Sample records for insect behavior vol

  1. Insect-Inspired Flight Control for Unmanned Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    Thakoor, Sarita; Stange, G.; Srinivasan, M.; Chahl, Javaan; Hine, Butler; Zornetzer, Steven

    2005-01-01

    Flight-control and navigation systems inspired by the structure and function of the visual system and brain of insects have been proposed for a class of developmental miniature robotic aircraft called "biomorphic flyers" described earlier in "Development of Biomorphic Flyers" (NPO-30554), NASA Tech Briefs, Vol. 28, No. 11 (November 2004), page 54. These form a subset of biomorphic explorers, which, as reported in several articles in past issues of NASA Tech Briefs ["Biomorphic Explorers" (NPO-20142), Vol. 22, No. 9 (September 1998), page 71; "Bio-Inspired Engineering of Exploration Systems" (NPO-21142), Vol. 27, No. 5 (May 2003), page 54; and "Cooperative Lander-Surface/Aerial Microflyer Missions for Mars Exploration" (NPO-30286), Vol. 28, No. 5 (May 2004), page 36], are proposed small robots, equipped with microsensors and communication systems, that would incorporate crucial functions of mobility, adaptability, and even cooperative behavior. These functions are inherent to biological organisms but are challenging frontiers for technical systems. Biomorphic flyers could be used on Earth or remote planets to explore otherwise difficult or impossible to reach sites. An example of an exploratory task of search/surveillance functions currently being tested is to obtain high-resolution aerial imagery, using a variety of miniaturized electronic cameras. The control functions to be implemented by the systems in development include holding altitude, avoiding hazards, following terrain, navigation by reference to recognizable terrain features, stabilization of flight, and smooth landing. Flying insects perform these and other functions remarkably well, even though insect brains contains fewer than 10(exp -4) as many neurons as does the human brain. Although most insects have immobile, fixed-focus eyes and lack stereoscopy (and hence cannot perceive depth directly), they utilize a number of ingenious strategies for perceiving, and navigating in, three dimensions. Despite their lack of stereoscopy, insects infer distances to potential obstacles and other objects from image motion cues that result from their own motions in the environment. The concept of motion of texture in images as a source of motion cues is denoted generally as the concept of optic or optical flow. Computationally, a strategy based on optical flow is simpler than is stereoscopy for avoiding hazards and following terrain. Hence, this strategy offers the potential to design vision-based control computing subsystems that would be more compact, would weigh less, and would demand less power than would subsystems of equivalent capability based on a conventional stereoscopic approach.

  2. Maize terpene volatiles serve as precursors to an array of defensive phytoalexins following insect and pathogen attack

    USDA-ARS?s Scientific Manuscript database

    Phytoalexins are inducible biochemicals that locally protect plant tissues against biotic attack. Due to their agronomic significance, maize and rice have been extensively investigated for their terpenoid-based defenses which include insect-inducible monoterpene and sesquiterpene vol...

  3. A classed and annotated bibliography of fossil insects

    USGS Publications Warehouse

    Scudder, Samuel Hubbard

    1890-01-01

    The present work is an extension to date of a bibliography published in 1882.  It has, however, been altered in a few details, and, besides being fuller, differs from that in being a classed list, the works and essays which cover the entire field (which embraces not only insects proper, but also myriapods and arachnids) being placed first, followed by the more special memoirs grouped first by times, next by classes orders, etc., the classification employed in my Systematic Review of Fossil Insects, being used as a convenient basis.  This will also form the basis of the Index to Known Fossil Insects, forming a later complementary bulletin.  The occasion for the publication of both of these at this time is the completion of the first extended account of the American Tertiary insects given in Vol XIII of the Hayden series of geological reports, by which the numbers of the European and American insects bear for the first time some sort of proper relation to each other, at least in the lower groups.  This makes an immediate "account of stock," to employ a commercial term, desirable.

  4. A review of chemosensation and related behavior in aquatic insects.

    PubMed

    Crespo, José G

    2011-01-01

    Insects that are secondarily adapted to aquatic environments are able to sense odors from a diverse array of sources. The antenna of these insects, as in all insects, is the main chemosensory structure and its input to the brain allows for integration of sensory information that ultimately ends in behavioral responses. Only a fraction of the aquatic insect orders have been studied with respect to their sensory biology and most of the work has centered either on the description of the different types of sensilla, or on the behavior of the insect as a whole. In this paper, the literature is exhaustively reviewed and ways in which antennal morphology, brain structure, and associated behavior can advance better understanding of the neurobiology involved in processing of chemosensory information are discussed. Moreover, the importance of studying such group of insects is stated, and at the same time it is shown that many interesting questions regarding olfactory processing can be addressed by looking into the changes that aquatic insects undergo when leaving their aquatic environment.

  5. Olfactory Mechanisms for Discovery of Odorants to Reduce Insect-Host Contact

    PubMed Central

    Clark, Jonathan T.; Ray, Anandasankar

    2016-01-01

    Insects have developed highly sophisticated and sensitive olfactory systems to find animal or plant hosts for feeding. Some insects vector pathogens that cause diseases in hundreds of millions of people and destroy billions of dollars of food products every year. There is great interest, therefore, in understanding how the insect olfactory system can be manipulated to reduce their contact with hosts. Here, we review recent advances in our understanding of insect olfactory detection mechanisms, which may serve as a foundation for designing insect control programs based on manipulation of their behaviors by using odorants. Because every insect species has a unique set of olfactory receptors and olfactory-mediated behaviors, we focus primarily on general principles of odor detection that potentially apply to most insects. While these mechanisms have emerged from studies on model systems for study of insect olfaction, such as Drosophila melanogaster, they provide a foundation for discovery of odorants to repel insects or reduce host-seeking behavior. PMID:27628342

  6. Debris-carrying camouflage among diverse lineages of Cretaceous insects.

    PubMed

    Wang, Bo; Xia, Fangyuan; Engel, Michael S; Perrichot, Vincent; Shi, Gongle; Zhang, Haichun; Chen, Jun; Jarzembowski, Edmund A; Wappler, Torsten; Rust, Jes

    2016-06-01

    Insects have evolved diverse methods of camouflage that have played an important role in their evolutionary success. Debris-carrying, a behavior of actively harvesting and carrying exogenous materials, is among the most fascinating and complex behaviors because it requires not only an ability to recognize, collect, and carry materials but also evolutionary adaptations in related morphological characteristics. However, the fossil record of such behavior is extremely scarce, and only a single Mesozoic example from Spanish amber has been recorded; therefore, little is known about the early evolution of this complicated behavior and its underlying anatomy. We report a diverse insect assemblage of exceptionally preserved debris carriers from Cretaceous Burmese, French, and Lebanese ambers, including the earliest known chrysopoid larvae (green lacewings), myrmeleontoid larvae (split-footed lacewings and owlflies), and reduviids (assassin bugs). These ancient insects used a variety of debris material, including insect exoskeletons, sand grains, soil dust, leaf trichomes of gleicheniacean ferns, wood fibers, and other vegetal debris. They convergently evolved their debris-carrying behavior through multiple pathways, which expressed a high degree of evolutionary plasticity. We demonstrate that the behavioral repertoire, which is associated with considerable morphological adaptations, was already widespread among insects by at least the Mid-Cretaceous. Together with the previously known Spanish specimen, these fossils are the oldest direct evidence of camouflaging behavior in the fossil record. Our findings provide a novel insight into early evolution of camouflage in insects and ancient ecological associations among plants and insects.

  7. A Review of Chemosensation and Related Behavior in Aquatic Insects

    PubMed Central

    Crespo, José G.

    2011-01-01

    Insects that are secondarily adapted to aquatic environments are able to sense odors from a diverse array of sources. The antenna of these insects, as in all insects, is the main chemosensory structure and its input to the brain allows for integration of sensory information that ultimately ends in behavioral responses. Only a fraction of the aquatic insect orders have been studied with respect to their sensory biology and most of the work has centered either on the description of the different types of sensilla, or on the behavior of the insect as a whole. In this paper, the literature is exhaustively reviewed and ways in which antennal morphology, brain structure, and associated behavior can advance better understanding of the neurobiology involved in processing of chemosensory information are discussed. Moreover, the importance of studying such group of insects is stated, and at the same time it is shown that many interesting questions regarding olfactory processing can be addressed by looking into the changes that aquatic insects undergo when leaving their aquatic environment. PMID:21864156

  8. Continuous Recording and Interobserver Agreement Algorithms Reported in the "Journal of Applied Behavior Analysis" (1995-2005)

    ERIC Educational Resources Information Center

    Mudford, Oliver C.; Taylor, Sarah Ann; Martin, Neil T.

    2009-01-01

    We reviewed all research articles in 10 recent volumes of the "Journal of Applied Behavior Analysis (JABA)": Vol. 28(3), 1995, through Vol. 38(2), 2005. Continuous recording was used in the majority (55%) of the 168 articles reporting data on free-operant human behaviors. Three methods for reporting interobserver agreement (exact agreement,…

  9. Plasticity in Insect Olfaction: To Smell or Not to Smell?

    PubMed

    Gadenne, Christophe; Barrozo, Romina B; Anton, Sylvia

    2016-01-01

    In insects, olfaction plays a crucial role in many behavioral contexts, such as locating food, sexual partners, and oviposition sites. To successfully perform such behaviors, insects must respond to chemical stimuli at the right moment. Insects modulate their olfactory system according to their physiological state upon interaction with their environment. Here, we review the plasticity of behavioral responses to different odor types according to age, feeding state, circadian rhythm, and mating status. We also summarize what is known about the underlying neural and endocrinological mechanisms, from peripheral detection to central nervous integration, and cover neuromodulation from the molecular to the behavioral level. We describe forms of olfactory plasticity that have contributed to the evolutionary success of insects and have provided them with remarkable tools to adapt to their ever-changing environment.

  10. Behavioral Sabotage of Plant Defenses by Insect Folivores.

    PubMed

    Dussourd, David E

    2017-01-31

    Plant susceptibility to herbivore attack is determined not just by the suite of defenses present in different tissues of the plant, but also by the capabilities of the herbivore for tolerating, circumventing, or disarming the defenses. This article reviews the elaborate behaviors exhibited by leaf-chewing insects that appear to function specifically to deactivate hostplant defenses. Shortcomings in our understanding and promising areas for future research are highlighted. Behaviors covered include vein cutting, trenching, girdling, leaf clipping, and application of fluids from exocrine glands. Many of these behaviors have a widespread distribution, having evolved independently in multiple insect lineages. Insects utilizing the behaviors include significant agricultural, horticultural, and forestry pests, as well as numerous species important in natural ecosystems. Behavioral, ecological, and phylogenetic studies have documented the importance of the behaviors and their ancient history, but the molecular analysis of how the behaviors affect plant physiology has scarcely begun.

  11. Behavioral Immunity in Insects

    PubMed Central

    de Roode, Jacobus C.; Lefèvre, Thierry

    2012-01-01

    Parasites can dramatically reduce the fitness of their hosts, and natural selection should favor defense mechanisms that can protect hosts against disease. Much work has focused on understanding genetic and physiological immunity against parasites, but hosts can also use behaviors to avoid infection, reduce parasite growth or alleviate disease symptoms. It is increasingly recognized that such behaviors are common in insects, providing strong protection against parasites and parasitoids. We review the current evidence for behavioral immunity in insects, present a framework for investigating such behavior, and emphasize that behavioral immunity may act through indirect rather than direct fitness benefits. We also discuss the implications for host-parasite co-evolution, local adaptation, and the evolution of non-behavioral physiological immune systems. Finally, we argue that the study of behavioral immunity in insects has much to offer for investigations in vertebrates, in which this topic has traditionally been studied. PMID:26466629

  12. Grooming Behavior as a Mechanism of Insect Disease Defense.

    PubMed

    Zhukovskaya, Marianna; Yanagawa, Aya; Forschler, Brian T

    2013-11-04

    Grooming is a well-recognized, multipurpose, behavior in arthropods and vertebrates. In this paper, we review the literature to highlight the physical function, neurophysiological mechanisms, and role that grooming plays in insect defense against pathogenic infection. The intricate relationships between the physical, neurological and immunological mechanisms of grooming are discussed to illustrate the importance of this behavior when examining the ecology of insect-pathogen interactions.

  13. Environmental Effects on Fatigue Behavior of Metals.

    DTIC Science & Technology

    1981-04-09

    Growth Rate Behavior Above and Below KISCC in Steels ," Journal of Materials, Vol. 6, No. 4, 1971, pp. 941-964. 3. Barsom, J. M., " Corrosion -Fatigue...T., and Inoue, K., " Corrosion Fatigue Behavior of 13 Cr Stainless Steel in Sodium-Chloride Aqueous Solution and Steam Environment," Corrosion -Fatigue...34Effect of Environment on the Fatigue Behavior of a Medium Carbon Steel ," Corrosion , Vol. 30, 1974, pp. 280-284. 98. Karpenko, G. V., Romaniv, A. N., and

  14. Chapter 13. Physiology and ecology of host defense against microbial invaders

    USDA-ARS?s Scientific Manuscript database

    Insects mount a complex hierarchy of defenses that pathogens must overcome before successful infection is achieved. Behavioral avoidance and antiseptic behaviors by host insects reduce the degree of encounters between the insect and pathogens. Any pathogen that contacts or establishes on a potentia...

  15. Origins of Aminergic Regulation of Behavior in Complex Insect Social Systems

    PubMed Central

    Kamhi, J. Frances; Arganda, Sara; Moreau, Corrie S.; Traniello, James F. A.

    2017-01-01

    Neuromodulators are conserved across insect taxa, but how biogenic amines and their receptors in ancestral solitary forms have been co-opted to control behaviors in derived socially complex species is largely unknown. Here we explore patterns associated with the functions of octopamine (OA), serotonin (5-HT) and dopamine (DA) in solitary ancestral insects and their derived functions in eusocial ants, bees, wasps and termites. Synthesizing current findings that reveal potential ancestral roles of monoamines in insects, we identify physiological processes and conserved behaviors under aminergic control, consider how biogenic amines may have evolved to modulate complex social behavior, and present focal research areas that warrant further study. PMID:29066958

  16. Parasite-altered feeding behavior in insects: integrating functional and mechanistic research frontiers.

    PubMed

    Bernardo, Melissa A; Singer, Michael S

    2017-08-15

    Research on parasite-altered feeding behavior in insects is contributing to an emerging literature that considers possible adaptive consequences of altered feeding behavior for the host or the parasite. Several recent ecoimmunological studies show that insects can adaptively alter their foraging behavior in response to parasitism. Another body of recent work shows that infection by parasites can change the behavior of insect hosts to benefit the parasite; manipulations of host feeding behavior may be part of this phenomenon. Here, we address both the functional and the underlying physiological frontiers of parasite-altered feeding behavior in order to spur research that better integrates the two. Functional categories of parasite-altered behavior that are adaptive for the host include prophylaxis, therapy and compensation, while host manipulation is adaptive for the parasite. To better understand and distinguish prophylaxis, therapy and compensation, further study of physiological feedbacks affecting host sensory systems is especially needed. For host manipulation in particular, research on mechanisms by which parasites control host feedbacks will be important to integrate with functional approaches. We see this integration as critical to advancing the field of parasite-altered feeding behavior, which may be common in insects and consequential for human and environmental health. © 2017. Published by The Company of Biologists Ltd.

  17. Physical Processes and Real-Time Chemical Measurement of the Insect Olfactory Environment

    PubMed Central

    Abrell, Leif; Hildebrand, John G.

    2009-01-01

    Odor-mediated insect navigation in airborne chemical plumes is vital to many ecological interactions, including mate finding, flower nectaring, and host locating (where disease transmission or herbivory may begin). After emission, volatile chemicals become rapidly mixed and diluted through physical processes that create a dynamic olfactory environment. This review examines those physical processes and some of the analytical technologies available to characterize those behavior-inducing chemical signals at temporal scales equivalent to the olfactory processing in insects. In particular, we focus on two areas of research that together may further our understanding of olfactory signal dynamics and its processing and perception by insects. First, measurement of physical atmospheric processes in the field can provide insight into the spatiotemporal dynamics of the odor signal available to insects. Field measurements in turn permit aspects of the physical environment to be simulated in the laboratory, thereby allowing careful investigation into the links between odor signal dynamics and insect behavior. Second, emerging analytical technologies with high recording frequencies and field-friendly inlet systems may offer new opportunities to characterize natural odors at spatiotemporal scales relevant to insect perception and behavior. Characterization of the chemical signal environment allows the determination of when and where olfactory-mediated behaviors may control ecological interactions. Finally, we argue that coupling of these two research areas will foster increased understanding of the physicochemical environment and enable researchers to determine how olfactory environments shape insect behaviors and sensory systems. PMID:18548311

  18. Simulating Flying Insects Using Dynamics and Data-Driven Noise Modeling to Generate Diverse Collective Behaviors

    PubMed Central

    Ren, Jiaping; Wang, Xinjie; Manocha, Dinesh

    2016-01-01

    We present a biologically plausible dynamics model to simulate swarms of flying insects. Our formulation, which is based on biological conclusions and experimental observations, is designed to simulate large insect swarms of varying densities. We use a force-based model that captures different interactions between the insects and the environment and computes collision-free trajectories for each individual insect. Furthermore, we model the noise as a constructive force at the collective level and present a technique to generate noise-induced insect movements in a large swarm that are similar to those observed in real-world trajectories. We use a data-driven formulation that is based on pre-recorded insect trajectories. We also present a novel evaluation metric and a statistical validation approach that takes into account various characteristics of insect motions. In practice, the combination of Curl noise function with our dynamics model is used to generate realistic swarm simulations and emergent behaviors. We highlight its performance for simulating large flying swarms of midges, fruit fly, locusts and moths and demonstrate many collective behaviors, including aggregation, migration, phase transition, and escape responses. PMID:27187068

  19. Certain applied electrical signals during EPG cause negative effects on stylet probing behaviors by adult Lygus lineolaris (Hemiptera: Miridae)

    USDA-ARS?s Scientific Manuscript database

    This study is the first to fully evaluate whether electrical signals applied to insects during electropenetrography (EPG; also called electrical penetration graph) affect insect behavior. During EPG, electrical signals are applied to plants, and thus to the gold-wire-tethered insects feeding on elec...

  20. The first fossil leaf insect: 47 million years of specialized cryptic morphology and behavior

    PubMed Central

    Wedmann, Sonja; Bradler, Sven; Rust, Jes

    2007-01-01

    Stick and leaf insects (insect order Phasmatodea) are represented primarily by twig-imitating slender forms. Only a small percentage (≈1%) of extant phasmids belong to the leaf insects (Phylliinae), which exhibit an extreme form of morphological and behavioral leaf mimicry. Fossils of phasmid insects are extremely rare worldwide. Here we report the first fossil leaf insect, Eophyllium messelensis gen. et sp. nov., from 47-million-year-old deposits at Messel in Germany. The new specimen, a male, is exquisitely preserved and displays the same foliaceous appearance as extant male leaf insects. Clearly, an advanced form of extant angiosperm leaf mimicry had already evolved early in the Eocene. We infer that this trait was combined with a special behavior, catalepsy or “adaptive stillness,” enabling Eophyllium to deceive visually oriented predators. Potential predators reported from the Eocene are birds, early primates, and bats. The combination of primitive and derived characters revealed by Eophyllium allows the determination of its exact phylogenetic position and illuminates the evolution of leaf mimicry for this insect group. It provides direct evidence that Phylliinae originated at least 47 Mya. Eophyllium enlarges the known geographical range of Phylliinae, currently restricted to southeast Asia, which is apparently a relict distribution. This fossil leaf insect bears considerable resemblance to extant individuals in size and cryptic morphology, indicating minimal change in 47 million years. This absence of evolutionary change is an outstanding example of morphological and, probably, behavioral stasis. PMID:17197423

  1. Using new technology and insect behavior in novel terrestrial and flying insect traps

    USDA-ARS?s Scientific Manuscript database

    Insect traps are commonly used for both population sampling and insect control, the former as part of an integrated pest management (IPM) program. We developed traps for two insects, one as part of a pesticide based IPM system and the other for population control. Our IPM trap is for crawling insect...

  2. Target detection in insects: optical, neural and behavioral optimizations.

    PubMed

    Gonzalez-Bellido, Paloma T; Fabian, Samuel T; Nordström, Karin

    2016-12-01

    Motion vision provides important cues for many tasks. Flying insects, for example, may pursue small, fast moving targets for mating or feeding purposes, even when these are detected against self-generated optic flow. Since insects are small, with size-constrained eyes and brains, they have evolved to optimize their optical, neural and behavioral target visualization solutions. Indeed, even if evolutionarily distant insects display different pursuit strategies, target neuron physiology is strikingly similar. Furthermore, the coarse spatial resolution of the insect compound eye might actually be beneficial when it comes to detection of moving targets. In conclusion, tiny insects show higher than expected performance in target visualization tasks. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Survey of Research into Electromagnetic and Other Wave Effects on Mechanical Behavior and Processing of Materials

    DTIC Science & Technology

    1992-01-01

    Suisse des Electriciens, Vol. 64, No. 16, 1973, 991-997. 469. U. Becker, and G. Strese, "Welding of Plastics", Kunststoffe , Vol. 59, No. 10, 1969, 679-684...Magnetic Fields", Kautschuk und Gummi Kunststoffe , Vol. 39, No. 12, 1986, 1182-1185. 681. T. A. Manko, A. N. Kvasha, A. V. Solovev, and I. M. Ermolaev

  4. Insect Responses to Linearly Polarized Reflections: Orphan Behaviors Without Neural Circuits.

    PubMed

    Heinloth, Tanja; Uhlhorn, Juliane; Wernet, Mathias F

    2018-01-01

    The e-vector orientation of linearly polarized light represents an important visual stimulus for many insects. Especially the detection of polarized skylight by many navigating insect species is known to improve their orientation skills. While great progress has been made towards describing both the anatomy and function of neural circuit elements mediating behaviors related to navigation, relatively little is known about how insects perceive non-celestial polarized light stimuli, like reflections off water, leaves, or shiny body surfaces. Work on different species suggests that these behaviors are not mediated by the "Dorsal Rim Area" (DRA), a specialized region in the dorsal periphery of the adult compound eye, where ommatidia contain highly polarization-sensitive photoreceptor cells whose receptive fields point towards the sky. So far, only few cases of polarization-sensitive photoreceptors have been described in the ventral periphery of the insect retina. Furthermore, both the structure and function of those neural circuits connecting to these photoreceptor inputs remain largely uncharacterized. Here we review the known data on non-celestial polarization vision from different insect species (dragonflies, butterflies, beetles, bugs and flies) and present three well-characterized examples for functionally specialized non-DRA detectors from different insects that seem perfectly suited for mediating such behaviors. Finally, using recent advances from circuit dissection in Drosophila melanogaster , we discuss what types of potential candidate neurons could be involved in forming the underlying neural circuitry mediating non-celestial polarization vision.

  5. Behavior-based control of insect crop pests

    USDA-ARS?s Scientific Manuscript database

    Manipulation of insect behaviour can provide the foundation for effective strategies for control of insect crop pests. A detailed understanding of life cycles and the behavioural repertoires of insect pests is essential for development of this approach. A variety of strategies have been developed ...

  6. Selected Bibliography on Fiber-Reinforced Cement and Concrete. Supplement Number 4.

    DTIC Science & Technology

    1982-08-01

    Building Industry," L’Industria Italiana del Cemento , Vol 50, No. 12, Dec 1980, pp 1135-1144. 19. Bartos, P., "Pullout Failure of Fibres Embedded in Cement...Vol 43, No. 11, Nov 1977, pp 561-564. 21. Bassan, M., "Model of Behavior of Fiber-Reinforced Concretes Under Impact Stresses," il Cemento , Vol 74, No...Pastes," il Cemento , Vol 75, No. 3, Jul-Sep 1978, pp 277-284. 210. Mills, R. H., "Age-Embrittlement of Glass-Reinforced Concrete Containing Blastfurance

  7. High temperature tensile behavior and microstructure of Al-SiC nanocomposite fabricated by mechanical milling and hot extrusion technique

    NASA Astrophysics Data System (ADS)

    Soltani, Mohammadreza; Atrian, Amir

    2018-02-01

    This paper investigates the high-temperature tensile behavior of Al-SiC nanocomposite reinforced with 0, 1.5, and 3 vol% SiC nano particles. To fabricate the samples, SiC nano reinforcements and aluminum (Al) powders were milled using an attritor milling and then were cold pressed and hot extruded at 500 °C. Afterward, mechanical and microstructural characteristics were studied in different temperatures. To this end, tensile and compressive tests, micro-hardness test, microscopic examinations, and XRD analysis were performed. The results showed significant improvement of mechanical properties of Al-SiC nanocomposite in room temperature including 40% of ultimate tensile strength (UTS), 36% of ultimate compressive strength (UCS), and 44% of micro-hardness. Moreover, performing tensile tests at elevated temperatures (up to 270 °C) decreased the tensile strength by about 53%, 46%, and 45% for Al-0 vol% SiC, Al-1.5 vol% SiC, and Al-3 vol% SiC, respectively. This temperature rise also enhanced the elongation by about 11% and 133% for non-reinforced Al and Al-3 vol% SiC, respectively.

  8. Respiration in Aquatic Insects.

    ERIC Educational Resources Information Center

    MacFarland, John

    1985-01-01

    This article: (1) explains the respiratory patterns of several freshwater insects; (2) describes the differences and mechanisms of spiracular cutaneous, and gill respiration; and (3) discusses behavioral aspects of selected aquatic insects. (ML)

  9. Learning and cognition in insects.

    PubMed

    Giurfa, Martin

    2015-01-01

    Insects possess small brains but exhibit sophisticated behavioral performances. Recent works have reported the existence of unsuspected cognitive capabilities in various insect species, which go beyond the traditional studied framework of simple associative learning. In this study, I focus on capabilities such as attention, social learning, individual recognition, concept learning, and metacognition, and discuss their presence and mechanistic bases in insects. I analyze whether these behaviors can be explained on the basis of elemental associative learning or, on the contrary, require higher-order explanations. In doing this, I highlight experimental challenges and suggest future directions for investigating the neurobiology of higher-order learning in insects, with the goal of uncovering l architectures underlying cognitive processing. © 2015 John Wiley & Sons, Ltd.

  10. Certain applied electrical signals during EPG cause negative effects on stylet probing behaviors by adult Lygus lineolaris (Hemiptera: Miridae).

    PubMed

    Backus, Elaine A; Cervantes, Felix A; Godfrey, Larry; Akbar, Waseem; Clark, Thomas L; Rojas, Maria G

    This study is the first to fully evaluate whether electrical signals applied to large insects during electropenetrography (EPG; also called electrical penetration graph) negatively affect insect behavior. During EPG, electrical signals are applied to plants, and thus to the gold-wire-tethered insects feeding on them. The insect completes an electrical circuit whose changes in voltage reflect the insect's stylet probing/penetration behaviors, recorded as waveform output. For nearly 50 years of EPG science, evidence has supported that there are no or negligible effects on tiny insects from applied electricity during EPG. Recently however, EPG studies of large-bodied hemipterans such as heteropterans and sharpshooter leafhoppers have been published. The wider stylet diameters of such large insects cause them to have lower inherent resistances to applied signals compared with smaller insects, conveying more electrical current. The present study asked whether such increased currents would affect insect stylet probing, by comparing Lygus lineolaris behaviors on pin-head cotton squares using an AC-DC electropenetrograph. Effects of AC or DC applied signals were separately examined in two factorial studies, each comparing four input resistor (Ri) levels (10 6 , 10 7 , 10 8 and 10 9  Ω) and four applied voltage levels (2, 60, 150 and 250 mV). Results showed that changes in both probing and non-probing behaviors were indeed caused by changing signal type, Ri level, or applied voltage. Negative effects on feeding were numerically greater overall for DC than AC applied signals, perhaps due to muscular tetany from DC; however, AC versus DC could not be statistically tested. Results strongly support the need for flexible Ri and applied voltage levels and types, to tailor instrument settings to the size and special needs of each insect subject. Our findings will facilitate further EPG studies of Lygus spp., such as host plant resistance or insecticidal assays/bioassays to assess mode of action and appropriate dosage. It is hoped that this study will also inform EPG studies of similar, large heteropterans in the future. Published by Elsevier Ltd.

  11. Drosophila TRP channels and animal behavior

    PubMed Central

    Fowler, Melissa A.; Montell, Craig

    2012-01-01

    Multiple classes of cell surface receptors and ion channels participate in the detection of changes in environmental stimuli, and thereby influence animal behavior. Among the many classes of ion channels, Transient Receptor Potential (TRP) cation channels are notable in contributing to virtually every sensory modality, and in controlling a daunting array of behaviors. TRP channels appear to be conserved in all metazoan organisms including worms, insects and humans. Flies encode 13 TRPs, most of which are expressed and function in sensory neurons, and impact behaviors ranging from phototaxis to thermotaxis, gravitaxis, the avoidance of noxious tastants and smells and proprioception. Multiple diseases result from defects in TRPs, and flies provide an excellent animal model for dissecting the mechanisms underlying “TRPopathies.” Drosophila TRPs also function in the sensation of botanically derived insect repellents, and related TRPs in insect pests are potential targets for the development of improved repellents to combat insect-borne diseases. PMID:22877650

  12. Progress in Insect-Inspired Optical Navigation Sensors

    NASA Technical Reports Server (NTRS)

    Thakoor, Sarita; Chahl, Javaan; Zometzer, Steve

    2005-01-01

    Progress has been made in continuing efforts to develop optical flight-control and navigation sensors for miniature robotic aircraft. The designs of these sensors are inspired by the designs and functions of the vision systems and brains of insects. Two types of sensors of particular interest are polarization compasses and ocellar horizon sensors. The basic principle of polarization compasses was described (but without using the term "polarization compass") in "Insect-Inspired Flight Control for Small Flying Robots" (NPO-30545), NASA Tech Briefs, Vol. 29, No. 1 (January 2005), page 61. To recapitulate: Bees use sky polarization patterns in ultraviolet (UV) light, caused by Rayleigh scattering of sunlight by atmospheric gas molecules, as direction references relative to the apparent position of the Sun. A robotic direction-finding technique based on this concept would be more robust in comparison with a technique based on the direction to the visible Sun because the UV polarization pattern is distributed across the entire sky and, hence, is redundant and can be extrapolated from a small region of clear sky in an elsewhere cloudy sky that hides the Sun.

  13. Insect Control (1): Use of Pheromones

    ERIC Educational Resources Information Center

    Marx, Jean L.

    1973-01-01

    Discusses current research relating to the use of pheromones as a means of controlling insect pests. These chemicals, which are secreted by insects to affect the behavior of other individuals of the same species, may be used to eliminate pests without destroying their predators and other beneficial insects. (JR)

  14. Isolongifolenone: A Novel Sesquiterpene Repellent of Ticks and Mosquitoes

    DTIC Science & Technology

    2009-01-01

    Invasive Insect Biocontrol and Behavior Laboratory, Beltsville Agricultural Research Center-West, Beltsville, MD 20705. 2 Corresponding author, e-mail...AND ADDRESS(ES) U.S. Department of Agriculture -Agricultural Research Center,Invasive Insect Biocontrol and Behavior Laboratory,Beltsville

  15. Variability of Practice and the Transfer of Training of Motor Skills

    DTIC Science & Technology

    1983-11-01

    Christina (Eds.), Psychology of motor be- havior and sport (Vol. 2). Champaign, IL: Human Kinetics Publishers, 1977. 36 Kerr, R., & Booth, B. Specific...motor behavior and sport (Vol. 1). Champaign, IL: Human Kinetics Publishers, 1977. 38 061384

  16. Defending the Human Weapons System Using ORM and the Bioenvironmental Engineer Capabilities

    DTIC Science & Technology

    2000-04-01

    can be found in the combat theater.11 Statistics are difficult to obtain on these type injuries because many are never reported. “It should be noted...population of 750,000 U.S., British, and Canadian Gulf War veterans.7 These statistics were far better than the results of insect borne illness in U.S...DOD, 6 November 1997. Schaefer, Walt, Stress Management for Wellness, ACSC Coursebook Vol. 1, 1999. Skier, Major, “How the BEE can assist in an OSHA

  17. Neuroethology of Olfactory-Guided Behavior and Its Potential Application in the Control of Harmful Insects.

    PubMed

    Reisenman, Carolina E; Lei, Hong; Guerenstein, Pablo G

    2016-01-01

    Harmful insects include pests of crops and storage goods, and vectors of human and animal diseases. Throughout their history, humans have been fighting them using diverse methods. The fairly recent development of synthetic chemical insecticides promised efficient crop and health protection at a relatively low cost. However, the negative effects of those insecticides on human health and the environment, as well as the development of insect resistance, have been fueling the search for alternative control tools. New and promising alternative methods to fight harmful insects include the manipulation of their behavior using synthetic versions of "semiochemicals", which are natural volatile and non-volatile substances involved in the intra- and/or inter-specific communication between organisms. Synthetic semiochemicals can be used as trap baits to monitor the presence of insects, so that insecticide spraying can be planned rationally (i.e., only when and where insects are actually present). Other methods that use semiochemicals include insect annihilation by mass trapping, attract-and- kill techniques, behavioral disruption, and the use of repellents. In the last decades many investigations focused on the neural bases of insect's responses to semiochemicals. Those studies help understand how the olfactory system detects and processes information about odors, which could lead to the design of efficient control tools, including odor baits, repellents or ways to confound insects. Here we review our current knowledge about the neural mechanisms controlling olfactory responses to semiochemicals in harmful insects. We also discuss how this neuroethology approach can be used to design or improve pest/vector management strategies.

  18. Neuroethology of Olfactory-Guided Behavior and Its Potential Application in the Control of Harmful Insects

    PubMed Central

    Reisenman, Carolina E.; Lei, Hong; Guerenstein, Pablo G.

    2016-01-01

    Harmful insects include pests of crops and storage goods, and vectors of human and animal diseases. Throughout their history, humans have been fighting them using diverse methods. The fairly recent development of synthetic chemical insecticides promised efficient crop and health protection at a relatively low cost. However, the negative effects of those insecticides on human health and the environment, as well as the development of insect resistance, have been fueling the search for alternative control tools. New and promising alternative methods to fight harmful insects include the manipulation of their behavior using synthetic versions of “semiochemicals”, which are natural volatile and non-volatile substances involved in the intra- and/or inter-specific communication between organisms. Synthetic semiochemicals can be used as trap baits to monitor the presence of insects, so that insecticide spraying can be planned rationally (i.e., only when and where insects are actually present). Other methods that use semiochemicals include insect annihilation by mass trapping, attract-and- kill techniques, behavioral disruption, and the use of repellents. In the last decades many investigations focused on the neural bases of insect's responses to semiochemicals. Those studies help understand how the olfactory system detects and processes information about odors, which could lead to the design of efficient control tools, including odor baits, repellents or ways to confound insects. Here we review our current knowledge about the neural mechanisms controlling olfactory responses to semiochemicals in harmful insects. We also discuss how this neuroethology approach can be used to design or improve pest/vector management strategies. PMID:27445858

  19. Insect Responses to Linearly Polarized Reflections: Orphan Behaviors Without Neural Circuits

    PubMed Central

    Heinloth, Tanja; Uhlhorn, Juliane; Wernet, Mathias F.

    2018-01-01

    The e-vector orientation of linearly polarized light represents an important visual stimulus for many insects. Especially the detection of polarized skylight by many navigating insect species is known to improve their orientation skills. While great progress has been made towards describing both the anatomy and function of neural circuit elements mediating behaviors related to navigation, relatively little is known about how insects perceive non-celestial polarized light stimuli, like reflections off water, leaves, or shiny body surfaces. Work on different species suggests that these behaviors are not mediated by the “Dorsal Rim Area” (DRA), a specialized region in the dorsal periphery of the adult compound eye, where ommatidia contain highly polarization-sensitive photoreceptor cells whose receptive fields point towards the sky. So far, only few cases of polarization-sensitive photoreceptors have been described in the ventral periphery of the insect retina. Furthermore, both the structure and function of those neural circuits connecting to these photoreceptor inputs remain largely uncharacterized. Here we review the known data on non-celestial polarization vision from different insect species (dragonflies, butterflies, beetles, bugs and flies) and present three well-characterized examples for functionally specialized non-DRA detectors from different insects that seem perfectly suited for mediating such behaviors. Finally, using recent advances from circuit dissection in Drosophila melanogaster, we discuss what types of potential candidate neurons could be involved in forming the underlying neural circuitry mediating non-celestial polarization vision. PMID:29615868

  20. Insect-machine interface based neurocybernetics.

    PubMed

    Bozkurt, Alper; Gilmour, Robert F; Sinha, Ayesa; Stern, David; Lal, Amit

    2009-06-01

    We present details of a novel bioelectric interface formed by placing microfabricated probes into insect during metamorphic growth cycles. The inserted microprobes emerge with the insect where the development of tissue around the electronics during the pupal development allows mechanically stable and electrically reliable structures coupled to the insect. Remarkably, the insects do not react adversely or otherwise to the inserted electronics in the pupae stage, as is true when the electrodes are inserted in adult stages. We report on the electrical and mechanical characteristics of this novel bioelectronic interface, which we believe would be adopted by many investigators trying to investigate biological behavior in insects with negligible or minimal traumatic effect encountered when probes are inserted in adult stages. This novel insect-machine interface also allows for hybrid insect-machine platforms for further studies. As an application, we demonstrate our first results toward navigation of flight in moths. When instrumented with equipment to gather information for environmental sensing, such insects potentially can assist man to monitor the ecosystems that we share with them for sustainability. The simplicity of the optimized surgical procedure we invented allows for batch insertions to the insect for automatic and mass production of such hybrid insect-machine platforms. Therefore, our bioelectronic interface and hybrid insect-machine platform enables multidisciplinary scientific and engineering studies not only to investigate the details of insect behavioral physiology but also to control it.

  1. The gram-negative sensing receptor PGRP-LC contributes to grooming induction in Drosophila

    PubMed Central

    Neyen, Claudine; Lemaitre, Bruno; Marion-Poll, Frédéric

    2017-01-01

    Behavioral resistance protects insects from microbial infection. However, signals inducing insect hygiene behavior are still relatively unexplored. Our previous study demonstrated that olfactory signals from microbes enhance insect hygiene behavior, and gustatory signals even induce the behavior. In this paper, we postulated a cross-talk between behavioral resistance and innate immunity. To examine this hypothesis, we employed a previously validated behavioral test to examine the function of taste signals in inducing a grooming reflex in decapitated flies. Microbes, which activate different pattern recognition systems upstream of immune pathways, were applied to see if there was any correlation between microbial perception and grooming reflex. To narrow down candidate elicitors, the grooming induction tests were conducted with highly purified bacterial components. Lastly, the role of DAP-type peptidoglycan in grooming induction was confirmed. Our results demonstrate that cleaning behavior can be triggered through recognition of DAP-type PGN by its receptor PGRP-LC. PMID:29121087

  2. Shape-and-behavior encoded tracking of bee dances.

    PubMed

    Veeraraghavan, Ashok; Chellappa, Rama; Srinivasan, Mandyam

    2008-03-01

    Behavior analysis of social insects has garnered impetus in recent years and has led to some advances in fields like control systems, flight navigation etc. Manual labeling of insect motions required for analyzing the behaviors of insects requires significant investment of time and effort. In this paper, we propose certain general principles that help in simultaneous automatic tracking and behavior analysis with applications in tracking bees and recognizing specific behaviors exhibited by them. The state space for tracking is defined using position, orientation and the current behavior of the insect being tracked. The position and orientation are parametrized using a shape model while the behavior is explicitly modeled using a three-tier hierarchical motion model. The first tier (dynamics) models the local motions exhibited and the models built in this tier act as a vocabulary for behavior modeling. The second tier is a Markov motion model built on top of the local motion vocabulary which serves as the behavior model. The third tier of the hierarchy models the switching between behaviors and this is also modeled as a Markov model. We address issues in learning the three-tier behavioral model, in discriminating between models, detecting and in modeling abnormal behaviors. Another important aspect of this work is that it leads to joint tracking and behavior analysis instead of the traditional track and then recognize approach. We apply these principles for tracking bees in a hive while they are executing the waggle dance and the round dance.

  3. Social Insects: A Model System for Network Dynamics

    NASA Astrophysics Data System (ADS)

    Charbonneau, Daniel; Blonder, Benjamin; Dornhaus, Anna

    Social insect colonies (ants, bees, wasps, and termites) show sophisticated collective problem-solving in the face of variable constraints. Individuals exchange information and materials such as food. The resulting network structure and dynamics can inform us about the mechanisms by which the insects achieve particular collective behaviors and these can be transposed to man-made and social networks. We discuss how network analysis can answer important questions about social insects, such as how effective task allocation or information flow is realized. We put forward the idea that network analysis methods are under-utilized in social insect research, and that they can provide novel ways to view the complexity of collective behavior, particularly if network dynamics are taken into account. To illustrate this, we present an example of network tasks performed by ant workers, linked by instances of workers switching from one task to another. We show how temporal network analysis can propose and test new hypotheses on mechanisms of task allocation, and how adding temporal elements to static networks can drastically change results. We discuss the benefits of using social insects as models for complex systems in general. There are multiple opportunities emergent technologies and analysis methods in facilitating research on social insect network. The potential for interdisciplinary work could significantly advance diverse fields such as behavioral ecology, computer sciences, and engineering.

  4. Differential Multiscale Modeling of Chemically Complex Materials under Heavy Deformation: Biological, Bioinspired and Synthetic Hierarchical Materials

    DTIC Science & Technology

    2010-06-01

    Buehler, “Meso- Origami : Folding Multilayer Graphene Sheets”, Applied Physics Letters, Vol. 95, paper #: 123121, 2009 D. Sen and M.J. Buehler, “Size and... geometry effects on flow stress in bioinspired de novo metal-matrix nanocomposites”, Advanced Engineering Materials, Vol. 11(10), pp. 774-781, 2009...behavior is recovered. Second, a subset of all geometries shows the inverse banana curve behavior. Interestingly, only 2% of all structures give the

  5. A Proboscis Extension Response Protocol for Investigating Behavioral Plasticity in Insects: Application to Basic, Biomedical, and Agricultural Research

    PubMed Central

    Smith, Brian H.; Burden, Christina M.

    2014-01-01

    Insects modify their responses to stimuli through experience of associating those stimuli with events important for survival (e.g., food, mates, threats). There are several behavioral mechanisms through which an insect learns salient associations and relates them to these events. It is important to understand this behavioral plasticity for programs aimed toward assisting insects that are beneficial for agriculture. This understanding can also be used for discovering solutions to biomedical and agricultural problems created by insects that act as disease vectors and pests. The Proboscis Extension Response (PER) conditioning protocol was developed for honey bees (Apis mellifera) over 50 years ago to study how they perceive and learn about floral odors, which signal the nectar and pollen resources a colony needs for survival. The PER procedure provides a robust and easy-to-employ framework for studying several different ecologically relevant mechanisms of behavioral plasticity. It is easily adaptable for use with several other insect species and other behavioral reflexes. These protocols can be readily employed in conjunction with various means for monitoring neural activity in the CNS via electrophysiology or bioimaging, or for manipulating targeted neuromodulatory pathways. It is a robust assay for rapidly detecting sub-lethal effects on behavior caused by environmental stressors, toxins or pesticides. We show how the PER protocol is straightforward to implement using two procedures. One is suitable as a laboratory exercise for students or for quick assays of the effect of an experimental treatment. The other provides more thorough control of variables, which is important for studies of behavioral conditioning. We show how several measures for the behavioral response ranging from binary yes/no to more continuous variable like latency and duration of proboscis extension can be used to test hypotheses. And, we discuss some pitfalls that researchers commonly encounter when they use the procedure for the first time. PMID:25225822

  6. Unraveling the neural basis of insect navigation.

    PubMed

    Heinze, Stanley

    2017-12-01

    One of the defining features of animals is their ability to navigate their environment. Using behavioral experiments this topic has been under intense investigation for nearly a century. In insects, this work has largely focused on the remarkable homing abilities of ants and bees. More recently, the neural basis of navigation shifted into the focus of attention. Starting with revealing the neurons that process the sensory signals used for navigation, in particular polarized skylight, migratory locusts became the key species for delineating navigation-relevant regions of the insect brain. Over the last years, this work was used as a basis for research in the fruit fly Drosophila and extraordinary progress has been made in illuminating the neural underpinnings of navigational processes. With increasingly detailed understanding of navigation circuits, we can begin to ask whether there is a fundamentally shared concept underlying all navigation behavior across insects. This review highlights recent advances and puts them into the context of the behavioral work on ants and bees, as well as the circuits involved in polarized-light processing. A region of the insect brain called the central complex emerges as the common substrate for guiding navigation and its highly organized neuroarchitecture provides a framework for future investigations potentially suited to explain all insect navigation behavior at the level of identified neurons. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. A persistent homology approach to collective behavior in insect swarms

    NASA Astrophysics Data System (ADS)

    Sinhuber, Michael; Ouellette, Nicholas T.

    Various animals from birds and fish to insects tend to form aggregates, displaying self-organized collective swarming behavior. Due to their frequent occurrence in nature and their implications for engineered, collective systems, these systems have been investigated and modeled thoroughly for decades. Common approaches range from modeling them with coupled differential equations on the individual level up to continuum approaches. We present an alternative, topology-based approach for describing swarming behavior at the macroscale rather than the microscale. We study laboratory swarms of Chironomus riparius, a flying, non-biting midge. To obtain the time-resolved three-dimensional trajectories of individual insects, we use a multi-camera stereoimaging and particle-tracking setup. To investigate the swarming behavior in a topological sense, we employ a persistent homology approach to identify persisting structures and features in the insect swarm that elude a direct, ensemble-averaging approach. We are able to identify features of sub-clusters in the swarm that show behavior distinct from that of the remaining swarm members. The coexistence of sub-swarms with different features resembles some non-biological systems such as active colloids or even thermodynamic systems.

  8. How Far is Far Enough? Invertebrate Responses to Physical Constraints on Drift Distance

    NASA Astrophysics Data System (ADS)

    Hoover, T. M.; Yonemitsu, N.; Richardson, J. S.

    2005-05-01

    Many stream insects enter the drift and disperse downstream. Once entrained, however, the probability of settling in a patch of suitable habitat is a function of the physical properties and behavior of the drifting insect, as well as the hydrodynamic characteristics of the habitat through which the insect is drifting. The roles that taxa-specific morphology and behavior play in determining drift distance were examined for four mayflies with different habitat requirements; two rheophilous taxa (Baetis and Epeorus) and two pool-dwelling taxa (Ameletus and Paraleptophlebia). Larvae were released in an experimental channel in low and high water velocities. The total distances traveled by live mayfly larvae (+ behavior, + morphology) were compared to heat-killed larvae (- behavior, + morphology), and a series of low-density tracer particles (- behavior, - morphology). Live Baetis and Epeorus drifted similar distances, whereas the drift distances of the two pool taxa differed substantially (Ameletus < Epeorus, Baetis < Paraleptophlebia). The settlement distributions of dead larvae and passive tracer particles show that settlement behaviors allow drifting larvae to avoid becoming entrained in large-scale turbulent flow structures. These results suggest that stream insects have evolved strategies that facilitate dispersal between patches of suitable habitat.

  9. Development of mimetic analogs of pyrokinin-like neuropeptides to disrupt pest insect physiology/behavior

    USDA-ARS?s Scientific Manuscript database

    Pyrokinin (FXPRLamide) neuropeptides regulate a variety of critical processes and behaviors in insects, though they are unsuitable as tools to arthropod endocrinologists and/or as pest management agents due to sub-optimal biostability and/or bioavailability characteristics. Peptidomimetic analogs c...

  10. A New SAS program for behavioral analysis of electrical penetration graph data

    USDA-ARS?s Scientific Manuscript database

    Monitoring feeding behaviors of insects whose piercing-sucking mouthparts are inserted into plant tissue is done by making the insect part of an electronic circuit, using electropenetrography (EPG). Fluctuating voltage signals in the circuit are graphed, and resulting waveforms are interpreted as sp...

  11. Insects in the Classroom: A Study of Animal Behavior

    ERIC Educational Resources Information Center

    Miller, Jon S.

    2004-01-01

    These activities allow students to investigate behavioral responses of the large Milkweed bug, "Oncopeltus fasciatus," and the mealworm, "Tenebrio molitor" or "Tenebrio obscurus," to external stimuli of light, color, and temperature. During the activities, students formulate hypotheses to research questions presented. They also observe insects for…

  12. Post-molting development of wind-elicited escape behavior in the cricket.

    PubMed

    Sato, Nodoka; Shidara, Hisashi; Ogawa, Hiroto

    2017-11-01

    Arthropods including insects grow through several developmental stages by molting. The abrupt changes in their body size and morphology accompanying the molting are responsible for the developmental changes in behavior. While in holometabolous insects, larval behaviors are transformed into adult-specific behaviors with drastic changes in nervous system during the pupal stage, hemimetabolous insects preserve most innate behaviors whole life long, which allow us to trace the maturation process of preserved behaviors after the changes in body. Wind-elicited escape behavior is one of these behaviors and mediated by cercal system, which is a mechanosensory organ equipped by all stages of nymph in orthopteran insects like crickets. However, the maturation process of the escape behavior after the molt is unclear. In this study, we examined time-series of changes in the wind-elicited escape behavior just after the imaginal molt in the cricket. The locomotor activities are developed over the elapsed time, and matured 24h after the molt. In contrast, a stimulus-angle dependency of moving direction was unchanged over time, meaning that the cercal sensory system detecting airflow direction was workable immediately after the molt, independent from the behavioral maturation. The post-molting development of the wind-elicited behavior was considered to result not simply from maturation of the exoskeleton or musculature because the escape response to heat-shock stimulus did not change after the molt. No effect of a temporal immobilization after the imaginal molt on the maturation of the wind-elicited behavior also implies that the maturation may be innately programmed without experience of locomotion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Weevil x Insecticide: Does 'Personality' Matter?

    PubMed

    Morales, Juliana A; Cardoso, Danúbia G; Della Lucia, Terezinha Maria C; Guedes, Raul Narciso C

    2013-01-01

    An insect's behavior is the expression of its integrated physiology in response to external and internal stimuli, turning insect behavior into a potential determinant of insecticide exposure. Behavioral traits may therefore influence insecticide efficacy against insects, compromising the validity of standard bioassays of insecticide activity, which are fundamentally based on lethality alone. By extension, insect 'personality' (i.e., an individual's integrated set of behavioral tendencies that is inferred from multiple empirical measures) may also be an important determinant of insecticide exposure and activity. This has yet to be considered because the behavioral studies involving insects and insecticides focus on populations rather than on individuals. Even among studies of animal 'personality', the relative contributions of individual and population variation are usually neglected. Here, we assessed behavioral traits (within the categories: activity, boldness/shyness, and exploration/avoidance) of individuals from 15 populations of the maize weevil (Sitophilus zeamais), an important stored-grain pest with serious problems of insecticide resistance, and correlated the behavioral responses with the activity of the insecticide deltamethrin. This analysis was performed at both the population and individual levels. There was significant variation in weevil 'personality' among individuals and populations, but variation among individuals within populations accounted for most of the observed variation (92.57%). This result emphasizes the importance of individual variation in behavioral and 'personality' studies. When the behavioral traits assessed were correlated with median lethal time (LT50) at the population level and with the survival time under insecticide exposure, activity traits, particularly the distance walked, significantly increased survival time. Therefore, behavioral traits are important components of insecticide efficacy, and individual variation should be considered in such studies. This is so because population differences provided only crude approximation of the individual personality in a restrained experimental setting likely to restrict individual behavior favoring the transposition of the individual variation to the population.

  14. Uncovering the Physical Basis Connecting Environment and Tribological Performance of Ultrananocrystalline Diamond

    DTIC Science & Technology

    2012-10-05

    Anisotropic Nanotribological Properties,” Journal of the Mechanical Behavior of Biomedical Materials, Vol. 4, Issue 4, pp. 515-522 (SCI) Kuo -Cheng Chen...Nanodiamond With the Polymer Used as an Additive in Lubricant Oil,” Journal of Materials Chemistry, Vol. 21, pp. 13213-13222 (SCI) Chih- Jung Chen, Ray...Deep Submicron to Nano-Scale,” Journal of Mechanics, Vol. 28, Issue 3, pp. 507-511 (SCI) Yeau-Ren Jeng, Yi-Min Wang, Hua-Chiang Wen, Shih -Ming Huang

  15. Parallel Attack and the Enemy’s Decision Making Process

    DTIC Science & Technology

    1998-04-01

    Theory Coursebook , Vol 2, Sept 1997, p 365 8 Joint Publication 3-0, Doctrine for Joint Operations, 1 Feb 1995, p III-11 9 Gorrell, LtCol Edgar S., “The...Behavioral Strategies,” Journal of the American Statistical Association, Vol 90, Issue 432, December, 1995, p1137 3 Joint Publication 5-0, Doctrine for...Strategies,” Journal of the American Statistical Association, Vol 90, Issue 432, December, 1995, p1137 Allison, Graham T., “Conceptual Models and the Cuban

  16. Improving Oversight and Coordination of Department of Defense Programs That Address Problematic Behaviors Among Military Personnel

    DTIC Science & Technology

    2017-01-01

    Alcohol on Human Aggression: An Integrative Research Review,” Psychological Bulletin, Vol. 107, No. 3, May 1990, pp. 341–354; Stephen T. Chermack and...Peter R. Giancola, “The Relation Between Alcohol and Aggression: An Integrated Biopsychosocial Conceptualization,” Clinical Psychology Review, Vol...M. Jackson and Kenneth J. Sher, “Conjoint Developmental Trajectories of Young Adult Alcohol and Tobacco Use,” Journal of Abnormal Psychology , Vol

  17. Effect of magnesium oxide content on oxidation behavior of some superalloy-base cermets

    NASA Technical Reports Server (NTRS)

    Zaplatynsky, I.

    1975-01-01

    The effect of increasing magnesium oxide (MgO) content on the cyclic oxidation resistance of hot-pressed cermets of MgO in NiCrAlY, MgO in Hoskins-875, MgO in Inconel-702, and MgO in Hastelloy-X was investigated. The cermets with magnesium oxide levels of 5, 10, 20, and 40 vol percent were examined. The cyclic oxidation behavior of these cermets at 1100 and 1200 C in still air was determined by a thermogravimetric method supplemented by X-ray diffraction analysis and light and electron microscopy. In all instances, MgO prevented grain growth in the metallic phase. No evidence of oxidation along interphase boundaries was detected. Cermets of MgO in NiCrAlY and MgO in Hoskins-875 were superior to cermets of MgO in Inconel-702 and MgO in Hastelloy-X. Their oxidation resistance was degraded only when the MgO content was 40 vol percent. The oxidation behavior of MgO-in-Inconel-702 powder cermets containing 5- and 10-vol percent MgO was approximately similar to that of pure Inconel-702 compacts. The 20- and 40-vol percent MgO content reduced the oxidation resistance of MgO-in-Inconel-702 powder cermets relative to that of pure Inconel-702.

  18. Investigation of the Self-Healing Behavior of Sn-Bi Metal Matrix Composite Reinforced with NiTi Shape Memory Alloy Strips Under Flexural Loading

    NASA Astrophysics Data System (ADS)

    Poormir, Mohammad Amin; Khalili, Seyed Mohammad Reza; Eslami-Farsani, Reza

    2018-03-01

    Utilizing intelligent materials such as shape memory alloys as reinforcement in metal matrix composites is a novel method to mimic self-healing behavior. In this study, the bending behavior of a self-healing metal matrix composite made from Sn-13 wt.% Bi alloy as matrix and NiTi shape memory alloy (SMA) strips as reinforcement is investigated. Specimens were fabricated in different reinforcement vol.% (0.78, 1.55, 2.33) and in various pre-strains (0, 2, 6%) and were healed at three healing temperatures (170°C, 180°C, 190°C). Results showed that shape recovery was accomplished in all the specimens, but not all of them were able to withstand second loading after healing. Only specimens with 2.33 vol.% of SMA strips, 1.55 vol.% of SMA, and 6% pre-strain could endure bending force after healing, and they gained 35.31-51.83% of bending force self-healing efficiency.

  19. Investigation of the Self-Healing Behavior of Sn-Bi Metal Matrix Composite Reinforced with NiTi Shape Memory Alloy Strips Under Flexural Loading

    NASA Astrophysics Data System (ADS)

    Poormir, Mohammad Amin; Khalili, Seyed Mohammad Reza; Eslami-Farsani, Reza

    2018-06-01

    Utilizing intelligent materials such as shape memory alloys as reinforcement in metal matrix composites is a novel method to mimic self-healing behavior. In this study, the bending behavior of a self-healing metal matrix composite made from Sn-13 wt.% Bi alloy as matrix and NiTi shape memory alloy (SMA) strips as reinforcement is investigated. Specimens were fabricated in different reinforcement vol.% (0.78, 1.55, 2.33) and in various pre-strains (0, 2, 6%) and were healed at three healing temperatures (170°C, 180°C, 190°C). Results showed that shape recovery was accomplished in all the specimens, but not all of them were able to withstand second loading after healing. Only specimens with 2.33 vol.% of SMA strips, 1.55 vol.% of SMA, and 6% pre-strain could endure bending force after healing, and they gained 35.31-51.83% of bending force self-healing efficiency.

  20. A Sequential Insect Dispenser for Behavioral Experiments

    ERIC Educational Resources Information Center

    Gans, Carl; Mix, Harold

    1974-01-01

    Describes the construction and operation of an automatic insect dispenser suitable for feeding small vertebrates that are being maintained for behavioral experiments. The food morsels are squirted from their chambers an an air jet, and may be directed at a particluar portion of the cage or distributed to different areas. (JR)

  1. Robust manipulations of pest insect behavior using repellents and practical application for integrated pest management

    USDA-ARS?s Scientific Manuscript database

    In agricultural settings, examples of effective control strategies using repellent chemicals in integrated pest management (IPM) are relatively scarce compared to those using attractants. This may be partly due to a poor understanding of how repellents affect insect behavior once they are deployed. ...

  2. Insect neurotoxicity and physiological mode of action of basic amines

    USDA-ARS?s Scientific Manuscript database

    The basic amines 1-methylpiperazine and 1-methylpyrrolidine have been proposed as chemicals that interfere with insect host-seeking behavior with a possible anosmia, or narcotizing effect on Aedes aegypti. In this study, the behavior and toxicity, as well as the electrophysiology effects of these b...

  3. Laboratory and Field Evaluation of SS220 and Deet Against Mosquitoes in Queensland, Australia

    DTIC Science & Technology

    2009-01-01

    Australian Army Malaria Institute, Gallipoli Bar- racks, Enoggera, Queensland 4051, Australia. 2 Invasive Insect Biocontrol and Behavior Laborato- ry...Invasive Insect Biocontrol and Behavior Laboratory (Beltsville, MD; Klun et al. 2003). A 20% solution (V/V) of each chemical in absolute ethanol was used

  4. Morphology and physiology of the olfactory system of blood-feeding insects.

    PubMed

    Guidobaldi, F; May-Concha, I J; Guerenstein, P G

    2014-01-01

    Several blood-feeding (hematophagous) insects are vectors of a number of diseases including dengue, Chagas disease and leishmaniasis which persistently affect public health throughout Latin America. The vectors of those diseases include mosquitoes, triatomine bugs and sandflies. As vector control is an efficient way to prevent these illnesses it is important to understand the sensory biology of those harmful insects. We study the physiology of the olfactory system of those insects and apply that knowledge on the development of methods to manipulate their behavior. Here we review some of the latest information on insect olfaction with emphasis on hematophagous insects. The insect olfactory sensory neurons are housed inside hair-like organs called sensilla which are mainly distributed on the antenna and mouthparts. The identity of many of the odor compounds that those neurons detect are already known in hematophagous insects. They include several constituents of host (vertebrate) odor, sex, aggregation and alarm pheromones, and compounds related to egg-deposition behavior. Recent work has contributed significant knowledge on how odor information is processed in the insect first odor-processing center in the brain, the antennal lobe. The quality, quantity, and temporal features of the odor stimuli are encoded by the neural networks of the antennal lobe. Information regarding odor mixtures is also encoded. While natural mixtures evoke strong responses, synthetic mixtures that deviate from their natural counterparts in terms of key constituents or proportions of those constituents evoke weaker responses. The processing of olfactory information is largely unexplored in hematophagous insects. However, many aspects of their olfactory behavior are known. As in other insects, responses to relevant single odor compounds are weak while natural mixtures evoke strong responses. Future challenges include studying how information about odor mixtures is processed in their brain. This could help develop highly attractive synthetic odor blends to lure them into traps. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Continuous recording and interobserver agreement algorithms reported in the Journal of Applied Behavior Analysis (1995-2005).

    PubMed

    Mudford, Oliver C; Taylor, Sarah Ann; Martin, Neil T

    2009-01-01

    We reviewed all research articles in 10 recent volumes of the Journal of Applied Behavior Analysis (JABA): Vol. 28(3), 1995, through Vol. 38(2), 2005. Continuous recording was used in the majority (55%) of the 168 articles reporting data on free-operant human behaviors. Three methods for reporting interobserver agreement (exact agreement, block-by-block agreement, and time-window analysis) were employed in more than 10 of the articles that reported continuous recording. Having identified these currently popular agreement computation algorithms, we explain them to assist researchers, software writers, and other consumers of JABA articles.

  6. Multiple activities of insect repellents on odorant receptors in mosquitoes

    USDA-ARS?s Scientific Manuscript database

    Several lines of evidence suggest that insect repellent molecules reduce mosquito-host contacts by interacting with odorants and odorant receptors (ORs) ultimately affecting olfactory-driven behaviors. We describe the molecular effects of ten insect repellents and a pyrethroid insecticide with known...

  7. Insect-Inspired Optical-Flow Navigation Sensors

    NASA Technical Reports Server (NTRS)

    Thakoor, Sarita; Morookian, John M.; Chahl, Javan; Soccol, Dean; Hines, Butler; Zornetzer, Steven

    2005-01-01

    Integrated circuits that exploit optical flow to sense motions of computer mice on or near surfaces ( optical mouse chips ) are used as navigation sensors in a class of small flying robots now undergoing development for potential use in such applications as exploration, search, and surveillance. The basic principles of these robots were described briefly in Insect-Inspired Flight Control for Small Flying Robots (NPO-30545), NASA Tech Briefs, Vol. 29, No. 1 (January 2005), page 61. To recapitulate from the cited prior article: The concept of optical flow can be defined, loosely, as the use of texture in images as a source of motion cues. The flight-control and navigation systems of these robots are inspired largely by the designs and functions of the vision systems and brains of insects, which have been demonstrated to utilize optical flow (as detected by their eyes and brains) resulting from their own motions in the environment. Optical flow has been shown to be very effective as a means of avoiding obstacles and controlling speeds and altitudes in robotic navigation. Prior systems used in experiments on navigating by means of optical flow have involved the use of panoramic optics, high-resolution image sensors, and programmable imagedata- processing computers.

  8. Hijacked: Co-option of host behavior by entomophthoralean fungi

    USDA-ARS?s Scientific Manuscript database

    Over 700 species of fungi are known to infect and cause disease in insects and other arthropods. The majority of insect pathogenic fungi are classified in the phyla Entomophthoromycotina and Ascomycotina, and many are ecologically important in regulating insect populations. To summarize fungal-inse...

  9. Aggregative group behavior in insect parasitic nematode dispersal.

    PubMed

    Shapiro-Ilan, David I; Lewis, Edwin E; Schliekelman, Paul

    2014-01-01

    Movement behavior of foraging animals is critical to the determination of their spatial ecology and success in exploiting resources. Individuals sometimes gain advantages by foraging in groups to increase their efficiency in garnering these resources. Group movement behavior has been studied in various vertebrates. In this study we explored the propensity for innate group movement behavior among insect parasitic nematodes. Given that entomopathogenic nematodes benefit from group attack and infection, we hypothesised that the populations would tend to move in aggregate in the absence of extrinsic cues. Movement patterns of entomopathogenic nematodes in sand were investigated when nematodes were applied to a specific locus or when the nematodes emerged naturally from infected insect hosts; six nematode species in two genera were tested (Heterorhabditis bacteriophora, Heterorhabditis indica, Steinernema carpocapsae, Steinernema feltiae, Steinernema glaseri and Steinernema riobrave). Nematodes were applied in aqueous suspension via filter paper discs or in infected insect host cadavers (to mimic emergence in nature). We discovered that nematode dispersal resulted in an aggregated pattern rather than a random or uniform distribution; the only exception was S. glaseri when emerging directly from infected hosts. The group movement may have been continuous from the point of origin, or it may have been triggered by a propensity to aggregate after a short period of random movement. To our knowledge, this is the first report of group movement behavior in parasitic nematodes in the absence of external stimuli (e.g., without an insect or other apparent biotic or abiotic cue). These findings have implications for nematode spatial distribution and suggest that group behavior is involved in nematode foraging. Published by Elsevier Ltd.

  10. Unexpected Effects of Low Doses of a Neonicotinoid Insecticide on Behavioral Responses to Sex Pheromone in a Pest Insect

    PubMed Central

    Rabhi, Kaouther K.; Esancy, Kali; Voisin, Anouk; Crespin, Lucille; Le Corre, Julie; Tricoire-Leignel, Hélène; Anton, Sylvia; Gadenne, Christophe

    2014-01-01

    In moths, which include many agricultural pest species, males are attracted by female-emitted sex pheromones. Although integrated pest management strategies are increasingly developed, most insect pest treatments rely on widespread use of neurotoxic chemicals, including neonicotinoid insecticides. Residual accumulation of low concentrations of these insecticides in the environment is known to be harmful to beneficial insects such as honey bees. This environmental stress probably acts as an “info-disruptor” by modifying the chemical communication system, and therefore decreases chances of reproduction in target insects that largely rely on olfactory communication. However, low doses of pollutants could on the contrary induce adaptive processes in the olfactory pathway, thus enhancing reproduction. Here we tested the effects of acute oral treatments with different low doses of the neonicotinoid clothianidin on the behavioral responses to sex pheromone in the moth Agrotis ipsilon using wind tunnel experiments. We show that low doses of clothianidin induce a biphasic effect on pheromone-guided behavior. Surprisingly, we found a hormetic-like effect, improving orientation behavior at the LD20 dose corresponding to 10 ng clothianidin. On the contrary, a negative effect, disturbing orientation behavior, was elicited by a treatment with a dose below the LD0 dose corresponding to 0.25 ng clothianidin. No clothianidin effect was observed on behavioral responses to plant odor. Our results indicate that risk assessment has to include unexpected effects of residues on the life history traits of pest insects, which could then lead to their adaptation to environmental stress. PMID:25517118

  11. Feeding behavior of the stink bug Bagrada hilaris is changed by the electrical signals applied during EPG recordings

    USDA-ARS?s Scientific Manuscript database

    Feeding behavior of piercing-sucking insects is most rigorously studied using eletropenetrography (EPG). This technique utilizes an electrical circuit to record waveforms caused by voltage fluctuations when a wired insect inserts its stylet into an electrified plant. Past researchers have asserted t...

  12. Modeling and regression analysis of semiochemical dose-response curves of insect antennal reception and behavior

    USDA-ARS?s Scientific Manuscript database

    Dose-response curves with semiochemicals are reported in many articles in insect chemical ecology regarding neurophysiology and behavioral bioassays. Most such curves are shown in figures where the x-axis has order of magnitude increases in dosages versus responses on the y-axis represented by point...

  13. New technologies in electrical penetration graph (EPG) monitors of insect feeding and their applications for 21st century entomology

    USDA-ARS?s Scientific Manuscript database

    Electrical penetration graph (EPG) monitoring of insect feeding is a rigorous means of observing and quantifying feeding behaviors of piercing-sucking arthropods, as well as fine details of chewing and oviposition behaviors not observable visually. While EPG was originally invented nearly 50 years ...

