Sample records for insect olfactory learning

  1. Effects of Caffeine on Olfactory Learning in Crickets.

    PubMed

    Sugimachi, Seigo; Matsumoto, Yukihisa; Mizunami, Makoto; Okada, Jiro

    2016-10-01

    Caffeine is a plant-derived alkaloid that is generally known as a central nervous system (CNS) stimulant. In order to examine the effects of caffeine on higher CNS functions in insects, we used an appetitive olfactory learning paradigm for the cricket Gryllus bimaculatus. Crickets can form significant long-term memories (LTMs) after repetitive training sessions, during which they associate a conditioned stimulus (CS: odor) with an unconditioned stimulus (US: reward). Administration of hemolymphal injections of caffeine established LTM after only single-trial conditioning over a wide range of caffeine dosages (1.6 µµg/kg to 39 mg/kg). We investigated the physiological mechanisms underlying this enhancement of olfactory learning performance pharmacologically, focusing on three major physiological roles of caffeine: 1) inhibition of phosphodiesterase (PDE), 2) agonism of ryanodine receptors, and 3) antagonism of adenosine receptors. Application of drugs relevant to these actions resulted in significant effects on LTM formation. These results suggest that externally applied caffeine enhances LTM formation in insect olfactory learning via multiple cellular mechanisms.

  2. Synthesizing Neurophysiology, Genetics, Behaviour and Learning to Produce Whole-Insect Programmable Sensors to Detect Volatile Chemicals.

    USDA-ARS?s Scientific Manuscript database

    Most insects have evolved highly sensitive olfactory systems which respond to odors in their environment. The extremely sensitive nature of the insect olfaction system is enhanced by the ability to learn to associate external stimuli with resources, such as food, hosts, and mates. There have been a ...

  3. Combinatorial Codes and Labeled Lines: How Insects Use Olfactory Cues to Find and Judge Food, Mates, and Oviposition Sites in Complex Environments

    PubMed Central

    Haverkamp, Alexander; Hansson, Bill S.; Knaden, Markus

    2018-01-01

    Insects, including those which provide vital ecosystems services as well as those which are devastating pests or disease vectors, locate their resources mainly based on olfaction. Understanding insect olfaction not only from a neurobiological but also from an ecological perspective is therefore crucial to balance insect control and conservation. However, among all sensory stimuli olfaction is particularly hard to grasp. Our chemical environment is made up of thousands of different compounds, which might again be detected by our nose in multiple ways. Due to this complexity, researchers have only recently begun to explore the chemosensory ecology of model organisms such as Drosophila, linking the tools of chemical ecology to those of neurogenetics. This cross-disciplinary approach has enabled several studies that range from single odors and their ecological relevance, via olfactory receptor genes and neuronal processing, up to the insects' behavior. We learned that the insect olfactory system employs strategies of combinatorial coding to process general odors as well as labeled lines for specific compounds that call for an immediate response. These studies opened new doors to the olfactory world in which insects feed, oviposit, and mate. PMID:29449815

  4. Drosophila Learn Opposing Components of a Compound Food Stimulus

    PubMed Central

    Das, Gaurav; Klappenbach, Martín; Vrontou, Eleftheria; Perisse, Emmanuel; Clark, Christopher M.; Burke, Christopher J.; Waddell, Scott

    2014-01-01

    Summary Dopaminergic neurons provide value signals in mammals and insects [1–3]. During Drosophila olfactory learning, distinct subsets of dopaminergic neurons appear to assign either positive or negative value to odor representations in mushroom body neurons [4–9]. However, it is not known how flies evaluate substances that have mixed valence. Here we show that flies form short-lived aversive olfactory memories when trained with odors and sugars that are contaminated with the common insect repellent DEET. This DEET-aversive learning required the MB-MP1 dopaminergic neurons that are also required for shock learning [7]. Moreover, differential conditioning with DEET versus shock suggests that formation of these distinct aversive olfactory memories relies on a common negatively reinforcing dopaminergic mechanism. Surprisingly, as time passed after training, the behavior of DEET-sugar-trained flies reversed from conditioned odor avoidance into odor approach. In addition, flies that were compromised for reward learning exhibited a more robust and longer-lived aversive-DEET memory. These data demonstrate that flies independently process the DEET and sugar components to form parallel aversive and appetitive olfactory memories, with distinct kinetics, that compete to guide learned behavior. PMID:25042590

  5. The role of the Drosophila lateral horn in olfactory information processing and behavioral response.

    PubMed

    Schultzhaus, Janna N; Saleem, Sehresh; Iftikhar, Hina; Carney, Ginger E

    2017-04-01

    Animals must rapidly and accurately process environmental information to produce the correct behavioral responses. Reactions to previously encountered as well as to novel but biologically important stimuli are equally important, and one understudied region in the insect brain plays a role in processing both types of stimuli. The lateral horn is a higher order processing center that mainly processes olfactory information and is linked via olfactory projection neurons to another higher order learning center, the mushroom body. This review focuses on the lateral horn of Drosophila where most functional studies have been performed. We discuss connectivity between the primary olfactory center, the antennal lobe, and the lateral horn and mushroom body. We also present evidence for the lateral horn playing roles in innate behavioral responses by encoding biological valence to novel odor cues and in learned responses to previously encountered odors by modulating neural activity within the mushroom body. We describe how these processes contribute to acceptance or avoidance of appropriate or inappropriate mates and food, as well as the identification of predators. The lateral horn is a sexually dimorphic and plastic region of the brain that modulates other regions of the brain to ensure that insects produce rapid and effective behavioral responses to both novel and learned stimuli, yet multiple gaps exist in our knowledge of this important center. We anticipate that future studies on olfactory processing, learning, and innate behavioral responses will include the lateral horn in their examinations, leading to a more comprehensive understanding of olfactory information relay and resulting behaviors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Parallel Olfactory Processing in the Honey Bee Brain: Odor Learning and Generalization under Selective Lesion of a Projection Neuron Tract

    PubMed Central

    Carcaud, Julie; Giurfa, Martin; Sandoz, Jean Christophe

    2016-01-01

    The function of parallel neural processing is a fundamental problem in Neuroscience, as it is found across sensory modalities and evolutionary lineages, from insects to humans. Recently, parallel processing has attracted increased attention in the olfactory domain, with the demonstration in both insects and mammals that different populations of second-order neurons encode and/or process odorant information differently. Among insects, Hymenoptera present a striking olfactory system with a clear neural dichotomy from the periphery to higher-order centers, based on two main tracts of second-order (projection) neurons: the medial and lateral antennal lobe tracts (m-ALT and l-ALT). To unravel the functional role of these two pathways, we combined specific lesions of the m-ALT tract with behavioral experiments, using the classical conditioning of the proboscis extension response (PER conditioning). Lesioned and intact bees had to learn to associate an odorant (1-nonanol) with sucrose. Then the bees were subjected to a generalization procedure with a range of odorants differing in terms of their carbon chain length or functional group. We show that m-ALT lesion strongly affects acquisition of an odor-sucrose association. However, lesioned bees that still learned the association showed a normal gradient of decreasing generalization responses to increasingly dissimilar odorants. Generalization responses could be predicted to some extent by in vivo calcium imaging recordings of l-ALT neurons. The m-ALT pathway therefore seems necessary for normal classical olfactory conditioning performance. PMID:26834589

  7. Olfactory Mechanisms for Discovery of Odorants to Reduce Insect-Host Contact

    PubMed Central

    Clark, Jonathan T.; Ray, Anandasankar

    2016-01-01

    Insects have developed highly sophisticated and sensitive olfactory systems to find animal or plant hosts for feeding. Some insects vector pathogens that cause diseases in hundreds of millions of people and destroy billions of dollars of food products every year. There is great interest, therefore, in understanding how the insect olfactory system can be manipulated to reduce their contact with hosts. Here, we review recent advances in our understanding of insect olfactory detection mechanisms, which may serve as a foundation for designing insect control programs based on manipulation of their behaviors by using odorants. Because every insect species has a unique set of olfactory receptors and olfactory-mediated behaviors, we focus primarily on general principles of odor detection that potentially apply to most insects. While these mechanisms have emerged from studies on model systems for study of insect olfaction, such as Drosophila melanogaster, they provide a foundation for discovery of odorants to repel insects or reduce host-seeking behavior. PMID:27628342

  8. Learning Modifies Odor Mixture Processing to Improve Detection of Relevant Components

    PubMed Central

    Chen, Jen-Yung; Marachlian, Emiliano; Assisi, Collins; Huerta, Ramon; Smith, Brian H.

    2015-01-01

    Honey bees have a rich repertoire of olfactory learning behaviors, and they therefore are an excellent model to study plasticity in olfactory circuits. Recent behavioral, physiological, and molecular evidence suggested that the antennal lobe, the first relay of the olfactory system in insects and analog to the olfactory bulb in vertebrates, is involved in associative and nonassociative olfactory learning. Here we use calcium imaging to reveal how responses across antennal lobe projection neurons change after association of an input odor with appetitive reinforcement. After appetitive conditioning to 1-hexanol, the representation of an odor mixture containing 1-hexanol becomes more similar to this odor and less similar to the background odor acetophenone. We then apply computational modeling to investigate how changes in synaptic connectivity can account for the observed plasticity. Our study suggests that experience-dependent modulation of inhibitory interactions in the antennal lobe aids perception of salient odor components mixed with behaviorally irrelevant background odors. PMID:25568113

  9. Behavioral and Neurophysiological Study of Olfactory Perception and Learning in Honeybees

    PubMed Central

    Sandoz, Jean Christophe

    2011-01-01

    The honeybee Apis mellifera has been a central insect model in the study of olfactory perception and learning for more than a century, starting with pioneer work by Karl von Frisch. Research on olfaction in honeybees has greatly benefited from the advent of a range of behavioral and neurophysiological paradigms in the Lab. Here I review major findings about how the honeybee brain detects, processes, and learns odors, based on behavioral, neuroanatomical, and neurophysiological approaches. I first address the behavioral study of olfactory learning, from experiments on free-flying workers visiting artificial flowers to laboratory-based conditioning protocols on restrained individuals. I explain how the study of olfactory learning has allowed understanding the discrimination and generalization ability of the honeybee olfactory system, its capacity to grant special properties to olfactory mixtures as well as to retain individual component information. Next, based on the impressive amount of anatomical and immunochemical studies of the bee brain, I detail our knowledge of olfactory pathways. I then show how functional recordings of odor-evoked activity in the brain allow following the transformation of the olfactory message from the periphery until higher-order central structures. Data from extra- and intracellular electrophysiological approaches as well as from the most recent optical imaging developments are described. Lastly, I discuss results addressing how odor representation changes as a result of experience. This impressive ensemble of behavioral, neuroanatomical, and neurophysiological data available in the bee make it an attractive model for future research aiming to understand olfactory perception and learning in an integrative fashion. PMID:22163215

  10. Antennal olfactory sensilla responses to insect chemical repellents in the common bed bug, Cimex lectularius.

    PubMed

    Liu, Feng; Haynes, Kenneth F; Appel, Arthur G; Liu, Nannan

    2014-06-01

    Populations of the common bed bug Cimex lectularius (Hemiptera; Cimicidae), a temporary ectoparasite on both humans and animals, have surged in many developed countries. Similar to other haematophagous arthropods, C. lectularius relies on its olfactory system to detect semiochemicals in the environment, including both attractants and repellents. To elucidate the olfactory responses of the common bed bug to commonly used insect chemical repellents, particularly haematophagous repellents, we investigated the neuronal responses of individual olfactory sensilla in C. lectularius' antennae to 52 insect chemical repellents, both synthetic and botanic. Different types of sensilla displayed highly distinctive response profiles. While C sensilla did not respond to any of the insect chemical repellents, Dγ sensilla proved to be the most sensitive in response to terpene-derived insect chemical repellents. Different chemical repellents elicited neuronal responses with differing temporal characteristics, and the responses of the olfactory sensilla to the insect chemical repellents were dose-dependent, with an olfactory response to the terpene-derived chemical repellent, but not to the non-terpene-derived chemical repellents. Overall, this study furnishes a comprehensive map of the olfactory response of bed bugs to commonly used insect chemical repellents, providing useful information for those developing new agents (attractants or repellents) for bed bug control.

  11. Bt Toxin Cry1Ie Causes No Negative Effects on Survival, Pollen Consumption, or Olfactory Learning in Worker Honey Bees (Hymenoptera: Apidae).

    PubMed

    Dai, Ping-Li; Jia, Hui-Ru; Geng, Li-Li; Diao, Qing-Yun

    2016-04-27

    The honey bee (Apis mellifera L.) is a key nontarget insect in environmental risk assessments of insect-resistant genetically modified crops. In controlled laboratory conditions, we evaluated the potential effects of Cry1Ie toxin on survival, pollen consumption, and olfactory learning of young adult honey bees. We exposed worker bees to syrup containing 20, 200, or 20,000 ng/ml Cry1Ie toxin, and also exposed some bees to 48 ng/ml imidacloprid as a positive control for exposure to a sublethal concentration of a toxic product. Results suggested that Cry1Ie toxin carries no risk to survival, pollen consumption, or learning capabilities of young adult honey bees. However, during oral exposure to the imidacloprid treatments, honey bee learning behavior was affected and bees consumed significantly less pollen than the control and Cry1Ie groups. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Mixture and odorant processing in the olfactory systems of insects: a comparative perspective.

