments

    ERIC Educational Resources Information Center

    Dudek, Jaclyn; Heiser, Rebecca

    2017-01-01

    Within higher education, a need exists for learning designs that facilitate education and support students in sharing, examining, and refining their critical identities as learners and professionals. In the past, technology-mediated identity work has focused on individual tool use or a learning setting. However, we as professional learning…

  2. The Utility of Using Immersive Virtual Environments for the Assessment of Science Inquiry Learning

    ERIC Educational Resources Information Center

    Code, Jillianne; Clarke-Midura, Jody; Zap, Nick; Dede, Chris

    2013-01-01

    Determining the effectiveness of any educational technology depends upon teachers' and learners' perception of the functional utility of that tool for teaching, learning, and assessment. The Virtual Performance project at Harvard University is developing and studying the feasibility of using immersive technology to develop performance…

  3. Impact of Active Learning Environments on Community of Inquiry

    ERIC Educational Resources Information Center

    Stover, Sheri; Ziswiler, Korrin

    2017-01-01

    Colleges and universities are beginning to invest in active learning (AL) classrooms in an effort to replace the traditional lecture style pedagogy that is frequently used by many professors in higher education (Eagan et al., 2014). This is a quantitative research study conducted at a medium-sized Midwestern university. Students were given the…

  4. Finnish Science Teachers' Views on the Three Stage Model

    ERIC Educational Resources Information Center

    Sormunen, K.; Keinonen, T.; Holbrook, J.

    2014-01-01

    The core idea of the PROFILES project is to support science teachers' continuous professional development. The instructional innovation of the PROFILES is the so called Three Stage Model (TSM) which aims to arouse students' intrinsic motivation, to offer a meaningful inquiry-based learning environment and to use the science learning in…

  5. Globe, student inquiry, and learning communities

    Treesearch

    C.L. Henzel

    2000-01-01

    The Global Learning and Observations to Benefit the Environment (GLOBE) database is a web-based archive of environmental data gathered by K through 12 students in over 85 countries. The data are gathered under protocols developed by research scientists specializing in various fields of earth science. Students gather information, then enter and visualize the data via...

  6. Human Driving Forces and Their Impacts on Land Use/Land Cover. Hands-On! Developing Active Learning Modules on the Human Dimensions of Global Change.

    ERIC Educational Resources Information Center

    Moser, Susanne

    This learning module aims to engage students in problem solving, critical thinking, scientific inquiry, and cooperative learning. The module is appropriate for use in any introductory or intermediate undergraduate course that focuses on human-environment relationships. The module explains that land use/cover change has occurred at all times in all…

  7. Teacher Perception of Project-Based Learning in a Technology-Infused Secondary School Culture: A Critical Cine-Ethnographic Study

    ERIC Educational Resources Information Center

    Gratch, Jonathan

    2012-01-01

    Project-based learning has long been used in the educational realm as it emphasis a student-centered strategy which promotes meaning, enriched learning that enhances inquiry and problem-solving skills in a rich, authentic environment. The relevance and authentic design of projects may further be enhanced by the use of technology in the classroom.…

  8. Changes in science classrooms resulting from collaborative action research initiatives

    NASA Astrophysics Data System (ADS)

    Oh, Phil Seok

    Collaborative action research was undertaken over two years between a Korean science teacher and science education researchers at the University of Iowa. For the purpose of realizing science learning as envisioned by constructivist principles, Group-Investigations were implemented three or five times per project year. In addition, the second year project enacted Peer Assessments among students. Student perceptions of their science classrooms, as measured by the Constructivist Learning Environment Survey (CLES), provided evidence that the collaborative action research was successful in creating constructivist learning environments. Student attitudes toward science lessons, as examined by the Enjoyment of Science Lessons Scale (ESLS), indicated that the action research also contributed to developing more positive attitudes of students about science learning. Discourse analysis was conducted on video-recordings of in-class presentations and discussions. The results indicated that students in science classrooms which were moving toward constructivist learning environments engaged in such discursive practices as: (1) Communicating their inquiries to others, (2) Seeking and providing information through dialogues, and (3) Negotiating conflicts in their knowledge and beliefs. Based on these practices, science learning was viewed as the process of constructing knowledge and understanding of science as well as the process of engaging in scientific inquiry and discourse. The teacher's discursive practices included: (1) Wrapping up student presentations, (2) Addressing misconceptions, (3) Answering student queries, (4) Coaching, (5) Assessing and advising, (6) Guiding students discursively into new knowledge, and (7) Scaffolding. Science teaching was defined as situated acts of the teacher to facilitate the learning process. In particular, when the classrooms became more constructivist, the teacher intervened more frequently and carefully in student activities to fulfill a variety of pedagogical functions. Students perceived Group-Investigations and Peer Assessments as positive in that they contributed to realizing constructivist features in their classrooms. The students also reported that they gained several learning outcomes through Group-Investigations, including more positive attitudes, new knowledge, greater learning capabilities, and improved self-esteem. However, the Group-Investigation and Peer Assessment methods were perceived as negative and problematic by those who had rarely been exposed to such inquiry-based, student-centered approaches.

  9. Watershed Investigations

    ERIC Educational Resources Information Center

    Bodzin, Alec; Shive, Louise

    2004-01-01

    Investigating local watersheds presents middle school students with authentic opportunities to engage in inquiry and address questions about their immediate environment. Investigation activities promote learning in an investigations interdisciplinary context as students explore relationships among chemical, biological, physical, geological, and…

  10. Using a Module-based Laboratory To Incorporate Inquiry into a Large Cell Biology Course

    PubMed Central

    2005-01-01

    Because cell biology has rapidly increased in breadth and depth, instructors are challenged not only to provide undergraduate science students with a strong, up-to-date foundation of knowledge, but also to engage them in the scientific process. To these ends, revision of the Cell Biology Lab course at the University of Wisconsin–La Crosse was undertaken to allow student involvement in experimental design, emphasize data collection and analysis, make connections to the “big picture,” and increase student interest in the field. Multiweek laboratory modules were developed as a method to establish an inquiry-based learning environment. Each module utilizes relevant techniques to investigate one or more questions within the context of a fictional story, and there is a progression during the semester from more instructor-guided to more open-ended student investigation. An assessment tool was developed to evaluate student attitudes regarding their lab experience. Analysis of five semesters of data strongly supports the module format as a successful model for inquiry education by increasing student interest and improving attitude toward learning. In addition, student performance on inquiry-based assignments improved over the course of each semester, suggesting an improvement in inquiry-related skills. PMID:16220145

  11. Promoting knowledge integration of scientific principles and environmental stewardship: Assessing an issue-based approach to teaching evolution and marine conservation

    NASA Astrophysics Data System (ADS)

    Zimmerman, Timothy David

    2005-11-01

    Students and citizens need to apply science to important issues every day. Yet the design of science curricula that foster integration of science and everyday decisions is not well understood. For example, can curricula be designed that help learners apply scientific reasons for choosing only environmentally sustainable seafood for dinner? Learners must develop integrated understandings of scientific principles, prior experiences, and current decisions in order to comprehend how everyday decisions impact environmental resources. In order to investigate how such integrated understandings can be promoted within school science classes, research was conducted with an inquiry-oriented curriculum that utilizes technology and a visit to an informal learning environment (aquarium) to promote the integration of scientific principles (adaptation) with environmental stewardship. This research used a knowledge integration approach to teaching and learning that provided a framework for promoting the application of science to environmental issues. Marine biology, often forsaken in classrooms for terrestrial biology, served as the scientific context for the curriculum. The curriculum design incorporated a three-phase pedagogical strategy and new technology tools to help students integrate knowledge and experiences across the classroom and aquarium learning environments. The research design and assessment protocols included comparisons among and within student populations using two versions of the curriculum: an issue-based version and a principle-based version. These inquiry curricula were tested with sophomore biology students attending a marine-focused academy within a coastal California high school. Pretest-posttest outcomes were compared between and within the curricular treatments. Additionally, comparisons were made between the inquiry groups and seniors in an Advanced Placement biology course who attend the same high school. Results indicate that the inquiry curricula enabled students to integrate and apply knowledge of evolutionary biology to real-world environmental stewardship issues. Over the course of the curriculum, students' ideas became more scientifically normative and tended to focus around concepts of natural selection. Students using the inquiry curricula outperformed the Advanced Placement biology students on several measures, including knowledge of evolutionary biology. These results have implications for designing science curricula that seek to promote the application of science to environmental stewardship and integrate formal and informal learning environments.

  12. Do students with higher self-efficacy exhibit greater and more diverse scientific inquiry skills: An exploratory investigation in "River City", a multi-user virtual environment

    NASA Astrophysics Data System (ADS)

    Ketelhut, Diane Jass

    In this thesis, I conduct an exploratory study to investigate the relationship between students' self-efficacy on entry into authentic scientific activity and the scientific inquiry behaviors they employ while engaged in that process, over time. Scientific inquiry has been a major standard in most science education policy doctrines for the past two decades and is exemplified by activities such as making observations, formulating hypotheses, gathering and analyzing data, and forming conclusions from that data. The self-efficacy literature, however, indicates that self-efficacy levels affect perseverance and engagement. This study investigated the relationship between these two constructs. The study is conducted in a novel setting, using an innovative science curriculum delivered through an interactive computer technology that recorded each student's conversations, movements, and activities while behaving as a practicing scientist in a "virtual world" called River City. River City is a Multi-User Virtual Environment designed to engage students in a collaborative scientific inquiry-based learning experience. As a result, I was able to follow students' moment-by-moment choices of behavior while they were behaving as scientists. I collected data on students' total scientific inquiry behaviors over three visits to River City, as well as the number of sources from which they gathered their scientific data. I analyzed my longitudinal data on the 96 seventh-graders using individual growth modeling. I found that self-efficacy played a role in the number of data-gathering behaviors students engaged in initially, with high self-efficacy students engaging in more data gathering than students with low self-efficacy. However, the impact of student self-efficacy on rate of change in data gathering behavior differed by gender; by the end of the study, student self-efficacy did not impact data gathering. In addition, students' level of self-efficacy did not affect how many different sources from which they chose to gather data. There are indications in my results that novel interventions like a Multi-user Virtual Environment might act as a catalyst for change in student learning. Further research using these techniques may enable a better understanding of the interaction between self-efficacy and scientific inquiry, and eventually science learning outcomes.

  13. Inquiry-Based Science Education: Scaffolding Pupils' Self-Directed Learning in Open Inquiry

    ERIC Educational Resources Information Center

    van Uum, Martina S. J.; Verhoeff, Roald P.; Peeters, Marieke

    2017-01-01

    This paper describes a multiple case study on open inquiry-based learning in primary schools. During open inquiry, teachers often experience difficulties in balancing support and transferring responsibility to pupils' own learning. To facilitate teachers in guiding open inquiry, we developed hard and soft scaffolds. The hard scaffolds consisted of…

  14. Planning for Play in a Playground

    ERIC Educational Resources Information Center

    Walsh, Prue

    2008-01-01

    Early childhood educators and researchers often write of the need for a "magical playscape"--a sensory-rich environment that will draw out children's active inquiry and engagement in an outside learning environment. Despite this soundly child-based information, the reality of many playgrounds is a sandbox, a climbing frame, and a bicycle path;…

  15. Learning by exploring planets, plate tectonics, and the process of inquiry

    NASA Astrophysics Data System (ADS)

    Bartlett, M. G.

    2006-12-01

    Inquiry-based instruction should be question driven, involve good triggers for learning, emphasize researchable questions, build research skills, provide mechanisms for students to monitor their progress, and draw on the expertise of the instruction to promote inquiry and reflection. At Brigham Young University Hawaii, we have implemented an inquiry based approach to teaching introductory Earth science which provides students with little or no background in the sciences immediate access to participation in current research of genuine scientific interest. An example of this process is presented in which students are engaged in reflecting on whether plate tectonics is a general theory of planetary organization and evolution. Students use topographic, magnetic, spectral, and other data from NASA and ESA missions to determine whether "Earth-style" plate tectonics is functional on planets and moons elsewhere in the solar system. Students are engaged in a data- rich environment from which they must formulate and test multiple hypotheses. Throughout the process, students are engaged in small groups to identify what they need to learn to answer their questions, what resources are available to them, how best to report their findings, and how they can assess the amount of learning that is taking place. Students' responses to the course have been overwhelmingly positive and suggest that many of the students are internalizing the meta-cognitive skills the course is designed to inculcate.

  16. The opportunities and challenges of guided inquiry science for students with special needs

    NASA Astrophysics Data System (ADS)

    Miller, Marianne

    Research in science education has been conducted with various goals for instruction. Four outcomes identified include: immediate and delayed recall, literal comprehension, science skills and processes, and conceptual understanding. The promise of developing important thinking skills exists for all students if science instruction is designed to teach students the products of science and the principled process of inquiry. Guided inquiry science seeks to develop conceptual understanding through the pursuit of meaningful questions using scientific problem solving to conduct investigations that are thoughtfully generated and evaluated. Using a social constructivist perspective, this study examines the learning experiences of four students, identified by their teachers as learning disabled or underachieving. Four case studies are presented of the students' participation in a guided inquiry investigation of the behavior of light. Measures of conceptual understanding included pre- and post-instruction assessments, interviews, journal writing, videotapes, and fieldnotes. All four students demonstrated improved conceptual understanding of light. Five patterns of relationships influenced the development of the students' thinking. First, differences in the culture of the two classrooms altered the learning environment, Second, the nature of teacher interaction with the target students affected conceptual understanding. Third, interactions with peers modified the learning experiences for the identified students. Fourth, the conceptual and procedural complexity of the tasks increased the tendency for the students to lose focus. Finally, the literacy requirements of the work were challenging for these students.

  17. Personal Inquiry Learning Trajectories in Geography: Technological Support across Contexts

    ERIC Educational Resources Information Center

    Kerawalla, Lucinda; Littleton, Karen; Scanlon, Eileen; Jones, Ann; Gaved, Mark; Collins, Trevor; Mulholland, Paul; Blake, Canan; Clough, Gill; Conole, Gráinne; Petrou, Marilena

    2013-01-01

    Student engagement in the design and implementation of inquiries is an effective way for them to learn about the inquiry process and the domain being studied. However, inquiry learning in geography can be challenging for teachers and students due to the complexity of scientific inquiry and the diversity of pupils' and teachers' knowledge and…

  18. Does Artificial Tutoring Foster Inquiry Based Learning?

    ERIC Educational Resources Information Center

    Schmoelz, Alexander; Swertz, Christian; Forstner, Alexandra; Barberi, Alessandro

    2014-01-01

    This contribution looks at the Intelligent Tutoring Interface for Technology Enhanced Learning, which integrates multistage-learning and inquiry-based learning in an adaptive e-learning system. Based on a common pedagogical ontology, adaptive e-learning systems can be enabled to recommend learning objects and activities, which follow inquiry-based…

  19. Undergraduate Students' Perceptions of an Inquiry-Based Physics Course

    NASA Astrophysics Data System (ADS)

    Ballone Duran, Lena; McArthur, Julia; van Hook, Stephen

    2004-04-01

    The purpose of this study was to examine middle childhood students'' perceptions of the learning environment in a reform-based physics course. A lecture-style, introductory physics course was modified into an inquiry-based course designed for preservice middle childhood teachers through the collaborative efforts of faculty in the Colleges of Education and Arts and Sciences. Focus group interviews were conducted to examine students'' perceptions. The results suggested that the students initially felt a level of frustration with a new constructivist experience; however, they were able to embrace the inquiry method and expressed a desire for additional specialized content courses for preservice teachers.

  20. The impact of collaborative groups versus individuals in undergraduate inquiry-based astronomy laboratory learning exercises

    NASA Astrophysics Data System (ADS)

    Sibbernsen, Kendra J.

    One of the long-standing general undergraduate education requirements common to many colleges and universities is a science course with a laboratory experience component. One of the objectives frequently included in the description of most of these courses is that a student will understand the nature and processes of scientific inquiry. However, recent research has shown that learners in traditional undergraduate science laboratory environments are not developing a sufficiently meaningful understanding of scientific inquiry. Recently, astronomy laboratory activities have been developed that intentionally scaffold a student from guided activities to open inquiry ones and preliminary results show that these laboratories are successful for supporting students to understand the nature of scientific inquiry (Slater, S., Slater, T. F., & Shaner, 2008). This mixed-method quasi-experimental study was designed to determine how students in an undergraduate astronomy laboratory increase their understanding of inquiry working in relative isolation compared to working in small collaborative learning groups. The introductory astronomy laboratory students in the study generally increased their understanding of scientific inquiry over the course of the semester and this held true similarly for students working in groups and students working individually in the laboratories. This was determined by the examining the change in responses from the pretest to the posttest administration of the Views of Scientific Inquiry (VOSI) survey, the increase in scores on laboratory exercises, and observations from the instructor. Because the study was successful in determining that individuals in the astronomy laboratory do as well at understanding inquiry as those who complete their exercises in small groups, it would be appropriate to offer these inquiry-based exercises in an online format.

  1. "It's a Mystery!": A Case Study of Implementing Forensic Science in Preschool as Scientific Inquiry

    ERIC Educational Resources Information Center

    Howitt, Christine; Upson, Emily; Lewis, Simon

    2011-01-01

    Children have immense curiosity, a thirst for knowledge and a questioning attitude. They are innate scientists. The challenge for early childhood educators is to fuel this curiosity through the provision of appropriate learning experiences and an engaging environment within early learning centres. This paper presents a detailed case study of how a…

  2. "Teacher, There's an Elephant in the Room!" An Inquiry Approach to Preschoolers' Early Language Learning

    ERIC Educational Resources Information Center

    Kampmann, Jennifer Anne; Bowne, Mary Teresa

    2011-01-01

    Children need sound language and literacy skills to communicate with others and actively participate in a classroom learning community. When an early childhood classroom offers a language- and literacy-rich environment, children have numerous opportunities to practice language and literacy in a social setting. A language-rich classroom includes an…

  3. Implementing Process-Oriented, Guided-Inquiry Learning for the First Time: Adaptations and Short-Term Impacts on Students' Attitude and Performance

    ERIC Educational Resources Information Center

    Chase, Anthony; Pakhira, Deblina; Stains, Marilyne

    2013-01-01

    Innovative, research-based instructional practices are critical to transforming the conventional undergraduate instructional landscape into a student-centered learning environment. Research on dissemination of innovation indicates that instructors often adapt rather than adopt these practices. These adaptations can lead to the loss of critical…

  4. Learning in the Out-of-Doors: Motivation, Discovery, Inquiry, Exploration, Investigation.

    ERIC Educational Resources Information Center

    Burtnett, Nancy, Ed.

    Methods for use by teachers of elementary-school-age children in utilizing outdoor experiences in the study of various subjects are presented in this guide. Learning activities are described in 3 units: (1) language arts, in which students are stimulated to communicate ideas they have about the natural environment and to understand their…

  5. Exploring the Reciprocal Relationship between a Comprehensive Living-Learning Program and Institutional Culture: A Narrative Inquiry Case Study

    ERIC Educational Resources Information Center

    Marquart, Christopher P.

    2017-01-01

    Over the past 50 years, living-learning programs (LLPs) have emerged as a dynamic curricular innovation in higher education. These programs are residentially based, seeking to seamlessly integrate the classroom and residence hall environments and blur the traditional boundaries between the academic and residential experiences for students (Kuh,…

  6. Collaborative Inquiry with a Web-Based Science Learning Environment: When Teachers Enact It Differently

    ERIC Educational Resources Information Center

    Sun, Daner; Looi, Chee-Kit; Xie, Wenting

    2014-01-01

    Though discussion of the teacher factor in ICT-enabled science learning abounds in the literature, the investigation of Teacher Enactments (TEs) of ICT-facilitated lessons through exploring teaching practices is still under-explored and under-recognized. Current studies are still lacking in evidence-based findings of TEs based on the investigation…

  7. Training the Foot Soldiers of Inquiry: Development and Evaluation of a Graduate Teaching Assistant Learning Community

    ERIC Educational Resources Information Center

    Linenberger, Kimberly; Slade, Michael C.; Addis, Elizabeth A.; Elliott, Emily R.; Mynhardt, Glené; Raker, Jeffrey R.

    2014-01-01

    As part of a Howard Hughes Program for Innovation in Science Education grant at Iowa State University, a series of interdisciplinary graduate teaching assistant learning communities (TALC) were developed. The purpose of these communities was to create an environment to facilitate teaching assistants' pedagogical development and training to enhance…

  8. Computer-Supported Collaborative Inquiry on Buoyancy: A Discourse Analysis Supporting the "Pieces" Position on Conceptual Change

    ERIC Educational Resources Information Center

    Turcotte, Sandrine

    2012-01-01

    This article describes in detail a conversation analysis of conceptual change in a computer-supported collaborative learning environment. Conceptual change is an essential learning process in science education that has yet to be fully understood. While many models and theories have been developed over the last three decades, empirical data to…

  9. Student Learning Outcomes and Pedagogy in Online and Face-to-Face College English Composition: A Mixed Methods Study

    ERIC Educational Resources Information Center

    Montagne, Lisa

    2012-01-01

    This mixed methods study combined quantitative statistics and qualitative inquiry to determine if any differences exist between how students in face-to-face and online college English composition courses performed on and demonstrated knowledge of the California state curriculum standards, and to explore the online learning environment in this…

  10. Cognitive theories and the design of e-learning environments.

    PubMed

    Gillani, Bijan; O'Guinn, Christina

    2004-01-01

    Cognitive development refers to a mental process by which knowledge is acquired, stored, and retrieved to solve problems. Therefore, cognitive developmental theories attempt to explain cognitive activities that contribute to students' intellectual development and their capacity to learn and solve problems. Cognitive developmental research has had a great impact on the constructivism movement in education and educational technology. In order to appreciate how cognitive developmental theories have contributed to the design, process and development of constructive e-learning environments, we shall first present Piaget's cognitive theory and derive an inquiry training model from it that will support a constructivism approach to teaching and learning. Second, we will discuss an example developed by NASA that used the Web as an appropriate instructional delivery medium to apply Piaget's cognitive theory to create e-learning environments.

  11. Examining the Effects of Learning Styles, Epistemic Beliefs and the Computational Experiment Methodology on Learners' Performance Using the Easy Java Simulator Tool in STEM Disciplines

    ERIC Educational Resources Information Center

    Psycharis, Sarantos; Botsari, Evanthia; Chatzarakis, George

    2014-01-01

    Learning styles are increasingly being integrated into computational-enhanced earning environments and a great deal of recent research work is taking place in this area. The purpose of this study was to examine the impact of the computational experiment approach, learning styles, epistemic beliefs, and engagement with the inquiry process on the…

  12. Using Teachers' Inquiry-Oriented Curriculum Materials as a Means to Examine Their Pedagogical Design Capacity and Pedagogical Content Knowledge for Inquiry-Based Learning

    ERIC Educational Resources Information Center

    Papaevripidou, Marios; Irakleous, Maria; Zacharia, Zacharias C.

    2017-01-01

    The study aimed at examining preservice elementary teachers' inquiry-oriented curriculum materials in an attempt to unravel their pedagogical design capacity (PDC) and pedagogical content knowledge (PCK) for inquiry-based learning (IBL), after attending a professional development program (PDP) centered around inquiry-based teaching and learning.…

  13. The Invisible Hand of Inquiry-Based Learning

    ERIC Educational Resources Information Center

    Bennett, Mark

    2015-01-01

    The key elements of learning in a classroom remain largely invisible. Teachers cannot expect every student to learn to their fullest capacity; yet they can augment learning within a classroom through inquiry-based learning. In this article, the author describes inquiry-based learning and how to begin this process in the classroom.

  14. Science Teachers' Perceptions of the Relationship Between Game Play and Inquiry Learning

    NASA Astrophysics Data System (ADS)

    Mezei, Jessica M.

    The implementation of inquiry learning in American science classrooms remains a challenge. Teachers' perceptions of inquiry learning are predicated on their past educational experiences, which means outdated methods of learning may influence teachers' instructional approaches. In order to enhance their understanding and ultimately their implementation of inquiry learning, teachers need new and more relevant models. This study takes a preliminary step exploring the potential of game play as a valuable experience for science teachers. It has been proposed that game play and inquiry experiences can embody constructivist processes of learning, however there has been little work done with science teachers to systematically explore the relationship between the two. Game play may be an effective new model for teacher education and it is important to understand if and how teachers relate game playing experience and knowledge to inquiry. This study examined science teachers' game playing experiences and their perceptions of inquiry experiences and evaluated teacher's recognition of learning in both contexts. Data was collected through an online survey (N=246) and a series of follow-up interviews (N=29). Research questions guiding the study were: (1) What is the nature of the relationship between science teachers' game experience and their perceptions of inquiry? (2) How do teachers describe learning in and from game playing as compared with inquiry science learning? and (3) What is the range of similarities and differences teachers articulate between game play and inquiry experiences?. Results showed weak quantitative links between science teachers' game experiences and their perceptions of inquiry, but identified promising game variables such as belief in games as learning tools, game experiences, and playing a diverse set of games for future study. The qualitative data suggests that teachers made broad linkages in terms of parallels of both teaching and learning. Teachers mostly articulated learning connections in terms of the active or participatory nature of the experiences. Additionally, a majority of teachers discussed inquiry learning in concert with inquiry teaching which led to a wider range of comparisons made based on the teacher's interpretation of inquiry as a pedagogical approach instead of focusing solely on inquiry learning. This study has implications for both research and practice. Results demonstrate that teachers are interested in game play as it relates to learning and the linkages teachers made between the domains suggests it may yet prove to be a fruitful analogical device that could be leveraged for teacher development. However, further study is needed to test these claims and ultimately, research that further aligns the benefits of game play experiences to teacher practice is encouraged in order to build on the propositions and findings of this thesis.

  15. The Effect of Students' Perceptions of Internet Information Quality on Their Use of Internet Information in Inquiry-Based Learning

    ERIC Educational Resources Information Center

    Pow, Jacky; Li, Sandy C.