  14. Effects of Essential Oil from Hinoki Cypress, Chamaecyparis obtusa, on Physiology and Behavior of Flies

    PubMed Central

    Min, Kyung-Jin

    2015-01-01

    Phytoncides, which are volatile substances emitted from plants for protection against plant pathogens and insects, are known to have insecticidal, antimicrobial, and antifungal activities. In contrast to their negative effects on microorganisms and insects, phytoncides have been shown to have beneficial effects on human health. Essential oil from Hinoki cypress (Chamaecyparis obtusa) is mostly used in commercial products such as air purifiers. However, the physiological/behavioral impact of essential oil from C. obtusa on insects is not established. In this study, we tested the effects of essential oil extracted from C. obtusa on the physiologies and behaviors of Drosophila melanogaster and Musca domestica. Exposure to essential oil from C. obtusa decreased the lifespan, fecundity, locomotive activity, and developmental success rate of D. melanogaster. In addition, both fruit flies and house flies showed strong repellent behavioral responses to the essential oil, with duration times of about 5 hours at 70 μg/ml. These results suggest that essential oil from C. obtusa can be used as a ‘human-friendly’ alternative insect repellent. PMID:26624577

  15. H. David Politzer, Asymptotic Freedom, and Strong Interaction

    Science.gov Websites

    Possible Non-Regge Behavior of Electroproduction Structure Functions; Physical Review D, Vol. 10, Issue 5 ; 1974 Heavy Quarks and Long-lived Hadrons; Physical Review D, Vol. 12, Issue 5; 1975 Experimental take you to non-federal websites. Their policies may differ from this site. Website Policies/Important

  16. Levels of behavioral organization and the evolution of division of labor

    NASA Astrophysics Data System (ADS)

    Page, Robert E.; Erber, Joachim

    2002-03-01

    The major features of insect societies that fascinate biologists are the self-sacrificing altruism expressed by colony members, the complex division of labor, and the tremendous plasticity demonstrated in the face of changing environments. The social behavior of insects is a result of complex interactions at different levels of biological organization. Genes give rise to proteins and peptides that build the nervous and muscular systems, regulate their own synthesis, interact with each other, and affect the behavior of individuals. Social behavior emerges from the complex interactions of individuals that are themselves far removed from the direct effects of the genes. In order to understand how social organization evolves, we must understand the mechanisms that link the different levels of organization. In this review, we discuss how behavior is influenced by genes and the neural system and how social behavior emerges from the behavioral activities of individuals. We show how different levels of organization share common features and are linked through common mechanisms. We focus on the behavior of the honey bee, the best studied of all social insects.

  17. Insect-controlled Robot: A Mobile Robot Platform to Evaluate the Odor-tracking Capability of an Insect.

    PubMed

    Ando, Noriyasu; Emoto, Shuhei; Kanzaki, Ryohei

    2016-12-19

    Robotic odor source localization has been a challenging area and one to which biological knowledge has been expected to contribute, as finding odor sources is an essential task for organism survival. Insects are well-studied organisms with regard to odor tracking, and their behavioral strategies have been applied to mobile robots for evaluation. This "bottom-up" approach is a fundamental way to develop biomimetic robots; however, the biological analyses and the modeling of behavioral mechanisms are still ongoing. Therefore, it is still unknown how such a biological system actually works as the controller of a robotic platform. To answer this question, we have developed an insect-controlled robot in which a male adult silkmoth (Bombyx mori) drives a robot car in response to odor stimuli; this can be regarded as a prototype of a future insect-mimetic robot. In the cockpit of the robot, a tethered silkmoth walked on an air-supported ball and an optical sensor measured the ball rotations. These rotations were translated into the movement of the two-wheeled robot. The advantage of this "hybrid" approach is that experimenters can manipulate any parameter of the robot, which enables the evaluation of the odor-tracking capability of insects and provides useful suggestions for robotic odor-tracking. Furthermore, these manipulations are non-invasive ways to alter the sensory-motor relationship of a pilot insect and will be a useful technique for understanding adaptive behaviors.

  18. Molecular structure and diversity of PBAN/Pyrokinin family peptides in ants

    USDA-ARS?s Scientific Manuscript database

    Neuropeptides are the largest group of insect hormones. They are produced in the central and peripheral nervous systems and affect insect development, reproduction, feeding and behavior. A variety of neuropeptide families have been identified in insects. One of these families is the PBAN/Pyrokinin f...

  19. Neurophysiological and behavioral responses of gypsy moth larvae to insect repellents

    USDA-ARS?s Scientific Manuscript database

    The interactions between insect repellents and the olfactory system have been widely studied, however relatively little is known about the effects of repellents on the gustatory system of insects. In this study, we show that the gustatory receptor neuron (GRN) located in the medial styloconic sensi...

  20. Identification of methyl farnesoate from the hemolymph of insects

    USDA-ARS?s Scientific Manuscript database

    Juvenile hormones (JH) have been a focal point of study in insect endocrinology for more than 80 years and are implicated in regulation of more physiological and behavioral functions than any other insect hormone. Indeed, evidence has suggested that JHs are the only sesquiterpene hormone products s...

  1. Evaluation of Possible Proximate Mechanisms Underlying the Kinship Theory of Intragenomic Conflict in Social Insects.

    PubMed

    Galbraith, David A; Yi, Soojin V; Grozinger, Christina M

    2016-12-01

    Kinship theory provides a universal framework in which to understand the evolution of altruism, but there are many molecular and genetic mechanisms that can generate altruistic behaviors. Interestingly, kinship theory specifically predicts intragenomic conflict between maternally-derived alleles (matrigenes) and paternally-derived alleles (patrigenes) over the generation of altruistic behavior in cases where the interests of the matrigenes and patrigenes are not aligned. Under these conditions, individual differences in selfish versus altruistic behavior are predicted to arise from differential expression of the matrigenes and patrigenes (parent-specific gene expression or PSGE) that regulate selfish versus altruistic behaviors. As one of the leading theories to describe PSGE and genomic imprinting, kinship theory has been used to generate predictions to describe the reproductive division of labor in social insect colonies, which represents an excellent model system to test the hypotheses of kinship theory and examine the underlying mechanisms driving it. Recent studies have confirmed the predicted differences in the influence of matrigenes and patrigenes on reproductive division of labor in social insects, and demonstrated that these differences are associated with differences in PSGE of key genes involved in regulating reproductive physiology, providing further support for kinship theory. However, the mechanisms mediating PSGE in social insects, and how PSGE leads to differences in selfish versus altruistic behavior, remain to be determined. Here, we review the available supporting evidence for three possible epigenetic mechanisms (DNA methylation, piRNAs, and histone modification) that may generate PSGE in social insects, and discuss how these may lead to variation in social behavior. © The Author 2016. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  2. Neuropeptides as Regulators of Behavior in Insects.

    PubMed

    Schoofs, Liliane; De Loof, Arnold; Van Hiel, Matthias Boris

    2017-01-31

    Neuropeptides are by far the largest and most diverse group of signaling molecules in multicellular organisms. They are ancient molecules important in regulating a multitude of processes. Their small proteinaceous character allowed them to evolve and radiate quickly into numerous different molecules. On average, hundreds of distinct neuropeptides are present in animals, sometimes with unique classes that do not occur in distantly related species. Acting as neurotransmitters, neuromodulators, hormones, or growth factors, they are extremely diverse and are involved in controlling growth, development, ecdysis, digestion, diuresis, and many more physiological processes. Neuropeptides are also crucial in regulating myriad behavioral actions associated with feeding, courtship, sleep, learning and memory, stress, addiction, and social interactions. In general, behavior ensures that an organism can survive in its environment and is defined as any action that can change an organism's relationship to its surroundings. Even though the mode of action of neuropeptides in insects has been vigorously studied, relatively little is known about most neuropeptides and only a few model insects have been investigated. Here, we provide an overview of the roles neuropeptides play in insect behavior. We conclude that multiple neuropeptides need to work in concert to coordinate certain behaviors. Additionally, most neuropeptides studied to date have more than a single function.

  3. Insect vision as model for machine vision

    NASA Astrophysics Data System (ADS)

    Osorio, D.; Sobey, Peter J.

    1992-11-01

    The neural architecture, neurophysiology and behavioral abilities of insect vision are described, and compared with that of mammals. Insects have a hardwired neural architecture of highly differentiated neurons, quite different from the cerebral cortex, yet their behavioral abilities are in important respects similar to those of mammals. These observations challenge the view that the key to the power of biological neural computation is distributed processing by a plastic, highly interconnected, network of individually undifferentiated and unreliable neurons that has been a dominant picture of biological computation since Pitts and McCulloch's seminal work in the 1940's.

  4. Synthesis and Characterization of MAX Ceramics (MAXCERs)

    NASA Astrophysics Data System (ADS)

    Nelson, Johnny Carl

    This research has focused on the design and development of novel multifunctional MAX reinforced ceramics (MAXCERs). These MAXCERs were manufactured with 1-50 vol% ratios of ceramics to MAX phases. Chapter II reports on the synthesis and tribological behavior of Ti3SiC2 matrix composites by incorporating (1 and 6 vol%) Al2O3, (1 and 5 vol%) BN, and (1 and 5 vol%) B4C ceramic particulate additives in the matrix. All the composites were fabricated by pressureless sintering by using 1 wt% Ni as a sintering agent at 1550 °C for 2 hours. SEM and XRD studies showed that Al2O3 is relatively inert in the Ti3SiC 2 matrix whereas BN and B4C reacted significantly with the Ti3 SiC2 matrix to form TiB2. Detailed tribological studies showed that Ti3SiC2-1wt%Ni (baseline) samples showed dual type tribological behavior where the friction coefficient (micro) was low ( 0.2) during stage 1, thereafter micro increased sharply and transitioned into stage 2 ( 0.8). The addition of Al2O3 as an additive had little effect on the tribological behavior, but the addition of B4C and BN was able to enhance the tribological behavior by increasing the transition distance (TD). Chapter III reports on the synthesis and tribological behavior of TiB2 matrix composites by incorporating (10, 30, and 50 vol%) Ti3SiC2 ceramic particulate additives in the matrix. The fabrication parameters were similar to the Ti3SiC2 samples from Chapter II. There was minimal reaction between the TiB2 and the Ti3SiC2. Detailed tribological studies showed that TiB2 (baseline) and TiB2-10%Ti 3SiC2 samples showed an average micro of 0.29 and 0.28, respectively. TiB2-30%Ti3SiC2 and TiB 2-50%Ti3SiC2 showed dual-type tribological behavior where micro was low ( 0.25) during stage 1, thereafter micro increased gradually and transitioned into stage 2 ( 0.6). Low wear rates were seen for all samples.

  5. Affective and Cognitive Responses to Insects and Other Arthropods

    ERIC Educational Resources Information Center

    Lorenz-Reaves, Amanda R.

    2017-01-01

    Insects are the most abundant and diverse group of animals on Earth. Though as a group they do far more ecological good than harm, previous studies have shown that human attitudes toward insects are mainly negative. Attitudes have affective (emotions) and cognitive (beliefs, mental representations) components that interact to influence behavior.…

  6. Host plants impact courtship vibration transmission and mating success of a parasitoid wasp, Cotesia flavipes (Hymenoptera: Braconidae)

    USDA-ARS?s Scientific Manuscript database

    Host plants provide food, shelter and mating habitats for herbivorous and parasitoid insects. Yet each plant species is a distinct microhabitat and insects must adapt to its chemical and physical attributes in order to survive, mate and reproduce. Behavioral and genetic divergence between insect pop...

  7. Insulin-like peptide genes in honey bee fat body respond differently to manipulation of social behavioral physiology.

    PubMed

    Nilsen, Kari-Anne; Ihle, Kate E; Frederick, Katy; Fondrk, M Kim; Smedal, Bente; Hartfelder, Klaus; Amdam, Gro V

    2011-05-01

    Nutrient sensitive insulin-like peptides (ILPs) have profound effects on invertebrate metabolism, nutrient storage, fertility and aging. Many insects transcribe ILPs in specialized neurosecretory cells at changing levels correlated with life history. However, the major site of insect metabolism and nutrient storage is not the brain, but rather the fat body, where functions of ILP expression are rarely studied and poorly understood. Fat body is analogous to mammalian liver and adipose tissue, with nutrient stores that often correlate with behavior. We used the honey bee (Apis mellifera), an insect with complex behavior, to test whether ILP genes in fat body respond to experimentally induced changes of behavioral physiology. Honey bee fat body influences endocrine state and behavior by secreting the yolk protein precursor vitellogenin (Vg), which suppresses lipophilic juvenile hormone and social foraging behavior. In a two-factorial experiment, we used RNA interference (RNAi)-mediated vg gene knockdown and amino acid nutrient enrichment of hemolymph (blood) to perturb this regulatory module. We document factor-specific changes in fat body ilp1 and ilp2 mRNA, the bee's ILP-encoding genes, and confirm that our protocol affects social behavior. We show that ilp1 and ilp2 are regulated independently and differently and diverge in their specific expression-localization between fat body oenocyte and trophocyte cells. Insect ilp functions may be better understood by broadening research to account for expression in fat body and not only brain.

  8. Insulin-like peptide genes in honey bee fat body respond differently to manipulation of social behavioral physiology

    PubMed Central

    Nilsen, Kari-Anne; Ihle, Kate E.; Frederick, Katy; Fondrk, M. Kim; Smedal, Bente; Hartfelder, Klaus; Amdam, Gro V.

    2011-01-01

    SUMMARY Nutrient sensitive insulin-like peptides (ILPs) have profound effects on invertebrate metabolism, nutrient storage, fertility and aging. Many insects transcribe ILPs in specialized neurosecretory cells at changing levels correlated with life history. However, the major site of insect metabolism and nutrient storage is not the brain, but rather the fat body, where functions of ILP expression are rarely studied and poorly understood. Fat body is analogous to mammalian liver and adipose tissue, with nutrient stores that often correlate with behavior. We used the honey bee (Apis mellifera), an insect with complex behavior, to test whether ILP genes in fat body respond to experimentally induced changes of behavioral physiology. Honey bee fat body influences endocrine state and behavior by secreting the yolk protein precursor vitellogenin (Vg), which suppresses lipophilic juvenile hormone and social foraging behavior. In a two-factorial experiment, we used RNA interference (RNAi)-mediated vg gene knockdown and amino acid nutrient enrichment of hemolymph (blood) to perturb this regulatory module. We document factor-specific changes in fat body ilp1 and ilp2 mRNA, the bee's ILP-encoding genes, and confirm that our protocol affects social behavior. We show that ilp1 and ilp2 are regulated independently and differently and diverge in their specific expression-localization between fat body oenocyte and trophocyte cells. Insect ilp functions may be better understood by broadening research to account for expression in fat body and not only brain. PMID:21490257

  9. Encyrtid parasitoids of soft scale insects: biology, behavior, and their use in biological control.

    PubMed

    Kapranas, Apostolos; Tena, Alejandro

    2015-01-07

    Parasitoids of the hymenopterous family Encyrtidae are one of the most important groups of natural enemies of soft scale insects and have been used extensively in biological control. We summarize existing knowledge of the biology, ecology, and behavior of these parasitoids and how it relates to biological control. Soft scale stage/size and phenology are important determinants of host range and host utilization, which are key aspects in understanding how control by these parasitoids is exerted. Furthermore, the nutritional ecology of encyrtids and their physiological interactions with their hosts affect soft scale insect population dynamics. Lastly, the interactions among encyrtids, heteronomous parasitoids, and ants shape parasitoid species complexes and consequently have a direct impact on the biological control of soft scale insects.

  10. Deriving neural network controllers from neuro-biological data: implementation of a single-leg stick insect controller.

    PubMed

    von Twickel, Arndt; Büschges, Ansgar; Pasemann, Frank

    2011-02-01

    This article presents modular recurrent neural network controllers for single legs of a biomimetic six-legged robot equipped with standard DC motors. Following arguments of Ekeberg et al. (Arthropod Struct Dev 33:287-300, 2004), completely decentralized and sensori-driven neuro-controllers were derived from neuro-biological data of stick-insects. Parameters of the controllers were either hand-tuned or optimized by an evolutionary algorithm. Employing identical controller structures, qualitatively similar behaviors were achieved for robot and for stick insect simulations. For a wide range of perturbing conditions, as for instance changing ground height or up- and downhill walking, swing as well as stance control were shown to be robust. Behavioral adaptations, like varying locomotion speeds, could be achieved by changes in neural parameters as well as by a mechanical coupling to the environment. To a large extent the simulated walking behavior matched biological data. For example, this was the case for body support force profiles and swing trajectories under varying ground heights. The results suggest that the single-leg controllers are suitable as modules for hexapod controllers, and they might therefore bridge morphological- and behavioral-based approaches to stick insect locomotion control.

  11. The Amateur Scientist.

    ERIC Educational Resources Information Center

    Walker, Jearl

    1983-01-01

    Water striders are insects that walk and run on the surface of water. Discusses the morphology, physiology, and behavior of these insects. Includes diagrams of stages in the movement of a typical strider. (JN)

  12. Corpse Management in Social Insects

    PubMed Central

    Sun, Qian; Zhou, Xuguo

    2013-01-01

    Undertaking behavior is an essential adaptation to social life that is critical for colony hygiene in enclosed nests. Social insects dispose of dead individuals in various fashions to prevent further contact between corpses and living members in a colony. Focusing on three groups of eusocial insects (bees, ants, and termites) in two phylogenetically distant orders (Hymenoptera and Isoptera), we review mechanisms of death recognition, convergent and divergent behavioral responses toward dead individuals, and undertaking task allocation from the perspective of division of labor. Distinctly different solutions (e.g., corpse removal, burial and cannibalism) have evolved, independently, in the holometabolous hymenopterans and hemimetabolous isopterans toward the same problem of corpse management. In addition, issues which can lead to a better understanding of the roles that undertaking behavior has played in the evolution of eusociality are discussed. PMID:23569436

  13. Repellent and deterrent effects of SS220, Picaridin, and Deet suppress human blood feeding by Aedes aegypti, Anopheles stephensi, and Phlebotomus papatasi.

    PubMed

    Klun, Jerome A; Khrimian, Ashot; Debboun, Mustapha

    2006-01-01

    A series of behavioral tests with Aedes aegypti (L.), Anopheles stephensi Liston, mosquitoes, and the sand fly Phlebotomus papatasi Scopoli in the presence of Deet, SS220, and Picaridin topically applied to the skin of human volunteers showed that the insects were deterred from feeding on and repelled from surfaces emanating the compounds. When offered a 12- or 24-cm2 area of skin, one-half treated with compound and one-half untreated, the insects fed almost exclusively on untreated skin. The sand flies and mosquitoes did not at any time physically contact chemically treated surfaces. When treated and untreated skin areas were covered with cloth, insects contacted, landed, and bit only through cloth covering untreated skin. These observations provided evidence that the compounds deterred feeding and repelled insects from treated surfaces primarily as a result of olfactory sensing. When cloth, one-half untreated and one-half treated with chemical, was placed over untreated skin, insects only touched and specifically bit through the untreated cloth. This showed that the activity of the chemicals does not involve a chemical x skin interaction. In the presence of any of the three chemicals, no matter how they were presented to the insects, overall population biting activity was reduced by about one-half relative to controls. This reduction showed a true repellent effect for the compounds. Results clearly showed that Deet, SS220, and Picaridin exert repellent and deterrent effects upon the behavior of mosquitoes and sand flies. Heretofore, the combined behavioral effects of these compounds upon mosquito and sand fly behavior were unknown. Moreover, protection afforded by Deet, SS220, and Picaridin against the feeding of these three disease vectors on humans is mechanistically a consequence of the two chemical effects.

  14. Empirical Studies of Behavioural Patterns at the United Nations. Peace Research Reviews, Vol. VII, No. 4, May 1978 [And] Vol. VII, No. 5, May 1978.

    ERIC Educational Resources Information Center

    Newcombe, Alan G., Ed.; Newcombe, Hanna, Ed.

    These volumes present the findings of four studies of behavioral patterns of delegates at the United Nations (UN). UN voting records, delegate questionnaires, and national, political, social, and geographic variables were analyzed. The first study, "Exploring Delegate Attitudes at the United Nations," reports delegates' reactions to…

  15. Species-specific and female host-biased ectophoresy in the roundworm Caenorhabditis japonica

    NASA Astrophysics Data System (ADS)

    Yoshiga, Toyoshi; Ishikawa, Yuji; Tanaka, Ryusei; Hironaka, Mantaro; Okumura, Etsuko

    2013-02-01

    Caenorhabditis japonica is a bacteriophagous nematode species that was discovered on the semi-social burrower bug, Parastrachia japonensis, which demonstrates egg-guarding and provisioning behaviors. To understand the life history of C. japonica in relation to P. japonensis, we demonstrated the specificity of this association and fluctuations in nematode number on the insect throughout the year. C. japonica dauer larvae (DL), larvae in a nonfeeding diapause stage, were predominantly found as clumps on the adult female insects but rarely found on the male insects in all populations examined. This female-biased association was consistent throughout the year, but after the nymphs hatched, nematodes were not detected on the mother insects showing provisioning behavior. DL appeared on the nymphs, and the number of DL on the newly emerged female insects gradually increased thereafter. C. japonica has never been detected on other invertebrates collected from the P. japonensis habitat thus far. Our data suggest that the life cycles of C. japonica and P. japonensis are synchronized.

  16. Precocene-I inhibits juvenile hormone biosynthesis, ovarian activation, aggression and alters sterility signal production in bumble bee (Bombus terrestris) workers

    USDA-ARS?s Scientific Manuscript database

    Juvenile hormone (JH) is an important regulator of development and physiology in insects. While in many insect species, including bumble bees, JH function as gonadotropin in adults, in some highly eusocial insects its role has shifted to regulate social behavior including division of labor, dominanc...

  17. Odorant receptor modulation: Ternary paradigm for mode of action of insect repellents

    USDA-ARS?s Scientific Manuscript database

    The modulation of insect behavior for the purpose of controlling the spread of infectious diseases has been the task of a few insect repellents for which the mechanistic modes of action on odorant receptors (ORs) are unclear. Here, we study the effects of the repellents DEET and IR3535, and a novel ...

  18. Programming for Adolescents with Behavioral Disorders, Vol. 5.

    ERIC Educational Resources Information Center

    Braaten, Sheldon L., Ed.; Wild, Estelle, Ed.

    This collection of 13 author-contributed papers addresses various aspects of programming for students with behavioral disorders. Papers have the following titles and authors: (1) "System Support and Transition to Adulthood for Adolescents with Seriously Disordered Behaviors: Orchestrating Successful Transitions" (Eugene Edgar); (2) "Targets for…

  19. Ant Trail Pheromone Biosynthesis Is Triggered by a Neuropeptide Hormone

    PubMed Central

    Choi, Man-Yeon; Vander Meer, Robert K.

    2012-01-01

    Our understanding of insect chemical communication including pheromone identification, synthesis, and their role in behavior has advanced tremendously over the last half-century. However, endocrine regulation of pheromone biosynthesis has progressed slowly due to the complexity of direct and/or indirect hormonal activation of the biosynthetic cascades resulting in insect pheromones. Over 20 years ago, a neurohormone, pheromone biosynthesis activating neuropeptide (PBAN) was identified that stimulated sex pheromone biosynthesis in a lepidopteran moth. Since then, the physiological role, target site, and signal transduction of PBAN has become well understood for sex pheromone biosynthesis in moths. Despite that PBAN-like peptides (∼200) have been identified from various insect Orders, their role in pheromone regulation had not expanded to the other insect groups except for Lepidoptera. Here, we report that trail pheromone biosynthesis in the Dufour's gland (DG) of the fire ant, Solenopsis invicta, is regulated by PBAN. RNAi knock down of PBAN gene (in subesophageal ganglia) or PBAN receptor gene (in DG) expression inhibited trail pheromone biosynthesis. Reduced trail pheromone was documented analytically and through a behavioral bioassay. Extension of PBAN's role in pheromone biosynthesis to a new target insect, mode of action, and behavioral function will renew research efforts on the involvement of PBAN in pheromone biosynthesis in Insecta. PMID:23226278

  20. The Mantis Project.

    ERIC Educational Resources Information Center

    Palopoli, Maria L.

    1998-01-01

    Explains an integrated insect unit in which students learn about the characteristics, life cycle, and environment of an organism; learn about specific body structures; and make inferences about the body structure and behaviors of the insects. (DDR)

  1. Mixture and odorant processing in the olfactory systems of insects: a comparative perspective.

    PubMed

    Clifford, Marie R; Riffell, Jeffrey A

    2013-11-01

    Natural olfactory stimuli are often complex mixtures of volatiles, of which the identities and ratios of constituents are important for odor-mediated behaviors. Despite this importance, the mechanism by which the olfactory system processes this complex information remains an area of active study. In this review, we describe recent progress in how odorants and mixtures are processed in the brain of insects. We use a comparative approach toward contrasting olfactory coding and the behavioral efficacy of mixtures in different insect species, and organize these topics around four sections: (1) Examples of the behavioral efficacy of odor mixtures and the olfactory environment; (2) mixture processing in the periphery; (3) mixture coding in the antennal lobe; and (4) evolutionary implications and adaptations for olfactory processing. We also include pertinent background information about the processing of individual odorants and comparative differences in wiring and anatomy, as these topics have been richly investigated and inform the processing of mixtures in the insect olfactory system. Finally, we describe exciting studies that have begun to elucidate the role of the processing of complex olfactory information in evolution and speciation.

  2. A Comparison of Two Treatment Studies: CBT and MDT with Adolescent Male Sex Offenders with Reactive Conduct Disorder and/or Personality Traits

    ERIC Educational Resources Information Center

    Apsche, Jack A.; Bass, Christopher K.; Murphy, Christopher J.

    2004-01-01

    This paper compares the results of two separate published studies regarding adolescent males with conduct disorders and/or personality disorders/traits. Both studies were published in the Behavior Analyst Today, Vol. 3, No. 4, Vol 5, No. 1, respectively. The concept is to evaluate two treatment research studies that represent "the best" practices…

  3. Velocity correlations in laboratory insect swarms

    NASA Astrophysics Data System (ADS)

    Ni, R.; Ouellette, N. T.

    2015-12-01

    In contrast to animal groups such as bird flocks or migratory herds that display net, directed motion, insect swarms do not possess global order. Without such order, it is difficult to define and characterize the transition to collective behavior in swarms; nevertheless, visual observation of swarms strongly suggests that swarming insects do behave collectively. It has recently been suggested that correlation rather than order is the hallmark of emergent collective behavior. Here, we report measurements of spatial velocity correlation functions in laboratory mating swarms of the non-biting midge Chironomus riparius. Although we find some correlation at short distances, our swarms are in general only weakly correlated, in contrast to what has been observed in field studies. Our results hint at the potentially important role of environmental conditions on collective behavior, and suggest that general indicators of the collective nature of swarming are still needed.

  4. A Bio-inspired Collision Avoidance Model Based on Spatial Information Derived from Motion Detectors Leads to Common Routes

    PubMed Central

    Bertrand, Olivier J. N.; Lindemann, Jens P.; Egelhaaf, Martin

    2015-01-01

    Avoiding collisions is one of the most basic needs of any mobile agent, both biological and technical, when searching around or aiming toward a goal. We propose a model of collision avoidance inspired by behavioral experiments on insects and by properties of optic flow on a spherical eye experienced during translation, and test the interaction of this model with goal-driven behavior. Insects, such as flies and bees, actively separate the rotational and translational optic flow components via behavior, i.e. by employing a saccadic strategy of flight and gaze control. Optic flow experienced during translation, i.e. during intersaccadic phases, contains information on the depth-structure of the environment, but this information is entangled with that on self-motion. Here, we propose a simple model to extract the depth structure from translational optic flow by using local properties of a spherical eye. On this basis, a motion direction of the agent is computed that ensures collision avoidance. Flying insects are thought to measure optic flow by correlation-type elementary motion detectors. Their responses depend, in addition to velocity, on the texture and contrast of objects and, thus, do not measure the velocity of objects veridically. Therefore, we initially used geometrically determined optic flow as input to a collision avoidance algorithm to show that depth information inferred from optic flow is sufficient to account for collision avoidance under closed-loop conditions. Then, the collision avoidance algorithm was tested with bio-inspired correlation-type elementary motion detectors in its input. Even then, the algorithm led successfully to collision avoidance and, in addition, replicated the characteristics of collision avoidance behavior of insects. Finally, the collision avoidance algorithm was combined with a goal direction and tested in cluttered environments. The simulated agent then showed goal-directed behavior reminiscent of components of the navigation behavior of insects. PMID:26583771

  5. Selectivity of odorant receptors in insects

    USDA-ARS?s Scientific Manuscript database

    Insect olfactory receptors (ORs) detect chemical signals, shape neuronal physiology and regulate behavior. Although ORs have been categorized as generalists and specialists based on their ligand spectrum, both electrophysiological studies and recent pharmacological investigations show that ORs spec...

  6. Boomeranging in structural defense: phytophagous insect uses cycad trichomes to defend against entomophagy.

    PubMed

    Marler, Thomas E

    2012-11-01

    Plant defensive behaviors that resist arthropod herbivory include trichome-mediated defenses, and variation in plant trichome morphology and abundance provides examples of the mechanistic complexities of insect-plant interactions. Trichomes were removed from Cycas revoluta cataphylls on the island of Guam to reveal Aulacaspis yasumatsui scale infestation, and predation of the newly exposed insects by pre-existing Rhyzobius lophanthae beetles commenced within one day. The quotient of predated/total scale insects was 0.5 by day 4 and stabilized at that found on adjacent glabrous leaves in about one week. The trichome phenotype covering the C. revoluta cataphyll complex offers the invasive A. yasumatsui armored scale effectual enemy-free space in this system. This pest and predator share no known evolutionary history with C. revoluta, therefore, the adaptive significance of this plant behavior in natural habitat is not yet known.

  7. Extracellular wire tetrode recording in brain of freely walking insects.

    PubMed

    Guo, Peiyuan; Pollack, Alan J; Varga, Adrienn G; Martin, Joshua P; Ritzmann, Roy E

    2014-04-01

    Increasing interest in the role of brain activity in insect motor control requires that we be able to monitor neural activity while insects perform natural behavior. We previously developed a technique for implanting tetrode wires into the central complex of cockroach brains that allowed us to record activity from multiple neurons simultaneously while a tethered cockroach turned or altered walking speed. While a major advance, tethered preparations provide access to limited behaviors and often lack feedback processes that occur in freely moving animals. We now present a modified version of that technique that allows us to record from the central complex of freely moving cockroaches as they walk in an arena and deal with barriers by turning, climbing or tunneling. Coupled with high speed video and cluster cutting, we can now relate brain activity to various parameters of the movement of freely behaving insects.

  8. A Non-lethal water-based removal-reapplication technique for behavioral analysis of cuticular compounds of ants.

    PubMed

    Roux, Olivier; Martin, Jean-Michel; Ghomsi, Nathan Tene; Dejean, Alain

    2009-08-01

    Interspecific relationships among insects are often mediated by chemical cues, including non-volatile cuticular compounds. Most of these compounds are hydrocarbons that necessitate the use of solvents for their extraction, identification, and manipulation during behavioral assays. The toxicity of these solvents often precludes the removal and reapplication of hydrocarbons from and to live insects. As a consequence, dummies often are used in behavioral assays, but their passivity can bias the behavior of the responding insects. To overcome these limitations, we propose a method where cuticular compounds are extracted from live ants by placing them into glass vials half-filled with tepid water (ca. 34 degrees C) and vigorously shaking the vials to form an emulsion whose supernatant can be analyzed and/or reapplied to other ants. We demonstrate that cuticular compounds can be extracted from workers of the red fire ant, Solenopsis saevissima, and reapplied to the cuticle of workers from a sympatric species, Camponotus blandus (both Hymenoptera: Formicidae), while keeping the ants alive. Gas chromatographic-mass spectrometric analysis and behavioral assays were used to confirm the successful transfer of the behaviorally active compounds.

  9. The Insect SNMP Gene Family

    DTIC Science & Technology

    2009-01-01

    The insect SNMP gene family Richard G. Vogt a,*,1, Natalie E. Miller a, Rachel Litvack a, Richard A. Fandino a, Jackson Sparks a, Jon Staples a...Wallace Beltsville Agricultural Research Center Plant Sciences Institute, Invasive Insect Biocontrol and Behavior Laboratory, Bldg. 007, Rm. 030...keywords: Pheromone Receptors Olfactory Gustatory Chemosensory Gustatory Mosquito Fly a b s t r a c t SNMPs are membrane proteins observed to associate with

  10. Study of self-ion irradiated nanostructured ferritic alloy (NFA) and silicon carbide-nanostructured ferritic alloy (SiC-NFA) cladding materials

    NASA Astrophysics Data System (ADS)

    Ning, Kaijie; Bai, Xianming; Lu, Kathy

    2018-07-01

    Silicon carbide-nanostructured ferritic alloy (SiC-NFA) materials are expected to have the beneficial properties of each component for advanced nuclear claddings. Fabrication of pure NFA (0 vol% SiC-100 vol% NFA) and SiC-NFAs (2.5 vol% SiC-97.5 vol% NFA, 5 vol% SiC-95 vol% NFA) has been reported in our previous work. This paper is focused on the study of radiation damage in these materials under 5 MeV Fe++ ion irradiation with a dose up to ∼264 dpa. It is found that the material surfaces are damaged to high roughness with irregularly shaped ripples, which can be explained by the Bradley-Harper (B-H) model. The NFA matrix shows ion irradiation induced defect clusters and small dislocation loops, while the crystalline structure is maintained. Reaction products of Fe3Si and Cr23C6 are identified in the SiC-NFA materials, with the former having a partially crystalline structure but the latter having a fully amorphous structure upon irradiation. The different radiation damage behaviors of NFA, Fe3Si, and Cr23C6 are explained using the defect reaction rate theory.

  11. Eyes Matched to the Prize: The State of Matched Filters in Insect Visual Circuits.

    PubMed

    Kohn, Jessica R; Heath, Sarah L; Behnia, Rudy

    2018-01-01

    Confronted with an ever-changing visual landscape, animals must be able to detect relevant stimuli and translate this information into behavioral output. A visual scene contains an abundance of information: to interpret the entirety of it would be uneconomical. To optimally perform this task, neural mechanisms exist to enhance the detection of important features of the sensory environment while simultaneously filtering out irrelevant information. This can be accomplished by using a circuit design that implements specific "matched filters" that are tuned to relevant stimuli. Following this rule, the well-characterized visual systems of insects have evolved to streamline feature extraction on both a structural and functional level. Here, we review examples of specialized visual microcircuits for vital behaviors across insect species, including feature detection, escape, and estimation of self-motion. Additionally, we discuss how these microcircuits are modulated to weigh relevant input with respect to different internal and behavioral states.

  12. Insect odorant receptors are molecular targets of the insect repellent DEET.

    PubMed

    Ditzen, Mathias; Pellegrino, Maurizio; Vosshall, Leslie B

    2008-03-28

    DEET (N,N-diethyl-meta-toluamide) is the world's most widely used topical insect repellent, with broad effectiveness against most insects. Its mechanism of action and molecular target remain unknown. Here, we show that DEET blocks electrophysiological responses of olfactory sensory neurons to attractive odors in Anopheles gambiae and Drosophila melanogaster. DEET inhibits behavioral attraction to food odors in Drosophila, and this inhibition requires the highly conserved olfactory co-receptor OR83b. DEET inhibits odor-evoked currents mediated by the insect odorant receptor complex, comprising a ligand-binding subunit and OR83b. We conclude that DEET masks host odor by inhibiting subsets of heteromeric insect odorant receptors that require the OR83b co-receptor. The identification of candidate molecular targets for the action of DEET may aid in the design of safer and more effective insect repellents.

  13. An Ecological Perspective on Sleep Disruption.

    PubMed

    Tougeron, Kévin; Abram, Paul K

    2017-09-01

    Despite its evolutionary importance and apparent ubiquity among animals, the ecological significance of sleep is largely unresolved. The ecology of sleep has been particularly neglected in invertebrates. In insects, recent neurobehavioral research convincingly demonstrates that resting behavior shares several common characteristics with sleep in vertebrates. Laboratory studies have produced compelling evidence that sleep disruption can cause changes in insect daily activity patterns (via "sleep rebound") and have consequences for behavioral performance during active periods. However, factors that could cause insect sleep disruption in nature have not been considered nor have the ecological consequences. Drawing on evidence from laboratory studies, we argue that sleep disruption may be an overlooked component of insect ecology and could be caused by a variety of anthropogenic and nonanthropogenic factors in nature. We identify several candidate sleep-disrupting factors and provide new insights on the potential consequences of sleep disruption on individual fitness, species interactions, and ecosystem services. We propose an experimental framework to bridge the current gap in knowledge between laboratory and field studies. We conclude that sleep disruption is a potential mechanism underpinning variation in behavioral, population, and community-level processes associated with several aspects of global change.

  14. New three-phase polymer-ceramic composite materials for miniaturized microwave antennas

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Zhang, Jie; Yue, Zhenxing; Li, Longtu

    2016-09-01

    Unique polymer-ceramic composites for microwave antenna applications were prepared via melt extrusion using high-density polyethylene (HDPE) as the matrix and low-density polyethylene (LDPE) coated BaO-Nd2O3-TiO2 (BNT) ceramic-powders as the filler. By incorporating LDPE into the composites via a coating route, high ceramic-powder volume content (up to 50 vol%) could be achieved. The composites exhibited good microwave dielectric and thermomechanical behaviors. As BNT ceramic content increased from 10 vol% to 50 vol%, the permittivity of the composites increased from 3.45 (9 GHz) to 11.87 (7 GHz), while the dielectric loss remained lower than 0.0016. Microstrip antennas for applications in global positioning systems (GPS) were designed and fabricated from the composites containing 50 vol% BNT ceramics. The results indicate that the composites that have suitable permittivity and low dielectric loss are promising candidates for applications in miniaturized microwave devices, such as antennas.

  15. Literature, Literary Values, and the Teaching of Literature: Abstracts of Doctoral Dissertations Published in "Dissertation Abstracts International," May through July 1978 (Vol. 38 No. 11 through Vol. 39 No. 1).

    ERIC Educational Resources Information Center

    ERIC Clearinghouse on Reading and Communication Skills, Urbana, IL.

    This collection of abstracts is part of a continuing series providing information on recent doctoral dissertations. The 15 titles deal with a variety of topics, including the following: human sexual information, behaviors, and attitudes in fiction for young people; affective responses of adolescents to a poem; objectives for the junior high…

  16. Increased expression of a cGMP-dependent protein kinase in rotation-adapted western corn rootworm (Diabrotica virgifera virgifera L.).

    PubMed

    Garabagi, Freydoun; Wade French, B; Schaafsma, Arthur W; Peter Pauls, K

    2008-07-01

    A new 'variant' behavior in western corn rootworm (WCR) has resulted in egg-laying into non-cornfields, compared to 'normal' deposition of eggs in cornfields, allowing these insects to circumvent crop rotation. No morphological or genetic characteristics have been defined to differentiate between the normal and variant biotypes. Cyclic GMP-dependent protein kinases (PKG) have been implicated in the regulation of behaviors in vertebrates, insects, and nematodes, including foraging behavior in Drosophila. A cDNA with homology to the Drosophila melanogaster foraging gene (called Dvfor1) was cloned from WCR. The deduced DvFOR1 protein is approximately 70% similar to FOR proteins in Drosophila, silkworm (Bombyx mori) and honeybee (Apis mellifera). It contains a coiled-coil region, two tandem cyclic nucleotide-binding domains, a serine/threonine kinase catalytic domain, and a serine/threonine kinase catalytic domain extension, which are all characteristically found in PKG proteins. Real-time PCR assays of foraging transcript levels in heads of normal and rotation adapted females of WCR obtained from lab-reared insect colonies indicated that the variants had higher levels (25%) of PKG expression than normals. The magnitude of this increase is similar to that observed in Drosophila rover phenotypes compared to sitter phenotypes. However, Diabrotica contains at least two different foraging gene transcripts, which complicates establishing a direct link between the level of gene expression and insect behavior.

  17. Perception of solar UVB radiation by phytophagous insects: Behavioral responses and ecosystem implications

    PubMed Central

    Mazza, Carlos A.; Zavala, Jorge; Scopel, Ana L.; Ballaré, Carlos L.

    1999-01-01

    Most of our present knowledge about the impacts of solar UVB radiation on terrestrial ecosystems comes from studies with plants. Recently, the effects of UVB on the growth and survival of consumer species have begun to receive attention, but very little is known about UVB impacts on animal behavior. Here we report that manipulations of the flux of solar UVB received by field-grown soybean crops had large and consistent effects on the density of the thrips (Caliothrips phaseoli, Thysanoptera: Thripidae) populations that invaded the canopies, as well as on the amount of leaf damage caused by the insects. Solar UVB strongly reduced thrips herbivory. Thrips not only preferred leaves from plants that were not exposed to solar UVB over leaves from UVB-exposed plants in laboratory and field choice experiments, but they also appeared to directly sense and avoid exposure to solar UVB. Additional choice experiments showed that soybean leaf consumption by the late-season soybean worm Anticarsia gemmatalis (Lepidoptera: Noctuidae) was much less intense in leaves with even slight symptoms of an early thrips attack than in undamaged leaves. These experiments suggest that phytophagous insects can present direct and indirect behavioral responses to solar UVB. The indirect responses are mediated by changes in the plant host that are induced by UVB and, possibly, by other insects whose behavior is affected by UVB. PMID:9927679

  18. Colors of attraction: Modeling insect flight to light behavior.

    PubMed

    Donners, Maurice; van Grunsven, Roy H A; Groenendijk, Dick; van Langevelde, Frank; Bikker, Jan Willem; Longcore, Travis; Veenendaal, Elmar

    2018-06-26

    Light sources attract nocturnal flying insects, but some lamps attract more insects than others. The relation between the properties of a light source and the number of attracted insects is, however, poorly understood. We developed a model to quantify the attractiveness of light sources based on the spectral output. This model is fitted using data from field experiments that compare a large number of different light sources. We validated this model using two additional datasets, one for all insects and one excluding the numerous Diptera. Our model facilitates the development and application of light sources that attract fewer insects without the need for extensive field tests and it can be used to correct for spectral composition when formulating hypotheses on the ecological impact of artificial light. In addition, we present a tool allowing the conversion of the spectral output of light sources to their relative insect attraction based on this model. © 2018 Wiley Periodicals, Inc.

  19. Interfacing insect brain for space applications.

    PubMed

    Di Pino, Giovanni; Seidl, Tobias; Benvenuto, Antonella; Sergi, Fabrizio; Campolo, Domenico; Accoto, Dino; Maria Rossini, Paolo; Guglielmelli, Eugenio

    2009-01-01

    Insects exhibit remarkable navigation capabilities that current control architectures are still far from successfully mimic and reproduce. In this chapter, we present the results of a study on conceptualizing insect/machine hybrid controllers for improving autonomy of exploratory vehicles. First, the different principally possible levels of interfacing between insect and machine are examined followed by a review of current approaches towards hybridity and enabling technologies. Based on the insights of this activity, we propose a double hybrid control architecture which hinges around the concept of "insect-in-a-cockpit." It integrates both biological/artificial (insect/robot) modules and deliberative/reactive behavior. The basic assumption is that "low-level" tasks are managed by the robot, while the "insect intelligence" is exploited whenever high-level problem solving and decision making is required. Both neural and natural interfacing have been considered to achieve robustness and redundancy of exchanged information.

  20. Response of native insect communities to invasive plants.

    PubMed

    Bezemer, T Martijn; Harvey, Jeffrey A; Cronin, James T

    2014-01-01

    Invasive plants can disrupt a range of trophic interactions in native communities. As a novel resource they can affect the performance of native insect herbivores and their natural enemies such as parasitoids and predators, and this can lead to host shifts of these herbivores and natural enemies. Through the release of volatile compounds, and by changing the chemical complexity of the habitat, invasive plants can also affect the behavior of native insects such as herbivores, parasitoids, and pollinators. Studies that compare insects on related native and invasive plants in invaded habitats show that the abundance of insect herbivores is often lower on invasive plants, but that damage levels are similar. The impact of invasive plants on the population dynamics of resident insect species has been rarely examined, but invasive plants can influence the spatial and temporal dynamics of native insect (meta)populations and communities, ultimately leading to changes at the landscape level.

  1. Effect of Light Availability on the Interaction between Maritime Pine and the Pine Weevil: Light Drives Insect Feeding Behavior But Also the Defensive Capabilities of the Host

    PubMed Central

    Suárez-Vidal, Estefanía; López-Goldar, Xosé; Sampedro, Luis; Zas, Rafael

    2017-01-01

    Light is a major environmental factor that may determine the interaction between plants and herbivores in several ways, including top-down effects through changes in herbivore behavior and bottom-up effects mediated by alterations of plant physiology. Here we explored the relative contribution of these two regulation processes to the outcome of the interaction of pine trees with a major forest pest, the pine weevil (Hylobius abietis). We studied to what extent light availability influence insect feeding behavior and/or the ability of pines to produce induced defenses in response to herbivory. For this purpose, 3-year old Pinus pinaster plants from three contrasting populations were subjected to 6 days of experimental herbivory by the pine weevil under two levels of light availability (complete darkness or natural sunlight) independently applied to the plant and to the insect in a fully factorial design. Light availability strongly affected the pine weevil feeding behavior. The pine weevil fed more and caused larger feeding scars in darkness than under natural sunlight. Besides, under the more intense levels of weevil damage (i.e., those registered with insects in darkness), light availability also affected the pine’s ability to respond to insect feeding by producing induced resin defenses. These results were consistent across the three studied populations despite they differed in weevil susceptibility and inducibility of defenses. Morocco was the most damaged population and the one that induced more defensive compounds. Overall, results indicate that light availability modulates the outcome of the pine–weevil interactions through both bottom-up and top-down regulation mechanisms. PMID:28912787

  2. Identification of a novel hemolymph peptide that modulates silkworm feeding motivation.

    PubMed

    Nagata, Shinji; Morooka, Nobukatsu; Asaoka, Kiyoshi; Nagasawa, Hiromichi

    2011-03-04

    Phytophagous insects do not constantly chew their diets; most of their time is spent in a non-feeding quiescent state even though they live on or around their diets. Following starvation, phytophagous insect larvae exhibit enhanced foraging behaviors such as nibbling and walking similar to the sequential behavior that occurs prior to each meal. Although extensive physiological studies have revealed regularly occurring feeding behaviors in phytophagous insects, little has been elucidated regarding the mechanism at the molecular level. Here, we report identification and characterization of a novel 62-amino acid peptide, designated as hemolymph major anionic peptide (HemaP), from the hemolymph of Bombyx mori larvae that induces foraging behaviors. The endogenous HemaP levels are significantly increased by diet deprivation, whereas refeeding after starvation returns them to basal levels. In larvae fed ad libitum, hemolymph HemaP levels fluctuate according to the feeding cycle, indicating that locomotor-associated feeding behaviors of B. mori larvae are initiated when HemaP levels exceed an unidentified threshold. Furthermore, administration of exogenous HemaP mimics the starvation-experienced state by affecting dopamine levels in the suboesophageal ganglion, which coordinates neck and mandible movements. These data strongly suggest that fluctuation of hemolymph HemaP levels modulates the regularly occurring feeding-motivated behavior in B. mori by triggering feeding initiation.

  3. Identification of a Novel Hemolymph Peptide That Modulates Silkworm Feeding Motivation*

    PubMed Central

    Nagata, Shinji; Morooka, Nobukatsu; Asaoka, Kiyoshi; Nagasawa, Hiromichi

    2011-01-01

    Phytophagous insects do not constantly chew their diets; most of their time is spent in a non-feeding quiescent state even though they live on or around their diets. Following starvation, phytophagous insect larvae exhibit enhanced foraging behaviors such as nibbling and walking similar to the sequential behavior that occurs prior to each meal. Although extensive physiological studies have revealed regularly occurring feeding behaviors in phytophagous insects, little has been elucidated regarding the mechanism at the molecular level. Here, we report identification and characterization of a novel 62-amino acid peptide, designated as hemolymph major anionic peptide (HemaP), from the hemolymph of Bombyx mori larvae that induces foraging behaviors. The endogenous HemaP levels are significantly increased by diet deprivation, whereas refeeding after starvation returns them to basal levels. In larvae fed ad libitum, hemolymph HemaP levels fluctuate according to the feeding cycle, indicating that locomotor-associated feeding behaviors of B. mori larvae are initiated when HemaP levels exceed an unidentified threshold. Furthermore, administration of exogenous HemaP mimics the starvation-experienced state by affecting dopamine levels in the suboesophageal ganglion, which coordinates neck and mandible movements. These data strongly suggest that fluctuation of hemolymph HemaP levels modulates the regularly occurring feeding-motivated behavior in B. mori by triggering feeding initiation. PMID:21177851

  4. Student's experiment to fly on third Shuttle mission

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A spaceborne student experiment on insect motion during weightlessness scheduled to fly on the third flight of the space shuttle is described. The experiment will focus on the flight behavior in zero gravity of two species of flying insects with differing ratios of body mass to wing area, the velvetbean caterpillar moth and the honeybee drone. Ten insects of each species will be carried in separate canisters. The crew will remove the canisters from the storage locker and attach them to the mid-deck wall, where the insects will be observed and filmed by a data acquisition camera.

  5. Chemical signaling and insect attraction is a conserved trait in yeasts.

    PubMed

    Becher, Paul G; Hagman, Arne; Verschut, Vasiliki; Chakraborty, Amrita; Rozpędowska, Elżbieta; Lebreton, Sébastien; Bengtsson, Marie; Flick, Gerhard; Witzgall, Peter; Piškur, Jure

    2018-03-01

    Yeast volatiles attract insects, which apparently is of mutual benefit, for both yeasts and insects. However, it is unknown whether biosynthesis of metabolites that attract insects is a basic and general trait, or if it is specific for yeasts that live in close association with insects. Our goal was to study chemical insect attractants produced by yeasts that span more than 250 million years of evolutionary history and vastly differ in their metabolism and lifestyle. We bioassayed attraction of the vinegar fly Drosophila melanogaster to odors of phylogenetically and ecologically distinct yeasts grown under controlled conditions. Baker's yeast Saccharomyces cerevisiae , the insect-associated species Candida californica , Pichia kluyveri and Metschnikowia andauensis , wine yeast Dekkera bruxellensis , milk yeast Kluyveromyces lactis , the vertebrate pathogens Candida albicans and Candida glabrata , and oleophilic Yarrowia lipolytica were screened for fly attraction in a wind tunnel. Yeast headspace was chemically analyzed, and co-occurrence of insect attractants in yeasts and flowering plants was investigated through a database search. In yeasts with known genomes, we investigated the occurrence of genes involved in the synthesis of key aroma compounds. Flies were attracted to all nine yeasts studied. The behavioral response to baker's yeast was independent of its growth stage. In addition to Drosophila , we tested the basal hexapod Folsomia candida (Collembola) in a Y-tube assay to the most ancient yeast, Y. lipolytica, which proved that early yeast signals also function on clades older than neopteran insects. Behavioral and chemical data and a search for selected genes of volatile metabolites underline that biosynthesis of chemical signals is found throughout the yeast clade and has been conserved during the evolution of yeast lifestyles. Literature and database reviews corroborate that yeast signals mediate mutualistic interactions between insects and yeasts. Moreover, volatiles emitted by yeasts are commonly found also in flowers and attract many insect species. The collective evidence suggests that the release of volatile signals by yeasts is a widespread and phylogenetically ancient trait, and that insect-yeast communication evolved prior to the emergence of flowering plants. Co-occurrence of the same attractant signals in yeast and flowers suggests that yeast-insect communication may have contributed to the evolution of insect-mediated pollination in flowers.

  6. Indirect Plant Defense against Insect Herbivores: A Review

    USDA-ARS?s Scientific Manuscript database

    Plants respond to herbivore attack by launching two types of defenses: direct defense and indirect defense. Direct defense includes all plant traits that increase the resistance of host plants to attacking insect herbivores by affecting the physiology and/or behavior of the attackers. Indirect defe...

  7. Magnetoreception in Eusocial Insects: An Update

    USDA-ARS?s Scientific Manuscript database

    Behavioral experiments for magnetoreception in eusocial insects in the last decade are reviewed. Ants and bees use the geomagnetic field to orient and navigate in areas around their nests and in migratory paths. Bees show sensitivity to small changes in magnetic fields in conditioning experiments a...

  8. Wind alters landing dynamics in bumblebees.

    PubMed

    Chang, Jeremy J; Crall, James D; Combes, Stacey A

    2016-09-15

    Landing is an important but understudied behavior that flying animals must perform constantly. In still air, insects decelerate smoothly prior to landing by employing the relatively simple strategy of maintaining a constant rate of image expansion during their approach. However, it is unclear whether insects employ this strategy when faced with challenging flight environments. Here, we tested the effects of wind on bumblebees (Bombus impatiens) landing on flowers. We find that bees' approach paths to flowers shift from multidirectional in still air to unidirectional in wind, regardless of flower orientation. In addition, bees landing in a 3.5 m s -1 headwind do not decelerate smoothly, but rather maintain a high flight speed until contact, resulting in higher peak decelerations upon impact. These findings suggest that wind has a strong influence on insect landing behavior and performance, with important implications for the design of micro aerial vehicles and the ecomechanics of insect flight. © 2016. Published by The Company of Biologists Ltd.

  9. The Genome and Methylome of a Beetle with Complex Social Behavior, Nicrophorus vespilloides (Coleoptera: Silphidae).

    PubMed

    Cunningham, Christopher B; Ji, Lexiang; Wiberg, R Axel W; Shelton, Jennifer; McKinney, Elizabeth C; Parker, Darren J; Meagher, Richard B; Benowitz, Kyle M; Roy-Zokan, Eileen M; Ritchie, Michael G; Brown, Susan J; Schmitz, Robert J; Moore, Allen J

    2015-10-09

    Testing for conserved and novel mechanisms underlying phenotypic evolution requires a diversity of genomes available for comparison spanning multiple independent lineages. For example, complex social behavior in insects has been investigated primarily with eusocial lineages, nearly all of which are Hymenoptera. If conserved genomic influences on sociality do exist, we need data from a wider range of taxa that also vary in their levels of sociality. Here, we present the assembled and annotated genome of the subsocial beetle Nicrophorus vespilloides, a species long used to investigate evolutionary questions of complex social behavior. We used this genome to address two questions. First, do aspects of life history, such as using a carcass to breed, predict overlap in gene models more strongly than phylogeny? We found that the overlap in gene models was similar between N. vespilloides and all other insect groups regardless of life history. Second, like other insects with highly developed social behavior but unlike other beetles, does N. vespilloides have DNA methylation? We found strong evidence for an active DNA methylation system. The distribution of methylation was similar to other insects with exons having the most methylated CpGs. Methylation status appears highly conserved; 85% of the methylated genes in N. vespilloides are also methylated in the hymentopteran Nasonia vitripennis. The addition of this genome adds a coleopteran resource to answer questions about the evolution and mechanistic basis of sociality and to address questions about the potential role of methylation in social behavior. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  10. Evolution of a complex behavior: the origin and initial diversification of foliar galling by Permian insects

    NASA Astrophysics Data System (ADS)

    Schachat, Sandra R.; Labandeira, Conrad C.

    2015-04-01

    A central notion of the early evolution of insect galling is that this unique behavior was uncommon to rare before the diversification of angiosperms 135 to 125 m.yr. ago. However, evidence accumulated during recent years shows that foliar galls were diverse and locally abundant as early as the Permian Period, 299 to 252 m.yr. ago. In particular, a diversity of leaf galling during the Early Permian has recently been documented by the plant-damage record of foliar galls and, now, our interpretation of the body-fossil record of culprit insect gallers. Small size is a prerequisite for gallers. Wing-length measurements of Permian insects indicate that several small-bodied hemipteroid lineages originated early during the Permian, some descendant lineages of which gall the leaves of seed plants to the present day. The earliest foliar gallers likely were Protopsyllidiidae (Hemiptera) and Lophioneuridae (Thripida). Much of the Early Permian was a xeric interval, and modern galls are most common in dry, extra-tropical habitats such as scrubland and deserts. Plant-damage, insect body fossils, and the paleoclimate record collectively support the ecological expansion of foliar galling during the Early Permian and its continued expansion through the Late Permian.

  11. Temporal Statistics of Natural Image Sequences Generated by Movements with Insect Flight Characteristics

    PubMed Central

    Schwegmann, Alexander; Lindemann, Jens Peter; Egelhaaf, Martin

    2014-01-01

    Many flying insects, such as flies, wasps and bees, pursue a saccadic flight and gaze strategy. This behavioral strategy is thought to separate the translational and rotational components of self-motion and, thereby, to reduce the computational efforts to extract information about the environment from the retinal image flow. Because of the distinguishing dynamic features of this active flight and gaze strategy of insects, the present study analyzes systematically the spatiotemporal statistics of image sequences generated during saccades and intersaccadic intervals in cluttered natural environments. We show that, in general, rotational movements with saccade-like dynamics elicit fluctuations and overall changes in brightness, contrast and spatial frequency of up to two orders of magnitude larger than translational movements at velocities that are characteristic of insects. Distinct changes in image parameters during translations are only caused by nearby objects. Image analysis based on larger patches in the visual field reveals smaller fluctuations in brightness and spatial frequency composition compared to small patches. The temporal structure and extent of these changes in image parameters define the temporal constraints imposed on signal processing performed by the insect visual system under behavioral conditions in natural environments. PMID:25340761

  12. Impacts of Insect Herbivores on Plant Populations.

    PubMed

    Myers, Judith H; Sarfraz, Rana M

    2017-01-31

    Apparent feeding damage by insects on plants is often slight. Thus, the influences of insect herbivores on plant populations are likely minor. The role of insects on host-plant populations can be elucidated via several methods: stage-structured life tables of plant populations manipulated by herbivore exclusion and seed-addition experiments, tests of the enemy release hypothesis, studies of the effects of accidentally and intentionally introduced insect herbivores, and observations of the impacts of insect species that show outbreak population dynamics. These approaches demonstrate that some, but not all, insect herbivores influence plant population densities. At times, insect-feeding damage kills plants, but more often, it reduces plant size, growth, and seed production. Plant populations for which seed germination is site limited will not respond at the population level to reduced seed production. Insect herbivores can influence rare plant species and need to be considered in conservation programs. Alterations due to climate change in the distributions of insect herbivores indicate the possibility of new influences on host plants. Long-term studies are required to show if density-related insect behavior stabilizes plant populations or if environmental variation drives most temporal fluctuations in plant densities. Finally, insects can influence plant populations and communities through changing the diversity of nonhost species, modifying nutrient fluxes, and rejuvenating over mature forests.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Xiao-Dong; Xu, Yun-Bo, E-mail: yunbo_xu@126.com; Yang, Xiao-Long

    Microstructures composed of lath martensite and retained austenite with volume fraction between 8.0 vol.% and 12.0 vol.% were obtained in a low-C low-Si Al-free steel through hot-rolling direct quenching and dynamical partitioning (HDQ&DP) processes. The austenite stabilization mechanism in the low-C low-Si Al-free steel under the special dynamical partitioning processes is investigated by analyzing the carbon partition behavior from martensite to austenite and the carbide precipitation-coarsening behavior in martensite laths combining with the possible hot rolling deformation inheritance. Results show that the satisfying retained austenite amount in currently studied low-Si Al-free HDQ&DP steel is caused by the high-efficiency carbon enrichmentmore » in the 30–80 nm thick regions of austenite near the interfaces in the hot-rolled ultra-fast cooled structure and the avoidance of serious carbides coarsening during the continuous cooling procedures. The excellent strength-elongation product reaching up to 26,000 MPa% shows that the involved HDQ&DP process is a promising method to develop a new generation of advanced high strength steel. - Highlights: • HDQ&DP processes were applied to a low-C low-Si Al-free steel. • Effective partitioning time during the continuous cooling processes is 1–220 s. • Retained austenite with volume fraction between 8.0 vol. % and 12.0 vol. % has been obtained. • The special austenite stabilization mechanism has been expounded.« less

  14. AC-DC electropenetrography: a new diagnostic technology for study of feeding behavior of piercing-sucking insects

    USDA-ARS?s Scientific Manuscript database

    Studying feeding, plant damage, and transmission of plant pathogens by hemipteran insect pests is challenging. Hemipteran piercing-sucking mouthparts, the stylets, are probed into opaque plant tissues precluding direct observation. This challenge was overcome by the invention of electropenetrography...

  15. Bug City: Aquatic Insects [Videotape].

    ERIC Educational Resources Information Center

    1998

    "Bug City" is a video series created to help children learn about insects and other small critters. All aspects of bug life are touched upon including body structure, food, habitat, life cycle, mating habits, camouflage, mutualism (symbiosis), adaptations, social behavior, and more. Each program features dramatic microscopic photography,…

  16. A geometric model of mortality and crop protection for insects feeding on discrete toxicant deposits.

    PubMed

    Ebert, Timothy; Derksen, Richard

    2004-04-01

    Current theory governing the biological effectiveness of toxicants stresses the dose-response relationship and focuses on uniform toxicant distributions in the insect's environment. However, toxicants are seldom uniformly dispersed under field conditions. Toxicant distribution affects bioavailability, but the mechanics of such interactions is not well documented. We present a geometric model of the interactions between insects and heterogeneously distributed toxicants. From the model, we conclude the following: 1) There is an optimal droplet size, and droplets both smaller and larger than this optimum will decrease efficacy. 2) There is an ideal droplet distribution. Droplets should be spaced based on two criteria: calculate the allowable damage, double this quantity, and one lethal deposit should be placed in this area; and define the quantity of leaf the larva could eat before the toxicant decays below the lethal level and place one lethal deposit within this area. 3) Distributions of toxicant where deposits are sublethal will often be ineffective, but the application is wasteful if deposits contain more than a lethal dose. 4) Insect behavior both as individuals and collectively influences the level of crop production provided by an application. This conclusion has implications for both crop protection and natural plant-insect interactions. The effective utilization of new more environmentally sensitive toxicants may depend on how well we understand how heterogeneous toxicant distributions interact with insect behavior to determine the biological outcome.

  17. Nitric oxide contributes to high-salt perception in a blood-sucking insect model.

    PubMed

    Cano, Agustina; Pontes, Gina; Sfara, Valeria; Anfossi, Diego; Barrozo, Romina B

    2017-11-14

    In all organisms, salts produce either appetitive or aversive responses depending on the concentration. While low-salt concentration in food elicits positive responses to ingest, high-salt triggers aversion. Still the mechanisms involved in this dual behavior have just started to be uncovered in some organisms. In Rhodnius prolixus, using pharmacological and behavioral assays, we demonstrated that upon high-salt detection in food a nitric oxide (NO) dependent cascade is activated. This activation involves a soluble guanylate cyclase (sGC) and the production of cyclic guanosine monophosphate (cGMP). Thus, appetitive responses to low-salt diets turn to aversion whenever this cascade is activated. Conversely, insects feed over aversive high-salt solutions when it is blocked by reducing NO levels or by affecting the sGC activity. The activation of NO/sGC/cGMP cascade commands the avoidance feeding behavior in R. prolixus. Investigations in other insect species should examine the possibility that high-salt aversion is mediated by NO/sSG/cGMP signaling.

  18. Spatial fidelity of workers predicts collective response to disturbance in a social insect.

    PubMed

    Crall, James D; Gravish, Nick; Mountcastle, Andrew M; Kocher, Sarah D; Oppenheimer, Robert L; Pierce, Naomi E; Combes, Stacey A

    2018-04-03

    Individuals in social insect colonies cooperate to perform collective work. While colonies often respond to changing environmental conditions by flexibly reallocating workers to different tasks, the factors determining which workers switch and why are not well understood. Here, we use an automated tracking system to continuously monitor nest behavior and foraging activity of uniquely identified workers from entire bumble bee (Bombus impatiens) colonies foraging in a natural outdoor environment. We show that most foraging is performed by a small number of workers and that the intensity and distribution of foraging is actively regulated at the colony level in response to forager removal. By analyzing worker nest behavior before and after forager removal, we show that spatial fidelity of workers within the nest generates uneven interaction with relevant localized information sources, and predicts which workers initiate foraging after disturbance. Our results highlight the importance of spatial fidelity for structuring information flow and regulating collective behavior in social insect colonies.

  19. Comparative study on the corrosion behavior of the cold rolled and hot rolled low-alloy steels containing copper and antimony in flue gas desulfurization environment

    NASA Astrophysics Data System (ADS)

    Park, S. A.; Kim, J. G.; He, Y. S.; Shin, K. S.; Yoon, J. B.

    2014-12-01

    The correlation between the corrosion and microstructual characteristics of cold rolled and hot rolled low-alloy steels containing copper and antimony was established. The corrosion behavior of the specimens used in flue gas desulfurization systems was examined by electrochemical and weight loss measurements in an aggressive solution of 16.9 vol % H2SO4 + 0.35 vol % HCl at 60°C, pH 0.3. It has been shown that the corrosion rate of hot rolled steel is lower than that of cold rolled steel. The corrosion rate of cold rolled steel was increased by grain refinement, inclusion formation, and preferred grain orientation.

  20. Early evolution and ecology of camouflage in insects

    PubMed Central

    Pérez-de la Fuente, Ricardo; Delclòs, Xavier; Peñalver, Enrique; Speranza, Mariela; Wierzchos, Jacek; Ascaso, Carmen; Engel, Michael S.

    2012-01-01

    Taxa within diverse lineages select and transport exogenous materials for the purposes of camouflage. This adaptive behavior also occurs in insects, most famously in green lacewing larvae who nestle the trash among setigerous cuticular processes, known as trash-carrying, rendering them nearly undetectable to predators and prey, as well as forming a defensive shield. We report an exceptional discovery of a green lacewing larva in Early Cretaceous amber from Spain with specialized cuticular processes forming a dorsal basket that carry a dense trash packet. The trash packet is composed of trichomes of gleicheniacean ferns, which highlight the presence of wildfires in this early forest ecosystem. This discovery provides direct evidence of an early acquisition of a sophisticated behavioral suite in stasis for over 110 million years and an ancient plant–insect interaction. PMID:23236135

  1. Early evolution and ecology of camouflage in insects.

    PubMed

    Pérez-de la Fuente, Ricardo; Delclòs, Xavier; Peñalver, Enrique; Speranza, Mariela; Wierzchos, Jacek; Ascaso, Carmen; Engel, Michael S

    2012-12-26

    Taxa within diverse lineages select and transport exogenous materials for the purposes of camouflage. This adaptive behavior also occurs in insects, most famously in green lacewing larvae who nestle the trash among setigerous cuticular processes, known as trash-carrying, rendering them nearly undetectable to predators and prey, as well as forming a defensive shield. We report an exceptional discovery of a green lacewing larva in Early Cretaceous amber from Spain with specialized cuticular processes forming a dorsal basket that carry a dense trash packet. The trash packet is composed of trichomes of gleicheniacean ferns, which highlight the presence of wildfires in this early forest ecosystem. This discovery provides direct evidence of an early acquisition of a sophisticated behavioral suite in stasis for over 110 million years and an ancient plant-insect interaction.

  2. Influence of nanosize clay platelets on the mechanical properties of glass fiber reinforced polyester composites.

    PubMed

    Jawahar, P; Balasubramanian, M

    2006-12-01

    Glass fiber reinforced polyester composite and hybrid nanoclay-fiber reinforced composites were prepared by hand lay-up process. The mechanical behavior of these materials and the changes as a result of the incorporation of both nanosize clay and glass fibers were investigated. Composites were prepared with a glass fibre content of 25 vol%. The proportion of the nanosize clay platelets was varied from 0.5 to 2.5 vol%. Hybrid clay-fiber reinforced polyester composite posses better tensile, flexural, impact, and barrier properties. Hybrid clay-fiber reinforced polyester composites also posses better shear strength, storage modulus, and glass transition temperature. The optimum properties were found to be with the hybrid laminates containing 1.5 vol% nanosize clay.