    PubMed

    Clifford, Marie R; Riffell, Jeffrey A

    2013-11-01

    Natural olfactory stimuli are often complex mixtures of volatiles, of which the identities and ratios of constituents are important for odor-mediated behaviors. Despite this importance, the mechanism by which the olfactory system processes this complex information remains an area of active study. In this review, we describe recent progress in how odorants and mixtures are processed in the brain of insects. We use a comparative approach toward contrasting olfactory coding and the behavioral efficacy of mixtures in different insect species, and organize these topics around four sections: (1) Examples of the behavioral efficacy of odor mixtures and the olfactory environment; (2) mixture processing in the periphery; (3) mixture coding in the antennal lobe; and (4) evolutionary implications and adaptations for olfactory processing. We also include pertinent background information about the processing of individual odorants and comparative differences in wiring and anatomy, as these topics have been richly investigated and inform the processing of mixtures in the insect olfactory system. Finally, we describe exciting studies that have begun to elucidate the role of the processing of complex olfactory information in evolution and speciation.

  13. Physical Processes and Real-Time Chemical Measurement of the Insect Olfactory Environment

    PubMed Central

    Abrell, Leif; Hildebrand, John G.

    2009-01-01

    Odor-mediated insect navigation in airborne chemical plumes is vital to many ecological interactions, including mate finding, flower nectaring, and host locating (where disease transmission or herbivory may begin). After emission, volatile chemicals become rapidly mixed and diluted through physical processes that create a dynamic olfactory environment. This review examines those physical processes and some of the analytical technologies available to characterize those behavior-inducing chemical signals at temporal scales equivalent to the olfactory processing in insects. In particular, we focus on two areas of research that together may further our understanding of olfactory signal dynamics and its processing and perception by insects. First, measurement of physical atmospheric processes in the field can provide insight into the spatiotemporal dynamics of the odor signal available to insects. Field measurements in turn permit aspects of the physical environment to be simulated in the laboratory, thereby allowing careful investigation into the links between odor signal dynamics and insect behavior. Second, emerging analytical technologies with high recording frequencies and field-friendly inlet systems may offer new opportunities to characterize natural odors at spatiotemporal scales relevant to insect perception and behavior. Characterization of the chemical signal environment allows the determination of when and where olfactory-mediated behaviors may control ecological interactions. Finally, we argue that coupling of these two research areas will foster increased understanding of the physicochemical environment and enable researchers to determine how olfactory environments shape insect behaviors and sensory systems. PMID:18548311

  14. Anatomy and behavioral function of serotonin receptors in Drosophila melanogaster larvae.

    PubMed

    Huser, Annina; Eschment, Melanie; Güllü, Nazli; Collins, Katharina A N; Böpple, Kathrin; Pankevych, Lyubov; Rolsing, Emilia; Thum, Andreas S

    2017-01-01

    The biogenic amine serotonin (5-HT) is an important neuroactive molecule in the central nervous system of the majority of animal phyla. 5-HT binds to specific G protein-coupled and ligand-gated ion receptors to regulate particular aspects of animal behavior. In Drosophila, as in many other insects this includes the regulation of locomotion and feeding. Due to its genetic amenability and neuronal simplicity the Drosophila larva has turned into a useful model for studying the anatomical and molecular basis of chemosensory behaviors. This is particularly true for the olfactory system, which is mostly described down to the synaptic level over the first three orders of neuronal information processing. Here we focus on the 5-HT receptor system of the Drosophila larva. In a bipartite approach consisting of anatomical and behavioral experiments we describe the distribution and the implications of individual 5-HT receptors on naïve and acquired chemosensory behaviors. Our data suggest that 5-HT1A, 5-HT1B, and 5-HT7 are dispensable for larval naïve olfactory and gustatory choice behaviors as well as for appetitive and aversive associative olfactory learning and memory. In contrast, we show that 5-HT/5-HT2A signaling throughout development, but not as an acute neuronal function, affects associative olfactory learning and memory using high salt concentration as a negative unconditioned stimulus. These findings describe for the first time an involvement of 5-HT signaling in learning and memory in Drosophila larvae. In the longer run these results may uncover developmental, 5-HT dependent principles related to reinforcement processing possibly shared with adult Drosophila and other insects.

  15. Anatomy and behavioral function of serotonin receptors in Drosophila melanogaster larvae

    PubMed Central

    Huser, Annina; Eschment, Melanie; Güllü, Nazli; Collins, Katharina A. N.; Böpple, Kathrin; Pankevych, Lyubov; Rolsing, Emilia; Thum, Andreas S.

    2017-01-01

    The biogenic amine serotonin (5-HT) is an important neuroactive molecule in the central nervous system of the majority of animal phyla. 5-HT binds to specific G protein-coupled and ligand-gated ion receptors to regulate particular aspects of animal behavior. In Drosophila, as in many other insects this includes the regulation of locomotion and feeding. Due to its genetic amenability and neuronal simplicity the Drosophila larva has turned into a useful model for studying the anatomical and molecular basis of chemosensory behaviors. This is particularly true for the olfactory system, which is mostly described down to the synaptic level over the first three orders of neuronal information processing. Here we focus on the 5-HT receptor system of the Drosophila larva. In a bipartite approach consisting of anatomical and behavioral experiments we describe the distribution and the implications of individual 5-HT receptors on naïve and acquired chemosensory behaviors. Our data suggest that 5-HT1A, 5-HT1B, and 5-HT7 are dispensable for larval naïve olfactory and gustatory choice behaviors as well as for appetitive and aversive associative olfactory learning and memory. In contrast, we show that 5-HT/5-HT2A signaling throughout development, but not as an acute neuronal function, affects associative olfactory learning and memory using high salt concentration as a negative unconditioned stimulus. These findings describe for the first time an involvement of 5-HT signaling in learning and memory in Drosophila larvae. In the longer run these results may uncover developmental, 5-HT dependent principles related to reinforcement processing possibly shared with adult Drosophila and other insects. PMID:28777821

  16. Latent Inhibition in an Insect: The Role of Aminergic Signaling

    ERIC Educational Resources Information Center

    Fernandez, Vanesa M.; Giurfa, Martin; Devaud, Jean-Marc; Farina, Walter M.

    2012-01-01

    Latent inhibition (LI) is a decrement in learning performance that results from the nonreinforced pre-exposure of the to-be-conditioned stimulus, in both vertebrates and invertebrates. In vertebrates, LI development involves dopamine and serotonin; in invertebrates there is yet no information. We studied differential olfactory conditioning of the…

  17. Odourant dominance in olfactory mixture processing: what makes a strong odourant?

    PubMed Central

    Schubert, Marco; Sandoz, Jean-Christophe; Galizia, Giovanni; Giurfa, Martin

    2015-01-01

    The question of how animals process stimulus mixtures remains controversial as opposing views propose that mixtures are processed analytically, as the sum of their elements, or holistically, as unique entities different from their elements. Overshadowing is a widespread phenomenon that can help decide between these alternatives. In overshadowing, an individual trained with a binary mixture learns one element better at the expense of the other. Although element salience (learning success) has been suggested as a main explanation for overshadowing, the mechanisms underlying this phenomenon remain unclear. We studied olfactory overshadowing in honeybees to uncover the mechanisms underlying olfactory-mixture processing. We provide, to our knowledge, the most comprehensive dataset on overshadowing to date based on 90 experimental groups involving more than 2700 bees trained either with six odourants or with their resulting 15 binary mixtures. We found that bees process olfactory mixtures analytically and that salience alone cannot predict overshadowing. After normalizing learning success, we found that an unexpected feature, the generalization profile of an odourant, was determinant for overshadowing. Odourants that induced less generalization enhanced their distinctiveness and became dominant in the mixture. Our study thus uncovers features that determine odourant dominance within olfactory mixtures and allows the referring of this phenomenon to differences in neural activity both at the receptor and the central level in the insect nervous system. PMID:25652840

  18. Multisensory integration in Lepidoptera: Insights into flower-visitor interactions.

    PubMed

    Kinoshita, Michiyo; Stewart, Finlay J; Ômura, Hisashi

    2017-04-01

    As most work on flower foraging focuses on bees, studying Lepidoptera can offer fresh perspectives on how sensory capabilities shape the interaction between flowers and insects. Through a combination of innate preferences and learning, many Lepidoptera persistently visit particular flower species. Butterflies tend to rely on their highly developed sense of colour to locate rewarding flowers, while moths have evolved sophisticated olfactory systems towards the same end. However, these modalities can interact in complex ways; for instance, butterflies' colour preference can shift depending on olfactory context. The mechanisms by which such cross-modal interaction occurs are poorly understood, but the mushroom bodies appear to play a central role. Because of the diversity seen within Lepidoptera in terms of their sensory capabilities and the nature of their relationships with flowers, they represent a fruitful avenue for comparative studies to shed light on the co-evolution of flowers and flower-visiting insects. © 2017 WILEY Periodicals, Inc.

  19. Morphology and physiology of the olfactory system of blood-feeding insects.

    PubMed

    Guidobaldi, F; May-Concha, I J; Guerenstein, P G

    2014-01-01

    Several blood-feeding (hematophagous) insects are vectors of a number of diseases including dengue, Chagas disease and leishmaniasis which persistently affect public health throughout Latin America. The vectors of those diseases include mosquitoes, triatomine bugs and sandflies. As vector control is an efficient way to prevent these illnesses it is important to understand the sensory biology of those harmful insects. We study the physiology of the olfactory system of those insects and apply that knowledge on the development of methods to manipulate their behavior. Here we review some of the latest information on insect olfaction with emphasis on hematophagous insects. The insect olfactory sensory neurons are housed inside hair-like organs called sensilla which are mainly distributed on the antenna and mouthparts. The identity of many of the odor compounds that those neurons detect are already known in hematophagous insects. They include several constituents of host (vertebrate) odor, sex, aggregation and alarm pheromones, and compounds related to egg-deposition behavior. Recent work has contributed significant knowledge on how odor information is processed in the insect first odor-processing center in the brain, the antennal lobe. The quality, quantity, and temporal features of the odor stimuli are encoded by the neural networks of the antennal lobe. Information regarding odor mixtures is also encoded. While natural mixtures evoke strong responses, synthetic mixtures that deviate from their natural counterparts in terms of key constituents or proportions of those constituents evoke weaker responses. The processing of olfactory information is largely unexplored in hematophagous insects. However, many aspects of their olfactory behavior are known. As in other insects, responses to relevant single odor compounds are weak while natural mixtures evoke strong responses. Future challenges include studying how information about odor mixtures is processed in their brain. This could help develop highly attractive synthetic odor blends to lure them into traps. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Evolution, Discovery, and Interpretations of Arthropod Mushroom Bodies

    PubMed Central

    Strausfeld, Nicholas J.; Hansen, Lars; Li, Yongsheng; Gomez, Robert S.; Ito, Kei

    1998-01-01

    Mushroom bodies are prominent neuropils found in annelids and in all arthropod groups except crustaceans. First explicitly identified in 1850, the mushroom bodies differ in size and complexity between taxa, as well as between different castes of a single species of social insect. These differences led some early biologists to suggest that the mushroom bodies endow an arthropod with intelligence or the ability to execute voluntary actions, as opposed to innate behaviors. Recent physiological studies and mutant analyses have led to divergent interpretations. One interpretation is that the mushroom bodies conditionally relay to higher protocerebral centers information about sensory stimuli and the context in which they occur. Another interpretation is that they play a central role in learning and memory. Anatomical studies suggest that arthropod mushroom bodies are predominately associated with olfactory pathways except in phylogenetically basal insects. The prominent olfactory input to the mushroom body calyces in more recent insect orders is an acquired character. An overview of the history of research on the mushroom bodies, as well as comparative and evolutionary considerations, provides a conceptual framework for discussing the roles of these neuropils. PMID:10454370

  1. Long-Term Memory Shapes the Primary Olfactory Center of an Insect Brain

    ERIC Educational Resources Information Center

    Hourcade, Benoit; Perisse, Emmanuel; Devaud, Jean-Marc; Sandoz, Jean-Christophe

    2009-01-01

    The storage of stable memories is generally considered to rely on changes in the functional properties and/or the synaptic connectivity of neural networks. However, these changes are not easily tractable given the complexity of the learning procedures and brain circuits studied. Such a search can be narrowed down by studying memories of specific…

  2. Context-Dependent Olfactory Learning in an Insect

    ERIC Educational Resources Information Center

    Matsumoto, Yukihisa; Mizunami, Makoto

    2004-01-01

    We studied the capability of the cricket "Gryllus bimaculatus" to select one of a pair of odors and to avoid the other in one context and to do the opposite in another context. One group of crickets was trained to associate one of a pair of odors (conditioned stimulus, CS1) with water reward (appetitive unconditioned stimulus, US+) and another…

  3. Learning pattern recognition and decision making in the insect brain

    NASA Astrophysics Data System (ADS)

    Huerta, R.

