ERIC Educational Resources Information Center
Thorson, Annette, Ed.
1999-01-01
This issue of ENC Focus focuses on the topic of inquiry and problem solving. Featured articles include: (1) "Inquiry in the Everyday World of Schools" (Ronald D. Anderson); (2) "In the Cascade Reservoir Restoration Project Students Tackle Real-World Problems" (Clint Kennedy with Advanced Biology Students from Cascade High…
Connecting Mathematics in Primary Science Inquiry Projects
ERIC Educational Resources Information Center
So, Winnie Wing-mui
2013-01-01
Science as inquiry and mathematics as problem solving are conjoined fraternal twins attached by their similarities but with distinct differences. Inquiry and problem solving are promoted in contemporary science and mathematics education reforms as a critical attribute of the nature of disciplines, teaching methods, and learning outcomes involving…
INQUIRY TRAINING AND PROBLEM SOLVING IN ELEMENTARY SCHOOL CHILDREN.
ERIC Educational Resources Information Center
BUTTS, DAVID P.; JONES, HOWARD L.
THE EFFECT OF PLANNED GUIDANCE ON THE PROBLEM-SOLVING BEHAVIOR OF ELEMENTARY STUDENTS WAS INVESTIGATED. FACTORS RELATED TO CHANGES IN PROBLEM-SOLVING BEHAVIORS WERE IDENTIFIED. APPROXIMATELY 50 PERCENT OF THE SIXTH-GRADE STUDENTS INCLUDED IN THE STUDY WERE GIVEN INQUIRY TRAINING 30 TO 60 MINUTES DAILY FOR 3 WEEKS. AN INVENTORY OF SCIENCE PROCESSES…
ERIC Educational Resources Information Center
Miller, Bridget; Taber-Doughty, Teresa
2014-01-01
Three students with mild to moderate intellectual and multiple disability, enrolled in a self-contained functional curriculum class were taught to use a self-monitoring checklist and science notebook to increase independence in inquiry problem-solving skills. Using a single-subject multiple-probe design, all students acquired inquiry…
Assessing Problem Solving Competence through Inquiry-Based Teaching in School Science Education
ERIC Educational Resources Information Center
Zervas, Panagiotis; Sotiriou, Sofoklis; Tiemann, Rüdiger; Sampson, Demetrios G.
2015-01-01
Nowadays, there is a consensus that inquiry-based learning contributes to developing students' scientific literacy in schools. Inquiry-based teaching strategies are promoted for the development (among others) of the cognitive processes that cultivate problem solving (PS) competence. The build up of PS competence is a central objective for most…
ERIC Educational Resources Information Center
Miller, Bridget T.
2013-01-01
The purpose of this study was to investigate the use of guided science inquiry methods with self-monitoring checklists to support problem-solving for students with moderate cognitive disabilities in both science and functional daily activities. The present study contributes to the literature examining guided inquiry methods as a means for student…
Towards the Construction of a Framework to Deal with Routine Problems to Foster Mathematical Inquiry
ERIC Educational Resources Information Center
Santos-Trigo, Manuel; Camacho-Machin, Matias
2009-01-01
To what extent does the process of solving textbook problems help students develop a way of thinking that is consistent with mathematical practice? Can routine problems be transformed into problem solving activities that promote students' mathematical reflection? These questions are used to outline and discuss features of an inquiry framework…
Kindergarten Students Solving Mathematical Word Problems
ERIC Educational Resources Information Center
Johnson, Nickey Owen
2013-01-01
The purpose of this study was to explore problem solving with kindergarten students. This line of inquiry is highly significant given that Common Core State Standards emphasize deep, conceptual understanding in mathematics as well as problem solving in kindergarten. However, there is little research on problem solving with kindergarten students.…
ERIC Educational Resources Information Center
Miller, Bridget; Doughty, Teresa; Krockover, Gerald
2015-01-01
This study investigated the use of guided science inquiry methods with self-monitoring checklists to support problem-solving for students and increased autonomy during science instruction for students with moderate intellectual disability. Three students with moderate intellectual disability were supported in not only accessing the general…
ERIC Educational Resources Information Center
Gao, Su; Wang, Jian
2016-01-01
Students' frequent exposure to inquiry-based science teaching is presumed more effective than their exposure to traditional didactic instruction in helping improve competence in content knowledge and problem solving. Framed through theoretical perspectives of inquiry-based instruction and culturally relevant pedagogy, this study examines this…
ERIC Educational Resources Information Center
Turnip, Betty; Wahyuni, Ida; Tanjung, Yul Ifda
2016-01-01
One of the factors that can support successful learning activity is the use of learning models according to the objectives to be achieved. This study aimed to analyze the differences in problem-solving ability Physics student learning model Inquiry Training based on Just In Time Teaching [JITT] and conventional learning taught by cooperative model…
Inquiry-based problem solving in introductory physics
NASA Astrophysics Data System (ADS)
Koleci, Carolann
What makes problem solving in physics difficult? How do students solve physics problems, and how does this compare to an expert physicist's strategy? Over the past twenty years, physics education research has revealed several differences between novice and expert problem solving. The work of Chi, Feltovich, and Glaser demonstrates that novices tend to categorize problems based on surface features, while experts categorize according to theory, principles, or concepts1. If there are differences between how problems are categorized, then are there differences between how physics problems are solved? Learning more about the problem solving process, including how students like to learn and what is most effective, requires both qualitative and quantitative analysis. In an effort to learn how novices and experts solve introductory electricity problems, a series of in-depth interviews were conducted, transcribed, and analyzed, using both qualitative and quantitative methods. One-way ANOVA tests were performed in order to learn if there are any significant problem solving differences between: (a) novices and experts, (b) genders, (c) students who like to answer questions in class and those who don't, (d) students who like to ask questions in class and those who don't, (e) students employing an interrogative approach to problem solving and those who don't, and (f) those who like physics and those who dislike it. The results of both the qualitative and quantitative methods reveal that inquiry-based problem solving is prevalent among novices and experts, and frequently leads to the correct physics. These findings serve as impetus for the third dimension of this work: the development of Choose Your Own Adventure Physics(c) (CYOAP), an innovative teaching tool in physics which encourages inquiry-based problem solving. 1Chi, M., P. Feltovich, R. Glaser, "Categorization and Representation of Physics Problems by Experts and Novices", Cognitive Science, 5, 121--152 (1981).
ERIC Educational Resources Information Center
Gillies, Robyn M.; Nichols, Kim; Burgh, Gilbert; Haynes, Michele
2012-01-01
Teaching students to ask and answer questions is critically important if they are to engage in reasoned argumentation, problem-solving, and learning. This study involved 35 groups of grade 6 children from 18 classrooms in three conditions (cognitive questioning condition, community of inquiry condition, and the comparison condition) who were…
How Do We Know They're Getting Better? Assessment for 21st Century Minds, K-8
ERIC Educational Resources Information Center
Barell, John
2012-01-01
How do we measure students inquiry, problem-solving, and critical thinking abilities so that we know they are prepared to meet the challenges of the 21st century? John Barell explains how inquiry leads to problem-solving and provides specific steps for formative assessment that informs instruction of 21st century skills. Included are examples that…
ERIC Educational Resources Information Center
Fadzil, Hidayah Mohd
2017-01-01
Developing problem solving skills is often accepted as a desirable goal in many educational settings. However, there is little evidence to support that students are better problem solvers after graduating. The students can solve routine problems but they confronted difficulties when adapting their prior knowledge for the solution of new problems.…
Perceived Use of Inquiry Teaching by a Sample of Malaysian Biology Teachers.
ERIC Educational Resources Information Center
Ismail, Nor Asma; Rubba, Peter A.
1981-01-01
Determined degree to which Malaysian biology teachers (N=26) perceived they understood and used inquiry teaching. Data indicated that these teachers perceived they had a moderate amount of knowledge about inquiry and occasionally used the 21 inquiry-related behaviors assessed by "A Generic Problem Solving (Inquiry) Model" (Hungerford,…
ERIC Educational Resources Information Center
Mataka, Lloyd M.; Cobern, William W.; Grunert, Megan L.; Mutambuki, Jacinta; Akom, George
2014-01-01
This study investigate the effectiveness of adding an "explicit general problem solving teaching strategy" (EGPS) to guided inquiry (GI) on pre-service elementary school teachers' ability to solve heat transfer problems. The pre-service elementary teachers in this study were enrolled in two sections of a chemistry course for pre-service…
Teaching genetics using hands-on models, problem solving, and inquiry-based methods
NASA Astrophysics Data System (ADS)
Hoppe, Stephanie Ann
Teaching genetics can be challenging because of the difficulty of the content and misconceptions students might hold. This thesis focused on using hands-on model activities, problem solving, and inquiry-based teaching/learning methods in order to increase student understanding in an introductory biology class in the area of genetics. Various activities using these three methods were implemented into the classes to address any misconceptions and increase student learning of the difficult concepts. The activities that were implemented were shown to be successful based on pre-post assessment score comparison. The students were assessed on the subjects of inheritance patterns, meiosis, and protein synthesis and demonstrated growth in all of the areas. It was found that hands-on models, problem solving, and inquiry-based activities were more successful in learning concepts in genetics and the students were more engaged than tradition styles of lecture.
Process Inquiry: Analysis of Oral Problem-Solving Skills in Mathematics of Engineering Students
ERIC Educational Resources Information Center
Trance, Naci John C.
2013-01-01
This paper presents another effort in determining the difficulty of engineering students in terms of solving word problems. Students were presented with word problems in algebra. Then, they were asked to solve the word problems orally; that is, before they presented their written solutions, they were required to explain how they understood the…
Finding Trustworthy Experts to Help Problem Solving on the Programming Learning Forum
ERIC Educational Resources Information Center
Tseng, Shian-Shyong; Weng, Jui-Feng
2010-01-01
The most important thing for learners in Programming Language subject is problem solving. During the practical programming project, various problems may occur and learners usually need consultation from the senior programmers (i.e. the experts) to assist them in solving the problems. Thus, the inquiry-based learning with learning forum is applied…
Assessment of Inquiry Skills in the SAILS Project
ERIC Educational Resources Information Center
Harrison, Chris
2014-01-01
Inquiry provides both the impetus and experience that helps students acquire problem solving and lifelong learning skills. Teachers on the Strategies for Assessment of Inquiry Learning in Science Project (SAILS) strengthened their inquiry pedagogy, through focusing on seeking assessment evidence for formative action. This paper reports on both the…
Wondering + Online Inquiry = Learning
ERIC Educational Resources Information Center
Sekeres, Diane Carver; Coiro, Julie; Castek, Jill; Guzniczak, Lizabeth A.
2014-01-01
Digital information sources can form the basis of effective inquiry-based learning if teachers construct the information and exercises in ways that will promote collaboration, communication, and problem solving.
ERIC Educational Resources Information Center
Gu, Xiaoqing; Chen, Shan; Zhu, Wenbo; Lin, Lin
2015-01-01
Considerable effort has been invested in innovative learning practices such as collaborative inquiry. Collaborative problem solving is becoming popular in school settings, but there is limited knowledge on how to develop skills crucial in collaborative problem solving in students. Based on the intervention design in social interaction of…
Integrating Computers into the Problem-Solving Process.
ERIC Educational Resources Information Center
Lowther, Deborah L.; Morrison, Gary R.
2003-01-01
Asserts that within the context of problem-based learning environments, professors can encourage students to use computers as problem-solving tools. The ten-step Integrating Technology for InQuiry (NteQ) model guides professors through the process of integrating computers into problem-based learning activities. (SWM)
How is the Inquiry Skills of Biology Preservice Teachers in Biotechnology Lecture?
NASA Astrophysics Data System (ADS)
Hayat, M. S.; Rustaman, N. Y.
2017-09-01
This study was to investigate the inquiry skills of biology pre-service teachers in one teachers college in Central Java in biotechnology lecture. The method used is a case study of 29 biology preservice teacher. Data were collected using observation sheets, questionnaires, and interview guidelines. Research findings collected through questionnaires show that most students are accustomed to asking questions and formulating biotechnology issues; Skilled in conducting experiments; Skilled in obtaining relevant information from various sources; As well as skilled at processing, analyzing and interpreting data. Based on observation: lectures are not dominated by lecturers, students are able to solve problems encountered and conduct investigations. Based on the interview towards lecturers: students are always actively involved in questioning, investigation, inquiry, problem solving and experimenting in lectures. Why do most students show good inquiry skills? Because students are accustomed to invited inquiry in biology lectures. The impact, the students become more ready to be invited to do more advanced inquiry, such as real-world application inquiry, because the skill of inquiry is essentially trained.
ERIC Educational Resources Information Center
Nichols, Kim; Burgh, Gilbert; Kennedy, Callie
2017-01-01
Developing students' skills to pose and respond to questions and actively engage in inquiry behaviours enables students to problem solve and critically engage with learning and society. The aim of this study was to analyse the impact of providing teachers with an intervention in inquiry pedagogy alongside inquiry science curriculum in comparison…
Design, Development and Validation of a Model of Problem Solving for Egyptian Science Classes
ERIC Educational Resources Information Center
Shahat, Mohamed A.; Ohle, Annika; Treagust, David F.; Fischer, Hans E.
2013-01-01
Educators and policymakers envision the future of education in Egypt as enabling learners to acquire scientific inquiry and problem-solving skills. In this article, we describe the validation of a model for problem solving and the design of instruments for evaluating new teaching methods in Egyptian science classes. The instruments were based on…
ERIC Educational Resources Information Center
Lakin, Joni M.; Wallace, Carolyn S.
2015-01-01
Inquiry-based teaching promotes students' engagement in problem-solving and investigation as they learn science concepts. Current practice in science teacher education promotes the use of inquiry in the teaching of science. However, the literature suggests that many science teachers hold incomplete or incorrect conceptions of inquiry.…
Mathematics in Student-Centred Inquiry Learning: Student Engagement
ERIC Educational Resources Information Center
Calder, Nigel
2013-01-01
This paper examines how mathematical understandings might be facilitated through student-centred inquiry. Data is drawn from a research project on student-centred inquiry learning that situated mathematics within authentic problem-solving contexts and involved students in a collaboratively constructed curriculum. A contemporary interpretive frame…
Variations on an Historical Case Study
ERIC Educational Resources Information Center
Field, Patrick
2006-01-01
The National Inquiry Standard for Science Education Preparation requires science teachers to introduce students to scientific inquiry to solve problems by various methods, including active learning in a collaborative environment. In order for science teachers to comply with this inquiry standard, activities must be designed for students to…
Inquiry and Digital Learning Centers
ERIC Educational Resources Information Center
Pappas, Marjorie L.
2005-01-01
"Inquiry is an investigative process that engages students in answering questions, solving real world problems, confronting issues, or exploring personal interests" (Pappas and Tepe 2002, 27). Students who engage in inquiry learning need tools and resources that enable them to independently gather and use information. Scaffolding is important for…
How Instructional Designers Solve Workplace Problems
ERIC Educational Resources Information Center
Fortney, Kathleen S.; Yamagata-Lynch, Lisa C.
2013-01-01
This naturalistic inquiry investigated how instructional designers engage in complex and ambiguous problem solving across organizational boundaries in two corporations. Participants represented a range of instructional design experience, from novices to experts. Research methods included a participant background survey, observations of…
Genuine Inquiry: Widely Espoused Yet Rarely Enacted
ERIC Educational Resources Information Center
Le Fevre, Deidre M.; Robinson, Viviane M. J.; Sinnema, Claire E. L.
2015-01-01
The concept of inquiry is central to contemporary discussions of teacher and leader professional learning and problem solving in interpersonal contexts. However, while few would debate its value, there has been little discussion of the significant challenges inherent in engaging in genuine inquiry. In this article, we distinguish between genuine…
The Effect of Serious Video Game Play on Science Inquiry Scores
NASA Astrophysics Data System (ADS)
Hilosky, Alexandra Borzillo
American students are not developing the science inquiry skills needed to solve complex 21st century problems, thus impacting the workforce. In 2009, American high school students ranked 21 out of 26 in the category of problem-solving according to the Program for International Student Assessment. Serious video games have powerful epistemic value and are beneficial with respect to enhancing inquiry, effective problem-solving. The purpose of this correlational, quantitative study was to test Gee's assumption regarding the cycle of thinking (routinization, automatization, and deroutinization) by determining whether players status was a significant predictor of science inquiry scores, controlling for age, gender, and major. The 156 non-random volunteers who participated in this study were enrolled in a 2-year college in the northeastern U.S. Multiple regression analyses revealed that major was the strongest overall (significant) predictor, b = -.84, t(149) = -3.70, p < .001, even though gamer status served as a significant predictor variable for Stage 1 only, b = -.48, t(149) = -2.37, p = .019. Participants who reported playing serious video games scored .48 points higher than non-players of serious video games regardless of age, gender, and major, which supports previous studies that have found significant differences in scientific inquiry abilities related to forming hypotheses and identifying problems based on serious video game play. Recommendations include using serious games as instructional tools and to assess student learning (formative and summative), especially among non-traditional learners.
John Dewey--Problem Solving and History Teaching
ERIC Educational Resources Information Center
Martorella, Peter H.
1978-01-01
Presents a model for introducing inquiry and problem-solving into middle grade history classes. It is based on an educational approach suggested by John Dewey. The author uses the model to explore two seemingly contradictory statements by Abraham Lincoln about slavery. (AV)
ERIC Educational Resources Information Center
Bayazit, Ibrahim
2013-01-01
This study scrutinises approaches and thinking processes displayed by the elementary school students when solving real-world problems. It employed a qualitative inquiry to produce rich and realistic data about the case at hand. The research sample included 116 students. The data were obtained from written exam and semistructured interviews, and…
Guided Research in Middle School: Mystery in the Media Center. Second Edition
ERIC Educational Resources Information Center
Harrington, LaDawna
2011-01-01
A little imagination, a little drama, a little mystery. Using the guided inquiry model in this updated, second edition, students become detectives at Information Headquarters. They solve a mystery-and enhance their problem-solving and literacy skills. Middle school is a crucial time in the development of problem-solving, critical-thinking, and…
ERIC Educational Resources Information Center
Gallimore, Ronald; Ermeling, Bradley A.; Saunders, William M.; Goldenberg, Claude
2009-01-01
A 5-year prospective, quasi-experimental investigation demonstrated that grade-level teams in 9 Title 1 schools using an inquiry-focused protocol to solve instructional problems significantly increased achievement. Teachers applying the inquiry protocol shifted attribution of improved student performance to their teaching rather than external…
Nonfiction Literature that Highlights Inquiry: How "Real" People Solve "Real" Problems
ERIC Educational Resources Information Center
Zarnowski, Myra; Turkel, Susan
2011-01-01
In this article, the authors explain how nonfiction literature can demonstrate the nature of problem solving within disciplines such as math, science, and social studies. This literature illustrates what it means to puzzle over problems, to apply disciplinary thinking, and to develop creative solutions. The authors look closely at three examples…
ERIC Educational Resources Information Center
von Gnechten, Mitchell P.
2011-01-01
Professional development is best when embedded in one's practice and linked directly to the classroom. Opportunities for teachers to identify specific areas of concern in their classroom and problem solve solutions via action research promotes a culture of inquiry. This culture of inquiry is enhanced when teams of teachers collaborate and share…
Initial Efforts to Coordinate Appreciative Inquiry: Facilitators' Experiences and Perceptions
ERIC Educational Resources Information Center
Breslow, Ken; Crowell, Lyn; Francis, Lee; Gordon, Stephen P.
2015-01-01
Appreciative inquiry (AI) is an alternative approach to action research that moves participants beyond problem solving and builds on existing strengths as the participants co-construct a positive vision of the future and move toward that vision through collaborative inquiry. Ph.D. students enrolled in a doctoral seminar on AI (who also are…
ERIC Educational Resources Information Center
Wu, Ji-Wei; Tseng, Judy C. R.; Hwang, Gwo-Jen
2015-01-01
Inquiry-Based Learning (IBL) is an effective approach for promoting active learning. When inquiry-based learning is incorporated into instruction, teachers provide guiding questions for students to actively explore the required knowledge in order to solve the problems. Although the World Wide Web (WWW) is a rich knowledge resource for students to…
ERIC Educational Resources Information Center
Lai, Su-Huei
A conceptual framework of the modes of problem-solving action has been developed on the basis of a simple relationship cone to assist individuals in diversified professions in inquiry and implementation of theory and practice in their professional development. The conceptual framework is referred to as the Cone-Deciphered Modes of Problem Solving…
ERIC Educational Resources Information Center
Paul, Karin; Kuhlthau, Carol C.; Branch, Jennifer L.; Solowan, Diane Galloway; Case, Roland; Abilock, Debbie; Eisenberg, Michael B.; Koechlin, Carol; Zwaan, Sandi; Hughes, Sandra; Low, Ann; Litch, Margaret; Lowry, Cindy; Irvine, Linda; Stimson, Margaret; Schlarb, Irene; Wilson, Janet; Warriner, Emily; Parsons, Les; Luongo-Orlando, Katherine; Hamilton, Donald
2003-01-01
Includes 19 articles that address issues related to library skills and Canadian school libraries. Topics include information literacy; inquiry learning; critical thinking and electronic research; collaborative inquiry; information skills and the Big 6 approach to problem solving; student use of online databases; library skills; Internet accuracy;…
Including Critical Thinking and Problem Solving in Physical Education
ERIC Educational Resources Information Center
Pill, Shane; SueSee, Brendan
2017-01-01
Many physical education curriculum frameworks include statements about the inclusion of critical inquiry processes and the development of creativity and problem-solving skills. The learning environment created by physical education can encourage or limit the application and development of the learners' cognitive resources for critical and creative…
Designing WebQuests to Support Creative Problem Solving
ERIC Educational Resources Information Center
Rubin, Jim
2013-01-01
WebQuests have been a popular alternative for collaborative group work that utilizes internet resources, but studies have questioned how effective they are in challenging students to use higher order thinking processes that involve creative problem solving. This article explains how different levels of inquiry relate to categories of learning…
Fostering Student Engagement: Creative Problem-Solving in Small Group Facilitations
ERIC Educational Resources Information Center
Samson, Patricia L.
2015-01-01
Creative Problem-Solving (CPS) can be a transformative teaching methodology that supports a dialogical learning atmosphere that can transcend the traditional classroom and inspire excellence in students by linking real life experiences with the curriculum. It supports a sense of inquiry that incorporates both experiential learning and the…
ERIC Educational Resources Information Center
Gupta, Tanya
2012-01-01
Recent initiatives in the laboratory curriculum have encouraged an inquiry-based approach to learning and teaching in the laboratory. It has been argued that laboratory instruction should not just be hands-on, but it should portray the essence of inquiry through the process of experiential learning and reflective engagement in collaboration with…
Thai Grade 10 and 11 Students' Conceptual Understanding and Ability to Solve Stoichiometry Problems
ERIC Educational Resources Information Center
Dahsah, Chanyah; Coll, Richard K.
2007-01-01
Stoichiometry and related concepts are an important part of student learning in chemistry. In this interpretive-based inquiry, we investigated Thai Grade 10 and 11 students' conceptual understanding and ability to solve numerical problems for stoichiometry-related concepts. Ninety-seven participants completed a purpose-designed survey instrument…
ERIC Educational Resources Information Center
Howard, Bruce C.; McGee, Steven; Shia, Regina; Hong, Namsoo Shin
This study sought to examine the effects of meta cognitive self-regulation on problem solving across three conditions: (1) an interactive, computer-based treatment condition; (2) a noninteractive computer-based alternative treatment condition; and (3) a control condition. Also investigated was which of five components of metacognitive…
NASA Astrophysics Data System (ADS)
Gupta, Tanya
Recent initiatives in the laboratory curriculum have encouraged an inquiry-based approach to learning and teaching in the laboratory. It has been argued that laboratory instruction should not just be hands-on, but it should portray the essence of inquiry through the process of experiential learning and reflective engagement in collaboration with peers and in facilitation by the instructor. A student-centered active learning approach may be an effective way to enhance student understanding of concepts in the laboratory. The dissertation research work explores the impact of laboratory instruction and its relevance for college-level chemistry. Each chapter is different from the preceding chapter in terms of the purpose of the study and the research questions asked. However, the overarching idea is to address the importance of guided-inquiry based laboratory instruction in chemistry and its relevance in helping students to make connections with the chemistry content and in imparting skills to students. Such skills include problem solving, collaborative group work and critical thinking. The first research study (Chapter 2) concerns the impact of first year co-requisite general chemistry laboratory instruction on the problem-solving skills of students. The second research study (Chapter 3) examines the impact of implementing student roles also known as Student-Led Instructor Facilitated Guided-Inquiry based Laboratories, SLIFGIL) by modifying the Science Writing Heuristic approach of laboratory instruction. In the third research study (Chapter 4), critical thinking skills of first semester general chemistry laboratory students were compared to advanced (third or fourth year) chemistry laboratory students based on the analysis of their laboratory reports.
NASA Astrophysics Data System (ADS)
Harmer, Andrea J.
Engaging middle-school students in scientific inquiry is typically recognized as important, but difficult. Designed to foster learner engagement, this method used an online, problem-based, science inquiry that investigated the Lehigh Gap, Palmerton Superfund Site during five weeks of collaborative classroom sessions. The inquiry prototype was authored in WISE, the Web-Based Science Inquiry Environment headquartered at UC, Berkeley. Online materials, readings, and class sessions were augmented with remote access to an electron microscope to analyze Lehigh Gap samples and an introduction to nanoscale science and nanotechnology through the ImagiNations Web site at Lehigh University. Students contributed the artifacts they generated during their research to a university database and presented them to researchers at the university working on the same problem. This approach proved highly engaging and generated design and development guidelines useful to others interested in designing for student engagement and introducing nanoscale science and electron microscopy in middle school science. This study further found that students' engaged in science inquiry both behaviorally and emotionally and on several different levels. The various levels appeared to create two hierarchies of engagement, one based on behavioral criteria and the other based on emotional criteria. For students involved in the collaborative, problem-solving science, which included experts and access to their microscopes, the highest levels of engagement seemed to empower students and create in them a passion towards science. These hierarchies are illustrated with students' direct quotes, which prove that students engaged in this particular design of science inquiry. Students' engagement in the inquiry led to their achievements in understanding nanoscale science, nanotechnology, and electron microscopy and initiated positive attitude changes towards learning science.
ERIC Educational Resources Information Center
Yang, Shui-Ping; Li, Chung-Chia
2009-01-01
This study provided a challenging opportunity for general chemistry students to mimic the scientific research process by solving a water-quality problem concerning individual calcium and magnesium concentrations. We found that general chemistry students were able to develop their own experiments to solve real-world, multivariable problems through…
ERIC Educational Resources Information Center
Lai, Su-Huei
The conceptual framework of the Modes of Problem Solving Action (MPSA) model integrates Dewey's pragmatism, critical science theory, and theory regarding the three modes of inquiry. The MPSA model is formulated in the shape of a matrix. Horizontally, there are the following modes: technical, interpretive, and emancipating. Vertically, there are…
Teacher Education With an Inquiry Emphasis.
ERIC Educational Resources Information Center
Wright, David P.
A program for prospective elementary and secondary teachers emphasizing inquiry and problem solving techniques for use in the classroom is described. In the conceptual framework of this program, a situation is defined as a set of circumstances that teachers commonly encounter, and an issue is a theoretical, ethical, or methodological question. A…
Invasion Ecology. Student Edition. Cornell Scientific Inquiry Series.
ERIC Educational Resources Information Center
Krasny, Marianne E.; Trautmann, Nancy; Carlsen, William; Cunningham, Christine
This book contains the student edition of the Environmental Inquiry curriculum series developed at Cornell University. It is designed to teach learning skills for investigating the behaviors of non-native and native species and demonstrate how to apply scientific knowledge to solve real-life problems. This book focuses on strange intruders…
A Study of Classroom Inquiry and Reflection among Preservice Teachers Candidates
ERIC Educational Resources Information Center
Duquette, Cheryll; Dabrowski, Leah
2016-01-01
The purpose of this study was to explore the experiences of four preservice teachers who used classroom inquiry and reflection to solve problems when implementing differentiated instruction in elementary classrooms during a practicum. Data from classroom observations, individual reflections, and discussions with a teacher educator were analyzed…
Science Inquiry, Academic Language, and Civic Engagement
ERIC Educational Resources Information Center
Buxton, Cory A.
2009-01-01
While some students have the opportunity to engage in the kinds of structured inquiry and real-world problem solving called for in the science education reform literature, many other students receive only a daily grind of note taking, end-of-chapter questions and sample test items from state assessments. The result is an engagement gap whereby…
Teacher and Student Reflections on ICT-Rich Science Inquiry
ERIC Educational Resources Information Center
Williams, P. John; Otrel-Cass, Kathrin
2017-01-01
Background: Inquiry learning in science provides authentic and relevant contexts in which students can create knowledge to solve problems, make decisions and find solutions to issues in today's world. The use of electronic networks can facilitate this interaction, dialogue and sharing, and adds a new dimension to classroom pedagogy. Purpose: This…
Teaching Inquiry with Linked Classes and Learning Communities
ERIC Educational Resources Information Center
Piercey, Victor; Cullen, Roxanne
2017-01-01
In order to improve problem-solving dispositions, a section of an inquiry-based math sequence for first-year business students was linked with a section of our general education English sequence. We describe how the linked classes worked and compare some preliminary results from linked and unlinked sections of the math sequence.
Understanding Student-Teachers' Performances within an Inquiry-Based Practicum
ERIC Educational Resources Information Center
Méndez Rivera, Pilar; Pérez Gómez, Francisco
2017-01-01
The role of an inquiry-based practicum in the education of future teachers has been identified as a key component to foster student-teachers' abilities to face problems, try to solve them, work on doubts and produce situated and valuable learning from their own practices (Cochran-Smith & Little, 2001; Beck, 2001). The interaction between…
ERIC Educational Resources Information Center
Akman, Özkan; Alagöz, Bülent
2018-01-01
Form of inquiry should be based on cognitive approach, student-centered, question and inquiry-based, free of memorization and focused on high-level cognitive skills (critical-creative thinking and problem-solving) rather than conventional teacher-centered teaching and learning based on memorization and behavioral approach. The life quality of…
Organising the Chemistry of Question-Based Learning: A Case Study
ERIC Educational Resources Information Center
de Jesus, Helena Pedrosa; de Souza, Francisle Neri; Teixeira-Dias, Jose J. C.; Watts, Mike
2005-01-01
Designing inquiry-based-learning with and for university students develops problem-solving skills and logical reasoning, as well as reflective thinking. It involves working as a member of a team, questioning, being creative, shaping the skills for continued intellectual development. It is argued that inquiry-based group work is one of the most…
Program for Enlightened and Productive Creativity Illustrated with a Moire Patterns Lesson
ERIC Educational Resources Information Center
Yuk, Keun Cheol; Cramond, Bonnie
2006-01-01
Combining both the Western perspective of creativity as productivity and the Eastern perspective of creativity as enlightenment, a Program for Enlightened and Productive Creativity (PEPC) for teaching inquiry was devised. The PEPC describes stages through which a student is guided to solve a problem using increasingly complex observation, inquiry,…
Fostering Creativity through Inquiry and Adventure in Informal Learning Environment Design
ERIC Educational Resources Information Center
Doering, Aaron; Henrickson, Jeni
2015-01-01
Self-directed, inquiry-based learning opportunities focused on transdisciplinary real-world problem solving have been shown to foster creativity in learners. What tools might we provide classroom teachers to scaffold them and their students through this creative process? This study examines an online informal learning environment and the role the…
Invasion Ecology. Teacher's Guide [and Student Edition]. Cornell Scientific Inquiry Series.
ERIC Educational Resources Information Center
Krasny, Marianne E.; Trautmann, Nancy; Carlsen, William; Cunningham, Christine
This book contains the teacher's guide of the Environmental Inquiry curriculum series developed at Cornell University. It is designed to teach learning skills for investigating the behaviors of non-native and native species and demonstrate how to apply scientific knowledge to solve real-life problems. This book focuses on strange intruders…
A Multi-User Virtual Environment for Building and Assessing Higher Order Inquiry Skills in Science
ERIC Educational Resources Information Center
Ketelhut, Diane Jass; Nelson, Brian C.; Clarke, Jody; Dede, Chris
2010-01-01
This study investigated novel pedagogies for helping teachers infuse inquiry into a standards-based science curriculum. Using a multi-user virtual environment (MUVE) as a pedagogical vehicle, teams of middle-school students collaboratively solved problems around disease in a virtual town called River City. The students interacted with "avatars" of…
NASA Technical Reports Server (NTRS)
Aroeste, H.
1982-01-01
Guided Inquiry System Technique, a global approach to problem solving, was applied to the subject of Controlled Ecological Life Support Systems (CELSS). Nutrition, food processing, and the use of higher plants in a CELSS were considered by a panel of experts. Specific ideas and recommendations gleaned from discussions with panel members are presented.
Efficacy of problem based learning in a high school science classroom
NASA Astrophysics Data System (ADS)
Rissi, James Ryan
At the high school level, the maturity of the students, as well as constraints of the traditional high school (both in terms of class time, and number of students), impedes the use of the Problem-based instruction. But with more coaching, guidance, and planning, Problem-based Learning may be an effective teaching technique with secondary students. In recent years, the State of Michigan High School Content Expectations have emphasized the importance of inquiry and problem solving in the high school science classroom. In order to help students gain inquiry and problem solving skills, a move towards a problem-based curriculum and away from the didactic approach may lead to favorable results. In this study, the problem-based-learning framework was implemented in a high school Anatomy and Physiology classroom. Using pre-tests and post-tests over the material presented using the Problem-based technique, student comprehension and long-term retention of the material was monitored. It was found that Problem-based Learning produced comparable test performance when compared to traditional lecture, note-taking, and enrichment activities. In addition, students showed evidence of gaining research and team-working skills.
ERIC Educational Resources Information Center
Knutson, Kristopher; Smith, Jennifer; Wallert, Mark A.; Provost, Joseph J.
2010-01-01
A successful laboratory experience provides the foundation for student success, creating active participation in the learning process. Here, we describe a new approach that emphasizes research, inquiry and problem solving in a year-long biochemistry experience. The first semester centers on the purification, characterization, and analysis of a…
The earth as a problem: A curriculum inquiry into the nature of environmental education
NASA Astrophysics Data System (ADS)
Hammond, William Frank
1998-12-01
This thesis is a contribution to curriculum theory in environmental education. Its purpose is to analyze the concept of education as used by environmental educators and to examine how educational purposes are related to differing concepts of human-environment interactions and the environmental problematique. It examines three published written curricula using curriculum inquiry methodology as a means of examining two major claims. The first claim is that curricula in environmental education have been affected by a focus on environmental issues or problems, which has resulted in definitions, descriptions and curriculum proposals in the field having a syntax or narrative structure in the form of problem solving. The second claim of the thesis is that while different programs share the common underlying syntax they resolve issues concerning the nature of education, the concept of environment, the role of environmental action projects, and the nature of schooling in significantly different ways. The thesis critiques the curriculum writings of William B. Stapp, Harold R. Hungerford, and Michael J. Cohen. Each has published curriculum work in environmental education and has been active in the development of the field. Their works were chosen because of their publicly accessible form. The inquiry demonstrates that the three programs present analyses of current global environmental problems as serious and in need of urgent attention. All three focus on solving or preventing environmental problems as a major purpose of environmental education. In spite of the common emphasis on problem solving, the inquiry also reveals significant differences among the three programs in regard to concepts of education, views of the environment and the place and role of humans in it, approaches to environmental action projects as curricular elements, and ideas about the place of environmental education in schools. I conclude that although some environmental educators view the continuing debate about the nature and conceptualization of environmental education as needless repetition of issues which have been satisfactorily resolved, important questions remain to be addressed by curriculum theory in this field. In order for environmental education to nurture education as opposed to particular ideologies and beliefs curriculum writers should develop clear concepts of the nature of education and widen the focus of human environment relations beyond problem solving.
Activities: Activities to Introduce Maxima-Minima Problems.
ERIC Educational Resources Information Center
Pleacher, David
1991-01-01
Presented are student activities that involve two standard problems from geometry and calculus--the volume of a box and the bank shot on a pool table. Problem solving is emphasized as a method of inquiry and application with descriptions of the results using graphical, numerical, and physical models. (JJK)
The Westminster Eighth Grade World Problems Course (Pilot Project).
ERIC Educational Resources Information Center
Barth, James P.; And Others
The rationale, objectives, and social studies units are provided in this curriculum guide for grade 8. Focus is upon students' assessing, hypothesizing, and synthesizing the world's critical problems. Teaching techniques are process education oriented emphasizing inquiry training, problem solving, and inductive learning in an attempt to prepare…
ERIC Educational Resources Information Center
McRae-Jones, Wanda Joycelyn
2017-01-01
21st Century skills such as critical-thinking and problem-solving skills are very important when it comes to Science Technology Engineering and Mathematics or STEM. But those same skills should be integrated in social studies. The impact of students' learning in social studies as a result of implementing inquiry-based instructional strategies was…
ERIC Educational Resources Information Center
Weaver, Marisa G.; Samoshin, Andrey V.; Lewis, Robert B.; Gainer, Morgan J.
2016-01-01
A course is described where students are engaged in an inquiry-based quarter-long research project to synthesize a known pharmaceutical target. Students use literature search engines, such as Reaxys and SciFinder, and the primary chemical literature as resources to plan and perform the synthesis of their pharmaceutical target. Through this…
ERIC Educational Resources Information Center
Slavit, David; Nelson, Tamara Holmlund
2010-01-01
This article describes the collaborative inquiry activity of a group of high school mathematics teachers interested in increasing student engagement and problem solving in the classroom. Specific findings related to the nature of the teacher interactions and subsequent impacts on practice are discussed. The findings focus on (a) the nature of the…
ERIC Educational Resources Information Center
Hall, Mona L.; Vardar-Ulu, Didem
2014-01-01
The laboratory setting is an exciting and gratifying place to teach because you can actively engage the students in the learning process through hands-on activities; it is a dynamic environment amenable to collaborative work, critical thinking, problem-solving and discovery. The guided inquiry-based approach described here guides the students…
Using higher-level inquiry to improve spatial ability in an introductory geology course
NASA Astrophysics Data System (ADS)
Stevens, Lacey A.
Visuo-spatial skills, the ability to visually take in information and create a mental image are crucial for success in fields involving science, technology, engineering, and math (STEM) as well as fine arts. Unfortunately, due to a lack of curriculum focused on developing spatial skills, students enrolled in introductory college-level science courses tend to have difficulty with spatially-related activities. One of the best ways to engage students in science activities is through a learning and teaching strategy called inquiry. There are lower levels of inquiry wherein learning and problem-solving are guided by instructions and higher levels of inquiry wherein students have a greater degree of autonomy in learning and creating their own problem-solving strategy. A study involving 112 participants was conducted during the fall semester in 2014 at Bowling Green State University (BGSU) in an 1040 Introductory Geology Lab to determine if a new, high-level, inquiry-based lab would increase participants' spatial skills more than the traditional, low-level inquiry lab. The study also evaluated whether a higher level of inquiry differentially affected low versus high spatial ability participants. Participants were evaluated using a spatial ability assessment, and pre- and post-tests. The results of this study show that for 3-D to 2-D visualization, the higher-level inquiry lab increased participants' spatial ability more than the lower-level inquiry lab. For spatial rotational skills, all participants' spatial ability scores improved, regardless of the level of inquiry to which they were exposed. Low and high spatial ability participants were not differentially affected. This study demonstrates that a lab designed with a higher level of inquiry can increase students' spatial ability more than a lab with a low level of inquiry. A lab with a higher level of inquiry helped all participants, regardless of their initial spatial ability level. These findings show that curriculum that incorporates a high level of inquiry that integrates practice of spatial skills can increase students' spatial abilities in Geology-related coursework.
WebQuests for Reflection and Conceptual Change: Variations on a Popular Model for Guided Inquiry.
ERIC Educational Resources Information Center
Young, David L.; Wilson, Brent G.
WebQuests have become a popular form of guided inquiry using Web resources. The goal of WebQuests is to help students think and reason at higher levels,and use information to solve problems. This paper presents modifications to the WebQuest model drawing on primarily on schema theory. It is believed that these changes will further enhance student…
Analyzing students' attitudes towards science during inquiry-based lessons
NASA Astrophysics Data System (ADS)
Kostenbader, Tracy C.
Due to the logistics of guided-inquiry lesson, students learn to problem solve and develop critical thinking skills. This mixed-methods study analyzed the students' attitudes towards science during inquiry lessons. My quantitative results from a repeated measures survey showed no significant difference between student attitudes when taught with either structured-inquiry or guided-inquiry lessons. The qualitative results analyzed through a constant-comparative method did show that students generate positive interest, critical thinking and low level stress during guided-inquiry lessons. The qualitative research also gave insight into a teacher's transition to guided-inquiry. This study showed that with my students, their attitudes did not change during this transition according to the qualitative data however, the qualitative data did how high levels of excitement. The results imply that students like guided-inquiry laboratories, even though they require more work, just as much as they like traditional laboratories with less work and less opportunity for creativity.
ERIC Educational Resources Information Center
Hwang, Gwo-Jen; Chen, Chih-Hung
2017-01-01
In this paper, an inquiry-based ubiquitous gaming approach was proposed. The objective of the study was to enhance students' performances in in-field learning activities. To show the advantages of the approach, an experiment was carried out to assess the effects of it on students' learning achievement, motivation, critical thinking, and problem…
ERIC Educational Resources Information Center
Drake, Kay N.; Long, Deborah
2009-01-01
Seeking improved student performance in elementary schools has led educators to advocate inquiry-based teaching approaches, including problem-based learning (PBL). In PBL, students simultaneously develop problem-solving strategies, disciplinary knowledge bases, collaborative skills, and dispositions. Research into the efficacy of PBL in elementary…
McMain, Shelley; Links, Paul S; Guimond, Tim; Wnuk, Susan; Eynan, Rahel; Bergmans, Yvonne; Warwar, Serine
2013-01-01
This exploratory study examined specific emotion processes and cognitive problem-solving processes in individuals with borderline personality disorder (BPD), and assessed the relationship of these changes to treatment outcome. Emotion and cognitive problem-solving processes were assessed using the Toronto Alexithymia Scale, the Linguistic Inquiry Word Count, the Derogatis Affect Balance Scale, and the Problem Solving Inventory. Participants who showed greater improvements in affect balance, problem solving, and the ability to identify and describe emotions showed greater improvements on treatment outcome, with affect balance remaining statistically significant under the most conservative conditions. The results provide preliminary evidence to support the theory that specific improvements in emotion and cognitive processes are associated with positive treatment outcomes (symptom distress, interpersonal functioning) in BPD. The implications for treatment are discussed.
ERIC Educational Resources Information Center
Chock, Jan S.
1995-01-01
Describes a twist on the egg-drop challenge activity for an 8th grade physical science unit. Students engage in active inquiry and explore the laws of physics, develop critical thinking skills, and practice problem-solving tasks. (NB)
Inquiry and Critical Thinking in an Elementary Art Program
ERIC Educational Resources Information Center
Lampert, Nancy
2013-01-01
Critical thinking is thought-focused on how to solve a well-defined problem when several alternatives solutions to the problem exist. Because critical thinking may help to build tolerance toward others, the author believes it is a worthwhile subject to investigate, given that people are living in an increasingly multicultural society full of…
Roehrig, G. H.; Michlin, M.; Schmitt, L.; MacNabb, C.; Dubinsky, J. M.
2012-01-01
In science education, inquiry-based approaches to teaching and learning provide a framework for students to building critical-thinking and problem-solving skills. Teacher professional development has been an ongoing focus for promoting such educational reforms. However, despite a strong consensus regarding best practices for professional development, relatively little systematic research has documented classroom changes consequent to these experiences. This paper reports on the impact of sustained, multiyear professional development in a program that combined neuroscience content and knowledge of the neurobiology of learning with inquiry-based pedagogy on teachers’ inquiry-based practices. Classroom observations demonstrated the value of multiyear professional development in solidifying adoption of inquiry-based practices and cultivating progressive yearly growth in the cognitive environment of impacted classrooms. PMID:23222837
Roehrig, G H; Michlin, M; Schmitt, L; MacNabb, C; Dubinsky, J M
2012-01-01
In science education, inquiry-based approaches to teaching and learning provide a framework for students to building critical-thinking and problem-solving skills. Teacher professional development has been an ongoing focus for promoting such educational reforms. However, despite a strong consensus regarding best practices for professional development, relatively little systematic research has documented classroom changes consequent to these experiences. This paper reports on the impact of sustained, multiyear professional development in a program that combined neuroscience content and knowledge of the neurobiology of learning with inquiry-based pedagogy on teachers' inquiry-based practices. Classroom observations demonstrated the value of multiyear professional development in solidifying adoption of inquiry-based practices and cultivating progressive yearly growth in the cognitive environment of impacted classrooms.
Why Are Mathematical Investigations Important?
ERIC Educational Resources Information Center
Quinnell, Lorna
2010-01-01
"Research studies show that when students discover mathematical ideas and invent mathematical procedures, they have a stronger conceptual understanding of connections between mathematical ideas." Flewelling and Higginson state that inquiry, investigations, and problem solving "give students the opportunity to use their imagination…
Computer Based Collaborative Problem Solving for Introductory Courses in Physics
NASA Astrophysics Data System (ADS)
Ilie, Carolina; Lee, Kevin
2010-03-01
We discuss collaborative problem solving computer-based recitation style. The course is designed by Lee [1], and the idea was proposed before by Christian, Belloni and Titus [2,3]. The students find the problems on a web-page containing simulations (physlets) and they write the solutions on an accompanying worksheet after discussing it with a classmate. Physlets have the advantage of being much more like real-world problems than textbook problems. We also compare two protocols for web-based instruction using simulations in an introductory physics class [1]. The inquiry protocol allowed students to control input parameters while the worked example protocol did not. We will discuss which of the two methods is more efficient in relation to Scientific Discovery Learning and Cognitive Load Theory. 1. Lee, Kevin M., Nicoll, Gayle and Brooks, Dave W. (2004). ``A Comparison of Inquiry and Worked Example Web-Based Instruction Using Physlets'', Journal of Science Education and Technology 13, No. 1: 81-88. 2. Christian, W., and Belloni, M. (2001). Physlets: Teaching Physics With Interactive Curricular Material, Prentice Hall, Englewood Cliffs, NJ. 3. Christian,W., and Titus,A. (1998). ``Developing web-based curricula using Java Physlets.'' Computers in Physics 12: 227--232.