  3. Discovering the flight autostabilizer of fruit flies by inducing aerial stumbles

    PubMed Central

    Ristroph, Leif; Bergou, Attila J.; Ristroph, Gunnar; Coumes, Katherine; Berman, Gordon J.; Guckenheimer, John; Wang, Z. Jane; Cohen, Itai

    2010-01-01

    Just as the Wright brothers implemented controls to achieve stable airplane flight, flying insects have evolved behavioral strategies that ensure recovery from flight disturbances. Pioneering studies performed on tethered and dissected insects demonstrate that the sensory, neurological, and musculoskeletal systems play important roles in flight control. Such studies, however, cannot produce an integrative model of insect flight stability because they do not incorporate the interaction of these systems with free-flight aerodynamics. We directly investigate control and stability through the application of torque impulses to freely flying fruit flies (Drosophila melanogaster) and measurement of their behavioral response. High-speed video and a new motion tracking method capture the aerial “stumble,” and we discover that flies respond to gentle disturbances by accurately returning to their original orientation. These insects take advantage of a stabilizing aerodynamic influence and active torque generation to recover their heading to within 2° in < 60 ms. To explain this recovery behavior, we form a feedback control model that includes the fly’s ability to sense body rotations, process this information, and actuate the wing motions that generate corrective aerodynamic torque. Thus, like early man-made aircraft and modern fighter jets, the fruit fly employs an automatic stabilization scheme that reacts to short time-scale disturbances. PMID:20194789

  4. Discovering the flight autostabilizer of fruit flies by inducing aerial stumbles.

    PubMed

    Ristroph, Leif; Bergou, Attila J; Ristroph, Gunnar; Coumes, Katherine; Berman, Gordon J; Guckenheimer, John; Wang, Z Jane; Cohen, Itai

    2010-03-16

    Just as the Wright brothers implemented controls to achieve stable airplane flight, flying insects have evolved behavioral strategies that ensure recovery from flight disturbances. Pioneering studies performed on tethered and dissected insects demonstrate that the sensory, neurological, and musculoskeletal systems play important roles in flight control. Such studies, however, cannot produce an integrative model of insect flight stability because they do not incorporate the interaction of these systems with free-flight aerodynamics. We directly investigate control and stability through the application of torque impulses to freely flying fruit flies (Drosophila melanogaster) and measurement of their behavioral response. High-speed video and a new motion tracking method capture the aerial "stumble," and we discover that flies respond to gentle disturbances by accurately returning to their original orientation. These insects take advantage of a stabilizing aerodynamic influence and active torque generation to recover their heading to within 2 degrees in < 60 ms. To explain this recovery behavior, we form a feedback control model that includes the fly's ability to sense body rotations, process this information, and actuate the wing motions that generate corrective aerodynamic torque. Thus, like early man-made aircraft and modern fighter jets, the fruit fly employs an automatic stabilization scheme that reacts to short time-scale disturbances.

  5. Bug City: House and Backyard Insects [Videotape].

    ERIC Educational Resources Information Center

    1998

    "Bug City" is a video series created to help children learn about insects and other small critters. All aspects of bug life are touched upon including body structure, food, habitat, life cycle, mating habits, camouflage, mutualism (symbiosis), adaptations, social behavior, and more. Each program features dramatic microscopic photography,…

  6. Sampling stored product insect pests: a comparison of four statistical sampling models for probability of pest detection

    USDA-ARS?s Scientific Manuscript database

    Statistically robust sampling strategies form an integral component of grain storage and handling activities throughout the world. Developing sampling strategies to target biological pests such as insects in stored grain is inherently difficult due to species biology and behavioral characteristics. ...

  7. Shifts in Buchnera aphidicola density in soybean aphids (Aphis glycines) feeding on virus-infected soybean

    USDA-ARS?s Scientific Manuscript database

    Bacterial symbioses are prevalent across insect taxa, and are considered key to several specialized feeding behaviors and to insect diversification at large. Aphids undergo an obligate symbiosis with Buchnera aphidicola, which provides essential amino acids to its host contributing directly to host ...

  8. Taxonomy of Behavioral Objectives for Vocational Programs. Vol. I.

    ERIC Educational Resources Information Center

    Gloucester County Vocational-Technical School, Sewell, NJ.

    Developed from courses of study in two-year vocational technical programs at the Gloucester County Vocational Technical School, these taxonomies present behavioral objectives for 12 subjects. They are intended for use by vocational teachers in the preparation of the vocational component of the individualized educational plan (IEP) for special…

  9. Mechanisms by which pesticides affect insect immunity.

    PubMed

    James, R R; Xu, J

    2012-02-01

    The current state of knowledge regarding the effect of pesticides on insect immunity is reviewed here. A basic understanding of these interactions is needed for several reasons, including to improve methods for controlling pest insects in agricultural settings, for controlling insect vectors of human diseases, and for reducing mortality in beneficial insects. Bees are particularly vulnerable to sublethal pesticide exposures because they gather nectar and pollen, concentrating environmental toxins in their nests in the process. Pesticides do have effects on immunity. Organophosphates and some botanicals have been found to impact hemocyte number, differentiation, and thus affect phagocytosis. The phenoloxidase cascade and malanization have also been shown to be affected by several insecticides. Many synthetic insecticides increase oxidative stress, and this could have severe impacts on the production of some antimicrobial peptides in insects, but research is needed to determine the actual effects. Pesticides can also affect grooming behaviors, rendering insects more susceptible to disease. Despite laboratory data documenting pesticide/pathogen interactions, little field data is available at the population level. Published by Elsevier Inc.

  10. Evolution of Parasitism in Insect-transmitted Plant Nematodes

    PubMed Central

    Giblin-Davis, R. M.; Davies, K. A.; Morris, K.; Thomas, W. K.

    2003-01-01

    Nematode-insect associations have evolved many times in the phylum Nematoda, but these lineages involve plant parasitism only in the Secernentean orders Aphelenchida and Tylenchida. In the Aphelenchida (Aphelenchoidoidea), Bursaphelenchus xylophilus (Pine wood nematode), B. cocophilus (Red ring or Coconut palm nematode) (Parasitaphelenchidae), and the many potential host-specific species of Schistonchus (fig nematodes) (Aphelenchoididae) nematode-insect interactions probably evolved independently from dauer-forming, mycophagous ancestors that were phoretically transmitted to breeding sites of their insect hosts in plants. Mycophagy probably gave rise to facultative or obligate plant-parasitism because of opportunities due to insect host switches or peculiarities in host behavior. In the Tylenchida, there is one significant radiation of insect-associated plant parasites involving Fergusobia nematodes (Fergusobiinae: Neotylenchidae) and Fergusonina (Fergusoninidae) flies as mutualists that gall myrtaceous plant buds or leaves. These dicyclic nematodes have different phases that are parasitic in either the insect or the plant hosts. The evolutionary origin of this association is unclear. PMID:19265987

  11. Effect of risk information exposure on consumers' responses to foods with insect contamination.

    PubMed

    Kimura, Atsushi; Magariyama, Yukio; Miyanoshita, Akihiro; Imamura, Taro; Shichiri, Kumiko; Masuda, Tomohiro; Wada, Yuji

    2014-02-01

    This study explores the impact that scientific information about insect contamination of food has on consumer perceptions. Participants (n = 320, Japanese consumers) were randomly assigned to 1 of 8 information-type conditions: (1) information about insect type, (2) information about contamination processes, (3) information about the safety of contaminated food, (4, 5, 6) combinations of 2 of (1), (2), and (3) above, (7) all information, and (8) no-information, and asked to rate their valuation, behavioral intention, and attitude toward food with insect contamination. Results demonstrated that some combinations of scientific information that include the safety of the contaminated food are effective to reduce consumers' compulsive rejection of insect contamination in food, whereas the single presentation of information about insect type increases consumers' explicit rejection of both the contaminated product and the manufacturer. These findings have implications for the coordination of risk communication strategies. © 2014 Institute of Food Technologists®

  12. Insect Immunity to Entomopathogenic Fungi.

    PubMed

    Lu, H-L; St Leger, R J

    2016-01-01

    The study of infection and immunity in insects has achieved considerable prominence with the appreciation that their host defense mechanisms share many fundamental characteristics with the innate immune system of vertebrates. Studies on the highly tractable model organism Drosophila in particular have led to a detailed understanding of conserved innate immunity networks, such as Toll. However, most of these studies have used opportunistic human pathogens and may not have revealed specialized immune strategies that have arisen through evolutionary arms races with natural insect pathogens. Fungi are the commonest natural insect pathogens, and in this review, we focus on studies using Metarhizium and Beauveria spp. that have addressed immune system function and pathogen virulence via behavioral avoidance, the use of physical barriers, and the activation of local and systemic immune responses. In particular, we highlight studies on the evolutionary genetics of insect immunity and discuss insect-pathogen coevolution. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Evolution of complex higher brain centers and behaviors: behavioral correlates of mushroom body elaboration in insects.

    PubMed

    Farris, Sarah M

    2013-01-01

    Large, complex higher brain centers have evolved many times independently within the vertebrates, but the selective pressures driving these acquisitions have been difficult to pinpoint. It is well established that sensory brain centers become larger and more structurally complex to accommodate processing of a particularly important sensory modality. When higher brain centers such as the cerebral cortex become greatly expanded in a particular lineage, it is likely to support the coordination and execution of more complex behaviors, such as those that require flexibility, learning, and social interaction, in response to selective pressures that made these new behaviors advantageous. Vertebrate studies have established a link between complex behaviors, particularly those associated with sociality, and evolutionary expansions of telencephalic higher brain centers. Enlarged higher brain centers have convergently evolved in groups such as the insects, in which multimodal integration and learning and memory centers called the mushroom bodies have become greatly elaborated in at least four independent lineages. Is it possible that similar selective pressures acting on equivalent behavioral outputs drove the evolution of large higher brain centers in all bilaterians? Sociality has greatly impacted brain evolution in vertebrates such as primates, but it has not been a major driver of higher brain center enlargement in insects. However, feeding behaviors requiring flexibility and learning are associated with large higher brain centers in both phyla. Selection for the ability to support behavioral flexibility appears to be a common thread underlying the evolution of large higher brain centers, but the precise nature of these computations and behaviors may vary. © 2013 S. Karger AG, Basel.

  14. Effects of oxygen content on the oxidation process of Si-containing steel during anisothermal heating

    NASA Astrophysics Data System (ADS)

    Yuan, Qing; Xu, Guang; Liang, Wei-cheng; He, Bei; Zhou, Ming-xing

    2018-02-01

    The oxidizing behavior of Si-containing steel was investigated in an O2 and N2 binary-component gas with oxygen contents ranging between 0.5vol% and 4.0vol% under anisothermal-oxidation conditions. A simultaneous thermal analyzer was employed to simulate the heating process of Si-containing steel in industrial reheating furnaces. The oxidation gas mixtures were introduced from the commencement of heating. The results show that the oxidizing rate remains constant in the isothermal holding process at high temperatures; therefore, the mass change versus time presents a linear law. A linear relation also exists between the oxidizing rate and the oxygen content. Using the linear regression equation, the oxidation rate at different oxygen contents can be predicted. In addition, the relationship between the total mass gain and the oxygen content is linear; thus, the total mass gain at oxygen contents between 0.5vol%-4.0vol% can be determined. These results enrich the theoretical studies of the oxidation process in Si-containing steels.

  15. Microstructure and Mechanical Behavior of Microwave Sintered Cu50Ti50 Amorphous Alloy Reinforced Al Metal Matrix Composites

    NASA Astrophysics Data System (ADS)

    Reddy, M. Penchal; Ubaid, F.; Shakoor, R. A.; Mohamed, A. M. A.

    2018-06-01

    In the present work, Al metal matrix composites reinforced with Cu-based (Cu50Ti50) amorphous alloy particles synthesized by ball milling followed by a microwave sintering process were studied. The amorphous powders of Cu50Ti50 produced by ball milling were used to reinforce the aluminum matrix. They were examined by x-ray diffraction (XRD), scanning electron microscopy (SEM), microhardness and compression testing. The analysis of XRD patterns of the samples containing 5 vol.%, 10 vol.% and 15 vol.% Cu50Ti50 indicates the presence of Al and Cu50Ti50 peaks. SEM images of the sintered composites show the uniform distribution of reinforced particles within the matrix. Mechanical properties of the composites were found to increase with an increasing volume fraction of Cu50Ti50 reinforcement particles. The hardness and compressive strength were enhanced to 89 Hv and 449 MPa, respectively, for the Al-15 vol.% Cu50Ti50 composites.

  16. Flash Bulletin: Fireflies

    ERIC Educational Resources Information Center

    Brown, Debbie

    1984-01-01

    Explains the flashes of light emitted by fireflies as competition, species-specific code, species identification and mating behavior and ecology. Suggests activities to conduct to study the insects and their behavior. (ERB)

  17. The effects of disturbance threat on leaf-cutting ant colonies: a laboratory study.

    PubMed

    Norman, V C; Pamminger, T; Hughes, W O H

    2017-01-01

    The flexibility of organisms to respond plastically to their environment is fundamental to their fitness and evolutionary success. Social insects provide some of the most impressive examples of plasticity, with individuals exhibiting behavioral and sometimes morphological adaptations for their specific roles in the colony, such as large soldiers for nest defense. However, with the exception of the honey bee model organism, there has been little investigation of the nature and effects of environmental stimuli thought to instigate alternative phenotypes in social insects. Here, we investigate the effect of repeated threat disturbance over a prolonged (17 month) period on both behavioral and morphological phenotypes, using phenotypically plastic leaf-cutting ants ( Atta colombica ) as a model system. We found a rapid impact of threat disturbance on the behavioral phenotype of individuals within threat-disturbed colonies becoming more aggressive, threat responsive, and phototactic within as little as 2 weeks. We found no effect of threat disturbance on morphological phenotypes, potentially, because constraints such as resource limitation outweighed the benefit for colonies of producing larger individuals. The results suggest that plasticity in behavioral phenotypes can enable insect societies to respond to threats even when constraints prevent alteration of morphological phenotypes.

  18. Application of synchrotron radiation phase-contrast microtomography with iodine staining to Rhodnius prolixus head during ecdysis period

    NASA Astrophysics Data System (ADS)

    Sena, G.; Nogueira, L. P.; Braz, D.; Colaço, M. V.; Azambuja, P.; Gonzalez, M. S.; Tromba, G.; Mantuano, A.; Costa, F. N.; Barroso, R. C.

    2018-05-01

    Synchrotron radiation phase-contrast microtomography (SR-PHC-CT) has become an important tool in studies of insects, mainly Rhodinius prolixus, the insect vector of Chagas disease. A previous work has shown that SR-PHC-CT is an excellent technique in studies about the ecdysis process of R.prolixus head. The term ecdysis refers to the set of behaviors by which an insect extracts itself from an old exoskeleton. The exoskeleton formation is indispensable for the evolutionary success of insect species, so failure to complete ecdysis will, in most cases result in death, making this process an excellent target in the search for new insect pest management strategies. Understanding the behavior of the ecdysis process is fundamental for the non-proliferation of Chagas disease. Despite it has been possible to identify the moulting process in the first work, main structures of the R.prolixus head could not be identified. In this work, it was developed a staining protocol which enabled the identification of these important structures using Iodine at SYRMEP beamline of ELETTRA. In the 3D images, it was possible to segment essential structures in the process of ecdysis. These structures have never been presented previously in the moulting period with SR-PHC-CT.

  19. Oil adsorption ability of three-dimensional epicuticular wax coverages in plants

    NASA Astrophysics Data System (ADS)

    Gorb, Elena V.; Hofmann, Philipp; Filippov, Alexander E.; Gorb, Stanislav N.

    2017-04-01

    Primary aerial surfaces of terrestrial plants are very often covered with three-dimensional epicuticular waxes. Such wax coverages play an important role in insect-plant interactions. Wax blooms have been experimentally shown in numerous previous studies to be impeding locomotion and reducing attachment of insects. Among the mechanisms responsible for these effects, a possible adsorption of insect adhesive fluid by highly porous wax coverage has been proposed (adsorption hypothesis). Recently, a great decrease in insect attachment force on artificial adsorbing materials was revealed in a few studies. However, adsorption ability of plant wax blooms was still not tested. Using a cryo scanning electron microscopy approach and high-speed video recordings of fluid drops behavior, followed by numerical analysis of experimental data, we show here that the three-dimensional epicuticular wax coverage in the waxy zone of Nepenthes alata pitcher adsorbs oil: we detected changes in the base, height, and volume of the oil drops. The wax layer thickness, differing in samples with untreated two-layered wax coverage and treated one-layered wax, did not significantly affect the drop behavior. These results provide strong evidence that three-dimensional plant wax coverages due to their adsorption capability are in general anti-adhesive for insects, which rely on wet adhesion.

  20. The Earliest Evidence of Holometabolan Insect Pupation in Conifer Wood

    PubMed Central

    Tapanila, Leif; Roberts, Eric M.

    2012-01-01

    Background The pre-Jurassic record of terrestrial wood borings is poorly resolved, despite body fossil evidence of insect diversification among xylophilic clades starting in the late Paleozoic. Detailed analysis of borings in petrified wood provides direct evidence of wood utilization by invertebrate animals, which typically comprises feeding behaviors. Methodology/Principal Findings We describe a U-shaped boring in petrified wood from the Late Triassic Chinle Formation of southern Utah that demonstrates a strong linkage between insect ontogeny and conifer wood resources. Xylokrypta durossi new ichnogenus and ichnospecies is a large excavation in wood that is backfilled with partially digested xylem, creating a secluded chamber. The tracemaker exited the chamber by way of a small vertical shaft. This sequence of behaviors is most consistent with the entrance of a larva followed by pupal quiescence and adult emergence — hallmarks of holometabolous insect ontogeny. Among the known body fossil record of Triassic insects, cupedid beetles (Coleoptera: Archostemata) are deemed the most plausible tracemakers of Xylokrypta, based on their body size and modern xylobiotic lifestyle. Conclusions/Significance This oldest record of pupation in fossil wood provides an alternative interpretation to borings once regarded as evidence for Triassic bees. Instead Xylokrypta suggests that early archostematan beetles were leaders in exploiting wood substrates well before modern clades of xylophages arose in the late Mesozoic. PMID:22355387

  1. Evolution of a complex behavior: the origin and initial diversification of foliar galling by Permian insects.

    PubMed

    Schachat, Sandra R; Labandeira, Conrad C

    2015-04-01

    A central notion of the early evolution of insect galling is that this unique behavior was uncommon to rare before the diversification of angiosperms 135 to 125 m.yr. ago. However, evidence accumulated during recent years shows that foliar galls were diverse and locally abundant as early as the Permian Period, 299 to 252 m.yr. ago. In particular, a diversity of leaf galling during the Early Permian has recently been documented by the plant-damage record of foliar galls and, now, our interpretation of the body-fossil record of culprit insect gallers. Small size is a prerequisite for gallers. Wing-length measurements of Permian insects indicate that several small-bodied hemipteroid lineages originated early during the Permian, some descendant lineages of which gall the leaves of seed plants to the present day. The earliest foliar gallers likely were Protopsyllidiidae (Hemiptera) and Lophioneuridae (Thripida). Much of the Early Permian was a xeric interval, and modern galls are most common in dry, extra-tropical habitats such as scrubland and deserts. Plant-damage, insect body fossils, and the paleoclimate record collectively support the ecological expansion of foliar galling during the Early Permian and its continued expansion through the Late Permian.

  2. Boomeranging in structural defense

    PubMed Central

    Marler, Thomas E.

    2012-01-01

    Plant defensive behaviors that resist arthropod herbivory include trichome-mediated defenses, and variation in plant trichome morphology and abundance provides examples of the mechanistic complexities of insect-plant interactions. Trichomes were removed from Cycas revoluta cataphylls on the island of Guam to reveal Aulacaspis yasumatsui scale infestation, and predation of the newly exposed insects by pre-existing Rhyzobius lophanthae beetles commenced within one day. The quotient of predated/total scale insects was 0.5 by day 4 and stabilized at that found on adjacent glabrous leaves in about one week. The trichome phenotype covering the C. revoluta cataphyll complex offers the invasive A. yasumatsui armored scale effectual enemy-free space in this system. This pest and predator share no known evolutionary history with C. revoluta, therefore, the adaptive significance of this plant behavior in natural habitat is not yet known. PMID:22990448

  3. The neurobiological basis of orientation in insects: insights from the silkmoth mating dance.

    PubMed

    Namiki, Shigehiro; Kanzaki, Ryohei

    2016-06-01

    Counterturning is a common movement pattern during orientation behavior in insects. Once male moths sense sex pheromones and then lose the input, they demonstrate zigzag movements, alternating between left and right turns, to increase the probability to contact with the pheromone plume. We summarize the anatomy and function of the neural circuit involved in pheromone orientation in the silkmoth. A neural circuit, the lateral accessory lobe (LAL), serves a role as the circuit module for zigzag movements and controls this operation using a flip-flop neural switch. Circuit design of the LAL is well conserved across species. We hypothesize that this zigzag module is utilized in a wide range of insect behavior. We introduce two examples of the potential use: orientation flight and the waggle dance in bees. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Sexual dimorphism of bed bug (Cimex lectularis) attraction and aggregation responses to cuticular extracts from nymph exuviae

    USDA-ARS?s Scientific Manuscript database

    A large variety of releaser pheromones are used by insects to attract or disperse conspecifics, while group cohesion is often influenced by primer pheromones that induce behavioral or physiological changes. Differentiating the roles of such pheromones in insect taxa displaying intermediate levels of...

  5. Insect compassion, evidence of altruism, reciprocity, and midwifery behavior in aphids

    USDA-ARS?s Scientific Manuscript database

    Altruism is characterized by an act provided by a donor to a recipient that is considered detrimental to the donor yet benefits the recipient. Evidence of altruism is abundant in nature. In insects, altruism is manifest by ant and bee colonies where sterile workers provide labor, care of young, co...

  6. 40 CFR 158.2000 - Biochemical pesticides definition and applicability.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... history; and (iii) Has a non-toxic mode of action to the target pest(s). (2) A Pheromone is a compound... compounds, modifies the behavior of other individuals of the same species. (i) An Arthropod Pheromone is a... to: (1) Semiochemicals (insect pheromones and kairomones), (2) Natural plant and insect regulators...

  7. 40 CFR 158.2000 - Biochemical pesticides definition and applicability.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... history; and (iii) Has a non-toxic mode of action to the target pest(s). (2) A Pheromone is a compound... compounds, modifies the behavior of other individuals of the same species. (i) An Arthropod Pheromone is a... to: (1) Semiochemicals (insect pheromones and kairomones), (2) Natural plant and insect regulators...

  8. 40 CFR 158.2000 - Biochemical pesticides definition and applicability.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... history; and (iii) Has a non-toxic mode of action to the target pest(s). (2) A Pheromone is a compound... compounds, modifies the behavior of other individuals of the same species. (i) An Arthropod Pheromone is a... to: (1) Semiochemicals (insect pheromones and kairomones), (2) Natural plant and insect regulators...

  9. Embryonic Alcohol Exposure Impairs the Dopaminergic System and Social Behavioral Responses in Adult Zebrafish

    PubMed Central

    Fernandes, Yohaan; Rampersad, Mindy

    2015-01-01

    Background: The zebrafish is a powerful neurobehavioral genetics tool with which complex human brain disorders including alcohol abuse and fetal alcohol spectrum disorders may be modeled and investigated. Zebrafish innately form social groups called shoals. Previously, it has been demonstrated that a single bath exposure (24 hours postfertilization) to low doses of alcohol (0, 0.25, 0.50, 0.75, and 1% vol/vol) for a short duration (2 hours) leads to impaired group forming, or shoaling, in adult zebrafish. Methods: In the current study, we immersed zebrafish eggs in a low concentration of alcohol (0.5% or 1% vol/vol) for 2 hours at 24 hours postfertilization and let the fish grow and reach adulthood. In addition to quantifying the behavioral response of the adult fish to an animated shoal, we also measured the amount of dopamine and its metabolite 3,4-dihydroxyphenylacetic acid from whole brain extracts of these fish using high-pressure liquid chromatograph. Results: Here we confirm that embryonic alcohol exposure makes adult zebrafish increase their distance from the shoal stimulus in a dose-dependent manner. We also show that the shoal stimulus increases the amount of dopamine and 3,4-dihydroxyphenylacetic acid in the brain of control zebrafish but not in fish previously exposed to alcohol during their embryonic development. Conclusions: We speculate that one of the mechanisms that may explain the embryonic alcohol-induced impaired shoaling response in zebrafish is dysfunction of reward mechanisms subserved by the dopaminergic system. PMID:25568285

  10. Microstructure, Mechanical Properties, and Two-Body Abrasive Wear Behavior of Cold-Sprayed 20 vol.% Cubic BN-NiCrAl Nanocomposite Coating

    NASA Astrophysics Data System (ADS)

    Luo, Xiao-Tao; Yang, Er-Juan; Shang, Fu-Lin; Yang, Guan-Jun; Li, Chen-Xin; Li, Chang-Jiu

    2014-10-01

    20 vol.% cubic boron nitride (cBN) dispersoid reinforced NiCrAl matrix nanocomposite coating was prepared by cold spray using mechanically alloyed nanostructured composite powders. The as-sprayed nanocomposite coating was annealed at a temperature of 750 °C to enhance the inter-particle bonding. Microstructure of spray powders and coatings was characterized. Vickers microhardness of the coatings was measured. Two-body abrasive wear behavior of the coatings was examined on a pin-on-disk test. It was found that, in mechanically alloyed composite powders, nano-sized and submicro-sized cBN particles are uniformly distributed in nanocrystalline NiCrAl matrix. Dense coating was deposited by cold spray at a gas temperature of 650 °C with the same phases and grain size as those of the starting powder. Vickers hardness test yielded a hardness of 1063 HV for the as-sprayed 20 vol.% cBN-NiCrAl coating. After annealed at 750 °C for 5 h, unbonded inter-particle boundaries were partially healed and evident grain growth of nanocrystalline NiCrAl was avoided. Wear resistance of the as-sprayed 20 vol.% cBN-NiCrAl nanocomposite coating was comparable to the HVOF-sprayed WC-12Co coating. Annealing of the nanocomposite coating resulted in the improvement of wear resistance by a factor of ~33% owing to the enhanced inter-particle bonding. Main material removal mechanisms during the abrasive wear are also discussed.

  11. The Total Termite.

    ERIC Educational Resources Information Center

    Prestwich, Glenn D.

    1982-01-01

    Provides information on collecting and maintaining termites and for using these insects in behavioral studies (trail following, recognition, food choice, reproductive behavior, and behavior in a magnetic field) and termite control experiments (preventive construction techniques, termite repellents, using soil or wood pretreatment, and the bait…

  12. Seasonal Effects on the Population, Morphology and Reproductive Behavior of Narnia femorata (Hemiptera: Coreidae).

    PubMed

    Cirino, Lauren A; Miller, Christine W

    2017-01-17

    Many insects are influenced by the phenology of their host plants. In North Central Florida, Narnia femorata (Hemiptera: Coreidae) spends its entire life cycle living and feeding on Opuntia mesacantha ssp. lata . This cactus begins producing flower buds in April that lead to unripe green fruit in June that ripen into red fruit through December. Many morphological and behavioral characteristics of N. femorata are known to be affected by cactus phenology in a controlled laboratory setting, including the degree of sexual dimorphism and mating behavior. Our goal with this study was to determine if similar phenotypic changes of N. femorata occurred over time in the wild, and the extent to which these changes were concordant with phenological changes in its host plant. Further, we investigate the length of the insect mouthparts (beak) over time. Ongoing work has suggested that beak length may change across cohorts of developing insects in response to feeding deep within cactus fruit where seed and pulp depth decrease as the fruit ripens. Our results revealed a drop in cactus fruit abundance between the months of July through October 2015 as cactus fruits turned red and ripened. Simultaneously, the average body size of both males and females of N. femorata declined at two sampled sites. Male hind femora (a sexually-selected weapon) decreased disproportionately in size over time so that males later in the year had relatively smaller hind femora for their body size. The sex-specific patterns of morphological change led to increased sexual-size dimorphism and decreased sexual dimorphism for hind femora later in the year. Further, we found that beak length decreased across cohorts of insects as cactus fruit ripened, suggesting phenotypic plasticity in mouthpart length. Behavioral studies revealed that female readiness to mate increased as the season progressed. In sum, we found pronounced changes in the phenotypes of these insects in the field. Although this study is far from comprehensive, it provides tantalizing patterns that suggest many directions for future research.

  13. Methyl bromide as a quarantine treatment for Chlorophorus annularis (Coleoptera: Cerambycidae) in raw bamboo poles.

    PubMed

    Barak, Alan V; Weidong, Yang; Daojian, Yu; Yi, Jiao; Lin, Kang; Zhilin, Chen; Xingyuan, Ling; Guoping, Zhan

    2009-06-01

    At least 26 different species of insects of quarantine significance were intercepted from 1985 to 2005 on bamboo (Bambusa spp.) garden stakes from China. Three fifths of the live insects were cerambycids in nine genera, including Chlorophorus annularis F., the bamboo borer. The current APHIS-PPQ treatment is fumigation schedule T404-d, which requires high doses of methyl bromide (MeBr) for 24 h. No specific fumigation data exist for C. annularis. Chinese and American quarantine scientists cooperated in testing to determine whether this schedule, or lower doses, would be effective as a quarantine treatment for C. annularis infesting dried bamboo poles. A lower dose based on APHIS tests for solid wood packing (SWP) failed (3/511 survivors) at 56 g/m3 for 24 h at 10.0 degrees C. We therefore tested five progressive doses at five temperatures intermediate between the lower SWP schedule and the much higher applied doses (e.g., 120 g/m3 for 24 h at 10.0 degrees C) of schedule T404-d. Fumigations of infested bamboo poles conducted in 403.2-liter chambers with 52% vol:vol loading at doses of 48, 64, 80, 96, and 112 g/m3 at 26.7, 21.1, 15.6, 10.0, and 4.4 degrees C, respectively (20 total replicates, with 4 replicates per dose), had no survivors among 2,847 larvae, 140 pupae, and 122 adults. Control replicates (three) had a total of 455 live stages (397 larvae, 31 pupae, and 27 adults). Tests conducted with a sea/land cargo container loaded to 80% capacity with bamboo poles verified the ability of the schedule to maintain effective concentrations over 24 h in commercial-sized fumigations. We propose a new bamboo quarantine treatment schedule at reduced rates of applied MeBr.

  14. Electroantennographic Bioassay as a Screening Tool for Host Plant Volatiles

    PubMed Central

    Beck, John J.; Light, Douglas M.; Gee, Wai S.

    2012-01-01

    Plant volatiles play an important role in plant-insect interactions. Herbivorous insects use plant volatiles, known as kairomones, to locate their host plant.1,2 When a host plant is an important agronomic commodity feeding damage by insect pests can inflict serious economic losses to growers. Accordingly, kairomones can be used as attractants to lure or confuse these insects and, thus, offer an environmentally friendly alternative to pesticides for insect control.3 Unfortunately, plants can emit a vast number volatiles with varying compositions and ratios of emissions dependent upon the phenology of the commodity or the time of day. This makes identification of biologically active components or blends of volatile components an arduous process. To help identify the bioactive components of host plant volatile emissions we employ the laboratory-based screening bioassay electroantennography (EAG). EAG is an effective tool to evaluate and record electrophysiologically the olfactory responses of an insect via their antennal receptors. The EAG screening process can help reduce the number of volatiles tested to identify promising bioactive components. However, EAG bioassays only provide information about activation of receptors. It does not provide information about the type of insect behavior the compound elicits; which could be as an attractant, repellent or other type of behavioral response. Volatiles eliciting a significant response by EAG, relative to an appropriate positive control, are typically taken on to further testing of behavioral responses of the insect pest. The experimental design presented will detail the methodology employed to screen almond-based host plant volatiles4,5 by measurement of the electrophysiological antennal responses of an adult insect pest navel orangeworm (Amyelois transitella) to single components and simple blends of components via EAG bioassay. The method utilizes two excised antennae placed across a "fork" electrode holder. The protocol demonstrated here presents a rapid, high-throughput standardized method for screening volatiles. Each volatile is at a set, constant amount as to standardize the stimulus level and thus allow antennal responses to be indicative of the relative chemoreceptivity. The negative control helps eliminate the electrophysiological response to both residual solvent and mechanical force of the puff. The positive control (in this instance acetophenone) is a single compound that has elicited a consistent response from male and female navel orangeworm (NOW) moth. An additional semiochemical standard that provides consistent response and is used for bioassay studies with the male NOW moth is (Z,Z)-11,13-hexdecadienal, an aldehyde component from the female-produced sex pheromone.6-8 PMID:22588282

  15. Research Base for Improved Classroom Learning: Brain or Behavior? Evidence Speaks Reports, Vol 1, #9

    ERIC Educational Resources Information Center

    Bruer, John T.

    2015-01-01

    Implicit in recent Evidence Speaks postings is the need to develop evidence-based interventions for improving student achievement. Comparative analysis of the education research literature versus the educational neuroscience literature suggests that education research, grounded in the behavioral and cognitive sciences, is currently the better…

  16. Development of a Design Technology for Ground Support for Tunnels in Soil : Vol. III. Observed Behavior of an Earth Pressure Balance Shield in San Francisco Bay Mud

    DOT National Transportation Integrated Search

    1983-02-01

    The report presents design recommendations for concrete tunnel linings for transportation tunnels. The recommendations developed as a result of in-depth analysis and model testing of the behavior of concrete tunnel linings. The research addressed pro...

  17. The Odorant Receptor Co-Receptor from the Bed Bug, Cimex lectularius L

    PubMed Central

    Hansen, Immo A.; Rodriguez, Stacy D.; Drake, Lisa L.; Price, David P.; Blakely, Brittny N.; Hammond, John I.; Tsujimoto, Hitoshi; Monroy, Erika Y.; Maio, William A.; Romero, Alvaro

    2014-01-01

    Recently, the bed bug, Cimex lectularius L. has re-emerged as a serious and growing problem in many parts of the world. Presence of resistant bed bugs and the difficulty to eliminate them has renewed interest in alternative control tactics. Similar to other haematophagous arthropods, bed bugs rely on their olfactory system to detect semiochemicals in the environment. Previous studies have morphologically characterized olfactory organs of bed bugs’ antenna and have physiologically evaluated the responses of olfactory receptor neurons (ORNs) to host-derived chemicals. To date, odorant binding proteins (OBPs) and odorant receptors (ORs) associated with these olfaction processes have not been studied in bed bugs. Chemoreception in insects requires formation of heteromeric complexes of ORs and a universal OR coreceptor (Orco). Orco is the constant chain of every odorant receptor in insects and is critical for insect olfaction but does not directly bind to odorants. Orco agonists and antagonists have been suggested as high-value targets for the development of novel insect repellents. In this study, we have performed RNAseq of bed bug sensory organs and identified several odorant receptors as well as Orco. We characterized Orco expression and investigated the effect of chemicals targeting Orco on bed bug behavior and reproduction. We have identified partial cDNAs of six C. lectularius OBPs and 16 ORs. Full length bed bug Orco was cloned and sequenced. Orco is widely expressed in different parts of the bed bug including OR neurons and spermatozoa. Treatment of bed bugs with the agonist VUAA1 changed bed bug pheromone-induced aggregation behavior and inactivated spermatozoa. We have described and characterized for the first time OBPs, ORs and Orco in bed bugs. Given the importance of these molecules in chemoreception of this insect they are interesting targets for the development of novel insect behavior modifiers. PMID:25411789

  18. The odorant receptor co-receptor from the bed bug, Cimex lectularius L.

    PubMed

    Hansen, Immo A; Rodriguez, Stacy D; Drake, Lisa L; Price, David P; Blakely, Brittny N; Hammond, John I; Tsujimoto, Hitoshi; Monroy, Erika Y; Maio, William A; Romero, Alvaro

    2014-01-01

    Recently, the bed bug, Cimex lectularius L. has re-emerged as a serious and growing problem in many parts of the world. Presence of resistant bed bugs and the difficulty to eliminate them has renewed interest in alternative control tactics. Similar to other haematophagous arthropods, bed bugs rely on their olfactory system to detect semiochemicals in the environment. Previous studies have morphologically characterized olfactory organs of bed bugs' antenna and have physiologically evaluated the responses of olfactory receptor neurons (ORNs) to host-derived chemicals. To date, odorant binding proteins (OBPs) and odorant receptors (ORs) associated with these olfaction processes have not been studied in bed bugs. Chemoreception in insects requires formation of heteromeric complexes of ORs and a universal OR coreceptor (Orco). Orco is the constant chain of every odorant receptor in insects and is critical for insect olfaction but does not directly bind to odorants. Orco agonists and antagonists have been suggested as high-value targets for the development of novel insect repellents. In this study, we have performed RNAseq of bed bug sensory organs and identified several odorant receptors as well as Orco. We characterized Orco expression and investigated the effect of chemicals targeting Orco on bed bug behavior and reproduction. We have identified partial cDNAs of six C. lectularius OBPs and 16 ORs. Full length bed bug Orco was cloned and sequenced. Orco is widely expressed in different parts of the bed bug including OR neurons and spermatozoa. Treatment of bed bugs with the agonist VUAA1 changed bed bug pheromone-induced aggregation behavior and inactivated spermatozoa. We have described and characterized for the first time OBPs, ORs and Orco in bed bugs. Given the importance of these molecules in chemoreception of this insect they are interesting targets for the development of novel insect behavior modifiers.

  19. Abnormally high digestive enzyme activity and gene expression explain the contemporary evolution of a Diabrotica biotype able to feed on soybeans

    PubMed Central

    Curzi, Matías J; Zavala, Jorge A; Spencer, Joseph L; Seufferheld, Manfredo J

    2012-01-01

    Western corn rootworm (Diabrotica virgifera) (WCR) depends on the continuous availability of corn. Broad adoption of annual crop rotation between corn (Zea mays) and nonhost soybean (Glycine max) exploited WCR biology to provide excellent WCR control, but this practice dramatically reduced landscape heterogeneity in East-central Illinois and imposed intense selection pressure. This selection resulted in behavioral changes and “rotation-resistant” (RR) WCR adults. Although soybeans are well defended against Coleopteran insects by cysteine protease inhibitors, RR-WCR feed on soybean foliage and remain long enough to deposit eggs that will hatch the following spring and larvae will feed on roots of planted corn. Other than documenting changes in insect mobility and egg laying behavior, 15 years of research have failed to identify any diagnostic differences between wild-type (WT)- and RR-WCR or a mechanism that allows for prolonged RR-WCR feeding and survival in soybean fields. We documented differences in behavior, physiology, digestive protease activity (threefold to fourfold increases), and protease gene expression in the gut of RR-WCR adults. Our data suggest that higher constitutive activity levels of cathepsin L are part of the mechanism that enables populations of WCR to circumvent soybean defenses, and thus, crop rotation. These new insights into the mechanism of WCR tolerance of soybean herbivory transcend the issue of RR-WCR diagnostics and management to link changes in insect gut proteolytic activity and behavior with landscape heterogeneity. The RR-WCR illustrates how agro-ecological factors can affect the evolution of insects in human-altered ecosystems. PMID:22957201

  20. Flight behavior of the rhinoceros beetle Trypoxylus dichotomus during electrical nerve stimulation.

    PubMed

    Van Truong, Tien; Byun, Doyoung; Lavine, Laura Corley; Emlen, Douglas J; Park, Hoon Cheol; Kim, Min Jun

    2012-09-01

    Neuronal stimulation is an intricate part of understanding insect flight behavior and control insect itself. In this study, we investigated the effects of electrical pulses applied to the brain and basalar muscle of the rhinoceros beetle (Trypoxylus dichotomus). To understand specific neuronal stimulation mechanisms, responses and flight behavior of the beetle, four electrodes were implanted into the two optic lobes, the brain's central complex and the ventral nerve cord in the posterior pronotum. We demonstrated flight initiation, turning and cessation by stimulating the brain. The change undergone by the wing flapping in response to the electrical signal was analyzed from a sequence of images captured by a high-speed camera. Here, we provide evidence to distinguish the important differences between neuronal and muscular flight stimulations in beetles. We found that in the neural potential stimulation, both the hind wing and the elytron were suppressed. Interestingly, the beetle stopped flying whenever a stimulus potential was applied between the pronotum and one side of the optic lobe, or between the ventral nerve cord in the posterior pronotum and the central complex. In-depth experimentation demonstrated the effective of neural stimulation over muscle stimulation for flight control. During electrical stimulation of the optic lobes, the beetle performed unstable flight, resulting in alternating left and right turns. By applying the electrical signal into both the optic lobes and the central complex of the brain, we could precisely control the direction of the beetle flight. This work provides an insight into insect flight behavior for future development of insect-micro air vehicle.

  1. Active listening for spatial orientation in a complex auditory scene.

    PubMed

    Moss, Cynthia F; Bohn, Kari; Gilkenson, Hannah; Surlykke, Annemarie

    2006-04-01

    To successfully negotiate a complex environment, an animal must control the timing of motor behaviors in coordination with dynamic sensory information. Here, we report on adaptive temporal control of vocal-motor behavior in an echolocating bat, Eptesicus fuscus, as it captured tethered insects close to background vegetation. Recordings of the bat's sonar vocalizations were synchronized with high-speed video images that were used to reconstruct the bat's three-dimensional flight path and the positions of target and vegetation. When the bat encountered the difficult task of taking insects as close as 10-20 cm from the vegetation, its behavior changed significantly from that under open room conditions. Its success rate decreased by about 50%, its time to initiate interception increased by a factor of ten, and its high repetition rate "terminal buzz" decreased in duration by a factor of three. Under all conditions, the bat produced prominent sonar "strobe groups," clusters of echolocation pulses with stable intervals. In the final stages of insect capture, the bat produced strobe groups at a higher incidence when the insect was positioned near clutter. Strobe groups occurred at all phases of the wingbeat (and inferred respiration) cycle, challenging the hypothesis of strict synchronization between respiration and sound production in echolocating bats. The results of this study provide a clear demonstration of temporal vocal-motor control that directly impacts the signals used for perception.

  2. Active Listening for Spatial Orientation in a Complex Auditory Scene

    PubMed Central

    Bohn, Kari; Gilkenson, Hannah; Surlykke, Annemarie

    2006-01-01

    To successfully negotiate a complex environment, an animal must control the timing of motor behaviors in coordination with dynamic sensory information. Here, we report on adaptive temporal control of vocal–motor behavior in an echolocating bat, Eptesicus fuscus, as it captured tethered insects close to background vegetation. Recordings of the bat's sonar vocalizations were synchronized with high-speed video images that were used to reconstruct the bat's three-dimensional flight path and the positions of target and vegetation. When the bat encountered the difficult task of taking insects as close as 10–20 cm from the vegetation, its behavior changed significantly from that under open room conditions. Its success rate decreased by about 50%, its time to initiate interception increased by a factor of ten, and its high repetition rate “terminal buzz” decreased in duration by a factor of three. Under all conditions, the bat produced prominent sonar “strobe groups,” clusters of echolocation pulses with stable intervals. In the final stages of insect capture, the bat produced strobe groups at a higher incidence when the insect was positioned near clutter. Strobe groups occurred at all phases of the wingbeat (and inferred respiration) cycle, challenging the hypothesis of strict synchronization between respiration and sound production in echolocating bats. The results of this study provide a clear demonstration of temporal vocal–motor control that directly impacts the signals used for perception. PMID:16509770

  3. Oviposition of aquatic insects in a tropical high altitude stream.

    PubMed

    Rios-Touma, Blanca; Encalada, A C; Prat, N

    2012-12-01

    The persistence of aquatic insect populations in streams depends on the recruitment of larval populations from egg masses deposited by adults, especially after disturbance. However, recruitment of aquatic populations by oviposition is a process that remains unstudied in streams and rivers. The objectives of our study were to document flying and oviposition patterns of aquatic insects in a high altitude tropical stream during both dry and wet seasons. In particular we studied 1) richness and abundance of adult forms of aquatic insects flying and ovipositing; 2) number of eggs (oviposition pattern), egg mass identity, and morphology; and 3) substrate preferences by ovipositing females. We found 2,383 aquatic insects corresponding to 28 families, with dipterans representing 89% of total individuals collected. Adult insects had lower richness (28 taxa) than larval diversity (up to 52 taxa) and distinct community composition. Richness and relative abundance of most taxa (adults) were not significantly different between seasons, behaviors, diel period, or all three. During both sampling periods we found females with eggs in a total of 15 different families (13 in the dry season and 14 in the wet season). There were no significant differences in the proportion of females with eggs between seasons, diel periods, or different behaviors (flying versus ovipositing traps) of the different female taxa. Few types of egg masses were found in rocks at the stream during both seasons, and most egg masses found corresponded to families Baetidae and Chironomidae. Finally, we provide the first description of eggs masses (size, shape, color, and number of eggs per female) of gravid females (10 taxa) and those found in the stream substrate (six taxa) of Andean macroinvertebrates. This is the first study reporting oviposition, adult diversity, and oviposition patterns of aquatic insects in the Andean region.

  4. Reducing the maladaptive attractiveness of solar panels to polarotactic insects.

    PubMed

    Horváth, Gábor; Blahó, Miklós; Egri, Adám; Kriska, György; Seres, István; Robertson, Bruce

    2010-12-01

    Human-made objects (e.g., buildings with glass surfaces) can reflect horizontally polarized light so strongly that they appear to aquatic insects to be bodies of water. Insects that lay eggs in water are especially attracted to such structures because these insects use horizontal polarization of light off bodies of water to find egg-laying sites. Thus, these sources of polarized light can become ecological traps associated with reproductive failure and mortality in organisms that are attracted to them and by extension with rapid population declines or collapse. Solar panels are a new source of polarized light pollution. Using imaging polarimetry, we measured the reflection-polarization characteristics of different solar panels and in multiple-choice experiments in the field we tested their attractiveness to mayflies, caddis flies, dolichopodids, and tabanids. At the Brewster angle, solar panels polarized reflected light almost completely (degree of polarization d ≈ 100%) and substantially exceeded typical polarization values for water (d ≈ 30-70%). Mayflies (Ephemeroptera), stoneflies (Trichoptera), dolichopodid dipterans, and tabanid flies (Tabanidae) were the most attracted to solar panels and exhibited oviposition behavior above solar panels more often than above surfaces with lower degrees of polarization (including water), but in general they avoided solar cells with nonpolarizing white borders and white grates. The highly and horizontally polarizing surfaces that had nonpolarizing, white cell borders were 10- to 26-fold less attractive to insects than the same panels without white partitions. Although solar panels can act as ecological traps, fragmenting their solar-active area does lessen their attractiveness to polarotactic insects. The design of solar panels and collectors and their placement relative to aquatic habitats will likely affect populations of aquatic insects that use polarized light as a behavioral cue. © 2010 Society for Conservation Biology.

  5. An insect-like mushroom body in a crustacean brain

    PubMed Central

    Wolff, Gabriella Hannah; Thoen, Hanne Halkinrud; Marshall, Justin; Sayre, Marcel E

    2017-01-01

    Mushroom bodies are the iconic learning and memory centers of insects. No previously described crustacean possesses a mushroom body as defined by strict morphological criteria although crustacean centers called hemiellipsoid bodies, which serve functions in sensory integration, have been viewed as evolutionarily convergent with mushroom bodies. Here, using key identifiers to characterize neural arrangements, we demonstrate insect-like mushroom bodies in stomatopod crustaceans (mantis shrimps). More than any other crustacean taxon, mantis shrimps display sophisticated behaviors relating to predation, spatial memory, and visual recognition comparable to those of insects. However, neuroanatomy-based cladistics suggesting close phylogenetic proximity of insects and stomatopod crustaceans conflicts with genomic evidence showing hexapods closely related to simple crustaceans called remipedes. We discuss whether corresponding anatomical phenotypes described here reflect the cerebral morphology of a common ancestor of Pancrustacea or an extraordinary example of convergent evolution. PMID:28949916

  6. Learning in Insect Pollinators and Herbivores.

    PubMed

    Jones, Patricia L; Agrawal, Anurag A

    2017-01-31

    The relationship between plants and insects is influenced by insects' behavioral decisions during foraging and oviposition. In mutualistic pollinators and antagonistic herbivores, past experience (learning) affects such decisions, which ultimately can impact plant fitness. The higher levels of dietary generalism in pollinators than in herbivores may be an explanation for the differences in learning seen between these two groups. Generalist pollinators experience a high level of environmental variation, which we suggest favors associative learning. Larval herbivores employ habituation and sensitization-strategies useful in their less variable environments. Exceptions to these patterns based on habitats, mobility, and life history provide critical tests of current theory. Relevant plant traits should be under selection to be easily learned and remembered in pollinators and difficult to learn in herbivores. Insect learning thereby has the potential to have an important, yet largely unexplored, role in plant-insect coevolution.

  7. A case of flying insects visiting an anatomy and embalming laboratory in Medellín, Colombia.

    PubMed

    Amat, Eduardo; Serna-Giraldo, Claudia; Antia-Montoya, German

    2016-10-01

    From July to September of 2012, the fauna of flying insects visiting the anatomy and embalming laboratory of the Tecnológico de Antioquia, Faculty of Forensic Sciences, located in the city of Medellin, Colombia, were recorded. The first checklist in the literature of incidental flying insects occurring in this type of locale is provided, and a brief discussion is given of their behavioral habits related to this uncommon case. Copyright © 2016 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  8. Pigment-Dispersing Factor Signaling and Circadian Rhythms in Insect Locomotor Activity

    PubMed Central

    Shafer, Orie T.; Yao, Zepeng

    2014-01-01

    Though expressed in relatively few neurons in insect nervous systems, pigment-dispersing factor (PDF) plays many roles in the control of behavior and physiology. PDF’s role in circadian timekeeping is its best-understood function and the focus of this review. Here we recount the isolation and characterization of insect PDFs, review the evidence that PDF acts as a circadian clock output factor, and discuss emerging models of how PDF functions within circadian clock neuron network of Drosophila, the species in which this peptide’s circadian roles are best understood. PMID:25386391

  9. Multi-Scale Behavioral Modeling and Analysis Promoting a Fundamental Understanding of Agent-Based System Design and Operation

    DTIC Science & Technology

    2007-03-01

    Chains," Mathematics of Control, Signals, and Systems, vol. 3(1), pp. 1-29, 1990. [4] A . Arnold, J . A . Carrillo, and I. Gamba, "Low and High Field...Aronson, C. L. A ., and J . L. Vázquez, "Interfaces with a corner point in one- dimensional porous medium flow," Comm. Pure Appl. Math, vol. 38(4), pp. 375...K. Levin, "Damage analysis of fiber composites," Computer Methods in Applied Mechanics and Engineering. [10] K. S. Barber, A . Goel, T. J . Graser, T

  10. A reaction-diffusion model of the Darien Gap Sterile Insect Release Method

    NASA Astrophysics Data System (ADS)

    Alford, John G.

    2015-05-01

    The Sterile Insect Release Method (SIRM) is used as a biological control for invasive insect species. SIRM involves introducing large quantities of sterilized male insects into a wild population of invading insects. A fertile/sterile mating produces offspring that are not viable and the wild insect population will eventually be eradicated. A U.S. government program maintains a permanent sterile fly barrier zone in the Darien Gap between Panama and Columbia to control the screwworm fly (Cochliomyia Hominivorax), an insect that feeds off of living tissue in mammals and has devastating effects on livestock. This barrier zone is maintained by regular releases of massive quantities of sterilized male screwworm flies from aircraft. We analyze a reaction-diffusion model of the Darien Gap barrier zone. Simulations of the model equations yield two types of spatially inhomogeneous steady-state solutions representing a sterile fly barrier that does not prevent invasion and a barrier that does prevent invasion. We investigate steady-state solutions using both phase plane methods and monotone iteration methods and describe how barrier width and the sterile fly release rate affects steady-state behavior.

  11. Plant Tolerance: A Unique Approach to Control Hemipteran Pests.

    PubMed

    Koch, Kyle G; Chapman, Kaitlin; Louis, Joe; Heng-Moss, Tiffany; Sarath, Gautam

    2016-01-01

    Plant tolerance to insect pests has been indicated to be a unique category of resistance, however, very little information is available on the mechanism of tolerance against insect pests. Tolerance is distinctive in terms of the plant's ability to withstand or recover from herbivore injury through growth and compensatory physiological processes. Because plant tolerance involves plant compensatory characteristics, the plant is able to harbor large numbers of herbivores without interfering with the insect pest's physiology or behavior. Some studies have observed that tolerant plants can compensate photosynthetically by avoiding feedback inhibition and impaired electron flow through photosystem II that occurs as a result of insect feeding. Similarly, the up-regulation of peroxidases and other oxidative enzymes during insect feeding, in conjunction with elevated levels of phytohormones can play an important role in providing plant tolerance to insect pests. Hemipteran insects comprise some of the most economically important plant pests (e.g., aphids, whiteflies), due to their ability to achieve high population growth and their potential to transmit plant viruses. In this review, results from studies on plant tolerance to hemipterans are summarized, and potential models to understand tolerance are presented.

  12. Effect of seeding on the capture of six stored product beetle species: The relative species matters

    USDA-ARS?s Scientific Manuscript database

    n trapping programs prior capture of individuals of the same or different species may influence subsequent attractiveness of the trap. To evaluate this process with stored-product insects, the effect of the presence of dead or alive adults on the behavioral responses of six stored product insect spe...

  13. Morphological features of the ovaries during Oogenesis of the Oriental fruit fly (Bactrocera dorsalis Hendel) in relation to the physiological age

    USDA-ARS?s Scientific Manuscript database

    Determination of physiological state (age?) in insects is useful in furthering our understanding of how insect behavior changes with age. Central to this determination is the identification of characters that allow assessment of physiological age. While non-destructive measures are the most desired ...

  14. Chaos-order transition in foraging behavior of ants.

    PubMed

    Li, Lixiang; Peng, Haipeng; Kurths, Jürgen; Yang, Yixian; Schellnhuber, Hans Joachim

    2014-06-10

    The study of the foraging behavior of group animals (especially ants) is of practical ecological importance, but it also contributes to the development of widely applicable optimization problem-solving techniques. Biologists have discovered that single ants exhibit low-dimensional deterministic-chaotic activities. However, the influences of the nest, ants' physical abilities, and ants' knowledge (or experience) on foraging behavior have received relatively little attention in studies of the collective behavior of ants. This paper provides new insights into basic mechanisms of effective foraging for social insects or group animals that have a home. We propose that the whole foraging process of ants is controlled by three successive strategies: hunting, homing, and path building. A mathematical model is developed to study this complex scheme. We show that the transition from chaotic to periodic regimes observed in our model results from an optimization scheme for group animals with a home. According to our investigation, the behavior of such insects is not represented by random but rather deterministic walks (as generated by deterministic dynamical systems, e.g., by maps) in a random environment: the animals use their intelligence and experience to guide them. The more knowledge an ant has, the higher its foraging efficiency is. When young insects join the collective to forage with old and middle-aged ants, it benefits the whole colony in the long run. The resulting strategy can even be optimal.

  15. 8. The development and evolution of division of labor and foraging specialization in a social insect (Apis mellifera L.).

    PubMed

    Page, Robert E; Scheiner, Ricarda; Erber, Joachim; Amdam, Gro V

    2006-01-01

    How does complex social behavior evolve? What are the developmental building blocks of division of labor and specialization, the hallmarks of insect societies? Studies have revealed the developmental origins in the evolution of division of labor and specialization in foraging worker honeybees, the hallmarks of complex insect societies. Selective breeding for a single social trait, the amount of surplus pollen stored in the nest (pollen hoarding) revealed a phenotypic architecture of correlated traits at multiple levels of biological organization in facultatively sterile female worker honeybees. Verification of this phenotypic architecture in "wild-type" bees provided strong support for a "pollen foraging syndrome" that involves increased senso-motor responses, motor activity, associative learning, reproductive status, and rates of behavioral development, as well as foraging behavior. This set of traits guided further research into reproductive regulatory systems that were co-opted by natural selection during the evolution of social behavior. Division of labor, characterized by changes in the tasks performed by bees, as they age, is controlled by hormones linked to ovary development. Foraging specialization on nectar and pollen results also from different reproductive states of bees where nectar foragers engage in pre-reproductive behavior, foraging for nectar for self-maintenance, while pollen foragers perform foraging tasks associated with reproduction and maternal care, collecting protein.

  16. Chaos–order transition in foraging behavior of ants

    PubMed Central

    Li, Lixiang; Peng, Haipeng; Kurths, Jürgen; Yang, Yixian; Schellnhuber, Hans Joachim

    2014-01-01

    The study of the foraging behavior of group animals (especially ants) is of practical ecological importance, but it also contributes to the development of widely applicable optimization problem-solving techniques. Biologists have discovered that single ants exhibit low-dimensional deterministic-chaotic activities. However, the influences of the nest, ants’ physical abilities, and ants’ knowledge (or experience) on foraging behavior have received relatively little attention in studies of the collective behavior of ants. This paper provides new insights into basic mechanisms of effective foraging for social insects or group animals that have a home. We propose that the whole foraging process of ants is controlled by three successive strategies: hunting, homing, and path building. A mathematical model is developed to study this complex scheme. We show that the transition from chaotic to periodic regimes observed in our model results from an optimization scheme for group animals with a home. According to our investigation, the behavior of such insects is not represented by random but rather deterministic walks (as generated by deterministic dynamical systems, e.g., by maps) in a random environment: the animals use their intelligence and experience to guide them. The more knowledge an ant has, the higher its foraging efficiency is. When young insects join the collective to forage with old and middle-aged ants, it benefits the whole colony in the long run. The resulting strategy can even be optimal. PMID:24912159

  17. A new experimental correlation for non-Newtonian behavior of COOH-DWCNTs/antifreeze nanofluid

    NASA Astrophysics Data System (ADS)

    Izadi, Farhad; Ranjbarzadeh, Ramin; Kalbasi, Rasool; Afrand, Masoud

    2018-04-01

    In this paper, the rheological behavior of nano-antifreeze consisting of 50%vol. water, 50%vol. ethylene glycol and different quantities of functionalized double walled carbon nanotubes has been investigated experimentally. Initially, nano-antifreeze samples were prepared with solid volume fractions of 0.05, 0.1, 0.2, 0.4, 0.6, 0.8 and 1% using two-step method. Then, the dynamic viscosity of the nano-antifreeze samples was measured at different shear rates and temperatures. At this stage, the results showed that base fluid had the Newtonian behavior, while the behavior of all nano-antifreeze samples was non-Newtonian. Since the behavior of the samples was similar to power law model, it was attempted to find the constants of this model including consistency index and power law index. Therefore, using the measured viscosity and shear rates, consistency index and power law index were obtained by curve-fitting method. The obtained values showed that consistency index amplified with increasing volume fraction, while reduced with enhancing temperature. Besides, the obtained values for power law index were less than 1 for all samples which means shear thinning behavior. Lastly, new correlations were suggested to estimate the consistency index and power law index using curve-fitting.

  18. Bioinspired optical sensors for unmanned aerial systems

    NASA Astrophysics Data System (ADS)

    Chahl, Javaan; Rosser, Kent; Mizutani, Akiko

    2011-04-01

    Insects are dependant on the spatial, spectral and temporal distributions of light in the environment for flight control and navigation. This paper reports on flight trials of implementations of insect inspired behaviors on unmanned aerial vehicles. Optical flow methods for maintaining a constant height above ground and a constant course have been demonstrated to provide navigation capabilities that are impossible using conventional avionics sensors. Precision control of height above ground and ground course were achieved over long distances. Other vision based techniques demonstrated include a biomimetic stabilization sensor that uses the ultraviolet and green bands of the spectrum, and a sky polarization compass. Both of these sensors were tested over long trajectories in different directions, in each case showing performance similar to low cost inertial heading and attitude systems. The behaviors demonstrate some of the core functionality found in the lower levels of the sensorimotor system of flying insects and shows promise for more integrated solutions in the future.

  19. Neural and Hormonal Control of Postecdysial Behaviors in Insects

    PubMed Central

    White, Benjamin H.; Ewer, John

    2016-01-01

    The shedding of the old exoskeleton that occurs in insects at the end of a molt (a process called ecdysis) is typically followed by the expansion and tanning of a new one. At the adult molt, these postecdysial processes include expanding and hardening the wings. Here we describe recent advances in understanding the neural and hormonal control of wing expansion and hardening, focusing on work done in Drosophila where genetic manipulations have permitted a detailed investigation of postecdysial processes and their modulation by sensory input. To place this work in context, we briefly review recent progress in understanding the neuroendocrine regulation of ecdysis, which appears to be largely conserved across insect species. Investigations into the neuroendocrine networks that regulate ecdysial and postecdysial behaviors, will provide insights into how stereotyped, yet environmentally-responsive, sequences are generated, as well as into how they develop and evolve. PMID:24160420

  20. A plausible neural circuit for decision making and its formation based on reinforcement learning.

    PubMed

    Wei, Hui; Dai, Dawei; Bu, Yijie

    2017-06-01

    A human's, or lower insects', behavior is dominated by its nervous system. Each stable behavior has its own inner steps and control rules, and is regulated by a neural circuit. Understanding how the brain influences perception, thought, and behavior is a central mandate of neuroscience. The phototactic flight of insects is a widely observed deterministic behavior. Since its movement is not stochastic, the behavior should be dominated by a neural circuit. Based on the basic firing characteristics of biological neurons and the neural circuit's constitution, we designed a plausible neural circuit for this phototactic behavior from logic perspective. The circuit's output layer, which generates a stable spike firing rate to encode flight commands, controls the insect's angular velocity when flying. The firing pattern and connection type of excitatory and inhibitory neurons are considered in this computational model. We simulated the circuit's information processing using a distributed PC array, and used the real-time average firing rate of output neuron clusters to drive a flying behavior simulation. In this paper, we also explored how a correct neural decision circuit is generated from network flow view through a bee's behavior experiment based on the reward and punishment feedback mechanism. The significance of this study: firstly, we designed a neural circuit to achieve the behavioral logic rules by strictly following the electrophysiological characteristics of biological neurons and anatomical facts. Secondly, our circuit's generality permits the design and implementation of behavioral logic rules based on the most general information processing and activity mode of biological neurons. Thirdly, through computer simulation, we achieved new understanding about the cooperative condition upon which multi-neurons achieve some behavioral control. Fourthly, this study aims in understanding the information encoding mechanism and how neural circuits achieve behavior control. Finally, this study also helps establish a transitional bridge between the microscopic activity of the nervous system and macroscopic animal behavior.

  1. Aggregative group behavior in insect parasitic nematode disperal

    USDA-ARS?s Scientific Manuscript database

    Movement behavior is critical to determination of spatial ecology and success of foraging in predators and parasites. In this study movement behavior of entomopathogenic nematodes was explored. Movement patterns in sand were investigated when nematodes were applied to a specific locus or when the ne...

  2. Evolved differences in larval social behavior mediated by novel pheromones

    USDA-ARS?s Scientific Manuscript database

    Pheromones, chemical signals that convey social information, mediate many insect social behaviors in both adult and immature stages. Multiple pheromones and neural pathways that underlie adult social behavior have been described in the genetic model organism, Drosophila melanogaster, but there is no...

  3. Synchronous, Alternating, and Phase-Locked Stridulation by a Tropical Katydid

    NASA Astrophysics Data System (ADS)

    Sismondo, Enrico

    1990-07-01

    In the field the chirps of neighboring Mecopoda sp. (Orthoptera, Tettigoniidae, and Mecopodinae) males are normally synchronized, but between more distant individuals the chirps are either synchronous or regularly alternating. The phase response to single-stimulus chirps depends on both the phase and the intensity of the stimulus. Iteration of the Poincare map of the phase response predicts a variety of phase-locked synchronization regimes, including period-doubling bifurcations, in close agreement with experimental observations. The versatile acoustic behavior of Mecopoda encompasses most of the phenomena found in other synchronizing insects and thus provides a general model of insect synchronization behavior.

  4. Edible insects - defining knowledge gaps in biological and ethical considerations of entomophagy.

    PubMed

    Pali-Schöll, Isabella; Binder, Regina; Moens, Yves; Polesny, Friedrich; Monsó, Susana

    2018-04-25

    While seeking novel food sources to feed the increasing population of the globe, several alternatives have been discussed, including algae, fungi or in vitro meat. The increasingly propagated usage of farmed insects for human nutrition raises issues regarding food safety, consumer information and animal protection. In line with law, insects like any other animals must not be reared or manipulated in a way that inflicts unnecessary pain, distress or harm on them. Currently, there is a great need for research in the area of insect welfare, especially regarding species-specific needs, health, farming systems and humane methods of killing. Recent results from neurophysiological, neuroanatomical and behavioral sciences prompt caution when denying consciousness and therefore the likelihood of presence of pain and suffering or something closely related to it to insects. From an animal protection point of view, these issues should be satisfyingly solved before propagating and establishing intensive husbandry systems for insects as a new type of mini-livestock factory farming.

  5. Thermosensory perception regulates speed of movement in response to temperature changes in Drosophila melanogaster.

    PubMed

    Soto-Padilla, Andrea; Ruijsink, Rick; Sibon, Ody C M; van Rijn, Hedderik; Billeter, Jean-Christophe

    2018-04-12

    Temperature influences physiology and behavior of all organisms. For ectotherms, which lack central temperature regulation, temperature adaptation requires sheltering from or moving to a heat source. As temperature constrains the rate of metabolic reactions, it can directly affect ectotherm physiology and thus behavioral performance. This direct effect is particularly relevant for insects whose small body readily equilibrates with ambient temperature. In fact, models of enzyme kinetics applied to insect behavior predict performance at different temperatures, suggesting that thermal physiology governs behavior. However, insects also possess thermosensory neurons critical for locating preferred temperatures, showing cognitive control. This suggests that temperature-related behavior can emerge directly from a physiological effect, indirectly as consequence of thermosensory processing, or through both. To separate the roles of thermal physiology and cognitive control, we developed an arena that allows fast temperature changes in time and space, and in which animals' movements are automatically quantified. We exposed wild-type and thermosensory receptor mutants Drosophila melanogaster to a dynamic temperature environment and tracked their movements. The locomotor speed of wild-type flies closely matched models of enzyme kinetics, but the behavior of thermosensory mutants did not. Mutations in thermosensory receptor dTrpA1 ( Transient receptor potential ) expressed in the brain resulted in a complete lack of response to temperature changes, while mutation in peripheral thermosensory receptor Gr28b(D) resulted in diminished response. We conclude that flies react to temperature through cognitive control, informed by interactions between various thermosensory neurons, whose behavioral output resembles that of enzyme kinetics. © 2018. Published by The Company of Biologists Ltd.

  6. Chemical and genetic defenses against disease in insect societies.

    PubMed

    Stow, Adam; Beattie, Andrew

    2008-10-01

    The colonies of ants, bees, wasps and termites, the social insects, consist of large numbers of closely related individuals; circumstances ideal for contagious diseases. Antimicrobial assays of these animals have demonstrated a wide variety of chemical defenses against both bacteria and fungi that can be broadly classified as either external antiseptic compounds or internal immune molecules. Reducing the disease risks inherent in colonies of social insects is also achieved by behaviors, such as multiple mating or dispersal, that lower genetic relatedness both within- and among colonies. The interactions between social insects and their pathogens are complex, as illustrated by some ants that require antimicrobial and behavioral defenses against highly specialized fungi, such as those in the genus Cordyceps that attack larvae and adults and species in the genus Escovopsis that attack their food supplies. Studies of these defenses, especially in ants, have revealed remarkably sophisticated immune systems, including peptides induced by, and specific to, individual bacterial strains. The latter may be the result of the recruitment by the ants of antibiotic-producing bacteria but the extent of such three-way interactions remains unknown. There is strong experimental evidence that the evolution of sociality required dramatic increases in antimicrobial defenses and that microbes have been powerful selective agents. The antimicrobial chemicals and the insect-killing fungi may be useful in medicine and agriculture, respectively.