    2015-01-01

    In Web 2.0 environments, the quality of published information can vary significantly and much of the information on the Internet is unproven. This unverified information hinders rather than facilitates student learning, especially among undergraduate students who depend heavily on Internet resources for their studies. Currently, we do not have…

  16. The Effect of Agent-Based Lectures on Student Learning and Conceptual Change in an Online Inquiry-Based Learning Environment

    ERIC Educational Resources Information Center

    Chang, Ju-Yu

    2013-01-01

    Cognitive load theorists claim that problem-centered instruction is not an effective instruction because it is not compatible with human cognitive structure. They argue that the nature of problem-centered instruction tends to over-load learner working memory capacity. That is why many problem-centered practices fail. To better support students and…

  17. The acquisition of inquiry skills and computer skills by 8th grade urban middle school students in a technology-supported environment

    NASA Astrophysics Data System (ADS)

    Ruffin, Monya Aisha

    The evolution of increased global accessibility and dependency on computer technologies has revolutionized most aspects of everyday life, including a rapid transformation of 21st century schools. Current changes in education reflect the need for the integration of effective computer technologies in school curricula. The principal objective of this investigation was to examine the acquisition of computer skills and inquiry skills by urban eighth grade students in a technology-supported environment. The study specifically focused on students' ability to identify, understand, and work through the process of scientific inquiry, while also developing computer technology tool skills. The unique component of the study was its contextualization within a local historically significant setting---an African-American cemetery. Approximately seventy students, in a local middle school, participated in the five-week treatment. Students conducted research investigations on site and over the Internet, worked in collaborative groups, utilized technology labs, and received inquiry and computer technology instruction. A mixed method design employing quantitative and qualitative methods was used. Two pilot studies conducted in an after-school science club format helped sharpen the research question, data collection methods, and survey used in the school-based study. Complete sets of data from pre and post surveys and journals were collected from sixty students. Six students were randomly selected to participate in in-depth focus group interviews. Researcher observations and inferences were also included in the analysis. The research findings showed that, after the treatment, students: (a) acquired more inquiry skills and computer skills, (b) broadened their basic conceptual understanding and perspective about science, (c) engaged actively in a relevant learning process, (d) created tangible evidence of their inquiry skills and computer skills, and (e) recalled and retained more details about the inquiry process and the computer technology tools (when they attended at least 80% of the treatment sessions). The findings indicated that project-based, technology-supported experiences allowed students to learn content in an interdisciplinary way (building on culturally relevant local histories) and provided enjoyable learning opportunities for students and teachers. Participation in the treatment encouraged students to think beyond the technical aspects of technology and relate its relevancy and usefulness to solving scientific queries.

  18. Guided Inquiry Learning With Sea Water Battery Project

    NASA Astrophysics Data System (ADS)

    Mashudi, A.

    2017-02-01

    Science learning process is expected to produce valuable product, innovative and real learning environment, and provide memorable learning experience. That orientation can be contained in Inquiry Based Learning. SMP N 4 Juwana is located close to the beach. That’s why, Sea Water Battery Project is very suitable to be applied in learning activity as an effort to fulfill the renewable energy based on local wisdom. This study aims to increase interest, activity and achievement of students. Learning implementation stage, namely : Constructing Sea Water Battery project, observation, group presentations, and feedback. Sea Water Battery is renewable energy battery from materials easily found around the learner. The materials used are copper plate as the anode, zinc plate as the cathode and sea water as the electrolyte. Average score of students Interest on the first cycle 76, while on the second cycle 85. Average score of students Activity on the first cycle 76 and on the second cycle 86. Average score of students achievement on the first cycle 75, while on the second cycle 84. This learning process gave nurturant effect for students to keep innovating and construct engineering technology for the future.

  19. Investigating engagement, thinking, and learning among culturally diverse, urban sixth graders experiencing an inquiry-based science curriculum, contextualized in the local environment

    NASA Astrophysics Data System (ADS)

    Kelley, Sybil Schantz

    This mixed-methods study combined pragmatism, sociocultural perspectives, and systems thinking concepts to investigate students' engagement, thinking, and learning in science in an urban, K-8 arts, science, and technology magnet school. A grant-funded school-university partnership supported the implementation of an inquiry-based science curriculum, contextualized in the local environment through field experiences. The researcher worked as co-teacher of 3 sixth-grade science classes and was deeply involved in the daily routines of the school. The purposes of the study were to build a deeper understanding of the complex interactions that take place in an urban science classroom, including challenges related to implementing culturally-relevant instruction; and to offer insight into the role educational systems play in supporting teaching and learning. The central hypothesis was that connecting learning to meaningful experiences in the local environment can provide culturally accessible points of engagement from which to build science learning. Descriptive measures provided an assessment of students' engagement in science activities, as well as their levels of thinking and learning throughout the school year. Combined with analyses of students' work files and focus group responses, these findings provided strong evidence of engagement attributable to the inquiry-based curriculum. In some instances, degree of engagement was found to be affected by student "reluctance" and "resistance," terms defined but needing further examination. A confounding result showed marked increases in thinking levels coupled with stasis or decrease in learning. Congruent with past studies, data indicated the presence of tension between the diverse cultures of students and the mainstream cultures of school and science. Findings were synthesized with existing literature to generate the study's principal product, a grounded theory model representing the complex, interacting factors involved in teaching and learning. The model shows that to support learning and to overcome cultural tensions, there must be alignment among three main forces or "causal factors": students, teaching, and school climate. Conclusions emphasize system-level changes to support science learning, including individualized support for students in the form of differentiated instruction; focus on excellence in teaching, particularly through career-spanning professional support for teachers; and attention to identifying key leverage points for implementing effective change.

  20. I Learnt a Whole Lot More than Churning out an Essay: Using Online Tools to Support Critical Collaborative Inquiry in a Blended Learning Environment

    ERIC Educational Resources Information Center

    Khoo, Elaine; Johnson, E. Marcia; Zahra, Anne

    2012-01-01

    This paper reports on a qualitative case study of a teacher and her students in a postgraduate Tourism course in New Zealand in which a learning management system, discussion forums, and wikis were used to facilitate student engagement and deeper learning of course content. Although the teacher was experienced in face-to-face teaching contexts,…

  1. Can Inquiry-Based Learning Strengthen the Links between Teaching and Disciplinary Research?

    ERIC Educational Resources Information Center

    Spronken-Smith, Rachel; Walker, Rebecca

    2010-01-01

    Inquiry-based learning has been promoted as a student-centred approach that can strengthen the links between teaching and research. This article examines the potential of inquiry-based learning to strengthen the teaching-research nexus by analysing three case studies: a "structured inquiry" third-year endocrinology medicine module, a…

  2. Elementary Teacher's Conceptions of Inquiry Teaching: Messages for Teacher Development

    ERIC Educational Resources Information Center

    Ireland, Joseph E.; Watters, James J.; Brownlee, Jo; Lupton, Mandy

    2012-01-01

    This study explored practicing elementary school teacher's conceptions of teaching in ways that foster inquiry-based learning in the science curriculum (inquiry teaching). The advocacy for inquiry-based learning in contemporary curricula assumes the principle that students learn in their own way by drawing on direct experience fostered by the…

  3. Enhancement of Self Efficacy of Vocational School Students in Buffer Solution Topics through Guided Inquiry Learning

    NASA Astrophysics Data System (ADS)

    M, Ardiany; W, Wahyu; A, Supriatna

    2017-09-01

    The more students who feel less confident in learning, so doing things that are less responsible, such as brawl, drunkenness and others. So researchers need to do research related to student self efficacy in learning, in order to reduce unwanted things. This study aims to determine the effect of guided inquiry learning on improving self-efficacy of learners in the buffer solution topics. The method used is the mixed method which is the two group pretest postest design. The subjects of the study are 60 students of class XI AK in one of the SMKN in Bandung, consisting of 30 experimental class students and 30 control class students. The instruments used in this study mix method consist of self-efficacy questionnaire of pretest and posttest learners, interview guides, and observation sheet. Data analysis using t test with significant α = 0,05. Based on the result of inquiry of guided inquiry study, there is a significant improvement in self efficacy aspect of students in the topic of buffer solution. Data of pretest and posttest interview, observation, questionnaire showed significant result, that is improvement of experimental class with conventionally guided inquiry learning. The mean of self-efficacy of student learning there is significant difference of experiment class than control class equal to 0,047. There is a significant relationship between guided inquiry learning with self efficacy and guided inquiry learning. Each correlation value is 0.737. The learning process with guided inquiry is fun and challenging so that students can expose their ideas and opinions without being forced. From the results of questionnaires students showed an attitude of interest, sincerity and a good response of learning. While the results of questionnaires teachers showed that guided inquiry learning can make students learn actively, increased self-efficacy.

  4. Identifying Effective Design Features of Technology-Infused Inquiry Learning Modules: A Two-Year Study of Students' Inquiry Abilities

    ERIC Educational Resources Information Center

    Hsu, Ying-Shao; Fang, Su-Chi; Zhang, Wen-Xin; Hsin-Kai, Wu; Wu, Pai-Hsing; Hwang, Fu-Kwun

    2016-01-01

    The two-year study aimed to explore how students' development of different inquiry abilities actually benefited from the design of technology-infused learning modules. Three learning modules on the topics of seasons, environmental issues and air pollution were developed to facilitate students' inquiry abilities: questioning, planning, analyzing,…

  5. Investigation of effective strategies for developing creative science thinking

    NASA Astrophysics Data System (ADS)

    Yang, Kuay-Keng; Lee, Ling; Hong, Zuway-R.; Lin, Huann-shyang

    2016-09-01

    The purpose of this study was to explore the effectiveness of the creative inquiry-based science teaching on students' creative science thinking and science inquiry performance. A quasi-experimental design consisting one experimental group (N = 20) and one comparison group (N = 24) with pretest and post-test was conducted. The framework of the intervention focused on potential strategies such as promoting divergent and convergent thinking and providing an open, inquiry-based learning environment that are recommended by the literature. Results revealed that the experimental group students outperformed their counterparts in the comparison group on the performances of science inquiry and convergent thinking. Additional qualitative data analyses from classroom observations and case teacher interviews identified supportive teaching strategies (e.g. facilitating associative thinking, sharing impressive ideas, encouraging evidence-based conclusions, and reviewing and commenting on group presentations) for developing students' creative science thinking.

  6. Chemical Understanding and Graphing Skills in an Honors Case-Based Computerized Chemistry Laboratory Environment: The Value of Bidirectional Visual and Textual Representations

    ERIC Educational Resources Information Center

    Dori, Yehudit J.; Sasson, Irit

    2008-01-01

    The case-based computerized laboratory (CCL) is a chemistry learning environment that integrates computerized experiments with emphasis on scientific inquiry and comprehension of case studies. The research objective was to investigate chemical understanding and graphing skills of high school honors students via bidirectional visual and textual…

  7. Improving Teacher Education through Inquiry-Based Learning

    ERIC Educational Resources Information Center

    Ortlieb, Evan T.; Lu, Lucia

    2011-01-01

    Preservice educators face daunting challenges throughout their professional development, but no challenge is greater than that of contextualizing their instruction within multicultural environments. Addressing the increasing diversity and ever-changing cultures within student populations is often skimmed over within teacher education curriculums;…

  8. Learning To Live with Complexity.

    ERIC Educational Resources Information Center

    Dosa, Marta

    Neither the design of information systems and networks nor the delivery of library services can claim true user centricity without an understanding of the multifaceted psychological environment of users and potential users. The complexity of the political process, social problems, challenges to scientific inquiry, entrepreneurship, and…

  9. Increments of Transformation from Midnight to Daylight: How a Professor and Four Undergraduate Students Experienced an Original Philosophy of Teaching and Learning in Two Online Courses

    ERIC Educational Resources Information Center

    Arroyo, Andrew T.; Kidd, Angel R.; Burns, Susan M.; Cruz, Ivan J.; Lawrence-Lamb, Judy E.

    2015-01-01

    Drawing from the qualitative tradition of narrative inquiry, and situated in an online learning environment at a historically Black college or university, this study explores the potential transformative impact of an original teaching philosophy from the perspectives of a tenure-track assistant professor and four former, nontraditional…

  10. nQuire: Technological Support for Personal Inquiry Learning

    ERIC Educational Resources Information Center

    Mulholland, P.; Anastopoulou, S.; Collins, T.; Feisst, M.; Gaved, M.; Kerawalla, L.; Paxton, M.; Scanlon, E.; Sharples, M.; Wright, M.

    2012-01-01

    This paper describes the development of nQuire, a software application to guide personal inquiry learning. nQuire provides teacher support for authoring, orchestrating, and monitoring inquiries as well as student support for carrying out, configuring, and reviewing inquiries. nQuire allows inquiries to be scripted and configured in various ways,…

  11. Exercise in Inquiry: Critical Thinking in an Inquiry-Based Exercise Physiology Laboratory Course.

    ERIC Educational Resources Information Center

    DiPasquale, Dana M.; Mason, Cheryl L.; Kolkhorst, Fred W.

    2003-01-01

    Describes an inquiry-based teaching method implemented in an undergraduate exercise physiology laboratory course. Indicates students' strong, positive feelings about the inquiry-based teaching method and shows that inquiry-based learning results in a higher order of learning not typically observed in traditional style classes. This teaching method…

  12. Engaging Nature of Science to Preservice Teachers through Inquiry-Based Classroom

    ERIC Educational Resources Information Center

    Nuangchalerm, Prasart

    2013-01-01

    Inquiry-based classroom is widely distributed in the school science based on its useful and effective instruction. Science teachers are key elements allowing students to have scientific inquiry. If teachers understand and imply inquiry-based learning into science classroom, students will learn science as scientific inquiry and understand nature of…

  13. Teaching Nature of Scientific Inquiry in Chemistry: How Do German Chemistry Teachers Use Labwork to Teach NOSO?

    ERIC Educational Resources Information Center

    Strippel, C. G.; Sommer, K.

    2015-01-01

    Learning about scientific inquiry (SI) is an important aspect of scientific literacy and there is a solid international consensus of what should be learned about it. Learning about SI comprises both the doing of science (process) and knowledge about the nature of scientific inquiry (NOSI). German reform documents promote inquiry generally but do…

  14. Open inquiry-based learning experiences: a case study in the context of energy exchange by thermal radiation

    NASA Astrophysics Data System (ADS)

    Pizzolato, Nicola; Fazio, Claudio; Rosario Battaglia, Onofrio

    2014-01-01

    An open inquiry (OI)-based teaching/learning experience, regarding a scientific investigation of the process of energy exchange by thermal radiation, is presented. A sample of upper secondary school physics teachers carried out this experience at the University of Palermo, Italy, in the framework of ESTABLISH, a FP7 European Project aimed at promoting and developing inquiry-based science education. The teachers had the opportunity to personally experience an OI-based learning activity, with the aim of exploring the pedagogical potentialities of this teaching approach to promote both the understanding of difficult concepts and a deeper view of scientific practices. The teachers were firstly engaged in discussions concerning real-life problematic situations, and then stimulated to design and carry out their own laboratory activities, aimed at investigating the process of energy exchange by thermal radiation. A scientific study on the energy exchange between a powered resistor and its surrounding environment, during the heating and cooling processes, was designed and performed. Here we report the phases of this experiment by following the teachers' perspective. A structured interview conducted both before and after the OI experience allowed us to analyze and point out the teachers' feedback from a pedagogical point of view. The advantages and limits of an OI-based approach to promote the development of more student-centred inquiry-oriented teaching strategies are finally discussed.

  15. Negotiating Competing Goals in the Development of an Urban Ecology Practitioner Inquiry Community

    NASA Astrophysics Data System (ADS)

    Piazza, Peter; McNeill, Katherine L.

    2013-11-01

    Teacher learning communities are hailed by many as vehicles for reforming and elevating the professional status of teaching. While much research explores teacher community as a venue for measurable gains, our research examines the orientation of practitioner inquiry toward critical debate about effective instruction. Specifically, our study focuses on a group of middle and high school teachers who worked with a nonprofit organization to engage students in urban environmental field investigations. Teachers met regularly as a community with the common goal of teaching urban ecology in an outdoor setting. We collected interview data from members of the teacher community, and we observed teacher interaction during a meeting of the practitioner inquiry group. Interview results indicated that while the nonprofit aimed to support collaborative dialogue and self-critique, participants saw the community mainly as a venue for pursuing short-term goals, such as receiving new resources or socializing with colleagues. Observation data, however, suggested that the community was taking early steps toward building an environment oriented toward critical discussion. Juxtaposing results from our interviews and observations, we discuss the challenges communities face when they seek to develop shared beliefs and deal openly with conflict. Ultimately, we suggest that organizers of collaborative learning environments should work to actively develop structures for building the organizational trust necessary to support civil critique.

  16. Teaching With and About Nature of Science, and Science Teacher Knowledge Domains

    NASA Astrophysics Data System (ADS)

    Abd-El-Khalick, Fouad

    2013-09-01

    The ubiquitous goals of helping precollege students develop informed conceptions of nature of science (NOS) and experience inquiry learning environments that progressively approximate authentic scientific practice have been long-standing and central aims of science education reforms around the globe. However, the realization of these goals continues to elude the science education community partly because of a persistent, albeit not empirically supported, coupling of the two goals in the form of `teaching about NOS with inquiry'. In this context, the present paper aims, first, to introduce the notions of, and articulate the distinction between, teaching with and about NOS, which will allow for the meaningful coupling of the two desired goals. Second, the paper aims to explicate science teachers' knowledge domains requisite for effective teaching with and about NOS. The paper argues that research and development efforts dedicated to helping science teachers develop deep, robust, and integrated NOS understandings would have the dual benefits of not only enabling teachers to convey to students images of science and scientific practice that are commensurate with historical, philosophical, sociological, and psychological scholarship (teaching about NOS), but also to structure robust inquiry learning environments that approximate authentic scientific practice, and implement effective pedagogical approaches that share a lot of the characteristics of best science teaching practices (teaching with NOS).

  17. A process-oriented guided inquiry approach to teaching medicinal chemistry.

    PubMed

    Brown, Stacy D

    2010-09-10

    To integrate process-oriented guided-inquiry learning (POGIL) team-based activities into a 1-semester medicinal chemistry course for doctor of pharmacy (PharmD) students and determine the outcomes. Students in the fall 2007 section of the Medicinal Chemistry course were taught in a traditional teacher-centered manner, with the majority of class time spent on lectures and a few practice question sets. Students in the fall 2008 and fall 2009 sections of Medicinal Chemistry spent approximately 40% of class time in structured self-selected teams where they worked through guided-inquiry exercises to supplement the lecture material. The mean examination score of students in the guided-inquiry sections (fall 2008 and fall 2009) was almost 3 percentage points higher than that of students in the fall 2007 class (P < 0.05). Furthermore, the grade distribution shifted from a B-C centered distribution (fall 2007 class) to an A-B centered distribution (fall 2008 and fall 2009 classes). The inclusion of the POGIL style team-based learning exercises improved grade outcomes for the students, encouraged active engagement with the material during class time, provided immediate feedback to the instructor regarding student-knowledge deficiencies, and created a classroom environment that was well received by students.

  18. The Effects of Scaffolded Simulation-Based Inquiry Learning on Fifth-Graders' Representations of the Greenhouse Effect

    ERIC Educational Resources Information Center

    Kukkonen, Jari Ensio; Kärkkäinen, Sirpa; Dillon, Patrick; Keinonen, Tuula

    2014-01-01

    Research has demonstrated that simulation-based inquiry learning has significant advantages for learning outcomes when properly scaffolded. For successful learning in science with simulation-based inquiry, one needs to ascertain levels of background knowledge so as to support learners in making, evaluating and modifying hypotheses, conducting…

  19. Learning about the Types of Plastic Wastes: Effectiveness of Inquiry Learning Strategies

    ERIC Educational Resources Information Center

    So, Wing-Mui Winnie; Cheng, Nga-Yee Irene; Chow, Cheuk-Fai; Zhan, Ying

    2016-01-01

    This study aims to examine the impacts of the inquiry learning strategies employed in a "Plastic Education Project" on primary students' knowledge, beliefs and intended behaviour in Hong Kong. Student questionnaires and a test on plastic types were adopted for data collection. Results reveal that the inquiry learning strategies…

  20. Learning Analytics for Communities of Inquiry

    ERIC Educational Resources Information Center

    Kovanovic, Vitomir; Gaševic, Dragan; Hatala, Marek

    2014-01-01

    This paper describes doctoral research that focuses on the development of a learning analytics framework for inquiry-based digital learning. Building on the Community of Inquiry model (CoI)--a foundation commonly used in the research and practice of digital learning and teaching--this research builds on the existing body of knowledge in two…

  1. Scaffolding Learning from Molecular Visualizations

    ERIC Educational Resources Information Center

    Chang, Hsin-Yi; Linn, Marcia C.

    2013-01-01

    Powerful online visualizations can make unobservable scientific phenomena visible and improve student understanding. Instead, they often confuse or mislead students. To clarify the impact of molecular visualizations for middle school students we explored three design variations implemented in a Web-based Inquiry Science Environment (WISE) unit on…

  2. Challenges and Support When Teaching Science Through an Integrated Inquiry and Literacy Approach

    NASA Astrophysics Data System (ADS)

    Ødegaard, Marianne; Haug, Berit; Mork, Sonja M.; Ove Sørvik, Gard

    2014-12-01

    In the Budding Science and Literacy project, we explored how working with an integrated inquiry-based science and literacy approach may challenge and support the teaching and learning of science at the classroom level. By studying the inter-relationship between multiple learning modalities and phases of inquiry, we wished to illuminate possible dynamics between science inquiry and literacy in an integrated science approach. Six teachers and their students were recruited from a professional development course for the current classroom study. The teachers were to try out the Budding Science teaching model. This paper presents an overall video analysis of our material demonstrating variations and patterns of inquiry-based science and literacy activities. Our analysis revealed that multiple learning modalities (read it, write it, do it, and talk it) are used in the integrated approach; oral activities dominate. The inquiry phases shifted throughout the students' investigations, but the consolidating phases of discussion and communication were given less space. The data phase of inquiry seems essential as a driving force for engaging in science learning in consolidating situations. The multiple learning modalities were integrated in all inquiry phases, but to a greater extent in preparation and data. Our results indicate that literacy activities embedded in science inquiry provide support for teaching and learning science; however, the greatest challenge for teachers is to find the time and courage to exploit the discussion and communication phases to consolidate the students' conceptual learning.

  3. Orchestrating Inquiry Learning

    ERIC Educational Resources Information Center

    Littleton, Karen, Ed.; Scanlon, Eileen, Ed.; Sharples, Mike, Ed.

    2011-01-01

    There is currently a rapidly growing interest in inquiry learning and an emerging consensus among researchers that, particularly when supported by technology, it can be a significant vehicle for developing higher order thinking skills. Inquiry learning methods also offer learners meaningful and productive approaches to the development of their…

  4. Learning by doing? Prospective elementary teachers' developing understandings of scientific inquiry and science teaching and learning

    NASA Astrophysics Data System (ADS)

    Haefner, Leigh Ann; Zembal-Saul, Carla

    This study examined prospective elementary teachers' learning about scientific inquiry in the context of an innovative life science course. Research questions included: (1) What do prospective elementary teachers learn about scientific inquiry within the context of the course? and (2) In what ways do their experiences engaging in science investigations and teaching inquiry-oriented science influence prospective elementary teachers' understanding of science and science learning and teaching? Eleven prospective elementary teachers participated in this qualitative, multi-participant case study. Constant comparative analysis strategies attempted to build abstractions and explanations across participants around the constructs of the study. Findings suggest that engaging in scientific inquiry supported the development more appropriate understandings of science and scientific inquiry, and that prospective teachers became more accepting of approaches to teaching science that encourage children's questions about science phenomena. Implications include careful consideration of learning experiences crafted for prospective elementary teachers to support the development of robust subject matter knowledge.

  5. Argumentation in the Chemistry Laboratory: Inquiry and Confirmatory Experiments

    NASA Astrophysics Data System (ADS)

    Katchevich, Dvora; Hofstein, Avi; Mamlok-Naaman, Rachel

    2013-02-01

    One of the goals of science education is to provide students with the ability to construct arguments—reasoning and thinking critically in a scientific context. Over the years, many studies have been conducted on constructing arguments in science teaching, but only few of them have dealt with studying argumentation in the laboratory. Our research focuses on the process in which students construct arguments in the chemistry laboratory while conducting various types of experiments. It was found that inquiry experiments have the potential to serve as an effective platform for formulating arguments, owing to the features of this learning environment. The discourse during inquiry-type experiments was found to be rich in arguments, whereas that during confirmatory-type experiments was found to be sparse in arguments. The arguments, which were developed during the discourse of an open inquiry experiment, focus on the hypothesis-building stage, analysis of the results, and drawing appropriate conclusions.

  6. Appreciative inquiry for leading in complex systems: supporting the transformation of academic nursing culture.

    PubMed

    Moody, Roseanne C; Horton-Deutsch, Sara; Pesut, Daniel J

    2007-07-01

    Increasingly complex environments in which nurse educators must function create distinct challenges for leaders in nursing education. Complexity is found in the presence of knowledge-driven economies, advancements in technology, and the blurring of campus boundaries created by online learning versus traditional classroom education. A dual bureaucracy of faculty and administration coexists in nursing education. The transformation of bureaucratic culture is a strategic challenge for academic leaders who strive to move dichotomous groups toward a collective vision of a preferred future. This article advocates for the affirmative administrative process of appreciative inquiry for academic nursing leadership, in nudging the dual bureaucracy toward transformational change. The intent and characteristics of appreciative inquiry are discussed, appreciative leadership strategies and actions are explained, methods for leading cultural paradigm shift are outlined, and an exemplar of the actualization of appreciative inquiry is presented.

  7. Implementing Process Oriented Guided Inquiry Learning (POGIL) in Undergraduate Biomechanics: Lessons Learned by a Novice

    ERIC Educational Resources Information Center

    Simonson, Shawn R.; Shadle, Susan E.