    2013-01-01

    We revise the current model of learning pattern recognition in the Mushroom Bodies of the insects using current experimental knowledge about the location of learning, olfactory coding and connectivity. We show that it is possible to have an efficient pattern recognition device based on the architecture of the Mushroom Bodies, sparse code, mutual inhibition and Hebbian leaning only in the connections from the Kenyon cells to the output neurons. We also show that despite the conventional wisdom that believes that artificial neural networks are the bioinspired model of the brain, the Mushroom Bodies actually resemble very closely Support Vector Machines (SVMs). The derived SVM learning rules are situated in the Mushroom Bodies, are nearly identical to standard Hebbian rules, and require inhibition in the output. A very particular prediction of the model is that random elimination of the Kenyon cells in the Mushroom Bodies do not impair the ability to recognize odorants previously learned.

  4. Ionotropic crustacean olfactory receptors.

    PubMed

    Corey, Elizabeth A; Bobkov, Yuriy; Ukhanov, Kirill; Ache, Barry W

    2013-01-01

    The nature of the olfactory receptor in crustaceans, a major group of arthropods, has remained elusive. We report that spiny lobsters, Panulirus argus, express ionotropic receptors (IRs), the insect chemosensory variants of ionotropic glutamate receptors. Unlike insects IRs, which are expressed in a specific subset of olfactory cells, two lobster IR subunits are expressed in most, if not all, lobster olfactory receptor neurons (ORNs), as confirmed by antibody labeling and in situ hybridization. Ligand-specific ORN responses visualized by calcium imaging are consistent with a restricted expression pattern found for other potential subunits, suggesting that cell-specific expression of uncommon IR subunits determines the ligand sensitivity of individual cells. IRs are the only type of olfactory receptor that we have detected in spiny lobster olfactory tissue, suggesting that they likely mediate olfactory signaling. Given long-standing evidence for G protein-mediated signaling in activation of lobster ORNs, this finding raises the interesting specter that IRs act in concert with second messenger-mediated signaling.

  5. Roles of Aminergic Neurons in Formation and Recall of Associative Memory in Crickets

    PubMed Central

    Mizunami, Makoto; Matsumoto, Yukihisa

    2010-01-01

    We review recent progress in the study of roles of octopaminergic (OA-ergic) and dopaminergic (DA-ergic) signaling in insect classical conditioning, focusing on our studies on crickets. Studies on olfactory learning in honey bees and fruit-flies have suggested that OA-ergic and DA-ergic neurons convey reinforcing signals of appetitive unconditioned stimulus (US) and aversive US, respectively. Our work suggested that this is applicable to olfactory, visual pattern, and color learning in crickets, indicating that this feature is ubiquitous in learning of various sensory stimuli. We also showed that aversive memory decayed much faster than did appetitive memory, and we proposed that this feature is common in insects and humans. Our study also suggested that activation of OA- or DA-ergic neurons is needed for appetitive or aversive memory recall, respectively. To account for this finding, we proposed a model in which it is assumed that two types of synaptic connections are strengthened by conditioning and are activated during memory recall, one type being connections from neurons representing conditioned stimulus (CS) to neurons inducing conditioned response and the other being connections from neurons representing CS to OA- or DA-ergic neurons representing appetitive or aversive US, respectively. The former is called stimulus–response (S–R) connection and the latter is called stimulus–stimulus (S–S) connection by theorists studying classical conditioning in vertebrates. Results of our studies using a second-order conditioning procedure supported our model. We propose that insect classical conditioning involves the formation of S–S connection and its activation for memory recall, which are often called cognitive processes. PMID:21119781

  6. Olfactory modulation by dopamine in the context of aversive learning

    PubMed Central

    Riffell, Jeffrey A.; Martin, Joshua P.; Gage, Stephanie L.; Nighorn, Alan J.

    2012-01-01

    The need to detect and process sensory cues varies in different behavioral contexts. Plasticity in sensory coding can be achieved by the context-specific release of neuromodulators in restricted brain areas. The context of aversion triggers the release of dopamine in the insect brain, yet the effects of dopamine on sensory coding are unknown. In this study, we characterize the morphology of dopaminergic neurons that innervate each of the antennal lobes (ALs; the first synaptic neuropils of the olfactory system) of the moth Manduca sexta and demonstrate with electrophysiology that dopamine enhances odor-evoked responses of the majority of AL neurons while reducing the responses of a small minority. Because dopamine release in higher brain areas mediates aversive learning we developed a naturalistic, ecologically inspired aversive learning paradigm in which an innately appetitive host plant floral odor is paired with a mimic of the aversive nectar of herbivorized host plants. This pairing resulted in a decrease in feeding behavior that was blocked when dopamine receptor antagonists were injected directly into the ALs. These results suggest that a transient dopaminergic enhancement of sensory output from the AL contributes to the formation of aversive memories. We propose a model of olfactory modulation in which specific contexts trigger the release of different neuromodulators in the AL to increase olfactory output to downstream areas of processing. PMID:22552185

  7. Associative learning for danger avoidance nullifies innate positive chemotaxis to host olfactory stimuli in a parasitic wasp

    NASA Astrophysics Data System (ADS)

    Benelli, Giovanni; Stefanini, Cesare; Giunti, Giulia; Geri, Serena; Messing, Russell H.; Canale, Angelo

    2014-09-01

    Animals rely on associative learning for a wide range of purposes, including danger avoidance. This has been demonstrated for several insects, including cockroaches, mosquitoes, drosophilid flies, paper wasps, stingless bees, bumblebees and honeybees, but less is known for parasitic wasps. We tested the ability of Psyttalia concolor (Hymenoptera: Braconidae) females to associate different dosages of two innately attractive host-induced plant volatiles (HIPVs), ethyl octanoate and decanal, with danger (electric shocks). We conducted an associative treatment involving odours and shocks and two non-associative controls involving shocks but not odours and odours but not shocks. In shock-only and odour-only trained wasps, females preferred on HIPV-treated than on blank discs. In associative-trained wasps, however, P. concolor's innate positive chemotaxis for HIPVs was nullified (lowest HIPV dosage tested) or reversed (highest HIPV dosage tested). This is the first report of associative learning of olfactory cues for danger avoidance in parasitic wasps, showing that the effects of learning can override innate positive chemotaxes.

  8. Interactions of two odorant-binding proteins from Cnaphalocrocis medinalis Güenée (Lepidoptera: Pyralidae)

    USDA-ARS?s Scientific Manuscript database

    It is well known that the odorant-binding proteins (OBPs) play important roles in insect olfactory systems. However, little attention has been paid to interactions among different OBPs within the same insect antennal sensilla. To explore the interactions of OBPs in olfactory coding in the rice leaff...

  9. Access to the odor world: olfactory receptors and their role for signal transduction in insects.

    PubMed

    Fleischer, Joerg; Pregitzer, Pablo; Breer, Heinz; Krieger, Jürgen

    2018-02-01

    The sense of smell enables insects to recognize and discriminate a broad range of volatile chemicals in their environment originating from prey, host plants and conspecifics. These olfactory cues are received by olfactory sensory neurons (OSNs) that relay information about food sources, oviposition sites and mates to the brain and thus elicit distinct odor-evoked behaviors. Research over the last decades has greatly advanced our knowledge concerning the molecular basis underlying the reception of odorous compounds and the mechanisms of signal transduction in OSNs. The emerging picture clearly indicates that OSNs of insects recognize odorants and pheromones by means of ligand-binding membrane proteins encoded by large and diverse families of receptor genes. In contrast, the mechanisms of the chemo-electrical transduction process are not fully understood; the present status suggests a contribution of ionotropic as well as metabotropic mechanisms. In this review, we will summarize current knowledge on the peripheral mechanisms of odor sensing in insects focusing on olfactory receptors and their specific role in the recognition and transduction of odorant and pheromone signals by OSNs.

  10. Topographic mapping--the olfactory system.

    PubMed

    Imai, Takeshi; Sakano, Hitoshi; Vosshall, Leslie B

    2010-08-01

    Sensory systems must map accurate representations of the external world in the brain. Although the physical senses of touch and vision build topographic representations of the spatial coordinates of the body and the field of view, the chemical sense of olfaction maps discontinuous features of chemical space, comprising an extremely large number of possible odor stimuli. In both mammals and insects, olfactory circuits are wired according to the convergence of axons from sensory neurons expressing the same odorant receptor. Synapses are organized into distinctive spherical neuropils--the olfactory glomeruli--that connect sensory input with output neurons and local modulatory interneurons. Although there is a strong conservation of form in the olfactory maps of mammals and insects, they arise using divergent mechanisms. Olfactory glomeruli provide a unique solution to the problem of mapping discontinuous chemical space onto the brain.

  11. Use of an innovative T-tube maze assay and the proboscis extension response assay to assess sublethal effects of GM products and pesticides on learning capacity of the honey bee Apis mellifera L.

    PubMed

    Han, Peng; Niu, Chang-Ying; Lei, Chao-Liang; Cui, Jin-Jie; Desneux, Nicolas

    2010-11-01

    Transgenic Cry1Ac+CpTI cotton (CCRI41) is a promising cotton cultivar throughout China but side effects and especially sublethal effects of this transgenic cultivar on beneficial insects remain poorly studied. More specifically potential sublethal effects on behavioural traits of the honey bee Apis mellifera L. have not been formally assessed despite the importance of honey bees for pollination. The goal of our study was to assess potential effects of CCRI41 cotton pollen on visual and olfactory learning by honey bees. After a 7-day oral chronic exposure to honey mixed with either CCRI41 pollen, imidacloprid-treated conventional pollen (used as positive sublethal control) or conventional pollen (control), learning performance was evaluated by the classical proboscis extension reflex (PER) procedure as well as a T-tube maze test. The latter assay was designed as a new device to assess potential side effects of pesticides on visual associative learning of honey bees. These two procedures were complementary because the former focused on olfactory learning while the latter was involved in visual learning based on visual orientation ability. Oral exposure to CCRI41 pollen did not affect learning capacities of honey bees in both the T-tube maze and PER tests. However, exposure to imidacloprid resulted in reduced visual learning capacities in T-tube maze evaluation and decreased olfactory learning performances measured with PER. The implications of these results are discussed in terms of risks of transgenic CCRI41 cotton crops for honey bees.

  12. Proteomics Reveals the Molecular Underpinnings of Stronger Learning and Memory in Eastern Compared to Western Bees*

    PubMed Central

    Meng, Lifeng; Huo, Xinmei; Feng, Mao; Fang, Yu; Han, Bin; Hu, Han; Wu, Fan; Li, Jianke

    2018-01-01

    The eastern (Apis cerana cerana, Acc) and western (Apis mellifera ligustica, Aml) honeybee are two major honeybee species. Surprisingly, little is known about the fundamental molecular neurobiology of brain suborgans of Acc and Aml. We characterized and compared the proteomes of mushroom bodies (MBs), antennal lobes (ALs) and optical lobes (OLs) in the brain of both species, and biologically validated the functions related to learning and memory. Acc and Aml have evolved similar proteome signatures in MBs and OLs to drive the domain-specific neural activities. In MBs of both species, commonly enriched and enhanced functional groups related to protein metabolism and Ca2+ transport relative to ALs and OLs, suggests that proteins and Ca2+ are vital for consolidating learning and memory via modulation of synaptic structure and signal transduction. Furthermore, in OLs of both species, the mainly enriched ribonucleoside metabolism suggests its vital role as second messenger in promoting phototransduction. Notably, in ALs of both species, distinct proteome settings have shaped to prime olfactory learning and memory. In ALs of Acc, this is supported by the enriched cytoskeleton organization to sustain olfactory signaling through modulation of plasticity in glomeruli and intracellular transport. In ALs of Aml, however, the enriched functional groups implicated in hydrogen ion transport are indicative of their importance in supporting olfactory processes by regulation of synaptic transmission. The biological confirmation of enhanced activities of protein metabolism and signal transduction in ALs and MBs of Acc relative to in Aml demonstrates that a stronger sense of olfactory learning and memory has evolved in Acc. The reported first in-depth proteome data of honeybee brain suborgans provide a novel insight into the molecular basis of neurobiology, and is potentially useful for further neurological studies in honeybees and other insects. PMID:29187519

  13. Circuit oscillations in odor perception and memory.

    PubMed

    Kay, Leslie M

    2014-01-01

    Olfactory system neural oscillations as seen in the local field potential have been studied for many decades. Recent research has shown that there is a functional role for the most studied gamma oscillations (40-100Hz in rats and mice, and 20Hz in insects), without which fine odor discrimination is poor. When these oscillations are increased artificially, fine discrimination is increased, and when rats learn difficult and highly overlapping odor discriminations, gamma is increased in power. Because of the depth of study on this oscillation, it is possible to point to specific changes in neural firing patterns as represented by the increase in gamma oscillation amplitude. However, we know far less about the mechanisms governing beta oscillations (15-30Hz in rats and mice), which are best associated with associative learning of responses to odor stimuli. These oscillations engage every part of the olfactory system that has so far been tested, plus the hippocampus, and the beta oscillation frequency band is the one that is most reliably coherent with other regions during odor processing. Respiratory oscillations overlapping with the theta frequency band (2-12Hz) are associated with odor sniffing and normal breathing in rats. They also show coupling in some circumstances between olfactory areas and rare coupling between the hippocampus and olfactory bulb. The latter occur in specific learning conditions in which coherence strength is negatively or positively correlated with performance, depending on the task. There is still much to learn about the role of neural oscillations in learning and memory, but techniques that have been brought to bear on gamma oscillations (current source density, computational modeling, slice physiology, behavioral studies) should deliver much needed knowledge of these events. © 2014 Elsevier B.V. All rights reserved.

