ERIC Educational Resources Information Center
Abdullah, Sopiah; Shariff, Adilah
2008-01-01
The purpose of the study was to investigate the effects of inquiry-based computer simulation with heterogeneous-ability cooperative learning (HACL) and inquiry-based computer simulation with friendship cooperative learning (FCL) on (a) scientific reasoning (SR) and (b) conceptual understanding (CU) among Form Four students in Malaysian Smart…
ERIC Educational Resources Information Center
Lin, Li-Fen; Hsu, Ying-Shao; Yeh, Yi-Fen
2012-01-01
Several researchers have investigated the effects of computer simulations on students' learning. However, few have focused on how simulations with authentic contexts influences students' inquiry skills. Therefore, for the purposes of this study, we developed a computer simulation (FossilSim) embedded in an authentic inquiry lesson. FossilSim…
ERIC Educational Resources Information Center
Cohen, Edward Charles
2013-01-01
Design based research was utilized to investigate how students use a greenhouse effect simulation in order to derive best learning practices. During this process, students recognized the authentic scientific process involving computer simulations. The simulation used is embedded within an inquiry-based technology-mediated science curriculum known…
ERIC Educational Resources Information Center
Chabalengula, Vivien; Fateen, Rasheta; Mumba, Frackson; Ochs, Laura Kathryn
2016-01-01
This study investigated the effect of an inquiry-based computer simulation modeling (ICoSM) instructional approach on pre-service science teachers' understanding of homeostasis and its related concepts, and their perceived design features of the ICoSM and simulation that enhanced their conceptual understanding of these concepts. Fifty pre-service…
ERIC Educational Resources Information Center
Huang, Kun; Ge, Xun; Eseryel, Deniz
2017-01-01
This study investigated the effects of metaconceptually-enhanced, simulation-based inquiry learning on eighth grade students' conceptual change in science and their development of science epistemic beliefs. Two experimental groups studied the topics of motion and force using the same computer simulations but with different simulation guides: one…
ERIC Educational Resources Information Center
Gonczi, Amanda L.; Maeng, Jennifer L.; Bell, Randy L.; Whitworth, Brooke A.
2016-01-01
This mixed-methods study sought to identify professional development implementation variables that may influence participant (a) adoption of simulations, and (b) use for inquiry-based science instruction. Two groups (Cohort 1, N = 52; Cohort 2, N = 104) received different professional development. Cohort 1 was focused on Web site use mechanics.…
ERIC Educational Resources Information Center
Psycharis, Sarantos
2016-01-01
Computational experiment approach considers models as the fundamental instructional units of Inquiry Based Science and Mathematics Education (IBSE) and STEM Education, where the model take the place of the "classical" experimental set-up and simulation replaces the experiment. Argumentation in IBSE and STEM education is related to the…
NASA Astrophysics Data System (ADS)
Nugraha, Muhamad Gina; Kaniawati, Ida; Rusdiana, Dadi; Kirana, Kartika Hajar
2016-02-01
Among the purposes of physics learning at high school is to master the physics concepts and cultivate scientific attitude (including critical attitude), develop inductive and deductive reasoning skills. According to Ennis et al., inductive and deductive reasoning skills are part of critical thinking. Based on preliminary studies, both of the competence are lack achieved, it is seen from student learning outcomes is low and learning processes that are not conducive to cultivate critical thinking (teacher-centered learning). One of learning model that predicted can increase mastery concepts and train CTS is inquiry learning model aided computer simulations. In this model, students were given the opportunity to be actively involved in the experiment and also get a good explanation with the computer simulations. From research with randomized control group pretest-posttest design, we found that the inquiry learning model aided computer simulations can significantly improve students' mastery concepts than the conventional (teacher-centered) method. With inquiry learning model aided computer simulations, 20% of students have high CTS, 63.3% were medium and 16.7% were low. CTS greatly contribute to the students' mastery concept with a correlation coefficient of 0.697 and quite contribute to the enhancement mastery concept with a correlation coefficient of 0.603.
Inquiry-Based Whole-Class Teaching with Computer Simulations in Physics
ERIC Educational Resources Information Center
Rutten, Nico; van der Veen, Jan T.; van Joolingen, Wouter R.
2015-01-01
In this study we investigated the pedagogical context of whole-class teaching with computer simulations. We examined relations between the attitudes and learning goals of teachers and their students regarding the use of simulations in whole-class teaching, and how teachers implement these simulations in their teaching practices. We observed…
Elementary Teachers' Simulation Adoption and Inquiry-Based Use Following Professional Development
ERIC Educational Resources Information Center
Gonczi, Amanda; Maeng, Jennifer; Bell, Randy
2017-01-01
The purpose of this study was to characterize and compare 64 elementary science teachers' computer simulation use prior to and following professional development (PD) aligned with Innovation Adoption Theory. The PD highlighted computer simulation affordances that elementary teachers might find particularly useful. Qualitative and quantitative…
ERIC Educational Resources Information Center
Tsai, Fu-Hsing
2018-01-01
This study developed a computer-simulated science inquiry environment, called the Science Detective Squad, to engage students in investigating an electricity problem that may happen in daily life. The environment combined the simulation of scientific instruments and a virtual environment, including gamified elements, such as points and a story for…
A Structured-Inquiry Approach to Teaching Neurophysiology Using Computer Simulation
Crisp, Kevin M.
2012-01-01
Computer simulation is a valuable tool for teaching the fundamentals of neurophysiology in undergraduate laboratories where time and equipment limitations restrict the amount of course content that can be delivered through hands-on interaction. However, students often find such exercises to be tedious and unstimulating. In an effort to engage students in the use of computational modeling while developing a deeper understanding of neurophysiology, an attempt was made to use an educational neurosimulation environment as the basis for a novel, inquiry-based research project. During the semester, students in the class wrote a research proposal, used the Neurodynamix II simulator to generate a large data set, analyzed their modeling results statistically, and presented their findings at the Midbrains Neuroscience Consortium undergraduate poster session. Learning was assessed in the form of a series of short term papers and two 10-min in-class writing responses to the open-ended question, “How do ion channels influence neuronal firing?”, which they completed on weeks 6 and 15 of the semester. Students’ answers to this question showed a deeper understanding of neuronal excitability after the project; their term papers revealed evidence of critical thinking about computational modeling and neuronal excitability. Suggestions for the adaptation of this structured-inquiry approach into shorter term lab experiences are discussed. PMID:23494064
Computer Based Collaborative Problem Solving for Introductory Courses in Physics
NASA Astrophysics Data System (ADS)
Ilie, Carolina; Lee, Kevin
2010-03-01
We discuss collaborative problem solving computer-based recitation style. The course is designed by Lee [1], and the idea was proposed before by Christian, Belloni and Titus [2,3]. The students find the problems on a web-page containing simulations (physlets) and they write the solutions on an accompanying worksheet after discussing it with a classmate. Physlets have the advantage of being much more like real-world problems than textbook problems. We also compare two protocols for web-based instruction using simulations in an introductory physics class [1]. The inquiry protocol allowed students to control input parameters while the worked example protocol did not. We will discuss which of the two methods is more efficient in relation to Scientific Discovery Learning and Cognitive Load Theory. 1. Lee, Kevin M., Nicoll, Gayle and Brooks, Dave W. (2004). ``A Comparison of Inquiry and Worked Example Web-Based Instruction Using Physlets'', Journal of Science Education and Technology 13, No. 1: 81-88. 2. Christian, W., and Belloni, M. (2001). Physlets: Teaching Physics With Interactive Curricular Material, Prentice Hall, Englewood Cliffs, NJ. 3. Christian,W., and Titus,A. (1998). ``Developing web-based curricula using Java Physlets.'' Computers in Physics 12: 227--232.
The Use of a Computer Simulation to Promote Scientific Conceptions of Moon Phases
ERIC Educational Resources Information Center
Bell, Randy L.; Trundle, Kathy Cabe
2008-01-01
This study described the conceptual understandings of 50 early childhood (Pre-K-3) preservice teachers about standards-based lunar concepts before and after inquiry-based instruction utilizing educational technology. The instructional intervention integrated the planetarium software "Starry Night Backyard[TM]" with instruction on moon phases from…
ERIC Educational Resources Information Center
Blikstein, Paulo; Wilensky, Uri
2009-01-01
This article reports on "MaterialSim", an undergraduate-level computational materials science set of constructionist activities which we have developed and tested in classrooms. We investigate: (a) the cognition of students engaging in scientific inquiry through interacting with simulations; (b) the effects of students programming simulations as…
NASA Astrophysics Data System (ADS)
Smetana, Lara Kathleen; Bell, Randy L.
2012-06-01
Researchers have explored the effectiveness of computer simulations for supporting science teaching and learning during the past four decades. The purpose of this paper is to provide a comprehensive, critical review of the literature on the impact of computer simulations on science teaching and learning, with the goal of summarizing what is currently known and providing guidance for future research. We report on the outcomes of 61 empirical studies dealing with the efficacy of, and implications for, computer simulations in science instruction. The overall findings suggest that simulations can be as effective, and in many ways more effective, than traditional (i.e. lecture-based, textbook-based and/or physical hands-on) instructional practices in promoting science content knowledge, developing process skills, and facilitating conceptual change. As with any other educational tool, the effectiveness of computer simulations is dependent upon the ways in which they are used. Thus, we outline specific research-based guidelines for best practice. Computer simulations are most effective when they (a) are used as supplements; (b) incorporate high-quality support structures; (c) encourage student reflection; and (d) promote cognitive dissonance. Used appropriately, computer simulations involve students in inquiry-based, authentic science explorations. Additionally, as educational technologies continue to evolve, advantages such as flexibility, safety, and efficiency deserve attention.
NASA Astrophysics Data System (ADS)
Cakir, Mustafa
The primary objective of this case study was to examine prospective secondary science teachers' developing understanding of scientific inquiry and Mendelian genetics. A computer simulation of basic Mendelian inheritance processes (Catlab) was used in combination with small-group discussions and other instructional scaffolds to enhance prospective science teachers' understandings. The theoretical background for this research is derived from a social constructivist perspective. Structuring scientific inquiry as investigation to develop explanations presents meaningful context for the enhancement of inquiry abilities and understanding of the science content. The context of the study was a teaching and learning course focused on inquiry and technology. Twelve prospective science teachers participated in this study. Multiple data sources included pre- and post-module questionnaires of participants' view of scientific inquiry, pre-posttests of understandings of Mendelian concepts, inquiry project reports, class presentations, process videotapes of participants interacting with the simulation, and semi-structured interviews. Seven selected prospective science teachers participated in in-depth interviews. Findings suggest that while studying important concepts in science, carefully designed inquiry experiences can help prospective science teachers to develop an understanding about the types of questions scientists in that field ask, the methodological and epistemological issues that constrain their pursuit of answers to those questions, and the ways in which they construct and share their explanations. Key findings included prospective teachers' initial limited abilities to create evidence-based arguments, their hesitancy to include inquiry in their future teaching, and the impact of collaboration on thinking. Prior to this experience the prospective teachers held uninformed views of scientific inquiry. After the module, participants demonstrated extended expertise in their understandings of following aspects of scientific inquiry: (a) the iterative nature of scientific inquiry; (b) the tentativeness of specific knowledge claims; (c) the degree to which scientists rely on empirical data, as well as broader conceptual and metaphysical commitments, to assess models and to direct future inquiries; (d) the need for conceptual consistency; (e) multiple methods of investigations and multiple interpretations of data; and (f) social and cultural aspects of scientific inquiry. This research provided evidence that hypothesis testing can support the integrated acquisition of conceptual and procedural knowledge in science. Participants' conceptual elaborations of Mendelian inheritance were enhanced. There were qualitative changes in the nature of the participants' explanations. Moreover, the average percentage of correct responses improved from 39% on the pretest to 67% on the posttest. Findings also suggest those prospective science teachers' experiences as learners of science in their methods course served as a powerful tool for thinking about the role of inquiry in teaching and learning science. They had mixed views about enacting inquiry in their teaching in the future. All of them stated some kind of general willingness to do so; yet, they also mentioned some reservations and practical considerations about inquiry-based teaching.
ERIC Educational Resources Information Center
Kukkonen, Jari Ensio; Kärkkäinen, Sirpa; Dillon, Patrick; Keinonen, Tuula
2014-01-01
Research has demonstrated that simulation-based inquiry learning has significant advantages for learning outcomes when properly scaffolded. For successful learning in science with simulation-based inquiry, one needs to ascertain levels of background knowledge so as to support learners in making, evaluating and modifying hypotheses, conducting…
ERIC Educational Resources Information Center
Soderberg, Patti; Price, Frank
2003-01-01
Examines a lesson in which students are engaged in inquiry in evolutionary biology to develop better understanding of concepts and reasoning skills necessary to support knowledge claims about changes in the genetic structure of populations known as microevolution. Explains how a software simulation, EVOLVE, can be used to foster discussions about…
NASA Astrophysics Data System (ADS)
Kukkonen, Jari Ensio; Kärkkäinen, Sirpa; Dillon, Patrick; Keinonen, Tuula
2014-02-01
Research has demonstrated that simulation-based inquiry learning has significant advantages for learning outcomes when properly scaffolded. For successful learning in science with simulation-based inquiry, one needs to ascertain levels of background knowledge so as to support learners in making, evaluating and modifying hypotheses, conducting experiments and interpreting data, and to regulate the learning process. This case study examines the influence of scaffolded simulation-based inquiry learning on fifth-graders' (n = 21) models of the greenhouse effect. The pupils were asked to make annotated drawings about the greenhouse effect both before and after scaffolding through simulation-based instructional interventions. The data were analysed qualitatively to investigate the impact of the interventions on the representations that pupils used in their descriptions of the greenhouse effect. It was found that scaffolded simulation-based inquiry learning noticeably enriched the concepts pupils used in their representations leading to better understanding of the phenomenon. In many cases, the fifth graders produced quite sophisticated representations.
Computational Inquiry in Introductory Statistics
ERIC Educational Resources Information Center
Toews, Carl
2017-01-01
Inquiry-based pedagogies have a strong presence in proof-based undergraduate mathematics courses, but can be difficult to implement in courses that are large, procedural, or highly computational. An introductory course in statistics would thus seem an unlikely candidate for an inquiry-based approach, as these courses typically steer well clear of…
The Effects of a Concept Map-Based Support Tool on Simulation-Based Inquiry Learning
ERIC Educational Resources Information Center
Hagemans, Mieke G.; van der Meij, Hans; de Jong, Ton
2013-01-01
Students often need support to optimize their learning in inquiry learning environments. In 2 studies, we investigated the effects of adding concept-map-based support to a simulation-based inquiry environment on kinematics. The concept map displayed the main domain concepts and their relations, while dynamic color coding of the concepts displayed…
Mathematics Career Simulations: An Invitation
ERIC Educational Resources Information Center
Sinn, Robb; Phipps, Marnie
2013-01-01
A simulated academic career was combined with inquiry-based learning in an upper-division undergraduate mathematics course. Concepts such as tenure, professional conferences and journals were simulated. Simulation procedures were combined with student-led, inquiry-based classroom formats. A qualitative analysis (ethnography) describes the culture…
ERIC Educational Resources Information Center
Street, Garrett M.; Laubach, Timothy A.
2013-01-01
We provide a 5E structured-inquiry lesson so that students can learn more of the mathematics behind the logistic model of population biology. By using models and mathematics, students understand how population dynamics can be influenced by relatively simple changes in the environment.
The Use of a Computer Simulation to Promote Conceptual Change: A Quasi-Experimental Study
ERIC Educational Resources Information Center
Trundle, Kathy Cabe; Bell, Randy L.
2010-01-01
This mixed-methods investigation compared the effectiveness of three instructional approaches in achieving desired conceptual change among early childhood preservice teachers (n = 157). Each of the three treatments employed inquiry-based instruction on moon phases using data collected from: (1) the planetarium software program, Starry Night[TM],…
Inquiry Style Interactive Virtual Experiments: A Case on Circular Motion
ERIC Educational Resources Information Center
Zhou, Shaona; Han, Jing; Pelz, Nathaniel; Wang, Xiaojun; Peng, Liangyu; Xiao, Hua; Bao, Lei
2011-01-01
Interest in computer-based learning, especially in the use of virtual reality simulations is increasing rapidly. While there are good reasons to believe that technologies have the potential to improve teaching and learning, how to utilize the technology effectively in teaching specific content difficulties is challenging. To help students develop…
Social Choice in a Computer-Assisted Simulation
ERIC Educational Resources Information Center
Thavikulwat, Precha
2009-01-01
Pursuing a line of inquiry suggested by Crookall, Martin, Saunders, and Coote, the author applied, within the framework of design science, an optimal-design approach to incorporate into a computer-assisted simulation two innovative social choice processes: the multiple period double auction and continuous voting. Expectations that the…
Inquiry-Based Learning Case Studies for Computing and Computing Forensic Students
ERIC Educational Resources Information Center
Campbell, Jackie
2012-01-01
Purpose: The purpose of this paper is to describe and discuss the use of specifically-developed, inquiry-based learning materials for Computing and Forensic Computing students. Small applications have been developed which require investigation in order to de-bug code, analyse data issues and discover "illegal" behaviour. The applications…
ERIC Educational Resources Information Center
Wagh, Aditi; Cook-Whitt, Kate; Wilensky, Uri
2017-01-01
Research on the design of learning environments for K-12 science education has been informed by two bodies of literature: inquiry-based science and Constructionism. Inquiry-based science has emphasized engagement in activities that reflect authentic scientific practices. Constructionism has focused on designing intuitively accessible authoring…
ERIC Educational Resources Information Center
Wilkerson, Michelle Hoda; Andrews, Chelsea; Shaban, Yara; Laina, Vasiliki; Gravel, Brian E.
2016-01-01
This paper explores the role that technology can play in engaging pre-service teachers with the iterative, "messy" nature of model-based inquiry. Over the course of 5 weeks, 11 pre-service teachers worked in groups to construct models of diffusion using a computational animation and simulation toolkit, and designed lesson plans for the…
Inquiry-Based Learning of Molecular Phylogenetics
ERIC Educational Resources Information Center
Campo, Daniel; Garcia-Vazquez, Eva
2008-01-01
Reconstructing phylogenies from nucleotide sequences is a challenge for students because it strongly depends on evolutionary models and computer tools that are frequently updated. We present here an inquiry-based course aimed at learning how to trace a phylogeny based on sequences existing in public databases. Computer tools are freely available…
Guidance Provided by Teacher and Simulation for Inquiry-Based Learning: A Case Study
ERIC Educational Resources Information Center
Lehtinen, Antti; Viiri, Jouni
2017-01-01
Current research indicates that inquiry-based learning should be guided in order to achieve optimal learning outcomes. The need for guidance is even greater when simulations are used because of their high information content and the difficulty of extracting information from them. Previous research on guidance for learning with simulations has…
NASA Astrophysics Data System (ADS)
Cohen, Edward Charles
Design based research was utilized to investigate how students use a greenhouse effect simulation in order to derive best learning practices. During this process, students recognized the authentic scientific process involving computer simulations. The simulation used is embedded within an inquiry-based technology-mediated science curriculum known as Web-based Inquiry Science Environment (WISE). For this research, students from a suburban, diverse, middle school setting use the simulations as part of a two week-long class unit on climate change. A pilot study was conducted during phase one of the research that informed phase two, which encompasses the dissertation. During the pilot study, as students worked through the simulation, evidence of shifts in student motivation, understanding of science content, and ideas about the nature of science became present using a combination of student interviews, focus groups, and students' conversations. Outcomes of the pilot study included improvements to the pedagogical approach. Allowing students to do "Extreme Testing" (e.g., making the world as hot or cold as possible) and increasing the time for free exploration of the simulation are improvements made as a result of the findings of the pilot study. In the dissertation (phase two of the research design) these findings were implemented in a new curriculum scaled for 85 new students from the same school during the next school year. The modifications included new components implementing simulations as an assessment tool for all students and embedded modeling tools. All students were asked to build pre and post models, however due to technological constraints these were not an effective tool. A non-video group of 44 students was established and another group of 41 video students had a WISE curriculum which included twelve minutes of scientists' conversational videos referencing explicit aspects on the nature of science, specifically the use of models and simulations in science. The students in the video group had marked improvement compared to the non-video group on questions regarding modeling as a tool for representing objects and processes of science modeling aspects as evident by multiple data sources. The findings from the dissertation have potential impacts on improving Nature of Science (NOS) concepts around modeling by efficiently embedding short authentic scientific videos that can be easily used by many educators. Compared to published assessments by the American Association for the Advancement of Science (AAAS), due to the curriculum interventions both groups scored higher than the average United States middle school student on many NOS and climate content constructs.
NASA Astrophysics Data System (ADS)
Cohen, E.
2013-12-01
Design based research was utilized to investigate how students use a greenhouse effect simulation in order to derive best learning practices. During this process, students recognized the authentic scientific process involving computer simulations. The simulation used is embedded within an inquiry-based technology-mediated science curriculum known as Web-based Inquiry Science Environment (WISE). For this research, students from a suburban, diverse, middle school setting use the simulations as part of a two week-long class unit on climate change. A pilot study was conducted during phase one of the research that informed phase two, which encompasses the dissertation. During the pilot study, as students worked through the simulation, evidence of shifts in student motivation, understanding of science content, and ideas about the nature of science became present using a combination of student interviews, focus groups, and students' conversations. Outcomes of the pilot study included improvements to the pedagogical approach. Allowing students to do 'Extreme Testing' (e.g., making the world as hot or cold as possible) and increasing the time for free exploration of the simulation are improvements made as a result of the findings of the pilot study. In the dissertation (phase two of the research design) these findings were implemented in a new curriculum scaled for 85 new students from the same school during the next school year. The modifications included new components implementing simulations as an assessment tool for all students and embedded modeling tools. All students were asked to build pre and post models, however due to technological constraints these were not an effective tool. A non-video group of 44 students was established and another group of 41 video students had a WISE curriculum which included twelve minutes of scientists' conversational videos referencing explicit aspects on the nature of science, specifically the use of models and simulations in science. The students in the video group had marked improvement compared to the non-video group on questions regarding modeling as a tool for representing objects and processes of science modeling aspects as evident by multiple data sources. The findings from the dissertation have potential impacts on improving Nature of Science (NOS) concepts around modeling by efficiently embedding short authentic scientific videos that can be easily used by many educators. Compared to published assessments by the American Association for the Advancement of Science (AAAS), due to the curriculum interventions both groups scored higher than the average United States middle school student on many NOS and climate content constructs.
NASA Astrophysics Data System (ADS)
Persano Adorno, Dominique; Pizzolato, Nicola; Fazio, Claudio
2015-09-01
Within the context of higher education for science or engineering undergraduates, we present an inquiry-driven learning path aimed at developing a more meaningful conceptual understanding of the electron dynamics in semiconductors in the presence of applied electric fields. The electron transport in a nondegenerate n-type indium phosphide bulk semiconductor is modelled using a multivalley Monte Carlo approach. The main characteristics of the electron dynamics are explored under different values of the driving electric field, lattice temperature and impurity density. Simulation results are presented by following a question-driven path of exploration, starting from the validation of the model and moving up to reasoned inquiries about the observed characteristics of electron dynamics. Our inquiry-driven learning path, based on numerical simulations, represents a viable example of how to integrate a traditional lecture-based teaching approach with effective learning strategies, providing science or engineering undergraduates with practical opportunities to enhance their comprehension of the physics governing the electron dynamics in semiconductors. Finally, we present a general discussion about the advantages and disadvantages of using an inquiry-based teaching approach within a learning environment based on semiconductor simulations.
Ontological and Epistemological Issues Regarding Climate Models and Computer Experiments
NASA Astrophysics Data System (ADS)
Vezer, M. A.
2010-12-01
Recent philosophical discussions (Parker 2009; Frigg and Reiss 2009; Winsberg, 2009; Morgon 2002, 2003, 2005; Gula 2002) about the ontology of computer simulation experiments and the epistemology of inferences drawn from them are of particular relevance to climate science as computer modeling and analysis are instrumental in understanding climatic systems. How do computer simulation experiments compare with traditional experiments? Is there an ontological difference between these two methods of inquiry? Are there epistemological considerations that result in one type of inference being more reliable than the other? What are the implications of these questions with respect to climate studies that rely on computer simulation analysis? In this paper, I examine these philosophical questions within the context of climate science, instantiating concerns in the philosophical literature with examples found in analysis of global climate change. I concentrate on Wendy Parker’s (2009) account of computer simulation studies, which offers a treatment of these and other questions relevant to investigations of climate change involving such modelling. Two theses at the center of Parker’s account will be the focus of this paper. The first is that computer simulation experiments ought to be regarded as straightforward material experiments; which is to say, there is no significant ontological difference between computer and traditional experimentation. Parker’s second thesis is that some of the emphasis on the epistemological importance of materiality has been misplaced. I examine both of these claims. First, I inquire as to whether viewing computer and traditional experiments as ontologically similar in the way she does implies that there is no proper distinction between abstract experiments (such as ‘thought experiments’ as well as computer experiments) and traditional ‘concrete’ ones. Second, I examine the notion of materiality (i.e., the material commonality between object and target systems) and some arguments for the claim that materiality entails some inferential advantage to traditional experimentation. I maintain that Parker’s account of the ontology of computer simulations has some interesting though potentially problematic implications regarding conventional distinctions between abstract and concrete methods of inquiry. With respect to her account of materiality, I outline and defend an alternative account, posited by Mary Morgan (2002, 2003, 2005), which holds that ontological similarity between target and object systems confers some epistemological advantage to traditional forms of experimental inquiry.
ERIC Educational Resources Information Center
Ruzhitskaya, Lanika
2011-01-01
The presented research study investigated the effects of computer-supported inquiry-based learning and peer interaction methods on effectiveness of learning a scientific concept. The stellar parallax concept was selected as a basic, and yet important in astronomy, scientific construct, which is based on a straightforward relationship of several…
ERIC Educational Resources Information Center
Ray, Darrell L.
2013-01-01
Students often enter biology programs deficient in the math and computational skills that would enhance their attainment of a deeper understanding of the discipline. To address some of these concerns, I developed a series of spreadsheet simulation exercises that focus on some of the mathematical foundations of scientific inquiry and the benefits…
NASA Astrophysics Data System (ADS)
Akuma, Fru Vitalis; Callaghan, Ronel
2017-11-01
Inquiry-based science education has been incorporated in science curricula internationally. In this regard, however, many teachers encounter challenges. The challenges have been characterised into those linked to the personal characteristics of these teachers (intrinsic challenges) and others associated with contextual factors (extrinsic challenges). However, this level of characterisation is inadequate in terms of appreciating the complexity of the challenges, tracking of their development, and discovering knowledge within specific categories. Against this background, the purpose of the research presented here was to characterise extrinsic challenges linked to the design and implementation of inquiry-based practical work. In order to do so, we used a conceptual framework of teaching challenges based on Bronfenbrenner's ecological theory of human development. The data gathered using a multi-method case study of practical work in two South African high schools, was analysed by combining the data-driven inductive approach and the deductive a priori template of codes approach in thematic analysis. On this basis, the extrinsic challenges linked to the design and implementation of inquiry-based practical work that participants are confronted with, were found to consist of macrosystem challenges (such as a restrictive curriculum) and microsystem challenges. At the latter level, the challenges are material-related (e.g., lack of science education equipment and materials) or non-material-related (such as time constraints and the lack of access to interactive computer simulations). We have discussed the theory-, practice- and research-based implications of these results in relation to the design and implementation of inquiry-based practical work in South Africa and internationally.
ERIC Educational Resources Information Center
Psycharis, Sarantos
2016-01-01
In this study, an instructional design model, based on the computational experiment approach, was employed in order to explore the effects of the formative assessment strategies and scientific abilities rubrics on students' engagement in the development of inquiry-based pedagogical scenario. In the following study, rubrics were used during the…
Technology: Catalyst for Enhancing Chemical Education for Pre-service Teachers
NASA Astrophysics Data System (ADS)
Kumar, Vinay; Bedell, Julia Yang; Seed, Allen H.
1999-05-01
A DOE/KYEPSCoR-funded project enabled us to introduce a new curricular initiative aimed at improving the chemical education of pre-service elementary teachers. The new curriculum was developed in collaboration with the School of Education faculty. A new course for the pre-service teachers, "Discovering Chemistry with Lab" (CHE 105), was developed. The integrated lecture and lab course covers basic principles of chemistry and their applications in daily life. The course promotes reasoning and problem-solving skills and utilizes hands-on, discovery/guided-inquiry, and cooperative learning approaches. This paper describes the implementation of technology (computer-interfacing and simulation experiments) in the lab. Results of two assessment surveys conducted in the laboratory are also discussed. The key features of the lab course are eight new experiments, including four computer-interfacing/simulation experiments involving the use of Macintosh Power PCs, temperature and pH probes, and a serial box interface, and use of household materials. Several experiments and the midterm and final lab practical exams emphasize the discovery/guided-inquiry approach. The results of pre- and post-surveys showed very significant positive changes in students' attitude toward the relevancy of chemistry, use of technology (computers) in elementary school classrooms, and designing and teaching discovery-based units. Most students indicated that they would be very interested (52%) or interested (36%) in using computers in their science teaching.
ERIC Educational Resources Information Center
Sandoval, William A.; Daniszewski, Kenneth
2004-01-01
This paper explores how two teachers concurrently enacting the same technology-based inquiry unit on evolution structured activity and discourse in their classrooms to connect students' computer-based investigations to formal domain theories. Our analyses show that the teachers' interactions with their students during inquiry were quite similar,…
ERIC Educational Resources Information Center
Simon, Nicole A.
2013-01-01
Virtual laboratory experiments using interactive computer simulations are not being employed as viable alternatives to laboratory science curriculum at extensive enough rates within higher education. Rote traditional lab experiments are currently the norm and are not addressing inquiry, Critical Thinking, and cognition throughout the laboratory…
ERIC Educational Resources Information Center
Fan, Xinxin; Geelan, David; Gillies, Robyn
2018-01-01
This study investigated the effectiveness of a novel inquiry-based instructional sequence using interactive simulations for supporting students' development of conceptual understanding, inquiry process skills and confidence in learning. The study, conducted in Beijing, involved two teachers and 117 students in four classes. The teachers…
Bit by Bit or All at Once? Splitting up the Inquiry Task to Promote Children's Scientific Reasoning
ERIC Educational Resources Information Center
Lazonder, Ard W.; Kamp, Ellen
2012-01-01
This study examined whether and why assigning children to a segmented inquiry task makes their investigations more productive. Sixty-one upper elementary-school pupils engaged in a simulation-based inquiry assignment either received a multivariable inquiry task (n = 21), a segmented version of this task that addressed the variables in successive…
NASA Astrophysics Data System (ADS)
Ryoo, Jean; Goode, Joanna; Margolis, Jane
2015-10-01
This article describes the importance that high school computer science teachers place on a teachers' professional learning community designed around an inquiry- and equity-oriented approach for broadening participation in computing. Using grounded theory to analyze four years of teacher surveys and interviews from the Exploring Computer Science (ECS) program in the Los Angeles Unified School District, this article describes how participating in professional development activities purposefully aimed at fostering a teachers' professional learning community helps ECS teachers make the transition to an inquiry-based classroom culture and break professional isolation. This professional learning community also provides experiences that challenge prevalent deficit notions and stereotypes about which students can or cannot excel in computer science.
ERIC Educational Resources Information Center
Chen, Ching-Huei; Chen, Chia-Ying
2012-01-01
This study examined the effects of an inquiry-based learning (IBL) approach compared to that of a problem-based learning (PBL) approach on learner performance, attitude toward science and inquiry ability. Ninety-six students from three 7th-grade classes at a public school were randomly assigned to two experimental groups and one control group. All…
An Evaluation of an Inquiry-Based Computer-Assisted Learning Environment.
ERIC Educational Resources Information Center
Maor, Dorit; Fraser, Barry
1994-01-01
This study focused on students' development of inquiry skills in a computerized learning environment. Seven Year-11 classes (n=120) interacted with a computerized database, "Birds of Antarctica," and curriculum materials while the teacher used an inquiry approach to learning. Students perceived their classes as more investigative and…
Science Classroom Inquiry (SCI) Simulations: A Novel Method to Scaffold Science Learning
Peffer, Melanie E.; Beckler, Matthew L.; Schunn, Christian; Renken, Maggie; Revak, Amanda
2015-01-01
Science education is progressively more focused on employing inquiry-based learning methods in the classroom and increasing scientific literacy among students. However, due to time and resource constraints, many classroom science activities and laboratory experiments focus on simple inquiry, with a step-by-step approach to reach predetermined outcomes. The science classroom inquiry (SCI) simulations were designed to give students real life, authentic science experiences within the confines of a typical classroom. The SCI simulations allow students to engage with a science problem in a meaningful, inquiry-based manner. Three discrete SCI simulations were created as website applications for use with middle school and high school students. For each simulation, students were tasked with solving a scientific problem through investigation and hypothesis testing. After completion of the simulation, 67% of students reported a change in how they perceived authentic science practices, specifically related to the complex and dynamic nature of scientific research and how scientists approach problems. Moreover, 80% of the students who did not report a change in how they viewed the practice of science indicated that the simulation confirmed or strengthened their prior understanding. Additionally, we found a statistically significant positive correlation between students’ self-reported changes in understanding of authentic science practices and the degree to which each simulation benefitted learning. Since SCI simulations were effective in promoting both student learning and student understanding of authentic science practices with both middle and high school students, we propose that SCI simulations are a valuable and versatile technology that can be used to educate and inspire a wide range of science students on the real-world complexities inherent in scientific study. PMID:25786245
Science classroom inquiry (SCI) simulations: a novel method to scaffold science learning.
Peffer, Melanie E; Beckler, Matthew L; Schunn, Christian; Renken, Maggie; Revak, Amanda
2015-01-01
Science education is progressively more focused on employing inquiry-based learning methods in the classroom and increasing scientific literacy among students. However, due to time and resource constraints, many classroom science activities and laboratory experiments focus on simple inquiry, with a step-by-step approach to reach predetermined outcomes. The science classroom inquiry (SCI) simulations were designed to give students real life, authentic science experiences within the confines of a typical classroom. The SCI simulations allow students to engage with a science problem in a meaningful, inquiry-based manner. Three discrete SCI simulations were created as website applications for use with middle school and high school students. For each simulation, students were tasked with solving a scientific problem through investigation and hypothesis testing. After completion of the simulation, 67% of students reported a change in how they perceived authentic science practices, specifically related to the complex and dynamic nature of scientific research and how scientists approach problems. Moreover, 80% of the students who did not report a change in how they viewed the practice of science indicated that the simulation confirmed or strengthened their prior understanding. Additionally, we found a statistically significant positive correlation between students' self-reported changes in understanding of authentic science practices and the degree to which each simulation benefitted learning. Since SCI simulations were effective in promoting both student learning and student understanding of authentic science practices with both middle and high school students, we propose that SCI simulations are a valuable and versatile technology that can be used to educate and inspire a wide range of science students on the real-world complexities inherent in scientific study.
Applying Technology to Inquiry-Based Learning in Early Childhood Education
ERIC Educational Resources Information Center
Wang, Feng; Kinzie, Mable B.; McGuire, Patrick; Pan, Edward
2009-01-01
Children naturally explore and learn about their environments through inquiry, and computer technologies offer an accessible vehicle for extending the domain and range of this inquiry. Over the past decade, a growing number of interactive games and educational software packages have been implemented in early childhood education and addressed a…
Researching the Community of Inquiry Framework: Review, Issues, and Future Directions
ERIC Educational Resources Information Center
Garrison, D. Randy; Arbaugh, J. B.
2007-01-01
Since its publication in "The Internet and Higher Education," Garrison, Anderson, and Archer's [Garrison, D. R., Anderson, T., & Archer, W. (2000). Critical inquiry in a text-based environment: Computer conferencing in higher education. "The Internet and Higher Education," 2(2-3), 87-105.] community of inquiry (CoI) framework has generated…
NASA Astrophysics Data System (ADS)
Joiner, D. A.; Stevenson, D. E.; Panoff, R. M.
2000-12-01
The Computational Science Reference Desk is an online tool designed to provide educators in math, physics, astronomy, biology, chemistry, and engineering with information on how to use computational science to enhance inquiry based learning in the undergraduate and pre college classroom. The Reference Desk features a showcase of original content exploration activities, including lesson plans and background materials; a catalog of websites which contain models, lesson plans, software, and instructional resources; and a forum to allow educators to communicate their ideas. Many of the recent advances in astronomy rely on the use of computer simulation, and tools are being developed by CSERD to allow students to experiment with some of the models that have guided scientific discovery. One of these models allows students to study how scientists use spectral information to determine the makeup of the interstellar medium by modeling the interstellar extinction curve using spherical grains of silicate, amorphous carbon, or graphite. Students can directly compare their model to the average interstellar extinction curve, and experiment with how small changes in their model alter the shape of the interstellar extinction curve. A simpler model allows students to visualize spatial relationships between the Earth, Moon, and Sun to understand the cause of the phases of the moon. A report on the usefulness of these models in two classes, the Computational Astrophysics workshop at The Shodor Education Foundation and the Conceptual Astronomy class at the University of North Carolina at Greensboro, will be presented.
ERIC Educational Resources Information Center
Jacobson, Michael J.; Taylor, Charlotte E.; Richards, Deborah
2016-01-01
In this paper, we propose computational scientific inquiry (CSI) as an innovative model for learning important scientific knowledge and new practices for "doing" science. This approach involves the use of a "game-like" virtual world for students to experience virtual biological fieldwork in conjunction with using an agent-based…
Development and Validation of a Multimedia-Based Assessment of Scientific Inquiry Abilities
ERIC Educational Resources Information Center
Kuo, Che-Yu; Wu, Hsin-Kai; Jen, Tsung-Hau; Hsu, Ying-Shao
2015-01-01
The potential of computer-based assessments for capturing complex learning outcomes has been discussed; however, relatively little is understood about how to leverage such potential for summative and accountability purposes. The aim of this study is to develop and validate a multimedia-based assessment of scientific inquiry abilities (MASIA) to…
ERIC Educational Resources Information Center
Psycharis, Sarantos; Botsari, Evanthia; Chatzarakis, George
2014-01-01
Learning styles are increasingly being integrated into computational-enhanced earning environments and a great deal of recent research work is taking place in this area. The purpose of this study was to examine the impact of the computational experiment approach, learning styles, epistemic beliefs, and engagement with the inquiry process on the…
ERIC Educational Resources Information Center
Damsa, Crina I.; Nerland, Monika
2016-01-01
The two case studies reported in this article contribute to a better understanding of how inquiry tasks and activities are employed as resourceful means for learning in higher professional education. An observation-based approach was used to explore characteristics of and challenges in students' participation in collaborative inquiry activities in…
ERIC Educational Resources Information Center
Gong, Yu
2017-01-01
This study investigates how students can use "interactive example models" in inquiry activities to develop their conceptual knowledge about an engineering phenomenon like electromagnetic fields and waves. An interactive model, for example a computational model, could be used to develop and teach principles of dynamic complex systems, and…
NASA Astrophysics Data System (ADS)
Ruffin, Monya Aisha
The evolution of increased global accessibility and dependency on computer technologies has revolutionized most aspects of everyday life, including a rapid transformation of 21st century schools. Current changes in education reflect the need for the integration of effective computer technologies in school curricula. The principal objective of this investigation was to examine the acquisition of computer skills and inquiry skills by urban eighth grade students in a technology-supported environment. The study specifically focused on students' ability to identify, understand, and work through the process of scientific inquiry, while also developing computer technology tool skills. The unique component of the study was its contextualization within a local historically significant setting---an African-American cemetery. Approximately seventy students, in a local middle school, participated in the five-week treatment. Students conducted research investigations on site and over the Internet, worked in collaborative groups, utilized technology labs, and received inquiry and computer technology instruction. A mixed method design employing quantitative and qualitative methods was used. Two pilot studies conducted in an after-school science club format helped sharpen the research question, data collection methods, and survey used in the school-based study. Complete sets of data from pre and post surveys and journals were collected from sixty students. Six students were randomly selected to participate in in-depth focus group interviews. Researcher observations and inferences were also included in the analysis. The research findings showed that, after the treatment, students: (a) acquired more inquiry skills and computer skills, (b) broadened their basic conceptual understanding and perspective about science, (c) engaged actively in a relevant learning process, (d) created tangible evidence of their inquiry skills and computer skills, and (e) recalled and retained more details about the inquiry process and the computer technology tools (when they attended at least 80% of the treatment sessions). The findings indicated that project-based, technology-supported experiences allowed students to learn content in an interdisciplinary way (building on culturally relevant local histories) and provided enjoyable learning opportunities for students and teachers. Participation in the treatment encouraged students to think beyond the technical aspects of technology and relate its relevancy and usefulness to solving scientific queries.
Inquiry-Based Learning in Remote Sensing: A Space Balloon Educational Experiment
ERIC Educational Resources Information Center
Mountrakis, Giorgos; Triantakonstantis, Dimitrios
2012-01-01
Teaching remote sensing in higher education has been traditionally restricted in lecture and computer-aided laboratory activities. This paper presents and evaluates an engaging inquiry-based educational experiment. The experiment was incorporated in an introductory remote sensing undergraduate course to bridge the gap between theory and…
Artificial Intelligence and Expert Systems.
ERIC Educational Resources Information Center
Lawlor, Joseph
Artificial intelligence (AI) is the field of scientific inquiry concerned with designing machine systems that can simulate human mental processes. The field draws upon theoretical constructs from a wide variety of disciplines, including mathematics, psychology, linguistics, neurophysiology, computer science, and electronic engineering. Some of the…
ERIC Educational Resources Information Center
Xiang, Lin
2011-01-01
This is a collective case study seeking to develop detailed descriptions of how programming an agent-based simulation influences a group of 8th grade students' model-based inquiry (MBI) by examining students' agent-based programmable modeling (ABPM) processes and the learning outcomes. The context of the present study was a biology unit on…
A Comparison of Inquiry and Worked Example Web-Based Instruction Using Physlets
ERIC Educational Resources Information Center
Lee, Kevin M.; Nicoll, Gayle; Brooks, David W.
2004-01-01
This paper compares two protocols for web-based instruction using simulations in an introductory physics class. The Inquiry protocol allowed students to control input parameters while the Worked Example protocol did not. Students in the Worked Example group performed significantly higher on a common assessment. The ramifications of this study are…
A review of critical in-flight events research methodology
NASA Technical Reports Server (NTRS)
Giffin, W. C.; Rockwell, T. H.; Smith, P. E.
1985-01-01
Pilot's cognitive responses to critical in-flight events (CIFE's) were investigated, using pilots, who had on the average about 2540 flight hours each, in four experiments: (1) full-mission simulation in a general aviation trainer, (2) paper and pencil CIFE tests, (3) interactive computer-aided scenario testing, and (4) verbal protocols in fault diagnosis tasks. The results of both computer and paper and pencil tests showed only 50 percent efficiency in correct diagnosis of critical events. The efficiency in arriving at a diagnosis was also low: over 20 inquiries were made for 21 percent of the scenarios diagnosed. The information-seeking pattern was random, with frequent retracing over old inquiries. The measures for developing improved cognitive skills for CIFE's are discussed.
Teaching Science with Web-Based Inquiry Projects: An Exploratory Investigation
ERIC Educational Resources Information Center
Webb, Aubree M.; Knight, Stephanie L.; Wu, X. Ben; Schielack, Jane F.
2014-01-01
The purpose of this research is to explore a new computer-based interactive learning approach to assess the impact on student learning and attitudes toward science in a large university ecology classroom. A comparison was done with an established program to measure the relative impact of the new approach. The first inquiry project, BearCam, gives…
Integrating Computers into the Problem-Solving Process.
ERIC Educational Resources Information Center
Lowther, Deborah L.; Morrison, Gary R.