    2013-01-01

    Process Oriented Guided Inquiry Learning (POGIL) uses specially designed activities and cooperative learning to teach content and to actively engage students in inquiry, analytical thinking and teamwork. It has been used extensively in Chemistry education, but the use of POGIL is not well documented in other physical and biological sciences. This…

  8. A Rights-Based Approach to Science Literacy Using Local Languages: Contextualising Inquiry-Based Learning in Africa

    ERIC Educational Resources Information Center

    Babaci-Wilhite, Zehlia

    2017-01-01

    This article addresses the importance of teaching and learning science in local languages. The author argues that acknowledging local knowledge and using local languages in science education while emphasising inquiry-based learning improve teaching and learning science. She frames her arguments with the theory of inquiry, which draws on…

  9. Creating and Sustaining Inquiry Spaces for Teacher Learning and System Transformation

    ERIC Educational Resources Information Center

    Kaser, Linda; Halbert, Judy

    2014-01-01

    Over a 15-year period, one Western Canadian province, British Columbia, has been exploring the potential of inquiry learning networks to deepen teacher professional learning and to influence the system as a whole. During this time, we have learned a great deal about shifting practice through inquiry networks. In this article, we provide a…

  10. Development of an Inquiry-Based Learning Support System Based on an Intelligent Knowledge Exploration Approach

    ERIC Educational Resources Information Center

    Wu, Ji-Wei; Tseng, Judy C. R.; Hwang, Gwo-Jen

    2015-01-01

    Inquiry-Based Learning (IBL) is an effective approach for promoting active learning. When inquiry-based learning is incorporated into instruction, teachers provide guiding questions for students to actively explore the required knowledge in order to solve the problems. Although the World Wide Web (WWW) is a rich knowledge resource for students to…

  11. Inquiry-Based Learning in Higher Education: Principal Forms, Educational Objectives, and Disciplinary Variations

    ERIC Educational Resources Information Center

    Aditomo, Anindito; Goodyear, Peter; Bliuc, Ana-Maria; Ellis, Robert A.

    2013-01-01

    Learning through inquiry is a widely advocated pedagogical approach. However, there is currently little systematic knowledge about the practice of inquiry-based learning (IBL) in higher education. This study examined descriptions of learning tasks that were put forward as examples of IBL by 224 university teachers from various disciplines in three…

  12. Medium Velocity Spatter Creation by Mousetraps in a Forensic Science Laboratory

    ERIC Educational Resources Information Center

    Oller, Anna R.

    2006-01-01

    Forensic science courses encompasses the disciplines of biology, chemistry, mathematics, and physics, which provides an opportunity for students to become engaged in all content areas within one course. The inquiry-based learning environment allows visualization of results almost immediately, facilitating student interest. The laboratory…

  13. Layering Language and Novel Study Deepens Adolescent Learning

    ERIC Educational Resources Information Center

    Saunders, Jane M.

    2012-01-01

    This article discusses the pedagogical practices of a middle level English teacher who teaches reading and writing skills creatively and recursively. By providing varied ways for students to construct knowledge and repeatedly grapple with difficult concepts, this teacher sustains an environment of collaborative inquiry whereby students internalize…

  14. Future Educators' Explaining Voices

    ERIC Educational Resources Information Center

    de Oliveira, Janaina Minelli; Caballero, Pablo Buenestado; Camacho, Mar

    2013-01-01

    Teacher education programs must offer pre-service students innovative technology-supported learning environments, guiding them in the revision of their preconceptions on literacy and technology. This present paper presents a case study that uses podcast to inquiry into future educators' views on technology and the digital age. Results show future…

  15. Its All about Choice

    ERIC Educational Resources Information Center

    Bowen, G. Michael; Arsenault, Nicole

    2008-01-01

    Because of the variability exhibited by individual animals' responses to their environment, studying animal behavior can be a wonderful way to engage students in self-directed, open-inquiry investigations. Individual animals react in ways that are a combination of instinct and learned behavior, but collectively they exhibit broader tendencies that…

  16. Outdoor Integration

    ERIC Educational Resources Information Center

    Tatarchuk, Shawna; Eick, Charles

    2011-01-01

    An outdoor classroom is an exciting way to connect the learning of science to nature and the environment. Many school grounds include gardens, grassy areas, courtyards, and wooded areas. Some even have nearby streams or creeks. These are built-in laboratories for inquiry! In the authors' third-grade classroom, they align and integrate…

  17. Graduate Inquiry: Social Capital in Online Courses

    ERIC Educational Resources Information Center

    Mays, Thomas

    2016-01-01

    As colleges and universities increase their online course offerings, student social experiences in online learning environments require further examination, specifically for nonresidential students who may already be less integrated into college social networks. A social capital framework was used to guide this qualitative study of 17…

  18. Enacting Classroom Inquiry: Theorizing Teachers' Conceptions of Science Teaching

    ERIC Educational Resources Information Center

    McDonald, Scott; Songer, Nancy Butler

    2008-01-01

    Translating written curricular materials into rich, complex, learning environments is an undertheorized area in science education. This study examines two critical cases of teachers enacting a technology-rich curriculum focused on the development of complex reasoning around biodiversity for fifth graders. Two elements emerged that significantly…

  19. The Effectiveness of Guided Inquiry Learning for Comparison Topics

    NASA Astrophysics Data System (ADS)

    Asnidar; Khabibah, S.; Sulaiman, R.

    2018-01-01

    This research aims at producing a good quality learning device using guided inquiry for comparison topics and describing the effectiveness of guided inquiry learning for comparison topics. This research is a developmental research using 4-D model. The result is learning device consisting of lesson plan, student’s worksheet, and achievement test. The subjects of the study were class VII students, each of which has 46 students. Based on the result in the experimental class, the learning device using guided inquiry for comparison topics has good quality. The learning device has met the valid, practical, and effective aspects. The result, especially in the implementation class, showed that the learning process with guided inquiry has fulfilled the effectiveness indicators. The ability of the teacher to manage the learning process has fulfilled the criteria good. In addition, the students’ activity has fulfilled the criteria of, at least, good. Moreover, the students’ responses to the learning device and the learning activities were positive, and the students were able to complete the classical learning. Based on the result of this research, it is expected that the learning device resulted can be used as an alternative learning device for teachers in implementing mathematic learning for comparison topics.

  20. An Exploration of Students' Science Learning Interest Related to Their Cognitive Anxiety, Cognitive Load, Self-Confidence and Learning Progress Using Inquiry-Based Learning with an iPad

    ERIC Educational Resources Information Center

    Hong, Jon-Chao; Hwang, Ming-Yueh; Tai, Kai-Hsin; Tsai, Chi-Ruei

    2017-01-01

    Based on the cognitive-affective theory, the present study designed a science inquiry learning model, "predict-observe-explain" (POE), and implemented it in an app called "WhyWhy" to examine the effectiveness of students' science inquiry learning practice. To understand how POE can affect the cognitive-affective learning…

  1. Questions, Curiosity and the Inquiry Cycle

    ERIC Educational Resources Information Center

    Casey, Leo

    2014-01-01

    This article discusses the conceptual relationship between questions, curiosity and learning as inquiry elaborated in the work of Chip Bruce and others as the Inquiry Cycle. The Inquiry Cycle describes learning in terms of a continuous dynamic of ask, investigate, create, discuss and reflect. Of these elements "ask" has a privileged…

  2. Dealing with the Ambiguities of Science Inquiry

    ERIC Educational Resources Information Center

    Tan, Yuen Sze Michelle; Caleon, Imelda Santos

    2016-01-01

    The current vision of science education in myriad educational contexts encourages students to learn through the process of science inquiry. Science inquiry has been used to promote conceptual learning and engage learners in an active process of meaning-making and investigation to understand the world around them. The science inquiry process…

  3. Using Technology to Engage Preservice Elementary Teachers in Learning about Scientific Inquiry

    ERIC Educational Resources Information Center

    Jones, Loretta L.; MacArthur, James R.; Akaygün, Sevil

    2011-01-01

    Elementary teachers are often required to teach inquiry in their classrooms despite having had little exposure to inquiry learning themselves. In a capstone undergraduate science course preservice elementary teachers experience scientific inquiry through the completion of group projects, activities, readings and discussion, in order to develop a…

  4. Assessment of Inquiry Skills in the SAILS Project

    ERIC Educational Resources Information Center

    Harrison, Chris

    2014-01-01

    Inquiry provides both the impetus and experience that helps students acquire problem solving and lifelong learning skills. Teachers on the Strategies for Assessment of Inquiry Learning in Science Project (SAILS) strengthened their inquiry pedagogy, through focusing on seeking assessment evidence for formative action. This paper reports on both the…

  5. "Applying Anatomy to Something I Care About": Authentic Inquiry Learning and Student Experiences of an Inquiry Project

    ERIC Educational Resources Information Center

    Anstey, Lauren M.

    2017-01-01

    Despite advances to move anatomy education away from its didactic history, there is a continued need for students to contextualize their studies to make learning more meaningful. This article investigates authentic learning in the context of an inquiry-based approach to learning human gross anatomy. Utilizing a case-study design with three groups…

  6. Inquiry-Based Learning Using Everyday Objects: Hands-On Instructional Strategies That Promote Active Learning in Grades 3-8.

    ERIC Educational Resources Information Center

    Alvarado, Amy Edmonds; Herr, Patricia R.

    This book explores the concept of using everyday objects as a process initiated both by students and teachers, encouraging growth in student observation, inquisitiveness, and reflection in learning. After "Introduction: Welcome to Inquiry-Based Learning using Everyday Objects (Object-Based Inquiry), there are nine chapters in two parts. Part 1,…

  7. The influence of inquiry learning model on additives theme with ethnoscience content to cultural awareness of students

    NASA Astrophysics Data System (ADS)

    Sudarmin, S.; Selia, E.; Taufiq, M.

    2018-03-01

    The purpose of this research is to determine the influence of inquiry learning model on additives theme with ethnoscience content to cultural awareness of students and how the students’ responses to learning. The method applied in this research is a quasi-experimental with non-equivalent control group design. The sampling technique applied in this research is the technique of random sampling. The samples were eight grade students of one of junior high schools in Semarang. The results of this research were (1) thestudents’ cultural awareness of the experiment class is better than the control class (2) inquiry learning model with ethnoscience content strongly influencing the cultural awareness of students by 78% and (3) students gave positive responses to inquiry learning model with ethnoscience content. The conclusions of this research are inquiry-learning model with ethnoscience content has positive influence on students’ cultural awareness.

  8. Collaborative Projects Increase Student Learning Outcome Performance in Nonmajors Environmental Science Course

    ERIC Educational Resources Information Center

    Chace, Jameson F.

    2014-01-01

    Between 2007 and 2010, three types of semester research projects were assigned in BIO 140 Humans and Their Environment, a nonmajors introductory course at Salve Regina University. Specific environmental impact-type assessments were used to foster scientific inquiry and achieve higher scientific literacy. Quantitative and qualitative measurements…

  9. Performance Evaluation of an Online Argumentation Learning Assistance Agent

    ERIC Educational Resources Information Center

    Huang, Chenn-Jung; Wang, Yu-Wu; Huang, Tz-Hau; Chen, Ying-Chen; Chen, Heng-Ming; Chang, Shun-Chih

    2011-01-01

    Recent research indicated that students' ability to construct evidence-based explanations in classrooms through scientific inquiry is critical to successful science education. Structured argumentation support environments have been built and used in scientific discourse in the literature. To the best of our knowledge, no research work in the…

  10. Building Shared Understandings in Introductory Physics Tutorials through Risk, Repair, Conflict & Comedy

    ERIC Educational Resources Information Center

    Conlin, Luke D.

    2012-01-01

    Collaborative inquiry learning environments, such as "The Tutorials in Physics Sensemaking," are designed to provide students with opportunities to partake in the authentic disciplinary practices of argumentation and sensemaking. Through these practices, groups of students in tutorial can build shared conceptual understandings of the…

  11. Waiting for the Monarch

    ERIC Educational Resources Information Center

    Forrest, Lorrie; Hechter, Richard

    2017-01-01

    This article describes an activity designed to foster an authentic way for students to learn about the biodiversity in their community. The activity is a half year scaffolding sequence to explore the living environment right outside the classroom. In using the outdoors just outside the window as a classroom, an inquiry based activity accomplished…

  12. Including Critical Thinking and Problem Solving in Physical Education

    ERIC Educational Resources Information Center

    Pill, Shane; SueSee, Brendan

    2017-01-01

    Many physical education curriculum frameworks include statements about the inclusion of critical inquiry processes and the development of creativity and problem-solving skills. The learning environment created by physical education can encourage or limit the application and development of the learners' cognitive resources for critical and creative…

  13. Students Assessing Their Own Collaborative Knowledge Building

    ERIC Educational Resources Information Center

    Lee, Eddy Y. C.; Chan, Carol K. K.; van Aalst, Jan

    2006-01-01

    We describe the design of a knowledge-building environment and examine the role of knowledge-building portfolios in characterizing and scaffolding collaborative inquiry. Our goal is to examine collaborative knowledge building in the context of exploring the alignment of learning, collaboration, and assessment in computer forums. The key design…

  14. Teaching Science in the Field. ERIC Digest.

    ERIC Educational Resources Information Center

    Landis, Carol

    Teaching science in the field provides unique opportunities to investigate the natural world. As in the classroom, lessons designed to foster meaningful learning, provide hands-on activities, and promote student inquiry can be effectively implemented in the world's largest laboratories, the natural and built environments of the outdoors. This…

  15. Case Study: eCoaching in a Corporate Environment

    ERIC Educational Resources Information Center

    Warner, Teri L. C.

    2012-01-01

    This qualitative particularistic case study was an exploration and evaluation of an online, asynchronous, non-human coaching system called an "eCoaching system." Developed by the researcher, the eCoaching system combined performance coaching with the latest technologies in eLearning. The coaching was based on the appreciative inquiry approach, and…

  16. Professional Development in Relational Learning Communities: Teachers in Connection. Practitioner Inquiry Series

    ERIC Educational Resources Information Center

    Raider-Roth, Miriam B.

    2016-01-01

    In this book, Raider-Roth offers an innovative approach to teacher professional development that builds on the intellectual strength and practical wisdom of practitioners. Focusing on nurturing relationships between and among participants, facilitators, subject matter, texts, and the school environment, this book helps educators create a…

  17. ????--Implicit Learning and Imperceptible Influence: Syncretic Literacy of Multilingual Chinese Children

    ERIC Educational Resources Information Center

    Curdt-Christiansen, Xiao Lan

    2013-01-01

    This article reports on an ethnographic study involving the literacy practices of two multilingual Chinese children from two similar yet different cultural and linguistic contexts: Montreal and Singapore. Using syncretism as a theoretical tool, this inquiry examines how family environment and support facilitate children's process of becoming…

  18. Hostile Work Environment: What Communication Administrators and Educators Can Learn from Communication-based Law.

    ERIC Educational Resources Information Center

    Newburger, Craig

    2001-01-01

    Presents a consideration of sexual harassment laws that are intended to underscore the variety of heuristic possibilities offered by inquiry into communication-based laws, for both communication administrators and educators. Concludes that communication administration, communication education, and evolving communication-based legal standards and…

  19. Connected Mathematics Project (CMP). What Works Clearinghouse Intervention Report. Updated

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2017

    2017-01-01

    "Connected Mathematics Project" (CMP) is a math curriculum for students in grades 6-8. It uses interactive problems and everyday situations to explore mathematical ideas, with a goal of fostering a problem-centered, inquiry-based learning environment. At each grade level, the curriculum covers numbers, algebra, geometry/measurement,…

  20. The Amazing Ecology of Terrestrial Isopods

    ERIC Educational Resources Information Center

    Dobson, Christopher; Postema, Dan

    2014-01-01

    Ecology is the study of how organisms interact with their environment, and the best place to see these interactions is outside in natural habitats. Pillbugs (roly-polies) provide an excellent opportunity for students to learn ecological concepts through inquiry. Because of their fascinating behaviors, pillbugs are ideal organisms to introduce…

  1. Teaching "With" and "About" Nature of Science, and Science Teacher Knowledge Domains

    ERIC Educational Resources Information Center

    Abd-El-Khalick, Fouad

    2013-01-01

    The ubiquitous goals of helping precollege students develop informed conceptions of nature of science (NOS) and experience inquiry learning environments that progressively approximate authentic scientific practice have been long-standing and central aims of science education reforms around the globe. However, the realization of these goals…

  2. Development of multimedia learning based inquiry on vibration and wave material

    NASA Astrophysics Data System (ADS)

    Madeali, H.; Prahani, B. K.

    2018-03-01

    This study aims to develop multimedia learning based inquiry that is interesting, easy to understand by students and streamline the time of teachers in bringing the teaching materials as well as feasible to be used in learning the physics subject matter of vibration and wave. This research is a Research and Development research with reference to ADDIE model that is Analysis, Design, Development, Implementation, and Evaluation. Multimedia based learning inquiry is packaged in hypertext form using Adobe Flash CS6 Software. The inquiry aspect is constructed by showing the animation of the concepts that the student wants to achieve and then followed by questions that will ask the students what is observable. Multimedia learning based inquiry is then validated by 2 learning experts, 3 material experts and 3 media experts and tested on 3 junior high school teachers and 23 students of state junior high school 5 of Kendari. The results of the study include: (1) Validation results by learning experts, material experts and media experts in valid categories; (2) The results of trials by teachers and students fall into the practical category. These results prove that the multimedia learning based inquiry on vibration and waves materials that have been developed feasible use in physics learning by students of junior high school class VIII.

  3. Intertextual learning strategy with guided inquiry on solubility equilibrium concept to improve the student’s scientific processing skills

    NASA Astrophysics Data System (ADS)

    Wardani, K. U.; Mulyani, S.; Wiji

    2018-04-01

    The aim of this study was to develop intertextual learning strategy with guided inquiry on solubility equilibrium concept to enhance student’s scientific processing skills. This study was conducted with consideration of some various studies which found that lack of student’s process skills in learning chemistry was caused by learning chemistry is just a concept. The method used in this study is a Research and Development to generate the intertextual learning strategy with guided inquiry. The instruments used in the form of sheets validation are used to determine the congruence of learning activities by step guided inquiry learning and scientific processing skills with aspects of learning activities. Validation results obtained that the learning activities conducted in line with aspects of indicators of the scientific processing skills.

  4. Extending human potential in a technical learning environment

    NASA Astrophysics Data System (ADS)

    Fielden, Kay A.

    This thesis is a report of a participatory inquiry process looking at enhancing the learning process in a technical academic field in high education by utilising tools and techniques which go beyond the rational/logical, intellectual domain in a functional, objective world. By empathising with, nurturing and sustaining the whole person, and taking account of past patterning as well as future visions including technological advances to augment human awareness, the scene is set for depth learning. Depth learning in a tertiary environment can only happen as a result of the dynamic that exists between the dominant, logical/rational, intellectual paradigm and the experiential extension of the boundaries surrounding this domain. Any experiences which suppress the full, holistic expression of our being alienate us from the fullness of the expression and hence from depth learning. Depth learning is indicated by intrinsic motivation, which is more likely to occur in a trusting and supporting environment. The research took place within a systemic intellectual framework, where emergence is the prime characteristic used to evaluate results.

  5. Incorporating Practitioner Inquiry into an Online Professional Development Program: The Prime Online Experience

    ERIC Educational Resources Information Center

    Dana, Nancy Fichtman; Pape, Stephen J.; Griffin, Cynthia C.; Prosser, Sherri Kay

    2017-01-01

    Engagement in practitioner inquiry by classroom teachers is a promising mechanism for teacher professional learning. While much has been learned about the positive role inquiry can play in traditional professional development efforts, we know less about the impact of inquiry in a rapidly advancing technological age that includes the proliferation…

  6. "Almost Everything We Do Includes Inquiry": Fostering Inquiry-Based Teaching and Learning with Preschool Teachers

    ERIC Educational Resources Information Center

    Hollingsworth, Heidi L.; Vandermaas-Peeler, Maureen

    2017-01-01

    Given the increased emphasis on science in early learning standards, two studies were conducted to investigate preschool teachers' efficacy for teaching science and their inquiry-based teaching practices. Fifty-one teachers completed a survey of their efficacy for teaching science and understanding of inquiry methods. Teachers reported moderate…

  7. The Art of Questions: Inquiry, the CCSS, and School Librarians

    ERIC Educational Resources Information Center

    Wadham, Rachel

    2013-01-01

    This article examines the association among inquiry, the Common Core State Standards (CCSS) and school librarians. It explains the significance of asking questions, and describes the characteristics of the questions that are central to inquiry learning. The role of school librarians in inquiry learning and the implementation of CCSS is also…

  8. The effect of inquiry-flipped classroom model toward students' achievement on chemical reaction rate

    NASA Astrophysics Data System (ADS)

    Paristiowati, Maria; Fitriani, Ella; Aldi, Nurul Hanifah

    2017-08-01

    The aim of this research is to find out the effect of Inquiry-Flipped Classroom Models toward Students' Achievement on Chemical Reaction Rate topic. This study was conducted at SMA Negeri 3 Tangerang in Eleventh Graders. The Quasi Experimental Method with Non-equivalent Control Group design was implemented in this study. 72 students as the sample was selected by purposive sampling. Students in experimental group were learned through inquiry-flipped classroom model. Meanwhile, in control group, students were learned through guided inquiry learning model. Based on the data analysis, it can be seen that there is significant difference in the result of the average achievement of the students. The average achievement of the students in inquiry-flipped classroom model was 83,44 and the average achievement of the students in guided inquiry learning model was 74,06. It can be concluded that the students' achievement with inquiry-flipped classroom better than guided inquiry. The difference of students' achievement were significant through t-test which is tobs 3.056 > ttable 1.994 (α = 0.005).

  9. Inquiry-based science education: scaffolding pupils' self-directed learning in open inquiry

    NASA Astrophysics Data System (ADS)

    van Uum, Martina S. J.; Verhoeff, Roald P.; Peeters, Marieke

    2017-12-01

    This paper describes a multiple case study on open inquiry-based learning in primary schools. During open inquiry, teachers often experience difficulties in balancing support and transferring responsibility to pupils' own learning. To facilitate teachers in guiding open inquiry, we developed hard and soft scaffolds. The hard scaffolds consisted of documents with explanations and/or exercises regarding difficult parts of the inquiry process. The soft scaffolds included explicit references to and additional explanations of the hard scaffolds. We investigated how teacher implementation of these scaffolds contributed to pupils' self-directed learning during open inquiry. Four classes of pupils, aged 10-11, were observed while they conducted an inquiry lesson module of about 10 lessons in their classrooms. Data were acquired via classroom observations, audio recordings, and interviews with teachers and pupils. The results show that after the introduction of the hard scaffolds by the teacher, pupils were able and willing to apply them to their investigations. Combining hard scaffolds with additional soft scaffolding promoted pupils' scientific understanding and contributed to a shared guidance of the inquiry process by the teacher and her pupils. Our results imply that the effective use of scaffolds is an important element to be included in teacher professionalisation.

  10. Learning Science, Learning about Science, Doing Science: Different goals demand different learning methods

    NASA Astrophysics Data System (ADS)

    Hodson, Derek

    2014-10-01

    This opinion piece paper urges teachers and teacher educators to draw careful distinctions among four basic learning goals: learning science, learning about science, doing science and learning to address socio-scientific issues. In elaboration, the author urges that careful attention is paid to the selection of teaching/learning methods that recognize key differences in learning goals and criticizes the common assertion that 'current wisdom advocates that students best learn science through an inquiry-oriented teaching approach' on the grounds that conflating the distinction between learning by inquiry and engaging in scientific inquiry is unhelpful in selecting appropriate teaching/learning approaches.

  11. Linking teaching and research in an undergraduate course and exploring student learning experiences

    NASA Astrophysics Data System (ADS)

    Wallin, Patric; Adawi, Tom; Gold, Julie

    2017-01-01

    In this case study, we first describe how teaching and research are linked in a master's course on tissue engineering. A central component of the course is an authentic research project that the students carry out in smaller groups and in collaboration with faculty. We then explore how the students experience learning in this kind of discovery-oriented environment. Data were collected through a survey, reflective writing, and interviews. Using a general inductive approach for qualitative analysis, we identified three themes related to the students' learning experiences: learning to navigate the field, learning to do real research, and learning to work with others. Overall, the students strongly valued learning in a discovery-oriented environment and three aspects of the course contributed to much of its success: taking a holistic approach to linking teaching and research, engaging students in the whole inquiry process, and situating authentic problems in an authentic physical and social context.

  12. In Support of Teachers' Learning: Specifying and Contextualising Teacher Inquiry as Professional Practice

    ERIC Educational Resources Information Center

    Hardy, Ian

    2016-01-01

    Drawing upon research into a case study of teacher inquiry in one school in Queensland, Australia, recent theorising into professional practice, and relevant literature on teachers' learning, this article reveals the complexity and particularity of teacher inquiry processes in support of teachers' learning. Specifically, the research reveals how…

  13. Design of a Three-Dimensional Cognitive Mapping Approach to Support Inquiry Learning

    ERIC Educational Resources Information Center

    Chen, Juanjuan; Wang, Minhong; Dede, Chris; Grotzer, Tina A.

    2017-01-01

    The use of external representations has the potential to facilitate inquiry learning, especially hypothesis generation and reasoning, which typically present difficulties for students. This study describes a novel three-dimensional cognitive mapping (3DCM) approach that supports inquiry learning by allowing learners to combine the information on a…

  14. Inquiry-Based Learning Approach in Physical Education: Stimulating and Engaging Students in Physical and Cognitive Learning

    ERIC Educational Resources Information Center

    Østergaard, Lars Domino

    2016-01-01

    Inquiry is an approach that promotes engagement, motivation and learning, and which involves use of cognitive knowledge, bodily experience and communicative skills. Usually the inquiry method with skills like observations, planning, investigations, experimenting and drawing conclusions is related to natural sciences, but this paper describes an…

  15. Wiki Laboratory Notebooks: Supporting Student Learning in Collaborative Inquiry-Based Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Lawrie, Gwendolyn Angela; Grøndahl, Lisbeth; Boman, Simon; Andrews, Trish

    2016-06-01

    Recent examples of high-impact teaching practices in the undergraduate chemistry laboratory that include course-based undergraduate research experiences and inquiry-based experiments require new approaches to assessing individual student learning outcomes. Instructors require tools and strategies that can provide them with insight into individual student contributions to collaborative group/teamwork throughout the processes of experimental design, data analysis, display and communication of their outcomes in relation to their research question(s). Traditional assessments in the form of laboratory notebooks or experimental reports provide limited insight into the processes of collaborative inquiry-based activities. A wiki environment offers a collaborative domain that can potentially support collaborative laboratory processes and scientific record keeping. In this study, the effectiveness of the wiki in supporting laboratory learning and assessment has been evaluated through analysis of the content and histories for three consenting, participating groups of students. The conversational framework has been applied to map the relationships between the instructor, tutor, students and laboratory activities. Analytics that have been applied to the wiki platform include: character counts, page views, edits, timelines and the extent and nature of the contribution by each student to the wiki. Student perceptions of both the role and the impact of the wiki on their experiences and processes have also been collected. Evidence has emerged from this study that the wiki environment has enhanced co-construction of understanding of both the experimental process and subsequent communication of outcomes and data. A number of features are identified to support success in the use of the wiki platform for laboratory notebooks.