  7. Innate immune system still works at diapause, a physiological state of dormancy in insects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, Akihiro; Miyado, Kenji, E-mail: kmiyado@nch.go.jp; Takezawa, Youki

    Highlights: {yields} Two major types of cells are present in the body fluid isolated from the thoracic region of a diapausing pupa. {yields} Phagocytosis and encapsulation by these cells were observed when latex beads as foreign targets were microinjected into a pupa. {yields} Such behavior by these cells was still observed even when pupae were continuously chilled at 4 {sup o}C. {yields} Innate cellular reactions can work in diapausing insects in a dormant state. -- Abstract: Diapause is most often observed in insects and is a physiologically dormant state different from other types of dormancy, such as hibernation. It allowsmore » insects to survive in harsh environments or extend longevity. In general, larval, pupal, or adult non-diapausing insects possess an innate immune system preventing the invasion of microorganisms into their bodies; however, it is unclear whether this system works under the dormant condition of diapause. We here report the occurrence of innate cellular reactions during diapause using pupae of a giant silkmoth, Samia cynthia pryeri. Scanning electron microscopic analysis demonstrated the presence of two major types of cells in the body fluid isolated from the thoracic region of a pupa. Phagocytosis and encapsulation, characteristics of innate cellular reactions, by these cells were observed when latex beads as foreign targets were microinjected into the internal portion of a pupa. Such behavior by these cells was still observed even when pupae were continuously chilled at 4 {sup o}C. Our results indicate that innate cellular reactions can work in diapausing insects in a dormant state.« less

  8. Effect of carbide additions on grain growth in TiC-Ni cermets

    NASA Astrophysics Data System (ADS)

    Shin, Soon-Gi; Lee, Jun-Hee

    2006-02-01

    The growth of carbide particles in TiC-XC-2 vol.% Ni and TiC-XC-30 vol.% Ni alloys, where X=Zr, Cr, W, Ta and Mo, was fitted to an equation of the form d3-do 3=Kt. The grain growth behavior during liquid phase sintering at 1673K decreased markedly with the addition of Mo2C or WC, changed little for TaC, and increased with the addition of ZrC or Cr3C2. The grain contiguity decreased with increasing Ni content in the TiC-Mo2C-Ni alloy and was greater in the alloys with smaller growth rate constant. Consequently, the effect of carbide addition on the grain growth of 2 vol.% Ni alloys was found to be similar to that of 30 vol.% Ni alloys. The grain growth mechanism could be explained by the effect of contiguous carbide grain boundaries in restricting the overall grain growth, as well as the area of the solid/liquid interfaces in the alloy by the usual solution/reprecipitation model.

  9. Flying insect detection and classification with inexpensive sensors.

    PubMed

    Chen, Yanping; Why, Adena; Batista, Gustavo; Mafra-Neto, Agenor; Keogh, Eamonn

    2014-10-15

    An inexpensive, noninvasive system that could accurately classify flying insects would have important implications for entomological research, and allow for the development of many useful applications in vector and pest control for both medical and agricultural entomology. Given this, the last sixty years have seen many research efforts devoted to this task. To date, however, none of this research has had a lasting impact. In this work, we show that pseudo-acoustic optical sensors can produce superior data; that additional features, both intrinsic and extrinsic to the insect's flight behavior, can be exploited to improve insect classification; that a Bayesian classification approach allows to efficiently learn classification models that are very robust to over-fitting, and a general classification framework allows to easily incorporate arbitrary number of features. We demonstrate the findings with large-scale experiments that dwarf all previous works combined, as measured by the number of insects and the number of species considered.

  10. Radar Observation of Insects - Mosquitoes

    NASA Technical Reports Server (NTRS)

    Frost, E.; Downing, J.

    1979-01-01

    Tests were conducted at several sites over the coastal lowlands of New Jersey and over a region of high plains and low mountains in Oklahoma. In one area, a salt marsh in New Jersey, extensive ground tests were combined with laboratory data on expected insect backscatter to arrive at an extremely convincing model of the insect origin of most Dot Angels. A great deal of insight was studied from radar on the buildup and dispersal of insect swarms, since radar can follow where other means of trapping and observation cannot. Data on large-scale behavior as a function of wind and topography are presented. Displayed techniques which show individual or small swarm motion within some larger cloud or mass, or which can show the overall motion over great distances were developed. The influence of wind and terrain on insect motion and dispersal is determined from radar data.

  11. Bacteria Mediate Oviposition by the Black Soldier Fly, Hermetia illucens (L.), (Diptera: Stratiomyidae)

    PubMed Central

    Zheng, Longyu; Crippen, Tawni L.; Holmes, Leslie; Singh, Baneshwar; Pimsler, Meaghan L.; Benbow, M. Eric; Tarone, Aaron M.; Dowd, Scot; Yu, Ziniu; Vanlaerhoven, Sherah L.; Wood, Thomas K.; Tomberlin, Jeffery K.

    2013-01-01

    There can be substantial negative consequences for insects colonizing a resource in the presence of competitors. We hypothesized that bacteria, associated with an oviposition resource and the insect eggs deposited on that resource, serve as a mechanism regulating subsequent insect attraction, colonization, and potentially succession of insect species. We isolated and identified bacterial species associated with insects associated with vertebrate carrion and used these bacteria to measure their influence on the oviposition preference of adult black soldier flies which utilizes animal carcasses and is an important species in waste management and forensics. We also ascertained that utilizing a mixture of bacteria, rather than a single species, differentially influenced behavioral responses of the flies, as did bacterial concentration and the species of fly from which the bacteria originated. These studies provide insight into interkingdom interactions commonly occurring during decomposition, but not commonly studied. PMID:23995019

  12. Bacteria mediate oviposition by the black soldier fly, Hermetia illucens (L.), (Diptera: Stratiomyidae).

    PubMed

    Zheng, Longyu; Crippen, Tawni L; Holmes, Leslie; Singh, Baneshwar; Pimsler, Meaghan L; Benbow, M Eric; Tarone, Aaron M; Dowd, Scot; Yu, Ziniu; Vanlaerhoven, Sherah L; Wood, Thomas K; Tomberlin, Jeffery K

    2013-01-01

    There can be substantial negative consequences for insects colonizing a resource in the presence of competitors. We hypothesized that bacteria, associated with an oviposition resource and the insect eggs deposited on that resource, serve as a mechanism regulating subsequent insect attraction, colonization, and potentially succession of insect species. We isolated and identified bacterial species associated with insects associated with vertebrate carrion and used these bacteria to measure their influence on the oviposition preference of adult black soldier flies which utilizes animal carcasses and is an important species in waste management and forensics. We also ascertained that utilizing a mixture of bacteria, rather than a single species, differentially influenced behavioral responses of the flies, as did bacterial concentration and the species of fly from which the bacteria originated. These studies provide insight into interkingdom interactions commonly occurring during decomposition, but not commonly studied.

  13. Crystal-rich lava dome extrusion during vesiculation: an experimental study

    NASA Astrophysics Data System (ADS)

    Pistone, M.; Whittington, A. G.; Andrews, B. J.; Cottrell, E.

    2016-12-01

    Lava dome-forming eruptions represent a common eruptive style and a major hazard on numerous active volcanoes worldwide. The influence of volatiles on the rheological mechanics of lava dome extrusion remains unclear. Here we present new experimental results on the rheology of synthesized, crystal-rich (50 to 80 vol% quartz crystals), hydrous (4.2 wt% H2O in the glass) dacites, which vesiculate from 5 to 27 vol% gas bubbles at high temperatures (483 to 797 °C) during deformation conducted in a parallel plate viscometer (constant stress at 0.64 MPa, and variable strain-rates ranging from 8.32•10-8 to 3.58•10-5 s-1). The experiments replicated lava dome deformation in volcanic conduits during vesiculation of the residual melt, instigated in the experiments by increasing temperature. During gas exsolution we find that the rheological lubrication of the system during deformation is strongly dictated by the imposed initial crystallinity. At low crystal content (< 60 vol%) strain localization within shear bands, composed of melt and gas bubbles that likely interconnect, controls the overall sample rheology. At high crystallinity (60 to 70 vol%) gas pressurization (i.e. pore pressure increase) within crystal clusters and embryonic formation of microscopic fractures drive the system to a brittle behavior. At higher crystallinity (80 vol%) gas pressurization triggers brittle fragmentation through macroscopic fractures, which sustain outgassing and determines the viscous death of the system. The contrasting behaviors at different crystallinities have direct impact on the style of volcanic eruptions. Outgassing induced by deformation and bubble coalescence reduces the system pressurization and the potential for an explosive eruption. Conversely, high crystallinity lava domes experience limited loss of exsolved gas during deformation, permitting the achievement of large overpressures prior to fragmentation, favoring likely explosive eruptions. These findings provide a dataset that might be used to constrain the physical properties of natural lava domes at active volcanoes and show how crystallinity and corresponding gas pressurization control dome growth rate and consequent eruption style.

  14. A framework for standardizing flight characteristics for separating biology from meteorology in long-range insect transport

    Treesearch

    Gary L. Achtemeier

    1998-01-01

    Once airborne during long-range transport, to what extent is the final destination determined by the biota? It is well known that a biological mechanism initiates flight and another biological mechanism terminates flight. Therefore, efforts to answer the above question should be focused on en route insect behavior. A strategy is proposed to isolate biology...

  15. Knockdown of a metathoracic scent gland desaturase enhances the production of (E)-4-oxo-2-hexenal and suppresses female sexual attraction in the plant bug, Adelphocoris suturalis

    USDA-ARS?s Scientific Manuscript database

    Insect sex pheromones (SPs) are central to mate-finding behavior, and play an essential role in the survival and reproduction of organisms. Understanding the roles, biosynthetic pathways, and evolution of insect chemical communication systems has been an exciting challenge for biologists. Compared w...

  16. Cultural Organization: Fragments of a Theory,

    DTIC Science & Technology

    1983-11-01

    34 In B. Staw & L.L. Cummings (eds.) Research in Organization Behavior , Vol. 6, Greenwich, CT: JAI Press, 1963. November, 1982. 0070-11H 0983 TR-11 Bailyn... Behavior . November, 1982. TR-12 Schein, Edgar H. "The Role of the Founder In the Creation of Organizational Culture." Organizational Dynamics, Summer...34 Forthcoming in J. Lorscb (ed.) Handbook of Organizational Behavior , Englewood Cliffs, NJ: Prentice-Hall. May, 1983. TR-20 Van Maanen, John

  17. The trap of sex in social insects: from the female to the male perspective.

    PubMed

    Beani, Laura; Dessì-Fulgheri, Francesco; Cappa, Federico; Toth, Amy

    2014-10-01

    The phenotype of male Hymenoptera and the peculiar role of males has been neglected and greatly understudied, given the spectacular cooperative behavior of female social insects. In social insects there has been considerable progress in understanding the molecular mechanisms behind haplodiploid sex determination but, beyond that, very little is known concerning the neural, endocrine, and genetic correlates of sexual selection in males. An opportunity is being missed: the male phenotype in Hymenoptera is a natural experiment to compare the drives of natural versus sexual selection. In contrast to females, males do not work, they usually display far from the nest to gain mates, compete among rivals in nuptial flights or for a symbolic territory at leks, and engage in direct or ritualized conflicts. By comparing the available data on male paper wasps with studies on other social Hymenoptera, we summarize what we currently know about the physical, hormonal, neural and behavioral traits in a model system appropriate to examine current paradigms on sexual selection. Here we review male behavior in social Hymenoptera beyond sex stereotypes: the subtle role of "drones" in the colony, the lack of armaments and ornaments, the explosive mating crowds, the "endurance" race, the cognitive bases of the "choosy" male and his immune defense. Social insect males are not just simple-minded mating machines, they are shaped, constrained and perhaps trapped by sexual selection. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. First record of lobed trace fossils in Brazil's Upper Cretaceous paleosols: Rhizoliths or evidence of insects and their social behavior?

    NASA Astrophysics Data System (ADS)

    Luciano do Nascimento, Diego; Batezelli, Alessandro; Bernardes Ladeira, Francisco Sérgio

    2017-11-01

    This is the first report of trace fossils potentially associated with insect social behavior in sandy and well-drained paleosols of the Upper Cretaceous continental sequence of Brazil. The trace fossils consist of dozens of lobed and vertical structures cemented by CaCO3 and preserved mainly in full relief in paleosols of the Marilia Formation (Bauru Basin) in the state of Minas Gerais. The described ichnofossils are predominantly vertical, up to 2 m long, and are composed of horizontal lobed structures connected by vertical tunnel-like structures that intersect in the center and at the edges. The lobed structures range from 3 to 15 cm long and 2-6 cm thick. Two different hypotheses are analyzed to explain the origin of the trace fossils; the less probable one is that the structures are laminar calcretes associated with rhizoliths and rhizoconcretions. The hypothesis involving social insects was considered because the trace fossils described herein partially resemble a modern ant nest and the ichnofossil Daimoniobarax. The micromorphological analysis of the lobed and tunnel-like structures indicates modifications of the walls, such as the presence of inorganic fluidized linings, dark linings and oriented grains, supporting the hypothesis that they are chambers and shafts. The architecture and size of the reported nests suggest the possibility that social insect colonies existed during the Maastrichtian and are direct evidence of the social behavior and reproductive strategies of the Cretaceous pedofauna.

  19. Nonspiking local interneurons in insect leg motor control. I. Common layout and species-specific response properties of femur-tibia joint control pathways in stick insect and locust.

    PubMed

    Büschges, A; Wolf, H

    1995-05-01

    1. Locusts (Locusta migratoria) and stick insects (Carausius morosus) exhibit different strategies for predator avoidance. Locusts rely primarily on walking and jumping to evade predators, whereas stick insects become cataleptic, catalepsy forming a major component of the twig mimesis exhibited by this species. The neuronal networks that control postural leg movements in locusts and stick insects are tuned differently to their specific behavioral tasks. An important prerequisite for the production of catalepsy in the stick insect is the marked velocity dependency of the control network, which appears to be generated at the level of nonspiking local interneurons. We examined interneuronal pathways in the network controlling the femur-tibia joint of the locust middle leg and compared its properties with those described for the stick insect middle leg. It was our aim to identify possible neural correlates of the species-specific behavior with regard to postural leg motor control. 2. We obtained evidence that the neuronal networks that control the femur-tibia joints in the two species consist of morphologically and physiologically similar--and thus probably homologous--interneurons. Qualitatively, these interneurons receive the same input from the femoral chordotonal organ receptors and they drive the same pools of leg motoneurons in both species. 3. Pathways that contribute to the control of the femur-tibia joint include interneurons that support both "resisting" and "assisting" responses with respect to the motoneuron activity that is actually elicited during reflex movements. Signal processing via parallel, antagonistic pathways therefore appears to be a common principle in insect leg motor control. 4. Differences between the two insect species were found with regard to the processing of velocity information provided by the femoral chordotonal organ. Interneuronal pathways are sensitive to stimulus velocity in both species. However, in the locust there is no marked velocity dependency of the interneuronal responses, whereas in the same interneurons of the stick insect it is pronounced. This characteristic was maintained at the level of the motoneurons controlling the femur-tibia joint. Pathways for postural leg motor control in the locust thus lack an important prerequisite for the generation of catalepsy, that is, a marked velocity dependency.

  20. Improving mycoinsecticides for insect biological control.

    PubMed

    Ortiz-Urquiza, Almudena; Luo, Zhibing; Keyhani, Nemat O

    2015-02-01

    The desire for decreased reliance on chemical pesticides continues to fuel interest in alternative means for pest control including the use of naturally occurring microbial insect pathogens. Insects, as vectors of disease causing agents or as agricultural pests, are responsible for millions of deaths and significant economic losses worldwide, placing stresses on productivity (GDP) and human health and welfare. In addition, alterations in climate change are likely to affect insect ranges, expanding their access to previously constrained geographic areas, a potentially worrisome outcome. Metarhizium anisopliae and Beauveria bassiana, two cosmopolitan fungal pathogens of insects found in almost all ecosystems, are the most commonly applied mycoinsecticides for a variety of insect control purposes. The availability of the complete genomes for both organisms coupled to robust technologies for their transformation has led to several advances in engineering these fungi for greater efficacy and/or utility in pest control applications. Here, we will provide an overview of the fungal-insect and fungal-plant interactions that occur and highlight recent advances in the genetic engineering of these fungi. The latter work has resulted in the development of strains displaying (1) increased resistance to abiotic stress, (2) increased cuticular targeting and degradation, (3) increased virulence via expression of insecticidal protein/peptide toxins, (4) the ability to block transmission of disease causing agents, and (5) the ability to target specific insect hosts, decrease host fecundity, and/or alter insect behaviors.

  1. Microbial Brokers of Insect-Plant Interactions Revisited

    PubMed Central

    Douglas, Angela E

    2013-01-01

    Recent advances in sequencing methods have transformed the field of microbial ecology, making it possible to determine the composition and functional capabilities of uncultured microorganisms. These technologies have been instrumental in the recognition that resident microorganisms can have profound effects on the phenotype and fitness of their animal hosts by modulating the animal signaling networks that regulate growth, development, behavior, etc. Against this backdrop, this review assesses the impact of microorganisms on insect-plant interactions, in the context of the hypothesis that microorganisms are biochemical brokers of plant utilization by insects. There is now overwhelming evidence for a microbial role in insect utilization of certain plant diets with an extremely low or unbalanced nutrient content. Specifically, microorganisms enable insect utilization of plant sap by synthesizing essential amino acids. They also can broker insect utilization of plant products of extremely high lignocellulose content, by enzymatic breakdown of complex plant polysaccharides, nitrogen fixation, and sterol synthesis. However, the experimental evidence for microbial-mediated detoxification of plant allelochemicals is limited. The significance of microorganisms as brokers of plant utilization by insects is predicted to vary, possibly widely, as a result of potentially complex interactions between the composition of the microbiota and the diet and insect developmental age or genotype. For every insect species feeding on plant material, the role of resident microbiota as biochemical brokers of plant utilization is a testable hypothesis. PMID:23793897

  2. Manipulation of host behavior by parasitic insects and insect parasites.

    PubMed

    Libersat, Frederic; Delago, Antonia; Gal, Ram

    2009-01-01

    Parasites often alter the behavior of their hosts in ways that are ultimately beneficial to the parasite or its offspring. Although the alteration of host behavior by parasites is a widespread phenomenon, the underlying neuronal mechanisms are only beginning to be understood. Here, we focus on recent advances in the study of behavioral manipulation via modulation of the host central nervous system. We elaborate on a few case studies, in which recently published data provide explanations for the neuronal basis of parasite-induced alteration of host behavior. Among these, we describe how a worm may influence the nervous system of its cricket host and manipulate the cricket into committing suicide by jumping into water. We then focus on Ampulex compressa, which uses an Alien-like strategy for the sake of its offspring. Unlike most venomous hunters, this wasp injects venom directly into specific cerebral regions of its cockroach prey. As a result of the sting, the cockroach remains alive but immobile, but not paralyzed, and serves to nourish the developing wasp larva.

  3. A Technology for Developing Instructional Materials. Vol. 3, Handbook. Part B, Collect and Analyze Data About Criterion Behaviors.

    ERIC Educational Resources Information Center

    Gropper, George L.

    This document is the second in a series of 11 subvolumes of a handbook providing training for educational research and development personnel in the development of instructional materials. This subvolume deals with the task of collecting and analyzing data about criterion behavior. The document content is divided into the following five steps for…

  4. Plant Tolerance: A Unique Approach to Control Hemipteran Pests

    PubMed Central

    Koch, Kyle G.; Chapman, Kaitlin; Louis, Joe; Heng-Moss, Tiffany; Sarath, Gautam

    2016-01-01

    Plant tolerance to insect pests has been indicated to be a unique category of resistance, however, very little information is available on the mechanism of tolerance against insect pests. Tolerance is distinctive in terms of the plant’s ability to withstand or recover from herbivore injury through growth and compensatory physiological processes. Because plant tolerance involves plant compensatory characteristics, the plant is able to harbor large numbers of herbivores without interfering with the insect pest’s physiology or behavior. Some studies have observed that tolerant plants can compensate photosynthetically by avoiding feedback inhibition and impaired electron flow through photosystem II that occurs as a result of insect feeding. Similarly, the up-regulation of peroxidases and other oxidative enzymes during insect feeding, in conjunction with elevated levels of phytohormones can play an important role in providing plant tolerance to insect pests. Hemipteran insects comprise some of the most economically important plant pests (e.g., aphids, whiteflies), due to their ability to achieve high population growth and their potential to transmit plant viruses. In this review, results from studies on plant tolerance to hemipterans are summarized, and potential models to understand tolerance are presented. PMID:27679643

  5. Combinatorial Codes and Labeled Lines: How Insects Use Olfactory Cues to Find and Judge Food, Mates, and Oviposition Sites in Complex Environments

    PubMed Central

    Haverkamp, Alexander; Hansson, Bill S.; Knaden, Markus

    2018-01-01

    Insects, including those which provide vital ecosystems services as well as those which are devastating pests or disease vectors, locate their resources mainly based on olfaction. Understanding insect olfaction not only from a neurobiological but also from an ecological perspective is therefore crucial to balance insect control and conservation. However, among all sensory stimuli olfaction is particularly hard to grasp. Our chemical environment is made up of thousands of different compounds, which might again be detected by our nose in multiple ways. Due to this complexity, researchers have only recently begun to explore the chemosensory ecology of model organisms such as Drosophila, linking the tools of chemical ecology to those of neurogenetics. This cross-disciplinary approach has enabled several studies that range from single odors and their ecological relevance, via olfactory receptor genes and neuronal processing, up to the insects' behavior. We learned that the insect olfactory system employs strategies of combinatorial coding to process general odors as well as labeled lines for specific compounds that call for an immediate response. These studies opened new doors to the olfactory world in which insects feed, oviposit, and mate. PMID:29449815

  6. Mind Control: How Parasites Manipulate Cognitive Functions in Their Insect Hosts

    PubMed Central

    Libersat, Frederic; Kaiser, Maayan; Emanuel, Stav

    2018-01-01

    Neuro-parasitology is an emerging branch of science that deals with parasites that can control the nervous system of the host. It offers the possibility of discovering how one species (the parasite) modifies a particular neural network, and thus particular behaviors, of another species (the host). Such parasite–host interactions, developed over millions of years of evolution, provide unique tools by which one can determine how neuromodulation up-or-down regulates specific behaviors. In some of the most fascinating manipulations, the parasite taps into the host brain neuronal circuities to manipulate hosts cognitive functions. To name just a few examples, some worms induce crickets and other terrestrial insects to commit suicide in water, enabling the exit of the parasite into an aquatic environment favorable to its reproduction. In another example of behavioral manipulation, ants that consumed the secretions of a caterpillar containing dopamine are less likely to move away from the caterpillar and more likely to be aggressive. This benefits the caterpillar for without its ant bodyguards, it is more likely to be predated upon or attacked by parasitic insects that would lay eggs inside its body. Another example is the parasitic wasp, which induces a guarding behavior in its ladybug host in collaboration with a viral mutualist. To exert long-term behavioral manipulation of the host, parasite must secrete compounds that act through secondary messengers and/or directly on genes often modifying gene expression to produce long-lasting effects. PMID:29765342

  7. Mind Control: How Parasites Manipulate Cognitive Functions in Their Insect Hosts.

    PubMed

    Libersat, Frederic; Kaiser, Maayan; Emanuel, Stav

    2018-01-01

    Neuro-parasitology is an emerging branch of science that deals with parasites that can control the nervous system of the host. It offers the possibility of discovering how one species (the parasite) modifies a particular neural network, and thus particular behaviors, of another species (the host). Such parasite-host interactions, developed over millions of years of evolution, provide unique tools by which one can determine how neuromodulation up-or-down regulates specific behaviors. In some of the most fascinating manipulations, the parasite taps into the host brain neuronal circuities to manipulate hosts cognitive functions. To name just a few examples, some worms induce crickets and other terrestrial insects to commit suicide in water, enabling the exit of the parasite into an aquatic environment favorable to its reproduction. In another example of behavioral manipulation, ants that consumed the secretions of a caterpillar containing dopamine are less likely to move away from the caterpillar and more likely to be aggressive. This benefits the caterpillar for without its ant bodyguards, it is more likely to be predated upon or attacked by parasitic insects that would lay eggs inside its body. Another example is the parasitic wasp, which induces a guarding behavior in its ladybug host in collaboration with a viral mutualist. To exert long-term behavioral manipulation of the host, parasite must secrete compounds that act through secondary messengers and/or directly on genes often modifying gene expression to produce long-lasting effects.

  8. Sintering behavior and thermal conductivity of nickel-coated graphite flake/copper composites fabricated by spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Xu, Hui; Chen, Jian-hao; Ren, Shu-bin; He, Xin-bo; Qu, Xuan-hui

    2018-04-01

    Nickel-coated graphite flakes/copper (GN/Cu) composites were fabricated by spark plasma sintering with the surface of graphite flakes (GFs) being modified by Ni-P electroless plating. The effects of the phase transition of the amorphous Ni-P plating and of Ni diffusion into the Cu matrix on the densification behavior, interfacial microstructure, and thermal conductivity (TC) of the GN/Cu composites were systematically investigated. The introduction of Ni-P electroless plating efficiently reduced the densification temperature of uncoated GF/Cu composites from 850 to 650°C and slightly increased the TC of the X-Y basal plane of the GF/Cu composites with 20vol%-30vol% graphite flakes. However, when the graphite flake content was greater than 30vol%, the TC of the GF/Cu composites decreased with the introduction of Ni-P plating as a result of the combined effect of the improved heat-transfer interface with the transition layer, P generated at the interface, and the diffusion of Ni into the matrix. Given the effect of the Ni content on the TC of the Cu matrix and on the interface thermal resistance, a modified effective medium approximation model was used to predict the TC of the prepared GF/Cu composites.

  9. Plasticizing aqueous suspensions of concentrated alumina with maltodextrin sugar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schilling, C.H.; Bellman, R.A.; Smith, R.M.

    1999-01-01

    Aqueous suspensions of submicrometer, 20 vol% Al{sub 2}O{sub 3} powder exhibited a transition from strongly flocculated, thixotropic behavior to a low-viscosity, Newtonian-like state upon adding small amounts of maltodextrin (0.03 g of maltodextrin/(g of Al{sub 2}O{sub 3})). These suspensions could be filter pressed to highly dense (57%) and extrudable pastes only when prepared with maltodextrin. The authors analyzed the interaction of maltodextrin with Al{sub 2}O{sub 3} powder surfaces and quantitatively measured the resulting claylike consolidation, rheological, and extrusion behaviors. Benbow extrusion parameters were comparable to, but higher than, those of kaolin at approximately the same packing density of 57 vol%.more » In contrast, Al{sub 2}O{sub 3} filter cakes without maltodextrin at 57 vol% density were too stiff to be extruded. Measurements of rheological properties, acoustophoresis, electrophoresis, sorption isotherms, and diffuse reflectance Fourier infrared spectroscopy supported the hypothesis that sorbate-mediated steric hindrance, rather than electrostatic, interparticle repulsion, is important to enhancing the consolidation and fluidity of maltodextrin-Al{sub 2}O{sub 3} suspensions. Viscosity measurements on aqueous maltodextrin solutions indicated that free maltodextrin in solution does not improve suspension fluidity by decreasing the viscosity of the interparticle solution.« less

  10. Pollination by brood-site deception.

    PubMed

    Urru, Isabella; Stensmyr, Marcus C; Hansson, Bill S

    2011-09-01

    Pollination is often regarded as a mutualistic relationship between flowering plants and insects. In such a relationship, both partners gain a fitness benefit as a result of their interaction. The flower gets pollinated and the insect typically gets a food-related reward. However, flower-insect communication is not always a mutualistic system, as some flowers emit deceitful signals. Insects are thus fooled by irresistible stimuli and pollination is accomplished. Such deception requires very fine tuning, as insects in their typically short life span, try to find mating/feeding breeding sites as efficiently as possible, and following deceitful signals thus is both costly and time-consuming. Deceptive flowers have thus evolved the ability to emit signals that trigger obligate innate or learned responses in the targeted insects. The behavior, and thus the signals, exploited are typically involved in reproduction, from attracting pheromones to brood/food-site cues. Chemical mimicry is one of the main modalities through which flowers trick their pollen vectors, as olfaction plays a pivotal role in insect-insect and insect-plant interactions. Here we focus on floral odors that specifically mimic an oviposition substrate, i.e., brood-site mimicry. The phenomenon is wide spread across unrelated plant lineages of Angiosperm, Splachnaceae and Phallaceae. Targeted insects are mainly beetles and flies, and flowers accordingly often emit, to the human nose, highly powerful and fetid smells that are conversely extremely attractive to the duped insects. Brood-site deceptive plants often display highly elaborate flowers and have evolved a trap-release mechanism. Chemical cues often act in unison with other sensory cues to refine the imitation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Seasonal Effects on the Population, Morphology and Reproductive Behavior of Narnia femorata (Hemiptera: Coreidae)

    PubMed Central

    Cirino, Lauren A.; Miller, Christine W.

    2017-01-01

    Many insects are influenced by the phenology of their host plants. In North Central Florida, Narnia femorata (Hemiptera: Coreidae) spends its entire life cycle living and feeding on Opuntia mesacantha ssp. lata. This cactus begins producing flower buds in April that lead to unripe green fruit in June that ripen into red fruit through December. Many morphological and behavioral characteristics of N. femorata are known to be affected by cactus phenology in a controlled laboratory setting, including the degree of sexual dimorphism and mating behavior. Our goal with this study was to determine if similar phenotypic changes of N. femorata occurred over time in the wild, and the extent to which these changes were concordant with phenological changes in its host plant. Further, we investigate the length of the insect mouthparts (beak) over time. Ongoing work has suggested that beak length may change across cohorts of developing insects in response to feeding deep within cactus fruit where seed and pulp depth decrease as the fruit ripens. Our results revealed a drop in cactus fruit abundance between the months of July through October 2015 as cactus fruits turned red and ripened. Simultaneously, the average body size of both males and females of N. femorata declined at two sampled sites. Male hind femora (a sexually-selected weapon) decreased disproportionately in size over time so that males later in the year had relatively smaller hind femora for their body size. The sex-specific patterns of morphological change led to increased sexual-size dimorphism and decreased sexual dimorphism for hind femora later in the year. Further, we found that beak length decreased across cohorts of insects as cactus fruit ripened, suggesting phenotypic plasticity in mouthpart length. Behavioral studies revealed that female readiness to mate increased as the season progressed. In sum, we found pronounced changes in the phenotypes of these insects in the field. Although this study is far from comprehensive, it provides tantalizing patterns that suggest many directions for future research. PMID:28106715

  12. Analyzing the Effects of Technological Change: A Computable General Equilibrium Approach

    DTIC Science & Technology

    1988-09-01

    to obtain. One way out of this dilemma is to change slightly the interpretation of the formal model of consumer behavior which has been presented above...approach to analyzing the economy-wide effects of a phenomenon such as technological change. By focussing on aggregate producer and consumer behavior , it is... Consumer Behavior ." In R.L. Baseman and G. Rhodes, eds., Advances in Econometrics, vol. 1. Greenwich: JAI Press, 1982. Nagurney [1987] Nagurney, A

  13. [Research progress in chemical communication among insect-resistant genetically modified plants, insect pests and natural enemies].

    PubMed

    Liu, Qing-Song; Li, Yun-He; Chen, Xiu-Ping; Peng, Yu-Fa

    2014-08-01

    Semiochemicals released by plants or insects play an important role in the communication among plants, phytophagous insects and their natural enemies. They thus form a chemical information network which regulates intra- and inter-specific behaviors and sustains the composition and structure of plant and insect communities. The application of insect-resistant genetically modified (IRGM) crops may affect the chemical communication within and among the tritrophic levels, and thus cause disturbances to the biotic community structure and the stability of the farmland ecosystem. This has raised concerns about the environmental safety of IRGM crops and triggered research worldwide. In the current article we provided a brief summary of the chemical communication among plants, herbivores and natural enemies; analyzed the potential of IRGM crops to affect the chemical communication between plants and arthropods and the related mechanisms; and discussed the current research progress and the future prospects in this field. We hope that this will promote the research in this field by Chinese scientists and increase our understanding of the potential effects of growing of IRGM crops on the arthropod community structure.

  14. What insects can tell us about the origins of consciousness

    PubMed Central

    Barron, Andrew B.; Klein, Colin

    2016-01-01

    How, why, and when consciousness evolved remain hotly debated topics. Addressing these issues requires considering the distribution of consciousness across the animal phylogenetic tree. Here we propose that at least one invertebrate clade, the insects, has a capacity for the most basic aspect of consciousness: subjective experience. In vertebrates the capacity for subjective experience is supported by integrated structures in the midbrain that create a neural simulation of the state of the mobile animal in space. This integrated and egocentric representation of the world from the animal’s perspective is sufficient for subjective experience. Structures in the insect brain perform analogous functions. Therefore, we argue the insect brain also supports a capacity for subjective experience. In both vertebrates and insects this form of behavioral control system evolved as an efficient solution to basic problems of sensory reafference and true navigation. The brain structures that support subjective experience in vertebrates and insects are very different from each other, but in both cases they are basal to each clade. Hence we propose the origins of subjective experience can be traced to the Cambrian. PMID:27091981

  15. The Model Intercomparison Project on the Climatic Response to Volcanic Forcing (VolMIP): Experimental Design and Forcing Input Data for CMIP6

    NASA Technical Reports Server (NTRS)

    Zanchettin, Davide; Khodri, Myriam; Timmreck, Claudia; Toohey, Matthew; Schmidt, Anja; Gerber, Edwin P.; Hegerl, Gabriele; Robock, Alan; Pausata, Francesco; Ball, William T.; hide

    2016-01-01

    The enhancement of the stratospheric aerosol layer by volcanic eruptions induces a complex set of responses causing global and regional climate effects on a broad range of timescales. Uncertainties exist regarding the climatic response to strong volcanic forcing identified in coupled climate simulations that contributed to the fifth phase of the Coupled Model Intercomparison Project (CMIP5). In order to better understand the sources of these model diversities, the Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP) has defined a coordinated set of idealized volcanic perturbation experiments to be carried out in alignment with the CMIP6 protocol. VolMIP provides a common stratospheric aerosol data set for each experiment to minimize differences in the applied volcanic forcing. It defines a set of initial conditions to assess how internal climate variability contributes to determining the response. VolMIP will assess to what extent volcanically forced responses of the coupled ocean-atmosphere system are robustly simulated by state-of-the-art coupled climate models and identify the causes that limit robust simulated behavior, especially differences in the treatment of physical processes. This paper illustrates the design of the idealized volcanic perturbation experiments in the VolMIP protocol and describes the common aerosol forcing input data sets to be used.

  16. On-plant selection and genetic analysis of European corn borer (Lepidoptera: Crambidae) behavioral traits: plant abandonment versus plant establishment

    USDA-ARS?s Scientific Manuscript database

    Although some studies have investigated how insect behavior could influence resistance evolution to transgenic plants, none have determined if behavioral traits respond to selection pressure and how they may be inherited. We investigated plant establishment and plant abandonment traits for the Euro...

  17. Pyrokinin β-neuropeptide affects necrophoretic behavior in fire ants (S. invicta), and expression of β-NP in a mycoinsecticide increases its virulence.

    PubMed

    Fan, Yanhua; Pereira, Roberto M; Kilic, Engin; Casella, George; Keyhani, Nemat O

    2012-01-01

    Fire ants are one of the world's most damaging invasive pests, with few means for their effective control. Although ecologically friendly alternatives to chemical pesticides such as the insecticidal fungus Beauveria bassiana have been suggested for the control of fire ant populations, their use has been limited due to the low virulence of the fungus and the length of time it takes to kill its target. We present a means of increasing the virulence of the fungal agent by expressing a fire ant neuropeptide. Expression of the fire ant (Solenopsis invicta) pyrokinin β-neuropeptide (β-NP) by B. bassiana increased fungal virulence six-fold towards fire ants, decreased the LT(50), but did not affect virulence towards the lepidopteran, Galleria mellonella. Intriguingly, ants killed by the β-NP expressing fungus were disrupted in the removal of dead colony members, i.e. necrophoretic behavior. Furthermore, synthetic C-terminal amidated β-NP but not the non-amidated peptide had a dramatic effect on necrophoretic behavior. These data link chemical sensing of a specific peptide to a complex social behavior. Our results also confirm a new approach to insect control in which expression of host molecules in an insect pathogen can by exploited for target specific augmentation of virulence. The minimization of the development of potential insect resistance by our approach is discussed.

  18. Pyrokinin β-Neuropeptide Affects Necrophoretic Behavior in Fire Ants (S. invicta), and Expression of β-NP in a Mycoinsecticide Increases Its Virulence

    PubMed Central

    Fan, Yanhua; Pereira, Roberto M.; Kilic, Engin; Casella, George; Keyhani, Nemat O.

    2012-01-01

    Fire ants are one of the world's most damaging invasive pests, with few means for their effective control. Although ecologically friendly alternatives to chemical pesticides such as the insecticidal fungus Beauveria bassiana have been suggested for the control of fire ant populations, their use has been limited due to the low virulence of the fungus and the length of time it takes to kill its target. We present a means of increasing the virulence of the fungal agent by expressing a fire ant neuropeptide. Expression of the fire ant (Solenopsis invicta) pyrokinin β -neuropeptide (β-NP) by B. bassiana increased fungal virulence six-fold towards fire ants, decreased the LT50, but did not affect virulence towards the lepidopteran, Galleria mellonella. Intriguingly, ants killed by the β-NP expressing fungus were disrupted in the removal of dead colony members, i.e. necrophoretic behavior. Furthermore, synthetic C-terminal amidated β-NP but not the non-amidated peptide had a dramatic effect on necrophoretic behavior. These data link chemical sensing of a specific peptide to a complex social behavior. Our results also confirm a new approach to insect control in which expression of host molecules in an insect pathogen can by exploited for target specific augmentation of virulence. The minimization of the development of potential insect resistance by our approach is discussed. PMID:22238569

  19. Ionotropic Receptor-dependent moist and dry cells control hygrosensation in Drosophila.

    PubMed

    Knecht, Zachary A; Silbering, Ana F; Cruz, Joyner; Yang, Ludi; Croset, Vincent; Benton, Richard; Garrity, Paul A

    2017-06-16

    Insects use hygrosensation (humidity sensing) to avoid desiccation and, in vectors such as mosquitoes, to locate vertebrate hosts. Sensory neurons activated by either dry or moist air ('dry cells' and 'moist cells') have been described in many insects, but their behavioral roles and the molecular basis of their hygrosensitivity remain unclear. We recently reported that Drosophila hygrosensation relies on three Ionotropic Receptors (IRs) required for dry cell function: IR25a, IR93a and IR40a (Knecht et al., 2016). Here, we discover Drosophila moist cells and show that they require IR25a and IR93a together with IR68a, a conserved, but orphan IR. Both IR68a- and IR40a-dependent pathways drive hygrosensory behavior: each is important for dry-seeking by hydrated flies and together they underlie moist-seeking by dehydrated flies. These studies reveal that humidity sensing in Drosophila , and likely other insects, involves the combined activity of two molecularly related but neuronally distinct hygrosensing systems.

  20. A host beetle pheromone regulates development and behavior in the nematode Pristionchus pacificus.

    PubMed

    Cinkornpumin, Jessica K; Wisidagama, Dona R; Rapoport, Veronika; Go, James L; Dieterich, Christoph; Wang, Xiaoyue; Sommer, Ralf J; Hong, Ray L

    2014-10-15

    Nematodes and insects are the two most speciose animal phyla and nematode-insect associations encompass widespread biological interactions. To dissect the chemical signals and the genes mediating this association, we investigated the effect of an oriental beetle sex pheromone on the development and behavior of the nematode Pristionchus pacificus. We found that while the beetle pheromone is attractive to P. pacificus adults, the pheromone arrests embryo development, paralyzes J2 larva, and inhibits exit of dauer larvae. To uncover the mechanism that regulates insect pheromone sensitivity, a newly identified mutant, Ppa-obi-1, is used to reveal the molecular links between altered attraction towards the beetle pheromone, as well as hypersensitivity to its paralyzing effects. Ppa-obi-1 encodes lipid-binding domains and reaches its highest expression in various cell types, including the amphid neuron sheath and excretory cells. Our data suggest that the beetle host pheromone may be a species-specific volatile synomone that co-evolved with necromeny.

  1. Feeding and defecation behavior of Triatoma rubida (Uhler, 1894) (Hemiptera: Reduviidae) under laboratory conditions, and its potential role as a vector of Chagas disease in Arizona, USA.

    PubMed

    Reisenman, Carolina E; Gregory, Teresa; Guerenstein, Pablo G; Hildebrand, John G

    2011-10-01

    Chagas disease is caused by the parasite Trypanosoma cruzi, which is transmitted to humans by blood-sucking triatomine insects. This disease is endemic throughout Mexico and Central and South America, but only a few autochthonous cases have been reported in the United States, despite the fact that infected insects readily invade houses and feed on humans. Competent vectors defecate during or shortly after feeding so that infective feces contact the host. We thus studied the feeding and defecation behaviors of the prevalent species in southern Arizona, Triatoma rubida. We found that whereas defecation during feeding was frequent in females (93%), it was very rare in immature stages (3%), and absent in males. Furthermore, more than half of the immature insects that exhibited multiple feeding bouts (62%) defecated during interruptions of feeding, i.e., while likely on or near the host. These results indicate that T. rubida potentially could transmit T. cruzi to humans.

  2. Exploratory behavior in mice selectively bred for developmental differences in aggressive behavior.

    PubMed

    Hood, Kathryn E; Quigley, Karen S

    2008-01-01

    The development and expression of exploratory behavior was assessed in the Cairns lines of Institute for Cancer Research (ICR) mice that were selectively bred for differences in aggressive behavior, with a high-aggressive 900 line, low-aggressive 100 line, and control 500 line. Four paradigms were employed. Developmental changes were evident in the complex novel arena, with older males faster to contact a novel object, and ambulating more than young males. Within the control 500 line, older males showed longer latency to emerge from the home cage, and shorter latency to contact novel objects. In the 900 line, younger males showed this same pattern. R. B. Cairns proposed that line differences in aggressive behavior arise through alterations in developmental timing [Cairns et al. [1983] Life-span developmental psychology (Vol. 5). New York: Academic Press; Gariépy et al. [2001] Animal Behaviour 61: 933-947]. The early appearance of mature patterns of exploratory behavior in 900 line males supports this interpretation. The 900 line males also appear to be behaviorally inhibited in novel settings such as the light-dark box and the neohypophagia paradigm, compared to the 500 and 100 lines (Experiments 1, 2, and 4). Moreover, in the most complex apparatus, the novel arena, 900 line males were slowest to exit the home cage, and fastest to contact a novel object. The apparent contrast in these parameters of exploratory behavior is discussed in relation to T. C. Schneirla's [1965 Advances in the study of behavior (Vol. 1). New York: PN Academic] approach-withdrawal theory. (c) 2007 Wiley Periodicals, Inc.

  3. Crack Growth Behavior of Alloy in-100 under Sustained Load at 732 C (1350 F).

    DTIC Science & Technology

    1981-04-01

    were not taken into account in this investigation. pi 63 63 AFWAL-TR-80-4131 REFERENCES 1. D. E. Macha , "Fatigue Crack Growth Retardation Behavior of...IN-1O0 at Elevated Temperature," Eng. Fract. Mech, Vol. 12, pp. 1-11, 1979. 2. D. E. Macha , A. F. Grandt, and B. J. Wicks, "Effects of Gas Turbine

  4. Highly Conductive Multifunctional Graphene Polycarbonate Nanocomposites

    NASA Technical Reports Server (NTRS)

    Yoonessi, Mitra; Gaier, James R.

    2010-01-01

    Graphene nanosheet bisphenol A polycarbonate nanocomposites (0.027 2.2 vol %) prepared by both emulsion mixing and solution blending methods, followed by compression molding at 287 C, exhibited dc electrical percolation threshold of approx.0.14 and approx.0.38 vol %, respectively. The conductivities of 2.2 vol % graphene nanocomposites were 0.512 and 0.226 S/cm for emulsion and solution mixing. The 1.1 and 2.2 vol % graphene nanocomposites exhibited frequency-independent behavior. Inherent conductivity, extremely high aspect ratio, and nanostructure directed assembly of the graphene using PC nanospheres are the main factors for excellent electrical properties of the nanocomposites. Dynamic tensile moduli of nanocomposites increased with increasing graphene in the nanocomposite. The glass transition temperatures were decreased with increasing graphene for the emulsion series. High-resolution electron microscopy (HR-TEM) and small-angle neutron scattering (SANS) showed isolated graphene with no connectivity path for insulating nanocomposites and connected nanoparticles for the conductive nanocomposites. A stacked disk model was used to obtain the average particle radius, average number of graphene layers per stack, and stack spacing by simulation of the experimental SANS data. Morphology studies indicated the presence of well-dispersed graphene and small graphene stacking with infusion of polycarbonate within the stacks.

  5. Resource concentration hypothesis: effect of host plant patch size on density of herbivorous insects.

    PubMed

    Grez, A A; González, R H

    1995-09-01

    The resource concentration hypothesis (Root 1973) predicts that specialist herbivorous insects should be more abundant in large patches of host plants, because the insects are more likely to find and stay longer in those patches. Between August 1989 and January 1990 we experimentally tested Root's hypothesis by analyzing the numerical response of four species of herbivorous insects associated with patches of 4, 16, 64 and 225 cabbage plants, Brassica oleracea var. capitata. In addition, we studied the colonization of patches by adults of Plutella xylostella (L.) (Lepidoptera: Plutellidae), and the migration of their larvae in patches of different sizes. No herbivorous insect densities differed significantly with patch size. Adults of P. xylostella colonized all kind of patches equally. Larvae did not migrate between patches, and their disappearance rate did not differ between patches. The resource concentration hypothesis is organism-dependent, being a function of the adult and juvenile herbivore dispersal behavior in relation to the spatial scale of patchiness.

  6. United States Department of Agriculture-Agricultural Research Service: advances in the molecular genetic analysis of insects and their application to pest management.

    PubMed

    Handler, Alfred M; Beeman, Richard W

    2003-01-01

    USDA-ARS scientists have made important contributions to the molecular genetic analysis of agriculturally important insects, and have been in the forefront of using this information for the development of new pest management strategies. Advances have been made in the identification and analysis of genetic systems involved in insect development, reproduction and behavior which enable the identification of new targets for control, as well as the development of highly specific insecticidal products. Other studies have been on the leading edge of developing gene transfer technology to better elucidate these biological processes though functional genomics and to develop new transgenic strains for biological control. Important contributions have also been made to the development and use of molecular markers and methodologies to identify and track insect populations. The use of molecular genetic technology and strategies will become increasingly important to pest management as genomic sequencing information becomes available from important pest insects, their targets and other associated organisms.

  7. Intrinsic worker mortality depends on behavioral caste and the queens' presence in a social insect

    NASA Astrophysics Data System (ADS)

    Kohlmeier, Philip; Negroni, Matteo Antoine; Kever, Marion; Emmling, Stefanie; Stypa, Heike; Feldmeyer, Barbara; Foitzik, Susanne

    2017-04-01

    According to the classic life history theory, selection for longevity depends on age-dependant extrinsic mortality and fecundity. In social insects, the common life history trade-off between fecundity and longevity appears to be reversed, as the most fecund individual, the queen, often exceeds workers in lifespan several fold. But does fecundity directly affect intrinsic mortality also in social insect workers? And what is the effect of task on worker mortality? Here, we studied how social environment and behavioral caste affect intrinsic mortality of ant workers. We compared worker survival between queenless and queenright Temnothorax longispinosus nests and demonstrate that workers survive longer under the queens' absence. Temnothorax ant workers fight over reproduction when the queen is absent and dominant workers lay eggs. Worker fertility might therefore increase lifespan, possibly due to a positive physiological link between fecundity and longevity, or better care for fertile workers. In social insects, division of labor among workers is age-dependant with young workers caring for the brood and old ones going out to forage. We therefore expected nurses to survive longer than foragers, which is what we found. Surprisingly, inactive inside workers showed a lower survival than nurses but comparable to that of foragers. The reduced longevity of inactive workers could be due to them being older than the nurses, or due to a positive effect of activity on lifespan. Overall, our study points to behavioral caste-dependent intrinsic mortality rates and a positive association between fertility and longevity not only in queens but also in ant workers.

  8. Flight performance of bumble bee as a possible pollinator in space agriculture under partial gravity

    NASA Astrophysics Data System (ADS)

    Yamashita, Masamichi; Hashimoto, Hirofumi; Mitsuhata, Masahiro; Sasaki, Masami; Space Agriculture Task Force, J.

    Space agriculture is an advanced life support concept for habitation on extraterrestrial bodies based on biological and ecological function. Flowering plant species are core member of space agriculture to produce food and revitalize air and water. Selection of crop plant species is made on the basis of nutritional requirements to maintain healthy life of space crew. Species selected for space agriculture have several mode of reproduction. For some of plant species, insect pollination is effective to increase yield and quality of food. In terrestrial agriculture, bee is widely introduced to pollinate flower. For pollinator insect on Mars, working environment is different from Earth. Magnitude of gravity is 0.38G on Mars surface. In order to confirm feasibility of insect pollination for space agriculture, capability of flying pollinator insect under such exotic condition should be examined. Even bee does not possess evident gravity sensory system, gravity dominates flying performance and behavior. During flight or hovering, lifting force produced by wing beat sustains body weight, which is the product of body mass and gravitational acceleration. Flying behavior of bumble bee, Bombus ignitus, was documented under partial or micro-gravity produced by parabolic flight of jet plane. Flying behavior at absence of gravity differed from that under normal gravity. Ability of bee to fly under partial gravity was examined at the level of Mars, Moon and the less, to determine the threshold level of gravity for bee flying maneuver. Adaptation process of bee flying under different gravity level was evaluated as well by successive documentation of parabolic flight experiment.

  9. Motion as a source of environmental information: a fresh view on biological motion computation by insect brains

    PubMed Central

    Egelhaaf, Martin; Kern, Roland; Lindemann, Jens Peter

    2014-01-01

    Despite their miniature brains insects, such as flies, bees and wasps, are able to navigate by highly erobatic flight maneuvers in cluttered environments. They rely on spatial information that is contained in the retinal motion patterns induced on the eyes while moving around (“optic flow”) to accomplish their extraordinary performance. Thereby, they employ an active flight and gaze strategy that separates rapid saccade-like turns from translatory flight phases where the gaze direction is kept largely constant. This behavioral strategy facilitates the processing of environmental information, because information about the distance of the animal to objects in the environment is only contained in the optic flow generated by translatory motion. However, motion detectors as are widespread in biological systems do not represent veridically the velocity of the optic flow vectors, but also reflect textural information about the environment. This characteristic has often been regarded as a limitation of a biological motion detection mechanism. In contrast, we conclude from analyses challenging insect movement detectors with image flow as generated during translatory locomotion through cluttered natural environments that this mechanism represents the contours of nearby objects. Contrast borders are a main carrier of functionally relevant object information in artificial and natural sceneries. The motion detection system thus segregates in a computationally parsimonious way the environment into behaviorally relevant nearby objects and—in many behavioral contexts—less relevant distant structures. Hence, by making use of an active flight and gaze strategy, insects are capable of performing extraordinarily well even with a computationally simple motion detection mechanism. PMID:25389392

  10. Motion as a source of environmental information: a fresh view on biological motion computation by insect brains.

    PubMed

    Egelhaaf, Martin; Kern, Roland; Lindemann, Jens Peter

    2014-01-01

    Despite their miniature brains insects, such as flies, bees and wasps, are able to navigate by highly erobatic flight maneuvers in cluttered environments. They rely on spatial information that is contained in the retinal motion patterns induced on the eyes while moving around ("optic flow") to accomplish their extraordinary performance. Thereby, they employ an active flight and gaze strategy that separates rapid saccade-like turns from translatory flight phases where the gaze direction is kept largely constant. This behavioral strategy facilitates the processing of environmental information, because information about the distance of the animal to objects in the environment is only contained in the optic flow generated by translatory motion. However, motion detectors as are widespread in biological systems do not represent veridically the velocity of the optic flow vectors, but also reflect textural information about the environment. This characteristic has often been regarded as a limitation of a biological motion detection mechanism. In contrast, we conclude from analyses challenging insect movement detectors with image flow as generated during translatory locomotion through cluttered natural environments that this mechanism represents the contours of nearby objects. Contrast borders are a main carrier of functionally relevant object information in artificial and natural sceneries. The motion detection system thus segregates in a computationally parsimonious way the environment into behaviorally relevant nearby objects and-in many behavioral contexts-less relevant distant structures. Hence, by making use of an active flight and gaze strategy, insects are capable of performing extraordinarily well even with a computationally simple motion detection mechanism.

  11. Studies on African Trypanosomiasis and Leishmaniasis. Volume 2.

    DTIC Science & Technology

    1984-07-01

    8217 flies with heavy infections in their anterior midguts transmit parasites when they feed is not known, but the biting behavior of such insects is not the...of cutaneous leishmaniasis by contaminated mouthparts of the 4 hamsters developed a culture-positive nose lesion of both biting and nonbiting insects ...the cibarium, an experiment predicated on the hypothesis that such infections interfer with cibarial blood meal-sensing receptors , thereby changing

  12. Divergent mating patterns and a unique mode of external sperm transfer in Zoraptera: an enigmatic group of pterygote insects

    NASA Astrophysics Data System (ADS)

    Dallai, R.; Gottardo, M.; Mercati, D.; Machida, R.; Mashimo, Y.; Matsumura, Y.; Beutel, R. G.

    2013-06-01

    A remarkable external sperm transfer is described for the first time in a species of a group of winged insects (Pterygota), the enigmatic Zoraptera. Mating and sperm transfer of two species of the order were examined in detail, documented, and compared with each other and with patterns described for other species belonging to the order. The behavior differs strikingly in Zorotypus impolitus and Zorotypus magnicaudelli. A copula is performed by males and females of the latter, as it is also the case in other zorapteran species and generally in pterygote insects. In striking contrast to this, males of Z. impolitus do not copulate but deposit small (100 μm in diameter) spermatophores externally on the abdomen of the female. Each spermatophore contains only one giant spermatozoon (3 mm long and 3 μm wide), a unique feature in the entire Hexapoda. External sperm transfer in Pterygota is a highly unusual case of evolutionary reversal. The very small relict group Zoraptera displays a uniform general morphology but exhibits very different reproductive structures and patterns of mating behavior. This may be an extreme form of a more general situation in insects, with a specific form of selection resulting in an accelerated rate of evolution in the reproductive system.

  13. Genomic Features of the Damselfly Calopteryx splendens Representing a Sister Clade to Most Insect Orders

    PubMed Central

    Ioannidis, Panagiotis; Simao, Felipe A.; Waterhouse, Robert M.; Manni, Mosè; Seppey, Mathieu; Robertson, Hugh M.; Misof, Bernhard; Niehuis, Oliver

    2017-01-01

    Insects comprise the most diverse and successful animal group with over one million described species that are found in almost every terrestrial and limnic habitat, with many being used as important models in genetics, ecology, and evolutionary research. Genome sequencing projects have greatly expanded the sampling of species from many insect orders, but genomic resources for species of certain insect lineages have remained relatively limited to date. To address this paucity, we sequenced the genome of the banded demoiselle, Calopteryx splendens, a damselfly (Odonata: Zygoptera) belonging to Palaeoptera, the clade containing the first winged insects. The 1.6 Gbp C. splendens draft genome assembly is one of the largest insect genomes sequenced to date and encodes a predicted set of 22,523 protein-coding genes. Comparative genomic analyses with other sequenced insects identified a relatively small repertoire of C. splendens detoxification genes, which could explain its previously noted sensitivity to habitat pollution. Intriguingly, this repertoire includes a cytochrome P450 gene not previously described in any insect genome. The C. splendens immune gene repertoire appears relatively complete and features several genes encoding novel multi-domain peptidoglycan recognition proteins. Analysis of chemosensory genes revealed the presence of both gustatory and ionotropic receptors, as well as the insect odorant receptor coreceptor gene (OrCo) and at least four partner odorant receptors (ORs). This represents the oldest known instance of a complete OrCo/OR system in insects, and provides the molecular underpinning for odonate olfaction. The C. splendens genome improves the sampling of insect lineages that diverged before the radiation of Holometabola and offers new opportunities for molecular-level evolutionary, ecological, and behavioral studies. PMID:28137743

  14. SPATIAL AGGREGATION IN A FOREST FLOOR INSECT DEPENDS ON SEASONAL CONGREGATION AND SCATTERING EFFECTS OF PREDATORS

    EPA Science Inventory

    Spatial aggregations arising from gregarious behavior are common in nature and have important implications for population dynamics, community stability, and conservation. However, the translation of aggregation behaviors into emergent properties of populations and communities de...

  15. A Simple Flight Mill for the Study of Tethered Flight in Insects.

    PubMed

    Attisano, Alfredo; Murphy, James T; Vickers, Andrew; Moore, Patricia J

    2015-12-10

    Flight in insects can be long-range migratory flights, intermediate-range dispersal flights, or short-range host-seeking flights. Previous studies have shown that flight mills are valuable tools for the experimental study of insect flight behavior, allowing researchers to examine how factors such as age, host plants, or population source can influence an insects' propensity to disperse. Flight mills allow researchers to measure components of flight such as speed and distance flown. Lack of detailed information about how to build such a device can make their construction appear to be prohibitively complex. We present a simple and relatively inexpensive flight mill for the study of tethered flight in insects. Experimental insects can be tethered with non-toxic adhesives and revolve around an axis by means of a very low friction magnetic bearing. The mill is designed for the study of flight in controlled conditions as it can be used inside an incubator or environmental chamber. The strongest points are the very simple electronic circuitry, the design that allows sixteen insects to fly simultaneously allowing the collection and analysis of a large number of samples in a short time and the potential to use the device in a very limited workspace. This design is extremely flexible, and we have adjusted the mill to accommodate different species of insects of various sizes.

  16. Air pollutants degrade floral scents and increase insect foraging times

    NASA Astrophysics Data System (ADS)

    Fuentes, Jose D.; Chamecki, Marcelo; Roulston, T.'ai; Chen, Bicheng; Pratt, Kenneth R.

    2016-09-01

    Flowers emit mixtures of scents that mediate plant-insect interactions such as attracting insect pollinators. Because of their volatile nature, however, floral scents readily react with ozone, nitrate radical, and hydroxyl radical. The result of such reactions is the degradation and the chemical modification of scent plumes downwind of floral sources. Large Eddy Simulations (LES) are developed to investigate dispersion and chemical degradation and modification of floral scents due to reactions with ozone, hydroxyl radical, and nitrate radical within the atmospheric surface layer. Impacts on foraging insects are investigated by utilizing a random walk model to simulate insect search behavior. Results indicate that even moderate air pollutant levels (e.g., ozone mixing ratios greater than 60 parts per billion on a per volume basis, ppbv) substantially degrade floral volatiles and alter the chemical composition of released floral scents. As a result, insect success rates of locating plumes of floral scents were reduced and foraging times increased in polluted air masses due to considerable degradation and changes in the composition of floral scents. Results also indicate that plant-pollinator interactions could be sensitive to changes in floral scent composition, especially if insects are unable to adapt to the modified scentscape. The increase in foraging time could have severe cascading and pernicious impacts on the fitness of foraging insects by reducing the time devoted to other necessary tasks.

  17. Orchid sexual deceit provokes ejaculation.

    PubMed

    Gaskett, A C; Winnick, C G; Herberstein, M E

    2008-06-01

    Sexually deceptive orchids lure pollinators by mimicking female insects. Male insects fooled into gripping or copulating with orchids unwittingly transfer the pollinia. The effect of deception on pollinators has been considered negligible, but we show that pollinators may suffer considerable costs. Insects pollinating Australian tongue orchids (Cryptostylis species) frequently ejaculate and waste copious sperm. The costs of sperm wastage could select for pollinator avoidance of orchids, thereby driving and maintaining sexual deception via antagonistic coevolution or an arms race between pollinator learning and escalating orchid mimicry. However, we also show that orchid species provoking such extreme pollinator behavior have the highest pollination success. How can deception persist, given the costs to pollinators? Sexually-deceptive-orchid pollinators are almost exclusively solitary and haplodiploid species. Therefore, female insects deprived of matings by orchid deception could still produce male offspring, which may even enhance orchid pollination.

  18. Mixed xylem and phloem sap ingestion in sheath-feeders as normal dietary behavior: Evidence from the leafhopper Scaphoideus titanus.

    PubMed

    Chuche, Julien; Sauvion, Nicolas; Thiéry, Denis

    2017-10-01

    In phytophagous piercing-sucking insects, salivary sheath-feeding species are often described as xylem- or phloem-sap feeding specialists. Because these two food sources have very different characteristics, two feeding tactics are often associated with this supposed specialization. Studying the feeding behavior of insects provides substantial information on their biology, ecology, and evolution. Furthermore, study of feeding behavior is of primary importance to elucidate the transmission ability of insects that act as vectors of plant pathogens. In this study, we compared the durations of ingestion performed in xylem versus phloem by a leafhopper species, Scaphoideus titanus Ball, 1932. This was done by characterizing and statistically analyzing electrical signals recorded using the electropenetrography technique, derived from the feeding behaviors of males and females. We identified three groups of S. titanus based on their feeding behavior: 1) a group that reached the phloem quickly and probed for a longer time in phloem tissue than the other groups, 2) a group that reached the xylem quickly and probed for a longer time in xylem tissue than the other groups, and 3) a group where individuals did not ingest much sap. In addition, the numbers and durations of waveforms representing ingestion of xylem and phloem saps differed significantly depending on the sex of the leafhopper, indicating that the two sexes exhibit different feeding behaviors. Males had longer phloem ingestion events than did females, which indicates that males are greater phloem feeders than females. These differences are discussed, specifically in relation to hypotheses about evolution of sap feeding and phytoplasma transmission from plant to plant. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Artificial diet sandwiches reveal sub-social behavior in the coffee berry borer Hypothenemus hampei (Coleoptera: Scolytinae)

    USDA-ARS?s Scientific Manuscript database

    A diet sandwich, consisting of coffee berry borer artificial diet within two glass panes, has been developed to elucidate the behavior of the coffee berry borer, an insect that in nature spends most of its life cycle inside the coffee berry. Various types of behavior have been observed for the first...

  20. Detectors for polarized skylight in insects: a survey of ommatidial specializations in the dorsal rim area of the compound eye.

    PubMed

    Labhart, T; Meyer, E P

    1999-12-15

    Apart from the sun, the polarization pattern of the sky offers insects a reference for visual compass orientation. Using behavioral experiments, it has been shown in a few insect species (field crickets, honey bees, desert ants, and house flies) that the detection of the oscillation plane of polarized skylight is mediated exclusively by a group of specialized ommatidia situated at the dorsal rim of the compound eye (dorsal rim area). The dorsal rim ommatidia of these species share a number physiological properties that make them especially suitable for polarization vision: each ommatidium contains two sets of homochromatic, strongly polarization-sensitive photoreceptors with orthogonally-arranged analyzer orientations. The physiological specialization of the dorsal rim area goes along with characteristic changes in ommatidial structure, providing actual anatomical hallmarks of polarized skylight detection, that are readily detectable in histological sections of compound eyes. The presence of anatomically specialized dorsal rim ommatidia in many other insect species belonging to a wide range of different orders indicates that polarized skylight detection is a common visual function in insects. However, fine-structural disparities in the design of dorsal rim ommatidia of different insect groups indicate that polarization vision arose polyphyletically in the insects. Copyright 1999 Wiley-Liss, Inc.

  1. 76 FR 17607 - Receipt of Request To Require Pesticide Products To Be Labeled in English and Spanish

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-30

    .... Understanding Self-Report Bias in Organizational Behavior Research, Journal of Business and Psychology, Vol. 17..., published in the Journal of the American Optometric Association, found that an 11th grade cognitive reading...

  2. The Leafhoppers: Anatomy, Physiology and Behavior of Feeding and Its Sensory Mediation

    USDA-ARS?s Scientific Manuscript database

    The present book contains chapters summarizing all major aspects of the biology of leafhoppers (family Cicadellidae), among the most numerous and important insect pests in the world. Major chapter topics discussed include internal and external morphology, physiology, behavior, reproduction, taxonom...

  3. Effects of immunostimulation on social behavior, chemical communication and genome-wide gene expression in honey bee workers (Apis mellifera)

    PubMed Central

    2012-01-01

    Background Social insects, such as honey bees, use molecular, physiological and behavioral responses to combat pathogens and parasites. The honey bee genome contains all of the canonical insect immune response pathways, and several studies have demonstrated that pathogens can activate expression of immune effectors. Honey bees also use behavioral responses, termed social immunity, to collectively defend their hives from pathogens and parasites. These responses include hygienic behavior (where workers remove diseased brood) and allo-grooming (where workers remove ectoparasites from nestmates). We have previously demonstrated that immunostimulation causes changes in the cuticular hydrocarbon profiles of workers, which results in altered worker-worker social interactions. Thus, cuticular hydrocarbons may enable workers to identify sick nestmates, and adjust their behavior in response. Here, we test the specificity of behavioral, chemical and genomic responses to immunostimulation by challenging workers with a panel of different immune stimulants (saline, Sephadex beads and Gram-negative bacteria E. coli). Results While only bacteria-injected bees elicited altered behavioral responses from healthy nestmates compared to controls, all treatments resulted in significant changes in cuticular hydrocarbon profiles. Immunostimulation caused significant changes in expression of hundreds of genes, the majority of which have not been identified as members of the canonical immune response pathways. Furthermore, several new candidate genes that may play a role in cuticular hydrocarbon biosynthesis were identified. Effects of immune challenge expression of several genes involved in immune response, cuticular hydrocarbon biosynthesis, and the Notch signaling pathway were confirmed using quantitative real-time PCR. Finally, we identified common genes regulated by pathogen challenge in honey bees and other insects. Conclusions These results demonstrate that honey bee genomic responses to immunostimulation are substantially broader than the previously identified canonical immune response pathways, and may mediate the behavioral changes associated with social immunity by orchestrating changes in chemical signaling. These studies lay the groundwork for future research into the genomic responses of honey bees to native honey bee parasites and pathogens. PMID:23072398

  4. Effects of immunostimulation on social behavior, chemical communication and genome-wide gene expression in honey bee workers (Apis mellifera).

    PubMed

    Richard, Freddie-Jeanne; Holt, Holly L; Grozinger, Christina M

    2012-10-16

    Social insects, such as honey bees, use molecular, physiological and behavioral responses to combat pathogens and parasites. The honey bee genome contains all of the canonical insect immune response pathways, and several studies have demonstrated that pathogens can activate expression of immune effectors. Honey bees also use behavioral responses, termed social immunity, to collectively defend their hives from pathogens and parasites. These responses include hygienic behavior (where workers remove diseased brood) and allo-grooming (where workers remove ectoparasites from nestmates). We have previously demonstrated that immunostimulation causes changes in the cuticular hydrocarbon profiles of workers, which results in altered worker-worker social interactions. Thus, cuticular hydrocarbons may enable workers to identify sick nestmates, and adjust their behavior in response. Here, we test the specificity of behavioral, chemical and genomic responses to immunostimulation by challenging workers with a panel of different immune stimulants (saline, Sephadex beads and Gram-negative bacteria E. coli). While only bacteria-injected bees elicited altered behavioral responses from healthy nestmates compared to controls, all treatments resulted in significant changes in cuticular hydrocarbon profiles. Immunostimulation caused significant changes in expression of hundreds of genes, the majority of which have not been identified as members of the canonical immune response pathways. Furthermore, several new candidate genes that may play a role in cuticular hydrocarbon biosynthesis were identified. Effects of immune challenge expression of several genes involved in immune response, cuticular hydrocarbon biosynthesis, and the Notch signaling pathway were confirmed using quantitative real-time PCR. Finally, we identified common genes regulated by pathogen challenge in honey bees and other insects. These results demonstrate that honey bee genomic responses to immunostimulation are substantially broader than the previously identified canonical immune response pathways, and may mediate the behavioral changes associated with social immunity by orchestrating changes in chemical signaling. These studies lay the groundwork for future research into the genomic responses of honey bees to native honey bee parasites and pathogens.

  5. Spark plasma sintering of silicon carbide, multi-walled carbon nanotube and graphene reinforced zirconium diboride ceramic composite

    NASA Astrophysics Data System (ADS)

    Balaraman Yadhukulakrishnan, Govindaraajan

    Scope and Method of Study: Space vehicles re-entering the earth's atmosphere experience very high temperatures due to aerodynamic heating. Ultra-high temperature ceramics (UHTC) with melting point higher than 3200°C are promising materials for thermal protection systems of such space vehicles re-entering the earth's atmosphere. Among several UHTC systems ZrB2 based ceramic composites are particularly important for thermal protection systems due to their better mechanical and thermoelectric properties and high oxidation resistance. In this study spark plasma sintering of SiC, carbon nanotubes (CNT) and graphene nano platelets (GNP) reinforced ZrB2 ultra-high temperature ceramic matrix composites is reported. Findings and Conclusions: Systematic investigations on the effect of reinforcement type (SiC, CNTs and GNP) and content (10-40 vol.% SiC, 2-6 vol.% CNTs and 2-6 vol.% GNP) on densification behavior, microstructure development, and mechanical properties (microhardness, bi-axial flexural strength, and indentation fracture toughness) are reported. With the similar SPS parameters near-full densification (>99% relative density) was achieved with 10-40 vol.% SiC, 4-6 vol.% CNT reinforced composites. Highly dense composites were obtained in 4-6 vol.% GNP reinforced composites. The SiC, CNT and GNP reinforcement improved the indentation fracture toughness of the composites through a range of toughening mechanisms, including particle shearing, crack deflection at the particle-matrix interface, and grain pull-outs for ZrB2-SiC composites, CNT pull-outs and crack deflection in ZrB2-CNT composites and crack deflection, crack bridging and GNP sheet pull-out for ZrB2 -GNP composites.