  14. A putative vesicular transporter expressed in Drosophila mushroom bodies that mediates sexual behavior may define a novel neurotransmitter system

    PubMed Central

    Brooks, Elizabeth S.; Greer, Christina L.; Romero-Calderón, Rafael; Serway, Christine N.; Grygoruk, Anna; Haimovitz, Jasmine M.; Nguyen, Bac T.; Najibi, Rod; Tabone, Christopher J.; de Belle, J. Steven; Krantz, David E.

    2011-01-01

    Summary Storage and release of classical and amino acid neurotransmitters requires vesicular transporters. Some neurons lack known vesicular transporters, suggesting additional neurotransmitter systems remain unidentified. Insect mushroom bodies (MBs) are critical for several behaviors, including learning, but the neurotransmitters released by the intrinsic Kenyon cells (KCs) remain unknown. Likewise, KCs do not express a known vesicular transporter. We report the identification of a novel Drosophila gene portabella (prt) that is structurally similar to known vesicular transporters. Both larval and adult brains express PRT in the KCs of the MBs. Additional PRT cells project to the central complex and optic ganglia. prt mutation causes an olfactory learning deficit and an unusual defect in the male’s position during copulation that is rescued by expression in KCs. Since prt is expressed in neurons that lack other known vesicular transporters or neurotransmitters, it may define a previously unknown neurotransmitter system responsible for sexual behavior and a component of olfactory learning. PMID:22017990

  15. Insect odorant receptors are molecular targets of the insect repellent DEET.

    PubMed

    Ditzen, Mathias; Pellegrino, Maurizio; Vosshall, Leslie B

    2008-03-28

    DEET (N,N-diethyl-meta-toluamide) is the world's most widely used topical insect repellent, with broad effectiveness against most insects. Its mechanism of action and molecular target remain unknown. Here, we show that DEET blocks electrophysiological responses of olfactory sensory neurons to attractive odors in Anopheles gambiae and Drosophila melanogaster. DEET inhibits behavioral attraction to food odors in Drosophila, and this inhibition requires the highly conserved olfactory co-receptor OR83b. DEET inhibits odor-evoked currents mediated by the insect odorant receptor complex, comprising a ligand-binding subunit and OR83b. We conclude that DEET masks host odor by inhibiting subsets of heteromeric insect odorant receptors that require the OR83b co-receptor. The identification of candidate molecular targets for the action of DEET may aid in the design of safer and more effective insect repellents.

  16. The stimulatory Gα(s) protein is involved in olfactory signal transduction in Drosophila.

    PubMed

    Deng, Ying; Zhang, Weiyi; Farhat, Katja; Oberland, Sonja; Gisselmann, Günter; Neuhaus, Eva M

    2011-04-07

    Seven-transmembrane receptors typically mediate olfactory signal transduction by coupling to G-proteins. Although insect odorant receptors have seven transmembrane domains like G-protein coupled receptors, they have an inverted membrane topology, constituting a key difference between the olfactory systems of insects and other animals. While heteromeric insect ORs form ligand-activated non-selective cation channels in recombinant expression systems, the evidence for an involvement of cyclic nucleotides and G-proteins in odor reception is inconsistent. We addressed this question in vivo by analyzing the role of G-proteins in olfactory signaling using electrophysiological recordings. We found that Gα(s) plays a crucial role for odorant induced signal transduction in OR83b expressing olfactory sensory neurons, but not in neurons expressing CO₂ responsive proteins GR21a/GR63a. Moreover, signaling of Drosophila ORs involved Gα(s) also in a heterologous expression system. In agreement with these observations was the finding that elevated levels of cAMP result in increased firing rates, demonstrating the existence of a cAMP dependent excitatory signaling pathway in the sensory neurons. Together, we provide evidence that Gα(s) plays a role in the OR mediated signaling cascade in Drosophila.

  17. Using Single Sensillum Recording to Detect Olfactory Neuron Responses of Bed Bugs to Semiochemicals.

    PubMed

    Liu, Feng; Liu, Nannan

    2016-01-18

    The insect olfactory system plays an important role in detecting semiochemicals in the environment. In particular, the antennal sensilla which house single or multiple neurons inside, are considered to make the major contribution in responding to the chemical stimuli. By directly recording action potential in the olfactory sensillum after exposure to stimuli, single sensillum recording (SSR) technique provides a powerful approach for investigating the neural responses of insects to chemical stimuli. For the bed bug, which is a notorious human parasite, multiple types of olfactory sensillum have been characterized. In this study, we demonstrated neural responses of bed bug olfactory sensilla to two chemical stimuli and the dose-dependent responses to one of them using the SSR method. This approach enables researchers to conduct early screening for individual chemical stimuli on the bed bug olfactory sensilla, which would provide valuable information for the development of new bed bug attractants or repellents and benefits the bed bug control efforts.

  18. Using Single Sensillum Recording to Detect Olfactory Neuron Responses of Bed Bugs to Semiochemicals

    PubMed Central

    Liu, Feng; Liu, Nannan

    2016-01-01

    The insect olfactory system plays an important role in detecting semiochemicals in the environment. In particular, the antennal sensilla which house single or multiple neurons inside, are considered to make the major contribution in responding to the chemical stimuli. By directly recording action potential in the olfactory sensillum after exposure to stimuli, single sensillum recording (SSR) technique provides a powerful approach for investigating the neural responses of insects to chemical stimuli. For the bed bug, which is a notorious human parasite, multiple types of olfactory sensillum have been characterized. In this study, we demonstrated neural responses of bed bug olfactory sensilla to two chemical stimuli and the dose-dependent responses to one of them using the SSR method. This approach enables researchers to conduct early screening for individual chemical stimuli on the bed bug olfactory sensilla, which would provide valuable information for the development of new bed bug attractants or repellents and benefits the bed bug control efforts. PMID:26862929

  19. Learning and discrimination of cuticular hydrocarbons in a social insect

    PubMed Central

    van Wilgenburg, Ellen; Felden, Antoine; Choe, Dong-Hwan; Sulc, Robert; Luo, Jun; Shea, Kenneth J.; Elgar, Mark A.; Tsutsui, Neil D.

    2012-01-01

    Social insect cuticular hydrocarbon (CHC) mixtures are among the most complex chemical cues known and are important in nest-mate, caste and species recognition. Despite our growing knowledge of the nature of these cues, we have very little insight into how social insects actually perceive and discriminate among these chemicals. In this study, we use the newly developed technique of differential olfactory conditioning to pure, custom-designed synthetic colony odours to analyse signal discrimination in Argentine ants, Linepithema humile. Our results show that tri-methyl alkanes are more easily learned than single-methyl or straight-chain alkanes. In addition, we reveal that Argentine ants can discriminate between hydrocarbons with different branching patterns and the same chain length, but not always between hydrocarbons with the same branching patterns but different chain length. Our data thus show that biochemical characteristics influence those compounds that ants can discriminate between, and which thus potentially play a role in chemical signalling and nest-mate recognition. PMID:21831880

  20. Use of an innovative T-tube maze assay and the proboscis extension response assay to assess sublethal effects of GM products and pesticides on learning capacity of the honey bee Apis mellifera L.

    PubMed Central

    Han, Peng; Lei, Chao-Liang; Cui, Jin-Jie; Desneux, Nicolas

    2010-01-01

    Transgenic Cry1Ac+CpTI cotton (CCRI41) is a promising cotton cultivar throughout China but side effects and especially sublethal effects of this transgenic cultivar on beneficial insects remain poorly studied. More specifically potential sublethal effects on behavioural traits of the honey bee Apis mellifera L. have not been formally assessed despite the importance of honey bees for pollination. The goal of our study was to assess potential effects of CCRI41 cotton pollen on visual and olfactory learning by honey bees. After a 7-day oral chronic exposure to honey mixed with either CCRI41 pollen, imidacloprid-treated conventional pollen (used as positive sublethal control) or conventional pollen (control), learning performance was evaluated by the classical proboscis extension reflex (PER) procedure as well as a T-tube maze test. The latter assay was designed as a new device to assess potential side effects of pesticides on visual associative learning of honey bees. These two procedures were complementary because the former focused on olfactory learning while the latter was involved in visual learning based on visual orientation ability. Oral exposure to CCRI41 pollen did not affect learning capacities of honey bees in both the T-tube maze and PER tests. However, exposure to imidacloprid resulted in reduced visual learning capacities in T-tube maze evaluation and decreased olfactory learning performances measured with PER. The implications of these results are discussed in terms of risks of transgenic CCRI41 cotton crops for honey bees. PMID:20872243

  1. Low doses of a neonicotinoid insecticide modify pheromone response thresholds of central but not peripheral olfactory neurons in a pest insect

    PubMed Central

    Rabhi, Kaouther K.; Deisig, Nina; Demondion, Elodie; Le Corre, Julie; Robert, Guillaume; Tricoire-Leignel, Hélène; Lucas, Philippe; Gadenne, Christophe; Anton, Sylvia

    2016-01-01

    Insect pest management relies mainly on neurotoxic insecticides, including neonicotinoids, leaving residues in the environment. There is now evidence that low doses of insecticides can have positive effects on pest insects by enhancing various life traits. Because pest insects often rely on sex pheromones for reproduction, and olfactory synaptic transmission is cholinergic, neonicotinoid residues could modify chemical communication. We recently showed that treatments with different sublethal doses of clothianidin could either enhance or decrease behavioural sex pheromone responses in the male moth, Agrotis ipsilon. We investigated now effects of the behaviourally active clothianidin doses on the sensitivity of the peripheral and central olfactory system. We show with extracellular recordings that both tested clothianidin doses do not influence pheromone responses in olfactory receptor neurons. Similarly, in vivo optical imaging does not reveal any changes in glomerular response intensities to the sex pheromone after clothianidin treatments. The sensitivity of intracellularly recorded antennal lobe output neurons, however, is upregulated by a lethal dose 20 times and downregulated by a dose 10 times lower than the lethal dose 0. This correlates with the changes of behavioural responses after clothianidin treatment and suggests the antennal lobe as neural substrate involved in clothianidin-induced behavioural changes. PMID:26842577

  2. Plasticity in Insect Olfaction: To Smell or Not to Smell?

    PubMed

    Gadenne, Christophe; Barrozo, Romina B; Anton, Sylvia

    2016-01-01

    In insects, olfaction plays a crucial role in many behavioral contexts, such as locating food, sexual partners, and oviposition sites. To successfully perform such behaviors, insects must respond to chemical stimuli at the right moment. Insects modulate their olfactory system according to their physiological state upon interaction with their environment. Here, we review the plasticity of behavioral responses to different odor types according to age, feeding state, circadian rhythm, and mating status. We also summarize what is known about the underlying neural and endocrinological mechanisms, from peripheral detection to central nervous integration, and cover neuromodulation from the molecular to the behavioral level. We describe forms of olfactory plasticity that have contributed to the evolutionary success of insects and have provided them with remarkable tools to adapt to their ever-changing environment.

  3. Identification of chemosensory genes from the antennal transcriptome of Indian meal moth Plodia interpunctella.

    PubMed

    Jia, Xiaojian; Zhang, Xiaofang; Liu, Hongmin; Wang, Rongyan; Zhang, Tao

    2018-01-01

    Olfaction plays an indispensable role in mediating insect behavior, such as locating host plants, mating partners, and avoidance of toxins and predators. Olfactory-related proteins are required for olfactory perception of insects. However, very few olfactory-related genes have been reported in Plodia interpunctella up to now. In the present study, we sequenced the antennae transcriptome of P. interpunctella using the next-generation sequencing technology, and identified 117 candidate olfactory-related genes, including 29 odorant-binding proteins (OBPs), 15 chemosensory proteins (CSPs), three sensory neuron membrane proteins (SNMPs), 47 odorant receptors (ORs), 14 ionotropic receptors (IRs) and nine gustatory receptors (GRs). Further analysis of qRT-PCR revealed that nine OBPs, three CSPs, two SNMPs, nine ORs and two GRs were specifically expressed in the male antennae, whereas eight OBPs, six CSPs, one SNMP, 16 ORs, two GRs and seven IRs significantly expressed in the female antennae. Taken together, our results provided useful information for further functional studies on insect genes related to recognition of pheromone and odorant, which might be meaningful targets for pest management.