  16. Designing EvoRoom: An Immersive Simulation Environment for Collective Inquiry in Secondary Science

    NASA Astrophysics Data System (ADS)

    Lui, Michelle Mei Yee

    This dissertation investigates the design of complex inquiry for co-located students to work as a knowledge community within a mixed-reality learning environment. It presents the design of an immersive simulation called EvoRoom and corresponding collective inquiry activities that allow students to explore concepts around topics of evolution and biodiversity in a Grade 11 Biology course. EvoRoom is a room-sized simulation of a rainforest, modeled after Borneo in Southeast Asia, where several projected displays are stitched together to form a large, animated simulation on each opposing wall of the room. This serves to create an immersive environment in which students work collaboratively as individuals, in small groups and a collective community to investigate science topics using the simulations as an evidentiary base. Researchers and a secondary science teacher co-designed a multi-week curriculum that prepared students with preliminary ideas and expertise, then provided them with guided activities within EvoRoom, supported by tablet-based software as well as larger visualizations of their collective progress. Designs encompassed the broader curriculum, as well as all EvoRoom materials (e.g., projected displays, student tablet interfaces, collective visualizations) and activity sequences. This thesis describes a series of three designs that were developed and enacted iteratively over two and a half years, presenting key features that enhanced students' experiences within the immersive environment, their interactions with peers, and their inquiry outcomes. Primary research questions are concerned with the nature of effective design for such activities and environments, and the kinds of interactions that are seen at the individual, collaborative and whole-class levels. The findings fall under one of three themes: 1) the physicality of the room, 2) the pedagogical script for student observation and reflection and collaboration, and 3) ways of including collective visualizations in the activity. Discrete findings demonstrate how the above variables, through their design as inquiry components (i.e., activity, room, scripts and scaffolds on devices, collective visualizations), can mediate the students' interactions with one another, with their teacher, and impact the outcomes of their inquiry. A set of design recommendations is drawn from the results of this research to guide future design or research efforts.

  17. The Effects of Scaffolded Simulation-Based Inquiry Learning on Fifth-Graders' Representations of the Greenhouse Effect

    NASA Astrophysics Data System (ADS)

    Kukkonen, Jari Ensio; Kärkkäinen, Sirpa; Dillon, Patrick; Keinonen, Tuula

    2014-02-01

    Research has demonstrated that simulation-based inquiry learning has significant advantages for learning outcomes when properly scaffolded. For successful learning in science with simulation-based inquiry, one needs to ascertain levels of background knowledge so as to support learners in making, evaluating and modifying hypotheses, conducting experiments and interpreting data, and to regulate the learning process. This case study examines the influence of scaffolded simulation-based inquiry learning on fifth-graders' (n = 21) models of the greenhouse effect. The pupils were asked to make annotated drawings about the greenhouse effect both before and after scaffolding through simulation-based instructional interventions. The data were analysed qualitatively to investigate the impact of the interventions on the representations that pupils used in their descriptions of the greenhouse effect. It was found that scaffolded simulation-based inquiry learning noticeably enriched the concepts pupils used in their representations leading to better understanding of the phenomenon. In many cases, the fifth graders produced quite sophisticated representations.

  18. Think Locally, Act Globally! Linking Local and Global Communities through Democracy and Environment. Hands-On! Developing Active Learning Modules on the Human Dimensions of Global Change.

    ERIC Educational Resources Information Center

    Dowler, Lorraine

    Designed so that it can be adapted to a wide range of student abilities and institutional settings, this learning module on the human dimensions of global change seeks to: actively engage students in problem solving, challenge them to think critically, invite them to participate in the process of scientific inquiry, and involve them in cooperative…

  19. The Use of Music and Other Forms of Organized Sound as a Therapeutic Intervention for Students with Auditory Processing Disorder: Providing the Best Auditory Experience for Children with Learning Differences

    ERIC Educational Resources Information Center

    Faronii-Butler, Kishasha O.

    2013-01-01

    This auto-ethnographical inquiry used vignettes and interviews to examine the therapeutic use of music and other forms of organized sound in the learning environment of individuals with Central Auditory Processing Disorders. It is an investigation of the traditions of healing with sound vibrations, from its earliest cultural roots in shamanism and…

  20. Designing Inquiry Starters

    NASA Astrophysics Data System (ADS)

    Kluger-Bell, B.

    2010-12-01

    The term "Inquiry Starter" comes from the Institute for Inquiry's model for teaching and learning science through inquiry. It refers to the first phase of an inquiry activity where learners engage in actions that stimulate their curiosity and generate questions for further investigation. In the Professional Development Program, staff and participants have designed a wide variety of inquiry activities with a number of variations on the inquiry starter. This has provided a laboratory for examining inquiry starter design. In this paper, I describe and examine in detail the elements of this design and how the design of those elements is related to achieving learning objectives. There are a number of important common objectives in all inquiry starters. For example, all starters must define a domain for investigation and engage the learner's curiosity in that domain. There are also critical differences in learning objectives depending on the content area being studied, the learners' background knowledge and skills, and many other factors. In this paper I examine designs for both of these types of objectives.

  1. The Connection Between Forms of Guidance for Inquiry-Based Learning and the Communicative Approaches Applied—a Case Study in the Context of Pre-service Teachers

    NASA Astrophysics Data System (ADS)

    Lehtinen, Antti; Lehesvuori, Sami; Viiri, Jouni

    2017-09-01

    Recent research has argued that inquiry-based science learning should be guided by providing the learners with support. The research on guidance for inquiry-based learning has concentrated on how providing guidance affects learning through inquiry. How guidance for inquiry-based learning could promote learning about inquiry (e.g. epistemic practices) is in need of exploration. A dialogic approach to classroom communication and pedagogical link-making offers possibilities for learners to acquire these practices. The focus of this paper is to analyse the role of different forms of guidance for inquiry-based learning on building the communicative approach applied in classrooms. The data for the study comes from an inquiry-based physics lesson implemented by a group of five pre-service primary science teachers to a class of sixth graders. The lesson was video recorded and the discussions were transcribed. The data was analysed by applying two existing frameworks—one for the forms of guidance provided and another for the communicative approaches applied. The findings illustrate that providing non-specific forms of guidance, such as prompts, caused the communicative approach to be dialogic. On the other hand, providing the learners with specific forms of guidance, such as explanations, shifted the communication to be more authoritative. These results imply that different forms of guidance provided by pre-service teachers can affect the communicative approach applied in inquiry-based science lessons, which affects the possibilities learners are given to connect their existing ideas to the scientific view. Future research should focus on validating these results by also analysing inservice teachers' lessons.

  2. Planning, Enactment, and Reflection in Inquiry-Based Learning: Validating the McGill Strategic Demands of Inquiry Questionnaire

    ERIC Educational Resources Information Center

    Shore, Bruce M.; Chichekian, Tanya; Syer, Cassidy A.; Aulls, Mark W.; Frederiksen, Carl H.

    2012-01-01

    Tools are needed to track the elements of students' successful engagement in inquiry. The "McGill Strategic Demands of Inquiry Questionnaire" (MSDIQ) is a 79-item, criterion-referenced, learner-focused questionnaire anchored in Schon's model and related models of self-regulated learning. The MSDIQ addresses three phases of inquiry…

  3. Measuring the "Unmeasurable": An Inquiry Model and Test for the Social Studies.

    ERIC Educational Resources Information Center

    Van Scotter, Richard D.; Haas, John D.

    New social studies materials are based on inquiry modes of learning and teaching; however, little is known as to what students actually learn from an inquiry model (except for cognitive knowledge). An inquiry model and test to measure the "unmeasurable" in the social studies--namely, a student's ability to use the scientific process, attitudes…

  4. The Effects of Inquiry-Based Computer Simulation with Cooperative Learning on Scientific Thinking and Conceptual Understanding of Gas Laws

    ERIC Educational Resources Information Center

    Abdullah, Sopiah; Shariff, Adilah

    2008-01-01

    The purpose of the study was to investigate the effects of inquiry-based computer simulation with heterogeneous-ability cooperative learning (HACL) and inquiry-based computer simulation with friendship cooperative learning (FCL) on (a) scientific reasoning (SR) and (b) conceptual understanding (CU) among Form Four students in Malaysian Smart…

  5. To Tan or Not to Tan?: Students Learn About Sunscreens through an Inquiry Activity Based on the Learning Cycle

    ERIC Educational Resources Information Center

    Keen-Rocha, Linda

    2005-01-01

    Science instructors sometimes avoid inquiry-based activities due to limited classroom time. Inquiry takes time, as students choose problems, design experiments, obtain materials, conduct investigations, gather data, communicate results, and discuss their experiments. While there are no quick solutions to time concerns, the 5E learning cycle seeks…

  6. Incorporating Active Learning and Student Inquiry into an Introductory Merchandising Class

    ERIC Educational Resources Information Center

    Lee, Hyun-Hwa; Hines, Jean D.

    2012-01-01

    Many educators believe that student learning is enhanced when they are actively involved in classroom activities that require student inquiry. The purpose of this paper is to report on three student inquiry projects that were incorporated into a merchandising class with the focus on making students responsible for their learning, rather than the…

  7. Constructing an Inquiry Orientation from a Learning Theory Perspective: Democratizing Access through Task Design

    ERIC Educational Resources Information Center

    Buell, Catherine A.; Greenstein, Steven; Wilstein, Zahava

    2017-01-01

    It is widely accepted in the mathematics education community that pedagogies oriented toward inquiry are aligned with a constructivist theory of learning, and that these pedagogies effectively support students' learning of mathematics. In order to promote such an orientation, we first separate the idea of inquiry from its conception as a…

  8. Open Educational Resources in Support of Science Learning: Tools for Inquiry and Observation

    ERIC Educational Resources Information Center

    Scanlon, Eileen

    2012-01-01

    This article focuses on the potential of free tools, particularly inquiry tools for influencing participation in twenty-first-century learning in science, as well as influencing the development of communities around tools. Two examples are presented: one on the development of an open source tool for structured inquiry learning that can bridge the…

  9. Learning by Teaching: Can It Be Utilized to Develop Inquiry Skills?

    ERIC Educational Resources Information Center

    Aslan, Safiye

    2017-01-01

    This study aims to investigate the effect of learning by teaching on inquiry skills. With its explanatory sequential design, this particular study focuses on interrogating whether learning by teaching has an effect on prospective science teachers' inquiry skills and to unveil how it does so, only if it had an effect. The current research is…

  10. Curiosité: Inquiry-Based Instruction and Bilingual Learning

    ERIC Educational Resources Information Center

    McElvain, Cheryl M.; Smith, Heidi A.

    2016-01-01

    The issues that prompt this study are based on current research indicating the positive effects of inquiry learning on the cognitive development of children. The purpose of this case study was to understand the effects of inquiry learning on the academic achievement and bilingual verbal ability of 5th grade bilingual students in a French/English…

  11. Supporting Survey Courses with Lecture-Tutorials and Backwards-Faded Scaffolded Inquiry

    NASA Astrophysics Data System (ADS)

    Slater, T. F.; Slater, S. J.

    2013-12-01

    In the course of learning science, it is generally accepted that successful science learning experiences should result in learners developing a meaningful understanding of the nature of science as inquiry where: (i) students are engaged in questions; (ii) students are designing plans to pursue data; and (iii) students are generating and defending conclusions based on evidence they have collected. Few of these learning targets can be effectively reached through a professor-centered, information download lecture. In response to national reform movements calling for professors to adopt teaching strategies and learning environments where non-science majors and future teachers can actively engage in scientific discourse, scholars with the CAPER Center for Astronomy & Physics Education Research have leveraged NSF DUE funding over the last decade to develop and systematically field-test two separate instructional approaches. The first of these is called Lecture-Tutorials (NSF 99077755 and NSF 9952232) . These are self-contained, classroom-ready, collaborative group activities. The materials are designed specifically to be easily integrated into the lecture course and directly address the needs of busy and heavily-loaded teaching faculty for effective, student-centered, classroom-ready materials that do not require a drastic course revision for implementation. Students are asked to reason about difficult concepts, while working in pairs, and to discuss their ideas openly. The second of these is a series of computer-mediated, inquiry learning experiences for non-science majoring undergraduates based upon an inquiry-oriented teaching approach framed by the notions of backwards faded-scaffolding as an overarching theme for instruction (NSF 1044482). Backwards faded-scaffolding is a strategy where the conventional and rigidly linear scientific method is turned on its head and students are first taught how to create conclusions based on evidence, then how experimental design creates evidence, and only at the end introduces students to - what we believe is the most challenging part of inquiry - inventing scientifically appropriate questions. Dissemination efforts have been supported by NSF 0715517 and evaluation results consistently suggest that both the Lecture-Tutorials and the backwards faded-scaffolding approaches are successfully engaging students in self-directed scientific discourse as measured by the Views on Scientific Inquiry (VOSI) as well as increasing their knowledge of science as measured by various measures.

  12. Cultivating Collaborations: Site Specific Design for Embodied Science Learning.

    PubMed

    Gill, Katherine; Glazier, Jocelyn; Towns, Betsy

    2018-05-21

    Immersion in well-designed outdoor environments can foster the habits of mind that enable critical and authentic scientific questions to take root in students' minds. Here we share two design cases in which careful, collaborative, and intentional design of outdoor learning environments for informal inquiry provide people of all ages with embodied opportunities to learn about the natural world, developing the capacity for understanding ecology and the ability to empathize, problem-solve and reflect. Embodied learning, as facilitated by and in well-designed outdoor learning environments, leads students to develop new ways of seeing, new scientific questions, new ways to connect with ideas, with others and new ways of thinking about the natural world. Using examples from our collaborative practices as experiential learning designers, we illustrate how creating the habits of mind critical to creating scientists, science-interested, and science-aware individuals benefits from providing students spaces to engage in embodied learning in nature. We show how public landscapes designed in creative partnerships between educators, scientists, designers and the public have potential to amplify science learning for all.

  13. Social competence and collaborative guided inquiry science activities: Experiences of students with learning disabilities

    NASA Astrophysics Data System (ADS)

    Taylor, Jennifer Anne

    This thesis presents a qualitative investigation of the effects of social competence on the participation of students with learning disabilities (LD) in the science learning processes associated with collaborative, guided inquiry learning. An inclusive Grade 2 classroom provided the setting for the study. Detailed classroom observations were the primary source of data. In addition, the researcher conducted two interviews with the teacher, and collected samples of students' written work. The purpose of the research was to investigate: (a) How do teachers and peers mediate the participation of students with LD in collaborative, guided inquiry science activities, (b) What learning processes do students with LD participate in during collaborative, guided inquiry science activities, and (c) What components of social competence support and constrain the participation of students with LD during collaborative, guided inquiry science activities? The findings of the study suggest five key ideas for research and teaching in collaborative, guided inquiry science in inclusive classrooms. First, using a variety of collaborative learning formats (whole-class, small-group, and pairs) creates more opportunities for the successful participation of diverse students with LD. Second, creating an inclusive community where students feel accepted and valued may enhance the academic and social success of students with LD. Third, careful selection of partners for students with LD is important for a positive learning experience. Students with LD should be partnered with academically successful, socially competent peers; also, this study suggested that students with LD experience more success working collaboratively in pairs rather than in small groups. Fourth, a variety of strategies are needed to promote active participation and positive social interactions for students with and without LD during collaborative, guided inquiry learning. Fifth, adopting a general approach to teaching collaborative inquiry that crosses curriculum borders may enhance success of inclusive teaching practices.

  14. Do science coaches promote inquiry-based instruction in the elementary science classroom?

    NASA Astrophysics Data System (ADS)

    Wicker, Rosemary Knight

    The South Carolina Mathematics and Science Coaching Initiative established a school-based science coaching model that was effective in improving instruction by increasing the level of inquiry-based instruction in elementary science classrooms. Classroom learning environment data from both teacher groups indicated considerable differences in the quality of inquiry instruction for those classrooms of teachers supported by a science coach. All essential features of inquiry were demonstrated more frequently and at a higher level of open-ended inquiry in classrooms with the support of a science coach than were demonstrated in classrooms without a science coach. However, from teacher observations and interviews, it was determined that elementary schoolteacher practice of having students evaluate conclusions and connect them to current scientific knowledge was often neglected. Teachers with support of a science coach reported changes in inquiry-based instruction that were statistically significant. This mixed ethnographic study also suggested that the Mathematics and Science Coaching Initiative Theory of Action for Instructional Improvement was an effective model when examining the work of science coaches. All components of effective school infrastructure were positively impacted by a variety of science coaching strategies intended to promote inquiry. Professional development for competent teachers, implementation of researched-based curriculum, and instructional materials support were areas highly impacted by the work of science coaches.

  15. Students' Participation in an Interdisciplinary, Socioscientific Issues Based Undergraduate Human Biology Major and Their Understanding of Scientific Inquiry

    NASA Astrophysics Data System (ADS)

    Eastwood, Jennifer L.; Sadler, Troy D.; Sherwood, Robert D.; Schlegel, Whitney M.

    2013-06-01

    The purpose of this study was to examine whether Socioscientific Issues (SSI) based learning environments affect university students' epistemological understanding of scientific inquiry differently from traditional science educational contexts. We identify and compare conceptions of scientific inquiry of students participating in an interdisciplinary, SSI-focused undergraduate human biology major (SSI) and those participating in a traditional biology major (BIO). Forty-five SSI students and 50 BIO students completed an open-ended questionnaire examining their understanding of scientific inquiry. Eight general themes including approximately 60 subthemes emerged from questionnaire responses, and the numbers of students including each subtheme in their responses were statistically compared between groups. A subset of students participated in interviews, which were used to validate and triangulate questionnaire data and probe students' understanding of scientific inquiry in relation to their majors. We found that both groups provided very similar responses, differing significantly in only five subthemes. Results indicated that both groups held generally adequate understandings of inquiry, but also a number of misconceptions. Small differences between groups supported by both questionnaires and interviews suggest that the SSI context contributed to nuanced understandings, such as a more interdisciplinary and problem-centered conception of scientific inquiry. Implications for teaching and research are discussed.

  16. Learning and teaching science as inquiry: A case study of elementary school teachers' investigations of light

    NASA Astrophysics Data System (ADS)

    van Zee, Emily H.; Hammer, David; Bell, Mary; Roy, Patricia; Peter, Jennifer

    2005-11-01

    This case study documents an example of inquiry learning and teaching during a summer institute for elementary and middle school teachers. A small group constructed an explanatory model for an intriguing optical phenomenon that they were observing. Research questions included: What physics thinking did the learners express? What aspects of scientific inquiry were evident in what the learners said and did? What questions did the learners ask one another as they worked? How did these learners collaborate in constructing understanding? How did the instructor foster their learning? Data sources included video- and audio- tapes of instruction, copies of the participants' writings and drawings, field notes, interviews, and staff reflections. An interpretative narrative of what three group members said and did presents a detailed account of their learning process. Analyses of their utterances provide evidence of physics thinking, scientific inquiry, questioning, collaborative sense making, and insight into ways to foster inquiry learning.

  17. How Select Groups of Preservice Science Teachers with Inquiry Orientations View Teaching and Learning Science through Inquiry

    NASA Astrophysics Data System (ADS)

    Ward, Peggy

    Although hailed as a powerful form of instruction, in most teaching and learning contexts, inquiry-based instruction is fraught with ambiguous and conflicting definitions and descriptions. Yet little has been written about the experiences preservice science teacher have regarding their learning to teach science through inquiry. This project sought to understand how select preservice secondary science teachers enrolled in three UTeach programs in Arkansas conceptualize inquiry instruction and how they rationalize its value in a teaching and learning context. The three teacher education programs investigated in this study are adoption sites aligned with the UTeach Program in Austin, TX that distinguishes itself in part by its inquiry emphasis. Using a mixed method investigation design, this study utilized two sources of data to explore the preservice science teachers' thinking. In the first phase, a modified version of the Pedagogy of Science teaching Tests (POSTT) was used to identify select program participants who indicated preferences for inquiry instruction over other instructional strategies. Secondly, the study used an open-ended questionnaire to explore the selected subjects' beliefs and conceptions of teaching and learning science in an inquiry context. The study also focused on identifying particular junctures in the prospective science teachers' education preparation that might impact their understanding about inquiry. Using a constant comparative approach, this study explored 19 preservice science teachers' conceptions about inquiry. The results indicate that across all levels of instruction, the prospective teachers tended to have strong student-centered teaching orientations. Except subjects in for the earliest courses, subjects' definitions and descriptions of inquiry tended toward a few of the science practices. More advanced subjects, however, expressed more in-depth descriptions. Excluding the subjects who have completed the program, multiple subjects tended to associate inquiry learning exclusively in terms of exploring before lecture, getting a single correct answer. Additionally, various subjects at multiple levels, described inquiry in terms of the 5E Model of Instruction, which is emphasized in the Arkansas UTeach lesson design. Implications of these findings and suggestions for program improvement at the course levels are suggested.

  18. Teacher candidates in an online post-baccalaureate science methods course: Implications for teaching science inquiry with technology

    NASA Astrophysics Data System (ADS)

    Colon, Erica L.

    Online learning is becoming more prevalent in today's education and is changing the way students learn and instructors teach. This study proposed using an informative case study design within a multilevel conceptual framework as teacher candidates were learning to teach and use science inquiry while in an online post-baccalaureate science methods course. The purposes were to (a) explore whether the teacher candidates had a thorough understanding of scientific inquiry and how to implement higher-order thinking skills, (b) examine whether or not the teacher candidates used a variety of computer-based instructional technologies when choosing instructional objectives, and (c) identify barriers that impede teacher candidates from using science inquiry or technology singly, or the ability to incorporate technology into learning science inquiry. The findings indicate that an online approach in preparing science teachers holds great potential for using innovative technology to teach science inquiry. First, the teacher candidates did incorporate essential features of classroom inquiry, however it was limited and varied in the type of inquiry used. Second, of the 86 lesson plans submitted by the teacher candidates, less than twelve percent of the learning objectives involved higher-order skills that promoted science inquiry. Third, results supported that when using technology in their lesson planning, participants had widely varying backgrounds in reference to their familiarity with technology. However, even though each participant used some form or another, the technology used was fairly low level. Finally, when discussing implementing inquiry-based science in the lesson plans, this study identified time as a reason that participants may not be pushing for more inquiry-based lessons. The researcher also identifies that school placements were a huge factor in the amount of inquiry-based skills coded in the lesson plans. The study concludes that online teacher preparation programs hold promise for teacher candidates by providing them knowledge and strategies for implementing innovative technologies to teach science inquiry when designing curriculum. By identifying specific implications for methods course design and implementation, as well as future research, this study contributes to teacher education improvement efforts, and therefore supports changing learning styles of their future students, so-called the iGeneration.

  19. Teachers and Technology Use in Secondary Science Classrooms: Investigating the Experiences of Middle School Science Teachers Implementing the Web-based Inquiry Science Environment (WISE)

    NASA Astrophysics Data System (ADS)

    Schulz, Rachel Corinne

    This study investigated the intended teacher use of a technology-enhanced learning tool, Web-based Inquiry Science Environment (WISE), and the first experiences of teachers new to using it and untrained in its use. The purpose of the study was to learn more about the factors embedded into the design of the technology that enabled it or hindered it from being used as intended. The qualitative research design applied grounded theory methods. Using theoretical sampling and a constant comparative analysis, a document review of WISE website led to a model of intended teacher use. The experiences of four middle school science teachers as they enacted WISE for the first time were investigated through ethnographic field observations, surveys and interviews using thematic analysis to construct narratives of each teachers use. These narratives were compared to the model of intended teacher use of WISE. This study found two levels of intended teacher uses for WISE. A basic intended use involved having student running the project to completion while the teacher provides feedback and assesses student learning. A more optimal description of intended use involved the supplementing the core curriculum with WISE as well as enhancing the core scope and sequence of instruction and aligning assessment with the goals of instruction through WISE. Moreover, WISE projects were optimally intended to be facilitated through student-centered teaching practices and inquiry-based instruction in a collaborative learning environment. It is also optimally intended for these projects to be shared with other colleagues for feedback and iterative development towards improving the Knowledge Integration of students. Of the four teachers who participated in this study, only one demonstrated the use of WISE as intended in the most basic way. This teacher also demonstrated the use of WISE in a number of optimal ways. Teacher confusion with certain tools available within WISE suggests that there may be a way to develop the user experience through these touch points and help teachers learn how to use the technology as they are selecting and setting up a project run. Further research may study whether improving these touch points can improve the teachers' use of WISE as intended both basically and optimally. It may also study whether or not teacher in basic and optimal ways directly impact student learning results.

  20. Inquiry-based science in the middle grades: Assessment of learning in urban systemic reform

    NASA Astrophysics Data System (ADS)

    Marx, Ronald W.; Blumenfeld, Phyllis C.; Krajcik, Joseph S.; Fishman, Barry; Soloway, Elliot; Geier, Robert; Tali Tal, Revital

    2004-12-01

    Science education standards established by American Association for the Advancement of Science (AAAS) and the National Research Council (NRC) urge less emphasis on memorizing scientific facts and more emphasis on students investigating the everyday world and developing deep understanding from their inquiries. These approaches to instruction challenge teachers and students, particularly urban students who often have additional challenges related to poverty. We report data on student learning spanning 3 years from a science education reform collaboration with the Detroit Public Schools. Data were collected from nearly 8,000 students who participated in inquiry-based and technology-infused curriculum units that were collaboratively developed by district personnel and staff from the University of Michigan as part of a larger, district-wide systemic reform effort in science education. The results show statistically significant increases on curriculum-based test scores for each year of participation. Moreover, the strength of the effects grew over the years, as evidenced by increasing effect size estimates across the years. The findings indicate that students who historically are low achievers in science can succeed in standards-based, inquiry science when curriculum is carefully developed and aligned with professional development and district policies. Additional longitudinal research on the development of student understanding over multiple inquiry projects, the progress of teacher enactment over time, and the effect of changes in the policy and administrative environment would further contribute to the intellectual and practical tools necessary to implement meaningful standards-based systemic reform in science.