2003-01-01
Asserts that within the context of problem-based learning environments, professors can encourage students to use computers as problem-solving tools. The ten-step Integrating Technology for InQuiry (NteQ) model guides professors through the process of integrating computers into problem-based learning activities. (SWM)
Dataset of Scientific Inquiry Learning Environment
ERIC Educational Resources Information Center
Ting, Choo-Yee; Ho, Chiung Ching
2015-01-01
This paper presents the dataset collected from student interactions with INQPRO, a computer-based scientific inquiry learning environment. The dataset contains records of 100 students and is divided into two portions. The first portion comprises (1) "raw log data", capturing the student's name, interfaces visited, the interface…
ThinkerTools. What Works Clearinghouse Intervention Report
ERIC Educational Resources Information Center
What Works Clearinghouse, 2012
2012-01-01
"ThinkerTools" is a computer-based program that aims to develop students' understanding of physics and scientific modeling. The program is composed of two curricula for middle school students, "ThinkerTools Inquiry" and "Model-Enhanced ThinkerTools". "ThinkerTools Inquiry" allows students to explore the…
What We've Learned about Assessing Hands-On Science.
ERIC Educational Resources Information Center
Shavelson, Richard J.; Baxter, Gail P.
1992-01-01
A recent study compared hands-on scientific inquiry assessment to assessments involving lab notebooks, computer simulations, short-answer paper-and-pencil problems, and multiple-choice questions. Creating high quality performance assessments is a costly, time-consuming process requiring considerable scientific and technological know-how. Improved…
ERIC Educational Resources Information Center
McIntosh, Paul; Freeth, Della; Berridge, Emma Jane
2013-01-01
This paper examines the use of appreciative inquiry (AI) to guide development of web-based learning resources for medical educators who facilitate simulation-based learning experiences for doctors-in-training. AI can be viewed as a positive form of action research, which seeks to avoid deficit-based analyses and solutions, and commonly associated…
ERIC Educational Resources Information Center
Howard, Bruce C.; McGee, Steven; Shia, Regina; Hong, Namsoo Shin
This study sought to examine the effects of meta cognitive self-regulation on problem solving across three conditions: (1) an interactive, computer-based treatment condition; (2) a noninteractive computer-based alternative treatment condition; and (3) a control condition. Also investigated was which of five components of metacognitive…
Internal and External Scripts in Computer-Supported Collaborative Inquiry Learning
ERIC Educational Resources Information Center
Kollar, Ingo; Fischer, Frank; Slotta, James D.
2007-01-01
We investigated how differently structured external scripts interact with learners' internal scripts with respect to individual knowledge acquisition in a Web-based collaborative inquiry learning environment. Ninety students from two secondary schools participated. Two versions of an external collaboration script (high vs. low structured)…
Evaluating an Inquiry-Based Bioinformatics Course Using Q Methodology
ERIC Educational Resources Information Center
Ramlo, Susan E.; McConnell, David; Duan, Zhong-Hui; Moore, Francisco B.
2008-01-01
Faculty at a Midwestern metropolitan public university recently developed a course on bioinformatics that emphasized collaboration and inquiry. Bioinformatics, essentially the application of computational tools to biological data, is inherently interdisciplinary. Thus part of the challenge of creating this course was serving the needs and…
Presence and Learning in a Community of Inquiry
ERIC Educational Resources Information Center
Maddrell, Jennifer A.; Morrison, Gary R.; Watson, Ginger S.
2017-01-01
The community of inquiry (CoI) framework suggests social presence, teaching presence, and cognitive presence are essential elements to foster successful educational experiences in computer-mediated distance learning environments. Although thousands of CoI-based articles have been published, those critical of the framework and related research…
Cyber Strategic Inquiry: Enabling Change through a Strategic Simulation and Megacommunity Concept
2009-02-01
malicious software embedded in thumb drives and CDs that thwarted protections, such as antivirus software , on computers. In the scenario, these...Executives for National Security • The Carlyle Group • Cassat Corporation • Cisco Systems, Inc. • Cyveillance • General Dynamics • General Motors
NASA Astrophysics Data System (ADS)
Soderberg, Patti; Price, Frank
2003-01-01
This study describes a lesson in which students engaged in inquiry in evolutionary biology in order to develop a better understanding of the concepts and reasoning skills necessary to support knowledge claims about changes in the genetic structure of populations, also known as microevolution. This paper describes how a software simulation called EVOLVE can be used to foster discussions about the conceptual knowledge used by advanced secondary or introductory college students when investigating the effects of natural selection on hypothetical populations over time. An experienced professor's use and rationale of a problem-based lesson using the simulation is examined. Examples of student misconceptions and naïve (incomplete) conceptions are described and an analysis of the procedural knowledge for experimenting with the computer model is provided. The results of this case study provide a model of how EVOLVE can be used to engage students in a complex problem-solving experience that encourages student meta-cognitive reflection about their understanding of evolution at the population level. Implications for teaching are provided and ways to improve student learning and problem solving in population genetics are suggested.
Inquiry-Based Freshman Seminar on "What You Can (Or Should Not) Do to End Global Poverty"
ERIC Educational Resources Information Center
Kisaalita, William S.
2018-01-01
Offering first year seminars and experiences is well-established as one of the high-impact educational practices. An inquiry-based freshman seminar in which students conduct poverty simulation term projects has been offered for five years at the University of Georgia. The students have four project options of: dressing the part and panhandling…
Scientific Inquiry, Digital Literacy, and Mobile Computing in Informal Learning Environments
ERIC Educational Resources Information Center
Marty, Paul F.; Alemanne, Nicole D.; Mendenhall, Anne; Maurya, Manisha; Southerland, Sherry A.; Sampson, Victor; Douglas, Ian; Kazmer, Michelle M.; Clark, Amanda; Schellinger, Jennifer
2013-01-01
Understanding the connections between scientific inquiry and digital literacy in informal learning environments is essential to furthering students' critical thinking and technology skills. The Habitat Tracker project combines a standards-based curriculum focused on the nature of science with an integrated system of online and mobile computing…
2004-02-01
Protocol for Unix enumerating by stealing /etc/ passwd and (or) /etc/hosts.equiv and (or) ~/.rhosts; ISU – Identifying SID with user2sid ; IAS...null sessions””, FUE – “Finger Users Enumeration”, UTFTP – “Use of Trivial File Transfer Protocol for Unix enumerating by stealing /etc/ passwd and...Ping of Death”, UF – “UDP flooding”, IFS – “Storm of inquiries to FTP-server”, APF – “Access to Password File . passwd ”, WDPF – “Writing of Data with
The Intersection of Community-Based Writing and Computer-Based Writing: A Cyberliteracy Case Study.
ERIC Educational Resources Information Center
Gabor, Catherine
The learning goals that inform service learning as a whole can contribute to the computers and writing field significantly. This paper demonstrates how two lines of inquiry can be furthered, community-based writing and computers and writing, through new data and critical reflection on learning goals and communication tools. The paper presents a…
Validating and Optimizing the Effects of Model Progression in Simulation-Based Inquiry Learning
ERIC Educational Resources Information Center
Mulder, Yvonne G.; Lazonder, Ard W.; de Jong, Ton; Anjewierden, Anjo; Bollen, Lars
2012-01-01
Model progression denotes the organization of the inquiry learning process in successive phases of increasing complexity. This study investigated the effectiveness of model progression in general, and explored the added value of either broadening or narrowing students' possibilities to change model progression phases. Results showed that…
ERIC Educational Resources Information Center
Donnelly, Dermot F.; Linn, Marcia C.; Ludvigsen, Sten
2014-01-01
The National Science Foundation-sponsored report "Fostering Learning in the Networked World" called for "a common, open platform to support communities of developers and learners in ways that enable both to take advantage of advances in the learning sciences." We review research on science inquiry learning environments (ILEs)…
Computer-Based Education in the Social Studies.
ERIC Educational Resources Information Center
Ehman, Lee H.; Glenn, Allen D.
Computers have not revolutionized social studies curricula because so few teachers use them. But research does indicate that computers are flexible instructional tools that can assist in the development of attitudes, intellectual motivation, and inquiry skills. Social studies educators need to consider expanded computer use in their classrooms…
ERIC Educational Resources Information Center
Wang, Hung-Yuan; Duh, Henry Been-Lirn; Li, Nai; Lin, Tzung-Jin; Tsai, Chin-Chung
2014-01-01
The purpose of this study is to investigate and compare students' collaborative inquiry learning behaviors and their behavior patterns in an augmented reality (AR) simulation system and a traditional 2D simulation system. Their inquiry and discussion processes were analyzed by content analysis and lag sequential analysis (LSA). Forty…
Designing EvoRoom: An Immersive Simulation Environment for Collective Inquiry in Secondary Science
NASA Astrophysics Data System (ADS)
Lui, Michelle Mei Yee
This dissertation investigates the design of complex inquiry for co-located students to work as a knowledge community within a mixed-reality learning environment. It presents the design of an immersive simulation called EvoRoom and corresponding collective inquiry activities that allow students to explore concepts around topics of evolution and biodiversity in a Grade 11 Biology course. EvoRoom is a room-sized simulation of a rainforest, modeled after Borneo in Southeast Asia, where several projected displays are stitched together to form a large, animated simulation on each opposing wall of the room. This serves to create an immersive environment in which students work collaboratively as individuals, in small groups and a collective community to investigate science topics using the simulations as an evidentiary base. Researchers and a secondary science teacher co-designed a multi-week curriculum that prepared students with preliminary ideas and expertise, then provided them with guided activities within EvoRoom, supported by tablet-based software as well as larger visualizations of their collective progress. Designs encompassed the broader curriculum, as well as all EvoRoom materials (e.g., projected displays, student tablet interfaces, collective visualizations) and activity sequences. This thesis describes a series of three designs that were developed and enacted iteratively over two and a half years, presenting key features that enhanced students' experiences within the immersive environment, their interactions with peers, and their inquiry outcomes. Primary research questions are concerned with the nature of effective design for such activities and environments, and the kinds of interactions that are seen at the individual, collaborative and whole-class levels. The findings fall under one of three themes: 1) the physicality of the room, 2) the pedagogical script for student observation and reflection and collaboration, and 3) ways of including collective visualizations in the activity. Discrete findings demonstrate how the above variables, through their design as inquiry components (i.e., activity, room, scripts and scaffolds on devices, collective visualizations), can mediate the students' interactions with one another, with their teacher, and impact the outcomes of their inquiry. A set of design recommendations is drawn from the results of this research to guide future design or research efforts.
Integrating Elements of Inquiry into the Flow of Middle Level Teaching.
ERIC Educational Resources Information Center
Flick, Lawrence B.
This paper is a part of a research program whose purpose it is to design instruction for scaffolding classroom inquiry in middle school classrooms. Scaffolding is a dynamic process, reflecting teacher adjustments based on student responses. Even though a computer, textbook, or laboratory materials may serve as proxy for a "teacher", arguably the…
Training Needs Analysis and Evaluation for New Technologies through the Use of Problem-Based Inquiry
ERIC Educational Resources Information Center
Casey, Matthew Scott; Doverspike, Dennis
2005-01-01
The analysis of calls to a help desk, in this case calls to a computer help desk, can serve as a rich source of information on the real world problems that individuals are having with the implementation of a new technology. Thus, we propose that an analysis of help desk calls, a form of problem-based inquiry, can serve as a fast and low cost means…
Hulme, Adam; Thompson, Jason; Nielsen, Rasmus Oestergaard; Read, Gemma J M; Salmon, Paul M
2018-06-18
There have been recent calls for the application of the complex systems approach in sports injury research. However, beyond theoretical description and static models of complexity, little progress has been made towards formalising this approach in way that is practical to sports injury scientists and clinicians. Therefore, our objective was to use a computational modelling method and develop a dynamic simulation in sports injury research. Agent-based modelling (ABM) was used to model the occurrence of sports injury in a synthetic athlete population. The ABM was developed based on sports injury causal frameworks and was applied in the context of distance running-related injury (RRI). Using the acute:chronic workload ratio (ACWR), we simulated the dynamic relationship between changes in weekly running distance and RRI through the manipulation of various 'athlete management tools'. The findings confirmed that building weekly running distances over time, even within the reported ACWR 'sweet spot', will eventually result in RRI as athletes reach and surpass their individual physical workload limits. Introducing training-related error into the simulation and the modelling of a 'hard ceiling' dynamic resulted in a higher RRI incidence proportion across the population at higher absolute workloads. The presented simulation offers a practical starting point to further apply more sophisticated computational models that can account for the complex nature of sports injury aetiology. Alongside traditional forms of scientific inquiry, the use of ABM and other simulation-based techniques could be considered as a complementary and alternative methodological approach in sports injury research. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
ERIC Educational Resources Information Center
Fang, Su-Chi; Hsu, Ying-Shao; Hsu, Wei Hsiu
2016-01-01
The study explored how to best use scaffolds for supporting students' inquiry practices in computer-supported learning environments. We designed a series of inquiry units assisted with three versions of written inquiry prompts (generic and context-specific); that is, three scaffold-fading conditions: implicit, explicit, and fading. We then…
Reporting inquiry in simulation.
Kardong-Edgren, Suzie; Gaba, David; Dieckmann, Peter; Cook, David A
2011-08-01
The term "inquiry" covers the large spectrum of what people are currently doing in the nascent field of simulation. This monograph proposes appropriate means of dissemination for the many different levels of inquiry that may arise from the Summit or other sources of inspiration. We discuss various methods of inquiry and where they might fit in the hierarchy of reporting and dissemination. We provide guidance for deciding whether an inquiry has reached the level of development required for publication in a peer-reviewed journal and conclude with a discussion of what most journals view as inquiry acceptable for publication.
Spore: Spawning Evolutionary Misconceptions?
NASA Astrophysics Data System (ADS)
Bean, Thomas E.; Sinatra, Gale M.; Schrader, P. G.
2010-10-01
The use of computer simulations as educational tools may afford the means to develop understanding of evolution as a natural, emergent, and decentralized process. However, special consideration of developmental constraints on learning may be necessary when using these technologies. Specifically, the essentialist (biological forms possess an immutable essence), teleological (assignment of purpose to living things and/or parts of living things that may not be purposeful), and intentionality (assumption that events are caused by an intelligent agent) biases may be reinforced through the use of computer simulations, rather than addressed with instruction. We examine the video game Spore for its depiction of evolutionary content and its potential to reinforce these cognitive biases. In particular, we discuss three pedagogical strategies to mitigate weaknesses of Spore and other computer simulations: directly targeting misconceptions through refutational approaches, targeting specific principles of scientific inquiry, and directly addressing issues related to models as cognitive tools.
Augmented Reality-Based Simulators as Discovery Learning Tools: An Empirical Study
ERIC Educational Resources Information Center
Ibáñez, María-Blanca; Di-Serio, Ángela; Villarán-Molina, Diego; Delgado-Kloos, Carlos
2015-01-01
This paper reports empirical evidence on having students use AR-SaBEr, a simulation tool based on augmented reality (AR), to discover the basic principles of electricity through a series of experiments. AR-SaBEr was enhanced with knowledge-based support and inquiry-based scaffolding mechanisms, which proved useful for discovery learning in…
NASA Astrophysics Data System (ADS)
Annetta, Leonard A.; Frazier, Wendy M.; Folta, Elizabeth; Holmes, Shawn; Lamb, Richard; Cheng, Meng-Tzu
2013-02-01
Designed-based research principles guided the study of 51 secondary-science teachers in the second year of a 3-year professional development project. The project entailed the creation of student-centered, inquiry-based, science, video games. A professional development model appropriate for infusing innovative technologies into standards-based curricula was employed to determine how science teacher's attitudes and efficacy where impacted while designing science-based video games. The study's mixed-method design ascertained teacher efficacy on five factors (General computer use, Science Learning, Inquiry Teaching and Learning, Synchronous chat/text, and Playing Video Games) related to technology and gaming using a web-based survey). Qualitative data in the form of online blog posts was gathered during the project to assist in the triangulation and assessment of teacher efficacy. Data analyses consisted of an Analysis of Variance and serial coding of teacher reflective responses. Results indicated participants who used computers daily have higher efficacy while using inquiry-based teaching methods and science teaching and learning. Additional emergent findings revealed possible motivating factors for efficacy. This professional development project was focused on inquiry as a pedagogical strategy, standard-based science learning as means to develop content knowledge, and creating video games as technological knowledge. The project was consistent with the Technological Pedagogical Content Knowledge (TPCK) framework where overlapping circles of the three components indicates development of an integrated understanding of the suggested relationships. Findings provide suggestions for development of standards-based science education software, its integration into the curriculum and, strategies for implementing technology into teaching practices.
Epistemic Gameplay and Discovery in Computational Model-Based Inquiry Activities
ERIC Educational Resources Information Center
Wilkerson, Michelle Hoda; Shareff, Rebecca; Laina, Vasiliki; Gravel, Brian
2018-01-01
In computational modeling activities, learners are expected to discover the inner workings of scientific and mathematical systems: First elaborating their understandings of a given system through constructing a computer model, then "debugging" that knowledge by testing and refining the model. While such activities have been shown to…
Gannon, Jane M
2017-11-20
Care at the end-of-life has attracted global attention, as health care workers struggle with balancing cure based care with end-of-life care, and knowing when to transition from the former to the latter. Simulation is gaining in popularity as an education strategy to facilitate health care provider decision-making by improving communication skills with patients and family members. This commentary focuses on the authors' simulation evaluation process. When data were assessed using a participatory inquiry paradigm, the evaluation revealed far more than a formative or summative evaluation of participant knowledge and skills in this area of care. Consequently, this assessment strategy has ramifications for best practices for simulation design and evaluation.
Integrating Computer- and Teacher-Based Scaffolds in Science Inquiry
ERIC Educational Resources Information Center
Wu, Hui-Ling; Pedersen, Susan
2011-01-01
Because scaffolding is a crucial form of support for students engaging in complex learning environments, it is important that researchers determine which of the numerous kinds of scaffolding will allow them to educate students most effectively. The existing literature tends to focus on computer-based scaffolding by itself rather than integrating…
Development of a Computer-Based Measure of Listening Comprehension of Science Talk
ERIC Educational Resources Information Center
Lin, Sheau-Wen; Liu, Yu; Chen, Shin-Feng; Wang, Jing-Ru; Kao, Huey-Lien
2015-01-01
The purpose of this study was to develop a computer-based assessment for elementary school students' listening comprehension of science talk within an inquiry-oriented environment. The development procedure had 3 steps: a literature review to define the framework of the test, collecting and identifying key constructs of science talk, and…
The View of Scientific Inquiry Conveyed by Simulation-Based Virtual Laboratories
ERIC Educational Resources Information Center
Chen, Sufen
2010-01-01
With an increasing number of studies evincing the effectiveness of simulation-based virtual laboratories (VLs), researchers have discussed replacing traditional laboratories. However, the approach of doing science endorsed by VLs has not been carefully examined. A survey of 233 online VLs revealed that hypothetico-deductive (HD) logic prevails in…
Autonomous entropy-based intelligent experimental design
NASA Astrophysics Data System (ADS)
Malakar, Nabin Kumar
2011-07-01
The aim of this thesis is to explore the application of probability and information theory in experimental design, and to do so in a way that combines what we know about inference and inquiry in a comprehensive and consistent manner. Present day scientific frontiers involve data collection at an ever-increasing rate. This requires that we find a way to collect the most relevant data in an automated fashion. By following the logic of the scientific method, we couple an inference engine with an inquiry engine to automate the iterative process of scientific learning. The inference engine involves Bayesian machine learning techniques to estimate model parameters based upon both prior information and previously collected data, while the inquiry engine implements data-driven exploration. By choosing an experiment whose distribution of expected results has the maximum entropy, the inquiry engine selects the experiment that maximizes the expected information gain. The coupled inference and inquiry engines constitute an autonomous learning method for scientific exploration. We apply it to a robotic arm to demonstrate the efficacy of the method. Optimizing inquiry involves searching for an experiment that promises, on average, to be maximally informative. If the set of potential experiments is described by many parameters, the search involves a high-dimensional entropy space. In such cases, a brute force search method will be slow and computationally expensive. We develop an entropy-based search algorithm, called nested entropy sampling, to select the most informative experiment. This helps to reduce the number of computations necessary to find the optimal experiment. We also extended the method of maximizing entropy, and developed a method of maximizing joint entropy so that it could be used as a principle of collaboration between two robots. This is a major achievement of this thesis, as it allows the information-based collaboration between two robotic units towards a same goal in an automated fashion.
Effects of Web based inquiry on physical science teachers and students in an urban school district
NASA Astrophysics Data System (ADS)
Stephens, Joanne
An inquiry approach in teaching science has been advocated by many science educators for the past few decades. Due to insufficient district funding for science teaching, inadequate science laboratory facilities, and outdated science materials, inquiry teaching has been difficult for many science teachers, particularly science teachers in urban settings. However, research shows that the availability of computers with high speed Internet access has increased in all school districts. This study focused on the effects of inservice training on teachers and using web based science inquiry activities with ninth grade physical science students. Participants were 16 science teachers and 474 physical science students in an urban school district of a large southern U.S. city. Students were divided into control and experimental groups. The students in the experimental group participated in web based inquiry activities. Students in the control group were taught using similar methods, but not web based science activities. Qualitative and quantitative data were collected over a nine-week period using instruments and focus group interviews of students' and teachers' perceptions of the classroom learning environment, students' achievement, lesson design and classroom implementation, science content of lesson, and classroom culture. The findings reported that there were no significant differences in teachers' perception of the learning environment before and after implementing web based inquiry activities. The findings also reported that there were no overall significant differences in students' perceptions of the learning environment and achievement, pre-survey to post-survey, pre-test to post-test, between the control group and experimental group. Additional findings disclosed that students in the experimental group learned in a collaborative environment. The students confirmed that collaborating with others contributed to a deeper understanding of the science content. This study provides insights about utilizing technology to promote science inquiry teaching and learning. This study describes students' and teachers' perceptions of using web based inquiry to support scientific inquiry.
ERIC Educational Resources Information Center
Miller, John; Weil, Gordon
1986-01-01
The interactive feature of computers is used to incorporate a guided inquiry method of learning introductory economics, extending the Computer Assisted Instruction (CAI) method beyond drills. (Author/JDH)
NASA Astrophysics Data System (ADS)
Colon, Erica L.
Online learning is becoming more prevalent in today's education and is changing the way students learn and instructors teach. This study proposed using an informative case study design within a multilevel conceptual framework as teacher candidates were learning to teach and use science inquiry while in an online post-baccalaureate science methods course. The purposes were to (a) explore whether the teacher candidates had a thorough understanding of scientific inquiry and how to implement higher-order thinking skills, (b) examine whether or not the teacher candidates used a variety of computer-based instructional technologies when choosing instructional objectives, and (c) identify barriers that impede teacher candidates from using science inquiry or technology singly, or the ability to incorporate technology into learning science inquiry. The findings indicate that an online approach in preparing science teachers holds great potential for using innovative technology to teach science inquiry. First, the teacher candidates did incorporate essential features of classroom inquiry, however it was limited and varied in the type of inquiry used. Second, of the 86 lesson plans submitted by the teacher candidates, less than twelve percent of the learning objectives involved higher-order skills that promoted science inquiry. Third, results supported that when using technology in their lesson planning, participants had widely varying backgrounds in reference to their familiarity with technology. However, even though each participant used some form or another, the technology used was fairly low level. Finally, when discussing implementing inquiry-based science in the lesson plans, this study identified time as a reason that participants may not be pushing for more inquiry-based lessons. The researcher also identifies that school placements were a huge factor in the amount of inquiry-based skills coded in the lesson plans. The study concludes that online teacher preparation programs hold promise for teacher candidates by providing them knowledge and strategies for implementing innovative technologies to teach science inquiry when designing curriculum. By identifying specific implications for methods course design and implementation, as well as future research, this study contributes to teacher education improvement efforts, and therefore supports changing learning styles of their future students, so-called the iGeneration.
ERIC Educational Resources Information Center
Hansen, John; Barnett, Michael; MaKinster, James; Keating, Thomas
2004-01-01
The increased availability of computational modeling software has created opportunities for students to engage in scientific inquiry through constructing computer-based models of scientific phenomena. However, despite the growing trend of integrating technology into science curricula, educators need to understand what aspects of these technologies…
ERIC Educational Resources Information Center
Stewart, Phillip Michael, Jr.
2013-01-01
Games in science education is emerging as a popular topic of scholarly inquiry. The National Research Council recently published a report detailing a research agenda for games and science education entitled "Learning Science Through Computer Games and Simulations" (2011). The report recommends moving beyond typical proof-of-concept…
How are scientific thinking skills best developed? Direct instruction vs. inquiry practice
NASA Astrophysics Data System (ADS)
Dean, David Worth, Jr.
Despite its support and adoption by most major scientific and educational organizations, some researchers have questioned whether inquiry learning is indeed the best method for acquiring the skills of inquiry. Klahr and colleagues have investigated the development of the control of variables strategy, or controlled comparison (CC), and claim that a brief session of direct instruction, characterized by explicit training of CC, as opposed to allowing children to discover CC through inquiry learning, is sufficient for acquisition, maintenance, and transfer of this core aspect of inquiry. Kuhn and colleagues, however, argue that direct instruction may be insufficient for development of the metastrategic level of understanding necessary to adequately maintain and transfer inquiry skills. In the present study, I attempt to identify the intervention most effective in supporting acquisition, maintenance, and transfer of these skills. Three groups of students received either a direct instruction session followed by standard classroom instruction (DI-only), an introductory session (without direct instruction) followed by practice sessions only (PR-only), or a direct instruction session followed by practice sessions (DI+PR). Practice sessions involved the use of a computer-based inquiry task requiring students to investigate the effects of five potential causal variables on an outcome. The two practice groups worked with this program during 12 sessions over nine weeks. They worked with structurally identical software programs during five weekly maintenance sessions. During this time, the DI-only group received standard classroom instruction. All groups were assessed on familiar and unfamiliar computer-based inquiry tasks at the conclusion of intervention (immediate assessment) and maintenance sessions (delayed assessment). Students in the two practice groups demonstrated improvement in an integrative measure of inquiry skill (valid intent, valid strategy, valid inference, and valid explanation, in combination) as well as most component measures of this skill. Performance of the two practice groups was superior to that of the DI-only group. Direct instruction conferred no additional benefit to the group receiving both direct instruction and practice compared to the practice-only group. Examined over an extended time interval, the merits of brief direct instruction are thus brought into question.
NASA Astrophysics Data System (ADS)
Bergey, Bradley W.; Ketelhut, Diane Jass; Liang, Senfeng; Natarajan, Uma; Karakus, Melissa
2015-10-01
The primary aim of the study was to examine whether performance on a science assessment in an immersive virtual environment was associated with changes in scientific inquiry self-efficacy. A secondary aim of the study was to examine whether performance on the science assessment was equitable for students with different levels of computer game self-efficacy, including whether gender differences were observed. We examined 407 middle school students' scientific inquiry self-efficacy and computer game self-efficacy before and after completing a computer game-like assessment about a science mystery. Results from path analyses indicated that prior scientific inquiry self-efficacy predicted achievement on end-of-module questions, which in turn predicted change in scientific inquiry self-efficacy. By contrast, computer game self-efficacy was neither predictive of nor predicted by performance on the science assessment. While boys had higher computer game self-efficacy compared to girls, multi-group analyses suggested only minor gender differences in how efficacy beliefs related to performance. Implications for assessments with virtual environments and future design and research are discussed.
Interactive Simulations as Implicit Support for Guided-Inquiry
ERIC Educational Resources Information Center
Moore, Emily B.; Herzog, Timothy A.; Perkins, Katherine K.
2013-01-01
We present the results of a study designed to provide insight into interactive simulation use during guided-inquiry activities in chemistry classes. The PhET Interactive Simulations project at the University of Colorado develops interactive simulations that utilize implicit--rather than explicit--scaffolding to support student learning through…
Development and Validation of a Multimedia-based Assessment of Scientific Inquiry Abilities
NASA Astrophysics Data System (ADS)
Kuo, Che-Yu; Wu, Hsin-Kai; Jen, Tsung-Hau; Hsu, Ying-Shao
2015-09-01
The potential of computer-based assessments for capturing complex learning outcomes has been discussed; however, relatively little is understood about how to leverage such potential for summative and accountability purposes. The aim of this study is to develop and validate a multimedia-based assessment of scientific inquiry abilities (MASIA) to cover a more comprehensive construct of inquiry abilities and target secondary school students in different grades while this potential is leveraged. We implemented five steps derived from the construct modeling approach to design MASIA. During the implementation, multiple sources of evidence were collected in the steps of pilot testing and Rasch modeling to support the validity of MASIA. Particularly, through the participation of 1,066 8th and 11th graders, MASIA showed satisfactory psychometric properties to discriminate students with different levels of inquiry abilities in 101 items in 29 tasks when Rasch models were applied. Additionally, the Wright map indicated that MASIA offered accurate information about students' inquiry abilities because of the comparability of the distributions of student abilities and item difficulties. The analysis results also suggested that MASIA offered precise measures of inquiry abilities when the components (questioning, experimenting, analyzing, and explaining) were regarded as a coherent construct. Finally, the increased mean difficulty thresholds of item responses along with three performance levels across all sub-abilities supported the alignment between our scoring rubrics and our inquiry framework. Together with other sources of validity in the pilot testing, the results offered evidence to support the validity of MASIA.
WebStars: Holistic, Arts-Based College Curriculum in a Computer Applications Course
ERIC Educational Resources Information Center
Karsten, Selia
2004-01-01
The purpose of my qualitative, action study was to gain a better understanding of the effects of an experimental college course in computer applications. This inquiry was made concerning both the teacher's and learners' points of view. A holistic, arts-based approach was used by the researcher/teacher in order to design, develop and facilitate a…
ERIC Educational Resources Information Center
What Works Clearinghouse, 2012
2012-01-01
"Technology Enhanced Elementary and Middle School Science" ("TEEMSS") is a physical science curriculum for grades 3-8 that utilizes computers, sensors, and interactive models to support investigations of real-world phenomena. Through 15 inquiry-based instructional units, students interact with computers, gather and analyze…
NASA Astrophysics Data System (ADS)
Yarker, Morgan Brown
Research suggests that scientific models and modeling should be topics covered in K-12 classrooms as part of a comprehensive science curriculum. It is especially important when talking about topics in weather and climate, where computer and forecast models are the center of attention. There are several approaches to model based inquiry, but it can be argued, theoretically, that science models can be effectively implemented into any approach to inquiry if they are utilized appropriately. Yet, it remains to be explored how science models are actually implemented in classrooms. This study qualitatively looks at three middle school science teachers' use of science models with various approaches to inquiry during their weather and climate units. Results indicate that the teacher who used the most elements of inquiry used models in a way that aligned best with the theoretical framework than the teachers who used fewer elements of inquiry. The theoretical framework compares an approach to argument-based inquiry to model-based inquiry, which argues that the approaches are essentially identical, so teachers who use inquiry should be able to apply model-based inquiry using the same approach. However, none of the teachers in this study had a complete understanding of the role models play in authentic science inquiry, therefore students were not explicitly exposed to the ideas that models can be used to make predictions about, and are representations of, a natural phenomenon. Rather, models were explicitly used to explain concepts to students or have students explain concepts to the teacher or to each other. Additionally, models were used as a focal point for conversation between students, usually as they were creating, modifying, or using models. Teachers were not observed asking students to evaluate models. Since science models are an important aspect of understanding science, it is important that teachers not only know how to implement models into an inquiry environment, but also understand the characteristics of science models so that they can explicitly teach the concept of modeling to students. This study suggests that better pre-service and in-service teacher education is needed to prepare students to teach about science models effectively.
ERIC Educational Resources Information Center
Ryoo, Jean; Goode, Joanna; Margolis, Jane
2015-01-01
This article describes the importance that high school computer science teachers place on a teachers' professional learning community designed around an inquiry- and equity-oriented approach for broadening participation in computing. Using grounded theory to analyze four years of teacher surveys and interviews from the Exploring Computer Science…
Micro-Computers in Biology Inquiry.
ERIC Educational Resources Information Center
Barnato, Carolyn; Barrett, Kathy
1981-01-01
Describes the modification of computer programs (BISON and POLLUT) to accommodate species and areas indigenous to the Pacific Coast area. Suggests that these programs, suitable for PET microcomputers, may foster a long-term, ongoing, inquiry-directed approach in biology. (DS)
Using Computational Text Classification for Qualitative Research and Evaluation in Extension
ERIC Educational Resources Information Center
Smith, Justin G.; Tissing, Reid
2018-01-01
This article introduces a process for computational text classification that can be used in a variety of qualitative research and evaluation settings. The process leverages supervised machine learning based on an implementation of a multinomial Bayesian classifier. Applied to a community of inquiry framework, the algorithm was used to identify…
ERIC Educational Resources Information Center
Marek, Michael W.; Wu, Wen-Chi Vivian
2014-01-01
This conceptual, interdisciplinary inquiry explores Complex Dynamic Systems as the concept relates to the internal and external environmental factors affecting computer assisted language learning (CALL). Based on the results obtained by de Rosnay ["World Futures: The Journal of General Evolution", 67(4/5), 304-315 (2011)], who observed…
ERIC Educational Resources Information Center
Chan, Kit Yu Karen; Yang, Sylvia; Maliska, Max E.; Grunbaum, Daniel
2012-01-01
The National Science Education Standards have highlighted the importance of active learning and reflection for contemporary scientific methods in K-12 classrooms, including the use of models. Computer modeling and visualization are tools that researchers employ in their scientific inquiry process, and often computer models are used in…
Project - based teaching and other methods to make learning more attractive
NASA Astrophysics Data System (ADS)
Švecová, Libuše; Vlková, Iva
2017-01-01
This contribution presents the results of a research carried out at secondary schools in the Moravian-Silesian Region. This research involved a total of 120 pupils and focused on project teaching with the emphasis on pupil inquiry activity and the connection of their knowledge in the fields of physics and biology. To verify pupil inquiry activity, the tasks on the worksheets have been designed specifically to measure physical quantities on the human body by computer-aided measuring processes. To support pupil inquiry activity, group work was selected as the organization method of teaching. Audio recording and pedagogical observations were used as the research tools for assessment and a consequent evaluation of acquired data.
Using Science and the Internet as Everyday Classroom Tools
NASA Technical Reports Server (NTRS)
Mandel, Eric
1999-01-01
The Everyday Classroom Tools project developed a K-6 inquiry-based curriculum to bring the tools of scientific inquiry, together with the Internet, into the elementary school classroom. Our curriculum encourages students and teachers to experience the adventure of science through investigation of the world around us. In this project, experts in computer science and astronomy at SAO worked closely with teachers and students in Massachusetts elementary schools to design and model activities which are developmentally appropriate, fulfill the needs of the curriculum standards of the school district, and provide students with a chance to experience for themselves the joy and excitement of scientific inquiry. The results of our efforts are embodied in the Threads of Inquiry, a series of free-flowing dialogues about inquiry-inspiring investigations that maintain a solid connection with our experience and with one another. These investigations are concerned with topics such as the motion of the Earth, shadows, light, and time. Our work emphasizes a direct hands-on approach through concrete experience, rather than memorization of facts.
NASA Technical Reports Server (NTRS)
Bush, Drew; Sieber, Renee; Seiler, Gale; Chandler, Mark
2016-01-01
A gap has existed between the tools and processes of scientists working on anthropogenic global climate change (AGCC) and the technologies and curricula available to educators teaching the subject through student inquiry. Designing realistic scientific inquiry into AGCC poses a challenge because research on it relies on complex computer models, globally distributed data sets, and complex laboratory and data collection procedures. Here we examine efforts by the scientific community and educational researchers to design new curricula and technology that close this gap and impart robust AGCC and Earth Science understanding. We find technology-based teaching shows promise in promoting robust AGCC understandings if associated curricula address mitigating factors such as time constraints in incorporating technology and the need to support teachers implementing AGCC and Earth Science inquiry. We recommend the scientific community continue to collaborate with educational researchers to focus on developing those inquiry technologies and curricula that use realistic scientific processes from AGCC research and/or the methods for determining how human society should respond to global change.
Teaching Physics Using PhET Simulations
ERIC Educational Resources Information Center
Wieman, C. E.; Adams, W. K.; Loeblein, P.; Perkins, K. K.
2010-01-01
PhET Interactive Simulations (sims) are now being widely used in teaching physics and chemistry. Sims can be used in many different educational settings, including lecture, individual or small group inquiry activities, homework, and lab. Here we will highlight a few ways to use them in teaching, based on our research and experiences using them in…
Teaching and Learning Physics in a 1:1 Laptop School
NASA Astrophysics Data System (ADS)
Zucker, Andrew A.; Hug, Sarah T.
2008-12-01
1:1 laptop programs, in which every student is provided with a personal computer to use during the school year, permit increased and routine use of powerful, user-friendly computer-based tools. Growing numbers of 1:1 programs are reshaping the roles of teachers and learners in science classrooms. At the Denver School of Science and Technology, a public charter high school where a large percentage of students come from low-income families, 1:1 laptops are used often by teachers and students. This article describes the school's use of laptops, the Internet, and related digital tools, especially for teaching and learning physics. The data are from teacher and student surveys, interviews, classroom observations, and document analyses. Physics students and teachers use an interactive digital textbook; Internet-based simulations (some developed by a Nobel Prize winner); word processors; digital drop boxes; email; formative electronic assessments; computer-based and stand-alone graphing calculators; probes and associated software; and digital video cameras to explore hypotheses, collaborate, engage in scientific inquiry, and to identify strengths and weaknesses of students' understanding of physics. Technology provides students at DSST with high-quality tools to explore scientific concepts and the experiences of teachers and students illustrate effective uses of digital technology for high school physics.
The effect of force feedback on student reasoning about gravity, mass, force and motion
NASA Astrophysics Data System (ADS)
Bussell, Linda
The purpose of this study was to examine whether force feedback within a computer simulation had an effect on reasoning by fifth grade students about gravity, mass, force, and motion, concepts which can be difficult for learners to grasp. Few studies have been done on cognitive learning and haptic feedback, particularly with young learners, but there is an extensive base of literature on children's conceptions of science and a number of studies focus specifically on children's conceptions of force and motion. This case study used a computer-based paddleball simulation with guided inquiry as the primary stimulus. Within the simulation, the learner could adjust the mass of the ball and the gravitational force. The experimental group used the simulation with visual and force feedback; the control group used the simulation with visual feedback but without force feedback. The proposition was that there would be differences in reasoning between the experimental and control groups, with force feedback being helpful with concepts that are more obvious when felt. Participants were 34 fifth-grade students from three schools. Students completed a modal (visual, auditory, and haptic) learning preference assessment and a pretest. The sessions, including participant experimentation and interviews, were audio recorded and observed. The interviews were followed by a written posttest. These data were analyzed to determine whether there were differences based on treatment, learning style, demographics, prior gaming experience, force feedback experience, or prior knowledge. Work with the simulation, regardless of group, was found to increase students' understanding of key concepts. The experimental group appeared to benefit from the supplementary help that force feedback provided. Those in the experimental group scored higher on the posttest than those in the control group. The greatest difference between mean group scores was on a question concerning the effects of increased gravitational force.
How can you capture cultural dynamics?
Kashima, Yoshihisa
2014-01-01
Cross-cultural comparison is a critical method by which we can examine the interaction between culture and psychological processes. However, comparative methods tend to overlook cultural dynamics – the formation, maintenance, and transformation of cultures over time. The present article gives a brief overview of four different types of research designs that have been used to examine cultural dynamics in the literature: (1) cross-temporal methods that trace medium- to long-term changes in a culture; (2) cross-generational methods that explore medium-term implications of cultural transmission; (3) experimental simulation methods that investigate micro-level mechanisms of cultural dynamics; and (4) formal models and computer simulation methods often used to investigate long-term and macro-level implications of micro-level mechanisms. These methods differ in terms of level of analysis for which they are designed (micro vs. macro-level), scale of time for which they are typically used (short-, medium-, or long-term), and direction of inference (deductive vs. empirical method) that they imply. The paper describes examples of these methods, discuss their strengths and weaknesses, and point to their complementarity in inquiries about cultural change. Because cultural dynamics research is about meaning over time, issues deriving from interpretation of meaning and temporal distance between researchers and objects of inquiry can pose threats to the validity of the research and its findings. The methodological question about hermeneutic circle is recalled and further inquiries are encouraged. PMID:25309476
NASA Astrophysics Data System (ADS)
Fang, Su-Chi; Hsu, Ying-Shao; Hsu, Wei Hsiu
2016-07-01
The study explored how to best use scaffolds for supporting students' inquiry practices in computer-supported learning environments. We designed a series of inquiry units assisted with three versions of written inquiry prompts (generic and context-specific); that is, three scaffold-fading conditions: implicit, explicit, and fading. We then examined how the three scaffold-fading conditions influenced students' conceptual understanding, understanding of scientific inquiry, and inquiry abilities. Three grade-10 classes (N = 105) participated in this study; they were randomly assigned to and taught in the three conditions. Data-collection procedures included a pretest-posttest approach and in-depth observations of the target students. The findings showed that after these inquiry units, all of the students exhibited significant learning gains in conceptual knowledge and performed better inquiry abilities regardless of which condition was used. The explicit and fading conditions were more effective in enhancing students' understanding of scientific inquiry. The fading condition tended to better support the students' development of inquiry abilities and help transfer these abilities to a new setting involving an independent socioscientific task about where to build a dam. The results suggest that fading plays an essential role in enhancing the effectiveness of scaffolds.
Learning Evolution and the Nature of Science Using Evolutionary Computing and Artificial Life
ERIC Educational Resources Information Center
Pennock, Robert T.
2007-01-01
Because evolution in natural systems happens so slowly, it is difficult to design inquiry-based labs where students can experiment and observe evolution in the way they can when studying other phenomena. New research in evolutionary computation and artificial life provides a solution to this problem. This paper describes a new A-Life software…
ERIC Educational Resources Information Center
Richards, Janet C.
In order to determine preservice teachers' reflective thinking and concerns as they addressed the complexities of supporting and augmenting their students' literacy instruction through computer activities, a systematic qualitative inquiry was conducted. The study was conducted in three schools within the same school district in south Mississippi.…
Learning and Teaching with a Computer Scanner
ERIC Educational Resources Information Center
Planinsic, G.; Gregorcic, B.; Etkina, E.
2014-01-01
This paper introduces the readers to simple inquiry-based activities (experiments with supporting questions) that one can do with a computer scanner to help students learn and apply the concepts of relative motion in 1 and 2D, vibrational motion and the Doppler effect. We also show how to use these activities to help students think like…
Science education partnership between the University of Colorado and a Denver High School.
Curran-Everett, D; Collins, S; Hubert, J; Pidick, T
1999-04-01
The authors describe a partnership, begun in 1997, between Manual High School, a school in which about 85% of the students are African, American or Hispanic, and the University of Colorado Health Sciences Center in Denver. There are three partnership goals: help teachers transform a lecture-based curriculum into an inquiry-based curriculum, help students build their science knowledge, and give students opportunities to learn--and become excited--about careers in medicine. The current emphasis of the partnership is at the ninth-grade level. The first unique aspect of the partnership is the Medical Explorers program. One portion of the program begins when a hypothetical teenage car-crash victim arrives at the emergency room; over the next six weeks, practicing health care professionals dramatize their medical responsibilities to this patient and discuss the academic training necessary to fulfill those responsibilities. In addition, the Medical Explorers students travel to the Health Sciences Center, where they tour laboratories and clinics, help conduct experiments, and explore computer-based surgical simulations. The second unique program is a service learning project in which ninth-grade students assist with an activity that gives elementary school students a chance to participate in the process of scientific inquiry and to discover the wonder of real hearts and lungs; the ninth-graders assist with logistics (e.g., they distribute newspapers), and, more important, interact with the younger students by asking thoughtful questions of them. The partnership plans to incorporate the elementary and middle schools that graduate their students to Manual High School in order to encourage the implementation of inquiry-based science curricula and to provide sustained support to teachers throughout the entire K-12 educational pathway. If medical colleges can help teachers provide a consistent classroom draw for student fascination in science and medicine, then the colleges are more likely to help create a rich diversity of students who pursue careers in medicine.