ERIC Educational Resources Information Center
Snodgrass, Suzanne
2011-01-01
Health professionals use critical thinking, a key problem solving skill, for clinical reasoning which is defined as the use of knowledge and reflective inquiry to diagnose a clinical problem. Teaching these skills in traditional settings with growing class sizes is challenging, and students increasingly expect learning that is flexible and…
What Poisoned the Apple Juice? A Gram Staining and Selective Media Lab.
ERIC Educational Resources Information Center
Hammond, Paul; Brown, Nikole; Hauser, Doug; Pomart, Katrina; Karcher, Sue; Balschweid, Mark
2002-01-01
Introduces an inquiry-based laboratory experiment in which students identify an unknown bacterial species by using techniques such as Gram staining. Uses an authentic problem solving approach in a scenario entitled, "What poisoned the apple juice?" (YDS)
Sculpting the Barnyard Gene Pool
ERIC Educational Resources Information Center
Childers, Gina; Wolfe, Kim; Dupree, Alan; Young, Sheila; Caver, Jessica; Quintanilla, Ruby; Thornton, Laura
2016-01-01
Project-based learning (PBL) takes student engagement to a higher level through reflective collaboration, inquiry, critical thinking, problem solving, and personal relevance. This article explains how six high school teachers developed an interconnected, interdisciplinary STEM-focused PBL called "Sculpting the Barnyard Gene Pool." The…
NASA Astrophysics Data System (ADS)
Lakin, Joni M.; Wallace, Carolyn S.
2015-03-01
Inquiry-based teaching promotes students' engagement in problem-solving and investigation as they learn science concepts. Current practice in science teacher education promotes the use of inquiry in the teaching of science. However, the literature suggests that many science teachers hold incomplete or incorrect conceptions of inquiry. Teachers, therefore, may believe they are providing more inquiry experiences than they are, reducing the positive impact of inquiry on science interest and skills. Given the prominence of inquiry in professional development experiences, educational evaluators need strong tools to detect intended use in the classroom. The current study focuses on the validity of assessments developed for evaluating teachers' use of inquiry strategies and classroom orientations. We explored the relationships between self-reported inquiry strategy use, preferences for inquiry, knowledge of inquiry practices, and related pedagogical content knowledge. Finally, we contrasted students' and teachers' reports of the levels of inquiry-based teaching in the classroom. Self-reports of inquiry use, especially one specific to the 5E instructional model, were useful, but should be interpreted with caution. Teachers tended to self-report higher levels of inquiry strategy use than their students perceived. Further, there were no significant correlations between either knowledge of inquiry practices or PCK and self-reported inquiry strategy use.
A case study on modeling and independent practice cycles in teaching beginning science inquiry
NASA Astrophysics Data System (ADS)
Sadeghpour-Kramer, Margaret Ann Plattenberger
With increasing pressure to produce high standardized test scores, school systems will be looking for the surest ways to increase scores. Decision makers uninformed about the value of inquiry science may recommend more direct teaching methods and curricula in the hope that students will more quickly accumulate factual information for high test scores. This researcher and other proponents of inquiry science suggest that the best preparation for any test is the ability to use all available information and problem solving skills to think through to a solution. This study proposes to test the theory that inquiry problem solving skills need to be modeled and practiced in increasingly independent situations to be learned. Students tend to copy what they have been led to believe is correct, and to avoid continued copying, their skills must be applied in new situations requiring independent practice and improvement. This study follows ten sixth grade students, selected for maximum variation, as they participate in a series of five cycles of modeling and practicing inquiry science investigations as part of an ongoing unit on water quality. The cycles were designed to make the students increasingly independent in their use of inquiry. The results showed that all ten students made significant progress from copying teacher modeling in investigation #1 towards independent inquiry, with nine of the ten achieving acceptable to good beginning independent inquiry in investigation #5. Each case was analyzed independently using such case study methodology as pattern matching, case study protocols, and theoretical propositions. Constant comparison and other case study methods were used in a cross-case analysis. Eight cases confirmed a matching set of propositions and the hypothesis, in literal replication, and the other two cases confirmed a set of propositions and the hypothesis through theoretical replication. The study suggests to educators that repeated cycles of modeling and increasingly independent practice serve three purposes; first to develop independent inquiry skills by providing multiple opportunities with intermittent modeling, second to repeat the modeling initially in very similar situations and then encourage transfer to new situations, and third to provide repeated modeling for those students who do not grasp the concepts as quickly as do their classmates.
ERIC Educational Resources Information Center
Thomas, Gary
1997-01-01
Argues against the use of theory in educational inquiry, contending that the meaning of theory is unclear; both personal theory and grand theory inhibit creativity and methodology; and less structured problem solving and ad hoc approaches are more likely to result in pluralistic ideas. (SK)
NASA Astrophysics Data System (ADS)
Palacio-Cayetano, Joycelin
"Problem-solving through reflective thinking should be both the method and valuable outcome of science instruction in America's schools" proclaimed John Dewey (Gabel, 1995). If the development of problem-solving is a primary goal of science education, more problem-solving opportunities must be an integral part of K-16 education. To examine the effective use of technology in developing and assessing problem-solving skills, a problem-solving authoring, learning, and assessment software, the UCLA IMMEX Program-Interactive Multimedia Exercises-was investigated. This study was a twenty-week quasi-experimental study that was implemented as a control-group time series design among 120 tenth grade students. Both the experimental group (n = 60) and the control group (n = 60) participated in a problem-based learning curriculum; however, the experimental group received regular intensive experiences with IMMEX problem-solving and the control group did not. Problem-solving pretest and posttest were administered to all students. The instruments used were a 35-item Processes of Biological Inquiry Test and an IMMEX problem-solving assessment test, True Roots. Students who participated in the IMMEX Program achieved significant (p <.05) gains in problem-solving skills on both problem-solving assessment instruments. This study provided evidence that IMMEX software is highly efficient in evaluating salient elements of problem-solving. Outputs of students' problem-solving strategies revealed that unsuccessful problem solvers primarily used the following four strategies: (1) no data search strategy, students simply guessed; (2) limited data search strategy leading to insufficient data and premature closing; (3) irrelevant data search strategy, students focus in areas bearing no substantive data; and (4) extensive data search strategy with inadequate integration and analysis. On the contrary, successful problem solvers used the following strategies; (1) focused search strategy coupled with the ability to fill in knowledge gaps by accessing the appropriate resources; (2) targeted search strategy coupled with high level of analytical and integration skills; and (3) focused search strategy coupled with superior discrimination, analytical, and integration skills. The strategies of students who were successful and unsuccessful solving IMMEX problems were consistent with those of expert and novice problem solvers identified in the literature on problem-solving.
Conflict in Context: Understanding Local to Global Security.
ERIC Educational Resources Information Center
Mertz, Gayle; Lieber, Carol Miller
This multidisciplinary guide provides middle and high school teachers and students with inquiry-based tools to support their exploration of emerging local, national, international, and transboundary security issues. Students are introduced to critical thinking, problem solving, and peacemaking strategies that will help them better understand…
Water Rockets and Indirect Measurement.
ERIC Educational Resources Information Center
Inman, Duane
1997-01-01
Describes an activity that teaches a number of scientific concepts including indirect measurement, Newton's third law of motion, manipulating and controlling variables, and the scientific method of inquiry. Uses process skills such as observation, inference, prediction, mensuration, and communication as well as problem solving and higher-order…
Discovering the Business Studio
ERIC Educational Resources Information Center
Barry, Daved; Meisiek, Stefan
2015-01-01
Over the past decade, numerous business schools have begun experimenting with studio-based inquiry, often drawing inspiration from professional studios used within art and design schools and from business and governmental studios used for problem-solving and innovation. Business school studios vary considerably in form, ranging from temporary…
Synchronous Online Collaborative Professional Development for Elementary Mathematics Teachers
ERIC Educational Resources Information Center
Francis, Krista; Jacobsen, Michele
2013-01-01
Math is often taught poorly emphasizing rote, procedural methods rather than creativity and problem solving. Alberta Education developed a new mathematics curriculum to transform mathematics teaching to inquiry driven methods. This revised curriculum provides a new vision for mathematics and creates opportunities and requirements for professional…
Designing a Children's Recreation Room
ERIC Educational Resources Information Center
Lee, Mi Yeon
2015-01-01
Project-based learning (PBL) is an effective approach to STEM education because it allows students to experience scientific inquiry by using their knowledge and skills in science, technology, engineering, and mathematics (STEM) to solve realistic problems. PBL consists of four components: (1) posing and comprehending a driving question; (2)…
Scientific Culture and School Culture: Epistemic and Procedural Components.
ERIC Educational Resources Information Center
Jimenez-Aleixandre, Maria Pilar; Diaz de Bustamante, Joaquin; Duschl, Richard A.
This paper discusses the elaboration and application of "scientific culture" categories to the analysis of students' discourse while solving problems in inquiry contexts. Scientific culture means the particular domain culture of science, the culture of science practitioners. The categories proposed include both epistemic operations and…
Evaluation of Learning Gains through Integrated STEM Projects
ERIC Educational Resources Information Center
Corlu, Mehmet Ali; Aydin, Emin
2016-01-01
New approaches to instruction are needed in all educational levels in order to develop the skills suited to the twenty-first century (i.e., inquiry, problem solving, innovation, entrepreneurship, technological communication, experimental design, and investigativeness). This research evaluated the outcomes of an approach aiming to develop such…
Transformative Learning: Personal Empowerment in Learning Mathematics
ERIC Educational Resources Information Center
Hassi, Marja-Liisa; Laursen, Sandra L.
2015-01-01
This article introduces the concept of personal empowerment as a form of transformative learning. It focuses on commonly ignored but enhancing elements of mathematics learning and argues that crucial personal resources can be essentially promoted by high engagement in mathematical problem solving, inquiry, and collaboration. This personal…
The Development and Implementation of an Integrating Pharmacy Practice Laboratory.
ERIC Educational Resources Information Center
Newton, Gail D.; And Others
1990-01-01
The intent of an integrating laboratory was to help pharmacy students learn to solve problems, make decisions, and develop good communication skills. Educational units included exercises in guided design, patient profile review, patient inquiries, extemporaneous prescription compounding, clinical literature evaluation, and videotapes of simulated…
ERIC Educational Resources Information Center
Silverstein, Roni
2014-01-01
Root cause analysis is a powerful method schools use to analyze data to solve problems; it aims to identify and correct the root causes of problems or events, rather than simply addressing their symptoms. Veteran practitioner, Roni Silverstein, presented the value of this process and practical ways to use it in your school or district. This…
NASA Astrophysics Data System (ADS)
Nehring, Andreas; Nowak, Kathrin H.; Belzen, Annette Upmeier zu; Tiemann, Rüdiger
2015-06-01
Research on predictors of achievement in science is often targeted on more traditional content-based assessments and single student characteristics. At the same time, the development of skills in the field of scientific inquiry constitutes a focal point of interest for science education. Against this background, the purpose of this study was to investigate to which extent multiple student characteristics contribute to skills of scientific inquiry. Based on a theoretical framework describing nine epistemological acts, we constructed and administered a multiple-choice test that assesses these skills in lower and upper secondary school level (n = 780). The test items contained problem-solving situations that occur during chemical investigations in school and had to be solved by choosing an appropriate inquiry procedure. We collected further data on 12 cognitive, motivational, and sociodemographic variables such as conceptual knowledge, enjoyment of chemistry, or language spoken at home. Plausible values were drawn to quantify students' inquiry skills. The results show that students' characteristics predict their inquiry skills to a large extent (55%), whereas 9 out of 12 variables contribute significantly on a multivariate level. The influence of sociodemographic traits such as gender or the social background becomes non-significant after controlling for cognitive and motivational variables. Furthermore, the performance advance of students from upper secondary school level can be explained by controlling for cognitive covariates. We discuss our findings with regard to curricular aspects and raise the question whether the inquiry skills can be considered as an autonomous trait in science education research.
ERIC Educational Resources Information Center
Small, Christine J.; Newtoff, Kiersten N.
2013-01-01
Undergraduate biology education is undergoing dramatic changes, emphasizing student training in the "tools and practices" of science, particularly quantitative and problem-solving skills. We redesigned a freshman ecology lab to emphasize the importance of scientific inquiry and quantitative reasoning in biology. This multi-week investigation uses…
Sinking Your Teeth into Tooth Decay
ERIC Educational Resources Information Center
Stone, Jody H.
2012-01-01
With the increased focus on both inquiry and 21st-century skills such as collaboration and problem-solving, teachers at all levels are looking for engaging ways to create more student-centered classrooms in which students can learn more than "just" science content. Discovering and developing creative science activities designed to accomplish…
Geocaching Is Catching Students' Attention in the Classroom
ERIC Educational Resources Information Center
Lisenbee, Peggy; Hallman, Christine; Landry, Debbie
2015-01-01
Geocaching is an inquiry-based activity encouraging creativity, active learning, and real-world problem solving. As such, it is an educational opportunity for students in all grade levels. Educators benefit by observing students using higher-order thinking instead of rote learning offered by using traditional worksheets, tests, or quizzes. Also,…
Constructivist Learning of Anatomy: Gaining Knowledge by Creating Anatomical Casts
ERIC Educational Resources Information Center
Hermiz, David J.; O'Sullivan, Daniel J.; Lujan, Heidi L.; DiCarlo, Stephen E.
2011-01-01
Educators are encouraged to provide inquiry-based, collaborative, and problem solving activities that enhance learning and promote curiosity, skepticism, objectivity, and the use of scientific reasoning. Making anatomical casts or models by injecting solidifying substances into organs is an example of a constructivist activity for achieving these…
Literacy Inquiry and Pedagogy through a Photographic Lens
ERIC Educational Resources Information Center
Cappello, Marva; Hollingsworth, Sandra
2008-01-01
This paper explores the potential of photography for teaching, learning, and studying literacy in elementary school classrooms. We examine the ways shifting between communication systems (photography, oral language and writing) impacts students' ability to problem solve and create rich texts. Specifically, we explore the roles photography plays in…
Promoting Meaningful Learning: Innovations in Educating Early Childhood Professionals.
ERIC Educational Resources Information Center
Yelland, Nicola J., Ed.
Grounded in active learning, inquiry, and problem solving embedded in a social and cultural context, this book presents a collection of ideas illustrating innovative practices for educating early childhood professionals in university and other contexts. The book is presented in three parts. Part 1, "Listening to Student Voices," is…
Productive Academic Talk during Inquiry-Based Science
ERIC Educational Resources Information Center
Gillies, Robyn M.
2013-01-01
This study reports on the types of academic talk that contribute to enhanced explanatory responses, reasoning, problem-solving and learning. The study involved 10 groups of 3-4 students who were provided with one of three linguistic tools (i.e. Cognitive Questioning, Philosophy for Children and Collaborative Strategic Reading (CSR)) to scaffold…
Researching Classroom Questioning
ERIC Educational Resources Information Center
Lores Gonzalez, Adriana
2010-01-01
The complexities of the modern society and interconnected world in which we live requires students who are able to problem solve and think critically. The research on which this article is based aims to explore how classroom questioning can help students guide their learning and model the spirit of inquiry to become lifelong learners. The research…
Identifying Key Components of Teaching and Learning in a STEM School
ERIC Educational Resources Information Center
Morrison, Judith; Roth McDuffie, Amy; French, Brian
2015-01-01
This study was conducted at an innovative science, technology, engineering, and mathematics high school, providing a rich contextual description of the teaching and learning at the school, specifically focusing on problem solving and inquiry approaches, and students' motivation, social interactions, and collaborative work. Data were collected…
Positive Perspectives on the Profession: Reframing through Appreciative Inquiry
ERIC Educational Resources Information Center
Fiorentino, Leah Holland
2012-01-01
Change theories and Organization Development strategies have long followed the problem-solving approach of looking at organizations, identifying the weaknesses and introducing interventions to "stop doing the wrong things." In its simplest form, this approach has been successful in a variety of situations and has a popular following. Consultants…
Why Do We Keep Catching the Common Cold?
ERIC Educational Resources Information Center
Gillen, Alan L.; Mayor, Heather D.
1995-01-01
Describes activities for biology teachers that will stimulate discussions on virus structure, cell biology, rhino viruses, and new trends in treating the common cold. Provides opportunity for inquiry and problem solving in exercises that emphasize an understanding of how common cold viruses might pack inside nasal epithelial cells. (14 references)…
Using a Design-Orientated Project to Attain Graduate Attributes
ERIC Educational Resources Information Center
Moalosi, Richie; Molokwane, Shorn; Mothibedi, Gabriel
2012-01-01
Nowadays universities are required not only to impart knowledge of specific disciplines but also generic graduate attributes such as communication, problem-solving, teamwork, creative thinking, research and inquiry skills. For students to attain these generic skills, educators are encouraged to use learner-centred approaches in teaching.…
Plants & Perpetrators: Forensic Investigation in the Botany Classroom
ERIC Educational Resources Information Center
Boyd, Amy E.
2006-01-01
Applying botanical knowledge to a simulated forensic investigation provides inquiry-based and problem-based learning in the botany classroom. This paper details one such forensic investigation in which students use what they have learned about plant morphology and anatomy to analyze evidence and solve a murder mystery. (Contains 1 table.)
Students' Investigation of a View Tube
ERIC Educational Resources Information Center
Obara, Samuel
2010-01-01
The inquiry-based approach to learning has gained popularity in recent times. Those who promote this approach maintain that mathematical investigation should be used to engage students. The National Council of Teachers of Mathematics (NCTM) recommends that problem solving be the center of mathematics teaching in promoting student learning through…
Inverting an Introductory Statistics Classroom
ERIC Educational Resources Information Center
Kraut, Gertrud L.
2015-01-01
The inverted classroom allows more in-class time for inquiry-based learning and for working through more advanced problem-solving activities than does the traditional lecture class. The skills acquired in this learning environment offer benefits far beyond the statistics classroom. This paper discusses four ways that can make the inverted…
Development of inquiry behavior in concept identification.
Vassilopoulos, C A; Dickerson, D J
1992-08-01
We studied inquiry behavior in concept identification in first-, fifth-, eighth-grade, and college students with problems involving eight four-letter strings. The task was to identify the correct string by asking questions related to either one letter or four letters that were answered by yes or no. Processing demands were manipulated by comparing (a) a condition in which letter strings were removed from view as feedback eliminated them as possible solutions with a condition in which strings remained in view and (b) problems that were structured so that relevant letter categories were easy to identify with problems that were not. Problem solving generally improved with age. First graders tended to ask questions that eliminated solutions one by one, whereas the older groups asked more informative questions. At the three upper grade levels, strategies for selecting queries were adapted to situations, with less demanding strategies being used when processing demands were higher.
NASA Astrophysics Data System (ADS)
Gu, Jiangyue
Epistemic beliefs are individuals' beliefs about the nature of knowledge, how knowledge is constructed, and how knowledge can be justified. This study employed a mixed-methods approach to examine: (a) middle and high school students' self-reported epistemic beliefs (quantitative) and epistemic beliefs revealed from practice (qualitative) during a problem-based, scientific inquiry unit, (b) How do middle and high school students' epistemic beliefs contribute to the construction of students' problem solving processes, and (c) how and why do students' epistemic beliefs change by engaging in PBL. Twenty-one middle and high school students participated in a summer science class to investigate local water quality in a 2-week long problem-based learning (PBL) unit. The students worked in small groups to conduct water quality tests at in their local watershed and visited several stakeholders for their investigation. Pretest and posttest versions of the Epistemological Beliefs Questionnaire were conducted to assess students' self-reported epistemic beliefs before and after the unit. I videotaped and interviewed three groups of students during the unit and conducted discourse analysis to examine their epistemic beliefs revealed from scientific inquiry activities and triangulate with their self-reported data. There are three main findings from this study. First, students in this study self-reported relatively sophisticated epistemic beliefs on the pretest. However, the comparison between their self-reported beliefs and beliefs revealed from practice indicated that some students were able to apply sophisticated beliefs during the unit while others failed to do so. The inconsistency between these two types of epistemic beliefs may due to students' inadequate cognitive ability, low validity of self-report measure, and the influence of contextual factors. Second, qualitative analysis indicated that students' epistemic beliefs of the nature of knowing influenced their problem solving processes and construction of arguments during their inquiry activities. Students with more sophisticated epistemic beliefs acquired knowledge, presented solid evidence, and used it to support their claims more effectively than their peers. Third, students' self-reported epistemic beliefs became significantly more sophisticated by engaging in PBL. Findings from this study can potentially help researchers to better understand the relation between students' epistemic beliefs and their scientific inquiry practice,
The development of a culture of problem solving with secondary students through heuristic strategies
NASA Astrophysics Data System (ADS)
Eisenmann, Petr; Novotná, Jarmila; Přibyl, Jiří; Břehovský, Jiří
2015-12-01
The article reports the results of a longitudinal research study conducted in three mathematics classes in Czech schools with 62 pupils aged 12-18 years. The pupils were exposed to the use of selected heuristic strategies in mathematical problem solving for a period of 16 months. This was done through solving problems where the solution was the most efficient if heuristic strategies were used. The authors conducted a two-dimensional classification of the use of heuristic strategies based on the work of Pólya (2004) and Schoenfeld (1985). We developed a tool that allows for the description of a pupil's ability to solve problems. Named, the Culture of Problem Solving (CPS), this tool consists of four components: intelligence, text comprehension, creativity and the ability to use existing knowledge. The pupils' success rate in problem solving and the changes in some of the CPS factors pre- and post-experiment were monitored. The pupils appeared to considerably improve in the creativity component. In addition, the results indicate a positive change in the students' attitude to problem solving. As far as the teachers participating in the experiment are concerned, a significant change was in their teaching style to a more constructivist, inquiry-based approach, as well as their willingness to accept a student's non-standard approach to solving a problem. Another important outcome of the research was the identification of the heuristic strategies that can be taught via long-term guided solutions of suitable problems and those that cannot. Those that can be taught include systematic experimentation, guess-check-revise and introduction of an auxiliary element. Those that cannot be taught (or can only be taught with difficulty) include the strategies of specification and generalization and analogy.
ERIC Educational Resources Information Center
Xia, Saihua
2009-01-01
This paper investigates ESL learners' awareness of pragmatic skills utilizing an activity-theory driven approach to perform an inquiry task into problem-solving service call conversations (PSSCs) between native speakers (NS) and non-native speakers of English (NNSs). Eight high-intermediate ESL learners, from five different language backgrounds,…
ERIC Educational Resources Information Center
Kazeni, Monde; Onwu, Gilbert
2013-01-01
The study aimed to determine the comparative effectiveness of context-based and traditional teaching approaches in enhancing student achievement in genetics, problem-solving, science inquiry and decision-making skills, and attitude towards the study of life sciences. A mixed method but essentially quantitative research approach involving a…
Giving Literacy, Learning Literacy: Service-Learning and School Book Drives
ERIC Educational Resources Information Center
Walker, Anne B.
2015-01-01
Service-learning can provide a range of literacy learning experiences for children as they work to solve real world problems and engage in inquiry, collaboration and reflection. Rather than being an extracurricular activity, service-learning projects are designed to meet standards and align with existing curriculum. This article explores how…
The Value of the Math Circle for Gifted Middle School Students
ERIC Educational Resources Information Center
Burns, Barbara; Henry, Julie; McCarthy, Dianne; Tripp, Jennifer
2017-01-01
Math Circles are designed to allow students to explore mathematics using a problem-solving/inquiry approach. Many of the students attending our Math Circle are mathematically talented and curious. This study examines the perspectives of the students and their families in determining why students attend Math Circle, what they enjoy about Math…
The Chemistry of Food Dyes. Palette of Color Monograph Series.
ERIC Educational Resources Information Center
Epp, Dianne N.
Dyes aren't just for fabrics--colorants have been added to food for centuries to enhance its appearance. This monograph and teaching guide investigates both the compounds that give foods their natural color and synthetic colorants currently approved for use in foods. Problem-solving inquiry based activities involve high school level students in…
ERIC Educational Resources Information Center
Kim, Minchi C.; Hannafin, Michael J.
2011-01-01
In response to the calls to improve and deepen scientific understanding and literacy, considerable effort has been invested in developing sustainable technology-enhanced learning environments to improve science inquiry. Research has provided important guidance for scaffolding learning in mathematics and science. However, these reports have…
The Definition of the Term "Inquiry-Based Instruction"
ERIC Educational Resources Information Center
Dostál, Jirí
2015-01-01
The article reacts on the current needs based not only in the educational practice and pedagogical theory, but also in the requirements of the society. These requirements focus on the pupils' competences that have to be able to think rationally, to deal with the new situations, and to solve problem situations. Conceptually, this paper concentrates…
Assessment in Immersive Virtual Environments: Cases for Learning, of Learning, and as Learning
ERIC Educational Resources Information Center
Code, Jillianne; Zap, Nick
2017-01-01
The key to education reform lies in exploring alternative forms of assessment. Alternative performance assessments provide a more valid measure than multiple-choice tests of students' conceptual understanding and higher-level skills such as problem solving and inquiry. Advances in game-based and virtual environment technologies are creating new…
Strategies for Success: Uncovering What Makes Students Successful in Design and Learning
ERIC Educational Resources Information Center
Apedoe, Xornam S.; Schunn, Christian D.
2013-01-01
While the purposes of design and science are often different, they share some key practices and processes. Design-based science learning, which combines the processes of engineering design with scientific inquiry, is one attempt to engage students in scientific reasoning via solving practical problems. Although research suggests that engaging…
Serious and Playful Inquiry: Epistemological Aspects of Collaborative Creativity
ERIC Educational Resources Information Center
Sullivan, Florence R.
2011-01-01
This paper presents the results of a micro-genetic analysis of the development of a creative solution arrived at by students working collaboratively to solve a robotics problem in a sixth grade science classroom. Results indicate that four aspects of the enacted curriculum proved important to developing the creative solution, including the…
Attitudes of Pre-Service Mathematics Teachers towards Modelling: A South African Inquiry
ERIC Educational Resources Information Center
Jacobs, Gerrie J.; Durandt, Rina
2017-01-01
This study explores the attitudes of mathematics pre-service teachers, based on their initial exposure to a model-eliciting challenge. The new Curriculum and Assessment Policy Statement determines that mathematics students should be able to identify, investigate and solve problems via modelling. The unpreparedness of mathematics teachers in…
ERIC Educational Resources Information Center
McKinney, Sueanne E.; Robinson, Jack; Berube, Clair T.
2013-01-01
The National Council of Teachers of Mathematics' "Principles and Standards for School Mathematics" outlines fundamental elements that are crucial for creating a problem-solving and inquiry-driven classroom learning environment that highlights conceptual understandings of mathematics ideas. Even though this document outlines…
NASA Astrophysics Data System (ADS)
Nichols, Kim; Burgh, Gilbert; Kennedy, Callie
2017-02-01
Developing students' skills to pose and respond to questions and actively engage in inquiry behaviours enables students to problem solve and critically engage with learning and society. The aim of this study was to analyse the impact of providing teachers with an intervention in inquiry pedagogy alongside inquiry science curriculum in comparison to an intervention in non-inquiry pedagogy alongside inquiry science curriculum on student questioning and other inquiry behaviours. Teacher participants in the comparison condition received training in four inquiry-based science units and in collaborative strategic reading. The experimental group, the community of inquiry (COI) condition, received training in facilitating a COI in addition to training in the same four inquiry-based science units. This study involved 227 students and 18 teachers in 9 primary schools across Brisbane, Australia. The teachers were randomly allocated by school to one of the two conditions. The study followed the students across years 6 and 7 and students' discourse during small group activities was recorded, transcribed and coded for verbal inquiry behaviours. In the second year of the study, students in the COI condition demonstrated a significantly higher frequency of procedural and substantive higher-order thinking questions and other inquiry behaviours than those in the comparison condition. Implementing a COI within an inquiry science curriculum develops students' questioning and science inquiry behaviours and allows teachers to foster inquiry skills predicated by the Australian Science Curriculum. Provision of inquiry science curriculum resources alone is not sufficient to promote the questioning and other verbal inquiry behaviours predicated by the Australian Science Curriculum.
Sutton, Sharon E; Kemp, Susan P
2006-09-01
Interdisciplinary collaborations that aim to facilitate meaningful community outcomes require both the right mix of disciplinary knowledge and effective community participation, which together can deepen collective knowledge and the capacity to take action. This article explores three interdisciplinary design charrettes, intensive participatory workshops that addressed specific community problems and provided a context for integrating design and social science inquiry with local community knowledge. Evaluation data from the charrettes shed light on how students from the design and social science disciplines experienced the charrettes, and on their interactions with community members. Key advantages to this interdisciplinary, community-based collaboration included expanded knowledge derived from the use of multiple modes of inquiry, particularly the resulting visualization tools that helped community members understand local issues and envision novel solutions. Key drawbacks included difficulties in balancing the two disciplines, the tendency for social scientists to feel out of place on designers' turf, and the increased disciplinary and interpersonal conflicts arising from a more diverse pool of participants.
Positive attitudinal shifts with the Physics by Inquiry curriculum across multiple implementations
NASA Astrophysics Data System (ADS)
Lindsey, Beth A.; Hsu, Leonardo; Sadaghiani, Homeyra; Taylor, Jack W.; Cummings, Karen
2012-06-01
Recent publications have documented positive attitudinal shifts on the Colorado Learning Attitudes about Science Survey (CLASS) among students enrolled in courses with an explicit epistemological focus. We now report positive attitudinal shifts in classes using the Physics by Inquiry (PbI) curriculum, which has only an implicit focus on student epistemologies and nature of science issues. These positive shifts have occurred in several different implementations of the curriculum, across multiple institutions and multiple semesters. In many classes, students experienced significant attitudinal shifts in the problem-solving categories of the CLASS, despite the conceptual focus of most PbI courses.
Sensemaking: Conceptualizing and Coding for “Good” Student Reasoning
NASA Astrophysics Data System (ADS)
Elby, Andrew; Scherr, R.; Bing, T.
2006-12-01
Physics instructors’ goals often go beyond improving students’ conceptual understanding and problem solving. Instructors also want students to engage in inquiry, become scientific/critical thinkers, understand the scientific process, and so on. We see two problems with these “non-content” goals. First, notions such as inquiry and scientific thinking are often defined vaguely or inconsistently across the literature. Second, even when like-minded instructors share a vision of what we’d love to see our students do, descriptions of that vision are often too squishy to communicate, debate, or assess: “We know it when we see it!” In this talk and poster, we address these problems by introducing sensemaking vs. answermaking, two mindsets with which students can approach physics. Our definitions of those notions benefit from a theoretical base, and our coding scheme for sensemaking vs. answermaking displays high interrater reliability and rests upon a list of specific indicators.
A meta-analysis of research on science teacher education practices associated with inquiry strategy
NASA Astrophysics Data System (ADS)
Sweitzer, Gary L.; Anderson, Ronald D.
A meta-analysis was conducted of studies of teacher education having as measured outcomes one or more variables associated with inquiry teaching. Inquiry addresses those teacher behaviors that facilitate student acquisition of concepts and processes through strategies such as problem solving, uses of evidence, logical and analytical reasoning, clarification of values, and decision making. Studies which contained sufficient data for the calculation of an effect size were coded for 114 variables. These variables were divided into the following six major categories: study information and design characteristics, teacher and teacher trainee characteristics, student characteristics, treatment description, outcome description, and effect size calculation. A total of 68 studies resulting in 177 effect size calculations were coded. Mean effect sizes broken across selected variables were calculated.
Mentoring Graduate Students in Research and Teaching by Utilizing Research as a Template
ERIC Educational Resources Information Center
Knutson, Christopher C.; Jackson, Milton N., Jr.; Beekman, Matt; Carnes, Matthew E.; Johnson, Darren W.; Johnson, David C.; Keszler, Douglas A.
2014-01-01
We have designed a unique guided-inquiry-inspired course for entry-level graduate students using chemical research as a mechanism to teach research-oriented problem-solving skills. The course has been designed for flexibility around a shared research experience. The curriculum can be modified each year by incorporating a new research project into…
ERIC Educational Resources Information Center
Becker, Nicole; Stanford, Courtney; Towns, Marcy; Cole, Renee
2015-01-01
In physical chemistry classrooms, mathematical and graphical representations are critical tools for reasoning about chemical phenomena. However, there is abundant evidence that to be successful in understanding complex thermodynamics topics, students must go beyond rote mathematical problem solving in order to connect their understanding of…
SSRP: Software for Problem Solving and Inquiry in Grades K-4. Ohio SchoolNet. ENC Focus.
ERIC Educational Resources Information Center
Harris, Julia, Ed.
1997-01-01
The number and range of instructional resources in mathematics and science education can be overwhelming to educators. The chief mission of The Eisenhower National Clearinghouse for Mathematics and Science Education (ENC) is to help educators sort through the confusion by identifying relevant resources such as print materials, software, kits, and…
College for Kids, An Innovative Enrichment Program for Gifted Elementary Children.
ERIC Educational Resources Information Center
Clasen, Donna Rae; Subkoviak, Michael J.
One hundred fifty-six gifted elementary students (grades 3 through 6) responded to the Coopersmith Self Esteem Inventory on a pre- and posttest basis during a 3 week, 45 hour College for Kids program, designed as an enrichment program with focus on critical thinking, problem solving, inquiry, research, and questioning. Thirty students responded to…
ERIC Educational Resources Information Center
Meade, Melinda S.; Washburn, Sarah; Holman, Jeremy T.
This learning module aims to engage students in problem solving, critical thinking, scientific inquiry, and cooperative learning. The module is appropriate for use in any introductory or intermediate undergraduate course that focuses on human-environment relationships. The module states that human health is a product of complex interactions among…
ERIC Educational Resources Information Center
Liverman, Diana; Solem, Michael
This learning module aims to engage students in problem solving, critical thinking, scientific inquiry, and cooperative learning. The module is appropriate for use in any introductory or intermediate undergraduate course that focuses on human-environment relationships. The module examines the geography of human activities that produce the major…
Integrating Technology into the Classroom: A Teacher's Perspective.
ERIC Educational Resources Information Center
Clark, Frances T.
1998-01-01
The iNtegrating Technology for inQuiry (NTeQ) model teaches students to use computers to solve problems, as adults do in the workplace and home. This article presents a third grade teacher's experience using the NTeQ model for a thematic unit in which student entrepreneurs developed and marketed a new pizza requiring no refrigeration or cooking.…
ERIC Educational Resources Information Center
Charalambous, Charalambos Y.; Philippou, George N.
2010-01-01
This study brings together two lines of research on teachers' affective responses toward mathematics curriculum reforms: their concerns and their efficacy beliefs. Using structural equation modeling to analyze data on 151 elementary mathematics teachers' concerns and efficacy beliefs 5 years into a mandated curriculum reform on problem solving,…
Eighth Grade Earth Science Curriculum Guide. Part 1.
ERIC Educational Resources Information Center
New York City Board of Education, Brooklyn, NY. Div. of Curriculum and Instruction.
This is a curriculum guide composed of lessons which can serve as models for the beginning teacher as well as for the teacher who needs activities to broaden the earth science perspective in the classroom. It was designed to supplement the New york State Earth Science Syllabus and encourages students to develop inquiry and problem solving skills.…
Changing Schools from the inside out: Small Wins in Hard Times. Third Edition
ERIC Educational Resources Information Center
Larson, Robert
2011-01-01
At any time, public schools labor under great economic, political, and social pressures that make it difficult to create large-scale, "whole school" change. But current top-down mandates require that schools close achievement gaps while teaching more problem solving, inquiry, and research skills--with fewer resources. Failure to meet test-based…
ERIC Educational Resources Information Center
Dkeidek, Iyad; Mamlok-Naaman, Rachel; Hofstein, Avi
2011-01-01
In order to cope with complex issues in the science-technology-environment-society context, one must develop students' high-order learning skills, such as question-asking ability (QAA), critical thinking, evaluative thinking, decision-making, and problem-solving capabilities within science education. In this study, we are concerned with evaluating…
ERIC Educational Resources Information Center
Kukkonen, Jari; Dillon, Patrick; Kärkkäinen, Sirpa; Hartikainen-Ahia, Anu; Keinonen, Tuula
2016-01-01
Scaffolding helps the novice to accomplish a task goal or solve a problem that otherwise would be beyond unassisted efforts. Scaffolding firstly aims to support the learner in accomplishing the task and secondly in learning from the task and improving future performance. This study has examined pre-service teachers' experiences of…
Inquiry, Play, and Problem Solving in a Process Learning Environment
ERIC Educational Resources Information Center
Thwaits, Anne Y.
2016-01-01
What is the nature of art/science collaborations in museums? How do art objects and activities contribute to the successes of science centers? Based on the premise that art exhibitions and art-based activities engage museum visitors in different ways than do strictly factual, information-based displays, I address these questions in a case study…
ERIC Educational Resources Information Center
Saxe, Geoffrey B.
2008-01-01
In his 1979 "Human Development" article reprinted in this anniversary issue, James Wertsch presented an approach to genetic analysis of the shifting regulation of problem-solving behavior in early childhood. In my reflections on Wertsch's seminal contribution, I discuss ways that subsequent inquiry built upon ideas he elaborated in the…
ERIC Educational Resources Information Center
Balgopal, Meena M.; Casper, Anne Marie A.; Atadero, Rebecca A.; Rambo-Hernandez, Karen E.
2017-01-01
Working in small groups to solve problems is an instructional strategy that allows university students in science, technology, engineering, and mathematics disciplines the opportunity to practice interpersonal and professional skills while gaining and applying discipline-specific content knowledge. Previous research indicates that not all group…
Special issue of Computers and Fluids in honor of Cecil E. (Chuck) Leith
Zhou, Ye; Herring, Jackson
2017-05-12
Here, this special issue of Computers and Fluids is dedicated to Cecil E. (Chuck) Leith in honor of his research contributions, leadership in the areas of statistical fluid mechanics, computational fluid dynamics, and climate theory. Leith's contribution to these fields emerged from his interest in solving complex fluid flow problems--even those at high Mach numbers--in an era well before large scale supercomputing became the dominant mode of inquiry into these fields. Yet the issues raised and solved by his research effort are still of vital interest today.
Special issue of Computers and Fluids in honor of Cecil E. (Chuck) Leith
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Ye; Herring, Jackson
Here, this special issue of Computers and Fluids is dedicated to Cecil E. (Chuck) Leith in honor of his research contributions, leadership in the areas of statistical fluid mechanics, computational fluid dynamics, and climate theory. Leith's contribution to these fields emerged from his interest in solving complex fluid flow problems--even those at high Mach numbers--in an era well before large scale supercomputing became the dominant mode of inquiry into these fields. Yet the issues raised and solved by his research effort are still of vital interest today.
A Teaching Guide and Experience Units K-12. Social Studies. Grade One.
ERIC Educational Resources Information Center
Arapahoe County School District 6, Littleton, CO.
The unit experiences for the K-12 curriculum, including these for grade 1, were designed by the district staff to achieve a more comprehensive knowledge of the world in which we live; to develop the ability to think critically and creatively; to use inquiry and problem solving skills in human relations situations; to understand major social…
ERIC Educational Resources Information Center
Chanprasitchai, Ong-art; Khlaisang, Jintavee
2016-01-01
The recent growth in collaborative and interactive virtual learning communities integrating innovative digital technologies and contemporary learning frameworks is contributing enormously to the use of e-learning in higher education in the twenty-first century. The purpose of this study was to describe the development of a virtual learning…
ERIC Educational Resources Information Center
Weaver, Julie K.
2010-01-01
Students love a mystery. So what do America's most majestic bird, a bag of habitat clues, and a soft-shelled egg have in common? This easy-to-do inquiry activity engages students as they connect clues to problem-solve how the bald eagle reached the brink of extinction in the 1960s in the lower 48 states. It was designed to give students an…
ERIC Educational Resources Information Center
Lynd-Balta, Eileen
2006-01-01
Science education reform initiatives emphasize (1) the value of concepts over facts; (2) the benefits of open-ended, inquiry-based problem-solving rather than protocols leading to a single correct answer; and (3) the importance of a multidisciplinary approach to teaching that is not confined by departmental boundaries. Neuroscientists should be at…
ERIC Educational Resources Information Center
Mitchell, Jerry T.; Cutter, Susan L.
This learning module aims to engage students in problem solving, critical thinking, scientific inquiry, and cooperative learning. The module is appropriate for use in any introductory or intermediate undergraduate course that focuses on human-environment relationships. The module introduces the complexities in the relationships among environmental…
ERIC Educational Resources Information Center
Gliddon, C. M.; Rosengren, R. J.
2012-01-01
This article describes a 13-week laboratory course called Human Toxicology taught at the University of Otago, New Zealand. This course used a guided inquiry based laboratory coupled with formative assessment and collaborative learning to develop in undergraduate students the skills of problem solving/critical thinking, data interpretation and…
Me and My Environment, Unit V: Air and Water in My Environment, Experimental Edition 1973-74.
ERIC Educational Resources Information Center
Biological Sciences Curriculum Study, Boulder, CO.
The experimental 1973-74 edition of Unit V consists of 35 life science curriculum activities intended for 13- to 16-year-old educable mentally handicapped adolescents. The role of the teacher in continuing field trials is noted and environmental themes and elements, inquiry skills, problem solving skills, and applicational behaviors and attitudes…
From Vision to Action: Solving Problems through Inquiry at Boston Day and Evening Academy
ERIC Educational Resources Information Center
Kunst, Andrea
2009-01-01
On a mid-week day in mid-December 2008, Boston Day and Evening Academy's room 209, usually used for board meetings, student assessments, awards dinners, and other occasions requiring an intimate atmosphere, smelled like Chinese food. These second-trimester students at Boston Day and Evening Academy (BDEA) were having a reunion after just a few…
ERIC Educational Resources Information Center
Yang, Shui-Ping
2007-01-01
This article describes an experiment using a novel gasometric assembly to determine the thickness and number of atomic layers of zinc coating on galvanized iron substrates. Students solved this problem through three stages. In the first stage, students were encouraged to find a suitable acidic concentration through the guided-inquiry approach. In…
ERIC Educational Resources Information Center
Wright, Jan; O'Flynn, Gabrielle; Welch, Rosie
2018-01-01
Purpose: Health education still tends to be dominated by an approach designed to achieve individual behaviour change through the provision of knowledge to avoid risk. In contrast, a critical inquiry approach educates children and young people to develop their capacity to engage critically with knowledge, through reasoning, problem solving and…
ERIC Educational Resources Information Center
Biological Sciences Curriculum Study, Boulder, CO.
The experimental 1973-74 edition of Unit IV consists of 28 life science curriculum activities for 13- to 16-year-old educable mentally handicapped children. The role of the teacher in continuing field trials is noted and environmental themes and elements, inquiry skills, problem solving skills, and applicational behaviors and attitudes are…
NASA Astrophysics Data System (ADS)
Hagevik, Rita Anne
This study investigated the effects of using Geographic Information Systems (GIS) to improve middle school students' and their teachers' understanding of environmental content and GIS. Constructivism provided the theoretical framework with Bonnstetter's inquiry evolution and Swartz's problem solving as the conceptual framework for designing these GIS units and interpreting the results. Teachers from nine schools in five counties attended a one-week workshop and follow-up session, where they learned how to teach the online Mapping Our School Site (www.ncsu.edu/scilink/studysite) and CITYgreen GIS inquiry-based problem-solving units. Two years after the workshop, two teachers from the workshop taught the six week Mapping Our School Site (MOSS) unit in the fall and one teacher from a different school taught the MOSS unit in the fall and the CITYgreen GIS unit in the spring. The students in the MOSS experimental group (n = 131) and the CITYgreen GIS comparison group (n = 33) were compared for differences in understanding of environmental content. Other factors were investigated such as students' spatial abilities, experiences, and learning preferences. Teachers and students completed the online Learning Styles Inventory (LSI), Spatial Experience Survey (SES), and the Purdue Spatial Visualization Test: Rotations (PSVT:R). Using qualitative and quantitative analyses, results indicated that the CITYgreen GIS group learned the environmental content better than the MOSS group. The MOSS group better understood how to design experiments and to use GIS to analyze problem questions. Both groups improved in problem identification and problem solving, data accuracy, and hypothesis testing. The spatial reasoning score was compared to learning style as reported on the LSI, and other spatial experiences as reported on the SES. Males scored higher than females on the spatial reasoning test, the more computer games played the higher the score, and the fewer shop classes taken the higher the score. Results indicated that 75% of the teachers' integrated GIS into classroom instruction two years after the GIS workshop. Even though teaching experience was negatively related to spatial reasoning test scores, implementation of GIS by teachers in the workshop was not influenced by years of teaching experience. The results indicate that GIS can be universally used for classroom instruction.