  1. The Effectiveness of Computer Supported versus Real Laboratory Inquiry Learning Environments on the Understanding of Direct Current Electricity among Pre-Service Elementary School Teachers

    ERIC Educational Resources Information Center

    Baser, Mustafa; Durmus, Soner

    2010-01-01

    The purpose of this study was to compare the changes in conceptual understanding of Direct Current Electricity (DCE) in virtual (VLE) and real laboratory environment (RLE) among pre-service elementary school teachers. A pre- and post-test experimental design was used with two different groups. One of the groups was randomly assigned to VLE (n =…

  2. Social aspects of classroom learning: Results of a discourse analysis in an inquiry-oriented physical chemistry class

    NASA Astrophysics Data System (ADS)

    Becker, Nicole M.

    Engaging students in classroom discourse offers opportunities for students to participate in the construction of joint understandings, to negotiate relationships between different types of evidence, and to practice making evidence-based claims about science content. However, close attention to social aspects of learning is critical to creating inquiry-oriented classroom environments in which students learn with understanding. This study examined the social influences that contribute to classroom learning in an inquiry-oriented undergraduate physical chemistry class using the Process Oriented Guided Inquiry Learning (POGIL) approach. A qualitative approach to analyzing classroom discourse derived from Toulmin's (1968) model of argumentation was used to document patterns in classroom reasoning that reflect normative aspects of social interaction. Adapting the constructs of social and sociomathematical norms from the work of Yackel and Cobb (1996), I describe social aspects of the classroom environment by discussing normative aspects of social interaction (social norms) and discipline-specific criteria related to reasoning and justification in chemistry contexts, referred to here as sociochemical norms. This work discusses four social norms and two sociochemical norms that were documented over a five-week period of observation in Dr. Black's POGIL physical chemistry class. In small group activities, the socially established expectations that students explain reasoning, negotiate understandings of terminology and symbolic representations, and arrive at a consensus on critical thinking questions shaped small group interactions and reasoning. In whole class discussion, there was an expectation that students share reasoning with the class, and that the instructor provide feedback on student reasoning in ways that extended student contributions and elaborated relationships between macroscopic, particulate, and symbolic-level ideas. The ways in which the class constructed evidence-based claims about chemistry content reflected the influence of sociochemical norms that were enacted through classroom discourse. Two sociochemical norms were documented in both whole class and small group activities: first, the class used particulate-level evidence to make claims about chemical and physical properties; second, particular ways of using mathematical reasoning to justify claims about thermodynamics content became normative for the class. These similarities and differences between social and sociochemical norms in small group and whole class discussion highlight ways in which instructor facilitation can support productive interactions in classroom activities.

  3. Task-Related and Social Regulation during Online Collaborative Learning

    ERIC Educational Resources Information Center

    Janssen, Jeroen; Erkens, Gijsbert; Kirschner, Paul A.; Kanselaar, Gellof

    2012-01-01

    This study investigated how students collaborate in a CSCL environment and how this collaboration affects group performance. To answer these questions, the collaborative process of 101 groups of secondary education students when working on a historical inquiry task was analyzed. Our analyses show that group members devote most of their efforts to…

  4. Enhancing Student Explanations of Evolution: Comparing Elaborating and Competing Theory Prompts

    ERIC Educational Resources Information Center

    Donnelly, Dermot F.; Namdar, Bahadir; Vitale, Jonathan M.; Lai, Kevin; Linn, Marcia C.

    2016-01-01

    In this study, we explore how two different prompt types within an online computer-based inquiry learning environment enhance 392 7th grade students' explanations of evolution with three teachers. In the "elaborating" prompt condition, students are prompted to write explanations that support the accepted theory of evolution. In the…

  5. An Exploration of Metacognition in Asynchronous Student-Led Discussions: A Qualitative Inquiry

    ERIC Educational Resources Information Center

    Snyder, Martha M.; Dringus, Laurie P.

    2014-01-01

    Research is limited on how metacognition is facilitated and manifested in socially situated online learning environments such as online discussion forums. We approached metacognition as the phenomenon of interest partly through a methodological objective to evaluate the relevance of a metacognition construct and partly through a content objective…

  6. And So It Grows: Using a Computer-Based Simulation of a Population Growth Model to Integrate Biology & Mathematics

    ERIC Educational Resources Information Center

    Street, Garrett M.; Laubach, Timothy A.

    2013-01-01

    We provide a 5E structured-inquiry lesson so that students can learn more of the mathematics behind the logistic model of population biology. By using models and mathematics, students understand how population dynamics can be influenced by relatively simple changes in the environment.

  7. Inquiry-Guided Learning in New Zealand: From an Appetizer to an Entree

    ERIC Educational Resources Information Center

    O'Steen, Billy; Spronken-Smith, Rachel

    2012-01-01

    New Zealand is unique in the global tertiary education environment because there is a legislative requirement that teaching and research are closely interdependent and that most teaching in universities and all degree-granting institutions should be done by people who are active in advancing knowledge. Moreover, the Tertiary Education Strategy…

  8. A Dialogic Action Perspective on Open Collective Inquiry in Online Forums

    ERIC Educational Resources Information Center

    Jung, Yusun

    2012-01-01

    In today's networked environment, online forums emerge as a popular form of social structures that have greater opportunities for learning in various organizational contexts. A plethora of studies have investigated the phenomenon to identify antecedent of its success, such as individual characteristics and organizational structure. However,…

  9. Living and Learning at the Intersection: Student Homelessness and Complex Policy Environments

    ERIC Educational Resources Information Center

    Pavlakis, Alexandra E.

    2014-01-01

    In urban districts, homeless and highly mobile students are an important contributor to achievement disparities-and their numbers are rising. To date there has been little inquiry into how broader education and housing policies shape the schooling experiences of homeless and highly mobile families. Using semi-structured interviews with 132 key…

  10. Learners' Reflections in Technological Learning Environments: Why To Promote and How To Evaluate.

    ERIC Educational Resources Information Center

    Rimor, Rikki; Kozminsky, Ely

    In this study, 24 9th-grade students investigated several issues related to modern Israeli society. In their investigation, students were engaged in activities such as data search, data sorting, making inquiries, project writing, and construction of a new computerized database related to the subjects of their investigations. Students were…

  11. Curriculum Development in Studio-Style University Physics and Implications for Dissemination of Research-Based Reforms

    ERIC Educational Resources Information Center

    Foote, Kathleen T.

    2016-01-01

    Over the past few decades, a growing body of evidence demonstrates that students learn best in engaging, interactive, collaborative, and inquiry-based environments. However, most college science classes are still taught with traditional methods suggesting the existing selection of research-based instructional materials has not widely transformed…

  12. Situating Teachers' Developmental Engineering Experiences in an Inquiry-Based, Laboratory Learning Environment

    ERIC Educational Resources Information Center

    Hardré, Patricia L.; Ling, Chen; Shehab, Randa L.; Nanny, Mark A.; Nollert, Matthias U.; Refai, Hazem; Ramseyer, Christopher; Herron, Jason; Wollega, Ebisa D.; Huang, Su-Min

    2017-01-01

    Many secondary math and science teachers don't understand the nature and application of engineering adequately to transfer that understanding to their students. Research is needed that investigates and illuminates the process and characteristics of development that addresses this gap. This mixed-method study examines the developmental experiences…

  13. The CHANCE Program: Promoting Learning for Teachers and Students via Experience and Inquiry

    ERIC Educational Resources Information Center

    McLaughlin, Jacqueline S.

    2006-01-01

    Today's high school students and biology teachers alike face challenges arising from constantly-changing environments. From global warming to species reduction to energy policy, the issues the students will face will have immediate and long-lasting implications. At the same time, biology teachers are charged with achieving legislated standards,…

  14. Instructional Design or School Politics? A Discussion of "Orchestration" in TEL Research

    ERIC Educational Resources Information Center

    Perrotta, C.; Evans, M. A.

    2013-01-01

    This paper argues that the emphasis on orchestration as a metaphor for teaching in technology-enhanced learning (TEL) environments, featured in recent academic discussions, is an opportunity to broaden the scope of the inquiry into educational technology. Drawing on sociological literature and research that investigated the systemic factors that…

  15. Science and Math in the Library Media Center Using GLOBE.

    ERIC Educational Resources Information Center

    Aquino, Teresa L.; Levine, Elissa R.

    2003-01-01

    Describes the Global Learning and Observations to Benefit the Environment (GLOBE) program which helps school library media specialists and science and math teachers bring earth science, math, information literacy, information technology, and student inquiry into the classroom. Discusses use of the Internet to create a global network to study the…

  16. A Discussion-Based Online Approach to Fostering Deep Cultural Inquiry in an Introductory Language Course

    ERIC Educational Resources Information Center

    Garrett-Rucks, Paula

    2013-01-01

    Fostering and assessing language learners' cultural understanding is a daunting task, particularly at the early stages of language learning with target language instruction. The purpose of this study was to explore the development of beginning French language learners' intercultural understanding in a computer-mediated environment where students…

  17. Moving towards Raising Consciousness: An Inquiry into How Preservice Teachers Envision Classroom Management

    ERIC Educational Resources Information Center

    LaLonde, Courtney C.

    2017-01-01

    Effective classroom management is critical in the creation of learning environments that foster academic success for all students. Preservice teachers must develop an awareness and understanding of all aspects of classroom management and their relation to the two main classroom management approaches: the discipline based approach and the…

  18. Learning and Teaching with Loss: Meeting the Needs of Refugee Children through Narrative Inquiry

    ERIC Educational Resources Information Center

    Kovinthan, Thursica

    2016-01-01

    Providing refugee students with a safe and welcoming classroom environment is critical for school success but largely dependent on teachers' knowledge, values, practices, and attitudes. This qualitative study juxtaposes the experience of one refugee students' experience in the school system and one beginning teachers' experience in working with…

  19. Integrating Computer- and Teacher-Based Scaffolds in Science Inquiry

    ERIC Educational Resources Information Center

    Wu, Hui-Ling; Pedersen, Susan

    2011-01-01

    Because scaffolding is a crucial form of support for students engaging in complex learning environments, it is important that researchers determine which of the numerous kinds of scaffolding will allow them to educate students most effectively. The existing literature tends to focus on computer-based scaffolding by itself rather than integrating…

  20. Using Sociotransformative Constructivism to Create Multicultural and Gender-Inclusive Classrooms: An Intervention Project for Teacher Professional Development

    ERIC Educational Resources Information Center

    Zozakiewicz, Cathy; Rodriguez, Alberto J.

    2007-01-01

    Maxima was an intervention project that focused on assisting teachers to establish more inquiry-based, gender-inclusive, and culturally relevant learning environments. The authors grounded the project by using sociotransformative constructivism as a theoretical framework to steer the implementation of three guiding concepts for professional…

  1. Presence in Context: Teachers' Negotiations with the Relational Environment of School

    ERIC Educational Resources Information Center

    Stieha, Vicki; Raider-Roth, Miriam

    2012-01-01

    This inquiry research builds on the theory of presence in teaching (Rodgers and Raider-Roth 2006) adding nuanced understandings of how school contexts play into teachers' abilities to support students' learning. Findings are drawn from multiple interviews with five veteran middle school teachers, teachers' written work, and field observations.…

  2. "Real Teaching" in the Mathematics Classroom: A Comparison of the Instructional Practices of Elementary Teachers in Urban High-Poverty Schools

    ERIC Educational Resources Information Center

    McKinney, Sueanne E.; Robinson, Jack; Berube, Clair T.

    2013-01-01

    The National Council of Teachers of Mathematics' "Principles and Standards for School Mathematics" outlines fundamental elements that are crucial for creating a problem-solving and inquiry-driven classroom learning environment that highlights conceptual understandings of mathematics ideas. Even though this document outlines…

  3. Exploring Elementary Pre-Service Teachers' Experiences and Learning Outcomes in a Revised Inquiry-Based Science Lesson: An Action Research

    ERIC Educational Resources Information Center

    Kazempour, Mahsa; Amirshokoohi, Aidin

    2013-01-01

    In order for teachers to implement inquiry-based teaching practices, they must have experienced inquiry-based learning especially during science content and methods courses. Although the impacts of inquiry-based instruction on various cognitive and affective domains have been studied and documented little attention has been paid to "how"…

  4. Revising the Community of Inquiry Framework for the Analysis of One-to-One Online Learning Relationships

    ERIC Educational Resources Information Center

    Stenbom, Stefan; Jansson, Malin; Hulkko, Annelie

    2016-01-01

    In online learning research, the theoretical community of inquiry framework has been used extensively to analyze processes of inquiry among learners and instructors within a community. This paper examines a special case of community of inquiry consisting of only one learner and one instructor. Together they engage in an online coaching discourse…

  5. Trained Inquiry Skills on Heat and Temperature Concepts

    NASA Astrophysics Data System (ADS)

    Hasanah, U.; Hamidah, I.; Utari, S.

    2017-09-01

    Inquiry skills are skills that aperson needs in developing concepts, but the results of the study suggest that these skills haven’t yet been trained along with the development of concepts in science feeding, found the difficulties of students in building the concept scientifically. Therefore, this study aims to find ways that are effective in training inquiry skills trough Levels of Inquiry (LoI) learning. Experimental research with one group pretest-postest design, using non-random sampling samples in one of vocational high school in Cimahi obtained purposively 33 students of X class. The research using the inquiry skills test instrument in the form of 15questions multiple choice with reliability in very high category. The result of data processing by using the normalized gain value obtained an illustration that the ways developed in the LoI are considered effective trained inquiry skills in the middle category. Some of the ways LoI learning are considered effective in communicating aspects through discovery learning, predicting trough interactive demonstration, hypotheses through inquiry lesson, and interpreting data through inquiry lab, but the implementation of LoI learning in this study hasn’t found a way that is seen as effective for trespassing aspects of designing an experiment.

  6. Active Learning in PhysicsTechnology and Research-based Techniques Emphasizing Interactive Lecture Demonstrations

    NASA Astrophysics Data System (ADS)

    Thornton, Ronald

    2010-10-01

    Physics education research has shown that learning environments that engage students and allow them to take an active part in their learning can lead to large conceptual gains compared to traditional instruction. Examples of successful curricula and methods include Peer Instruction, Just in Time Teaching, RealTime Physics, Workshop Physics, Scale-Up, and Interactive Lecture Demonstrations (ILDs). An active learning environment is often difficult to achieve in lecture sessions. This presentation will demonstrate the use of sequences of Interactive Lecture Demonstrations (ILDs) that use real experiments often involving real-time data collection and display combined with student interaction to create an active learning environment in large or small lecture classes. Interactive lecture demonstrations will be done in the area of mechanics using real-time motion probes and the Visualizer. A video tape of students involved in interactive lecture demonstrations will be shown. The results of a number of research studies at various institutions (including international) to measure the effectiveness of ILDs and guided inquiry conceptual laboratories will be presented.

  7. Hoping to Teach Someday? Inquire Within: Examining Inquiry-Based Learning with First-Semester Undergrads

    ERIC Educational Resources Information Center

    Byker, Erik Jon; Coffey, Heather; Harden, Susan; Good, Amy; Heafner, Tina L.; Brown, Katie E.; Holzberg, Debra

    2017-01-01

    Using case study method, this study examines the impact of an inquiry-based learning program among a cohort of first-semester undergraduates (n = 104) at a large public university in the southeastern United States who are aspiring to become teachers. The Boyer Commission (1999) asserted that inquiry-based learning should be the foundation of…

  8. The Development of Discovery-Inquiry Learning Model to Reduce the Science Misconceptions of Junior High School Students

    ERIC Educational Resources Information Center

    Tompo, Basman; Ahmad, Arifin; Muris, Muris

    2016-01-01

    The main objective of this research was to develop discovery inquiry (DI) learning model to reduce the misconceptions of Science student level of secondary school that is valid, practical, and effective. This research was an R&D (research and development). The trials of discovery inquiry (DI) learning model were carried out in two different…

  9. The Implementation of Open-Inquiry Approach to Improve Students' Learning Activities, Responses, and Mathematical Creative Thinking Skills

    ERIC Educational Resources Information Center

    Kadir; Lucyana; Satriawati, Gusni

    2017-01-01

    This study aims to reveal the improvement of the students' learning activities, responses, and mathematical creative thinking skills (MCTS) through open-inquiry approach (OIA). Other relevant studies in mathematics learning tend to focus on guided inquiry, and especially in Indonesia, OIA is still less applied. This study is conducted at State…

  10. Experimenting in a constructivist high school physics laboratory

    NASA Astrophysics Data System (ADS)

    Roth, Wolff-Michael

    Although laboratory activities have long been recognized for their potential to facilitate the learning of science concepts and skills, this potential has yet to be realized. To remediate this problem, researchers have called for constructivist learning environments in which students can pursue open inquiry and frame their own research problems. The present study was designed to describe and understand students' experimenting and problem solving in such an environment. An interpretive research methodology was adopted for the construction of meaning from the data. The data sources included videotapes, their transcripts, student laboratory reports and reflections, interviews with the students, and the teacher's course outline and reflective notes. Forty-six students from three sections of an introductory physics course taught at a private school for boys participated in the study. This article shows the students' remarkable ability and willingness to generate research questions and to design and develop apparatus for data collection. In their effort to frame research questions, students often used narrative explanations to explore and think about the phenomena to be studied. In some cases, blind alleys, students framed research questions and planned experiments that did not lead to the expected results. We observed a remarkable flexibility to deal with problems that arose during the implementation of their plans in the context of the inquiry. These problems, as well as their solutions and the necessary decision-making processes, were characterized by their situated nature. Finally, students pursued meaningful learning during the interpretation of data and graphs to arrive at reasonable answers of their research questions. We concluded that students should be provided with problem-rich learning environments in which they learn to investigate phenomena of their own interest and in which they can develop complex problem-solving skills.

  11. Student self-assessment in an interactive learning environment: Technological tools for scaffolding and understanding self-assessment practices

    NASA Astrophysics Data System (ADS)

    Eslinger, Eric Martin

    Metacognitive skills are a crucial component of a successful learning career. We define metacognition as the ability to plan, monitor progress toward a goal, reflect on the quality of work and process, and revise the work or plan accordingly. By explicitly addressing certain metacognitive practices in classrooms, researchers have observed improved learning outcomes in both science and mathematical problem solving. Although these efforts were successful, they were also limited in the range of skills that could be addressed at one time and the methods used to address them due to the static nature inherent in traditional pencil-and-paper format. We wished to address these skills in a more dynamic, continuous representation such as that afforded by a computerized learning environment. This paper outlines such an environment and describes pedagogical activities afforded by the system. The ThinkerTools group developed and tested a software scaffold for inquiry projects in a middle-school classroom. By analyzing student use of the software tool, three forms of self-assessment activity were noted: integrated, task and project self-assessment. Each assessment form was related to the degree of interleaving between assessment and work the students engaged in as they developed their inquiry products. I argue that the integrated forms of assessment are more beneficial to student learning, and show that there is a significant relationship between active self-assessment forms and measures of student achievement and product quality. Through the use of case studies including video analysis, I address specific student self-assessment activity that utilized the software as well as self-assessment that took place outside of the software. A model of student self-assessment activity was created, highlighting aspects of activity that afford more productive self-assessment episodes.

  12. Supporting clinical leadership through action: The nurse consultant role.

    PubMed

    Rosser, Elizabeth; Grey, Rachael; Neal, Deborah; Reeve, Julie; Smith, Caroline; Valentine, Janine

    2017-12-01

    To evaluate the effectiveness of an action learning set to enhance clinical leadership and extend their scope and confidence more strategically. As the most senior clinical role in most healthcare systems, the consultant nurse role is a solitary one. They are required to develop personal resilience, commitment and a belief in their ability to lead, with new consultants needing a strong support network to succeed. Following a 2-year action learning set, four nurse consultants, one therapy consultant, and a university educationalist engaged in a cooperative inquiry approach using four cycles of discussion, reflection, analysis and action over an 18-month period from March 2015-July 2016, to learn how to change and enhance their working practices. Data were analysed thematically. Four themes emerged where the action learning set (i) offered structure and support, (ii) enabled a wider influence and (iii) empowered them to lead. The cooperative inquiry helped them realise how much they had gained from their collective learning and they felt empowered to lead. Their motivation to "make a difference" remains palpable. The outcomes of the cooperative inquiry included an enhanced understanding of the importance of openness and trust and a willingness to share and learn from each other in a respectful and confidential environment with a receptiveness to change. Self-leadership has clearly been accepted and embraced, and their collaboration has improved communication across the organisation, enhanced their strategic leadership capability and given confidence to disseminate externally. The action learning set offered structure to support these clinical leaders to keep them focused across the breadth of their role. Additionally, peer review with external facilitation has enabled these clinical leaders to gain a wider influence and empowered them to lead. © 2017 John Wiley & Sons Ltd.

  13. Urban Schools' Teachers Enacting Project-Based Science

    ERIC Educational Resources Information Center

    Tal, Tali; Krajcik, Joseph S.; Blumenfeld, Phyllis C.

    2006-01-01

    What teaching practices foster inquiry and promote students to learn challenging subject matter in urban schools? Inquiry-based instruction and successful inquiry learning and teaching in project-based science (PBS) were described in previous studies (Brown & Campione, [1990]; Crawford, [1999]; Krajcik, Blumenfeld, Marx, Bass, & Fredricks,…

  14. Inquiry-Based Learning with Young Learners: A Peirce-Based Model Employed to Critique a Unit of Inquiry on Maps and Mapping

    ERIC Educational Resources Information Center

    Bacon, Karin; Matthews, Philip

    2014-01-01

    Inquiry-based learning (IBL) has become a common theme in both school and higher education in recent years. It suggests a model of curriculum development and practice that moves educational debate beyond teacher or student-based approaches towards a model of teaching and learning in which the endeavour is shared. This paper discusses an…

  15. The effect of conceptual metaphors through guided inquiry on student's conceptual change

    NASA Astrophysics Data System (ADS)

    Menia, Meli; Mudzakir, Ahmad; Rochintaniawati, Diana

    2017-05-01

    The purpose of this study was to identify student's conceptual change of global warming after integrated science learning based guided inquiry through conceptual metaphors. This study used a quasi-experimental with a nonequivalent control group design. The subject was students of two classes of one of MTsN Salido. Data was collected using conceptual change test (pretest and posttest), observation sheet to observe the learning processes, questionnaire sheet to identify students responses, and interview to identifyteacher'srespons of science learning with conceptual metaphors. The results showed that science learning based guided inquiry with conceptual metaphors is better than science learning without conceptual metaphors. The average of posttest experimental class was 79,40 and control class was 66,09. The student's conceptual change for two classes changed significantly byusing mann whitney U testwith P= 0,003(P less than sig. value, P< 0,05). This means that there was differenceson student's conceptual changebeetwen integrated science learning based guided inquiry with conceptual metaphors class and integrated science learning without conceptual metaphors class. The study also showed that teachers and studentsgive positive responsesto implementation of integrated science learning based guided inquiry with conceptual metaphors.

  16. Elementary Teacher's Conceptions of Inquiry Teaching: Messages for Teacher Development

    NASA Astrophysics Data System (ADS)

    Ireland, Joseph E.; Watters, James J.; Brownlee, Jo; Lupton, Mandy

    2012-02-01

    This study explored practicing elementary school teacher's conceptions of teaching in ways that foster inquiry-based learning in the science curriculum (inquiry teaching). The advocacy for inquiry-based learning in contemporary curricula assumes the principle that students learn in their own way by drawing on direct experience fostered by the teacher. That students should be able to discover answers themselves through active engagement with new experiences was central to the thinking of eminent educators such as Pestalozzi, Dewey and Montessori. However, even after many years of research and practice, inquiry learning as a referent for teaching still struggles to find expression in the average teachers' pedagogy. This study drew on interview data from 20 elementary teachers. A phenomenographic analysis revealed three conceptions of teaching for inquiry learning in science in the elementary years of schooling: (a) The Experience-centered conception where teachers focused on providing interesting sensory experiences to students; (b) The Problem-centered conception where teachers focused on engaging students with challenging problems; and (c) The Question-centered conception where teachers focused on helping students to ask and answer their own questions. Understanding teachers' conceptions has implications for both the enactment of inquiry teaching in the classroom as well as the uptake of new teaching behaviors during professional development, with enhanced outcomes for engaging students in Science.

  17. Teaching and learning innovations for postgraduate education in nursing.

    PubMed

    Phillips, Diane; Forbes, Helen; Duke, Maxine

    2013-01-01

    This paper begins with a literature review of blended learning approaches, including the creation of learning spaces in the online environment and the model of community of inquiry and collaborative learning promoted by Garrison and others. This model, comprising of three elements including 'social presence', 'cognitive presence' and 'teaching presence', guides academics in the development and delivery of quality programs designed to enhance each student's experience of their course. The second part of this paper is the application of blended learning for the Deakin University Master of Nursing Practice (Nurse Practitioner), including a range of online independent learning activities, Elluminate Live use (a real time online program) and on-campus contact with students. The application of these flexible and innovative online modalities offered in this course, have been designed to promote quality learning experiences for students around their employment commitments and lifestyle factors. As an off-campus course, the Master of Nursing Practice (Nurse Practitioner) presents as a more flexible option for nurses residing in various parts of Australia. The three core elements of the model of community of inquiry and collaborative learning by Garrison and others have been integrated through online teaching and learning access and face-to-face contact for one day in two trimesters of the academic year. The success of blended learning approaches are underpinned by effective communication and interactions between both academics and students.

  18. A Five-Stage Prediction-Observation-Explanation Inquiry-Based Learning Model to Improve Students' Learning Performance in Science Courses

    ERIC Educational Resources Information Center

    Hsiao, Hsien-Sheng; Chen, Jyun-Chen; Hong, Jon-Chao; Chen, Po-Hsi; Lu, Chow-Chin; Chen, Sherry Y.

    2017-01-01

    A five-stage prediction-observation-explanation inquiry-based learning (FPOEIL) model was developed to improve students' scientific learning performance. In order to intensify the science learning effect, the repertory grid technology-assisted learning (RGTL) approach and the collaborative learning (CL) approach were utilized. A quasi-experimental…

  19. Mathematics in Student-­Centred Inquiry Learning: Student Engagement

    ERIC Educational Resources Information Center

    Calder, Nigel

    2013-01-01

    This paper examines how mathematical understandings might be facilitated through student-centred inquiry. Data is drawn from a research project on student-centred inquiry learning that situated mathematics within authentic problem-solving contexts and involved students in a collaboratively constructed curriculum. A contemporary interpretive frame…

  20. Teacher Discourse Strategies Used in Kindergarten Inquiry-Based Science Learning

    ERIC Educational Resources Information Center

    Harris, Karleah; Crabbe, Jordan Jimmy; Harris, Charlene

    2017-01-01

    This study examines teacher discourse strategies used in kindergarten inquiry-based science learning as part of the Scientific Literacy Project (SLP) (Mantzicopoulos, Patrick & Samarapungavan, 2005). Four public kindergarten science classrooms were chosen to implement science teaching strategies using a guided-inquiry approach. Data were…

  1. Designing Automated Guidance for Concept Diagrams in Inquiry Instruction

    ERIC Educational Resources Information Center

    Ryoo, Kihyun; Linn, Marcia C.