Computational neurobiology is a useful tool in translational neurology: the example of ataxia
Brown, Sherry-Ann; McCullough, Louise D.; Loew, Leslie M.
2014-01-01
Hereditary ataxia, or motor incoordination, affects approximately 150,000 Americans and hundreds of thousands of individuals worldwide with onset from as early as mid-childhood. Affected individuals exhibit dysarthria, dysmetria, action tremor, and diadochokinesia. In this review, we consider an array of computational studies derived from experimental observations relevant to human neuropathology. A survey of related studies illustrates the impact of integrating clinical evidence with data from mouse models and computational simulations. Results from these studies may help explain findings in mice, and after extensive laboratory study, may ultimately be translated to ataxic individuals. This inquiry lays a foundation for using computation to understand neurobiochemical and electrophysiological pathophysiology of spinocerebellar ataxias and may contribute to development of therapeutics. The interdisciplinary analysis suggests that computational neurobiology can be an important tool for translational neurology. PMID:25653585
Laptops and Diesel Generators: Introducing PhET Simulations to Teachers in Uganda
ERIC Educational Resources Information Center
McKagan, Sam
2010-01-01
This article describes workshops for high school physics teachers in Uganda on inquiry-based teaching and PhET simulations. I hope it increases awareness of the conditions teachers face in developing countries and inspires others to give similar workshops. This work demonstrates what is possible with some concerted, but not extraordinary, effort.
Sims for Science: Powerful Tools to Support Inquiry-Based Teaching
ERIC Educational Resources Information Center
Perkins, Katherine K.; Loeblein, Patricia J.; Dessau, Kathryn L.
2010-01-01
Since 2002, the PhET Interactive Simulations project at the University of Colorado has been working to provide learning tools for students and teachers. The project has developed over 85 interactive simulations--or sims--for teaching and learning science. Although these sims can be used in a variety of ways, they are specifically designed to make…
Giving students the run of sprinting models
NASA Astrophysics Data System (ADS)
Heck, André; Ellermeijer, Ton
2009-11-01
A biomechanical study of sprinting is an interesting task for students who have a background in mechanics and calculus. These students can work with real data and do practical investigations similar to the way sports scientists do research. Student research activities are viable when the students are familiar with tools to collect and work with data from sensors and video recordings and with modeling tools for comparing simulation and experimental results. This article describes a multipurpose system, named COACH, that offers a versatile integrated set of tools for learning, doing, and teaching mathematics and science in a computer-based inquiry approach. Automated tracking of reference points and correction of perspective distortion in videos, state-of-the-art algorithms for data smoothing and numerical differentiation, and graphical system dynamics based modeling are some of the built-in techniques that are suitable for motion analysis. Their implementation and their application in student activities involving models of running are discussed.
NASA Astrophysics Data System (ADS)
Wilkerson, Michelle Hoda; Andrews, Chelsea; Shaban, Yara; Laina, Vasiliki; Gravel, Brian E.
2016-02-01
This paper explores the role that technology can play in engaging pre-service teachers with the iterative, "messy" nature of model-based inquiry. Over the course of 5 weeks, 11 pre-service teachers worked in groups to construct models of diffusion using a computational animation and simulation toolkit, and designed lesson plans for the toolkit. Content analyses of group discussions and lesson plans document attention to content, representation, revision, and evaluation as interwoven aspects of modeling over the course of the workshop. When animating, only content and representation were heavily represented in group discussions. When simulating, all four aspects were represented to different extents across groups. Those differences corresponded with different planned uses for the technology during lessons: to teach modeling, to engage learners with one another's ideas, or to reveal student ideas. We identify specific ways in which technology served an important role in eliciting teachers' knowledge and goals related to scientific modeling in the classroom.
The experiment editor: supporting inquiry-based learning with virtual labs
NASA Astrophysics Data System (ADS)
Galan, D.; Heradio, R.; de la Torre, L.; Dormido, S.; Esquembre, F.
2017-05-01
Inquiry-based learning is a pedagogical approach where students are motivated to pose their own questions when facing problems or scenarios. In physics learning, students are turned into scientists who carry out experiments, collect and analyze data, formulate and evaluate hypotheses, and so on. Lab experimentation is essential for inquiry-based learning, yet there is a drawback with traditional hands-on labs in the high costs associated with equipment, space, and maintenance staff. Virtual laboratories are helpful to reduce these costs. This paper enriches the virtual lab ecosystem by providing an integrated environment to automate experimentation tasks. In particular, our environment supports: (i) scripting and running experiments on virtual labs, and (ii) collecting and analyzing data from the experiments. The current implementation of our environment supports virtual labs created with the authoring tool Easy Java/Javascript Simulations. Since there are public repositories with hundreds of freely available labs created with this tool, the potential applicability to our environment is considerable.
Plants & Perpetrators: Forensic Investigation in the Botany Classroom
ERIC Educational Resources Information Center
Boyd, Amy E.
2006-01-01
Applying botanical knowledge to a simulated forensic investigation provides inquiry-based and problem-based learning in the botany classroom. This paper details one such forensic investigation in which students use what they have learned about plant morphology and anatomy to analyze evidence and solve a murder mystery. (Contains 1 table.)
ERIC Educational Resources Information Center
Heidar, Davood Mashhadi; Afghari, Akbar
2015-01-01
The present paper concentrates on a web-based inquiry in the synchronous computer-mediated communication (SCMC) via Web 2.0 technologies of Talk and Write and Skype. It investigates EFL learners' socio-cognitive progress through dynamic assessment (DA), which follows Vygotsky's inclination for supportive interchange in the zone of proximal…
NASA Astrophysics Data System (ADS)
Whittington, A. G.; Speck, A.; Witzig, S.
2011-12-01
As part of an NSF-funded project, "CUES: Connecting Undergraduates to the Enterprise of Science," new inquiry-based homework materials were developed for two upper-level classes at the University of Missouri: Geochemistry (required for Geology majors, fulfills the computing requirement by having 50% of the grade come from five spreadsheet-based homework assignments), and Solar System Science (open to seniors and graduate students, co-taught and cross-listed between Geology and Physics & Astronomy). Inquiry involves activities where the learner engages in scientifically oriented questions, gives priority to evidence in responding to questions, formulates explanations from evidence, connects explanations to scientific knowledge, and communicates and justifies explanations. We engage students in inquiry-based learning by presenting homework exercises as "mini-journal" articles that follow the format of a scientific journal article, including a title, authors, abstract, introduction, methods, results, discussion and citations to peer-reviewed literature. The mini-journal provides a scaffold and serves as a springboard for students to develop and carry out their own follow-up investigation. They then present their findings in the form of their own mini-journal. Mini-journals replace traditional homework problem sets with a format that more directly reflects and encourages scientific practice. Students are engaged in inquiry-based homework which encompass doing, thinking, and communicating, while the mini-journal allows the instructor to contain lines of inquiry within the limits posed by available resources. In the examples we present, research is conducted via spreadsheet modeling, where the students develop their own spreadsheets. Example assignments from Geochemistry include "Trace Element Partitioning During Mantle Melting and MORB Crystallization" and "Isotopic Investigations of Crustal Evolution in the Midcontinent US". The key differences between the old and new formats include (i) active participation of the students in defining the question/problem that they will pursue, within well-defined boundaries, (ii) open-ended nature of the inquiry, so that students need to recognize when they have enough information to answer their question, (iii) extensive spreadsheet manipulation and presentation of results in graphical and tabular formats, and (iv) a written discussion of their findings. Grading is weighted more towards how the problem was addressed, and how findings are presented and interpreted, and less on actual numerical answers. Survey responses from students indicate that they experience discomfort on being presented with an open-ended assignment, but like the freedom to define their own problem. Students also recognize that reading, writing and critical thinking skills employed in the minijournal format increase their understanding of content. The combination of calculation and writing components make these assignments particularly useful for classes designated as "computer-based", and/or "writing intensive" (or similar designations).
Collaborative Group Learning Approaches for Teaching Comparative Planetology
NASA Astrophysics Data System (ADS)
Slater, S. J.; Slater, T. F.
2013-12-01
Modern science education reform documents propose that the teaching of contemporary students should focus on doing science, rather than simply memorizing science. Duschl, Schweingruber, and Shouse (2007) eloquently argue for four science proficiencies for students. Students should: (i) Know, use, and interpret scientific explanations of the natural world; (ii) Generate and evaluate scientific evidence and explanations; (iii) Understand the nature and development of scientific knowledge; and (iv) Participate productively in scientific practices and discourse. In response, scholars with the CAPER Center for Astronomy & Physics Education Research are creating and field-tested two separate instructional approaches. The first of these is a series of computer-mediated, inquiry learning experiences for non-science majoring undergraduates based upon an inquiry-oriented teaching approach framed by the notions of backwards faded-scaffolding as an overarching theme for instruction. Backwards faded-scaffolding is a strategy where the conventional and rigidly linear scientific method is turned on its head and students are first taught how to create conclusions based on evidence, then how experimental design creates evidence, and only at the end introduces students to the most challenging part of inquiry - inventing scientifically appropriate questions. Planetary science databases and virtual environments used by students to conduct scientific investigations include the NASA and JPL Solar System Simulator and Eyes on the Solar System as well as the USGS Moon and Mars Global GIS Viewers. The second of these is known widely as a Lecture-Tutorial approach. Lecture-Tutorials are self-contained, collaborative group activities. The materials are designed specifically to be easily integrated into the lecture course and directly address the needs of busy and heavily-loaded teaching faculty for effective, student-centered, classroom-ready materials that do not require a drastic course revision for implementation. Students are asked to reason about difficult concepts, while working in pairs, and to discuss their ideas openly. Extensive evaluation results consistently suggest that both the backwards faded-scaffolding and the Lecture-Tutorials approaches are successful at engaging students in self-directed scientific discourse as measured by the Views on Scientific Inquiry (VOSI) as well as increasing their knowledge of science as measured by the Test Of Atronomy STandards (TOAST).
Students' Design of Experiments: An Inquiry Module on the Conduction of Heat
ERIC Educational Resources Information Center
Hatzikraniotis, E.; Kallery, M.; Molohidis, A.; Psillos, D.
2010-01-01
This article examines secondary students' design of experiments after engagement in an innovative and inquiry-oriented module on heat transfer. The module consists of an integration of hands-on experiments, simulated experiments and microscopic model simulations, includes a structured series of guided investigative tasks and was implemented for a…
Science Education and Technology: Opportunities to Enhance Student Learning.
ERIC Educational Resources Information Center
Woolsey, Kristina; Bellamy, Rachel
1997-01-01
Describes how technological capabilities such as calculation, imaging, networking, and portability support a range of pedagogical approaches, such as inquiry-based science and dynamic modeling. Includes as examples software products created at Apple Computer and others available in the marketplace. (KDFB)
ERIC Educational Resources Information Center
Donna, Joel D.; Miller, Brant G.
2013-01-01
Technology plays a crucial role in facilitating collaboration within the scientific community. Cloud-computing applications, such as Google Drive, can be used to model such collaboration and support inquiry within the secondary science classroom. Little is known about pre-service teachers' beliefs related to the envisioned use of collaborative,…
Interaction and Critical Inquiry in Asynchronous Computer-Mediated Conferencing: A Research Agenda
ERIC Educational Resources Information Center
Hopkins, Joseph; Gibson, Will; Ros i. Sole, Cristina; Savvides, Nicola; Starkey, Hugh
2008-01-01
This paper reviews research on learner and tutor interaction in asynchronous computer-mediated (ACM) conferences used in distance learning. The authors note claims made for the potential of ACM conferences to promote higher-order critical inquiry and the social construction of knowledge, and argue that there is a general lack of evidence regarding…
Curtin, Lindsay B; Finn, Laura A; Czosnowski, Quinn A; Whitman, Craig B; Cawley, Michael J
2011-08-10
To assess the impact of computer-based simulation on the achievement of student learning outcomes during mannequin-based simulation. Participants were randomly assigned to rapid response teams of 5-6 students and then teams were randomly assigned to either a group that completed either computer-based or mannequin-based simulation cases first. In both simulations, students used their critical thinking skills and selected interventions independent of facilitator input. A predetermined rubric was used to record and assess students' performance in the mannequin-based simulations. Feedback and student performance scores were generated by the software in the computer-based simulations. More of the teams in the group that completed the computer-based simulation before completing the mannequin-based simulation achieved the primary outcome for the exercise, which was survival of the simulated patient (41.2% vs. 5.6%). The majority of students (>90%) recommended the continuation of simulation exercises in the course. Students in both groups felt the computer-based simulation should be completed prior to the mannequin-based simulation. The use of computer-based simulation prior to mannequin-based simulation improved the achievement of learning goals and outcomes. In addition to improving participants' skills, completing the computer-based simulation first may improve participants' confidence during the more real-life setting achieved in the mannequin-based simulation.
Learning ion solid interactions hands-on: An activity based, inquiry oriented, graduate course
NASA Astrophysics Data System (ADS)
Braunstein, Gabriel
2005-12-01
Experimental work, using state of the art instrumentation, is integrated with lectures in a "real life", learning by discovery approach, in the Ion-Solid Interactions graduate/undergraduate course offered by the Department of Physics of the University of Central Florida. The lecture component of the course covers the underlying physical principles, and related scientific and technological applications, associated with the interaction of energetic ions with matter. In the experimental section the students form small groups and perform a variety of projects, experimental and computational, as part of a participative, inquiry oriented, learning process. In the most recent offering of the class, the students deposited a compound semiconductor thin film by dual-gun sputtering deposition, where each group aimed at a different stoichiometry of the same compound (Zn1-xSxOy). Then they analyzed the composition using Rutherford backscattering spectrometry, measured electrical transport properties using Hall effect and conductivity measurements, and determined the band gap using spectrophotometry. Finally the groups shared their results and each wrote a 'journal-like' technical article describing the entire work. In a different assignment, each group also developed a Monte Carlo computer program ('TRIM-like') to simulate the penetration of ions into a solid, in ion implantation, calculating the stopping cross-sections with approximate models, taught in class, which can be analytically solved. The combination of classroom/laboratory activities is very well received by the students. They gain real life experience operating state of the art equipment, and working in teams, while performing research-like projects, and simultaneously they learn the theoretical foundations of the discipline.
NASA Astrophysics Data System (ADS)
McDonald, Scott Powell
New understandings about how people learn and constructivist pedagogy pose challenges for teachers. Science teachers face an additional challenge of developing inquiry-based pedagogy to foster complex reasoning skills. Theory provides only fuzzy guidance as to how constructivist or inquiry pedagogy can be accomplished in a wide variety of contexts and local constraints. This study contributes to the understanding of the development of constructivist, inquiry-based pedagogy by addressing the question: How do teachers interpret and enact a technology-rich, inquiry fostering science curricula for fifth grade students' biodiversity learning? This research is a case study of two teachers chosen as critical contrasting cases and represent differences across multiple criteria including: urban I suburban, teaching philosophy, and content preparation. The two fifth grade teachers each enacted BioKIDS: Kids' Inquiry in Diverse Species, an eight week curriculum focused on biodiversity. BioKIDS incorporates multiple learning technologies to support student learning including handheld computer software designed to help students collect field data, and a web-based resource for data on local animal species. The results of this study indicate there are tensions teachers must struggle with when setting goals during enactment of inquiry science curricula. They must find a balance between an emphasis on authentic learning and authentic science, and between natural history and natural science. Authentic learning focuses on students' interests and lives; Authentic science focuses on students working with the tools and processes of science. Natural history focuses on the foundational skills in science of observation and classification. Natural science focuses on analytical science drawing on data to develop claims about the world. These two key tensions in teachers' goal setting were critical in defining and understanding differences in how teachers interpreted a curriculum to meet local context and constraints. This study also examined how teachers used technology and scientific inscriptions to support their goals. Implications for research in science education as well as design of curricula and technology are discussed.
Virus Database and Online Inquiry System Based on Natural Vectors.
Dong, Rui; Zheng, Hui; Tian, Kun; Yau, Shek-Chung; Mao, Weiguang; Yu, Wenping; Yin, Changchuan; Yu, Chenglong; He, Rong Lucy; Yang, Jie; Yau, Stephen St
2017-01-01
We construct a virus database called VirusDB (http://yaulab.math.tsinghua.edu.cn/VirusDB/) and an online inquiry system to serve people who are interested in viral classification and prediction. The database stores all viral genomes, their corresponding natural vectors, and the classification information of the single/multiple-segmented viral reference sequences downloaded from National Center for Biotechnology Information. The online inquiry system serves the purpose of computing natural vectors and their distances based on submitted genomes, providing an online interface for accessing and using the database for viral classification and prediction, and back-end processes for automatic and manual updating of database content to synchronize with GenBank. Submitted genomes data in FASTA format will be carried out and the prediction results with 5 closest neighbors and their classifications will be returned by email. Considering the one-to-one correspondence between sequence and natural vector, time efficiency, and high accuracy, natural vector is a significant advance compared with alignment methods, which makes VirusDB a useful database in further research.
ERIC Educational Resources Information Center
Levy, Philippa
2006-01-01
This paper focuses on learners' experiences of text-based computer-mediated communication (CMC) as a means of self-expression, dialogue and debate. A detailed case study narrative and a reflective commentary are presented, drawn from a personal, practice-based inquiry into the design and facilitation of a professional development course for which…
Known structure, unknown function: An inquiry-based undergraduate biochemistry laboratory course.
Gray, Cynthia; Price, Carol W; Lee, Christopher T; Dewald, Alison H; Cline, Matthew A; McAnany, Charles E; Columbus, Linda; Mura, Cameron
2015-01-01
Undergraduate biochemistry laboratory courses often do not provide students with an authentic research experience, particularly when the express purpose of the laboratory is purely instructional. However, an instructional laboratory course that is inquiry- and research-based could simultaneously impart scientific knowledge and foster a student's research expertise and confidence. We have developed a year-long undergraduate biochemistry laboratory curriculum wherein students determine, via experiment and computation, the function of a protein of known three-dimensional structure. The first half of the course is inquiry-based and modular in design; students learn general biochemical techniques while gaining preparation for research experiments in the second semester. Having learned standard biochemical methods in the first semester, students independently pursue their own (original) research projects in the second semester. This new curriculum has yielded an improvement in student performance and confidence as assessed by various metrics. To disseminate teaching resources to students and instructors alike, a freely accessible Biochemistry Laboratory Education resource is available at http://biochemlab.org. © 2015 The Authors Biochemistry and Molecular Biology Education published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular Biology.
Can Random Mutation Mimic Design?: A Guided Inquiry Laboratory for Undergraduate Students
Kalinowski, Steven T.; Taper, Mark L.; Metz, Anneke M.
2006-01-01
Complex biological structures, such as the human eye, have been interpreted as evidence for a creator for over three centuries. This raises the question of whether random mutation can create such adaptations. In this article, we present an inquiry-based laboratory experiment that explores this question using paper airplanes as a model organism. The main task for students in this investigation is to figure out how to simulate paper airplane evolution (including reproduction, inheritance, mutation, and selection). In addition, the lab requires students to practice analytic thinking and to carefully delineate the implications of their results. PMID:16951065
ERIC Educational Resources Information Center
Wendt, Jillian L.; Nisbet, Deanna L.
2017-01-01
This study examined the predictive relationship among international students' sense of community, perceived learning, and end-of-course grades in computer-mediated, U.S. graduate-level courses. The community of inquiry (CoI) framework served as the theoretical foundation for the study. Step-wise hierarchical multiple regression showed no…
ERIC Educational Resources Information Center
Bush, Drew; Sieber, Renee; Seiler, Gale; Chandler, Mark
2016-01-01
A gap has existed between the tools and processes of scientists working on anthropogenic global climate change (AGCC) and the technologies and curricula available to educators teaching the subject through student inquiry. Designing realistic scientific inquiry into AGCC poses a challenge because research on it relies on complex computer models,…
A User’s Manual for the ARL Mathematical Model of the Sea King Mk-50 Helicopter: Part 1. Basic Use
1988-10-01
responsibility of the Director Publishing and Marketing, AGPS. Inquiries should be directed to the Manager, AGPS Press, Australian Government...a Royal Australian Navy (RAN) task requirement. This model, which was developed originally on a DEC System 10 computer using the simulation language...f /nSAIG/CablePlot/SONRJWX /piloyt.o /b1ladn.f /CablePlot/SCNIMo /ptivre. f /bladin.o /ch~mpr. f /Ptine.o /Wv/ch~or.o /READThPE / BMe ’.L1B.0 /cm-pa.f
ERIC Educational Resources Information Center
Peffley, Nicole
2018-01-01
This inquiry-based lesson gets students moving to simulate chemical reactions in a way that allows them to visualize, understand, and retain information about chemical reactions in the stratosphere. Students then look at scientific data and conduct research to understand trends in the data and the impact of chlorofluorocarbons (CFCs). These…
Inquiry-Based Learning in China: Lesson Learned for School Science Practices
ERIC Educational Resources Information Center
Nuangchalerm, Prasart
2014-01-01
Inquiry-based learning is widely considered for science education in this era. This study aims to explore inquiry-based learning in teacher preparation program and the findings will help us to understanding what inquiry-based classroom is and how inquiry-based learning are. Data were collected by qualitative methods; classroom observation,…
ERIC Educational Resources Information Center
Kong, Siu Cheung; So, Wing Mui Winnie
2008-01-01
This study aims to provide teachers with ways and means to facilitate learners to develop nomenclature knowledge of family trees through the establishment of resource-based learning environments (RBLEs). It discusses the design of an RBLE in the classroom by selecting an appropriate context with the assistance of computer-mediated learning…
ERIC Educational Resources Information Center
Lai, Ah-Fur; Lai, Horng-Yih; Chuang, Wei-Hsiang; Wu, Zih-Heng
2015-01-01
Traditional outdoor learning activities such as inquiry-based learning in nature science encounter many dilemmas. Due to prompt development of mobile computing and widespread of mobile devices, mobile learning becomes a big trend on education. The main purpose of this study is to develop a mobile-learning management system for overcoming the…
Hybrid-Mentoring Programs for Beginning Elementary Science Teachers
ERIC Educational Resources Information Center
Bang, EunJin
2013-01-01
This study examines four induction models and teacher changes in science teaching practices, as a result of several mentoring programs. It explores three different computer-mediated mentoring programs, and a traditional offline induction program--in terms of interactivity, inquiry-based teaching, and topics of knowledge. Fifteen elementary science…
Computer Aided Segmentation Analysis: New Software for College Admissions Marketing.
ERIC Educational Resources Information Center
Lay, Robert S.; Maguire, John J.
1983-01-01
Compares segmentation solutions obtained using a binary segmentation algorithm (THAID) and a new chi-square-based procedure (CHAID) that segments the prospective pool of college applicants using application and matriculation as criteria. Results showed a higher number of estimated qualified inquiries and more accurate estimates with CHAID. (JAC)
“Workshop Astronomy” at Dickinson College
NASA Astrophysics Data System (ADS)
Morgan, Windsor A., Jr.
2006-12-01
Dickinson College, a 2400-student liberal arts college in Carlisle, Pennsylvania, is recognized for the development of Workshop Physics. This innovative, calculus-based introductory course combines physics lectures and laboratories with integrated hands-on, small-group sessions. It allows students to do experiments, so that they will make their own observations and, with the guidance of the professor discover the principles of physics themselves. Since spring 2006, I have been developing an introductory solar-system astronomy course in the “Workshop” format at Dickinson. Students participate in discussions with their classmates and investigate astronomical concepts with computer simulations and guided inquiry. I emphasize “practical” astronomy (such as lunar phases, sky motions, and seasons) and physics concepts (such as density and Doppler shift); thus, my students become familiar with the basics of astronomy before developing a better understanding of the solar system. In my paper, I will discuss class activities and will evaluate their efficacy based on a comparison with traditionally-taught astronomy courses.
NASA Astrophysics Data System (ADS)
Rothman, Alan H.
This study reports the results of research designed to examine the impact of computer-based science instruction on elementary school level students' science content achievement, their attitude about science learning, their level of critical thinking-inquiry skills, and their level of cognitive and English language development. The study compared these learning outcomes resulting from a computer-based approach compared to the learning outcomes from a traditional, textbook-based approach to science instruction. The computer-based approach was inherent in a curriculum titled The Voyage of the Mimi , published by The Bank Street College Project in Science and Mathematics (1984). The study sample included 209 fifth-grade students enrolled in three schools in a suburban school district. This sample was divided into three groups, each receiving one of the following instructional treatments: (a) Mixed-instruction primarily based on the use of a hardcopy textbook in conjunction with computer-based instructional materials as one component of the science course; (b) Non-Traditional, Technology-Based -instruction fully utilizing computer-based material; and (c) Traditional, Textbook-Based-instruction utilizing only the textbook as the basis for instruction. Pre-test, or pre-treatment, data related to each of the student learning outcomes was collected at the beginning of the school year and post-test data was collected at the end of the school year. Statistical analyses of pre-test data were used as a covariate to account for possible pre-existing differences with regard to the variables examined among the three student groups. This study concluded that non-traditional, computer-based instruction in science significantly improved students' attitudes toward science learning and their level of English language development. Non-significant, positive trends were found for the following student learning outcomes: overall science achievement and development of critical thinking-inquiry skills. These conclusions support the value of a non-traditional, computer-based approach to instruction, such as exemplified by The Voyage of the Mimi curriculum, and a recommendation for reform in science teaching that has recommended the use of computer technology to enhance learning outcomes from science instruction to assist in reversing the trend toward what has been perceived to be relatively poor science performance by American students, as documented by the 1996 Third International Mathematics and Science Study (TIMSS).
The inquiry continuum: Science teaching practices and student performance on standardized tests
NASA Astrophysics Data System (ADS)
Jernnigan, Laura Jane
Few research studies have been conducted related to inquiry-based scientific teaching methodologies and NCLB-required state testing. The purpose of this study was to examine the relationship between the strategies used by seventh-grade science teachers in Illinois and student scores on the Illinois Standards Achievement Test (ISAT) to aid in determining best practices/strategies for teaching middle school science. The literature review defines scientific inquiry by placing teaching strategies on a continuum of scientific inquiry methodologies from No Inquiry (Direct Instruction) through Authentic Inquiry. Five major divisions of scientific inquiry: structured inquiry, guided inquiry, learning cycle inquiry, open inquiry, and authentic inquiry, have been identified and described. These five divisions contain eight sub-categories: demonstrations; simple or hands-on activities; discovery learning; variations of learning cycles; problem-based, event-based, and project-based; and student inquiry, science partnerships, and Schwab's enquiry. Quantitative data were collected from pre- and posttests and surveys given to the participants: five seventh grade science teachers in four Academic Excellence Award and Spotlight Award schools and their 531 students. Findings revealed that teachers reported higher inquiry scores for themselves than for their students; the two greatest reported factors limiting teachers' use of inquiry were not enough time and concern about discipline and large class size. Although the correlation between total inquiry and mean difference of pre- and posttest scores was not statistically significant, the survey instrument indicated how often teachers used inquiry in their classes, not the type of inquiry used. Implications arose from the findings that increase the methodology debate between direction instruction and inquiry-based teaching strategies; teachers are very knowledgeable about the Illinois state standards, and various inquiry-based methods need to be stressed in undergraduate methods classes. While this study focused on the various types of scientific inquiry by creating a continuum of scientific inquiry methodologies, research using the continuum needs to be conducted to determine the various teaching styles of successful teachers.
The Relationship between Psychological Factors and Inquiry-Based Working by Primary School Teachers
ERIC Educational Resources Information Center
Uiterwijk-Luijk, Lisette; Krüger, Meta; Zijlstra, Bonne; Volman, Monique
2017-01-01
Inquiry-based working by teachers includes working with an inquiry habit of mind, being data literate, contributing to a culture of inquiry at the school level, and creating a culture of inquiry at the classroom level. Inquiry-based working has been found to contribute to educational improvements and the professionalisation of teachers. This study…
Inquiry-Based Early Undergraduate Research Using High-Altitude Ballooning
NASA Astrophysics Data System (ADS)
Sibbernsen, K.; Sibbernsen, M.
2012-12-01
One common objective for undergraduate science classes is to have students learn how to do scientific inquiry. However, often in science laboratory classes, students learn to take data, analyze the data, and come to conclusions, but they are told what to study and do not have the opportunity to ask their own research questions, a crucial part of scientific inquiry. A special topics class in high-altitude ballooning (HAB) was offered at Metropolitan Community College, a large metropolitan two-year college in Omaha, Nebraska to focus on scientific inquiry for the participants through support of NASA Nebraska Space Grant. A weather balloon with payloads attached (balloonSAT) was launched to near space where the balloon burst and fell back to the ground with a parachute. Students worked in small groups to ask their research questions, they designed their payloads, participated in the launch and retrieval of equipment, analyzed data, and presented the results of their research. This type of experience has potential uses in physics, physical science, engineering, electronics, computer programming, meteorology, astronomy, and chemistry classes. The balloonSAT experience can act as a stepping-stone to designing sounding rocket payloads and it can allow students the opportunity to participate in regional competitions and present at HAB conferences. Results from the workshop are shared, as well as student responses to the experience and suggestions for administering a high-altitude ballooning program for undergraduates or extending inquiry-based ballooning experiences into high-school or middle-school.
Arabidopsis Ecotypes: A Model for Course Projects in Organismal Plant Biology & Evolution
ERIC Educational Resources Information Center
Wyatt, Sarah; Ballard, Harvey E.
2007-01-01
We present an inquiry-based project using readily-available seed stocks of Arabidopsis. Seedlings are grown under simulated "common garden" conditions to test evolutionary and organismal principles. Students learn scientific method by developing hypotheses and selecting appropriate data and analyses for their experiments. Experiments can be…
Inquiry-Based Instruction of Compound Microscopy Using Simulated Paleobiogeography
ERIC Educational Resources Information Center
Hodgson, Jay Y. S.; Mateer, Scott C.
2015-01-01
The compound microscope is an important tool in biology, and mastering it requires repetition. Unfortunately, introductory activities for students can be formulaic, and consequently, students are often unengaged and fail to develop the required experience to become proficient in microscopy. To engage students, increase repetition, and develop…
GETIT--Geoscience Education through Interactive Technology[TM]. [CD-ROM].
ERIC Educational Resources Information Center
2000
This CD-ROM uses catastrophic events to teach the fundamentals of the earth's dynamism. Topics discussed include earthquakes, volcanoes, hurricanes, plate tectonics, and many subjects that have to do with energy transfer. It contains 63 interactive, inquiry-based activities that closely simulate real life scientific practice. Students work with…
Exercise in Inquiry: Critical Thinking in an Inquiry-Based Exercise Physiology Laboratory Course.
ERIC Educational Resources Information Center
DiPasquale, Dana M.; Mason, Cheryl L.; Kolkhorst, Fred W.
2003-01-01
Describes an inquiry-based teaching method implemented in an undergraduate exercise physiology laboratory course. Indicates students' strong, positive feelings about the inquiry-based teaching method and shows that inquiry-based learning results in a higher order of learning not typically observed in traditional style classes. This teaching method…
Engaging Nature of Science to Preservice Teachers through Inquiry-Based Classroom
ERIC Educational Resources Information Center
Nuangchalerm, Prasart
2013-01-01
Inquiry-based classroom is widely distributed in the school science based on its useful and effective instruction. Science teachers are key elements allowing students to have scientific inquiry. If teachers understand and imply inquiry-based learning into science classroom, students will learn science as scientific inquiry and understand nature of…
ERIC Educational Resources Information Center
Tsivitanidou, Olia; Zacharia, Zacharias C.; Hovardas, Tasos; Nicolaou, Aphrodite
2012-01-01
In this study we introduced a peer feedback tool to secondary school students while aiming at investigating whether this tool leads to a feedback dialogue when using a computer supported inquiry learning environment in science. Moreover, we aimed at examining what type of feedback students ask for and receive and whether the students use the…
ERIC Educational Resources Information Center
Waight, Noemi; Abd-El-Khalick, Fouad
2007-01-01
This study investigated the impact of the use of computer technology on the enactment of "inquiry" in a sixth grade science classroom. Participants were 42 students (38% female) enrolled in two sections of the classroom and taught by a technology-enthusiast instructor. Data were collected over the course of 4 months during which several "inquiry"…
Amplify scientific discovery with artificial intelligence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gil, Yolanda; Greaves, Mark T.; Hendler, James
Computing innovations have fundamentally changed many aspects of scientific inquiry. For example, advances in robotics, high-end computing, networking, and databases now underlie much of what we do in science such as gene sequencing, general number crunching, sharing information between scientists, and analyzing large amounts of data. As computing has evolved at a rapid pace, so too has its impact in science, with the most recent computing innovations repeatedly being brought to bear to facilitate new forms of inquiry. Recently, advances in Artificial Intelligence (AI) have deeply penetrated many consumer sectors, including for example Apple’s Siri™ speech recognition system, real-time automatedmore » language translation services, and a new generation of self-driving cars and self-navigating drones. However, AI has yet to achieve comparable levels of penetration in scientific inquiry, despite its tremendous potential in aiding computers to help scientists tackle tasks that require scientific reasoning. We contend that advances in AI will transform the practice of science as we are increasingly able to effectively and jointly harness human and machine intelligence in the pursuit of major scientific challenges.« less
The relationship between inquiry-based science instruction and student achievement
NASA Astrophysics Data System (ADS)
Suarez, Michael Louis
Teaching science through inquiry has become a focus of recent educational reform in Mississippi and other states. Based on the Constructivist learning theory, inquiry instruction can take many forms, but generally follows the scientific method by requiring students to learn concepts through experimentation and real-world, hands-on experiences. This dissertation examines the relationship between the amounts of time spent using inquiry-based science instruction and student achievement as measured by the Mississippi State Science Assessment. The study also identifies teacher perceptions of inquiry and the amount of professional development received by participants on using inquiry-based instructional techniques. Finally, this study identifies factors that hinder the use of inquiry. Using a 24-question written survey, the researcher collected quantitative data from 204 science teachers in grades K-8 in four southern Mississippi school districts. Participants rated their average amount of time spent using inquiry-based science instruction in their classrooms. These results were then compared to each school's average test score on the 2009-2010 Mississippi State Science Assessment using a Spearman rho correlation. A significant positive relationship was found between amounts of time spent using inquiry-based science instruction and student achievement. The participants also indicated their perceptions of inquiry, amount of professional development, and deterrents to inquiry usage on a five-point Likert scale survey. Overall, participants held a favorable opinion of inquiry-based instruction and felt that it was important for their students' success. Over half of participants had not attended professional development on inquiry-based instruction. A majority indicated a desire for professional development. The most commonly identified factor hindering the use of inquiry was a lack of materials and resources. Many participants also indicated that time constraints prevented more frequent use of inquiry in their classrooms.
Exploring the complexity of inquiry learning in an open-ended problem space
NASA Astrophysics Data System (ADS)
Clarke, Jody
Data-gathering and problem identification are key components of scientific inquiry. However, few researchers have studied how students learn these skills because historically this required a time-consuming, complicated method of capturing the details of learners' data-gathering processes. Nor are classroom settings authentic contexts in which students could exhibit problem identification skills parallel to those involved in deconstructing complex real world situations. In this study of middle school students, because of my access to an innovative technology, I simulated a disease outbreak in a virtual community as a complicated, authentic problem. As students worked through the curriculum in the virtual world, their time-stamped actions were stored by the computer in event-logs. Using these records, I tracked in detail how the student scientists made sense of the complexity they faced and how they identified and investigated the problem using science-inquiry skills. To describe the degree to which students' data collection narrowed and focused on a specific disease over time, I developed a rubric and automated the coding of records in the event-logs. I measured the ongoing development of the students' "systematicity" in investigating the disease outbreak. I demonstrated that coding event-logs is an effective yet non-intrusive way of collecting and parsing detailed information about students' behaviors in real time in an authentic setting. My principal research question was "Do students who are more thoughtful about their inquiry prior to entry into the curriculum demonstrate increased systematicity in their inquiry behavior during the experience, by narrowing the focus of their data-gathering more rapidly than students who enter with lower levels of thoughtfulness about inquiry?" My sample consisted of 403 middle-school students from public schools in the US who volunteered to participate in the River City Project in spring 2008. Contrary to my hypothesis, I found that prior thoughtfulness of inquiry was not a predictor of the subsequent development of systematicity. However, all students did indeed become more systematic in their scientific behavior over time. On average, boys were generally more systematic than girls, but the rates at which systematicity increased with time was identical across the genders.
ERIC Educational Resources Information Center
Roll, Ido; Butler, Deborah; Yee, Nikki; Welsh, Ashley; Perez, Sarah; Briseno, Adriana; Perkins, Katherine; Bonn, Doug
2018-01-01
Guiding inquiry learning has been shown to increase knowledge gains. Yet, little is known about the effect of guidance on attitudes and behaviours, its interaction with student attributes, and transfer of impact once guidance is removed. We address these gaps in the context of an interactive Physics simulation on electric circuits…
ERIC Educational Resources Information Center
Hollowell, Gail P.; Osler, James E.; Hester, April L.
2015-01-01
This paper provides an applied research rational for a longitudinal investigation that involved teaching a "Technology Engineered Science Education Course" via an Interactive Laboratory Based Genomics Curriculum. The Technology st Engineering [TE] methodology was first introduced at the SAPES: South Atlantic Philosophy of Education…
An Inquiry Approach to Construct Instructional Trajectories Based on the Use of Digital Technologies
ERIC Educational Resources Information Center
Santos-Trigo, Manuel
2008-01-01
There are diverse ways to construct instructional activities that teachers can use to foster their students' development of mathematical thinking. It is argued that the use of computational tools offers teachers the possibility of designing and exploring mathematical tasks from distinct perspectives that might lead their students to the…
Enhancing Student Explanations of Evolution: Comparing Elaborating and Competing Theory Prompts
ERIC Educational Resources Information Center
Donnelly, Dermot F.; Namdar, Bahadir; Vitale, Jonathan M.; Lai, Kevin; Linn, Marcia C.
2016-01-01
In this study, we explore how two different prompt types within an online computer-based inquiry learning environment enhance 392 7th grade students' explanations of evolution with three teachers. In the "elaborating" prompt condition, students are prompted to write explanations that support the accepted theory of evolution. In the…
Using Generic and Context-Specific Scaffolding to Support Authentic Science Inquiry
ERIC Educational Resources Information Center
Belland, Brian R.; Gu, Jiangyue; Armbrust, Sara; Cook, Brant
2013-01-01
In this conceptual paper, we propose an heuristic to balance context-specific and generic scaffolding, as well as computer-based and teacher scaffolding, during instruction centered on authentic, scientific problems. This paper is novel in that many researchers ask a dichotomous question of whether generic or context-specific scaffolding is best,…
Genome Annotation in a Community College Cell Biology Lab
ERIC Educational Resources Information Center
Beagley, C. Timothy
2013-01-01
The Biology Department at Salt Lake Community College has used the IMG-ACT toolbox to introduce a genome mapping and annotation exercise into the laboratory portion of its Cell Biology course. This project provides students with an authentic inquiry-based learning experience while introducing them to computational biology and contemporary learning…
ERIC Educational Resources Information Center
Scogin, Stephen C.
2016-01-01
"PlantingScience" is an award-winning program recognized for its innovation and use of computer-supported scientist mentoring. Science learners work on inquiry-based experiments in their classrooms and communicate asynchronously with practicing plant scientist-mentors about the projects. The purpose of this study was to identify specific…
Student Experiments and Teacher Tests Using EDAQ530
ERIC Educational Resources Information Center
Kopasz, Katalin; Makra, Péter; Gingl, Zoltán
2013-01-01
Experiments, as we all know, are especially important in science education. However, their impact on improving thinking could be even greater when applied together with the methods of inquiry-based learning (IBL). In this paper we present our observations of a high-school laboratory class where students used computers to carry out and analyse real…
ERIC Educational Resources Information Center
Garrett-Rucks, Paula
2013-01-01
Fostering and assessing language learners' cultural understanding is a daunting task, particularly at the early stages of language learning with target language instruction. The purpose of this study was to explore the development of beginning French language learners' intercultural understanding in a computer-mediated environment where students…
ERIC Educational Resources Information Center
Bergey, Bradley W.; Ketelhut, Diane Jass; Liang, Senfeng; Natarajan, Uma; Karakus, Melissa
2015-01-01
The primary aim of the study was to examine whether performance on a science assessment in an immersive virtual environment was associated with changes in scientific inquiry self-efficacy. A secondary aim of the study was to examine whether performance on the science assessment was equitable for students with different levels of computer game…
Learning Genetics through an Authentic Research Simulation in Bioinformatics
ERIC Educational Resources Information Center
Gelbart, Hadas; Yarden, Anat
2006-01-01
Following the rationale that learning is an active process of knowledge construction as well as enculturation into a community of experts, we developed a novel web-based learning environment in bioinformatics for high-school biology majors in Israel. The learning environment enables the learners to actively participate in a guided inquiry process…
Moving from answer finding to sensemaking: Supporting middle school students' online inquiry
NASA Astrophysics Data System (ADS)
Zhang, Meilan
Online inquiry, use of the Web as an information source to conduct inquiry for a scientific question, has become increasingly common in middle schools in recent years. However, while valuable Web resources provide unprecedented learning opportunities, easy access to information does not guarantee learning. Previous research has found that middle school students tend to use the Web in a superficial manner. To address the challenges that students face in online inquiry, this study explored several supporting strategies implemented in Digital IdeaKeeper, a scaffolded software tool to help students move from passively finding a ready-made answer to actively making sense of the information they encounter through support for inquiry planning, information search, analysis, and synthesis. This study examined the differences and similarities between regular online inquiry and supported online inquiry performed by several sixth-graders in real classroom settings. Four pairs from a sixth grade class used IdeaKeeper for their online inquiry project, and another four pairs from a different sixth grade class taught by the same teacher used regular online search engines only. Both groups worked on the same science topic-water, and the entire project lasted about four weeks. During that time, students in both groups used computers for about 10-14 days to conduct online research. Multiple sources of data were collected, including video recordings of students' computer activities and conversations, students' artifacts, log files and student final writings. Several themes emerged from the data analysis. First, the findings refer to the importance of providing a structure for students' online inquiry, to promote a more integrated, efficient, continuous, metacognitive and engaging online inquiry. In addition, guidance is important to promote more careful, thorough, and purposeful online reading, Overall, the results suggest that middle school students' online inquiry needs to be structured and their online reading needs to be guided. However, challenges still remain to engage students in high-level critical thinking in online inquiry, because some prompts designed to guide students' reading do not seem effective. Implications of the research findings are discussed.
Espino, Jeremy U; Wagner, M; Szczepaniak, C; Tsui, F C; Su, H; Olszewski, R; Liu, Z; Chapman, W; Zeng, X; Ma, L; Lu, Z; Dara, J
2004-09-24
Computer-based outbreak and disease surveillance requires high-quality software that is well-supported and affordable. Developing software in an open-source framework, which entails free distribution and use of software and continuous, community-based software development, can produce software with such characteristics, and can do so rapidly. The objective of the Real-Time Outbreak and Disease Surveillance (RODS) Open Source Project is to accelerate the deployment of computer-based outbreak and disease surveillance systems by writing software and catalyzing the formation of a community of users, developers, consultants, and scientists who support its use. The University of Pittsburgh seeded the Open Source Project by releasing the RODS software under the GNU General Public License. An infrastructure was created, consisting of a website, mailing lists for developers and users, designated software developers, and shared code-development tools. These resources are intended to encourage growth of the Open Source Project community. Progress is measured by assessing website usage, number of software downloads, number of inquiries, number of system deployments, and number of new features or modules added to the code base. During September--November 2003, users generated 5,370 page views of the project website, 59 software downloads, 20 inquiries, one new deployment, and addition of four features. Thus far, health departments and companies have been more interested in using the software as is than in customizing or developing new features. The RODS laboratory anticipates that after initial installation has been completed, health departments and companies will begin to customize the software and contribute their enhancements to the public code base.