  4. Identification of chemosensory genes from the antennal transcriptome of Indian meal moth Plodia interpunctella

    PubMed Central

    Liu, Hongmin; Wang, Rongyan

    2018-01-01

    Olfaction plays an indispensable role in mediating insect behavior, such as locating host plants, mating partners, and avoidance of toxins and predators. Olfactory-related proteins are required for olfactory perception of insects. However, very few olfactory-related genes have been reported in Plodia interpunctella up to now. In the present study, we sequenced the antennae transcriptome of P. interpunctella using the next-generation sequencing technology, and identified 117 candidate olfactory-related genes, including 29 odorant-binding proteins (OBPs), 15 chemosensory proteins (CSPs), three sensory neuron membrane proteins (SNMPs), 47 odorant receptors (ORs), 14 ionotropic receptors (IRs) and nine gustatory receptors (GRs). Further analysis of qRT-PCR revealed that nine OBPs, three CSPs, two SNMPs, nine ORs and two GRs were specifically expressed in the male antennae, whereas eight OBPs, six CSPs, one SNMP, 16 ORs, two GRs and seven IRs significantly expressed in the female antennae. Taken together, our results provided useful information for further functional studies on insect genes related to recognition of pheromone and odorant, which might be meaningful targets for pest management. PMID:29304134

  5. Neuroethology of Olfactory-Guided Behavior and Its Potential Application in the Control of Harmful Insects.

    PubMed

    Reisenman, Carolina E; Lei, Hong; Guerenstein, Pablo G

    2016-01-01

    Harmful insects include pests of crops and storage goods, and vectors of human and animal diseases. Throughout their history, humans have been fighting them using diverse methods. The fairly recent development of synthetic chemical insecticides promised efficient crop and health protection at a relatively low cost. However, the negative effects of those insecticides on human health and the environment, as well as the development of insect resistance, have been fueling the search for alternative control tools. New and promising alternative methods to fight harmful insects include the manipulation of their behavior using synthetic versions of "semiochemicals", which are natural volatile and non-volatile substances involved in the intra- and/or inter-specific communication between organisms. Synthetic semiochemicals can be used as trap baits to monitor the presence of insects, so that insecticide spraying can be planned rationally (i.e., only when and where insects are actually present). Other methods that use semiochemicals include insect annihilation by mass trapping, attract-and- kill techniques, behavioral disruption, and the use of repellents. In the last decades many investigations focused on the neural bases of insect's responses to semiochemicals. Those studies help understand how the olfactory system detects and processes information about odors, which could lead to the design of efficient control tools, including odor baits, repellents or ways to confound insects. Here we review our current knowledge about the neural mechanisms controlling olfactory responses to semiochemicals in harmful insects. We also discuss how this neuroethology approach can be used to design or improve pest/vector management strategies.

  6. Neuroethology of Olfactory-Guided Behavior and Its Potential Application in the Control of Harmful Insects

    PubMed Central

    Reisenman, Carolina E.; Lei, Hong; Guerenstein, Pablo G.

    2016-01-01

    Harmful insects include pests of crops and storage goods, and vectors of human and animal diseases. Throughout their history, humans have been fighting them using diverse methods. The fairly recent development of synthetic chemical insecticides promised efficient crop and health protection at a relatively low cost. However, the negative effects of those insecticides on human health and the environment, as well as the development of insect resistance, have been fueling the search for alternative control tools. New and promising alternative methods to fight harmful insects include the manipulation of their behavior using synthetic versions of “semiochemicals”, which are natural volatile and non-volatile substances involved in the intra- and/or inter-specific communication between organisms. Synthetic semiochemicals can be used as trap baits to monitor the presence of insects, so that insecticide spraying can be planned rationally (i.e., only when and where insects are actually present). Other methods that use semiochemicals include insect annihilation by mass trapping, attract-and- kill techniques, behavioral disruption, and the use of repellents. In the last decades many investigations focused on the neural bases of insect's responses to semiochemicals. Those studies help understand how the olfactory system detects and processes information about odors, which could lead to the design of efficient control tools, including odor baits, repellents or ways to confound insects. Here we review our current knowledge about the neural mechanisms controlling olfactory responses to semiochemicals in harmful insects. We also discuss how this neuroethology approach can be used to design or improve pest/vector management strategies. PMID:27445858

  7. Insulin effects on honeybee appetitive behaviour.

    PubMed

    Mengoni Goñalons, Carolina; Guiraud, Marie; de Brito Sanchez, María Gabriela; Farina, Walter M

    2016-10-01

    Worker honeybees (Apis mellifera) carry out multiple tasks throughout their adult lifespan. It has been suggested that the insulin/insulin-like signalling pathway participates in regulating behavioural maturation in eusocial insects. Insulin signalling increases as the honeybee worker transitions from nurse to food processor to forager. As behavioural shifts require differential usage of sensory modalities, our aim was to assess insulin effects on olfactory and gustatory responsiveness as well as on olfactory learning in preforaging honeybee workers of different ages. Adults were reared in the laboratory or in the hive. Immediately after being injected with insulin or vehicle (control), and focusing on the proboscis extension response, bees were tested for their spontaneous response to odours, sucrose responsiveness and ability to discriminate odours through olfactory conditioning. Bees injected with insulin have higher spontaneous odour responses. Sucrose responsiveness and odour discrimination are differentially affected by treatment according to age: whereas insulin increases gustatory responsiveness and diminishes learning abilities of younger workers, it has the opposite effect on older bees. In summary, insulin can improve chemosensory responsiveness in young workers, but also worsens their learning abilities to discriminate odours. The insulin signalling pathway is responsive in young workers, although they are not yet initiating outdoor activities. Our results show strong age-dependent effects of insulin on appetitive behaviour, which uncover differences in insulin signalling regulation throughout the honeybee worker's adulthood. © 2016. Published by The Company of Biologists Ltd.

  8. Olfactory Perceptual Learning Requires Action of Noradrenaline in the Olfactory Bulb: Comparison with Olfactory Associative Learning

    ERIC Educational Resources Information Center

    Vinera, Jennifer; Kermen, Florence; Sacquet, Joëlle; Didier, Anne; Mandairon, Nathalie; Richard, Marion

    2015-01-01

    Noradrenaline contributes to olfactory-guided behaviors but its role in olfactory learning during adulthood is poorly documented. We investigated its implication in olfactory associative and perceptual learning using local infusion of mixed a1-ß adrenergic receptor antagonist (labetalol) in the adult mouse olfactory bulb. We reported that…

  9. Innate responses to putative ancestral hosts: is the attraction of Western flower thrips to pine pollen a result of relict olfactory receptors?

    PubMed

    Abdullah, Zayed S; Ficken, Katherine J; Greenfield, Bethany P J; Butt, Tariq M

    2014-06-01

    Pollinophagy is widely documented in the order Thysanoptera, with representative individuals from six of the nine divergent families known to feed on pollen. Various pollens of the genus Pinus increase the development time, fecundity, longevity, and settling preference of Western Flower Thrips (WFT), Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). Certain species of flower thrips discriminate among pollen types, but no studies have elucidated the olfactory cues that play a role in their pollen preferences. In this study, the volatile organic compounds emitted by pollens of the genus Pinus were elucidated. Various chemicals from pollen headspace elicited electrophysiological responses from WFT antennae. The compound (S)-(-)-verbenone, identified in pollen headspace, attracted WFT in a 4-arm olfactometer. This compound has potential for use in integrated pest management programs against the pest. We present the hypothesis that this polyphagous insect may have retained ancestral 'relict' olfactory receptors through the course of evolution, to explain this attraction to pine pollen. This attraction has allowed the insect to find and exploit an unusual nutrient source that significantly increases its fitness. The study demonstrates how fossil record analysis and subsequent evolutionary knowledge can aid in explaining possibilities as to why some insects sense and respond to chemicals that would otherwise seem peculiar to their ecology, allowing insight into the evolutionary forces that may shape insect olfactory systems over time.

  10. Olfactory system gamma oscillations: the physiological dissection of a cognitive neural system

    PubMed Central

    Rojas-Líbano, Daniel

    2008-01-01

    Oscillatory phenomena have been a focus of dynamical systems research since the time of the classical studies on the pendulum by Galileo. Fast cortical oscillations also have a long and storied history in neurophysiology, and olfactory oscillations have led the way with a depth of explanation not present in the literature of most other cortical systems. From the earliest studies of odor-evoked oscillations by Adrian, many reports have focused on mechanisms and functional associations of these oscillations, in particular for the so-called gamma oscillations. As a result, much information is now available regarding the biophysical mechanisms that underlie the oscillations in the mammalian olfactory system. Recent studies have expanded on these and addressed functionality directly in mammals and in the analogous insect system. Sub-bands within the rodent gamma oscillatory band associated with specific behavioral and cognitive states have also been identified. All this makes oscillatory neuronal networks a unique interdisciplinary platform from which to study neurocognitive and dynamical phenomena in intact, freely behaving animals. We present here a summary of what has been learned about the functional role and mechanisms of gamma oscillations in the olfactory system as a guide for similar studies in other cortical systems. PMID:19003484

  11. Multiple activities of insect repellents on odorant receptors in mosquitoes

    USDA-ARS?s Scientific Manuscript database

    Several lines of evidence suggest that insect repellent molecules reduce mosquito-host contacts by interacting with odorants and odorant receptors (ORs) ultimately affecting olfactory-driven behaviors. We describe the molecular effects of ten insect repellents and a pyrethroid insecticide with known...

  12. Measurements of Chlorpyrifos Levels in Forager Bees and Comparison with Levels that Disrupt Honey Bee Odor-Mediated Learning Under Laboratory Conditions.

    PubMed

    Urlacher, Elodie; Monchanin, Coline; Rivière, Coraline; Richard, Freddie-Jeanne; Lombardi, Christie; Michelsen-Heath, Sue; Hageman, Kimberly J; Mercer, Alison R

    2016-02-01

    Chlorpyrifos is an organophosphate pesticide used around the world to protect food crops against insects and mites. Despite guidelines for chlorpyrifos usage, including precautions to protect beneficial insects, such as honeybees from spray drift, this pesticide has been detected in bees in various countries, indicating that exposure still occurs. Here, we examined chlorpyrifos levels in bees collected from 17 locations in Otago, New Zealand, and compared doses of this pesticide that cause sub-lethal effects on learning performance under laboratory conditions with amounts of chlorpyrifos detected in the bees in the field. The pesticide was detected at 17 % of the sites sampled and in 12 % of the colonies examined. Amounts detected ranged from 35 to 286 pg.bee(-1), far below the LD50 of ~100 ng.bee(-1). We detected no adverse effect of chlorpyrifos on aversive learning, but the formation and retrieval of appetitive olfactory memories was severely affected. Chlorpyrifos fed to bees in amounts several orders of magnitude lower than the LD50, and also lower than levels detected in bees, was found to slow appetitive learning and reduce the specificity of memory recall. As learning and memory play a central role in the behavioral ecology and communication of foraging bees, chlorpyrifos, even in sublethal doses, may threaten the success and survival of this important insect pollinator.

  13. Pest insect olfaction in an insecticide-contaminated environment: info-disruption or hormesis effect.

    PubMed

    Tricoire-Leignel, Hélène; Thany, Steeve Hervé; Gadenne, Christophe; Anton, Sylvia

    2012-01-01

    Most animals, including pest insects, live in an "odor world" and depend strongly on chemical stimuli to get information on their biotic and abiotic environment. Although integrated pest management strategies including the use of insect growth regulators (IGRs) are increasingly developed, most insect pest treatments rely on neurotoxic chemicals. These molecules are known to disrupt synaptic transmission, affecting therefore sensory systems. The wide-spread use of neurotoxic insecticides and the growing use of IGRs result in residual accumulation of low concentrations in the environment. These insecticide residues could act as an "info-disruptor" by modifying the chemical communication system, and therefore decrease chances of reproduction in target insects. However, residues can also induce a non-expected hormesis effect by enhancing reproduction abilities. Low insecticide doses might thus induce adaptive processes in the olfactory pathway of target insects, favoring the development of resistance. The effect of sublethal doses of insecticides has mainly been studied in beneficial insects such as honeybees. We review here what is known on the effects of sublethal doses of insecticides on the olfactory system of insect pests.

  14. Detection of Volatile Indicators of Illicit Substances by the Olfactory Receptors of Drosophila melanogaster

    PubMed Central

    Marshall, Brenton; Warr, Coral G.

    2010-01-01

    Insects can detect a large range of odors with a numerically simple olfactory system that delivers high sensitivity and accurate discrimination. Therefore, insect olfactory receptors hold great promise as biosensors for detection of volatile organic chemicals in a range of applications. The array of olfactory receptor neurons of Drosophila melanogaster is rapidly becoming the best-characterized natural nose. We have investigated the suitability of Drosophila receptors as detectors for volatiles with applications in law enforcement, emergency response, and security. We first characterized responses of the majority of olfactory neuron types to a set of diagnostic odorants. Being thus able to correctly identify neurons, we then screened for responses from 38 different types of neurons to 35 agents. We identified 13 neuron types with responses to 13 agents. As individual Drosophila receptor genes have been mapped to neuron types, we can infer which genes confer responsiveness to the neurons. The responses were confirmed for one receptor by expressing it in a nonresponsive neuron. The fly olfactory system is mainly adapted to detect volatiles from fermenting fruits. However, our findings establish that volatiles associated with illicit substances, many of which are of nonnatural origin, are also detected by Drosophila receptors. PMID:20530374

  15. First demonstration of olfactory learning and long term memory in honey bee queens.

    PubMed

    Gong, Zhiwen; Tan, Ken; Nieh, James C

    2018-05-18

    As the primary source of colony reproduction, social insect queens play a vital role. However, the cognitive abilities of queens are not well understood, although queen learning and memory are essential in multiple species such as honey bees, in which virgin queens must leave the nest and then successful learn to navigate back over repeated nuptial flights. Honey bee queen learning has never been previously demonstrated. We therefore tested olfactory learning in queens and workers and examined the role of DNA methylation, which plays a key role in long term memory formation. We provide the first evidence that honey bee queens have excellent learning and memory. The proportion of honey bee queens that exhibited learning was 5-fold higher than workers at every tested age and, for memory, 4-fold higher than workers at a very young age. DNA methylation may play a key role in this queen memory because queens exhibiting remote memory had a more consistent elevation in Dnmt3 gene expression as compared to workers. Both castes also showed excellent remote memory (7 day memory), which was reduced by 14-20% by the DNA methylation inhibitor, zebularine. Given that queens live about 10-fold longer than workers, these results suggest that queens can serve as an excellently long-term reservoir of colony memory. © 2018. Published by The Company of Biologists Ltd.