    2016-01-01

    Advances in automated scoring technologies have the potential to support student learning during inquiry instruction by providing timely and adaptive guidance on individual students' responses. To identify which forms of automated guidance can be beneficial for inquiry learning, we compared reflective guidance to directive guidance for…

  2. Inquiry and Digital Learning Centers

    ERIC Educational Resources Information Center

    Pappas, Marjorie L.

    2005-01-01

    "Inquiry is an investigative process that engages students in answering questions, solving real world problems, confronting issues, or exploring personal interests" (Pappas and Tepe 2002, 27). Students who engage in inquiry learning need tools and resources that enable them to independently gather and use information. Scaffolding is important for…

  3. Inquiry learning: Students' perception of light wave phenomena in an informal environment

    NASA Astrophysics Data System (ADS)

    Ford, Ken

    This study involved identifying students' perception of light phenomena and determined if they learned the scientific concepts of light that were presented to them by an interactive science exhibit. The participants in this study made scientific inquiry about light by using a powerful white light source, a prism, converging lenses, diverging lenses, concave and convex mirrors in an informal science setting. The sample used in the study consisted of 40 subjects (15 males and 25 females) in a college program at a University located in the Southern region of the United States. The participants were selected using a convenient sampling process from a population enrolled in a pre-calculus class and a physics class. The participants were engaged in pretest on light wave phenomena using the Inquiry Laboratory Light Island exhibit. After the pretest, the participants were engaged in activities, where they reflected white light off the surface of concave and convex mirrors, refracted white light through converging and diverging lens, and passed white light through a prism. They also made observations of the behavior and characteristics of light from the patterns that it created. After three weeks, the participants were given the Inquiry Laboratory Light Island exhibit posttest. The findings of the study indicated that the means yielded a higher average for the participants' posttest scores. The t-Test results were statistically significant, which confirmed that the concepts of light wave phenomena were perceived and learned by the participants. The Inquiry Laboratory survey questions analyzed using the chi-square test suggested that participants were in agreement with the concepts about light. In addition, Cramer's phi and Cramer's V suggested a moderate relationship and association between the genders of the participants on the concepts of light wave phenomena. Furthermore, the interview and observation protocol processes confirmed that students perceived and learned the science concepts of light wave phenomena by the way they responded to the researcher's interview questions. Implications from the study suggested that further study be carried out on the learning process in an informal science setting and should be supported by corporations, businesses, educational institutions, and organizations. Although the findings from this study aided in the development of a structured approach that enhanced student motivation, interest, and learning about light waves in physics/physical science there is still a need to do more research in this area.

  4. Investigating the shifts in Thai teachers' views of learning and pedagogical practices while adopting an argument-based inquiry approach

    NASA Astrophysics Data System (ADS)

    Promyod, Nattida

    The purpose of this study was to investigate the shift of Thai teachers' views of learning and their pedagogical practices from the traditional approach to be more centered on an argument-based inquiry approach (ABI) in Thai classrooms, where teachers and learners have long been familiar with the lecture-based tradition. Other than examining the changes, the study further explored the relationship throughout the ABI implementation phase with a specific focus on driving questions, problem solving and reasoning, and establishing a supportive learning environment. The study was conducted in Thailand with five physics teachers. Data collection involved classroom observations and teacher interviews. The constant comparative method was employed throughout the data analysis process. The research questions that guided this study were: (1) What changes occurred in teachers' pedagogical practices and views of learning throughout the implementation phase of the argument-based inquiry approach? (2) If change did occur, what was the relationship of the change among the observed criteria (questioning, problem solving, and the establishing of a supportive learning environment)? The results revealed that after fourteen weeks, the three teachers who expressed a positive attitude toward the ABI approach and expressed their willingness to practice started to shift their practices and views of learning toward a student-centered model. Although each teacher exhibited a different starting point within the three observed criteria, they all began to shift their practices first, before reflecting on their beliefs. In contrast to these teachers, the other two teachers were impeded by several barriers and therefore failed to implement the approach. These positive attitude, willingness, and shift of practice appear to be connected and necessary for change. The study highlights that in order to support the implementation of the ABI approach, especially in a large class size cultural setting, opportunities for teachers to be challenged in both classroom and cognitive spaces, where they are immersed in authentic practices and be able to reflect on their own actions as well as their existing beliefs, are crucial. However, to advance the dimensions of this issue, long-term professional development and a longitudinal study observing a large class size cultural settings are suggested.

  5. Designing for Inquiry-Based Learning with the Learning Activity Management System

    ERIC Educational Resources Information Center

    Levy, P.; Aiyegbayo, O.; Little, S.

    2009-01-01

    This paper explores the relationship between practitioners' pedagogical purposes, values and practices in designing for inquiry-based learning in higher education, and the affordances of the Learning Activity Management System (LAMS) as a tool for creating learning designs in this context. Using a qualitative research methodology, variation was…

  6. The inquiry continuum: Science teaching practices and student performance on standardized tests

    NASA Astrophysics Data System (ADS)

    Jernnigan, Laura Jane

    Few research studies have been conducted related to inquiry-based scientific teaching methodologies and NCLB-required state testing. The purpose of this study was to examine the relationship between the strategies used by seventh-grade science teachers in Illinois and student scores on the Illinois Standards Achievement Test (ISAT) to aid in determining best practices/strategies for teaching middle school science. The literature review defines scientific inquiry by placing teaching strategies on a continuum of scientific inquiry methodologies from No Inquiry (Direct Instruction) through Authentic Inquiry. Five major divisions of scientific inquiry: structured inquiry, guided inquiry, learning cycle inquiry, open inquiry, and authentic inquiry, have been identified and described. These five divisions contain eight sub-categories: demonstrations; simple or hands-on activities; discovery learning; variations of learning cycles; problem-based, event-based, and project-based; and student inquiry, science partnerships, and Schwab's enquiry. Quantitative data were collected from pre- and posttests and surveys given to the participants: five seventh grade science teachers in four Academic Excellence Award and Spotlight Award schools and their 531 students. Findings revealed that teachers reported higher inquiry scores for themselves than for their students; the two greatest reported factors limiting teachers' use of inquiry were not enough time and concern about discipline and large class size. Although the correlation between total inquiry and mean difference of pre- and posttest scores was not statistically significant, the survey instrument indicated how often teachers used inquiry in their classes, not the type of inquiry used. Implications arose from the findings that increase the methodology debate between direction instruction and inquiry-based teaching strategies; teachers are very knowledgeable about the Illinois state standards, and various inquiry-based methods need to be stressed in undergraduate methods classes. While this study focused on the various types of scientific inquiry by creating a continuum of scientific inquiry methodologies, research using the continuum needs to be conducted to determine the various teaching styles of successful teachers.

  7. Bringing the Excitement and Motivation of Research to Students; Using Inquiry and Research-Based Learning in a Year-Long Biochemistry Laboratory: Part II--Research-Based Laboratory--A Semester-Long Research Approach Using Malate Dehydrogenase as a Research Model

    ERIC Educational Resources Information Center

    Knutson, Kristopher; Smith, Jennifer; Nichols, Paul; Wallert, Mark A.; Provost, Joseph J.

    2010-01-01

    Research-based learning in a teaching environment is an effective way to help bring the excitement and experience of independent bench research to a large number of students. The program described here is the second of a two-semester biochemistry laboratory series. Here, students are empowered to design, execute and analyze their own experiments…

  8. Scale-Up: Improving Large Enrollment Physics Courses

    NASA Astrophysics Data System (ADS)

    Beichner, Robert

    1999-11-01

    The Student-Centered Activities for Large Enrollment University Physics (SCALE-UP) project is working to establish a learning environment that will promote increased conceptual understanding, improved problem-solving performance, and greater student satisfaction, while still maintaining class sizes of approximately 100. We are also addressing the new ABET engineering accreditation requirements for inquiry-based learning along with communication and team-oriented skills development. Results of studies of our latest classroom design, plans for future classroom space, and the current iteration of instructional materials will be discussed.

  9. An Action Research Project by Teacher Candidates and Their Instructor into Using Math Inquiry: Learning about Relations between Theory and Practice

    ERIC Educational Resources Information Center

    Betts, Paul; McLarty, Michelle; Dickson, Krysta

    2017-01-01

    This paper reports on what two teacher candidates and their instructor learned from an action research project into the use of inquiry to teach mathematics. We use a model of the relation between theory and practice in teacher education to interpret what we learned about inquiry. This model describes three modes for teacher candidates to learn…

  10. Teachers' Readiness to Use Inquiry-Based Learning: An Investigation of Teachers' Sense of Efficacy and Attitudes toward Inquiry-Based Learning

    ERIC Educational Resources Information Center

    Silm, Gerli; Tiitsaar, Kai; Pedaste, Margus; Zacharia, Zacharias C.; Papaevripidou, Marios

    2017-01-01

    The use of inquiry-based learning (IBL) is encouraged in schools, as it has been shown to be an effective method for raising students' motivation in STEM subjects and increasing their understanding of scientific concepts. Nevertheless, IBL is not very often used in classrooms by teachers due to different (perceived) obstacles. Within the Ark of…

  11. Science Teachers' Views and Stereotypes of Religion, Scientists and Scientific Research: A Call for Scientist-Science Teacher Partnerships to Promote Inquiry-Based Learning

    ERIC Educational Resources Information Center

    Mansour, Nasser

    2015-01-01

    Despite a growing consensus regarding the value of inquiry-based learning (IBL) for students' learning and engagement in the science classroom, the implementation of such practices continues to be a challenge. If science teachers are to use IBL to develop students' inquiry practices and encourage them to think and act as scientists, a better…

  12. Learner-Centered Inquiry in Undergraduate Biology: Positive Relationships with Long-Term Student Achievement

    PubMed Central

    Ebert-May, Diane

    2010-01-01

    We determined short- and long-term correlates of a revised introductory biology curriculum on understanding of biology as a process of inquiry and learning of content. In the original curriculum students completed two traditional lecture-based introductory courses. In the revised curriculum students completed two new learner-centered, inquiry-based courses. The new courses differed significantly from those of the original curriculum through emphases on critical thinking, collaborative work, and/or inquiry-based activities. Assessments were administered to compare student understanding of the process of biological science and content knowledge in the two curricula. More seniors who completed the revised curriculum had high-level profiles on the Views About Science Survey for Biology compared with seniors who completed the original curriculum. Also as seniors, students who completed the revised curriculum scored higher on the standardized Biology Field Test. Our results showed that an intense inquiry-based learner-centered learning experience early in the biology curriculum was associated with long-term improvements in learning. We propose that students learned to learn science in the new courses which, in turn, influenced their learning in subsequent courses. Studies that determine causal effects of learner-centered inquiry-based approaches, rather than correlative relationships, are needed to test our proposed explanation. PMID:21123693

  13. Closed Classrooms, High Mountains and Strange Lands: An Inquiry into Culture and Caring.

    ERIC Educational Resources Information Center

    Kraft, Richard J.

    1992-01-01

    The current closed classroom system of education is not sufficient in preparing students for real world life. Proposes that the wilderness, cross-cultural, and international settings are a very powerful learning environment in which life-changing experiences can and do occur. Presents the Outward Bound process and Adler's stage theory of…

  14. A Neighborhood Notion of Emergent Literacy: One Mixed Methods Inquiry to Inform Community Learning

    ERIC Educational Resources Information Center

    Hoffman, Emily Brown; Whittingham, Colleen E.

    2017-01-01

    Using a convergent parallel mixed methods design, this study considered the early literacy and language environments actualized by childcare providers and parents of young children (ages 3-5) living in one large urban community in the United States of America. Both childcare providers and parents responded to questionnaires and participated in…

  15. An Atom Is Known by the Company It Keeps: A Constructionist Learning Environment for Materials Science Using Agent-Based Modeling

    ERIC Educational Resources Information Center

    Blikstein, Paulo; Wilensky, Uri

    2009-01-01

    This article reports on "MaterialSim", an undergraduate-level computational materials science set of constructionist activities which we have developed and tested in classrooms. We investigate: (a) the cognition of students engaging in scientific inquiry through interacting with simulations; (b) the effects of students programming simulations as…

  16. Leveraging Experiential Learning to Encourage Role Transition from "Student" to "Professional": Insights from Identity Theory

    ERIC Educational Resources Information Center

    Ewing, Douglas R.; Ewing, Randall L.

    2017-01-01

    Drawing on identity theory, this conceptual inquiry posits a need to redefine the standard that individuals use to judge themselves as a "business student." Learners will be more likely to succeed in a corporate context if they experience daily interactions throughout a curriculum that approximate a professional environment. These social…

  17. Analysis of Attitude and Achievement Using the 5E Instructional Model in an Interactive Television Environment

    ERIC Educational Resources Information Center

    Cherry, Gamaliel R.

    2011-01-01

    The purpose of this quasi-experimental study was to examine attitude and achievement among fifth grade students participating in inquiry and lecture-based forms of instruction through interactive television. Participants (N = 260) were drawn from registered users of NASA's Digital Learning Network[TM]. The first three levels of Bloom's Revised…

  18. An Intercontinental Inquiry on Multicultural Education: Canadian and Hong Kong University Students Connected through a Web 2.0 Learning Environment

    ERIC Educational Resources Information Center

    Li, Jia; Zhang, Zheng

    2015-01-01

    Adopting Cummins' model of intervention for collaborative empowerment, this study reports on a transnational project that examines (1) the effectiveness of enhancing critical cultural awareness by engaging culturally diverse university students in online discussions and (2) students' perspectives on understanding different cultures through mass…

  19. CSI: Creating Student (and Teacher) Investigators--Using Popular Culture in Professional Development

    ERIC Educational Resources Information Center

    Yanowitz, Karen L.; McKay, Tanja; Ross, C. Ann; Vanderpool, Staria S.

    2010-01-01

    The goal of this article is to present a description of a professional development program designed to immerse middle and high school teachers in an inquiry-based learning environment using a forensic science context and the consequent impact participating in this program had on teachers' pedagogy. Teachers participated in a year-long program…

  20. Inquiry of Pre-Service Teachers' Concern about Integrating Web 2.0 into Instruction

    ERIC Educational Resources Information Center

    Hao, Yungwei; Lee, Kathryn S.

    2017-01-01

    To promote technology integration, it is essential to address pre-service teacher (PST) concerns about facilitating technology-enhanced learning environments. This study adopted the Concerns-Based Adoption Model to investigate PST concern on Web 2.0 integration. Four hundred and eighty-nine PSTs in a teacher education university in north Taiwan…

  1. The Creation of a Culture of Inquiry: Engaging Teachers in Experiences with Art Objects in Museums

    ERIC Educational Resources Information Center

    Miller, Stacy

    2012-01-01

    The problem under investigation in this dissertation concerns teachers and their ability to continue to be lifelong learners through professional development initiatives in art museums. In this serial case study five teachers from elementary, middle and high schools visited the free choice learning environments of art museums and were interviewed…

  2. From Bakhtin to See the Co-Construction of EFL Adult Learners' Utterances

    ERIC Educational Resources Information Center

    Tseng, Chingyi; Huh, Keun

    2016-01-01

    The purposes of this study were to explore the effect of dialogic activities on EFL students' utterances development by engaging with others, as well as the students' perceptions in the dialogic learning environment. The theoretical framework guiding this inquiry consists of the on-site lecture from the instructor and voice board feedback from the…

  3. Exploring Power Distribution and Its Influence on the Process of Argumentation in a POGIL Biochemistry Classroom

    ERIC Educational Resources Information Center

    Prince, Annabel N.; Pitts, Wesley B.; Parkin, David W.

    2018-01-01

    In this exploratory case study, we consider how students in an undergraduate biochemistry class engaged in the process of argumentation within an inquiry-oriented learning environment to investigate a chemical mechanism in a particular part of the tricarboxylic acid cycle. Audio/video recordings of student groups during the mechanism discussion…

  4. Effect of Culture on High-School Students' Question-Asking Ability Resulting from an Inquiry-Oriented Chemistry Laboratory

    ERIC Educational Resources Information Center

    Dkeidek, Iyad; Mamlok-Naaman, Rachel; Hofstein, Avi

    2011-01-01

    In order to cope with complex issues in the science-technology-environment-society context, one must develop students' high-order learning skills, such as question-asking ability (QAA), critical thinking, evaluative thinking, decision-making, and problem-solving capabilities within science education. In this study, we are concerned with evaluating…

  5. Safety in the Middle School Science Classroom Grades: 5 - 8

    ERIC Educational Resources Information Center

    National Science Teachers Association (NJ3), 2004

    2004-01-01

    Conveniently designed for hanging, this colorful flipchart ensures that you have, at a glance, the latest information for preventing safety problems in today's inquiry-intensive learning environment. The front page has space for you to enter emergency phone numbers. A final checklist acts as a quick reference on some of the most important safety…

  6. Inquiry, Play, and Problem Solving in a Process Learning Environment

    ERIC Educational Resources Information Center

    Thwaits, Anne Y.

    2016-01-01

    What is the nature of art/science collaborations in museums? How do art objects and activities contribute to the successes of science centers? Based on the premise that art exhibitions and art-based activities engage museum visitors in different ways than do strictly factual, information-based displays, I address these questions in a case study…

  7. A Guided Inquiry Activity for Teaching Ligand Field Theory

    ERIC Educational Resources Information Center

    Johnson, Brian J.; Graham, Kate J.

    2015-01-01

    This paper will describe a guided inquiry activity for teaching ligand field theory. Previous research suggests the guided inquiry approach is highly effective for student learning. This activity familiarizes students with the key concepts of molecular orbital theory applied to coordination complexes. Students will learn to identify factors that…

  8. Leadership Learning through Student-Centered and Inquiry-Focused Approaches to Teaching Adaptive Leadership

    ERIC Educational Resources Information Center

    Haber-Curran, Paige; Tillapaugh, Daniel

    2013-01-01

    This qualitative study examines student learning about leadership across three sections of a capstone course in an undergraduate leadership minor. Qualitative methods were informed by exploratory case study analysis and phenomenology. Student-centered and inquiry-focused pedagogical approaches, including case-in-point, action inquiry, and…

  9. Measuring Knowledge Integration Learning of Energy Topics: A Two-Year Longitudinal Study

    ERIC Educational Resources Information Center

    Liu, Ou Lydia; Ryoo, Kihyun; Linn, Marcia C.; Sato, Elissa; Svihla, Vanessa

    2015-01-01

    Although researchers call for inquiry learning in science, science assessments rarely capture the impact of inquiry instruction. This paper reports on the development and validation of assessments designed to measure middle-school students' progress in gaining integrated understanding of energy while studying an inquiry-oriented curriculum. The…

  10. Guided-Inquiry Experiments for Physical Chemistry: The POGIL-PCL Model

    ERIC Educational Resources Information Center

    Hunnicutt, Sally S.; Grushow, Alexander; Whitnell, Robert

    2015-01-01

    The POGIL-PCL project implements the principles of process-oriented, guided-inquiry learning (POGIL) in order to improve student learning in the physical chemistry laboratory (PCL) course. The inquiry-based physical chemistry experiments being developed emphasize modeling of chemical phenomena. In each experiment, students work through at least…

  11. Evaluating Inquiry-Based Learning as a Means to Advance Individual Student Achievement

    ERIC Educational Resources Information Center

    Ziemer, Cherilyn G.

    2013-01-01

    Although inquiry-based learning has been debated throughout the greater educational community and demonstrated with some effect in modern classrooms, little quantitative analysis has been performed to empirically validate sustained benefits. This quantitative study focused on whether inquiry-based pedagogy actually brought about sustained and…

  12. A phenomenological study of assessment methods in the inquiry-based science classroom: How do educators decide?

    NASA Astrophysics Data System (ADS)

    Tash, Gina G.

    The purpose of this phenomenological study was to describe the experiences of science educators as they select and develop assessment methods for inquiry learning. Balancing preparations for standardized tests and authentic inquiry assessment experiences can be challenging for science educators. The review of literature revealed that current research focused on instructional methods and assessment, students' assessment experiences, and teachers' instructional methods experiences. There remains a gap in current literature regarding the experiences of science educators as they select and develop assessment methods for inquiry learning. This study filled the gap by providing a description of the experiences of science educators as they select and develop assessments for inquiry learning. The participants in this study were 16 fifth through eighth grade science teachers who participate in the Alabama Math, Science, and Technology Initiative (AMSTI) in northwest Alabama. A phenomenological research method was chosen in order to describe the experiences of AMSTI science teachers as they select and develop assessments for inquiry learning. Data were collected through interviews and focus group discussions. The data analysis used a modified Stevick-Colaizzi-Keen framework. The results showed AMSTI science teachers use a variety of assessment resources and methods, feel pressures to meet Adequate Yearly Progress (AYP), and implement varying degrees of change in their assessment process due to No Child Left Behind (NCLB). Contributing a positive social change, this study's findings supplied science teachers with descriptions of successful inquiry classrooms and creative assessments that correspond to inquiry-based learning methods.

  13. Reducing cognitive load in the chemistry laboratory by using technology-driven guided inquiry experiments

    NASA Astrophysics Data System (ADS)

    Hubacz, Frank, Jr.

    The chemistry laboratory is an integral component of the learning experience for students enrolled in college-level general chemistry courses. Science education research has shown that guided inquiry investigations provide students with an optimum learning environment within the laboratory. These investigations reflect the basic tenets of constructivism by engaging students in a learning environment that allows them to experience what they learn and to then construct, in their own minds, a meaningful understanding of the ideas and concepts investigated. However, educational research also indicates that the physical plant of the laboratory environment combined with the procedural requirements of the investigation itself often produces a great demand upon a student's working memory. This demand, which is often superfluous to the chemical concept under investigation, creates a sensory overload or extraneous cognitive load within the working memory and becomes a significant obstacle to student learning. Extraneous cognitive load inhibits necessary schema formation within the learner's working memory thereby impeding the transfer of ideas to the learner's long-term memory. Cognitive Load Theory suggests that instructional material developed to reduce extraneous cognitive load leads to an improved learning environment for the student which better allows for schema formation. This study first compared the cognitive load demand, as measured by mental effort, experienced by 33 participants enrolled in a first-year general chemistry course in which the treatment group, using technology based investigations, and the non-treatment group, using traditional labware, investigated identical chemical concepts on five different exercises. Mental effort was measured via a mental effort survey, a statistical comparison of individual survey results to a procedural step count, and an analysis of fourteen post-treatment interviews. Next, a statistical analysis of achievement was completed by comparing lab grade averages, final exam averages, and final course grade averages between the two groups. Participant mental effort survey results showed significant positive effects of technology in reducing cognitive load for two laboratory investigations. One investigation revealed a significant difference in achievement measured by lab grade average comparisons. Although results of this study are inconclusive as to the usefulness of technology-driven investigations to affect learning, recommendations for further study are discussed.

  14. Understanding the Development of a Hybrid Practice of Inquiry-Based Science Instruction and Language Development: A Case Study of One Teacher's Journey Through Reflections on Classroom Practice

    NASA Astrophysics Data System (ADS)

    Capitelli, Sarah; Hooper, Paula; Rankin, Lynn; Austin, Marilyn; Caven, Gennifer

    2016-04-01

    This qualitative case study looks closely at an elementary teacher who participated in professional development experiences that helped her develop a hybrid practice of using inquiry-based science to teach both science content and English language development (ELD) to her students, many of whom are English language learners (ELLs). This case study examines the teacher's reflections on her teaching and her students' learning as she engaged her students in science learning and supported their developing language skills. It explicates the professional learning experiences that supported the development of this hybrid practice. Closely examining the pedagogical practice and reflections of a teacher who is developing an inquiry-based approach to both science learning and language development can provide insights into how teachers come to integrate their professional development experiences with their classroom expertise in order to create a hybrid inquiry-based science ELD practice. This qualitative case study contributes to the emerging scholarship on the development of teacher practice of inquiry-based science instruction as a vehicle for both science instruction and ELD for ELLs. This study demonstrates how an effective teaching practice that supports both the science and language learning of students can develop from ongoing professional learning experiences that are grounded in current perspectives about language development and that immerse teachers in an inquiry-based approach to learning and instruction. Additionally, this case study also underscores the important role that professional learning opportunities can play in supporting teachers in developing a deeper understanding of the affordances that inquiry-based science can provide for language development.

  15. Teachers' Inclusive Strategies to Accommodate 5th Grade Pupils' Crossing of Cultural Borders in Two Greek Multicultural Science Classrooms

    NASA Astrophysics Data System (ADS)

    Piliouras, Panagiotis; Evangelou, Odysseas

    2012-04-01

    The demographic changes in Greek schools underline the need for reconsidering the way in which migrant pupils move from their everyday culture into the culture of school science (a process known as "cultural border crossing"). Migrant pupils might face difficulties when they attempt to transcend cultural borders and this may influence their progress in science as well as the construction of suitable academic identities as a means of promoting scientific literacy. In the research we present in this paper, adopting the socioculturally driven thesis that learning can be viewed and studied as a meaning-making, collaborative inquiry process, we implemented an action research program (school year 2008-2009) in cooperation with two teachers, in a primary school of Athens with 85% migrant pupils. We examined whether the two teachers, who became gradually acquainted with cross-cultural pedagogy during the project, act towards accommodating the crossing of cultural borders by implementing a variety of inclusive strategies in science teaching. Our findings reveal that both teachers utilized suitable cross-border strategies (strategies concerning the establishment of a collaborative inquiry learning environment, and strategies that were in accordance with a cross-border pedagogy) to help students cross smoothly from their "world" to the "world of science". A crucial key to the teachers' expertise was their previous participation in collaborative action research (school years 2004-2006), in which they analyzed their own discourse practices during science lessons in order to establish more collaborative inquiry environments.