Remote file inquiry (RFI) system
NASA Technical Reports Server (NTRS)
1975-01-01
System interrogates and maintains user-definable data files from remote terminals, using English-like, free-form query language easily learned by persons not proficient in computer programming. System operates in asynchronous mode, allowing any number of inquiries within limitation of available core to be active concurrently.
Inquiry style interactive virtual experiments: a case on circular motion
NASA Astrophysics Data System (ADS)
Zhou, Shaona; Han, Jing; Pelz, Nathaniel; Wang, Xiaojun; Peng, Liangyu; Xiao, Hua; Bao, Lei
2011-11-01
Interest in computer-based learning, especially in the use of virtual reality simulations is increasing rapidly. While there are good reasons to believe that technologies have the potential to improve teaching and learning, how to utilize the technology effectively in teaching specific content difficulties is challenging. To help students develop robust understandings of correct physics concepts, we have developed interactive virtual experiment simulations that have the unique feature of enabling students to experience force and motion via an analogue joystick, allowing them to feel the applied force and simultaneously see its effects. The simulations provide students learning experiences that integrate both scientific representations and low-level sensory cues such as haptic cues under a single setting. In this paper, we introduce a virtual experiment module on circular motion. A controlled study has been conducted to evaluate the impact of using this virtual experiment on students' learning of force and motion in the context of circular motion. The results show that the interactive virtual experiment method is preferred by students and is more effective in helping students grasp the physics concepts than the traditional education method such as problem-solving practices. Our research suggests that well-developed interactive virtual experiments can be useful tools in teaching difficult concepts in science.
Learning and teaching with a computer scanner
NASA Astrophysics Data System (ADS)
Planinsic, G.; Gregorcic, B.; Etkina, E.
2014-09-01
This paper introduces the readers to simple inquiry-based activities (experiments with supporting questions) that one can do with a computer scanner to help students learn and apply the concepts of relative motion in 1 and 2D, vibrational motion and the Doppler effect. We also show how to use these activities to help students think like scientists. They will conduct simple experiments, construct different explanations for their observations, test their explanations in new experiments and represent their ideas in multiple ways.
ERIC Educational Resources Information Center
Papaevripidou, Marios; Irakleous, Maria; Zacharia, Zacharias C.
2017-01-01
The study aimed at examining preservice elementary teachers' inquiry-oriented curriculum materials in an attempt to unravel their pedagogical design capacity (PDC) and pedagogical content knowledge (PCK) for inquiry-based learning (IBL), after attending a professional development program (PDP) centered around inquiry-based teaching and learning.…
NASA Astrophysics Data System (ADS)
Gado, Issaou
The Republic of Benin (West Africa) undertook a nationwide curriculum reform that put an emphasis on inquiry-based instructional practices. Little, if any, research has been conducted to explore factors that could be related to teachers' orientation toward inquiry instructional practices. The purpose of this research study was to investigate factors and concerns that determine Benin elementary school teachers' orientation toward the use of inquiry-based instruction in the teaching of science. The study followed a naturalistic inquiry methodology combining a correlational ex post facto design and an observational case-study design. The theory of Planned Behavior was the conceptual framework used to design the study. Two hundred (N = 200) elementary school teachers and three (n = 3) case study participants were purposively selected. Data was gathered via the Revised Science Attitude Scale (Thompson & Shrigley, 1986), the Science Teachers' Ideological Preference Scale (Jones & Harty, 1978), open-ended questions, interviews, and classroom observations using audiorecorders, videorecorders, and the researcher-contextualized version of the Observational System for the Analysis of Classroom Instruction (Hough, 1966). Qualitative and quantitative data provided a deeper understanding of participants' responses. Quantitative measures indicated that Benin elementary school teachers have positive attitudes toward school science, significant positive orientation toward both inquiry-based instruction and traditional non inquiry-based instruction, and higher orientation toward inquiry-based instruction than traditional non inquiry-based instruction. Attitude toward handling materials for investigations was found to significantly contribute to the prediction of participants' inquiry orientation. Qualitative analyses of participants' responses indicated that the expectations of educational leaders, individual motivation to comply with the program, a perceived control of the performance of inquiry-based activities, students' inquiry outcome expectancy or likelihood of occurrence in the classroom, the pedagogical structure of the program, and the student-centeredness of the program were potential motivational factors that could explain participants' orientation toward inquiry-based instruction. Four major concerns---lack of materials for teaching, lack of training in the process and strategy of inquiry, overloaded curriculum content, students' linguistic difficulties---were perceived obstacles in implementing inquiry-based instruction. Implications for transformative curriculum practices are discussed.
Inquiry-based instruction in secondary science classrooms: A survey of teacher practice
NASA Astrophysics Data System (ADS)
Gejda, Linda Muggeo
The purpose of this quantitative investigation was to describe the extent to which secondary science teachers, who were certified through Connecticut's BEST portfolio assessment process between 1997 and 2004 and had taught secondary science during the past academic year, reported practicing the indicators of inquiry-based instruction in the classroom and the factors that they perceived facilitated, obstructed, or informed that practice. Indicators of inquiry-based instruction were derived from the Biological Sciences Curriculum Study (BSCS) 5E model (Bybee, 1997). The method for data collection was a researcher-developed, self-report, questionnaire entitled "Inquiry-based Instruction in Secondary Science Classrooms: A Survey", which was developed and disseminated using a slightly modified Dillman (2000) approach. Almost all of the study participants reported practicing the 5Es (engage, explore, explain, elaborate, and evaluate) of inquiry-based instruction in their secondary science classrooms. Time, resources, the need to cover material for mandatory assessments, the science topics or concepts being taught, and professional development on inquiry-based instruction were reported to be important considerations in participants' decisions to practice inquiry-based instruction in their science classrooms. A majority of the secondary science teachers participating in this study indicated they had the time, access to resources and the professional development opportunities they needed to practice inquiry-based instruction in their secondary classrooms. Study participants ranked having the time to teach in an inquiry-based fashion and the need to cover material for mandated testing as the biggest obstacles to their practice of inquiry-based instruction in the secondary classroom. Classroom experience and collegial exchange informed the inquiry-based instruction practice of the secondary science teachers who participated in this study. Recommendations for further research, practice, and policy were made based upon the results of this study.
NASA Astrophysics Data System (ADS)
Waight, Noemi; Abd-El-Khalick, Fouad
2007-01-01
This study investigated the impact of the use of computer technology on the enactment of inquiry in a sixth grade science classroom. Participants were 42 students (38% female) enrolled in two sections of the classroom and taught by a technology-enthusiast instructor. Data were collected over the course of 4 months during which several inquiry activities were completed, some of which were supported with the use of technology. Non-participant observation, classroom videotaping, and semi-structured and critical-incident interviews were used to collect data. The results indicated that the technology in use worked to restrict rather than promote inquiry in the participant classroom. In the presence of computers, group activities became more structured with a focus on sharing tasks and accounting for individual responsibility, and less time was dedicated to group discourse with a marked decrease in critical, meaning-making discourse. The views and beliefs of teachers and students in relation to their specific contexts moderate the potential of technology in supporting inquiry teaching and learning and should be factored both in teacher training and attempts to integrate technology in science teaching.
Expert Systems for Libraries at SCIL [Small Computers in Libraries]'88.
ERIC Educational Resources Information Center
Kochtanek, Thomas R.; And Others
1988-01-01
Six brief papers on expert systems for libraries cover (1) a knowledge-based approach to database design; (2) getting started in expert systems; (3) using public domain software to develop a business reference system; (4) a music cataloging inquiry system; (5) linguistic analysis of reference transactions; and (6) a model of a reference librarian.…
Comparative Analysis, Hypercard, and the Future of Social Studies Education.
ERIC Educational Resources Information Center
Jennings, James M.
This research paper seeks to address new theories of learning and instructional practices that will be needed to meet the demands of 21st century education. A brief review of the literature on the topics of constructivism, reflective inquiry, and multicultural education, which form the major elements of a computer-based system called HyperCAP, are…
ERIC Educational Resources Information Center
Terrell, Cassidy R.; Listenberger, Laura L.
2017-01-01
Recognizing that undergraduate students can benefit from analysis of 3D protein structure and function, we have developed a multiweek, inquiry-based molecular visualization project for Biochemistry I students. This project uses a virtual model of cyclooxygenase-1 (COX-1) to guide students through multiple levels of protein structure analysis. The…
Can Dynamic Visualizations with Variable Control Enhance the Acquisition of Intuitive Knowledge?
ERIC Educational Resources Information Center
Wichmann, Astrid; Timpe, Sebastian
2015-01-01
An important feature of inquiry learning is to take part in science practices including exploring variables and testing hypotheses. Computer-based dynamic visualizations have the potential to open up various exploration possibilities depending on the level of learner control. It is assumed that variable control, e.g., by changing parameters of a…
Shifting to an Inquiry-Based Experience
ERIC Educational Resources Information Center
Corder, Gregory; Slykhuis, Julie
2011-01-01
Teaching science with an inquiry-based approach can seem like an impossible challenge. However, it is achievable. One way to begin is by converting a cookbook-style lab (from the internet or a textbook) into an inquiry-based science experience. To convert a cookbook lab into an inquiry-based science experience, the authors propose the following…
Students Learn How Nonprofits Utilize Volunteers through Inquiry-Based Learning
ERIC Educational Resources Information Center
Bolton, Elizabeth B.; Brennan, M. A.; Terry, Bryan D.
2009-01-01
This article highlights how undergraduate students implemented inquiry-based learning strategies to learn how nonprofit organizations utilize volunteers. In inquiry-based learning, students begin with a problem or question with some degree of focus or structure provided by the professor. The student inquiry showcased in this article was based on a…
ERIC Educational Resources Information Center
Leonard, Jacqueline; Boakes, Norma; Moore, Cara M.
2009-01-01
This study examined the impact of an intervention designed to promote inquiry-based instruction among early childhood/elementary preservice teachers in Earth science. Preservice teachers participated in training sessions and community-based internships to deepen Earth science content knowledge and develop inquiry-based practices. Analyses of Earth…
Seth, Ajay; Sherman, Michael; Reinbolt, Jeffrey A; Delp, Scott L
Movement science is driven by observation, but observation alone cannot elucidate principles of human and animal movement. Biomechanical modeling and computer simulation complement observations and inform experimental design. Biological models are complex and specialized software is required for building, validating, and studying them. Furthermore, common access is needed so that investigators can contribute models to a broader community and leverage past work. We are developing OpenSim, a freely available musculoskeletal modeling and simulation application and libraries specialized for these purposes, by providing: musculoskeletal modeling elements, such as biomechanical joints, muscle actuators, ligament forces, compliant contact, and controllers; and tools for fitting generic models to subject-specific data, performing inverse kinematics and forward dynamic simulations. OpenSim performs an array of physics-based analyses to delve into the behavior of musculoskeletal models by employing Simbody, an efficient and accurate multibody system dynamics code. Models are publicly available and are often reused for multiple investigations because they provide a rich set of behaviors that enables different lines of inquiry. This report will discuss one model developed to study walking and applied to gain deeper insights into muscle function in pathological gait and during running. We then illustrate how simulations can test fundamental hypotheses and focus the aims of in vivo experiments, with a postural stability platform and human model that provide a research environment for performing human posture experiments in silico . We encourage wide adoption of OpenSim for community exchange of biomechanical models and methods and welcome new contributors.
NASA Astrophysics Data System (ADS)
Robbins, Beth Schieber
Inquiry-based science teaching is an inductive approach to science instruction that originated in constructivist learning theory and requires students to be active participants in their own learning process. In an inquiry-based classroom, students actively construct their knowledge of science through hands-on, engaged practices and inquiry-based approaches. Inquiry-based teaching stands in contrast to more traditional forms of teaching that see students as empty vessels to be filled by the teacher with rote facts. Despite calls from the NSF, the NRC, and the AAAS for more inquiry-based approaches to teaching science, research has shown that many teachers still do not use inquiry-based approaches. Teachers have cited difficulties including lack of time, high-stakes testing, a shortage of materials, problems with school-wide logistics, rigid science curricula, student passivity, and lack of prerequisite skills. The objective of this mixed-methods study was to examine to what extent specific, identifiable personality traits contribute to the likelihood that a teacher will use inquiry in the science classroom, and what factors figure predominantly as teachers' reasons for implementing inquiry. The findings of the study showed that the null hypotheses were not rejected. However, reduced conscientiousness and increased openness may be significant in indicating why teachers use inquiry-based teaching methods and avenues for further research. In addition, the qualitative results aligned with previous findings that showed that lack of resources (e.g., time and money) and peer support act as powerful barriers to implementing inquiry-based teaching. Inquiry teachers are flexible, come to teaching as a second or third career, and their classrooms can be characterized as chaotic, fun, and conducive to learning through engagement. The study suggests changes in practice among administrators and teachers. With adjustments in methods and survey instruments, additional research could provide valuable insights and further recommendations. Overall, this study has yielded information that may lead to changes in both practice and thinking related to inquiry-based teaching and learning.
Cootie Genetics: Simulating Mendel's Experiments to Understand the Laws of Inheritance
ERIC Educational Resources Information Center
Galloway, Katelyn; Anderson, Nadja
2014-01-01
"Cootie Genetics" is a hands-on, inquiry-based activity that enables students to learn the Mendelian laws of inheritance and gain an understanding of genetics principles and terminology. The activity begins with two true-breeding Cooties of the same species that exhibit five observable trait differences. Students observe the retention or…
Benefits of computer screen-based simulation in learning cardiac arrest procedures.
Bonnetain, Elodie; Boucheix, Jean-Michel; Hamet, Maël; Freysz, Marc
2010-07-01
What is the best way to train medical students early so that they acquire basic skills in cardiopulmonary resuscitation as effectively as possible? Studies have shown the benefits of high-fidelity patient simulators, but have also demonstrated their limits. New computer screen-based multimedia simulators have fewer constraints than high-fidelity patient simulators. In this area, as yet, there has been no research on the effectiveness of transfer of learning from a computer screen-based simulator to more realistic situations such as those encountered with high-fidelity patient simulators. We tested the benefits of learning cardiac arrest procedures using a multimedia computer screen-based simulator in 28 Year 2 medical students. Just before the end of the traditional resuscitation course, we compared two groups. An experiment group (EG) was first asked to learn to perform the appropriate procedures in a cardiac arrest scenario (CA1) in the computer screen-based learning environment and was then tested on a high-fidelity patient simulator in another cardiac arrest simulation (CA2). While the EG was learning to perform CA1 procedures in the computer screen-based learning environment, a control group (CG) actively continued to learn cardiac arrest procedures using practical exercises in a traditional class environment. Both groups were given the same amount of practice, exercises and trials. The CG was then also tested on the high-fidelity patient simulator for CA2, after which it was asked to perform CA1 using the computer screen-based simulator. Performances with both simulators were scored on a precise 23-point scale. On the test on a high-fidelity patient simulator, the EG trained with a multimedia computer screen-based simulator performed significantly better than the CG trained with traditional exercises and practice (16.21 versus 11.13 of 23 possible points, respectively; p<0.001). Computer screen-based simulation appears to be effective in preparing learners to use high-fidelity patient simulators, which present simulations that are closer to real-life situations.
A Case Study of Technology-Enhanced Historical Inquiry
ERIC Educational Resources Information Center
Yang, Shu Ching
2009-01-01
The paper describes the integration of web resources and technology as instructional and learning tools in oral history projects. The computer-mediated oral history project centred around interviews with community elders combined with new technologies to engage students in authentic historical inquiry. The study examined learners' affective…
Inquiry-Based Science Education: Scaffolding Pupils' Self-Directed Learning in Open Inquiry
ERIC Educational Resources Information Center
van Uum, Martina S. J.; Verhoeff, Roald P.; Peeters, Marieke
2017-01-01
This paper describes a multiple case study on open inquiry-based learning in primary schools. During open inquiry, teachers often experience difficulties in balancing support and transferring responsibility to pupils' own learning. To facilitate teachers in guiding open inquiry, we developed hard and soft scaffolds. The hard scaffolds consisted of…
Inquiry-based Learning and Digital Libraries in Undergraduate Science Education
NASA Astrophysics Data System (ADS)
Apedoe, Xornam S.; Reeves, Thomas C.
2006-12-01
The purpose of this paper is twofold: to describe robust rationales for integrating inquiry-based learning into undergraduate science education, and to propose that digital libraries are potentially powerful technological tools that can support inquiry-based learning goals in undergraduate science courses. Overviews of constructivism and situated cognition are provided with regard to how these two theoretical perspectives have influenced current science education reform movements, especially those that involve inquiry-based learning. The role that digital libraries can play in inquiry-based learning environments is discussed. Finally, the importance of alignment among critical pedagogical dimensions of an inquiry-based pedagogical framework is stressed in the paper, and an example of how this can be done is presented using earth science education as a context.
Injecting Inquiry-Oriented Modules into Calculus
ERIC Educational Resources Information Center
Shelton, Therese
2017-01-01
Implementing inquiry-based modules within a course can be effective and enable instructor experimentation, without completely transforming an entire course. For instructors new to inquiry-based learning (IBL), we state hallmarks of the practice and point out the merits of strong IBL communities. An inquiry-based approach may alleviate some current…
NASA Astrophysics Data System (ADS)
Tosa, Sachiko
Since the publication of the National Science Education Standards in 1996, learning science through inquiry has been regarded as the heart of science education. However, the TIMSS 1999 Video Study showed that inquiry-based teaching has been taking place less in the United States than in Japan. This study examined similarities and differences in how Japanese and American middle-school science teachers think and feel about inquiry-based teaching. Teachers' attitudes toward the use of inquiry in science teaching were measured through a survey instrument (N=191). Teachers' understanding of inquiry-based teaching was examined through interviews and classroom observations in the United States (N=9) and Japan (N=15). The results show that in spite of the variations in teachers' definitions of inquiry-based teaching, teachers in both countries strongly agree with the idea of inquiry-based teaching. However, little inquiry-based teaching was observed in either of the countries for different reasons. The data indicate that Japanese teachers did not generally help students construct their own understanding of scientific concepts in spite of well-planned lesson structures and activity set-ups. On the other hand, the observational data indicate that American teachers often lacked meaningful science content in spite of their high level of pedagogical knowledge. The need for addressing the importance of scientific concepts in teacher preparation programs in higher education institutions in the US is advocated. To the Japanese science education community, the need for teachers' acquisition of instructional strategies for inquiry-based teaching is strongly addressed.
NASA Astrophysics Data System (ADS)
de Groot, R.
2008-12-01
The Southern California Earthquake Center (SCEC) has been developing groundbreaking computer modeling capabilities for studying earthquakes. These visualizations were initially shared within the scientific community but have recently gained visibility via television news coverage in Southern California. Computers have opened up a whole new world for scientists working with large data sets, and students can benefit from the same opportunities (Libarkin & Brick, 2002). For example, The Great Southern California ShakeOut was based on a potential magnitude 7.8 earthquake on the southern San Andreas fault. The visualization created for the ShakeOut was a key scientific and communication tool for the earthquake drill. This presentation will also feature SCEC Virtual Display of Objects visualization software developed by SCEC Undergraduate Studies in Earthquake Information Technology interns. According to Gordin and Pea (1995), theoretically visualization should make science accessible, provide means for authentic inquiry, and lay the groundwork to understand and critique scientific issues. This presentation will discuss how the new SCEC visualizations and other earthquake imagery achieve these results, how they fit within the context of major themes and study areas in science communication, and how the efficacy of these tools can be improved.
Entropy-Based Search Algorithm for Experimental Design
NASA Astrophysics Data System (ADS)
Malakar, N. K.; Knuth, K. H.
2011-03-01
The scientific method relies on the iterated processes of inference and inquiry. The inference phase consists of selecting the most probable models based on the available data; whereas the inquiry phase consists of using what is known about the models to select the most relevant experiment. Optimizing inquiry involves searching the parameterized space of experiments to select the experiment that promises, on average, to be maximally informative. In the case where it is important to learn about each of the model parameters, the relevance of an experiment is quantified by Shannon entropy of the distribution of experimental outcomes predicted by a probable set of models. If the set of potential experiments is described by many parameters, we must search this high-dimensional entropy space. Brute force search methods will be slow and computationally expensive. We present an entropy-based search algorithm, called nested entropy sampling, to select the most informative experiment for efficient experimental design. This algorithm is inspired by Skilling's nested sampling algorithm used in inference and borrows the concept of a rising threshold while a set of experiment samples are maintained. We demonstrate that this algorithm not only selects highly relevant experiments, but also is more efficient than brute force search. Such entropic search techniques promise to greatly benefit autonomous experimental design.
A Computer-Based Simulation of an Acid-Base Titration
ERIC Educational Resources Information Center
Boblick, John M.
1971-01-01
Reviews the advantages of computer simulated environments for experiments, referring in particular to acid-base titrations. Includes pre-lab instructions and a sample computer printout of a student's use of an acid-base simulation. Ten references. (PR)
ERIC Educational Resources Information Center
Kou, Xiaojing
2011-01-01
Various formats of online discussion have proven valuable for enhancing learning and collaboration in distance and blended learning contexts. However, despite their capacity to reveal essential processes in collaborative inquiry, current mainstream analytical frameworks, such as the cognitive presence framework (Garrison, Anderson, & Archer,…
ERIC Educational Resources Information Center
Scogin, Stephen C.; Stuessy, Carol L.
2015-01-01
Next Generation Science Standards (NGSS) call for integrating knowledge and practice in learning experiences in K-12 science education. "PlantingScience" (PS), an ideal curriculum for use as an NGSS model, is a computer-mediated collaborative learning environment intertwining scientific inquiry, classroom instruction, and online…
Teleconferencing Handouts Directory of State Officials ($3 plus s&h) Bill Action & Status Inquiry System - (BASIS) Each of the LIOs has computer access to information on floor and committee action as it occurs via BASIS (Bill Action Status Inquiry System). For each bill introduced, a file is created in BASIS
Kidspiration[R] for Inquiry-Centered Activities
ERIC Educational Resources Information Center
Shaw, Edward L., Jr.; Baggett, Paige V.; Salyer, Barbara
2004-01-01
Computer technology can be integrated into science inquiry activities to increase student motivation and enhance and expand scientific thinking. Fifth-grade students used the visual thinking tools in the Kidspiration[R] software program to generate and represent a web of hypotheses around the question, "What affects the distance a marble rolls?"…
NASA Astrophysics Data System (ADS)
Demir, Abdulkadir
The purpose of this phenomenographic study was to: (a) understand how beginning science teachers recruited from various science disciplines and prepared in an Alternative Teacher Certification Program (ATCP) implemented inquiry during their initial years of teaching; (b) describe constraints and needs that these beginning science teachers perceived in implementing inquiry-based science instruction; and (c) understand the relation between what they learned in their ATCP and their practice of teaching science through inquiry. The participants of this study consisted of four ATCP teachers who are in their beginning years of teaching. Semi-structured interviews, classroom observation, field notes, and artifacts used as source of data collection. The beginning science teachers in this study held incomplete views of inquiry. These views of inquiry did not reflect inquiry as described in NRC (2000)---essential features of inquiry,---nor did they reflect views of faculty members involved in teaching science methods courses. Although the participants described themselves as reform-oriented, there were inconsistencies between their views and practices. Their practice of inquiry did not reflect inquiry either as outlined by essential features of inquiry (NRC, 2000) or inquiry as modeled in activities used in their ATCP. The research participants' perceived constraints and needs in their implementation of inquiry-based activities. Their perceived constraints included logistical and student constraints and school culture. The perceived needs included classroom management, pedagogical skills, practical knowledge, discipline, successful grade-specific models of inquiry, and access to a strong support system. Prior professional work experience, models and activities used in the ATCP, and benefits of inquiry to student learning were the declared factors that facilitated the research participants' practice of inquiry-based teaching.
ERIC Educational Resources Information Center
Kazempour, Mahsa; Amirshokoohi, Aidin
2013-01-01
In order for teachers to implement inquiry-based teaching practices, they must have experienced inquiry-based learning especially during science content and methods courses. Although the impacts of inquiry-based instruction on various cognitive and affective domains have been studied and documented little attention has been paid to "how"…
ERIC Educational Resources Information Center
Manoj, T. I.; Devanathan, S.
2010-01-01
This research study is the report of an experiment conducted to find out the effects of web based inquiry science environment on cognitive outcomes in Biological science in correlation to Emotional intelligence. Web based inquiry science environment (WISE) provides a platform for creating inquiry-based science projects for students to work…
NASA Astrophysics Data System (ADS)
Donnelly, Dermot; O'Reilly, John; McGarr, Oliver
2013-08-01
Practical work is often noted as a core reason many students take on science in secondary schools (high schools). However, there are inherent difficulties associated with classroom practical work that militate against scientific inquiry, an approach espoused by many science educators. The use of interactive simulations to facilitate student inquiry has emerged as a complement to practical work. This study presents case studies of four science teachers using a virtual chemistry laboratory (VCL) with their students in an explicitly guided inquiry manner. Research tools included the use of the Inquiry Science Implementation Scale in a `talk-aloud' manner, Reformed Teaching Observation Protocol for video observations, and teacher interviews. The findings suggest key aspects of practical work that hinder teachers in adequately supporting inquiry and highlight where a VCL can overcome many of these difficulties. The findings also indicate considerations in using the VCL in its own right.
Can Inquiry-Based Learning Strengthen the Links between Teaching and Disciplinary Research?
ERIC Educational Resources Information Center
Spronken-Smith, Rachel; Walker, Rebecca
2010-01-01
Inquiry-based learning has been promoted as a student-centred approach that can strengthen the links between teaching and research. This article examines the potential of inquiry-based learning to strengthen the teaching-research nexus by analysing three case studies: a "structured inquiry" third-year endocrinology medicine module, a…
The design and implementation of GML data management information system based on PostgreSQL
NASA Astrophysics Data System (ADS)
Zhang, Aiguo; Wu, Qunyong; Xu, Qifeng
2008-10-01
GML expresses geographic information in text, and it provides an extensible and standard way of spatial information encoding. At the present time, the management of GML data is in terms of document. By this way, the inquiry and update of GML data is inefficient, and it demands high memory when the document is comparatively large. In this respect, the paper put forward a data management of GML based on PostgreSQL. It designs four kinds of inquiries, which are inquiry of metadata, inquiry of geometry based on property, inquiry of property based on spatial information, and inquiry of spatial data based on location. At the same time, it designs and implements the visualization of the inquired WKT data.
NASA Astrophysics Data System (ADS)
Williams, Latonya Michelle
This dissertation reports on a three year study designed to investigate the trajectories of two urban elementary school teachers---a novice and an experienced teacher---learning to teach a science curriculum unit using an inquiry approach supported by the Web-based Inquiry Science Environment (WISE). This research investigated teachers' development in knowledge and practice. Through analyses of video records of classroom instruction and professional development meetings, repeated interviews, and student assessments, I have produced case studies of teachers' journeys as they implement the technological inquiry-based instructional model. This study captures the interplay between the teachers' pedagogical content knowledge, enacted practice, and insights into students' thinking about complex science ideas. I trace the factors that encouraged and supported the teachers' development, in addition to the kinds of struggles they faced and overcame. I discuss the social supports I provided for the teachers, including scaffolding them in reflecting on their practice, assisting them with curriculum customizations, and supporting their learning such as arranging online interactions with scientists. I analyze spontaneous activities such as teachers' own reflections. The results suggest that the novice and experienced teacher's classroom practices became more inquiry oriented across time. For both teachers, use of technology accompanied an increase in science dialogue with small groups in years two and three. The novice teacher began asking inquiry questions in her second year of classroom experience, after a great deal of professional support. Both teachers improved in their pedagogical content knowledge from years one through three as a result of the varied professional development supports. The results suggest that teachers' improvement in instructional strategies and pedagogical content knowledge accompanied students' improvement in understanding of the science content.
Student goal orientation in learning inquiry skills with modifiable software advisors
NASA Astrophysics Data System (ADS)
Shimoda, Todd A.; White, Barbara Y.; Frederiksen, John R.
2002-03-01
A computer support environment (SCI-WISE) for learning and doing science inquiry projects was designed. SCI-WISE incorporates software advisors that give general advice about a skill such as hypothesizing. By giving general advice (rather than step-by-step procedures), the system is intended to help students conduct experiments that are more epistemologically authentic. Also, students using SCI-WISE can select the type of advice the advisors give and when they give advice, as well as modify the advisors' knowledge bases. The system is based partly on a theoretical framework of levels of agency and goal orientation. This framework assumes that giving students higher levels of agency facilitates higher-level goal orientations (such as mastery or knowledge building as opposed to task completion) that in turn produce higher levels of competence. A study of sixth grade science students was conducted. Students took a pretest questionnaire that measured their goal orientations for science projects and their inquiry skills. The students worked in pairs on an open-ended inquiry project that requires complex reasoning about human memory. The students used one of two versions of SCI-WISE - one that was modifiable and one that was not. After finishing the project, the students took a posttest questionnaire similar to the pretest, and evaluated the version of the system they used. The main results showed that (a) there was no correlation of goal orientation with grade point average, (b) knowledge-oriented students using the modifiable version tended to rate SCI-WISE more helpful than task-oriented students, and (c) knowledge-oriented pairs using the nonmodifiable version tended to have higher posttest inquiry skills scores than other pair types.
Computer-Assisted Search Of Large Textual Data Bases
NASA Technical Reports Server (NTRS)
Driscoll, James R.
1995-01-01
"QA" denotes high-speed computer system for searching diverse collections of documents including (but not limited to) technical reference manuals, legal documents, medical documents, news releases, and patents. Incorporates previously available and emerging information-retrieval technology to help user intelligently and rapidly locate information found in large textual data bases. Technology includes provision for inquiries in natural language; statistical ranking of retrieved information; artificial-intelligence implementation of semantics, in which "surface level" knowledge found in text used to improve ranking of retrieved information; and relevance feedback, in which user's judgements of relevance of some retrieved documents used automatically to modify search for further information.
ERIC Educational Resources Information Center
Lin, Sheau-Wen; Liu, Yu; Chen, Shin-Feng; Wang, Jing-Ru; Kao, Huey-Lien
2016-01-01
The purpose of this study was to develop a computer-based measure of elementary students' science talk and to report students' benchmarks. The development procedure had three steps: defining the framework of the test, collecting and identifying key reference sets of science talk, and developing and verifying the science talk instrument. The…
Unplugged Cybersecurity: An Approach for Bringing Computer Science into the Classroom
ERIC Educational Resources Information Center
Fees, Rachel E.; da Rosa, Jennifer A.; Durkin, Sarah S.; Murray, Mark M.; Moran, Angela L.
2018-01-01
The United States Naval Academy (USNA) STEM Center for Education and Outreach addresses an urgent Navy and national need for more young people to pursue careers in STEM fields through world-wide outreach to 17,000 students and 900 teachers per year. To achieve this mission, the STEM Center has developed a hands-on and inquiry-based methodology to…
Providing Guidance in Virtual Lab Experimentation: The Case of an Experiment Design Tool
ERIC Educational Resources Information Center
Efstathiou, Charalampos; Hovardas, Tasos; Xenofontos, Nikoletta A.; Zacharia, Zacharias C.; deJong, Ton; Anjewierden, Anjo; van Riesen, Siswa A. N.
2018-01-01
The present study employed a quasi-experimental design to assess a computer-based tool, which was intended to scaffold the task of designing experiments when using a virtual lab for the process of experimentation. In particular, we assessed the impact of this tool on primary school students' cognitive processes and inquiry skills before and after…
Modeling Student Learning Behavior Patterns in an Online Science Inquiry Environment
ERIC Educational Resources Information Center
Brenner, Daniel G.; Matlen, Bryan J.; Timms, Michael J.; Gochyyev, Perman; Grillo-Hill, Andrew; Luttgen, Kim; Varfolomeeva, Marina
2017-01-01
This study investigated how the frequency and level of assistance provided to students interacted with prior knowledge to affect learning in the "Voyage to Galapagos" ("VTG") science inquiry-learning environment. "VTG" provides students with the opportunity to do simulated science field work in Galapagos as they…
NASA Astrophysics Data System (ADS)
Pongsophon, Pongprapan; Herman, Benjamin C.
2017-07-01
Given the abundance of literature describing the strong relationship between inquiry-based teaching and student achievement, more should be known about the factors impacting science teachers' classroom inquiry implementation. This study utilises the theory of planned behaviour to propose and validate a causal model of inquiry-based teaching through analysing data relating to high-performing countries retrieved from the 2011 Trends in International Mathematics and Science Study assessments. Data analysis was completed through structural equation modelling using a polychoric correlation matrix for data input and diagonally weighted least squares estimation. Adequate fit of the full model to the empirical data was realised. The model demonstrates that the extent the teachers participated in academic collaborations was positively related to their occupational satisfaction, confidence in teaching inquiry, and classroom inquiry practices. Furthermore, the teachers' confidence with implementing inquiry was positively related to their classroom inquiry implementation and occupational satisfaction. However, perceived student-generated constraints demonstrated a negative relationship with the teachers' confidence with implementing inquiry and occupational satisfaction. Implications from this study include supporting teachers through promoting collaborative opportunities that facilitate inquiry-based practices and occupational satisfaction.
Development and Validation of an Instrument for Evaluating Inquiry-Based Tasks in Science Textbooks
ERIC Educational Resources Information Center
Yang, Wenyuan; Liu, Enshan
2016-01-01
This article describes the development and validation of an instrument that can be used for content analysis of inquiry-based tasks. According to the theories of educational evaluation and qualities of inquiry, four essential functions that inquiry-based tasks should serve are defined: (1) assisting in the construction of understandings about…
ERIC Educational Resources Information Center
Uiterwijk-Luijk, Lisette; Krüger, Meta; Zijlstra, Bonne; Volman, Monique
2017-01-01
Purpose: The purpose of this paper is to improve the understanding of psychological factors that influence inquiry-based leadership. This study investigates how affective attitude, experienced social pressure, and self-efficacy relate to aspects of inquiry-based school leadership. A school leader's inquiry habit of mind, data literacy, and the…
ERIC Educational Resources Information Center
Almuntasheri, S.; Gillies, R. M.; Wright, T.
2016-01-01
Despite a general consensus on the educational effectiveness of inquiry-based instruction, the enacted type of inquiry in science classrooms remains debatable in many countries including Saudi Arabia. This study compared guided-inquiry based teachers' professional development to teacher-directed approach in supporting Saudi students to understand…
ERIC Educational Resources Information Center
Avraamidou, Lucy
2017-01-01
Given reform recommendations emphasizing scientific inquiry and empirical evidence pointing to the difficulties beginning teachers face in enacting inquiry-based science, this study explores a well-started beginning elementary teacher's (Sofia) beliefs about inquiry-based science and related instructional practices. In order to explore Sofia's…
Mentoring a new science teacher in reform-based ways: A focus on inquiry
NASA Astrophysics Data System (ADS)
Schomer, Scott D.
The processes, understandings, and uses of inquiry are identified by the National Science Education Standards (National Research Council, 1996) as a key component of science instruction. Currently, there are few examples in the literature demonstrating how teachers go about co-constructing inquiry-based activities and how mentors can promote the use of reform-based practices by novices. The purpose of this interpretive case study was to investigate how a mentor and her protege collaboratively developed, implemented and assessed three inquiry-based experiences. The questions that guided this research were: (1) How does the mentor assist protege growth in the development, implementation and assessment of inquiry-based experiences for secondary science students? (2) How are the protege's perceptions of inquiry influenced by her participation in developing, implementing and assessing inquiry-based experiences for secondary science students? The co-construction of the inquiry activities and the facilitation provided by the mentor represented Lev Vygotsky's (1978) social construction of information as the mentor guided the protege beyond her cognitive zone of proximal development. The participants in this study were a veteran science teacher who was obtaining her mentor certification, or Teacher Support Specialist, and her protege who was a science teacher in the induction phase of her career. Data were collected through in-depth, semi-structured interviews, tape recordings of planning sessions, researcher field notes, and email reflections during the co-construction process. Inductive analysis of the data led to the identification of common categories and subsequent findings, which reflected what the mentor and protege discussed about inquiry and the process of collaboration. The six themes that emerged from this study led to several implications that are significant for science teacher preparation and the mentoring community. The teachers indicated tools, such as the "Essential Features and Variations of Inquiry" table, were helpful for planning and assessing inquiry-based experiences. Examination of findings revealed how the process of purposefully collaborating on the development of inquiry-based lessons fostered a more student-centered approach to teaching and learning by the protege. Therefore, having new teachers continue to collaborate with reform-minded mentors beyond their first year of teaching may help new teachers develop inquiry-based pedagogies.
Development and validation of an instrument for evaluating inquiry-based tasks in science textbooks
NASA Astrophysics Data System (ADS)
Yang, Wenyuan; Liu, Enshan
2016-12-01
This article describes the development and validation of an instrument that can be used for content analysis of inquiry-based tasks. According to the theories of educational evaluation and qualities of inquiry, four essential functions that inquiry-based tasks should serve are defined: (1) assisting in the construction of understandings about scientific concepts, (2) providing students opportunities to use inquiry process skills, (3) being conducive to establishing understandings about scientific inquiry, and (4) giving students opportunities to develop higher order thinking skills. An instrument - the Inquiry-Based Tasks Analysis Inventory (ITAI) - was developed to judge whether inquiry-based tasks perform these functions well. To test the reliability and validity of the ITAI, 4 faculty members were invited to use the ITAI to collect data from 53 inquiry-based tasks in the 3 most widely adopted senior secondary biology textbooks in Mainland China. The results indicate that (1) the inter-rater reliability reached 87.7%, (2) the grading criteria have high discriminant validity, (3) the items possess high convergent validity, and (4) the Cronbach's alpha reliability coefficient reached 0.792. The study concludes that the ITAI is valid and reliable. Because of its solid foundations in theoretical and empirical argumentation, the ITAI is trustworthy.
Assessing Inquiry in Physical Geology Laboratory Manuals
ERIC Educational Resources Information Center
Ryker, Katherine D.; McConnell, David A.
2017-01-01
Many agencies, organizations, and researchers have called for the incorporation of inquiry-based learning in college classrooms. Providing inquiry-based activities in laboratory courses is one way to promote reformed, student-centered teaching in introductory geoscience courses. However, the literature on inquiry has relatively few geoscience…
Computer-based simulation training in emergency medicine designed in the light of malpractice cases.
Karakuş, Akan; Duran, Latif; Yavuz, Yücel; Altintop, Levent; Calişkan, Fatih
2014-07-27
Using computer-based simulation systems in medical education is becoming more and more common. Although the benefits of practicing with these systems in medical education have been demonstrated, advantages of using computer-based simulation in emergency medicine education are less validated. The aim of the present study was to assess the success rates of final year medical students in doing emergency medical treatment and evaluating the effectiveness of computer-based simulation training in improving final year medical students' knowledge. Twenty four Students trained with computer-based simulation and completed at least 4 hours of simulation-based education between the dates Feb 1, 2010 - May 1, 2010. Also a control group (traditionally trained, n =24) was chosen. After the end of training, students completed an examination about 5 randomized medical simulation cases. In 5 cases, an average of 3.9 correct medical approaches carried out by computer-based simulation trained students, an average of 2.8 correct medical approaches carried out by traditionally trained group (t = 3.90, p < 0.005). We found that the success of students trained with simulation training in cases which required complicated medical approach, was statistically higher than the ones who didn't take simulation training (p ≤ 0.05). Computer-based simulation training would be significantly effective in learning of medical treatment algorithms. We thought that these programs can improve the success rate of students especially in doing adequate medical approach to complex emergency cases.
NASA Astrophysics Data System (ADS)
Blevins, Kathryn
The purpose of this basic qualitative research study was to identify the extent to which kindergarten teachers understand and implement inquiry-based instruction in their science classrooms. This study was conducted in response to the indication that traditional didactic teaching methods were not enough to adequately prepare American students to compete in the global economy. Inquiry is a teaching method that could prepare students for the critical thinking skills needed to enter society in the 21st century. It is vital that teachers be sufficiently trained in teaching using the necessary components of inquiry-based instruction. This study could be used to inform leaders in educational administration of the gaps in teachers' understanding as it pertains to inquiry, thus allowing for the delivery of professional development that will address teachers' needs. Existing literature on inquiry-based instruction provides minimal information on kindergarten teachers' understanding and usage of inquiry to teach science content, and this information would be necessary to inform administrators in their response to supporting teachers in the implementation of inquiry. The primary research question for this study was "To what extent do kindergarten teachers understand the elements of implementing inquiry-based lessons in science instruction?" The 10 participants in this study were all kindergarten teachers in a midsized school district in the Mid-Atlantic region of the United States. Data were collected using face-to-face semistructured interviews, observations of the teachers implementing what they perceived to be inquiry-based instruction, and the analysis of lesson plans to indicate the components used to plan for inquiry-instruction. The findings of this study indicated that while teachers believed inquiry to be a beneficial method for teaching science, they did not understand the components of inquiry and tended to implement lesson plans created at the district level. By analyzing the findings of this study, it became evident that kindergarten teachers could benefit from scaffolded, ongoing professional development focusing on the components of inquiry and how to implement inquiry in their science instruction.
Teaching strategies and student achievement in high school block scheduled biology classes
NASA Astrophysics Data System (ADS)
Louden, Cynthia Knapp
The objectives of this study included determining whether teachers in block or traditionally scheduled biology classes (1) implement inquiry-based instruction more often or with different methods, (2) understand the concept of inquiry-based instruction as it is described in the National Science Standards, (3) have classes with significantly different student achievement, and (4) believe that their school schedule facilitates their use of inquiry-based instruction in the classroom. Biology teachers in block and non-block scheduled classes were interviewed, surveyed, and observed to determine the degree to which they implement inquiry-based instructional practices in their classrooms. State biology exams were used to indicate student achievement. Teachers in block scheduled and traditional classes used inquiry-based instruction with nearly the same frequency. Approximately 30% of all teachers do not understand the concept of inquiry-based instruction as described by the National Science Standards. No significant achievement differences between block and traditionally scheduled biology classes were found using ANCOVA analyses and a nonequivalent control-group quasi-experimental design. Using the same analysis techniques, significant achievement differences were found between biology classes with teachers who used inquiry-based instruction frequently and infrequently. Teachers in block schedules believed that their schedules facilitated inquiry-based instruction more than teachers in traditional schedules.
The Impact of Integrated Coaching and Collaboration within an Inquiry Learning Environment
ERIC Educational Resources Information Center
Dragon, Toby
2013-01-01
This thesis explores the design and evaluation of a collaborative, inquiry learning Intelligent Tutoring System for ill-defined problem spaces. The common ground in the fields of Artificial Intelligence in Education and Computer-Supported Collaborative Learning is investigated to identify ways in which tutoring systems can employ both automated…
Patterns of Scaffolding in Computer-Mediated Collaborative Inquiry
ERIC Educational Resources Information Center
Lakkala, Minna; Muukkonen, Hanni; Hakkarainen, Kai
2005-01-01
There is wide agreement on the importance of scaffolding for student learning. Yet, models of individual and face-to-face scaffolding are not necessarily applicable to educational settings in which a group of learners is pursuing a process of inquiry mediated by technology. The scaffolding needed for such a process may be examined from three…
Computer-Supported Inquiry Learning: Effects of Training and Practice
ERIC Educational Resources Information Center
Beishuizen, Jos; Wilhelm, Pascal; Schimmel, Marieke
2004-01-01
Inquiry learning requires the ability to understand that theory and evidence have to be distinguished and co-ordinated. Moreover, learners have to be able to control two or more independent variables when formulating hypotheses, designing experiments and interpreting outcomes. Can sixth-grade (9-10 years) children be trained to acquire these…
Wong, Ambrose H; Tiyyagura, Gunjan K; Dodington, James M; Hawkins, Bonnie; Hersey, Denise; Auerbach, Marc A
Deep exploration of a complex health care issue in pediatrics might be hindered by the sensitive or infrequent nature of a particular topic in pediatrics. Health care simulation builds on constructivist theories to guide individuals through an experiential cycle of action, self-reflection, and open discussion, but has traditionally been applied to the educational domain in health sciences. Leveraging the emotional activation of a simulated experience, investigators can prime participants to engage in open dialogue for the purposes of qualitative research. The framework of simulation-primed qualitative inquiry consists of 3 main iterative steps. First, researchers determine applicability by consideration of the need for an exploratory approach and potential to enrich data through simulation priming of participants. Next, careful attention is needed to design the simulation, with consideration of medium, technology, theoretical frameworks, and quality to create simulated reality relevant to the research question. Finally, data collection planning consists of a qualitative approach and method selection, with particular attention paid to psychological safety of subjects participating in the simulation. A literature review revealed 37 articles that used this newly described method across a variety of clinical and educational research topics and used a spectrum of simulation modalities and qualitative methods. Although some potential limitations and pitfalls might exist with regard to resources, fidelity, and psychological safety under the auspices of educational research, simulation-primed qualitative inquiry can be a powerful technique to explore difficult topics when subjects might experience vulnerability or hesitation. Copyright © 2017 Academic Pediatric Association. Published by Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Pongsophon, Pongprapan; Herman, Benjamin C.