Impact of an inquiry unit on grade 4 students' science learning
NASA Astrophysics Data System (ADS)
Di Mauro, María Florencia; Furman, Melina
2016-09-01
This paper concerns the identification of teaching strategies that enhance the development of 4th grade students' experimental design skills at a public primary school in Argentina. Students' performance in the design of relevant experiments was evaluated before and after an eight-week intervention compared to a control group, as well as the persistence of this learning after eight months. The study involved a quasi-experimental longitudinal study with pre-test/post-test/delayed post-test measures, complemented with semi-structured interviews with randomly selected students. Our findings showed improvement in the experimental design skills as well as its sustainability among students working with the inquiry-based sequence. After the intervention, students were able to establish valid comparisons, propose pertinent designs and identify variables that should remain constant. Contrarily, students in the control group showed no improvement and continued to solve the posed problems based on prior beliefs. In summary, this paper shows evidence that implementing inquiry-based units involving problems set in cross-domain everyday situations that combine independent student work with teacher guidance significantly improves the development of scientific skills in real classroom contexts.
Current Approaches in Implementing Citizen Science in the Classroom
Shah, Harsh R.; Martinez, Luis R.
2016-01-01
Citizen science involves a partnership between inexperienced volunteers and trained scientists engaging in research. In addition to its obvious benefit of accelerating data collection, citizen science has an unexplored role in the classroom, from K–12 schools to higher education. With recent studies showing a weakening in scientific competency of American students, incorporating citizen science initiatives in the curriculum provides a means to address deficiencies in a fragmented educational system. The integration of traditional and innovative pedagogical methods to reform our educational system is therefore imperative in order to provide practical experiences in scientific inquiry, critical thinking, and problem solving for school-age individuals. Citizen science can be used to emphasize the recognition and use of systematic approaches to solve problems affecting the community. PMID:27047583
Current Approaches in Implementing Citizen Science in the Classroom.
Shah, Harsh R; Martinez, Luis R
2016-03-01
Citizen science involves a partnership between inexperienced volunteers and trained scientists engaging in research. In addition to its obvious benefit of accelerating data collection, citizen science has an unexplored role in the classroom, from K-12 schools to higher education. With recent studies showing a weakening in scientific competency of American students, incorporating citizen science initiatives in the curriculum provides a means to address deficiencies in a fragmented educational system. The integration of traditional and innovative pedagogical methods to reform our educational system is therefore imperative in order to provide practical experiences in scientific inquiry, critical thinking, and problem solving for school-age individuals. Citizen science can be used to emphasize the recognition and use of systematic approaches to solve problems affecting the community.
ERIC Educational Resources Information Center
Moser, Susanne
This learning module aims to engage students in problem solving, critical thinking, scientific inquiry, and cooperative learning. The module is appropriate for use in any introductory or intermediate undergraduate course that focuses on human-environment relationships. The module explains that land use/cover change has occurred at all times in all…
ERIC Educational Resources Information Center
Gratch, Jonathan
2012-01-01
Project-based learning has long been used in the educational realm as it emphasis a student-centered strategy which promotes meaning, enriched learning that enhances inquiry and problem-solving skills in a rich, authentic environment. The relevance and authentic design of projects may further be enhanced by the use of technology in the classroom.…
ERIC Educational Resources Information Center
Doss, Kristy Kowalske
2018-01-01
In order to compete globally in the 21st Century, students must have the skills to design their own projects and understand how to navigate the wealth of information available at their fingertips. One of the most important tools is to be able to investigate ideas and implement a plan of action in order to answer questions that have not been…
Experimenting in a constructivist high school physics laboratory
NASA Astrophysics Data System (ADS)
Roth, Wolff-Michael
Although laboratory activities have long been recognized for their potential to facilitate the learning of science concepts and skills, this potential has yet to be realized. To remediate this problem, researchers have called for constructivist learning environments in which students can pursue open inquiry and frame their own research problems. The present study was designed to describe and understand students' experimenting and problem solving in such an environment. An interpretive research methodology was adopted for the construction of meaning from the data. The data sources included videotapes, their transcripts, student laboratory reports and reflections, interviews with the students, and the teacher's course outline and reflective notes. Forty-six students from three sections of an introductory physics course taught at a private school for boys participated in the study. This article shows the students' remarkable ability and willingness to generate research questions and to design and develop apparatus for data collection. In their effort to frame research questions, students often used narrative explanations to explore and think about the phenomena to be studied. In some cases, blind alleys, students framed research questions and planned experiments that did not lead to the expected results. We observed a remarkable flexibility to deal with problems that arose during the implementation of their plans in the context of the inquiry. These problems, as well as their solutions and the necessary decision-making processes, were characterized by their situated nature. Finally, students pursued meaningful learning during the interpretation of data and graphs to arrive at reasonable answers of their research questions. We concluded that students should be provided with problem-rich learning environments in which they learn to investigate phenomena of their own interest and in which they can develop complex problem-solving skills.
Science Classroom Inquiry (SCI) Simulations: A Novel Method to Scaffold Science Learning
Peffer, Melanie E.; Beckler, Matthew L.; Schunn, Christian; Renken, Maggie; Revak, Amanda
2015-01-01
Science education is progressively more focused on employing inquiry-based learning methods in the classroom and increasing scientific literacy among students. However, due to time and resource constraints, many classroom science activities and laboratory experiments focus on simple inquiry, with a step-by-step approach to reach predetermined outcomes. The science classroom inquiry (SCI) simulations were designed to give students real life, authentic science experiences within the confines of a typical classroom. The SCI simulations allow students to engage with a science problem in a meaningful, inquiry-based manner. Three discrete SCI simulations were created as website applications for use with middle school and high school students. For each simulation, students were tasked with solving a scientific problem through investigation and hypothesis testing. After completion of the simulation, 67% of students reported a change in how they perceived authentic science practices, specifically related to the complex and dynamic nature of scientific research and how scientists approach problems. Moreover, 80% of the students who did not report a change in how they viewed the practice of science indicated that the simulation confirmed or strengthened their prior understanding. Additionally, we found a statistically significant positive correlation between students’ self-reported changes in understanding of authentic science practices and the degree to which each simulation benefitted learning. Since SCI simulations were effective in promoting both student learning and student understanding of authentic science practices with both middle and high school students, we propose that SCI simulations are a valuable and versatile technology that can be used to educate and inspire a wide range of science students on the real-world complexities inherent in scientific study. PMID:25786245
Science classroom inquiry (SCI) simulations: a novel method to scaffold science learning.
Peffer, Melanie E; Beckler, Matthew L; Schunn, Christian; Renken, Maggie; Revak, Amanda
2015-01-01
Science education is progressively more focused on employing inquiry-based learning methods in the classroom and increasing scientific literacy among students. However, due to time and resource constraints, many classroom science activities and laboratory experiments focus on simple inquiry, with a step-by-step approach to reach predetermined outcomes. The science classroom inquiry (SCI) simulations were designed to give students real life, authentic science experiences within the confines of a typical classroom. The SCI simulations allow students to engage with a science problem in a meaningful, inquiry-based manner. Three discrete SCI simulations were created as website applications for use with middle school and high school students. For each simulation, students were tasked with solving a scientific problem through investigation and hypothesis testing. After completion of the simulation, 67% of students reported a change in how they perceived authentic science practices, specifically related to the complex and dynamic nature of scientific research and how scientists approach problems. Moreover, 80% of the students who did not report a change in how they viewed the practice of science indicated that the simulation confirmed or strengthened their prior understanding. Additionally, we found a statistically significant positive correlation between students' self-reported changes in understanding of authentic science practices and the degree to which each simulation benefitted learning. Since SCI simulations were effective in promoting both student learning and student understanding of authentic science practices with both middle and high school students, we propose that SCI simulations are a valuable and versatile technology that can be used to educate and inspire a wide range of science students on the real-world complexities inherent in scientific study.
Improving the Efficiency of Physical Examination Services
Chih, Mingchang; Bair, Aaron E.
2009-01-01
The objective of our project was to improve the efficiency of the physical examination screening service of a large hospital system. We began with a detailed simulation model to explore the relationships between four performance measures and three decision factors. We then attempted to identify the optimal physician inquiry starting time by solving a goal-programming problem, where the objective function includes multiple goals. One of our simulation results shows that the proposed optimal physician inquiry starting time decreased patient wait times by 50% without increasing overall physician utilization. Electronic supplementary material The online version of this article (doi:10.1007/s10916-009-9271-z) contains supplementary material, which is available to authorized users. PMID:20703912
Is nursing ready for WebQuests?
Lahaie, Ulysses David
2008-12-01
Based on an inquiry-oriented framework, WebQuests facilitate the construction of effective learning activities. Developed by Bernie Dodge and Tom March in 1995 at the San Diego State University, WebQuests have gained worldwide popularity among educators in the kindergarten through grade 12 educational sector. However, their application at the college and university levels is not well documented. WebQuests enhance and promote higher order-thinking skills, are consistent with Bloom's Taxonomy, and reflect a learner-centered instructional methodology (constructivism). They are based on solid theoretical foundations and promote critical thinking, inquiry, and problem solving. There is a role for WebQuests in nursing education. A WebQuest example is described in this article.
Addition Chains: A reSolve Lesson
ERIC Educational Resources Information Center
Turner, Paul; Thornton, Steve
2017-01-01
This article draws on some ideas explored during and after a writing workshop to develop classroom resources for the reSolve: Mathematics by Inquiry (www.resolve.edu.au) project. The project develops classroom and professional learning resources that will promote a spirit of inquiry in school mathematics from Foundation to year ten. The…
NASA Astrophysics Data System (ADS)
Sauer, Tim Allen
The purpose of this study was to evaluate the effectiveness of utilizing student constructed theoretical math models when teaching acceleration to high school introductory physics students. The goal of the study was for the students to be able to utilize mathematical modeling strategies to improve their problem solving skills, as well as their standardized scientific and conceptual understanding. This study was based on mathematical modeling research, conceptual change research and constructivist theory of learning, all of which suggest that mathematical modeling is an effective way to influence students' conceptual connectiveness and sense making of formulaic equations and problem solving. A total of 48 students in two sections of high school introductory physics classes received constructivist, inquiry-based, cooperative learning, and conceptual change-oriented instruction. The difference in the instruction for the 24 students in the mathematical modeling treatment group was that they constructed every formula they needed to solve problems from data they collected. In contrast, the instructional design for the control group of 24 students allowed the same instruction with assigned problems solved with formulas given to them without explanation. The results indicated that the mathematical modeling students were able to solve less familiar and more complicated problems with greater confidence and mental flexibility than the control group students. The mathematical modeling group maintained fewer alternative conceptions consistently in the interviews than did the control group. The implications for acceleration instruction from these results were discussed.
Additional Crime Scenes for Projectile Motion Unit
NASA Astrophysics Data System (ADS)
Fullerton, Dan; Bonner, David
2011-12-01
Building students' ability to transfer physics fundamentals to real-world applications establishes a deeper understanding of underlying concepts while enhancing student interest. Forensic science offers a great opportunity for students to apply physics to highly engaging, real-world contexts. Integrating these opportunities into inquiry-based problem solving in a team environment provides a terrific backdrop for fostering communication, analysis, and critical thinking skills. One such activity, inspired jointly by the museum exhibit "CSI: The Experience"2 and David Bonner's TPT article "Increasing Student Engagement and Enthusiasm: A Projectile Motion Crime Scene,"3 provides students with three different crime scenes, each requiring an analysis of projectile motion. In this lesson students socially engage in higher-order analysis of two-dimensional projectile motion problems by collecting information from 3-D scale models and collaborating with one another on its interpretation, in addition to diagramming and mathematical analysis typical to problem solving in physics.
Sharma, Bharati; Ramani, K V; Mavalankar, Dileep; Kanguru, Lovney; Hussein, Julia
2015-01-01
Infections acquired during childbirth are a common cause of maternal and perinatal mortality and morbidity. Changing provider behaviour and organisational settings within the health system is key to reducing the spread of infection. To explore the opinions of health personnel on health system factors related to infection control and their perceptions of change in a sample of hospital maternity units. An organisational change process called 'appreciative inquiry' (AI) was introduced in three maternity units of hospitals in Gujarat, India. AI is a change process that builds on recognition of positive actions, behaviours, and attitudes. In-depth interviews were conducted with health personnel to elicit information on the environment within which they work, including physical and organisational factors, motivation, awareness, practices, perceptions of their role, and other health system factors related to infection control activities. Data were obtained from three hospitals which implemented AI and another three not involved in the intervention. Challenges which emerged included management processes (e.g. decision-making and problem-solving modalities), human resource shortages, and physical infrastructure (e.g. space, water, and electricity supplies). AI was perceived as having a positive influence on infection control practices. Respondents also said that management processes improved although some hospitals had already undergone an accreditation process which could have influenced the changes described. Participants reported that team relationships had been strengthened due to AI. Technical knowledge is often emphasised in health care settings and less attention is paid to factors such as team relationships, leadership, and problem solving. AI can contribute to improving infection control by catalysing and creating forums for team building, shared decision making and problem solving in an enabling environment.
Cognitive theories and the design of e-learning environments.
Gillani, Bijan; O'Guinn, Christina
2004-01-01
Cognitive development refers to a mental process by which knowledge is acquired, stored, and retrieved to solve problems. Therefore, cognitive developmental theories attempt to explain cognitive activities that contribute to students' intellectual development and their capacity to learn and solve problems. Cognitive developmental research has had a great impact on the constructivism movement in education and educational technology. In order to appreciate how cognitive developmental theories have contributed to the design, process and development of constructive e-learning environments, we shall first present Piaget's cognitive theory and derive an inquiry training model from it that will support a constructivism approach to teaching and learning. Second, we will discuss an example developed by NASA that used the Web as an appropriate instructional delivery medium to apply Piaget's cognitive theory to create e-learning environments.
NASA Astrophysics Data System (ADS)
Mewhinney, Christina
A study was conducted to investigate the relationship of students' concept integration and achievement with time spent within a topic and across related topics in a large first semester guided inquiry organic chemistry class. Achievement was based on evidence of algorithmic problem solving; and concept integration was based on demonstrated performance explaining, applying, and relating concepts to each other. Twelve individual assessments were made of both variables over three related topics---acid/base, nucleophilic substitution and electrophilic addition reactions. Measurements included written, free response and ordered multiple answer questions using a classroom response system. Results demonstrated that students can solve problems without conceptual understanding. A second study was conducted to compare the students' learning approach at the beginning and end of the course. Students were scored on their preferences for a deep, strategic, or surface approach to learning based on their responses to a pre and post survey. Results suggest that students significantly decreased their preference for a surface approach during the semester. Analysis of the data collected was performed to determine the relationship between students' learning approach and their concept integration and achievement in this class. Results show a correlation between a deep approach and concept integration and a strong negative correlation between a surface approach and concept integration.
Teaching Creativity and Inventive Problem Solving in Science
2009-01-01
Engaging learners in the excitement of science, helping them discover the value of evidence-based reasoning and higher-order cognitive skills, and teaching them to become creative problem solvers have long been goals of science education reformers. But the means to achieve these goals, especially methods to promote creative thinking in scientific problem solving, have not become widely known or used. In this essay, I review the evidence that creativity is not a single hard-to-measure property. The creative process can be explained by reference to increasingly well-understood cognitive skills such as cognitive flexibility and inhibitory control that are widely distributed in the population. I explore the relationship between creativity and the higher-order cognitive skills, review assessment methods, and describe several instructional strategies for enhancing creative problem solving in the college classroom. Evidence suggests that instruction to support the development of creativity requires inquiry-based teaching that includes explicit strategies to promote cognitive flexibility. Students need to be repeatedly reminded and shown how to be creative, to integrate material across subject areas, to question their own assumptions, and to imagine other viewpoints and possibilities. Further research is required to determine whether college students' learning will be enhanced by these measures. PMID:19723812
Teaching creativity and inventive problem solving in science.
DeHaan, Robert L
2009-01-01
Engaging learners in the excitement of science, helping them discover the value of evidence-based reasoning and higher-order cognitive skills, and teaching them to become creative problem solvers have long been goals of science education reformers. But the means to achieve these goals, especially methods to promote creative thinking in scientific problem solving, have not become widely known or used. In this essay, I review the evidence that creativity is not a single hard-to-measure property. The creative process can be explained by reference to increasingly well-understood cognitive skills such as cognitive flexibility and inhibitory control that are widely distributed in the population. I explore the relationship between creativity and the higher-order cognitive skills, review assessment methods, and describe several instructional strategies for enhancing creative problem solving in the college classroom. Evidence suggests that instruction to support the development of creativity requires inquiry-based teaching that includes explicit strategies to promote cognitive flexibility. Students need to be repeatedly reminded and shown how to be creative, to integrate material across subject areas, to question their own assumptions, and to imagine other viewpoints and possibilities. Further research is required to determine whether college students' learning will be enhanced by these measures.
Data and Analysis Center for Software
1990-03-01
is available to DACS users. 7.4 Bibliographic Services Bibliographic inquiries to the DACS are received in many forms: by letter, by telephone call, by...of potential users concerning the DACS and its products and services. 9-4 10.0 TASK 9 - SPECIAL STUDIES AND PROJECTS 10.1 Introduction There are many ...problems related to software technology that can be solved through the full service capabilities provided by the DACS. Many of these are sizable
ERIC Educational Resources Information Center
Dowler, Lorraine
Designed so that it can be adapted to a wide range of student abilities and institutional settings, this learning module on the human dimensions of global change seeks to: actively engage students in problem solving, challenge them to think critically, invite them to participate in the process of scientific inquiry, and involve them in cooperative…
ERIC Educational Resources Information Center
Anthony, Seth
2014-01-01
Part I: Students' participation in inquiry-based chemistry laboratory curricula, and, in particular, engagement with key thinking processes in conjunction with these experiences, is linked with success at the difficult task of "transfer"--applying their knowledge in new contexts to solve unfamiliar types of problems. We investigate…
NASA Astrophysics Data System (ADS)
Zou, Xueli
In the past three decades, physics education research has primarily focused on student conceptual understanding; little work has been conducted to investigate student difficulties in problem solving. In cognitive science and psychology, however, extensive studies have explored the differences in problem solving between experts and naive students. A major finding indicates that experts often apply qualitative representations in problem solving, but that novices use an equation-centered method. This dissertation describes investigations into the use of multiple representations and visualizations in student understanding and problem solving with the concepts of work and energy. A multiple-representation strategy was developed to help students acquire expertise in solving work-energy problems. In this approach, a typical work-energy problem is considered as a physical process. The process is first described in words-the verbal representation of the process. Next, a sketch or a picture, called a pictorial representation, is used to represent the process. This is followed by work-energy bar charts-a physical representation of the same processes. Finally, this process is represented mathematically by using a generalized work-energy equation. In terms of the multiple representations, the goal of solving a work- energy problem is to represent the physical process the more intuitive pictorial and diagrammatic physical representations. Ongoing assessment of student learning indicates that this multiple-representation technique is more effective than standard instruction methods in student problem solving. visualize this difficult-to-understand concept, a guided- inquiry learning activity using a pair of model carts and an experiment problem using a sandbag were developed. Assessment results have shown that these research-based materials are effective in helping students visualize this concept and give a pictorial idea of ``where the kinetic energy goes'' during inelastic collisions. The research and curriculum development was conducted in the context of the introductory calculus-based physics course. Investigations were carried out using common physics education research tools, including open-ended surveys, written test questions, and individual student interviews.
NASA Astrophysics Data System (ADS)
Welstead, C.; Forder, S. E.
2014-12-01
This presentation is an overview of best practices in the design of continuing education courses and professional development workshops for Science teachers to enable them to transition to the NGSS; to share their enthusiasm in a way that engages students and leads to increased student achievement; and to become change agents in their educational settings and in their communities, in order to garner widespread support for an inquiry-based, NGSS-based curriculum. Proposed strands for teacher preparation programmes include a focus on higher level conceptual thinking; problem-solving opportunities for learning; inquiry-based learning; experiential learning and fieldwork; the authentic and effective incorporation of technology in teaching and learning; integrated and cross-curricular teaching and learning; learning that supports diversity and equity; and the appropriate, reliable and valid assessment of understanding. A series of three courses has been developed to prepare teachers in a graduate programme for implementing an inquiry-based, standards-based Science curriculum that incorporates the above-mentioned strands.
Science as a Second Language: Acquiring Fluency through Science Enterprises
NASA Astrophysics Data System (ADS)
Shope, R. E.
2012-12-01
Science Enterprises are problems that students genuinely want to solve, questions that students genuinely want to answer, that naturally entail reading, writing, exploration, investigation, and discussion. Engaging students in personally-relevant science enterprises provides both a diagnostic opportunity and a context for providing students the comprehensible input they need. We can differentiate instruction by creating science enterprise zones that are set up for the incremental increase in challenge for the students. Comprehensible input makes reachable, those just-out-of-reach concepts in the mix of the familiar and the new. We explore a series of science enterprise tools that have been developed and implemented in the context of informal science education projects that have reached over 10,000 urban youth in the Greater Los Angles area over the past six years. 1) The ED3U Science Inquiry Model, a learning cycle model that accounts for conceptual change; 2) The ¿NQUIRY Wheel, a compass of scientific inquiry strategies; 3) Inquiry Science Expeditions, a way of laying out a science learning environment, emulating a field and lab research collaboratory; 4) The Science Educative Experience Scale, a diagnostic measure of the quality of the science learning experience; and 5) Science Mimes, participatory enactment of science understanding. Practical examples of Science Enterprises will be presented, including a range of projects: Watershed Ecology; Astrobiology; Mars Rovers; Planetary Science; Icy Worlds. BACKGROUND: Language Acquisition is an informal process that occurs in the midst of exploring, solving problems, seeking answers to questions, playing, reading for pleasure, conversing, discussing, where the focus is not specifically on language development, but on the activity, which is of interest to the participant. Language Learning is a formal education process, the language arts aspect of the school day: the direct teaching of reading, writing, grammar, spelling, and speaking. Fluency results primarily from language acquisition and secondarily from language learning. We can view the problem of science education and communication as similar to language acquisition. Science Learning is a formal education process, the school science aspect of the school day: the direct teaching of standards-aligned science content. Science Acquisition is an informal process that occurs in the midst of exploring, solving problems, seeking answers to questions, playing, experimenting for pleasure, conversing, discussing, where the focus is not specifically on science content development, but on the inquiry activity, driven by the curiosity of the participant. Comprehensible input refers to the premise that we acquire language in the midst of activity when we understand the message; that is, when we understand what we hear or what we read or what we see. Acquisition is caused by comprehensible input as it occurs in the midst of a rich environment of language activity while doing something of interest to the learner. Providing comprehensible input is not the same as oversimplifying or "dumbing down." It is devising ways to create conditions where the interest of the learner is piqued.
Science As A Second Language: Acquiring Fluency through Science Enterprises
NASA Astrophysics Data System (ADS)
Shope, R.; EcoVoices Expedition Team
2013-05-01
Science Enterprises are problems that students genuinely want to solve, questions that students genuinely want to answer, that naturally entail reading, writing, investigation, and discussion. Engaging students in personally-relevant science enterprises provides both a diagnostic opportunity and a context for providing students the comprehensible input they need. We can differentiate instruction by creating science enterprise zones that are set up for the incremental increase in challenge for the students. Comprehensible input makes reachable, those just-out-of-reach concepts in the mix of the familiar and the new. EcoVoices takes students on field research expeditions within an urban natural area, the San Gabriel River Discovery Center. This project engages students in science enterprises focused on understanding ecosystems, ecosystem services, and the dynamics of climate change. A sister program, EcoVoces, has been launched in Mexico, in collaboration with the Universidad Loyola del Pacífico. 1) The ED3U Science Inquiry Model, a learning cycle model that accounts for conceptual change: Explore { Diagnose, Design, Discuss } Use. 2) The ¿NQUIRY Wheel, a compass of scientific inquiry strategies; 3) Inquiry Science Expeditions, a way of laying out a science learning environment, emulating a field and lab research collaboratory; 4) The Science Educative Experience Scale, a diagnostic measure of the quality of the science learning experience; and 5) Mimedia de la Ciencia, participatory enactment of science concepts using techniques of mime and improvisational theater. BACKGROUND: Science has become a vehicle for teaching reading, writing, and other communication skills, across the curriculum. This new emphasis creates renewed motivation for Scientists and Science Educators to work collaboratively to explore the common ground between acquiring science understanding and language acquisition theory. Language Acquisition is an informal process that occurs in the midst of exploring, solving problems, seeking answers to questions, playing, reading for pleasure, conversing, discussing, where the focus is not specifically on language development, but on the activity, which is of interest to the participant. Language Learning is a formal education process, the language arts aspect of the school day: the direct teaching of reading, writing, grammar, spelling, and speaking. Fluency results primarily from language acquisition and secondarily from language learning. We can view the problem of science education and communication as similar to language acquisition. Science Learning is a formal education process, the school science aspect of the school day: the direct teaching of standards-aligned science content. Science Acquisition is an informal process that occurs in the midst of exploring, solving problems, seeking answers to questions, playing, experimenting for pleasure, conversing, discussing, where the focus is not specifically on science content development, but on the inquiry activity, driven by the curiosity of the participant. Treating Science as a Second Language shifts the evaluation of science learning to include gauging the extent to which students choose to deepen their pursuit of science learning.
Supporting students in developing literacy in science.
Krajcik, Joseph S; Sutherland, LeeAnn M
2010-04-23
Reading, writing, and oral communication are critical literacy practices for participation in a global society. In the context of science inquiry, literacy practices support learners by enabling them to grapple with ideas, share their thoughts, enrich understanding, and solve problems. Here we suggest five instructional and curricular features that can support students in developing literacy in the context of science: (i) linking new ideas to prior knowledge and experiences, (ii) anchoring learning in questions that are meaningful in the lives of students, (iii) connecting multiple representations, (iv) providing opportunities for students to use science ideas, and (v) supporting students' engagement with the discourses of science. These five features will promote students' ability to read, write, and communicate about science so that they can engage in inquiry throughout their lives.
Case-study experiments in the introductory physics curriculum
NASA Astrophysics Data System (ADS)
Arion, D. N.; Crosby, K. M.; Murphy, E. A.
2000-09-01
Carthage College added inquiry-based case study activities to the traditional introductory physics laboratory. Student teams designed, constructed, and executed their own experiments to study real-world phenomena, through which they gained understanding both of physic principles and methods of physics research. Assessment results and student feedback through teacher evaluations indicate that these activities improved student attitudes about physics as well as their ability to solve physics problems relative to previous course offerings that did not include case study.
Supporting Collective Inquiry: A Technology Framework for Distributed Learning
NASA Astrophysics Data System (ADS)
Tissenbaum, Michael
This design-based study describes the implementation and evaluation of a technology framework to support smart classrooms and Distributed Technology Enhanced Learning (DTEL) called SAIL Smart Space (S3). S3 is an open-source technology framework designed to support students engaged in inquiry investigations as a knowledge community. To evaluate the effectiveness of S3 as a generalizable technology framework, a curriculum named PLACE (Physics Learning Across Contexts and Environments) was developed to support two grade-11 physics classes (n = 22; n = 23) engaged in a multi-context inquiry curriculum based on the Knowledge Community and Inquiry (KCI) pedagogical model. This dissertation outlines three initial design studies that established a set of design principles for DTEL curricula, and related technology infrastructures. These principles guided the development of PLACE, a twelve-week inquiry curriculum in which students drew upon their community-generated knowledge base as a source of evidence for solving ill-structured physics problems based on the physics of Hollywood movies. During the culminating smart classroom activity, the S3 framework played a central role in orchestrating student activities, including managing the flow of materials and students using real-time data mining and intelligent agents that responded to emergent class patterns. S3 supported students' construction of knowledge through the use individual, collective and collaborative scripts and technologies, including tablets and interactive large-format displays. Aggregate and real-time ambient visualizations helped the teacher act as a wondering facilitator, supporting students in their inquiry where needed. A teacher orchestration tablet gave the teacher some control over the flow of the scripted activities, and alerted him to critical moments for intervention. Analysis focuses on S3's effectiveness in supporting students' inquiry across multiple learning contexts and scales of time, and in making timely and effective use of the community's knowledge base, towards producing solutions to sophisticated, ill defined problems in the domain of physics. Video analysis examined whether S3 supported teacher orchestration, freeing him to focus less on classroom management and more on students' inquiry. Three important outcomes of this research are a set of design principles for DTEL environments, a specific technology infrastructure (S3), and a DTEL research framework.
Abraham Pais Prize Lecture: Shifting Problems and Boundaries in the History of Modern Physics
NASA Astrophysics Data System (ADS)
Nye, Mary-Jo
A long established category of study in the history of science is the ``history of physical sciences.'' It is a category that immediately begs the question of disciplinary boundaries for the problems and subjects addressed in historical inquiry. As a historian of the physical sciences, I often have puzzled over disciplinary boundaries and the means used to create or justify them. Scientists most often have been professionally identified with specific institutionalized fields since the late 19th century, but the questions they ask and the problems they solve are not neatly carved up by disciplinary perimeters. Like institutional departments or professorships, the Nobel Prizes in the 20th century often have delineated the scope of ``Physics'' or ``Chemistry'' (and ``Physiology or Medicine''), but the Prizes do not reflect disciplinary rigidity, despite some standard core subjects. In this paper I examine trends in Nobel Prize awards that indicate shifts in problem solving and in boundaries in twentieth century physics, tying those developments to changing themes in the history of physics and physical science in recent decades.
Implementing Inquiry-Based Learning and Examining the Effects in Junior College Probability Lessons
ERIC Educational Resources Information Center
Chong, Jessie Siew Yin; Chong, Maureen Siew Fang; Shahrill, Masitah; Abdullah, Nor Azura
2017-01-01
This study examined how Year 12 students use their inquiry skills in solving conditional probability questions by means of Inquiry-Based Learning application. The participants consisted of 66 students of similar academic abilities in Mathematics, selected from three classes, along with their respective teachers. Observational rubric and lesson…
The environment and human health; USGS science for solutions
,
2001-01-01
Emerging infectious diseases, ground-water contamination, trace-metal poisoning...environmental threats to public health the world over require new solutions. Because of an increased awareness of the issues, greater cooperation among scientific and policy agencies, and powerful new tools and techniques to conduct research, there is new hope that complex ecological health problems can be solved. U.S. Geological Survey scientists are forming partnerships with experts in the public health and biomedical research communities to conduct rigorous scientific inquiries into the health effects of ecological processes.
Scale-Up: Improving Large Enrollment Physics Courses
NASA Astrophysics Data System (ADS)
Beichner, Robert
1999-11-01
The Student-Centered Activities for Large Enrollment University Physics (SCALE-UP) project is working to establish a learning environment that will promote increased conceptual understanding, improved problem-solving performance, and greater student satisfaction, while still maintaining class sizes of approximately 100. We are also addressing the new ABET engineering accreditation requirements for inquiry-based learning along with communication and team-oriented skills development. Results of studies of our latest classroom design, plans for future classroom space, and the current iteration of instructional materials will be discussed.
Avenues into Food Planning: A Review of Scholarly Food System Research
Brinkley, Catherine
2014-01-01
This review summarizes several avenues of planning inquiry into food systems research, revealing gaps in the literature, allied fields of study and mismatches between scholarly disciplines and the food system life cycle. Planners and scholars in associated fields have identified and defined problems in the food system as ‘wicked’ problems, complex environmental issues that require systemic solutions at the community scale. While food justice scholars have contextualized problem areas, planning scholars have made a broad case for planning involvement in solving these wicked problems while ensuring that the functional and beneficial parts of the food system continue to thrive. This review maps the entry points of scholarly interest in food systems and planning’s contributions to its study, charting a research agenda for the future. PMID:24932131
NASA Astrophysics Data System (ADS)
Whittington, Kayla Lee
This study examined the impact of an inquiry based Next Generation Science Standard aligned science unit on elementary students' understanding and application of the eight Science and Engineering Practices and their relation in building student problem solving skills. The study involved 44 second grade students and three participating classroom teachers. The treatment consisted of a school district developed Second Grade Earth Science unit: What is happening to our playground? that was taught at the beginning of the school year. Quantitative results from a Likert type scale pre and post survey and from student content knowledge assessments showed growth in student belief of their own abilities in the science classroom. Qualitative data gathered from student observations and interviews performed at the conclusion of the Earth Science unit further show gains in student understanding and attitudes. This study adds to the existing literature on the importance of standard aligned, inquiry based science curriculum that provides time for students to engage in science practices.
Replacing textbook problems with lab experiences
NASA Astrophysics Data System (ADS)
Register, Trevor
2017-10-01
End-of-the-chapter textbook problems are often the bread and butter of any traditional physics classroom. However, research strongly suggests that students be given the opportunity to apply their knowledge in multiple contexts as well as be provided with opportunities to do the process of science through laboratory experiences. Little correlation has been shown linking the number of textbook problems solved with conceptual understanding of topics in mechanics. Furthermore, textbook problems as the primary source of practice for students robs them of the joy and productive struggle of learning how to think like an experimental physicist. Methods such as Modeling Instruction tackle this problem head-on by starting each instructional unit with an inquiry-based lab aimed at establishing the important concepts and equations for the unit, and this article will discuss ideas and experiences for how to carry that philosophy throughout a unit.
Flippin' Fluid Mechanics - Quasi-experimental Pre-test and Post-test Comparison Using Two Groups
NASA Astrophysics Data System (ADS)
Webster, D. R.; Majerich, D. M.; Luo, J.
2014-11-01
A flipped classroom approach has been implemented in an undergraduate fluid mechanics course. Students watch short on-line videos before class, participate in active in-class problem solving (in dyads), and complete individualized on-line quizzes weekly. In-class activities are designed to achieve a trifecta of: 1. developing problem solving skills, 2. learning subject content, and 3. developing inquiry skills. The instructor and assistants provide critical ``just-in-time tutoring'' during the in-class problem solving sessions. Comparisons are made with a simultaneous section offered in a traditional mode by a different instructor. Regression analysis was used to control for differences among students and to quantify the effect of the flipped fluid mechanics course. The dependent variable was the students' combined final examination and post-concept inventory scores and the independent variables were pre-concept inventory score, gender, major, course section, and (incoming) GPA. The R-square equaled 0.45 indicating that the included variables explain 45% of the variation in the dependent variable. The regression results indicated that if the student took the flipped fluid mechanics course, the dependent variable (i.e., combined final exam and post-concept inventory scores) was raised by 7.25 points. Interestingly, the comparison group reported significantly more often that their course emphasized memorization than did the flipped classroom group.
NASA Astrophysics Data System (ADS)
Humphreys, R. R.; Hall, C.; Colgan, M. W.; Rhodes, E.
2010-12-01
Although inquiry-based/problem-based methods have been successfully incorporated in undergraduate lecture classes, a survey of commonly used laboratory manuals indicates that few non-major geoscience laboratory classes use these strategies. The Department of Geology and Environmental Geosciences faculty members have developed a successful introductory Environmental Geology Laboratory course for undergraduate non-majors that challenges traditional teaching methodology as illustrated in most laboratory manuals. The Environmental Geology lab activities employ active learning methods to engage and challenge students. Crucial to establishing an open learning environment is capturing the attention of non-science majors from the moment they enter the classroom. We use catastrophic ‘gloom and doom’ current events to pique the imagination with images, news stories, and videos. Once our students are hooked, we can further the learning process with use of other teaching methods: an inquiry-based approach that requires students take control of their own learning, a cooperative learning approach that requires the participation of all team members in peer learning, and a problem/case study learning approach that primarily relies on activities distilled from current events. The final outcome is focused on creating innovative methods to communicate the findings to the general public. With the general public being the audience for their communiqué, students are less intimated, more focused, and more involved in solving the problem. During lab sessions, teams of students actively engage in mastering course content and develop essential communication skills while exploring real-world scenarios. These activities allow students to use scientific reasoning and concepts to develop solutions for scenarios such as volcanic eruptions, coastal erosion/sea level rise, flooding or landslide hazards, and then creatively communicate their solutions to the public. For example, during a two-week section on Earthquakes, teams study the effects of seismic motion on sediments underlying the Charleston, South Carolina region. Students discover areas where the greatest damage occurred during the 1886 earthquake via a walking tour of Charleston. Extracting information from historical and topographic maps, and aerial and satellite imagery provides students with the necessary information to produce an earthquake hazard map of the area. Applying the creativity and knowledge base of the multidisciplinary students generates a startling array of innovative methods for communicating their results: brochures, storybooks, computer-animated hazard maps, Facebook pages, YouTube videos - even Virtual Reality avatars! When allowed to use their imaginations and resourcefulness, these students have no bounds! Not only does the application of inquiry-based problem solving methodology in conjunction with cooperative learning enhance comprehension of the material, but by allowing undergraduate students to develop methods of communicating their knowledge to the public through an interesting variety of medium, students remain focused, engaged, and even excited about learning science that otherwise intimidated them.
NASA Astrophysics Data System (ADS)
Soderberg, Patti; Price, Frank
2003-01-01
This study describes a lesson in which students engaged in inquiry in evolutionary biology in order to develop a better understanding of the concepts and reasoning skills necessary to support knowledge claims about changes in the genetic structure of populations, also known as microevolution. This paper describes how a software simulation called EVOLVE can be used to foster discussions about the conceptual knowledge used by advanced secondary or introductory college students when investigating the effects of natural selection on hypothetical populations over time. An experienced professor's use and rationale of a problem-based lesson using the simulation is examined. Examples of student misconceptions and naïve (incomplete) conceptions are described and an analysis of the procedural knowledge for experimenting with the computer model is provided. The results of this case study provide a model of how EVOLVE can be used to engage students in a complex problem-solving experience that encourages student meta-cognitive reflection about their understanding of evolution at the population level. Implications for teaching are provided and ways to improve student learning and problem solving in population genetics are suggested.
Jewett, Elizabeth; Kuhn, Deanna
2016-03-01
Engagement in purposeful problem solving involving social science content was sufficient to develop a key set of inquiry skills in low-performing middle school students from an academically and economically disadvantaged urban public school population, with this skill transferring to a more traditional written scientific thinking assessment instrument 3weeks later. Students only observing their peers' activity or not participating at all failed to show these gains. Implications are addressed with regard to the mastery of scientific thinking skills among academically disadvantaged students. Also addressed are the efficacy of problem-based learning and the limits of observational learning. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Mehta, Nirav; Cheng, Kelvin
2012-10-01
We have developed an interactive workshop-style course for our introductory calculus-based physics sequence at Trinity University. Lecture is limited to approximately 15 min. at the beginning of class, and the remainder of the 50-min. class is devoted to inquiry-based activities and problem solving. So far, lab is done separately and we have not incorporated the lab component into the workshop model. We use the Brief Electricity and Magnetism Assessment (BEMA) to compare learning gains between the workshop and traditional lecture-based course for the Spring 2012 semester. Both the workshop and lecture courses shared the same inquiry-based lab component that involved pre-labs, prediction-observation and post-lab activities. Our BEMA results indicate statistically significant improvement in overall learning gains compared to the traditional course. We compare our workshop BEMA scores both to traditional lecture scores here at Trinity and to those from other institutions.
Oriol, Nancy E; Hayden, Emily M; Joyal-Mowschenson, Julie; Muret-Wagstaff, Sharon; Faux, Russell; Gordon, James A
2011-09-01
In the natural world, learning emerges from the joy of play, experimentation, and inquiry as part of everyday life. However, this kind of informal learning is often difficult to integrate within structured educational curricula. This report describes an educational program that embeds naturalistic learning into formal high school, college, and graduate school science class work. Our experience is based on work with hundreds of high school, college, and graduate students enrolled in traditional science classes in which mannequin simulators were used to teach physiological principles. Specific case scenarios were integrated into the curriculum as problem-solving exercises chosen to accentuate the basic science objectives of the course. This report also highlights the historic and theoretical basis for the use of mannequin simulators as an important physiology education tool and outlines how the authors' experience in healthcare education has been effectively translated to nonclinical student populations. Particular areas of focus include critical-thinking and problem-solving behaviors and student reflections on the impact of the teaching approach.
2016-03-30
lesson 8.4, " Wind Turbine Design Inquiry." 13 The goal of her project was to combine a1t and science in project-based learning. Although pmt of an...challenged to design, test, and redesign wind turbine blades, defining variables and measuring performance. Their goal was to optimize perfonnance through...hydroelectric. In each model there are more than one variable. For example, the wind farm activity enables the user to select number of turbines
NASA Technical Reports Server (NTRS)
1987-01-01
The purpose of the Technology Applications Program (TAP) is to provide problem solving information and assistance to both the public and private sectors in the Commonwealth of Kentucky, with emphasis primarily in the public sector. The TAP accesses over 1200 online computer databases, including files from the U.S., Canada, Europe, and Australia. During the 1985 to 1986 contract period, TAP responded to 645 inquiries which resulted in an increase of 16 percent over the 1984 to 1985 contract period. The activities of TAP for the 1985 to 1986 contract period are summarized.
NASA Astrophysics Data System (ADS)
Zydney, Janet Mannheimer; Grincewicz, Amy
2011-12-01
This study investigated the connection between the use of video cases within a multimedia learning environment and students' inquiry into a socio-scientific problem. The software program was designed based on principles from the Cognitive Flexibility Theory (CFT) and incorporated video cases of experts with differing perspectives. Seventy-nine 10th-grade students in an urban high school participated in this study. After watching the expert videos, students generated investigative questions and reflected on how their ideas changed over time. This study found a significant correlation between the time students spent watching the expert videos and their ability to consider the problem's perspectives as well as their ability to integrate these perspectives within their questions. Moreover, problem-solving ability and time watching the videos were detected as possible influential predictors of students' consideration of the problem's perspectives within their questions. Although students watched all video cases in equivalent ways, one of the video cases, which incorporated multiple perspectives as opposed to just presenting one perspective, appeared most influential in helping students integrate the various perspectives into their own thinking. A qualitative analysis of students' reflections indicated that many students appreciated the complexity, authenticity, and ethical dimensions of the problem. It also revealed that while the majority of students thought critically about the problem, some students still had naïve or simplistic ways of thinking. This study provided some preliminary evidence that offering students the opportunity to watch videos of different perspectives may influence them to think in alternative ways about a complex problem.
A narrative inquiry into teaching physics as inquiry: An examination of in-service exemplars
NASA Astrophysics Data System (ADS)
Evans, Paige K.
Studies show that teachers who have experienced inquiry are more likely to practice the inquiry method in their own classrooms (McDermott, 2007; Olson, 1995; Pereira, 2005; Windschitl, 2002). This study explores changes in science teachers' personal practical knowledge (Clandinin, 1986) after participating in a graduate level physics inquiry course and subsequent professional development throughout the school year. In addition, teacher participants were studied to determine the roadblocks they encountered when altering curriculum mandates in ways that would enable them to work with the inquiry method. The results of this course and subsequent professional development sessions were analyzed for the benefits of using the inquiry method to teacher learning and to ascertain whether the teacher participants would be more apt to employ the inquiry method in their own classrooms. Moreover, the results of this study were analyzed to inform my personal practice as a leader preparing undergraduate science teachers in the teachHOUSTON program as well as in my continuing work with in-service teachers. An inquiry course may be added to the teachHOUSTON course sequence, based on the discoveries unearthed by this thesis study. This research study is conducted as a narrative inquiry (Clandinin & Connelly, 1992, 2000; Craig, 2011; Polkinghorne, 1995) where story works as both a research method and a form of representation (Connelly & Clandinin, 1990). Narrative inquiry is strongly influenced by John Dewey (1938) who believed that one must rely on past experiences and knowledge to solve current and future problems and that life experience is in fact education. This study inquires into the narratives of two teachers who are teaching secondary science in public schools. These stories illuminate the teachers' lived experiences as they co-constructed curriculum with their students. The images of teacher as a curriculum maker vs. teacher as a curriculum implementer (Craig & Ross, 2008; Craig, 2010) demonstrate what needs to be taken into account when teachers live physics curriculum alongside their students in physics classroom settings. The exemplars featured in this thesis illuminate teachers' developing knowledge as they expand their understandings of inquiry in a physics inquiry course undertaken for professional development purposes and their subsequent enactment of science curriculum in their own classrooms with their students as they, too, inquire into physics.
NASA Astrophysics Data System (ADS)
Houseal, Ana K.
Engaging elementary students in science through inquiry-based methodologies is at the center of science education reform efforts (AAAS, 1989, NRC 1996, 2000). Through scientific problem solving, students can learn that science is more than just learning facts and concepts (NRC, 2000) The process of scientific inquiry, as a way of approaching scientific problem solving, can be taught to students through experiential, authentic (or real-world) science experiences. Student-teacher-scientist partnerships (STSPs) are one vehicle used to connect students to these science experiences with practicing research scientists. However, the literature on STSPs demonstrates they are fraught with challenges and very little is known of their effects on teachers' and students' content knowledge growth or changes in their attitudes about science and scientists. This study addressed these two areas by researching a particular STSP. The STSP, called Students, Teachers, and Rangers and Research Scientists (STaRRS), designed to be incorporated into the existing long-standing education program Expedition: Yellowstone! (E:Y!) was the focus of this study. For teachers, a pre-test, intervention, post-test research design addressing content knowledge gains, attitude changes, and pedagogical changes was used. A quasi-experimental pre- post-test design using treatment and comparison groups of students addressed content knowledge gains and attitude changes. Findings provided evidence of significant positive shifts in teachers' attitudes regarding science and scientists, and trends of shifting pedagogical choices made by teachers. Students showed significant content knowledge gains and an increased positive attitude regarding their perceptions of scientists.
The opportunities and challenges of guided inquiry science for students with special needs
NASA Astrophysics Data System (ADS)
Miller, Marianne
Research in science education has been conducted with various goals for instruction. Four outcomes identified include: immediate and delayed recall, literal comprehension, science skills and processes, and conceptual understanding. The promise of developing important thinking skills exists for all students if science instruction is designed to teach students the products of science and the principled process of inquiry. Guided inquiry science seeks to develop conceptual understanding through the pursuit of meaningful questions using scientific problem solving to conduct investigations that are thoughtfully generated and evaluated. Using a social constructivist perspective, this study examines the learning experiences of four students, identified by their teachers as learning disabled or underachieving. Four case studies are presented of the students' participation in a guided inquiry investigation of the behavior of light. Measures of conceptual understanding included pre- and post-instruction assessments, interviews, journal writing, videotapes, and fieldnotes. All four students demonstrated improved conceptual understanding of light. Five patterns of relationships influenced the development of the students' thinking. First, differences in the culture of the two classrooms altered the learning environment, Second, the nature of teacher interaction with the target students affected conceptual understanding. Third, interactions with peers modified the learning experiences for the identified students. Fourth, the conceptual and procedural complexity of the tasks increased the tendency for the students to lose focus. Finally, the literacy requirements of the work were challenging for these students.