  6. Computer-assisted 3D kinematic analysis of all leg joints in walking insects.

    PubMed

    Bender, John A; Simpson, Elaine M; Ritzmann, Roy E

    2010-10-26

    High-speed video can provide fine-scaled analysis of animal behavior. However, extracting behavioral data from video sequences is a time-consuming, tedious, subjective task. These issues are exacerbated where accurate behavioral descriptions require analysis of multiple points in three dimensions. We describe a new computer program written to assist a user in simultaneously extracting three-dimensional kinematics of multiple points on each of an insect's six legs. Digital video of a walking cockroach was collected in grayscale at 500 fps from two synchronized, calibrated cameras. We improved the legs' visibility by painting white dots on the joints, similar to techniques used for digitizing human motion. Compared to manual digitization of 26 points on the legs over a single, 8-second bout of walking (or 106,496 individual 3D points), our software achieved approximately 90% of the accuracy with 10% of the labor. Our experimental design reduced the complexity of the tracking problem by tethering the insect and allowing it to walk in place on a lightly oiled glass surface, but in principle, the algorithms implemented are extensible to free walking. Our software is free and open-source, written in the free language Python and including a graphical user interface for configuration and control. We encourage collaborative enhancements to make this tool both better and widely utilized.

  7. Vertical T-maze Choice Assay for Arthropod Response to Odorants

    PubMed Central

    Stelinski, Lukasz; Tiwari, Siddharth

    2013-01-01

    Given the economic importance of insects and arachnids as pests of agricultural crops, urban environments or as vectors of plant and human diseases, various technologies are being developed as control tools. A subset of these tools focuses on modifying the behavior of arthropods by attraction or repulsion. Therefore, arthropods are often the focus of behavioral investigations. Various tools have been developed to measure arthropod behavior, including wind tunnels, flight mills, servospheres, and various types of olfactometers. The purpose of these tools is to measure insect or arachnid response to visual or more often olfactory cues. The vertical T-maze oflactometer described here measures choices performed by insects in response to attractants or repellents. It is a high throughput assay device that takes advantage of the positive phototaxis (attraction to light) and negative geotaxis (tendency to walk or fly upward) exhibited by many arthropods. The olfactometer consists of a 30 cm glass tube that is divided in half with a Teflon strip forming a T-maze. Each half serves as an arm of the olfactometer enabling the test subjects to make a choice between two potential odor fields in assays involving attractants. In assays involving repellents, lack of normal response to known attractants can also be measured as a third variable. PMID:23439130

  8. The neural bases of host plant selection in a Neuroecology framework.

    PubMed

    Reisenman, Carolina E; Riffell, Jeffrey A

    2015-01-01

    Understanding how animals make use of environmental information to guide behavior is a fundamental problem in the field of neuroscience. Similarly, the field of ecology seeks to understand the role of behavior in shaping interactions between organisms at various levels of organization, including population-, community- and even ecosystem-level scales. Together, the newly emerged field of "Neuroecology" seeks to unravel this fundamental question by studying both the function of neurons at many levels of the sensory pathway and the interactions between organisms and their natural environment. The interactions between herbivorous insects and their host plants are ideal examples of Neuroecology given the strong ecological and evolutionary forces and the underlying physiological and behavioral mechanisms that shaped these interactions. In this review we focus on an exemplary herbivorous insect within the Lepidoptera, the giant sphinx moth Manduca sexta, as much is known about the natural behaviors related to host plant selection and the involved neurons at several level of the sensory pathway. We also discuss how herbivore-induced plant odorants and secondary metabolites in floral nectar in turn can affect moth behavior, and the underlying neural mechanisms.

  9. Interaction of entomopathogenic fungi with the host immune system.

    PubMed

    Qu, Shuang; Wang, Sibao

    2018-06-01

    Entomopathogenic fungi can invade wide range of insect hosts in the natural world and have been used as environmentally friendly alternatives to chemical insecticides for pest control. Studies of host-pathogen interactions provide valuable insights into the coevolutionay arms race between fungal pathogens and their hosts. Entomopathogenic fungi have evolved a series of sophisticated strategies to counter insect immune defenses. In response to fungal infection, insect hosts rely on behavior avoidance, physical barrier and innate immune defenses in the fight against invading pathogens. The insect cuticle acts as the first physical barrier against pathogens. It is an inhospitable physiological environment that contains chemicals (e.g., antimicrobial peptides and reactive oxygen species), which inhibit fungal growth. In addition, innate immune responses, including cellular immunity and humoral immunity, play critical roles in preventing fungal infection. In this review, we outline the current state of our knowledge of insect defenses to fungal infection and discuss the strategies by which entomopathogenic fungi counter the host immune system. Increased knowledge regarding the molecular interactions between entomopathogenic fungi and the insect host could provide new strategies for pest management. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Insect Analogue to the Lotus Leaf: A Planthopper Wing Membrane Incorporating a Low-Adhesion, Nonwetting, Superhydrophobic, Bactericidal, and Biocompatible Surface.

    PubMed

    Watson, Gregory S; Green, David W; Cribb, Bronwen W; Brown, Christopher L; Meritt, Christopher R; Tobin, Mark J; Vongsvivut, Jitraporn; Sun, Mingxia; Liang, Ai-Ping; Watson, Jolanta A

    2017-07-19

    Nature has produced many intriguing and spectacular surfaces at the micro- and nanoscales. These small surface decorations act for a singular or, in most cases, a range of functions. The minute landscape found on the lotus leaf is one such example, displaying antiwetting behavior and low adhesion with foreign particulate matter. Indeed the lotus leaf has often been considered the "benchmark" for such properties. One could expect that there are animal counterparts of this self-drying and self-cleaning surface system. In this study, we show that the planthopper insect wing (Desudaba danae) exhibits a remarkable architectural similarity to the lotus leaf surface. Not only does the wing demonstrate a topographical likeness, but some surface properties are also expressed, such as nonwetting behavior and low adhering forces with contaminants. In addition, the insect-wing cuticle exhibits an antibacterial property in which Gram-negative bacteria (Porphyromonas gingivalis) are killed over many consecutive waves of attacks over 7 days. In contrast, eukaryote cell associations, upon contact with the insect membrane, lead to a formation of integrated cell sheets (e.g., among human stem cells (SHED-MSC) and human dermal fibroblasts (HDF)). The multifunctional features of the insect membrane provide a potential natural template for man-made applications in which specific control of liquid, solid, and biological contacts is desired and required. Moreover, the planthopper wing cuticle provides a "new" natural surface with which numerous interfacial properties can be explored for a range of comparative studies with both natural and man-made materials.

  11. Effects of Microgravity and Hypergravity on Invertebrate Development

    NASA Technical Reports Server (NTRS)

    Miquel, J.

    1985-01-01

    Data suggest that abnormal gravity loads do not increase the rate of mutations in lower animals. Insects such as Drosophila melanogaster and Tribolium confusum have been able to reproduce aboard unmanned and manned space satellites, though no precise quantitative data have been obtained on mating competence and various aspects of development. Research with Drosophila flown on Cosmos spacecraft suggests that flight behavior is seriously disturbed in insects exposed to microgravity, which is reflected in increased oxygen utilization and concomitant life shortening. The decrease in longevity was less striking when the flies were enclosed in space, which suggests that they could adapt to the altered gravitational environment when maturation of flight behavior took place in microgravity. The reviewed data suggest that further research on the development of invertebrates in space is in order for clarification of the metabolic and behavioral effects of microgravity and of the development and function of the orientation and gravity sensing mechanisms of lower animals.

  12. Phase Coexistence in Insect Swarms

    NASA Astrophysics Data System (ADS)

    Sinhuber, Michael; Ouellette, Nicholas T.

    2017-10-01

    Animal aggregations are visually striking, and as such are popular examples of collective behavior in the natural world. Quantitatively demonstrating the collective nature of such groups, however, remains surprisingly difficult. Inspired by thermodynamics, we applied topological data analysis to laboratory insect swarms and found evidence for emergent, material-like states. We show that the swarms consist of a core "condensed" phase surrounded by a dilute "vapor" phase. These two phases coexist in equilibrium, and maintain their distinct macroscopic properties even though individual insects pass freely between them. We further define a pressure and chemical potential to describe these phases, extending theories of active matter to aggregations of macroscopic animals and laying the groundwork for a thermodynamic description of collective animal groups.

  13. Flying Insect Detection and Classification with Inexpensive Sensors

    PubMed Central

    Chen, Yanping; Why, Adena; Batista, Gustavo; Mafra-Neto, Agenor; Keogh, Eamonn

    2014-01-01

    An inexpensive, noninvasive system that could accurately classify flying insects would have important implications for entomological research, and allow for the development of many useful applications in vector and pest control for both medical and agricultural entomology. Given this, the last sixty years have seen many research efforts devoted to this task. To date, however, none of this research has had a lasting impact. In this work, we show that pseudo-acoustic optical sensors can produce superior data; that additional features, both intrinsic and extrinsic to the insect’s flight behavior, can be exploited to improve insect classification; that a Bayesian classification approach allows to efficiently learn classification models that are very robust to over-fitting, and a general classification framework allows to easily incorporate arbitrary number of features. We demonstrate the findings with large-scale experiments that dwarf all previous works combined, as measured by the number of insects and the number of species considered. PMID:25350921

  14. Oligocene Termite Nests with In Situ Fungus Gardens from the Rukwa Rift Basin, Tanzania, Support a Paleogene African Origin for Insect Agriculture

    PubMed Central

    Roberts, Eric M.; Todd, Christopher N.; Aanen, Duur K.; Nobre, Tânia; Hilbert-Wolf, Hannah L.; O’Connor, Patrick M.; Tapanila, Leif; Mtelela, Cassy; Stevens, Nancy J.

    2016-01-01

    Based on molecular dating, the origin of insect agriculture is hypothesized to have taken place independently in three clades of fungus-farming insects: the termites, ants or ambrosia beetles during the Paleogene (66–24 Ma). Yet, definitive fossil evidence of fungus-growing behavior has been elusive, with no unequivocal records prior to the late Miocene (7–10 Ma). Here we report fossil evidence of insect agriculture in the form of fossil fungus gardens, preserved within 25 Ma termite nests from southwestern Tanzania. Using these well-dated fossil fungus gardens, we have recalibrated molecular divergence estimates for the origins of termite agriculture to around 31 Ma, lending support to hypotheses suggesting an African Paleogene origin for termite-fungus symbiosis; perhaps coinciding with rift initiation and changes in the African landscape. PMID:27333288

  15. Antimicrobial potential of flavoring ingredients against Bacillus cereus in a milk-based beverage.

    PubMed

    Pina-Pérez, Maria C; Rodrigo, Dolores; Martínez-López, Antonio

    2013-11-01

    Natural ingredients--cinnamon, cocoa, vanilla, and anise--were assessed based on Bacillus cereus vegetative cell growth inhibition in a mixed liquid whole egg and skim milk beverage (LWE-SM), under different conditions: ingredient concentration (1, 2.5, and 5% [wt/vol]) and incubation temperature (5, 10, and 22 °C). According to the results obtained, ingredients significantly (p<0.05) reduced bacterial growth when supplementing the LWE-SM beverage. B. cereus behavior was mathematically described for each substrate by means of a modified Gompertz equation. Kinetic parameters, lag time, and maximum specific growth rate were obtained. Cinnamon was the most bacteriostatic ingredient and cocoa the most bactericidal one when they were added at 5% (wt/vol) and beverages were incubated at 5 °C. The bactericidal effect of cocoa 5% (wt/vol) reduced final B. cereus log10 counts (log Nf, log10 (colony-forming units/mL)) by 4.10 ± 0.21 log10 cycles at 5 °C.

  16. Support for the reproductive ground plan hypothesis of social evolution and major QTL for ovary traits of Africanized worker honey bees (Apis mellifera L.)

    PubMed Central

    2011-01-01

    Background The reproductive ground plan hypothesis of social evolution suggests that reproductive controls of a solitary ancestor have been co-opted during social evolution, facilitating the division of labor among social insect workers. Despite substantial empirical support, the generality of this hypothesis is not universally accepted. Thus, we investigated the prediction of particular genes with pleiotropic effects on ovarian traits and social behavior in worker honey bees as a stringent test of the reproductive ground plan hypothesis. We complemented these tests with a comprehensive genome scan for additional quantitative trait loci (QTL) to gain a better understanding of the genetic architecture of the ovary size of honey bee workers, a morphological trait that is significant for understanding social insect caste evolution and general insect biology. Results Back-crossing hybrid European x Africanized honey bee queens to the Africanized parent colony generated two study populations with extraordinarily large worker ovaries. Despite the transgressive ovary phenotypes, several previously mapped QTL for social foraging behavior demonstrated ovary size effects, confirming the prediction of pleiotropic genetic effects on reproductive traits and social behavior. One major QTL for ovary size was detected in each backcross, along with several smaller effects and two QTL for ovary asymmetry. One of the main ovary size QTL coincided with a major QTL for ovary activation, explaining 3/4 of the phenotypic variance, although no simple positive correlation between ovary size and activation was observed. Conclusions Our results provide strong support for the reproductive ground plan hypothesis of evolution in study populations that are independent of the genetic stocks that originally led to the formulation of this hypothesis. As predicted, worker ovary size is genetically linked to multiple correlated traits of the complex division of labor in worker honey bees, known as the pollen hoarding syndrome. The genetic architecture of worker ovary size presumably consists of a combination of trait-specific loci and general regulators that affect the whole behavioral syndrome and may even play a role in caste determination. Several promising candidate genes in the QTL intervals await further study to clarify their potential role in social insect evolution and the regulation of insect fertility in general. PMID:21489230

  17. [Double-ambient CO2 concentration affects the growth, development and sucking behavior of non-target brown plant hopper Nilaparvata lugens fed on transgenic Bt rice.

    PubMed

    Lu, Yong Qing; Dai, Yang; Yu, Xiu Ying; Yu, Fu-Lan; Jiang, Shou Lin; Zhou, Zong Yuan; Chen, Fa Jun

    2018-02-01

    In recent years, the two issues of climate change including elevated CO 2 etc., and resistance of transgenic Bt crops against non-target insect pests have received widespread attention. Elevated CO 2 can affect the herbivorous insects. To date, there is no consensus about the effect of elevated CO 2 on the suck-feeding insect pests (non-target insect pests of transgenic Bt crops). Its effects on the suck-feeding behavior have rarely been reported. In this study, CO 2 levels were set up in artificial climate chamber to examined the effects of ambient (400 μL·L -1 ) and double-ambient (800 μL·L -1 ) CO 2 levels on the suck-feeding behavior, growth, development, and reproduction of the non-target insect pest of transgenic Bt rice, brown planthopper, Nilaparvata lugens. The results showed that CO 2 level significantly affected the egg and nymph duration, longevity and body mass of adults, and feeding behavior of the 4th and 5th instar nymphs, while had no effect on the fecundity of N. lugens. The duration of eggs and nymphs, and the longevity of female adults were significantly shortened by 4.0%, 4.2% and 6.6% respectively, the proportion of the macropterous adults was significantly increased by 11.6%, and the body mass of newly hatched female adults was significantly decreased by 2.2% by elevated CO 2 . In addition, elevated CO 2 significantly enhanced the stylet puncturing efficiency of the 4th and 5th instar nymphs of N. lugens. The duration ofphloem ingestion of the N4b waveform was significantly prolonged by 60.0% and 50.1%, and the frequency significantly was increased by 230.0% and 155.9% for the 4th and 5th instar nymphs of N. lugens by elevated CO 2 , respectively. It was concluded that double-ambient CO 2 could promote the growth and development of N. lugens through enhancing its suck-feeding, shorten the generation life-span and increase the macropertous adults' proportion of N. lugens. Thus, it could result in the occurrence of non-target rice planthopper N. lugens and make the transgenic Bt crops face with harm risk due to migration and diffusion of N. lugens under elevated CO 2 .

  18. Chemical environment manipulation for pest insects control

    NASA Astrophysics Data System (ADS)

    Greenblatt, J. A.; Lewis, W. J.

    1983-01-01

    The chemical environment of pest species may be considered a habitat susceptible to management Management may be by means of manipulation of the environment of the pest for population suppression or for enhancement of natural enemies Examples of each are reviewed here Chemical stimuli influencing the behavior of phytophagous insects include host plant originated stimuli and pheromones The latter, especially sex pheromones, have proved most successful as tools for manipulation of pest population dynamics Factors influencing search behavior of natural enemies include habitat characteristics such as crop, associated plants and plant assemblages, host plant characteristics, influence of associated organisms, and characteristics of the searching entomophage Recent studies have shown potential for simultaneous management of a pest species and enhancement of natural enemies using pest pheromones

  19. Intrinsic Fluctuations and Driven Response of Insect Swarms

    NASA Astrophysics Data System (ADS)

    Ni, Rui; Puckett, James G.; Dufresne, Eric R.; Ouellette, Nicholas T.

    2015-09-01

    Animals of all sizes form groups, as acting together can convey advantages over acting alone; thus, collective animal behavior has been identified as a promising template for designing engineered systems. However, models and observations have focused predominantly on characterizing the overall group morphology, and often focus on highly ordered groups such as bird flocks. We instead study a disorganized aggregation (an insect mating swarm), and compare its natural fluctuations with the group-level response to an external stimulus. We quantify the swarm's frequency-dependent linear response and its spectrum of intrinsic fluctuations, and show that the ratio of these two quantities has a simple scaling with frequency. Our results provide a new way of comparing models of collective behavior with experimental data.

  20. Investigating Crickets: Observing Animal Exploratory Behavior

    ERIC Educational Resources Information Center

    Bowen, G. M.

    2008-01-01

    For curriculum content-related reasons, inquiry activities can be difficult in classrooms unless the activities are approached in a manner that makes variations among student group findings understandable in the context of the study. Studies of individual animals and plant reactions to stimuli, such as insect exploratory behavior, allow the…

  1. Analysis of electrical penetration graph data: what to do with artificially terminated events?

    USDA-ARS?s Scientific Manuscript database

    Observing the durations of hemipteran feeding behaviors via Electrical Penetration Graph (EPG) results in situations where the duration of the last behavior is not ended by the insect under observation, but by the experimenter. These are artificially terminated events. In data analysis, one must ch...

  2. Behavioral and chemical mechanisms of plant-mediated deterrence and attraction among frugivorous insects

    USDA-ARS?s Scientific Manuscript database

    A number of studies have now reported increased levels of non Bt-targeted secondary pests in Bt crops. Although pesticide reduction plays a role, interactions between the secondary pests and the targeted primary pest may also be important. Feeding preference—attractiveness (selection behavior, acce...

  3. Effects of atmospheric pressure trends on calling, mate-seeking, and phototaxis of Diaphorina citri (Hemiptera: Liviidae)

    USDA-ARS?s Scientific Manuscript database

    Insects and other animals sometimes modify behavior in response to changes in atmospheric pressure, an environmental cue that can provide warning of potentially injurious windy and rainy weather. To determine if Diaphorina citri (Hemiptera: Liviidae) calling, mate-seeking, and phototaxis behaviors w...

  4. A conceptual framework that links pollinator foraging behavior to gene flow

    USDA-ARS?s Scientific Manuscript database

    In insect-pollinated crops such as alfalfa, a better understanding of how pollinator foraging behavior affects gene flow could lead to the development of management strategies to reduce gene flow and facilitate the coexistence of distinct seed-production markets. Here, we introduce a conceptual fram...

  5. Hypoxia and hypercarbia in endophagous insects: Larval position in the plant gas exchange network is key.

    PubMed

    Pincebourde, Sylvain; Casas, Jérôme

    2016-01-01

    Gas composition is an important component of any micro-environment. Insects, as the vast majority of living organisms, depend on O2 and CO2 concentrations in the air they breathe. Low O2 (hypoxia), and high CO2 (hypercarbia) levels can have a dramatic effect. For phytophagous insects that live within plant tissues (endophagous lifestyle), gas is exchanged between ambient air and the atmosphere within the insect habitat. The insect larva contributes to the modification of this environment by expiring CO2. Yet, knowledge on the gas exchange network in endophagous insects remains sparse. Our study identified mechanisms that modulate gas composition in the habitat of endophagous insects. Our aim was to show that the mere position of the insect larva within plant tissues could be used as a proxy for estimating risk of occurrence of hypoxia and hypercarbia, despite the widely diverse life history traits of these organisms. We developed a conceptual framework for a gas diffusion network determining gas composition in endophagous insect habitats. We applied this framework to mines, galls and insect tunnels (borers) by integrating the numerous obstacles along O2 and CO2 pathways. The nature and the direction of gas transfers depended on the physical structure of the insect habitat, the photosynthesis activity as well as stomatal behavior in plant tissues. We identified the insect larva position within the gas diffusion network as a predictor of risk exposure to hypoxia and hypercarbia. We ranked endophagous insect habitats in terms of risk of exposure to hypoxia and/or hypercarbia, from the more to the less risky as cambium mines>borer tunnels≫galls>bark mines>mines in aquatic plants>upper and lower surface mines. Furthermore, we showed that the photosynthetically active tissues likely assimilate larval CO2 produced. In addition, temperature of the microhabitat and atmospheric CO2 alter gas composition in the insect habitat. We predict that (i) hypoxia indirectly favors the evolution of cold-tolerant gallers, which do not perform well at high temperatures, and (ii) normoxia (ambient O2 level) in mines allows miners to develop at high temperatures. Little is known, however, about physiological and morphological adaptations to hypoxia and hypercarbia in endophagous insects. Endophagy strongly constrains the diffusion processes with cascading consequences on the evolutionary ecology of endophagous insects. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. TESL Reporter, Vol. 1, Nos. 1-4.

    ERIC Educational Resources Information Center

    Pack, Alice C., Ed.

    Four issues of "TESL Reporter" are presented. Contents include the following articles: ''An Approach to the [I] [i] Contrast" by William D. Conway; "Native Language Environment Is Source of Confusion" by Alice Pack; "The Origin of Language: A Puzzle With Missing Pieces"; "Terminal Behavior and Language…

  7. Insektenpheromone

    NASA Astrophysics Data System (ADS)

    Bestmann, H. J.; Vostrowsky, O.

    1982-10-01

    Pheromones — semiochemicals used by insects for intraspecific chemical communication — can be isolated and with special analytical techniques their chemical structure elucidated. With stereoselective synthesis methods, presented by the preparation of sex attractants and aggregating pheromones of moths and beetles, respectively, a synthetic access to compounds is given which can be used for behavior manipulation of insects. Aside the importance of these compounds for investigations of the sensoric process the possibility of their application in an integrated and biological pest control is discussed.

  8. Members of the neuropeptide transcriptional network in Helicoverpa armigera and their expression in response to light stress.

    PubMed

    Wang, Lijun; Liu, Xinhui; Liu, Zhengxing; Wang, Xiaoping; Lei, Chaoliang; Zhu, Fen

    2018-05-19

    Neuropeptides and peptide hormones play central roles in the regulation of various types of insect physiology and behavior. Artificial light at night, a form of environmental stress, has recently been regarded as a source of light stress on nocturnal insects. Because related genomic information is not available, molecular biological studies on the response of neuropeptides in nocturnal insects to light stress are limited. Based on the de novo sequencing of the Helicoverpa armigera head transcriptome, we obtained 124,960 unigenes. Of these, the number of unigenes annotated as neuropeptides and peptide hormones, neurotransmitter precursor processing enzymes, and neurotransmitter receptors were 34, 17, and 58, respectively. Under light stress, there were sex-specific differences in gene expression measured by qRT-PCR. The IMFamide, leucokinin and sNPF genes were differentially expressed at the mRNA level in males but not in females in response to light stress. The results provide new insights on the diversity of the neuropeptide transcriptional network of H. armigera. In addition, some neuropeptides exhibited sex-specific differential expression in response to light stress. Taken collectively, these results not only expand the catalog of known insect neuropeptides but also provide a framework for future functional studies on the physiological roles they play in the light stress response behavior of nocturnal moths. Copyright © 2017. Published by Elsevier B.V.

  9. The Genome and Methylome of a Subsocial Small Carpenter Bee, Ceratina calcarata

    PubMed Central

    Rehan, Sandra M.; Glastad, Karl M.; Lawson, Sarah P.; Hunt, Brendan G.

    2016-01-01

    Understanding the evolution of animal societies, considered to be a major transition in evolution, is a key topic in evolutionary biology. Recently, new gateways for understanding social evolution have opened up due to advances in genomics, allowing for unprecedented opportunities in studying social behavior on a molecular level. In particular, highly eusocial insect species (caste-containing societies with nonreproductives that care for siblings) have taken center stage in studies of the molecular evolution of sociality. Despite advances in genomic studies of both solitary and eusocial insects, we still lack genomic resources for early insect societies. To study the genetic basis of social traits requires comparison of genomes from a diversity of organisms ranging from solitary to complex social forms. Here we present the genome of a subsocial bee, Ceratina calcarata. This study begins to address the types of genomic changes associated with the earliest origins of simple sociality using the small carpenter bee. Genes associated with lipid transport and DNA recombination have undergone positive selection in C. calcarata relative to other bee lineages. Furthermore, we provide the first methylome of a noneusocial bee. Ceratina calcarata contains the complete enzymatic toolkit for DNA methylation. As in the honey bee and many other holometabolous insects, DNA methylation is targeted to exons. The addition of this genome allows for new lines of research into the genetic and epigenetic precursors to complex social behaviors. PMID:27048475

  10. Tools for detecting insect semiochemicals: a review.

    PubMed

    Brezolin, Alexandra Nava; Martinazzo, Janine; Muenchen, Daniela Kunkel; de Cezaro, Alana Marie; Rigo, Aline Andressa; Steffens, Clarice; Steffens, Juliana; Blassioli-Moraes, Maria Carolina; Borges, Miguel

    2018-07-01

    Semiochemicals are chemical compounds that are released by many species as a means of intra- and interspecific communication. Insects have extremely advanced olfactory systems; indeed, they rely on smell when performing many of their main behaviors, such as oviposition, breeding, prey location, and defense. This characteristic of insects implies that semiochemicals could be used for various applications, including in agriculture, where they could be employed along with other tools to control pest insects. The aim of this review is to present the main techniques used and the state of the art in the detection of semiochemicals, focusing on pheromones. In addition to the traditional methods of identifying semiochemicals, such as gas chromatography coupled to a high-resolution detection mode (e.g., flame ionization (FID), electron capture (ECD), photoionization (PID), or mass spectrometry (MS)), other tools are addressed in this review, including sensors and biosensors. While these new technologies may be used under laboratory conditions to improve or complement technologies that are already being used, they are mainly intended for use as new agricultural tools for detecting and controlling pest insects in the field.

  11. Ant-plant mutualism: a dietary by-product of a tropical ant's macronutrient requirements.

    PubMed

    Arcila Hernández, Lina M; Sanders, Jon G; Miller, Gabriel A; Ravenscraft, Alison; Frederickson, Megan E

    2017-12-01

    Many arboreal ants depend on myrmecophytic plants for both food and shelter; in return, these ants defend their host plants against herbivores, which are often insects. Ant-plant and other mutualisms do not necessarily involve the exchange of costly rewards or services; they may instead result from by-product benefits, or positive outcomes that do not entail a cost for one or both partners. Here, we examined whether the plant-ant Allomerus octoarticulatus pays a short-term cost to defend their host plants against herbivores, or whether plant defense is a by-product benefit of ant foraging for insect prey. Because the food offered by ant-plants is usually nitrogen-poor, arboreal ants may balance their diets by consuming insect prey or associating with microbial symbionts to acquire nitrogen, potentially shifting the costs and benefits of plant defense for the ant partner. To determine the effect of ant diet on an ant-plant mutualism, we compared the behavior, morphology, fitness, stable isotope signatures, and gaster microbiomes of A. octoarticulatus ants nesting in Cordia nodosa trees maintained for nearly a year with or without insect herbivores. At the end of the experiment, ants from herbivore exclosures preferred protein-rich baits more than ants in the control (i.e., herbivores present) treatment. Furthermore, workers in the control treatment were heavier than in the herbivore-exclusion treatment, and worker mass predicted reproductive output, suggesting that foraging for insect prey directly increased ant colony fitness. The gaster microbiome of ants was not significantly affected by the herbivore exclusion treatment. We conclude that the defensive behavior of some phytoecious ants is a by-product of their need for external protein sources; thus, the consumption of insect herbivores by ants benefits both the ant colony and the host plant. © 2017 by the Ecological Society of America.

  12. Three-Phase Coexistence in Colloidal Rod-Plate Mixtures.

    PubMed

    Woolston, Phillip; van Duijneveldt, Jeroen S

    2015-09-01

    Aqueous suspensions of clay particles, such as montmorillonite (MMT) platelets and sepiolite (Sep) rods, tend to form gels at concentrations around 1 vol %. For Sep rods, adsorbing sodium polyacrylate to the surface allows for an isotropic-nematic phase separation to be seen instead. Here, MMT is added to such Sep suspensions, resulting in a complex phase behavior. Across a range of clay concentrations, separation into three phases is observed: a lower, nematic phase dominated by Sep rods, a MMT-rich middle layer, which is weakly birefringent and probably a gel, and a dilute top phase. Analysis of phase volumes suggests that the middle layer may contain as much as 6 vol % MMT.

  13. Convergent bacterial microbiotas in the fungal agricultural systems of insects.

    PubMed

    Aylward, Frank O; Suen, Garret; Biedermann, Peter H W; Adams, Aaron S; Scott, Jarrod J; Malfatti, Stephanie A; Glavina del Rio, Tijana; Tringe, Susannah G; Poulsen, Michael; Raffa, Kenneth F; Klepzig, Kier D; Currie, Cameron R

    2014-11-18

    The ability to cultivate food is an innovation that has produced some of the most successful ecological strategies on the planet. Although most well recognized in humans, where agriculture represents a defining feature of civilization, species of ants, beetles, and termites have also independently evolved symbioses with fungi that they cultivate for food. Despite occurring across divergent insect and fungal lineages, the fungivorous niches of these insects are remarkably similar, indicating convergent evolution toward this successful ecological strategy. Here, we characterize the microbiota of ants, beetles, and termites engaged in nutritional symbioses with fungi to define the bacterial groups associated with these prominent herbivores and forest pests. Using culture-independent techniques and the in silico reconstruction of 37 composite genomes of dominant community members, we demonstrate that different insect-fungal symbioses that collectively shape ecosystems worldwide have highly similar bacterial microbiotas comprised primarily of the genera Enterobacter, Rahnella, and Pseudomonas. Although these symbioses span three orders of insects and two phyla of fungi, we show that they are associated with bacteria sharing high whole-genome nucleotide identity. Due to the fine-scale correspondence of the bacterial microbiotas of insects engaged in fungal symbioses, our findings indicate that this represents an example of convergence of entire host-microbe complexes. The cultivation of fungi for food is a behavior that has evolved independently in ants, beetles, and termites and has enabled many species of these insects to become ecologically important and widely distributed herbivores and forest pests. Although the primary fungal cultivars of these insects have been studied for decades, comparatively little is known of their bacterial microbiota. In this study, we show that diverse fungus-growing insects are associated with a common bacterial community composed of the same dominant members. Furthermore, by demonstrating that many of these bacteria have high whole-genome similarity across distantly related insect hosts that reside thousands of miles apart, we show that these bacteria are an important and underappreciated feature of diverse fungus-growing insects. Because of the similarities in the agricultural lifestyles of these insects, this is an example of convergence between both the life histories of the host insects and their symbiotic microbiota. Copyright © 2014 Aylward et al.

  14. Sensory Coordination of Insect Flight

    DTIC Science & Technology

    2010-10-22

    sources in the fruit fly, Drosophila melanogaster. 3) Wing-haltere coordination in the soldier fly, Hermetia illucens. 4) Landing behavior in the housefly ...modular behaviors (e.g. a territorial chase between houseflies is composed of a take-off followed by many sharp turns). In pursuing this goal, we have...coordination in the soldier fly, Hermetia illucens. 4) Landing behavior in the housefly , Musca domestica. We have also recently established an

  15. Construct Definition of Task Design and Related Concepts.

    DTIC Science & Technology

    1980-05-19

    with others). The final three items were from the Job Characteristics Inventory (Sims, Szilagyi , and Keller, 1976) written to tap friendship...eds.), Research in Organizational Behavior, Vol. 2, J.A.I. Press, Greenwich, Connecticut, 1980. Sims, H.P., Szilagyi , A.D., and Keller, R.T. The

  16. Toward the Attribution of Web Behavior

    DTIC Science & Technology

    2012-07-01

    den Poel, “Predicting website audience demo- graphics for Web advertising targeting using multi-website clickstream data,” Fundamenta Informaticae ...and M. Sydow, “Effective prediction of web user behaviour with user-level models,” Fundamenta Informaticae , vol. 89, no. 2, pp. 189–206, 2008. [24] J

  17. Sexual response of male Drosophila to honey bee queen mandibular pheromone: implications for genetic studies of social insects.

    PubMed

    Croft, Justin R; Liu, Tom; Camiletti, Alison L; Simon, Anne F; Thompson, Graham J

    2017-02-01

    Honey bees secrete a queen mandibular pheromone that renders workers reproductively altruistic and drones sexually attentive. This sex-specific function of QMP may have evolved from a sexually dimorphic signaling mechanism derived from pre-social ancestors. If so, there is potential for pre-social insects to respond to QMP, and in a manner that is comparable to its normal effect on workers and drones. Remarkably, QMP applied to female Drosophila does induce worker-like qualities [Camiletti et al. (Entomol Exp Appl 147:262, 2013)], and we here extend this comparison to examine the effects of bee pheromone on male fruit flies. We find that male Drosophila melanogaster consistently orient towards a source of queen pheromone in a T-maze, suggesting a recruitment response comparable to the pheromone's normal effect on drones. Moreover, exposure to QMP renders male flies more sexually attentive; they display intensified pre-copulatory behavior towards conspecific females. We can inhibit this sexual effect through a loss-of-olfactory-function mutation, which suggests that the pheromone-responsive behavioral mechanism is olfactory-driven. These pheromone-induced changes to male Drosophila behavior suggest that aspects of sexual signaling are conserved between these two distantly related taxa. Our results highlight a role for Drosophila as a genetically tractable pre-social model for studies of social insect biology.

  18. Predatory hunting and exposure to a live predator induce opposite patterns of Fos immunoreactivity in the PAG.

    PubMed

    Comoli, E; Ribeiro-Barbosa, E R; Canteras, Newton Sabino

    2003-01-06

    Considering the periaqueductal gray's (PAG) general roles in mediating motivational responses, in the present study, we compared the Fos expression pattern in the PAG induced by innate behaviors underlain by opposite motivational drivers, in rats, namely, insect predation and defensive behavior evoked by the confrontation with a live predator (a cat). Exposure to the predator was associated with a striking Fos expression in the PAG, where, at rostral levels, an intense Fos expression was found largely distributed in the dorsomedial and dorsolateral regions, whereas, at caudal levels, Fos-labeled cells tended to be mostly found in the lateral and ventrolateral columns, as well as in the dorsal raphe nucleus. Quite the opposite, insect predation was associated with increased Fos expression predominantly in the rostral two thirds of the lateral PAG, where the majority of the Fos-immunoreactive cells were found at the oculomotor nucleus levels. Remarkably, both exposure to the cat and insect predation upregulated Fos expression in the supraoculomotor region and the laterodorsal tegmental nucleus. Overall, the present results clearly suggest that the PAG activation pattern appears to reflect, at least partly, the animal's motivational status. It is well established that the PAG is critical for the expression of defensive responses, and, considering the present findings, it will be important to investigate how the PAG contributes to the expression of the predatory behavior, as well.

  19. Sex pheromones and their impact on pest management.

    PubMed

    Witzgall, Peter; Kirsch, Philipp; Cork, Alan

    2010-01-01

    The idea of using species-specific behavior-modifying chemicals for the management of noxious insects in agriculture, horticulture, forestry, stored products, and for insect vectors of diseases has been a driving ambition through five decades of pheromone research. Hundreds of pheromones and other semiochemicals have been discovered that are used to monitor the presence and abundance of insects and to protect plants and animals against insects. The estimated annual production of lures for monitoring and mass trapping is on the order of tens of millions, covering at least 10 million hectares. Insect populations are controlled by air permeation and attract-and-kill techniques on at least 1 million hectares. Here, we review the most important and widespread practical applications. Pheromones are increasingly efficient at low population densities, they do not adversely affect natural enemies, and they can, therefore, bring about a long-term reduction in insect populations that cannot be accomplished with conventional insecticides. A changing climate with higher growing season temperatures and altered rainfall patterns makes control of native and invasive insects an increasingly urgent challenge. Intensified insecticide use will not provide a solution, but pheromones and other semiochemicals instead can be implemented for sustainable area-wide management and will thus improve food security for a growing population. Given the scale of the challenges we face to mitigate the impacts of climate change, the time is right to intensify goal-oriented interdisciplinary research on semiochemicals, involving chemists, entomologists, and plant protection experts, in order to provide the urgently needed, and cost-effective technical solutions for sustainable insect management worldwide.

  20. Spinosad- and Deltamethrin-Induced Impact on Mating and Reproductive Output of the Maize Weevil Sitophilus zeamais.

    PubMed

    Vélez, Mayra; Botina, Lorena L; Turchen, Leonardo M; Barbosa, Wagner F; Guedes, Raul Narciso C

    2018-04-02

    Assessments of acute insecticide toxicity frequently focus on the lethal effects on individual arthropod pest species and populations neglecting the impacts and consequences of sublethal exposure. However, the sublethal effects of insecticides may lead to harmful, neutral, or even beneficial responses that may affect (or not) the behavior and sexual fitness of the exposed insects. Intriguingly, little is known about such effects on stored product insect pests in general and the maize weevil in particular. Thus, we assessed the sublethal effects of spinosad and deltamethrin on female mate-searching, mating behavior, progeny emergence, and grain consumption by maize weevils. Insecticide exposure did not affect the resting time, number of stops, and duration of mate-searching by female weevils, but their walking velocity was compromised. Maize weevil couples sublethally exposed to deltamethrin and spinosad exhibited altered reproductive behavior (walking, interacting, mounting, and copulating), but deltamethrin caused greater impairment. Curiously, higher grain consumption and increased progeny emergence were observed in deltamethrin-exposed insects, suggesting that this pyrethroid insecticide elicits hormesis in maize weevils that may compromise control efficacy by this compound. Although spinosad has less of an impact on weevil reproductive behavior than deltamethrin, this bioinsecticide also benefited weevil progeny emergence, but did not affect grain consumption. Therefore, our findings suggest caution using either compound, and particularly deltamethrin, for controlling the maize weevil, as they may actually favor this species population growth when in sublethal exposure requiring further assessments. The same concern may be valid for other insecticides as well, what deserves future attention.

  1. Steering by hearing: a bat's acoustic gaze is linked to its flight motor output by a delayed, adaptive linear law.

    PubMed

    Ghose, Kaushik; Moss, Cynthia F

    2006-02-08

    Adaptive behaviors require sensorimotor computations that convert information represented initially in sensory coordinates to commands for action in motor coordinates. Fundamental to these computations is the relationship between the region of the environment sensed by the animal (gaze) and the animal's locomotor plan. Studies of visually guided animals have revealed an anticipatory relationship between gaze direction and the locomotor plan during target-directed locomotion. Here, we study an acoustically guided animal, an echolocating bat, and relate acoustic gaze (direction of the sonar beam) to flight planning as the bat searches for and intercepts insect prey. We show differences in the relationship between gaze and locomotion as the bat progresses through different phases of insect pursuit. We define acoustic gaze angle, theta(gaze), to be the angle between the sonar beam axis and the bat's flight path. We show that there is a strong linear linkage between acoustic gaze angle at time t [theta(gaze)(t)] and flight turn rate at time t + tau into the future [theta(flight) (t + tau)], which can be expressed by the formula theta(flight) (t + tau) = ktheta(gaze)(t). The gain, k, of this linkage depends on the bat's behavioral state, which is indexed by its sonar pulse rate. For high pulse rates, associated with insect attacking behavior, k is twice as high compared with low pulse rates, associated with searching behavior. We suggest that this adjustable linkage between acoustic gaze and motor output in a flying echolocating bat simplifies the transformation of auditory information to flight motor commands.

  2. A Conditioned Visual Orientation Requires the Ellipsoid Body in "Drosophila"

    ERIC Educational Resources Information Center

    Guo, Chao; Du, Yifei; Yuan, Deliang; Li, Meixia; Gong, Haiyun; Gong, Zhefeng; Liu, Li

    2015-01-01

    Orientation, the spatial organization of animal behavior, is an essential faculty of animals. Bacteria and lower animals such as insects exhibit taxis, innate orientation behavior, directly toward or away from a directional cue. Organisms can also orient themselves at a specific angle relative to the cues. In this study, using…

  3. Effects of Reserpine on Reproduction and Serotonin Immunoreactivity in the Stable Fly Stomoxys Calcitrans (L.)

    USDA-ARS?s Scientific Manuscript database

    Biogenic amines are known to play critical roles in key insect behaviors such as feeding and reproduction. This study documents the effects of reserpine on mating and egg-laying behaviors of the stable fly, Stomoxys calcitrans (L.) (Diptera: Muscidae), which is one of the most economically significa...

  4. Degradation products of citrus volatile organic compounds (VOCs) acting as phagostimulants that increase probing behavior of Asian citrus psyllid

    USDA-ARS?s Scientific Manuscript database

    Volatile phytochemicals play a role in orientation by phytophagous insects. We studied antennal and behavioral responses of the Asian citrus psyllid, Diaphorina citri Kuwayama, vector of the citrus greening disease pathogen. Little or no response to citrus leaf volatiles was detected by electroanten...

  5. Evidence for the presence of a female produced sex pheromone in the banana weevil, Cosmopolites sordidus Germar (Coleoptera: Curculionidae)

    USDA-ARS?s Scientific Manuscript database

    Behavior-modifying chemicals such as pheromones and kairomones have great potential in pest management. Studies reported here investigated chemical cues involved in mating and aggregation behavior of banana weevil, Cosmopolites sordidus, a major insect pest of banana in every country where bananas a...

  6. Behavioral effects of plant essential oils on Ceratitis capitata males – risk versus reward

    USDA-ARS?s Scientific Manuscript database

    Plant essential oils have a number of roles in insect pest management. For male Ceratitis capitata, these roles include male-targeted attractants for traps and aromatherapy exposure for increased mating success. Essential oils that affect C. capitata behavior may be from either host or non-host pl...

  7. Influence of pymetrozine on feeding behaviors of three rice planthoppers and a rice leafhopper using electrical penetration graphs

    USDA-ARS?s Scientific Manuscript database

    Pymetrozine reportedly inhibited feeding of plant sap-sucking insects, such as aphids and brown planthopper (BPH), Nilaparvata lugens. By using electrical penetration graph (EPG), this study was conducted to investigate any differential effects of pymetrozine on the feeding behaviors of four major r...

  8. Microstructure and corrosion behavior of coated AZ91 alloy by microarc oxidation for biomedical application

    NASA Astrophysics Data System (ADS)

    Wang, Y. M.; Wang, F. H.; Xu, M. J.; Zhao, B.; Guo, L. X.; Ouyang, J. H.

    2009-08-01

    Magnesium and its alloy currently are considered as the potential biodegradable implant materials, while the accelerated corrosion rate in intro environment leads to implant failure by losing the mechanical integrity before complete restoration. Dense oxide coatings formed in alkaline silicate electrolyte with and without titania sol addition were fabricated on magnesium alloy using microarc oxidation process. The microstructure, composition and degradation behavior in simulated body fluid (SBF) of the coated specimens were evaluated. It reveals that a small amount of TiO 2 is introduced into the as-deposited coating mainly composed of MgO and Mg 2SiO 4 by the addition of titania sol into based alkaline silicate electrolytic bath. With increasing concentration of titania sol from 0 to 10 vol.%, the coating thickness decreases from 22 to 18 μm. Electrochemical tests show that the Ecorr of Mg substrate positively shifted about 300˜500 mV and icorr lowers more than 100 times after microarc oxidation. However, the TiO 2 modified coatings formed in electrolyte containing 5 and 10 vol.% titania sol indicate an increasing worse corrosion resistance compared with that of the unmodified coating, which is possibly attributed to the increasing amorphous components caused by TiO 2 involvement. The long term immersing test in SBF is consistent with the electrochemical test, with the coated Mg alloy obviously slowing down the biodegradation rate, meanwhile accompanied by the increasing damage trends in the coatings modified by 5 and 10 vol.% titania sol.

  9. Numerical simulation of systems of shear bands in ductile metal with inclusions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plohr, JeeYeon N., E-mail: jplohr@lanl.gov; Plohr, Bradley J.

    2016-02-15

    We develop a method for numerical simulations of high strain-rate loading of mesoscale samples of ductile metal with inclusions. Because of its small-scale inhomogeneity, the composite material is prone to localized shear deformation (adiabatic shear bands). This method employs the Generalized Method of Cells of Paley and Aboudi [Mech. Materials, vol. 14, pp. 127–139, 1992] to ensure that the micro mechanical behavior of the metal and inclusions is reflected properly in the behavior of the composite at the mesoscale. To find the effective plastic strain rate when shear bands are present, we extend and apply the analytic and numerical analysismore » of shear bands of Glimm, Plohr, and Sharp [Mech. Materials, vol. 24, pp. 31–41, 1996]. Our tests of the method focus on the stress/strain response in uniaxial-strain flow, both compressive and tensile, of depleted uranium metal containing silicon carbide inclusions. We use the Preston-Tonks-Wallace viscoplasticity model [J. Appl. Phys., vol. 93, pp. 211–220, 2003], which applies to the high strain-rate regime of an isotropic viscoplastic solid. In results, we verify the elevated temperature and thermal softening at shear bands in our simulations of pure DU and DU/SiC composites. We also note that in composites, due the asymmetry caused by the inclusions, shear band form at different times in different subcells. In particular, in the subcells near inclusions, shear band form much earlier than they do in pure DU.« less

  10. Numerical simulation of systems of shear bands in ductile metal with inclusions

    NASA Astrophysics Data System (ADS)

    Plohr, JeeYeon N.; Plohr, Bradley J.

    2016-02-01

    We develop a method for numerical simulations of high strain-rate loading of mesoscale samples of ductile metal with inclusions. Because of its small-scale inhomogeneity, the composite material is prone to localized shear deformation (adiabatic shear bands). This method employs the Generalized Method of Cells of Paley and Aboudi [Mech. Materials, vol. 14, pp. 127-139, 1992] to ensure that the micro mechanical behavior of the metal and inclusions is reflected properly in the behavior of the composite at the mesoscale. To find the effective plastic strain rate when shear bands are present, we extend and apply the analytic and numerical analysis of shear bands of Glimm, Plohr, and Sharp [Mech. Materials, vol. 24, pp. 31-41, 1996]. Our tests of the method focus on the stress/strain response in uniaxial-strain flow, both compressive and tensile, of depleted uranium metal containing silicon carbide inclusions. We use the Preston-Tonks-Wallace viscoplasticity model [J. Appl. Phys., vol. 93, pp. 211-220, 2003], which applies to the high strain-rate regime of an isotropic viscoplastic solid. In results, we verify the elevated temperature and thermal softening at shear bands in our simulations of pure DU and DU/SiC composites. We also note that in composites, due the asymmetry caused by the inclusions, shear band form at different times in different subcells. In particular, in the subcells near inclusions, shear band form much earlier than they do in pure DU.

  11. Immunochemical quantitation, size distribution, and cross-reactivity of lepidoptera (moth) aeroallergens in southeastern Minnesota

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wynn, S.R.; Swanson, M.C.; Reed, C.E.

    1988-07-01

    With an immunochemical method, we analyzed outdoor air samples during a 3-year period for concentrations of the predominant local species of moth, Pseudaletia unipuncta (Haworth). Airborne particulates were collected on fiberglass filter sheets with an Accu-Vol sampler located 1.5 m above ground on the southeastern Minnesota prairie. Filter eluates analyzed by RIA inhibition contained concentrations of moth protein peaking in June and August to September of each year, with levels comparable to reported immunochemically measured levels of pollen and mold allergens. These peaks also corresponded with total numbers of moths captured in light traps. Moth-allergen activity was distributed in particlemore » sizes ranging from 0.8 to greater than 4.1 micron when sized samples were obtained by use of an Andersen cascade impaction head. By RIA inhibition, there was cross-reactivity between P. unipuncta and insects of different genera, families, and orders, but not with pollens or molds. Forty-five percent of 257 patients with immediate positive skin tests to common aeroallergens had positive skin tests to one or more commercially available whole body insect extracts. Of 120 patients with allergic rhinitis believed to be primarily caused by ragweed sensitivity, 5% also had elevated specific IgE to moths. We conclude that airborne concentrations of Lepidoptera can be measured immunochemically and that moths may be a seasonal allergen in the United States.« less

  12. Retraction of Hard, Lozano, and Tversky (2006)

    ERIC Educational Resources Information Center

    Hard, B. M.; Lozano, S. C.; Tversky, B.

    2008-01-01

    Reports a retraction of "Hierarchical encoding of behavior: Translating perception into action" by Bridgette Martin Hard, Sandra C. Lozano and Barbara Tversky (Journal of Experimental Psychology: General, 2006[Nov], Vol 135[4], 588-608). All authors retract this article. Co-author Tversky and co-author Hard believe that the research results cannot…

  13. TESL Reporter, Vol. 10, No. 3.

    ERIC Educational Resources Information Center

    Pack, Alice C., Ed.

    This issue of a publication devoted to providing ideas and guidance for teachers of English as a second language includes the following articles and features: (1) "Toward Interactive Modes in Guided Composition," (2) "Computer Compatibility in the Classroom," (3) "Discourse Structure in Reading," (4) "Terminal Behavior and Language," (5) "Sector…

  14. Studies in Philippine Linguistics. Vol. 1, No. 2.

    ERIC Educational Resources Information Center

    Edrial-Luzares, Casilda, Ed.; Hale, Austin, Ed.

    This volume is devoted to papers on an empirical or theoretical nature contributing to the study of language and communicative behavior in the Philippines. Articles included are: (1) "The Phonemic Consequences of Two Morphophonemic Rules in Molbog," by H. Arnold Thiessen; (2) "A Look at a Northern Kankanay Text (a syntactic…

  15. Elicitation and abrupt termination of behaviorally significant catchlike tension in a primitive insect.

    PubMed

    Hoyle, G; Field, L H

    1983-07-01

    Sustained steady contractural or catchlike tension (CT) occurs in the metathoracic extensor tibiae muscle of the primitive insect the weta (Orthoptera: Stenopelmatidae) during its characteristic leg-extension defense behavior or following leg-position conditioning. Similar action occurs occasionally in semi-intact preparations and is abruptly turned off by a single peripheral inhibitory impulse. These phenomena were reproduced routinely by first infusing saline containing 10(-8) M (or stronger) octopamine into the muscle for 12 min, and then stimulating the slow excitatory motor neuron SETi with a brief burst. Direct stimulation of the dorsal unpaired median neuron, innervating the extensor tibiae (DUMETi) prior to SETi stimulation, also led to CT. Both octopamine and DUMETi markedly enhanced the tension developed in response to a burst of impulses in SETi.

  16. Evidence for Widespread Associations between Neotropical Hymenopteran Insects and Actinobacteria

    PubMed Central

    Matarrita-Carranza, Bernal; Moreira-Soto, Rolando D.; Murillo-Cruz, Catalina; Mora, Marielos; Currie, Cameron R.; Pinto-Tomas, Adrián A.

    2017-01-01

    The evolutionary success of hymenopteran insects has been associated with complex physiological and behavioral defense mechanisms against pathogens and parasites. Among these strategies are symbiotic associations between Hymenoptera and antibiotic-producing Actinobacteria, which provide protection to insect hosts. Herein, we examine associations between culturable Actinobacteria and 29 species of tropical hymenopteran insects that span five families, including Apidae (bees), Vespidae (wasps), and Formicidae (ants). In total, 197 Actinobacteria isolates were obtained from 22 of the 29 different insect species sampled. Through 16S rRNA gene sequences of 161 isolates, we show that 91% of the symbionts correspond to members of the genus Streptomyces with less common isolates belonging to Pseudonocardia and Amycolatopsis. Electron microscopy revealed the presence of filamentous bacteria with Streptomyces morphology in brood chambers of two different species of the eusocial wasps. Four fungal strains in the family Ophiocordycipitacea (Hypocreales) known to be specialized insect parasites were also isolated. Bioassay challenges between the Actinobacteria and their possible targeted pathogenic antagonist (both obtained from the same insect at the genus or species level) provide evidence that different Actinobacteria isolates produced antifungal activity, supporting the hypothesis of a defensive association between the insects and these microbe species. Finally, phylogenetic analysis of 16S rRNA and gyrB demonstrate the presence of five Streptomyces lineages associated with a broad range of insect species. Particularly our Clade I is of much interest as it is composed of one 16S rRNA phylotype repeatedly isolated from different insect groups in our sample. This phylotype corresponds to a previously described lineage of host-associated Streptomyces. These results suggest Streptomyces Clade I is a Hymenoptera host-associated lineage spanning several new insect taxa and ranging from the American temperate to the Neotropical region. Our work thus provides important insights into the widespread distribution of Actinobacteria and hymenopteran insects associations, while also pointing at novel resources that could be targeted for the discovery of active natural products with great potential in medical and biotechnological applications. PMID:29089938

  17. In silico Interrogation of Insect Central Complex Suggests Computational Roles for the Ellipsoid Body in Spatial Navigation.

    PubMed

    Fiore, Vincenzo G; Kottler, Benjamin; Gu, Xiaosi; Hirth, Frank

    2017-01-01

    The central complex in the insect brain is a composite of midline neuropils involved in processing sensory cues and mediating behavioral outputs to orchestrate spatial navigation. Despite recent advances, however, the neural mechanisms underlying sensory integration and motor action selections have remained largely elusive. In particular, it is not yet understood how the central complex exploits sensory inputs to realize motor functions associated with spatial navigation. Here we report an in silico interrogation of central complex-mediated spatial navigation with a special emphasis on the ellipsoid body. Based on known connectivity and function, we developed a computational model to test how the local connectome of the central complex can mediate sensorimotor integration to guide different forms of behavioral outputs. Our simulations show integration of multiple sensory sources can be effectively performed in the ellipsoid body. This processed information is used to trigger continuous sequences of action selections resulting in self-motion, obstacle avoidance and the navigation of simulated environments of varying complexity. The motor responses to perceived sensory stimuli can be stored in the neural structure of the central complex to simulate navigation relying on a collective of guidance cues, akin to sensory-driven innate or habitual behaviors. By comparing behaviors under different conditions of accessible sources of input information, we show the simulated insect computes visual inputs and body posture to estimate its position in space. Finally, we tested whether the local connectome of the central complex might also allow the flexibility required to recall an intentional behavioral sequence, among different courses of actions. Our simulations suggest that the central complex can encode combined representations of motor and spatial information to pursue a goal and thus successfully guide orientation behavior. Together, the observed computational features identify central complex circuitry, and especially the ellipsoid body, as a key neural correlate involved in spatial navigation.

  18. In silico Interrogation of Insect Central Complex Suggests Computational Roles for the Ellipsoid Body in Spatial Navigation

    PubMed Central

    Fiore, Vincenzo G.; Kottler, Benjamin; Gu, Xiaosi; Hirth, Frank

    2017-01-01

    The central complex in the insect brain is a composite of midline neuropils involved in processing sensory cues and mediating behavioral outputs to orchestrate spatial navigation. Despite recent advances, however, the neural mechanisms underlying sensory integration and motor action selections have remained largely elusive. In particular, it is not yet understood how the central complex exploits sensory inputs to realize motor functions associated with spatial navigation. Here we report an in silico interrogation of central complex-mediated spatial navigation with a special emphasis on the ellipsoid body. Based on known connectivity and function, we developed a computational model to test how the local connectome of the central complex can mediate sensorimotor integration to guide different forms of behavioral outputs. Our simulations show integration of multiple sensory sources can be effectively performed in the ellipsoid body. This processed information is used to trigger continuous sequences of action selections resulting in self-motion, obstacle avoidance and the navigation of simulated environments of varying complexity. The motor responses to perceived sensory stimuli can be stored in the neural structure of the central complex to simulate navigation relying on a collective of guidance cues, akin to sensory-driven innate or habitual behaviors. By comparing behaviors under different conditions of accessible sources of input information, we show the simulated insect computes visual inputs and body posture to estimate its position in space. Finally, we tested whether the local connectome of the central complex might also allow the flexibility required to recall an intentional behavioral sequence, among different courses of actions. Our simulations suggest that the central complex can encode combined representations of motor and spatial information to pursue a goal and thus successfully guide orientation behavior. Together, the observed computational features identify central complex circuitry, and especially the ellipsoid body, as a key neural correlate involved in spatial navigation. PMID:28824390

  19. Deletion of the Bombyx mori odorant receptor co-receptor (BmOrco) impairs olfactory sensitivity in silkworms.

    PubMed

    Liu, Qun; Liu, Wei; Zeng, Baosheng; Wang, Guirong; Hao, Dejun; Huang, Yongping

    2017-07-01

    Olfaction plays an essential role in many important insect behaviors such as feeding and reproduction. To detect olfactory stimuli, an odorant receptor co-receptor (Orco) is required. In this study, we deleted the Orco gene in the Lepidopteran model insect, Bombyx mori, using a binary transgene-based clustered regulatory interspaced short palindromic repeats (CRISPR)/Cas9 system. We initially generated somatic mutations in two targeted sites, from which we obtained homozygous mutants with deletion of a 866 base pair sequence. Because of the flight inability of B. mori, we developed a novel method to examine the adult mating behavior. Considering the specialization in larval feeding, we examined food selection behavior in Orco somatic mutants by the walking trail analysis of silkworm position over time. Single sensillum recordings indicated that the antenna of the homozygous mutant was unable to respond to either of the two sex pheromones, bombykol or bombykal. An adult mating behavior assay revealed that the Orco mutant displayed a significantly impaired mating selection behavior in response to natural pheromone released by a wild-type female moth as well as an 11:1 mixture of bombykol/bombykal. The mutants also exhibited a decreased response to bombykol and, similar to wild-type moths, they displayed no response to bombykal. A larval feeding behavior assay revealed that the Orco mutant displayed defective selection for mulberry leaves and different concentrations of the volatile compound cis-jasmone found in mulberry leaves. Deletion of BmOrco severely disrupts the olfactory system, suggesting that BmOrco is indispensable in the olfactory pathway. The approach used for generating somatic and homozygous mutations also highlights a novel method for mutagenesis. This study on BmOrco function provides insights into the insect olfactory system and also provides a paradigm for agroforestry pest control. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Internest food sharing within wood ant colonies: resource redistribution behavior in a complex system

    PubMed Central

    Robinson, Elva J.H.

    2016-01-01

    Resource sharing is an important cooperative behavior in many animals. Sharing resources is particularly important in social insect societies, as division of labor often results in most individuals including, importantly, the reproductives, relying on other members of the colony to provide resources. Sharing resources between individuals is therefore fundamental to the success of social insects. Resource sharing is complicated if a colony inhabits several spatially separated nests, a nesting strategy common in many ant species. Resources must be shared not only between individuals in a single nest but also between nests. We investigated the behaviors facilitating resource redistribution between nests in a dispersed-nesting population of wood ant Formica lugubris. We marked ants, in the field, as they transported resources along the trails between nests of a colony, to investigate how the behavior of individual workers relates to colony-level resource exchange. We found that workers from a particular nest “forage” to other nests in the colony, treating them as food sources. Workers treating other nests as food sources means that simple, pre-existing foraging behaviors are used to move resources through a distributed system. It may be that this simple behavioral mechanism facilitates the evolution of this complex life-history strategy. PMID:27004016

  1. Blended Refuge and Insect Resistance Management for Insecticidal Corn

    PubMed Central

    Crespo, Andre L B; Pan, Zaiqi; Crain, Philip R; Thompson, Stephen D; Pilcher, Clinton D; Sethi, Amit

    2018-01-01

    Abstract In this review, we evaluate the intentional mixing or blending of insecticidal seed with refuge seed for managing resistance by insects to insecticidal corn (Zea mays). We first describe the pest biology and farming practices that will contribute to weighing trade-offs between using block refuges and blended refuges. Case studies are presented to demonstrate how the trade-offs will differ in different systems. We compare biological aspects of several abstract models to guide the reader through the history of modeling, which has played a key role in the promotion or denigration of blending in various scientific debates about insect resistance management for insecticidal crops. We conclude that the use of blended refuge should be considered on a case-by-case basis after evaluation of insect biology, environment, and farmer behavior. For Diabrotica virgifera virgifera, Ostrinia nubilalis, and Helicoverpa zea in the United States, blended refuge provides similar, if not longer, delays in the evolution of resistance compared to separate block refuges. PMID:29220481

  2. Mirid (Hemiptera: Heteroptera) specialists of sticky plants: adaptations, interactions, and ecological implications.

    PubMed

    Wheeler, Alfred G; Krimmel, Billy A

    2015-01-07

    Sticky plants-those having glandular trichomes (hairs) that produce adhesive, viscous exudates-can impede the movement of, and entrap, generalist insects. Disparate arthropod groups have adapted to these widespread and taxonomically diverse plants, yet their interactions with glandular hosts rarely are incorporated into broad ecological theory. Ecologists and entomologists might be unaware of even well-documented examples of insects that are sticky-plant specialists. The hemipteran family Miridae (more specifically, the omnivorous Dicyphini: Dicyphina) is the best-known group of arthropods that specializes on sticky plants. In the first synthesis of relationships with glandular plants for any insect family, we review mirid interactions with sticky hosts, including their adaptations (behavioral, morphological, and physiological) and mutualisms with carnivorous plants, and the ecological and agricultural implications of mirid-sticky plant systems. We propose that mirid research applies generally to tritrophic interactions on trichome-defended plants, enhances an understanding of insect-plant interactions, and provides information useful in managing crop pests.

  3. The Drosophila divalent metal ion transporter Malvolio is required in dopaminergic neurons for feeding decisions

    PubMed Central

    Søvik, Eirik; LaMora, Angela; Seehra, Gurpreet; Barron, Andrew B.; Duncan, Jennifer G.; Ben-Shahar, Yehuda

    2017-01-01

    Members of the Natural resistance-associated macrophage protein (NRAMP) family are evolutionarily-conserved metal ion transporters that play an essential role in regulating intracellular divalent cation homeostasis in both prokaryotes and eukaryotes. Malvolio (Mvl), the sole NRAMP family member in insects, plays a role in food choice behaviors in Drosophila and other species. However, the specific physiological and cellular processes that require the action of Mvl for appropriate feeding decisions remain elusive. Here we demonstrate that normal food choice requires Mvl function specifically in the dopaminergic system, and can be rescued by supplementing food with manganese. Collectively, our data indicate that the action of the Mvl transporter affects food choice behavior via the regulation of dopaminergic innervation of the mushroom bodies, a principle brain region associated with decision making in insects. Our studies suggest that the homeostatic regulation of the intra-neuronal levels of divalent cations plays an important role in the development and function of the dopaminergic system and associated behaviors. PMID:28220999

  4. Evolved differences in larval social behavior mediated by novel pheromones

    PubMed Central

    Mast, Joshua D; De Moraes, Consuelo M; Alborn, Hans T; Lavis, Luke D; Stern, David L

    2014-01-01

    Pheromones, chemical signals that convey social information, mediate many insect social behaviors, including navigation and aggregation. Several studies have suggested that behavior during the immature larval stages of Drosophila development is influenced by pheromones, but none of these compounds or the pheromone-receptor neurons that sense them have been identified. Here we report a larval pheromone-signaling pathway. We found that larvae produce two novel long-chain fatty acids that are attractive to other larvae. We identified a single larval chemosensory neuron that detects these molecules. Two members of the pickpocket family of DEG/ENaC channel subunits (ppk23 and ppk29) are required to respond to these pheromones. This pheromone system is evolving quickly, since the larval exudates of D. simulans, the sister species of D. melanogaster, are not attractive to other larvae. Our results define a new pheromone signaling system in Drosophila that shares characteristics with pheromone systems in a wide diversity of insects. DOI: http://dx.doi.org/10.7554/eLife.04205.001 PMID:25497433

  5. An Engineered orco Mutation Produces Aberrant Social Behavior and Defective Neural Development in Ants.

    PubMed

    Yan, Hua; Opachaloemphan, Comzit; Mancini, Giacomo; Yang, Huan; Gallitto, Matthew; Mlejnek, Jakub; Leibholz, Alexandra; Haight, Kevin; Ghaninia, Majid; Huo, Lucy; Perry, Michael; Slone, Jesse; Zhou, Xiaofan; Traficante, Maria; Penick, Clint A; Dolezal, Kelly; Gokhale, Kaustubh; Stevens, Kelsey; Fetter-Pruneda, Ingrid; Bonasio, Roberto; Zwiebel, Laurence J; Berger, Shelley L; Liebig, Jürgen; Reinberg, Danny; Desplan, Claude

    2017-08-10

    Ants exhibit cooperative behaviors and advanced forms of sociality that depend on pheromone-mediated communication. Odorant receptor neurons (ORNs) express specific odorant receptors (ORs) encoded by a dramatically expanded gene family in ants. In most eusocial insects, only the queen can transmit genetic information, restricting genetic studies. In contrast, workers in Harpegnathos saltator ants can be converted into gamergates (pseudoqueens) that can found entire colonies. This feature facilitated CRISPR-Cas9 generation of germline mutations in orco, the gene that encodes the obligate co-receptor of all ORs. orco mutations should significantly impact olfaction. We demonstrate striking functions of Orco in odorant perception, reproductive physiology, and social behavior plasticity. Surprisingly, unlike in other insects, loss of OR functionality also dramatically impairs development of the antennal lobe to which ORNs project. Therefore, the development of genetics in Harpegnathos establishes this ant species as a model organism to study the complexity of eusociality. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. The Genome and Methylome of a Subsocial Small Carpenter Bee, Ceratina calcarata.

    PubMed

    Rehan, Sandra M; Glastad, Karl M; Lawson, Sarah P; Hunt, Brendan G

    2016-05-13

    Understanding the evolution of animal societies, considered to be a major transition in evolution, is a key topic in evolutionary biology. Recently, new gateways for understanding social evolution have opened up due to advances in genomics, allowing for unprecedented opportunities in studying social behavior on a molecular level. In particular, highly eusocial insect species (caste-containing societies with nonreproductives that care for siblings) have taken center stage in studies of the molecular evolution of sociality. Despite advances in genomic studies of both solitary and eusocial insects, we still lack genomic resources for early insect societies. To study the genetic basis of social traits requires comparison of genomes from a diversity of organisms ranging from solitary to complex social forms. Here we present the genome of a subsocial bee, Ceratina calcarata This study begins to address the types of genomic changes associated with the earliest origins of simple sociality using the small carpenter bee. Genes associated with lipid transport and DNA recombination have undergone positive selection in C. calcarata relative to other bee lineages. Furthermore, we provide the first methylome of a noneusocial bee. Ceratina calcarata contains the complete enzymatic toolkit for DNA methylation. As in the honey bee and many other holometabolous insects, DNA methylation is targeted to exons. The addition of this genome allows for new lines of research into the genetic and epigenetic precursors to complex social behaviors. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  7. Self-heating by large insect larvae?