2017-01-01
Given the abundance of literature describing the strong relationship between inquiry-based teaching and student achievement, more should be known about the factors impacting science teachers' classroom inquiry implementation. This study utilises the theory of planned behaviour to propose and validate a causal model of inquiry-based teaching…
ERIC Educational Resources Information Center
Longo, Christopher M.
2012-01-01
This study investigated the impact of an inquiry-based science program on the critical thinking skills, science process skills, creativity, and science fair achievement of middle school students. Although research indicates the connection between inquiry and achievement, there is limited empirical research relating specific inquiry-based programs…
NASA Astrophysics Data System (ADS)
Tabak, Iris Ellen
The goal of this dissertation was to study how to harness technological tools in service of establishing a climate of inquiry in science classrooms. The research is a design experiment drawing on sociocultural and cognitive theory. As part of the BGuILE project, I developed software to support observational research of natural selection, and a complementary high school unit on evolution. Focusing on urban schools, I employed interpretive methods to examine learning as it unfolds in the classroom. I present design principles for realizing a climate of inquiry in technology-infused classrooms. This research contributes to technology design, teaching practice and educational and cognitive research. My pedagogical approach, Domain-Specific Strategic Support (DSSS), helps students analyze and synthesize primary data by making experts' considerations of content knowledge explicit. Students query data by constructing questions from a selection of comparison and variable types that are privileged in the domain. Students organize their data according to evidence categories that comprise a natural selection argument. I compared the inquiry process of contrastive cases: an honor group, a regular group and a lower track group. DSSS enabled students at different achievement levels to set up systematic comparisons, and construct empirically-based explanations. Prior knowledge and inquiry experience influenced spontaneous strategy use. Teacher guidance compensated for lack of experience, and enabled regular level students to employ strategies as frequently as honor students. I extend earlier research by proposing a taxonomy of both general and domain-specific reflective inquiry strategies. I argue that software, teacher and curriculum work in concert to sustain a climate of inquiry. Teachers help realize the potential that technological tools invite. Teachers reinforce software supports by encouraging students utilize technological tools, and by modeling their use. They also establish classroom norms that reflect scientific values. Discussions at the computer allow teachers to provide just-in-time guidance on inquiry actions. Whole class discussions afford sharing insights across groups, and relating finding to normative knowledge. Pretest to posttest improvements in both conceptual and strategic knowledge suggest that DSSS helps reconcile the tension that can exist between content and process goals in inquiry settings.
Nudging toward Inquiry: Strategies for Searching for and Finding Great Information
ERIC Educational Resources Information Center
Fontichiaro, Kristin, Comp.
2010-01-01
Inquiry does not replace information literacy; rather, it encompasses it. Inquiry-based learning invites school librarians to step into all aspects of instructional planning, from activating prior knowledge straight through to reflection. Libraries pursuing inquiry-based instruction are building on the bedrock of information literacy, not starting…
ERIC Educational Resources Information Center
Donnelly, Dermot; O'Reilly, John; McGarr, Oliver
2013-01-01
Practical work is often noted as a core reason many students take on science in secondary schools (high schools). However, there are inherent difficulties associated with classroom practical work that militate against scientific inquiry, an approach espoused by many science educators. The use of interactive simulations to facilitate student…
A Model Approach to the Electrochemical Cell: An Inquiry Activity
ERIC Educational Resources Information Center
Cullen, Deanna M.; Pentecost, Thomas C.
2011-01-01
In an attempt to address some student misconceptions in electrochemistry, this guided-inquiry laboratory was devised to give students an opportunity to use a manipulative that simulates the particulate-level activity within an electrochemical cell, in addition to using an actual electrochemical cell. Students are led through a review of expected…
Relating Narrative, Inquiry, and Inscriptions: Supporting Consequential Play
ERIC Educational Resources Information Center
Barab, Sasha A.; Sadler, Troy D.; Heiselt, Conan; Hickey, Daniel; Zuiker, Steven
2007-01-01
In this paper we describe our research using a multi-user virtual environment, "Quest Atlantis," to embed fourth grade students in an aquatic habitat simulation. Specifically targeted towards engaging students in a rich inquiry investigation, we layered a socio-scientific narrative and an interactive rule set into a multi-user virtual environment…
ERIC Educational Resources Information Center
McCauslin, Christine Seitz; Gunn, Kathryn Elaine; Pirone, Dana; Staiger, Jennifer
2015-01-01
We describe a structured inquiry laboratory exercise that examines transcriptional regulation of the "NOS2" gene under conditions that simulate the inflammatory response in macrophages. Using quantitative PCR and the comparative C[subscript T] method, students are able determine whether transcriptional activation of "NOS2"…
NASA Astrophysics Data System (ADS)
McLaughlin, Cheryl A.; MacFadden, Bruce J.
2014-12-01
This study stemmed from concerns among researchers that reform efforts grounded in promoting inquiry as the basis for teaching science have not achieved the desired changes in American science classrooms. Many science teachers assume that they are employing inquiry-based strategies when they use cookbook investigations with highly structured step-by-step instructions. Additionally, most science teachers equate hands-on activities with classroom inquiry and, as such, repeatedly use prepackaged, disconnected activities to break the monotony of direct instruction. Despite participation in numerous professional development activities, many science teachers continue to hold misconceptions about inquiry that influence the way they design and enact instruction. To date, there is very limited research exploring the role of inquiry-based professional development in facilitating desired changes in science teachers' conceptions of inquiry. This qualitative study of five high school science teachers explores the ways in which authentic inquiry experiences with a team of scientists in Panama shaped their conceptions and reported enactments of inquiry-based instruction. Our findings suggest that professional development experiences engaging science teachers in authentic research with scientists have the potential to change teachers' naïve conceptions of inquiry, provided that necessary supports are provided for reflection and lesson design.
Computer-Based Tools for Inquiry in Undergraduate Classrooms: Results from the VGEE
NASA Astrophysics Data System (ADS)
Pandya, R. E.; Bramer, D. J.; Elliott, D.; Hay, K. E.; Mallaiahgari, L.; Marlino, M. R.; Middleton, D.; Ramamurhty, M. K.; Scheitlin, T.; Weingroff, M.; Wilhelmson, R.; Yoder, J.
2002-05-01
The Visual Geophysical Exploration Environment (VGEE) is a suite of computer-based tools designed to help learners connect observable, large-scale geophysical phenomena to underlying physical principles. Technologically, this connection is mediated by java-based interactive tools: a multi-dimensional visualization environment, authentic scientific data-sets, concept models that illustrate fundamental physical principles, and an interactive web-based work management system for archiving and evaluating learners' progress. Our preliminary investigations showed, however, that the tools alone are not sufficient to empower undergraduate learners; learners have trouble in organizing inquiry and using the visualization tools effectively. To address these issues, the VGEE includes an inquiry strategy and scaffolding activities that are similar to strategies used successfully in K-12 classrooms. The strategy is organized around the steps: identify, relate, explain, and integrate. In the first step, students construct visualizations from data to try to identify salient features of a particular phenomenon. They compare their previous conceptions of a phenomenon to the data examine their current knowledge and motivate investigation. Next, students use the multivariable functionality of the visualization environment to relate the different features they identified. Explain moves the learner temporarily outside the visualization to the concept models, where they explore fundamental physical principles. Finally, in integrate, learners use these fundamental principles within the visualization environment by literally placing the concept model within the visualization environment as a probe and watching it respond to larger-scale patterns. This capability, unique to the VGEE, addresses the disconnect that novice learners often experience between fundamental physics and observable phenomena. It also allows learners the opportunity to reflect on and refine their knowledge as well as anchor it within a context for long-term retention. We are implementing the VGEE in one of two otherwise identical entry-level atmospheric courses. In addition to comparing student learning and attitudes in the two courses, we are analyzing student participation with the VGEE to evaluate the effectiveness and usability of the VGEE. In particular, we seek to identify the scaffolding students need to construct physically meaningful multi-dimensional visualizations, and evaluate the effectiveness of the visualization-embedded concept-models in addressing inert knowledge. We will also examine the utility of the inquiry strategy in developing content knowledge, process-of-science knowledge, and discipline-specific investigatory skills. Our presentation will include video examples of student use to illustrate our findings.
NASA Astrophysics Data System (ADS)
Lakin, Joni M.; Wallace, Carolyn S.
2015-03-01
Inquiry-based teaching promotes students' engagement in problem-solving and investigation as they learn science concepts. Current practice in science teacher education promotes the use of inquiry in the teaching of science. However, the literature suggests that many science teachers hold incomplete or incorrect conceptions of inquiry. Teachers, therefore, may believe they are providing more inquiry experiences than they are, reducing the positive impact of inquiry on science interest and skills. Given the prominence of inquiry in professional development experiences, educational evaluators need strong tools to detect intended use in the classroom. The current study focuses on the validity of assessments developed for evaluating teachers' use of inquiry strategies and classroom orientations. We explored the relationships between self-reported inquiry strategy use, preferences for inquiry, knowledge of inquiry practices, and related pedagogical content knowledge. Finally, we contrasted students' and teachers' reports of the levels of inquiry-based teaching in the classroom. Self-reports of inquiry use, especially one specific to the 5E instructional model, were useful, but should be interpreted with caution. Teachers tended to self-report higher levels of inquiry strategy use than their students perceived. Further, there were no significant correlations between either knowledge of inquiry practices or PCK and self-reported inquiry strategy use.
NASA Astrophysics Data System (ADS)
Tzou, Carrie Teh-Li
Science education reform emphasizes learning science through inquiry as a way to engage students in the processes of science at the same time that they learn scientific concepts. However, inquiry involves practices that are challenging for students because they have underlying norms with which students may be unfamiliar. We therefore cannot expect students to know how to engage in such practices simply by giving them opportunities to do so, especially if the norms for inquiry practices violate traditional classroom norms for engaging with scientific ideas. Teachers therefore play a key role in communicating expectations for inquiry. In this dissertation, I present an analytical framework for characterizing two teachers' enactments of an inquiry curriculum. This framework, based on Gee's (1996) notion of Discourses, describes inquiry practices in terms of three dimensions: cognitive, social, and linguistic. I argue that each of these dimensions presents challenges to students and, therefore, sites at which teachers' support is important for students' participation in inquiry practices. I use this framework to analyze two teachers' support of inquiry practices as they enact an inquiry-based curriculum. I explore three questions in my study: (1) what is the nature of teachers' support of inquiry practices? (2) how do teachers accomplish goals along multiple dimensions of inquiry?, and (3) what aspects of inquiry are in tension and how can we describe teachers' practice in terms of the tradeoff spaces between elements of inquiry in tension? In order to study these questions, I studied two eighth grade teachers who both enacted the same inquiry-based science curriculum developed by me and others in the context of a large design-based research project called IQWST (Investigating and Questioning my World through Science and Technology. I found that the teachers provided support for inquiry along all three dimensions, sometimes in ways in which the dimensions were synergistic and sometimes in ways in which the dimensions were in tension. These findings have implications for the design of inquiry science learning environments and for our understanding of what it means for teachers to be "cultural brokers" between students' everyday experiences and classroom science inquiry.
A demonstrative model of a lunar base simulation on a personal computer
NASA Technical Reports Server (NTRS)
1985-01-01
The initial demonstration model of a lunar base simulation is described. This initial model was developed on the personal computer level to demonstrate feasibility and technique before proceeding to a larger computer-based model. Lotus Symphony Version 1.1 software was used to base the demonstration model on an personal computer with an MS-DOS operating system. The personal computer-based model determined the applicability of lunar base modeling techniques developed at an LSPI/NASA workshop. In addition, the personnal computer-based demonstration model defined a modeling structure that could be employed on a larger, more comprehensive VAX-based lunar base simulation. Refinement of this personal computer model and the development of a VAX-based model is planned in the near future.
ERIC Educational Resources Information Center
Favier, Tim T.; van der Schee, Joop A.
2012-01-01
Geographic Information Systems (GIS) is a kind of computer software that allows people to work with digital maps in a fast and flexible way. In the past decade, more and more geography teachers have become interested in the possibilities of using GIS in secondary education. However, teaching with GIS is complex, and little is known about how to do…
ERIC Educational Resources Information Center
Yarker, Morgan Brown
2013-01-01
Research suggests that scientific models and modeling should be topics covered in K-12 classrooms as part of a comprehensive science curriculum. It is especially important when talking about topics in weather and climate, where computer and forecast models are the center of attention. There are several approaches to model based inquiry, but it can…
Factors Affecting Participation in Traditional and Inquiry-based Laboratories.
ERIC Educational Resources Information Center
Russell, Connie P.; French, Donald P.
2002-01-01
Reports on a study of participation, achievement, and attitude in cookbook and inquiry-based introductory biology laboratories through observations, interviews, and attitude/knowledge surveys. Participation differences between men and women disappeared in the inquiry-based laboratory. (Author/MM)
NASA Astrophysics Data System (ADS)
Hutchins, Kristen L.; Friedrichsen, Patricia J.
2012-12-01
The purpose of this study was to investigate how science faculty members' belief systems about inquiry-based teaching changed through their experience in a professional development program. The program was designed to support early career science faculty in learning about inquiry and incorporating an inquiry-based approach to teaching laboratories. Data sources for this qualitative study included three semi-structured interviews, observations during the program and during faculty members' implementation in their courses, and a researcher's journal. In the first phase of data analysis, we created profiles for each of the four participants. Next, we developed assertions, and tested for confirming and disconfirming evidence across the profiles. The assertions indicated that, through the professional development program, participants' knowledge and beliefs about inquiry-based teaching shifted, placing more value on student-directed learning and classroom inquiry. Participants who were internally motivated to participate and held incoming positive attitudes toward the mini-journal inquiry-based approach were more likely to incorporate the approach in their future practice. Students' responses played a critical role in participants' belief systems and their decision to continue using the inquiry-based format. The findings from this study have implications for professional development design.
Using Brief Teacher Interviews to Assess the Extent of Inquiry in Classrooms
ERIC Educational Resources Information Center
Oppong-Nuako, Juliet; Shore, Bruce M.; Saunders-Stewart, Katie S.; Gyles, Petra D. T.
2015-01-01
Inquiry-based instruction is common to nearly every model of gifted education. Six teachers of 14 secondary classes were briefly interviewed about their teaching and learning methods, use of inquiry-based strategies, classroom descriptions, a typical day, student expectations, and inquiry-instruction outcomes. A criterion-referenced checklist of…
Conducting Guided Inquiry in Science Classes Using Authentic, Archived, Web-Based Data
ERIC Educational Resources Information Center
Ucar, Sedat; Trundle, Kathy Cabe
2011-01-01
Students are often unable to collect the real-time data necessary for conducting inquiry in science classrooms. Web-based, real-time data could, therefore, offer a promising tool for conducting scientific inquiries within classroom environments. This study used a quasi-experimental research design to investigate the effects of inquiry-based…
ERIC Educational Resources Information Center
Hollingsworth, Heidi L.; Vandermaas-Peeler, Maureen
2017-01-01
Given the increased emphasis on science in early learning standards, two studies were conducted to investigate preschool teachers' efficacy for teaching science and their inquiry-based teaching practices. Fifty-one teachers completed a survey of their efficacy for teaching science and understanding of inquiry methods. Teachers reported moderate…
What Students Really Think about Doing Research
ERIC Educational Resources Information Center
Bernard, Warren
2011-01-01
There are many types of inquiry activities out there: Demonstrations, guided or scaffolded inquiry labs, open- or free-inquiry labs, and problem-based or project-based learning activities are all staples in science education. The importance of inquiry is highlighted in such documents as the National Science Education Standards (NRC 1996) and the…
Inquiry-Based Science Education: A Scenario on Zambia's High School Science Curriculum
ERIC Educational Resources Information Center
Chabalengula, Vivien M.; Mumba, Frackson
2012-01-01
This paper is aimed at elucidating the current state of inquiry-based science education (IBSE) in Zambia's high school science curriculum. Therefore, we investigated Zambian teachers' conceptions of inquiry; determined inquiry levels in the national high school science curriculum materials, which include syllabi, textbooks and practical exams; and…
Elementary Teacher's Conceptions of Inquiry Teaching: Messages for Teacher Development
ERIC Educational Resources Information Center
Ireland, Joseph E.; Watters, James J.; Brownlee, Jo; Lupton, Mandy
2012-01-01
This study explored practicing elementary school teacher's conceptions of teaching in ways that foster inquiry-based learning in the science curriculum (inquiry teaching). The advocacy for inquiry-based learning in contemporary curricula assumes the principle that students learn in their own way by drawing on direct experience fostered by the…
Meta-Analysis of Inquiry-Based Instruction Research
NASA Astrophysics Data System (ADS)
Hasanah, N.; Prasetyo, A. P. B.; Rudyatmi, E.
2017-04-01
Inquiry-based instruction in biology has been the focus of educational research conducted by Unnes biology department students in collaboration with their university supervisors. This study aimed to describe the methodological aspects, inquiry teaching methods critically, and to analyse the results claims, of the selected four student research reports, grounded in inquiry, based on the database of Unnes biology department 2014. Four experimental quantitative research of 16 were selected as research objects by purposive sampling technique. Data collected through documentation study was qualitatively analysed regarding methods used, quality of inquiry syntax, and finding claims. Findings showed that the student research was still the lack of relevant aspects of research methodology, namely in appropriate sampling procedures, limited validity tests of all research instruments, and the limited parametric statistic (t-test) not supported previously by data normality tests. Their consistent inquiry syntax supported the four mini-thesis claims that inquiry-based teaching influenced their dependent variables significantly. In other words, the findings indicated that positive claims of the research results were not fully supported by good research methods, and well-defined inquiry procedures implementation.
ERIC Educational Resources Information Center
Tan, Seng-Chee; Seah, Lay-Hoon
2011-01-01
In this study we explored questioning behaviors among elementary students engaging in inquiry science using the "Knowledge Forum", a computer-supported collaborative learning tool. Adapting the theory of systemic functional linguistics, we developed the Ideational Function of Question (IFQ) analytical framework by means of inductive analysis of…
Using Automated Scores of Student Essays to Support Teacher Guidance in Classroom Inquiry
ERIC Educational Resources Information Center
Gerard, Libby F.; Linn, Marcia C.
2016-01-01
Computer scoring of student written essays about an inquiry topic can be used to diagnose student progress both to alert teachers to struggling students and to generate automated guidance. We identify promising ways for teachers to add value to automated guidance to improve student learning. Three teachers from two schools and their 386 students…
ERIC Educational Resources Information Center
Turcotte, Sandrine; Hamel, Christine
2016-01-01
This study addressed computer-supported collaborative scientific inquiries in remote networked schools (Quebec, Canada). Three dyads of Grade 5-6 classrooms from remote locations across the province collaborated using the knowledge-building tool Knowledge Forum. Customized scaffold supports embedded in the online tool were used to support student…
Seth, Ajay; Sherman, Michael; Reinbolt, Jeffrey A.; Delp, Scott L.
2015-01-01
Movement science is driven by observation, but observation alone cannot elucidate principles of human and animal movement. Biomechanical modeling and computer simulation complement observations and inform experimental design. Biological models are complex and specialized software is required for building, validating, and studying them. Furthermore, common access is needed so that investigators can contribute models to a broader community and leverage past work. We are developing OpenSim, a freely available musculoskeletal modeling and simulation application and libraries specialized for these purposes, by providing: musculoskeletal modeling elements, such as biomechanical joints, muscle actuators, ligament forces, compliant contact, and controllers; and tools for fitting generic models to subject-specific data, performing inverse kinematics and forward dynamic simulations. OpenSim performs an array of physics-based analyses to delve into the behavior of musculoskeletal models by employing Simbody, an efficient and accurate multibody system dynamics code. Models are publicly available and are often reused for multiple investigations because they provide a rich set of behaviors that enables different lines of inquiry. This report will discuss one model developed to study walking and applied to gain deeper insights into muscle function in pathological gait and during running. We then illustrate how simulations can test fundamental hypotheses and focus the aims of in vivo experiments, with a postural stability platform and human model that provide a research environment for performing human posture experiments in silico. We encourage wide adoption of OpenSim for community exchange of biomechanical models and methods and welcome new contributors. PMID:25893160
Expanding Astronomy Education Innovations to the International Community
NASA Astrophysics Data System (ADS)
Slater, Stephanie J.; Slater, Timothy F.; Tatge, Coty; Guffey, Sarah Katie
2015-08-01
In the course of learning astronomy, it is generally accepted that successful science learning experiences should result in learners developing a meaningful understanding of the nature of science as inquiry where: (i) students are engaged in questions; (ii) students are designing plans to pursue data; and (iii) students are generating and defending conclusions based on evidence they have collected. In support of these goals, we have systematically field-test three separate instructional tools that are ready to be field-tested beyond the United States. The first of these is called LECTURE-TUTORIALS. These are self-contained, classroom-ready, collaborative group activities. The materials are designed specifically to be easily integrated into the lecture course and directly address the needs of busy faculty for effective, student-centered, classroom-ready materials that do not require a drastic course revision for implementation. Students are asked to reason about difficult concepts, while working in pairs, and to discuss their ideas openly. The second of these is a series of computer-mediated, inquiry learning experiences based upon an inquiry-oriented teaching approach framed by the notions of BACKWARDS-FADED SCAFFOLDING as an overarching theme for instruction that leverage online science data. BFS is a strategy where the conventional and rigidly linear scientific method is turned on its head and students are first taught how to create conclusions based on evidence, then how experimental design creates evidence, and only at the end introduces students to - what we believe is the most challenging part of inquiry - inventing scientifically appropriate questions. Third, contemporary ASSESSMENT INSTRUMENTS, including the TOAST and EGGS surveys, for astronomy & geology have been developed to help teachers measure the success of their implementation. Evaluation results consistently suggest that these tools help teachers better engage students in self-directed scientific discourse and increase their knowledge.
NASA Astrophysics Data System (ADS)
Kusnadi, K.; Rustaman, N. Y.; Redjeki, S.; Aryantha, I. N. P.
2017-09-01
The implementation of the inquiry laboratory based project to enhance scientific inquiry literacy of prospective biology teachers in Microbiology course has been done. The inquiry lab based project was designed by three stages were debriefing of basic microbiology lab skills, guided inquiry and free inquiry respectively. The Study was quasi experimental with control group pretest-posttest design. The subjects were prospective biology teachers consists of 80 students. The scientific inquiry literacy instrument refers to ScInqLiT by Wenning. The results showed that there was significant difference of scientific inquiry literacy posttest scores between experiment and control (α 0,05) and was obtained N-gain score was 0.49 (medium) to experiment and 0.24 (low) to control. Based on formative assessment showed that development of student’s scientific attitude, research and microbiology lab skills during conducting project were increased. Student’s research skills especially in identification of variables, constructing a hypothesis, communicating and concluding were increased. During implementation of inquiry project also showed that they carried out mind and hands-on and so collaborative group investigation lab activities. Our findings may aid in reforming higher-education, particularly in microbiology laboratory activities to better promote scientific inquiry literacy, scientific attitude, research and laboratory skills.
NASA Astrophysics Data System (ADS)
Deneroff, Victoria Matzenauer
This is an ethnographic case study of one urban high school science teacher who was attempting to use inquiry-based teaching in her practice. Rather than focusing on pedagogy, the study examines the social networks and communities of practice in which Marie Gonzalez participated. I make the argument that science teaching is a Discourse (Gee, 1990), and that teaching inquiry science means constructing an identity as a participant in what I call the Discourse of Inquiry. I also use discourse analysis to tease out a Discourse of Traditional Science Teaching. I conclude that the Traditional and Inquiry Discourses mediate a teacher's ideas of what it means to teach, and that, while Inquiry teachers are "bilingual", that is, able to participate in both Discourses, Traditional teachers are deaf to the Discourse of Inquiry. Moreover, in my study there is convincing evidence that administrators charged with evaluation were also unfamiliar with the Discourse of Inquiry and were therefore unable to provide support for Marie's inquiry practice. In light of these findings, it is not at all surprising that Marie found it quite difficult to use inquiry-based pedagogy. In order for teachers to adopt discourse-based reforms such as inquiry, the Discourse must be available to teachers in their workplaces.
A Web-Based Learning Support System for Inquiry-Based Learning
NASA Astrophysics Data System (ADS)
Kim, Dong Won; Yao, Jingtao
The emergence of the Internet and Web technology makes it possible to implement the ideals of inquiry-based learning, in which students seek truth, information, or knowledge by questioning. Web-based learning support systems can provide a good framework for inquiry-based learning. This article presents a study on a Web-based learning support system called Online Treasure Hunt. The Web-based learning support system mainly consists of a teaching support subsystem, a learning support subsystem, and a treasure hunt game. The teaching support subsystem allows instructors to design their own inquiry-based learning environments. The learning support subsystem supports students' inquiry activities. The treasure hunt game enables students to investigate new knowledge, develop ideas, and review their findings. Online Treasure Hunt complies with a treasure hunt model. The treasure hunt model formalizes a general treasure hunt game to contain the learning strategies of inquiry-based learning. This Web-based learning support system empowered with the online-learning game and founded on the sound learning strategies furnishes students with the interactive and collaborative student-centered learning environment.
Relationship between Preferred and Actual Opinions about Inquiry-Based Instruction Classroom
ERIC Educational Resources Information Center
Nuangchalerm, Prasart
2017-01-01
Based on 10 preservice science teachers in 4 schools, this study presents a detailed analysis of how preservice teacher expectation interacts with school practicum and authentic classroom action of inquiry-based instruction. Classroom observation, lesson plan analysis, and interviews revealed that inquiry-based instruction in the expectation and…
NASA Astrophysics Data System (ADS)
Lee, Kathryn Martell
Much of the professional development in the past decades has been single incident experiences. The heart of inservice growth is the sustained development of current knowledge and practices, vital in science education, as reflected in the National Science Education Standards' inquiry and telecommunications components. This study was an exploration of an Internet-delivered professional development experience, utilizing multiple session interactive real-time data sources and semester-long sustained telementoring. Two groups of inservice teachers participated in the study, with only one group receiving a telementored coaching component. Measures of the dependent variable (delivery of an inquiry-based laboratory lesson sequence) were obtained by videotape, and predictive variables (self-analysis of teaching style and content delivery interviews) were administered to the forty veteran secondary school science teacher volunteers. Results showed that teachers in the group receiving semester-long coaching performed significantly better on utilizing the Internet for content research and inquiry-based lesson sequence delivery than the group not receiving the coaching. Members of the coached group were able to select a dedicated listserv, e-mail, chatline or telephone as the medium of coaching. While the members of the coached group used the listserv, the overwhelming preference was to be coached via the telephone. Qualitative analysis indicated that the telephone was selected for its efficiency of time, immediacy of response, and richer dialogue. Perceived barriers to the implementation of the Internet as a real-time data source in science classrooms included time for access, obsolesce of equipment, and logistics of computer to student ratios. These findings suggest that the group of science teachers studied (1) benefited from a sustained coaching experience for inquiry-based lesson delivery, (2) perceived the Internet as a source of content for their curriculum rather than a communication source, and (3) preferred the telephone as a coaching tool for its efficiency and convenience. Utilizing current pedagogy in science and telecommunication tools has served to whet the appetite of the study teachers to develop utilization of the Internet in their classes for real-time data acquisition.
NASA Astrophysics Data System (ADS)
Poderoso, Charie
Science education reforms in U.S. schools emphasize the importance of students' construction of knowledge through inquiry. Organizations such as the National Science Foundation (NSF), the National Research Council (NRC), and the American Association for the Advancement of Science (AAAS) have demonstrated a commitment to searching for solutions and renewed efforts to improve science education. One suggestion for science education reform in U.S. schools was a transition from traditional didactic, textbook-based to inquiry-based instructional programs. While inquiry has shown evidence for improved student learning in science, what is needed is empirical evidence of those inquiry-based practices that affect student outcomes in a local context. This study explores the relationship between instructional programs and curricular changes affecting student outcomes in the Santa Ana Unified District (SAUSD): It provides evidence related to achievement and attitudes. SAUSD employs two approaches to teaching in the middle school science classrooms: traditional and inquiry-based approaches. The Leadership and Assistance for Science Education Reform (LASER) program is an inquiry-based science program that utilizes resources for implementation of the University of California Berkeley's Lawrence Hall of Science Education for Public Understanding Program (SEPUP) to support inquiry-based teaching and learning. Findings in this study provide empirical support related to outcomes of seventh-grade students, N = 328, in the LASER and traditional science programs in SAUSD.
Multipurpose Interactive NASA Information Systems (MINIS)
NASA Technical Reports Server (NTRS)
1977-01-01
The Multipurpose Interactive NASA Information System was developed to provide remote, interactive information retrieval capability for various types of data bases to be processed on different types of small and medium size computers. Use of the system for three different data bases is decribed: (1) LANDSAT photo look-up, (2) land use, and (3) census/socioeconomic. Each of the data base elements is shown together with other detailed information that a user would require to contact the system remotely, to transmit inquiries on commands, and to receive the results of the queries or commands.
Development of water environment information management and water pollution accident response system
NASA Astrophysics Data System (ADS)
Zhang, J.; Ruan, H.
2009-12-01
In recent years, many water pollution accidents occurred with the rapid economical development. In this study, water environment information management and water pollution accident response system are developed based on geographic information system (GIS) techniques. The system integrated spatial database, attribute database, hydraulic model, and water quality model under a user-friendly interface in a GIS environment. System ran in both Client/Server (C/S) and Browser/Server (B/S) platform which focused on model and inquiry respectively. System provided spatial and attribute data inquiry, water quality evaluation, statics, water pollution accident response case management (opening reservoir etc) and 2D and 3D visualization function, and gave assistant information to make decision on water pollution accident response. Polluted plume in Huaihe River were selected to simulate the transport of pollutes.
An Analysis of Pre-Service Elementary Teachers' Understanding of Inquiry-Based Science Teaching
ERIC Educational Resources Information Center
Lee, Carole K.; Shea, Marilyn
2016-01-01
This study examines how pre-service elementary teachers (PSETs) view inquiry-based science learning and teaching, and how the science methods course builds their confidence to teach inquiry science. Most PSETs think that inquiry is asking students questions rather than a formal set of pedagogical tools. In the present study, three groups of PSETs…
Supporting Scientific Experimentation and Reasoning in Young Elementary School Students
NASA Astrophysics Data System (ADS)
Varma, Keisha
2014-06-01
Researchers from multiple perspectives have shown that young students can engage in the scientific reasoning involved in science experimentation. However, there is little research on how well these young students learn in inquiry-based learning environments that focus on using scientific experimentation strategies to learn new scientific information. This work investigates young children's science concept learning via inquiry-based instruction on the thermodynamics system in a developmentally appropriate, technology-supported learning environment. First- and third-grade students participate in three sets of guided experimentation activities that involve using handheld computers to measure change in temperature given different types of insulation materials. Findings from pre- and post-comparisons show that students at both grade levels are able to learn about the thermodynamics system through engaging in the guided experiment activities. The instruction groups outperformed the control groups on multiple measures of thermodynamics knowledge, and the older children outperform the younger children. Knowledge gains are discussed in the context of mental models of the thermodynamics system that include the individual concepts mentioned above and the relationships between them. This work suggests that young students can benefit from science instruction centered on experimentation activities. It shows the benefits of presenting complex scientific information authentic contexts and the importance of providing the necessary scaffolding for meaningful scientific inquiry and experimentation.
The perceptions of inquiry held by greater Houston area science supervisors
NASA Astrophysics Data System (ADS)
Aoki, Jon Michael
The purpose of this study was to describe the perceptions of inquiry held by responding greater Houston area science supervisors. Leading science organizations proposed that students might be better served if students are mentally and physically engaged in the process of finding out about natural phenomena rather than by didactic modes of teaching and learning. During the past fifty years, inquiry-based instruction has become a significant theme of new science programs. Students are more likely to make connections between classroom exercises and their personal lives through the use of inquiry-based instruction. Learning becomes relevant to students. Conversely, traditional science instruction often has little or no connection to students' everyday lives (Papert, 1980). In short, inquiry-based instruction empowers students to become independent thinkers. The utilization of inquiry-based instruction is essential to a successful reform in science education. However, a reform's success is partly determined by the extent to which science supervisors know and understand inquiry and consequently promote its integration in the district's science curricula. Science supervisors have the role of providing curriculum and instructional support to science teachers and for implementing science programs. There is a fundamental need to assess the perceptions of inquiry held by greater Houston area science supervisors. Science supervisor refers to a class of job titles that include department chairperson, science specialist, science consultant, and science coordinator. The target population was greater Houston area science supervisors in Texas. This study suggests that there are three major implications for educational practice. First, there is the implication that responding greater Houston area science supervisors need an inclusive perception of inquiry. Second, responding greater Houston area science supervisors' perception of inquiry may affect the perceptions and understandings of inquiry held by the science teachers whom they work with. Both of these implications may limit the process of integrating inquiry into the classroom. The third implication is that a rubric can be designed based on the results of this study to help determine which categories or components of inquiry the participant needs assistance with. Implications for further research include increasing the sample size, describing the effects of teaching and/or science supervisor experience on the perceptions of inquiry, determining the effects of advanced degrees on inquiry perceptions, and investigating the effects of research experience on inquiry perceptions. (Abstract shortened by UMI.)
NASA Astrophysics Data System (ADS)
Nebashi, Ryusuke; Sakimura, Noboru; Sugibayashi, Tadahiko
2017-08-01
We evaluated the soft-error tolerance and energy consumption of an embedded computer with magnetic random access memory (MRAM) using two computer simulators. One is a central processing unit (CPU) simulator of a typical embedded computer system. We simulated the radiation-induced single-event-upset (SEU) probability in a spin-transfer-torque MRAM cell and also the failure rate of a typical embedded computer due to its main memory SEU error. The other is a delay tolerant network (DTN) system simulator. It simulates the power dissipation of wireless sensor network nodes of the system using a revised CPU simulator and a network simulator. We demonstrated that the SEU effect on the embedded computer with 1 Gbit MRAM-based working memory is less than 1 failure in time (FIT). We also demonstrated that the energy consumption of the DTN sensor node with MRAM-based working memory can be reduced to 1/11. These results indicate that MRAM-based working memory enhances the disaster tolerance of embedded computers.
20 CFR 10.527 - Does OWCP verify reports of earnings?
Code of Federal Regulations, 2012 CFR
2012-04-01
... to computer matches with the Office of Personnel Management and inquiries to the Social Security Administration. Also, OWCP may perform computer matches with records of State agencies, including but not limited...
20 CFR 10.527 - Does OWCP verify reports of earnings?
Code of Federal Regulations, 2011 CFR
2011-04-01
... to computer matches with the Office of Personnel Management and inquiries to the Social Security Administration. Also, OWCP may perform computer matches with records of State agencies, including but not limited...
20 CFR 10.527 - Does OWCP verify reports of earnings?
Code of Federal Regulations, 2014 CFR
2014-04-01
... to computer matches with the Office of Personnel Management and inquiries to the Social Security Administration. Also, OWCP may perform computer matches with records of State agencies, including but not limited...
20 CFR 10.527 - Does OWCP verify reports of earnings?
Code of Federal Regulations, 2010 CFR
2010-04-01
... to computer matches with the Office of Personnel Management and inquiries to the Social Security Administration. Also, OWCP may perform computer matches with records of State agencies, including but not limited...
20 CFR 10.527 - Does OWCP verify reports of earnings?
Code of Federal Regulations, 2013 CFR
2013-04-01
... to computer matches with the Office of Personnel Management and inquiries to the Social Security Administration. Also, OWCP may perform computer matches with records of State agencies, including but not limited...
Urban Schools' Teachers Enacting Project-Based Science
ERIC Educational Resources Information Center
Tal, Tali; Krajcik, Joseph S.; Blumenfeld, Phyllis C.
2006-01-01
What teaching practices foster inquiry and promote students to learn challenging subject matter in urban schools? Inquiry-based instruction and successful inquiry learning and teaching in project-based science (PBS) were described in previous studies (Brown & Campione, [1990]; Crawford, [1999]; Krajcik, Blumenfeld, Marx, Bass, & Fredricks,…
Using Inquiry-Based Instruction for Teaching Science to Students with Learning Disabilities
ERIC Educational Resources Information Center
Aydeniz, Mehmet; Cihak, David F.; Graham, Shannon C.; Retinger, Larryn
2012-01-01
The purpose of this study was to examine the effects of inquiry-based science instruction for five elementary students with learning disabilities (LD). Students participated in a series of inquiry-based activities targeting conceptual and application-based understanding of simple electric circuits, conductors and insulators, parallel circuits, and…
ERIC Educational Resources Information Center
Falleur, David M.
This presentation describes SuperPILOT, an extended version of Apple PILOT, a programming language for developing computer-assisted instruction (CAI) with the Apple II computer that includes the features of its early PILOT (Programmed Inquiry, Learning or Teaching) ancestors together with new features that make use of the Apple computer's advanced…
A Computer Simulation of Community Pharmacy Practice for Educational Use.
Bindoff, Ivan; Ling, Tristan; Bereznicki, Luke; Westbury, Juanita; Chalmers, Leanne; Peterson, Gregory; Ollington, Robert
2014-11-15
To provide a computer-based learning method for pharmacy practice that is as effective as paper-based scenarios, but more engaging and less labor-intensive. We developed a flexible and customizable computer simulation of community pharmacy. Using it, the students would be able to work through scenarios which encapsulate the entirety of a patient presentation. We compared the traditional paper-based teaching method to our computer-based approach using equivalent scenarios. The paper-based group had 2 tutors while the computer group had none. Both groups were given a prescenario and postscenario clinical knowledge quiz and survey. Students in the computer-based group had generally greater improvements in their clinical knowledge score, and third-year students using the computer-based method also showed more improvements in history taking and counseling competencies. Third-year students also found the simulation fun and engaging. Our simulation of community pharmacy provided an educational experience as effective as the paper-based alternative, despite the lack of a human tutor.
NASA Astrophysics Data System (ADS)
Nichols, Kim; Burgh, Gilbert; Kennedy, Callie
2017-02-01
Developing students' skills to pose and respond to questions and actively engage in inquiry behaviours enables students to problem solve and critically engage with learning and society. The aim of this study was to analyse the impact of providing teachers with an intervention in inquiry pedagogy alongside inquiry science curriculum in comparison to an intervention in non-inquiry pedagogy alongside inquiry science curriculum on student questioning and other inquiry behaviours. Teacher participants in the comparison condition received training in four inquiry-based science units and in collaborative strategic reading. The experimental group, the community of inquiry (COI) condition, received training in facilitating a COI in addition to training in the same four inquiry-based science units. This study involved 227 students and 18 teachers in 9 primary schools across Brisbane, Australia. The teachers were randomly allocated by school to one of the two conditions. The study followed the students across years 6 and 7 and students' discourse during small group activities was recorded, transcribed and coded for verbal inquiry behaviours. In the second year of the study, students in the COI condition demonstrated a significantly higher frequency of procedural and substantive higher-order thinking questions and other inquiry behaviours than those in the comparison condition. Implementing a COI within an inquiry science curriculum develops students' questioning and science inquiry behaviours and allows teachers to foster inquiry skills predicated by the Australian Science Curriculum. Provision of inquiry science curriculum resources alone is not sufficient to promote the questioning and other verbal inquiry behaviours predicated by the Australian Science Curriculum.
The Twin Purposes of Guided Inquiry: Guiding Student Inquiry and Evidence-Based Practice
ERIC Educational Resources Information Center
FitzGerald, Lee
2010-01-01
Guided Inquiry is a means by which student enquiry can be facilitated in schools, while simultaneously being the vehicle for evidence-based practice. This paper illustrates this twin purpose in two contexts: An overview discussion of the 2008 NSW Association of Independent Schools' Project, led by Dr. Todd, and a 2010 Guided Inquiry at Loreto…
Sustaining inquiry-based teaching methods in the middle school science classroom
NASA Astrophysics Data System (ADS)
Murphy, Amy Fowler
This dissertation used a combination of case study and phenomenological research methods to investigate how individual teachers of middle school science in the Alabama Math, Science, and Technology Initiative (AMSTI) program sustain their use of inquiry-based methods of teaching and learning. While the overall context for the cases was the AMSTI program, each of the four teacher participants in this study had a unique, individual context as well. The researcher collected data through a series of interviews, multiple-day observations, and curricular materials. The interview data was analyzed to develop a textural, structural, and composite description of the phenomenon. The Reformed Teaching Observation Protocol (RTOP) was used along with the Assesing Inquiry Potential (AIP) questionnaire to determine the level of inquiry-based instruction occuring in the participants classrooms. Analysis of the RTOP data and AIP data indicated all of the participants utilized inquiry-based methods in their classrooms during their observed lessons. The AIP data also indicated the level of inquiry in the AMSTI curricular materials utilized by the participants during the observations was structured inquiry. The findings from the interview data suggested the ability of the participants to sustain their use of structured inquiry was influenced by their experiences with, beliefs about, and understandings of inquiry. This study contributed to the literature by supporting existing studies regarding the influence of teachers' experiences, beliefs, and understandings of inquiry on their classroom practices. The inquiry approach stressed in current reforms in science education targets content knowledge, skills, and processes needed in a future scientifically literate citizenry.
Toe, Kyaw Kyar; Huang, Weimin; Yang, Tao; Duan, Yuping; Zhou, Jiayin; Su, Yi; Teo, Soo-Kng; Kumar, Selvaraj Senthil; Lim, Calvin Chi-Wan; Chui, Chee Kong; Chang, Stephen
2015-08-01
This work presents a surgical training system that incorporates cutting operation of soft tissue simulated based on a modified pre-computed linear elastic model in the Simulation Open Framework Architecture (SOFA) environment. A precomputed linear elastic model used for the simulation of soft tissue deformation involves computing the compliance matrix a priori based on the topological information of the mesh. While this process may require a few minutes to several hours, based on the number of vertices in the mesh, it needs only to be computed once and allows real-time computation of the subsequent soft tissue deformation. However, as the compliance matrix is based on the initial topology of the mesh, it does not allow any topological changes during simulation, such as cutting or tearing of the mesh. This work proposes a way to modify the pre-computed data by correcting the topological connectivity in the compliance matrix, without re-computing the compliance matrix which is computationally expensive.
ERIC Educational Resources Information Center
Booth, Gregory
2001-01-01
Conducts an action research investigation to determine which type of student benefits more from inquiry-based science laboratories. Designs two labs on diffusion and osmosis using both traditional and inquiry-based approaches and assesses student learning in these settings. (YDS)
Does Artificial Tutoring Foster Inquiry Based Learning?
ERIC Educational Resources Information Center
Schmoelz, Alexander; Swertz, Christian; Forstner, Alexandra; Barberi, Alessandro
2014-01-01
This contribution looks at the Intelligent Tutoring Interface for Technology Enhanced Learning, which integrates multistage-learning and inquiry-based learning in an adaptive e-learning system. Based on a common pedagogical ontology, adaptive e-learning systems can be enabled to recommend learning objects and activities, which follow inquiry-based…
Commercial Influences on the Pursuit of Wisdom
ERIC Educational Resources Information Center
McHenry, Leemon B.