  16. Developing Inquiry for Learning: Reflecting Collaborative Ways to Learn How to Learn in Higher Education

    ERIC Educational Resources Information Center

    Ovens, Peter; Wells, Frances; Wallis, Patricia; Hawkins, Cyndy

    2011-01-01

    "Developing Inquiry for Learning" shows how university tutors can help students to improve their abilities to learn and to become professional inquirers. An increasing proportion of students entering higher education seem to assume that learning is a relatively passive process. This may be the largest single limitation to their achievement.…

  17. Effect of Kolb's Learning Styles under Inductive Guided-Inquiry Learning on Learning Outcomes

    ERIC Educational Resources Information Center

    Sudria, Ida Bagus Nyoman; Redhana, I. Wayan; Kirna, I. Made; Aini, Diah

    2018-01-01

    This study aimed to examine the effect of Kolb's learning styles on chemical learning activities and achievement of reaction rate taught by inductive guided inquiry learning. The population was eleventh grade Science students of a senior secondary school having relatively good academic input based on national testing results in Bali, Indonesia.…

  18. The Effectiveness of Guided Inquiry-based Learning Material on Students’ Science Literacy Skills

    NASA Astrophysics Data System (ADS)

    Aulia, E. V.; Poedjiastoeti, S.; Agustini, R.

    2018-01-01

    The purpose of this research is to describe the effectiveness of guided inquiry-based learning material to improve students’ science literacy skills on solubility and solubility product concepts. This study used Research and Development (R&D) design and was implemented to the 11th graders of Muhammadiyah 4 Senior High School Surabaya in 2016/2017 academic year with one group pre-test and post-test design. The data collection techniques used were validation, observation, test, and questionnaire. The results of this research showed that the students’ science literacy skills are different after implementation of guided inquiry-based learning material. The guided inquiry-based learning material is effective to improve students’ science literacy skills on solubility and solubility product concepts by getting N-gain score with medium and high category. This improvement caused by the developed learning material such as lesson plan, student worksheet, and science literacy skill tests were categorized as valid and very valid. In addition, each of the learning phases in lesson plan has been well implemented. Therefore, it can be concluded that the guided inquiry-based learning material are effective to improve students’ science literacy skills on solubility and solubility product concepts in senior high school.

  19. "Applying anatomy to something I care about": Authentic inquiry learning and student experiences of an inquiry project.

    PubMed

    Anstey, Lauren M

    2017-11-01

    Despite advances to move anatomy education away from its didactic history, there is a continued need for students to contextualize their studies to make learning more meaningful. This article investigates authentic learning in the context of an inquiry-based approach to learning human gross anatomy. Utilizing a case-study design with three groups of students (n = 18) and their facilitators (n = 3), methods of classroom observations, interviews, and artifact collection were utilized to investigate students' experiences of learning through an inquiry project. Qualitative data analysis through open and selective coding produced common meaningful themes of group and student experiences. Overall results demonstrate how the project served as a unique learning experience where learners engaged in the opportunity to make sense of anatomy in context of their interests and wider interdisciplinary considerations through collaborative, group-based investigation. Results were further considered in context of theoretical frameworks of inquiry-based and authentic learning. Results from this study demonstrate how students can engage anatomical understandings to inquire and apply disciplinary considerations to their personal lives and the world around them. Anat Sci Educ 10: 538-548. © 2017 American Association of Anatomists. © 2017 American Association of Anatomists.

  20. Exploring English Language Learners (ELL) experiences with scientific language and inquiry within a real life context

    NASA Astrophysics Data System (ADS)

    Algee, Lisa M.

    English Language Learners (ELL) are often at a distinct disadvantage from receiving authentic science learning opportunites. This study explored English Language Learners (ELL) learning experiences with scientific language and inquiry within a real life context. This research was theoretically informed by sociocultural theory and literature on student learning and science teaching for ELL. A qualitative, case study was used to explore students' learning experiences. Data from multiple sources was collected: student interviews, science letters, an assessment in another context, field-notes, student presentations, inquiry assessment, instructional group conversations, parent interviews, parent letters, parent homework, teacher-researcher evaluation, teacher-researcher reflective journal, and student ratings of learning activities. These data sources informed the following research questions: (1) Does participation in an out-of-school contextualized inquiry science project increase ELL use of scientific language? (2) Does participation in an out-of-school contextualized inquiry science project increase ELL understanding of scientific inquiry and their motivation to learn? (3) What are parents' funds of knowledge about the local ecology and does this inform students' experiences in the science project? All data sources concerning students were analyzed for similar patterns and trends and triangulation was sought through the use of these data sources. The remaining data sources concerning the teacher-researcher were used to inform and assess whether the pedagogical and research practices were in alignment with the proposed theoretical framework. Data sources concerning parental participation accessed funds of knowledge, which informed the curriculum in order to create continuity and connections between home and school. To ensure accuracy in the researchers' interpretations of student and parent responses during interviews, member checking was employed. The findings suggest that participation in an out-of-school contextualized inquiry science project increased ELL use of scientific language and understanding of scientific inquiry and motivation to learn. In addition, parent' funds of knowledge informed students' experiences in the science project. These findings suggest that the learning and teaching practices and the real life experiential learning contexts served as an effective means for increasing students' understandings and motivation to learn.

  1. Community of inquiry model: advancing distance learning in nurse anesthesia education.

    PubMed

    Pecka, Shannon L; Kotcherlakota, Suhasini; Berger, Ann M

    2014-06-01

    The number of distance education courses offered by nurse anesthesia programs has increased substantially. Emerging distance learning trends must be researched to ensure high-quality education for student registered nurse anesthetists. However, research to examine distance learning has been hampered by a lack of theoretical models. This article introduces the Community of Inquiry model for use in nurse anesthesia education. This model has been used for more than a decade to guide and research distance learning in higher education. A major strength of this model learning. However, it lacks applicability to the development of higher order thinking for student registered nurse anesthetists. Thus, a new derived Community of Inquiry model was designed to improve these students' higher order thinking in distance learning. The derived model integrates Bloom's revised taxonomy into the original Community of Inquiry model and provides a means to design, evaluate, and research higher order thinking in nurse anesthesia distance education courses.

  2. Effects of Web Based Inquiry Science Environment on Cognitive Outcomes in Biological Science in Correlation to Emotional Intelligence

    ERIC Educational Resources Information Center

    Manoj, T. I.; Devanathan, S.

    2010-01-01

    This research study is the report of an experiment conducted to find out the effects of web based inquiry science environment on cognitive outcomes in Biological science in correlation to Emotional intelligence. Web based inquiry science environment (WISE) provides a platform for creating inquiry-based science projects for students to work…

  3. Inquiry for Engagement in Teaching and Learning

    ERIC Educational Resources Information Center

    Moss, Glenda

    2011-01-01

    "Whither scholarship in the work of enhancing the quality of teaching and learning?" The question reminds the author of one Shakespeare asked, "To be or not to be?" She cannot imagine teaching and learning taking place in any classroom without inquiry. Scholarship in the practice of teaching and learning is teaching and learning. She believes that…

  4. Doing science by waving hands: Talk, symbiotic gesture, and interaction with digital content as resources in student inquiry

    NASA Astrophysics Data System (ADS)

    Gregorcic, Bor; Planinsic, Gorazd; Etkina, Eugenia

    2017-12-01

    In this paper, we investigate some of the ways in which students, when given the opportunity and an appropriate learning environment, spontaneously engage in collaborative inquiry. We studied small groups of high school students interacting around and with an interactive whiteboard equipped with Algodoo software, as they investigated orbital motion. Using multimodal discourse analysis, we found that in their discussions the students relied heavily on nonverbal meaning-making resources, most notably hand gestures and resources in the surrounding environment (items displayed on the interactive whiteboard). They juxtaposed talk with gestures and resources in the environment to communicate ideas that they initially were not able to express using words alone. By spontaneously recruiting and combining a diverse set of meaning-making resources, the students were able to express relatively fluently complex ideas on a novel physics topic, and to engage in practices that resemble a scientific approach to exploration of new phenomena.

  5. Enhancing endorsement of scientific inquiry increases support for pro-environment policies.

    PubMed

    Drummond, Aaron; Palmer, Matthew A; Sauer, James D

    2016-09-01

    Pro-environment policies require public support and engagement, but in countries such as the USA, public support for pro-environment policies remains low. Increasing public scientific literacy is unlikely to solve this, because increased scientific literacy does not guarantee increased acceptance of critical environmental issues (e.g. that climate change is occurring). We distinguish between scientific literacy (basic scientific knowledge) and endorsement of scientific inquiry (perceiving science as a valuable way of accumulating knowledge), and examine the relationship between people's endorsement of scientific inquiry and their support for pro-environment policy. Analysis of a large, publicly available dataset shows that support for pro-environment policies is more strongly related to endorsement of scientific inquiry than to scientific literacy among adolescents. An experiment demonstrates that a brief intervention can increase support for pro-environment policies via increased endorsement of scientific inquiry among adults. Public education about the merits of scientific inquiry may facilitate increased support for pro-environment policies.

  6. Enhancing endorsement of scientific inquiry increases support for pro-environment policies

    PubMed Central

    Palmer, Matthew A.; Sauer, James D.

    2016-01-01

    Pro-environment policies require public support and engagement, but in countries such as the USA, public support for pro-environment policies remains low. Increasing public scientific literacy is unlikely to solve this, because increased scientific literacy does not guarantee increased acceptance of critical environmental issues (e.g. that climate change is occurring). We distinguish between scientific literacy (basic scientific knowledge) and endorsement of scientific inquiry (perceiving science as a valuable way of accumulating knowledge), and examine the relationship between people's endorsement of scientific inquiry and their support for pro-environment policy. Analysis of a large, publicly available dataset shows that support for pro-environment policies is more strongly related to endorsement of scientific inquiry than to scientific literacy among adolescents. An experiment demonstrates that a brief intervention can increase support for pro-environment policies via increased endorsement of scientific inquiry among adults. Public education about the merits of scientific inquiry may facilitate increased support for pro-environment policies. PMID:27703700

  7. A Path Model of Effective Technology-Intensive Inquiry-Based Learning

    ERIC Educational Resources Information Center

    Avsec, Stanislav; Kocijancic, Slavko

    2016-01-01

    Individual aptitude, attitudes, and behavior in inquiry-based learning (IBL) settings may affect work and learning performance outcomes during activities using different technologies. To encourage multifaceted learning, factors in IBL settings must be statistically significant and effective, and not cognitively or psychomotor intensive. We…

  8. The effects of inquiry instruction on student learning in technology-based undergraduate chemistry laboratories

    NASA Astrophysics Data System (ADS)

    Meade, Karen Marie

    The purpose of this study was to identify conceptual and attitudinal effects of inquiry learning in technology-based undergraduate chemistry laboratories. There were 428 participants who were registered in general chemistry laboratory at the University of Iowa in the Spring of 2002. Conceptual and attitudinal pretest and posttest results were quantitative in nature. Qualitative results were collected from questionnaires and focus groups. Quantitative data were analyzed using a repeated measures analysis of variance to identify differences between treatment groups. A high-inquiry treatment group was open-ended and required student decisions regarding data collection, data representation, and interpretation. The low-inquiry treatment involved collaboration and traditional learning strategies. Major findings of this study were: (1) Pretest to posttest conceptual gains were significant for both treatment groups. Low-inquiry students performed significantly better on exploration questions than high-inquiry students. (2) Process skills developed at higher levels for high-inquiry students than low-inquiry students. (3) Positive attitudes decreased significantly for all students from pretest to posttest. More favorable attitudes toward science enjoyment and the ability to do well in science were found for high-inquiry students. More favorable attitudes toward science enjoyment and the ability to do well in science were found for low-inquiry males and high-inquiry females. (4) More favorable attitudes toward the nature of science caused by use of the learning cycle were reported by high-inquiry students. (5) Low-inquiry students reported more favorable attitudes toward technologies in the laboratory than did high-inquiry students. Favorable attitudes toward the use of infrared spectrometers and unfavorable attitudes toward the use of pH meters were reported by both treatment groups. (6) More formal reasoning skills were reported by high-inquiry students. Both groups reported that looking for patterns was a common theme in the laboratories. Hypotheses were reported as rarely used by both treatment groups. These findings are significant because they indicate that inquiry activities positively affect attitudes toward science, gender equality, and contribute to the development of formal reasoning skills and process skills.

  9. RITES: Online (Reaching In-service Teachers with Earth Sciences Online)

    NASA Astrophysics Data System (ADS)

    Baptiste, H.

    2003-12-01

    The RITES: Online project team (Drs. H. Prentice Baptiste, Susan Brown, Jennifer Villa) believed that the power of technology could not be effectively utilized unless it was grounded in new models of teaching and learning based on a student centered and project based curriculum, that increased opportunities for active, hands-on learning and respect for multiculturalism. We subscribe to an inquiry approach to learning. Specifically, science teaching should actively engage the learners in activities that draw on multiple abilities and learning styles. Recent brain-based research has shown that human beings construct knowledge through actions and interactions within their environment. Learning occurs in communities, and new ideas are linked to previous knowledge and constructed by the learner. Knowledge is acquired by making connections. We believed the aforementioned ideas and points to be equally true for the teacher candidates and inservice teachers participating in the RITES: Online project as well as for their students. The ESSEA science courses were delivered by distance learning via the university WebCt distance education system to teacher candidates (preservice teachers) and inservice teachers. Teacher candidates and inservice teachers were encouraged to use technology when involving their students in science inquiry activities and to record their students' involvement in science activities with digital cameras. Teacher candidates and inservice teachers involve in the ESSEA courses are engaged in earth science inquiry activities relevant to the four spheres (atmosphere, lithosphere, biosphere, hydrosphere) with the students in their classes. This presentation will highlight teacher candidates and inservice teachers in the roles of designer, researcher, and collaborator. Examples of student works will also be a part of the Power point presentation. As a result of our courses our teachers have attained the following positive outcomes: 1) Teacher candidates and inservice teachers are experiencing the inquiry approach to learning about the spheres of our earth. 2) Teacher candidates and inservice teachers are becoming confident in using technology. 3) Teacher candidates and inservice teachers are learning to work cooperatively in-groups and understand what their own students must feel. 4) Teacher candidates and inservice teachers are finding ways to obtain dynamic professional development and not leave their classrooms or homes. 5) Teacher candidates and inservice teachers are developing relationships with other teachers that have an interest in teaching science and a learning community is evolving.

  10. RITES: Online (Reaching In-Service Teachers With Earth Sciences Online)

    NASA Astrophysics Data System (ADS)

    Baptiste, H.

    2002-12-01

    The RITES: Online project team (Drs. H. Prentice Baptiste, Susan Brown, Jennifer Villa) believe that the power of technology could not be effectively utilized unless it is grounded in new models of teaching and learning based on a student centered and project based curriculum, that increases opportunities for active, hands-on learning and respect for multiculturalism. We subscribe to an inquiry approach to learning. Specifically, science teaching should actively engage the learners in activities that draw on multiple abilities and learning styles. Recent brain-based research has shown that human beings construct knowledge through actions and interactions within their environment. Learning occurs in communities, and new ideas are linked to previous knowledge and constructed by the learner. Knowledge is acquired by making connections. We believe the aforementioned ideas and points to be equally true for the inservice teachers participating in the RITES: Online project as well as for their students. The ESSEA science courses are delivered by distance learning via the university WebCt distance education system. Teachers are encouraged to use technology in their classrooms and to record their students' involvement in science activities with digital cameras. Teachers involved in the ESSEA courses are engaged in earth science inquiry activities relevant to the four spheres (atmosphere, lithosphere, biosphere, hydrosphere) with the students in their classes. This presentation will highlight the teachers in the roles of designer, researcher, and collaborator. As a result of our courses our teachers attain the following positive outcomes: 1) Teachers experience the inquiry approach to learning about the spheres of our earth. 2) Teachers become confident in using technology. 3) Teachers learn to work cooperatively in-groups and understand what their own students must feel. 4) Teachers find ways to obtain dynamic professional development and not leave their classrooms or homes. 5) Teachers develop relationships with other teachers that have an interest in teaching science and a learning community evolves.

  11. Teaching Inquiry using NASA Earth-System Science: Lessons Learned for Blended, Scaffolded Professional Development

    NASA Astrophysics Data System (ADS)

    Ellis, T. D.; TeBockhorst, D.

    2013-12-01

    Teaching Inquiry using NASA Earth-System Science (TINES) is a NASA EPOESS funded program exploring blended professional development for pre- and in-service educators to learn how to conduct meaningful inquiry lessons and projects in the K-12 classroom. This project combines trainings in GLOBE observational protocols and training in the use of NASA Earth Science mission data in a backward-faded scaffolding approach to teaching and learning about scientific inquiry. It also features a unique partnership with the National Science Teachers Association Learning Center to promote cohort building and blended professional development with access to NSTA's collection of resources. In this presentation, we will discuss lessons learned in year one and two of this program and how we plan to further develop this program over the next two years.

  12. Teachers' Views on Implementing Storytelling as a Way to Motivate Inquiry Learning in High-School Chemistry Teaching

    ERIC Educational Resources Information Center

    Peleg, Ran; Yayon, Malka; Katchevich, Dvora; Mamlok-Naaman, Rachel; Fortus, David; Eilks, Ingo; Hofstein, Avi

    2017-01-01

    Educational research and policy suggest inquiry as one of the most prominent ways of promoting effective science education. However, traditional approaches towards inquiry learning are not always sufficiently motivating for all learners. The EU-funded project, TEMI--Teaching Enquiry with Mysteries Incorporated, suggests that mysterious scientific…

  13. Inquiry-Based Learning in Teacher Education: A Primary Humanities Example

    ERIC Educational Resources Information Center

    Preston, Lou; Harvie, Kate; Wallace, Heather

    2015-01-01

    Inquiry-based learning features strongly in the new Australian Humanities and Social Sciences curriculum and increasingly in primary school practice. Yet, there is little research into, and few exemplars of, inquiry approaches in the primary humanities context. In this article, we outline and explain the implementation of a place-based simulation…

  14. Using Inquiry-Based Instruction for Teaching Science to Students with Learning Disabilities

    ERIC Educational Resources Information Center

    Aydeniz, Mehmet; Cihak, David F.; Graham, Shannon C.; Retinger, Larryn

    2012-01-01

    The purpose of this study was to examine the effects of inquiry-based science instruction for five elementary students with learning disabilities (LD). Students participated in a series of inquiry-based activities targeting conceptual and application-based understanding of simple electric circuits, conductors and insulators, parallel circuits, and…

  15. The Curriculum Workshop: A Place for Deliberative Inquiry and Teacher Professional Learning

    ERIC Educational Resources Information Center

    Hansen, Klaus-Henning

    2008-01-01

    In this article, the curriculum workshop (CW) is elaborated as an approach to professional learning, deliberation and inquiry. It offers a comprehensive framework for school-based deliberation and inquiry, is rooted in curriculum theory, promises a broad range of applications in teacher education and provides tools to assess the trustworthiness of…

  16. Inquiry Based Teaching in Turkey: A Content Analysis of Research Reports

    ERIC Educational Resources Information Center

    Kizilaslan, Aydin; Sozbilir, Mustafa; Yasar, M. Diyaddin

    2012-01-01

    Inquiry-based learning [IBL] enhances students' critical thinking abilities and help students to act as a scientist through using scientific method while learning. Specifically, inquiry as a teaching approach has been defined in many ways, the most important one is referred to nature of constructing knowledge while the individuals possess a…

  17. Implementing Inquiry-Based Learning and Examining the Effects in Junior College Probability Lessons

    ERIC Educational Resources Information Center

    Chong, Jessie Siew Yin; Chong, Maureen Siew Fang; Shahrill, Masitah; Abdullah, Nor Azura

    2017-01-01

    This study examined how Year 12 students use their inquiry skills in solving conditional probability questions by means of Inquiry-Based Learning application. The participants consisted of 66 students of similar academic abilities in Mathematics, selected from three classes, along with their respective teachers. Observational rubric and lesson…

  18. Developing a Teacher Identity: TAs' Perspectives about Learning to Teach Inquiry-Based Biology Labs

    ERIC Educational Resources Information Center

    Gormally, Cara

    2016-01-01

    Becoming a teacher involves a continual process of identity development and negotiation. Expectations and norms for particular pedagogies impact and inform this development. In inquiry based classes, instructors are expected to act as learning facilitators rather than information providers. For novice inquiry instructors, developing a teacher…

  19. A Scoping Study Investigating Student Perceptions towards Inquiry Based Learning in the Laboratory

    ERIC Educational Resources Information Center

    King, Nicola; Van der Touw, Thomas; Spowart, Lucy; Lawlor, Craig

    2016-01-01

    There has been an increasing movement towards the introduction of inquiry based learning in undergraduate physiology laboratories. Students can however find this challenging when there is a sudden transition from traditional didactic practicals to full inquiry based activities. One reason for this could be the students' perceptions about the…

  20. Wondering + Online Inquiry = Learning

    ERIC Educational Resources Information Center

    Sekeres, Diane Carver; Coiro, Julie; Castek, Jill; Guzniczak, Lizabeth A.

    2014-01-01

    Digital information sources can form the basis of effective inquiry-based learning if teachers construct the information and exercises in ways that will promote collaboration, communication, and problem solving.

  1. Inquiry-Oriented Learning Material to Increased General Physics Competence Achievement

    ERIC Educational Resources Information Center

    Sinuraya, Jurubahasa

    2016-01-01

    This study aims to produce inquiry-oriented general physics learning material to improve student learning outcome. Development steps of learning materials were adapted from the design model of Dick and Carey. Stages of development consists of three phases: planning, development, and formative evaluation and revision. Implementation of formative…

  2. Helping students make meaning of authentic investigations: findings from a student-teacher-scientist partnership

    NASA Astrophysics Data System (ADS)

    Peker, Deniz; Dolan, Erin

    2012-03-01

    As student-teacher-scientist partnerships become more widespread, there is a need for research to understand the roles assumed by scientists and teachers as they interact with students in general and in inquiry learning environments in particular. Although teacher roles during inquiry learning have been studied, there is a paucity of research about the roles that scientists assume in their interactions with students. Socio-cultural perspectives on learning emphasize social interaction as a means for students to make meaning of scientific ideas. Thus, this naturalistic study of classroom discourse aims to explore the ways scientists and teachers help high school students make meaning during authentic inquiry investigations. Conversational analysis is conducted of video recordings of discussions between students and teachers and students and scientists from two instances of a student-teacher-scientist partnership program. A social semiotic analytic framework is used to interpret the actions of scientists and teachers. The results indicate a range of common and distinct roles for scientists and teachers with respect to the conceptual, social, pedagogical, and epistemological aspects of meaning making. While scientists provided conceptual and epistemological support related to their scientific expertise, such as explaining scientific phenomena or aspects of the nature of science, teachers played a critical role in ensuring students' access to this knowledge. The results have implications for managing the division of labor between scientists and teachers in partnership programs.

  3. Helping students make meaning of authentic investigations: findings from a student-teacher-scientist partnership.

    PubMed

    Peker, Deniz; Dolan, Erin

    2012-03-01

    As student-teacher-scientist partnerships become more widespread, there is a need for research to understand the roles assumed by scientists and teachers as they interact with students in general and in inquiry learning environments in particular. Although teacher roles during inquiry learning have been studied, there is a paucity of research about the roles that scientists assume in their interactions with students. Socio-cultural perspectives on learning emphasize social interaction as a means for students to make meaning of scientific ideas. Thus, this naturalistic study of classroom discourse aims to explore the ways scientists and teachers help high school students make meaning during authentic inquiry investigations. Conversational analysis is conducted of video recordings of discussions between students and teachers and students and scientists from two instances of a student-teacher-scientist partnership program. A social semiotic analytic framework is used to interpret the actions of scientists and teachers. The results indicate a range of common and distinct roles for scientists and teachers with respect to the conceptual, social, pedagogical, and epistemological aspects of meaning making. While scientists provided conceptual and epistemological support related to their scientific expertise, such as explaining scientific phenomena or aspects of the nature of science, teachers played a critical role in ensuring students' access to this knowledge. The results have implications for managing the division of labor between scientists and teachers in partnership programs.

  4. Comparison of Student Achievement Using Didactic, Inquiry-Based, and the Combination of Two Approaches of Science Instruction

    NASA Astrophysics Data System (ADS)

    Foster, Hyacinth Carmen

    Science educators and administrators support the idea that inquiry-based and didactic-based instructional strategies have varying effects on students' acquisition of science concepts. The research problem addressed whether incorporating the two approaches covered the learning requirements of all students in science classes, enabling them to meet state and national standards. The purpose of this quasiexperimental, posttest design research study was to determine if student learning and achievement in high school biology classes differed for each type of instructional method. Constructivism theory suggested that each learner creates knowledge over time because of the learners' interactions with the environment. The optimal teaching method, didactic (teacher-directed), inquiry-based, or a combination of two approaches instructional method, becomes essential if students are to discover ways to learn information. The research question examined which form of instruction had a significant effect on student achievement in biology. The data analysis consisted of single-factor, independent-measures analysis of variance (ANOVA) that tested the hypotheses of the research study. Locally, the results indicated greater and statistically significant differences in standardized laboratory scores for students who were taught using the combination of two approaches. Based on these results, biology instructors will gain new insights into ways of improving the instructional process. Social change may occur as the science curriculum leadership applies the combination of two instructional approaches to improve acquisition of science concepts by biology students.