    PubMed

    Cooley, Nikita L; Emlen, Douglas J; Woods, H Arthur

    2016-12-01

    Do insect larvae ever self-heat significantly from their own metabolic activity and, if so, under what sets of environmental temperatures and across what ranges of body size? We examine these questions using larvae of the Japanese rhinoceros beetle (Trypoxylus dichotomus), chosen for their large size (>20g), simple body plan, and underground lifestyle. Using CO 2 respirometry, we measured larval metabolic rates then converted measured rates of gas exchange into rates of heat production and developed a mathematical model to predict how much steady state body temperatures of underground insects would increase above ambient depending on body size. Collectively, our results suggest that large, extant larvae (20-30g body mass) can self-heat by at most 2°C, and under many common conditions (shallow depths, moister soils) would self-heat by less than 1°C. By extending the model to even larger (hypothetical) body sizes, we show that underground insects with masses >1kg could heat, in warm, dry soils, by 1.5-6°C or more. Additional experiments showed that larval critical thermal maxima (CT max ) were in excess of 43.5°C and that larvae could behaviorally thermoregulate on a thermal gradient bar. Together, these results suggest that large larvae living underground likely regulate their temperatures primarily using behavior; self-heating by metabolism likely contributes little to their heat budgets, at least in most common soil conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Variation in pollen-donor composition among pollinators in an entomophilous tree species, Castanea crenata, revealed by single-pollen genotyping.

    PubMed

    Hasegawa, Yoichi; Suyama, Yoshihisa; Seiwa, Kenji

    2015-01-01

    In plants, reproductive success is largely determined by the composition of pollen (i.e., self-pollen and outcross-pollen from near and distant pollen-donors) transported as a result of pollinator foraging behavior (e.g., pollen carryover). However, little evidence is available on how and to what extent the pollen carryover affects the pollen-donor composition and on which insect taxa are effective outcross-pollen transporters under field conditions. In this study, we explored roles of foraging behavior of insect pollinators on pollen-donor composition and subsequent reproductive success in a woody plant. We performed paternity analyses based on microsatellite genotyping of individual pollen grains found on diurnal pollinators (i.e., bumblebee, small bee, fly, small beetle, and honeybee) visiting Castanea crenata trees. The outcross-pollen rate was highest in bumblebees (66%), followed by small bees (35%), flies (31%), and small beetles (18%). The effective number of pollen donors, representing pollen carryover, was greater in bumblebees (9.71) than in flies (3.40), small bees (3.32), and small beetles (3.06). The high percentages of pollen from outside the plot on bumblebees (65.4%) and flies (71.2%) compared to small bees (35.3%) and small beetles (13.5%) demonstrated their longer pollen dispersal distances. All of the diurnal insects carried outcross-pollen grains for long distances via pollen carryover. This fact suggests that a wide range of insect taxa are potential outcross-pollen transporters for the self-incompatible C. crenata.

  9. A tropical horde of counterfeit predator eyes.

    PubMed

    Janzen, Daniel H; Hallwachs, Winnie; Burns, John M

    2010-06-29

    We propose that the many different, but essentially similar, eye-like and face-like color patterns displayed by hundreds of species of tropical caterpillars and pupae-26 examples of which are displayed here from the dry, cloud, and rain forests of Area de Conservacion Guanacaste (ACG) in northwestern Costa Rica-constitute a huge and pervasive mimicry complex that is evolutionarily generated and sustained by the survival behavior of a large and multispecific array of potential predators: the insect-eating birds. We propose that these predators are variously and innately programmed to flee when abruptly confronted, at close range, with what appears to be an eye of one of their predators. Such a mimetic complex differs from various classical Batesian and Müllerian mimicry complexes of adult butterflies in that (i) the predators sustain it for the most part by innate traits rather than by avoidance behavior learned through disagreeable experiences, (ii) the more or less harmless, sessile, and largely edible mimics vastly outnumber the models, and (iii) there is no particular selection for the eye-like color pattern to closely mimic the eye or face of any particular predator of the insect-eating birds or that of any other member of this mimicry complex. Indeed, selection may not favor exact resemblance among these mimics at all. Such convergence through selection could create a superabundance of one particular false eyespot or face pattern, thereby increasing the likelihood of a bird species or guild learning to associate that pattern with harmless prey.

  10. Flight behavior and performance of Rhodnius pallescens (Hemiptera: Reduviidae) on a tethered flight mill.

    PubMed

    Castro, Lauren A; Peterson, Jennifer K; Saldana, Azael; Perea, Milixa Y; Calzada, Jose E; Pineda, Vanessa; Dobson, Andrew P; Gottdenker, Nicole L

    2014-09-01

    ABSTRACT Flight dispersal of the triatomine bug species Rhodnius pallescens Barber, the principal vector of Chagas disease in Panama, is an important mechanism for spreading Trypanosoma cruzi, causative agent of Chagas disease. This study measures R. pallescens flight performance using a tethered flight mill both when uninfected, and when infected with T. cruzi or Trypanosoma rangeli. Forty-four out of the 48 (91.7%) insects initiated flight across all treatments, and trypanosome infection did not significantly impact flight initiation. Insects from all treatments flew a cumulative distance ranging from 0.5 to 5 km before fatiguing. The median cumulative distance flown before insect fatigue was higher in T. cruzi- and T. rangeli-infected insects than in control insects; however, this difference was not statistically significant. There was a positive relationship between parasite load ingested and time until flight initiation in T. rangeli-infected bugs, and T. rangeli- and T. cruzi-infected females flew significantly faster than males at different time points. These novel findings allow for a better understanding of R. pallescens dispersal ability and peridomestic management strategies for the prevention of Chagas disease in Panama.

  11. Electrical Stimulation of Coleopteran Muscle for Initiating Flight.

    PubMed

    Choo, Hao Yu; Li, Yao; Cao, Feng; Sato, Hirotaka

    2016-01-01

    Some researchers have long been interested in reconstructing natural insects into steerable robots or vehicles. However, until recently, these so-called cyborg insects, biobots, or living machines existed only in science fiction. Owing to recent advances in nano/micro manufacturing, data processing, and anatomical and physiological biology, we can now stimulate living insects to induce user-desired motor actions and behaviors. To improve the practicality and applicability of airborne cyborg insects, a reliable and controllable flight initiation protocol is required. This study demonstrates an electrical stimulation protocol that initiates flight in a beetle (Mecynorrhina torquata, Coleoptera). A reliable stimulation protocol was determined by analyzing a pair of dorsal longitudinal muscles (DLMs), flight muscles that oscillate the wings. DLM stimulation has achieved with a high success rate (> 90%), rapid response time (< 1.0 s), and small variation (< 0.33 s; indicating little habituation). Notably, the stimulation of DLMs caused no crucial damage to the free flight ability. In contrast, stimulation of optic lobes, which was earlier demonstrated as a successful flight initiation protocol, destabilized the beetle in flight. Thus, DLM stimulation is a promising secure protocol for inducing flight in cyborg insects or biobots.

  12. Electrical Stimulation of Coleopteran Muscle for Initiating Flight

    PubMed Central

    Choo, Hao Yu; Li, Yao; Cao, Feng; Sato, Hirotaka

    2016-01-01

    Some researchers have long been interested in reconstructing natural insects into steerable robots or vehicles. However, until recently, these so-called cyborg insects, biobots, or living machines existed only in science fiction. Owing to recent advances in nano/micro manufacturing, data processing, and anatomical and physiological biology, we can now stimulate living insects to induce user-desired motor actions and behaviors. To improve the practicality and applicability of airborne cyborg insects, a reliable and controllable flight initiation protocol is required. This study demonstrates an electrical stimulation protocol that initiates flight in a beetle (Mecynorrhina torquata, Coleoptera). A reliable stimulation protocol was determined by analyzing a pair of dorsal longitudinal muscles (DLMs), flight muscles that oscillate the wings. DLM stimulation has achieved with a high success rate (> 90%), rapid response time (< 1.0 s), and small variation (< 0.33 s; indicating little habituation). Notably, the stimulation of DLMs caused no crucial damage to the free flight ability. In contrast, stimulation of optic lobes, which was earlier demonstrated as a successful flight initiation protocol, destabilized the beetle in flight. Thus, DLM stimulation is a promising secure protocol for inducing flight in cyborg insects or biobots. PMID:27050093

  13. Birds Bug on Indirect Plant Defenses to Locate Insect Prey.

    PubMed

    Hiltpold, Ivan; Shriver, W Gregory

    2018-06-01

    It has long been thought that most birds do not use volatile cues to perceive their environment. Aside from some scavenging birds, this large group of vertebrates was believed to mostly rely on highly developed vision while foraging and there are relatively few studies exploring bird response to volatile organic compounds. In response to insect herbivory, plants release volatile organic compounds to attract parasitoids and predators of the pests. To test if insectivorous birds use herbivore-induced plant volatiles (HIPV), dispensers emitting a synthetic blend of HIPV typically emitted after insect herbivory were deployed in a maize field along with imitation clay caterpillars. Significantly more imitation insects were attacked by birds when located close to dispensers releasing HIPV than close to dispenser with organic solvent only. Seven times more peck marks, an index of avian predation, were counted on caterpillars in the vicinity of the HIPV dispensers than on insects close to control dispensers. This is the first field demonstration that insectivorous birds cue on HIPV to locate prey in agricultural settings. These results support the growing evidence that foraging birds exploit volatile cues. This more accurate understanding of their behavior will be important when implementing pest management program involving insectivorous birds.

  14. NLC Newsletter

    Science.gov Websites

    November 2003 Vol. 4 No. 10 - 11 September 2003 Vol. 4 No. 9 August 2003 Vol.4 No. 8 July 2003 Vol.4 No. 7 Vol. 3 No. 9 August 2002 Vol. 3 No. 8 July 2002 Vol. 3 No. 7 June 2002 Vol. 3 No. 6 May 2002 Vol. 3 No . 2 No.10 August 2001 Vol. 2 No. 4 March 2001 Vol. 2 No. 3 February 2001 Vol. 2 No. 2 January 2001 Vol

  15. For a Limited Time Only? How Long Can Trees Maintain Enhanced Chemical Defenses During Pre-Mortality Heat and Drought Stress

    NASA Astrophysics Data System (ADS)

    Trowbridge, A.; Adams, H. D.; Cook, A. A.; Hofland, M.; Weaver, D.; McDowell, N. G.

    2016-12-01

    The relative contribution of forest pests to climate and drought-induced tree mortality is complex and largely absent from current process-based models. Recent efforts have focused on developing frameworks to integrate insects into models of tree mortality, citing the need for a better mechanistic understanding of the links between stress-induced tree physiology and insect behavior and population dynamics. Secondary plant metabolites (SPMs) play a critical role in plant resistance and their synthesis and mobilization are coupled to carbon assimilation, hydraulic conductivity, and herbivory itself. Insect host choice also depends in part on behavioral responses to host SPMs. Monoterpenes are the dominant SPMs in conifers, and while high concentrations of monoterpenes are toxic to bark beetles, lower concentrations serve as precursors for a number of aggregation pheromones. Thus, the impact of monoterpenes on bark beetle behavior is complex and is impacted by environmental effects on primary metabolism including heat and drought stress. Here, we quantify the dynamics of piñon pine monoterpene chemistry as a function of predicted and prolonged drought stress implemented at the SUrvival MOrtality (SUMO) experimental site at the Los Alamos National Laboratory, NM, USA. In both woody and needle tissues, total monoterpene concentrations in ambient trees were not significantly different from those observed in trees exposed to heat stress, but drought trees showed higher total concentration while heat+drought trees were observed to have the highest levels (2 fold increase over ambient). These treatment effects were sustained over a two-year period despite seasonal variation in tree water status; however, total concentration in the xylem and phloem were closely coupled to tree water potential and treatment effects took longer to manifest relative to the needles. Individual compounds responded differently to the treatments, suggesting cyclase-level enzyme regulation, while α-pinene - an important bark beetle aggregate pheromone precursor - dominated total monoterpene concentration dynamics. These results have important implications for piñon-bark beetle interactions during drought and provide a missing link between drought-induced physiology and insect behavior.

  16. Visual Place Learning in Drosophila melanogaster

    PubMed Central

    Ofstad, Tyler A.; Zuker, Charles S.; Reiser, Michael B.

    2011-01-01

    The ability of insects to learn and navigate to specific locations in the environment has fascinated naturalists for decades. While the impressive navigation abilities of ants, bees, wasps, and other insects clearly demonstrate that insects are capable of visual place learning1–4, little is known about the underlying neural circuits that mediate these behaviors. Drosophila melanogaster is a powerful model organism for dissecting the neural circuitry underlying complex behaviors, from sensory perception to learning and memory. Flies can identify and remember visual features such as size, color, and contour orientation5, 6. However, the extent to which they use vision to recall specific locations remains unclear. Here we describe a visual place-learning platform and demonstrate that Drosophila are capable of forming and retaining visual place memories to guide selective navigation. By targeted genetic silencing of small subsets of cells in the Drosophila brain we show that neurons in the ellipsoid body, but not in the mushroom bodies, are necessary for visual place learning. Together, these studies reveal distinct neuroanatomical substrates for spatial versus non-spatial learning, and substantiate Drosophila as a powerful model for the study of spatial memories. PMID:21654803

  17. Elevated Carbon Dioxide Concentration Reduces Alarm Signaling in Aphids.

    PubMed

    Boullis, Antoine; Fassotte, Bérénice; Sarles, Landry; Lognay, Georges; Heuskin, Stéphanie; Vanderplanck, Maryse; Bartram, Stefan; Haubruge, Eric; Francis, Frédéric; Verheggen, François J

    2017-02-01

    Insects often rely on olfaction to communicate with conspecifics. While the chemical language of insects has been deciphered in recent decades, few studies have assessed how changes in atmospheric greenhouse gas concentrations might impact pheromonal communication in insects. Here, we hypothesize that changes in the concentration of atmospheric carbon dioxide affect the whole dynamics of alarm signaling in aphids, including: (1) the production of the active compound (E)-β-farnesene (Eβf), (2) emission behavior when under attack, (3) perception by the olfactory apparatus, and (4) the escape response. We reared two strains of the pea aphid, Acyrthosiphon pisum, under ambient and elevated CO 2 concentrations over several generations. We found that an increase in CO 2 concentration reduced the production (i.e., individual content) and emission (released under predation events) of Eβf. While no difference in Eβf neuronal perception was observed, we found that an increase in CO 2 strongly reduced the escape behavior expressed by an aphid colony following exposure to natural doses of alarm pheromone. In conclusion, our results confirm that changes to greenhouse gases impact chemical communication in the pea aphid, and could potentially have a cascade effect on interactions with higher trophic levels.

  18. Intraspecific Variation among Social Insect Colonies: Persistent Regional and Colony-Level Differences in Fire Ant Foraging Behavior

    PubMed Central

    Bockoven, Alison A.; Wilder, Shawn M.; Eubanks, Micky D.

    2015-01-01

    Individuals vary within a species in many ecologically important ways, but the causes and consequences of such variation are often poorly understood. Foraging behavior is among the most profitable and risky activities in which organisms engage and is expected to be under strong selection. Among social insects there is evidence that within-colony variation in traits such as foraging behavior can increase colony fitness, but variation between colonies and the potential consequences of such variation are poorly documented. In this study, we tested natural populations of the red imported fire ant, Solenopsis invicta, for the existence of colony and regional variation in foraging behavior and tested the persistence of this variation over time and across foraging habitats. We also reared single-lineage colonies in standardized environments to explore the contribution of colony lineage. Fire ants from natural populations exhibited significant and persistent colony and regional-level variation in foraging behaviors such as extra-nest activity, exploration, and discovery of and recruitment to resources. Moreover, colony-level variation in extra-nest activity was significantly correlated with colony growth, suggesting that this variation has fitness consequences. Lineage of the colony had a significant effect on extra-nest activity and exploratory activity and explained approximately half of the variation observed in foraging behaviors, suggesting a heritable component to colony-level variation in behavior. PMID:26197456

  19. Electrical Properties of Cement-Based Composites with Carbon Nanotubes, Graphene, and Graphite Nanofibers.

    PubMed

    Yoo, Doo-Yeol; You, Ilhwan; Lee, Seung-Jung

    2017-05-08

    This study was conducted to evaluate the effect of the carbon-based nanomaterial type on the electrical properties of cement paste. Three different nanomaterials, multi-walled carbon nanotubes (MWCNTs), graphite nanofibers (GNFs), and graphene (G), were incorporated into the cement paste at a volume fraction of 1%. The self-sensing capacity of the cement composites was also investigated by comparing the compressive stress/strain behaviors by evaluating the fractional change of resistivity (FCR). The electrical resistivity of the plain cement paste was slightly reduced by adding 1 vol % GNFs and G, whereas a significant decrease of the resistivity was achieved by adding 1 vol % MWCNTs. At an identical volume fraction of 1%, the composites with MWCNTs provided the best self-sensing capacity with insignificant noise, followed by the composites containing GNFs and G. Therefore, the addition of MWCNTs was considered to be the most effective to improve the self-sensing capacity of the cement paste. Finally, the composites with 1 vol % MWCNTs exhibited a gauge factor of 113.2, which is much higher than commercially available strain gauges.

  20. Electrical Properties of Cement-Based Composites with Carbon Nanotubes, Graphene, and Graphite Nanofibers

    PubMed Central

    Yoo, Doo-Yeol; You, Ilhwan; Lee, Seung-Jung

    2017-01-01

    This study was conducted to evaluate the effect of the carbon-based nanomaterial type on the electrical properties of cement paste. Three different nanomaterials, multi-walled carbon nanotubes (MWCNTs), graphite nanofibers (GNFs), and graphene (G), were incorporated into the cement paste at a volume fraction of 1%. The self-sensing capacity of the cement composites was also investigated by comparing the compressive stress/strain behaviors by evaluating the fractional change of resistivity (FCR). The electrical resistivity of the plain cement paste was slightly reduced by adding 1 vol % GNFs and G, whereas a significant decrease of the resistivity was achieved by adding 1 vol % MWCNTs. At an identical volume fraction of 1%, the composites with MWCNTs provided the best self-sensing capacity with insignificant noise, followed by the composites containing GNFs and G. Therefore, the addition of MWCNTs was considered to be the most effective to improve the self-sensing capacity of the cement paste. Finally, the composites with 1 vol % MWCNTs exhibited a gauge factor of 113.2, which is much higher than commercially available strain gauges. PMID:28481296

  1. The Mechanisms of Dispersion Strengthening and Fracture in Al-based XD (TM) Alloys

    NASA Technical Reports Server (NTRS)

    Aiken, R. M., Jr.

    1990-01-01

    The influence of reinforcement size, volume fraction, and matrix deformation behavior on room and elevated temperature strength, and the fracture toughness of metal matrix composites of both pure aluminum and Al(4 percent)Cu(1.5 percent)Mg with 0 to 15 vol percent TiB2 were examined. Higher TiB2 volume fractions increased the tensile yield strength both at room and elevated temperatures, and reduced the elongation to fracture. Tensile tests also indicate that small particles provided a greater increase in strength for a given volume fraction than larger particles, whereas elongation to fracture appeared to be insensitive to reinforcement size. The fracture toughness of the Al(4 percent)Cu(1.5 percent)Mg alloys decreased rapidly with TiB2 additions of 0 to 5 vol percent and more slowly with TiB2 additions of 5 to 15 vol percent. Fracture toughness appears to be independent of TiB2 particle size. The isothermal-aging response of the precipitation strengthened Al(4 percent)Cu(1.5 percent)Mg alloys was not altered by the presence of TiB2.

  2. Learning and memory in the honeybee.

    PubMed

    Hammer, M; Menzel, R

    1995-03-01

    Insects are favorable subjects for neuroethological studies. Their nervous systems are relatively small and contain many individually identifiable cells. The CNS is highly compartmentalized with clear separations between multisensory higher order neuropiles in the brain and neuropiles serving sensory-motor routines in the ventral cord (Huber, 1974). The rich behavior of insects includes orientation in space and time, visual, chemical, and mechanical communication, and complex motor routines for flying, walking, swimming, nest building, defense, and attack. Learning and memory, though, are not usually considered to be a strong point of insects. Rather, insect behavior is often regarded as highly stereotyped and under tight control of genetically programmed neural circuits. This view, however, does not do justice to the insect order of Hymenoptera (bees, wasps, ants). Most Hymenopteran species care for their brood either as individual females or as a social group of females. Consequently, they regularly return to their nest site to feed, protect, and nurse the larvae, store food, and hide from adverse environmental conditions. Since they search for food (prey; nectar and pollen on flowers) at unpredictable sites, they have to learn the celestial and terrestrial cues that guide their foraging trips over long distances and allow them to find their nest sites (central place foraging; von Frisch, 1967; Seeley, 1985). They learn to relate the sun's position and sky pattern of polarized light to the time of the day (Lindauer, 1959), and landmarks are learned in relationship to the nest site within the framework of the time-compensated sun compass. The honeybee communicates direction and distance of a feeding place to hive mates by performing a ritualized body movement, the waggle dance (von Frisch, 1967). Associative learning is an essential component of the bee's central place foraging behavior and dance communication. Hive mates attending a dance performance learn the odor emanating from the dancing bee and seek it at the indicated food site. The odor, color, and shape of flowers are learned when the bee experiences these stimuli shortly before it finds food (nectar, pollen). This appetitive learning in bees has many characteristics of associative learning well known from mammalian learning studies (Menzel, 1985, 1990; Bitterman, 1988). It follows the rules of classical and operant conditioning, respectively, so that stimuli or behavioral acts are associated with evaluating stimuli. Since associative learning, especially of the classical type, is well described at the phenomenological and operational level (Rescorla, 1988), it provides a favorable approach in the search for the neural substrate underlying learning and memory.(ABSTRACT TRUNCATED AT 400 WORDS)

  3. How doth the little busy bee: unexpected metabolism.

    PubMed

    Barros, L Felipe; Sierralta, Jimena; Weber, Bruno

    2015-01-01

    Brain energy metabolism powers information processing and behavior, much as electricity powers a computer. However, a recent study in insects suggests that this relationship is more interesting, causally linking aggressive behavior to energetics. These findings may also shed new light on aerobic glycolysis, a long-standing riddle of human brain physiology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Identification and characterization of a sex peptide receptor-like transcript from the western tarnished plant bug, Lygus hesperus

    USDA-ARS?s Scientific Manuscript database

    Lygus hesperus females exhibit a post-mating behavioral switch that triggers increased egg laying and decreased sexual interest. In Drosophila melanogaster, post-mating changes in behavior are controlled by sex peptide (SP) and the sex peptide receptor (DmSPR). SPR is present in most insect genome...

  5. Morphology, courtship & mating of a mixed bilateral gynander of Osmia ribifloris biedermannii Michener (Hymenoptera: megachilidae)

    USDA-ARS?s Scientific Manuscript database

    We report for the first time on the courtship behavior of a gynandromorph of a solitary bee. Such observational studies on a living specimen that is bilaterally male and female can indentify centers of control for specific insect behaviors. Our observations show that gender in bees is not linked to ...

  6. Life on the edge: insect ecology in arctic environments.

    PubMed

    Strathdee, A T; Bale, J S

    1998-01-01

    The restricted Arctic insect fauna is usually explained by a lack of recolonization since the last glacial period, inadequate supply of suitable resources, or insufficient adaptation to such a harsh environment. These hypotheses and others that attempt to explain the latitudinal gradient of species distributions and abundance are reviewed. Arctic habitats available to insects are strongly heterogeneous, requiring a similarly diverse array of adaptive responses, characteristic of those species that have colonized and survived in such a stressful climate. Important adaptations in morphology (size, wings), behavior (activity patterns, thermoregulation), life cycles, and ecophysiology (cold hardiness, anaerobiosis, desiccation resistance) are discussed. The current focus of global climate change research on polar regions is identified, particularly the opportunity to study fundamental ecological processes and spatial dynamics in the relatively simple Arctic ecosystems.

  7. Use of necrophagous insects as evidence of cadaver relocation: myth or reality?

    PubMed Central

    Gosselin, Matthias; Hedouin, Valéry

    2017-01-01

    The use of insects as indicators of post-mortem displacement is discussed in many texts, courses and TV shows, and several studies addressing this issue have been published. Although the concept is widely cited, it is poorly understood, and only a few forensic cases have successfully applied such a method. The use of necrophagous insects as evidence of cadaver relocation actually involves a wide range of biological aspects. Distribution, microhabitat, phenology, behavioral ecology, and molecular analysis are among the research areas associated with this topic. This article provides the first review of the current knowledge and addresses the potential and limitations of different methods to evaluate their applicability. This work reveals numerous weaknesses and erroneous beliefs as well as many possibilities and research opportunities. PMID:28785513

  8. Pressure Relief Behaviors and Weight Shifting Activities to Prevent Pressure Ulcers in Persons with SCI

    DTIC Science & Technology

    2016-10-01

    pressures and increased blood flow. This level of off-loading is achieved by postural changes during sustained reaching, leaning and other...wheelchair cushions and pressure relief maneuvers on ischial interface pressure and blood flow in people with spinal cord injury”, Archives of Physical Medicine and Rehabilitation, Vol. 95 no.7, pp. 1350-1357, July 2014. ...0 AWARD NUMBER: W81XWH-13-1-0387 TITLE: Pressure Relief Behaviors and Weight-Shifting Activities to Prevent Pressure Ulcers in

  9. Development of Fatigue and Crack Propagation Design and Analysis Methodology in a Corrosive Environment for Typical Mechanically-Fastened Joints. Volume 2. State-of-the-Art Assessment.

    DTIC Science & Technology

    1983-03-01

    120] hypothesized a linear summation model to predict the corrosion -fatigue behavior above Kjscc for a high-strength steel . The model considers the...120] could satisfactorily predict the rates of corrosion -fatigue-crack growth for 18-Ni Maraging steels tested in several gaseous and aqueous...NADC-83126-60 Vol. II 6. The corrosion fatigue behavior of titanium alloys is very complex. Therefore, a better understanding of corrosion fatigue

  10. Partial and Complete Wetting in Ultralow Interfacial Tension Multiphase Blends with Polylactide.

    PubMed

    Zolali, Ali M; Favis, Basil D

    2016-12-15

    The control of phase structuring in multiphase blends of polylactide (PLA) with other polymers is a viable approach to promote its broader implementation. In this article, ternary and quaternary blends of PLA with poly(butylene succinate) (PBS), poly(butylene adipate-co-terephthalate) (PBAT), and poly(3-hydroxybutyrate-co-hydroxyvalerate) (PHBV) are prepared by melt blending. The interfacial tensions between components are measured using three different techniques, and a Fourier transform infrared imaging technique is developed for the purpose of unambiguous phase identification. A tricontinuous complete wetting behavior is observed for the ternary 33PLA/33PBS/33PBAT blend before and after quiescent annealing, which correlates closely with spreading theory analysis. In the quaternary PLA/PBS/PBAT/PHBV blend, a concentration-dependent wetting behavior is found. At 10 vol % PBAT, self-assembled partially wet droplets of PBAT are observed at the interface of PBS and PHBV, and they remain stable after quiescent annealing as predicted by spreading theory. In contrast, at 25 vol % PBAT, a quadruple continuous system is observed after mixing, which only transforms to partially wet PBAT droplets after subsequent annealing. These results clearly indicate the potential of composition control during the mixing of multiphase systems to result in a complete change of spreading behavior.

  11. A theoretical model for the flow behavior of commercial dual-phase steels containing metastable retained austenite: Part I. derivation of flow curve equations

    NASA Astrophysics Data System (ADS)

    Goel, Naresh C.; Sangal, Sandeep; Tangri, Kris

    1985-11-01

    A semi-mechanistic model for predicting the flow behavior of a typical commercial dual-phase steel containing 20 vol pct of ‘as quenched’ martensite and varying amounts of retained austenite has been developed in this paper. Assuming that up to 20 vol pct of austenite with different degrees of mechanical stability can be retained as a result of certain thermomechanical treatments in a steel of appropriate low carbon low alloy chemistry, expressions for composite flow stress and strain have been derived. The model takes into account the work hardening of the individual microconstituents (viz., ferrite -@#@ α, retained austenite - γ r, and martensite -α') and the extra hardening of ferrite caused by accommodation dislocations surrounding the ‘as quenched’ as well as the strain-induced (γ r→ α') martensite. Load transfer between the phases has been accounted for using an intermediate law of mixtures which also considers the relative hardness of the soft and the hard phases. From the derived expressions, the flow behavior of dual phase steels can be predicted if the properties of the individual microconstituents are known. Versatility of the model for application to other commercial steels containing a metastable phase is discussed.

  12. Experiment investigation for dynamic behavior of hybrid fiber effects on reactive powder concrete

    NASA Astrophysics Data System (ADS)

    Wang, Liwen; Pang, Baojun; Yang, Zhenqi; Chi, Runqiang

    2010-03-01

    The influences of different hybrid fibers (steel fibers add polyvinyl-alcohol fibers) mixture rates for reactive power concrete's (RPC) dynamic mechanical behavior after high temperature burnt was investigated by the Split Hopkinson pressure bar (SHPB) device. A plumbic pulse shaper technique was applied in the experiment, PVDF stress gauge was used to monitor the stress uniformity state within the specimen. The strain rate was between 75~85s-1, base on the stressstrain curves and dynamic modes of concrete specimen, the hybrid fiber effect on the dynamic properties was determined. The results show, dynamic compression strength of specimens which mixed with steel fibers (1.0%,1.5%,2.0% vol. rate) and 0.1% PVA fibers is higher than normal reactive powder concrete (NRPC), but the toughness improves unconspicuous; while strength of the one which has both steel fiber (1.0%,1.5%,2.0% vol. rate) and 0.2%PVA fiber declines than NRPC but the toughness improves and the plastic behaviors strengthened, stress-strain curve has evident rising and plate portions. It can be deduced that the concrete with mixed two kinds of fibers has improved dynamic mechanical properties after high temperature burnt. By compounding previous literature results, the mechanism of the experimental results can be explained.

  13. Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis.

    PubMed

    Sugio, Akiko; Kingdom, Heather N; MacLean, Allyson M; Grieve, Victoria M; Hogenhout, Saskia A

    2011-11-29

    Phytoplasmas are insect-transmitted phytopathogenic bacteria that can alter plant morphology and the longevity and reproduction rates and behavior of their insect vectors. There are various examples of animal and plant parasites that alter the host phenotype to attract insect vectors, but it is unclear how these parasites accomplish this. We hypothesized that phytoplasmas produce effectors that modulate specific targets in their hosts leading to the changes in plant development and insect performance. Previously, we sequenced and mined the genome of Aster Yellows phytoplasma strain Witches' Broom (AY-WB) and identified 56 candidate effectors. Here, we report that the secreted AY-WB protein 11 (SAP11) effector modulates plant defense responses to the advantage of the AY-WB insect vector Macrosteles quadrilineatus. SAP11 binds and destabilizes Arabidopsis CINCINNATA (CIN)-related TEOSINTE BRANCHED1, CYCLOIDEA, PROLIFERATING CELL FACTORS 1 and 2 (TCP) transcription factors, which control plant development and promote the expression of lipoxygenase (LOX) genes involved in jasmonate (JA) synthesis. Both the Arabidopsis SAP11 lines and AY-WB-infected plants produce less JA on wounding. Furthermore, the AY-WB insect vector produces more offspring on AY-WB-infected plants, SAP11 transgenic lines, and plants impaired in CIN-TCP and JA synthesis. Thus, SAP11-mediated destabilization of CIN-TCPs leads to the down-regulation of LOX2 expression and JA synthesis and an increase in M. quadrilineatus progeny. Phytoplasmas are obligate inhabitants of their plant host and insect vectors, in which the latter transmits AY-WB to a diverse range of plant species. This finding demonstrates that pathogen effectors can reach beyond the pathogen-host interface to modulate a third organism in the biological interaction.

  14. Optic flow-based collision-free strategies: From insects to robots.

    PubMed

    Serres, Julien R; Ruffier, Franck

    2017-09-01

    Flying insects are able to fly smartly in an unpredictable environment. It has been found that flying insects have smart neurons inside their tiny brains that are sensitive to visual motion also called optic flow. Consequently, flying insects rely mainly on visual motion during their flight maneuvers such as: takeoff or landing, terrain following, tunnel crossing, lateral and frontal obstacle avoidance, and adjusting flight speed in a cluttered environment. Optic flow can be defined as the vector field of the apparent motion of objects, surfaces, and edges in a visual scene generated by the relative motion between an observer (an eye or a camera) and the scene. Translational optic flow is particularly interesting for short-range navigation because it depends on the ratio between (i) the relative linear speed of the visual scene with respect to the observer and (ii) the distance of the observer from obstacles in the surrounding environment without any direct measurement of either speed or distance. In flying insects, roll stabilization reflex and yaw saccades attenuate any rotation at the eye level in roll and yaw respectively (i.e. to cancel any rotational optic flow) in order to ensure pure translational optic flow between two successive saccades. Our survey focuses on feedback-loops which use the translational optic flow that insects employ for collision-free navigation. Optic flow is likely, over the next decade to be one of the most important visual cues that can explain flying insects' behaviors for short-range navigation maneuvers in complex tunnels. Conversely, the biorobotic approach can therefore help to develop innovative flight control systems for flying robots with the aim of mimicking flying insects' abilities and better understanding their flight. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Early Metamorphic Insertion Technology for Insect Flight Behavior Monitoring

    PubMed Central

    Bozkurt, Alper

    2014-01-01

    Early Metamorphosis Insertion Technology (EMIT) is a novel methodology for integrating microfabricated neuromuscular recording and actuation platforms on insects during their metamorphic development. Here, the implants are fused within the structure and function of the neuromuscular system as a result of metamorphic tissue remaking. The implants emerge with the insect where the development of tissue around the electronics during pupal development results in a bioelectrically and biomechanically enhanced tissue interface. This relatively more reliable and stable interface would be beneficial for many researchers exploring the neural basis of the insect locomotion with alleviated traumatic effects caused during adult stage insertions. In this article, we implant our electrodes into the indirect flight muscles of Manduca sexta. Located in the dorsal-thorax, these main flight powering dorsoventral and dorsolongitudinal muscles actuate the wings and supply the mechanical power for up and down strokes. Relative contraction of these two muscle groups has been under investigation to explore how the yaw maneuver is neurophysiologically coordinated. To characterize the flight dynamics, insects are often tethered with wires and their flight is recorded with digital cameras. We also developed a novel way to tether Manduca sexta on a magnetically levitating frame where the insect is connected to a commercially available wireless neural amplifier. This set up can be used to limit the degree of freedom to yawing “only” while transmitting the related electromyography signals from dorsoventral and dorsolongitudinal muscle groups. PMID:25079130

  16. Insect-machine Hybrid System: Remote Radio Control of a Freely Flying Beetle (Mercynorrhina torquata).

    PubMed

    Vo Doan, T Thang; Sato, Hirotaka

    2016-09-02

    The rise of radio-enabled digital electronic devices has prompted the use of small wireless neuromuscular recorders and stimulators for studying in-flight insect behavior. This technology enables the development of an insect-machine hybrid system using a living insect platform described in this protocol. Moreover, this protocol presents the system configuration and free flight experimental procedures for evaluating the function of the flight muscles in an untethered insect. For demonstration, we targeted the third axillary sclerite (3Ax) muscle to control and achieve left or right turning of a flying beetle. A thin silver wire electrode was implanted on the 3Ax muscle on each side of the beetle. These were connected to the outputs of a wireless backpack (i.e., a neuromuscular electrical stimulator) mounted on the pronotum of the beetle. The muscle was stimulated in free flight by alternating the stimulation side (left or right) or varying the stimulation frequency. The beetle turned to the ipsilateral side when the muscle was stimulated and exhibited a graded response to an increasing frequency. The implantation process and volume calibration of the 3 dimensional motion capture camera system need to be carried out with care to avoid damaging the muscle and losing track of the marker, respectively. This method is highly beneficial to study insect flight, as it helps to reveal the functions of the flight muscle of interest in free flight.

  17. The Insect Pathogens.

    PubMed

    Lovett, Brian; St Leger, Raymond J

    2017-03-01

    Fungi are the most common disease-causing agents of insects; aside from playing a crucial role in natural ecosystems, insect-killing fungi are being used as alternatives to chemical insecticides and as resources for biotechnology and pharmaceuticals. Some common experimentally tractable genera, such as Metarhizium spp., exemplify genetic diversity and dispersal because they contain numerous intraspecific variants with distinct environmental and insect host ranges. The availability of tools for molecular genetics and multiple sequenced genomes has made these fungi ideal experimental models for answering basic questions on the genetic and genomic processes behind adaptive phenotypes. For example, comparative genomics of entomopathogenic fungi has shown they exhibit diverse reproductive modes that often determine rates and patterns of genome evolution and are linked as cause or effect with pathogenic strategies. Fungal-insect pathogens represent lifestyle adaptations that evolved numerous times, and there are significant differences in host range and pathogenic strategies between the major groups. However, typically, spores landing on the cuticle produce appressoria and infection pegs that breach the cuticle using mechanical pressure and cuticle-degrading enzymes. Once inside the insect body cavity, fungal pathogens face a potent and comprehensively studied immune defense by which the host attempts to eliminate or reduce an infection. The Fungal Kingdom stands alone in the range, extent, and complexity of their manipulation of arthropod behavior. In part, this is because most only sporulate on cadavers, so they must ensure the dying host positions itself to allow efficient transmission.

  18. Insect prey eaten by Hoary Bats (Lasiurus cinereus) prior to fatal collisions with wind turbines

    USGS Publications Warehouse

    Valdez, Ernest W.; Cryan, Paul M.

    2013-01-01

    Wind turbines are being deployed all across the world to meet the growing demand for energy, and in many areas, these turbines are causing the deaths of insectivorous migratory bats. One of the hypothesized causes of bat susceptibility is that bats are attracted to insects on or near the turbines. We examined insect remains in the stomachs and intestines of hoary bats (Lasiurus cinereus) found dead beneath wind turbines in New York and Texas to evaluate the hypothesis that bats die while feeding at turbines. Most of the bats we examined had full stomachs, indicating that they fed in the minutes to hours leading up to their deaths. However, we did not find prey in the mouths or throats of any bats that would indicate the bats died while capturing prey. Hoary bats fed mostly on moths, but we also detected the regular presence of beetles, true bugs, and crickets. Presence of terrestrial insects in stomachs indicates that bats may have gleaned them from the ground or the turbine surfaces, yet aerial capture of winged insect stages cannot be ruled out. Our findings confirm earlier studies that indicate hoary bats feed during migration and eat mostly moths. Future studies on bat behaviors and insect presence at wind turbines could help determine whether feeding at turbines is a major fatality risk for bats.

  19. Development of a Design Technology for Ground Support for Tunnels in Soil : Vol. II. Three Dimensional Finite Element Analysis of Advanced and Conventional Shield Tunneling

    DOT National Transportation Integrated Search

    1983-11-01

    The report presents design recommendations for concrete tunnel linings for transportation tunnels. The recommendations developed as a result of in-depth analysis and model testing of the behavior of concrete tunnel linings. The research addressed pro...

  20. Corrections Regarding the Impedance of Distance Functions for Several g(d) Functions

    ERIC Educational Resources Information Center

    Beaman, Jay

    1976-01-01

    Five functions were introduced for modeling travel behavior in the Beaman article "Distance and the 'Reaction' to Distance as a Function of Distance" published in Vol. 6, No. 3 of "Journal of Leisure Research" with the graphs of the functions printed incorrectly. This is a corrected version. (MM)

  1. USSR Report, Life Sciences, Biomedical and Behavioral Sciences

    DTIC Science & Technology

    1987-02-10

    S. B. Akopov, S. N. Kuzmina , et al.; DOKLADY AKADEMII NAUK SSSR, No 3, Apr 86) 4 Amino Acid Thermal Polycondensation Model in Migratory...AKADEMII NAUK SSSR in Russian Vol 287, No 3, Apr 86 (manuscript received 19 Nov 85) pp 724-728 [Article by S. B. Akopov, S. N. Kuzmina , T. V

  2. Fatigue behavior of a 2XXX series aluminum alloy reinforced with 15 vol Pct SiCp

    NASA Astrophysics Data System (ADS)

    Bonnen, J. J.; Allison, J. E.; Jones, J. W.

    1991-05-01

    The fatigue behavior of a naturally aged powder metallurgy 2xxx series aluminum alloy (Alcoa MB85) and a composite made of this alloy with 15 vol pct SiCp, has been investigated. Fatigue lives were determined using load-controlled axial testing of unnotched cylindrical samples. The influence of mean stress was determined at stress ratios of -1, 0.1, and 0.7. Mean stress had a significant influence on fatigue life, and this influence was consistent with that normally observed in metals. At each stress ratio, the incorporation of SiC reinforcement led to an increase in fatigue life at low and intermediate stresses. When considered on a strain-life basis, however, the composite materials had a somewhat inferior resistance to fatigue. Fatigue cracks initiated from several different microstructural features or defect types, but fatigue life did not vary significantly with the specific initiation site. As the fatigue crack advanced away from the fatigue crack initiation site, increasing numbers of SiC particles were fractured, in agreement with crack-tip process zone models.

  3. Influence of CoO Nanoparticles on Properties of Barium Zirconium Titanate Ceramics

    NASA Astrophysics Data System (ADS)

    Jarupoom, Parkpoom; Jaita, Pharatree; Boothrawong, Narongdetch; Phatungthane, Thanatep; Sanjoom, Ratabongkot; Rujijanagul, Gobwute; Cann, David P.

    2017-07-01

    Composites of Ba(Zr0.07Ti0.93)O3 ceramic and CoO nanoparticles (at 1.0 vol.% to 3.0 vol.%) have been fabricated to investigate the effects of the CoO nanoparticles on the properties of the composites. X-ray diffraction data revealed that the modified samples contained Ba(Zr0.07Ti0.93)O3 and CoO phases. Addition of CoO nanoparticles improved the magnetic behavior and resulted in slight changes in ferroelectric properties. The composites showed a magnetoelectric effect in which the negative value of the magnetocapacitance increased with increasing CoO concentration. Examination of the dielectric spectra showed that the two phase-transition temperatures as observed for unmodified Ba(Zr0.07Ti0.93)O3 merged into a single phase-transition temperature for the composite samples. The composite samples also showed broad relative permittivity versus temperature ( ɛ r - T) curves with frequency dispersion. This dielectric behavior can be explained in terms of the Maxwell-Wagner mechanism. In addition, the Vickers hardness ( H v) value of the samples increased with increasing CoO content.

  4. A preliminary study on the potency of nanofluids as the electro-active materials for nanoelectrofuel flow batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristiawan, B., E-mail: budi-k@uns.ac.id; Wijayanta, A. T., E-mail: agungtw@uns.ac.id; Juwana, W. E., E-mail: wibawa.ej@gmail.com

    2016-03-29

    This study presents a characterization of nanofluids as electroactive materials with dispersing metal oxide nanoparticles into aqueous polyelectrolytes of 20 wt.%, in particular, their electrochemical activites. The fundamental characterizations including X-ray diffraction, transmission electron microscopy, and Fourier ttransform iinfrared measurement were performed to ensure metal oxide component used in this work. Alumina (Al{sub 2}O{sub 3}) and copper oxide (CuO) nanoparticles of 0.5 vol.% in volume fraction were dispersed into Poly(diallyldimethylammonium chloride) solution (PDADMAC) and Poly(sodium 4-styrenesulfonate) (PSS), respectively. Alumina and copper oxide nanoparticles were dispersed into ionic solution with volume fraction of 0.5 vol.% by using two-step method. The generalmore » cyclic voltammetry measurement was used to analyze electrochemical behavior within three-electrode cell setup. The results show that PSS-based nanofluids demonstrate redox process. However, unclearly redox phenomenon was depicted PDADMAC-based nanofluids. Dispersing nanoparticles could shift pure ionic solution’s cyclic profile. It is clear that a significant impact on electrochemical behavior can be provided because of the existence metal oxide nanoparticles into polyelectrolyte solution.« less

  5. Thermoregulation in homeothermic and poikilothermic organisms

    EPA Science Inventory

    Homeothermic organisms (birds and mammals) have evolved autonomic and behavioral thermoeffectors to maintain a relatively constant core temperature over a wide range of environmental temperatures. Poikilotherms, including reptiles, amphibians, fish, and insects have internal temp...

  6. Colonization behaviors of mountain pine beetle on novel hosts: Implications for range expansion into northeastern North America

    PubMed Central

    Venette, Robert C.; Maddox, Mitchell P.; Aukema, Brian H.

    2017-01-01

    As climates change, thermal limits may no longer constrain some native herbivores within their historical ranges. The mountain pine beetle, Dendroctonus ponderosae Hopkins, is a tree-killing bark beetle native to western North America that is currently expanding its range. Continued eastward expansion through the newly invaded and novel jack pine (Pinus banksiana Lamb.) trees of the Canadian boreal forest could result in exposure of several species of novel potential host pines common in northeastern North America to this oligophagous herbivore. Due to the tightly co-evolved relationship between mountain pine beetle and western pine hosts, in which the insect utilizes the defensive chemistry of the host to stimulate mass attacks, we hypothesized that lack of co-evolutionary association would affect the host attraction and acceptance behaviors of this insect among novel hosts, particularly those with little known historical association with an aggressive stem-infesting insect. We studied how beetle behavior differed among the various stages of colonization on newly cut logs of four novel potential pine host species; jack, red (P. resinosa Ait.), eastern white (P. strobus L.) and Scots (P. sylvestris L.) pines, as well as two historical hosts, ponderosa (P. ponderosa Dougl. ex. Laws. var. scopulorum Engelm.) and lodgepole (P. contorta Dougl. var. latifolia Engelm.) pines. Overall, we found that beetle colonization behaviors at each stage in the colonization process differ between pine hosts, likely due to differing chemical and physical bark traits. Pines without co-evolved constitutive defenses against mountain pine beetle exhibited reduced amounts of defensive monoterpenoid chemicals; however, such patterns also reduced beetle attraction and colonization. Neither chemical nor physical defenses fully defended trees against the various stages of host procurement that can result in tree colonization and death. PMID:28472047

  7. Colonization behaviors of mountain pine beetle on novel hosts: Implications for range expansion into northeastern North America.

    PubMed

    Rosenberger, Derek W; Venette, Robert C; Maddox, Mitchell P; Aukema, Brian H

    2017-01-01

    As climates change, thermal limits may no longer constrain some native herbivores within their historical ranges. The mountain pine beetle, Dendroctonus ponderosae Hopkins, is a tree-killing bark beetle native to western North America that is currently expanding its range. Continued eastward expansion through the newly invaded and novel jack pine (Pinus banksiana Lamb.) trees of the Canadian boreal forest could result in exposure of several species of novel potential host pines common in northeastern North America to this oligophagous herbivore. Due to the tightly co-evolved relationship between mountain pine beetle and western pine hosts, in which the insect utilizes the defensive chemistry of the host to stimulate mass attacks, we hypothesized that lack of co-evolutionary association would affect the host attraction and acceptance behaviors of this insect among novel hosts, particularly those with little known historical association with an aggressive stem-infesting insect. We studied how beetle behavior differed among the various stages of colonization on newly cut logs of four novel potential pine host species; jack, red (P. resinosa Ait.), eastern white (P. strobus L.) and Scots (P. sylvestris L.) pines, as well as two historical hosts, ponderosa (P. ponderosa Dougl. ex. Laws. var. scopulorum Engelm.) and lodgepole (P. contorta Dougl. var. latifolia Engelm.) pines. Overall, we found that beetle colonization behaviors at each stage in the colonization process differ between pine hosts, likely due to differing chemical and physical bark traits. Pines without co-evolved constitutive defenses against mountain pine beetle exhibited reduced amounts of defensive monoterpenoid chemicals; however, such patterns also reduced beetle attraction and colonization. Neither chemical nor physical defenses fully defended trees against the various stages of host procurement that can result in tree colonization and death.

  8. Self body-size perception in an insect

    NASA Astrophysics Data System (ADS)

    Ben-Nun, Amir; Guershon, Moshe; Ayali, Amir

    2013-05-01

    Animals negotiating complex environments encounter a wide range of obstacles of different shapes and sizes. It is greatly beneficial for the animal to react to such obstacles in a precise, context-specific manner, in order to avoid harm or even simply to minimize energy expenditure. An essential key challenge is, therefore, an estimation of the animal's own physical characteristics, such as body size. A further important aspect of self body-size perception (or SBSP) is the need to update it in accordance with changes in the animal's size and proportions. Despite the major role of SBSP in functional behavior, little is known about if and how it is mediated. Here, we demonstrate that insects are also capable of self perception of body size and that this is a vital factor in allowing them to adjust their behavior following the sudden and dramatic growth associated with periodic molting. We reveal that locusts' SBSP is strongly correlated with their body size. However, we show that the dramatic change in size accompanying adult emergence is not sufficient to create a new and updated SBSP. Rather, this is created and then consolidated only following the individuals' experience and interaction with the physical environment. Behavioral or pharmacological manipulations can both result in maintenance of the old larval SBSP. Our results emphasize the importance of learning and memory-related processes in the development and update of SBSP, and highlight the advantage of insects as good models for a detailed study on the neurobiological and molecular aspects of SBSP.

  9. Artificial Lighting as a Vector Attractant and Cause of Disease Diffusion

    PubMed Central

    Barghini, Alessandro; de Medeiros, Bruno A. S.

    2010-01-01

    Background Traditionally, epidemiologists have considered electrification to be a positive factor. In fact, electrification and plumbing are typical initiatives that represent the integration of an isolated population into modern society, ensuring the control of pathogens and promoting public health. Nonetheless, electrification is always accompanied by night lighting that attracts insect vectors and changes people’s behavior. Although this may lead to new modes of infection and increased transmission of insect-borne diseases, epidemiologists rarely consider the role of night lighting in their surveys. Objective We reviewed the epidemiological evidence concerning the role of lighting in the spread of vector-borne diseases to encourage other researchers to consider it in future studies. Discussion We present three infectious vector-borne diseases—Chagas, leishmaniasis, and malaria—and discuss evidence that suggests that the use of artificial lighting results in behavioral changes among human populations and changes in the prevalence of vector species and in the modes of transmission. Conclusion Despite a surprising lack of studies, existing evidence supports our hypothesis that artificial lighting leads to a higher risk of infection from vector-borne diseases. We believe that this is related not only to the simple attraction of traditional vectors to light sources but also to changes in the behavior of both humans and insects that result in new modes of disease transmission. Considering the ongoing expansion of night lighting in developing countries, additional research on this subject is urgently needed. PMID:20675268

  10. Host-Seeking Behavior in the Bed Bug, Cimex lectularius.

    PubMed

    Suchy, James T; Lewis, Vernard R

    2011-03-07

    The reemergence of the bed bug, Cimex lectularius Linnaeus, has recently spawned a frenzy of public, media, and academic attention. In response to the growing rate of infestation, considerable work has been focused on identifying the various host cues utilized by the bed bug in search of a meal. Most of these behavioral studies examine movement within a confined environment, such as a Petri dish. This has prevented a more complete understanding of the insect's host-seeking process. This work describes a novel method for studying host-seeking behavior, using various movement parameters, in a time-lapse photography system. With the use of human breath as an attractant, we qualitatively and quantitatively assessed how bed bugs navigate their environment between its harborage and the host. Levels of behavioral activity varied dramatically between bed bugs in the presence and absence of host odor. Bed bugs demonstrated not simply activation, but attraction to the chemical components of breath. Localized, stop-start host-seeking behavior or alternating periods of movement and pause were observed among bed bugs placed in the environment void of human breath, while those exposed to human breath demonstrated long range, stop-start host-seeking behavior. A more comprehensive understanding of bed bug host-seeking can lead to the development of traps and monitors that account for unique subtleties in their behavior. The time-lapse photography system uses a large, artificial environment and could also be employed to study other aspects of the insect's behavioral patterns.

  11. Effect of transgenic Bacillus thuringiensis rice lines on mortality and feeding behavior of rice stem borers (Lepidoptera: Crambidae).

    PubMed

    Chen, Hao; Zhang, Guoan; Zhang, Qifa; Lin, Yongjun

    2008-02-01

    Ten transgenic Bacillus thuringiensis Bt rice, Oryza sativa L., lines with different Bt genes (two Cry1Ac lines, three Cry2A lines, and five Cry9C lines) derived from the same variety Minghui 63 were evaluated in both the laboratory and the field. Bioassays were conducted by using the first instars of two main rice lepidopteran insect species: yellow stem borer, Scirpophaga incertulas (Walker) and Asiatic rice borer, Chilo suppressalis (Walker). All transgenic lines exhibited high toxicity to these two rice borers. Field evaluation results also showed that all transgenic lines were highly insect resistant with both natural infestation and manual infestation of the neonate larvae of S. incertulas compared with the nontransformed Minghui63. Bt protein concentrations in leaves of 10 transgenic rice lines were estimated by the sandwich enzyme-linked immunosorbent assay. The cry9C gene had the highest expression level, next was cry2A gene, and the cry1Ac gene expressed at the lowest level. The feeding behavior of 7-d-old Asiatic rice borer to three classes of Bt transgenic rice lines also was detected by using rice culm cuttings. The results showed that 7-d-old larvae of Asiatic rice borer have the capacity to distinguish Bt and non-Bt culm cuttings and preferentially fed on non-Bt cuttings. When only Bt culm cuttings with three classes of different Bt proteins (CrylAc, Cry2A, and Cry9C) were fed, significant distribution difference of 7-d-old Asiatic rice borer in culm cuttings of different Bt proteins also was found. In the current study, we evaluate different Bt genes in the same rice variety in both the laboratory and the field, and also tested feeding behavior of rice insect to these Bt rice. These data are valuable for the further development of two-toxin Bt rice and establishment of appropriate insect resistance management in the future.

  12. A dose for the wiser is enough: the alcohol benefits for associative learning in zebrafish.

    PubMed

    Chacon, Diana M; Luchiari, Ana C

    2014-08-04

    This study aimed to test seeking behavior caused by alcohol and the drug effects on learning in the zebrafish, Danio rerio. Three treatments were conducted: acute, chronic and withdrawal, using 0.10%, 0.25%, and 1.00% alcohol and control (0.00%) (vol/vol.%). For the drug seeking behavior, we used a place preference paradigm (shuttle box tank) before and after alcohol exposure in acute (single exposure) and chronic (7 days) treatments. We observed a change in the basal preference due to the association with alcohol only for 0.25% and 1.00% doses in both acute and chronic offering, indicating an alcohol-seeking behavior after the drug exposure. For the learning task, two treatments were tested: chronic alcohol exposure (26 days including the learning period) and alcohol withdrawal (15 days of alcohol exposure before the learning period). During the learning period, fish received light stimulus followed by food in a pre-defined area of the tank for 8 consecutive days. The low dose group (0.10%) learned the task by the 3rd day both in chronic and withdrawal treatments. The higher doses (0.25% and 1.00%) caused a learning impairment in the chronic treatment group, while fish from the alcohol withdrawal treatment displayed learning on the final testing day. Therefore, we suggest that high alcohol doses impair learning and cause drug seeking behavior, even after drug exposure cessation, while low doses positively affect learning and do not cause seeking behavior. Given our results we propose that the zebrafish is a promising model for identifying active compounds, antibodies or genes which modulate the alcohol dual effects: learning improvement and reinforcing behavior. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Biochemical studies of amylase, lipase and protease in Callosobruchus maculatus (Coleoptera: Chrysomelidae) populations fed with Vigna unguiculata grain cultivated with diazotrophic bacteria strains.

    PubMed

    Silva, L B; Torres, É B; Nóbrega, R A S; Lopes, G N; Vogado, R F; Pavan, B E; Fernandes-Junior, P I

    2017-12-01

    The objective of this study was to evaluate the enzymatic activity of homogenates of insects fed on grain of cowpea, Vigna unguiculata (L.), cultivars grown with different nitrogen sources. For the experiment we used aliquots of the homogenate of 100 unsexed adult insects, emerged from 10 g of grain obtained from four cowpea cultivars: 'BRS Acauã', 'BRS Carijó', 'BRS Pujante', and 'BRS Tapaihum' grown under different regimes of nitrogen sources: mineral fertilizer, inoculation with strains of diazotrophs (BR 3267, BR 3262, BR 3299; INPA 03-11B, 03-84 UFLA, as well as the control (with soil nitrogen). The parameters evaluated were enzymatic activities of insect protease, amylase and lipase and the starch content of the grains. There were differences in the enzymatic activity of amylase, lipase and protease of insect homogenate according to the food source. A lower activity of the enzyme amylase from C. maculatus homogenate was observed when insects were fed grain of the cultivar BRS Carijó. A lower activity of lipase enzyme from C. maculatus homogenate was observed when the insects fed on grain from the interaction of the cultivar Tapaihum inoculated with BR 3262 diazotrophs. The lowest proteolytic activity was observed in homogenate of insects fed on interaction of 'BRS Carijó' inoculated with BR 3262 diazotrophs. Starch content correlated positively with the amylase activity of C. maculatus homogenate. The cultivar BRS Carijó had a different behavior from the other cultivars, according to the cluster analysis.

  14. Mycosis Inhibits Cannibalism by Melanoplus sanguinipes, M. differentialis, Schistocerca americana, and Anabrus simplex

    PubMed Central

    Jaronski, Stefan T.

    2013-01-01

    Cannibalism is common among the Acrididae and the Mormon cricket, Anabrus simplex Haldeman (Orthoptera: Tettigoniidae). This behavior has been proposed as a mechanism for the horizontal transmission of Microsporida and entomopathogenic fungi. Aanecdotal observations suggested that the migratory grasshopper, Melanoplus sanguinipes Fabricius (Acrididae), and A. simplex did not eat cadavers that had been killed by insect pathogenic fungi. The hypothesis tested was that A. simplex or M. sanguinipes would not cannibalize individuals freshly killed by the entomopathogenic fungi, Beauveria bassiana Bals.-Criv. (Vuill.) (Hypocreales: Clavicipitaceae), or Metarhizium acridum (Driver and Milner) Bischoff, Rehner, and Humber. Cannibalism was examined in a series of no-choice tests with individual insects. Test insects included healthy adults of M. sanguinipes; the differential grasshopper, M. differentialis (Thomas); the American grasshopper, Schistocerca americana (Drury) (Acrididae); and A. simplex. Individual, starved Acrididae or A. simplex were confined in small cages with either a fungus-killed (but unsporulated) or uninfected cadaver. The insects were then observed periodically for the first 4 hr. After 24 hr, the cadavers were scored for the degree to which they had been consumed. Very few mycotic cadavers were fed upon by the healthy insects, and, at most only the tarsi were eaten. All four species generally refused to eat fungus-infected cadavers. In contrast, freeze-killed cadavers were partly or entirely consumed by most of the test insects, often within a few hours. Transmission of infection through contact in these tests was between 0–18.9%, depending upon the fungus and insect species, and was lower than the prevalence of cannibalism in all cases. PMID:24786183

  15. Ceramic Near-Net Shaped Processing Using Highly-Loaded Aqueous Suspensions

    NASA Astrophysics Data System (ADS)

    Rueschhoff, Lisa

    Ceramic materials offer great advantages over their metal counterparts, due to their lower density, higher hardness and wear resistance, and higher melting temperatures. However, the use of ceramics in applications where their properties would offer tremendous advantages are often limited due to the difficulty of forming them into complex and near-net shaped parts. Methods that have been developed to injection-mold or cast ceramics into more complicated shapes often use significant volume fractions of a carrier (often greater than 35 vol.% polymer), elevated temperature processing, or less-than-environmentally friendly chemicals where a complex chemical synthesis reaction must be timed perfectly for the approach to work. Furthermore, the continuing maturation of additive manufacturing methods requires a new approach for flowing/placing ceramic powders into useful designs. This thesis addresses the limitations of the current ceramic forming approaches by developing highly-stabilized and therefore high solids loading ceramic suspensions, with the requisite rheology for a variety of complex and near-net shaped forming techniques. Silicon nitride was chosen as a material of focus due to its high fracture toughness compared to other ceramic materials. Designing ceramic suspensions that are flowable at room temperature greatly simplifies processing as neither heating nor cooling are required during forming. Highly-loaded suspensions (>40 vol.%) are desired because all formed ceramic bodies have to be sintered to remove pores. Finally, using aqueous-based suspensions reduces any detrimental effect on the environment and tooling. The preparation of highly-loaded suspensions requires the development of a suitable dispersant through which particle-particle interactions are controlled. However, silicon nitride is difficult to stabilize in water due to complex surface and solution chemistry. In this study, aqueous silicon nitride suspensions up to 45 vol.% solids loading were dispersed using commercially available comb-type copolymer. These copolymers are used as superplasticizers in the concrete industry and are referred to as water-reducing admixtures (WRAs). Four different WRA dispersants were examined and chemical analysis determined that each was made up of a sodium salt of polyacrylic acid (PAA-Na) backbone with neutral polyethylene oxide (PEO) side chains that afford steric stabilization. The general structures of the WRAs were compared to each other by measuring the relative areas of their prominent FTIR peaks and calculating a PAA-Na/PEO peak ratio. Suspensions were made with as-received silicon nitride powders with 5 wt.% aluminum oxide and 5 wt.% yttrium oxide added as sintering aids. Three of the four WRA dispersants studied were able to produce suspensions with 43 vol.% solids loading and 5 vol.% polymer dispersant, while exhibiting a yield-pseudoplastic behavior for shear rates up to 30 s-1. At higher solids loading (45 to 47 vol.%), a shift to shear thickening behavior was observed at a critical shear rate for these WRAs. Those WRAs with a lower PAA-Na/PEO peak ratio displayed better stabilization and diminished shear thickening behavior. The vol.% of the dispersant was optimized, producing yield-pseudoplastic suspensions containing 45 vol.% solids loading with yield stresses less than 75 Pa, no shear thickening behavior, and viscosities less than 75 Pa-s for shear rates in the range of 1 to 30 s-1. Using suspensions prepared with two of the WRAs investigated in this work, silicon nitride near-net shaped parts were formed via a novel injection molding process by loading each suspension in a syringe and injecting them at a controlled rate into a mold. Each suspensions had carefully tailored yield-pseudoplastic rheology such that they can be injection molded at room temperature and low pressures (< 150 kPa). Four suspensions were studied; two different commercially available concrete water-reducing admixtures (WRAs) were used as dispersants with and without a polymer binder (Polyvinylprolidone, PVP) added for rheological modification and improved green body strength. Test bars formed via this process were sintered to high densities (up to 97% TD) without the use of external pressure, and had complete conversion to the desirable beta-Si3N4 phase with high flexural strengths up to 700 MPa. The specimen sets with the smallest average pore size on the fracture surface (77 mum) had the highest average flexural strengths of 573 MPa. The hardness of all specimens was approximately 16 GPa. The water-based suspensions, ease and low cost of processing, and robust mechanical properties obtained demonstrate this as a viable process for the economical and environmentally friendly production of Si3N4 parts. Finally, additive manufacturing was also used as a method to overcome ceramic forming difficulties and to create near-net shaped dense components via room-temperature direct ink writing. In this processes, highly loaded aqueous alumina suspensions were extruded in a layer-by-layer fashion using a low-cost syringe style 3D printer. With alumina as a model material, the effect of solids loading on rheology, specimen uniformity, density, microstructure, and mechanical properties was studied. All suspensions contained a polymer binder ( 5 vol.%), dispersant, and 51 to 58 vol.% alumina powder. Rheological measurements indicated all suspensions to be yield-pseudoplastic, and both yield stress and viscosity were found to increase with increasing alumina solids loading. Shear rates ranging from 19.5 to 24.2 s-1, corresponding to viscosities of 9.8 to 17.2 Pa·s, for the 53 - 56 vol.% alumina suspensions were found to produce the best results for the 1.25 mm tip employed during writing. All parts were sintered to greater than 98% of true density, with grain sizes ranging from 3.2 to 3.7 mum. The average flexure strength, which ranged from 134 to 157 MPa, was not influenced by the alumina solids loading. In limited study, additive manufacturing of silicon nitride suspensions stabilized with a WRA has been established. These processing routes have been proven as low-cost and viable means for producing robust ceramic parts, both of which can be tailored to many systems to expand the use of ceramics materials. Further studies on utilizing the flow stress behavior during both injection molding and direct ink writing could be beneficial in creating ceramic materials with carefully tailored microstructure to increase mechanical performance.

  16. Adaptive Control Responses to Behavioral Perturbation Based Upon the Insect

    DTIC Science & Technology

    2006-11-01

    the legs. Visual Sensors Antennal Mechanosensors Antennal Chemosensors Descending Interneurons Controlling Yaw...animals, the antenna were moved back and forth several times with servo motors to identify units that respond to antennal movement in either direction or...role of antennal postures and movements in plume tracking behavior. To date, results have shown that male moths tracking plumes in different wind

  17. Behavioral tracing demonstrates dietary nutrient discrimination in two-spotted crickets Gryllus bimaculatus.

    PubMed

    Fukumura, Keisuke; Nagata, Shinji

    2017-10-01

    Animals select appropriate diets to meet their nutritional requirements. Here, we demonstrate the availability for analysis of feeding preference using an orthopteran, the two-spotted cricket Gryllus bimaculatus. A time-course study of these insects, involving continuous recording and tracing behavior for 9 h, allowed us to monitor discrimination of diet that contained various nutrients.

  18. Induced Release of a Plant-Defense Volatile ‘Deceptively’ Attracts Insect Vectors to Plants Infected with a Bacterial Pathogen

    PubMed Central

    Mann, Rajinder S.; Ali, Jared G.; Hermann, Sara L.; Tiwari, Siddharth; Pelz-Stelinski, Kirsten S.; Alborn, Hans T.; Stelinski, Lukasz L.

    2012-01-01

    Transmission of plant pathogens by insect vectors is a complex biological process involving interactions between the plant, insect, and pathogen. Pathogen-induced plant responses can include changes in volatile and nonvolatile secondary metabolites as well as major plant nutrients. Experiments were conducted to understand how a plant pathogenic bacterium, Candidatus Liberibacter asiaticus (Las), affects host preference behavior of its psyllid (Diaphorina citri Kuwayama) vector. D. citri were attracted to volatiles from pathogen-infected plants more than to those from non-infected counterparts. Las-infected plants were more attractive to D. citri adults than non-infected plants initially; however after feeding, psyllids subsequently dispersed to non-infected rather than infected plants as their preferred settling point. Experiments with Las-infected and non-infected plants under complete darkness yielded similar results to those recorded under light. The behavior of psyllids in response to infected versus non-infected plants was not influenced by whether or not they were carriers of the pathogen. Quantification of volatile release from non-infected and infected plants supported the hypothesis that odorants mediate psyllid preference. Significantly more methyl salicylate, yet less methyl anthranilate and D-limonene, was released by infected than non-infected plants. Methyl salicylate was attractive to psyllids, while methyl anthranilate did not affect their behavior. Feeding on citrus by D. citri adults also induced release of methyl salicylate, suggesting that it may be a cue revealing location of conspecifics on host plants. Infected plants were characterized by lower levels of nitrogen, phosphorus, sulfur, zinc, and iron, as well as, higher levels of potassium and boron than non-infected plants. Collectively, our results suggest that host selection behavior of D. citri may be modified by bacterial infection of plants, which alters release of specific headspace volatiles and plant nutritional contents. Furthermore, we show in a laboratory setting that this apparent pathogen-mediated manipulation of vector behavior may facilitate pathogen spread. PMID:22457628

  19. Kissing bugs can generalize and discriminate between different bitter compounds.

    PubMed

    Asparch, Yamila; Pontes, Gina; Masagué, Santiago; Minoli, Sebastian; Barrozo, Romina B

    2016-10-01

    Animals make use of contact chemoreception structures to examine the quality of potential food sources. During this evaluation they can detect nutritious compounds that promote feeding and recognize toxins that trigger evasive behaviors. Although animals can easily distinguish between stimuli of different gustatory qualities (bitter, salty, sweet, etc.), their ability to discriminate between compounds of the same quality may be limited. Numerous plants produce alkaloids, compounds that elicit aversive behaviors in phytophagous insects and almost uniformly evoke a bitter taste for man. In hematophagous insects, however, the effect of feeding deterrent molecules has been barely studied. Recent studies showed that feeding in Rhodnius prolixus can be negatively modulated by the presence of alkaloids such as quinine (QUI) and caffeine (CAF), compounds that elicit similar aversive responses. Here, we applied associative and non-associative learning paradigms to examine under two behavioral contexts the ability of R. prolixus to distinguish, discriminate and/or generalize between these two bitter compounds, QUI and CAF. Our results show that bugs innately repelled by bitter compounds can change their behavior from avoidance to indifference or even to preference according to their previous experiences. After an aversive operant conditioning with QUI or CAF, R. prolixus modified its behavior in a direct but also in a cross-compound manner, suggesting the occurrence of a generalization process between these two alkaloids. Conversely, after a long pre-exposure to each alkaloid, bugs decreased their avoidance to the compound used during pre-exposure but still expressed an avoidance of the novel compound, proving that QUI and CAF are detected separately. Our results suggest that R. prolixus is able to discriminate between QUI and CAF, although after an associative conditioning they express a symmetrical cross-generalization. This kind of studies adds insight into the gustatory sense of a blood-sucking model but also into the learning abilities of hematophagous insects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Assessment of Potential Sublethal Effects of Various Insecticides on Key Biological Traits of The Tobacco Whitefly, Bemisia tabaci

    PubMed Central

    He, Yuxian; Zhao, Jianwei; Zheng, Yu; Weng, Qiyong; Biondi, Antonio; Desneux, Nicolas; Wu, Kongming

    2013-01-01

    The tobacco whitefly Bemisia tabaci is one of the most devastating pests worldwide. Current management of B. tabaci relies upon the frequent applications of insecticides. In addition to direct mortality by typical acute toxicity (lethal effect), insecticides may also impair various key biological traits of the exposed insects through physiological and behavioral sublethal effects. Identifying and characterizing such effects could be crucial for understanding the global effects of insecticides on the pest and therefore for optimizing its management in the crops. We assessed the effects of sublethal and low-lethal concentrations of four widely used insecticides on the fecundity, honeydew excretion and feeding behavior of B. tabaci adults. The probing activity of the whiteflies feeding on treated cotton seedlings was recorded by an Electrical Penetration Graph (EPG). The results showed that imidacloprid and bifenthrin caused a reduction in phloem feeding even at sublethal concentrations. In addition, the honeydew excretions and fecundity levels of adults feeding on leaf discs treated with these concentrations were significantly lower than the untreated ones. While, sublethal concentrations of chlorpyrifos and carbosulfan did not affect feeding behavior, honeydew excretion and fecundity of the whitefly. We demonstrated an antifeedant effect of the imidacloprid and bifenthrin on B. tabaci, whereas behavioral changes in adults feeding on leaves treated with chlorpyrifos and carbosulfan were more likely caused by the direct effects of the insecticides on the insects' nervous system itself. Our results show that aside from the lethal effect, the sublethal concentration of imidacloprid and bifenthrin impairs the phloem feeding, i.e. the most important feeding trait in a plant protection perspective. Indeed, this antifeedant property would give these insecticides potential to control insect pests indirectly. Therefore, the behavioral effects of sublethal concentrations of imidacloprid and bifenthrin may play an important role in the control of whitefly pests by increasing the toxicity persistence in treated crops. PMID:23494876

  1. Induced release of a plant-defense volatile 'deceptively' attracts insect vectors to plants infected with a bacterial pathogen.