2007-01-01
This essay examines the effects of commercialization on education with particular focus on corporatization of academic research. This trend results from a business model of education, which I identify as profit-based inquiry. I contrast profit-based inquiry with Nicholas Maxwell's conception of wisdom-based inquiry and conclude that the business…
Inquiry-Based Science: Turning Teachable Moments into Learnable Moments
ERIC Educational Resources Information Center
Haug, Berit S.
2014-01-01
This study examines how an inquiry-based approach to teaching and learning creates teachable moments that can foster conceptual understanding in students, and how teachers capitalize upon these moments. Six elementary school teachers were videotaped as they implemented an integrated inquiry-based science and literacy curriculum in their…
Inquiry-Based Instruction: Does School Environmental Context Matter?
ERIC Educational Resources Information Center
Pea, Celestine H.
2012-01-01
In a larger study on teachers' beliefs about science teaching, one component looks at how school environmental context factors influence inquiry-based science instruction. Research shows that three broad categories of school environmental factors (human, sociocultural, design) impact inquiry-based teaching in some way. A mixed-method, sequential,…
The Invisible Hand of Inquiry-Based Learning
ERIC Educational Resources Information Center
Bennett, Mark
2015-01-01
The key elements of learning in a classroom remain largely invisible. Teachers cannot expect every student to learn to their fullest capacity; yet they can augment learning within a classroom through inquiry-based learning. In this article, the author describes inquiry-based learning and how to begin this process in the classroom.
Evaluating Inquiry-Based Learning as a Means to Advance Individual Student Achievement
ERIC Educational Resources Information Center
Ziemer, Cherilyn G.
2013-01-01
Although inquiry-based learning has been debated throughout the greater educational community and demonstrated with some effect in modern classrooms, little quantitative analysis has been performed to empirically validate sustained benefits. This quantitative study focused on whether inquiry-based pedagogy actually brought about sustained and…
Facilitating Elementary Science Teachers' Implementation of Inquiry-Based Science Teaching
ERIC Educational Resources Information Center
Qablan, Ahmad M.; DeBaz, Theodora
2015-01-01
Preservice science teachers generally feel that the implementation of inquiry-based science teaching is very difficult to manage. This research project aimed at facilitating the implementation of inquiry-based science teaching through the use of several classroom strategies. The evaluation of 15 classroom strategies from 80 preservice elementary…
An Inquiry-Based Linear Algebra Class
ERIC Educational Resources Information Center
Wang, Haohao; Posey, Lisa
2011-01-01
Linear algebra is a standard undergraduate mathematics course. This paper presents an overview of the design and implementation of an inquiry-based teaching material for the linear algebra course which emphasizes discovery learning, analytical thinking and individual creativity. The inquiry-based teaching material is designed to fit the needs of a…
ERIC Educational Resources Information Center
Casotti, G.; Rieser-Danner, L.; Knabb, M. T.
2008-01-01
Recent evidence has demonstrated that inquiry-based physiology laboratories improve students' critical- and analytical-thinking skills. We implemented inquiry-based learning into three physiology courses: Comparative Vertebrate Physiology (majors), Human Physiology (majors), and Human Anatomy and Physiology (nonmajors). The aims of our curricular…
Roehrig, G. H.; Michlin, M.; Schmitt, L.; MacNabb, C.; Dubinsky, J. M.
2012-01-01
In science education, inquiry-based approaches to teaching and learning provide a framework for students to building critical-thinking and problem-solving skills. Teacher professional development has been an ongoing focus for promoting such educational reforms. However, despite a strong consensus regarding best practices for professional development, relatively little systematic research has documented classroom changes consequent to these experiences. This paper reports on the impact of sustained, multiyear professional development in a program that combined neuroscience content and knowledge of the neurobiology of learning with inquiry-based pedagogy on teachers’ inquiry-based practices. Classroom observations demonstrated the value of multiyear professional development in solidifying adoption of inquiry-based practices and cultivating progressive yearly growth in the cognitive environment of impacted classrooms. PMID:23222837
Roehrig, G H; Michlin, M; Schmitt, L; MacNabb, C; Dubinsky, J M
2012-01-01
In science education, inquiry-based approaches to teaching and learning provide a framework for students to building critical-thinking and problem-solving skills. Teacher professional development has been an ongoing focus for promoting such educational reforms. However, despite a strong consensus regarding best practices for professional development, relatively little systematic research has documented classroom changes consequent to these experiences. This paper reports on the impact of sustained, multiyear professional development in a program that combined neuroscience content and knowledge of the neurobiology of learning with inquiry-based pedagogy on teachers' inquiry-based practices. Classroom observations demonstrated the value of multiyear professional development in solidifying adoption of inquiry-based practices and cultivating progressive yearly growth in the cognitive environment of impacted classrooms.
The Influence of Anomalies on Knowledge Construction and Scientific Reasoning during Inquiry.
ERIC Educational Resources Information Center
Echevarria, Marissa
The knowledge construction and scientific reasoning of two classes of seventh grade students (22 to 24 students in each class) were examined during a 3-week inquiry unit in genetics, in which anomalies were used as a catalyst for conceptual change. During the unit, students used genetics simulation software to mate fruit flies that varied on a…
Inquiry-Based Science Instruction in High School Biology Courses: A Multiple Case Study
ERIC Educational Resources Information Center
Aso, Eze
2014-01-01
A lack of research exists about how secondary school science teachers use inquiry-based instruction to improve student learning. The purpose of this qualitative study was to explore how science teachers used inquiry-based instruction to improve student learning in high school biology courses. The conceptual framework was based on Banchi and Bell's…
An Inquiry-Based Approach to Teaching Research Methods in Information Studies
ERIC Educational Resources Information Center
Albright, Kendra; Petrulis, Robert; Vasconcelos, Ana; Wood, Jamie
2012-01-01
This paper presents the results of a project that aimed at restructuring the delivery of research methods training at the Information School at the University of Sheffield, UK, based on an Inquiry-Based Learning (IBL) approach. The purpose of this research was to implement inquiry-based learning that would allow customization of research methods…
ERIC Educational Resources Information Center
Wu, Ji-Wei; Tseng, Judy C. R.; Hwang, Gwo-Jen
2015-01-01
Inquiry-Based Learning (IBL) is an effective approach for promoting active learning. When inquiry-based learning is incorporated into instruction, teachers provide guiding questions for students to actively explore the required knowledge in order to solve the problems. Although the World Wide Web (WWW) is a rich knowledge resource for students to…
Inquiry-Based Learning in China: Do Teachers Practice What They Preach, and Why?
ERIC Educational Resources Information Center
Dai, David Yun; Gerbino, Kathryn A.; Daley, Michael J.
2011-01-01
China is undergoing an education reform that calls for a change from a rigid, fixed curriculum and didactic pedagogy to a more flexible, school-based curriculum and more inquiry-based pedagogy. This study investigated the extent to which Chinese middle and high school teachers (a) endorse an inquiry-based approach and underlying learning…
Supporting Survey Courses with Lecture-Tutorials and Backwards-Faded Scaffolded Inquiry
NASA Astrophysics Data System (ADS)
Slater, T. F.; Slater, S. J.
2013-12-01
In the course of learning science, it is generally accepted that successful science learning experiences should result in learners developing a meaningful understanding of the nature of science as inquiry where: (i) students are engaged in questions; (ii) students are designing plans to pursue data; and (iii) students are generating and defending conclusions based on evidence they have collected. Few of these learning targets can be effectively reached through a professor-centered, information download lecture. In response to national reform movements calling for professors to adopt teaching strategies and learning environments where non-science majors and future teachers can actively engage in scientific discourse, scholars with the CAPER Center for Astronomy & Physics Education Research have leveraged NSF DUE funding over the last decade to develop and systematically field-test two separate instructional approaches. The first of these is called Lecture-Tutorials (NSF 99077755 and NSF 9952232) . These are self-contained, classroom-ready, collaborative group activities. The materials are designed specifically to be easily integrated into the lecture course and directly address the needs of busy and heavily-loaded teaching faculty for effective, student-centered, classroom-ready materials that do not require a drastic course revision for implementation. Students are asked to reason about difficult concepts, while working in pairs, and to discuss their ideas openly. The second of these is a series of computer-mediated, inquiry learning experiences for non-science majoring undergraduates based upon an inquiry-oriented teaching approach framed by the notions of backwards faded-scaffolding as an overarching theme for instruction (NSF 1044482). Backwards faded-scaffolding is a strategy where the conventional and rigidly linear scientific method is turned on its head and students are first taught how to create conclusions based on evidence, then how experimental design creates evidence, and only at the end introduces students to - what we believe is the most challenging part of inquiry - inventing scientifically appropriate questions. Dissemination efforts have been supported by NSF 0715517 and evaluation results consistently suggest that both the Lecture-Tutorials and the backwards faded-scaffolding approaches are successfully engaging students in self-directed scientific discourse as measured by the Views on Scientific Inquiry (VOSI) as well as increasing their knowledge of science as measured by various measures.
ERIC Educational Resources Information Center
Kim, Minkee; Lavonen, Jari; Juuti, Kalle; Holbrook, Jack; Rannikmae, Miia
2013-01-01
In inquiry-based science education, there have been gradual shifts in research interests: the nature of scientific method, the debates on the effects of inquiry learning, and, recently, inquiry teaching. However, many in-service programs for inquiry teaching have reported inconsistent results due to the static view of classroom inquiries and due…
NASA Astrophysics Data System (ADS)
Lehtinen, Antti; Lehesvuori, Sami; Viiri, Jouni
2017-09-01
Recent research has argued that inquiry-based science learning should be guided by providing the learners with support. The research on guidance for inquiry-based learning has concentrated on how providing guidance affects learning through inquiry. How guidance for inquiry-based learning could promote learning about inquiry (e.g. epistemic practices) is in need of exploration. A dialogic approach to classroom communication and pedagogical link-making offers possibilities for learners to acquire these practices. The focus of this paper is to analyse the role of different forms of guidance for inquiry-based learning on building the communicative approach applied in classrooms. The data for the study comes from an inquiry-based physics lesson implemented by a group of five pre-service primary science teachers to a class of sixth graders. The lesson was video recorded and the discussions were transcribed. The data was analysed by applying two existing frameworks—one for the forms of guidance provided and another for the communicative approaches applied. The findings illustrate that providing non-specific forms of guidance, such as prompts, caused the communicative approach to be dialogic. On the other hand, providing the learners with specific forms of guidance, such as explanations, shifted the communication to be more authoritative. These results imply that different forms of guidance provided by pre-service teachers can affect the communicative approach applied in inquiry-based science lessons, which affects the possibilities learners are given to connect their existing ideas to the scientific view. Future research should focus on validating these results by also analysing inservice teachers' lessons.
Inquiry-based science: Preparing human capital for the 21 st century and beyond
NASA Astrophysics Data System (ADS)
Boyd, Yolanda F.
High school students need to graduate with 21st century skills to be college and career ready and to be competitive in a global marketplace. A positive trend exists favoring inquiry-based instructional practices that purportedly not only increase science content knowledge, but also 21 st century skill development. A suburban school district, Areal Township (pseudonym), implemented an inquiry-based science program based on this trend; however, the degree to which the program has been meeting students' needs for science content knowledge and 21st century skills development has not been explored. If we were to understand the process by which an inquiry-based science program contributes to attainment of science content and 21st century skill development, then we might be able to improve the delivery of the program and provide a model to be adopted by other schools. Therefore, the purpose of this descriptive case study was to engage with multiple stakeholders to formatively assess the successes and obstacles for helping students to achieve science content and 21st century skills through an inquiry-based curriculum. Using constructivist theory, this study aimed to address the following central research question: How does the implementation of an inquiry-based program within the Areal Township School District (ATSD) support the acquisition of science content knowledge and the development of 21st century skills? This study found that 21st century skill development is embedded in inquiry-based instructional practices. These practices engage students in meaningful learning that spirals in content and is measured using diverse assessments. Time to do inquiry-based science and adequate time for collegial collaboration were obstacles for educators in grades K-5. Other obstacles were turnkey professional development and a lack of ongoing program monitoring, as a result of imposed extrinsic factors from state and federal mandates. Lastly, it was discovered that not all parts of the curriculum adopted a full inquiry-based approach.
ERIC Educational Resources Information Center
Burgh, Gilbert; Nichols, Kim
2012-01-01
The "community of inquiry" as formulated by C. S. Peirce is grounded in the notion of communities of discipline-based inquiry engaged in the construction of knowledge. The phrase "transforming the classroom into a community of inquiry" is commonly understood as a pedagogical activity with a philosophical focus to guide…
ERIC Educational Resources Information Center
Li, Winnie Sim Siew; Arshad, Mohammad Yusof
2015-01-01
Purpose: Inquiry teaching has been suggested as one of the important approaches in teaching chemistry. This study investigates the inquiry practices among chemistry teachers. Method: A combination of quantitative and qualitative study was applied in this study to provide detailed information about inquiry teaching practices. Questionnaires,…
Brokering at the boundary: A prospective science teacher engages students in inquiry
NASA Astrophysics Data System (ADS)
Meis Friedrichsen, Patricia; Munford, Danusa; Orgill, Marykay
2006-05-01
Using a theoretical perspective of communities of practice, this case study examines a prospective chemistry teacher's inquiry-based teaching during his practicum. Conrad was a former student of an inquiry-oriented science course, Inquiry Empowering Technologies (IET). The research questions were (a) How did Conrad translate the IET inquiry practices during his practicum?; (b) How did the mentor teacher shape Conrad's participation?; (c) In what ways did Conrad negotiate new meanings of inquiry as a result of his practicum? Interview transcripts were the primary data source. Conrad carried many of the IET inquiry practices into his practicum. He equated inquiry with the use of evidence and had students create evidence-based explanations for how soap works. He chose not to incorporate the tentative nature of science. Although traditional in his own teaching, the mentor teacher supported Conrad by allowing him to teach through inquiry and by removing time constraints. As a result of his practicum, Conrad negotiated new meanings of inquiry teaching and developed an expanded view of technology. Conrad believed that high school students needed guidance when engaging in inquiry and that the tentative nature of science does not transfer to secondary chemistry. Implications for theory and practice are given.
Computer Based Simulation of Laboratory Experiments.
ERIC Educational Resources Information Center
Edward, Norrie S.
1997-01-01
Examines computer based simulations of practical laboratory experiments in engineering. Discusses the aims and achievements of lab work (cognitive, process, psychomotor, and affective); types of simulations (model building and behavioral); and the strengths and weaknesses of simulations. Describes the development of a centrifugal pump simulation,…
Scaffolded Inquiry-Based Instruction with Technology: A Signature Pedagogy for STEM Education
ERIC Educational Resources Information Center
Crippen, Kent J.; Archambault, Leanna
2012-01-01
Inquiry-based instruction has become a hallmark of science education and increasingly of integrated content areas, including science, technology, engineering, and mathematics (STEM) education. Because inquiry-based instruction very clearly contains surface, deep, and implicit structures as well as engages students to think and act like scientists,…
Inquiry-Based Learning in Teacher Education: A Primary Humanities Example
ERIC Educational Resources Information Center
Preston, Lou; Harvie, Kate; Wallace, Heather
2015-01-01
Inquiry-based learning features strongly in the new Australian Humanities and Social Sciences curriculum and increasingly in primary school practice. Yet, there is little research into, and few exemplars of, inquiry approaches in the primary humanities context. In this article, we outline and explain the implementation of a place-based simulation…
Assessing Problem Solving Competence through Inquiry-Based Teaching in School Science Education
ERIC Educational Resources Information Center
Zervas, Panagiotis; Sotiriou, Sofoklis; Tiemann, Rüdiger; Sampson, Demetrios G.
2015-01-01
Nowadays, there is a consensus that inquiry-based learning contributes to developing students' scientific literacy in schools. Inquiry-based teaching strategies are promoted for the development (among others) of the cognitive processes that cultivate problem solving (PS) competence. The build up of PS competence is a central objective for most…
Kuwaiti Science Teachers' Beliefs and Intentions Regarding the Use of Inquiry-Based Instruction
ERIC Educational Resources Information Center
Alhendal, Dalal; Marshman, Margaret; Grootenboer, Peter
2016-01-01
To improve the quality of education, the Kuwaiti Ministry of Education has encouraged schools to implement inquiry-based instruction. This study identifies psychosocial factors that predict teachers' intention to use inquiry-based instruction in their science classrooms. An adapted model of Ajzen's (1985) theory of planned behaviour--the Science…
An Inquiry-Based Approach of Traditional "Step-by-Step" Experiments
ERIC Educational Resources Information Center
Szalay, L.; Tóth, Z.
2016-01-01
This is the start of a road map for the effective introduction of inquiry-based learning in chemistry. Advantages of inquiry-based approaches to the development of scientific literacy are widely discussed in the literature. However, unless chemistry educators take account of teachers' reservations and identified disadvantages such approaches will…
ERIC Educational Resources Information Center
Wheeler, Lindsay B.; Clark, Charles P.; Grisham, Charles M.
2017-01-01
Laboratory course redesign and effective implementation of an inquiry-based curriculum can be challenging, particularly when teaching assistants (TAs) are responsible for instruction. Our multiyear redesign of a traditional general chemistry laboratory course has included transitioning to a project based guided inquiry (PBGI) curriculum that…
An Inquiry-Based Approach to Teaching Photosynthesis & Cellular Respiration
ERIC Educational Resources Information Center
O'Connell, Dan
2008-01-01
Recent studies of American science education have highlighted the need for more inquiry-based lessons. For example, when the National Research Counsel evaluated the Advanced Placement (AP) Biology program, it pointed out, "AP laboratory exercises tend to be "cookbook" rather than inquiry based. This criticism is particularly apt for the lab…
A Scoping Study Investigating Student Perceptions towards Inquiry Based Learning in the Laboratory
ERIC Educational Resources Information Center
King, Nicola; Van der Touw, Thomas; Spowart, Lucy; Lawlor, Craig
2016-01-01
There has been an increasing movement towards the introduction of inquiry based learning in undergraduate physiology laboratories. Students can however find this challenging when there is a sudden transition from traditional didactic practicals to full inquiry based activities. One reason for this could be the students' perceptions about the…
The Impact of an Inquiry-Based Geoscience Field Course on Pre-Service Teachers
ERIC Educational Resources Information Center
Nugent, Gwen; Toland, Michael D.; Levy, Richard; Kunz, Gina; Harwood, David; Green, Denise; Kitts, Kathy
2012-01-01
The purpose of this quasi-experimental study was to determine the effects of a field-based, inquiry-focused course on pre-service teachers' geoscience content knowledge, attitude toward science, confidence in teaching science, and inquiry understanding and skills. The field-based course was designed to provide students with opportunities to…
Demonstrating Inquiry-Based Teaching Competencies in the Life Sciences--Part 2
ERIC Educational Resources Information Center
Thompson, Stephen
2007-01-01
This set of botany demonstrations is a continuation of the inquiry-based lecture activities that provide realistic connections to the history and nature of science and employ technology in data collection. The demonstrations also provide examples of inquiry-based teaching practices in the life sciences. (Contains 5 figures.) [For Part 1, see…
ERIC Educational Resources Information Center
Staten, Mary E.
This action research study developed a framework for moving teachers toward an inquiry-based approach to teaching science, emphasizing elements, strategies, and supports necessary to encourage and sustain teachers' use of inquiry-based science instruction. The study involved a literature review, participant observation, focus group discussions,…
2010-12-01
Base ( CFB ) Kingston. The computer simulation developed in this project is intended to be used for future research and as a possible training platform...DRDC Toronto No. CR 2010-055 Development of an E-Prime based computer simulation of an interactive Human Rights Violation negotiation script...Abstract This report describes the method of developing an E-Prime computer simulation of an interactive Human Rights Violation (HRV) negotiation. An
Inquiry and groups: student interactions in cooperative inquiry-based science
NASA Astrophysics Data System (ADS)
Woods-McConney, Amanda; Wosnitza, Marold; Sturrock, Keryn L.
2016-03-01
Science education research has recommended cooperative inquiry based science in the primary science context for more than two decades but after more than 20 years, student achievement in science has not substantially improved. This study, through direct observation and analysis, investigated content-related student interactions in an authentic inquiry based primary science class setting. Thirty-one upper primary students were videotaped working in cooperative inquiry based science activities. Cooperative talk and negotiation of the science content was analysed to identify any high-level group interactions. The data show that while all groups have incidences of high-level content-related group interactions, the frequency and duration of these interactions were limited. No specific pattern of preceding events was identified and no episodes of high-level content-related group interactions were immediately preceded by the teacher's interactions with the groups. This in situ study demonstrated that even without any kind of scaffolding, specific skills in knowing how to implement cooperative inquiry based science, high-level content-related group interactions did occur very briefly. Support for teachers to develop their knowledge and skills in facilitating cooperative inquiry based science learning is warranted to ensure that high-level content-related group interactions and the associated conceptual learning are not left to chance in science classrooms.
ERIC Educational Resources Information Center
Luckin, Rosemary; Clark, Wilma; Avramides, Katerina; Hunter, Jade; Oliver, Martin
2017-01-01
In this paper we review the literature on teacher inquiry (TI) to explore the possibility that this process can equip teachers to investigate students' learning as a step towards the process of formative assessment. We draw a distinction between formative assessment and summative forms of assessment [CRELL. (2009). The transition to computer-based…
Triangle Computer Science Distinguished Lecture Series
2018-01-30
scientific inquiry - the cell, the brain, the market - as well as in the models developed by scientists over the centuries for studying them. Human...the great objects of scientific inquiry - the cell, the brain, the market - as well as in the models developed by scientists over the centuries for...in principle , secure system operation can be achieved. Massive-Scale Streaming Analytics David Bader, Georgia Institute of Technology (telecast from
ERIC Educational Resources Information Center
Varnado, Jacqueline
2011-01-01
Limited research has been conducted on inquiry based teaching strategies on language arts and mathematics instruction. The research problem at the study site was the lack of research-based findings on the effectiveness of traditional and inquiry based teaching strategies on language arts and mathematics instruction. The purpose of this case study…
ERIC Educational Resources Information Center
Agbatogun, Alaba Olaoluwakotansibe
2012-01-01
This study investigated the extent to which computer literacy dimensions (computer general knowledge, documents and documentations, communication and surfing as well as data inquiry), computer use and academic qualification as independent variables predicted primary school teachers' attitude towards the integration of Personal Response System in…
NASA Astrophysics Data System (ADS)
Acar Sesen, Burcin; Tarhan, Leman
2013-02-01
This study aimed to investigate the effects of inquiry-based laboratory activities on high school students' understanding of electrochemistry and attitudes towards chemistry and laboratory work. The participants were 62 high school students (average age 17 years) in an urban public high school in Turkey. Students were assigned to experimental ( N = 30) and control groups ( N = 32). The experimental group was taught using inquiry-based laboratory activities developed by the researchers and the control group was instructed using traditional laboratory activities. The results of the study indicated that instruction based on inquiry-based laboratory activities caused a significantly better acquisition of scientific concepts related to electrochemistry, and produced significantly higher positive attitudes towards chemistry and laboratory. In the light of the findings, it is suggested that inquiry-based laboratory activities should be developed and applied to promote students' understanding in chemistry subjects and to improve their positive attitudes.
Student leadership in small group science inquiry
NASA Astrophysics Data System (ADS)
Oliveira, Alandeom W.; Boz, Umit; Broadwell, George A.; Sadler, Troy D.
2014-09-01
Background: Science educators have sought to structure collaborative inquiry learning through the assignment of static group roles. This structural approach to student grouping oversimplifies the complexities of peer collaboration and overlooks the highly dynamic nature of group activity. Purpose: This study addresses this issue of oversimplification of group dynamics by examining the social leadership structures that emerge in small student groups during science inquiry. Sample: Two small student groups investigating the burning of a candle under a jar participated in this study. Design and method: We used a mixed-method research approach that combined computational discourse analysis (computational quantification of social aspects of small group discussions) with microethnography (qualitative, in-depth examination of group discussions). Results: While in one group social leadership was decentralized (i.e., students shared control over topics and tasks), the second group was dominated by a male student (centralized social leadership). Further, decentralized social leadership was found to be paralleled by higher levels of student cognitive engagement. Conclusions: It is argued that computational discourse analysis can provide science educators with a powerful means of developing pedagogical models of collaborative science learning that take into account the emergent nature of group structures and highly fluid nature of student collaboration.
Promoting Interests in Atmospheric Science at a Liberal Arts Institution
NASA Astrophysics Data System (ADS)
Roussev, S.; Sherengos, P. M.; Limpasuvan, V.; Xue, M.
2007-12-01
Coastal Carolina University (CCU) students in Computer Science participated in a project to set up an operational weather forecast for the local community. The project involved the construction of two computing clusters and the automation of daily forecasting. Funded by NSF-MRI, two high-performance clusters were successfully established to run the University of Oklahoma's Advance Regional Prediction System (ARPS). Daily weather predictions are made over South Carolina and North Carolina at 3-km horizontal resolution (roughly 1.9 miles) using initial and boundary condition data provided by UNIDATA. At this high resolution, the model is cloud- resolving, thus providing detailed picture of heavy thunderstorms and precipitation. Forecast results are displayed on CCU's website (https://marc.coastal.edu/HPC) to complement observations at the National Weather Service in Wilmington N.C. Present efforts include providing forecasts at 1-km resolution (or finer), comparisons with other models like Weather Research and Forecasting (WRF) model, and the examination of local phenomena (like water spouts and tornadoes). Through these activities the students learn about shell scripting, cluster operating systems, and web design. More importantly, students are introduced to Atmospheric Science, the processes involved in making weather forecasts, and the interpretation of their forecasts. Simulations generated by the forecasts will be integrated into the contents of CCU's course like Fluid Dynamics, Atmospheric Sciences, Atmospheric Physics, and Remote Sensing. Operated jointly between the departments of Applied Physics and Computer Science, the clusters are expected to be used by CCU faculty and students for future research and inquiry-based projects in Computer Science, Applied Physics, and Marine Science.
ERIC Educational Resources Information Center
Marshall, Jeff C.; Smart, Julie; Lotter, Christine; Sirbu, Cristina
2011-01-01
With inquiry being one of the central tenets of the national and most state standards, it is imperative that we have a solid means to measure the quality of inquiry-based instruction being led in classrooms. Many instruments are available and used for this purpose, but many are either invalid or too global. This study sought to compare two…
ERIC Educational Resources Information Center
Rieber, Lloyd P.; Tzeng, Shyh-Chii; Tribble, Kelly
2004-01-01
The purpose of this research was to explore how adult users interact and learn during an interactive computer-based simulation supplemented with brief multimedia explanations of the content. A total of 52 college students interacted with a computer-based simulation of Newton's laws of motion in which they had control over the motion of a simple…
Feedback and Elaboration within a Computer-Based Simulation: A Dual Coding Perspective.
ERIC Educational Resources Information Center
Rieber, Lloyd P.; And Others
The purpose of this study was to explore how adult users interact and learn during a computer-based simulation given visual and verbal forms of feedback coupled with embedded elaborations of the content. A total of 52 college students interacted with a computer-based simulation of Newton's laws of motion in which they had control over the motion…
ERIC Educational Resources Information Center
Lotter, Christine R.; Thompson, Stephen; Dickenson, Tammiee S.; Smiley, Whitney F.; Blue, Genine; Rea, Mary
2018-01-01
This study examined changes in middle school teachers' beliefs about inquiry, implementation of inquiry practices, and self-efficacy to teach science through inquiry after participating in a year-long professional development program. The professional development model design was based on Bandura's (1986) social cognitive theory of learning and…
Wong, William W L; Feng, Zeny Z; Thein, Hla-Hla
2016-11-01
Agent-based models (ABMs) are computer simulation models that define interactions among agents and simulate emergent behaviors that arise from the ensemble of local decisions. ABMs have been increasingly used to examine trends in infectious disease epidemiology. However, the main limitation of ABMs is the high computational cost for a large-scale simulation. To improve the computational efficiency for large-scale ABM simulations, we built a parallelizable sliding region algorithm (SRA) for ABM and compared it to a nonparallelizable ABM. We developed a complex agent network and performed two simulations to model hepatitis C epidemics based on the real demographic data from Saskatchewan, Canada. The first simulation used the SRA that processed on each postal code subregion subsequently. The second simulation processed the entire population simultaneously. It was concluded that the parallelizable SRA showed computational time saving with comparable results in a province-wide simulation. Using the same method, SRA can be generalized for performing a country-wide simulation. Thus, this parallel algorithm enables the possibility of using ABM for large-scale simulation with limited computational resources.
Krispenz, Ann; Dickhäuser, Oliver
2018-01-01
Background and Objectives: Test anxiety can have undesirable consequences for learning and academic achievement. The control-value theory of achievement emotions assumes that test anxiety is experienced if a student appraises an achievement situation as important (value appraisal), but feels that the situation and its outcome are not fully under his or her control (control appraisal). Accordingly, modification of cognitive appraisals is assumed to reduce test anxiety. One method aiming at the modification of appraisals is inquiry-based stress reduction. In the present study (N = 162), we assessed the effects of an inquiry-based short intervention on test anxiety. Design: Short-term longitudinal, randomized control trial. Methods: Focusing on an individual worry thought, 53 university students received an inquiry-based short intervention. Control participants reflected on their worry thought (n = 55) or were distracted (n = 52). Thought related test anxiety was assessed before, immediately after, and 2 days after the experimental treatment. Results: After the intervention as well as 2 days later, individuals who had received the inquiry-based intervention demonstrated significantly lower test anxiety than participants from the pooled control groups. Further analyses showed that the inquiry-based short intervention was more effective than reflecting on a worry thought but had no advantage over distraction. Conclusions: Our findings provide first experimental evidence for the effectiveness of an inquiry-based short intervention in reducing students’ test anxiety. PMID:29515507
BeeSign: Designing to Support Mediated Group Inquiry of Complex Science by Early Elementary Students
ERIC Educational Resources Information Center
Danish, Joshua A.; Peppler, Kylie; Phelps, David
2010-01-01
All too often, designers assume that complex science and cycles of inquiry are beyond the capabilities of young children (5-8 years old). However, with carefully designed mediators, we argue that such concepts are well within their grasp. In this paper we describe two design iterations of the BeeSign simulation software that was designed to help…
Promoting Inquiry-Based Teaching in Laboratory Courses: Are We Meeting the Grade?
Butler, Amy; Burke da Silva, Karen
2014-01-01
Over the past decade, repeated calls have been made to incorporate more active teaching and learning in undergraduate biology courses. The emphasis on inquiry-based teaching is especially important in laboratory courses, as these are the courses in which students are applying the process of science. To determine the current state of research on inquiry-based teaching in undergraduate biology laboratory courses, we reviewed the recent published literature on inquiry-based exercises. The majority of studies in our data set were in the subdisciplines of biochemistry, cell biology, developmental biology, genetics, and molecular biology. In addition, most exercises were guided inquiry, rather than open ended or research based. Almost 75% of the studies included assessment data, with two-thirds of these studies including multiple types of assessment data. However, few exercises were assessed in multiple courses or at multiple institutions. Furthermore, assessments were rarely based on published instruments. Although the results of the studies in our data set show a positive effect of inquiry-based teaching in biology laboratory courses on student learning gains, research that uses the same instrument across a range of courses and institutions is needed to determine whether these results can be generalized. PMID:25185228
Inquiry-Based Examination of Chemical Disruption of Bacterial Biofilms
ERIC Educational Resources Information Center
Redelman, Carly V.; Hawkins, Misty A. W.; Drumwright, Franklin R.; Ransdell, Beverly; Marrs, Kathleen; Anderson, Gregory G.
2012-01-01
Inquiry-based instruction in the sciences has been demonstrated as a successful educational strategy to use for both high school and college science classrooms. As participants in the NSF Graduate STEM Fellows in K-12 Education (GK-12) Program, we were tasked with creating novel inquiry-based activities for high school classrooms. As a way to…
Pre-Service Elementary Teachers' Experience in a Community of Practice through a Place-Based Inquiry
ERIC Educational Resources Information Center
Cook, Kristin; Buck, Gayle
2014-01-01
With this case study, we explored efforts to connect pre-service elementary teachers (PSTs) and campus scientists through place-based inquiry instruction. Using the framework of Community of Practice (CoP), the research question guiding this study was: what features of our place-based inquiry course intervention (involving PSTs and scientists)…
ERIC Educational Resources Information Center
Choi, Aeran; Klein, Vanessa; Hershberger, Susan
2015-01-01
This study aimed to investigate the successes and difficulties that teachers perceived as they enacted an argument-based inquiry approach; and instructional strategies that teachers used within an argument-based inquiry approach. Nineteen elementary teachers from 14 Midwestern elementary schools were enrolled in an intensive 2-week professional…
ERIC Educational Resources Information Center
Van Hook, Stephen J.; Huziak-Clark, Tracy L.
2008-01-01
This study examines changes in kindergarten students' understanding of energy after participating in a series of lessons developed using an inquiry-based early childhood science teaching model: Research-based Inquiry Physics Experiences (RIPE). The lessons addressed where objects get their energy and what they use their energy to do, and how…
Formative Assessment to Support Students' Competences in Inquiry-Based Science Education
ERIC Educational Resources Information Center
Grob, Regula; Holmeier, Monika; Labudde, Peter
2017-01-01
Inquiry-based education has been part of innovative science teaching for the last few decades. With the competence orientation now underlying many national curricula, one of the emerging questions is how the development of student competences can be fostered in the context of inquiry-based science education. One approach to supporting students in…
ERIC Educational Resources Information Center
Mumba, F.; Banda, A.; Chabalengula, V. M.
2015-01-01
Studies on inquiry-based instruction in inclusive science teaching have mainly focused on elementary and middle school levels. Little is known about inquiry-based instruction in high school inclusive science classes. Yet, such classes have become the norm in high schools, fulfilling the instructional needs of students with mild disabilities. This…
ERIC Educational Resources Information Center
Babaci-Wilhite, Zehlia
2017-01-01
This article addresses the importance of teaching and learning science in local languages. The author argues that acknowledging local knowledge and using local languages in science education while emphasising inquiry-based learning improve teaching and learning science. She frames her arguments with the theory of inquiry, which draws on…
Crawl into Inquiry-Based Learning: Hermit Crab Experiments
ERIC Educational Resources Information Center
Wolf, Maya; Laferriere, Alix
2009-01-01
There is a particular need for inquiry-based lessons in the early elementary grades, when students are starting to develop their analytical skills. In this article, the authors present a 2-tiered inquiry-based lesson plan for 1st and 2nd grades that has been successfully used by graduate teaching fellows involved in the National Science Foundation…
Inquiry-Based Stress Reduction Meditation Technique for Teacher Burnout: A Qualitative Study
ERIC Educational Resources Information Center
Schnaider-Levi, Lia; Mitnik, Inbal; Zafrani, Keren; Goldman, Zehavit; Lev-Ari, Shahar
2017-01-01
An inquiry-based intervention has been found to have a positive effect on burnout and mental well-being parameters among teachers. The aim of the current study was to qualitatively evaluate the effect of the inquiry-based stress reduction (IBSR) meditation technique on the participants. Semi-structured interviews were conducted before and after…
Inquiry-Based Instruction and Teaching about Nature of Science: Are They Happening?
ERIC Educational Resources Information Center
Capps, Daniel K.; Crawford, Barbara A.
2013-01-01
Anecdotal accounts from science educators suggest that few teachers are teaching science as inquiry. However, there is little empirical evidence to support this claim. This study aimed to provide evidence-based documentation of the state-of-use of inquiry-based instruction and explicit instruction about nature of science (NOS). We examined the…
The Relationship of Teacher-Facilitated, Inquiry-Based Instruction to Student Higher-Order Thinking
ERIC Educational Resources Information Center
Marshall, Jeff C.; Horton, Robert M.
2011-01-01
Commissions, studies, and reports continue to call for inquiry-based learning approaches in science and math that challenge students to think critically and deeply. While working with a group of middle school science and math teachers, we conducted more than 100 classroom observations, assessing several attributes of inquiry-based instruction. We…
Inquiry Teaching in High School Chemistry Classrooms: The Role of Knowledge and Beliefs
NASA Astrophysics Data System (ADS)
Roehrig, Gillian H.; Luft, Julie A.
2004-10-01
"Science as inquiry" is a key content standard in the National Science Education Standards, yet implementation of inquiry-based teaching is rare in secondary chemistry classrooms. This paper is the result of a study conducted to understand factors that effect the inquiry-based instruction of ten novice secondary chemistry teachers. The study focused on the influence of teaching beliefs and content knowledge on the instructional practices of these ten teachers. Case and cross-case comparisons revealed that chemistry teachers' intentions to implement inquiry teaching were strongly influenced by their teaching beliefs rather than their knowledge of chemistry. The quality of inquiry lessons, however, was found to depend on the teachers' knowledge of chemistry content. This study reinforces the need for chemistry-focused inservice training for beginning chemistry teachers that focuses on both inquiry teaching strategies and teaching beliefs.
An Investigation of Computer-based Simulations for School Crises Management.
ERIC Educational Resources Information Center
Degnan, Edward; Bozeman, William
2001-01-01
Describes development of a computer-based simulation program for training school personnel in crisis management. Addresses the data collection and analysis involved in developing a simulated event, the systems requirements for simulation, and a case study of application and use of the completed simulation. (Contains 21 references.) (Authors/PKP)
ERIC Educational Resources Information Center
Bacon, Karin; Matthews, Philip
2014-01-01
Inquiry-based learning (IBL) has become a common theme in both school and higher education in recent years. It suggests a model of curriculum development and practice that moves educational debate beyond teacher or student-based approaches towards a model of teaching and learning in which the endeavour is shared. This paper discusses an…
Simulated Citizen: How Students Experienced a Semester Length Legislative Simulation
ERIC Educational Resources Information Center
Ganzler, Louis M.
2010-01-01
This collective case study contains the results of year-long inquiry into how students experienced a semester length legislative simulation that was rife with political conflict. Specifically the study sought to determine: what teaching strategies were employed, what role conflict played in affecting students' political engagement, and what the…
Real Science, Real Learning: Bridging the Gap Between Scientists, Educators and Students
NASA Astrophysics Data System (ADS)
Lewis, Y.
2006-05-01
Today as never before, America needs its citizens to be literate in science and technology. Not only must we only inspire a new generation of scientists and engineers and technologists, we must foster a society capable of meeting complex, 21st-century challenges. Unfortunately, the need for creative, flexible thinkers is growing at a time when our young students are lagging in science interest and performance. Over the past 17 years, the JASON Project has worked to link real science and scientists to the classroom. This link provide viable pipeline to creating the next generation scientists and researchers. Ultimately, JASON's mission is to improve the way science is taught by enabling students to learn directly from leading scientists. Through partnerships with agencies such as NOAA and NASA, JASON creates multimedia classroom products based on current scientific research. Broadcasts of science expeditions, hosted by leading researchers, are coupled with classroom materials that include interactive computer-based simulations, video- on-demand, inquiry-based experiments and activities, and print materials for students and teachers. A "gated" Web site hosts online resources and provides a secure platform to network with scientists and other classrooms in a nationwide community of learners. Each curriculum is organized around a specific theme for a comprehensive learning experience. It may be taught as a complete package, or individual components can be selected to teach specific, standards-based concepts. Such thematic units include: Disappearing Wetlands, Mysteries of Earth and Mars, and Monster Storms. All JASON curriculum units are grounded in "inquiry-based learning." The highly interactive curriculum will enable students to access current, real-world scientific research and employ the scientific method through reflection, investigation, identification of problems, sharing of data, and forming and testing hypotheses. JASON specializes in effectively applying technology in science education by designing animated interactive visualizations that promote student understanding of complex scientific concepts and systems (Rieber, 1990, 1996). JASON's experience in utilizing the power of simulation technology has been widely recognized for its effectiveness in exciting and engaging students in science learning by independent evaluations of JASON's multimedia science curriculum (Ba et al., 2001; Goldenberg et al., 2003). The data collected indicates that JASON's science products have had a positive impact on students' science learning, have positively influenced their perceptions of scientists and of becoming scientists, and have helped diverse students grasp a deeper understanding of complex scientific content, concepts and technologies.
NASA Astrophysics Data System (ADS)
Finkel, L.; Varner, R.; Froburg, E.; Smith, M.; Graham, K.; Hale, S.; Laura, G.; Brown, D.; Bryce, J.; Darwish, A.; Furman, T.; Johnson, J.; Porter, W.; von Damm, K.
2007-12-01
The Transforming Earth System Science Education (TESSE) project, a partnership between faculty at the University of New Hampshire, Pennsylvania State University, Elizabeth City State University and Dillard University, is designed to enrich the professional development of in-service and pre-service Earth science teachers. One goal of this effort is to help teachers use an inquiry-based approach to teaching Earth system science in their classrooms. As a part of the TESSE project, 42 pre-service and in-service teachers participated in an intensive two-week summer institute at UNH taught by Earth scientists and science educators from TESSE partnership institutions. The institute included instruction about a range of Earth science system topics as well as an introduction to teaching Earth science using an inquiry-based approach. In addition to providing teachers with information about inquiry-based science teaching in the form of sample lesson plans and opportunities to revise traditional lessons and laboratory exercises to make them more inquiry-based, TESSE instructors modeled an inquiry- based approach in their own teaching as much as possible. By the end of the Institute participants had developed lesson plans, units, or year-long course overviews in which they were expected to explain the ways in which they would include an inquiry-based approach in their Earth science teaching over the course of the school year. As a part of the project, graduate fellows (graduate students in the earth sciences) will work with classroom teachers during the academic year to support their implementation of these plans as well as to assist them in developing a more comprehensive inquiry-based approach in the classroom.
GeoInquiries: Addressing a Grand Challenge for Teaching with GIS in Schools
NASA Astrophysics Data System (ADS)
DiBiase, D.; Baker, T.
2016-12-01
According to the National Research Council (2006), geographic information systems (GIS) is a powerful tool for expanding students' abilities to think spatially, a critical skill for future STEM professionals. However, educators in mainstream subjects in U.S. education have struggled for decades to use GIS effectively in classrooms. GeoInquiries are no cost, standards-based (NGSS or AP), Creative Commons-licensed instructional activities that guide inquiry around map-based concepts found in key subjects like Earth and environmental science. Web maps developed for GeoInquiries expand upon printed maps in leading textbooks by taking advantage of 21st GIS capabilities. GeoInquiry collections consist of 15 activities, each chosen to offer a map-based activity every few weeks throughout the school year. GeoInquiries use a common inquiry instructional framework, learned by many educators during their teacher preparation coursework. GeoInquiries are instructionally flexible - acting as much like building blocks for crafting custom activities as finished instructional materials. Over a half million geoinquiries will be accessed in the next twelve months - serving an anticipated 15 million students. After a generation of outreach to the educators, GIS is finally finding its way the mainstream.
ERIC Educational Resources Information Center
Anthony, Seth
2014-01-01
Part I: Students' participation in inquiry-based chemistry laboratory curricula, and, in particular, engagement with key thinking processes in conjunction with these experiences, is linked with success at the difficult task of "transfer"--applying their knowledge in new contexts to solve unfamiliar types of problems. We investigate…
Do science coaches promote inquiry-based instruction in the elementary science classroom?