  16. Topological and Functional Characterization of an Insect Gustatory Receptor

    PubMed Central

    Zhang, Hui-Jie; Anderson, Alisha R.; Trowell, Stephen C.; Luo, A-Rong; Xiang, Zhong-Huai; Xia, Qing-You

    2011-01-01

    Insect gustatory receptors are predicted to have a seven-transmembrane structure and are distantly related to insect olfactory receptors, which have an inverted topology compared with G-protein coupled receptors, including mammalian olfactory receptors. In contrast, the topology of insect gustatory receptors remains unknown. Except for a few examples from Drosophila, the specificity of individual insect gustatory receptors is also unknown. In this study, the total number of identified gustatory receptors in Bombyx mori was expanded from 65 to 69. BmGr8, a silkmoth gustatory receptor from the sugar receptor subfamily, was expressed in insect cells. Membrane topology studies on BmGr8 indicate that, like insect olfactory receptors, it has an inverted topology relative to G protein-coupled receptors. An orphan GR from the bitter receptor family, BmGr53, yielded similar results. We infer, from the finding that two distantly related BmGrs have an intracellular N-terminus and an odd number of transmembrane spans, that this is likely to be a general topology for all insect gustatory receptors. We also show that BmGr8 functions independently in Sf9 cells and responds in a concentration-dependent manner to the polyalcohols myo-inositol and epi-inositol but not to a range of mono- and di-saccharides. BmGr8 is the first chemoreceptor shown to respond specifically to inositol, an important or essential nutrient for some Lepidoptera. The selectivity of BmGr8 responses is consistent with the known responses of one of the gustatory receptor neurons in the lateral styloconic sensilla of B. mori, which responds to myo-inositol and epi-inositol but not to allo-inositol. PMID:21912618

  17. The banana code-natural blend processing in the olfactory circuitry of Drosophila melanogaster.

    PubMed

    Schubert, Marco; Hansson, Bill S; Sachse, Silke

    2014-01-01

    Odor information is predominantly perceived as complex odor blends. For Drosophila melanogaster one of the most attractive blends is emitted by an over-ripe banana. To analyze how the fly's olfactory system processes natural blends we combined the experimental advantages of gas chromatography and functional imaging (GC-I). In this way, natural banana compounds were presented successively to the fly antenna in close to natural occurring concentrations. This technique allowed us to identify the active odor components, use these compounds as stimuli and measure odor-induced Ca(2+) signals in input and output neurons of the Drosophila antennal lobe (AL), the first olfactory neuropil. We demonstrate that mixture interactions of a natural blend are very rare and occur only at the AL output level resulting in a surprisingly linear blend representation. However, the information regarding single components is strongly modulated by the olfactory circuitry within the AL leading to a higher similarity between the representation of individual components and the banana blend. This observed modulation might tune the olfactory system in a way to distinctively categorize odor components and improve the detection of suitable food sources. Functional GC-I thus enables analysis of virtually any unknown natural odorant blend and its components in their relative occurring concentrations and allows characterization of neuronal responses of complete neural assemblies. This technique can be seen as a valuable complementary method to classical GC/electrophysiology techniques, and will be a highly useful tool in future investigations of insect-insect and insect-plant chemical interactions.

  18. Neurophysiological and behavioral responses of gypsy moth larvae to insect repellents

    USDA-ARS?s Scientific Manuscript database

    The interactions between insect repellents and the olfactory system have been widely studied, however relatively little is known about the effects of repellents on the gustatory system of insects. In this study, we show that the gustatory receptor neuron (GRN) located in the medial styloconic sensi...

  19. Using artificial neural networks to classify unknown volatile chemicals from the firings of insect olfactory sensory neurons.

    PubMed

    Bachtiar, Luqman R; Unsworth, Charles P; Newcomb, Richard D; Crampin, Edmund J

    2011-01-01

    The olfactory system detects volatile chemical compounds, known as odour molecules or odorants. Such odorants have a diverse chemical structure which in turn interact with the receptors of the olfactory system. The insect olfactory system provides a unique opportunity to directly measure the firing rates that are generated by the individual olfactory sensory neurons (OSNs) which have been stimulated by odorants in order to use this data to inform their classification. In this work, we demonstrate that it is possible to use the firing rates from an array of OSNs of the vinegar fly, Drosophila melanogaster, to train an Artificial Neural Network (ANN), as a series of a Multi-Layer Perceptrons (MLPs), to differentiate between eight distinct chemical classes. We demonstrate that the MLPs when trained on 108 odorants, for both clean and 10% noise injected data, can reliably identify 87% of an unseen validation set of chemicals using noise injection. In addition, the noise injected MLPs provide a more accurate level of identification. This demonstrates that a 10% noise injected series of MLPs provides a robust method for classifying chemicals from the firing rates of OSNs and paves the way to a future realisation of an artificial olfactory biosensor.

  20. Molecular and Cellular Designs of Insect Taste Receptor System

    PubMed Central

    Isono, Kunio; Morita, Hiromi

    2010-01-01

    The insect gustatory receptors (GRs) are members of a large G-protein coupled receptor family distantly related to the insect olfactory receptors. They are phylogenetically different from taste receptors of most other animals. GRs are often coexpressed with other GRs in single receptor neurons. Taste receptors other than GRs are also expressed in some neurons. Recent molecular studies in the fruitfly Drosophila revealed that the insect taste receptor system not only covers a wide ligand spectrum of sugars, bitter substances or salts that are common to mammals but also includes reception of pheromone and somatosensory stimulants. However, the central mechanism to perceive and discriminate taste information is not yet elucidated. Analysis of the primary projection of taste neurons to the brain shows that the projection profiles depend basically on the peripheral locations of the neurons as well as the GRs that they express. These results suggest that both peripheral and central design principles of insect taste perception are different from those of olfactory perception. PMID:20617187

  1. Acetylcholine and Olfactory Perceptual Learning

    ERIC Educational Resources Information Center

    Wilson, Donald A.; Fletcher, Max L.; Sullivan, Regina M.

    2004-01-01

    Olfactory perceptual learning is a relatively long-term, learned increase in perceptual acuity, and has been described in both humans and animals. Data from recent electrophysiological studies have indicated that olfactory perceptual learning may be correlated with changes in odorant receptive fields of neurons in the olfactory bulb and piriform…

  2. Selectivity of odorant receptors in insects

    USDA-ARS?s Scientific Manuscript database

    Insect olfactory receptors (ORs) detect chemical signals, shape neuronal physiology and regulate behavior. Although ORs have been categorized as generalists and specialists based on their ligand spectrum, both electrophysiological studies and recent pharmacological investigations show that ORs spec...

  3. Identification of an insect-produced olfactory cue that primes plant defenses

    USDA-ARS?s Scientific Manuscript database

    It is increasingly clear that plants can perceive and respond to olfactory cues. Yet, knowledge about the specificity and sensitivity of such perception remains limited. We previously documented priming of anti-herbivore defenses in tall goldenrod plants (Solidago altissima) by volatile emissions fr...

  4. An automated approach to detecting signals in electroantennogram data

    Treesearch

    D.H. Slone; B.T. Sullivan

    2007-01-01

    Coupled gas chromatography/electroantennographic detection (GC-EAD) is a widely used method for identifying insect olfactory stimulants present in mixtures of volatiles, and it can greatly accelerate the identification of insect semiochemicals. In GC-EAD, voltage changes across an insect's antenna are measured while the antenna is exposed to compounds eluting fi-...

  5. Calcium imaging in the ant Camponotus fellah reveals a conserved odour-similarity space in insects and mammals

    PubMed Central

    2010-01-01

    Background Olfactory systems create representations of the chemical world in the animal brain. Recordings of odour-evoked activity in the primary olfactory centres of vertebrates and insects have suggested similar rules for odour processing, in particular through spatial organization of chemical information in their functional units, the glomeruli. Similarity between odour representations can be extracted from across-glomerulus patterns in a wide range of species, from insects to vertebrates, but comparison of odour similarity in such diverse taxa has not been addressed. In the present study, we asked how 11 aliphatic odorants previously tested in honeybees and rats are represented in the antennal lobe of the ant Camponotus fellah, a social insect that relies on olfaction for food search and social communication. Results Using calcium imaging of specifically-stained second-order neurons, we show that these odours induce specific activity patterns in the ant antennal lobe. Using multidimensional analysis, we show that clustering of odours is similar in ants, bees and rats. Moreover, odour similarity is highly correlated in all three species. Conclusion This suggests the existence of similar coding rules in the neural olfactory spaces of species among which evolutionary divergence happened hundreds of million years ago. PMID:20187931

  6. The banana code—natural blend processing in the olfactory circuitry of Drosophila melanogaster

    PubMed Central

    Schubert, Marco; Hansson, Bill S.; Sachse, Silke

    2014-01-01

    Odor information is predominantly perceived as complex odor blends. For Drosophila melanogaster one of the most attractive blends is emitted by an over-ripe banana. To analyze how the fly's olfactory system processes natural blends we combined the experimental advantages of gas chromatography and functional imaging (GC-I). In this way, natural banana compounds were presented successively to the fly antenna in close to natural occurring concentrations. This technique allowed us to identify the active odor components, use these compounds as stimuli and measure odor-induced Ca2+ signals in input and output neurons of the Drosophila antennal lobe (AL), the first olfactory neuropil. We demonstrate that mixture interactions of a natural blend are very rare and occur only at the AL output level resulting in a surprisingly linear blend representation. However, the information regarding single components is strongly modulated by the olfactory circuitry within the AL leading to a higher similarity between the representation of individual components and the banana blend. This observed modulation might tune the olfactory system in a way to distinctively categorize odor components and improve the detection of suitable food sources. Functional GC-I thus enables analysis of virtually any unknown natural odorant blend and its components in their relative occurring concentrations and allows characterization of neuronal responses of complete neural assemblies. This technique can be seen as a valuable complementary method to classical GC/electrophysiology techniques, and will be a highly useful tool in future investigations of insect-insect and insect-plant chemical interactions. PMID:24600405

  7. Two Parallel Olfactory Pathways for Processing General Odors in a Cockroach

    PubMed Central

    Watanabe, Hidehiro; Nishino, Hiroshi; Mizunami, Makoto; Yokohari, Fumio

    2017-01-01

    In animals, sensory processing via parallel pathways, including the olfactory system, is a common design. However, the mechanisms that parallel pathways use to encode highly complex and dynamic odor signals remain unclear. In the current study, we examined the anatomical and physiological features of parallel olfactory pathways in an evolutionally basal insect, the cockroach Periplaneta americana. In this insect, the entire system for processing general odors, from olfactory sensory neurons to higher brain centers, is anatomically segregated into two parallel pathways. Two separate populations of secondary olfactory neurons, type1 and type2 projection neurons (PNs), with dendrites in distinct glomerular groups relay olfactory signals to segregated areas of higher brain centers. We conducted intracellular recordings, revealing olfactory properties and temporal patterns of both types of PNs. Generally, type1 PNs exhibit higher odor-specificities to nine tested odorants than type2 PNs. Cluster analyses revealed that odor-evoked responses were temporally complex and varied in type1 PNs, while type2 PNs exhibited phasic on-responses with either early or late latencies to an effective odor. The late responses are 30–40 ms later than the early responses. Simultaneous intracellular recordings from two different PNs revealed that a given odor activated both types of PNs with different temporal patterns, and latencies of early and late responses in type2 PNs might be precisely controlled. Our results suggest that the cockroach is equipped with two anatomically and physiologically segregated parallel olfactory pathways, which might employ different neural strategies to encode odor information. PMID:28529476

  8. Innate olfactory responses of Asobara japonica toward fruits infested by the invasive spotted wing Drosophila

    USDA-ARS?s Scientific Manuscript database

    Insect parasitoids are often manipulated to improve biological control programs for various arthropod pests. Volatile compounds can be a relevant cue used by most parasitoid hymenoptera for host or host microhabitat location. We studied olfactory responses of the braconid Asobara japonica Belokobyls...