  5. Helping students make meaning of authentic investigations: findings from a student–teacher–scientist partnership

    PubMed Central

    Dolan, Erin

    2013-01-01

    As student–teacher–scientist partnerships become more widespread, there is a need for research to understand the roles assumed by scientists and teachers as they interact with students in general and in inquiry learning environments in particular. Although teacher roles during inquiry learning have been studied, there is a paucity of research about the roles that scientists assume in their interactions with students. Socio-cultural perspectives on learning emphasize social interaction as a means for students to make meaning of scientific ideas. Thus, this naturalistic study of classroom discourse aims to explore the ways scientists and teachers help high school students make meaning during authentic inquiry investigations. Conversational analysis is conducted of video recordings of discussions between students and teachers and students and scientists from two instances of a student–teacher–scientist partnership program. A social semiotic analytic framework is used to interpret the actions of scientists and teachers. The results indicate a range of common and distinct roles for scientists and teachers with respect to the conceptual, social, pedagogical, and epistemological aspects of meaning making. While scientists provided conceptual and epistemological support related to their scientific expertise, such as explaining scientific phenomena or aspects of the nature of science, teachers played a critical role in ensuring students' access to this knowledge. The results have implications for managing the division of labor between scientists and teachers in partnership programs. PMID:23828722

  6. An investigation into the factors that motivate teachers to implement inquiry in the science classroom

    NASA Astrophysics Data System (ADS)

    Robbins, Beth Schieber

    Inquiry-based science teaching is an inductive approach to science instruction that originated in constructivist learning theory and requires students to be active participants in their own learning process. In an inquiry-based classroom, students actively construct their knowledge of science through hands-on, engaged practices and inquiry-based approaches. Inquiry-based teaching stands in contrast to more traditional forms of teaching that see students as empty vessels to be filled by the teacher with rote facts. Despite calls from the NSF, the NRC, and the AAAS for more inquiry-based approaches to teaching science, research has shown that many teachers still do not use inquiry-based approaches. Teachers have cited difficulties including lack of time, high-stakes testing, a shortage of materials, problems with school-wide logistics, rigid science curricula, student passivity, and lack of prerequisite skills. The objective of this mixed-methods study was to examine to what extent specific, identifiable personality traits contribute to the likelihood that a teacher will use inquiry in the science classroom, and what factors figure predominantly as teachers' reasons for implementing inquiry. The findings of the study showed that the null hypotheses were not rejected. However, reduced conscientiousness and increased openness may be significant in indicating why teachers use inquiry-based teaching methods and avenues for further research. In addition, the qualitative results aligned with previous findings that showed that lack of resources (e.g., time and money) and peer support act as powerful barriers to implementing inquiry-based teaching. Inquiry teachers are flexible, come to teaching as a second or third career, and their classrooms can be characterized as chaotic, fun, and conducive to learning through engagement. The study suggests changes in practice among administrators and teachers. With adjustments in methods and survey instruments, additional research could provide valuable insights and further recommendations. Overall, this study has yielded information that may lead to changes in both practice and thinking related to inquiry-based teaching and learning.

  7. ENERGY-NET (Energy, Environment and Society Learning Network): Enhancing opportunities for learning using an Earth systems science framework

    NASA Astrophysics Data System (ADS)

    Elliott, E. M.; Bain, D. J.; Divers, M. T.; Crowley, K. J.; Povis, K.; Scardina, A.; Steiner, M.

    2012-12-01

    We describe a newly funded collaborative NSF initiative, ENERGY-NET (Energy, Environment and Society Learning Network), that brings together the Carnegie Museum of Natural History (CMNH) with the Learning Science and Geoscience research strengths at the University of Pittsburgh. ENERGY-NET aims to create rich opportunities for participatory learning and public education in the arena of energy, the environment, and society using an Earth systems science framework. We build upon a long-established teen docent program at CMNH and to form Geoscience Squads comprised of underserved teens. Together, the ENERGY-NET team, including museum staff, experts in informal learning sciences, and geoscientists spanning career stage (undergraduates, graduate students, faculty) provides inquiry-based learning experiences guided by Earth systems science principles. Together, the team works with Geoscience Squads to design "Exploration Stations" for use with CMNH visitors that employ an Earth systems science framework to explore the intersecting lenses of energy, the environment, and society. The goals of ENERGY-NET are to: 1) Develop a rich set of experiential learning activities to enhance public knowledge about the complex dynamics between Energy, Environment, and Society for demonstration at CMNH; 2) Expand diversity in the geosciences workforce by mentoring underrepresented teens, providing authentic learning experiences in earth systems science and life skills, and providing networking opportunities with geoscientists; and 3) Institutionalize ENERGY-NET collaborations among geosciences expert, learning researchers, and museum staff to yield long-term improvements in public geoscience education and geoscience workforce recruiting.

  8. Understanding Cognitive Presence in an Online and Blended Community of Inquiry: Assessing Outcomes and Processes for Deep Approaches to Learning

    ERIC Educational Resources Information Center

    Akyol, Zehra; Garrison, D. Randy

    2011-01-01

    This paper focuses on deep and meaningful learning approaches and outcomes associated with online and blended communities of inquiry. Applying mixed methodology for the research design, the study used transcript analysis, learning outcomes, perceived learning, satisfaction, and interviews to assess learning processes and outcomes. The findings for…

  9. Urban schools' teachers enacting project-based science

    NASA Astrophysics Data System (ADS)

    Tal, Tali; Krajcik, Joseph S.; Blumenfeld, Phyllis C.

    2006-09-01

    What teaching practices foster inquiry and promote students to learn challenging subject matter in urban schools? Inquiry-based instruction and successful inquiry learning and teaching in project-based science (PBS) were described in previous studies (Brown & Campione, [1990]; Crawford, [1999]; Krajcik, Blumenfeld, Marx, Bass, & Fredricks, [1998]; Krajcik, Blumenfeld, Marx, & Solloway, [1994]; Minstrell & van Zee, [2000]). In this article, we describe the characteristics of inquiry teaching practices that promote student learning in urban schools. Teaching is a major factor that affects both achievement of and attitude of students toward science (Tamir, [1998]). Our involvement in reform in a large urban district includes the development of suitable learning materials and providing continuous and practiced-based professional development (Fishman & Davis, in press; van Es, Reiser, Matese, & Gomez, [2002]). Urban schools face particular challenges when enacting inquiry-based teaching practices like those espoused in PBS. In this article, we describe two case studies of urban teachers whose students achieved high gains on pre- and posttests and who demonstrated a great deal of preparedness and commitment to their students. Teachers' attempts to help their students to perform well are described and analyzed. The teachers we discuss work in a school district that strives to bring about reform in mathematics and science through systemic reform. The Center for Learning Technologies in Urban Schools (LeTUS) collaborates with the Detroit Public Schools to bring about reform in middle-school science. Through this collaboration, diverse populations of urban-school students learn science through inquiry-oriented projects and the use of various educational learning technologies. For inquiry-based science to succeed in urban schools, teachers must play an important role in enacting the curriculum while addressing the unique needs of students. The aim of this article is to describe patterns of good science teaching in urban school.

  10. Providing Middle School Students With Science Research Experiences Through Community Partnerships

    NASA Astrophysics Data System (ADS)

    Rodriguez, D.

    2007-12-01

    Science research courses have been around for years at the university and high school level. As inquiry based learning has become more and more a part of the science teacher's vocabulary, many of these courses have adopted an inquiry model for studying science. Learners of all ages benefit from learning through the natural process of inquiry. I participated in the CIRES Earthworks program for science teachers (Colorado University) in the summer of 2007 and experienced, first hand, the value of inquiry learning. With the support and vision of my school administration, and with the support and commitment of community partners, I have developed a Middle School Science Research Program that is transforming how science is taught to students in my community. Swift Creek Middle School is located in Tallahassee, Florida. There are approximately 1000 students in this suburban public school. Students at Swift Creek are required to take one science class each year through 8th grade. As more emphasis is placed on learning a large number of scientific facts and information, in order to prepare students for yearly, standardized tests, there is a concern that less emphasis may be placed on the process and nature of science. The program I developed draws from the inquiry model followed at the CIRES Earthworks program, utilizes valuable community partnerships, and plays an important role in meeting that need. There are three major components to this Middle School Research Program, and the Center for Integrated Research and Learning (CIRL) at the National High Magnetic Field Lab (NHMFL) at Florida State University is playing an important role in all three. First, each student will develop their own research question and design experiments to answer the question. Scientists from the NHMFL are serving as mentors, or "buddy scientists," to my students as they work through the process of inquiry. Scientists from the CIRES - Earthworks program, Florida State University, and other institutions are also volunteering to be mentors. Second, each student will participate in the GLOBE-FLEXE pilot program that involves comparing environmental conditions of local environments to those of extreme environments, like hydrothermal vents in the deep sea. This real-world science program is being coordinated through the FLEXE Project Office at Penn State University, and the GLOBE Program Office in Boulder, Co. We will spend 18 class periods collecting local weather data and analyzing meteorological data from around the world, writing scientific reports, and peer reviewing other students reports. The NHMFL is a sponsor of the Communtiy Classroom Consortium in Tallahassee that is has funded a grant for equipment needed to conduct the data collection portion of this process. Finally, the students will share their research with other students, parents, teachers, and scientists at a school science fair in the fall, and a scientific poster session in the spring. The NHMFL will be supplying judges for the two sessions. They will also be offering the use of their facilities at the laboratory in the spring. Scientists from the lab will mingle with the students, discuss their research, and critique and encourage the young scientists at the first annual Middle School Research Symposium in May, 2008.

  11. From Local to EXtreme Environments (FLEXE) Student-Scientist Online Forums: hypothesis-based research examining ways to involve scientists in effective science education

    NASA Astrophysics Data System (ADS)

    Goehring, L.; Carlsen, W.; Fisher, C. R.; Kerlin, S.; Trautmann, N.; Petersen, W.

    2011-12-01

    Science education reform since the mid-1990's has called for a "new way of teaching and learning about science that reflects how science itself is done, emphasizing inquiry as a way of achieving knowledge and understanding about the world" (NRC, 1996). Scientists and engineers, experts in inquiry thinking, have been called to help model these practices for students and demonstrate scientific habits of mind. The question, however, is "how best to involve these experts?" given the very real challenges of limited availability of scientists, varying experience with effective pedagogy, widespread geographic distribution of schools, and the sheer number of students involved. Technology offers partial solutions to enable Student-Scientist Interactions (SSI). The FLEXE Project has developed online FLEXE Forums to support efficient, effective SSIs, making use of web-based and database technology to facilitate communication between students and scientists. More importantly, the FLEXE project has approached this question of "how best to do this?" scientifically, combining program evaluation with hypothesis-based research explicitly testing the effects of such SSIs on student learning and attitudes towards science. FLEXE Forums are designed to showcase scientific practices and habits of mind through facilitated interaction between students and scientists. Through these Forums, students "meet" working scientists and learn about their research and the environments in which they work. Scientists provide students with intriguing "real-life" datasets and challenge students to analyze and interpret the data through guiding questions. Students submit their analyses to the Forum, and scientists provide feedback and connect the instructional activity with real-life practice, showcasing their activities in the field. In the FLEXE project, Forums are embedded within inquiry-based instructional units focused on essential learning concepts, and feature the deep-sea environment in contrast to students' local environments to deepen students' understanding of earth systems processes. This presentation will provide an overview of the FLEXE project, a partnership between the Ridge2000 research scientists, science learning researchers, and educators, and will report findings from pilot studies implemented in collaboration with the GLOBE program, a worldwide network of scientists, science educators, and their students. FLEXE Forums have been tested with approximately 1400 students in the US, Germany, Australia and Thailand in 2009, and 1100 students in the US, Thailand, England and Costa Rica in 2010. Description of research methods (e.g., educational hypotheses, assessment of student learning and attitudes through analysis of student writing, and "quick question" surveys) and results will be shared, along with current tests examining the transferability of the approach to other scientists/science educator teams.

  12. American Chemical Society Student Affiliates Chapters: More Than Just Chemistry Clubs

    NASA Astrophysics Data System (ADS)

    Montes, Ingrid; Collazo, Carmen

    2003-10-01

    Chemistry educators often examine and implement various instructional techniques, such as mentoring programs, to advance learning objectives and to equip students with analytical and technical skills, as well as the skills required of chemical science professionals. Student organizations, such as an American Chemical Society Student Affiliates (SA) chapter, can create a learning environment for undergraduates by engaging them in activities that develop communication, teamwork and inquiry, analysis, and problem-solving skills within a real-world setting. The environment is student-based, has personal meaning for the learner, emphasizes a process-and-product orientation, and emphasizes evaluation. Participation in SAs enhance the traditional chemistry curriculum, complementing the learning goals and meeting learning objectives that might not otherwise be addressed in the curriculum. In this article we discuss how SA chapters enhance the educational experience of undergraduate chemical science students, help develop new chemistry professionals, and shape enthusiastic and committed future chemical science leaders.

  13. "This Is My Family outside of My Family": Care-Based Relating in a Model Early College High School

    ERIC Educational Resources Information Center

    Ari, Omer; Fisher-Ari, Teresa R.; Killacky, Jim; Angel, Roma

    2017-01-01

    Early college (EC) is a novel educational model in the US that combines high school and college in an effort to increase underrepresented students' access to higher education by providing engaging, hands-on instruction in a supportive learning environment. For this phenomenological inquiry, we sought to understand the role of care-based relating…

  14. The Impact of Montessori Teaching on Academic Achievement of Elementary School Students in a Central Texas School District: A Causal-Comparative Inquiry

    ERIC Educational Resources Information Center

    Salazar, Minerva Mungia

    2013-01-01

    Providing a meaningful and experiential learning environment for all students has long created a concern for alternate ways to teach students who are reportedly demonstrating non-mastery on state standardized assessments. As the benchmark for showing successful academic achievement increases, so does the need for discovering effective ways for…

  15. Research and Teaching: Use of Toulmin's Argumentation Scheme for Student Discourse to Gain Insight about Guided Inquiry Activities in College Chemistry

    ERIC Educational Resources Information Center

    Kulatunga, Ushiri; Moog, Richard S.; Lewis, Jennifer E.

    2014-01-01

    Although student production of arguments in group learning environments has been shown to promote scientific reasoning and understanding of science concepts, little previous work has examined the relationship of the structure of curricular materials to the production of argumentation. In this study, we examined this relationship for a collection…

  16. Collaboration amidst Disagreement and Moral Judgment: The Dynamics of Jewish and Arab Students' Collaborative Inquiry of Their Joint Past

    ERIC Educational Resources Information Center

    Pollack, Sarah; Kolikant, Yifat Ben-David

    2012-01-01

    We present an instructional model involving a computer-supported collaborative learning environment, in which students from two conflicting groups collaboratively investigate an event relevant to their past using historical texts. We traced one enactment of the model by a group comprised of two Israeli Jewish and two Israeli Arab students. Our…

  17. An Examination of How Community of Inquiry Relates to Student Performance in an Online Community College Course

    ERIC Educational Resources Information Center

    McWhorter, Robert Rowe

    2013-01-01

    Research has revealed that students in online classes may have higher rates of attrition than those in traditional face-to-face classes. Effective teaching and learning in an online environment requires different pedagogical skills than those used in traditional face-to-face classes. Online courses must focus on the quality of interaction. As an…

  18. At the Intersection of Leadership and Learning: A Self-Study of Using Student-Centered Pedagogies in the Classroom

    ERIC Educational Resources Information Center

    Tillapaugh, Daniel; Haber-Curran, Paige

    2013-01-01

    This paper describes the outcomes of a self-study that we undertook as instructors of a capstone undergraduate leadership course. Using the framework of action inquiry and a variety of pedagogical approaches, we sought to create a course and classroom environment that was student-centered, empowering, and transformative. Three questions are…

  19. Inquiry Based Learning and Meaning Generation through Modelling on Geometrical Optics in a Constructionist Environment

    ERIC Educational Resources Information Center

    Kotsari, Constantina; Smyrnaiou, Zacharoula

    2017-01-01

    The central roles that modelling plays in the processes of scientific enquiry and that models play as the outcomes of that enquiry are well established (Gilbert & Boulter, 1998). Besides, there are considerable similarities between the processes and outcomes of science and technology (Cinar, 2016). In this study, we discuss how the use of…

  20. Education for Social Change and Pragmatist Theory: Five Features of Educative Environments Designed for Social Change

    ERIC Educational Resources Information Center

    VanWynsberghe, Robert; Herman, Andrew C.

    2015-01-01

    This paper establishes the basis for a pragmatist-inspired theory of human action to predominant ideas about knowledge, learning and education. As a necessary prelude to an examination of pragmatist theory's position on human action and its specific focus on habits and creativity, pragmatism is defined and then related to inquiry. Next, the fields…

  1. Inquiry-Based Science Instruction in High School Biology Courses: A Multiple Case Study

    ERIC Educational Resources Information Center

    Aso, Eze

    2014-01-01

    A lack of research exists about how secondary school science teachers use inquiry-based instruction to improve student learning. The purpose of this qualitative study was to explore how science teachers used inquiry-based instruction to improve student learning in high school biology courses. The conceptual framework was based on Banchi and Bell's…

  2. Using Inquiry to Learn about Soil: A Fourth Grade Experience

    ERIC Educational Resources Information Center

    Magee, Paula A.; Wingate, Elisha

    2014-01-01

    In this article, we describe a fourth-grade inquiry unit on soil. The unit was designed and taught by preservice elementary teachers as part of a university science methods course. Using a student-driven inquiry approach to designing curriculum, the unit engaged fourth graders in learning about the physical properties soil, erosion, worms, and…

  3. Inquiry Guided Learning Projects for the Development of Critical Thinking in the College Classroom: A Pilot Study

    ERIC Educational Resources Information Center

    Bentley, Danielle C.

    2014-01-01

    This paper describes the inaugural success of implementing Inquiry Guided Learning Projects within a college-level human anatomy and physiology course. In this context, scientific inquiry was used as a means of developing skills required for critical thinking among students. The projects were loosely designed using the Information Search Process…

  4. Student Learning through Participation in Inquiry Activities: Two Case Studies in Teacher and Computer Engineering Education

    ERIC Educational Resources Information Center

    Damsa, Crina I.; Nerland, Monika

    2016-01-01

    The two case studies reported in this article contribute to a better understanding of how inquiry tasks and activities are employed as resourceful means for learning in higher professional education. An observation-based approach was used to explore characteristics of and challenges in students' participation in collaborative inquiry activities in…

  5. Inspiring Young Minds: Scientific Inquiry in the Early Years

    ERIC Educational Resources Information Center

    Smart, Julie

    2017-01-01

    Learn to use inquiry-based practice to inspire young minds through science. This book gives educators a solid guide for using research-based principles of inquiry to help children explore their world. With real-life examples and information on facilitating and guiding children, you will be able to engage and maximize STEM learning. Web content and…

  6. Toward a New Way of Learning -- Promoting Inquiry and Reflection in Palestinian Early Childhood Teacher Education

    ERIC Educational Resources Information Center

    Khales, Buad; Meier, Daniel

    2013-01-01

    The article describes the integration of inquiry, reflective practice, and child-centered teaching approaches in preservice teacher education at the early childhood level. The article reviews relevant literature on the forms and functions of inquiry and reflection as a form of professional development and teacher learning and also describes the…

  7. An Inquiry-Based Approach to Teaching Research Methods in Information Studies

    ERIC Educational Resources Information Center

    Albright, Kendra; Petrulis, Robert; Vasconcelos, Ana; Wood, Jamie

    2012-01-01

    This paper presents the results of a project that aimed at restructuring the delivery of research methods training at the Information School at the University of Sheffield, UK, based on an Inquiry-Based Learning (IBL) approach. The purpose of this research was to implement inquiry-based learning that would allow customization of research methods…

  8. Revisions of Physical Geology Laboratory Courses to Increase the Level of Inquiry: Implications for Teaching and Learning

    ERIC Educational Resources Information Center

    Grissom, April N.; Czajka, C. Douglas; McConnell, David A.

    2015-01-01

    The introductory physical geology laboratory courses taught at North Carolina State University aims to promote scientific thinking and learning through the use of scientific inquiry-based activities. A rubric describing five possible levels of inquiry was applied to characterize the laboratory activities in the course. Two rock and mineral…

  9. Crossing the Border from Science Student to Science Teacher: Preservice Teachers' Views and Experiences Learning to Teach Inquiry

    ERIC Educational Resources Information Center

    Kang, Emily J. S.; Bianchini, Julie A.; Kelly, Gregory J.

    2013-01-01

    Preservice science teachers face numerous challenges in understanding and teaching science as inquiry. Over the course of their teacher education program, they are expected to move from veteran science students with little experience learning their discipline through inquiry instruction to beginning science teachers adept at implementing inquiry…

  10. Moving Authentic Soil Research into High School Classrooms: Student Engagement and Learning

    ERIC Educational Resources Information Center

    Moebius-Clune, Bianca N.; Elsevier, Irka H.; Crawford, Barbara A.; Trautmann, Nancy M.; Schindelbeck, Robert R.; van Es, Harold M.

    2011-01-01

    Inquiry-based teaching helps students develop a deep, applied understanding of human-environmental connections, but most high school curricula do not use inquiry-based methods. Soil science topics, which are also generally lacking from curricula, can provide hands-on model systems for learning inquiry skills. We report on the implementation of a…

  11. Creating Personal Meaning through Technology-Supported Science Inquiry Learning across Formal and Informal Settings

    ERIC Educational Resources Information Center

    Anastopoulou, Stamatina; Sharples, Mike; Ainsworth, Shaaron; Crook, Charles; O'Malley, Claire; Wright, Michael

    2012-01-01

    In this paper, a novel approach to engaging students in personal inquiry learning is described, whereby they carry out scientific investigations that are personally meaningful and relevant to their everyday lives. The learners are supported by software that guides the inquiry process, extending from the classroom into the school grounds, home, or…

  12. Using Technology to Support Science Inquiry Learning

    ERIC Educational Resources Information Center

    Williams, P. John; Nguyen, Nhung; Mangan, Jenny

    2017-01-01

    This paper presents a case study of a teacher's experience in implementing an inquiry approach to his teaching over a period of two years with two different classes. His focus was on using a range of information technologies to support student inquiry learning. Data was collected over the two year period by observation, interview and student work…

  13. Challenges and Support When Teaching Science through an Integrated Inquiry and Literacy Approach

    ERIC Educational Resources Information Center

    Ødegaard, Marianne; Haug, Berit; Mork, Sonja M.; Sørvik, Gard Ove

    2014-01-01

    In the Budding Science and Literacy project, we explored how working with an integrated inquiry-based science and literacy approach may challenge and support the teaching and learning of science at the classroom level. By studying the inter-relationship between multiple learning modalities and phases of inquiry, we wished to illuminate possible…

  14. "You Have to Absorb Yourself in It": Using Inquiry and Reflection to Promote Student Learning and Self-Knowledge

    ERIC Educational Resources Information Center

    Rusche, Sarah Nell; Jason, Kendra

    2011-01-01

    Inspired by inquiry-guided learning and critical self-reflection as pedagogical approaches, we describe exercises that encourage students to develop critical thinking skills through inquiry and reflective writing. Students compile questions and reflections throughout the course and, at the end of the term, use their writings for a comprehensive…

  15. Redefining Our Roles as Teachers, Learners, and Leaders through Continuous Cycles of Practitioner Inquiry

    ERIC Educational Resources Information Center

    MacDonald, Michelina; Weller, Kristin

    2017-01-01

    Practitioner inquiry is an alternative form of professional learning that can result in significant changes in teacher practice and student learning. We share our evolution as teacher learners within our classrooms and teacher leaders within our school as we progressed through 10 years of continuous cycles of practitioner inquiry. Beginning as…

  16. The effect of inquiry-based learning experiences on adolescents' science-related career aspiration in the Finnish context

    NASA Astrophysics Data System (ADS)

    Kang, Jingoo; Keinonen, Tuula

    2017-08-01

    Much research has been conducted to investigate the effects of inquiry-based learning on students' attitude towards science and future involvement in the science field, but few of them conducted in-depth studies including young learners' socio-cognitive background to explore mechanisms which explain how inquiry experiences influence on career choices. Hence, the aim of this study was to investigate in what ways and to what extent the inquiry learning experiences in school science affect students' future career orientation in the context of socio-cognitive mechanisms based on socio-cognitive career theory(SCCT). For the purpose, Programme for International Student Assessment (PISA) 2015 data were used focusing on science literacy, and the sample of Finnish 15-year-old students (N = 5782) was analysed by structural equation modelling with the hypothesised Inquiry-SCCT model. The results of the study showed that inquiry learning experiences were indicated as a positive predictor for the students' career aspiration, and most of its effects were mediated by outcome expectations. Indeed, although self-efficacy and interest in learning science indicated positive correlations with future aspiration, outcome expectation presented the highest correlation with the science-related career. Gender differences were found in the model, but girls indicated higher outcome expectation and career aspiration than boys in Finland.

  17. Protected block time for teaching and learning in a postgraduate family practice residency program

    PubMed Central

    Jung, Piera; Kennedy, Maggie; Winder, Mary J.

    2012-01-01

    Abstract Objective To explore the elements necessary for a high-quality educational experience in a family practice residency program with respect to scheduling, learning environment, and approaches to teaching and learning. Design An interpretative, qualitative study using a generative-inquiry approach. Setting The Nanaimo Site of the University of British Columbia Family Practice Residency Program. Participants Fifteen physician instructors and 16 first- and second-year residents. Methods Data were gathered from 2 qualitative focus group interviews with residents; 2 qualitative focus group interviews with physician instructors; and structured and semistructured observation of 2 in-class seminars, with a focus on residents’ engagement with the class. Results were analyzed and categorized into themes independently and collectively by the researchers. Main findings Protected block time for teaching and learning at the Nanaimo Site has been effective in fostering a learning environment that supports collegial relationships and in-depth instruction. Residents and physician instructors benefit from the week-long academic schedule and the opportunity to teach and learn collaboratively. Participants specifically value the connections among learning environment, collegiality, relationships, reflective learning, and the teaching and learning process. Conclusion These findings suggest that strategic planning and scheduling of teaching and learning sessions in residency programs are important to promoting a comprehensive educational experience. PMID:22700741

  18. Process-Oriented Guided Inquiry Learning: POGIL and the POGIL Project

    ERIC Educational Resources Information Center

    Moog, Richard S.; Creegan, Frank J.; Hanson, David M.; Spencer, James N.; Straumanis, Andrei R.

    2006-01-01

    Recent research indicates that students learn best when they are actively engaged and they construct their own understanding. Process-Oriented Guided Inquiry Learning (POGIL) is a student-centered instructional philosophy based on these concepts in which students work in teams on specially prepared activities that follow a learning cycle paradigm.…

  19. Implementation of Process Oriented Guided Inquiry Learning (POGIL) in Engineering

    ERIC Educational Resources Information Center

    Douglas, Elliot P.; Chiu, Chu-Chuan

    2013-01-01

    This paper describes implementation and testing of an active learning, team-based pedagogical approach to instruction in engineering. This pedagogy has been termed Process Oriented Guided Inquiry Learning (POGIL), and is based upon the learning cycle model. Rather than sitting in traditional lectures, students work in teams to complete worksheets…

  20. The ESP Instruction: A Study Based on the Pattern of Autonomous Inquiry

    ERIC Educational Resources Information Center

    Zhang, Jianfeng

    2013-01-01

    Autonomous inquiry learning is a kind of learning model, which relies mainly on learners and emphasizes that learners should inquire knowledge actively; moreover, ESP, which emphasizes the combination of language learning and specific purposes learning, is a goal-oriented and well targeted instruction system. Therefore, ESP and autonomous inquiry…

Top