NASA Astrophysics Data System (ADS)
Wicker, Rosemary Knight
The South Carolina Mathematics and Science Coaching Initiative established a school-based science coaching model that was effective in improving instruction by increasing the level of inquiry-based instruction in elementary science classrooms. Classroom learning environment data from both teacher groups indicated considerable differences in the quality of inquiry instruction for those classrooms of teachers supported by a science coach. All essential features of inquiry were demonstrated more frequently and at a higher level of open-ended inquiry in classrooms with the support of a science coach than were demonstrated in classrooms without a science coach. However, from teacher observations and interviews, it was determined that elementary schoolteacher practice of having students evaluate conclusions and connect them to current scientific knowledge was often neglected. Teachers with support of a science coach reported changes in inquiry-based instruction that were statistically significant. This mixed ethnographic study also suggested that the Mathematics and Science Coaching Initiative Theory of Action for Instructional Improvement was an effective model when examining the work of science coaches. All components of effective school infrastructure were positively impacted by a variety of science coaching strategies intended to promote inquiry. Professional development for competent teachers, implementation of researched-based curriculum, and instructional materials support were areas highly impacted by the work of science coaches.
Teacher Discourse Strategies Used in Kindergarten Inquiry-Based Science Learning
ERIC Educational Resources Information Center
Harris, Karleah; Crabbe, Jordan Jimmy; Harris, Charlene
2017-01-01
This study examines teacher discourse strategies used in kindergarten inquiry-based science learning as part of the Scientific Literacy Project (SLP) (Mantzicopoulos, Patrick & Samarapungavan, 2005). Four public kindergarten science classrooms were chosen to implement science teaching strategies using a guided-inquiry approach. Data were…
Differentiated Science Inquiry
ERIC Educational Resources Information Center
Llewellyn, Douglas
2010-01-01
Given that each child learns differently, it makes sense that one type of science instruction does not fit all. Best-selling author Douglas Llewellyn gives teachers standards-based strategies for differentiating inquiry-based science instruction to more effectively meet the needs of all students. This book takes the concept of inquiry-based…
Effects of Scaffolds and Scientific Reasoning Ability on Web-Based Scientific Inquiry
ERIC Educational Resources Information Center
Wu, Hui-Ling; Weng, Hsiao-Lan; She, Hsiao-Ching
2016-01-01
This study examined how background knowledge, scientific reasoning ability, and various scaffolding forms influenced students' science knowledge and scientific inquiry achievements. The students participated in an online scientific inquiry program involving such activities as generating scientific questions and drawing evidence-based conclusions,…
ERIC Educational Resources Information Center
Capps, Daniel K.; Shemwell, Jonathan T.; Young, Ashley M.
2016-01-01
Science education reforms worldwide call on teachers to engage students in investigative approaches to instruction, like inquiry. Studies of teacher self-reported enactment indicate that inquiry is used frequently in the classroom, suggesting a high level of proficiency with inquiry that would be amenable to inquiry reform. However, it is unclear…
NASA Astrophysics Data System (ADS)
Wallace, Stephen R.
The purpose of this study was to clarify the muddled state of the magnitude and direction of the relationships among inquiry-based instruction, attitudes toward science, and science achievement, as students progressed from middle school into high school. The problem under investigation was two-fold. The first was to create and test a structural equation model describing the direction and magnitude of the relationships. The second was to determine gender differences in the relationships. Data collected from the Longitudinal Study of American Youth (LSAY) over a three-year period were used to create and test the structural equation model. Results of this study indicate inquiry-based instruction is effective in positively influencing 7th- and 8th-grade students' understandings of science concepts. Additionally, inquiry-based instruction does not have an adverse influence on science achievement in 9th grade. If the primary goal is science achievement, then an inquiry-based approach to instruction is effective. On the other hand, if the primary goal of science instruction is to positively influence students' attitudes toward science (in particular, perceptions of the usefulness of science) then inquiry-based approaches may not be the most effective method of instruction. Inquiry-based instruction adversely influences 7th-grade males' attitudes toward science and has no significant influence on 7th-grade females' attitudes toward science. In 8th grade, inquiry-based instruction has no significant influence on either genders' attitudes toward science. Not until the 9th grade does inquiry-based instruction have a significantly positive influence on males' and females' perceptions of the usefulness of science. Additionally, prior attitudes toward science significantly influences science achievement only in 8th grade and science achievement influences attitudes toward science only in 9th grade. Recommendations for further research are based on the findings and limitations of this study. Methodological concerns and recommendations focus primarily on limitations in the design of this study and the use of large-scale databases. Theoretical concerns focus on recommendations for areas of additional research; principally, they are based on theoretical questions arising out of this study.
Intelligent machines in the twenty-first century: foundations of inference and inquiry.
Knuth, Kevin H
2003-12-15
The last century saw the application of Boolean algebra to the construction of computing machines, which work by applying logical transformations to information contained in their memory. The development of information theory and the generalization of Boolean algebra to Bayesian inference have enabled these computing machines, in the last quarter of the twentieth century, to be endowed with the ability to learn by making inferences from data. This revolution is just beginning as new computational techniques continue to make difficult problems more accessible. Recent advances in our understanding of the foundations of probability theory have revealed implications for areas other than logic. Of relevance to intelligent machines, we recently identified the algebra of questions as the free distributive algebra, which will now allow us to work with questions in a way analogous to that which Boolean algebra enables us to work with logical statements. In this paper, we examine the foundations of inference and inquiry. We begin with a history of inferential reasoning, highlighting key concepts that have led to the automation of inference in modern machine-learning systems. We then discuss the foundations of inference in more detail using a modern viewpoint that relies on the mathematics of partially ordered sets and the scaffolding of lattice theory. This new viewpoint allows us to develop the logic of inquiry and introduce a measure describing the relevance of a proposed question to an unresolved issue. Last, we will demonstrate the automation of inference, and discuss how this new logic of inquiry will enable intelligent machines to ask questions. Automation of both inference and inquiry promises to allow robots to perform science in the far reaches of our solar system and in other star systems by enabling them not only to make inferences from data, but also to decide which question to ask, which experiment to perform, or which measurement to take given what they have learned and what they are designed to understand.
Intelligent machines in the twenty-first century: foundations of inference and inquiry
NASA Technical Reports Server (NTRS)
Knuth, Kevin H.
2003-01-01
The last century saw the application of Boolean algebra to the construction of computing machines, which work by applying logical transformations to information contained in their memory. The development of information theory and the generalization of Boolean algebra to Bayesian inference have enabled these computing machines, in the last quarter of the twentieth century, to be endowed with the ability to learn by making inferences from data. This revolution is just beginning as new computational techniques continue to make difficult problems more accessible. Recent advances in our understanding of the foundations of probability theory have revealed implications for areas other than logic. Of relevance to intelligent machines, we recently identified the algebra of questions as the free distributive algebra, which will now allow us to work with questions in a way analogous to that which Boolean algebra enables us to work with logical statements. In this paper, we examine the foundations of inference and inquiry. We begin with a history of inferential reasoning, highlighting key concepts that have led to the automation of inference in modern machine-learning systems. We then discuss the foundations of inference in more detail using a modern viewpoint that relies on the mathematics of partially ordered sets and the scaffolding of lattice theory. This new viewpoint allows us to develop the logic of inquiry and introduce a measure describing the relevance of a proposed question to an unresolved issue. Last, we will demonstrate the automation of inference, and discuss how this new logic of inquiry will enable intelligent machines to ask questions. Automation of both inference and inquiry promises to allow robots to perform science in the far reaches of our solar system and in other star systems by enabling them not only to make inferences from data, but also to decide which question to ask, which experiment to perform, or which measurement to take given what they have learned and what they are designed to understand.
NASA Astrophysics Data System (ADS)
Xiang, Lin
This is a collective case study seeking to develop detailed descriptions of how programming an agent-based simulation influences a group of 8 th grade students' model-based inquiry (MBI) by examining students' agent-based programmable modeling (ABPM) processes and the learning outcomes. The context of the present study was a biology unit on natural selection implemented in a charter school of a major California city during spring semester of 2009. Eight 8th grade students, two boys and six girls, participated in this study. All of them were low socioeconomic status (SES). English was a second language for all of them, but they had been identified as fluent English speakers at least a year before the study. None of them had learned either natural selection or programming before the study. The study spanned over 7 weeks and was comprised of two study phases. In phase one the subject students learned natural selection in science classroom and how to do programming in NetLogo, an ABPM tool, in a computer lab; in phase two, the subject students were asked to program a simulation of adaptation based on the natural selection model in NetLogo. Both qualitative and quantitative data were collected in this study. The data resources included (1) pre and post test questionnaire, (2) student in-class worksheet, (3) programming planning sheet, (4) code-conception matching sheet, (5) student NetLogo projects, (6) videotaped programming processes, (7) final interview, and (8) investigator's field notes. Both qualitative and quantitative approaches were applied to analyze the gathered data. The findings suggested that students made progress on understanding adaptation phenomena and natural selection at the end of ABPM-supported MBI learning but the progress was limited. These students still held some misconceptions in their conceptual models, such as the idea that animals need to "learn" to adapt into the environment. Besides, their models of natural selection appeared to be incomplete and many relationships among the model ideas had not been well established by the end of the study. Most of them did not treat the natural selection model as a whole but only focused on some ideas within the model. Very few of them could scientifically apply the natural selection model to interpret other evolutionary phenomena. The findings about participating students' programming processes revealed these processes were composed of consecutive programming cycles. The cycle typically included posing a task, constructing and running program codes, and examining the resulting simulation. Students held multiple ideas and applied various programming strategies in these cycles. Students were involved in MBI at each step of a cycle. Three types of ideas, six programming strategies and ten MBI actions were identified out of the processes. The relationships among these ideas, strategies and actions were also identified and described. Findings suggested that ABPM activities could support MBI by (1) exposing students' personal models and understandings, (2) provoking and supporting a series of model-based inquiry activities, such as elaborating target phenomena, abstracting patterns, and revising conceptual models, and (3) provoking and supporting tangible and productive conversations among students, as well as between the instructor and students. Findings also revealed three programming behaviors that appeared to impede productive MBI, including (1) solely phenomenon-orientated programming, (2) transplanting program codes, and (3) blindly running procedures. Based on the findings, I propose a general modeling process in ABPM activities, summarize the ways in which MBI can be supported in ABPM activities and constrained by multiple factors, and suggest the implications of this study in the future ABPM-assisted science instructional design and research.
NASA Astrophysics Data System (ADS)
Breslyn, Wayne Gene
The present study investigated differences in the continuing development of National Board Certified Science Teachers' (NBCSTs) conceptions of inquiry across the disciplines of biology, chemistry, earth science, and physics. The central research question of the study was, "How does a NBCST's science discipline (biology, chemistry, earth science, or physics) influence their conceptions, enactment, and goals for inquiry-based teaching and learning?" A mixed methods approach was used that included an analysis of the National Board portfolio entry, Active Scientific Inquiry, for participants (n=48) achieving certification in the 2007 cohort. The portfolio entry provided detailed documentation of teachers' goals and enactment of an inquiry lesson taught in their classroom. Based on the results from portfolio analysis, participant interviews were conducted with science teachers (n=12) from the 2008 NBCST cohort who represented the science disciplines of biology, chemistry, earth science, and physics. The interviews provided a broader range of contexts to explore teachers' conceptions, enactment, and goals of inquiry. Other factors studied were disciplinary differences in NBCSTs' views of the nature of science, the relation between their science content knowledge and use of inquiry, and changes in their conceptions of inquiry as result of the NB certification process. Findings, based on a situated cognitive framework, suggested that differences exist between biology, chemistry, and earth science teachers' conceptions, enactment, and goals for inquiry. Further, individuals teaching in more than one discipline often held different conceptions of inquiry depending on the discipline in which they were teaching. Implications for the research community include being aware of disciplinary differences in studies on inquiry and exercising caution in generalizing findings across disciplines. In addition, teachers who teach in more than one discipline can highlight the contextual and culturally based nature of teachers' conceptions of inquiry. For the education community, disciplinary differences should be considered in the development of curriculum and professional development. An understanding of disciplinary trends can allow for more targeted and relevant representations of inquiry.
ERIC Educational Resources Information Center
Byker, Erik Jon; Coffey, Heather; Harden, Susan; Good, Amy; Heafner, Tina L.; Brown, Katie E.; Holzberg, Debra
2017-01-01
Using case study method, this study examines the impact of an inquiry-based learning program among a cohort of first-semester undergraduates (n = 104) at a large public university in the southeastern United States who are aspiring to become teachers. The Boyer Commission (1999) asserted that inquiry-based learning should be the foundation of…
ERIC Educational Resources Information Center
Maass, Katja; Swan, Malcolm; Aldorf, Anna-Maria
2017-01-01
Inquiry-based learning (IBL) is a more student-centered approach to mathematics teaching that is recommended by many policy and curriculum documents across Europe. However, it is not easy for teachers to change from a more teacher-centered way of teaching to inquiry-based teaching as this involves a change of their role in class. Professional…
ERIC Educational Resources Information Center
Juntunen, Marianne; Aksela, Maija
2013-01-01
The aim of the present study is to improve the quality of students' environmental literacy and sustainability education in chemistry teaching by combining the socio-scientific issue of life-cycle thinking with inquiry-based learning approaches. This case study presents results from an inquiry-based life-cycle thinking project: an interdisciplinary…
ERIC Educational Resources Information Center
Alvarado, Amy Edmonds; Herr, Patricia R.
This book explores the concept of using everyday objects as a process initiated both by students and teachers, encouraging growth in student observation, inquisitiveness, and reflection in learning. After "Introduction: Welcome to Inquiry-Based Learning using Everyday Objects (Object-Based Inquiry), there are nine chapters in two parts. Part 1,…
Enhanced Learning of Biotechnology Students by an Inquiry-Based Cellulase Laboratory
ERIC Educational Resources Information Center
Ketpichainarong, Watcharee; Panijpan, Bhinyo; Ruenwongsa, Pintip
2010-01-01
This study explored the effectiveness of an inquiry-based cellulase laboratory unit in promoting inquiry in undergraduate students in biotechnology. The following tools were used to assess the students' achievements and attitude: conceptual understanding test, concept mapping, students' documents, CLES questionnaire, students' self reflection, and…
Inquiry and Groups: Student Interactions in Cooperative Inquiry-Based Science
ERIC Educational Resources Information Center
Woods-McConney, Amanda; Wosnitza, Marold; Sturrock, Keryn L.
2016-01-01
Science education research has recommended cooperative inquiry based science in the primary science context for more than two decades but after more than 20 years, student achievement in science has not substantially improved. This study, through direct observation and analysis, investigated content-related student interactions in an authentic…
ERIC Educational Resources Information Center
Zillesen, Pieter G. van Schaick
This paper introduces a hardware and software independent model for producing educational computer simulation environments. The model, which is based on the results of 32 studies of educational computer simulations program production, implies that educational computer simulation environments are specified, constructed, tested, implemented, and…
Auditorium acoustics evaluation based on simulated impulse response
NASA Astrophysics Data System (ADS)
Wu, Shuoxian; Wang, Hongwei; Zhao, Yuezhe
2004-05-01
The impulse responses and other acoustical parameters of Huangpu Teenager Palace in Guangzhou were measured. Meanwhile, the acoustical simulation and auralization based on software ODEON were also made. The comparison between the parameters based on computer simulation and measuring is given. This case study shows that auralization technique based on computer simulation can be used for predicting the acoustical quality of a hall at its design stage.
Approaches to Classroom-Based Computational Science.
ERIC Educational Resources Information Center
Guzdial, Mark
Computational science includes the use of computer-based modeling and simulation to define and test theories about scientific phenomena. The challenge for educators is to develop techniques for implementing computational science in the classroom. This paper reviews some previous work on the use of simulation alone (without modeling), modeling…
Computer-Based Simulations for Maintenance Training: Current ARI Research. Technical Report 544.
ERIC Educational Resources Information Center
Knerr, Bruce W.; And Others
Three research efforts that used computer-based simulations for maintenance training were in progress when this report was written: Game-Based Learning, which investigated the use of computer-based games to train electronics diagnostic skills; Human Performance in Fault Diagnosis Tasks, which evaluated the use of context-free tasks to train…
An, Ji-Young
2016-01-01
Objectives This article reviews an evaluation vector model driven from a participatory action research leveraging a collective inquiry system named SMILE (Stanford Mobile Inquiry-based Learning Environment). Methods SMILE has been implemented in a diverse set of collective inquiry generation and analysis scenarios including community health care-specific professional development sessions and community-based participatory action research projects. In each scenario, participants are given opportunities to construct inquiries around physical and emotional health-related phenomena in their own community. Results Participants formulated inquiries as well as potential clinical treatments and hypothetical scenarios to address health concerns or clarify misunderstandings or misdiagnoses often found in their community practices. From medical universities to rural village health promotion organizations, all participatory inquiries and potential solutions can be collected and analyzed. The inquiry and solution sets represent an evaluation vector which helps educators better understand community health issues at a much deeper level. Conclusions SMILE helps collect problems that are most important and central to their community health concerns. The evaluation vector, consisting participatory and collective inquiries and potential solutions, helps the researchers assess the participants' level of understanding on issues around health concerns and practices while helping the community adequately formulate follow-up action plans. The method used in SMILE requires much further enhancement with machine learning and advanced data visualization. PMID:27525157
NASA Astrophysics Data System (ADS)
Fitzgerald, Michael; Danaia, Lena; McKinnon, David H.
2017-07-01
In recent years, calls for the adoption of inquiry-based pedagogies in the science classroom have formed a part of the recommendations for large-scale high school science reforms. However, these pedagogies have been problematic to implement at scale. This research explores the perceptions of 34 positively inclined early-adopter teachers in relation to their implementation of inquiry-based pedagogies. The teachers were part of a large-scale Australian high school intervention project based around astronomy. In a series of semi-structured interviews, the teachers identified a number of common barriers that prevented them from implementing inquiry-based approaches. The most important barriers identified include the extreme time restrictions on all scales, the poverty of their common professional development experiences, their lack of good models and definitions for what inquiry-based teaching actually is, and the lack of good resources enabling the capacity for change. Implications for expectations of teachers and their professional learning during educational reform and curriculum change are discussed.
ERIC Educational Resources Information Center
Bernstein, Jesse
2003-01-01
Explains the difference between traditional and inquiry-based chemistry experiments. Modifies a traditional cookbook laboratory for determining molar volume of gas to include inquiry. Also discusses methods for assessment. (Author/NB)
Measuring cognitive load: performance, mental effort and simulation task complexity.
Haji, Faizal A; Rojas, David; Childs, Ruth; de Ribaupierre, Sandrine; Dubrowski, Adam
2015-08-01
Interest in applying cognitive load theory in health care simulation is growing. This line of inquiry requires measures that are sensitive to changes in cognitive load arising from different instructional designs. Recently, mental effort ratings and secondary task performance have shown promise as measures of cognitive load in health care simulation. We investigate the sensitivity of these measures to predicted differences in intrinsic load arising from variations in task complexity and learner expertise during simulation-based surgical skills training. We randomly assigned 28 novice medical students to simulation training on a simple or complex surgical knot-tying task. Participants completed 13 practice trials, interspersed with computer-based video instruction. On trials 1, 5, 9 and 13, knot-tying performance was assessed using time and movement efficiency measures, and cognitive load was assessed using subjective rating of mental effort (SRME) and simple reaction time (SRT) on a vibrotactile stimulus-monitoring secondary task. Significant improvements in knot-tying performance (F(1.04,24.95) = 41.1, p < 0.001 for movements; F(1.04,25.90) = 49.9, p < 0.001 for time) and reduced cognitive load (F(2.3,58.5) = 57.7, p < 0.001 for SRME; F(1.8,47.3) = 10.5, p < 0.001 for SRT) were observed in both groups during training. The simple-task group demonstrated superior knot tying (F(1,24) = 5.2, p = 0.031 for movements; F(1,24) = 6.5, p = 0.017 for time) and a faster decline in SRME over the first five trials (F(1,26) = 6.45, p = 0.017) compared with their peers. Although SRT followed a similar pattern, group differences were not statistically significant. Both secondary task performance and mental effort ratings are sensitive to changes in intrinsic load among novices engaged in simulation-based learning. These measures can be used to track cognitive load during skills training. Mental effort ratings are also sensitive to small differences in intrinsic load arising from variations in the physical complexity of a simulation task. The complementary nature of these subjective and objective measures suggests their combined use is advantageous in simulation instructional design research. © 2015 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Atar, Hakan Yavuz
Creating a scientifically literate society appears to be the major goal of recent science education reform efforts (Abd-El-Khalick, Boujaoude, Dushl, Lederman, Hofstein, Niaz, Tregust, & Tuan, 2004). Recent national reports in the U.S, such as Shaping the Future, New Expectations for Undergraduate Education in Science, Mathematics, Engineering, and Technology (NSF,1996), Inquiry in Science and In Classroom, Inquiry and the National Science Education Standards (NRC, 2001), Pursuing excellence: Comparison of international eight-grade mathematics and science achievement from a U.S. perspective (NCES, 2001), and Standards for Science Teacher Preparation (NSTA 2003) appear to agree on one thing: the vision of creating a scientifically literate society. It appears from science education literature that the two important components of being a scientifically literate individual are developing an understanding of nature of science and ability to conduct scientific inquiries. Unfortunately, even though teaching science through inquiry has been recommended in national reports since the 1950's, it has yet to find its way into many science classrooms (Blanchard, 2006; Yerrick, 2000). Science education literature identfies several factors for this including: (1) lack of content knowledge (Anderson, 2002; Lee, Hart Cuevas, & Enders, 2004; Loucks-Horsely, Hewson, Love, & Stiles, 1998; Moscovici, 1999; Smith & Naele, 1989; Smith, 1989); (2) high stake tests (Aydeniz, 2006); (3) teachers' conflicting beliefs with inquiry-based science education reform (Blanchard, 2006; Wallace & Kang, 2004); and, (4) lack of collaboration and forums for communication (Anderson, 2002; Davis, 2003; Loucks-Horsely, Hewson, Love, & Stiles, 1998; Wallace & Kang, 2004). In addition to the factors stated above this study suggest that some of the issues and problems that have impeded inquiry instruction to become the primary approach to teaching science in many science classrooms might be related to teachers NOS conceptions. Developing desired understanding of nature of science conceptions and having an adequate experience with inquiry learning is especially important for science teachers because science education literature suggests that the development of teachers' nature of science conceptions is influenced by their experiences with inquiry science (Akerson et. al. 2000) and implementation of science lessons reflect teachers' NOS conceptions (Abd-EL-Khalick & Boujaoude, 1997; Matson & Parsons, 1998; Rosenthal, 1993; Trowbridge, Bybee & Powell, 2000; Turner & Sullenger, 1999). Furthermore, the impediments to successful integration of inquiry based science instruction from teachers' perspective are particularly important, as they are the implementers of inquiry based science education reform. The purpose of this study is to understand the relationship between the teachers' NOS conceptions and their inquiry beliefs and practices in their classrooms and how this relationship impedes or contributes to the implementation of inquiry based science education reform efforts. The participants of this study were in-service teachers who were accepted into the online Masters Program in science education program at a southern university. Three online courses offered in the summer semester of 2005 constituted the research setting of this study: (1) Special Problems in the Teaching of Secondary School Science: Nature of Science & Science Teaching, (2) Curriculum in Science Education, and (3) Colloquium. Multiple data sources were used for data triangulation (Miles & Huberman, 1984; Yin, 1994) in order to understand the relationship between participants' NOS views and their conceptions and beliefs about inquiry-based science teaching. The study revealed that the relationship between the teachers' NOS conceptions and their inquiry beliefs and practices is far from being simple and linear. Data suggests that the teachers' sophistication of NOS conceptions influence their perception of inquiry science instruction in variety of ways. In a nutshell, these include: (1) The teachers become more confident in their ability to implement inquiry-based science classes; (2) Better understanding of NOS conceptions assists the teachers develop a higher appreciation of inquiry science instruction; (3) The teachers' misconceptions about nature of science appear to be connected to their misconceptions about inquiry science instruction; (4) A better understanding of NOS concepts seems to have stimulate the teachers to put more emphasis on some aspects of inquiry more than others; and (5) Sophistication of teachers' NOS conceptions influences their decisions about the type of inquiry they plan to incorporate in their instruction. This study also suggests that enhancing teachers' NOS conceptions should be among the main objectives of inquiry-based professional development programs and courses that are taught in science education programs. This study reveals that enhancing NOS conceptions helps teachers in their efforts to integrate inquiry into their instruction by boosting their confidence in their abilities to teach science through inquiry. This study reveals that especially teachers who lack strong science backgrounds and prior experience with inquiry science are at risk. Not having a strong background in science and lacking extensive experience with inquiry science negatively influences the teachers' confidence and thus delays their efforts to implement inquiry-based science lessons. (Abstract shortened by UMI.)
The Effect of Teacher Involvement on Student Performance in a Computer-Based Science Simulation.
ERIC Educational Resources Information Center
Waugh, Michael L.
Designed to investigate whether or not science teachers can positively influence student achievement in, and attitude toward, science, this study focused on a specific teaching strategy and utilization of a computer-based simulation. The software package used in the study was the simulation, Volcanoes, by Earthware Computer Services. The sample…
ERIC Educational Resources Information Center
Punch, Raymond J.
2012-01-01
The purpose of the quantitative regression study was to explore and to identify relationships between attitudes toward use and perceptions of value of computer-based simulation programs, of college instructors, toward computer based simulation programs. A relationship has been reported between attitudes toward use and perceptions of the value of…
Talking Science: Developing a Discourse of Inquiry
ERIC Educational Resources Information Center
Hackling, Mark; Smith, Pru; Murcia, Karen
2010-01-01
A key principle of inquiry-based science education is that the process of inquiry must include opportunities for the exploration of questions and ideas, as well as reasoning with ideas and evidence. Teaching and learning Science therefore involves teachers managing a discourse that supports inquiry and students engaging in talk that facilitates…
ERIC Educational Resources Information Center
Hermann, Ronald S.; Miranda, Rommel J.
2010-01-01
Although inquiry-based science teaching has been around since the 1960s, many teachers are slow to incorporate inquiry principles into their science lessons. The authors address this issue by using an analogy between a magician's card trick and open inquiry. This analogy was chosen to portray a difference of perspective and demonstrate how the…
Experimental Comparison of Inquiry and Direct Instruction in Science
ERIC Educational Resources Information Center
Cobern, William W.; Schuster, David; Adams, Betty; Applegate, Brooks; Skjold, Brandy; Undreiu, Adriana; Loving, Cathleen C.; Gobert, Janice D.
2010-01-01
There are continuing educational and political debates about "inquiry" versus "direct" teaching of science. Traditional science instruction has been largely direct but in the US, recent national and state science education standards advocate inquiry throughout K-12 education. While inquiry-based instruction has the advantage of modelling aspects…
11 CFR 9039.3 - Examination and audits; investigations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... inquiry. A decision to conduct an inquiry under this section may be based on information that is obtained... information obtained in the inquiry will be utilized in making the repayment determination. If the inquiry...; investigations. (a) General. (1) The Commission will consider information obtained in its continuing review under...
Inquiry Teaching in High School Chemistry Classrooms: The Role of Knowledge and Beliefs
ERIC Educational Resources Information Center
Roehrig, Gillian H.; Luft, Julie A.
2004-01-01
The call for implementation of inquiry-based teaching in secondary classrooms has taken on a new sense of urgency, hence several instructions models are developed to assists teachers in implementing inquiry in their classrooms. The role of knowledge and beliefs in inquiry teaching are examined.
Inquiry Science for Liberal Arts Students: A Topical Course on Sound
NASA Astrophysics Data System (ADS)
Pine, Jerry; Hinckley, Joy; Mims, Sandra; Smith, Joel
1997-04-01
We have developed a topical general studies physics course for liberal arts students, and particularly for preservice elementary teachers. The course is taught entirely in a lab, and is based on a mix of student inquiries and ''sense-making'' in discussion. There are no lectures. A physics professor and a master elementary teacher co-lead. The students begin by conceptualizing the nature of sound by examining everyday phenomena, and then progress through a study of topics such as waves, interference, sysnthesis of complex sounds from pure tones, analysis of complex sounds into spectra, and independent projects. They use the computer program Soundedit Pro and the Macintosh interface as a powerful tool for analysis and synthesis. The student response has been extremely enthusiastic, though most have come to the course with very strong physics anxiety. The course has so far been trial-taught at five California campuses, and incorporatio into some of hte regular curricula seems promising.
Teaching Harmonic Motion in Trigonometry: Inductive Inquiry Supported by Physics Simulations
ERIC Educational Resources Information Center
Sokolowski, Andrzej; Rackley, Robin
2011-01-01
In this article, the authors present a lesson whose goal is to utilise a scientific environment to immerse a trigonometry student in the process of mathematical modelling. The scientific environment utilised during this activity is a physics simulation called "Wave on a String" created by the PhET Interactive Simulations Project at…
Immersive Simulations for Smart Classrooms: Exploring Evolutionary Concepts in Secondary Science
ERIC Educational Resources Information Center
Lui, Michelle; Slotta, James D.
2014-01-01
This article presents the design of an immersive simulation and inquiry activity for technology-enhanced classrooms. Using a co-design method, researchers worked with a high school biology teacher to create a rainforest simulation, distributed across several large displays in the room to immerse students in the environment. The authors created and…
NASA Astrophysics Data System (ADS)
Broom, Frances A.
This mixed method case study employs action research, conducted over a three month period with 11 elementary math and science practitioners. Inquiry as an instructional practice is a vital component of math and science instruction and STEM teaching. Teachers examined their beliefs and teaching practices with regard to those instructional factors that influence inquiry instruction. Video-taped lessons were compared to a rubric and pre and post questionnaires along with two interviews which informed the study. The results showed that while most beliefs were maintained, teachers implemented inquiry at a more advanced level after examining their teaching and reflecting on ways to increase inquiry practices. Because instructional practices provide only one component of inquiry-based instruction, other components need to be examined in a future study.
ERIC Educational Resources Information Center
Wilson, Christopher D.; Taylor, Joseph A.; Kowalski, Susan M.; Carlson, Janet
2010-01-01
We conducted a laboratory-based randomized control study to examine the effectiveness of inquiry-based instruction. We also disaggregated the data by student demographic variables to examine if inquiry can provide equitable opportunities to learn. Fifty-eight students aged 14-16 years old were randomly assigned to one of two groups. Both groups of…
ERIC Educational Resources Information Center
Arslan Buyruk, Arzu; Ogan Bekiroglu, Feral
2018-01-01
The focus of this study was to evaluate the impact of model-based inquiry on pre-service physics teachers' conceptual understanding of dynamics. Theoretical framework of this research was based on models-of-data theory. True-experimental design using quantitative and qualitative research methods was carried out for this research. Participants of…
ERIC Educational Resources Information Center
Sampson, Victor
2004-01-01
With the publication of the National Science Education Standards and the Benchmarks for Science Literacy, people now have a thorough idea of what an inquiry-based teacher is, and what he or she needs to do within a classroom in order to be successful. However, one major barrier in learning how to become an effective inquiry-based science teacher…
ERIC Educational Resources Information Center
Alake-Tuenter, Ester; Biemans, Harm J. A.; Tobi, Hilde; Wals, Arjen E. J.; Oosterheert, Ida; Mulder, Martin
2012-01-01
Inquiry-based science education is an important innovation. Researchers and teachers consider it to be stimulating for pupils' application of research skills, construction of meaning and acquiring scientific knowledge. However, there is ambiguity as to what competencies are required to teach inquiry-based science. Our purpose is to develop a…
Developing Simulations in Multi-User Virtual Environments to Enhance Healthcare Education
ERIC Educational Resources Information Center
Rogers, Luke
2011-01-01
Computer-based clinical simulations are a powerful teaching and learning tool because of their ability to expand healthcare students' clinical experience by providing practice-based learning. Despite the benefits of traditional computer-based clinical simulations, there are significant issues that arise when incorporating them into a flexible,…
The 5E Instructional Model: A Learning Cycle Approach for Inquiry-Based Science Teaching
ERIC Educational Resources Information Center
Duran, Lena Ballone; Duran, Emilio
2004-01-01
The implementation of inquiry-based teaching is a major theme in national science education reform documents such as "Project 2061: Science for All Americans" (Rutherford & Alhgren, 1990) and the "National Science Education Standards" (NRC, 1996). These reports argue that inquiry needs to be a central strategy of all…
A Path to Designing Inquiry Activities in Mathematics
ERIC Educational Resources Information Center
Greene, M.; von Renesse, C.
2017-01-01
This paper aims to illustrate a design cycle of inquiry-based mathematics activities. We highlight a series of questions that we use when creating inquiry-based materials, testing and evaluating those materials, and revising the materials following this evaluation. These questions highlight the many decisions necessary to find just the right tasks…
Inquiry Based Teaching in Turkey: A Content Analysis of Research Reports
ERIC Educational Resources Information Center
Kizilaslan, Aydin; Sozbilir, Mustafa; Yasar, M. Diyaddin
2012-01-01
Inquiry-based learning [IBL] enhances students' critical thinking abilities and help students to act as a scientist through using scientific method while learning. Specifically, inquiry as a teaching approach has been defined in many ways, the most important one is referred to nature of constructing knowledge while the individuals possess a…
Coaching to Build Support for Inquiry-Based Teaching
ERIC Educational Resources Information Center
Bransfield, Paula; Holt, Patrice; Nastasi, Patricia
2007-01-01
In teaching science today, the emphasis is on inquiry-based pedagogies, with the expectation that students in the science classroom will be exposed to the theories and practices of scientists in the science community. However, for many science teachers, implementing inquiry in the classroom is a daunting task. In the traditional classroom setting,…
ERIC Educational Resources Information Center
Magee, Paula A.; Flessner, Ryan
2012-01-01
This study examines the effect of promoting inquiry-based teaching (IBT) through collaboration between a science methods course and mathematics methods course in an elementary teacher education program. During the collaboration, preservice elementary teacher (PST) candidates experienced 3 different types of inquiry as a way to foster increased…
Identifying Core Elements of Argument-Based Inquiry in Primary Mathematics Learning
ERIC Educational Resources Information Center
Fielding-Wells, Jill
2015-01-01
Having students address mathematical inquiry problems that are ill-structured and ambiguous offers potential for them to develop a focus on mathematical evidence and reasoning. However, students may not necessarily focus on these aspects when responding to such problems. Argument-Based Inquiry is one way to guide students in this direction. This…
Implementing Inquiry-Based Learning and Examining the Effects in Junior College Probability Lessons
ERIC Educational Resources Information Center
Chong, Jessie Siew Yin; Chong, Maureen Siew Fang; Shahrill, Masitah; Abdullah, Nor Azura
2017-01-01
This study examined how Year 12 students use their inquiry skills in solving conditional probability questions by means of Inquiry-Based Learning application. The participants consisted of 66 students of similar academic abilities in Mathematics, selected from three classes, along with their respective teachers. Observational rubric and lesson…
Can Graduate Teaching Assistants Teach Inquiry-Based Geology Labs Effectively?
ERIC Educational Resources Information Center
Ryker, Katherine; McConnell, David
2014-01-01
This study examines the implementation of teaching strategies by graduate teaching assistants (GTAs) in inquiry-based introductory geology labs at a large research university. We assess the degree of inquiry present in each Physical Geology lab and compare and contrast the instructional practices of new and experienced GTAs teaching these labs. We…
Developing a Teacher Identity: TAs' Perspectives about Learning to Teach Inquiry-Based Biology Labs
ERIC Educational Resources Information Center
Gormally, Cara
2016-01-01
Becoming a teacher involves a continual process of identity development and negotiation. Expectations and norms for particular pedagogies impact and inform this development. In inquiry based classes, instructors are expected to act as learning facilitators rather than information providers. For novice inquiry instructors, developing a teacher…
Animating Inquiry-Based Teaching in Grade-School Classrooms
ERIC Educational Resources Information Center
Kinash, Shelley
2007-01-01
This paper describes interpretive empirical research with five teachers who: a) articulate their pedagogy as defined by an inquiry-based stance, b) use digital technologies within their teaching, and c) engaged in online and/or face-to-face professional development with the Galileo Educational Network (GENA). Four questions guided the inquiry:…
ERIC Educational Resources Information Center
Eastwood, Jennifer L.; Sadler, Troy D.; Sherwood, Robert D.; Schlegel, Whitney M.
2013-01-01
The purpose of this study was to examine whether Socioscientific Issues (SSI) based learning environments affect university students' epistemological understanding of scientific inquiry differently from traditional science educational contexts. We identify and compare conceptions of scientific inquiry of students participating in an…
Connecting Inquiry and Values in Science Education. An Approach Based on John Dewey's Philosophy
NASA Astrophysics Data System (ADS)
Lee, Eun Ah; Brown, Matthew J.
2018-03-01
Conducting scientific inquiry is expected to help students make informed decisions; however, how exactly it can help is rarely explained in science education standards. According to classroom studies, inquiry that students conduct in science classes seems to have little effect on their decision-making. Predetermined values play a large role in students' decision-making, but students do not explore these values or evaluate whether they are appropriate to the particular issue they are deciding, and they often ignore relevant scientific information. We explore how to connect inquiry and values, and how this connection can contribute to informed decision-making based on John Dewey's philosophy. Dewey argues that scientific inquiry should include value judgments and that conducting inquiry can improve the ability to make good value judgments. Value judgment is essential to informed, rational decision-making, and Dewey's ideas can explain how conducting inquiry can contribute to make an informed decision through value judgment. According to Dewey, each value judgment during inquiry is a practical judgment guiding action, and students can improve their value judgments by evaluating their actions during scientific inquiry. Thus, we suggest that students need an opportunity to explore values through scientific inquiry and that practicing value judgment will help informed decision-makings.
NASA Astrophysics Data System (ADS)
Ruzhitskaya, Lanika
The presented research study investigated the effects of computer-supported inquiry-based learning and peer interaction methods on effectiveness of learning a scientific concept. The stellar parallax concept was selected as a basic, and yet important in astronomy, scientific construct, which is based on a straightforward relationship of several components presented in a simple mathematical equation: d = 1/p. The simplicity of the concept allowed the researchers to explore how the learners construct their conceptual knowledge, build mathematical skills and transfer their knowledge beyond the learning settings. A computer-based tutorial Stellar Parallax Interactive Restricted and Unrestricted Tutorial (SPIRUT) was developed for this study, and was designed to aid students' knowledge construction of the concept either in a learner-controlled or a program-controlled mode. The first investigated method in the study was enhancing engagement by the means of scaffolding for inquiry, which included scripted prompts and called for students' predictions and reflections while working in the learner-controlled or the computer-controlled version of SPIRUT. A second form of enhancing engagement was through peers working cooperatively during the learning activities. The students' level of understanding of the concept was measured by (1) the number of correct answers on a conceptual test with (2) several questions that require knowledge transfer to unfamiliar situations and (3) their ability to calculate the stellar parallax and find distances to stars. The study was conducted in the University of Missouri among 199 non-science major students enrolled in an introductory astronomy course in the fall semester 2010. The participants were divided into two main groups: one was working with SPIRUT and another group was a control group and utilized a paper-based tutorial. The SPIRUT group was further divided into the learner-controlled and the program-controlled subgroups. Students' learning achievements were measured by two post- tests and compared to the students' results on a pre-test. The first post-test was administered right after the treatment with aim to measure the immediate effect of the treatment. The second post-test was administered eight weeks later and was aimed to elicit how much of the constructed knowledge students retained after the treatment. Results of the study revealed that students who learned the concept with SPIRUT constructed greater conceptual knowledge and were able to better transfer it to another situation while their mathematical skills were equally improved as those students who worked with the paper-based tutorial. It was also evident that there was no difference between students' performances after their engagement with the learner-controlled or with the program-controlled version of SPIRUT. It was also found that students who worked independently constructed slightly greater knowledge than students who worked with peers. Albeit, there was no significant difference found of retention of knowledge after any type of treatment.
Inquiry-based science education: scaffolding pupils' self-directed learning in open inquiry
NASA Astrophysics Data System (ADS)
van Uum, Martina S. J.; Verhoeff, Roald P.; Peeters, Marieke
2017-12-01
This paper describes a multiple case study on open inquiry-based learning in primary schools. During open inquiry, teachers often experience difficulties in balancing support and transferring responsibility to pupils' own learning. To facilitate teachers in guiding open inquiry, we developed hard and soft scaffolds. The hard scaffolds consisted of documents with explanations and/or exercises regarding difficult parts of the inquiry process. The soft scaffolds included explicit references to and additional explanations of the hard scaffolds. We investigated how teacher implementation of these scaffolds contributed to pupils' self-directed learning during open inquiry. Four classes of pupils, aged 10-11, were observed while they conducted an inquiry lesson module of about 10 lessons in their classrooms. Data were acquired via classroom observations, audio recordings, and interviews with teachers and pupils. The results show that after the introduction of the hard scaffolds by the teacher, pupils were able and willing to apply them to their investigations. Combining hard scaffolds with additional soft scaffolding promoted pupils' scientific understanding and contributed to a shared guidance of the inquiry process by the teacher and her pupils. Our results imply that the effective use of scaffolds is an important element to be included in teacher professionalisation.
A Fast Synthetic Aperture Radar Raw Data Simulation Using Cloud Computing.
Li, Zhixin; Su, Dandan; Zhu, Haijiang; Li, Wei; Zhang, Fan; Li, Ruirui
2017-01-08
Synthetic Aperture Radar (SAR) raw data simulation is a fundamental problem in radar system design and imaging algorithm research. The growth of surveying swath and resolution results in a significant increase in data volume and simulation period, which can be considered to be a comprehensive data intensive and computing intensive issue. Although several high performance computing (HPC) methods have demonstrated their potential for accelerating simulation, the input/output (I/O) bottleneck of huge raw data has not been eased. In this paper, we propose a cloud computing based SAR raw data simulation algorithm, which employs the MapReduce model to accelerate the raw data computing and the Hadoop distributed file system (HDFS) for fast I/O access. The MapReduce model is designed for the irregular parallel accumulation of raw data simulation, which greatly reduces the parallel efficiency of graphics processing unit (GPU) based simulation methods. In addition, three kinds of optimization strategies are put forward from the aspects of programming model, HDFS configuration and scheduling. The experimental results show that the cloud computing based algorithm achieves 4_ speedup over the baseline serial approach in an 8-node cloud environment, and each optimization strategy can improve about 20%. This work proves that the proposed cloud algorithm is capable of solving the computing intensive and data intensive issues in SAR raw data simulation, and is easily extended to large scale computing to achieve higher acceleration.
NASA Astrophysics Data System (ADS)
Thoresen, Carol Wiggins
1994-01-01
This study determined if the training provided physics teaching assistants was sufficient to accomplish the objectives of inquiry-based tutorials for an introductory physics course. Qualitative research methods were used: (1) to determine if the Physics by Inquiry method was modeled; (2) to describe the process from the teaching assistant perspective; (3) to determine TA opinions on training methods; (4) to develop a frame of reference to better understand the role of TA's as instructional support staff. The study determined that the teaching assistants verbalized appropriate instructional actions, but were observed to use a predominantly didactic teaching style. TA's held a variety of perceptions and beliefs about inquiry -based learning and how science is learned. They felt comfortable in the role of tutorial instructor. They were satisfied with the training methods provided and had few suggestions to change or improve training for future tutorial instructors. A concurrent theme of teacher action dependent on teacher beliefs was sustained throughout the study. The TA's actions, as tutorial instructors, reflected their educational beliefs, student background and learning experiences. TA's performance as tutorial instructors depended on what they think and believe about learning science. Practical implications exist for training teaching assistants to be tutorial instructors. Some recommendations may be appropriate for TA's required to use instructional methods that they have not experienced as students. Interview prospective teaching assistants to determine educational experience and beliefs. Employ inexperienced teaching assistants whose perspectives match the proposed instructional role and who might be more receptive to modeling. Incorporate training into staff meetings. Provide time for TA's to experience the instructional model with simulation or role play as students and as instructors, accompanied by conference discussion. Use strategies known to enhance adult learning and that are sensitive to the variability of adult learners. Educate for critical reflection; incorporate a system of peer coaching. Include a teaching assistant training component in group process and group management.