Impact of problem finding on the quality of authentic open inquiry science research projects
NASA Astrophysics Data System (ADS)
Labanca, Frank
2008-11-01
Problem finding is a creative process whereby individuals develop original ideas for study. Secondary science students who successfully participate in authentic, novel, open inquiry studies must engage in problem finding to determine viable and suitable topics. This study examined problem finding strategies employed by students who successfully completed and presented the results of their open inquiry research at the 2007 Connecticut Science Fair and the 2007 International Science and Engineering Fair. A multicase qualitative study was framed through the lenses of creativity, inquiry strategies, and situated cognition learning theory. Data were triangulated by methods (interviews, document analysis, surveys) and sources (students, teachers, mentors, fair directors, documents). The data demonstrated that the quality of student projects was directly impacted by the quality of their problem finding. Effective problem finding was a result of students using resources from previous, specialized experiences. They had a positive self-concept and a temperament for both the creative and logical perspectives of science research. Successful problem finding was derived from an idiosyncratic, nonlinear, and flexible use and understanding of inquiry. Finally, problem finding was influenced and assisted by the community of practicing scientists, with whom the students had an exceptional ability to communicate effectively. As a result, there appears to be a juxtaposition of creative and logical/analytical thought for open inquiry that may not be present in other forms of inquiry. Instructional strategies are suggested for teachers of science research students to improve the quality of problem finding for their students and their subsequent research projects.
NASA Astrophysics Data System (ADS)
Promyod, Nattida
The purpose of this study was to investigate the shift of Thai teachers' views of learning and their pedagogical practices from the traditional approach to be more centered on an argument-based inquiry approach (ABI) in Thai classrooms, where teachers and learners have long been familiar with the lecture-based tradition. Other than examining the changes, the study further explored the relationship throughout the ABI implementation phase with a specific focus on driving questions, problem solving and reasoning, and establishing a supportive learning environment. The study was conducted in Thailand with five physics teachers. Data collection involved classroom observations and teacher interviews. The constant comparative method was employed throughout the data analysis process. The research questions that guided this study were: (1) What changes occurred in teachers' pedagogical practices and views of learning throughout the implementation phase of the argument-based inquiry approach? (2) If change did occur, what was the relationship of the change among the observed criteria (questioning, problem solving, and the establishing of a supportive learning environment)? The results revealed that after fourteen weeks, the three teachers who expressed a positive attitude toward the ABI approach and expressed their willingness to practice started to shift their practices and views of learning toward a student-centered model. Although each teacher exhibited a different starting point within the three observed criteria, they all began to shift their practices first, before reflecting on their beliefs. In contrast to these teachers, the other two teachers were impeded by several barriers and therefore failed to implement the approach. These positive attitude, willingness, and shift of practice appear to be connected and necessary for change. The study highlights that in order to support the implementation of the ABI approach, especially in a large class size cultural setting, opportunities for teachers to be challenged in both classroom and cognitive spaces, where they are immersed in authentic practices and be able to reflect on their own actions as well as their existing beliefs, are crucial. However, to advance the dimensions of this issue, long-term professional development and a longitudinal study observing a large class size cultural settings are suggested.
Appreciative inquiry in medical education.
Sandars, John; Murdoch-Eaton, Deborah
2017-02-01
The practice of medicine, and also medical education, typically adopts a problem-solving approach to identify "what is going wrong" with a situation. However, an alternative is Appreciative Inquiry (AI), which adopts a positive and strengths-based approach to identify "what is going well" with a situation. The AI approach can be used for the development and enhancement of the potential of both individuals and organizations. An essential aspect of the AI approach is the generative process, in which a new situation is envisioned and both individual and collective strengths are mobilized to make changes to achieve the valued future situation. The AI approach has been widely used in the world of business and general education, but is has an exciting potential for medical education, including curriculum development, faculty development, supporting learners through academic advising and mentoring, but also for enhancing the teaching and learning of both individuals and groups. This AMEE Guide describes the core principles of AI and their practical application in medical education.
NASA Astrophysics Data System (ADS)
Baird, William E.; Preston Prather, J.; Finson, Kevin D.; Oliver, J. Steve
A 100-item survey was distributed to science teachers in eight states to determine characteristics of teachers, schools, programs, and perceived needs. Results from 1258 secondary science teachers indicate that they perceive the following to be among their greatest needs: (1) to motivate students to want to learn science; (2) to discover sources of free and inexpensive science materials; (3) to learn more about how to use computers to deliver and manage instruction; (4) to find and use materials about science careers; and (5) to improve problem solving skills among their students. Based on whether teachers classified themselves as nonrural or rural, rural teachers do not perceive as much need for help with multicultural issues in the classroom or maintaining student discipline as their nonrural peers. Rural teachers report using the following classroom activities less often than nonrural teachers: cooperative learning groups, hands-on laboratory activities, individualized strategies, and inquiry teaching. More rural than nonrural teachers report problems with too many class preparations per day, a lack of career role models in the community, and lack of colleagues with whom to discuss problems. Among all secondary science teachers, the most pronounced problems reported by teachers were (in rank order): (1) insufficient student problem-solving skills; (2) insufficient funds for supplies; (3) poor student reading ability; (4) lack of student interest in science: and (5) inadequate laboratory facilities.
NASA Astrophysics Data System (ADS)
Foxx, Robbie Evelyn
Science education reform, driven by a rapidly advancing technological society, demands the attention of both elementary and middle school curriculum-developers. Science education training in current standards (National Research Council [NRC] Standards 1996) emphasize inquiry, which is reported to be a basic tenet of the theory known as constructivism (NAASP, 1996; Cohen, 1988; Conley, 1993; Friedman, 1999; Newman, Marks, & Gamoran, 1996; Smerdon & Burkam 1999; Sizer 1992; Talbert & McLaughlin 1993; Tobin & Gallagher, 1987; Yager, 1991, 2000). Pedagogy focusing on the tenets of constructivist theory, at the intermediate level, can address current science standards. Many science educators believe participation in science fairs helps students develop the attitudes, skills, and knowledge that will help them to be comfortable and successful in the scientific and technological society (Czerniak, 1996). Competing in science fairs is one vehicle which allows students to apply science to societal issues, solve problems and model those things scientists do. Moreover, constructing a science fair project is suggested as being an excellent means to foster the development of concepts necessary in promoting scientific literacy (Czerniak, 1996). Research further suggests that through science fairs or other inquiry activities, students construct their knowledge with fewer misconceptions as they explore and discover the nature of science (NRC 1996). Tohn 's study (as cited in Bellipanni, 1994) stated that science fairs are a major campaign to increase student skills and to allow students a chance to have fun with science. The purpose of this research was twofold: (1) to assess science problem solving skills of students instructed using constructivist pedagogy, and (2) to explore the effects of constructivist pedagogy's influence(s) on science fair participation/placement. Students' attitudes resulting from these experiences were examined as well.
Teachers' Perspectives on Online Virtual Labs vs. Hands-On Labs in High School Science
NASA Astrophysics Data System (ADS)
Bohr, Teresa M.
This study of online science teachers' opinions addressed the use of virtual labs in online courses. A growing number of schools use virtual labs that must meet mandated laboratory standards to ensure they provide learning experiences comparable to hands-on labs, which are an integral part of science curricula. The purpose of this qualitative case study was to examine teachers' perceptions of the quality and effectiveness of high school virtual labs. The theoretical foundation was constructivism, as labs provide student-centered activities for problem solving, inquiry, and exploration of phenomena. The research questions focused on experienced teachers' perceptions of the quality of virtual vs. hands-on labs. Data were collected through survey questions derived from the lab objectives of The Next Generation Science Standards . Eighteen teachers rated the degree of importance of each objective and also rated how they felt virtual labs met these objectives; these ratings were reported using descriptive statistics. Responses to open-ended questions were few and served to illustrate the numerical results. Many teachers stated that virtual labs are valuable supplements but could not completely replace hands-on experiences. Studies on the quality and effectiveness of high school virtual labs are limited despite widespread use. Comprehensive studies will ensure that online students have equal access to quality labs. School districts need to define lab requirements, and colleges need to specify the lab experience they require. This study has potential to inspire positive social change by assisting science educators, including those in the local school district, in evaluating and selecting courseware designed to promote higher order thinking skills, real-world problem solving, and development of strong inquiry skills, thereby improving science instruction for all high school students.
Acquisition and Retention of STEM Concepts through Inquiry Based Learning
NASA Astrophysics Data System (ADS)
Lombardi, Candice
This study explores the integration of STEM (science, technology, engineering, and mathematics) concepts through inquiry based learning. Students are exposed to a constructivist style learning environment where they create understanding for themselves. This way of learning lets students plan and justify their ideas and beliefs while discussing and examining the ideas of their classmates. Students are engaged in solving a scientific problem in a meaningful, inquiry-based manner through hypothesis testing, experimentation, and investigation. This mode of learning introduces students to real life, authentic science experiences within the confines of a typical classroom. The focus of the unit is for the students to create connections and understanding about geography and the globe in order to ultimately identify the exact latitude and longitude of 10 mystery sites. The students learn about latitude and longitude and apply their knowledge through a set of clues to determine where their Mystery Class is located. Journey North provides an internationally accessed game of hide-and-seek called Mystery Class Seasons Challenge. Throughout this challenge, over the course of eleven weeks, students will record, graph, interpret and analysis data and research to ultimate identify the location of ten mystery locations. Students will track seasonal changes in sunlight while investigating, examining and researching clues to find these ten secret sites around the world. My research was done to prove the success of students' ability to learn new mathematics, science, technology and engineering concepts through inquiry based design.
ERIC Educational Resources Information Center
Alkis Küçükaydin, Mensure; Uluçinar Sagir, Safak
2016-01-01
In this study, the pedagogical content knowledge (PCK) of four experienced primary school teachers was investigated within the "Let's Solve the Riddle of Our Body Unit". The PCK investigation adopted a learning approach based on inquiry, content representation and pedagogical and professional-experience repertoires (PaP-eRs), and…
NASA Astrophysics Data System (ADS)
Eliot, Michael H.
Students with learning disabilities (SWLDs) need to attain academic rigor to graduate from high school and college, as well as achieve success in life. Constructivist theories suggest that guided inquiry may provide the impetus for their success, yet little research has been done to support this premise. This study was designed to fill that gap. This quasi-experimental study compared didactic and guided inquiry-based teaching of science concepts to secondary SWLDs in SDC science classes. The study examined 38 students in four classes at two diverse, urban high schools. Participants were taught two science concepts using both teaching methods and posttested after each using paper-and-pencil tests and performance tasks. Data were compared to determine increases in conceptual understanding by teaching method, order of teaching method, and exposure one or both teaching methods. A survey examined participants' perceived self-efficacy under each method. Also, qualitative comparison of the two test formats examined appropriate use with SWLDs. Results showed significantly higher scores after the guided inquiry method on concept of volume, suggesting that guided inquiry does improve conceptual understanding over didactic instruction in some cases. Didactic teaching followed by guided inquiry resulted in higher scores than the reverse order, indicating that SWLDs may require direct instruction in basic facts and procedures related to a topic prior to engaging in guided inquiry. Also application of both teaching methods resulted in significantly higher scores than a single method on the concept of density, suggesting that SWLDs may require more in depth instruction found using both methods. No differences in perceived self-efficacy were shown. Qualitative analysis both assessments and participants' behaviors during testing support the use of performance tasks over paper-and-pencil tests with SWLDs. Implications for education include the use of guided inquiry to increase SWLDs conceptual understanding and process skills, while improving motivation and participation through hands-on learning. In addition, teachers may use performance tasks to better assess students' thought process, problem solving skills, and conceptual understanding. However, constructivist teaching methods require extra training, pedagogical skills, subject matter knowledge, physical resources, and support from all stakeholders.
NASA Astrophysics Data System (ADS)
Akcay, Hakan; Yager, Robert
2010-10-01
The purpose of this study was to investigate the advantages of an approach to instruction using current problems and issues as curriculum organizers and illustrating how teaching must change to accomplish real learning. The study sample consisted of 41 preservice science teachers (13 males and 28 females) in a model science teacher education program. Both qualitative and quantitative research methods were used to determine success with science discipline-specific “Societal and Educational Applications” courses as one part of a total science teacher education program at a large Midwestern university. Students were involved with idea generation, consideration of multiple points of views, collaborative inquiries, and problem solving. All of these factors promoted grounded instruction using constructivist perspectives that situated science with actual experiences in the lives of students.
The Use of Lego Technologies in Elementary Teacher Preparation
NASA Astrophysics Data System (ADS)
Hadjiachilleos, Stella; Avraamidou, Lucy; Papastavrou, Stavros
2013-10-01
The need to reform science teacher preparation programs has been pointed out in research (Bryan and Abell in J Res Sci Teach 36:121-140, 1999; Bryan and Atwater in Sci Educ 8(6):821-839, 2002; Harrington and Hathaway in J Teach Educ 46(4):275-284, 1995). Science teachers are charged with the responsibility of incorporating both cognitive and non-cognitive parameters in their everyday teaching practices. This often results in their reluctance to teach science because they often lack disciplinary and/or pedagogical expertise required to promote science learning. The purpose of this study is to propose an alternative instructional approach in which Lego vehicles were used as a tool to promote pre-service elementary teachers' development and to examine whether there are non-cognitive parameters that promote or obstruct them from using Lego Technologies as a teaching tool. The context of the study was defined by a teacher preparation program of a private university in a small Mediterranean country. A sample of 28 pre-service elementary teachers, working in five 5-6-member groups were involved in scientific inquiries, during which they had to use vehicles in order to solve scientific problems related to concepts such as gear functioning, force, and motion. The nature of their cognitive engagement in the scientific inquiry process, non-cognitive parameters contributing to their cognitive engagement, and the impact of their involvement in the process on their development were examined through qualitative analysis of pre- and post-inquiry interviews, presentations of their solutions to the scientific problems and of their personal reflective journals.
Learning stoichiometry: A comparison of text and multimedia instructional formats
NASA Astrophysics Data System (ADS)
Evans, Karen L.
Even after multiple instructional opportunities, first year college chemistry students are often unable to apply stoichiometry knowledge in equilibrium and acid-base chemistry problem solving. Cognitive research findings suggest that for learning to be meaningful, learners need to actively construct their own knowledge by integrating new information into, and reorganizing, their prior understandings. Scaffolded inquiry in which facts, procedures, and principles are introduced as needed within the context of authentic problem solving may provide the practice and encoding opportunities necessary for construction of a memorable and usable knowledge base. The dynamic and interactive capabilities of online technology may facilitate stoichiometry instruction that promotes this meaningful learning. Entering college freshmen were randomly assigned to either a technology-rich or text-only set of cognitively informed stoichiometry review materials. Analysis of posttest scores revealed a significant but small difference in the performance of the two treatment groups, with the technology-rich group having the advantage. Both SAT and gender, however, explained more of the variability in the scores. Analysis of the posttest scores from the technology-rich treatment group revealed that the degree of interaction with the Virtual Lab simulation was significantly related to posttest performance and subsumed any effect of prior knowledge as measured by SAT scores. Future users of the online course should be encouraged to engage with the problem-solving opportunities provided by the Virtual Lab simulation through either explicit instruction and/or implementation of some level of program control within the course's navigational features.
NASA Astrophysics Data System (ADS)
Persano Adorno, Dominique; Pizzolato, Nicola; Fazio, Claudio
2018-02-01
This paper investigates the efficacy of an open-inquiry approach to achieve a long term stability of physics instruction. This study represents the natural continuation of a research project started four years ago when a sample of thirty engineering undergraduates, having already attended traditional university physics instruction, were involved in a six-week long learning experience of open-inquiry research activities within the highly motivating context of developing a thermodynamically efficient space base on Mars. Four years later, we explore the effectiveness of that learning experience by analyzing the outcomes that the students achieved by answering again the same questionnaire that was administered them both prior to and immediately after those activities. As we did in the first work, students' answers were classified within three epistemological profiles. Now, a comparison among students' outcomes during the three phases, namely, preinstruction, postinstruction, and after four years has been carried out. Immediately after the open-inquiry experience, the students obtained significant benefits in terms of the strengthening of their practical and reasoning abilities, by proficiently applying the learned concepts to face and solve real-world problem situations. In this study, the students' answers do not highlight any significant regress towards their preinstruction profiles. The global robustness of the teaching strategy adopted four years ago is confirmed by a statistically significant comparison with a control group of students who experienced the same curricular instruction except for the open inquiry-based workshop. Nevertheless, some changes have been observed and discussed in the light of the answers the students provided to a short interview regarding their studying or working experiences across the four-year temporal window.
Mediating Artifact in Teacher Professional Development
NASA Astrophysics Data System (ADS)
Svendsen, Bodil
2015-07-01
This article focuses on teacher professional development (TPD) in natural science through the 5E model as mediating artifact. The study was conducted in an upper secondary school, grounded in a school-based intervention research project. My contribution to the field of research on TPD is founded on the hypothesis that teachers would be best facilitated to make their practice more inquiry based if they are provided with a mediating artifact. In this study the artifact is a model 5E, which is a conceptual way of thinking, to help teachers reflect on their practice. The aim is to encourage teachers to make changes themselves, by applying extended use of inquiry into their practice. This mediated artifact could thus be used across different national contexts. The main research question is; how can the 5E model as a mediating artifact enhance TPD? The article addresses the processes of the use of the 5E model and its influence on teachers' perception of the model. This is in order for teachers to conceptualize their goals related to inquiry and scientific thinking, and to solve the problems involved in achieving those goals in their own contexts. The study concludes that, after the intervention, the teachers' approaches and strategies demonstrate greater emphasis on learning.
Identifying Core Elements of Argument-Based Inquiry in Primary Mathematics Learning
ERIC Educational Resources Information Center
Fielding-Wells, Jill
2015-01-01
Having students address mathematical inquiry problems that are ill-structured and ambiguous offers potential for them to develop a focus on mathematical evidence and reasoning. However, students may not necessarily focus on these aspects when responding to such problems. Argument-Based Inquiry is one way to guide students in this direction. This…
NASA Astrophysics Data System (ADS)
Sandi-Urena, Guillermo Santiago
The central role of metacognition in learning and problem solving, in general and in chemistry in specific, has been substantially demonstrated and has raised pronounced interest in its study. However, the intrinsic difficulties associated with the inner processes of such a non-overt behavior have delayed the development of appropriate assessment instruments. The first research question addressed in this work originates from this observation: Is it possible to reliably assess metacognition use in chemistry problem solving? This study presents the development, validation, and application of a multimethod instrument for the assessment of metacognition use in chemistry problem solving. This multimethod is composed of two independent methods used at different times in relation to the task performance: (1) the prospective Metacognitive Activities Inventory, MCA-I; and (2) the concurrent Interactive MultiMedia Exercises software package, IMMEX. This work also includes the design, development, and validation of the MCA-I; evidence is discussed that supports its robustness, reliability and validity. Even though IMMEX is well-developed, its utilization as a metacognition assessment tool is novel and explained within this work. Among the benefits of utilizing IMMEX are: the automation of concurrent evidence collection and analysis which allows for the participation of large cohorts, the elimination of subjective assessments, and the collection of data in the absence of observers which presumably favors a more realistic deployment of skills by the participants. The independent instruments produced convergent results and the multimethod designed was proven to be reliable, robust and valid for the intended purpose. The second guiding question refers to the development of metacognition: Can regulatory metacognition use be enhanced by learning environments? Two interventions were utilized to explore this inquiry: a Collaborative Metacognitive Intervention and a Cooperative Problem-Based Laboratory Project. The former was designed and developed as part of this study; the latter is part of the curriculum of a two-semester cooperative General Chemistry Laboratory course. Both interventions rely on two main axes to promote metacognition development: intense social interaction and induced reflection. In the first case, it is through small group collaborative work and guided and peer prompting; in the second one through cooperation and inquiry in the laboratory. The effect of both interventions was investigated using pre and posttest, control and treatment type experiments. The choice of assessment was the multimethod developed in the first part of this same study. Despite the differences between the interventions (length, nature of prompting, and relation to chemistry contents) both learning environments succeeded in enhancing the awareness and use of metacognition in chemistry problem solving. Findings support the assertion that the mechanisms that define the learning environments under study---social interaction and reflection---promote the enhancement of metacognitive skills. A significant corollary of this research is that it offers evidence of the laboratory as a learning environment where students can acquire high order thinking skills and develop content knowledge and understanding.
Participatory Arts for Older Adults: A Review of Benefits and Challenges
Noice, Tony; Noice, Helga; Kramer, Arthur F.
2014-01-01
This article reviews the scientific literature on the enhancement of healthy aging in older adults through active participation in the arts. Methodologies and conclusions are described for studies of dance, expressive writing, music (singing and instrumental), theatre arts, and visual arts including documentation of mental/physical improvements in memory, creativity, problem solving, everyday competence, reaction time, balance/gait, and quality of life. In addition to these gains in measures of successful aging, the article also provides (in a Supplementary Appendix) some selected examples of arts engagement for remedial purposes. Finally, it offers suggestions for expanding inquiry into this underinvestigated corner of aging research. PMID:24336875
Lu, Fong-Mei; Stewart, James; White, John G.
2007-01-01
The utilization of biology research resources, coupled with a “learning by inquiry” approach, has great potential to aid students in gaining an understanding of fundamental biological principles. To help realize this potential, we have developed a Web portal for undergraduate biology education, WormClassroom.org, based on current research resources of a model research organism, Caenorhabditis elegans. This portal is intended to serve as a resource gateway for students to learn biological concepts using C. elegans research material. The driving forces behind the WormClassroom website were the strengths of C. elegans as a teaching organism, getting researchers and educators to work together to develop instructional materials, and the 3 P's (problem posing, problem solving, and peer persuasion) approach for inquiry learning. Iterative assessment is an important aspect of the WormClassroom site development because it not only ensures that content is up-to-date and accurate, but also verifies that it does, in fact, aid student learning. A primary assessment was performed to refine the WormClassroom website utilizing undergraduate biology students and nonstudent experts such as C. elegans researchers; results and comments were used for site improvement. We are actively encouraging continued resource contributions from the C. elegans research and education community for the further development of WormClassroom. PMID:17548872
NASA Astrophysics Data System (ADS)
Makar, Katie; Fielding-Wells, Jill
2018-03-01
The 3-year study described in this paper aims to create new knowledge about inquiry norms in primary mathematics classrooms. Mathematical inquiry addresses complex problems that contain ambiguities, yet classroom environments often do not adopt norms that promote curiosity, risk-taking and negotiation needed to productively engage with complex problems. Little is known about how teachers and students initiate, develop and maintain norms of mathematical inquiry in primary classrooms. The research question guiding this study is, "How do classroom norms develop that facilitate student learning in primary classrooms which practice mathematical inquiry?" The project will (1) analyse a video archive of inquiry lessons to identify signature practices that enhance productive classroom norms of mathematical inquiry and facilitate learning, (2) engage expert inquiry teachers to collaborate to identify and design strategies for assisting teachers to develop and sustain norms over time that are conducive to mathematical inquiry and (3) support and study teachers new to mathematical inquiry adopting these practices in their classrooms. Anticipated outcomes include identification and illustration of classroom norms of mathematical inquiry, signature practices linked to these norms and case studies of primary teachers' progressive development of classroom norms of mathematical inquiry and how they facilitate learning.
Reinstating the 'Queen': understanding philosophical inquiry in nursing.
Pesut, Barbara; Johnson, Joy
2008-01-01
This paper is an introduction to the characteristics of philosophical inquiry. Despite over a century of philosophical thinking in nursing, philosophical inquiry has yet to be positioned as contributing substantially to the field of nursing's inquiry. There is a need to articulate the nature and characteristics of philosophical inquiry for researchers new to this perspective. We begin by addressing a common question that surfaces when one begins a work that is philosophical in nature, how does one differentiate between nursing philosophy and nursing theory? We then address the nature and characteristics of philosophical inquiry. We conclude by considering the question of whether philosophical inquiry might be considered a form of qualitative inquiry. Unlike science, which relies upon investigative methods, philosophical inquiry relies upon the capacities to think and reason. Problems characteristic of philosophical inquiry include conceptual clarification, analysis of arguments and problems related to the ontology, epistemology and ethics of nursing. Although methodological approaches to philosophical inquiry are diverse, common tools include assumptions and the intellectual processes of conceptualizing, judging and reasoning within a context of wonder. Some have argued that to neglect philosophy in nursing is to place the discipline at risk. However, there is little guidance available to researchers new to this method of inquiry. By providing a beginning roadmap, our hope is that philosophical inquiry will take its place alongside scientific methods of inquiry with the goal of constructing robust knowledge for the discipline of nursing.
Nelson, Kären C.; Marbach-Ad, Gili; Keller, Michael; Fagan, William F.
2010-01-01
There is widespread agreement within the scientific and education communities that undergraduate biology curricula fall short in providing students with the quantitative and interdisciplinary problem-solving skills they need to obtain a deep understanding of biological phenomena and be prepared fully to contribute to future scientific inquiry. MathBench Biology Modules were designed to address these needs through a series of interactive, Web-based modules that can be used to supplement existing course content across the biological sciences curriculum. The effect of the modules was assessed in an introductory biology course at the University of Maryland. Over the course of the semester, students showed significant increases in quantitative skills that were independent of previous math course work. Students also showed increased comfort with solving quantitative problems, whether or not they ultimately arrived at the correct answer. A survey of spring 2009 graduates indicated that those who had experienced MathBench in their course work had a greater appreciation for the role of mathematics in modern biology than those who had not used MathBench. MathBench modules allow students from diverse educational backgrounds to hone their quantitative skills, preparing them for more complex mathematical approaches in upper-division courses. PMID:20810959
Thompson, Katerina V; Nelson, Kären C; Marbach-Ad, Gili; Keller, Michael; Fagan, William F
2010-01-01
There is widespread agreement within the scientific and education communities that undergraduate biology curricula fall short in providing students with the quantitative and interdisciplinary problem-solving skills they need to obtain a deep understanding of biological phenomena and be prepared fully to contribute to future scientific inquiry. MathBench Biology Modules were designed to address these needs through a series of interactive, Web-based modules that can be used to supplement existing course content across the biological sciences curriculum. The effect of the modules was assessed in an introductory biology course at the University of Maryland. Over the course of the semester, students showed significant increases in quantitative skills that were independent of previous math course work. Students also showed increased comfort with solving quantitative problems, whether or not they ultimately arrived at the correct answer. A survey of spring 2009 graduates indicated that those who had experienced MathBench in their course work had a greater appreciation for the role of mathematics in modern biology than those who had not used MathBench. MathBench modules allow students from diverse educational backgrounds to hone their quantitative skills, preparing them for more complex mathematical approaches in upper-division courses.
Enhancing endorsement of scientific inquiry increases support for pro-environment policies.
Drummond, Aaron; Palmer, Matthew A; Sauer, James D
2016-09-01
Pro-environment policies require public support and engagement, but in countries such as the USA, public support for pro-environment policies remains low. Increasing public scientific literacy is unlikely to solve this, because increased scientific literacy does not guarantee increased acceptance of critical environmental issues (e.g. that climate change is occurring). We distinguish between scientific literacy (basic scientific knowledge) and endorsement of scientific inquiry (perceiving science as a valuable way of accumulating knowledge), and examine the relationship between people's endorsement of scientific inquiry and their support for pro-environment policy. Analysis of a large, publicly available dataset shows that support for pro-environment policies is more strongly related to endorsement of scientific inquiry than to scientific literacy among adolescents. An experiment demonstrates that a brief intervention can increase support for pro-environment policies via increased endorsement of scientific inquiry among adults. Public education about the merits of scientific inquiry may facilitate increased support for pro-environment policies.
Enhancing endorsement of scientific inquiry increases support for pro-environment policies
Palmer, Matthew A.; Sauer, James D.
2016-01-01
Pro-environment policies require public support and engagement, but in countries such as the USA, public support for pro-environment policies remains low. Increasing public scientific literacy is unlikely to solve this, because increased scientific literacy does not guarantee increased acceptance of critical environmental issues (e.g. that climate change is occurring). We distinguish between scientific literacy (basic scientific knowledge) and endorsement of scientific inquiry (perceiving science as a valuable way of accumulating knowledge), and examine the relationship between people's endorsement of scientific inquiry and their support for pro-environment policy. Analysis of a large, publicly available dataset shows that support for pro-environment policies is more strongly related to endorsement of scientific inquiry than to scientific literacy among adolescents. An experiment demonstrates that a brief intervention can increase support for pro-environment policies via increased endorsement of scientific inquiry among adults. Public education about the merits of scientific inquiry may facilitate increased support for pro-environment policies. PMID:27703700
Teacher students' dilemmas when teaching science through inquiry
NASA Astrophysics Data System (ADS)
Krämer, Philipp; Nessler, Stefan H.; Schlüter, Kirsten
2015-09-01
Background: Inquiry-based science education (IBSE) is suitable to teach scientific contents as well as to foster scientific skills. Similar conclusions are drawn by studies with respect to scientific literacy, motivational aspects, vocabulary knowledge, conceptual understandings, critical thinking, and attitudes toward science. Nevertheless, IBSE is rarely adopted in schools. Often barriers for teachers account for this lack, with the result that even good teachers struggle to teach science as inquiry. More importantly, studies indicate that several barriers and constraints could be ascribed to problems teacher students have at the university stage. Purpose: The purpose of this explorative investigation is to examine the problems teacher students have when teaching science through inquiry. In order to draw a holistic picture of these problems, we identified problems from three different points of view leading to the research question: What problems regarding IBSE do teacher students have from an objective, a subjective, and a self-reflective perspective? Design & method: Using video analysis and observation tools as well as qualitative content analysis and open questionnaires we identified problems from each perspective. Results: The objectively stated problems comprise the lack of essential features of IBSE especially concerning 'Supporting pupils' own investigations' and 'Guiding analysis and conclusions.' The subjectively perceived problems comprise concerns about 'Teachers' abilities' and 'Pupils' abilities,' 'Differentiated instruction' and institutional frame 'Conditions' while the self-reflectively noticed problems mainly comprise concerns about 'Allowing inquiry,' 'Instructional Aspects,' and 'Pupils' behavior.' Conclusions: Each of the three different perspectives provides plenty of problems, partially overlapping, partially complementing one another, and partially revealing completely new problems. Consequently, teacher educators have to consider these three perspectives.
Sailing on the "C": A Vitamin Titration with a Twist
NASA Astrophysics Data System (ADS)
Sowa, S.; Kondo, A. E.
2003-05-01
The experiment takes the traditional redox titration of vitamin C using iodine with starch as an indicator, and presents it to the student as a challenge in guided-inquiry format. Two versions, with different levels of difficulty, are provided, to accommodate students with varying levels of problem-solving skills. The "challenge" is both quantitative and qualitative: if you were an eighteenth-century sea captain packing for a voyage to the New World, would you take oranges, lemons, limes, or grapefruits to prevent your crew from getting scurvy? The challenge ties in history, nutrition, and health with chemistry, and provides students an opportunity to work with familiar food products in the laboratory.
The Outer Space as an Educational Motivation
NASA Astrophysics Data System (ADS)
Pérez-Pérez, Melquíades; Hernández-López, Montserrat
2017-06-01
STEAM is an educational approach to learning that uses Science, Technology, Engineering, the Arts and Mathematics as access points for guiding student inquiry, dialogue, and critical thinking. The end results are students who take thoughtful risks, engage in experiential learning, persist in problem-solving, embrace collaboration, and work through the creative process. The Outer Space is a window to the past and the future of our travel around the history of the Universe and can be used as a educational tool in primary and secondary education. This paper talks about the integration of the resources of European Space Agency, Space Awareness, Nuclio, Scientix and Schoolnet as motivation to integrate STEAM methodology in secondary education. Keywords: STEAM, outer space, motivation, methodology
Why Inquiry Is Inherently Difficult...and Some Ways to Make It Easier
ERIC Educational Resources Information Center
Meyer, Daniel Z.; Avery, Leanne M.
2010-01-01
In this article, the authors offer a framework that identifies two critical problems in designing inquiry-based instruction and suggests three models for developing instruction that overcomes those problems. The Protocol Model overcomes the Getting on Board Problem by providing students an initial experience through clearly delineated steps with a…
Adjunct Faculty Job Satisfaction in California Community Colleges: A Narrative Inquiry
ERIC Educational Resources Information Center
Nagle, Tonya
2016-01-01
The problem addressed in the qualitative narrative inquiry is the perceived level of adjunct faculty job satisfaction. The general problem is the inconclusive and contradictory information on job satisfaction for adjuncts nationwide. The specific problem is poor job satisfaction for adjunct faculty in California where adjuncts are 48% of the…
Teaching Science IBL, a shared experience between schools
NASA Astrophysics Data System (ADS)
Ruas, Fatima; Carneiro, Paula
2015-04-01
Key words: Problem based learning, Inquiry-based learning, digital resources, climate changes The inquiry-based learning approach is applied by watching a video about the last rigorous winter and its effects. The teacher starts by posing some questions related with the video news: Why only after a 20 or 30 years from now, how will it be possible to explain the occurrence of two storms in just a month's time? Is our climate effectively changing? What is the difference between weather and climate? The teacher helps students to think about where and how they can find information about the subject, providing/teaching them suitable tools to access and use information. The teacher plays the role of mentor/facilitator. Students should proceed to their research, presenting the results to their colleagues, discussing in groups, doing brainstorming and collaborate in the learning process. After the discussion the students must present their conclusions. The main goals are: explain the difference between weather and climate; understand whether or not climate change exists; identify the causes of climate change and extreme weather events; raising awareness among young people about environmental issues of preservation and sustainability of our planet. The results globally show that this educational approach motivates students' towards science, helping them to solve problems from daily life, as well as the collaborative working. The cognitive strand continues to be the most valued by pupils.
Teaching to Learn and Learning to Teach
NASA Astrophysics Data System (ADS)
Bao, Lei
2010-02-01
In STEM education, widely accepted teaching goals include not only the development of solid content knowledge but also the development of general scientific reasoning abilities that will enable students to successfully handle open-ended real-world tasks in future careers and design their own experiments to solve scientific, engineering, and social problems. Traditionally, it is often expected that consistent and rigorous content learning will help develop students' general reasoning abilities; however, our research has shown that the content-rich style of STEM education made little impact on the development of students' scientific reasoning abilities. Therefore, how to train teachers who can help students develop both solid content knowledge and adequate scientific reasoning skills has become an important question for educators and researchers. Research has also suggested that inquiry based science instruction can promote scientific reasoning abilities and that the scientific reasoning skills of instructors can also significantly affect their ability to use inquiry methods effectively in science courses. In this talk, I will compare the features of the teacher preparation programs in China and USA and discuss the possible strength and weakness of the education systems and programs in the two countries. Understanding the different education settings and the outcome can help researchers in both countries to learn from each other's success and to avoid known problems. Examples of current research that may foster such knowledge development among researchers from both countries will be discussed. )
Students Learn How Nonprofits Utilize Volunteers through Inquiry-Based Learning
ERIC Educational Resources Information Center
Bolton, Elizabeth B.; Brennan, M. A.; Terry, Bryan D.
2009-01-01
This article highlights how undergraduate students implemented inquiry-based learning strategies to learn how nonprofit organizations utilize volunteers. In inquiry-based learning, students begin with a problem or question with some degree of focus or structure provided by the professor. The student inquiry showcased in this article was based on a…
What Students Really Think about Doing Research
ERIC Educational Resources Information Center
Bernard, Warren
2011-01-01
There are many types of inquiry activities out there: Demonstrations, guided or scaffolded inquiry labs, open- or free-inquiry labs, and problem-based or project-based learning activities are all staples in science education. The importance of inquiry is highlighted in such documents as the National Science Education Standards (NRC 1996) and the…
Expressive Thought and Non-Rational Inquiry.
ERIC Educational Resources Information Center
Newton, Richard F.
A significant problem with inquiry teaching is that too much emphasis is placed on inquiry as a logical, scientific, and rational way of knowing. Feelings and mood are rarely dealt with except in rather off-handed remarks about intuitive leaps and creative encounters. Few consider what a model of inquiry based on mood and feeling might look like.…
ERIC Educational Resources Information Center
Harmer, Andrea J.; Cates, Ward Mitchell
2007-01-01
Engaging middle-school students in scientific inquiry is typically recognized as important, but difficult. Designed to foster learner engagement, this method used an online, problem-based, science inquiry that investigated the West Nile virus during four weeks of collaborative classroom sessions. The inquiry prototype was authored in WISE, the…
Understanding Teacher Perceptions in a Professional Development Program for a Middle Grade Science
NASA Astrophysics Data System (ADS)
Deloney, Dericka B.
The standards-based framework requires teachers to evaluate and in some cases change their instructional approach to more student-centered and inquiry-based in an effort to help students meet the standards. The rationale for this study was to determine the skills needed for teachers to be effective in a standard-based, problem-based learning (PBL) constructivist classroom. Traditionally, teachers in this school district transitioning from teacher to student-centered classrooms need new skills when implementing this type of instruction. A qualitative case study design served to highlight the research questions for this project study. The participants in this study participated in data collection activities that include a multiple-choice survey, an interview, and the sharing of their PBL units. Artifacts, professional development teaching resources, from the workshop added credence to the survey and interview responses. The findings from each research question addressed the teachers' perception of their understanding and the obstacles of instructional design, development, and implementation the participants encountered. The results of this study indicated that teachers had problems with designing and implementing this instructional strategy due to lack of time and resources. This data assisted the development of district specific PBL sustainable professional development program that could be adaptable to other curriculums and school systems. Social change resulting from this study could include a framework for developing K-12 professional development as well as instructional programs that incorporates PBL curriculum design to enhance the student's inquiry, problem-solving, and decision-making skills that in turn should change their academic achievement and scores on high stakes test in science.
Realizing a Deflection-type D.C. Bridge-based Thermometer under Project-based Learning Approach
NASA Astrophysics Data System (ADS)
Warsahemas, T.; Ramadhiansyah; Ulum, A. I. N.; Yuliza, E.; Khairurrijal
2016-08-01
In addition to conventional learning, project-based learning (PBL) helps students developing skills and becoming more engaged in learning as they have a chance to solve real life problems of actual projects. As the name suggests, PBL is a model that organizes learning around projects. In this paper, the project that will be completed by a group of three students is about making a water temperature measuring instrument using a simple deflection-type d.c. bridge circuit. The project was done in the period of January to April 2015 when they was taking the Measurement and Data Processing Techniques, which is a compulsory course in the fourth semester of undergraduate program in Department of Physics at Institut Teknologi Bandung. With the help of a lecturer and a tutor as facilitators, they have followed this series of steps: 1. Start with a driving question, a problem to be solved, 2. Exploring the driving question by participating in authentic, situated inquiry, 3. Engaging collaborative activities with lecturer and tutor to find solutions to the driving question, 4. Scaffolding with learning technologies that help students participating in activities normally beyond their ability, and 5. Creating a set of tangible products that address the driving question. With this series of steps, the students have become easier to understand the lectures that have been given and the instrument has been realized to measure the temperature of water properly. When realizing the project under the PBL method, we learned other materials beside that have been taught in the course. Due to this project, we have had more skills like designing and soldering as well as problem-solving, teamwork, critical thinking, synthesis and analysis.
NASA Astrophysics Data System (ADS)
Dann, Clifford
An increasingly loud call by parents, school administrators, teachers, and even business leaders for "authentic learning", emphasizing both group-work and problem solving, has led to growing enthusiasm for inquiry-based learning over the past decade. Although "inquiry" can be defined in many ways, a curriculum called "project-based learning" has recently emerged as the inquiry practice-of-choice with roots in the educational constructivism that emerged in the mid-twentieth century. Often, project-based learning is framed as an alternative instructional strategy to direct instruction for maximizing student content knowledge. This study investigates the empirical evidence for such a comparison while also evaluating the overall quality of the available studies in the light of accepted standards for educational research. Specifically, this thesis investigates what the body of quantitative research says about the efficacy of project-based learning vs. direct instruction when considering student acquisition of content knowledge in science classrooms. Further, existing limitations of the research pertaining to project based learning and secondary school education are explored. The thesis concludes with a discussion of where and how we should focus our empirical efforts in the future. The research revealed that the available empirical research contains flaws in both design and instrumentation. In particular, randomization is poor amongst all the studies considered. The empirical evidence indicates that project-based learning curricula improved student content knowledge but that, while the results were statistically significant, increases in raw test scores were marginal.
Jarrett, Kevin; Williams, Mary; Horn, Spencer; Radford, David
2016-01-01
“Sickle cell anemia: tracking down a mutation” is a full-day, inquiry-based, biology experience for high school students enrolled in genetics or advanced biology courses. In the experience, students use restriction endonuclease digestion, cellulose acetate gel electrophoresis, and microscopy to discover which of three putative patients have the sickle cell genotype/phenotype using DNA and blood samples from wild-type and transgenic mice that carry a sickle cell mutation. The inquiry-based, problem-solving approach facilitates the students' understanding of the basic concepts of genetics and cellular and molecular biology and provides experience with contemporary tools of biotechnology. It also leads to students' appreciation of the causes and consequences of this genetic disease, which is relatively common in individuals of African descent, and increases their understanding of the first principles of genetics. This protocol provides optimal learning when led by well-trained facilitators (including the classroom teacher) and carried out in small groups (6:1 student-to-teacher ratio). This high-quality experience can be offered to a large number of students at a relatively low cost, and it is especially effective in collaboration with a local science museum and/or university. Over the past 15 yr, >12,000 students have completed this inquiry-based learning experience and demonstrated a consistent, substantial increase in their understanding of the disease and genetics in general. PMID:26873898
Jarrett, Kevin; Williams, Mary; Horn, Spencer; Radford, David; Wyss, J Michael
2016-03-01
"Sickle cell anemia: tracking down a mutation" is a full-day, inquiry-based, biology experience for high school students enrolled in genetics or advanced biology courses. In the experience, students use restriction endonuclease digestion, cellulose acetate gel electrophoresis, and microscopy to discover which of three putative patients have the sickle cell genotype/phenotype using DNA and blood samples from wild-type and transgenic mice that carry a sickle cell mutation. The inquiry-based, problem-solving approach facilitates the students' understanding of the basic concepts of genetics and cellular and molecular biology and provides experience with contemporary tools of biotechnology. It also leads to students' appreciation of the causes and consequences of this genetic disease, which is relatively common in individuals of African descent, and increases their understanding of the first principles of genetics. This protocol provides optimal learning when led by well-trained facilitators (including the classroom teacher) and carried out in small groups (6:1 student-to-teacher ratio). This high-quality experience can be offered to a large number of students at a relatively low cost, and it is especially effective in collaboration with a local science museum and/or university. Over the past 15 yr, >12,000 students have completed this inquiry-based learning experience and demonstrated a consistent, substantial increase in their understanding of the disease and genetics in general. Copyright © 2016 The American Physiological Society.
Approaches to Inquiry Teaching: Elementary teacher's perspectives
NASA Astrophysics Data System (ADS)
Ireland, Joseph; Watters, James J.; Lunn Brownlee, J.; Lupton, Mandy
2014-07-01
Learning science through the process of inquiry is advocated in curriculum documents across many jurisdictions. However, a number of studies suggest that teachers struggle to help students engage in inquiry practices. This is not surprising as many teachers of science have not engaged in scientific inquiry and possibly hold naïve ideas about what constitutes scientific inquiry. This study investigates teachers' self-reported approaches to teaching science through inquiry. Phenomenographic interviews undertaken with 20 elementary teachers revealed teachers identified six approaches to teaching for inquiry, clustered within three categories. These approaches were categorized as Free and Illustrated Inquiries as part of an Experience-centered category, Solution and Method Inquiries as part of a Problem-centered category, and Topic and Chaperoned Inquiries as part of a Question-centered category. This study contributes to our theoretical understanding of how teachers approach Inquiry Teaching and suggests fertile areas of future research into this valued and influential phenomenon broadly known as 'Inquiry Teaching'.
AEIS Policy vs. Site-Based Management: Research Agenda Implications.
ERIC Educational Resources Information Center
Nash, John B.
This paper examines the problems of centralized academic-indicator systems in light of the move toward site-based management. Problems with current practice are examined in the framework of critical inquiry. Alternatives to current accountability guidelines are presented that harmonize positivism with critical inquiry, while respecting both local…
Eliciting User Requirements Using Appreciative Inquiry
ERIC Educational Resources Information Center
Gonzales, Carol Kernitzki
2010-01-01
Many software development projects fail because they do not meet the needs of users, are over-budget, and abandoned. To address this problem, the user requirements elicitation process was modified based on principles of Appreciative Inquiry. Appreciative Inquiry, commonly used in organizational development, aims to build organizations, processes,…
NASA Astrophysics Data System (ADS)
Barak, Miri; Dori, Yehudit Judy
2005-01-01
Project-based learning (PBL), which is increasingly supported by information technologies (IT), contributes to fostering student-directed scientific inquiry of problems in a real-world setting. This study investigated the integration of PBL in an IT environment into three undergraduate chemistry courses, each including both experimental and control students. Students in the experimental group volunteered to carry out an individual IT-based project, whereas the control students solved only traditional problems. The project included constructing computerized molecular models, seeking information on scientific phenomena, and inquiring about chemistry theories. The effect of the PBL was examined both quantitatively and qualitatively. The quantitative analysis was based on a pretest, a posttest, and a final examination, which served for comparing the learning gains of the two research groups. For the qualitative analysis, we looked into the experimental students' performance, as reflected by the projects they had submitted. In addition, think alou interviews and observations helped us gain insight into the students' conceptual understanding of molecular structures. Students who participated in the IT-enhanced PBL performed significantly better than their control classmates not only on their posttest but also on their course final examination. Analyzing the qualitative findings, we concluded that the construction of computerized models and Web-based inquiry activities helped promote students' ability of mentally traversing the four levels of chemistry understanding: symbolic, macroscopic, microscopic, and process. More generally, our results indicated that incorporating IT-rich PBL into freshmen courses can enhance students' understanding of chemical concepts, theories, and molecular structures.