  9. Modulation of Host Learning in Aedes aegypti Mosquitoes.

    PubMed

    Vinauger, Clément; Lahondère, Chloé; Wolff, Gabriella H; Locke, Lauren T; Liaw, Jessica E; Parrish, Jay Z; Akbari, Omar S; Dickinson, Michael H; Riffell, Jeffrey A

    2018-02-05

    How mosquitoes determine which individuals to bite has important epidemiological consequences. This choice is not random; most mosquitoes specialize in one or a few vertebrate host species, and some individuals in a host population are preferred over others. Mosquitoes will also blood feed from other hosts when their preferred is no longer abundant, but the mechanisms mediating these shifts between hosts, and preferences for certain individuals within a host species, remain unclear. Here, we show that olfactory learning may contribute to Aedes aegypti mosquito biting preferences and host shifts. Training and testing to scents of humans and other host species showed that mosquitoes can aversively learn the scent of specific humans and single odorants and learn to avoid the scent of rats (but not chickens). Using pharmacological interventions, RNAi, and CRISPR gene editing, we found that modification of the dopamine-1 receptor suppressed their learning abilities. We further show through combined electrophysiological and behavioral recordings from tethered flying mosquitoes that these odors evoke changes in both behavior and antennal lobe (AL) neuronal responses and that dopamine strongly modulates odor-evoked responses in AL neurons. Not only do these results provide direct experimental evidence that olfactory learning in mosquitoes can play an epidemiological role, but collectively, they also provide neuroanatomical and functional demonstration of the role of dopamine in mediating this learning-induced plasticity, for the first time in a disease vector insect. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Studies on interaction of insect repellent compounds with odorant binding receptor proteins by in silico molecular docking approach.

    PubMed

    Gopal, J Vinay; Kannabiran, K

    2013-12-01

    The aim of the study was to identify the interactions between insect repellent compounds and target olfactory proteins. Four compounds, camphor (C10H16O), carvacrol (C10H14O), oleic acid (C18H34O2) and firmotox (C22H28O5) were chosen as ligands. Seven olfactory proteins of insects with PDB IDs: 3K1E, 1QWV, 1TUJ, 1OOF, 2ERB, 3R1O and OBP1 were chosen for docking analysis. Patch dock was used and pymol for visualizing the structures. The interactions of these ligands with few odorant binding proteins showed binding energies. The ligand camphor had showed a binding energy of -136 kcal/mol with OBP1 protein. The ligand carvacrol interacted with 1QWV and 1TUJ proteins with a least binding energy of -117.45 kcal/mol and -21.78 kcal/mol respectively. The ligand oleic acid interacted with 1OOF, 2ERB, 3R1O and OBP1 with least binding energies. Ligand firmotox interacted with OBP1 and showed least binding energies. Three ligands (camphor, oleic acid and firmotox) had one, two, three interactions with a single protein OBP1 of Nilaparvatha lugens (Rice pest). From this in silico study we identified the interaction patterns for insect repellent compounds with the target insect odarant proteins. The results of our study revealed that the chosen ligands showed hydrogen bond interactions with the target olfactory receptor proteins.

  11. Function and central projections of gustatory receptor neurons on the antenna of the noctuid moth Spodoptera littoralis.

    PubMed

    Popescu, Alexandra; Couton, Louise; Almaas, Tor-Jørgen; Rospars, Jean-Pierre; Wright, Geraldine A; Marion-Poll, Frédéric; Anton, Sylvia

    2013-05-01

    Chemosensory information is crucial for most insects to feed and reproduce. Olfactory signals are mainly used at a distance, whereas gustatory stimuli play an important role when insects directly contact chemical substrates. In noctuid moths, although the antennae are the main olfactory organ, they also bear taste sensilla. These taste sensilla detect sugars and hence are involved in appetitive learning but could also play an important role in food evaluation by detecting salts and bitter substances. To investigate this, we measured the responses of individual taste sensilla on the antennae of Spodoptera littoralis to sugars and salts using tip recordings. We also traced the projections of their neuronal axons into the brain. In each sensillum, we found one or two neurons responding to sugars: one NaCl-responsive and one water-sensitive neuron. Responses of these neurons were dose-dependent and similar across different locations on the antenna. Responses were dependent on the sex for sucrose and on both sex and location for glucose and fructose. We did not observe a spatial map for the projections from specific regions of the antennae to the deutocerebrum or the tritocerebrum/suboesophageal ganglion complex. In accordance with physiological recordings, back-fills from individual sensilla revealed up to four axons, in most cases targeting different projection zones.

  12. No evidence for visual context-dependency of olfactory learning in Drosophila

    NASA Astrophysics Data System (ADS)

    Yarali, Ayse; Mayerle, Moritz; Nawroth, Christian; Gerber, Bertram

    2008-08-01

    How is behaviour organised across sensory modalities? Specifically, we ask concerning the fruit fly Drosophila melanogaster how visual context affects olfactory learning and recall and whether information about visual context is getting integrated into olfactory memory. We find that changing visual context between training and test does not deteriorate olfactory memory scores, suggesting that these olfactory memories can drive behaviour despite a mismatch of visual context between training and test. Rather, both the establishment and the recall of olfactory memory are generally facilitated by light. In a follow-up experiment, we find no evidence for learning about combinations of odours and visual context as predictors for reinforcement even after explicit training in a so-called biconditional discrimination task. Thus, a ‘true’ interaction between visual and olfactory modalities is not evident; instead, light seems to influence olfactory learning and recall unspecifically, for example by altering motor activity, alertness or olfactory acuity.

  13. Identification of the western tarnished plant bug (lygus hesperus) olfactory co-receptor orco: expression profile and confirmation of atypical membrane topology

    USDA-ARS?s Scientific Manuscript database

    Lygus hesperus (western tarnished plant bug) is an agronomically important pest species of numerous cropping systems. Similar to other insects, a critical component underlying behaviors is the perception and discrimination of olfactory cues. Consequently, the molecular basis of olfaction in this spe...

  14. Expression profile and ligand-binding characterization of odorant-binding protein 2 in Batocera horsfieldi (Hope)

    USDA-ARS?s Scientific Manuscript database

    Odorant-binding proteins (OBPs) are important components in insect olfactory systems that transport semiochemicals through the aqueous sensillum lymph to surface of olfactory receptor neurons. In this study, we cloned the cDNA of odorant-binding protein 2 (BhorOBP2) in Batocera horsfieldi (Hope) and...

  15. Learning about natural variation of odor mixtures enhances categorization in early olfactory processing.

    PubMed

    Locatelli, Fernando F; Fernandez, Patricia C; Smith, Brian H

    2016-09-01

    Natural odors are typically mixtures of several chemical components. Mixtures vary in composition among odor objects that have the same meaning. Therefore a central 'categorization' problem for an animal as it makes decisions about odors in natural contexts is to correctly identify odor variants that have the same meaning and avoid variants that have a different meaning. We propose that identified mechanisms of associative and non-associative plasticity in early sensory processing in the insect antennal lobe and mammalian olfactory bulb are central to solving this problem. Accordingly, this plasticity should work to improve categorization of odors that have the opposite meanings in relation to important events. Using synthetic mixtures designed to mimic natural odor variation among flowers, we studied how honey bees learn about and generalize among floral odors associated with food. We behaviorally conditioned honey bees on a difficult odor discrimination problem using synthetic mixtures that mimic natural variation among snapdragon flowers. We then used calcium imaging to measure responses of projection neurons of the antennal lobe, which is the first synaptic relay of olfactory sensory information in the brain, to study how ensembles of projection neurons change as a result of behavioral conditioning. We show how these ensembles become 'tuned' through plasticity to improve categorization of odors that have the different meanings. We argue that this tuning allows more efficient use of the immense coding space of the antennal lobe and olfactory bulb to solve the categorization problem. Our data point to the need for a better understanding of the 'statistics' of the odor space. © 2016. Published by The Company of Biologists Ltd.

  16. Generic insect repellent detector from the fruit fly Drosophila melanogaster.

    PubMed

    Syed, Zainulabeuddin; Pelletier, Julien; Flounders, Eric; Chitolina, Rodrigo F; Leal, Walter S

    2011-03-16

    Insect repellents are prophylactic tools against a number of vector-borne diseases. There is growing demand for repellents outperforming DEET in cost and safety, but with the current technologies R&D of a new product takes almost 10 years, with a prohibitive cost of $30 million dollar in part due to the demand for large-scale synthesis of thousands of test compounds of which only 1 may reach the market. R&D could be expedited and cost dramatically reduced with a molecular/physiological target to streamline putative repellents for final efficacy and toxicological tests. Using olfactory-based choice assay we show here that the fruit fly is repelled by not only DEET, but also IR3535 and picaridin thus suggesting they might have "generic repellent detector(s)," which may be of practical applications in new repellent screenings. We performed single unit recordings from all olfactory sensilla in the antennae and maxillary palps. Although the ab3A neuron in the wild type flies responded to picaridin, it was unresponsive to DEET and IR3535. By contrast, a neuron housed in the palp basiconic sensilla pb1 responded to DEET, IR3535, and picaridin, with apparent sensitivity higher than that of the DEET detectors in the mosquitoes Culex quinquefasciatus and Aedes aegypti. DmOr42a was transplanted from pb1 to the "empty neuron" and showed to be sensitive to the three insect repellents. For the first time we have demonstrated that the fruit fly avoids not only DEET but also IR3535 and picaridin, and identified an olfactory receptor neuron (ORN), which is sensitive to these three major insect repellents. We have also identified the insect repellent-sensitive receptor, DmOr42a. This generic detector fulfils the requirements for a simplified bioassay for early screening of test insect repellents.

  17. Olfactory disruption: towards controlling important insect vectors of disease

    USDA-ARS?s Scientific Manuscript database

    Chemical repellents are used to decrease contacts between insect disease vectors and their hosts, thus reducing the probability of disease transmission. The molecular mechanisms by which repellents have their effects are poorly understood and remain a controversial topic. Here we present recent re...

  18. Insect density-plant density relationships: a modified view of insect responses to resource concentrations.

    PubMed

    Andersson, Petter; Löfstedt, Christer; Hambäck, Peter A

    2013-12-01

    Habitat area is an important predictor of spatial variation in animal densities. However, the area often correlates with the quantity of resources within habitats, complicating our understanding of the factors shaping animal distributions. We addressed this problem by investigating densities of insect herbivores in habitat patches with a constant area but varying numbers of plants. Using a mathematical model, predictions of scale-dependent immigration and emigration rates for insects into patches with different densities of host plants were derived. Moreover, a field experiment was conducted where the scaling properties of odour-mediated attraction in relation to the number of odour sources were estimated, in order to derive a prediction of immigration rates of olfactory searchers. The theoretical model predicted that we should expect immigration rates of contact and visual searchers to be determined by patch area, with a steep scaling coefficient, μ = -1. The field experiment suggested that olfactory searchers should show a less steep scaling coefficient, with μ ≈ -0.5. A parameter estimation and analysis of published data revealed a correspondence between observations and predictions, and density-variation among groups could largely be explained by search behaviour. Aphids showed scaling coefficients corresponding to the prediction for contact/visual searchers, whereas moths, flies and beetles corresponded to the prediction for olfactory searchers. As density responses varied considerably among groups, and variation could be explained by a certain trait, we conclude that a general theory of insect responses to habitat heterogeneity should be based on shared traits, rather than a general prediction for all species.

  19. The Insect SNMP Gene Family

    DTIC Science & Technology

    2009-01-01

    The insect SNMP gene family Richard G. Vogt a,*,1, Natalie E. Miller a, Rachel Litvack a, Richard A. Fandino a, Jackson Sparks a, Jon Staples a...Wallace Beltsville Agricultural Research Center Plant Sciences Institute, Invasive Insect Biocontrol and Behavior Laboratory, Bldg. 007, Rm. 030...keywords: Pheromone Receptors Olfactory Gustatory Chemosensory Gustatory Mosquito Fly a b s t r a c t SNMPs are membrane proteins observed to associate with

  20. A potential link among biogenic amines-based pesticides, learning and memory, and colony collapse disorder: a unique hypothesis.

    PubMed

    Farooqui, Tahira

    2013-01-01

    Pesticides are substances that have been widely used throughout the world to kill, repel, or control organisms such as certain forms of plants or animals considered as pests. Depending on their type, dose, and persistence in the environment, they can have impact even on non-target species such as beneficial insects (honeybees) in different ways, including reduction in their survival rate and interference with their reproduction process. Honeybee Apis mellifera is a major pollinator and has substantial economical and ecological values. Colony collapse disorder (CCD) is a mysterious phenomenon in which adult honeybee workers suddenly abandon from their hives, leaving behind food, brood, and queen. It is lately drawing a lot of attention due to pollination crisis as well as global agriculture and medical demands. If the problem of CCD is not resolved soon enough, this could have a major impact on food industry affecting world's economy a big time. Causes of CCD are not known. In this overview, I discuss CCD, biogenic amines-based-pesticides (neonicotinoids and formamidines), and their disruptive effects on biogenic amine signaling causing olfactory dysfunction in honeybees. According to my hypothesis, chronic exposure of biogenic amines-based-pesticides to honeybee foragers in hives and agricultural fields can disrupt neural cholinergic and octopaminergic signaling. Abnormality in biogenic amines-mediated neuronal signaling impairs their olfactory learning and memory, therefore foragers do not return to their hive - a possible cause of CCD. This overview is an attempt to discuss a hypothetical link among biogenic amines-based pesticides, olfactory learning and memory, and CCD. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Pre-pupation behaviour of the aphid parasitoid Aphidius ervi (Haliday) and its consequences for pre-imaginal learning

    NASA Astrophysics Data System (ADS)

    Gutiérrez-Ibáñez, Cristián; Villagra, Cristian A.; Niemeyer, Hermann M.