Serrano, Antonio; Liebner, Jeffrey; Hines, Justin K
2016-01-01
Despite significant efforts to reform undergraduate science education, students often perform worse on assessments of perceptions of science after introductory courses, demonstrating a need for new educational interventions to reverse this trend. To address this need, we created An Inexplicable Disease, an engaging, active-learning case study that is unusual because it aims to simulate scientific inquiry by allowing students to iteratively investigate the Kuru epidemic of 1957 in a choose-your-own-experiment format in large lectures. The case emphasizes the importance of specialization and communication in science and is broadly applicable to courses of any size and sub-discipline of the life sciences.
Improving the Efficiency of Physical Examination Services
Chih, Mingchang; Bair, Aaron E.
2009-01-01
The objective of our project was to improve the efficiency of the physical examination screening service of a large hospital system. We began with a detailed simulation model to explore the relationships between four performance measures and three decision factors. We then attempted to identify the optimal physician inquiry starting time by solving a goal-programming problem, where the objective function includes multiple goals. One of our simulation results shows that the proposed optimal physician inquiry starting time decreased patient wait times by 50% without increasing overall physician utilization. Electronic supplementary material The online version of this article (doi:10.1007/s10916-009-9271-z) contains supplementary material, which is available to authorized users. PMID:20703912
Inquiry-based Science Instruction in High School Biology Courses: A Multiple Case Study
NASA Astrophysics Data System (ADS)
Aso, Eze
A lack of research exists about how secondary school science teachers use inquiry-based instruction to improve student learning. The purpose of this qualitative study was to explore how science teachers used inquiry-based instruction to improve student learning in high school biology courses. The conceptual framework was based on Banchi and Bell's model of increasing levels of complexity for inquiry-based instruction. A multiple case study research design was conducted of biology programs at 3 high schools in an urban school district in the northeastern region of the United States. Participants included 2 biology teachers from each of the 3 high schools. Data were collected from individual interviews with biology teachers, observations of lessons in biology, and documents related to state standards, assessments, and professional development. The first level of data analysis involved coding and categorizing the interview and observation data. A content analysis was used for the documents. The second level of data analysis involved examining data across all sources and all cases for themes and discrepancies. According to study findings, biology teachers used confirmation, structure, and guided inquiry to improve student learning. However, they found open inquiry challenging and frustrating to implement because professional development about scaffolding of instruction over time was needed, and students' reading and writing skills needed to improve. This study contributes to positive social change by providing educators and researchers with a deeper understanding about how to scaffold levels of inquiry-based science instruction in order to help students become scientifically literate citizens.
Networking for Leadership, Inquiry, and Systemic Thinking: A New Approach to Inquiry-Based Learning.
ERIC Educational Resources Information Center
Byers, Al; Fitzgerald, Mary Ann
2002-01-01
Points out difficulties with a change from traditional teaching methods to a more inquiry-centered approach. Presents theoretical and empirical foundations for the Networking for Leadership, Inquiry, and Systemic Thinking (NLIST) initiative sponsored by the Council of State Science Supervisors (CSSS) and NASA, describes its progress, and outlines…
Perspectives on Inquiry-Oriented Teaching Practice: Conflict and Clarification.
ERIC Educational Resources Information Center
Flick, Lawrence B.; And Others
This paper is the written account of a panel presentation about inquiry-oriented teaching practices. The purpose of this group of papers is to provide an opportunity to explore the state of knowledge of inquiry-oriented teaching based on direct observation of teachers, and analysis of those observations from an inquiry perspective. The paper…
The Effect on Elementary Science Education Based on Student's Pre-Inquiry
ERIC Educational Resources Information Center
Kang, Houn Tae; Noh, Suk Goo
2017-01-01
In this research, after extracting the pre-inquiries (student-level question) for which students had curiosity in the elementary science and analyzing their correlation with the elementary science curriculum, highly correlated inquiries (meaningful pre-inquiries) were selected and applied in class. After organizing an experiment group and a…
Mentoring and Community: Inquiry as Stance and Science as Inquiry
ERIC Educational Resources Information Center
Melville, Wayne; Bartley, Anthony
2010-01-01
In this article, we investigate how mentoring relationships founded on inquiry as stance can work to emphasize the conditions that promote the development of teachers of science as inquiry. Drawing on data collected through semi-structured interviews, we have developed two narrative case studies based on the two mentoring relationships that exist…
Questioning the Validity of Inquiry Assessment in a High Stakes Physical Sciences Examination
ERIC Educational Resources Information Center
Ramnarain, Umesh
2014-01-01
The South African science curriculum advocates an inquiry-based approach to practical work. Inquiry is a complex and multifaceted activity involving both cognitive and physical activity; thus, paper-and-pencil items do not provide the authentic context for this assessment. This study investigates the construct validity of inquiry-related questions…
NASA Astrophysics Data System (ADS)
Williams-Rossi, Dara
Despite the positive outcomes for inquiry-based science education and recommendations from national and state standards, many teachers continue to rely upon more traditional methods of instruction This causal-comparative study was designed to determine the effects of the Inquiry Institute, a professional development program that is intended to strengthen science teachers' pedagogical knowledge and provide practice with inquiry methods based from a constructivist approach. This study will provide a understanding of a cause and effect relationship within three levels of the independent variable---length of participation in the Inquiry Institute (zero, three, or six days)---to determine whether or not the three groups differ on the dependent variables---beliefs, implementation, and barriers. Quantitative data were collected with the Science Inquiry Survey, a researcher-developed instrument designed to also ascertain qualitative information with the use of open-ended survey items. One-way ANOVAs were applied to the data to test for a significant difference in the means of the three groups. The findings of this study indicate that lengthier professional development in the Inquiry Institute holds the most benefits for the participants.
How is the Inquiry Skills of Biology Preservice Teachers in Biotechnology Lecture?
NASA Astrophysics Data System (ADS)
Hayat, M. S.; Rustaman, N. Y.
2017-09-01
This study was to investigate the inquiry skills of biology pre-service teachers in one teachers college in Central Java in biotechnology lecture. The method used is a case study of 29 biology preservice teacher. Data were collected using observation sheets, questionnaires, and interview guidelines. Research findings collected through questionnaires show that most students are accustomed to asking questions and formulating biotechnology issues; Skilled in conducting experiments; Skilled in obtaining relevant information from various sources; As well as skilled at processing, analyzing and interpreting data. Based on observation: lectures are not dominated by lecturers, students are able to solve problems encountered and conduct investigations. Based on the interview towards lecturers: students are always actively involved in questioning, investigation, inquiry, problem solving and experimenting in lectures. Why do most students show good inquiry skills? Because students are accustomed to invited inquiry in biology lectures. The impact, the students become more ready to be invited to do more advanced inquiry, such as real-world application inquiry, because the skill of inquiry is essentially trained.
Lab4CE: A Remote Laboratory for Computer Education
ERIC Educational Resources Information Center
Broisin, Julien; Venant, Rémi; Vidal, Philippe
2017-01-01
Remote practical activities have been demonstrated to be efficient when learners come to acquire inquiry skills. In computer science education, virtualization technologies are gaining popularity as this technological advance enables instructors to implement realistic practical learning activities, and learners to engage in authentic and…
ERIC Educational Resources Information Center
Silm, Gerli; Tiitsaar, Kai; Pedaste, Margus; Zacharia, Zacharias C.; Papaevripidou, Marios
2017-01-01
The use of inquiry-based learning (IBL) is encouraged in schools, as it has been shown to be an effective method for raising students' motivation in STEM subjects and increasing their understanding of scientific concepts. Nevertheless, IBL is not very often used in classrooms by teachers due to different (perceived) obstacles. Within the Ark of…
ERIC Educational Resources Information Center
Pérez, María del Carmen B.; Furman, Melina
2016-01-01
Designing inquiry-based science lessons can be a challenge for secondary school teachers. In this study we evaluated the development of in-service teachers' lesson plans as they took part in a 10-month professional development course in Peru which engaged teachers in the design of inquiry-based lessons. At the beginning, most teachers designed…
NASA Astrophysics Data System (ADS)
Craig, Cheryl J.; Verma, Rakesh; Stokes, Donna; Evans, Paige; Abrol, Bobby
2018-04-01
This research examines the influence of parents on students' studying the STEM disciplines and entering STEM careers. Cases of two graduate students (one female, one male) and one undergraduate student (male) are featured. The first two students in the convenience sample are biology and physics majors in a STEM teacher education programme; the third is enrolled in computer science. The narrative inquiry research method is used to elucidate the students' academic trajectories. Incidents of circumstantial and planned parent curriculum making surfaced when the data was serially interpreted. Other themes included: (1) relationships between (student) learners and (teacher) parents, (2) invitations to inquiry, (3) modes of inquiry, (4) the improbability of certainty, and (5) changed narratives = changed lives. While policy briefs provide sweeping statements about parents' positive effects on their children, narrative inquiries such as this one illuminate parents' inquiry moves within home environments. These actions became retrospectively revealed in their adult children's lived narratives. Nurtured by their mothers and/or fathers, students enter STEM disciplines and STEM-related careers through multiple pathways in addition to the anticipated pipeline.
The effect of inquiry based science instruction on student understanding
NASA Astrophysics Data System (ADS)
Nail, Jessica Lynette
According to the TIMSS Study (2007), the United States is falling behind in the subjects of math and science. In order for the students in the United States to develop scientific literacy and remain competitive globally, inquiry must be the priority when teaching science (NRC, 1996; AAAS, 1990). The main purpose of this research was to see if inquiry-based instruction in the science classroom had a significant effect on student understanding and retention of information in a rural school in Virginia. The effect of inquiry-based science instruction on gender was also examined. The researcher implemented a four-week, inquiry-based unit on Virginia Sol 6.7, written in the 5 E learning style to 358 sixth-grade students and compared their posttest gains and delayed posttest scores to a control group consisting of 268 students. The control group received traditional teaching methods. The results for the posttest gains produced a p = 0.01. Therefore, there was a significant difference in the experimental group, which received the treatment, when compared to the control group, which did not receive treatment. A t test was also used to compare the delayed test scores of the experimental group to the control group. The results showed a p < 0.0001 when comparing the experimental group, which received the four-week inquiry-based science instruction treatment, to the control, which did not receive the treatment. This t test showed a very highly significant difference between the experimental group and the control group. Based on these results, it is imperative that Virginia begin implementing inquiry-based instruction in the science classroom.
The effect of inquiry-based, hands-on labs on achievement in middle school science
NASA Astrophysics Data System (ADS)
Miller, Donna Kaye Green
The purpose of this quasi-experimental study was to measure the difference in science achievement between students who had been taught with an inquiry-based, hands-on pedagogical approach and those who had not. Improving student academic achievement and standardized test scores is the major objective of teachers, parents, school administrators, government entities, and students themselves. One major barrier to this academic success in Georgia, and the entire United States, has been the paucity of success in middle level science classes. Many studies have been conducted to determine the learning approaches that will best enable students to not only acquire a deeper understanding of science concepts, but to equip them to apply that new knowledge in their daily activities. Inquiry-based, hands-on learning involves students participating in activities that reflect methods of scientific investigation. The effective utilization of the inquiry-based learning approach demands inclusion of learners in a self-directed learning environment, the ability to think critically, and an understanding of how to reflect and reason scientifically. The treatment group using an inquiry-based, hands-on program did score slightly higher on the CRCT. However, the results revealed that there was not a significant difference in student achievement. This study showed that the traditionally instructed control group had slightly higher interest in science than the inquiry-based treatment group. The findings of this research study indicated that the NCLB mandates might need to be altered if there are no significant academic gains that result from the use of inquiry-based strategies.
Improving the Aircraft Design Process Using Web-Based Modeling and Simulation
NASA Technical Reports Server (NTRS)
Reed, John A.; Follen, Gregory J.; Afjeh, Abdollah A.; Follen, Gregory J. (Technical Monitor)
2000-01-01
Designing and developing new aircraft systems is time-consuming and expensive. Computational simulation is a promising means for reducing design cycle times, but requires a flexible software environment capable of integrating advanced multidisciplinary and multifidelity analysis methods, dynamically managing data across heterogeneous computing platforms, and distributing computationally complex tasks. Web-based simulation, with its emphasis on collaborative composition of simulation models, distributed heterogeneous execution, and dynamic multimedia documentation, has the potential to meet these requirements. This paper outlines the current aircraft design process, highlighting its problems and complexities, and presents our vision of an aircraft design process using Web-based modeling and simulation.
Improving the Aircraft Design Process Using Web-based Modeling and Simulation
NASA Technical Reports Server (NTRS)
Reed, John A.; Follen, Gregory J.; Afjeh, Abdollah A.
2003-01-01
Designing and developing new aircraft systems is time-consuming and expensive. Computational simulation is a promising means for reducing design cycle times, but requires a flexible software environment capable of integrating advanced multidisciplinary and muitifidelity analysis methods, dynamically managing data across heterogeneous computing platforms, and distributing computationally complex tasks. Web-based simulation, with its emphasis on collaborative composition of simulation models, distributed heterogeneous execution, and dynamic multimedia documentation, has the potential to meet these requirements. This paper outlines the current aircraft design process, highlighting its problems and complexities, and presents our vision of an aircraft design process using Web-based modeling and simulation.
Laibhen-Parkes, Natasha
2014-01-01
This paper describes an innovative methodology implemented in an acute care pediatric setting to build nurses' confidence and competence in questioning practice. The Growing Culture of Clinical Inquiry (GCCI) project was composed of several evidence-based strategies to attain and maintain a spirit of clinical inquiry. These strategies included PowerPoint presentations, evidence-based practice (EBP) unit champions, patient-intervention-comparison-outcome (PICO) boxes, Clinical Inquiry Posters, summaries of evidence (SOE), layman's SOE, medical librarian in-services, and journal clubs. After 1 year of implementation, the GCCI project was evaluated and found to be a promising methodology for fostering a culture of inquiry among pediatric nurses. © 2014.
ERIC Educational Resources Information Center
McLaughlin, Cheryl A.; MacFadden, Bruce J.
2014-01-01
This study stemmed from concerns among researchers that reform efforts grounded in promoting inquiry as the basis for teaching science have not achieved the desired changes in American science classrooms. Many science teachers assume that they are employing inquiry-based strategies when they use cookbook investigations with highly structured…
ERIC Educational Resources Information Center
Geiken, Rosemary; Van Meeteren, Beth Dykstra; Kato, Tsuguhiko
2009-01-01
Research lends support to inquiry-based curriculum demonstrating how social interaction, such as discussion and presentation, positively affects children's learning. As a result, teachers spend an inordinate amount of time and effort in planning investigations to develop skills in inquiry. However, many of them overlook the necessary foundation…
Inspiring Young Minds: Scientific Inquiry in the Early Years
ERIC Educational Resources Information Center
Smart, Julie
2017-01-01
Learn to use inquiry-based practice to inspire young minds through science. This book gives educators a solid guide for using research-based principles of inquiry to help children explore their world. With real-life examples and information on facilitating and guiding children, you will be able to engage and maximize STEM learning. Web content and…
ERIC Educational Resources Information Center
Cook, Anthony L.; Snow, Elizabeth T.; Binns, Henrica; Cook, Peta S.
2015-01-01
Inquiry-based learning (IBL) activities are complementary to the processes of laboratory discovery, as both are focused on producing new findings through research and inquiry. Here, we describe the results of student surveys taken pre- and postpractical to an IBL undergraduate practical on PCR. Our analysis focuses primarily student perceptions of…
ERIC Educational Resources Information Center
Keen-Rocha, Linda
2005-01-01
Science instructors sometimes avoid inquiry-based activities due to limited classroom time. Inquiry takes time, as students choose problems, design experiments, obtain materials, conduct investigations, gather data, communicate results, and discuss their experiments. While there are no quick solutions to time concerns, the 5E learning cycle seeks…
ERIC Educational Resources Information Center
Weiland, Sunny Minelli
2012-01-01
This study implemented a qualitative approach to examine the phenomenon of "inquiry-based science pedagogy or inquiry instruction" as it has been experienced by individuals. Data was collected through online open-ended surveys, focus groups, and teacher reported self-reflections to answer the research questions: 1) How do middle level…
Moving Authentic Soil Research into High School Classrooms: Student Engagement and Learning
ERIC Educational Resources Information Center
Moebius-Clune, Bianca N.; Elsevier, Irka H.; Crawford, Barbara A.; Trautmann, Nancy M.; Schindelbeck, Robert R.; van Es, Harold M.
2011-01-01
Inquiry-based teaching helps students develop a deep, applied understanding of human-environmental connections, but most high school curricula do not use inquiry-based methods. Soil science topics, which are also generally lacking from curricula, can provide hands-on model systems for learning inquiry skills. We report on the implementation of a…
ERIC Educational Resources Information Center
Twigg, Vani Veikoso
2010-01-01
Through narrative inquiry, this study investigated the role of personal and professional aspects of teaching and learning which teachers have developed and practiced, in relation to the dispositions, values, beliefs and knowledge that may assist them in successfully transforming to inquiry-based teaching, specifically in the implementation of the…
Delving into Inquiry Learning in Teacher Education at the University of British Columbia
ERIC Educational Resources Information Center
Rushton, Claire; Webb, Andrea S.
2016-01-01
This paper discusses a series of inquiry-based seminars that are central to the teacher education program at the University of British Columbia. This teacher education program reflects the changing curriculum in the province. The new inquiry-based provincial curriculum is being implemented between 2015 and 2018 and the teacher education program is…
ERIC Educational Resources Information Center
Cakir, Mustafa; Carlsen, William S.
The Environmental Inquiry (EI) program (Cornell University and Pennsylvania State University) supports inquiry based, student-centered science teaching on selected topics in the environmental sciences. Texts to support high school student research are published by the National Science Teachers Association (NSTA) in the domains of environmental…
Inquiry-Based Chemistry Education in a High-Context Culture: A Qatari Case Study
ERIC Educational Resources Information Center
Qureshi, Sheila; Vishnumolakala, Venkat Rao; Southam, Daniel C.; Treagust, David F.
2017-01-01
This research took place within the context of ongoing educational reforms to promote inquiry-based science instruction and a desire to draw evidence to inform adoptions of western pedagogical practices in a high-context culture like Qatar. We report on the outcomes from Process Oriented Guided Inquiry Learning (POGIL) in a foundation chemistry…
Inquiry-Based Science and Technology Enrichment Program for Middle School-Aged Female Students
ERIC Educational Resources Information Center
Kim, Hanna
2016-01-01
This study investigates the effects of an intensive 1-week Inquiry-Based Science and Technology Enrichment Program (InSTEP) designed for middle school-aged female students. InSTEP uses a guided/open inquiry approach that is deepened and redefined as eight sciences and engineering practices in the Next Generation Science Standards, which aimed at…
An Inquiry-Based Laboratory Design for Microbial Ecology
ERIC Educational Resources Information Center
Tessier, Jack T.; Penniman, Clayton A.
2006-01-01
There is a collective need to increase the use of inquiry-based instruction at the college level. This paper provides of an example of how inquiry was successfully used in the laboratory component of an undergraduate course in microbial ecology. Students were offered a collection of field and laboratory methods to choose from, and they developed a…
Curiosité: Inquiry-Based Instruction and Bilingual Learning
ERIC Educational Resources Information Center
McElvain, Cheryl M.; Smith, Heidi A.
2016-01-01
The issues that prompt this study are based on current research indicating the positive effects of inquiry learning on the cognitive development of children. The purpose of this case study was to understand the effects of inquiry learning on the academic achievement and bilingual verbal ability of 5th grade bilingual students in a French/English…
ERIC Educational Resources Information Center
Aditomo, Anindito; Goodyear, Peter; Bliuc, Ana-Maria; Ellis, Robert A.
2013-01-01
Learning through inquiry is a widely advocated pedagogical approach. However, there is currently little systematic knowledge about the practice of inquiry-based learning (IBL) in higher education. This study examined descriptions of learning tasks that were put forward as examples of IBL by 224 university teachers from various disciplines in three…
Effectiveness and Accountability of the Inquiry-Based Methodology in Middle School Science
ERIC Educational Resources Information Center
Hardin, Cade
2009-01-01
When teaching science, the time allowed for students to make discoveries on their own through the inquiry method directly conflicts with the mandated targets of a broad spectrum of curricula. Research shows that using an inquiry-based approach can encourage student motivation and increase academic achievement (Wolf & Fraser, 2008, Bryant, 2006,…
ERIC Educational Resources Information Center
Neumann, David L.
2010-01-01
Interactive computer-based simulations have been applied in several contexts to teach statistical concepts in university level courses. In this report, the use of interactive simulations as part of summative assessment in a statistics course is described. Students accessed the simulations via the web and completed questions relating to the…
Automating NEURON Simulation Deployment in Cloud Resources.
Stockton, David B; Santamaria, Fidel
2017-01-01
Simulations in neuroscience are performed on local servers or High Performance Computing (HPC) facilities. Recently, cloud computing has emerged as a potential computational platform for neuroscience simulation. In this paper we compare and contrast HPC and cloud resources for scientific computation, then report how we deployed NEURON, a widely used simulator of neuronal activity, in three clouds: Chameleon Cloud, a hybrid private academic cloud for cloud technology research based on the OpenStack software; Rackspace, a public commercial cloud, also based on OpenStack; and Amazon Elastic Cloud Computing, based on Amazon's proprietary software. We describe the manual procedures and how to automate cloud operations. We describe extending our simulation automation software called NeuroManager (Stockton and Santamaria, Frontiers in Neuroinformatics, 2015), so that the user is capable of recruiting private cloud, public cloud, HPC, and local servers simultaneously with a simple common interface. We conclude by performing several studies in which we examine speedup, efficiency, total session time, and cost for sets of simulations of a published NEURON model.
Automating NEURON Simulation Deployment in Cloud Resources
Santamaria, Fidel
2016-01-01
Simulations in neuroscience are performed on local servers or High Performance Computing (HPC) facilities. Recently, cloud computing has emerged as a potential computational platform for neuroscience simulation. In this paper we compare and contrast HPC and cloud resources for scientific computation, then report how we deployed NEURON, a widely used simulator of neuronal activity, in three clouds: Chameleon Cloud, a hybrid private academic cloud for cloud technology research based on the Open-Stack software; Rackspace, a public commercial cloud, also based on OpenStack; and Amazon Elastic Cloud Computing, based on Amazon’s proprietary software. We describe the manual procedures and how to automate cloud operations. We describe extending our simulation automation software called NeuroManager (Stockton and Santamaria, Frontiers in Neuroinformatics, 2015), so that the user is capable of recruiting private cloud, public cloud, HPC, and local servers simultaneously with a simple common interface. We conclude by performing several studies in which we examine speedup, efficiency, total session time, and cost for sets of simulations of a published NEURON model. PMID:27655341
ERIC Educational Resources Information Center
Zillesen, P. G. van Schaick; And Others
Instructional feedback given to the learners during computer simulation sessions may be greatly improved by integrating educational computer simulation programs with hypermedia-based computer-assisted learning (CAL) materials. A prototype of a learning environment of this type called BRINE PURIFICATION was developed for use in corporate training…
Implementation of Parallel Dynamic Simulation on Shared-Memory vs. Distributed-Memory Environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Shuangshuang; Chen, Yousu; Wu, Di
2015-12-09
Power system dynamic simulation computes the system response to a sequence of large disturbance, such as sudden changes in generation or load, or a network short circuit followed by protective branch switching operation. It consists of a large set of differential and algebraic equations, which is computational intensive and challenging to solve using single-processor based dynamic simulation solution. High-performance computing (HPC) based parallel computing is a very promising technology to speed up the computation and facilitate the simulation process. This paper presents two different parallel implementations of power grid dynamic simulation using Open Multi-processing (OpenMP) on shared-memory platform, and Messagemore » Passing Interface (MPI) on distributed-memory clusters, respectively. The difference of the parallel simulation algorithms and architectures of the two HPC technologies are illustrated, and their performances for running parallel dynamic simulation are compared and demonstrated.« less
McCallum, Ethan B; Peterson, Zoë D
2015-11-01
Factors related to the research context, such as inquiry mode, setting, and experimenter contact, may affect participants' comfort with and willingness to disclose certain sexual attitudes or admit to engaging in sensitive sexual behaviors. In this study, 255 female undergraduates (42.7 % non-White) completed a survey containing measures of sexual behavior and attitudes. The level of experimenter contact (high vs. low contact), setting (in lab vs. out of lab), and inquiry mode (pencil-and-paper vs. computer) were manipulated and participants were randomly assigned to conditions. We hypothesized that low-contact, out-of-lab, computer conditions would be associated with more liberal sexual attitudes and higher rates of reported sexual behaviors than high-contact, in-lab, and paper-and-pencil conditions, respectively. Further, we hypothesized that effects would be moderated by race, such that differences would be greater for non-White participants because of concerns that reporting socially undesirable behavior might fuel racial stereotypes. For attitudinal measures, White participants endorsed more liberal attitudes toward sex in high-contact conditions and non-White participants endorsed more liberal attitudes in low-contact conditions. For behavioral measures, non-White participants reported more behaviors on pencil-and-paper surveys than on computers. White participants demonstrated no significant mode-related differences or reported more sexual behaviors in computer conditions than paper-and-pencil conditions. Overall, results suggest that experimenter contact and mode significantly impact sexual self-report and this impact is often moderated by race.
ERIC Educational Resources Information Center
Blonder, Ron; Mamlock-Naaman, Rachel; Hofstein, Avi
2008-01-01
This paper describes the implementation of an open-ended inquiry experiment for high-school students, based on gas chromatography (GC). The research focuses on identifying the level of questions that students ask during the GC open inquiry laboratory, and it examines whether implementing the advanced inquiry laboratory opens up new directions for…
Seeing an Old Lab in a New Light: Transforming a Traditional Optics Lab into Full Guided Inquiry
ERIC Educational Resources Information Center
Maley, Tim; Stoll, Will; Demir, Kadir
2013-01-01
This paper describes the authors' experiences transforming a "cookbook" lab into an inquiry-based investigation and the powerful effect the inquiry-oriented lab had on our students' understanding of lenses. We found the inquiry-oriented approach led to richer interactions between students as well as a deeper conceptual…
12 CFR 27.4 - Inquiry/Application Log.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 12 Banks and Banking 1 2011-01-01 2011-01-01 false Inquiry/Application Log. 27.4 Section 27.4... SYSTEM § 27.4 Inquiry/Application Log. (a) The Comptroller, among other things, may require a bank to maintain a Fair Housing Inquiry/Application Log (“Log”), based upon, but not limited to, one or more of the...
12 CFR 27.4 - Inquiry/Application Log.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 12 Banks and Banking 1 2010-01-01 2010-01-01 false Inquiry/Application Log. 27.4 Section 27.4... SYSTEM § 27.4 Inquiry/Application Log. (a) The Comptroller, among other things, may require a bank to maintain a Fair Housing Inquiry/Application Log (“Log”), based upon, but not limited to, one or more of the...
Pragmatism and Community Inquiry: A Case Study of Community-Based Learning
ERIC Educational Resources Information Center
Bruce, Bertram C.; Bloch, Naomi
2013-01-01
This paper develops a philosophical basis for the concept of community inquiry. Community inquiry derives from pragmatist theory as articulated by Dewey, Peirce, Addams, and others. Following Brendel, we discuss pragmatism in terms of its emphasis on the practical dimensions of inquiry, the pluralistic nature of the tools that are used to study…
ERIC Educational Resources Information Center
Lakin, Joni M.; Wallace, Carolyn S.
2015-01-01
Inquiry-based teaching promotes students' engagement in problem-solving and investigation as they learn science concepts. Current practice in science teacher education promotes the use of inquiry in the teaching of science. However, the literature suggests that many science teachers hold incomplete or incorrect conceptions of inquiry.…
Pedagogical Practices to Support Classroom Cultures of Scientific Inquiry
ERIC Educational Resources Information Center
Herrenkohl, Leslie Rupert; Tasker, Tammy; White, Barbara
2011-01-01
This article examines the pedagogical practices of two science inquiry teachers and their students using a Web-based system called Web of Inquiry (WOI). There is a need to build a collective repertoire of pedagogical practices that can assist elementary and middle school teachers as they support students to develop a complex model of inquiry based…
Expressive Thought and Non-Rational Inquiry.
ERIC Educational Resources Information Center
Newton, Richard F.
A significant problem with inquiry teaching is that too much emphasis is placed on inquiry as a logical, scientific, and rational way of knowing. Feelings and mood are rarely dealt with except in rather off-handed remarks about intuitive leaps and creative encounters. Few consider what a model of inquiry based on mood and feeling might look like.…
Scientific Inquiry and Real-Life Applications Bring Middle School Students up to Standard
ERIC Educational Resources Information Center
Dass, Pradeep M.; Kilby, Diana; Chappell, Alicia
2005-01-01
The emphasis in both the National Science Education Standards (NSES) and "Science for All Americans" is on "science as inquiry" and inquiry-based science instruction as a way to accomplish the goals of science literacy. The NSES considers science as inquiry as a part of the content of science and include science as inquiry…
ERIC Educational Resources Information Center
Shore, Bruce M.; Chichekian, Tanya; Syer, Cassidy A.; Aulls, Mark W.; Frederiksen, Carl H.
2012-01-01
Tools are needed to track the elements of students' successful engagement in inquiry. The "McGill Strategic Demands of Inquiry Questionnaire" (MSDIQ) is a 79-item, criterion-referenced, learner-focused questionnaire anchored in Schon's model and related models of self-regulated learning. The MSDIQ addresses three phases of inquiry…
Measuring the "Unmeasurable": An Inquiry Model and Test for the Social Studies.
ERIC Educational Resources Information Center
Van Scotter, Richard D.; Haas, John D.
New social studies materials are based on inquiry modes of learning and teaching; however, little is known as to what students actually learn from an inquiry model (except for cognitive knowledge). An inquiry model and test to measure the "unmeasurable" in the social studies--namely, a student's ability to use the scientific process, attitudes…
ERIC Educational Resources Information Center
Harmer, Andrea J.; Cates, Ward Mitchell
2007-01-01
Engaging middle-school students in scientific inquiry is typically recognized as important, but difficult. Designed to foster learner engagement, this method used an online, problem-based, science inquiry that investigated the West Nile virus during four weeks of collaborative classroom sessions. The inquiry prototype was authored in WISE, the…
ERIC Educational Resources Information Center
Hermann, Ronald S.; Miranda, Rommel J.
2010-01-01
This article provides an instructional approach to helping students generate open-inquiry research questions, which the authors call the "open-inquiry question template." This template was created based on their experience teaching high school science and preservice university methods courses. To help teachers implement this template, they…
ERIC Educational Resources Information Center
Herrington, Deborah G.; Yezierski, Ellen J.; Luxford, Karen M.; Luxford, Cynthia J.
2011-01-01
Inquiry-based instruction requires a deep, conceptual understanding of the process of science combined with a sophisticated knowledge of teaching and learning. This study examines the changes in classroom instructional practices and corresponding changes to knowledge and beliefs about inquiry instruction for eight high school chemistry teachers.…
ERIC Educational Resources Information Center
Leelamma, Sreelekha; Indira, Uma Devi
2017-01-01
This paper introduces the Mobile Assisted Inquiry Learning Environment (MAILE), an Experimental Instructional Strategy (EIS) which employs an inquiry-based learning approach to guide secondary school students to learn environmental science in an engaging way supported by mobile phones. The students are situated in both the real world and the…
Middle-School Understanding of the Greenhouse Effect using a NetLogo Computer Model
NASA Astrophysics Data System (ADS)
Schultz, L.; Koons, P. O.; Schauffler, M.
2009-12-01
We investigated the effectiveness of a freely available agent based, modeling program as a learning tool for seventh and eighth grade students to explore the greenhouse effect without added curriculum. The investigation was conducted at two Maine middle-schools with 136 seventh-grade students and 11 eighth-grade students in eight classes. Students were given a pre-test that consisted of a concept map, a free-response question, and multiple-choice questions about how the greenhouse effect influences the Earth's temperature. The computer model simulates the greenhouse effect and allows students to manipulate atmospheric and surface conditions to observe the effects on the Earth’s temperature. Students explored the Greenhouse Effect model for approximately twenty minutes with only two focus questions for guidance. After the exploration period, students were given a post-test that was identical to the pre-test. Parametric post-test analysis of the assessments indicated middle-school students gained in their understanding about how the greenhouse effect influences the Earth's temperature after exploring the computer model for approximately twenty minutes. The magnitude of the changes in pre- and post-test concept map and free-response scores were small (average free-response post-test score of 7.0) compared to an expert's score (48), indicating that students understood only a few of the system relationships. While students gained in their understanding about the greenhouse effect, there was evidence that students held onto their misconceptions that (1) carbon dioxide in the atmosphere deteriorates the ozone layer, (2) the greenhouse effect is a result of humans burning fossil fuels, and (3) infrared and visible light have similar behaviors with greenhouse gases. We recommend using the Greenhouse Effect computer model with guided inquiry to focus students’ investigations on the system relationships in the model.
Parallel computing in enterprise modeling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldsby, Michael E.; Armstrong, Robert C.; Shneider, Max S.
2008-08-01
This report presents the results of our efforts to apply high-performance computing to entity-based simulations with a multi-use plugin for parallel computing. We use the term 'Entity-based simulation' to describe a class of simulation which includes both discrete event simulation and agent based simulation. What simulations of this class share, and what differs from more traditional models, is that the result sought is emergent from a large number of contributing entities. Logistic, economic and social simulations are members of this class where things or people are organized or self-organize to produce a solution. Entity-based problems never have an a priorimore » ergodic principle that will greatly simplify calculations. Because the results of entity-based simulations can only be realized at scale, scalable computing is de rigueur for large problems. Having said that, the absence of a spatial organizing principal makes the decomposition of the problem onto processors problematic. In addition, practitioners in this domain commonly use the Java programming language which presents its own problems in a high-performance setting. The plugin we have developed, called the Parallel Particle Data Model, overcomes both of these obstacles and is now being used by two Sandia frameworks: the Decision Analysis Center, and the Seldon social simulation facility. While the ability to engage U.S.-sized problems is now available to the Decision Analysis Center, this plugin is central to the success of Seldon. Because Seldon relies on computationally intensive cognitive sub-models, this work is necessary to achieve the scale necessary for realistic results. With the recent upheavals in the financial markets, and the inscrutability of terrorist activity, this simulation domain will likely need a capability with ever greater fidelity. High-performance computing will play an important part in enabling that greater fidelity.« less
Lecture to inquiry: The transformation of a tech prep biology teacher
NASA Astrophysics Data System (ADS)
Haskell, Deborah Harris
As teachers implement the National Science Education Standards (NRC, 1996) many have to reform the instructional methods they have used throughout their careers. This case study examines the transformation of Laurie, a 20-year teacher, during her first year of change from a "traditional" textbook/lecture style of teaching to a facilitator of an inquiry-based classroom. Implementing change requires not only pedagogical expertise, but also the belief that the modifications can be made and that the outcomes are significant. Using Bandura's social cognitive theory as a framework, changes in Laurie's self-efficacy, outcome expectancy, and motivation are followed throughout the transition. During her first year of change, Laurie used worksheets, small group activities, and guided inquiry activities, all strategies in which she had high self-efficacy and experienced positive student outcomes. She rarely used class forums, authentic assessment, and formative assessment. Factors that influenced her change were experiential professional development opportunities that allowed her to practice inquiry-based techniques, a change in her teaching environment from college prep chemistry to tech prep biology, autonomy regarding classroom decisions, and reflective decision making as she learned through experience. Using a standards-based biology textbook increased her self-efficacy toward using inquiry-based practices. The textbook format of embedding text in activities rather than adding activities to the text resulted in an increase of the number and frequency of activities done. Facilitating the textbook's Guided Inquiries and Extended Inquiries helped Laurie gain experience with inquiry-based methods. She also realized that when building from the students' concrete experiences, her students were able to attain higher-level thinking skills. The study revealed six factors contributing to Laurie's change process: (a) experiential professional development, (b) motivation for change, (c) classroom autonomy, (d) growth through reflective practice, (e) curricular support, and (f) time.
The Shuttle Mission Simulator computer generated imagery
NASA Technical Reports Server (NTRS)
Henderson, T. H.
1984-01-01
Equipment available in the primary training facility for the Space Transportation System (STS) flight crews includes the Fixed Base Simulator, the Motion Base Simulator, the Spacelab Simulator, and the Guidance and Navigation Simulator. The Shuttle Mission Simulator (SMS) consists of the Fixed Base Simulator and the Motion Base Simulator. The SMS utilizes four visual Computer Generated Image (CGI) systems. The Motion Base Simulator has a forward crew station with six-degrees of freedom motion simulation. Operation of the Spacelab Simulator is planned for the spring of 1983. The Guidance and Navigation Simulator went into operation in 1982. Aspects of orbital visual simulation are discussed, taking into account the earth scene, payload simulation, the generation and display of 1079 stars, the simulation of sun glare, and Reaction Control System jet firing plumes. Attention is also given to landing site visual simulation, and night launch and landing simulation.
An Inquiry-Based Science Activity Centred on the Effects of Climate Change on Ocean Ecosystems
ERIC Educational Resources Information Center
Boaventura, Diana; Guilherme, Elsa; Faria, Cláudia
2016-01-01
We propose an inquiry-based science activity centred on the effects of climate change on ocean ecosystems. This activity can be used to improve acquisition of knowledge on the effects of climate change and to promote inquiry skills, such as researching, reading and selecting relevant information, identifying a problem, focusing on a research…
Students Dig Deep in the Mystery Soil Lab: A Playful, Inquiry-Based Soil Laboratory Project
ERIC Educational Resources Information Center
Thiet, Rachel K.
2014-01-01
The Mystery Soil Lab, a playful, inquiry-based laboratory project, is designed to develop students' skills of inquiry, soil analysis, and synthesis of foundational concepts in soil science and soil ecology. Student groups are given the charge to explore and identify a "Mystery Soil" collected from a unique landscape within a 10-mile…
ERIC Educational Resources Information Center
McHenry, Nadine; Alvare, Bretton; Bowes, Kathleen; Childs, Ashley
2013-01-01
This study examined the effects of Sharing the Environment (STE), a situated professional development pilot program that uses an inquiry-based approach to teaching Environmental Education (EE) to elementary students in the US and Trinidad. Inquiry is difficult to incorporate in both cultures because proficient performance on national tests is a…
ERIC Educational Resources Information Center
Kang, Jingoo; Keinonen, Tuula
2017-01-01
Much research has been conducted to investigate the effects of inquiry-based learning on students' attitude towards science and future involvement in the science field, but few of them conducted in-depth studies including young learners' socio-cognitive background to explore mechanisms which explain how inquiry experiences influence on career…
ERIC Educational Resources Information Center
Lujan, Heidi L.; DiCarlo, Stephen E.
2015-01-01
The American Association for the Advancement of Science (AAAS) strongly recommends that "science be taught as science is practiced." This means that the teaching approach must be consistent with the nature of scientific inquiry. In this article, the authors describe how they added scientific inquiry to a large lecture-based physiology…
ERIC Educational Resources Information Center
Ugwu, Romanus Iroabuchi
2012-01-01
The purpose of this mixed-methods study was to describe the perceptions of elementary teachers from an urban school district in Southern California regarding their inquiry-based science instructional practices, assessment methods and professional development. The district's inquiry professional development called the California Mathematics and…
ERIC Educational Resources Information Center
Akkus, Recai; Gunel, Murat; Hand, Brian
2007-01-01
Many state and federal governments have mandated in such documents as the National Science Education Standards that inquiry strategies should be the focus of the teaching of science within school classrooms. The difficult part for success is changing teacher practices from perceived traditional ways of teaching to more inquiry-based approaches.…
A Science Teacher's Wisdom of Practice in Teaching Inquiry-Based Oceanography.
ERIC Educational Resources Information Center
Nelson, Tamara Holmlund
Inquiry-based research is recommended as a method for helping more students understand the nature of science as well as learn the substance of scientific knowledge, yet there is much to learn about how teachers might adapt inquiry for science teaching and what teachers need to know in order to do this. This case study of an exemplary teacher's…
ERIC Educational Resources Information Center
Gupta, Tanya
2012-01-01
Recent initiatives in the laboratory curriculum have encouraged an inquiry-based approach to learning and teaching in the laboratory. It has been argued that laboratory instruction should not just be hands-on, but it should portray the essence of inquiry through the process of experiential learning and reflective engagement in collaboration with…
NASA Astrophysics Data System (ADS)
Bednar, Earl; Drager, Steven L.
2007-04-01
Quantum information processing's objective is to utilize revolutionary computing capability based on harnessing the paradigm shift offered by quantum computing to solve classically hard and computationally challenging problems. Some of our computationally challenging problems of interest include: the capability for rapid image processing, rapid optimization of logistics, protecting information, secure distributed simulation, and massively parallel computation. Currently, one important problem with quantum information processing is that the implementation of quantum computers is difficult to realize due to poor scalability and great presence of errors. Therefore, we have supported the development of Quantum eXpress and QuIDD Pro, two quantum computer simulators running on classical computers for the development and testing of new quantum algorithms and processes. This paper examines the different methods used by these two quantum computing simulators. It reviews both simulators, highlighting each simulators background, interface, and special features. It also demonstrates the implementation of current quantum algorithms on each simulator. It concludes with summary comments on both simulators.
A Fast Synthetic Aperture Radar Raw Data Simulation Using Cloud Computing
Li, Zhixin; Su, Dandan; Zhu, Haijiang; Li, Wei; Zhang, Fan; Li, Ruirui
2017-01-01
Synthetic Aperture Radar (SAR) raw data simulation is a fundamental problem in radar system design and imaging algorithm research. The growth of surveying swath and resolution results in a significant increase in data volume and simulation period, which can be considered to be a comprehensive data intensive and computing intensive issue. Although several high performance computing (HPC) methods have demonstrated their potential for accelerating simulation, the input/output (I/O) bottleneck of huge raw data has not been eased. In this paper, we propose a cloud computing based SAR raw data simulation algorithm, which employs the MapReduce model to accelerate the raw data computing and the Hadoop distributed file system (HDFS) for fast I/O access. The MapReduce model is designed for the irregular parallel accumulation of raw data simulation, which greatly reduces the parallel efficiency of graphics processing unit (GPU) based simulation methods. In addition, three kinds of optimization strategies are put forward from the aspects of programming model, HDFS configuration and scheduling. The experimental results show that the cloud computing based algorithm achieves 4× speedup over the baseline serial approach in an 8-node cloud environment, and each optimization strategy can improve about 20%. This work proves that the proposed cloud algorithm is capable of solving the computing intensive and data intensive issues in SAR raw data simulation, and is easily extended to large scale computing to achieve higher acceleration. PMID:28075343
Investigating inquiry teaching and learning: The story of two teachers
NASA Astrophysics Data System (ADS)
Barnett, George Michael
Current national and state science standards emphasize inquiry as the central strategy to teaching science. Yet, these standards do not give specific prescriptions for how to conduct inquiry in within the context of a K--12 classroom. Fortunately, many teachers are creative and intelligent decision makers who have their own perspectives on and definitions of inquiry and will no doubt attempt to implement inquiry in ways that they feel best benefits their students given the constraints of their context. This study balanced "insider" and "outsider" perspectives to examine how two teachers' conceptions of inquiry changed over time, how those changes evolved, and how these teachers overcame the difficulties inherent with inquiry-based teaching. A naturalistic and interpretive research approach was used to collect and analyze the data. This approached entailed classroom observations, interviews, field notes, and analysis of teachers' journals. Findings indicate that inquiry-based teaching practices are inherently a local phenomenon that emerges within and through the interplay among a teacher's beliefs, student questions and goals, the teacher's goals, and the social context of the teacher's classroom. Results also indicate that teachers' conceptions of inquiry change gradually over time and not as of the result of single critical events or stages and are intimately tied to their teaching context.
ERIC Educational Resources Information Center
Xu, Q.; Lai, L. L.; Tse, N. C. F.; Ichiyanagi, K.
2011-01-01
An interactive computer-based learning tool with multiple sessions is proposed in this paper, which teaches students to think and helps them recognize the merits and limitations of simulation tools so as to improve their practical abilities in electrical circuit simulation based on the case of a power converter with progressive problems. The…