Cases as Shared Inquiry: A Dialogical Model of Teacher Preparation.
ERIC Educational Resources Information Center
Harrington, Helen L.; Garrison, James W.
1992-01-01
A dialogical model is proposed for connecting theory to practice in teacher education by conceiving of cases from case-based pedagogy as problems that initiate shared inquiry. Cases with genuine cognitive and axiological content can initiate self-directed, student-centered inquiry while building democratic dialogical communities. (SLD)
Rethinking the Representation Problem in Curriculum Inquiry
ERIC Educational Resources Information Center
Green, Bill
2010-01-01
The consolidation of reconceptualism as a distinctive tradition in curriculum inquiry is commonly understood to go hand-in-hand with the decline and even eclipse of an explicit political orientation in such work. This paper offers an alternative argument, focusing on a re-assessment of what has been called the representation problem, and exploring…
ERIC Educational Resources Information Center
Teplitski, Max; McMahon, Margaret J.
2006-01-01
The implementation of problem-based learning (PBL) and other inquiry-driven educational techniques is often resisted by both faculty and students, who may not be comfortable with this learning/instructional style. We present here a hybrid approach, which combines elements of expository education with inquiry-driven laboratory exercises and…
NASA Astrophysics Data System (ADS)
Marshall, Jill A.; Dorward, James T.
2000-07-01
The study reported here was designed to substantiate the findings of previous research on the use of inquiry-based laboratory activities in introductory college physics courses. The authors sought to determine whether limited use of inquiry activities as a supplement to a traditional lecture and demonstration curriculum would improve student achievement in introductory classes for preservice teachers and general education students. Achievement was measured by responses to problems designed to test conceptual understanding as well as overall course grades. We analyzed the effect on selected student outcome measures in a preliminary study in which some students engaged in inquiry activities and others did not, and interviewed students about their perceptions of the inquiry activities. In the preliminary study, preservice elementary teachers and female students showed significantly higher achievement after engaging such activities, but only on exam questions relating directly to the material covered in the exercises. In a second study we used a common exam problem to compare the performance of students who had engaged in a revised version of the inquiry activities with the performance of students in algebra and calculus-based classes. The students who had engaged in inquiry investigations significantly outperformed the other students.
A Screening Matrix for an Initial Line of Inquiry
ERIC Educational Resources Information Center
Nordness, Philip D.; Swain, Kristine D.; Haverkost, Ann
2012-01-01
The Screening for Understanding: Initial Line of Inquiry was designed to be used in conjunction with the child study team planning process for dealing with continuous problem behaviors prior to conducting a formal functional behavioral assessment. To conduct the initial line of inquiry a one-page reproducible screening matrix was used during child…
ERIC Educational Resources Information Center
Ertikanto, Chandra; Herpratiwi; Yunarti, Tina; Saputra, Andrian
2017-01-01
A teacher training program, named Model-Supported Scientific Inquiry Training Program (MSSITP) has been successfully developed to improve the inquiry skills of Indonesian elementary teachers. The skills enhanced by MSSITP are defining problems, formulating hypotheses, planning and doing investigations, drawing conclusions, and communicating the…
Reflections on Transformative Experiences with Mathematical Inquiry: The Case of Christine
ERIC Educational Resources Information Center
Flores, Alfinio; Phelps, Christine M.; Jansen, Amanda
2017-01-01
We present a first-hand, longer-term account of one student's (Christine's) experiences in and after a mathematics inquiry course. In this course, students actively posed problems, conducted their own mathematical explorations, and wrote journal entries about their experiences. During the course, Christine found that inquiry helped her develop…
Training Needs Analysis and Evaluation for New Technologies through the Use of Problem-Based Inquiry
ERIC Educational Resources Information Center
Casey, Matthew Scott; Doverspike, Dennis
2005-01-01
The analysis of calls to a help desk, in this case calls to a computer help desk, can serve as a rich source of information on the real world problems that individuals are having with the implementation of a new technology. Thus, we propose that an analysis of help desk calls, a form of problem-based inquiry, can serve as a fast and low cost means…
Teaching Problem-Posing and Inquiry to Teachers Using a Non-Traditional Operation
ERIC Educational Resources Information Center
White, D.; Sullivan, E.
2018-01-01
Teaching teachers to participate in mathematical inquiry has the potential to both transform belief systems about mathematics and to transform teachers from consumers of mathematics to producers of mathematics. The focus of this paper is to describe the use of a problem, based on a non-traditional binary operation, to encourage and teach…
Reframing Professional Development for South African Schools: An Appreciative Inquiry Approach
ERIC Educational Resources Information Center
Steyn, G. M.
2012-01-01
Often research on the professional development (PD) of staff is framed within a problem-based context that focuses on the PD-related problems experienced by staff. This study pursued a different approach by using the appreciative inquiry (AI) theoretical perspective to study the positive experiences of staff in respect of PD and their desire to…
ERIC Educational Resources Information Center
Rodríguez-Arteche, In~igo; Martínez-Aznar, M. Mercedes
2016-01-01
In this paper, the characteristics of an initial training program for secondary school physics and chemistry teachers are presented. This program is based on the resolution of professional problems, in order to develop preservice teachers' competencies for integrating inquiry-based science education (IBSE) into their future teaching. With this…
NASA Astrophysics Data System (ADS)
Mu, Kai
2017-02-01
The established “Map World” on the National Geographic Information Public Service Platform offers free access to many geographic information in the Core Area of the Silk Road Economic Belt. Considering the special security situation and severe splittism and anti-splittism struggles in the Core Area of the Silk Road Economic Belt, a set of moving target positioning and alarming platform based on J2EE platform and B/S structure was designed and realized by combining the “Map World” data and global navigation satellite system. This platform solves various problems, such as effective combination of Global Navigation Satellite System (GNSS) and “Map World” resources, moving target alarming setting, inquiry of historical routes, system management, etc.
Archiving Student Solutions with Tablet PCs in a Discussion-based Introductory Physics Class
NASA Astrophysics Data System (ADS)
Price, Edward; De Leone, Charles
2008-10-01
Many active learning based physics courses use whiteboards as a space for groups to respond to prompts based on short lab activities, problem solving, or inquiry-oriented activities. Whiteboards are volatile; once erased, the material is lost. Tablet PCs and software such as Ubiquitous Presenter can be used as digital whiteboards in active learning classes. This enables automatic capture and archiving of student work for online review by students, instructors, and researchers. We studied the use of digital whiteboards in an active-learning introductory physics course at California State University, San Marcos. In this paper we examine the archival features of digital whiteboards', and characterize the use of these features by students and instructors, and explore possible uses for researchers and curriculum developers.
The Georgians Experience Astronomy Research in Schools (GEARS) High School Galaxy Unit
NASA Astrophysics Data System (ADS)
Higdon, Sarah; Higdon, J.; Aguilar, J.
2012-01-01
The Georgians Experience Astronomy Research in Schools (GEARS) project aims to provide a rigorous and inquiry-based astronomy curriculum to GA's public schools. Exposure to data mining and research activities using the astronomy archives can be the trigger for the next generation of scientists, and it improves a student's ability to solve problems. Students then consolidate their findings and improve their communication skills by writing scientific reports and creating video presentations. The GEARS curriculum has units on the solar system, life in the Universe, stars, galaxies and cosmology. Here we present some of the activities in the Galaxy Unit. The GEARS material is freely available. Please email shigdon_AT_georgiasouthern.edu if you would like more details. NASA Grant NNX09AH83A through the GADOE funds this project.
Experiencing the Implementation of New Inquiry Science Curricula
NASA Astrophysics Data System (ADS)
Ower, Peter S.
Using a phenomenological methodology, a cohort of four experienced science teachers was interviewed about their experience transitioning from traditional, teacher and fact-centered science curricula to inquiry-based curricula. Each teacher participated in two interviews that focused on their teaching backgrounds, their experience teaching the prior traditional curriculum, and their experience teaching the new inquiry-based curriculum. The findings are presented as a narrative of each teachers' experience with the new curriculum implementation. Analyzing the data revealed four key themes. 1) The teachers felt trapped by the old curriculum as it did not align with their positive views of teaching science through inquiry. 2) The teachers found a way to fit their beliefs and values into the old and new curriculum. This required changes to the curriculum. 3) The teachers attempted to make the science curriculum as meaningful as possible for their students. 4) The teachers experienced a balancing act between their beliefs and values and the various aspects of the curriculum. The revealed essence of the curriculum transition is one of freedom and reconciliation of their beliefs. The teachers experienced the implementation of the new curriculum as a way to ensure their values and beliefs of science education were embedded therein. They treated the new curriculum as a malleable structure to impart their grander ideas of science education (e.g. providing important skills for future careers, creating a sense of wonder, future problem solving) to the students. Their changes were aligned with the philosophy of the curriculum kits they were implementing. Thus, the fidelity of the curriculum's philosophy was not at risk even though the curriculum kits were not taught as written. This study showed that phenomenological methods are able to reveal the relationship between a teacher's prior experiences, values and beliefs and their current instructional philosophy in science education. An analytical diagram was developed based on this relationship and the teachers' experiences moving from a traditional to a new inquiry curricula. The diagram suggests a transition from feeling trapped in an existing curriculum that is inconsistent with teacher values to finding a fit and balance in a new curriculum that provides a better though not perfect fit. This diagram can serve as a guide for how to design future, ongoing professional development to ensure the success of an inquiry curriculum designed to replace a more traditional one and may be applicable to other teachers.
EarthInquiry: Using On-Line Data to Help Students Explore Fundamental Concepts in Geoscience
NASA Astrophysics Data System (ADS)
Alfano, M.; Keane, C. M.; Ridky, R. W.
2002-12-01
Using local case studies to learn about earth processes increases the relevance of science instruction. Students are encouraged to think about how geological processes affect their lives and experiences. Today, with many global data sets available on-line, instructors have unprecedented opportunities to bring local data into the classroom. However, while the resources are available, using on-line data presents a particular set of challenges. Access and entry to web sites frequently change and data format can be unpredictable. Often, instructors are faced with non-functional web sites on the day, or week, that they plan to assign a given activity. The American Geological Institute, with the participation of numerous geoscience professors, has developed EarthInquiry, a series of activities that utilize the abundant real-time and archived geoscience data available on-line. These modules are developed primarily for introductory college students. EarthInquiry modules follow a structured format, beginning with familiar examples at the global and national level to introduce students to the on-line data and the EarthInquiry web site. The web site offers detailed and up-to-date instructions on how to access the data, cached copies of sample data that can be used to complete each activity in the event of a network outage, and an assessment activity that helps students determine how well they have achieved an understanding of key concepts. The EarthInquiry booklet contains a series of engaging questions that allow students to solve problems in a scientific manner. As students gain content understanding and confidence in the requisite analysis, they examine the presented material at a more local level. In one activity, students explore the recurrence interval of a local stream. In other activities, they investigate the mineral resources and earthquake histories of their state. All modules are developed with the intent of building an appropriate cognitive foundation, while complimenting the topics typically discussed in an introductory physical or environmental geology course. The project is a collaboration of the American Geological Institute and W.H. Freeman and Company Publishers.
Using inquiry-based instructional strategies in third-grade science
NASA Astrophysics Data System (ADS)
Harris, Fanicia D.
The purpose of the study was to determine if the use of inquiry-based instructional strategies as compared to traditional instructional strategies would increase third-grade students' achievement in science, based on the pretest/posttest of the school system and the Georgia Criterion-Referenced Competency Test (CRCT). Inquiry-based instruction, presented students with a question, an observation, a data set, or a hypothesis for problem solving such as scientists use when working in real-world situations. This descriptive research employed a quantitative strategy using a pretest/posttest control group design. The research compared the science academic achievement levels of one Grade 3 class [N=14] exposed to a teacher's inquiry-based instructional strategies as compared to one Grade 3 class [ N=18] exposed to a teacher's traditional instructional strategies. The study compared the science academic performance levels of third-grade students as measured by pretest/posttest mean scores from the school system-based assessment and the Georgia CRCT. Four research hypotheses were examined. Based on the overall findings from this study, both the experimental group and the control group significantly increased their mean scores from the pretests to the posttests. The amount of gain from the pretest to the posttest was significantly greater for the experimental group than the control group for pretest/posttest 1 [t(12) = 8.79, p < .01] and pretest/posttest 2 [t(12) = 9.40, p < .01]. The experimental group significantly outperformed the control group with regard to their mean number of items answered correctly on the life sciences test [t(27) = -1.95, p = .06]. Finally, the control group did not outperform the experimental group on any of the comparisons made throughout this study. The results of this study provide empirical support for the effectiveness of the use of inquiry-based learning strategies, given that the experimental group outperformed the control group on all four posttests, on the science CRCT and on the individual Science portions on the test including earth, life and physical sciences. In fact, this study was able to detect significant differences between the experimental group and the control group with regard to the degree to which the students improved from the pretests to the posttests.
Inquiry-Based Learning in an Intermediate-Level Undergraduate Neotectonics Course
NASA Astrophysics Data System (ADS)
Reinen, L. A.
2007-12-01
Integrating student-conducted research into the curriculum can provide students with many educational benefits. Documented benefits include, among others, increased communication skills, the ability to work as part of a research team, and enhanced self-confidence in individual problem-solving skills (e.g., Kardash, J. Ed. Psych., 2000; Seymour, et al., Science Education, 2004). As part of a larger departmental goal of integrating student- conducted research into all levels of the Pomona College Geology Department curriculum (e.g., Reinen, et al., CUR-Q, 2006), I have recently developed an intermediate-level Neotectonics course with a strong component of inquiry-based learning. This course was offered for the first time during the spring semester 2007, and will continue to be offered each year. In a series of guided inquiries throughout the course, students investigate recent seismicity and tectonic geomorphology in Southern California. With each subsequent assignment, student contributions to the research direction increases (e.g., data used, area studied, question addressed, methods used), culminating in team proposals and research projects investigating specific student-generated questions of regional tectonics. Students collect data for these investigations from several sources: (1) databases available online (e.g., IRIS, Harvard earthquake catalog), (2) desktop experiments (e.g., the "earthquake machine"), (3) topographic maps, and (4) field observations. The objective of this paper is to present initial results from this teaching experiment and examples of the projects which have been executed, including the preparation students received to be able to use the available data. Discussion and suggestions (particularly about effective means of conducting a rigorous long-term assessment) are strongly encouraged.
ERIC Educational Resources Information Center
Keen-Rocha, Linda
2005-01-01
Science instructors sometimes avoid inquiry-based activities due to limited classroom time. Inquiry takes time, as students choose problems, design experiments, obtain materials, conduct investigations, gather data, communicate results, and discuss their experiments. While there are no quick solutions to time concerns, the 5E learning cycle seeks…
Design of Inquiry-Oriented Science Labs: Impacts on Students' Attitudes
ERIC Educational Resources Information Center
Baseya, J. M.; Francis, C. D.
2011-01-01
Background: Changes in lab style can lead to differences in learning. Two inquiry-oriented lab styles are guided inquiry (GI) and problem-based (PB). Students' attitudes towards lab are important to consider when choosing between GI and PB styles during curriculum design. Purpose: We examined the degree to which lab experiences are explained by a…
Problems Measuring Social Presence in a Community of Inquiry
ERIC Educational Resources Information Center
Lowenthal, Patrick R.; Dunlap, Joanna C.
2014-01-01
To improve Community of Inquiry research, a group of researchers created the Community of Inquiry Questionnaire (CoIQ). While the development of the CoIQ is a step in the right direction, this instrument does not align as well as it could with previous research on each of the individual "presences" (i.e., cognitive presence, teaching…
ERIC Educational Resources Information Center
Makar, Katie; Fielding-Wells, Jill
2018-01-01
The 3-year study described in this paper aims to create new knowledge about inquiry norms in primary mathematics classrooms. Mathematical inquiry addresses complex problems that contain ambiguities, yet classroom environments often do not adopt norms that promote curiosity, risk-taking and negotiation needed to productively engage with complex…
ERIC Educational Resources Information Center
Fielding-Wells, Jill
2016-01-01
One potential means to develop students' contextual and conceptual understanding of mathematics is through Inquiry Learning. However, introducing a problem context can distract from mathematical content. Incorporating argumentation practices into Inquiry may address this through providing a stronger reliance on mathematical evidence and reasoning.…
Applying the Brakes: How Practical Classroom Decisions Affect the Adoption of Inquiry Instruction
ERIC Educational Resources Information Center
Yarnall, Louise; Fusco, Judi
2014-01-01
If college science instructors are to use inquiry practices more in the classroom, they need both professional support to foster comfort with the pedagogy and practical ways to engage students in inquiry. Over a semester, we studied 13 community college biology instructors as they adopted bioinformatics problem-based learning (PBL) modules in…
Exploring the complexity of inquiry learning in an open-ended problem space
NASA Astrophysics Data System (ADS)
Clarke, Jody
Data-gathering and problem identification are key components of scientific inquiry. However, few researchers have studied how students learn these skills because historically this required a time-consuming, complicated method of capturing the details of learners' data-gathering processes. Nor are classroom settings authentic contexts in which students could exhibit problem identification skills parallel to those involved in deconstructing complex real world situations. In this study of middle school students, because of my access to an innovative technology, I simulated a disease outbreak in a virtual community as a complicated, authentic problem. As students worked through the curriculum in the virtual world, their time-stamped actions were stored by the computer in event-logs. Using these records, I tracked in detail how the student scientists made sense of the complexity they faced and how they identified and investigated the problem using science-inquiry skills. To describe the degree to which students' data collection narrowed and focused on a specific disease over time, I developed a rubric and automated the coding of records in the event-logs. I measured the ongoing development of the students' "systematicity" in investigating the disease outbreak. I demonstrated that coding event-logs is an effective yet non-intrusive way of collecting and parsing detailed information about students' behaviors in real time in an authentic setting. My principal research question was "Do students who are more thoughtful about their inquiry prior to entry into the curriculum demonstrate increased systematicity in their inquiry behavior during the experience, by narrowing the focus of their data-gathering more rapidly than students who enter with lower levels of thoughtfulness about inquiry?" My sample consisted of 403 middle-school students from public schools in the US who volunteered to participate in the River City Project in spring 2008. Contrary to my hypothesis, I found that prior thoughtfulness of inquiry was not a predictor of the subsequent development of systematicity. However, all students did indeed become more systematic in their scientific behavior over time. On average, boys were generally more systematic than girls, but the rates at which systematicity increased with time was identical across the genders.
Elementary Teacher's Conceptions of Inquiry Teaching: Messages for Teacher Development
NASA Astrophysics Data System (ADS)
Ireland, Joseph E.; Watters, James J.; Brownlee, Jo; Lupton, Mandy
2012-02-01
This study explored practicing elementary school teacher's conceptions of teaching in ways that foster inquiry-based learning in the science curriculum (inquiry teaching). The advocacy for inquiry-based learning in contemporary curricula assumes the principle that students learn in their own way by drawing on direct experience fostered by the teacher. That students should be able to discover answers themselves through active engagement with new experiences was central to the thinking of eminent educators such as Pestalozzi, Dewey and Montessori. However, even after many years of research and practice, inquiry learning as a referent for teaching still struggles to find expression in the average teachers' pedagogy. This study drew on interview data from 20 elementary teachers. A phenomenographic analysis revealed three conceptions of teaching for inquiry learning in science in the elementary years of schooling: (a) The Experience-centered conception where teachers focused on providing interesting sensory experiences to students; (b) The Problem-centered conception where teachers focused on engaging students with challenging problems; and (c) The Question-centered conception where teachers focused on helping students to ask and answer their own questions. Understanding teachers' conceptions has implications for both the enactment of inquiry teaching in the classroom as well as the uptake of new teaching behaviors during professional development, with enhanced outcomes for engaging students in Science.
ERIC Educational Resources Information Center
Brush, Thomas; Saye, John
2014-01-01
For over a decade, we have collaborated with secondary school history teachers in an evolving line of inquiry that applies research-based propositions to the design and testing of a problem-based learning framework and a set of wise practices that represent a professional teaching knowledge base for implementing a particular model of instruction,…
ERIC Educational Resources Information Center
Goodnough, Karen; Cashion, Marie
2006-01-01
This paper reports on the experiences of a small collaborative inquiry group consisting of a high school science teacher, Deidre, and two university researchers, the authors of this paper, as they explored an active, inquiry-based approach to teaching and learning referred to as Problem-Based Learning or PBL (Barrows, 1994; Barrows & Tamblyn,…
ERIC Educational Resources Information Center
Galus, Pamela
2001-01-01
Introduces an inquiry-based lab design in which students try to find evidence on a particular problem. Investigates the effects of decreases in the pH level on the environment. Includes students' hypotheses and research results. (YDS)
An Inquiry-Based Science Activity Centred on the Effects of Climate Change on Ocean Ecosystems
ERIC Educational Resources Information Center
Boaventura, Diana; Guilherme, Elsa; Faria, Cláudia
2016-01-01
We propose an inquiry-based science activity centred on the effects of climate change on ocean ecosystems. This activity can be used to improve acquisition of knowledge on the effects of climate change and to promote inquiry skills, such as researching, reading and selecting relevant information, identifying a problem, focusing on a research…
ERIC Educational Resources Information Center
Scott, Chris; Brown, Kathleen
2008-01-01
Using heuristic inquiry, this study investigates how dialect affects the ethnic identity development of the first author as well as fellow Lumbee students attending a predominantly white university. Heuristic inquiry is a process that begins with a question or problem that the researcher seeks to illuminate or answer. Findings from this study…
Making Connections: Using Online Discussion Forums to Engage Students in Historical Inquiry
ERIC Educational Resources Information Center
Blankenship, Whitney
2009-01-01
The ongoing interpretive case study that the author highlights in this article focused on students' use of online discussion forums within a problem-based inquiry classroom. The focus of inquiry during the year centered on two historical questions: What does it mean to be an American? What is America's place in the world? The participants in this…
Problems Students Experience with Inquiry Processes in the Study of Enzyme Kinetics
ERIC Educational Resources Information Center
Ferrés Gurt, Concepció; Marbà Tallada, Anna
2018-01-01
This case study describes a classroom-based questionnaire that was carried out with a group of 36 high school students (17-18 years old) in Catalonia. The aim was to examine the usefulness of questionnaires focused on scientific inquiry, both to evaluate students' inquiry abilities and for their potential as tools to improve the understanding of…
ERIC Educational Resources Information Center
Varnado, Jacqueline
2011-01-01
Limited research has been conducted on inquiry based teaching strategies on language arts and mathematics instruction. The research problem at the study site was the lack of research-based findings on the effectiveness of traditional and inquiry based teaching strategies on language arts and mathematics instruction. The purpose of this case study…
NASA Astrophysics Data System (ADS)
Rizzo, D. M.; Hayden, N. J.; Dewoolkar, M.; Neumann, M.; Lathem, S.
2009-12-01
Researchers at the University of Vermont were awarded a NSF-sponsored Department Level Reform (DLR) grant to incorporate a systems approach to engineering problem solving within the civil and environmental engineering programs. A systems approach challenges students to consider the environmental, social, and economic aspects within engineering solutions. Likewise, sustainability requires a holistic approach to problem solving that includes economic, social and environmental factors. Our reform has taken a multi-pronged approach in two main areas that include implementing: a) a sequence of three systems courses related to environmental and transportation systems that introduce systems thinking, sustainability, and systems analysis and modeling; and b) service-learning (SL) projects as a means of practicing the systems approach. Our SL projects are good examples of inquiry-based learning that allow students to emphasize research and learning in areas of most interest to them. The SL projects address real-world open-ended problems. Activities that enhance IT and soft skills for students are incorporated throughout the curricula. Likewise, sustainability has been a central piece of the reform. We present examples of sustainability in the SL and modeling projects within the systems courses (e.g., students have used STELLA™ systems modeling software to address the impact of different carbon sequestration strategies on global climate change). Sustainability in SL projects include mentoring home schooled children in biomimicry projects, developing ECHO exhibits and the design of green roofs, bioretention ponds and porous pavement solutions. Assessment includes formative and summative methods involving student surveys and focus groups, faculty interviews and observations, and evaluation of student work.
NASA Astrophysics Data System (ADS)
Kuncoro, K. S.; Junaedi, I.; Dwijanto
2018-03-01
This study aimed to reveal the effectiveness of Project Based Learning with Resource Based Learning approach computer-aided program and analyzed problem-solving abilities in terms of problem-solving steps based on Polya stages. The research method used was mixed method with sequential explanatory design. The subject of this research was the students of math semester 4. The results showed that the S-TPS (Strong Top Problem Solving) and W-TPS (Weak Top Problem Solving) had good problem-solving abilities in each problem-solving indicator. The problem-solving ability of S-MPS (Strong Middle Problem Solving) and (Weak Middle Problem Solving) in each indicator was good. The subject of S-BPS (Strong Bottom Problem Solving) had a difficulty in solving the problem with computer program, less precise in writing the final conclusion and could not reflect the problem-solving process using Polya’s step. While the Subject of W-BPS (Weak Bottom Problem Solving) had not been able to meet almost all the indicators of problem-solving. The subject of W-BPS could not precisely made the initial table of completion so that the completion phase with Polya’s step was constrained.
ERIC Educational Resources Information Center
Chen, Ching-Huei; Chen, Chia-Ying
2012-01-01
This study examined the effects of an inquiry-based learning (IBL) approach compared to that of a problem-based learning (PBL) approach on learner performance, attitude toward science and inquiry ability. Ninety-six students from three 7th-grade classes at a public school were randomly assigned to two experimental groups and one control group. All…
The development of scientific reasoning in medical education: a psychological perspective.
Barz, Daniela Luminita; Achimaş-Cadariu, Andrei
2016-01-01
Scientific reasoning has been studied from a variety of theoretical perspectives, which have tried to identify the underlying mechanisms responsible for the development of this particular cognitive process. Scientific reasoning has been defined as a problem-solving process that involves critical thinking in relation to content, procedural, and epistemic knowledge. The development of scientific reasoning in medical education was influenced by current paradigmatic trends, it could be traced along educational curriculum and followed cognitive processes. The purpose of the present review is to discuss the role of scientific reasoning in medical education and outline educational methods for its development. Current evidence suggests that medical education should foster a new ways of development of scientific reasoning, which include exploration of the complexity of scientific inquiry, and also take into consideration the heterogeneity of clinical cases found in practice.
Passion play: Will Wright and games for science learning
NASA Astrophysics Data System (ADS)
Ching, Dixie
2012-12-01
Researchers and instructional designers are exploring the possibilities of using video games to support STEM education in the U.S., not only because they are a popular media form among youth, but also because well-designed games often leverage the best features of inquiry learning. Those interested in using games in an educational capacity may benefit from an examination of the work of video game designer Will Wright. Wright designs through a constructivist lens and his open-ended, sandbox games ( SimCity, The Sims, Spore) present wide "possibility spaces" that allow players to exercise their critical thinking and problem solving skills. His games invoke a delight in discovery that inspire creative acts and interest-driven learning both during and outside of the game. Finally, he reminds us that failure-based learning is a viable strategy for building expertise and understanding.
The Flipped Classroom: Fertile Ground for Nursing Education Research.
Bernard, Jean S
2015-07-16
In the flipped classroom (FC) students view pre-recorded lectures or complete pre-class assignments to learn foundational concepts. Class time involves problem-solving and application activities that cultivate higher-level cognitive skills. A systematic, analytical literature review was conducted to explore the FC's current state of the science within higher education. Examination of this model's definition and measures of student performance, student and faculty perceptions revealed an ill-defined educational approach. Few studies confirmed FC effectiveness; many lacked rigorous design, randomized samples, or control of extraneous variables. Few researchers conducted longitudinal studies to determine sufficiently trends related to FC practice. This study proves relevant to nurse educators transitioning from traditional teaching paradigms to learner-centered models, and provides insight from faculty teaching across disciplines around the world. It reveals pertinent findings and identifies current knowledge gaps that call for further inquiry.
Forensic Palynology as Classroom Inquiry
ERIC Educational Resources Information Center
Babcock, Steven L.; Warny, Sophie
2014-01-01
This activity introduces the science of "forensic palynology": the use of microscopic pollen and spores (also called "palynomorphs") to solve criminal cases. Plants produce large amounts of pollen or spores during reproductive cycles. Because of their chemical resistance, small size, and morphology, pollen and spores can be…
NASA Astrophysics Data System (ADS)
Powers, S. E.
2001-12-01
An NSF-funded project-based program was implemented by Clarkson University in 2000 to increase the interest and knowledge of middle school students in science, math and technology through the solution of an environmental problem that is relevant to their local school community. Clarkson students developed curricula for 7th and 8th grade science and technology classes and then worked with the middle school students throughout the year to reduce to transform solid waste into healthy soil for plant growth. The solution to this problem provided a vehicle to teach fundamental science and math content as well as the process of doing science and solving problems. Placing college science and engineering students in the classroom proved to be a great mechanism for engaging students in science topics and providing mentoring experiences that differ greatly from those that a practicing professional can provide. It is clear, however, that the students must be well prepared for this experience to maximize the benefits of university - school district partnership programs. The objective of this presentation will be to describe the training program that has been developed to prepare Clarkson students to work effectively in middle school classrooms. The Clarkson students are trained for their classroom experiences during the summer before they enter the classroom. They receive three credits for the training, curriculum development, and teaching efforts. It is expected that the students have the necessary background in science and technology to teach themselves the content and environmental relevance of the problem they will be teaching. Lectures and workshops focus on how to transform this knowledge into a project-based curriculum that meets the needs of the teachers, while also exciting the students. Lecture/workshops include: team work; components of an effective class and teacher; project planning and management; problem solving process; inquiry based learning, deductive/inductive learning; creating unit/lesson plan; defining learning objectives; incorporating mentoring into program; NYS standards and science exam; and, assessment techniques. Journals are used to encourage the fellows to reflect on their learning and own educational experiences. An evaluation of the program by both Clarkson students and their partner teachers indicated that this training was appropriate for the students to enter the classroom as professional scientists and engineers. Their classroom interaction skills improved throughout the year.
Brosnan, Sarah F; Beran, Michael J; Parrish, Audrey E; Price, Sara A; Wilson, Bart J
2013-07-18
How do primates, humans included, deal with novel problems that arise in interactions with other group members? Despite much research regarding how animals and humans solve social problems, few studies have utilized comparable procedures, outcomes, or measures across different species. Thus, it is difficult to piece together the evolution of decision making, including the roots from which human economic decision making emerged. Recently, a comparative body of decision making research has emerged, relying largely on the methodology of experimental economics in order to address these questions in a cross-species fashion. Experimental economics is an ideal method of inquiry for this approach. It is a well-developed method for distilling complex decision making involving multiple conspecifics whose decisions are contingent upon one another into a series of simple decision choices. This allows these decisions to be compared across species and contexts. In particular, our group has used this approach to investigate coordination in New World monkeys, Old World monkeys, and great apes (including humans), using identical methods. We find that in some cases there are remarkable continuities of outcome, as when some pairs in all species solved a coordination game, the Assurance game. On the other hand, we also find that these similarities in outcomes are likely driven by differences in underlying cognitive mechanisms. New World monkeys required exogenous information about their partners' choices in order to solve the task, indicating that they were using a matching strategy. Old World monkeys, on the other hand, solved the task without exogenous cues, leading to investigations into what mechanisms may be underpinning their responses (e.g., reward maximization, strategy formation, etc.). Great apes showed a strong experience effect, with cognitively enriched apes following what appears to be a strategy. Finally, humans were able to solve the task with or without exogenous cues. However, when given the chance to do so, they incorporated an additional mechanism unavailable to the other primates - language - to coordinate outcomes with their partner. We discuss how these results inform not only comparative psychology, but also evolutionary psychology, as they provide an understanding of the evolution of human economic behavior, and the evolution of decision making more broadly.
Problematizing as a scientific endeavor
NASA Astrophysics Data System (ADS)
Phillips, Anna McLean; Watkins, Jessica; Hammer, David
2017-12-01
The work of physics learners at all levels revolves around problems. Physics education research has inspired attention to the forms of these problems, whether conceptual or algorithmic, closed or open response, well or ill structured. Meanwhile, it has been the work of curriculum developers and instructors to develop these problems. Physics education research has supported these efforts with studies of students problem solving and the effects of different kinds of problems on learning. In this article we argue, first, that developing problems is central to the discipline of physics. It involves noticing a gap of understanding, identifying and articulating its precise nature, and motivating a community of its existence and significance. We refer to this activity as problematizing, and we show its importance by drawing from writings in physics and philosophy of science. Second, we argue that students, from elementary age to adults, can problematize as part of their engaging in scientific inquiry. We present four cases, drawing from episodes vetted by a panel of collaborating faculty in science departments as clear instances of students doing science. Although neither we nor the scientists had problematizing in mind when screening cases, we found it across the episodes. We close with implications for instruction, including the value of helping students recognize and manage the situation of being confused but not yet having a clear question, and implications for research, including the need to build problematizing into our models of learning.
Toward Solving the Problem of Problem Solving: An Analysis Framework
ERIC Educational Resources Information Center
Roesler, Rebecca A.
2016-01-01
Teaching is replete with problem solving. Problem solving as a skill, however, is seldom addressed directly within music teacher education curricula, and research in music education has not examined problem solving systematically. A framework detailing problem-solving component skills would provide a needed foundation. I observed problem solving…
On Myopia: A Complaint from Down Below
ERIC Educational Resources Information Center
Sizer, Theodore R.
1974-01-01
Both the support of inquiry in education and the character of university attention to the problems of school are two reasons for the attitude in research and policy studies which restricts scholarly approaches to social scientific inquiry. (Author/KM)
L Hall, Mona; Vardar-Ulu, Didem
2014-01-01
The laboratory setting is an exciting and gratifying place to teach because you can actively engage the students in the learning process through hands-on activities; it is a dynamic environment amenable to collaborative work, critical thinking, problem-solving and discovery. The guided inquiry-based approach described here guides the students through their laboratory work at a steady pace that encourages them to focus on quality observations, careful data collection and thought processes surrounding the chemistry involved. It motivates students to work in a collaborative manner with frequent opportunities for feedback, reflection, and modification of their ideas. Each laboratory activity has four stages to keep the students' efforts on track: pre-lab work, an in-lab discussion, in-lab work, and a post-lab assignment. Students are guided at each stage by an instructor created template that directs their learning while giving them the opportunity and flexibility to explore new information, ideas, and questions. These templates are easily transferred into an electronic journal (termed the E-notebook) and form the basic structural framework of the final lab reports the students submit electronically, via a learning management system. The guided-inquiry based approach presented here uses a single laboratory activity for undergraduate Introductory Biochemistry as an example. After implementation of this guided learning approach student surveys reported a higher level of course satisfaction and there was a statistically significant improvement in the quality of the student work. Therefore we firmly believe the described format to be highly effective in promoting student learning and engagement. © 2013 by The International Union of Biochemistry and Molecular Biology.
Boominathan, Vijay P; Ferreira, Tracie L
2012-12-01
Student interest in topics of tissue engineering is increasing exponentially as the number of universities offering programs in bioengineering are on the rise. Bioengineering encompasses all of the STEM categories: Science, Technology, Engineering, and Math. Inquiry-based learning is one of the most effective techniques for promoting student learning and has been demonstrated to have a high impact on learning outcomes. We have designed program outcomes for our bioengineering program that require tiered activities to develop problem solving skills, peer evaluation techniques, and promote team work. While it is ideal to allow students to ask unique questions and design their own experiments, this can be difficult for instructors to have reagents and supplies available for a variety of activities. Zebrafish can be easily housed, and multiple variables can be tested on a large enough group to provide statistical value, lending them well to inquiry-based learning modules. We have designed a laboratory activity that takes observation of fin regeneration to the next level: analyzing conditions that may impact regeneration. Tissue engineers seek to define the optimum conditions to grow tissue for replacement parts. The field of tissue engineering is likely to benefit from understanding natural mechanisms of regeneration and the factors that influence the rate of regeneration. We have outlined the results of varying temperature on fin regeneration and propose other inquiry modules such as the role of pH in fin regeneration. Furthermore, we have provided useful tools for developing critical thinking and peer review of research ideas, assessment guidelines, and grading rubrics for the activities associated with this exercise.
Wilper, Andrew P; Smith, Curtis Scott; Weppner, William
2013-09-16
The Accreditation Council for Graduate Medical Education (ACGME) requires that training programs integrate system-based practice (SBP) and practice-based learning and improvement (PBLI) into internal medicine residency curricula. CONTEXT AND SETTING: We instituted a seminar series and year-long-mentored curriculum designed to engage internal medicine residents in these competencies. Residents participate in a seminar series that includes assigned reading and structured discussion with faculty who assist in the development of quality improvement or research projects. Residents pursue projects over the remainder of the year. Monthly works in progress meetings, protected time for inquiry, and continued faculty mentorship guide the residents in their project development. Trainees present their work at hospital-wide grand rounds at the end of the academic year. We performed a survey of residents to assess their self-reported knowledge, attitudes and skills in SBP and PBLI. In addition, blinded faculty scored projects for appropriateness, impact, and feasibility. We measured resident self-reported knowledge, attitudes, and skills at the end of the academic year. We found evidence that participants improved their understanding of the context in which they were practicing, and that their ability to engage in quality improvement projects increased. Blinded faculty reviewers favorably ranked the projects' feasibility, impact, and appropriateness. The 'Curriculum of Inquiry' generated 11 quality improvement and research projects during the study period. Barriers to the ongoing work include a limited supply of mentors and delays due to Institutional Review Board approval. Hospital leadership recognizes the importance of the curriculum, and our accreditation manager now cites our ongoing work. A structured residency-based curriculum facilitates resident demonstration of SBP and practice-based learning and improvement. Residents gain knowledge and skills though this enterprise and hospitals gain access to trainees who help to solve ongoing problems and meet accreditation requirements.
Hoppmann, Christiane A; Coats, Abby Heckman; Blanchard-Fields, Fredda
2008-07-01
Qualitative interviews on family and financial problems from 332 adolescents, young, middle-aged, and older adults, demonstrated that developmentally relevant goals predicted problem-solving strategy use over and above problem domain. Four focal goals concerned autonomy, generativity, maintaining good relationships with others, and changing another person. We examined both self- and other-focused problem-solving strategies. Autonomy goals were associated with self-focused instrumental problem solving and generative goals were related to other-focused instrumental problem solving in family and financial problems. Goals of changing another person were related to other-focused instrumental problem solving in the family domain only. The match between goals and strategies, an indicator of problem-solving adaptiveness, showed that young individuals displayed the greatest match between autonomy goals and self-focused problem solving, whereas older adults showed a greater match between generative goals and other-focused problem solving. Findings speak to the importance of considering goals in investigations of age-related differences in everyday problem solving.
Psychology of knowledge representation.
Grimm, Lisa R
2014-05-01
Every cognitive enterprise involves some form of knowledge representation. Humans represent information about the external world and internal mental states, like beliefs and desires, and use this information to meet goals (e.g., classification or problem solving). Unfortunately, researchers do not have direct access to mental representations. Instead, cognitive scientists design experiments and implement computational models to develop theories about the mental representations present during task performance. There are several main types of mental representation and corresponding processes that have been posited: spatial, feature, network, and structured. Each type has a particular structure and a set of processes that are capable of accessing and manipulating information within the representation. The structure and processes determine what information can be used during task performance and what information has not been represented at all. As such, the different types of representation are likely used to solve different kinds of tasks. For example, structured representations are more complex and computationally demanding, but are good at representing relational information. Researchers interested in human psychology would benefit from considering how knowledge is represented in their domain of inquiry. For further resources related to this article, please visit the WIREs website. The author has declared no conflicts of interest for this article. © 2014 John Wiley & Sons, Ltd.
Public Administration Teaching and Interdisciplinarity: Considering the Consequences
ERIC Educational Resources Information Center
van der Waldt, Gerrit
2014-01-01
Public administration is a highly diverse and evolving field of scientific inquiry. The study domain is characterised further by often-competing paradigmatic perspectives and seemingly endless teaching modalities. There seems to be an increasing realisation that answers to complex societal challenges cannot be solved within the knowledge…
Resources in Technology: Problem-Solving.
ERIC Educational Resources Information Center
Technology Teacher, 1986
1986-01-01
This instructional module examines a key function of science and technology: problem solving. It studies the meaning of problem solving, looks at techniques for problem solving, examines case studies that exemplify the problem-solving approach, presents problems for the reader to solve, and provides a student self-quiz. (Author/CT)
ERIC Educational Resources Information Center
Scholkmann, Antonia
2017-01-01
Although advocated in theory, research findings on the benefits of ICT integration into inquiry-based learning arrangements such as problem-based learning (PBL) are still ambiguous. One explanation might be that until now students' subjective views on learning in ICT-integrated, inquiry-based arrangements have not been considered extensively. The…
A Cognitive Analysis of Students’ Mathematical Problem Solving Ability on Geometry
NASA Astrophysics Data System (ADS)
Rusyda, N. A.; Kusnandi, K.; Suhendra, S.
2017-09-01
The purpose of this research is to analyze of mathematical problem solving ability of students in one of secondary school on geometry. This research was conducted by using quantitative approach with descriptive method. Population in this research was all students of that school and the sample was twenty five students that was chosen by purposive sampling technique. Data of mathematical problem solving were collected through essay test. The results showed the percentage of achievement of mathematical problem solving indicators of students were: 1) solve closed mathematical problems with context in math was 50%; 2) solve the closed mathematical problems with the context beyond mathematics was 24%; 3) solving open mathematical problems with contexts in mathematics was 35%; And 4) solving open mathematical problems with contexts outside mathematics was 44%. Based on the percentage, it can be concluded that the level of achievement of mathematical problem solving ability in geometry still low. This is because students are not used to solving problems that measure mathematical problem solving ability, weaknesses remember previous knowledge, and lack of problem solving framework. So the students’ ability of mathematical problems solving need to be improved with implement appropriate learning strategy.
The Heat Is on: An Inquiry-Based Investigation for Specific Heat
ERIC Educational Resources Information Center
Herrington, Deborah G.
2011-01-01
A substantial number of upper-level science students and practicing physical science teachers demonstrate confusion about thermal equilibrium, heat transfer, heat capacity, and specific heat capacity. The traditional method of instruction, which involves learning the related definitions and equations, using equations to solve heat transfer…
A Blended Professional Development Program to Help a Teacher Learn to Provide One-to-One Scaffolding
NASA Astrophysics Data System (ADS)
Belland, Brian R.; Burdo, Ryan; Gu, Jiangyue
2015-04-01
Argumentation is central to instruction centered on socio-scientific issues (Sadler & Donnelly in International Journal of Science Education, 28(12), 1463-1488, 2006. doi: 10.1080/09500690600708717). Teachers can play a big role in helping students engage in argumentation and solve authentic scientific problems. To do so, they need to learn one-to-one scaffolding—dynamic support to help students accomplish tasks that they could not complete unaided. This study explores a middle school science teacher's provision of one-to-one scaffolding during a problem-based learning unit, in which students argued about how to optimize the water quality of their local river. The blended professional development program incorporated three 1.5-h seminars, one 8-h workshop, and 4 weeks of online education activities. Data sources were video of three small groups per period, and what students typed in response to prompts from computer-based argumentation scaffolds. Results indicated that the teacher provided one-to-one scaffolding on a par with inquiry-oriented teachers described in the literature.
Perspective: Reaches of chemical physics in biology.
Gruebele, Martin; Thirumalai, D
2013-09-28
Chemical physics as a discipline contributes many experimental tools, algorithms, and fundamental theoretical models that can be applied to biological problems. This is especially true now as the molecular level and the systems level descriptions begin to connect, and multi-scale approaches are being developed to solve cutting edge problems in biology. In some cases, the concepts and tools got their start in non-biological fields, and migrated over, such as the idea of glassy landscapes, fluorescence spectroscopy, or master equation approaches. In other cases, the tools were specifically developed with biological physics applications in mind, such as modeling of single molecule trajectories or super-resolution laser techniques. In this introduction to the special topic section on chemical physics of biological systems, we consider a wide range of contributions, all the way from the molecular level, to molecular assemblies, chemical physics of the cell, and finally systems-level approaches, based on the contributions to this special issue. Chemical physicists can look forward to an exciting future where computational tools, analytical models, and new instrumentation will push the boundaries of biological inquiry.
Belland, Brian R; Walker, Andrew E; Kim, Nam Ju
2017-12-01
Computer-based scaffolding provides temporary support that enables students to participate in and become more proficient at complex skills like problem solving, argumentation, and evaluation. While meta-analyses have addressed between-subject differences on cognitive outcomes resulting from scaffolding, none has addressed within-subject gains. This leaves much quantitative scaffolding literature not covered by existing meta-analyses. To address this gap, this study used Bayesian network meta-analysis to synthesize within-subjects (pre-post) differences resulting from scaffolding in 56 studies. We generated the posterior distribution using 20,000 Markov Chain Monte Carlo samples. Scaffolding has a consistently strong effect across student populations, STEM (science, technology, engineering, and mathematics) disciplines, and assessment levels, and a strong effect when used with most problem-centered instructional models (exception: inquiry-based learning and modeling visualization) and educational levels (exception: secondary education). Results also indicate some promising areas for future scaffolding research, including scaffolding among students with learning disabilities, for whom the effect size was particularly large (ḡ = 3.13).