    PubMed

    Mann, Rajinder S; Ali, Jared G; Hermann, Sara L; Tiwari, Siddharth; Pelz-Stelinski, Kirsten S; Alborn, Hans T; Stelinski, Lukasz L

    2012-01-01

    Transmission of plant pathogens by insect vectors is a complex biological process involving interactions between the plant, insect, and pathogen. Pathogen-induced plant responses can include changes in volatile and nonvolatile secondary metabolites as well as major plant nutrients. Experiments were conducted to understand how a plant pathogenic bacterium, Candidatus Liberibacter asiaticus (Las), affects host preference behavior of its psyllid (Diaphorina citri Kuwayama) vector. D. citri were attracted to volatiles from pathogen-infected plants more than to those from non-infected counterparts. Las-infected plants were more attractive to D. citri adults than non-infected plants initially; however after feeding, psyllids subsequently dispersed to non-infected rather than infected plants as their preferred settling point. Experiments with Las-infected and non-infected plants under complete darkness yielded similar results to those recorded under light. The behavior of psyllids in response to infected versus non-infected plants was not influenced by whether or not they were carriers of the pathogen. Quantification of volatile release from non-infected and infected plants supported the hypothesis that odorants mediate psyllid preference. Significantly more methyl salicylate, yet less methyl anthranilate and D-limonene, was released by infected than non-infected plants. Methyl salicylate was attractive to psyllids, while methyl anthranilate did not affect their behavior. Feeding on citrus by D. citri adults also induced release of methyl salicylate, suggesting that it may be a cue revealing location of conspecifics on host plants. Infected plants were characterized by lower levels of nitrogen, phosphorus, sulfur, zinc, and iron, as well as, higher levels of potassium and boron than non-infected plants. Collectively, our results suggest that host selection behavior of D. citri may be modified by bacterial infection of plants, which alters release of specific headspace volatiles and plant nutritional contents. Furthermore, we show in a laboratory setting that this apparent pathogen-mediated manipulation of vector behavior may facilitate pathogen spread.

  2. Mosquito Protein Kinase G Phosphorylates Flavivirus NS5 and Alters Flight Behavior in Aedes aegypti and Anopheles gambiae

    PubMed Central

    Keating, Julie A.; Bhattacharya, Dipankar; Rund, Samuel S.C.; Hoover, Spencer; Dasgupta, Ranjit; Lee, Samuel J.; Duffield, Giles E.

    2013-01-01

    Abstract Many arboviral proteins are phosphorylated in infected mammalian cells, but it is unknown if the same phosphorylation events occur when insects are similarly infected. One of the mammalian kinases responsible for phosphorylation, protein kinase G (PKG), has been implicated in the behavior of multiple nonvector insects, but is unstudied in mosquitoes. PKG from Aedes aegypti was cloned, and phosphorylation of specific viral sites was monitored by mass spectrometry from biochemical and cell culture experiments. PKG from Aedes mosquitoes is able to phosphorylate dengue nonstructural protein 5 (NS5) at specific sites in cell culture and cell-free systems and autophosphorylates its own regulatory domain in a cell-free system. Injecting Aedes aegypti and Anopheles gambiae mosquitoes with a pharmacological PKG activator resulted in increased Aedes wing activity during periods of their natural diurnal/crepuscular activity and increased Anopheles nocturnal locomotor/flight activity. Thus, perturbation of the PKG signaling pathway in mosquitoes alters flight behavior. The demonstrated effect of PKG alterations is consistent with a viral PKG substrate triggering increased PKG activity. This increased PKG activity could be the mechanism by which dengue virus increases flight behavior and possibly facilitates transmission. Whether or not PKG is part of the mechanism by which dengue increases flight behavior, this report is the first to show PKG can modulate behavior in hematophagous disease vectors. PMID:23930976

  3. Vision and visual navigation in nocturnal insects.

    PubMed

    Warrant, Eric; Dacke, Marie

    2011-01-01

    With their highly sensitive visual systems, nocturnal insects have evolved a remarkable capacity to discriminate colors, orient themselves using faint celestial cues, fly unimpeded through a complicated habitat, and navigate to and from a nest using learned visual landmarks. Even though the compound eyes of nocturnal insects are significantly more sensitive to light than those of their closely related diurnal relatives, their photoreceptors absorb photons at very low rates in dim light, even during demanding nocturnal visual tasks. To explain this apparent paradox, it is hypothesized that the necessary bridge between retinal signaling and visual behavior is a neural strategy of spatial and temporal summation at a higher level in the visual system. Exactly where in the visual system this summation takes place, and the nature of the neural circuitry that is involved, is currently unknown but provides a promising avenue for future research.

  4. Remote Sensing and Reflectance Profiling in Entomology.

    PubMed

    Nansen, Christian; Elliott, Norman

    2016-01-01

    Remote sensing describes the characterization of the status of objects and/or the classification of their identity based on a combination of spectral features extracted from reflectance or transmission profiles of radiometric energy. Remote sensing can be benchtop based, and therefore acquired at a high spatial resolution, or airborne at lower spatial resolution to cover large areas. Despite important challenges, airborne remote sensing technologies will undoubtedly be of major importance in optimized management of agricultural systems in the twenty-first century. Benchtop remote sensing applications are becoming important in insect systematics and in phenomics studies of insect behavior and physiology. This review highlights how remote sensing influences entomological research by enabling scientists to nondestructively monitor how individual insects respond to treatments and ambient conditions. Furthermore, novel remote sensing technologies are creating intriguing interdisciplinary bridges between entomology and disciplines such as informatics and electrical engineering.

  5. Automated Surveillance of Fruit Flies

    PubMed Central

    Potamitis, Ilyas; Rigakis, Iraklis; Tatlas, Nicolaos-Alexandros

    2017-01-01

    Insects of the Diptera order of the Tephritidae family cause costly, annual crop losses worldwide. Monitoring traps are important components of integrated pest management programs used against fruit flies. Here we report the modification of typical, low-cost plastic traps for fruit flies by adding the necessary optoelectronic sensors to monitor the entrance of the trap in order to detect, time-stamp, GPS tag, and identify the species of incoming insects from the optoacoustic spectrum analysis of their wingbeat. We propose that the incorporation of automated streaming of insect counts, environmental parameters and GPS coordinates into informative visualization of collective behavior will finally enable better decision making across spatial and temporal scales, as well as administrative levels. The device presented is at product level of maturity as it has solved many pending issues presented in a previously reported study. PMID:28075346

  6. Metabolic regulation and behavior: how hunger produces arousal - an insect study.

    PubMed

    Wicher, Dieter

    2007-12-01

    The metabolic state affects the level of general activity of an organism. Satiety is related to relaxation while hunger is coupled to elevated activity which supports the chance to balance the energy deficiency. The unrestricted food availability in modern industrial nations along with no required locomotor activity are risk factors to develop disorders such as obesity. One of the strategies to find new targets for future treatment of metabolic disorders in men is to gain detailed knowledge of molecular and cellular mechanisms involved in the regulation of metabolic homeostasis in less complex, i.e. invertebrate systems. This review reports recent molecular studies in insects about how hunger signals may be linked to global activation. Adipokinetic peptide hormones (AKHs) are the insect counterpart to the mammalian glucagon. They are released upon lack of energy and mobilize internal fuel reserves. In addition, AKHs stimulate the locomotor activity which involves their activity within the central nervous system. In the cockroach Periplaneta americana various neurons express the AKH receptor. Some of these, the dorsal unpaired median (DUM) neurons belonging to a general arousal system, release the biogenic amine octopamine, the insect counterpart to mammalian adrenergic hormones. The two Periplaneta AKHs activate Gs proteins, and AKH I also potently activates Gq proteins. AKH I and - less effectively - AKH II accelerate spiking of DUM neurons via an increase of a pacemaking Ca2+ current. Systemically injected AKH I stimulates locomotion in contrast to AKH II. This behavioral difference corresponds to the different effectiveness of the AKHs on the level of G-proteins.

  7. Variation in Pollen-Donor Composition among Pollinators in an Entomophilous Tree Species, Castanea crenata, Revealed by Single-Pollen Genotyping

    PubMed Central

    Hasegawa, Yoichi; Suyama, Yoshihisa; Seiwa, Kenji

    2015-01-01

    Background In plants, reproductive success is largely determined by the composition of pollen (i.e., self-pollen and outcross-pollen from near and distant pollen-donors) transported as a result of pollinator foraging behavior (e.g., pollen carryover). However, little evidence is available on how and to what extent the pollen carryover affects the pollen-donor composition and on which insect taxa are effective outcross-pollen transporters under field conditions. In this study, we explored roles of foraging behavior of insect pollinators on pollen-donor composition and subsequent reproductive success in a woody plant. Methods We performed paternity analyses based on microsatellite genotyping of individual pollen grains found on diurnal pollinators (i.e., bumblebee, small bee, fly, small beetle, and honeybee) visiting Castanea crenata trees. Results The outcross-pollen rate was highest in bumblebees (66%), followed by small bees (35%), flies (31%), and small beetles (18%). The effective number of pollen donors, representing pollen carryover, was greater in bumblebees (9.71) than in flies (3.40), small bees (3.32), and small beetles (3.06). The high percentages of pollen from outside the plot on bumblebees (65.4%) and flies (71.2%) compared to small bees (35.3%) and small beetles (13.5%) demonstrated their longer pollen dispersal distances. Conclusions All of the diurnal insects carried outcross-pollen grains for long distances via pollen carryover. This fact suggests that a wide range of insect taxa are potential outcross-pollen transporters for the self-incompatible C. crenata. PMID:25793619

  8. Oxidation of ZrB2-SiC

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.; Halbig, Michael C.

    2001-01-01

    In this paper the oxidation behavior of ZrB2-20 vol% SiC is examined. Samples were exposed in stagnant air in a zirconia furnace (Deltech, Inc.) at temperatures of 1327, 1627, and 1927 C for ten ten-minute cycles. Samples were removed from the furnace after one, five, and ten cycles. Oxidized material was characterized by mass change when possible, x-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). Oxidation kinetics, oxide scale development, and matrix recession were monitored as a function of time and temperature. Oxidation and recession rates of ZrB2 - 20 vol% SiC were adequately modeled by parabolic kinetics. Oxidation rates of this material are rapid, allowing only very short-term application in air or other high oxygen partial pressure environments.

  9. Tensile and fatigue behavior of tungsten/copper composites

    NASA Technical Reports Server (NTRS)

    Verrilli, Michael J.; Gabb, Timothy P.; Kim, Y. S.

    1989-01-01

    Work on W/Cu unidirectional composites was initiated to study the behavior of this ductile-ductile composite system under thermomechanical fatigue and to examine the applicability of fatigue-life prediction methods for thermomechanical fatigue of this metal matrix composite. The first step was to characterize the tensile behavior of four ply, 10 vol. percent W/Cu plates at room and elevated temperatures. Fatigue tests were conducted in load control on 0 degree specimens at 260 C. The maximum cyclic stress was varied but the minimum cyclic stress was kept constant. All tests were performed in vacuum. The strain at failure increased with increasing maximum cyclic stress.

  10. BGen: A UML Behavior Network Generator Tool

    NASA Technical Reports Server (NTRS)

    Huntsberger, Terry; Reder, Leonard J.; Balian, Harry

    2010-01-01

    BGen software was designed for autogeneration of code based on a graphical representation of a behavior network used for controlling automatic vehicles. A common format used for describing a behavior network, such as that used in the JPL-developed behavior-based control system, CARACaS ["Control Architecture for Robotic Agent Command and Sensing" (NPO-43635), NASA Tech Briefs, Vol. 32, No. 10 (October 2008), page 40] includes a graph with sensory inputs flowing through the behaviors in order to generate the signals for the actuators that drive and steer the vehicle. A computer program to translate Unified Modeling Language (UML) Freeform Implementation Diagrams into a legacy C implementation of Behavior Network has been developed in order to simplify the development of C-code for behavior-based control systems. UML is a popular standard developed by the Object Management Group (OMG) to model software architectures graphically. The C implementation of a Behavior Network is functioning as a decision tree.

  11. SwarmSight: Real-time Tracking of Insect Antenna Movements and Proboscis Extension Reflex Using a Common Preparation and Conventional Hardware

    PubMed Central

    Birgiolas, Justas; Jernigan, Christopher M.; Gerkin, Richard C.; Smith, Brian H.; Crook, Sharon M.

    2017-01-01

    Many scientifically and agriculturally important insects use antennae to detect the presence of volatile chemical compounds and extend their proboscis during feeding. The ability to rapidly obtain high-resolution measurements of natural antenna and proboscis movements and assess how they change in response to chemical, developmental, and genetic manipulations can aid the understanding of insect behavior. By extending our previous work on assessing aggregate insect swarm or animal group movements from natural and laboratory videos using the video analysis software SwarmSight, we developed a novel, free, and open-source software module, SwarmSight Appendage Tracking (SwarmSight.org) for frame-by-frame tracking of insect antenna and proboscis positions from conventional web camera videos using conventional computers. The software processes frames about 120 times faster than humans, performs at better than human accuracy, and, using 30 frames per second (fps) videos, can capture antennal dynamics up to 15 Hz. The software was used to track the antennal response of honey bees to two odors and found significant mean antennal retractions away from the odor source about 1 s after odor presentation. We observed antenna position density heat map cluster formation and cluster and mean angle dependence on odor concentration. PMID:29364251

  12. The significance of multiple mating in the social wasp Vespula maculifrons.

    PubMed

    Goodisman, Michael A D; Kovacs, Jennifer L; Hoffman, Eric A

    2007-09-01

    The evolution of the complex societies displayed by social insects depended partly on high relatedness among interacting group members. Therefore, behaviors that depress group relatedness, such as multiple mating by reproductive females (polyandry), are unexpected in social insects. Nevertheless, the queens of several social insect species mate multiply, suggesting that polyandry provides some benefits that counteract the costs. However, few studies have obtained evidence for links between rates of polyandry and fitness in naturally occurring social insect populations. We investigated if polyandry was beneficial in the social wasp Vespula maculifrons. We used genetic markers to estimate queen mate number in V. maculifrons colonies and assessed colony fitness by counting the number of cells that colonies produced. Our results indicated that queen mate number was directly, strongly, and significantly correlated with the number of queen cells produced by colonies. Because V. maculifrons queens are necessarily reared in queen cells, our results demonstrate that high levels of polyandry are associated with colonies capable of producing many new queens. These data are consistent with the explanation that polyandry is adaptive in V. maculifrons because it provides a fitness advantage to queens. Our research may provide a rare example of an association between polyandry and fitness in a natural social insect population and help explain why queens in this taxon mate multiply.

  13. The Mexican bean beetle (Epilachna varivestis) regurgitome and insights into beetle-borne virus specificity

    PubMed Central

    Gedling, Cassidy R.; Smith, Charlotte M.; LeMoine, Christophe M. R.

    2018-01-01

    For nearly 400 million years, insects and plants have been embattled in an evolutionary arms race. Insects have developed diverse feeding strategies and behaviors in an effort to circumvent and overcome an extensive collection of plant defense tactics. Sap-sucking insects often inject saliva into hosts plants, which contains a suite of effector proteins and even microbial communities that can alter the plant’s defenses. Lacking salivary glands, leaf-feeding beetles represent an interesting group of phytophagous insects. Feeding beetles regurgitate onto leaf surfaces and it is thought that these oral secretions influence insect-plant interactions and even play a role in virus-vector specificity. Since the molecular and biological makeup of the regurgitant is virtually unknown, we carried out RNA sequencing and 16S rDNA analysis on a major soybean pest, Epilachna varivestis, to generate the first ever beetle “regurgitome” and characterize its microbiome. Interestingly, the regurgitant is comprised of a rich molecular assortment of genes encoding putative extracellular proteins involved in digestion, molting, immune defense, and detoxification. By carrying out plant inoculation assays, we reinforced the fundamental role of the regurgitant in beetle-borne virus specificity. Ultimately, these studies begin to characterize the importance of regurgitant in virus transmission and beetle-plant interactions. PMID:29377955

  14. Adult Tea Green Leafhoppers, Empoasca onukii (Matsuda), Change Behaviors under Varying Light Conditions

    PubMed Central

    Shi, Longqing; Vasseur, Liette; Huang, Huoshui; Zeng, Zhaohua; Hu, Guiping; Liu, Xin; You, Minsheng

    2017-01-01

    Insect behaviors are often influenced by light conditions including photoperiod, light intensity, and wavelength. Understanding pest insect responses to changing light conditions may help with developing alternative strategies for pest control. Little is known about the behavioral responses of leafhoppers (Hemiptera: Cicadellidae) to light conditions. The behavior of the tea green leafhopper, Empoasca onukii Matsuda, was examined when exposed to different light photoperiods or wavelengths. Observations included the frequency of locomotion and cleaning activities, and the duration of time spent searching. The results suggested that under normal photoperiod both female and male adults were generally more active in darkness (i.e., at night) than in light. In continuous darkness (DD), the locomotion and cleaning events in Period 1 (7:00–19:00) were significantly increased, when compared to the leafhoppers under normal photoperiod (LD). Leafhoppers, especially females, changed their behavioral patterns to a two day cycle under DD. Under continuous illumination (continuous quartz lamp light, yellow light at night, and green light at night), the activities of locomotion, cleaning, and searching were significantly suppressed during the night (19:00–7:00) and locomotion activities of both females and males were significantly increased during the day (7:00–19:00), suggesting a shift in circadian rhythm. Our work suggests that changes in light conditions, including photoperiod and wavelength, can influence behavioral activities of leafhoppers, potentially affecting other life history traits such as reproduction and development, and may serve as a method for leafhopper behavioral control. PMID:28103237

  15. Adult Tea Green Leafhoppers, Empoasca onukii (Matsuda), Change Behaviors under Varying Light Conditions.

    PubMed

    Shi, Longqing; Vasseur, Liette; Huang, Huoshui; Zeng, Zhaohua; Hu, Guiping; Liu, Xin; You, Minsheng

    2017-01-01

    Insect behaviors are often influenced by light conditions including photoperiod, light intensity, and wavelength. Understanding pest insect responses to changing light conditions may help with developing alternative strategies for pest control. Little is known about the behavioral responses of leafhoppers (Hemiptera: Cicadellidae) to light conditions. The behavior of the tea green leafhopper, Empoasca onukii Matsuda, was examined when exposed to different light photoperiods or wavelengths. Observations included the frequency of locomotion and cleaning activities, and the duration of time spent searching. The results suggested that under normal photoperiod both female and male adults were generally more active in darkness (i.e., at night) than in light. In continuous darkness (DD), the locomotion and cleaning events in Period 1 (7:00-19:00) were significantly increased, when compared to the leafhoppers under normal photoperiod (LD). Leafhoppers, especially females, changed their behavioral patterns to a two day cycle under DD. Under continuous illumination (continuous quartz lamp light, yellow light at night, and green light at night), the activities of locomotion, cleaning, and searching were significantly suppressed during the night (19:00-7:00) and locomotion activities of both females and males were significantly increased during the day (7:00-19:00), suggesting a shift in circadian rhythm. Our work suggests that changes in light conditions, including photoperiod and wavelength, can influence behavioral activities of leafhoppers, potentially affecting other life history traits such as reproduction and development, and may serve as a method for leafhopper behavioral control.

  16. Access to the odor world: olfactory receptors and their role for signal transduction in insects.

    PubMed

    Fleischer, Joerg; Pregitzer, Pablo; Breer, Heinz; Krieger, Jürgen

    2018-02-01

    The sense of smell enables insects to recognize and discriminate a broad range of volatile chemicals in their environment originating from prey, host plants and conspecifics. These olfactory cues are received by olfactory sensory neurons (OSNs) that relay information about food sources, oviposition sites and mates to the brain and thus elicit distinct odor-evoked behaviors. Research over the last decades has greatly advanced our knowledge concerning the molecular basis underlying the reception of odorous compounds and the mechanisms of signal transduction in OSNs. The emerging picture clearly indicates that OSNs of insects recognize odorants and pheromones by means of ligand-binding membrane proteins encoded by large and diverse families of receptor genes. In contrast, the mechanisms of the chemo-electrical transduction process are not fully understood; the present status suggests a contribution of ionotropic as well as metabotropic mechanisms. In this review, we will summarize current knowledge on the peripheral mechanisms of odor sensing in insects focusing on olfactory receptors and their specific role in the recognition and transduction of odorant and pheromone signals by OSNs.

  17. Four Forensic Entomology Case Studies: Records and Behavioral Observations on Seldom Reported Cadaver Fauna With Notes on Relevant Previous Occurrences and Ecology.

    PubMed

    Lindgren, Natalie K; Sisson, Melissa S; Archambeault, Alan D; Rahlwes, Brent C; Willett, James R; Bucheli, Sibyl R

    2015-03-01

    A yearlong survey of insect taxa associated with human decomposition was conducted at the Southeast Texas Applied Forensic Science (STAFS) facility located in the Center for Biological Field Studies of Sam Houston State University in Huntsville, TX. During this study, four insect-cadaver interactions were observed that represent previously poorly documented yet forensically significant interactions: Syrphidae maggots colonized a corpse in an aquatic situation; Psychodidae adults mated and oviposited on an algal film that was present on a corpse that had been recently removed from water; several Panorpidae were the first insects to feed upon a freshly placed corpse in the autumn; and a noctuid caterpillar was found chewing and ingesting dried human skin. Baseline knowledge of insect-cadaver interactions is the foundation of forensic entomology, and unique observations have the potential to expand our understanding of decomposition ecology. © The Author 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Quantitative variations in the essential oil of Minthostachys mollis (Kunth.) Griseb. in response to insects with different feeding habits.

    PubMed

    Banchio, Erika; Zygadlo, Julio; Valladares, Graciela R

    2005-08-24

    Plants display a diverse array of inducible changes in secondary metabolites following insect herbivory. Herbivores differ in their feeding behavior, physiology, and mode of attachment to the leaf surface, and such variations might be reflected in the induced responses of damaged plants. Induced changes were analyzed for Minthostachys mollis, a Lamiaceae with medicinal and aromatic uses, and four species of folivore insects with different feeding habits (chewing, scraping, sap-sucking, and puncturing). In M. mollis leaves experimentally exposed to the insects, levels of the two dominant monoterpenes pulegone and menthone were assessed 24 and 48 h after wounding. Menthone content generally decreased in the essential oil of damaged leaves, whereas pulegone concentration increased in all treatments. These changes occurred also in the adjacent undamaged leaves, suggesting a systemic response. The relatively uniform response to different kinds of damage could be attributable to the presence of such a strongly active compound as pulegone in the essential oil of M. mollis. The effects of wounding on essential oil concentration may be significant from a commercial point of view.

  19. Motor-Skill Learning in an Insect Inspired Neuro-Computational Control System

    PubMed Central

    Arena, Eleonora; Arena, Paolo; Strauss, Roland; Patané, Luca

    2017-01-01

    In nature, insects show impressive adaptation and learning capabilities. The proposed computational model takes inspiration from specific structures of the insect brain: after proposing key hypotheses on the direct involvement of the mushroom bodies (MBs) and on their neural organization, we developed a new architecture for motor learning to be applied in insect-like walking robots. The proposed model is a nonlinear control system based on spiking neurons. MBs are modeled as a nonlinear recurrent spiking neural network (SNN) with novel characteristics, able to memorize time evolutions of key parameters of the neural motor controller, so that existing motor primitives can be improved. The adopted control scheme enables the structure to efficiently cope with goal-oriented behavioral motor tasks. Here, a six-legged structure, showing a steady-state exponentially stable locomotion pattern, is exposed to the need of learning new motor skills: moving through the environment, the structure is able to modulate motor commands and implements an obstacle climbing procedure. Experimental results on a simulated hexapod robot are reported; they are obtained in a dynamic simulation environment and the robot mimicks the structures of Drosophila melanogaster. PMID:28337138

  20. Socialization Tactics and Newcomer Adjustment: A Meta-Analytic Review and Test of a Model

    ERIC Educational Resources Information Center

    Saks, Alan M.; Uggerslev, Krista L.; Fassina, Neil E.

    2007-01-01

    One of the most popular and often studied topics in the organizational socialization literature is Van Maanen and Schein's [Van Maanen, J., & Schein, E. H. (1979). Toward a theory of organizational socialization. In B. M. Staw (Ed.), "Research in organizational behavior" (Vol. 1), pp. 209-264. Greenwich, CT: JAI Press.] theory of organizational…

  1. Thermo-Mechanical and Thermal Behavior of High-Temperature Structural Materials.

    DTIC Science & Technology

    1980-12-31

    glass insulating tape to prevent fracture due to unknown stresses at Lhe rod ends. Because of the very high density of cracks in the alumina, this...143. [31] 0. L. Bowie, J. Math. Phys. 35 (1956) 60. [32] F. Erdogan : in Fracture Mechanics of Ceramics, Vol. 1, ed. by R. C. f Bradt, D. P. H

  2. Efficiency in Universities: The La Paz Papers. Studies on Education; Vol. 4.

    ERIC Educational Resources Information Center

    Lumsden, Keith

    Most universities have been organized as non-profit public or private institutions. Their objectives have not been clearly defined nor has their behavior been well understood. In practice, the management of universities is carried out by administrators who depend largely on government funding and/or private donations. They are subject to various…

  3. [Arizona] Field Test Report. Vol. 10. Learn to Earn. 1974-75.

    ERIC Educational Resources Information Center

    Small, Charles; And Others

    The field test report on the "Learn to Earn" instructional unit for grade 6 is one of a series of reports on the Arizona developed Career Education Curriculum Units. Presented is specific information as to the success of the units in terms of the learner's cognitive, affective, and psychomotor behavior according to expressed performance…

  4. Defense Threat Reduction Agency > Research > DTRIAC > DTRIAC Dispatch

    Science.gov Websites

    @mail.mil with your submissions. DTRIAC Dispatch - Vol 5, Issue 3 DTRIAC Dispatch - Vol 5, Issue 2 DTRIAC Dispatch - Vol 5, Issue 1 DTRIAC Dispatch - Vol 4, Issue 1 DTRIAC Dispatch - Vol 3, Issue 4 DTRIAC Dispatch - Vol 3, Issue 3 DTRIAC Dispatch - Vol 3, Issue 2 DTRIAC Dispatch - Vol 3, Issue 1 DTRIAC Dispatch - Vol

  5. Diaphorina citri Induces Huanglongbing-Infected Citrus Plant Volatiles to Repel and Reduce the Performance of Propylaea japonica.

    PubMed

    Lin, Yongwen; Lin, Sheng; Akutse, Komivi S; Hussain, Mubasher; Wang, Liande

    2016-01-01

    Transmission of plant pathogens through insect vectors is a complex biological process involving interactions between the host plants, insects, and pathogens. Simultaneous impact of the insect damage and pathogenic bacteria in infected host plants induce volatiles that modify not only the behavior of its insect vector but also of their natural enemies, such as parasitoid wasps. Therefore, it is essential to understand how insects such as the predator ladybird beetle responds to volatiles emitted from a host plant and how the disease transmission alters the interactions between predators, vector, pathogens, and plants. In this study, we investigated the response of Propylaea japonica to volatiles from citrus plants damaged by Diaphorina citri and Candidatus Liberibacter asiaticus through olfactometer bioassays. Synthetic chemical blends were also used to determine the active compounds in the plant volatile. The results showed that volatiles emitted by healthy plants attracted more P. japonica than other treatments, due to the presence of high quantities of D-limonene and beta-ocimene, and the lack of methyl salicylate. When using synthetic chemicals in the olfactory tests, we found that D-limonene attracted P. japonica while methyl salicylate repelled the predator. However, beta-ocimene attracted the insects at lower concentrations but repelled them at higher concentrations. These results indicate that P. japonica could not efficiently search for its host by using volatile cues emitted from psyllids- and Las bacteria-infected citrus plants.

  6. Parent–offspring conflicts, “optimal bad motherhood” and the “mother knows best” principles in insect herbivores colonizing novel host plants

    PubMed Central

    García-Robledo, Carlos; Horvitz, Carol C

    2012-01-01

    Specialization of insect herbivores to one or a few host plants stimulated the development of two hypotheses on how natural selection should shape oviposition preferences: The “mother knows best” principle suggests that females prefer to oviposit on hosts that increase offspring survival. The “optimal bad motherhood” principle predicts that females prefer to oviposit on hosts that increase their own longevity. In insects colonizing novel host plants, current theory predicts that initial preferences of insect herbivores should be maladaptive, leading to ecological traps. Ecological trap theory does not take into account the fact that insect lineages frequently switch hosts at both ecological and evolutionary time scales. Therefore, the behavior of insect herbivores facing novel hosts is also shaped by natural selection. Using a study system in which four Cephaloleia beetles are currently expanding their diets from native to exotic plants in the order Zingiberales, we determined if initial oviposition preferences are conservative, maladaptive, or follow the patterns predicted by the “mother knows best” or the “optimal bad motherhood” principles. Interactions with novel hosts generated parent–offspring conflicts. Larval survival was higher on native hosts. However, adult generally lived longer on novel hosts. In Cephaloleia beetles, oviposition preferences are usually associated with hosts that increase larval survival, female fecundity, and population growth. In most cases, Cephaloleia oviposition preferences follow the expectations of the “mothers knows best” principle. PMID:22957153

  7. Multifunctional queen pheromone and maintenance of reproductive harmony in termite colonies.

    PubMed

    Matsuura, Kenji

    2012-06-01

    Pheromones are likely involved in all social activities of social insects including foraging, sexual behavior, defense, nestmate recognition, and caste regulation. Regulation of the number of fertile queens requires communication between reproductive and non-reproductive individuals. Queen-produced pheromones have long been believed to be the main factor inhibiting the differentiation of new reproductive individuals. However, since the discovery more than 50 years ago of the queen honeybee substance that inhibits the queen-rearing behavior of workers, little progress has been made in the chemical identification of inhibitory queen pheromones in other social insects. The recent identification of a termite queen pheromone and subsequent studies have elucidated the multifaceted roles of volatile pheromones, including functions such as a fertility signal, worker attractant, queen-queen communication signal, and antimicrobial agent. The proximate origin and evolutionary parsimony of the termite queen pheromone also are discussed.

  8. Swarm Intelligence in Text Document Clustering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Xiaohui; Potok, Thomas E

    2008-01-01

    Social animals or insects in nature often exhibit a form of emergent collective behavior. The research field that attempts to design algorithms or distributed problem-solving devices inspired by the collective behavior of social insect colonies is called Swarm Intelligence. Compared to the traditional algorithms, the swarm algorithms are usually flexible, robust, decentralized and self-organized. These characters make the swarm algorithms suitable for solving complex problems, such as document collection clustering. The major challenge of today's information society is being overwhelmed with information on any topic they are searching for. Fast and high-quality document clustering algorithms play an important role inmore » helping users to effectively navigate, summarize, and organize the overwhelmed information. In this chapter, we introduce three nature inspired swarm intelligence clustering approaches for document clustering analysis. These clustering algorithms use stochastic and heuristic principles discovered from observing bird flocks, fish schools and ant food forage.« less

  9. A Fly-Inspired Mushroom Bodies Model for Sensory-Motor Control Through Sequence and Subsequence Learning.

    PubMed

    Arena, Paolo; Calí, Marco; Patané, Luca; Portera, Agnese; Strauss, Roland

    2016-09-01

    Classification and sequence learning are relevant capabilities used by living beings to extract complex information from the environment for behavioral control. The insect world is full of examples where the presentation time of specific stimuli shapes the behavioral response. On the basis of previously developed neural models, inspired by Drosophila melanogaster, a new architecture for classification and sequence learning is here presented under the perspective of the Neural Reuse theory. Classification of relevant input stimuli is performed through resonant neurons, activated by the complex dynamics generated in a lattice of recurrent spiking neurons modeling the insect Mushroom Bodies neuropile. The network devoted to context formation is able to reconstruct the learned sequence and also to trace the subsequences present in the provided input. A sensitivity analysis to parameter variation and noise is reported. Experiments on a roving robot are reported to show the capabilities of the architecture used as a neural controller.

  10. Drosophila divalent metal ion transporter Malvolio is required in dopaminergic neurons for feeding decisions.

    PubMed

    Søvik, E; LaMora, A; Seehra, G; Barron, A B; Duncan, J G; Ben-Shahar, Y

    2017-06-01

    Members of the natural resistance-associated macrophage protein (NRAMP) family are evolutionarily conserved metal ion transporters that play an essential role in regulating intracellular divalent cation homeostasis in both prokaryotes and eukaryotes. Malvolio (Mvl), the sole NRAMP family member in insects, plays a role in food choice behaviors in Drosophila and other species. However, the specific physiological and cellular processes that require the action of Mvl for appropriate feeding decisions remain elusive. Here, we show that normal food choice requires Mvl function specifically in the dopaminergic system, and can be rescued by supplementing food with manganese. Collectively, our data indicate that the action of the Mvl transporter affects food choice behavior via the regulation of dopaminergic innervation of the mushroom bodies, a principle brain region associated with decision-making in insects. Our studies suggest that the homeostatic regulation of the intraneuronal levels of divalent cations plays an important role in the development and function of the dopaminergic system and associated behaviors. © 2017 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  11. Lethal and sublethal effects of four essential oils on the egg parasitoids Trissolcus basalis.

    PubMed

    Werdin González, Jorge Omar; Laumann, Raúl Alberto; da Silveira, Samantha; Moraes, Maria Carolina Blassioli; Borges, Miguel; Ferrero, Adriana Alicia

    2013-07-01

    The essential oils from leaves of Schinus molle var. areira, Aloysia citriodora, Origanum vulgare and Thymus vulgaris have showed potential as phytoinsecticides against the green stink bug, Nezara viridula. In this work were evaluated their toxicological and behavioral effects on the parasitoid Trissolcus basalis, a biological control agent of this pest insect. Essential oils were obtained via hydrodestillation from fresh leaves. Insecticide activity in T. basalis females was evaluated in direct contact and fumigation bioassays. Behavioral effects were evaluated in olfactometer bioassays. To evaluate the residual toxicity, females of the parasitoids were exposed to oil residues; in these insects, the sublethal effects were evaluated (potential parasitism and survivorship of immature stages). The essential oils from O. vulgare and T. vulgaris proved to be highly selective when used as fumigant and did not change parasitoid behavior. After one week, the residues of these oils were harmless and did not show sublethal effects against T. basalis. According with these results, essential oils have potential applications for the integrated management of N. viridula. Published by Elsevier Ltd.

  12. The Dilemmas of the Gourmet Fly: The Molecular and Neuronal Mechanisms of Feeding and Nutrient Decision Making in Drosophila

    PubMed Central

    Itskov, Pavel M.; Ribeiro, Carlos

    2012-01-01

    To survive and successfully reproduce animals need to maintain a balanced intake of nutrients and energy. The nervous system of insects has evolved multiple mechanisms to regulate feeding behavior. When animals are faced with the choice to feed, several decisions must be made: whether or not to eat, how much to eat, what to eat, and when to eat. Using Drosophila melanogaster substantial progress has been achieved in understanding the neuronal and molecular mechanisms controlling feeding decisions. These feeding decisions are implemented in the nervous system on multiple levels, from alterations in the sensitivity of peripheral sensory organs to the modulation of memory systems. This review discusses methodologies developed in order to study insect feeding, the effects of neuropeptides and neuromodulators on feeding behavior, behavioral evidence supporting the existence of internal energy sensors, neuronal and molecular mechanisms controlling protein intake, and finally the regulation of feeding by circadian rhythms and sleep. From the discussed data a conceptual framework starts to emerge which aims to explain the molecular and neuronal processes maintaining the stability of the internal milieu. PMID:23407678

  13. Oxygen partial pressure effects on metabolic rate and behavior of tethered flying locusts.

    PubMed

    Rascón, Brenda; Harrison, Jon F

    2005-11-01

    Resting insects are extremely tolerant of hypoxia. However, oxygen requirements increase dramatically during flight. Does the critical atmospheric P (O)(2) (P(c)) increase strongly during flight, or does increased tracheal conductance allow even flying insects to possess large safety margins for oxygen delivery? We tested the effect of P(O)(2) on resting and flying CO(2) emission, as well as on flight behavior and vertical force production in flying locusts, Schistocerca americana. The P(c) for CO(2) emission of resting animals was less than 1 kPa, similar to prior studies. The P(c) for flight bout duration was between 10 and 21 kPa, the P(c) for vertical force production was between 3 and 5 kPa, and the P(c) for CO(2) emission was between 10 and 21 kPa. Our study suggests that the P(c) for steady-state oxygen consumption is between 10 and 21 kPa (much higher than for resting animals), and that tracheal oxygen stores allowed brief flights in 5 and 10 kPa P(O)(2) atmospheres to occur. Thus, P(c) values strongly increased during flight, consistent with the hypothesis that the excess oxygen delivery capacity observed in resting insects is substantially reduced during flight.

  14. Percent lipid is associated with body size but not task in the bumble bee Bombus impatiens

    PubMed Central

    Jandt, Jennifer M.; Bonds, Jennifer; Helm, Bryan R.; Dornhaus, Anna

    2015-01-01

    In some group-living organisms, labor is divided among individuals. This allocation to particular tasks is frequently stable and predicted by individual physiology. Social insects are excellent model organisms in which to investigate the interplay between physiology and individual behavior, as division of labor is an important feature within colonies, and individual physiology varies among the highly related individuals of the colony. Previous studies have investigated what factors are important in determining how likely an individual is, compared to nest-mates, to perform certain tasks. One such task is foraging. Corpulence (i.e., percent lipid) has been shown to determine foraging propensity in honey bees and ants, with leaner individuals being more likely to be foragers. Is this a general trend across all social insects? Here we report data analyzing the individual physiology, specifically the percent lipid, of worker bumble bees (Bombus impatiens) from whom we also analyze behavioral task data. Bumble bees are also unusual among the social bees in that workers may vary widely in size. Surprisingly we find that, unlike other social insects, percent lipid is not associated with task propensity. Rather, body size closely predicts individual relative lipid stores, with smaller worker bees being allometrically fatter than larger worker bees. PMID:21847618

  15. Viscosity of aqueous and cyanate ester suspensions containing alumina nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawler, Katherine

    2009-01-01

    The viscosities of both aqueous and cyanate ester monomer (BECy) based suspensions of alumina nanoparticle were studied. The applications for these suspensions are different: aqueous suspensions of alumina nanoparticles are used in the production of technical ceramics made by slip casting or tape casting, and the BECy based suspensions are being developed for use in an injection-type composite repair resin. In the case of aqueous suspensions, it is advantageous to achieve a high solids content with low viscosity in order to produce a high quality product. The addition of a dispersant is useful so that higher solids content suspensions canmore » be used with lower viscosities. For BECy suspensions, the addition of nanoparticles to the BECy resin is expected to enhance the mechanical properties of the cured composite. The addition of saccharides to aqueous suspensions leads to viscosity reduction. Through DSC measurements it was found that the saccharide molecules formed a solution with water and this resulted in lowering the melting temperature of the free water according to classic freezing point depression. Saccharides also lowered the melting temperature of the bound water, but this followed a different rule. The shear thinning and melting behaviors of the suspensions were used to develop a model based on fractal-type agglomeration. It is believed that the structure of the particle flocs in these suspensions changes with the addition of saccharides which leads to the resultant viscosity decrease. The viscosity of the BECy suspensions increased with solids content, and the viscosity increase was greater than predicted by the classical Einstein equation for dilute suspensions. Instead, the Mooney equation fits the viscosity behavior well from 0-20 vol% solids. The viscosity reduction achieved at high particle loadings by the addition of benzoic acid was also investigated by NMR. It appears that the benzoic acid interacts with the surface of the alumina particle which may be the cause of the viscosity reduction. The flow behavior of alumina particles in water and BECy is markedly different. Aqueous alumina suspensions are shear thinning at all alumina loadings and capable of 50 vol% loading before losing fluidity whereas BECy/alumina suspensions show Newtonian behavior up to 5 vol%, and above 5 vol% show shear thinning at all shear rates. Highly loaded suspensions (i.e. 20vol% alumina) exhibit shear thinning at low and moderate shear rates and shear thickening at higher shear rates. The maximum particle loading for a fluid suspension, in this case, appears to be about 20 vol%. The difference in the viscosity of these suspensions must be related to the solvent-particle interactions for each system. The reason is not exactly known, but there are some notable differences between BECy and water. Water molecules are {approx}0.28 nm in length and highly hydrogen bonded with a low viscosity (1 mPa's) whereas in the cyanate ester (BECy) system, the solvent molecule is about 1.2 nm, in the largest dimension, with surfaces of varied charge distribution throughout the molecule. The viscosity of the monomer is also reasonably low for organic polymer precursor, about 7 mPa's. Nanoparticles in water tend to agglomerate and form flocs which are broken with the shear force applied during viscosity measurement. The particle-particle interaction is very important in this system. In BECy, the particles appear to be well dispersed and not as interactive. The solvent-particle interaction appears to be most important. It is not known exactly how the alumina particles interact with the monomer, but NMR suggests hydrogen bonding. These hydrogen bonds between the particle and monomer could very well affect the viscosity. A conclusion that can be reached in this work is that the presence of hydroxyl groups on the surface of the alumina particles is significant and seems to affect the interactions between other particles and the solvent. Thus, the hydrogen bonding between particles, particle/additive and/or particle/solvent dictates the behavior of nanosized alumina particle suspensions. The addition of dispersants can change the particle interactions and hence reduce the suspension viscosity. This was demonstrated with saccharides in the aqueous system and with benzoic acid in suspensions with BECy.« less

  16. Correction to: Cyberpsychol Behav Soc Netw 2015;18(2);59-71 DOI: 10.1089/cyber.2014.0343.

    PubMed

    2015-11-01

    In the February 2015 issue of Cyberpsychology, Behavior, and Social Networking (vol. 18, no. 2, pp. 59–71), the article "Association Between Pornography Use and Sexual Risk Behaviors in Adult Consumers: A Systematic Review," by Emily L. Harkness et al., the second author's name was displayed as "Barbara M. Mullan;" however, the middle initial is incorrect. The authors wish to apologize for the error and Dr. Mullan would like to be cited without a middle initial simply as "B Mullan."

  17. UAV Swarm Mission Planning Development Using Evolutionary Algorithms - Part I

    DTIC Science & Technology

    2008-05-01

    desired behaviors in autonomous vehicles is a difficult problem at best and in general prob- ably impossible to completely resolve in complex dynamic...associated behaviors. Various techniques inspired by biological self-organized systems as found in forging insects and flocking birds, revolve around...swarms of heterogeneous vehicles in a distributed simulation system with animated graphics. Statistical measurements and observations indicate that bio

  18. Biology, behavior, and larval morphology of Salbia lotanalis (Lepidoptera: Crambidae), a potential biological control agent of Miconia calvescens (Myrtales: Melastomataceae) from Costa Rica

    Treesearch

    Alexander Castillo; M. Tracy Johnson; Francisco R. Badenes-Pérez

    2014-01-01

    The leaf roller Salbia lotanalis Druce (Lepidoptera: Crambidae), a potential biological control agent of Miconia calvescens de Candolle (Melastomataceae), was studied in Costa Rica. Larvae were collected from a field site near San Jose and the insect was reared in the laboratory to study its biology and behavior. Chaetotaxy and...

  19. Sensory Coordination of Insect Flight

    DTIC Science & Technology

    2011-09-30

    us to behaviorally alter the speed of the honey bees using their natural behavioral responses to visual patterns. These results reiterate our... honey bee flight. (9th International Congress of Neuroethology, Salamanca, Spain, August 2010). Sane, SP*. The tale of two mechanosensors: antennal...on the following main projects with reference to our work plan: Antennal positioning in moths and freely flying bees : 1. Latency studies: We had

  20. Curious Oviposition Behavior in Phyllium westwoodii (Phasmatodea: Phylliidae): Preliminary Observations

    PubMed Central

    Arai, Mayuko; Yago, Masaya

    2015-01-01

    We report that in a leaf insect, Phyllium westwoodii Wood-Mason (Phasmatodea: Phylliidae), two differing apertures can be used for oviposition, the color of eggs being affected by which aperture is used. Eggs which are forcibly propelled from the internal space within the valvulae of the abdomen are brown, whereas white eggs emerge slowly from the opening between the eighth sternite and the valvulae, and are deposited close to the ventral surface of the female. This unusual oviposition system does not appear to have been previously reported in phasmatids or in other insects. PMID:26411788

  1. Azobenzene Modified Imidacloprid Derivatives as Photoswitchable Insecticides: Steering Molecular Activity in a Controllable Manner

    NASA Astrophysics Data System (ADS)

    Xu, Zhiping; Shi, Lina; Jiang, Danping; Cheng, Jiagao; Shao, Xusheng; Li, Zhong

    2015-10-01

    Incorporating the photoisomerizable azobenzene into imidacloprid produced a photoswitchable insecticidal molecule as the first neonicotinoid example of remote control insecticide performance with spatiotemporal resolution. The designed photoswitchable insecticides showed distinguishable activity against Musca both in vivo and in vitro upon irradiation. Molecular docking study further suggested the binding difference of the two photoisomers. The generation of these photomediated insecticides provides novel insight into the insecticidal activity facilitating further investigation on the functions of insect nicotinic acetylcholine receptors and opens a novel way to control and study insect behavior on insecticide poisoning using light.

  2. Trends in genome dynamics among major orders of insects revealed through variations in protein families.

    PubMed

    Rappoport, Nadav; Linial, Michal

    2015-08-07

    Insects belong to a class that accounts for the majority of animals on earth. With over one million identified species, insects display a huge diversity and occupy extreme environments. At present, there are dozens of fully sequenced insect genomes that cover a range of habitats, social behavior and morphologies. In view of such diverse collection of genomes, revealing evolutionary trends and charting functional relationships of proteins remain challenging. We analyzed the relatedness of 17 complete proteomes representative of proteomes from insects including louse, bee, beetle, ants, flies and mosquitoes, as well as an out-group from the crustaceans. The analyzed proteomes mostly represented the orders of Hymenoptera and Diptera. The 287,405 protein sequences from the 18 proteomes were automatically clustered into 20,933 families, including 799 singletons. A comprehensive analysis based on statistical considerations identified the families that were significantly expanded or reduced in any of the studied organisms. Among all the tested species, ants are characterized by an exceptionally high rate of family gain and loss. By assigning annotations to hundreds of species-specific families, the functional diversity among species and between the major clades (Diptera and Hymenoptera) is revealed. We found that many species-specific families are associated with receptor signaling, stress-related functions and proteases. The highest variability among insects associates with the function of transposition and nucleic acids processes (collectively coined TNAP). Specifically, the wasp and ants have an order of magnitude more TNAP families and proteins relative to species that belong to Diptera (mosquitoes and flies). An unsupervised clustering methodology combined with a comparative functional analysis unveiled proteomic signatures in the major clades of winged insects. We propose that the expansion of TNAP families in Hymenoptera potentially contributes to the accelerated genome dynamics that characterize the wasp and ants.

  3. Understanding the rheology of two and three-phase magmas

    NASA Astrophysics Data System (ADS)

    Coats, R.; Cai, B.; Kendrick, J. E.; Wallace, P. A.; Hornby, A. J.; Miwa, T.; von Aulock, F. W.; Ashworth, J. D.; Godinho, J.; Atwood, R. C.; Lee, P. D.; Lavallée, Y.

    2017-12-01

    The rheology of magma plays a fundamental role in determining the style of a volcanic eruption, be it explosive or effusive. Understanding how magmas respond to changes in stress/ strain conditions may help to enhance eruption forecast models. The presence of crystals and bubbles in magmas alter the viscosity of suspensions and favor a non-Newtonian response. Thus, with the aim of grasping the rheological behavior of volcanic materials, uniaxial compressive tests were performed on natural and synthetic samples. A suite of variably porous (10-32 vol.%), highly crystalline ( 50 vol.%) dacite from the 1991-95 eruption of Mt Unzen, Japan, was selected as the natural material, while synthetic samples were sintered with desired porosities (<3, 20 and 30 vol.%) and TiO2 particles (0-50 vol.%). Tests were carried out at both room temperature and above the glass transition temperature (Tg) of the different materials to cover the entirety of the extrusion process. Room temperature tests were performed at constant strain rates of 10-1, 10-3, and 10-5 s-1. The response was brittle and peak stresses reached were positively correlated to strain rate and negatively correlated to porosity. At temperatures above Tg, strain rates of 10-3, 10-4, and 10-5 s-1 were imposed resulting in dominantly brittle, transitional and dominantly viscous responses, respectively. Samples with a brittle response reached higher peak stresses, and strain-to-failure values, at high temperature than at room temperature. In both materials, non-Newtonian, shear-thinning behavior was observed and while synthetic samples showed an expected increase in apparent viscosity with increasing crystal content, surprisingly natural samples did not show a correlation between apparent viscosity and porosity. We hypothesise this is due to crystal content being the governing factor for the volume fractions explored. In situ, high temperature synchrotron X-ray tomography was performed on selected crystal/pore volume fractions at Diamond Light Source. Unexpectedly, these observations suggest that fractures nucleate in crystals due to crystal interactions, before propagating through the interstitial melt. This ongoing study promises to uncover the way crystal-bearing magmas flow or fail, necessary to constrain magmatic processes and volcanic hazards.

  4. 1200 and 1300 K slow plastic compression properties of Ni-50Al composites

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.; Kumar, K. S.; Mannan, S. K.

    1991-01-01

    XD synthesis, powder blending, and hot pressing techniques have been utilized to produce NiAl composites containing 4, 7.5, 15, and 25 vol pct alumina whiskers and hybrid composite materials with 15 vol pct Al2O3 + 10 or 20 vol pct, nominally 1 micron TiB2 particles. The resistance to slow plastic flow was determined at 1200 and 1300 K via compression testing in air under constant velocity conditions. The stress-strain behavior of the intermetallic composites depended on the fraction of second phases where the 4 and 7.5 percent Al2O3 materials flowed at a nominally constant stress after about 2 percent deformation, while all the other composites exhibited diffuse yielding followed by strain softening. The flow stress-strain rate properties increased with volume fraction of Al2O3 whiskers except for the 4 and 7.5 percent materials, which had similar strengths. The hybrid composite NiAl + 15Al2O3 + 10TiB2 was substantially stronger than the materials simply containing alumina. Deformation in these composites can be described by the Kelly and Street model of creep in perfectly bonded, rigid, discontinuous fiber materials.

  5. Thermal degradation of TiO2 nanotubes on titanium

    NASA Astrophysics Data System (ADS)

    Shivaram, Anish; Bose, Susmita; Bandyopadhyay, Amit

    2014-10-01

    The objective of this research was to study thermal degradation behavior of TiO2 nanotubes on titanium (Ti). TiO2 nanotubes were grown via anodization method on commercially pure Ti (Cp-Ti) discs using two different electrolytes, 1 vol. % HF in deionized (DI) water and 1 vol. % HF + 0.5 wt. % NH4F + 10 vol. % DI water in ethylene glycol, to obtain nanotubes with two different lengths, 300 nm and 950 nm keeping the nanotube diameter constant at 100 ± 20 nm. As grown TiO2 nanotubes were subjected to heat treatment to understand thermal degradation as a function of both temperature and hold time. The signs of degradation were observed mainly when amorphous nanotubes started to crystallize, however the crystallization temperature varied based on TiO2 nanotubes length and anodizing condition. Overall, 300 nm nanotubes were thermally stable at least up to 400 °C for 12 h, while the 950 nm long nanotubes show signs of degradation from 400 °C for 6 h only. Clearly, length of nanotubes, heat treatment temperature as well as hold times show influence toward degradation kinetics of TiO2 nanotubes on titanium.

  6. Corrosion characteristics of Ni-base superalloys in high temperature steam with and without hydrogen

    NASA Astrophysics Data System (ADS)

    Kim, Donghoon; Kim, Daejong; Lee, Ho Jung; Jang, Changheui; Yoon, Duk Joo

    2013-10-01

    The hot steam corrosion behavior of Alloy 617 and Haynes 230 were evaluated in corrosion tests performed at 900 °C in steam and steam + 20 vol.% H2 environments. Corrosion rates of Alloy 617 was faster than that of Haynes 230 at 900 °C in steam and steam + 20 vol.% H2 environments. When hydrogen was added to steam, the corrosion rate was accelerated because added hydrogen increased the concentration of Cr interstitial defects in the oxide layer. Isolated nodular MnTiO3 oxides were formed on the MnCr2O4/Cr2O3 oxide layer and sub-layer Cr2O3 was formed in steam and steam + 20 vol.% H2 for Alloy 617. On the other hand, a MnCr2O4 layer was formed on top of the Cr2O3 oxide layer for Haynes 230. The extensive sub-layer Cr2O3 formation resulted from the oxygen or hydroxide inward diffusion in such environments. When hydrogen was added, the initial surface oxide morphology was changed from a convex shape to platelets because of the accelerated diffusion of cations under the oxide layer.

  7. The draft genome of a socially polymorphic halictid bee, Lasioglossum albipes

    PubMed Central

    2013-01-01

    Background Taxa that harbor natural phenotypic variation are ideal for ecological genomic approaches aimed at understanding how the interplay between genetic and environmental factors can lead to the evolution of complex traits. Lasioglossum albipes is a polymorphic halictid bee that expresses variation in social behavior among populations, and common-garden experiments have suggested that this variation is likely to have a genetic component. Results We present the L. albipes genome assembly to characterize the genetic and ecological factors associated with the evolution of social behavior. The de novo assembly is comparable to other published social insect genomes, with an N50 scaffold length of 602 kb. Gene families unique to L. albipes are associated with integrin-mediated signaling and DNA-binding domains, and several appear to be expanded in this species, including the glutathione-s-transferases and the inositol monophosphatases. L. albipes has an intact DNA methylation system, and in silico analyses suggest that methylation occurs primarily in exons. Comparisons to other insect genomes indicate that genes associated with metabolism and nucleotide binding undergo accelerated evolution in the halictid lineage. Whole-genome resequencing data from one solitary and one social L. albipes female identify six genes that appear to be rapidly diverging between social forms, including a putative odorant receptor and a cuticular protein. Conclusions L. albipes represents a novel genetic model system for understanding the evolution of social behavior. It represents the first published genome sequence of a primitively social insect, thereby facilitating comparative genomic studies across the Hymenoptera as a whole. PMID:24359881

  8. Behavioral Evidence for Host Transitions in Plant, Plant Parasite, and Insect Interactions.

    PubMed

    Halbritter, Dale A; Willett, Denis S; Gordon, Johnalyn M; Stelinski, Lukasz L; Daniels, Jaret C

    2018-06-06

    Specialized herbivorous insects have the ability to transition between host plant taxa, and considering the co-evolutionary history between plants and the organisms utilizing them is important to understanding plant insect interactions. We investigated the role of a pine tree parasite, dwarf mistletoe (Arceuthobium spp.) M. Bieb. Santalales: Viscaceae, in mediating interactions between Neophasia (Lepidoptera: Pieridae) butterflies and pine trees, the butterflies' larval hosts. Mistletoe is considered the butterflies' ancestral host, and the evolutionary transition to pine may have occurred recently. In Arizona, United States, we studied six sites in pine forest habitats: three in Neophasia menapia (Felder and R. Felder, 1859) habitat and three in Neophasia terlooii Behr, 1869 habitat. Each site contained six stands of trees that varied in mistletoe infection severity. Butterfly behavior was observed and ranked at each stand. Volatile compounds were collected from trees at each site and analyzed using gas chromatography-mass spectroscopy. Female butterflies landed on or patrolled around pine trees (i.e., interacted) more than males, and N. terlooii interacted more with pine trees than N. menapia. Both butterfly species interacted more with tree stands harboring greater mistletoe infection, and N. terlooii interacted more with heavily infected tree stands than did N. menapia. The influence of mistletoe on Neophasia behavior may be mediated by differences in tree volatiles resulting from mistletoe infection. Volatile profiles significantly differed between infected and uninfected pine trees. The role of mistletoe in mediating butterfly interactions with pines has implications for conservation biology and forest management, and highlights the importance of understanding an organism's niche in an evolutionary context.

  9. Operating Characteristics of Statistical Methods for Detecting Gene-by-Measured Environment Interaction in the Presence of Gene-Environment Correlation under Violations of Distributional Assumptions.

    PubMed

    Van Hulle, Carol A; Rathouz, Paul J

    2015-02-01

    Accurately identifying interactions between genetic vulnerabilities and environmental factors is of critical importance for genetic research on health and behavior. In the previous work of Van Hulle et al. (Behavior Genetics, Vol. 43, 2013, pp. 71-84), we explored the operating characteristics for a set of biometric (e.g., twin) models of Rathouz et al. (Behavior Genetics, Vol. 38, 2008, pp. 301-315), for testing gene-by-measured environment interaction (GxM) in the presence of gene-by-measured environment correlation (rGM) where data followed the assumed distributional structure. Here we explore the effects that violating distributional assumptions have on the operating characteristics of these same models even when structural model assumptions are correct. We simulated N = 2,000 replicates of n = 1,000 twin pairs under a number of conditions. Non-normality was imposed on either the putative moderator or on the ultimate outcome by ordinalizing or censoring the data. We examined the empirical Type I error rates and compared Bayesian information criterion (BIC) values. In general, non-normality in the putative moderator had little impact on the Type I error rates or BIC comparisons. In contrast, non-normality in the outcome was often mistaken for or masked GxM, especially when the outcome data were censored.

  10. A Plant Bacterial Pathogen Manipulates Its Insect Vector's Energy Metabolism

    PubMed Central

    Hijaz, Faraj; Ebert, Timothy A.; Rogers, Michael E.

    2016-01-01

    ABSTRACT Insect-transmitted plant-pathogenic bacteria may alter their vectors' fitness, survival, behavior, and metabolism. Because these pathogens interact with their vectors on the cellular and organismal levels, potential changes at the biochemical level might occur. “Candidatus Liberibacter asiaticus” (CLas) is transmitted in a persistent, circulative, and propagative manner. The genome of CLas revealed the presence of an ATP translocase that mediates the uptake of ATP and other nucleotides from medium to achieve its biological processes, such as growth and multiplication. Here, we showed that the levels of ATP and many other nucleotides were significantly higher in CLas-infected than healthy psyllids. Gene expression analysis showed upregulation for ATP synthase subunits, while ATPase enzyme activity showed a decrease in ATPase activity. These results indicated that CLas stimulated Diaphorina citri to produce more ATP and many other energetic nucleotides, while it may inhibit their consumption by the insect. As a result of ATP accumulation, the adenylated energy charge (AEC) increased and the AMP/ATP and ADP/ATP ratios decreased in CLas-infected D. citri psyllids. Survival analysis confirmed a shorter life span for CLas-infected D. citri psyllids. In addition, electropenetrography showed a significant reduction in total nonprobing time, salivation time, and time from the last E2 (phloem ingestion) to the end of recording, indicating that CLas-infected psyllids were at a higher hunger level and they tended to forage more often. This increased feeding activity reflects the CLas-induced energetic stress. In conclusion, CLas alters the energy metabolism of its psyllid vector, D. citri, in order to secure its need for energetic nucleotides. IMPORTANCE Insect transmission of plant-pathogenic bacteria involves propagation and circulation of the bacteria within their vectors. The transmission process is complex and requires specific interactions at the molecular and biochemical levels. The growth of the plant-pathogenic bacteria in the hemolymph of their vectors indicated that the hemolymph contains all the necessary nutrients for their growth. In addition to nutrients, “Candidatus Liberibacter asiaticus” (CLas) can take up energetic nucleotides, such as ATP, from its vector, Diaphorina citri, using ATP translocase. In this study, we found that the CLas pathogen manipulates the energy metabolism of its insect vector. The accumulation of ATP in CLas-infected D. citri psyllids indicated that CLas induces ATP production to fulfill its need for this energetic compound. As a result of ATP accumulation, a shorter life span and altered feeding behavior were observed. These findings increase our knowledge of insect transmission of the persistent-circulative-propagative type of plant pathogens vectored by insects. PMID:28039132

  11. A Computer Model of Insect Traps in a Landscape

    NASA Astrophysics Data System (ADS)

    Manoukis, Nicholas C.; Hall, Brian; Geib, Scott M.

    2014-11-01

    Attractant-based trap networks are important elements of invasive insect detection, pest control, and basic research programs. We present a landscape-level, spatially explicit model of trap networks, focused on detection, that incorporates variable attractiveness of traps and a movement model for insect dispersion. We describe the model and validate its behavior using field trap data on networks targeting two species, Ceratitis capitata and Anoplophora glabripennis. Our model will assist efforts to optimize trap networks by 1) introducing an accessible and realistic mathematical characterization of the operation of a single trap that lends itself easily to parametrization via field experiments and 2) allowing direct quantification and comparison of sensitivity between trap networks. Results from the two case studies indicate that the relationship between number of traps and their spatial distribution and capture probability under the model is qualitatively dependent on the attractiveness of the traps, a result with important practical consequences.

  12. Egg-laying butterflies distinguish predaceous ants by sight.

    PubMed

    Sendoya, Sebastián F; Freitas, André V L; Oliveira, Paulo S

    2009-07-01

    Information about predation risks is critical for herbivorous insects, and natural selection favors their ability to detect predators before oviposition and to select enemy-free foliage when offspring mortality risk is high. Food plants are selected by ovipositing butterflies, and offspring survival frequently varies among plants because of variation in the presence of predators. Eunica bechina butterflies oviposit on Caryocar brasiliense, an ant-defended plant. Experiments with dried Camponotus and Cephalotes ants pinned to leaves revealed that butterflies use ant size and form as visual cues to avoid ovipositing on plant parts occupied by ants more likely to kill larval offspring. Presence of sap-sucking bugs did not affect butterfly oviposition. This is the first demonstration that visual recognition of predators can mediate egg-laying decisions by an insect herbivore and that an insect will discriminate among different species of potential predators. This unusual behavioral capability permits specialization on a risky, ant-defended food plant.

  13. The evolutionary diversity of insect retinal mosaics: Common design principles and emerging molecular logic

    PubMed Central

    Wernet, Mathias F.; Perry, Michael W.; Desplan, Claude

    2015-01-01

    Independent evolution has resulted in a vast diversity of eyes. Despite the lack of a common Bauplan or ancestral structure, similar developmental strategies are used. For instance, different classes of photoreceptor cells (PRs) are distributed stochastically and/or localized in different regions of the retina. Here we focus on recent progress made towards understanding the molecular principles behind patterning retinal mosaics of insects, one of the most diverse groups of animals adapted to life on land, in the air, under water, or on the water surface. Morphological, physiological, and behavioral studies from many species provide detailed descriptions of the vast variation in retinal design and function. By integrating this knowledge with recent progress in the characterization of insect Rhodopsins as well as insight from the model organism Drosophila melanogaster, we seek to identify the molecular logic behind the adaptation of retinal mosaics to an animal’s habitat and way of life. PMID:26025917

  14. Influence of hydrophobic and superhydrophobic surfaces on reducing aerodynamic insect residues

    NASA Astrophysics Data System (ADS)

    Krishnan, K. Ghokulla; Milionis, Athanasios; Loth, Eric; Farrell, Thomas E.; Crouch, Jeffrey D.; Berry, Douglas H.

    2017-01-01

    Insect fouling during takeoff, climb and landing can result in increased drag and fuel consumption for aircrafts with laminar-flow surfaces. This study investigates the effectiveness of various hydrophobic and superhydrophobic surfaces in reducing residue of insects on an aerodynamic surface at relatively high impact speeds (about 45 m/s). An experimental setup consisting of a wind tunnel and a method to inject live flightless fruit flies was used to test the effectiveness of various surfaces against insect fouling. Insect fouling was analyzed based on residue area and height from multiple impacts. In general most of the residue area was due to the hemolymph spreading while most of the residue height was due to adhesion of exoskeleton parts. Hydrophobic and especially superhydrophobic surfaces performed better than a hydrophilic aluminum surface in terms of minimizing the residue area of various insect components (exoskeleton, hemolymph, and red fluid). Surfaces with reduced wettability and short lateral length scales tended to have the smallest residue area. Residue height was not as strongly influenced by surface wettability since even a single exoskeleton adhered to the surface upon impact was enough to produce a residue height of the order of one mm. In general, the results indicate that hemolymph spread needs to be avoided (e.g. by having reduced wettability and short lateral correlation lengths) in order to minimize the residue area, while exoskeleton adherence needs to be avoided (e.g. by having oleophobic properties and micro/nano roughness) in order to minimize the residue height. In particular, two of the superhydrophobic coatings produced substantial reduction in residue height and area, relative to the baseline surface of aluminum. However, the surfaces also showed poor mechanical durability on the high-speed insect impact location. This suggests that although low wettability materials show great insect anti-fouling behavior, their durability needs to be substantially improved in order to withstand harsh aerospace conditions.

  15. Perspectives on the behavior of entomopathogenic nematodes from dispersal to reproduction: traits contributing to nematode fitness and biocontrol efficacy.

    PubMed

    Griffin, Christine T

    2012-06-01

    The entomopathogenic nematodes (EPN) Heterorhabditis and Steinernema are widely used for the biological control of insect pests and are gaining importance as model organisms for studying parasitism and symbiosis. In this paper recent advances in the understanding of EPN behavior are reviewed. The "foraging strategy" paradigm (distinction between species with ambush and cruise strategies) as applied to EPN is being challenged and alternative paradigms proposed. Infection decisions are based on condition of the potential host, and it is becoming clear that already-infected and even long-dead hosts may be invaded, as well as healthy live hosts. The state of the infective juvenile (IJ) also influences infection, and evidence for a phased increase in infectivity of EPN species is mounting. The possibility of social behavior - adaptive interactions between IJs outside the host - is discussed. EPNs' symbiotic bacteria (Photorhabdus and Xenorhabdus) are important for killing the host and rendering it suitable for nematode reproduction, but may reduce survival of IJs, resulting in a trade-off between survival and reproduction. The symbiont also contributes to defence of the cadaver by affecting food-choice decisions of insect and avian scavengers. I review EPN reproductive behavior (including sperm competition, copulation and evidence for attractive and organizational effects of pheromones), and consider the role of endotokia matricida as parental behavior exploited by the symbiont for transmission.