Perspective: Reaches of chemical physics in biology
Gruebele, Martin; Thirumalai, D.
2013-01-01
Chemical physics as a discipline contributes many experimental tools, algorithms, and fundamental theoretical models that can be applied to biological problems. This is especially true now as the molecular level and the systems level descriptions begin to connect, and multi-scale approaches are being developed to solve cutting edge problems in biology. In some cases, the concepts and tools got their start in non-biological fields, and migrated over, such as the idea of glassy landscapes, fluorescence spectroscopy, or master equation approaches. In other cases, the tools were specifically developed with biological physics applications in mind, such as modeling of single molecule trajectories or super-resolution laser techniques. In this introduction to the special topic section on chemical physics of biological systems, we consider a wide range of contributions, all the way from the molecular level, to molecular assemblies, chemical physics of the cell, and finally systems-level approaches, based on the contributions to this special issue. Chemical physicists can look forward to an exciting future where computational tools, analytical models, and new instrumentation will push the boundaries of biological inquiry. PMID:24089712
Belland, Brian R.; Walker, Andrew E.; Kim, Nam Ju
2017-01-01
Computer-based scaffolding provides temporary support that enables students to participate in and become more proficient at complex skills like problem solving, argumentation, and evaluation. While meta-analyses have addressed between-subject differences on cognitive outcomes resulting from scaffolding, none has addressed within-subject gains. This leaves much quantitative scaffolding literature not covered by existing meta-analyses. To address this gap, this study used Bayesian network meta-analysis to synthesize within-subjects (pre–post) differences resulting from scaffolding in 56 studies. We generated the posterior distribution using 20,000 Markov Chain Monte Carlo samples. Scaffolding has a consistently strong effect across student populations, STEM (science, technology, engineering, and mathematics) disciplines, and assessment levels, and a strong effect when used with most problem-centered instructional models (exception: inquiry-based learning and modeling visualization) and educational levels (exception: secondary education). Results also indicate some promising areas for future scaffolding research, including scaffolding among students with learning disabilities, for whom the effect size was particularly large (ḡ = 3.13). PMID:29200508
Inquiry Dialogue in the Classroom.
ERIC Educational Resources Information Center
Sprague, Nancy Freitag
This study investigated the relationship between teacher behavior and pupil reflective dialogue in the classroom assuming that social problems provide a natural springboard for inquiry through classroom discussion. It was hypothesized that different teacher strategies promote different types of class interaction. Discussion styles were to be…
Hoppmann, Christiane A; Blanchard-Fields, Fredda
2011-09-01
Problem-solving does not take place in isolation and often involves social others such as spouses. Using repeated daily life assessments from 98 older spouses (M age = 72 years; M marriage length = 42 years), the present study examined theoretical notions from social-contextual models of coping regarding (a) the origins of problem-solving variability and (b) associations between problem-solving and specific problem-, person-, and couple- characteristics. Multilevel models indicate that the lion's share of variability in everyday problem-solving is located at the level of the problem situation. Importantly, participants reported more proactive emotion regulation and collaborative problem-solving for social than nonsocial problems. We also found person-specific consistencies in problem-solving. That is, older spouses high in Neuroticism reported more problems across the study period as well as less instrumental problem-solving and more passive emotion regulation than older spouses low in Neuroticism. Contrary to expectations, relationship satisfaction was unrelated to problem-solving in the present sample. Results are in line with the stress and coping literature in demonstrating that everyday problem-solving is a dynamic process that has to be viewed in the broader context in which it occurs. Our findings also complement previous laboratory-based work on everyday problem-solving by underscoring the benefits of examining everyday problem-solving as it unfolds in spouses' own environment.
The inquiry continuum: Science teaching practices and student performance on standardized tests
NASA Astrophysics Data System (ADS)
Jernnigan, Laura Jane
Few research studies have been conducted related to inquiry-based scientific teaching methodologies and NCLB-required state testing. The purpose of this study was to examine the relationship between the strategies used by seventh-grade science teachers in Illinois and student scores on the Illinois Standards Achievement Test (ISAT) to aid in determining best practices/strategies for teaching middle school science. The literature review defines scientific inquiry by placing teaching strategies on a continuum of scientific inquiry methodologies from No Inquiry (Direct Instruction) through Authentic Inquiry. Five major divisions of scientific inquiry: structured inquiry, guided inquiry, learning cycle inquiry, open inquiry, and authentic inquiry, have been identified and described. These five divisions contain eight sub-categories: demonstrations; simple or hands-on activities; discovery learning; variations of learning cycles; problem-based, event-based, and project-based; and student inquiry, science partnerships, and Schwab's enquiry. Quantitative data were collected from pre- and posttests and surveys given to the participants: five seventh grade science teachers in four Academic Excellence Award and Spotlight Award schools and their 531 students. Findings revealed that teachers reported higher inquiry scores for themselves than for their students; the two greatest reported factors limiting teachers' use of inquiry were not enough time and concern about discipline and large class size. Although the correlation between total inquiry and mean difference of pre- and posttest scores was not statistically significant, the survey instrument indicated how often teachers used inquiry in their classes, not the type of inquiry used. Implications arose from the findings that increase the methodology debate between direction instruction and inquiry-based teaching strategies; teachers are very knowledgeable about the Illinois state standards, and various inquiry-based methods need to be stressed in undergraduate methods classes. While this study focused on the various types of scientific inquiry by creating a continuum of scientific inquiry methodologies, research using the continuum needs to be conducted to determine the various teaching styles of successful teachers.
Resource Letter RPS-1: Research in problem solving
NASA Astrophysics Data System (ADS)
Hsu, Leonardo; Brewe, Eric; Foster, Thomas M.; Harper, Kathleen A.
2004-09-01
This Resource Letter provides a guide to the literature on research in problem solving, especially in physics. The references were compiled with two audiences in mind: physicists who are (or might become) engaged in research on problem solving, and physics instructors who are interested in using research results to improve their students' learning of problem solving. In addition to general references, journal articles and books are cited for the following topics: cognitive aspects of problem solving, expert-novice problem-solver characteristics, problem solving in mathematics, alternative problem types, curricular interventions, and the use of computers in problem solving.
Optimization and Control of Agent-Based Models in Biology: A Perspective.
An, G; Fitzpatrick, B G; Christley, S; Federico, P; Kanarek, A; Neilan, R Miller; Oremland, M; Salinas, R; Laubenbacher, R; Lenhart, S
2017-01-01
Agent-based models (ABMs) have become an increasingly important mode of inquiry for the life sciences. They are particularly valuable for systems that are not understood well enough to build an equation-based model. These advantages, however, are counterbalanced by the difficulty of analyzing and using ABMs, due to the lack of the type of mathematical tools available for more traditional models, which leaves simulation as the primary approach. As models become large, simulation becomes challenging. This paper proposes a novel approach to two mathematical aspects of ABMs, optimization and control, and it presents a few first steps outlining how one might carry out this approach. Rather than viewing the ABM as a model, it is to be viewed as a surrogate for the actual system. For a given optimization or control problem (which may change over time), the surrogate system is modeled instead, using data from the ABM and a modeling framework for which ready-made mathematical tools exist, such as differential equations, or for which control strategies can explored more easily. Once the optimization problem is solved for the model of the surrogate, it is then lifted to the surrogate and tested. The final step is to lift the optimization solution from the surrogate system to the actual system. This program is illustrated with published work, using two relatively simple ABMs as a demonstration, Sugarscape and a consumer-resource ABM. Specific techniques discussed include dimension reduction and approximation of an ABM by difference equations as well systems of PDEs, related to certain specific control objectives. This demonstration illustrates the very challenging mathematical problems that need to be solved before this approach can be realistically applied to complex and large ABMs, current and future. The paper outlines a research program to address them.
Against the Grain: Teaching Historical Complexity
ERIC Educational Resources Information Center
Neumann, Dave
2013-01-01
Many teachers and scholars have written about the importance of inquiry in effective history instruction. At its core, inquiry involves student investigation of a significant historical problem. Experienced teachers, however, often reveal their skill in purposely teaching against the grain. Skilled teachers help students appreciate historical…
NASA Astrophysics Data System (ADS)
Sell, K.; Herbert, B.; Schielack, J.
2004-05-01
Students organize scientific knowledge and reason about environmental issues through manipulation of mental models. The nature of the environmental sciences, which are focused on the study of complex, dynamic systems, may present cognitive difficulties to students in their development of authentic, accurate mental models of environmental systems. The inquiry project seeks to develop and assess the coupling of information technology (IT)-based learning with physical models in order to foster rich mental model development of environmental systems in geoscience undergraduate students. The manipulation of multiple representations, the development and testing of conceptual models based on available evidence, and exposure to authentic, complex and ill-constrained problems were the components of investigation utilized to reach the learning goals. Upper-level undergraduate students enrolled in an environmental geology course at Texas A&M University participated in this research which served as a pilot study. Data based on rubric evaluations interpreted by principal component analyses suggest students' understanding of the nature of scientific inquiry is limited and the ability to cross scales and link systems proved problematic. Results categorized into content knowledge and cognition processes where reasoning, critical thinking and cognitive load were driving factors behind difficulties in student learning. Student mental model development revealed multiple misconceptions and lacked complexity and completeness to represent the studied systems. Further, the positive learning impacts of the implemented modules favored the physical model over the IT-based learning projects, likely due to cognitive load issues. This study illustrates the need to better understand student difficulties in solving complex problems when using IT, where the appropriate scaffolding can then be implemented to enhance student learning of the earth system sciences.
Brazg, Tracy; Dotolo, Danae; Blacksher, Erika
2015-06-01
Social work and bioethics are fields deeply committed to cross-disciplinary collaboration to do their respective work. While scholars and practitioners from both fields share a commitment to social justice and to respecting the dignity, integrity and the worth of all persons, the overlap between the fields, including shared values, has received little attention. The purpose of this article is to describe the ways in which greater collaboration between the two fields can broaden their scope, enrich their scholarship, and better ground their practice. We describe the potential for realizing such benefits in two areas - health care ethics consultation and social inequalities in health - arguing that the fields both complement and challenge one another, making them ideal partners for the interdisciplinary inquiry and problem-solving so often called for today in health and health care. © 2014 John Wiley & Sons Ltd.
Preschool children's Collaborative Science Learning Scaffolded by Tablets
NASA Astrophysics Data System (ADS)
Fridberg, Marie; Thulin, Susanne; Redfors, Andreas
2017-06-01
This paper reports on a project aiming to extend the current understanding of how emerging technologies, i.e. tablets, can be used in preschools to support collaborative learning of real-life science phenomena. The potential of tablets to support collaborative inquiry-based science learning and reflective thinking in preschool is investigated through the analysis of teacher-led activities on science, including children making timelapse photography and Slowmation movies. A qualitative analysis of verbal communication during different learning contexts gives rise to a number of categories that distinguish and identify different themes of the discussion. In this study, groups of children work with phase changes of water. We report enhanced and focused reasoning about this science phenomenon in situations where timelapse movies are used to stimulate recall. Furthermore, we show that children communicate in a more advanced manner about the phenomenon, and they focus more readily on problem solving when active in experimentation or Slowmation producing contexts.
Stress management for adult survivors of childhood sexual abuse: a holistic inquiry.
Wilson, Debra Rose
2010-02-01
Among the many sequelae of childhood sexual abuse is a maladaptive response to stress. Stress has been linked to a reduction in the immune system's ability to resist disease. The purpose of this exploratory mixed-method study is to examine the experience of stress management training for 35 adult survivors of childhood sexual abuse. Data gathered for analysis include pre- and postintervention saliva samples for sIgA, Ways of Coping Questionnaire, and a postintervention qualitative interview. Stress management strategies enhance immunity (increase in salivary immunoglobulin A, p < .05) and coping (less distancing, p < .001; less escape-avoidance, p < .001; more planful problem solving, p < .01; and more positive reappraisal, p < .001). Grounded theory analysis finds three themes emerging: hypervigilance , an outward-focused hyperawareness; somatic detachment, a lack of inward focus on self; and healing pathway, the process of healing from the abuse. Healing is possible.
[Diagnosis and the technology for optimizing the medical support of a troop unit].
Korshever, N G; Polkovov, S V; Lavrinenko, O V; Krupnov, P A; Anastasov, K N
2000-05-01
The work is devoted to investigation of the system of military unit medical support with the use of principles and states of organizational diagnosis; development of the method allowing to assess its functional activity; and determination of optimization trends. Basing on the conducted organizational diagnosis and expert inquiry the informative criteria were determined which characterize the stages of functioning of the military unit medical support system. To evaluate the success of military unit medical support the complex multi-criteria pattern was developed and algorithm of this process optimization was substantiated. Using the results obtained, particularly realization of principles and states of decision taking theory in machine program it is possible to solve more complex problem of comparison between any number of military units: to dispose them according to priority decrease; to select the programmed number of the best and worst; to determine the trends of activity optimization in corresponding medical service personnel.
American Chemical Society Student Affiliates Chapters: More Than Just Chemistry Clubs
NASA Astrophysics Data System (ADS)
Montes, Ingrid; Collazo, Carmen
2003-10-01
Chemistry educators often examine and implement various instructional techniques, such as mentoring programs, to advance learning objectives and to equip students with analytical and technical skills, as well as the skills required of chemical science professionals. Student organizations, such as an American Chemical Society Student Affiliates (SA) chapter, can create a learning environment for undergraduates by engaging them in activities that develop communication, teamwork and inquiry, analysis, and problem-solving skills within a real-world setting. The environment is student-based, has personal meaning for the learner, emphasizes a process-and-product orientation, and emphasizes evaluation. Participation in SAs enhance the traditional chemistry curriculum, complementing the learning goals and meeting learning objectives that might not otherwise be addressed in the curriculum. In this article we discuss how SA chapters enhance the educational experience of undergraduate chemical science students, help develop new chemistry professionals, and shape enthusiastic and committed future chemical science leaders.
Kulikowski, Casimir A; Shortliffe, Edward H; Currie, Leanne M; Elkin, Peter L; Hunter, Lawrence E; Johnson, Todd R; Kalet, Ira J; Lenert, Leslie A; Musen, Mark A; Ozbolt, Judy G; Smith, Jack W; Tarczy-Hornoch, Peter Z
2012-01-01
The AMIA biomedical informatics (BMI) core competencies have been designed to support and guide graduate education in BMI, the core scientific discipline underlying the breadth of the field's research, practice, and education. The core definition of BMI adopted by AMIA specifies that BMI is ‘the interdisciplinary field that studies and pursues the effective uses of biomedical data, information, and knowledge for scientific inquiry, problem solving and decision making, motivated by efforts to improve human health.’ Application areas range from bioinformatics to clinical and public health informatics and span the spectrum from the molecular to population levels of health and biomedicine. The shared core informatics competencies of BMI draw on the practical experience of many specific informatics sub-disciplines. The AMIA BMI analysis highlights the central shared set of competencies that should guide curriculum design and that graduate students should be expected to master. PMID:22683918
Neuroart: picturing the neuroscience of intentional actions in art and science.
Siler, Todd
2015-01-01
Intentional actions cover a broad spectrum of human behaviors involving consciousness, creativity, innovative thinking, problem-solving, critical thinking, and other related cognitive processes self-evident in the arts and sciences. The author discusses the brain activity associated with action intentions, connecting this activity with the creative process. Focusing on one seminal artwork created and exhibited over a period of three decades, Thought Assemblies (1979-82, 2014), he describes how this symbolic art interprets the neuropsychological processes of intuition and analytical reasoning. It explores numerous basic questions concerning observed interactions between artistic and scientific inquiries, conceptions, perceptions, and representations connecting mind and nature. Pointing to some key neural mechanisms responsible for forming and implementing intentions, he considers why and how we create, discover, invent, and innovate. He suggests ways of metaphorical thinking and symbolic modeling that can help integrate the neuroscience of intentional actions with the neuroscience of creativity, art and neuroaesthetics.
Neuroart: picturing the neuroscience of intentional actions in art and science
Siler, Todd
2015-01-01
Intentional actions cover a broad spectrum of human behaviors involving consciousness, creativity, innovative thinking, problem-solving, critical thinking, and other related cognitive processes self-evident in the arts and sciences. The author discusses the brain activity associated with action intentions, connecting this activity with the creative process. Focusing on one seminal artwork created and exhibited over a period of three decades, Thought Assemblies (1979–82, 2014), he describes how this symbolic art interprets the neuropsychological processes of intuition and analytical reasoning. It explores numerous basic questions concerning observed interactions between artistic and scientific inquiries, conceptions, perceptions, and representations connecting mind and nature. Pointing to some key neural mechanisms responsible for forming and implementing intentions, he considers why and how we create, discover, invent, and innovate. He suggests ways of metaphorical thinking and symbolic modeling that can help integrate the neuroscience of intentional actions with the neuroscience of creativity, art and neuroaesthetics. PMID:26257629
Technology: Catalyst for Enhancing Chemical Education for Pre-service Teachers
NASA Astrophysics Data System (ADS)
Kumar, Vinay; Bedell, Julia Yang; Seed, Allen H.
1999-05-01
A DOE/KYEPSCoR-funded project enabled us to introduce a new curricular initiative aimed at improving the chemical education of pre-service elementary teachers. The new curriculum was developed in collaboration with the School of Education faculty. A new course for the pre-service teachers, "Discovering Chemistry with Lab" (CHE 105), was developed. The integrated lecture and lab course covers basic principles of chemistry and their applications in daily life. The course promotes reasoning and problem-solving skills and utilizes hands-on, discovery/guided-inquiry, and cooperative learning approaches. This paper describes the implementation of technology (computer-interfacing and simulation experiments) in the lab. Results of two assessment surveys conducted in the laboratory are also discussed. The key features of the lab course are eight new experiments, including four computer-interfacing/simulation experiments involving the use of Macintosh Power PCs, temperature and pH probes, and a serial box interface, and use of household materials. Several experiments and the midterm and final lab practical exams emphasize the discovery/guided-inquiry approach. The results of pre- and post-surveys showed very significant positive changes in students' attitude toward the relevancy of chemistry, use of technology (computers) in elementary school classrooms, and designing and teaching discovery-based units. Most students indicated that they would be very interested (52%) or interested (36%) in using computers in their science teaching.
Students’ difficulties in probabilistic problem-solving
NASA Astrophysics Data System (ADS)
Arum, D. P.; Kusmayadi, T. A.; Pramudya, I.
2018-03-01
There are many errors can be identified when students solving mathematics problems, particularly in solving the probabilistic problem. This present study aims to investigate students’ difficulties in solving the probabilistic problem. It focuses on analyzing and describing students errors during solving the problem. This research used the qualitative method with case study strategy. The subjects in this research involve ten students of 9th grade that were selected by purposive sampling. Data in this research involve students’ probabilistic problem-solving result and recorded interview regarding students’ difficulties in solving the problem. Those data were analyzed descriptively using Miles and Huberman steps. The results show that students have difficulties in solving the probabilistic problem and can be divided into three categories. First difficulties relate to students’ difficulties in understanding the probabilistic problem. Second, students’ difficulties in choosing and using appropriate strategies for solving the problem. Third, students’ difficulties with the computational process in solving the problem. Based on the result seems that students still have difficulties in solving the probabilistic problem. It means that students have not able to use their knowledge and ability for responding probabilistic problem yet. Therefore, it is important for mathematics teachers to plan probabilistic learning which could optimize students probabilistic thinking ability.
Arctic Connections, an Interactive CD-ROM Program for Middle School Science
NASA Astrophysics Data System (ADS)
Elias, S. A.
2003-12-01
In this project we developed an interactive CD-ROM program for middle school students, accompanied by an interactive web site. The project was sponsored by a grant from the NSF ESIE Instructional Materials Development program. One of the major goals of this project was to involve middle school students in inquiry-based science education, using topics that are of interest to students in Arctic communities. Native Alaskan students have traditionally done poorly in science at the secondary level, and few have gone on to major in the sciences in college or to pursue scientific careers. Part of the problem is a perceived dichotomy between science and traditional Native ways of knowing about the natural world. Hence some students reject the scientific method as being foreign to their native culture. Our goal was to help bridge this cultural barrier, and to demonstrate to native students that the scientific method is not antithetical to their traditional way of life. The program uses story modules that discuss both scientific and Native ways of understanding, through the use of action-adventure stories and brief learning modules. The aim was to show students the relevance of science to their daily lives, and to convince them that scientific methods are a vital tool in solving major problems in arctic communities. Each action-adventure story contains a series of problems that the program user must solve through interactive participation, in order for the story to progress. The interactive elements include answering quiz questions correctly, measuring pH by comparing litmus paper colors, measuring archaeological artifact dimensions, finding the location of fossil bones in a photograph, and correctly identifying photographs of whale species, arctic plants, and fish. The stories contain a mixture of live-action film sequences and voice-over sketch art story boards. The ten modules include such topics as arctic flora and fauna (including terrestrial and sea mammals), arctic solar phenomena, the archaeology and ice-age history of Alaska, water quality, sea ice, permafrost, and climatology. The topics are designed to show connections between the past, present, and future of the Arctic, highlighting problems that can be addressed by scientific inquiry. The accompanying teacher's guide contains a series of hands-on experiments and additional learning materials for each module. The scientific information contained in the modules was refereed by a team of experts who have also volunteered to respond to student questions via e-mail. During the last three years, the program has been field tested in middle schools in Barrow, Kotzebue, Fairbanks, and Anchorage, Alaska. These tests have brought many suggestions for improvements from both teachers and students. The program is in its final evaluation phase, and will be available to schools early in 2004.
NASA Astrophysics Data System (ADS)
Adams, Wendy Kristine
The purpose of my research was to produce a problem solving evaluation tool for physics. To do this it was necessary to gain a thorough understanding of how students solve problems. Although physics educators highly value problem solving and have put extensive effort into understanding successful problem solving, there is currently no efficient way to evaluate problem solving skill. Attempts have been made in the past; however, knowledge of the principles required to solve the subject problem are so absolutely critical that they completely overshadow any other skills students may use when solving a problem. The work presented here is unique because the evaluation tool removes the requirement that the student already have a grasp of physics concepts. It is also unique because I picked a wide range of people and picked a wide range of tasks for evaluation. This is an important design feature that helps make things emerge more clearly. This dissertation includes an extensive literature review of problem solving in physics, math, education and cognitive science as well as descriptions of studies involving student use of interactive computer simulations, the design and validation of a beliefs about physics survey and finally the design of the problem solving evaluation tool. I have successfully developed and validated a problem solving evaluation tool that identifies 44 separate assets (skills) necessary for solving problems. Rigorous validation studies, including work with an independent interviewer, show these assets identified by this content-free evaluation tool are the same assets that students use to solve problems in mechanics and quantum mechanics. Understanding this set of component assets will help teachers and researchers address problem solving within the classroom.
Inquiry: the pedagogical importance of a skill central to clinical practice.
Barrows, H S
1990-01-01
The skill of inquiry is central to the task of the doctor confronted with a patient problem. Despite its importance this skill is not given appropriate emphasis in the education of medical students or in research concerning the clinical reasoning skills of doctors.
Development of a Value Inquiry Model in Biology Education.
ERIC Educational Resources Information Center
Jeong, Eun-Young; Kim, Young-Soo
2000-01-01
Points out the rapid advances in biology, increasing bioethical issues, and how students need to make rational decisions. Introduces a value inquiry model development that includes identifying and clarifying value problems; understanding biological knowledge related to conflict situations; considering, selecting, and evaluating each alternative;…
Intuition, Introspection and Observation in Linguistic Inquiry
ERIC Educational Resources Information Center
Willems, Klaas
2012-01-01
This article explores the relationship between intuition, introspection and the observation of naturally occurring utterances in linguistic inquiry. Its focus is on the problems that this relationship poses in cognitive approaches to semantics and case theory within the framework of Cognitive Grammar. Given the increasing commitment of linguistics…
Blanchard-Fields, Fredda; Mienaltowski, Andrew; Seay, Renee Baldi
2007-01-01
Using the Everyday Problem Solving Inventory of Cornelius and Caspi, we examined differences in problem-solving strategy endorsement and effectiveness in two domains of everyday functioning (instrumental or interpersonal, and a mixture of the two domains) and for four strategies (avoidance-denial, passive dependence, planful problem solving, and cognitive analysis). Consistent with past research, our research showed that older adults were more problem focused than young adults in their approach to solving instrumental problems, whereas older adults selected more avoidant-denial strategies than young adults when solving interpersonal problems. Overall, older adults were also more effective than young adults when solving everyday problems, in particular for interpersonal problems.
Spontaneous gestures influence strategy choices in problem solving.
Alibali, Martha W; Spencer, Robert C; Knox, Lucy; Kita, Sotaro
2011-09-01
Do gestures merely reflect problem-solving processes, or do they play a functional role in problem solving? We hypothesized that gestures highlight and structure perceptual-motor information, and thereby make such information more likely to be used in problem solving. Participants in two experiments solved problems requiring the prediction of gear movement, either with gesture allowed or with gesture prohibited. Such problems can be correctly solved using either a perceptual-motor strategy (simulation of gear movements) or an abstract strategy (the parity strategy). Participants in the gesture-allowed condition were more likely to use perceptual-motor strategies than were participants in the gesture-prohibited condition. Gesture promoted use of perceptual-motor strategies both for participants who talked aloud while solving the problems (Experiment 1) and for participants who solved the problems silently (Experiment 2). Thus, spontaneous gestures influence strategy choices in problem solving.
Dixon-Gordon, Katherine L; Chapman, Alexander L; Lovasz, Nathalie; Walters, Kris
2011-10-01
Borderline personality disorder (BPD) is associated with poor social problem solving and problems with emotion regulation. In this study, the social problem-solving performance of undergraduates with high (n = 26), mid (n = 32), or low (n = 29) levels of BPD features was assessed with the Social Problem-Solving Inventory-Revised and using the means-ends problem-solving procedure before and after a social rejection stressor. The high-BP group, but not the low-BP group, showed a significant reduction in relevant solutions to social problems and more inappropriate solutions following the negative emotion induction. Increases in self-reported negative emotions during the emotion induction mediated the relationship between BP features and reductions in social problem-solving performance. In addition, the high-BP group demonstrated trait deficits in social problem solving on the Social Problem-Solving Inventory-Revised. These findings suggest that future research must examine social problem solving under differing emotional conditions, and that clinical interventions to improve social problem solving among persons with BP features should focus on responses to emotional contexts.
Grace, Pamela J; Perry, Donna J
2013-01-01
Philosophical inquiry remains critically important for nursing education, practice, and knowledge development. We propose a 3-level taxonomy of philosophical inquiry to guide nursing curricula and research development. Important background information about philosophy and the development of philosophical methods is given. Then philosophical inquiry is linked to the goals of nursing using our proposed taxonomy: level I-cultivating an attitude of "critical consciousness" related to all nursing situations and actions, level II-analysis and application of philosophical perspectives to nursing problems and level III-generating new knowledge for nursing purposes including new theories of practice and research.
An Investigation of Secondary Teachers’ Understanding and Belief on Mathematical Problem Solving
NASA Astrophysics Data System (ADS)
Yuli Eko Siswono, Tatag; Wachidul Kohar, Ahmad; Kurniasari, Ika; Puji Astuti, Yuliani
2016-02-01
Weaknesses on problem solving of Indonesian students as reported by recent international surveys give rise to questions on how Indonesian teachers bring out idea of problem solving in mathematics lesson. An explorative study was undertaken to investigate how secondary teachers who teach mathematics at junior high school level understand and show belief toward mathematical problem solving. Participants were teachers from four cities in East Java province comprising 45 state teachers and 25 private teachers. Data was obtained through questionnaires and written test. The results of this study point out that the teachers understand pedagogical problem solving knowledge well as indicated by high score of observed teachers‘ responses showing understanding on problem solving as instruction as well as implementation of problem solving in teaching practice. However, they less understand on problem solving content knowledge such as problem solving strategies and meaning of problem itself. Regarding teacher's difficulties, teachers admitted to most frequently fail in (1) determining a precise mathematical model or strategies when carrying out problem solving steps which is supported by data of test result that revealed transformation error as the most frequently observed errors in teachers’ work and (2) choosing suitable real situation when designing context-based problem solving task. Meanwhile, analysis of teacher's beliefs on problem solving shows that teachers tend to view both mathematics and how students should learn mathematics as body static perspective, while they tend to believe to apply idea of problem solving as dynamic approach when teaching mathematics.
ERIC Educational Resources Information Center
Hayel Al-Srour, Nadia; Al-Ali, Safa M.; Al-Oweidi, Alia
2016-01-01
The present study aims to detect the impact of teacher training on creative writing and problem-solving using both Futuristic scenarios program to solve problems creatively, and creative problem solving. To achieve the objectives of the study, the sample was divided into two groups, the first consist of 20 teachers, and 23 teachers to second…
Inquiry to Action: Diagnosing and Addressing Students' Relational Thinking About the Equal Sign
ERIC Educational Resources Information Center
Harbour, Kristin E.; Karp, Karen S.; Lingo, Amy S.
2016-01-01
One area of algebraic thinking essential for students' success is a relational understanding of the equal sign. Research has indicated a positive correlation between students' relational understanding of the equal sign and their equation-solving performance, suggesting that students' early conception of the equal sign may affect their learning and…
An Appreciative Inquiry of E-Learning Operations in a Southern College of Education
ERIC Educational Resources Information Center
Major, Amanda E.
2014-01-01
Higher education, as an industry, is facing extraordinary fiscal constraints. Universities increasingly consider online education and its e-learning variants as a promise to solve these fiscal constraints while also supporting advances in pedagogy. Many universities promise quality education, yet questions loom about the quality of online learning…
Supporting Alternative Strategies for Learning Chemical Applications of Group Theory
ERIC Educational Resources Information Center
Southam, Daniel C.; Lewis, Jennifer E.
2013-01-01
A group theory course for chemists was taught entirely with process oriented guided inquiry learning (POGIL) to facilitate alternative strategies for learning. Students completed a test of one aspect of visuospatial aptitude to determine their individual approaches to solving spatial tasks, and were sorted into groups for analysis on the basis of…
ERIC Educational Resources Information Center
Ramful, Ajay; Ho, Siew Yin; Lowrie, Tom
2015-01-01
This inquiry presents two fine-grained case studies of students demonstrating different levels of cognitive functioning in relation to bilateral symmetry and reflection. The two students were asked to solve four sets of tasks and articulate their reasoning in task-based interviews. The first participant, Brittany, focused essentially on three…
ERIC Educational Resources Information Center
Aljaberi, Nahil M.; Gheith, Eman
2016-01-01
This study aims to investigate the ability of pre-service class teacher at University of Petrain solving mathematical problems using Polya's Techniques, their level of problem solving skills in daily-life issues. The study also investigates the correlation between their ability to solve mathematical problems and their level of problem solving…
The Association between Motivation, Affect, and Self-regulated Learning When Solving Problems.
Baars, Martine; Wijnia, Lisette; Paas, Fred
2017-01-01
Self-regulated learning (SRL) skills are essential for learning during school years, particularly in complex problem-solving domains, such as biology and math. Although a lot of studies have focused on the cognitive resources that are needed for learning to solve problems in a self-regulated way, affective and motivational resources have received much less research attention. The current study investigated the relation between affect (i.e., Positive Affect and Negative Affect Scale), motivation (i.e., autonomous and controlled motivation), mental effort, SRL skills, and problem-solving performance when learning to solve biology problems in a self-regulated online learning environment. In the learning phase, secondary education students studied video-modeling examples of how to solve hereditary problems, solved hereditary problems which they chose themselves from a set of problems with different complexity levels (i.e., five levels). In the posttest, students solved hereditary problems, self-assessed their performance, and chose a next problem from the set of problems but did not solve these problems. The results from this study showed that negative affect, inaccurate self-assessments during the posttest, and higher perceptions of mental effort during the posttest were negatively associated with problem-solving performance after learning in a self-regulated way.
Confronting the Equity "Learning Problem" through Practitioner Inquiry
ERIC Educational Resources Information Center
Ching, Cheryl D.
2018-01-01
This study examined how participation in an inquiry-based workshop on assessing course syllabi for equity-mindedness and cultural inclusivity fostered community college math faculty learning about racial/ethnic equity and equity-mindedness. Findings show that the workshop prompted reflection on what equity means and how participants' teaching…
Guided Inquiry as a Model for Curricular Resources in Mathematics
ERIC Educational Resources Information Center
Debritz, Christine; Horne, Rhonda
2013-01-01
Research and the Australian Curriculum both indicate the importance of teaching students to apply their mathematical knowledge to real world problems. When developing curriculum resources for Queensland state school teachers from Prep to Year 9, the Department's mathematics team identified the significance of embedding the inquiry process in these…
Home/Work: Engaging the Methodological Dilemmas and Possibilities of Intimate Inquiry
ERIC Educational Resources Information Center
Laura, Crystal T.
2010-01-01
The paucity of solutions to the persistent problem of youth entanglement with the school-to-prison pipeline demands that educational researchers experiment with research differently. In this methodological article, I briefly sketch the beginnings of an "intimate" approach to educational inquiry that researchers can use to connect with…
A Case Study Inquiry on Faculty Advisors and the Appreciative Advising Model
ERIC Educational Resources Information Center
Finch, Brian S.
2013-01-01
Appreciative advising is an innovative academic advising method based on the organizational development theory of appreciative inquiry. This approach emphasizes student strengths through a collaborative relationship between advisor and student using open-ended questions and focusing on positive potential. This study addressed the local problem of…
USDA-ARS?s Scientific Manuscript database
Food science laboratory courses are traditionally taught as a series of preplanned laboratories with known endpoints. In contrast, inquiry-guided (IG) laboratories allow students to ask questions, think through problems, design experiments, then adapt and learn in response to unexpected results. T...
A Cogenerative Inquiry Using Postcolonial Theory to Envisage Culturally Inclusive Science Education
ERIC Educational Resources Information Center
Adams, Jennifer; Luitel, Bal Chandra; Afonso, Emilia; Taylor, Peter Charles
2008-01-01
This forum constitutes a cogenerative inquiry using postcolonial theory drawn from the review paper by Zembylas and Avraamidou. Three teacher educators from African, Asian and Caribbean countries reflect on problems confronting their professional practices and consider the prospects of creating culturally inclusive science education. We learn that…
ERIC Educational Resources Information Center
Hanes, Jena; Sadler, Troy D.
2005-01-01
Projects based in the community give students the opportunity to engage in investigation as scientists and apply their work to make a difference at home. Community-based projects allow for easy implementation of high-end inquiry in the science classroom. When students become involved in research based in authentic community problems they gain a…
NASA Astrophysics Data System (ADS)
Oura, Hiroki
Science is a disciplined practice about knowing puzzling observations and unknown phenomena. Scientific knowledge of the product is applied to develop technological artifacts and solve complex problems in society. Scientific practices are undeniably relevant to our economy, civic activity, and personal lives, and thus public education should help children acquire scientific knowledge and recognize the values in relation to their own lives and civil society. Likewise, developing scientific thinking skills is valuable not only for becoming a scientist, but also for becoming a citizen who is able to critically evaluate everyday information, select and apply only the trustworthy, and make wise judgments in their personal and cultural goals as well as for obtaining jobs that require complex problem solving and creative working in the current knowledge-based economy and rapid-changing world. To develop students' scientific thinking, science instruction should focus not only on scientific knowledge and inquiry processes, but also on its epistemological aspects including the forms of causal explanations and methodological choices along with epistemic aims and values under the social circumstances in focal practices. In this perspective, disciplinary knowledge involves heterogeneous elements including material, cognitive, social, and cultural ones and the formation differs across practices. Without developing such discipline-specific knowledge, students cannot enough deeply engage in scientific "practices" and understand the true values of scientific enterprises. In this interest, this dissertation explores instructional approaches to make student engagement in scientific investigations more authentic or disciplinary. The present dissertation work is comprised of three research questions as stand-alone studies written for separate publication. All of the studies discuss different theoretical aspects related to disciplinary engagement in epidemiologic inquiry and student development in epidemiologic reasoning. The first chapter reviews literature on epistemological instruction and explores theoretical frameworks for epistemically-guided instruction. The second chapter explores methodological strategies to elicit students' disciplinary understanding and demonstrates an approach with a case study in which students engaged in a curriculum unit for an epidemiologic investigation. The last chapter directs the focus into scientific reasoning and demonstrates how the curriculum unit and its scaffolds helped students develop epidemiologic reasoning with a focus on population-based reasoning.
Extraction of a group-pair relation: problem-solving relation from web-board documents.
Pechsiri, Chaveevan; Piriyakul, Rapepun
2016-01-01
This paper aims to extract a group-pair relation as a Problem-Solving relation, for example a DiseaseSymptom-Treatment relation and a CarProblem-Repair relation, between two event-explanation groups, a problem-concept group as a symptom/CarProblem-concept group and a solving-concept group as a treatment-concept/repair concept group from hospital-web-board and car-repair-guru-web-board documents. The Problem-Solving relation (particularly Symptom-Treatment relation) including the graphical representation benefits non-professional persons by supporting knowledge of primarily solving problems. The research contains three problems: how to identify an EDU (an Elementary Discourse Unit, which is a simple sentence) with the event concept of either a problem or a solution; how to determine a problem-concept EDU boundary and a solving-concept EDU boundary as two event-explanation groups, and how to determine the Problem-Solving relation between these two event-explanation groups. Therefore, we apply word co-occurrence to identify a problem-concept EDU and a solving-concept EDU, and machine-learning techniques to solve a problem-concept EDU boundary and a solving-concept EDU boundary. We propose using k-mean and Naïve Bayes to determine the Problem-Solving relation between the two event-explanation groups involved with clustering features. In contrast to previous works, the proposed approach enables group-pair relation extraction with high accuracy.
NASA Astrophysics Data System (ADS)
Nasution, M. L.; Yerizon, Y.; Gusmiyanti, R.
2018-04-01
One of the purpose mathematic learning is to develop problem solving abilities. Problem solving is obtained through experience in questioning non-routine. Improving students’ mathematical problem-solving abilities required an appropriate strategy in learning activities one of them is models problem based learning (PBL). Thus, the purpose of this research is to determine whether the problem solving abilities of mathematical students’ who learn to use PBL better than on the ability of students’ mathematical problem solving by applying conventional learning. This research included quasi experiment with static group design and population is students class XI MIA SMAN 1 Lubuk Alung. Class experiment in the class XI MIA 5 and class control in the class XI MIA 6. The instrument of final test students’ mathematical problem solving used essay form. The result of data final test in analyzed with t-test. The result is students’ mathematical problem solving abilities with PBL better then on the ability of students’ mathematical problem solving by applying conventional learning. It’s seen from the high percentage achieved by the group of students who learn to use PBL for each indicator of students’ mathematical problem solving.
Using a general problem-solving strategy to promote transfer.
Youssef-Shalala, Amina; Ayres, Paul; Schubert, Carina; Sweller, John
2014-09-01
Cognitive load theory was used to hypothesize that a general problem-solving strategy based on a make-as-many-moves-as-possible heuristic could facilitate problem solutions for transfer problems. In four experiments, school students were required to learn about a topic through practice with a general problem-solving strategy, through a conventional problem solving strategy or by studying worked examples. In Experiments 1 and 2 using junior high school students learning geometry, low knowledge students in the general problem-solving group scored significantly higher on near or far transfer tests than the conventional problem-solving group. In Experiment 3, an advantage for a general problem-solving group over a group presented worked examples was obtained on far transfer tests using the same curriculum materials, again presented to junior high school students. No differences between conditions were found in Experiments 1, 2, or 3 using test problems similar to the acquisition problems. Experiment 4 used senior high school students studying economics and found the general problem-solving group scored significantly higher than the conventional problem-solving group on both similar and transfer tests. It was concluded that the general problem-solving strategy was helpful for novices, but not for students that had access to domain-specific knowledge. PsycINFO Database Record (c) 2014 APA, all rights reserved.
NASA Astrophysics Data System (ADS)
Hafner, Robert; Stewart, Jim
Past problem-solving research has provided a basis for helping students structure their knowledge and apply appropriate problem-solving strategies to solve problems for which their knowledge (or mental models) of scientific phenomena is adequate (model-using problem solving). This research examines how problem solving in the domain of Mendelian genetics proceeds in situations where solvers' mental models are insufficient to solve problems at hand (model-revising problem solving). Such situations require solvers to use existing models to recognize anomalous data and to revise those models to accommodate the data. The study was conducted in the context of 9-week high school genetics course and addressed: the heuristics charactenstic of successful model-revising problem solving: the nature of the model revisions, made by students as well as the nature of model development across problem types; and the basis upon which solvers decide that a revised model is sufficient (that t has both predictive and explanatory power).
Azad, Gazi F.; Kim, Mina; Marcus, Steven C.; Mandell, David S.; Sheridan, Susan M.
2016-01-01
Effective parent-teacher communication involves problem-solving concerns about students. Few studies have examined problem solving interactions between parents and teachers of children with autism spectrum disorder (ASD), with a particular focus on identifying communication barriers and strategies for improving them. This study examined the problem-solving behaviors of parents and teachers of children with ASD. Participants included 18 teachers and 39 parents of children with ASD. Parent-teacher dyads were prompted to discuss and provide a solution for a problem that a student experienced at home and at school. Parents and teachers also reported on their problem-solving behaviors. Results showed that parents and teachers displayed limited use of the core elements of problem-solving. Teachers displayed more problem-solving behaviors than parents. Both groups reported engaging in more problem-solving behaviors than they were observed to display during their discussions. Our findings suggest that teacher and parent training programs should include collaborative approaches to problem-solving. PMID:28392604
Azad, Gazi F; Kim, Mina; Marcus, Steven C; Mandell, David S; Sheridan, Susan M
2016-12-01
Effective parent-teacher communication involves problem-solving concerns about students. Few studies have examined problem solving interactions between parents and teachers of children with autism spectrum disorder (ASD), with a particular focus on identifying communication barriers and strategies for improving them. This study examined the problem-solving behaviors of parents and teachers of children with ASD. Participants included 18 teachers and 39 parents of children with ASD. Parent-teacher dyads were prompted to discuss and provide a solution for a problem that a student experienced at home and at school. Parents and teachers also reported on their problem-solving behaviors. Results showed that parents and teachers displayed limited use of the core elements of problem-solving. Teachers displayed more problem-solving behaviors than parents. Both groups reported engaging in more problem-solving behaviors than they were observed to display during their discussions. Our findings suggest that teacher and parent training programs should include collaborative approaches to problem-solving.
NASA Astrophysics Data System (ADS)
Rr Chusnul, C.; Mardiyana, S., Dewi Retno
2017-12-01
Problem solving is the basis of mathematics learning. Problem solving teaches us to clarify an issue coherently in order to avoid misunderstanding information. Sometimes there may be mistakes in problem solving due to misunderstanding the issue, choosing a wrong concept or misapplied concept. The problem-solving test was carried out after students were given treatment on learning by using cooperative learning of TTW type. The purpose of this study was to elucidate student problem regarding to problem solving errors after learning by using cooperative learning of TTW type. Newman stages were used to identify problem solving errors in this study. The new research used a descriptive method to find out problem solving errors in students. The subject in this study were students of Vocational Senior High School (SMK) in 10th grade. Test and interview was conducted for data collection. Thus, the results of this study suggested problem solving errors in students after learning by using cooperative learning of TTW type for Newman stages.
Rejection Sensitivity and Depression: Indirect Effects Through Problem Solving.
Kraines, Morganne A; Wells, Tony T
2017-01-01
Rejection sensitivity (RS) and deficits in social problem solving are risk factors for depression. Despite their relationship to depression and the potential connection between them, no studies have examined RS and social problem solving together in the context of depression. As such, we examined RS, five facets of social problem solving, and symptoms of depression in a young adult sample. A total of 180 participants completed measures of RS, social problem solving, and depressive symptoms. We used bootstrapping to examine the indirect effect of RS on depressive symptoms through problem solving. RS was positively associated with depressive symptoms. A negative problem orientation, impulsive/careless style, and avoidance style of social problem solving were positively associated with depressive symptoms, and a positive problem orientation was negatively associated with depressive symptoms. RS demonstrated an indirect effect on depressive symptoms through two social problem-solving facets: the tendency to view problems as threats to one's well-being and an avoidance problem-solving style characterized by procrastination, passivity, or overdependence on others. These results are consistent with prior research that found a positive association between RS and depression symptoms, but this is the first study to implicate specific problem-solving deficits in the relationship between RS and depression. Our results suggest that depressive symptoms in high RS individuals may result from viewing problems as threats and taking an avoidant, rather than proactive, approach to dealing with problems. These findings may have implications for problem-solving interventions for rejection sensitive individuals.
The Cyclic Nature of Problem Solving: An Emergent Multidimensional Problem-Solving Framework
ERIC Educational Resources Information Center
Carlson, Marilyn P.; Bloom, Irene
2005-01-01
This paper describes the problem-solving behaviors of 12 mathematicians as they completed four mathematical tasks. The emergent problem-solving framework draws on the large body of research, as grounded by and modified in response to our close observations of these mathematicians. The resulting "Multidimensional Problem-Solving Framework" has four…
Mathematical Problem Solving: A Review of the Literature.
ERIC Educational Resources Information Center
Funkhouser, Charles
The major perspectives on problem solving of the twentieth century are reviewed--associationism, Gestalt psychology, and cognitive science. The results of the review on teaching problem solving and the uses of computers to teach problem solving are included. Four major issues related to the teaching of problem solving are discussed: (1)…
Teaching Problem Solving Skills to Elementary Age Students with Autism
ERIC Educational Resources Information Center
Cote, Debra L.; Jones, Vita L.; Barnett, Crystal; Pavelek, Karin; Nguyen, Hoang; Sparks, Shannon L.
2014-01-01
Students with disabilities need problem-solving skills to promote their success in solving the problems of daily life. The research into problem-solving instruction has been limited for students with autism. Using a problem-solving intervention and the Self Determined Learning Model of Instruction, three elementary age students with autism were…
Learning problem-solving skills in a distance education physics course
NASA Astrophysics Data System (ADS)
Rampho, G. J.; Ramorola, M. Z.
2017-10-01
In this paper we present the results of a study on the effectiveness of combinations of delivery modes of distance education in learning problem-solving skills in a distance education introductory physics course. A problem-solving instruction with the explicit teaching of a problem-solving strategy and worked-out examples were implemented in the course. The study used the ex post facto research design with stratified sampling to investigate the effect of the learning of a problem-solving strategy on the problem-solving performance. The number of problems attempted and the mean frequency of using a strategy in solving problems in the three course presentation modes were compared. The finding of the study indicated that combining the different course presentation modes had no statistically significant effect in the learning of problem-solving skills in the distance education course.
NASA Astrophysics Data System (ADS)
Shelton, Angela
Many United States secondary students perform poorly on standardized summative science assessments. Situated Assessments using Virtual Environments (SAVE) Science is an innovative assessment project that seeks to capture students' science knowledge and understanding by contextualizing problems in a game-based virtual environment called Scientopolis. Within Scientopolis, students use an "avatar" to interact with non-player characters (NPCs), artifacts, embedded clues and "sci-tools" in order to help solve the problems of the townspeople. In an attempt to increase students' success on assessments, SAVE science places students in an environment where they can use their inquiry skills to solve problems instead of reading long passages which attempt to contextualize questions but ultimately cause construct-irrelevant variance. However, within these assessments reading is still required to access the test questions and character interactions. This dissertation explores how students' in-world performances differ when exposed to a Reading Aloud Accommodation (RAA) treatment in comparison to a control group. Student perceptions of the treatment are also evaluated. While a RAA is typically available for students with learning disabilities or English language learners, within this study, all students were randomly assigned to either the treatment or control, regardless of any demographic factors or learning barriers. The theories of Universal design for learning and brain-based learning advocate for multiple ways for students to engage, comprehend, and illustrate their content knowledge. Further, through providing more ways for students to interact with content, all students should benefit, not just those with learning disabilities. Students in the experimental group listened to the NPCs speak the dialogue that provides them with the problem, clues, and assessment questions, instead of relying on reading skills to gather the information. Overall, students in the treatment group statistically outperformed those in the control. Student perceptions of using the reading aloud accommodation were generally positive. Ideas for future research are presented to investigate the accommodation further.
The Association between Motivation, Affect, and Self-regulated Learning When Solving Problems
Baars, Martine; Wijnia, Lisette; Paas, Fred
2017-01-01
Self-regulated learning (SRL) skills are essential for learning during school years, particularly in complex problem-solving domains, such as biology and math. Although a lot of studies have focused on the cognitive resources that are needed for learning to solve problems in a self-regulated way, affective and motivational resources have received much less research attention. The current study investigated the relation between affect (i.e., Positive Affect and Negative Affect Scale), motivation (i.e., autonomous and controlled motivation), mental effort, SRL skills, and problem-solving performance when learning to solve biology problems in a self-regulated online learning environment. In the learning phase, secondary education students studied video-modeling examples of how to solve hereditary problems, solved hereditary problems which they chose themselves from a set of problems with different complexity levels (i.e., five levels). In the posttest, students solved hereditary problems, self-assessed their performance, and chose a next problem from the set of problems but did not solve these problems. The results from this study showed that negative affect, inaccurate self-assessments during the posttest, and higher perceptions of mental effort during the posttest were negatively associated with problem-solving performance after learning in a self-regulated way. PMID:28848467
Decision-making without a brain: how an amoeboid organism solves the two-armed bandit.
Reid, Chris R; MacDonald, Hannelore; Mann, Richard P; Marshall, James A R; Latty, Tanya; Garnier, Simon
2016-06-01
Several recent studies hint at shared patterns in decision-making between taxonomically distant organisms, yet few studies demonstrate and dissect mechanisms of decision-making in simpler organisms. We examine decision-making in the unicellular slime mould Physarum polycephalum using a classical decision problem adapted from human and animal decision-making studies: the two-armed bandit problem. This problem has previously only been used to study organisms with brains, yet here we demonstrate that a brainless unicellular organism compares the relative qualities of multiple options, integrates over repeated samplings to perform well in random environments, and combines information on reward frequency and magnitude in order to make correct and adaptive decisions. We extend our inquiry by using Bayesian model selection to determine the most likely algorithm used by the cell when making decisions. We deduce that this algorithm centres around a tendency to exploit environments in proportion to their reward experienced through past sampling. The algorithm is intermediate in computational complexity between simple, reactionary heuristics and calculation-intensive optimal performance algorithms, yet it has very good relative performance. Our study provides insight into ancestral mechanisms of decision-making and suggests that fundamental principles of decision-making, information processing and even cognition are shared among diverse biological systems. © 2016 The Authors.
An experience sampling study of learning, affect, and the demands control support model.
Daniels, Kevin; Boocock, Grahame; Glover, Jane; Holland, Julie; Hartley, Ruth
2009-07-01
The demands control support model (R. A. Karasek & T. Theorell, 1990) indicates that job control and social support enable workers to engage in problem solving. In turn, problem solving is thought to influence learning and well-being (e.g., anxious affect, activated pleasant affect). Two samples (N = 78, N = 106) provided data up to 4 times per day for up to 5 working days. The extent to which job control was used for problem solving was assessed by measuring the extent to which participants changed aspects of their work activities to solve problems. The extent to which social support was used to solve problems was assessed by measuring the extent to which participants discussed problems to solve problems. Learning mediated the relationship between changing aspects of work activities to solve problems and activated pleasant affect. Learning also mediated the relationship between discussing problems to solve problems and activated pleasant affect. The findings indicated that how individuals use control and support to respond to problem-solving demands is associated with organizational and individual phenomena, such as learning and affective well-being.
Baldo, Juliana V.; Paulraj, Selvi R.; Curran, Brian C.; Dronkers, Nina F.
2015-01-01
The precise nature of the relationship between language and thought is an intriguing and challenging area of inquiry for scientists across many disciplines. In the realm of neuropsychology, research has investigated the inter-dependence of language and thought by testing individuals with compromised language abilities and observing whether performance in other cognitive domains is diminished. One group of such individuals is patients with aphasia who have an impairment in speech and language arising from a brain injury, such as a stroke. Our previous research has shown that the degree of language impairment in these individuals is strongly associated with the degree of impairment on complex reasoning tasks, such as the Wisconsin Card Sorting Task (WCST) and Raven’s Matrices. In the current study, we present new data from a large group of individuals with aphasia that show a dissociation in performance between putatively non-verbal tasks on the Wechsler Adult Intelligence Scale (WAIS) that require differing degrees of reasoning (Picture Completion vs. Picture Arrangement tasks). We also present an update and replication of our previous findings with the WCST showing that individuals with the most profound core language deficits (i.e., impaired comprehension and disordered language output) are particularly impaired on problem-solving tasks. In the second part of the paper, we present findings from a neurologically intact individual known as “Chelsea” who was not exposed to language due to an unaddressed hearing loss that was present since birth. At the age of 32, she was fitted with hearing aids and exposed to spoken and signed language for the first time, but she was only able to acquire a limited language capacity. Chelsea was tested on a series of standardized neuropsychological measures, including reasoning and problem-solving tasks. She was able to perform well on a number of visuospatial tasks but was disproportionately impaired on tasks that required reasoning, such as Raven’s Matrices and the WAIS Picture Arrangement task. Together, these findings suggest that language supports complex reasoning, possibly due to the facilitative role of verbal working memory and inner speech in higher mental processes. PMID:26578991
What Does (and Doesn't) Make Analogical Problem Solving Easy? A Complexity-Theoretic Perspective
ERIC Educational Resources Information Center
Wareham, Todd; Evans, Patricia; van Rooij, Iris
2011-01-01
Solving new problems can be made easier if one can build on experiences with other problems one has already successfully solved. The ability to exploit earlier problem-solving experiences in solving new problems seems to require several cognitive sub-abilities. Minimally, one needs to be able to retrieve relevant knowledge of earlier solved…
ERIC Educational Resources Information Center
Kamis, Arnold; Khan, Beverly K.
2009-01-01
How do we model and improve technical problem solving, such as network subnetting? This paper reports an experimental study that tested several hypotheses derived from Kolb's experiential learning cycle and Huber's problem solving model. As subjects solved a network subnetting problem, they mapped their mental processes according to Huber's…
ERIC Educational Resources Information Center
Paraschiv, Irina; Olley, J. Gregory
This paper describes the "Problem Solving for Life" training program which trains adolescents and adults with mental retardation in skills for solving social problems. The program requires group participants to solve social problems by practicing two prerequisite skills (relaxation and positive self-statements) and four problem solving steps: (1)…
Young Children's Analogical Problem Solving: Gaining Insights from Video Displays
ERIC Educational Resources Information Center
Chen, Zhe; Siegler, Robert S.
2013-01-01
This study examined how toddlers gain insights from source video displays and use the insights to solve analogous problems. Two- to 2.5-year-olds viewed a source video illustrating a problem-solving strategy and then attempted to solve analogous problems. Older but not younger toddlers extracted the problem-solving strategy depicted in the video…
Investigating Problem-Solving Perseverance Using Lesson Study
ERIC Educational Resources Information Center
Bieda, Kristen N.; Huhn, Craig
2017-01-01
Problem solving has long been a focus of research and curriculum reform (Kilpatrick 1985; Lester 1994; NCTM 1989, 2000; CCSSI 2010). The importance of problem solving is not new, but the Common Core introduced the idea of making sense of problems and persevering in solving them (CCSSI 2010, p. 6) as an aspect of problem solving. Perseverance is…
Problem-solving deficits in Iranian people with borderline personality disorder.
Akbari Dehaghi, Ashraf; Kaviani, Hossein; Tamanaeefar, Shima
2014-01-01
Interventions for people suffering from borderline personality disorder (BPD), such as dialectical behavior therapy, often include a problem-solving component. However, there is an absence of published studies examining the problem-solving abilities of this client group in Iran. The study compared inpatients and outpatients with BPD and a control group on problem-solving capabilities in an Iranian sample. It was hypothesized that patients with BPD would have more deficiencies in this area. Fifteen patients with BPD were compared to 15 healthy participants. Means-ends problem-solving task (MEPS) was used to measure problem-solving skills in both groups. BPD group reported less effective strategies in solving problems as opposed to the healthy group. Compared to the control group, participants with BPD provided empirical support for the use of problem-solving interventions with people suffering from BPD. The findings supported the idea that a problem-solving intervention can be efficiently applied either as a stand-alone therapy or in conjunction with other available psychotherapies to treat people with BPD.
Impulsivity as a mediator in the relationship between problem solving and suicidal ideation.
Gonzalez, Vivian M; Neander, Lucía L
2018-03-15
This study examined whether three facets of impulsivity previously shown to be associated with suicidal ideation and attempts (negative urgency, lack of premeditation, and lack of perseverance) help to account for the established association between problem solving deficits and suicidal ideation. Emerging adult college student drinkers with a history of at least passive suicidal ideation (N = 387) completed measures of problem solving, impulsivity, and suicidal ideation. A path analysis was conducted to examine the mediating role of impulsivity variables in the association between problem solving (rational problem solving, positive and negative problem orientation, and avoidance style) and suicidal ideation. Direct and indirect associations through impulsivity, particularly negative urgency, were found between problem solving and severity of suicidal ideation. Interventions aimed at teaching problem solving skills, as well as self-efficacy and optimism for solving life problems, may help to reduce impulsivity and suicidal ideation. © 2018 Wiley Periodicals, Inc.
Improving mathematical problem solving skills through visual media
NASA Astrophysics Data System (ADS)
Widodo, S. A.; Darhim; Ikhwanudin, T.
2018-01-01
The purpose of this article was to find out the enhancement of students’ mathematical problem solving by using visual learning media. The ability to solve mathematical problems is the ability possessed by students to solve problems encountered, one of the problem-solving model of Polya. This preliminary study was not to make a model, but it only took a conceptual approach by comparing the various literature of problem-solving skills by linking visual learning media. The results of the study indicated that the use of learning media had not been appropriated so that the ability to solve mathematical problems was not optimal. The inappropriateness of media use was due to the instructional media that was not adapted to the characteristics of the learners. Suggestions that can be given is the need to develop visual media to increase the ability to solve problems.
The Impact of Integrated Coaching and Collaboration within an Inquiry Learning Environment
ERIC Educational Resources Information Center
Dragon, Toby
2013-01-01
This thesis explores the design and evaluation of a collaborative, inquiry learning Intelligent Tutoring System for ill-defined problem spaces. The common ground in the fields of Artificial Intelligence in Education and Computer-Supported Collaborative Learning is investigated to identify ways in which tutoring systems can employ both automated…
Inquiry-Based Instruction for Students with Special Needs in School Based Agricultural Education
ERIC Educational Resources Information Center
Easterly, R. G., III; Myers, Brian E.
2011-01-01
Educating students with special needs in school based agricultural education (SBAE) is a problem that should be addressed. While many students in SBAE classes have special needs, contradicting research exists establishing the best method of instruction for students with special needs. Inquiry-based instruction shows some promise, but little is…
Qualitative Analysis of Comic Strip Culture: A Methodological Inquiry.
ERIC Educational Resources Information Center
Newman, Isadore; And Others
The paper is a methodological inquiry into the interpretation of qualitative data. It explores a grounded-theory approach to the synthesis of data and examines, in particular, the construction of categories. It focuses on ways of organizing and attaching meaning to data, as research problems embedded in a cultural context are explored. A…
Qualitative Analysis of a Synthetic Culture: A Methodological Inquiry.
ERIC Educational Resources Information Center
MacDonald, Suzanne; And Others
The study is a methodological inquiry into the interpretation of qualitative data. It explores a grounded theory approach to the synthesis of data, and examines, in particular, construction of categories. It focuses on ways of organizing data and attaching meaning, as research problems embedded in cultural context are explored. A qualitative…
Investigations of a Complex, Realistic Task: Intentional, Unsystematic, and Exhaustive Experimenters
ERIC Educational Resources Information Center
McElhaney, Kevin W.; Linn, Marcia C.
2011-01-01
This study examines how students' experimentation with a virtual environment contributes to their understanding of a complex, realistic inquiry problem. We designed a week-long, technology-enhanced inquiry unit on car collisions. The unit uses new technologies to log students' experimentation choices. Physics students (n = 148) in six diverse high…
ERIC Educational Resources Information Center
Baker, William P.; Barstack, Renee; Clark, Diane; Hull, Elizabeth; Goodman, Ben; Kook, Judy; Kraft, Kaatje; Ramakrishna, Pushpa; Roberts, Elisabeth; Shaw, Jerome; Weaver, David; Lang, Michael
2008-01-01
Student writing skills are an important concern for every teacher. This is especially true when using inquiry-based approaches in the science classroom. Writing promotes critical-thinking skills and construction of vital scientific concepts and challenges ingrained misconceptions. Yet, many teachers encounter practical problems when incorporating…
Off to the Duck Races: Planning for Inquiry in STEM
ERIC Educational Resources Information Center
Stephan, Michelle
2016-01-01
Although most tasks that STEM professionals engage in--like identifying problems, making models, and testing those models--involve inquiry, many STEM classes still rely on direct instruction. Stephan argues that even as new resources for active learning are being developed for STEM instruction, many teachers aren't using these resources and tasks…
Using a Guided Inquiry Approach in the Traditional Vertebrate Anatomy Laboratory
ERIC Educational Resources Information Center
Meuler, Debra
2008-01-01
A central theme of the "National Science Education Standards" is teaching science as an inquiry process, allowing students to explore an authentic problem using the tools and skills of the discipline. Research indicates that more active participation by the student, which usually requires higher-order thinking skills, results in deeper learning.…
ERIC Educational Resources Information Center
Limin, Chen; Van Dooren, Wim; Verschaffel, Lieven
2013-01-01
The goal of the present study is to investigate the relationship between pupils' problem posing and problem solving abilities, their beliefs about problem posing and problem solving, and their general mathematics abilities, in a Chinese context. Five instruments, i.e., a problem posing test, a problem solving test, a problem posing questionnaire,…
ERIC Educational Resources Information Center
Higgins, Karen M.
This study investigated the effects of Oregon's Lane County "Problem Solving in Mathematics" (PSM) materials on middle-school students' attitudes, beliefs, and abilities in problem solving and mathematics. The instructional approach advocated in PSM includes: the direct teaching of five problem-solving skills, weekly challenge problems,…
Student’s scheme in solving mathematics problems
NASA Astrophysics Data System (ADS)
Setyaningsih, Nining; Juniati, Dwi; Suwarsono
2018-03-01
The purpose of this study was to investigate students’ scheme in solving mathematics problems. Scheme are data structures for representing the concepts stored in memory. In this study, we used it in solving mathematics problems, especially ratio and proportion topics. Scheme is related to problem solving that assumes that a system is developed in the human mind by acquiring a structure in which problem solving procedures are integrated with some concepts. The data were collected by interview and students’ written works. The results of this study revealed are students’ scheme in solving the problem of ratio and proportion as follows: (1) the content scheme, where students can describe the selected components of the problem according to their prior knowledge, (2) the formal scheme, where students can explain in construct a mental model based on components that have been selected from the problem and can use existing schemes to build planning steps, create something that will be used to solve problems and (3) the language scheme, where students can identify terms, or symbols of the components of the problem.Therefore, by using the different strategies to solve the problems, the students’ scheme in solving the ratio and proportion problems will also differ.
ERIC Educational Resources Information Center
Scherer, Ronny; Tiemann, Rudiger
2012-01-01
The ability to solve complex scientific problems is regarded as one of the key competencies in science education. Until now, research on problem solving focused on the relationship between analytical and complex problem solving, but rarely took into account the structure of problem-solving processes and metacognitive aspects. This paper,…
Same Old Problem, New Name? Alerting Students to the Nature of the Problem-Solving Process
ERIC Educational Resources Information Center
Yerushalmi, Edit; Magen, Esther
2006-01-01
Students frequently misconceive the process of problem-solving, expecting the linear process required for solving an exercise, rather than the convoluted search process required to solve a genuine problem. In this paper we present an activity designed to foster in students realization and appreciation of the nature of the problem-solving process,…
ERIC Educational Resources Information Center
Gustafsson, Peter; Jonsson, Gunnar; Enghag, Margareta
2015-01-01
The problem-solving process is investigated for five groups of students when solving context-rich problems in an introductory physics course included in an engineering programme. Through transcripts of their conversation, the paths in the problem-solving process have been traced and related to a general problem-solving model. All groups exhibit…
Klein, Daniel N.; Leon, Andrew C.; Li, Chunshan; D’Zurilla, Thomas J.; Black, Sarah R.; Vivian, Dina; Dowling, Frank; Arnow, Bruce A.; Manber, Rachel; Markowitz, John C.; Kocsis, James H.
2011-01-01
Objective Depression is associated with poor social problem-solving, and psychotherapies that focus on problem-solving skills are efficacious in treating depression. We examined the associations between treatment, social problem solving, and depression in a randomized clinical trial testing the efficacy of psychotherapy augmentation for chronically depressed patients who failed to fully respond to an initial trial of pharmacotherapy (Kocsis et al., 2009). Method Participants with chronic depression (n = 491) received Cognitive Behavioral Analysis System of Psychotherapy (CBASP), which emphasizes interpersonal problem-solving, plus medication; Brief Supportive Psychotherapy (BSP) plus medication; or medication alone for 12 weeks. Results CBASP plus pharmacotherapy was associated with significantly greater improvement in social problem solving than BSP plus pharmacotherapy, and a trend for greater improvement in problem solving than pharmacotherapy alone. In addition, change in social problem solving predicted subsequent change in depressive symptoms over time. However, the magnitude of the associations between changes in social problem solving and subsequent depressive symptoms did not differ across treatment conditions. Conclusions It does not appear that improved social problem solving is a mechanism that uniquely distinguishes CBASP from other treatment approaches. PMID:21500885
Implementing thinking aloud pair and Pólya problem solving strategies in fractions
NASA Astrophysics Data System (ADS)
Simpol, N. S. H.; Shahrill, M.; Li, H.-C.; Prahmana, R. C. I.
2017-12-01
This study implemented two pedagogical strategies, the Thinking Aloud Pair Problem Solving and Pólya’s Problem Solving, to support students’ learning of fractions. The participants were 51 students (ages 11-13) from two Year 7 classes in a government secondary school in Brunei Darussalam. A mixed method design was employed in the present study, with data collected from the pre- and post-tests, problem solving behaviour questionnaire and interviews. The study aimed to explore if there were differences in the students’ problem solving behaviour before and after the implementation of the problem solving strategies. Results from the Wilcoxon Signed Rank Test revealed a significant difference in the test results regarding student problem solving behaviour, z = -3.68, p = .000, with a higher mean score for the post-test (M = 95.5, SD = 13.8) than for the pre-test (M = 88.9, SD = 15.2). This implied that there was improvement in the students’ problem solving performance from the pre-test to the post-test. Results from the questionnaire showed that more than half of the students increased scores in all four stages of the Pólya’s problem solving strategy, which provided further evidence of the students’ improvement in problem solving.
Elk Habitat: A Case Study of Scientific Inquiry
ERIC Educational Resources Information Center
Graves, C. John
2009-01-01
A case study is an excellent way to help students think like scientists as they work to solve a dilemma. This article describes a case study of elk in Yellowstone National Park. Students read short narratives, based on scientific research data, about the puzzling question of why some elk live substantially longer than others in certain areas of…
Moving beyond Solving for "x": Teaching Abstract Algebra in a Liberal Arts Mathematics Course
ERIC Educational Resources Information Center
Cook, John Paul
2015-01-01
This paper details an inquiry-based approach for teaching the basic notions of rings and fields to liberal arts mathematics students. The task sequence seeks to encourage students to identify and comprehend core concepts of introductory abstract algebra by thinking like mathematicians; that is, by investigating an open-ended mathematical context,…
Jiang, Weili; Shang, Siyuan; Su, Yanjie
2015-01-01
People may experience an “aha” moment, when suddenly realizing a solution of a puzzling problem. This experience is called insight problem solving. Several findings suggest that catecholamine-related genes may contribute to insight problem solving, among which the catechol-O-methyltransferase (COMT) gene is the most promising candidate. The current study examined 753 healthy individuals to determine the associations between 7 candidate single nucleotide polymorphisms on the COMT gene and insight problem-solving performance, while considering gender differences. The results showed that individuals carrying A allele of rs4680 or T allele of rs4633 scored significantly higher on insight problem-solving tasks, and the COMT gene rs5993883 combined with gender interacted with correct solutions of insight problems, specifically showing that this gene only influenced insight problem-solving performance in males. This study presents the first investigation of the genetic impact on insight problem solving and provides evidence that highlights the role that the COMT gene plays in insight problem solving. PMID:26528222
Jiang, Weili; Shang, Siyuan; Su, Yanjie
2015-01-01
People may experience an "aha" moment, when suddenly realizing a solution of a puzzling problem. This experience is called insight problem solving. Several findings suggest that catecholamine-related genes may contribute to insight problem solving, among which the catechol-O-methyltransferase (COMT) gene is the most promising candidate. The current study examined 753 healthy individuals to determine the associations between 7 candidate single nucleotide polymorphisms on the COMT gene and insight problem-solving performance, while considering gender differences. The results showed that individuals carrying A allele of rs4680 or T allele of rs4633 scored significantly higher on insight problem-solving tasks, and the COMT gene rs5993883 combined with gender interacted with correct solutions of insight problems, specifically showing that this gene only influenced insight problem-solving performance in males. This study presents the first investigation of the genetic impact on insight problem solving and provides evidence that highlights the role that the COMT gene plays in insight problem solving.
Understanding Undergraduates’ Problem-Solving Processes †
Nehm, Ross H.
2010-01-01
Fostering effective problem-solving skills is one of the most longstanding and widely agreed upon goals of biology education. Nevertheless, undergraduate biology educators have yet to leverage many major findings about problem-solving processes from the educational and cognitive science research literatures. This article highlights key facets of problem-solving processes and introduces methodologies that may be used to reveal how undergraduate students perceive and represent biological problems. Overall, successful problem-solving entails a keen sensitivity to problem contexts, disciplined internal representation or modeling of the problem, and the principled management and deployment of cognitive resources. Context recognition tasks, problem representation practice, and cognitive resource management receive remarkably little emphasis in the biology curriculum, despite their central roles in problem-solving success. PMID:23653710
Thinking Process of Naive Problem Solvers to Solve Mathematical Problems
ERIC Educational Resources Information Center
Mairing, Jackson Pasini
2017-01-01
Solving problems is not only a goal of mathematical learning. Students acquire ways of thinking, habits of persistence and curiosity, and confidence in unfamiliar situations by learning to solve problems. In fact, there were students who had difficulty in solving problems. The students were naive problem solvers. This research aimed to describe…
Teaching Problem Solving without Modeling through "Thinking Aloud Pair Problem Solving."
ERIC Educational Resources Information Center
Pestel, Beverly C.
1993-01-01
Reviews research relevant to the problem of unsatisfactory student problem-solving abilities and suggests a teaching strategy that addresses the issue. Author explains how she uses teaching aloud problem solving (TAPS) in college chemistry and presents evaluation data. Among the findings are that the TAPS class got fewer problems completely right,…
Social Problem Solving, Conduct Problems, and Callous-Unemotional Traits in Children
ERIC Educational Resources Information Center
Waschbusch, Daniel A.; Walsh, Trudi M.; Andrade, Brendan F.; King, Sara; Carrey, Normand J.
2007-01-01
This study examined the association between social problem solving, conduct problems (CP), and callous-unemotional (CU) traits in elementary age children. Participants were 53 children (40 boys and 13 girls) aged 7-12 years. Social problem solving was evaluated using the Social Problem Solving Test-Revised, which requires children to produce…
Personality, problem solving, and adolescent substance use.
Jaffee, William B; D'Zurilla, Thomas J
2009-03-01
The major aim of this study was to examine the role of social problem solving in the relationship between personality and substance use in adolescents. Although a number of studies have identified a relationship between personality and substance use, the precise mechanism by which this occurs is not clear. We hypothesized that problem-solving skills could be one such mechanism. More specifically, we sought to determine whether problem solving mediates, moderates, or both mediates and moderates the relationship between different personality traits and substance use. Three hundred and seven adolescents were administered the Substance Use Profile Scale, the Social Problem-Solving Inventory-Revised, and the Personality Experiences Inventory to assess personality, social problem-solving ability, and substance use, respectively. Results showed that the dimension of rational problem solving (i.e., effective problem-solving skills) significantly mediated the relationship between hopelessness and lifetime alcohol and marijuana use. The theoretical and clinical implications of these results were discussed.
Enhancing chemistry problem-solving achievement using problem categorization
NASA Astrophysics Data System (ADS)
Bunce, Diane M.; Gabel, Dorothy L.; Samuel, John V.
The enhancement of chemistry students' skill in problem solving through problem categorization is the focus of this study. Twenty-four students in a freshman chemistry course for health professionals are taught how to solve problems using the explicit method of problem solving (EMPS) (Bunce & Heikkinen, 1986). The EMPS is an organized approach to problem analysis which includes encoding the information given in a problem (Given, Asked For), relating this to what is already in long-term memory (Recall), and planning a solution (Overall Plan) before a mathematical solution is attempted. In addition to the EMPS training, treatment students receive three 40-minute sessions following achievement tests in which they are taught how to categorize problems. Control students use this time to review the EMPS solutions of test questions. Although problem categorization is involved in one section of the EMPS (Recall), treatment students who received specific training in problem categorization demonstrate significantly higher achievement on combination problems (those problems requiring the use of more than one chemical topic for their solution) at (p = 0.01) than their counterparts. Significantly higher achievement for treatment students is also measured on an unannounced test (p = 0.02). Analysis of interview transcripts of both treatment and control students illustrates a Rolodex approach to problem solving employed by all students in this study. The Rolodex approach involves organizing equations used to solve problems on mental index cards and flipping through them, matching units given when a new problem is to be solved. A second phenomenon observed during student interviews is the absence of a link in the conceptual understanding of the chemical concepts involved in a problem and the problem-solving skills employed to correctly solve problems. This study shows that explicit training in categorization skills and the EMPS can lead to higher achievement in complex problem-solving situations (combination problems and unannounced test). However, such achievement may be limited by the lack of linkages between students' conceptual understanding and improved problem-solving skill.
Decision-Making and Problem-Solving Approaches in Pharmacy Education
Martin, Lindsay C.; Holdford, David A.
2016-01-01
Domain 3 of the Center for the Advancement of Pharmacy Education (CAPE) 2013 Educational Outcomes recommends that pharmacy school curricula prepare students to be better problem solvers, but are silent on the type of problems they should be prepared to solve. We identified five basic approaches to problem solving in the curriculum at a pharmacy school: clinical, ethical, managerial, economic, and legal. These approaches were compared to determine a generic process that could be applied to all pharmacy decisions. Although there were similarities in the approaches, generic problem solving processes may not work for all problems. Successful problem solving requires identification of the problems faced and application of the right approach to the situation. We also advocate that the CAPE Outcomes make explicit the importance of different approaches to problem solving. Future pharmacists will need multiple approaches to problem solving to adapt to the complexity of health care. PMID:27170823
Decision-Making and Problem-Solving Approaches in Pharmacy Education.
Martin, Lindsay C; Donohoe, Krista L; Holdford, David A
2016-04-25
Domain 3 of the Center for the Advancement of Pharmacy Education (CAPE) 2013 Educational Outcomes recommends that pharmacy school curricula prepare students to be better problem solvers, but are silent on the type of problems they should be prepared to solve. We identified five basic approaches to problem solving in the curriculum at a pharmacy school: clinical, ethical, managerial, economic, and legal. These approaches were compared to determine a generic process that could be applied to all pharmacy decisions. Although there were similarities in the approaches, generic problem solving processes may not work for all problems. Successful problem solving requires identification of the problems faced and application of the right approach to the situation. We also advocate that the CAPE Outcomes make explicit the importance of different approaches to problem solving. Future pharmacists will need multiple approaches to problem solving to adapt to the complexity of health care.
Social problem-solving in Chinese baccalaureate nursing students.
Fang, Jinbo; Luo, Ying; Li, Yanhua; Huang, Wenxia
2016-11-01
To describe social problem solving in Chinese baccalaureate nursing students. A descriptive cross-sectional study was conducted with a cluster sample of 681 Chinese baccalaureate nursing students. The Chinese version of the Social Problem-Solving scale was used. Descriptive analyses, independent t-test and one-way analysis of variance were applied to analyze the data. The final year nursing students presented the highest scores of positive social problem-solving skills. Students with experiences of self-directed and problem-based learning presented significantly higher scores in Positive Problem Orientation subscale. The group with Critical thinking training experience, however, displayed higher negative problem solving scores compared with nonexperience group. Social problem solving abilities varied based upon teaching-learning strategies. Self-directed and problem-based learning may be recommended as effective way to improve social problem-solving ability. © 2016 Chinese Cochrane Center, West China Hospital of Sichuan University and John Wiley & Sons Australia, Ltd.
Problem Solving and Chemical Equilibrium: Successful versus Unsuccessful Performance.
ERIC Educational Resources Information Center
Camacho, Moises; Good, Ron
1989-01-01
Describes the problem-solving behaviors of experts and novices engaged in solving seven chemical equilibrium problems. Lists 27 behavioral tendencies of successful and unsuccessful problem solvers. Discusses several implications for a problem solving theory, think-aloud techniques, adequacy of the chemistry domain, and chemistry instruction.…
Worry and problem-solving skills and beliefs in primary school children.
Parkinson, Monika; Creswell, Cathy
2011-03-01
To examine the association between worry and problem-solving skills and beliefs (confidence and perceived control) in primary school children. Children (8-11 years) were screened using the Penn State Worry Questionnaire for Children. High (N= 27) and low (N= 30) scorers completed measures of anxiety, problem-solving skills (generating alternative solutions to problems, planfulness, and effectiveness of solutions) and problem-solving beliefs (confidence and perceived control). High and low worry groups differed significantly on measures of anxiety and problem-solving beliefs (confidence and control) but not on problem-solving skills. Consistent with findings with adults, worry in children was associated with cognitive distortions, not skills deficits. Interventions for worried children may benefit from a focus on increasing positive problem-solving beliefs. ©2010 The British Psychological Society.
NASA Astrophysics Data System (ADS)
Mushlihuddin, R.; Nurafifah; Irvan
2018-01-01
The student’s low ability in mathematics problem solving proved to the less effective of a learning process in the classroom. Effective learning was a learning that affects student’s math skills, one of which is problem-solving abilities. Problem-solving capability consisted of several stages: understanding the problem, planning the settlement, solving the problem as planned, re-examining the procedure and the outcome. The purpose of this research was to know: (1) was there any influence of PBL model in improving ability Problem solving of student math in a subject of vector analysis?; (2) was the PBL model effective in improving students’ mathematical problem-solving skills in vector analysis courses? This research was a quasi-experiment research. The data analysis techniques performed from the test stages of data description, a prerequisite test is the normality test, and hypothesis test using the ANCOVA test and Gain test. The results showed that: (1) there was an influence of PBL model in improving students’ math problem-solving abilities in vector analysis courses; (2) the PBL model was effective in improving students’ problem-solving skills in vector analysis courses with a medium category.
ERIC Educational Resources Information Center
Dufner, Hillrey A.; Alexander, Patricia A.
The differential effects of two different types of problem-solving training on the problem-solving abilities of gifted fourth graders were studied. Two successive classes of gifted fourth graders from Weslaco Independent School District (Texas) were pretested with the Coloured Progressive Matrices (CPM) and Thinking Creatively With Pictures…
Social problem-solving among adolescents treated for depression.
Becker-Weidman, Emily G; Jacobs, Rachel H; Reinecke, Mark A; Silva, Susan G; March, John S
2010-01-01
Studies suggest that deficits in social problem-solving may be associated with increased risk of depression and suicidality in children and adolescents. It is unclear, however, which specific dimensions of social problem-solving are related to depression and suicidality among youth. Moreover, rational problem-solving strategies and problem-solving motivation may moderate or predict change in depression and suicidality among children and adolescents receiving treatment. The effect of social problem-solving on acute treatment outcomes were explored in a randomized controlled trial of 439 clinically depressed adolescents enrolled in the Treatment for Adolescents with Depression Study (TADS). Measures included the Children's Depression Rating Scale-Revised (CDRS-R), the Suicidal Ideation Questionnaire--Grades 7-9 (SIQ-Jr), and the Social Problem-Solving Inventory-Revised (SPSI-R). A random coefficients regression model was conducted to examine main and interaction effects of treatment and SPSI-R subscale scores on outcomes during the 12-week acute treatment stage. Negative problem orientation, positive problem orientation, and avoidant problem-solving style were non-specific predictors of depression severity. In terms of suicidality, avoidant problem-solving style and impulsiveness/carelessness style were predictors, whereas negative problem orientation and positive problem orientation were moderators of treatment outcome. Implications of these findings, limitations, and directions for future research are discussed. Copyright 2009 Elsevier Ltd. All rights reserved.
Step by Step: Biology Undergraduates’ Problem-Solving Procedures during Multiple-Choice Assessment
Prevost, Luanna B.; Lemons, Paula P.
2016-01-01
This study uses the theoretical framework of domain-specific problem solving to explore the procedures students use to solve multiple-choice problems about biology concepts. We designed several multiple-choice problems and administered them on four exams. We trained students to produce written descriptions of how they solved the problem, and this allowed us to systematically investigate their problem-solving procedures. We identified a range of procedures and organized them as domain general, domain specific, or hybrid. We also identified domain-general and domain-specific errors made by students during problem solving. We found that students use domain-general and hybrid procedures more frequently when solving lower-order problems than higher-order problems, while they use domain-specific procedures more frequently when solving higher-order problems. Additionally, the more domain-specific procedures students used, the higher the likelihood that they would answer the problem correctly, up to five procedures. However, if students used just one domain-general procedure, they were as likely to answer the problem correctly as if they had used two to five domain-general procedures. Our findings provide a categorization scheme and framework for additional research on biology problem solving and suggest several important implications for researchers and instructors. PMID:27909021
Disciplinary Foundations for Solving Interdisciplinary Scientific Problems
ERIC Educational Resources Information Center
Zhang, Dongmei; Shen, Ji
2015-01-01
Problem-solving has been one of the major strands in science education research. But much of the problem-solving research has been conducted on discipline-based contexts; little research has been done on how students, especially individuals, solve interdisciplinary problems. To understand how individuals reason about interdisciplinary problems, we…
Engineering students' experiences and perceptions of workplace problem solving
NASA Astrophysics Data System (ADS)
Pan, Rui
In this study, I interviewed 22 engineering Co-Op students about their workplace problem solving experiences and reflections and explored: 1) Of Co-Op students who experienced workplace problem solving, what are the different ways in which students experience workplace problem solving? 2) How do students perceive a) the differences between workplace problem solving and classroom problem solving and b) in what areas are they prepared by their college education to solve workplace problems? To answer my first research question, I analyzed data through the lens of phenomenography and I conducted thematic analysis to answer my second research question. The results of this study have implications for engineering education and engineering practice. Specifically, the results reveal the different ways students experience workplace problem solving, which provide engineering educators and practicing engineers a better understanding of the nature of workplace engineering. In addition, the results indicate that there is still a gap between classroom engineering and workplace engineering. For engineering educators who aspire to prepare students to be future engineers, it is imperative to design problem solving experiences that can better prepare students with workplace competency.
Problem-Solving Deficits in Iranian People with Borderline Personality Disorder
Akbari Dehaghi, Ashraf; Kaviani, Hossein; Tamanaeefar, Shima
2014-01-01
Objective: Interventions for people suffering from borderline personality disorder (BPD), such as dialectical behavior therapy, often include a problem-solving component. However, there is an absence of published studies examining the problem-solving abilities of this client group in Iran. The study compared inpatients and outpatients with BPD and a control group on problem-solving capabilities in an Iranian sample. It was hypothesized that patients with BPD would have more deficiencies in this area. Methods: Fifteen patients with BPD were compared to 15 healthy participants. Means-ends problem-solving task (MEPS) was used to measure problem-solving skills in both groups. Results: BPD group reported less effective strategies in solving problems as opposed to the healthy group. Compared to the control group, participants with BPD provided empirical support for the use of problem-solving interventions with people suffering from BPD. Conclusions: The findings supported the idea that a problem-solving intervention can be efficiently applied either as a stand-alone therapy or in conjunction with other available psychotherapies to treat people with BPD. PMID:25798169
Enhancing memory and imagination improves problem solving among individuals with depression.
McFarland, Craig P; Primosch, Mark; Maxson, Chelsey M; Stewart, Brandon T
2017-08-01
Recent work has revealed links between memory, imagination, and problem solving, and suggests that increasing access to detailed memories can lead to improved imagination and problem-solving performance. Depression is often associated with overgeneral memory and imagination, along with problem-solving deficits. In this study, we tested the hypothesis that an interview designed to elicit detailed recollections would enhance imagination and problem solving among both depressed and nondepressed participants. In a within-subjects design, participants completed a control interview or an episodic specificity induction prior to completing memory, imagination, and problem-solving tasks. Results revealed that compared to the control interview, the episodic specificity induction fostered increased detail generation in memory and imagination and more relevant steps on the problem-solving task among depressed and nondepressed participants. This study builds on previous work by demonstrating that a brief interview can enhance problem solving among individuals with depression and supports the notion that episodic memory plays a key role in problem solving. It should be noted, however, that the results of the interview are relatively short-lived.
Measuring Family Problem Solving: The Family Problem Solving Diary.
ERIC Educational Resources Information Center
Kieren, Dianne K.
The development and use of the family problem-solving diary are described. The diary is one of several indicators and measures of family problem-solving behavior. It provides a record of each person's perception of day-to-day family problems (what the problem concerns, what happened, who got involved, what those involved did, how the problem…
Trumpower, David L; Goldsmith, Timothy E; Guynn, Melissa J
2004-12-01
Solving training problems with nonspecific goals (NG; i.e., solving for all possible unknown values) often results in better transfer than solving training problems with standard goals (SG; i.e., solving for one particular unknown value). In this study, we evaluated an attentional focus explanation of the goal specificity effect. According to the attentional focus view, solving NG problems causes attention to be directed to local relations among successive problem states, whereas solving SG problems causes attention to be directed to relations between the various problem states and the goal state. Attention to the former is thought to enhance structural knowledge about the problem domain and thus promote transfer. Results supported this view because structurally different transfer problems were solved faster following NG training than following SG training. Moreover, structural knowledge representations revealed more links depicting local relations following NG training and more links to the training goal following SG training. As predicted, these effects were obtained only by domain novices.
Problem-Solving After Traumatic Brain Injury in Adolescence: Associations With Functional Outcomes
Wade, Shari L.; Cassedy, Amy E.; Fulks, Lauren E.; Taylor, H. Gerry; Stancin, Terry; Kirkwood, Michael W.; Yeates, Keith O.; Kurowski, Brad G.
2017-01-01
Objective To examine the association of problem-solving with functioning in youth with traumatic brain injury (TBI). Design Cross-sectional evaluation of pretreatment data from a randomized controlled trial. Setting Four children’s hospitals and 1 general hospital, with level 1 trauma units. Participants Youth, ages 11 to 18 years, who sustained moderate or severe TBI in the last 18 months (N=153). Main Outcome Measures Problem-solving skills were assessed using the Social Problem-Solving Inventory (SPSI) and the Dodge Social Information Processing Short Stories. Everyday functioning was assessed based on a structured clinical interview using the Child and Adolescent Functional Assessment Scale (CAFAS) and via adolescent ratings on the Youth Self Report (YSR). Correlations and multiple regression analyses were used to examine associations among measures. Results The TBI group endorsed lower levels of maladaptive problem-solving (negative problem orientation, careless/impulsive responding, and avoidant style) and lower levels of rational problem-solving, resulting in higher total problem-solving scores for the TBI group compared with a normative sample (P<.001). Dodge Social Information Processing Short Stories dimensions were correlated (r=.23–.37) with SPSI subscales in the anticipated direction. Although both maladaptive (P<.001) and adaptive (P=.006) problem-solving composites were associated with overall functioning on the CAFAS, only maladaptive problem-solving (P<.001) was related to the YSR total when outcomes were continuous. For the both CAFAS and YSR logistic models, maladaptive style was significantly associated with greater risk of impairment (P=.001). Conclusions Problem-solving after TBI differs from normative samples and is associated with functional impairments. The relation of problem-solving deficits after TBI with global functioning merits further investigation, with consideration of the potential effects of problem-solving interventions on functional outcomes. PMID:28389109
Problem-Solving After Traumatic Brain Injury in Adolescence: Associations With Functional Outcomes.
Wade, Shari L; Cassedy, Amy E; Fulks, Lauren E; Taylor, H Gerry; Stancin, Terry; Kirkwood, Michael W; Yeates, Keith O; Kurowski, Brad G
2017-08-01
To examine the association of problem-solving with functioning in youth with traumatic brain injury (TBI). Cross-sectional evaluation of pretreatment data from a randomized controlled trial. Four children's hospitals and 1 general hospital, with level 1 trauma units. Youth, ages 11 to 18 years, who sustained moderate or severe TBI in the last 18 months (N=153). Problem-solving skills were assessed using the Social Problem-Solving Inventory (SPSI) and the Dodge Social Information Processing Short Stories. Everyday functioning was assessed based on a structured clinical interview using the Child and Adolescent Functional Assessment Scale (CAFAS) and via adolescent ratings on the Youth Self Report (YSR). Correlations and multiple regression analyses were used to examine associations among measures. The TBI group endorsed lower levels of maladaptive problem-solving (negative problem orientation, careless/impulsive responding, and avoidant style) and lower levels of rational problem-solving, resulting in higher total problem-solving scores for the TBI group compared with a normative sample (P<.001). Dodge Social Information Processing Short Stories dimensions were correlated (r=.23-.37) with SPSI subscales in the anticipated direction. Although both maladaptive (P<.001) and adaptive (P=.006) problem-solving composites were associated with overall functioning on the CAFAS, only maladaptive problem-solving (P<.001) was related to the YSR total when outcomes were continuous. For the both CAFAS and YSR logistic models, maladaptive style was significantly associated with greater risk of impairment (P=.001). Problem-solving after TBI differs from normative samples and is associated with functional impairments. The relation of problem-solving deficits after TBI with global functioning merits further investigation, with consideration of the potential effects of problem-solving interventions on functional outcomes. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Zhang, Yin; Chu, Samuel K. W.
2016-01-01
In recent years, a number of models concerning problem solving systems have been put forward. However, many of them stress on technology and neglect the research of problem solving itself, especially the learning mechanism related to problem solving. In this paper, we analyze the learning mechanism of problem solving, and propose that when…
Perceived problem solving, stress, and health among college students.
Largo-Wight, Erin; Peterson, P Michael; Chen, W William
2005-01-01
To study the relationships among perceived problem solving, stress, and physical health. The Perceived Stress Questionnaire (PSQ), Personal Problem solving Inventory (PSI), and a stress-related physical health symptoms checklist were used to measure perceived stress, problem solving, and health among undergraduate college students (N = 232). Perceived problem-solving ability predicted self-reported physical health symptoms (R2 = .12; P < .001) and perceived stress (R2 = .19; P < .001). Perceived problem solving was a stronger predictor of physical health and perceived stress than were physical activity, alcohol consumption, or social support. Implications for college health promotion are discussed.