  16. Political Orientations of Children: The Use of a Semi-Projective Technique in Three Nations. Comparative Politics Series No. 01-009, Vol. 1.

    ERIC Educational Resources Information Center

    Greenstein, Fred I.; Tarrow, Sidney

    The study is concerned with the psychology of citizenship in Great Britain, France, and the United States. Part I of the booklet discusses the use of semiprojective procedures to elicit surface psychocultural dispositions (cognitive and value assumptions, assumptions about behavioral norms, etc.). The procedure involves asking late preadolescent…

  17. Establishing Preventive Services. Healthy Children 2010. Issues in Children's and Families' Lives, Vol. 9. The John & Kelly Hartman Series.

    ERIC Educational Resources Information Center

    Weissberg, Roger P., Ed.; Gullotta, Thomas P., Ed.; Hampton, Robert L., Ed.; Ryan, Bruce A., Ed.; Adams, Gerald R., Ed.

    Young people are facing greater risks to their current and future health and social development, as shown by involvement of younger and younger children in risk-taking behaviors. This volume emphasizes developmentally and contextually appropriate prevention service delivery models and identifies state-of-the-art, empirically based strategies to…

  18. Reading, Comprehension, and Memory Processes: Abstracts of Doctoral Dissertations Published in "Dissertation Abstracts International," July through September 1978 (Vol. 39 Nos. 1 through 3).

    ERIC Educational Resources Information Center

    ERIC Clearinghouse on Reading and Communication Skills, Urbana, IL.

    This collection of abstracts is part of a continuing series providing information on recent doctoral dissertations. The 12 titles deal with the following topics: advance organizers; a comparison of the effectiveness and efficiency of behavioral objectives and sample tests; anaphoric nominal substitution and its relationship to reading…

  19. An Experimental Evaluation of the Effect of Hole Fabrication/Treatment Techniques on Residual Strength and Fatigue Life of Polycarbonate Specimens with Holes

    DTIC Science & Technology

    1993-08-01

    34The Effect of Dimpling on the Fatigue Strength of Loaded Holes in a Corrosive Environment," Experimental Techniques, Vol. 9, September 1985, 33-36. 34...Expansion on the Fatigue Behavior of 7079-T652 Alluminium [sic] Alloy," NLR TR 74016 U, National Aerospace Laboratory (NLR), Amsterdam, The

  20. Speech Communication and Communication Processes: Abstracts of Doctoral Dissertations Published in "Dissertation Abstracts International," August and September 1978 (Vol. 39 Nos. 2 and 3).

    ERIC Educational Resources Information Center

    ERIC Clearinghouse on Reading and Communication Skills, Urbana, IL.

    This collection of abstracts is part of a continuing series providing information on recent doctoral dissertations. The 15 titles deal with the following topics: the rhetorical dimensions of nondiscursive, fragmentary communication; perceptions of persuasion situations and the question of transituational consistency of behavior; alcohol use and…

  1. Reading Instruction: Preschool and Elementary: Abstracts of Doctoral Dissertations Published in "Dissertation Abstracts International," April through June 1978 (Vol. 38 Nos. 10 through 12).

    ERIC Educational Resources Information Center

    ERIC Clearinghouse on Reading and Communication Skills, Urbana, IL.

    This collection of abstracts is part of a continuing series providing information on recent doctoral dissertations. The 22 titles deal with the following topics: computer-assisted instruction; school characteristics and reading achievement; the process of reading acquisition; on-task behavior, teacher involvement, and reading achievement; the…

  2. Business and Organizational Communication: Abstracts of Doctoral Dissertations Published in "Dissertation Abstracts International," January through June 1981 (Vol. 41 Nos. 7 through 12).

    ERIC Educational Resources Information Center

    ERIC Clearinghouse on Reading and Communication Skills, Urbana, IL.

    This collection of abstracts is part of a continuing series providing information on recent doctoral dissertations. The 12 titles deal with the following topics: (1) identifying problem formation behaviors within the process of organizational change; (2) using the communication audit to determine decision style, satisfaction, and communication…

  3. A Study of the Relationship between Military Service in the Armed Forces and Criminality. Criminal Justice Monograph Vol. III, No. 1.

    ERIC Educational Resources Information Center

    Tracy, Robert G.; And Others

    To determine the effects of military service on subsequent criminal behavior, especially violent crimes, this study compared veteran and non-veteran felons incarcerated at the Texas Department of Corrections. Available programed data on inmates born since 1930 were supplemented by interview and questionnaire data on 200 veterans concerning…

  4. High voltage AC/AC electrochemical capacitor operating at low temperature in salt aqueous electrolyte

    NASA Astrophysics Data System (ADS)

    Abbas, Qamar; Béguin, François

    2016-06-01

    We demonstrate that an activated carbon (AC)-based electrochemical capacitor implementing aqueous lithium sulfate electrolyte in 7:3 vol:vol water/methanol mixture can operate down to -40 °C with good electrochemical performance. Three-electrode cell investigations show that the faradaic contributions related with hydrogen chemisorption in the negative AC electrode are thermodynamically unfavored at -40 °C, enabling the system to work as a typical electrical double-layer (EDL) capacitor. After prolonged floating of the AC/AC capacitor at 1.6 V and -40°C, the capacitance, equivalent series resistance and efficiency remain constant, demonstrating the absence of ageing related with side redox reactions at this temperature. Interestingly, when temperature is increased back to 24 °C, the redox behavior due to hydrogen storage reappears and the system behaves as a freshly prepared one.

  5. Intriguingly high convective heat transfer enhancement of nanofluid coolants in laminar flows

    NASA Astrophysics Data System (ADS)

    Xie, Huaqing; Li, Yang; Yu, Wei

    2010-05-01

    We reported on investigation of the convective heat transfer enhancement of nanofluids as coolants in laminar flows inside a circular copper tube with constant wall temperature. Nanofluids containing Al 2O 3, ZnO, TiO 2, and MgO nanoparticles were prepared with a mixture of 55 vol.% distilled water and 45 vol.% ethylene glycol as base fluid. It was found that the heat transfer behaviors of the nanofluids were highly depended on the volume fraction, average size, species of the suspended nanoparticles and the flow conditions. MgO, Al 2O 3, and ZnO nanofluids exhibited superior enhancements of heat transfer coefficient, with the highest enhancement up to 252% at a Reynolds number of 1000 for MgO nanofluid. Our results demonstrated that these oxide nanofluids might be promising alternatives for conventional coolants.

  6. A critical test of Drosophila anaesthetics: Isoflurane and sevoflurane are benign alternatives to cold and CO2.

    PubMed

    MacMillan, Heath A; Nørgård, Mikkel; MacLean, Heidi J; Overgaard, Johannes; Williams, Catherine J A

    2017-08-01

    Anaesthesia is often a necessary step when studying insects like the model organism Drosophila melanogaster. Most studies of Drosophila and other insects that require anaesthesia use either cold exposure or carbon dioxide exposure to induce a narcotic state. These anaesthetic methods are known to disrupt physiology and behavior with increasing exposure, and thus ample recovery time is required prior to experimentation. Here, we examine whether two halogenated ethers commonly used in vertebrate anaesthesia, isoflurane and sevoflurane, may serve as alternative means of insect anaesthesia. Using D. melanogaster, we generated dose-response curves to identify exposure times for each anaesthetic (cold, CO 2 , isoflurane and sevoflurane) that allow for five-minutes of experimental manipulation of the animals after the anaesthetic was removed (i.e. 5min recovery doses). We then compared the effects of this practical dose on high temperature, low temperature, starvation, and desiccation tolerance, as well as locomotor activity and fecundity of female flies following recovery from anaesthesia. Cold, CO 2 and isoflurane each had significant or near significant effects on the traits measured, but the specific effects of each anaesthetic differed, and effects on stress tolerance generally did not persist if the flies were given 48h to recover from anaesthesia. Sevoflurane had no measureable effect on any of the traits examined. Care must be taken when choosing an anaesthetic in Drosophila research, as the impacts of specific anaesthetics on stress tolerance, behavior and reproduction can widely differ. Sevoflurane may be a practical alternative to cold and CO 2 anaesthesia in insects - particularly if flies are to be used for experiments shortly after anesthesia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. The study and analysis of the mating behavior and sound production of male cicada Psalmocharias alhageos (Kol.) (Homoptera:Cicadidae) to make disruption in mating.

    PubMed

    Zamanian, H; Mehdipour, M; Ghaemi, N

    2008-09-01

    Psalmocharias alhageos is an important pest of vine in most parts of Iran, Afghanistan, Pakistan, southern areas of Russia, Turkey and Iraq. This cicada is spread in most provinces in Iran such as Esfahan, Hamedan, Qazvin, Markazi, Lorestan, Qom, Kerman, Tehran and Kordestan. In addition to vine, this insect damages some other fruit trees, such as apple, sour cherry, quince, peach, pomegranate and pear trees and some non-fruit trees, namely white poplar, ash, elm, eglantine, silk and black poplar trees. The nymphs of cicada damage the trees by feeding on root, adult insects on young bud and by oviposition under branch barks. Nourishing root by nymph leads to the weakness of the tree and hinder its growth. The high density oviposition of adult insects inside young barks causes withering of branches. The resulted damage on vine products is 40% which is one of the most important factors in product reduction in vineyard. This research was conducted in Takestan in Qazvin. It was conducted for the first time to study the behaviors of the mates of this vine cicada in order to manage it. Two systems were used to record the sound of male cicada called analog voice-recorder and digital voice recorder. To analyze the recorded sound of the male cicada we used of spectrum analyzer, digital storage oscilloscope and protens 7 computer softwares. We could call the attention of natural enemies an disturb the male insect's attracting sound by producing natural and artificial sound in the range of 1-6 kHz in two different ripeness status of the fruits and could prevent mating and oviposition of female cicadas.

  8. Do chimpanzees (Pan troglodytes schweinfurthii) exhibit sleep related behaviors that minimize exposure to parasitic arthropods? A preliminary report on the possible anti-vector function of chimpanzee sleeping platforms.

    PubMed

    Samson, David R; Muehlenbein, Michael P; Hunt, Kevin D

    2013-01-01

    Great apes spend half of their lives in a nightly "nest" or sleeping platform (SP), a complex object created by modifying foliage, which functions as a stable substrate on which to sleep. Of the several purported functions of SPs, one hypothesis is that they protect against parasitic infection. Here we investigate the role of SP site choice in avoiding molestation by arthropods. This study presents preliminary data on the insect-repellent properties of preferred sleeping tree species Cynometra alexandri. Insect traps were deployed in gallery forest habitats in which chimpanzees typically "nest." We compared traps placed adjacent to SPs artificially manufactured with C. alexandri trees to an open area within the same habitat. Multiple measures of arthropod counts indicate that simulated C. alexandri SP sites have fewer arthropods than similar non-SP sites. Volatile compounds secreted by C. alexandri foliage are hypothesized to repel annoying arthropods and/or mask chimpanzee olfactory signals. Of the total insects captured (n = 6,318), n = 145 were mosquitoes. Of the total mosquitoes captured, n = 47 were identified as Anopheles (female, n = 12). The prominent malarial vector Anopheles gambiae was identified among the captured mosquito sample. These results suggest that the presence of broken branches of the tree species C. alexandri reduce the amount of insects a chimpanzee is exposed to throughout a night's sleep. This great ape behavioral and socio-technological adaptation may have evolved, in part, to increase quality of sleep as well as decrease exposure to vectors of disease.

  9. Migratory Sleeplessness in the White-Crowned Sparrow (Zonotrichia leucophrys gambelii)

    DTIC Science & Technology

    2004-07-01

    behaviors occur in virtually all organisms, ranging from insects to mammals (Goldman et al. 2004). Just as circadian rhythms allow organisms to anticipate...conditions. Like circadian rhythms , seasonal migratory behavior is both endogenously generated and shaped by external factors such as photoperiod length...linked to alterations in the circadian rhythm during migration. In particular, since the occurrence of REM sleep is closely tied to the circadian

  10. Sensor Abstractions to Support Many-Robot Systems

    DTIC Science & Technology

    1993-04-01

    the behaviors of the social insects: ants, bees, and termites ; the observed aggregate behaviors exhibit a greater complexity, while the individual...applicability -’f" togies from biology (hjrdirg, ec!"x’-oig, iiununc system and pheromone mechanisms) and physics (entropy, temperature, pressure...in [17-19]. Pheromones provide an important example of animals arranging their environment to, for example, help moths find mates, or to help a colony

  11. Flammability limits of lithium-ion battery thermal runaway vent gas in air and the inerting effects of halon 1301

    NASA Astrophysics Data System (ADS)

    Karp, Matthew Eugene

    Lithium-ion (rechargeable) and lithium-metal (non-rechargeable) battery cells put aircraft at risk of igniting and fueling fires. Lithium batteries can be packed in bulk and shipped in the cargo holds of freighter aircraft; currently lithium batteries are banned from bulk shipment on passenger aircraft [1]. The federally regulated Class C cargo compartment extinguishing system's utilization of a 5 %vol Halon 1301 knockdown concentration and a sustained 3 %vol Halon 1301 may not be sufficient at inerting lithium-ion battery vent gas and air mixtures [2]. At 5 %vol Halon 1301 the flammability limits of lithium-ion premixed battery vent gas (Li-Ion pBVG) in air range from 13.80 %vol to 26.07 %vol Li-Ion pBVG. Testing suggests that 8.59 %vol Halon 1301 is required to render all ratios of the Li-Ion pBVG in air inert. The lower flammability limit (LFL) and upper flammability limit (UFL) of hydrogen and air mixtures are 4.95 %vol and 76.52 %vol hydrogen, respectively. With the addition of 10 %vol and 20 %vol Halon 1301 the LFL is 9.02 %vol and 11.55 %vol hydrogen, respectively, and the UFL is 45.70 %vol and 28.39 %vol hydrogen, respectively. The minimum inerting concentration (MIC) of Halon 1301 in hydrogen and air mixtures is 26.72 %vol Halon 1301 at 16.2 %vol hydrogen. The LFL and UFL of Li-Ion pBVG and air mixtures are 7.88 %vol and 37.14 %vol Li-Ion pBVG, respectively. With the addition of 5 %vol, 7 %vol, and 8 %vol Halon 1301 the LFL is 13.80 %vol, 16.15 %vol, and 17.62 % vol Li-Ion pBVG, respectively, and the UFL is 26.07 %vol, 23.31 %vol, and 21.84 %vol Li- Ion pBVG, respectively. The MIC of Halon 1301 in Li-Ion pBVG and air mixtures is 8.59 %vol Halon 1301 at 19.52 %vol Li-Ion pBVG. Le Chatelier's mixing rule has been shown to be an effective measure for estimating the flammability limits of Li-Ion pBVGes. The LFL has a 1.79 % difference while the UFL has a 4.53 % difference. The state of charge (SOC) affects the flammability limits in an apparent parabolic manner, where the widest flammability limits are at or near 100 % SOC. [1] IATA. Lithium Battery Guidance Document. 7 Jan. 2016. Guidance for complying with provisions applicable to the transport by air of lithium batteries as set out in the 57th Edition of the IATA Dangerous Goods Regulations (DGR). [2] Webster, Harry. Flammability assessment of bulk-packed, rechargeable lithium-ion cells in transport category aircraft. Office of Aviation Research, Federal Aviation Administration, 2006.

  12. Symptoms of Lewy Body Dementia

    MedlinePlus

    ... rest. Recurrent visual hallucinations of people, insects and animals may appear early in LBD. Delusions (i.e., fixed false beliefs), apathy (i.e., lack of initiative), agitation and depression are also common. REM sleep behavior disorder (i.e., vivid dreams with verbal or ...

  13. Neuromolecular basis of repellent action

    USDA-ARS?s Scientific Manuscript database

    Physical contact is not required for insect repellents to affect mosquito behavior; DEET not only interferes with the detection of host and oviposition sites suggesting the involvement of the olfactory pathway, but it also deters feeding, perhaps indicating involvement of the gustatory sense. Howev...

  14. Molecular diversity of PBAN family peptides from fire ants

    USDA-ARS?s Scientific Manuscript database

    Insect neuropeptides are produced in the central or peripheral nerve tissues, and released to regulate various physiological and behavioral actions during development and reproduction. The PBAN (Pheromone Biosynthesis Activating Neuropeptide)/Pyrokinin peptide family is a major neuropeptide family c...

  15. Disrupting mating behavior of Diaphorina citri (Liviidae)

    USDA-ARS?s Scientific Manuscript database

    Severe economic damage from citrus greening disease, caused by ‘Candidatus Liberibacter asiaticus’ bacteria, has stimulated development of methods to reduce mating and reproduction in populations of its insect vector, Diaphorina citri (Hemiptera: Liviidae). Male D. citri find mating partners by walk...

  16. Local motion adaptation enhances the representation of spatial structure at EMD arrays

    PubMed Central

    Lindemann, Jens P.; Egelhaaf, Martin

    2017-01-01

    Neuronal representation and extraction of spatial information are essential for behavioral control. For flying insects, a plausible way to gain spatial information is to exploit distance-dependent optic flow that is generated during translational self-motion. Optic flow is computed by arrays of local motion detectors retinotopically arranged in the second neuropile layer of the insect visual system. These motion detectors have adaptive response characteristics, i.e. their responses to motion with a constant or only slowly changing velocity decrease, while their sensitivity to rapid velocity changes is maintained or even increases. We analyzed by a modeling approach how motion adaptation affects signal representation at the output of arrays of motion detectors during simulated flight in artificial and natural 3D environments. We focused on translational flight, because spatial information is only contained in the optic flow induced by translational locomotion. Indeed, flies, bees and other insects segregate their flight into relatively long intersaccadic translational flight sections interspersed with brief and rapid saccadic turns, presumably to maximize periods of translation (80% of the flight). With a novel adaptive model of the insect visual motion pathway we could show that the motion detector responses to background structures of cluttered environments are largely attenuated as a consequence of motion adaptation, while responses to foreground objects stay constant or even increase. This conclusion even holds under the dynamic flight conditions of insects. PMID:29281631

  17. Book review of Insect Symbiosis. Volume 2. Bourtzis, K.A. and Miller, T.A. editros. 2006 CRC Press, Taylor and Francis Group, Boca Raton, FL, 276 pp. ISBN 0-8493-1286-8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoy, M.A.

    There are several definitions of symbiosis, but in this book it involves an association where one organism (the symbiont) lives within or on the body of another organism (the host), regardless of the actual effect on the host. Some symbioses are mutualistic, some parasitic, and some involve commensalism, in which one partner derives some benefit without either harming or benefiting the other. This is the second volume in this exciting and rapidly advancing topic by these editors. The first volume was published in 2003 and during the intervening three years additional data have been produced that make this book amore » useful addition to your library. The first book provided chapters that provided an overview of insect symbiosis, discussions of the primary aphid symbiont Buchnera and other aphid symbionts, symbiosis in tsetse, symbionts in the weevil Sitophilus , the possible use of paratransgenic symbionts of Rhodnius prolixis to prevent disease transmission, bark beetle and fungal symbiosis, symbionts of tephritid fruit flies, symbionts affecting termite behavior, an overview of microsporidia as symbionts (parasites?) of insects, an overview of a newly discovered bacterium that causes sex-ratio distortion in insects and mites (from the Bacteroides group), symbionts that selectively kill male insects, and several chapters on the ubiquitous endosymbiont Wolbachia.« less

  18. Can soil microbial diversity influence plant metabolites and life history traits of a rhizophagous insect? A demonstration in oilseed rape.

    PubMed

    Lachaise, Tom; Ourry, Morgane; Lebreton, Lionel; Guillerm-Erckelboudt, Anne-Yvonne; Linglin, Juliette; Paty, Chrystelle; Chaminade, Valérie; Marnet, Nathalie; Aubert, Julie; Poinsot, Denis; Cortesero, Anne-Marie; Mougel, Christophe

    2017-12-01

    Interactions between plants and phytophagous insects play an important part in shaping the biochemical composition of plants. Reciprocally plant metabolites can influence major life history traits in these insects and largely contribute to their fitness. Plant rhizospheric microorganisms are an important biotic factor modulating plant metabolites and adaptation to stress. While plant-insects or plant-microorganisms interactions and their consequences on the plant metabolite signature are well-documented, the impact of soil microbial communities on plant defenses against phytophagous insects remains poorly known. In this study, we used oilseed rape (Brassica napus) and the cabbage root fly (Delia radicum) as biological models to tackle this question. Even though D. radicum is a belowground herbivore as a larva, its adult life history traits depend on aboveground signals. We therefore tested whether soil microbial diversity influenced emergence rate and fitness but also fly oviposition behavior, and tried to link possible effects to modifications in leaf and root metabolites. Through a removal-recolonization experiment, 3 soil microbial modalities ("high," "medium," "low") were established and assessed through amplicon sequencing of 16S and 18S ribosomal RNA genes. The "medium" modality in the rhizosphere significantly improved insect development traits. Plant-microorganism interactions were marginally associated to modulations of root metabolites profiles, which could partly explain these results. We highlighted the potential role of plant-microbial interaction in plant defenses against Delia radicum. Rhizospheric microbial communities must be taken into account when analyzing plant defenses against herbivores, being either below or aboveground. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  19. Forest structure affects trophic linkages: How silvicultural disturbance impacts bats and their insect prey

    USGS Publications Warehouse

    Dodd, L.E.; Lacki, M.J.; Britzke, E.R.; Buehler, D.A.; Keyser, P.D.; Larkin, J.L.; Rodewald, A.D.; Wigley, T.B.; Wood, P.B.; Rieske, L.K.

    2012-01-01

    Vertebrate insectivores such as bats are a pervasive top-down force on prey populations in forest ecosystems. Conservation focusing on forest-dwelling bats requires understanding of community-level interactions between these predators and their insect prey. Our study assessed bat activity and insect occurrence (abundance and diversity) across a gradient of forest disturbance and structure (silvicultural treatments) in the Central Appalachian region of North America. We conducted acoustic surveys of bat echolocation concurrent with insect surveys using blacklight and malaise traps over 2 years. Predator activity, prey occurrence and prey biomass varied seasonally and across the region. The number of bat echolocation pulses was positively related with forest disturbance, whereas prey demonstrated varied trends. Lepidopteran abundance was negatively related with disturbance, while dipteran abundance and diversity was positively related with disturbance. Coleoptera were unaffected. Neither bat nor insect response variables differed between plot interiors and edges. Correlations between bat activity and vegetative structure reflected differences in foraging behavior among ensembles. Activity of myotine bats was correlated with variables describing sub-canopy vegetation, whereas activity of lasiurine bats was more closely correlated with canopy-level vegetation. Lepidopteran abundance was correlated with variables describing canopy and sub-canopy vegetation, whereas coleopteran and dipteran occurrence were more closely correlated with canopy-level vegetative structure. Our study demonstrates regional variation in bat activity and prey occurrence across a forested disturbance gradient. Land management and conservation efforts should consider the importance of vegetation structure and plant species richness to sustain forest-dwelling bats and their insect prey.

  20. Jaburetox-induced toxic effects on the hemocytes of Rhodnius prolixus (Hemiptera: Reduviidae).

    PubMed

    Moyetta, Natalia R; Broll, Valquiria; Perin, Ana Paula A; Uberti, Augusto F; Coste Grahl, Matheus V; Staniscuaski, Fernanda; Carlini, Celia R; Fruttero, Leonardo L

    2017-10-01

    Jaburetox is a recombinant peptide derived from a Canavalia ensiformis urease that presents toxic effects upon several species of insects, phytopathogenic fungi and yeasts of medical importance. So far, no toxicity of Jaburetox to mammals has been shown. Previous reports have identified biochemical targets of this toxic peptide in insect models, although its mechanism of action is not completely understood. In this work, we aimed to characterize the effects of Jaburetox in hemolymphatic insect cells. For this purpose, the model insect and Chagas' disease vector Rhodnius prolixus was used. In vivo and in vitro experiments indicated that Jaburetox interacts with a subset of hemocytes and it can be found in various subcellular compartments. In insects injected with Jaburetox there was an increase in the gene expression of the enzymes UDP-N-acetylglucosamine pyrophosphorylase (UAP), chitin synthase and nitric oxide synthase (NOS). Nevertheless, the expression of NOS protein, the enzyme activities of UAP and acid phosphatase (a possible link between UAP and NOS) as well as the phosphorylation state of proteins remained unchanged upon the in vivo Jaburetox treatment. Nitric oxide (NO) imaging using fluorescent probes showed that Jaburetox augmented NO production in the hemocyte aggregates when compared to controls. Even though Jaburetox activated the hemocytes, as demonstrated by wheat germ agglutinin binding assays, the peptide did not lead to an increase of their phagocytic behavior. Taken together, these findings contribute to our understanding of toxic effects of Jaburetox, a peptide with biotechnological applications and a prospective tool for rational insect control. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. The Trail Less Traveled: Individual Decision-Making and Its Effect on Group Behavior

    PubMed Central

    Lanan, Michele C.; Dornhaus, Anna; Jones, Emily I.; Waser, Andrew; Bronstein, Judith L.

    2012-01-01

    Social insect colonies are complex systems in which the interactions of many individuals lead to colony-level collective behaviors such as foraging. However, the emergent properties of collective behaviors may not necessarily be adaptive. Here, we examine symmetry breaking, an emergent pattern exhibited by some social insects that can lead colonies to focus their foraging effort on only one of several available food patches. Symmetry breaking has been reported to occur in several ant species. However, it is not clear whether it arises as an unavoidable epiphenomenon of pheromone recruitment, or whether it is an adaptive behavior that can be controlled through modification of the individual behavior of workers. In this paper, we used a simulation model to test how symmetry breaking is affected by the degree of non-linearity of recruitment, the specific mechanism used by individuals to choose between patches, patch size, and forager number. The model shows that foraging intensity on different trails becomes increasingly asymmetric as the recruitment response of individuals varies from linear to highly non-linear, supporting the predictions of previous work. Surprisingly, we also found that the direction of the relationship between forager number (i.e., colony size) and asymmetry varied depending on the specific details of the decision rule used by individuals. Limiting the size of the resource produced a damping effect on asymmetry, but only at high forager numbers. Variation in the rule used by individual ants to choose trails is a likely mechanism that could cause variation among the foraging behaviors of species, and is a behavior upon which selection could act. PMID:23112880

  2. Comparative analysis of behavioral and transcriptional variation underlying CO2 sensory neuron function and development in Drosophila.

    PubMed

    Pan, Jia Wern; McLaughlin, Joi; Yang, Haining; Leo, Charles; Rambarat, Paula; Okuwa, Sumie; Monroy-Eklund, Anaïs; Clark, Sabrina; Jones, Corbin D; Volkan, Pelin Cayirlioglu

    2017-10-02

    Carbon dioxide is an important environmental cue for many insects, regulating many behaviors including some that have direct human impacts. To further improve our understanding of how this system varies among closely related insect species, we examined both the behavioral response to CO 2 as well as the transcriptional profile of key developmental regulators of CO 2 sensory neurons in the olfactory system across the Drosophila genus. We found that CO 2 generally evokes repulsive behavior across most of the Drosophilids we examined, but this behavior has been lost or reduced in several lineages. Comparisons of transcriptional profiles from the developing and adult antennae for subset these species suggest that behavioral differences in some species may be due to differences in the expression of the CO 2 co-receptor Gr63a. Furthermore, these differences in Gr63a expression are correlated with changes in the expression of a few genes known to be involved in the development of the CO 2 circuit, namely dac, an important regulator of sensilla fate for sensilla that house CO 2 ORNs, and mip120, a member of the MMB/dREAM epigenetic regulatory complex that regulates CO 2 receptor expression. In contrast, most of the other known structural, molecular, and developmental components of the peripheral Drosophila CO 2 olfactory system seem to be well-conserved across all examined lineages. These findings suggest that certain components of CO 2 sensory ORN development may be more evolutionarily labile, and may contribute to differences in CO 2 -evoked behavioral responses across species.

  3. The effect of chemical information on the spatial distribution of fruit flies: II Parameterization, calibration, and sensitivity.

    PubMed

    de Gee, Maarten; Lof, Marjolein E; Hemerik, Lia

    2008-10-01

    In a companion paper (Lof et al., in Bull. Math. Biol., 2008), we describe a spatio-temporal model for insect behavior. This model includes chemical information for finding resources and conspecifics. As a model species, we used Drosophila melanogaster, because its behavior is documented comparatively well. We divide a population of Drosophila into three states: moving, searching, and settled. Our model describes the number of flies in each state, together with the concentrations of food odor and aggregation pheromone, in time and in two spatial dimensions. Thus, the model consists of 5 spatio-temporal dependent variables, together with their constituting relations. Although we tried to use the simplest submodels for the separate variables, the parameterization of the spatial model turned out to be quite difficult, even for this well-studied species. In the first part of this paper, we discuss the relevant results from the literature, and their possible implications for the parameterization of our model. Here, we focus on three essential aspects of modeling insect behavior. First, there is the fundamental discrepancy between the (lumped) measured behavioral properties (i.e., fruit fly displacements) and the (detailed) properties of the underlying mechanisms (i.e., dispersivity, sensory perception, and state transition) that are adopted as explanation. Detailed quantitative studies on insect behavior when reacting to infochemicals are scarce. Some information on dispersal can be used, but quantitative data on the transition between the three states could not be found. Second, a dose-response relation as used in human perception research is not available for the response of the insects to infochemicals; the behavioral response relations are known mostly in a qualitative manner, and the quantitative information that is available does not depend on infochemical concentration. We show how a commonly used Michaelis-Menten type dose-response relation (incorporating a saturation effect) can be adapted to the use of two different but interrelated stimuli (food odors and aggregation pheromone). Although we use all available information for its parameterization, this model is still overparameterized. Third, the spatio-temporal dispersion of infochemicals is hard to model: Modeling turbulent dispersal on a length scale of 10 m is notoriously difficult. Moreover, we have to reduce this inherently three-dimensional physical process to two dimensions in order to fit in the two-dimensional model for the insects. We investigate the consequences of this dimension reduction, and we demonstrate that it seriously affects the parameterization of the model for the infochemicals. In the second part of this paper, we present the results of a sensitivity analysis. This sensitivity analysis can be used in two manners: firstly, it tells us how general the simulation results are if variations in the parameters are allowed, and secondly, we can use it to infer which parameters need more precise quantification than is available now. It turns out that the short term outcome of our model is most sensitive to the food odor production rate and the fruit fly dispersivity. For the other parameters, the model is quite robust. The dependence of the model outcome with respect to the qualitative model choices cannot be investigated with a parameter sensitivity analysis. We conclude by suggesting some experimental setups that may contribute to answering this question.

  4. Largely enhanced dielectric properties of carbon nanotubes/polyvinylidene fluoride binary nanocomposites by loading a few boron nitride nanosheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Minhao; Zhao, Hang; He, Delong

    2016-08-15

    The ternary nanocomposites of boron nitride nanosheets (BNNSs)/carbon nanotubes (CNTs)/polyvinylidene fluoride (PVDF) are fabricated via a combination of solution casting and extrusion-injection processes. The effects of BNNSs on the electrical conductivity, dielectric behavior, and microstructure changes of CNTs/PVDF binary nanocomposites are systematically investigated. A low percolation value (f{sub c}) for the CNTs/PVDF binary system is obtained due to the integration of solution and melting blending procedures. Two kinds of CNTs/PVDF binary systems with various CNTs contents (f{sub CNTs}) as the matrix are discussed. The results reveal that compared with CNTs/PVDF binary systems at the same f{sub CNTs}, the ternary BNNSs/CNTs/PVDFmore » nanocomposites exhibit largely enhanced dielectric properties due to the improvement of the CNTs dispersion state and the conductive network. The dielectric constant of CNTs/PVDF binary nanocomposite with 6 vol. % CNTs (f{sub CNTs} < f{sub c}) shows a 79.59% enhancement from 49 to 88 after the incorporation of 3 vol. % BNNSs. For the other CNTs/PVDF system with 8 vol. % CNTs (f{sub CNTs} > f{sub c}), it displays a 43.32% improvement from 1325 to 1899 after the addition of 3 vol. % BNNSs. The presence of BNNSs facilitates the formation of the denser conductive network. Meanwhile, the ternary BNNSs/CNTs/PVDF systems exhibit a low dielectric loss. The adjustable dielectric properties could be obtained by employing the ternary systems due to the microstructure changes of nanocomposites.« less

  5. Colloidal gas-liquid condensation of polystyrene latex particles with intermediate kappa a values (5 to 160, a > kappa(-1)).

    PubMed

    Ishikawa, Masamichi; Kitano, Ryota

    2010-02-16

    Polystyrene latex particles showed gas-liquid condensation under the conditions of large particle radius (a > kappa(-1)) and intermediate kappa a, where kappa is the Debye-Hückel parameter and a is the particle radius. The particles were dissolved in deionized water containing ethanol from 0 to 77 vol %, settled to the bottom of the glass plate within 1 h, and then laterally moved toward the center of a cell over a 20 h period in reaching a state of equilibrium condensation. All of the suspensions that were 1 and 3 microm in diameter and 0.01-0.20 vol % in concentration realized similar gas-liquid condensation with clear gas-liquid boundaries. In 50 vol % ethanol solvent, additional ethanol was added to enhance the sedimentation force so as to restrict the particles in a monoparticle layer thickness. The coexistence of gas-liquid-solid (crystalline solid) was microscopically recognized from the periphery to the center of the condensates. A phase diagram of the gas-liquid condensation was created as a function of KCl concentration at a particle diameter of 3 microm, 0.10 vol % concentration, and 50:50 water/ethanol solvent at room temperature. The miscibility gap was observed in the concentration range from 1 to 250 microM. There was an upper limit of salt concentration where the phase separation disappeared, showing nearly critical behavior of macroscopic density fluctuation from 250 microM to 1 mM. These results add new experimental evidence to the existence of colloidal gas-liquid condensation and specify conditions of like-charge attraction between particles.

  6. On the thermal stability of physical vapor deposited oxide-hardened nanocrystalline gold thin films

    DOE PAGES

    Argibay, Nicolas; Mogonye, J. E.; Michael, Joseph R.; ...

    2015-04-08

    We describe a correlation between electrical resistivity and grain size for PVD synthesized polycrystalline oxide-hardened metal-matrix thin films in oxide-dilute (<5 vol. % oxide phase) compositions. The correlation is based on the Mayadas-Shatzkes (M-S) electron scattering model, predictive of grain size evolution as a function of composition in the oxide-dilute regime for 2 μm thick Au-ZnO films. We describe a technique to investigate grain boundary (GB) mobility and the thermal stability of GBs based on in situelectrical resistivity measurements during annealing experiments, interpreted using a combination of the M-S model and the Michels et al. model describing solute drag stabilizedmore » grain growth kinetics. Using this technique, activation energy and pre-exponential Arrhenius parameter values of E a = 21.6 kJ/mol and A o = 2.3 × 10 -17 m 2/s for Au-1 vol. % ZnO and E a =12.7 kJ/mol and A o = 3.1 × 10 -18 m 2/s for Au-2 vol.% ZnO were determined. In the oxide-dilute regime, the grain size reduction of the Au matrix yielded a maximum hardness of 2.6 GPa for 5 vol. % ZnO. A combined model including percolation behavior and grain refinement is presented that accurately describes the composition dependent change in electrical resistivity throughout the entire composition range for Au-ZnO thin films. As a result, the proposed correlations are supported by microstructural characterization using transmission electron microscopy and electron diffraction mapping for grain size determination.« less

  7. Toxicity of venoms from vipers of Pelias group to crickets Gryllus assimilis and its relation to snake entomophagy.

    PubMed

    Starkov, Vladislav G; Osipov, Alexey V; Utkin, Yuri N

    2007-06-01

    The existing data indicate that snake venom is most toxic towards the natural vertebrate preys. Several species of snake include arthropods in their food. However, there is no available data on the toxicity of venom from entomophagous snakes towards their prey. We have studied the toxicity of venom from vipers of Pelias group towards crickets Gryllus assimilis. The Pelias group includes several closely related viper species inhabiting mainly the South European part of Russia, and they differ in their feeding preferences. Snakes from the Vipera renardi, Vipera lotievi, Vipera kaznakovi, and Vipera orlovi species feed on wide range of animals including insects, whereas snakes from Vipera berus and Vipera nikolskii species do not include insects in their diet. We have found that the venom from vipers that include insects in their diet possesses greater toxicity towards crickets. The greatest toxicity was observed for the venom from V. lotievi, which displays a preference for insects in its diet. Therefore, based on our data, we suggest that the viper entomophagy is not a result of behavior plasticity, but is probably determined at a genetic level.

  8. Nonlinear acoustics in cicada mating calls enhance sound propagation.

    PubMed

    Hughes, Derke R; Nuttall, Albert H; Katz, Richard A; Carter, G Clifford

    2009-02-01

    An analysis of cicada mating calls, measured in field experiments, indicates that the very high levels of acoustic energy radiated by this relatively small insect are mainly attributed to the nonlinear characteristics of the signal. The cicada emits one of the loudest sounds in all of the insect population with a sound production system occupying a physical space typically less than 3 cc. The sounds made by tymbals are amplified by the hollow abdomen, functioning as a tuned resonator, but models of the signal based solely on linear techniques do not fully account for a sound radiation capability that is so disproportionate to the insect's size. The nonlinear behavior of the cicada signal is demonstrated by combining the mutual information and surrogate data techniques; the results obtained indicate decorrelation when the phase-randomized and non-phase-randomized data separate. The Volterra expansion technique is used to fit the nonlinearity in the insect's call. The second-order Volterra estimate provides further evidence that the cicada mating calls are dominated by nonlinear characteristics and also suggests that the medium contributes to the cicada's efficient sound propagation. Application of the same principles has the potential to improve radiated sound levels for sonar applications.

  9. A Multi-species Bait for Chagas Disease Vectors

    PubMed Central

    Mota, Theo; Vitta, Ana C. R.; Lorenzo-Figueiras, Alicia N.; Barezani, Carla P.; Zani, Carlos L.; Lazzari, Claudio R.; Diotaiuti, Liléia; Jeffares, Lynne; Bohman, Björn; Lorenzo, Marcelo G.

    2014-01-01

    Background Triatomine bugs are the insect vectors of Trypanosoma cruzi, the etiological agent of Chagas disease. These insects are known to aggregate inside shelters during daylight hours and it has been demonstrated that within shelters, the aggregation is induced by volatiles emitted from bug feces. These signals promote inter-species aggregation among most species studied, but the chemical composition is unknown. Methodology/Principal Findings In the present work, feces from larvae of the three species were obtained and volatile compounds were identified by solid phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS). We identified five compounds, all present in feces of all of the three species: Triatoma infestans, Panstrongylus megistus and Triatoma brasiliensis. These substances were tested for attractivity and ability to recruit insects into shelters. Behaviorally active doses of the five substances were obtained for all three triatomine species. The bugs were significantly attracted to shelters baited with blends of 160 ng or 1.6 µg of each substance. Conclusions/Significance Common compounds were found in the feces of vectors of Chagas disease that actively recruited insects into shelters, which suggests that this blend of compounds could be used for the development of baits for early detection of reinfestation with triatomine bugs. PMID:24587457

  10. Odorant receptor-based discovery of natural repellents of human lice.

    PubMed

    Pelletier, Julien; Xu, Pingxi; Yoon, Kyong S; Clark, John M; Leal, Walter S

    2015-11-01

    The body louse, Pediculus humanus humanus, is an obligate blood-feeding ectoparasite and an important insect vector that mediates the transmission of diseases to humans. The analysis of the body louse genome revealed a drastic reduction of the chemosensory gene repertoires when compared to other insects, suggesting specific olfactory adaptations to host specialization and permanent parasitic lifestyle. Here, we present for the first time functional evidence for the role of odorant receptors (ORs) in this insect, with the objective to gain insight into the chemical ecology of this vector. We identified seven putative full-length ORs, in addition to the odorant receptor co-receptor (Orco), and expressed four of them in the Xenopus laevis oocytes system. When screened with a panel of ecologically-relevant odorants, PhumOR2 responded to a narrow set of compounds. At the behavior level, both head and body lice were repelled by the physiologically-active chemicals. This study presents the first evidence of the OR pathway being functional in lice and identifies PhumOR2 as a sensitive receptor of natural repellents that could be used to develop novel efficient molecules to control these insects. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Fiber-type distribution in insect leg muscles parallels similarities and differences in the functional role of insect walking legs.

    PubMed

    Godlewska-Hammel, Elzbieta; Büschges, Ansgar; Gruhn, Matthias

    2017-10-01

    Previous studies have demonstrated that myofibrillar ATPase (mATPase) enzyme activity in muscle fibers determines their contraction properties. We analyzed mATPase activities in muscles of the front, middle and hind legs of the orthopteran stick insect (Carausius morosus) to test the hypothesis that differences in muscle fiber types and distributions reflected differences in their behavioral functions. Our data show that all muscles are composed of at least three fiber types, fast, intermediate and slow, and demonstrate that: (1) in the femoral muscles (extensor and flexor tibiae) of all legs, the number of fast fibers decreases from proximal to distal, with a concomitant increase in the number of slow fibers. (2) The swing phase muscles protractor coxae and levator trochanteris, have smaller percentages of slow fibers compared to the antagonist stance muscles retractor coxae and depressor trochanteris. (3) The percentage of slow fibers in the retractor coxae and depressor trochanteris increases significantly from front to hind legs. These results suggest that fiber-type distribution in leg muscles of insects is not identical across leg muscles but tuned towards the specific function of a given muscle in the locomotor system.

  12. Experiment on the Effects of Storage Duration of Biodiesel produced from Crude Palm Oil, Waste Cooking oil and Jatropha

    NASA Astrophysics Data System (ADS)

    Nanihar, Nadiarulah; Khalid, Amir; Mustaffa, Norrizal; Jaat, Norrizam; Sapit, Azwan; Razali, Azahari; Sunar, Norshuhaila Mohamed

    2017-10-01

    Biodiesel based on vegetable oil is an alternative that had various advantage in term of sustainability and environmental attractive compare to others conventional diesel. Biodiesel is product of any fat or oil that derived from any organic sources through a refinery process called transesterification process. This research investigates the effects of storage duration and variant ambient condition on the biodiesel properties and characteristics. In this study, there are three types of blending which is 5vol% blends ( 5vol% plant oil 95vol% diesel), 10vol% blending (10vol% plant oil and 90vol% diesel) and 15vol% blending (15vol% plant oil and 85vol% diesel) each called CPO5 (crude palm oil 5vol%), CPO10 (crude palm oil 10vol%),CPO15 (crude palm oil 15vol%), JO5 (jatropha oil 5vol%), JO10 (jatropha oil 10vol%),and JO15 (jatropha oil 15vol%) respectively. Biodiesel samples were stored at indoor condition and outdoor condition for a 3 months period. The fuel properties such as acid value, viscosity, density, water content and flash point are observed with the laboratory instrument. Flash point value and water content increased under both of indoor and outdoor condition and a steady data for viscosity and density. However, acid value at indoor condition nearly constant but increased dramatically for outdoor condition over the time.

  13. Who Are the "Lazy" Ants? The Function of Inactivity in Social Insects and a Possible Role of Constraint: Inactive Ants Are Corpulent and May Be Young and/or Selfish.

    PubMed

    Charbonneau, Daniel; Poff, Corey; Nguyen, Hoan; Shin, Min C; Kierstead, Karen; Dornhaus, Anna

    2017-09-01

    Social insect colonies are commonly thought of as highly organized and efficient complex systems, yet high levels of worker inactivity are common. Although consistently inactive workers have been documented across many species, very little is known about the potential function or costs associated with this behavior. Here we ask what distinguishes these "lazy" individuals from their nestmates. We obtained a large set of behavioral and morphological data about individuals, and tested for consistency with the following evolutionary hypotheses: that inactivity results from constraint caused by worker (a) immaturity or (b) senescence; that (c) inactive workers are reproducing; that inactive workers perform a cryptic task such as (d) acting as communication hubs or (e) food stores; and that (f) inactive workers represent the "slow-paced" end of inter-worker variation in "pace-of-life." We show that inactive workers walk more slowly, have small spatial fidelity zones near the nest center, are more corpulent, are isolated in colony interaction networks, have the smallest behavioral repertoires, and are more likely to have oocytes than other workers. These results are consistent with the hypotheses that inactive workers are immature and/or storing food for the colony; they suggest that workers are not inactive as a consequence of senescence, and that they are not acting as communication hubs. The hypotheses listed above are not mutually exclusive, and likely form a "syndrome" of behaviors common to inactive social insect workers. Their simultaneous contribution to inactivity may explain the difficulty in finding a simple answer to this deceptively simple question. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology 2017. This work is written by US Government employees and is in the public domain in the US.

  14. Deciding Which Way to Go: How Do Insects Alter Movements to Negotiate Barriers?

    PubMed Central

    Ritzmann, Roy E.; Harley, Cynthia M.; Daltorio, Kathryn A.; Tietz, Brian R.; Pollack, Alan J.; Bender, John A.; Guo, Peiyuan; Horomanski, Audra L.; Kathman, Nicholas D.; Nieuwoudt, Claudia; Brown, Amy E.; Quinn, Roger D.

    2012-01-01

    Animals must routinely deal with barriers as they move through their natural environment. These challenges require directed changes in leg movements and posture performed in the context of ever changing internal and external conditions. In particular, cockroaches use a combination of tactile and visual information to evaluate objects in their path in order to effectively guide their movements in complex terrain. When encountering a large block, the insect uses its antennae to evaluate the object’s height then rears upward accordingly before climbing. A shelf presents a choice between climbing and tunneling that depends on how the antennae strike the shelf; tapping from above yields climbing, while tapping from below causes tunneling. However, ambient light conditions detected by the ocelli can bias that decision. Similarly, in a T-maze turning is determined by antennal contact but influenced by visual cues. These multi-sensory behaviors led us to look at the central complex as a center for sensori-motor integration within the insect brain. Visual and antennal tactile cues are processed within the central complex and, in tethered preparations, several central complex units changed firing rates in tandem with or prior to altered step frequency or turning, while stimulation through the implanted electrodes evoked these same behavioral changes. To further test for a central complex role in these decisions, we examined behavioral effects of brain lesions. Electrolytic lesions in restricted regions of the central complex generated site specific behavioral deficits. Similar changes were also found in reversible effects of procaine injections in the brain. Finally, we are examining these kinds of decisions made in a large arena that more closely matches the conditions under which cockroaches forage. Overall, our studies suggest that CC circuits may indeed influence the descending commands associated with navigational decisions, thereby making them more context dependent. PMID:22783160

  15. There's a Fly in Our Room.

    ERIC Educational Resources Information Center

    Padilla, Michael

    1979-01-01

    Presents an idea for insect study with live organisms. The life cycle of the common housefly and the behavior of the adult and larvae are discussed. Activities for young students are given along with information for the teacher on the fly's life history. (SA)

  16. Ladybirds as Teaching Aids: 2. Potential for Practical and Project Work.

    ERIC Educational Resources Information Center

    Majerus, M. E. N.; And Others

    1989-01-01

    Presented are several ideas for projects involving ladybird beetles. Discussed is background information about the insects; and projects involving life histories, intra-specific variation, taxonomy, genetics, behavior, ecology, habitat surveys, population biology, and overwintering biology. Lists 12 references. (CW)

  17. Minute pirate bugs

    USDA-ARS?s Scientific Manuscript database

    The minute pirate bugs (Orius) feed primarily on small, soft-bodied arthropods, but may supplement that diet with ingestion of plant fluids. The plant-feeding behavior of the minute pirate bugs has led to anecdotal reports of plant damage and speculation that these insects may occasionally be pests...

  18. Mating behavior and vibrational mimicry in the glassy-winged sharpshooter, Homalodisca vitripennis

    USDA-ARS?s Scientific Manuscript database

    Vibrational communication is widespread in insects, particularly in leafhoppers where the pair formation process is mediated by species-specific vibrational signals. One important pest using vibrational communication, glassy-winged sharpshooter (GWSS), Homalodisca vitripennis, is a vector of Xylella...

  19. Site-directed mutagenesis and PBAN activation of the Helicoverpa zea PBAN-receptor

    USDA-ARS?s Scientific Manuscript database

    Insect neuropeptides are produced in the central or peripheral nerve tissues, and released to regulate various physiological and behavioral actions during development and reproduction. Pheromone biosynthesis-activating neuropeptide (PBAN)/Pyrokinin is a major neuropeptide family characterized with a...

  20. Genotyping-by-sequencing of glossy mutants

    USDA-ARS?s Scientific Manuscript database

    Glossy mutants are a common occurrence in Brassica oleracea L. and they have been documented in most crop varieties of the species including cabbage, kale, broccoli, and collard. Glossy phenotypes have been of particular interest to researchers due to observations that they influence insect behavior...

  1. Calling Behavior of Male Acheta domesticus Crickets Infected with Paragordius varius (Nematomorpha: Gordiida).

    PubMed

    Barquin, A; McGehee, B; Sedam, R T; Gordy, W L; Hanelt, B; de Valdez, M R Wise

    2015-08-01

    It is well established that parasites in the phylum Nematomorpha induce suicide behavior of their insect hosts to bring adult worms to the appropriate habitat for emergence. It is not well established, however, whether other nematomorph-induced behavioral alterations occur before worm emergence. The purpose of our study was to evaluate the effect of the nematomorph Paragordius varius on the calling behavior of the male house cricket Acheta domesticus . We hypothesized that cricket calling, an energetically expensive and risky behavior, would be a potential target for nematomorph-induced behavioral alterations. We assessed if and how infection with P. varius affects A. domesticus calling behavior and whether the presence of wings at time of exposure to P. varius influenced changes in calling behavior. We recorded the calling behavior of male A. domesticus over the course of their infection after exposure to P. various before or after wing development. Additionally, we assessed whether winged crickets were "callers" or "noncallers" before exposure. We found that regardless of cricket developmental stage (or age) at time of infection, infected crickets spent significantly less time calling than their uninfected counterparts but only during the later stages of infection. Developmental stage at infection did affect whether crickets became callers: when infected before wing development significantly more uninfected crickets initiated calling; there was no difference between infected and uninfected crickets when infected as winged adults. Infection was a factor in whether callers stopped calling, with more infected crickets ceasing to call than uninfected crickets. This is the first study to show that infection with nematomorphs affects calling behavior of their insect host. Cricket calling behavior is immensely complex and although it was difficult to elucidate the adaptive nature of these parasite-induced behavioral changes, this study lays the groundwork for future studies to begin teasing out the factors that will help make the determination between side effect of infection or parasite/host adaptation.

  2. Digestive enzyme activity and trophic behavior in two predator aquatic insects (Plecoptera, Perlidae): a comparative study.

    PubMed

    López-Rodríguez, M J; Trenzado, C E; Tierno de Figueroa, J M; Sanz, A

    2012-05-01

    Plecoptera (Perlidae) are among the major macroinvertebrate predators in stream ecosystems and one of the insect families with lower tolerance to environmental alterations, being usually employed as bioindicators of high water ecological quality. The differences in the trophic roles of the coexisting species have been exclusively studied from their gut contents, while no data are available on the comparative digestive capacity. In the present paper, we make a comparative study of the activity of several digestive enzymes, namely proteases (at different pH), amylase, lipase, trypsin and chymotrypsin, in two species of stoneflies, Perla bipunctata and Dinocras cephalotes, which cohabit in the same stream. The study of digestive enzyme activity together with the analysis of gut contents can contribute to a better understanding of the ecology of these aquatic insects and their role in freshwater food webs. Thus, our results show that the two studied predator species inhabiting in the same stream present specializations on their feeding behaviors, facilitating their coexistence, and also differences in their capacity of use the resources. One of the main findings of this study is that D. cephalotes is able to assimilate a wider trophic resource spectrum and this could be one of the reasons why this species has a wider global distribution in all its geographical range. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Release from prey preservation behavior via prey switch allowed diversification of cuticular hydrocarbon profiles in digger wasps.

    PubMed

    Wurdack, Mareike; Polidori, Carlo; Keller, Alexander; Feldhaar, Heike; Schmitt, Thomas

    2017-11-01

    The cuticle of insects is covered by a layer of hydrocarbons (CHC), whose original function is the protection from desiccation and pathogens. However, in most insects CHC profiles are species specific. While this variability among species was largely linked to communication and recognition functions, additional selective forces may shape insect CHC profiles. Here, we show that in Philanthinae digger wasps (Crabronidae) the CHC profile coevolved with a peculiar brood-care strategy. In particular, we found that the behavior to embalm prey stored in the nest with hydrocarbons is adaptive to protect larval food from fungi in those species hunting for Hymenoptera. The prey embalming secretion is identical in composition to the alkene-dominated CHC profile in these species, suggesting that their profile is adaptively conserved for this purpose. In contrast, prey embalming is not required in those species that switched to Coleoptera as prey. Released from this chemical brood-care strategy, Coleoptera-hunting species considerably diversified their CHC profiles. Differential needs to successfully protect prey types used as larval food have thus driven the diversification of CHCs profiles of female Philanthinae wasps. To the best of our knowledge, this is the first evidence of a direct link between selection pressure for food preservation and CHC diversity. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  4. Filling dynamics of the Brindley's glands in the blood-sucking bug Triatoma infestans (Hemiptera: Reduviidae).

    PubMed

    Palottini, Florencia; González, Andrés; Manrique, Gabriel

    2014-12-01

    The filling dynamics of exocrine defensive glands is an important component of the defensive capacity of an insect in its natural environment. We studied the filling state and reloading rate of the Brindley's glands in the haematophagous Chagas disease vector Triatoma infestans (Hemiptera: Reduviidae). Quantitative analyses of isobutyric acid, the main secretion component, were carried out with glands dissected from adults under different scenarios of development, number of discharging events and feeding conditions. The alarm-pheromone function of the gland secretion was also assessed in bioassays with conspecific nymphs. Although pharate adults have their glands completely developed, these were not full until imaginal ecdysis. If kept undisturbed, the adults maintained a constant gland load, and discharged about 75% of the gland contents upon one disturbance event. While the glands can be discharged several times, full replenishing was not complete after one week, unless the insect had access to food. The escape behavior of nymphs in bioassays correlated with the chemical analyses, with nymphs showing significant avoidance only toward gland discharges from undisturbed or disturbed/fed adults. The results are discussed in reference to the feeding frequency and gregarious behavior of T. infestans under natural conditions, which suggest a relevant role of the filling dynamics of the Brindley's glands in the intraspecific communication of the insect. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Re-Evaluation of the Lower San Fernando Dam. Report 3. The Behavior of Undrained Contractive Sand and Its Effect on Seismic Liquefaction Flow Failures of Earth Structures

    DTIC Science & Technology

    1989-09-01

    34 nrn. 4th World Crnf. n 7rthquake Engr., Vol 2, Santiago , Chile , pp. 1-11. 137. Seed, H.B., Lee, K.L. and Idriss, I.M. (1969): "An Analysis of...391 Fig. 8.10. Approximate Sections Through Large Slide Area Near Lake Rinihue, Chile (after Seed, 1967) . . . 392 Fig. 8.11. Cross Section of...to clarify the fundamental behavior of these soils. Previous work on contractive sands concentrated on steady-state or residual strength

  6. Imbalanced Hemolymph Lipid Levels Affect Feeding Motivation in the Two-Spotted Cricket, Gryllus bimaculatus.

    PubMed

    Konuma, Takahiro; Tsukamoto, Yusuke; Nagasawa, Hiromichi; Nagata, Shinji

    2016-01-01

    Insect feeding behavior is regulated by many intrinsic factors, including hemolymph nutrient levels. Adipokinetic hormone (AKH) is a peptide factor that modulates hemolymph nutrient levels and regulates the nutritional state of insects by triggering the transfer of lipids into the hemolymph. We recently demonstrated that RNA interference (RNAi)-mediated knockdown of the AKH receptor (AKHR) reduces hemolymph lipid levels, causing an increase in the feeding frequency of the two-spotted cricket, Gryllus bimaculatus. This result indicated that reduced hemolymph lipid levels might motivate crickets to feed. In the present study, to elucidate whether hemolymph lipid levels contribute to insect feeding behavior, we attempted to manipulate hemolymph lipid levels via the lipophorin (Lp)-mediated lipid transferring system in G. bimaculatus. Of the constituent proteins in Lp, we focused on apolipophorin-III (GrybiApoLp-III) because of its possible role in facilitating lipid mobilization. First, we used RNAi to reduce the expression of GrybiApoLp-III. RNAi-mediated knockdown of GrybiApoLp-III had little effect on basal hemolymph lipid levels and the amount of food intake. In addition, hemolymph lipid levels remained static even after injecting AKH into GrybiApoLp-IIIRNAi crickets. These observations indicated that ApoLp-III does not maintain basal hemolymph lipid levels in crickets fed ad libitum, but is necessary for mobilizing lipid transfer into the hemolymph following AKH stimulation. Second, Lp (containing lipids) was injected into the hemolymph to induce a temporary increase in hemolymph lipid levels. Consequently, the initiation of feeding was delayed in a dose-dependent manner, indicating that increased hemolymph lipid levels reduced the motivation to feed. Taken together, these data validate the importance of basal hemolymph lipid levels in the control of energy homeostasis and for regulating feeding behavior in crickets.

  7. Imbalanced Hemolymph Lipid Levels Affect Feeding Motivation in the Two-Spotted Cricket, Gryllus bimaculatus

    PubMed Central

    Konuma, Takahiro; Tsukamoto, Yusuke; Nagasawa, Hiromichi; Nagata, Shinji

    2016-01-01

    Insect feeding behavior is regulated by many intrinsic factors, including hemolymph nutrient levels. Adipokinetic hormone (AKH) is a peptide factor that modulates hemolymph nutrient levels and regulates the nutritional state of insects by triggering the transfer of lipids into the hemolymph. We recently demonstrated that RNA interference (RNAi)-mediated knockdown of the AKH receptor (AKHR) reduces hemolymph lipid levels, causing an increase in the feeding frequency of the two-spotted cricket, Gryllus bimaculatus. This result indicated that reduced hemolymph lipid levels might motivate crickets to feed. In the present study, to elucidate whether hemolymph lipid levels contribute to insect feeding behavior, we attempted to manipulate hemolymph lipid levels via the lipophorin (Lp)-mediated lipid transferring system in G. bimaculatus. Of the constituent proteins in Lp, we focused on apolipophorin-III (GrybiApoLp-III) because of its possible role in facilitating lipid mobilization. First, we used RNAi to reduce the expression of GrybiApoLp-III. RNAi-mediated knockdown of GrybiApoLp-III had little effect on basal hemolymph lipid levels and the amount of food intake. In addition, hemolymph lipid levels remained static even after injecting AKH into GrybiApoLp-IIIRNAi crickets. These observations indicated that ApoLp-III does not maintain basal hemolymph lipid levels in crickets fed ad libitum, but is necessary for mobilizing lipid transfer into the hemolymph following AKH stimulation. Second, Lp (containing lipids) was injected into the hemolymph to induce a temporary increase in hemolymph lipid levels. Consequently, the initiation of feeding was delayed in a dose-dependent manner, indicating that increased hemolymph lipid levels reduced the motivation to feed. Taken together, these data validate the importance of basal hemolymph lipid levels in the control of energy homeostasis and for regulating feeding behavior in crickets. PMID:27144650

  8. Reappraising social insect behavior through aversive responsiveness and learning.

    PubMed

    Roussel, Edith; Carcaud, Julie; Sandoz, Jean-Christophe; Giurfa, Martin

    2009-01-01

    The success of social insects can be in part attributed to their division of labor, which has been explained by a response threshold model. This model posits that individuals differ in their response thresholds to task-associated stimuli, so that individuals with lower thresholds specialize in this task. This model is at odds with findings on honeybee behavior as nectar and pollen foragers exhibit different responsiveness to sucrose, with nectar foragers having higher response thresholds to sucrose concentration. Moreover, it has been suggested that sucrose responsiveness correlates with responsiveness to most if not all other stimuli. If this is the case, explaining task specialization and the origins of division of labor on the basis of differences in response thresholds is difficult. To compare responsiveness to stimuli presenting clear-cut differences in hedonic value and behavioral contexts, we measured appetitive and aversive responsiveness in the same bees in the laboratory. We quantified proboscis extension responses to increasing sucrose concentrations and sting extension responses to electric shocks of increasing voltage. We analyzed the relationship between aversive responsiveness and aversive olfactory conditioning of the sting extension reflex, and determined how this relationship relates to division of labor. Sucrose and shock responsiveness measured in the same bees did not correlate, thus suggesting that they correspond to independent behavioral syndromes, a foraging and a defensive one. Bees which were more responsive to shock learned and memorized better aversive associations. Finally, guards were less responsive than nectar foragers to electric shocks, exhibiting higher tolerance to low voltage shocks. Consequently, foragers, which are more sensitive, were the ones learning and memorizing better in aversive conditioning. Our results constitute the first integrative study on how aversive responsiveness affects learning, memory and social organization in honeybees. We suggest that parallel behavioral modules (e.g. appetitive, aversive) coexist within each individual bee and determine its tendency to adopt a given task. This conclusion, which is at odds with a simple threshold model, should open new opportunities for exploring the division of labor in social insects.

  9. Sensorimotor Integration of Antennal Positioning in Flying Insects

    DTIC Science & Technology

    2012-08-02

    honey bees : (Taruni Roy) Behavioral characterization of antennal positioning response in honey bees Figure 9: Plot of wind speeds vs Inter antennal...demonstrate that the antennae in tethered honey bees in the wind tunnel respond to wind flow in a sigmoidal fashion. In contrast to the reported linear...antennal responses (section 1) and ventral nerve cord recordings (section 2) in moths, to whole animal behavior in bees (section 3) 1. Visual input to

  10. COED Transactions, Vol. XI, No. 3, March 1979. LSSP: An Educational Aid to the Study of Linear System Dynamics.

    ERIC Educational Resources Information Center

    Mitchell, Eugene E., Ed.

    The study of the dynamics of physical systems is of importance to all engineering students. LSSP, a Linear System Simulation Program, is used to study the behavior of physical phenomena and systems which may be represented to a good degree of approximation by linear models. Emphasis is placed upon the unity resulting from the mathematical…

  11. Conditional Belief Types

    DTIC Science & Technology

    2016-04-19

    event is the same as conditioning on the event being certain, which formalizes the standard informal interpretation of conditional probability. The game ...theoretic application of our model, discussed within an example, sheds light on a number of issues in the analysis of extensive form games . Type...belief types Block 13: Supplementary Note © 2014 . Published in Games and Economic Behavior, Vol. Ed. 0 87, (0) (2014), (, (0). DoD Components

  12. Diversity and Seasonal Activity of Carrion Beetles (Coleoptera: Silphidae) in Northeastern Georgia

    Treesearch

    Michael D. Ulyshen; James L. Hanula

    2004-01-01

    The Family Silphidae is a small but widespread group of primarily necrophagous beetles. Approximately 175 species are found throughout the world with 30 of these in North America (Arnett and Thomas 2001, American Beetles Vol. 1: 269). Silphids have been the subject of many studies on behavior and ecology and have some forensic importance as well (Carvalho et al. 2000,...

  13. Sexual Orientation and U.S. Military Personnel Policy: An Update of RAND’s 1993 Study

    DTIC Science & Technology

    2010-01-01

    Klepinger, “The Sexual Behavior of Men in the United States,” Family Planning Perspectives, Vol. 25, No. 2, 1993, pp. 52–60. Black, D., Gary Gates, Seth ...Kestnbaum, “Professional Closure in the Military Labor Market: A Critique of Pure Cohesion,” in D. M. Snider and G. L. Watkins , eds., The Future of

  14. Applied Communication, Argumentation, and Debate: Abstracts of Doctoral Dissertations Published in "Dissertation Abstracts International," January through June 1982 (Vol. 42 Nos. 7 through 12).

    ERIC Educational Resources Information Center

    ERIC Clearinghouse on Reading and Communication Skills, Urbana, IL.

    This collection of abstracts is part of a continuing series providing information on recent doctoral dissertations. The 11 titles deal with the following topics: (1) interpersonal communication in the reference interview; (2) the relationship of a principal's communication behavior to the teacher's perceived job satisfaction; (3) the relationship…

  15. Evaluation of Early Childhood Coaching Implementation in Nebraska. Technical Report Vol. 1: Key Findings from Participant Follow Up Survey. CYFS Working Paper 2014-1

    ERIC Educational Resources Information Center

    Jayaraman, Gayatri; Knoche, Lisa; Marvin, Christine; Bainter, Sue

    2014-01-01

    The Nebraska Early Childhood Coach (ECC) training was a 3 day (8 hours) professional development event sponsored by the Nebraska Department of Education, Office of Child Development in 2009-2010. Sixty-five early childhood teachers and related service providers participated for the purpose of learning the basic principles and behaviors associated…

  16. An Instructional Plan Integrating a Community Agency Program: Towns Elementary School, 1972-73. Research and Development Report, Vol. 7, No. 49, April 1974.

    ERIC Educational Resources Information Center

    Branch, Helen M.; Evans, Dale

    The community served by Towns Elementary School has changed from a black neighborhood of upper middle class homeowners to a neighborhood where the majority of the houses are now rented to lower socioeconomic status residents. Pupils now, possibly because of their environmental circumstances, exhibit behaviors which indicate needs for remediation…

  17. Defense Acquisition Research Journal: Strengthening Cost Consciousness, Professionalism, and Technical Excellence

    DTIC Science & Technology

    2016-04-01

    Editor Michael Shoemaker Copy Editor/Circulation Manager Debbie Gonzalez Multimedia Assistant Noelia Gamboa Editing, Design , and Layout The C3 Group ...Schatz Publishing Group CONTENTS | Featured Research A Publication of the Defense Acquisition University April 2016 Vol. 23 No. 2 ISSUE 77 p. 122 The...1998). Examining the relationship between listening effectiveness and leadership emergence: Perceptions, behaviors, and recall. Small Group Research

  18. Reading Instruction: Preschool and Elementary: Abstracts of Doctoral Dissertations Published in "Dissertation Abstracts International," July through September 1978 (Vol. 39 Nos. 1 through 3).

    ERIC Educational Resources Information Center

    ERIC Clearinghouse on Reading and Communication Skills, Urbana, IL.

    This collection of abstracts is part of a continuing series providing information on recent doctoral dissertations. The 25 titles deal with a variety of topics, including the following: learning outcomes produced by single- and multi-grade primary classrooms; the effect of sex-role stereotyped picture books on children's behavior; word recognition…

  19. Cortical Substrate of Haptic Representation

    DTIC Science & Technology

    1993-08-24

    experience and data from primates , we have developed computational models of short-term active memory. Such models may have technological interest...neurobiological work on primate memory. It is on that empirical work that our current theoretical efforts are 5 founded. Our future physiological research...Academy of Sciences, New York, vol. 608, pp. 318-329, 1990. J.M. Fuster - Behavioral electrophysiology of the prefrontal cortex of the primate . Progress

  20. Chiral discrimination of the Japanese beetle sex pheromone and a behavioral antagonist by a pheromone-degrading enzyme.

    PubMed

    Ishida, Yuko; Leal, Walter S

    2008-07-01

    The sophistication of the insect olfactory system is elegantly demonstrated by the reception of sex pheromone by the Japanese beetle. In this insect, two olfactory receptor neurons housed in antennal sensilla placodea are highly sensitive. One neuron specifically detects the sex pheromone produced by conspecific females (R,Z)-5-(-)-(1-decenyl)oxacyclopentan-2-one [(R)-japonilure]. The other neuron is tuned to (S)-japonilure, a sex pheromone from a closely related species and a behavioral antagonist for the Japanese beetle. These chemical signals are enzymatically terminated by antennal esterases that open the lactone rings to form physiologically inactive hydroxyacids. We have isolated a pheromone-degrading enzyme, PjapPDE, from >100,000 antennae of the Japanese beetle. PjapPDE was demonstrated to be expressed only in the antennal tissues housing the pheromone-detecting sensilla placodea. Baculovirus expression generated recombinant PjapPDE with likely the same posttranslational modifications as the native enzyme. Kinetic studies with pure native and recombinant PjapPDE showed a clear substrate preference, with an estimated half-life in vivo for the sex pheromone and a behavioral antagonist of approximately 30 and approximately 90 ms, respectively.

Top