NASA Astrophysics Data System (ADS)
Hull, Michael M.; Kuo, Eric; Gupta, Ayush; Elby, Andrew
2013-06-01
Much research in engineering and physics education has focused on improving students’ problem-solving skills. This research has led to the development of step-by-step problem-solving strategies and grading rubrics to assess a student’s expertise in solving problems using these strategies. These rubrics value “communication” between the student’s qualitative description of the physical situation and the student’s formal mathematical descriptions (usually equations) at two points: when initially setting up the equations, and when evaluating the final mathematical answer for meaning and plausibility. We argue that (i) neither the rubrics nor the associated problem-solving strategies explicitly value this kind of communication during mathematical manipulations of the chosen equations, and (ii) such communication is an aspect of problem-solving expertise. To make this argument, we present a case study of two students, Alex and Pat, solving the same kinematics problem in clinical interviews. We argue that Pat’s solution, which connects manipulation of equations to their physical interpretation, is more expertlike than Alex’s solution, which uses equations more algorithmically. We then show that the types of problem-solving rubrics currently available do not discriminate between these two types of solutions. We conclude that problem-solving rubrics should be revised or repurposed to more accurately assess problem-solving expertise.
The Science Semester: Cross-Disciplinary Inquiry for Prospective Elementary Teachers
NASA Astrophysics Data System (ADS)
Ford, Danielle J.; Fifield, Steve; Madsen, John; Qian, Xiaoyu
2013-10-01
We describe the Science Semester, a semester-long course block that integrates three science courses and a science education methods course for elementary teacher education majors, and examine prospective elementary teachers’ developing conceptions about inquiry, science teaching efficacy, and reflections on learning through inquiry. The Science Semester was designed to provide inquiry-oriented and problem-based learning experiences, opportunities to examine socially relevant issues through cross-disciplinary perspectives, and align with content found in elementary curricula and standards. By the end of the semester, prospective elementary teachers moved from naïve to intermediate understandings of inquiry and significantly increased self-efficacy for science teaching as measured on one subscore of the STEBI-B. Reflecting on the semester, prospective teachers understood and appreciated the goals of the course and the PBL format, but struggled with the open-ended and student-directed elements of the course.
"I Thought We Were over This Problem": Explorations of Race in/through Literature Inquiry
ERIC Educational Resources Information Center
Price-Dennis, Detra; Holmes, Kathlene; Smith, Emily E.
2016-01-01
This article examines classroom practices that draw upon students' understandings of race and equity as they engage in critical literature inquiry to explore issues of power in our society. Our research team, comprising a fifth-grade classroom teacher, a doctoral candidate, and a university professor, analyzed students' written and digital…
ERIC Educational Resources Information Center
Puente, Belinda
2017-01-01
The problem was that Hispanic English Second Language (ESL) students enrolled in the ESL program had consistently failed the California High School Exit Examination (CASHEE) in greater numbers than their cohorts. The purpose of this qualitative narrative inquiry was to explore the life stories of Hispanic ESL students in identifying the factors…
Higher Education: A Qualitative Inquiry into the Educational Experiences of Seven African Women.
ERIC Educational Resources Information Center
Otieno, Tabitha N.
This study was a qualitative inquiry that focused on the educational experiences of seven African women students' attempt to pursue higher education in their home countries. It identified the problems they encountered, and how they overcame them, and explored their educational experiences in the United States. Data came from systematic interviews…
ERIC Educational Resources Information Center
Saye, John W.; Brush, Thomas
2007-01-01
This article summarizes findings from a nine-year research program investigating how technological affordances might be used as a part of holistic learning environments to support teachers and learners in disciplined inquiry about persistent social issues. We discuss what our findings suggest about the potential and the limitations of…
ERIC Educational Resources Information Center
George-Williams, Stephen R.; Soo, Jue T.; Ziebell, Angela L.; Thompson, Christopher D.; Overton, Tina L.
2018-01-01
Many examples exist in the chemical education literature of individual experiments, whole courses or even entire year levels that have been completely renewed under the tenets of context-based, inquiry-based or problem-based learning. The benefits of these changes are well documented and include higher student engagement, broader skill development…
ERIC Educational Resources Information Center
Harris, Gabriel K.; Cvitkusic, Sanja; Draut, Amanda S.; Hathorn, Chelani S.; Stephens, Amanda M.; Constanza, Karen E.; Leonardelli, Michael J.; Watkins, Ruth H.; Dean, Lisa O.; Hentz, Nathaniel G.
2012-01-01
Food science laboratory courses are traditionally taught as a series of preplanned laboratories with known endpoints. In contrast, inquiry-guided (IG) laboratories allow students to ask questions, think through problems, design experiments, then adapt and learn in response to unexpected results. This study examined the effects of converting the…
ERIC Educational Resources Information Center
Tsai, Fu-Hsing
2018-01-01
This study developed a computer-simulated science inquiry environment, called the Science Detective Squad, to engage students in investigating an electricity problem that may happen in daily life. The environment combined the simulation of scientific instruments and a virtual environment, including gamified elements, such as points and a story for…
ERIC Educational Resources Information Center
Deys, Kellie L.; Deys, James L.
2016-01-01
For most millennials, information has always been a couple of quick taps away. Sites have seemingly always existed to provide them with "the answer." Instructors must recognize that not only are they teaching material from their disciplines, but also they are trying to teach the skill and value of critical inquiry. Adopting a Freirean…
Engaging Secondary Students in Collaborative Action-Oriented Inquiry: Challenges and Opportunities
ERIC Educational Resources Information Center
Clark, J. Spencer
2017-01-01
In this article, the author describes a collaborative problem-based inquiry project with eighty-three secondary students. The students attended a large high school situated in a medium size town, surrounded by farmland and smaller rural towns. Demographically, nearly half of the students identified as Latina/o, while the slight majority of the…
ERIC Educational Resources Information Center
Fielding-Wells, Jill; O'Brien, Mia; Makar, Katie
2017-01-01
Inquiry-based learning (IBL) is a pedagogical approach in which students address complex, ill-structured problems set in authentic contexts. While IBL is gaining ground in Australia as an instructional practice, there has been little research that considers implications for student motivation and engagement. Expectancy-value theory (Eccles and…
A Discussion of Individual, Institutional, and Cultural Racism, with Implications for HRD
ERIC Educational Resources Information Center
Scott, Chaunda L.
2007-01-01
The problem highlighted in this qualitative inquiry is that literature in HRD exploring racism in the United States in the forms of individual, institutional, and cultural racism is scant. This inquiry serves to encourage research and dialogue in HRD for the purpose of getting HRD more involved in developing strategies that can be used to…
ERIC Educational Resources Information Center
Lawton-Sticklor, Nastasia; Bodamer, Scott F.
2016-01-01
This article explores a research partnership between a university-based researcher and a middle school science teacher. Our partnership began with project-based inquiry and continued with unstructured thought-partner spaces: meetings with no agenda where we wrestled with problems of practice. Framed as incubation periods, these meetings allowed us…
Scholarly Practice and Inquiry: Dynamic Interactions in an Elementary Mathematics Methods Course
ERIC Educational Resources Information Center
Tyminski, Andrew M.; Brittain, McKenzie H.
2017-01-01
This paper represents research that exists at the crossroad of scholarly practice and scholarly inquiry. We share the design, enactment and empirical examination of an elementary methods course activity, Exploring and Supporting Student Thinking (ESST) which engaged 18 prospective teachers in two sessions of one on one problem posing with 3rd…
ERIC Educational Resources Information Center
Tomas, Louisa; Jackson, Cliff; Carlisle, Karen
2014-01-01
In 2012, the Australian Academy of Technological Sciences and Engineering (ATSE) piloted the "Wonder of Science Challenge" with a view to enhance school students' interest in Science, Technology, Engineering and Mathematics (STEM). Students in 15 schools across northern Queensland were provided with an inquiry-based research problem and…
From Trace Evidence to Bioinformatics: Putting Bryophytes into Molecular Biology Education
ERIC Educational Resources Information Center
Fuselier, Linda; Bougary, Azhar; Malott, Michelle
2011-01-01
Students benefit most from their science education when they participate fully in the process of science in the context of real-world problems. We describe a student-directed open-inquiry lab experience that has no predetermined outcomes and requires students to engage in all components of scientific inquiry from posing a question through…
Examining Tasks that Facilitate the Experience of Incubation While Problem-Solving
ERIC Educational Resources Information Center
Both, Lilly; Needham, Douglas; Wood, Eileen
2004-01-01
The three studies presented here contrasted the problem-solving outcomes of university students when a break was provided or not provided during a problem-solving session. In addition, two studies explored the effect of providing hints (priming) and the placement of hints during the problem-solving session. First, the ability to solve a previously…
NASA Astrophysics Data System (ADS)
Jua, S. K.; Sarwanto; Sukarmin
2018-05-01
Problem-solving skills are important skills in physics. However, according to some researchers, the problem-solving skill of Indonesian students’ problem in physics learning is categorized still low. The purpose of this study was to identify the profile of problem-solving skills of students who follow the across the interests program of physics. The subjects of the study were high school students of Social Sciences, grade X. The type of this research was descriptive research. The data which used to analyze the problem-solving skills were obtained through student questionnaires and the test results with impulse materials and collision. From the descriptive analysis results, the percentage of students’ problem-solving skill based on the test was 52.93% and indicators respectively. These results indicated that students’ problem-solving skill is categorized low.
Public Lab: Community-Based Approaches to Urban and Environmental Health and Justice.
Rey-Mazón, Pablo; Keysar, Hagit; Dosemagen, Shannon; D'Ignazio, Catherine; Blair, Don
2018-06-01
This paper explores three cases of Do-It-Yourself, open-source technologies developed within the diverse array of topics and themes in the communities around the Public Laboratory for Open Technology and Science (Public Lab). These cases focus on aerial mapping, water quality monitoring and civic science practices. The techniques discussed have in common the use of accessible, community-built technologies for acquiring data. They are also concerned with embedding collaborative and open source principles into the objects, tools, social formations and data sharing practices that emerge from these inquiries. The focus is on developing processes of collaborative design and experimentation through material engagement with technology and issues of concern. Problem-solving, here, is a tactic, while the strategy is an ongoing engagement with the problem of participation in its technological, social and political dimensions especially considering the increasing centralization and specialization of scientific and technological expertise. The authors also discuss and reflect on the Public Lab's approach to civic science in light of ideas and practices of citizen/civic veillance, or "sousveillance", by emphasizing people before data, and by investigating the new ways of seeing and doing that this shift in perspective might provide.
Quantitative modelling in cognitive ergonomics: predicting signals passed at danger.
Moray, Neville; Groeger, John; Stanton, Neville
2017-02-01
This paper shows how to combine field observations, experimental data and mathematical modelling to produce quantitative explanations and predictions of complex events in human-machine interaction. As an example, we consider a major railway accident. In 1999, a commuter train passed a red signal near Ladbroke Grove, UK, into the path of an express. We use the Public Inquiry Report, 'black box' data, and accident and engineering reports to construct a case history of the accident. We show how to combine field data with mathematical modelling to estimate the probability that the driver observed and identified the state of the signals, and checked their status. Our methodology can explain the SPAD ('Signal Passed At Danger'), generate recommendations about signal design and placement and provide quantitative guidance for the design of safer railway systems' speed limits and the location of signals. Practitioner Summary: Detailed ergonomic analysis of railway signals and rail infrastructure reveals problems of signal identification at this location. A record of driver eye movements measures attention, from which a quantitative model for out signal placement and permitted speeds can be derived. The paper is an example of how to combine field data, basic research and mathematical modelling to solve ergonomic design problems.
Inquiry, play, and problem solving in a process learning environment
NASA Astrophysics Data System (ADS)
Thwaits, Anne Y.
What is the nature of art/science collaborations in museums? How do art objects and activities contribute to the successes of science centers? Based on the premise that art exhibitions and art-based activities engage museum visitors in different ways than do strictly factual, information-based displays, I address these questions in a case study that examines the roles of visual art and artists in the Exploratorium, a museum that has influenced exhibit design and professional practice in many of the hands-on science centers in the United States and around the world. The marriage of art and science in education is not a new idea---Leonardo da Vinci and other early polymaths surely understood how their various endeavors informed one another, and some 20th century educators understood the value of the arts and creativity in the learning and practice of other disciplines. When, in 2010, the National Science Teachers Association added an A to the federal government's ubiquitous STEM initiative and turned it into STEAM, art educators nationwide took notice. With a heightened interest in the integration of and collaboration between disciplines comes an increased need for models of best practice for educators and educational institutions. With the intention to understand the nature of such collaborations and the potential they hold, I undertook this study. I made three site visits to the Exploratorium, where I took photos, recorded notes in a journal, interacted with exhibits, and observed museum visitors. I collected other data by examining the institution's website, press releases, annual reports, and fact sheets; and by reading popular and scholarly articles written by museum staff members and by independent journalists. I quickly realized that the Exploratorium was not created in the way than most museums are, and the history of its founding and the ideals of its founder illuminate what was then and continues now to be different about this museum from most others in the United States. This dissertation presents an account of the history of the institution and the continuing legacy of the early Exploratorium and its founder, Frank Oppenheimer. I argue that the institution is an early example of a constructivist learning museum. I then describe how art encourages learning in the museum. It provides means of presenting information that engage all of the senses and encourage emotional involvement. It reframes familiar sights so that viewers look more closely in search of recognition, and it presents intangible or dematerialized things in a tangible way. It facilitates play, with its many benefits. It brings fresh perspectives and processes to problem solving and the acquisition of new knowledge. This project is the study of an institution where art and science have always coexisted with equal importance, setting it apart from more traditional museums where art was added as a secondary focus to the original disciplinary concentration of the institution. Many of the exhibits were created by artists, but the real value the visual arts bring to the museum is in its contributions to processes such as inquiry, play, problem-solving, and innovation.
ERIC Educational Resources Information Center
Kiliç, Çigdem
2017-01-01
This study examined pre-service primary school teachers' performance in posing problems that require knowledge of problem-solving strategies. Quantitative and qualitative methods were combined. The 120 participants were asked to pose a problem that could be solved by using the find-a-pattern a particular problem-solving strategy. After that,…
ERIC Educational Resources Information Center
Maries, Alexandru; Singh, Chandralekha
2018-01-01
Drawing appropriate diagrams is a useful problem solving heuristic that can transform a problem into a representation that is easier to exploit for solving it. One major focus while helping introductory physics students learn effective problem solving is to help them understand that drawing diagrams can facilitate problem solution. We conducted an…
ERIC Educational Resources Information Center
Sleegers, Peter; Wassink, Hartger; van Veen, Klaas; Imants, Jeroen
2009-01-01
In addition to cognitive research on school leaders' problem solving, this study focuses on the situated and personal nature of problem framing by combining insights from cognitive research on problem solving and sense-making theory. The study reports the results of a case study of two school leaders solving problems in their daily context by…
The Place of Problem Solving in Contemporary Mathematics Curriculum Documents
ERIC Educational Resources Information Center
Stacey, Kaye
2005-01-01
This paper reviews the presentation of problem solving and process aspects of mathematics in curriculum documents from Australia, UK, USA and Singapore. The place of problem solving in the documents is reviewed and contrasted, and illustrative problems from teachers' support materials are used to demonstrate how problem solving is now more often…
Translation among Symbolic Representations in Problem-Solving. Revised.
ERIC Educational Resources Information Center
Shavelson, Richard J.; And Others
This study investigated the relationships among the symbolic representation of problems given to students to solve, the mental representations they use to solve the problems, and the accuracy of their solutions. Twenty eleventh-grade science students were asked to think aloud as they solved problems on the ideal gas laws. The problems were…
Using Students' Representations Constructed during Problem Solving to Infer Conceptual Understanding
ERIC Educational Resources Information Center
Domin, Daniel; Bodner, George
2012-01-01
The differences in the types of representations constructed during successful and unsuccessful problem-solving episodes were investigated within the context of graduate students working on problems that involve concepts from 2D-NMR. Success at problem solving was established by having the participants solve five problems relating to material just…
Errors and Understanding: The Effects of Error-Management Training on Creative Problem-Solving
ERIC Educational Resources Information Center
Robledo, Issac C.; Hester, Kimberly S.; Peterson, David R.; Barrett, Jamie D.; Day, Eric A.; Hougen, Dean P.; Mumford, Michael D.
2012-01-01
People make errors in their creative problem-solving efforts. The intent of this article was to assess whether error-management training would improve performance on creative problem-solving tasks. Undergraduates were asked to solve an educational leadership problem known to call for creative thought where problem solutions were scored for…
Encouraging Sixth-Grade Students' Problem-Solving Performance by Teaching through Problem Solving
ERIC Educational Resources Information Center
Bostic, Jonathan D.; Pape, Stephen J.; Jacobbe, Tim
2016-01-01
This teaching experiment provided students with continuous engagement in a problem-solving based instructional approach during one mathematics unit. Three sections of sixth-grade mathematics were sampled from a school in Florida, U.S.A. and one section was randomly assigned to experience teaching through problem solving. Students' problem-solving…
King Oedipus and the Problem Solving Process.
ERIC Educational Resources Information Center
Borchardt, Donald A.
An analysis of the problem solving process reveals at least three options: (1) finding the cause, (2) solving the problem, and (3) anticipating potential problems. These methods may be illustrated by examining "Oedipus Tyrannus," a play in which a king attempts to deal with a problem that appears to be beyond his ability to solve, and…
Problem Solving with the Elementary Youngster.
ERIC Educational Resources Information Center
Swartz, Vicki
This paper explores research on problem solving and suggests a problem-solving approach to elementary school social studies, using a culture study of the ancient Egyptians and King Tut as a sample unit. The premise is that problem solving is particularly effective in dealing with problems which do not have one simple and correct answer but rather…
ERIC Educational Resources Information Center
Karatas, Ilhan; Baki, Adnan
2013-01-01
Problem solving is recognized as an important life skill involving a range of processes including analyzing, interpreting, reasoning, predicting, evaluating and reflecting. For that reason educating students as efficient problem solvers is an important role of mathematics education. Problem solving skill is the centre of mathematics curriculum.…
The needs analysis of learning Inventive Problem Solving for technical and vocational students
NASA Astrophysics Data System (ADS)
Sai'en, Shanty; Tze Kiong, Tee; Yunos, Jailani Md; Foong, Lee Ming; Heong, Yee Mei; Mohaffyza Mohamad, Mimi
2017-08-01
Malaysian Ministry of Education highlighted in their National Higher Education Strategic plan that higher education’s need to focus adopting 21st century skills in order to increase a graduate’s employability. Current research indicates that most graduate lack of problem solving skills to help them securing the job. Realising the important of this skill hence an alternative way suggested as an option for high institution’s student to solve their problem. This study was undertaken to measure the level of problem solving skills, identify the needs of learning inventive problem solving skills and the needs of developing an Inventive problem solving module. Using a questionnaire, the study sampled 132 students from Faculty of Technical and Vocational Education. Findings indicated that majority of the students fail to define what is an inventive problem and the root cause of a problem. They also unable to state the objectives and goal thus fail to solve the problem. As a result, the students agreed on the developing Inventive Problem Solving Module to assist them.
Holden, Richard J; Rivera-Rodriguez, A Joy; Faye, Héléne; Scanlon, Matthew C; Karsh, Ben-Tzion
2013-08-01
The most common change facing nurses today is new technology, particularly bar coded medication administration technology (BCMA). However, there is a dearth of knowledge on how BCMA alters nursing work. This study investigated how BCMA technology affected nursing work, particularly nurses' operational problem-solving behavior. Cognitive systems engineering observations and interviews were conducted after the implementation of BCMA in three nursing units of a freestanding pediatric hospital. Problem-solving behavior, associated problems, and goals, were specifically defined and extracted from observed episodes of care. Three broad themes regarding BCMA's impact on problem solving were identified. First, BCMA allowed nurses to invent new problem-solving behavior to deal with pre-existing problems. Second, BCMA made it difficult or impossible to apply some problem-solving behaviors that were commonly used pre-BCMA, often requiring nurses to use potentially risky workarounds to achieve their goals. Third, BCMA created new problems that nurses were either able to solve using familiar or novel problem-solving behaviors, or unable to solve effectively. Results from this study shed light on hidden hazards and suggest three critical design needs: (1) ecologically valid design; (2) anticipatory control; and (3) basic usability. Principled studies of the actual nature of clinicians' work, including problem solving, are necessary to uncover hidden hazards and to inform health information technology design and redesign.
Holden, Richard J.; Rivera-Rodriguez, A. Joy; Faye, Héléne; Scanlon, Matthew C.; Karsh, Ben-Tzion
2012-01-01
The most common change facing nurses today is new technology, particularly bar coded medication administration technology (BCMA). However, there is a dearth of knowledge on how BCMA alters nursing work. This study investigated how BCMA technology affected nursing work, particularly nurses’ operational problem-solving behavior. Cognitive systems engineering observations and interviews were conducted after the implementation of BCMA in three nursing units of a freestanding pediatric hospital. Problem-solving behavior, associated problems, and goals, were specifically defined and extracted from observed episodes of care. Three broad themes regarding BCMA’s impact on problem solving were identified. First, BCMA allowed nurses to invent new problem-solving behavior to deal with pre-existing problems. Second, BCMA made it difficult or impossible to apply some problem-solving behaviors that were commonly used pre-BCMA, often requiring nurses to use potentially risky workarounds to achieve their goals. Third, BCMA created new problems that nurses were either able to solve using familiar or novel problem-solving behaviors, or unable to solve effectively. Results from this study shed light on hidden hazards and suggest three critical design needs: (1) ecologically valid design; (2) anticipatory control; and (3) basic usability. Principled studies of the actual nature of clinicians’ work, including problem solving, are necessary to uncover hidden hazards and to inform health information technology design and redesign. PMID:24443642
Bayindir Çevik, Ayfer; Olgun, Nermin
2015-04-01
This study aimed to determine the relationship between problem-solving and nursing process application skills of nursing. This is a longitudinal and correlational study. The sample included 71 students. An information form, Problem-Solving Inventory, and nursing processes the students presented at the end of clinical courses were used for data collection. Although there was no significant relationship between problem-solving skills and nursing process grades, improving problem-solving skills increased successful grades. Problem-solving skills and nursing process skills can be concomitantly increased. Students were suggested to use critical thinking, practical approaches, and care plans, as well as revising nursing processes in order to improve their problem-solving skills and nursing process application skills. © 2014 NANDA International, Inc.
Cook, Anthony L; Snow, Elizabeth T; Binns, Henrica; Cook, Peta S
2015-01-01
Inquiry-based learning (IBL) activities are complementary to the processes of laboratory discovery, as both are focused on producing new findings through research and inquiry. Here, we describe the results of student surveys taken pre- and postpractical to an IBL undergraduate practical on PCR. Our analysis focuses primarily student perceptions of knowledge acquisition and their ability to troubleshoot problems. The survey results demonstrate significant self-reported gains in knowledge related to DNA structure and PCR, and an increase in confidence with "troubleshooting problems during scientific experiments." We conclude that the IBL-based approach that combines PCR primer design with wet laboratory experimentation using student-designed primers, provides students a sense of confidence by imparting workplace and research skills that are integral to diverse forms and applications of laboratory practices. © 2015 The International Union of Biochemistry and Molecular Biology.
An, Ji-Young
2016-01-01
Objectives This article reviews an evaluation vector model driven from a participatory action research leveraging a collective inquiry system named SMILE (Stanford Mobile Inquiry-based Learning Environment). Methods SMILE has been implemented in a diverse set of collective inquiry generation and analysis scenarios including community health care-specific professional development sessions and community-based participatory action research projects. In each scenario, participants are given opportunities to construct inquiries around physical and emotional health-related phenomena in their own community. Results Participants formulated inquiries as well as potential clinical treatments and hypothetical scenarios to address health concerns or clarify misunderstandings or misdiagnoses often found in their community practices. From medical universities to rural village health promotion organizations, all participatory inquiries and potential solutions can be collected and analyzed. The inquiry and solution sets represent an evaluation vector which helps educators better understand community health issues at a much deeper level. Conclusions SMILE helps collect problems that are most important and central to their community health concerns. The evaluation vector, consisting participatory and collective inquiries and potential solutions, helps the researchers assess the participants' level of understanding on issues around health concerns and practices while helping the community adequately formulate follow-up action plans. The method used in SMILE requires much further enhancement with machine learning and advanced data visualization. PMID:27525157
Collis-Romberg Mathematical Problem Solving Profiles.
ERIC Educational Resources Information Center
Collis, K. F.; Romberg, T. A.
Problem solving has become a focus of mathematics programs in Australia in recent years, necessitating the assessment of students' problem-solving abilities. This manual provides a problem-solving assessment and teaching resource package containing four elements: (1) profiles assessment items; (2) profiles diagnostic forms for recording individual…
Wilper, Andrew P; Smith, Curtis Scott; Weppner, William
2013-01-01
Background The Accreditation Council for Graduate Medical Education (ACGME) requires that training programs integrate system-based practice (SBP) and practice-based learning and improvement (PBLI) into internal medicine residency curricula. Context and setting We instituted a seminar series and year-long-mentored curriculum designed to engage internal medicine residents in these competencies. Methods Residents participate in a seminar series that includes assigned reading and structured discussion with faculty who assist in the development of quality improvement or research projects. Residents pursue projects over the remainder of the year. Monthly works in progress meetings, protected time for inquiry, and continued faculty mentorship guide the residents in their project development. Trainees present their work at hospital-wide grand rounds at the end of the academic year. We performed a survey of residents to assess their self-reported knowledge, attitudes and skills in SBP and PBLI. In addition, blinded faculty scored projects for appropriateness, impact, and feasibility. Outcomes We measured resident self-reported knowledge, attitudes, and skills at the end of the academic year. We found evidence that participants improved their understanding of the context in which they were practicing, and that their ability to engage in quality improvement projects increased. Blinded faculty reviewers favorably ranked the projects' feasibility, impact, and appropriateness. The 'Curriculum of Inquiry' generated 11 quality improvement and research projects during the study period. Barriers to the ongoing work include a limited supply of mentors and delays due to Institutional Review Board approval. Hospital leadership recognizes the importance of the curriculum, and our accreditation manager now cites our ongoing work. Conclusions A structured residency-based curriculum facilitates resident demonstration of SBP and practice-based learning and improvement. Residents gain knowledge and skills though this enterprise and hospitals gain access to trainees who help to solve ongoing problems and meet accreditation requirements.
NASA Astrophysics Data System (ADS)
Pujiastuti, E.; Waluya, B.; Mulyono
2018-03-01
There were many ways of solving the problem offered by the experts. The author combines various ways of solving the problem as a form of novelty. Among the learning model that was expected to support the growth of problem-solving skills was SAVI. The purpose, to obtain trace results from the analysis of the problem-solving ability of students in the Dual Integral material. The research method was a qualitative approach. Its activities include tests was filled with mathematical connections, observation, interviews, FGD, and triangulation. The results were: (1) some students were still experiencing difficulties in solving the problems. (2) The application of modification of SAVI learning model effective in supporting the growth of problem-solving abilities. (3) The strength of the students related to solving the problem, there were two students in the excellent category, there were three students in right classes and one student in the medium group.
Flexibility in Mathematics Problem Solving Based on Adversity Quotient
NASA Astrophysics Data System (ADS)
Dina, N. A.; Amin, S. M.; Masriyah
2018-01-01
Flexibility is an ability which is needed in problem solving. One of the ways in problem solving is influenced by Adversity Quotient (AQ). AQ is the power of facing difficulties. There are three categories of AQ namely climber, camper, and quitter. This research is a descriptive research using qualitative approach. The aim of this research is to describe flexibility in mathematics problem solving based on Adversity Quotient. The subjects of this research are climber student, camper student, and quitter student. This research was started by giving Adversity Response Profile (ARP) questioner continued by giving problem solving task and interviews. The validity of data measurement was using time triangulation. The results of this research shows that climber student uses two strategies in solving problem and doesn’t have difficulty. The camper student uses two strategies in solving problem but has difficulty to finish the second strategies. The quitter student uses one strategy in solving problem and has difficulty to finish it.
Analogy as a strategy for supporting complex problem solving under uncertainty.
Chan, Joel; Paletz, Susannah B F; Schunn, Christian D
2012-11-01
Complex problem solving in naturalistic environments is fraught with uncertainty, which has significant impacts on problem-solving behavior. Thus, theories of human problem solving should include accounts of the cognitive strategies people bring to bear to deal with uncertainty during problem solving. In this article, we present evidence that analogy is one such strategy. Using statistical analyses of the temporal dynamics between analogy and expressed uncertainty in the naturalistic problem-solving conversations among scientists on the Mars Rover Mission, we show that spikes in expressed uncertainty reliably predict analogy use (Study 1) and that expressed uncertainty reduces to baseline levels following analogy use (Study 2). In addition, in Study 3, we show with qualitative analyses that this relationship between uncertainty and analogy is not due to miscommunication-related uncertainty but, rather, is primarily concentrated on substantive problem-solving issues. Finally, we discuss a hypothesis about how analogy might serve as an uncertainty reduction strategy in naturalistic complex problem solving.
Interference thinking in constructing students’ knowledge to solve mathematical problems
NASA Astrophysics Data System (ADS)
Jayanti, W. E.; Usodo, B.; Subanti, S.
2018-04-01
This research aims to describe interference thinking in constructing students’ knowledge to solve mathematical problems. Interference thinking in solving problems occurs when students have two concepts that interfere with each other’s concept. Construction of problem-solving can be traced using Piaget’s assimilation and accommodation framework, helping to know the students’ thinking structures in solving the problems. The method of this research was a qualitative method with case research strategy. The data in this research involving problem-solving result and transcripts of interviews about students’ errors in solving the problem. The results of this research focus only on the student who experience proactive interference, where student in solving a problem using old information to interfere with the ability to recall new information. The student who experience interference thinking in constructing their knowledge occurs when the students’ thinking structures in the assimilation and accommodation process are incomplete. However, after being given reflection to the student, then the students’ thinking process has reached equilibrium condition even though the result obtained remains wrong.
Insightful problem solving and emulation in brown capuchin monkeys.
Renner, Elizabeth; Abramo, Allison M; Karen Hambright, M; Phillips, Kimberley A
2017-05-01
We investigated problem solving abilities of capuchin monkeys via the "floating object problem," a task in which the subject must use creative problem solving to retrieve a favored food item from the bottom of a clear tube. Some great apes have solved this problem by adding water to raise the object to a level at which it can be easily grabbed. We presented seven capuchins with the task over eight trials (four "dry" and four "wet"). None of the subjects solved the task, indicating that no capuchin demonstrated insightful problem solving under these experimental conditions. We then investigated whether capuchins would emulate a solution to the task. Seven subjects observed a human model solve the problem by pouring water from a cup into the tube, which brought the object to the top of the tube, allowing the subject to retrieve it. Subjects were then allowed to interact freely with an unfilled tube containing the object in the presence of water and objects that could be used to solve the task. While most subjects were unable to solve the task after viewing a demonstrator solve it, one subject did so, but in a unique way. Our results are consistent with some previous results in great ape species and indicate that capuchins do not spontaneously solve the floating object problem via insight.
Incorporating Inquiry into Upper-Level Homework Assignments: The Mini-Journal
NASA Astrophysics Data System (ADS)
Whittington, A. G.; Speck, A. K.; Witzig, S. B.; Abell, S. K.
2009-12-01
The U.S. National Science Education Standards provide guidelines for teaching science through inquiry, where students actively develop their understanding of science by combining scientific knowledge with reasoning and thinking skills. Inquiry activities include reading scientific literature, generating hypotheses, designing and carrying out investigations, interpreting data, and formulating conclusions. Inquiry-based instruction emphasizes questions, evidence, and explanation, the essential features of inquiry. As part of an NSF-funded project, “CUES: Connecting Undergraduates to the Enterprise of Science,” new inquiry-based homework materials were developed for two upper-level classes at the University of Missouri: Geochemistry (required for Geology majors), and Solar System Science (open to seniors and graduate students, co-taught and cross-listed between Geology and Physics & Astronomy). We engage students in inquiry-based learning by presenting homework exercises as “mini-journal” articles that follow the format of a scientific journal article, including a title, authors, abstract, introduction, methods, results, discussion and citations to peer-reviewed literature. The mini-journal provides a scaffold and serves as a springboard for students to develop and carry out their own follow-up investigation. They then present their findings in the form of their own mini-journal. Mini-journals replace traditional homework problem sets with a format that more directly reflects and encourages scientific practice. Students are engaged in inquiry-based homework which encompass doing, thinking, and communicating, while the minijournal allows the instructor to contain lines of inquiry within the limits posed by available resources. In the examples we present, research is conducted via spreadsheet modeling, where the students develop their own spreadsheets. The key differences between the old and new formats include (i) the active participation of the students in defining the problem that they will pursue, (ii) the open-ended nature of the inquiry, such that students need to recognize when they have enough information to answer their question, (iii) presentation of results in graphical and tabular formats, and (iv) a written discussion of their findings. We present both the rationale for and concept of using mini-journal homeworks, and provide specific examples we are currently employing in classes. In addition, we explore the challenges (real and perceived) and successes associated with implementing such a technique, and examine student feedback comparing mini-journal and traditional homework formats from the same classes.
Tenison, Caitlin; Fincham, Jon M; Anderson, John R
2014-02-01
This research explores how to determine when mathematical problems are solved by retrieval versus computation strategies. Past research has indicated that verbal reports, solution latencies, and neural imaging all provide imperfect indicators of this distinction. Participants in the current study solved mathematical problems involving two distinct problem types, called 'Pyramid' and 'Formula' problems. Participants were given extensive training solving 3 select Pyramid and 3 select Formula problems. Trained problems were highly practiced, whereas untrained problems were not. The distinction between untrained and trained problems was observed in the data. Untrained problems took longer to solve, more often used procedural strategies and showed a greater activation in the horizontal intraparietal sulcus (HIPS) when compared to trained problems. A classifier fit to the neural distinction between trained-untrained problems successfully predicted training within and between the two problem types. We employed this classifier to generate a prediction of strategy use. By combining evidence from the classifier, problem solving latencies, and retrospective reports, we predicted the strategy used to solve each problem in the scanner and gained unexpected insight into the distinction between different strategies. Copyright © 2013 Elsevier Ltd. All rights reserved.
Problem solving therapy - use and effectiveness in general practice.
Pierce, David
2012-09-01
Problem solving therapy (PST) is one of the focused psychological strategies supported by Medicare for use by appropriately trained general practitioners. This article reviews the evidence base for PST and its use in the general practice setting. Problem solving therapy involves patients learning or reactivating problem solving skills. These skills can then be applied to specific life problems associated with psychological and somatic symptoms. Problem solving therapy is suitable for use in general practice for patients experiencing common mental health conditions and has been shown to be as effective in the treatment of depression as antidepressants. Problem solving therapy involves a series of sequential stages. The clinician assists the patient to develop new empowering skills, and then supports them to work through the stages of therapy to determine and implement the solution selected by the patient. Many experienced GPs will identify their own existing problem solving skills. Learning about PST may involve refining and focusing these skills.
Collection of solved problems in physics
NASA Astrophysics Data System (ADS)
Koupilová, ZdeÅka; Mandíková, Dana; Snětinová, Marie
2017-01-01
To solve physics problems is a key ability which students should reach during their physics education. Ten years ago we started to develop a Collection of fully solved problems. The structure of problems' solutions is specially designed to substitute tutor's help during lesson and encourage students to solve at least some parts of a problem independently. Nowadays the database contains about 770 fully solved problems in physics in Czech, more than 100 problems in Polish and more than 140 problems in English. Other problems are still being translated. Except for physics problems, the Collection has also a mathematical part, which contains more than 300 fully solved problems in mathematics. This paper follows the presentation of the Collection of solved problems from previous years and introduces a new interface of the Collection, its enhanced functionality, new topics, newly created interface for teachers, user feedback and plans for future development. The database is placed at the website of the Department of Physics Education, Faculty of Mathematics and Physics, Charles University in Prague, the links are: http://reseneulohy.cz/fyzika (Czech version); http://www.physicstasks.eu/ (English version).
Argument Based Science Inquiry (ABSI) Learning Model in Voltaic Cell Concept
NASA Astrophysics Data System (ADS)
Subarkah, C. Z.; Fadilah, A.; Aisyah, R.
2017-09-01
Voltaic Cell is a sub-concept of electrochemistry that is considered difficult to be comprehended by learners Voltaic Cell is a sub concept of electrochemistry that is considered difficult to be understood by learners so that impacts on student activity in learning process. Therefore the learning model Argument Based Science Inquiry (ABSI) will be applied to the concept of Voltaic cell. This research aims to describe students’ activities during learning process using ABSI model and to analyze students’ competency to solve ABSI-based worksheets (LK) of Voltaic Cell concept. The method used in this research was the “mix-method-quantitative-embedded” method with subjects of the study: 39 second-semester students of Chemistry Education study program. The student activity is quite good during ABSI learning. The students’ ability to complete worksheet (LK) for every average phase is good. In the phase of exploration of post instruction understanding, it is categorized very good, and in the phase of negotiation shape III: comparing science ideas to textbooks or other printed resources merely reach enough category. Thus, the ABSI learning has improved the student levels of activity and students’ competency to solve the ABSI-based worksheet (LK).
Pre-service mathematics teachers’ ability in solving well-structured problem
NASA Astrophysics Data System (ADS)
Paradesa, R.
2018-01-01
This study aimed to describe the mathematical problem-solving ability of undergraduate students of mathematics education in solving the well-structured problem. The type of this study was qualitative descriptive. The subjects in this study were 100 undergraduate students of Mathematics Education at one of the private universities in Palembang city. The data in this study was collected through two test items with essay form. The results of this study showed that, from the first problem, only 8% students can solve it, but do not check back again to validate the process. Based on a scoring rubric that follows Polya strategy, their answer satisfied 2 4 2 0 patterns. But, from the second problem, 45% students satisfied it. This is because the second problem imitated from the example that was given in learning process. The average score of undergraduate students mathematical problem-solving ability in solving well-structured problems showed 56.00 with standard deviation was 13.22. It means that, from 0 - 100 scale, undergraduate students mathematical problem-solving ability can be categorized low. From this result, the conclusion was undergraduate students of mathematics education in Palembang still have a problem in solving mathematics well-structured problem.
ERIC Educational Resources Information Center
Chen, Limin; Van Dooren, Wim; Chen, Qi; Verschaffel, Lieven
2011-01-01
In the present study, which is a part of a research project about realistic word problem solving and problem posing in Chinese elementary schools, a problem solving and a problem posing test were administered to 128 pre-service and in-service elementary school teachers from Tianjin City in China, wherein the teachers were asked to solve 3…
Abdollahi, Abbas; Abu Talib, Mansor; Carlbring, Per; Harvey, Richard; Yaacob, Siti Nor; Ismail, Zanariah
2016-06-01
This study was designed to examine the relationships between problem-solving skills, hardiness, and perceived stress and to test the moderating role of hardiness in the relationship between problem-solving skills and perceived stress among 500 undergraduates from Malaysian public universities. The analyses showed that undergraduates with poor problem-solving confidence, external personal control of emotion, and approach-avoidance style were more likely to report perceived stress. Hardiness moderated the relationships between problem-solving skills and perceived stress. These findings reinforce the importance of moderating role of hardiness as an influencing factor that explains how problem-solving skills affect perceived stress among undergraduates.
NASA Astrophysics Data System (ADS)
Jeon, Kyungmoon; Huffman, Douglas; Noh, Taehee
2005-10-01
This study investigated the effects of a thinking aloud pair problem solving (TAPPS) approach on students' chemistry problem-solving performance and verbal interactions. A total of 85 eleventh grade students from three classes in a Korean high school were randomly assigned to one of three groups; either individually using a problem-solving strategy, using a problem-solving strategy with TAPPS, or the control group. After instruction, students' problem-solving performance was examined. The results showed that students in both the individual and TAPPS groups performed better than those in the control group on recalling the related law and mathematical execution, while students in the TAPPS group performed better than those in the other groups on conceptual knowledge. To investigate the verbal behaviors using TAPPS, verbal behaviors of solvers and listeners were classified into 8 categories. Listeners' verbal behavior of "agreeing" and "pointing out", and solvers' verbal behavior of "modifying" were positively related with listeners' problem-solving performance. There was, however, a negative correlation between listeners' use of "point out" and solvers' problem-solving performance. The educational implications of this study are discussed.
Pedagogy and/or technology: Making difference in improving students' problem solving skills
NASA Astrophysics Data System (ADS)
Hrepic, Zdeslav; Lodder, Katherine; Shaw, Kimberly A.
2013-01-01
Pen input computers combined with interactive software may have substantial potential for promoting active instructional methodologies and for facilitating students' problem solving ability. An excellent example is a study in which introductory physics students improved retention, conceptual understanding and problem solving abilities when one of three weekly lectures was replaced with group problem solving sessions facilitated with Tablet PCs and DyKnow software [1,2]. The research goal of the present study was to isolate the effect of the methodology itself (using additional time to teach problem solving) from that of the involved technology. In Fall 2011 we compared the performance of students taking the same introductory physics lecture course while enrolled in two separate problem-solving sections. One section used pen-based computing to facilitate group problem solving while the other section used low-tech methods for one third of the semester (covering Kinematics), and then traded technologies for the middle third of the term (covering Dynamics). Analysis of quiz, exam and standardized pre-post test results indicated no significant difference in scores of the two groups. Combining this result with those of previous studies implies primacy of pedagogy (collaborative problem solving itself) over technology for student learning in problem solving recitations.
Working memory dysfunctions predict social problem solving skills in schizophrenia.
Huang, Jia; Tan, Shu-ping; Walsh, Sarah C; Spriggens, Lauren K; Neumann, David L; Shum, David H K; Chan, Raymond C K
2014-12-15
The current study aimed to examine the contribution of neurocognition and social cognition to components of social problem solving. Sixty-seven inpatients with schizophrenia and 31 healthy controls were administrated batteries of neurocognitive tests, emotion perception tests, and the Chinese Assessment of Interpersonal Problem Solving Skills (CAIPSS). MANOVAs were conducted to investigate the domains in which patients with schizophrenia showed impairments. Correlations were used to determine which impaired domains were associated with social problem solving, and multiple regression analyses were conducted to compare the relative contribution of neurocognitive and social cognitive functioning to components of social problem solving. Compared with healthy controls, patients with schizophrenia performed significantly worse in sustained attention, working memory, negative emotion, intention identification and all components of the CAIPSS. Specifically, sustained attention, working memory and negative emotion identification were found to correlate with social problem solving and 1-back accuracy significantly predicted the poor performance in social problem solving. Among the dysfunctions in schizophrenia, working memory contributed most to deficits in social problem solving in patients with schizophrenia. This finding provides support for targeting working memory in the development of future social problem solving rehabilitation interventions. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
ERIC Educational Resources Information Center
Szetela, W.; Super, D.
A problem-solving program supplemented by calculators in one treatment group was conducted in 63 grade 7 classes with about 1350 students. Teachers were provided with problems correlated with textbooks, and instruction for teaching problem-solving strategies. School districts provided calculators and problem-solving materials. Pretest scores…
ERIC Educational Resources Information Center
Docktor, Jennifer L.; Dornfeld, Jay; Frodermann, Evan; Heller, Kenneth; Hsu, Leonardo; Jackson, Koblar Alan; Mason, Andrew; Ryan, Qing X.; Yang, Jie
2016-01-01
Problem solving is a complex process valuable in everyday life and crucial for learning in the STEM fields. To support the development of problem-solving skills it is important for researchers and curriculum developers to have practical tools that can measure the difference between novice and expert problem-solving performance in authentic…
Problem Solving: How Can We Help Students Overcome Cognitive Difficulties
ERIC Educational Resources Information Center
Cardellini, Liberato
2014-01-01
The traditional approach to teach problem solving usually consists in showing students the solutions of some example-problems and then in asking students to practice individually on solving a certain number of related problems. This approach does not ensure that students learn to solve problems and above all to think about the solution process in…
Step by Step: Biology Undergraduates' Problem-Solving Procedures during Multiple-Choice Assessment
ERIC Educational Resources Information Center
Prevost, Luanna B.; Lemons, Paula P.
2016-01-01
This study uses the theoretical framework of domain-specific problem solving to explore the procedures students use to solve multiple-choice problems about biology concepts. We designed several multiple-choice problems and administered them on four exams. We trained students to produce written descriptions of how they solved the problem, and this…
Analog Processor To Solve Optimization Problems
NASA Technical Reports Server (NTRS)
Duong, Tuan A.; Eberhardt, Silvio P.; Thakoor, Anil P.
1993-01-01
Proposed analog processor solves "traveling-salesman" problem, considered paradigm of global-optimization problems involving routing or allocation of resources. Includes electronic neural network and auxiliary circuitry based partly on concepts described in "Neural-Network Processor Would Allocate Resources" (NPO-17781) and "Neural Network Solves 'Traveling-Salesman' Problem" (NPO-17807). Processor based on highly parallel computing solves problem in significantly less time.
Problem Solving Appraisal of Delinquent Adolescents.
ERIC Educational Resources Information Center
Perez, Ruperto M.; And Others
The study investigated the following: (1) the relationship of problem solving appraisal to narcissistic vulnerability, locus of control, and depression; (2) the differences in problem solving appraisal, locus of control, and depression in first-time and repeat offenders; and (3) the prediction of problem solving appraisal by narcissistic…
Computer Programming: A Medium for Teaching Problem Solving.
ERIC Educational Resources Information Center
Casey, Patrick J.
1997-01-01
Argues that including computer programming in the curriculum as a medium for instruction is a feasible alternative for teaching problem solving. Discusses the nature of problem solving; the problem-solving elements of discovery, motivation, practical learning situations and flexibility which are inherent in programming; capabilities of computer…