    2007-07-01

    Olfactory learning may occur at different stages of insect ontogeny. In parasitoid wasps, it has been mostly shown at adult emergence, whilst it remains controversial at pre-imaginal stages. We followed larval growth of the parasitoid wasp, Aphidius ervi Haliday, inside the host aphid, Acyrthosiphom pisum Harris, and characterised in detail the behaviour of third instar larvae. We found that just before cocoon spinning begins, the third instar larva bites a hole through the ventral side of the mummified aphid exoskeleton. We then evaluated whether this period of exposure to the external environment represented a sensitive stage for olfactory learning. In our first experiment, the third instar larvae were allowed to spin their cocoon on the host plant ( Vicia faba L.) surface or on a plastic plate covering the portion of the host plant exposed to the ventral opening. Recently emerged adults of the first group showed a preference for plant volatiles in a glass Y-olfactometer, whereas no preference was found in adults of the second group. In a second experiment, during the period in which the aphid carcass remains open or is being sealed by cocoon spinning, third instar larvae were exposed for 24 h to either vanilla odours or water vapours as control. In this experiment, half of the parasitoid larvae were later excised from the mummy to avoid further exposure to vanilla. Adult parasitoids exposed to vanilla during the larval ventral opening of the mummy showed a significant preference for vanilla odours in the olfactometer, regardless of excision from the mummy. The larval behaviour described and the results of the manipulations performed are discussed as evidences for the acquisition of olfactory memory during the larval stage and its persistence through metamorphosis.

  2. Male- and female-biased gene expression of olfactory-related genes in the antennae of Asian corn borer, Ostrinia furnacalis (Guenée) (Lepidoptera: Crambidae)

    USDA-ARS?s Scientific Manuscript database

    The Asian corn borer (ACB), Ostrinia furnacalis (Guenée), is a destructive pest insect of cultivated corn crops, for which antennal-expressed receptors are important to detect olfactory cues for mate attraction and oviposition. Non-normalized male and female O. furnacalis antennal cDNA libraries we...

  3. Floral to green: mating switches moth olfactory coding and preference.

    PubMed

    Saveer, Ahmed M; Kromann, Sophie H; Birgersson, Göran; Bengtsson, Marie; Lindblom, Tobias; Balkenius, Anna; Hansson, Bill S; Witzgall, Peter; Becher, Paul G; Ignell, Rickard

    2012-06-22

    Mating induces profound physiological changes in a wide range of insects, leading to behavioural adjustments to match the internal state of the animal. Here, we show for the first time, to our knowledge, that a noctuid moth switches its olfactory response from food to egg-laying cues following mating. Unmated females of the cotton leafworm (Spodoptera littoralis) are strongly attracted to lilac flowers (Syringa vulgaris). After mating, attraction to floral odour is abolished and the females fly instead to green-leaf odour of the larval host plant cotton, Gossypium hirsutum. This behavioural switch is owing to a marked change in the olfactory representation of floral and green odours in the primary olfactory centre, the antennal lobe (AL). Calcium imaging, using authentic and synthetic odours, shows that the ensemble of AL glomeruli dedicated to either lilac or cotton odour is selectively up- and downregulated in response to mating. A clear-cut behavioural modulation as a function of mating is a useful substrate for studies of the neural mechanisms underlying behavioural decisions. Modulation of odour-driven behaviour through concerted regulation of odour maps contributes to our understanding of state-dependent choice and host shifts in insect herbivores.

  4. Data-driven inference of network connectivity for modeling the dynamics of neural codes in the insect antennal lobe

    PubMed Central

    Shlizerman, Eli; Riffell, Jeffrey A.; Kutz, J. Nathan

    2014-01-01

    The antennal lobe (AL), olfactory processing center in insects, is able to process stimuli into distinct neural activity patterns, called olfactory neural codes. To model their dynamics we perform multichannel recordings from the projection neurons in the AL driven by different odorants. We then derive a dynamic neuronal network from the electrophysiological data. The network consists of lateral-inhibitory neurons and excitatory neurons (modeled as firing-rate units), and is capable of producing unique olfactory neural codes for the tested odorants. To construct the network, we (1) design a projection, an odor space, for the neural recording from the AL, which discriminates between distinct odorants trajectories (2) characterize scent recognition, i.e., decision-making based on olfactory signals and (3) infer the wiring of the neural circuit, the connectome of the AL. We show that the constructed model is consistent with biological observations, such as contrast enhancement and robustness to noise. The study suggests a data-driven approach to answer a key biological question in identifying how lateral inhibitory neurons can be wired to excitatory neurons to permit robust activity patterns. PMID:25165442

  5. Molecular Characterization and Differential Expression of Olfactory Genes in the Antennae of the Black Cutworm Moth Agrotis ipsilon

    PubMed Central

    Gu, Shao-Hua; Sun, Liang; Yang, Ruo-Nan; Wu, Kong-Ming; Guo, Yu-Yuan; Li, Xian-Chun; Zhou, Jing-Jiang; Zhang, Yong-Jun

    2014-01-01

    Insects use their sensitive and selective olfactory system to detect outside chemical odorants, such as female sex pheromones and host plant volatiles. Several groups of olfactory proteins participate in the odorant detection process, including odorant binding proteins (OBPs), chemosensory proteins (CSPs), odorant receptors (ORs), ionotropic receptors (IRs) and sensory neuron membrane proteins (SNMPs). The identification and functional characterization of these olfactory proteins will enhance our knowledge of the molecular basis of insect chemoreception. In this study, we report the identification and differential expression profiles of these olfactory genes in the black cutworm moth Agrotis ipsilon. In total, 33 OBPs, 12 CSPs, 42 ORs, 24 IRs, 2 SNMPs and 1 gustatory receptor (GR) were annotated from the A. ipsilon antennal transcriptomes, and further RT-PCR and RT-qPCR revealed that 22 OBPs, 3 CSPs, 35 ORs, 14 IRs and the 2 SNMPs are uniquely or primarily expressed in the male and female antennae. Furthermore, one OBP (AipsOBP6) and one CSP (AipsCSP2) were exclusively expressed in the female sex pheromone gland. These antennae-enriched OBPs, CSPs, ORs, IRs and SNMPs were suggested to be responsible for pheromone and general odorant detection and thus could be meaningful target genes for us to study their biological functions in vivo and in vitro. PMID:25083706

  6. Memory-Relevant Mushroom Body Output Synapses Are Cholinergic.

    PubMed

    Barnstedt, Oliver; Owald, David; Felsenberg, Johannes; Brain, Ruth; Moszynski, John-Paul; Talbot, Clifford B; Perrat, Paola N; Waddell, Scott

    2016-03-16

    Memories are stored in the fan-out fan-in neural architectures of the mammalian cerebellum and hippocampus and the insect mushroom bodies. However, whereas key plasticity occurs at glutamatergic synapses in mammals, the neurochemistry of the memory-storing mushroom body Kenyon cell output synapses is unknown. Here we demonstrate a role for acetylcholine (ACh) in Drosophila. Kenyon cells express the ACh-processing proteins ChAT and VAChT, and reducing their expression impairs learned olfactory-driven behavior. Local ACh application, or direct Kenyon cell activation, evokes activity in mushroom body output neurons (MBONs). MBON activation depends on VAChT expression in Kenyon cells and is blocked by ACh receptor antagonism. Furthermore, reducing nicotinic ACh receptor subunit expression in MBONs compromises odor-evoked activation and redirects odor-driven behavior. Lastly, peptidergic corelease enhances ACh-evoked responses in MBONs, suggesting an interaction between the fast- and slow-acting transmitters. Therefore, olfactory memories in Drosophila are likely stored as plasticity of cholinergic synapses. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Function and evolution of a gene family encoding odorant binding-like proteins in a social insect, the honey bee (Apis mellifera).

    PubMed

    Forêt, Sylvain; Maleszka, Ryszard

    2006-11-01

    The remarkable olfactory power of insect species is thought to be generated by a combinatorial action of two large protein families, G protein-coupled olfactory receptors (ORs) and odorant binding proteins (OBPs). In olfactory sensilla, OBPs deliver hydrophobic airborne molecules to ORs, but their expression in nonolfactory tissues suggests that they also may function as general carriers in other developmental and physiological processes. Here we used bioinformatic and experimental approaches to characterize the OBP-like gene family in a highly social insect, the Western honey bee. Comparison with other insects shows that the honey bee has the smallest set of these genes, consisting of only 21 OBPs. This number stands in stark contrast to the more than 70 OBPs in Anopheles gambiae and 51 in Drosophila melanogaster. In the honey bee as in the two dipterans, these genes are organized in clusters. We show that the evolution of their structure involved frequent intron losses. We describe a monophyletic subfamily of OBPs where the diversification of some amino acids appears to have been accelerated by positive selection. Expression profiling under a wide range of conditions shows that in the honey bee only nine OBPs are antenna-specific. The remaining genes are expressed either ubiquitously or are tightly regulated in specialized tissues or during development. These findings support the view that OBPs are not restricted to olfaction and are likely to be involved in broader physiological functions.

  8. Odor Experiences during Preimaginal Stages Cause Behavioral and Neural Plasticity in Adult Honeybees

    PubMed Central

    Ramírez, Gabriela; Fagundez, Carol; Grosso, Juan P.; Argibay, Pablo; Arenas, Andrés; Farina, Walter M.

    2016-01-01

    In eusocial insects, experiences acquired during the development have long-term consequences on mature behavior. In the honeybee that suffers profound changes associated with metamorphosis, the effect of odor experiences at larval instars on the subsequent physiological and behavioral response is still unclear. To address the impact of preimaginal experiences on the adult honeybee, colonies containing larvae were fed scented food. The effect of the preimaginal experiences with the food odor was assessed in learning performance, memory retention and generalization in 3–5- and 17–19 day-old bees, in the regulation of their expression of synaptic-related genes and in the perception and morphology of their antennae. Three-five day old bees that experienced 1-hexanol (1-HEX) as food scent responded more to the presentation of the odor during the 1-HEX conditioning than control bees (i.e., bees reared in colonies fed unscented food). Higher levels of proboscis extension response (PER) to 1-HEX in this group also extended to HEXA, the most perceptually similar odor to the experienced one that we tested. These results were not observed for the group tested at older ages. In the brain of young adults, larval experiences triggered similar levels of neurexins (NRXs) and neuroligins (Nlgs) expression, two proteins that have been involved in synaptic formation after associative learning. At the sensory periphery, the experience did not alter the number of the olfactory sensilla placoidea, but did reduce the electrical response of the antennae to the experienced and novel odor. Our study provides a new insight into the effects of preimaginal experiences in the honeybee and the mechanisms underlying olfactory plasticity at larval stage of holometabolous insects. PMID:27375445

  9. Odor Experiences during Preimaginal Stages Cause Behavioral and Neural Plasticity in Adult Honeybees.

    PubMed

    Ramírez, Gabriela; Fagundez, Carol; Grosso, Juan P; Argibay, Pablo; Arenas, Andrés; Farina, Walter M

    2016-01-01

    In eusocial insects, experiences acquired during the development have long-term consequences on mature behavior. In the honeybee that suffers profound changes associated with metamorphosis, the effect of odor experiences at larval instars on the subsequent physiological and behavioral response is still unclear. To address the impact of preimaginal experiences on the adult honeybee, colonies containing larvae were fed scented food. The effect of the preimaginal experiences with the food odor was assessed in learning performance, memory retention and generalization in 3-5- and 17-19 day-old bees, in the regulation of their expression of synaptic-related genes and in the perception and morphology of their antennae. Three-five day old bees that experienced 1-hexanol (1-HEX) as food scent responded more to the presentation of the odor during the 1-HEX conditioning than control bees (i.e., bees reared in colonies fed unscented food). Higher levels of proboscis extension response (PER) to 1-HEX in this group also extended to HEXA, the most perceptually similar odor to the experienced one that we tested. These results were not observed for the group tested at older ages. In the brain of young adults, larval experiences triggered similar levels of neurexins (NRXs) and neuroligins (Nlgs) expression, two proteins that have been involved in synaptic formation after associative learning. At the sensory periphery, the experience did not alter the number of the olfactory sensilla placoidea, but did reduce the electrical response of the antennae to the experienced and novel odor. Our study provides a new insight into the effects of preimaginal experiences in the honeybee and the mechanisms underlying olfactory plasticity at larval stage of holometabolous insects.

  10. A deceptive pollination system targeting drosophilids through olfactory mimicry of yeast.

    PubMed

    Stökl, Johannes; Strutz, Antonia; Dafni, Amots; Svatos, Ales; Doubsky, Jan; Knaden, Markus; Sachse, Silke; Hansson, Bill S; Stensmyr, Marcus C

    2010-10-26

    In deceptive pollination, insects are bamboozled into performing nonrewarded pollination. A prerequisite for the evolutionary stability in such systems is that the plants manage to generate a perfect sensory impression of a desirable object in the insect nervous system [1]. The study of these plants can provide important insights into sensory preference of their visiting insects. Here, we present the first description of a deceptive pollination system that specifically targets drosophilid flies. We show that the examined plant (Arum palaestinum) accomplishes its deception through olfactory mimicry of fermentation, a strategy that represents a novel pollination syndrome. The lily odor is composed of volatiles characteristic of yeast, and produces in Drosophila melanogaster an antennal detection pattern similar to that elicited by a range of fermentation products. By functional imaging, we show that the lily odors target a specific subset of odorant receptors (ORs), which include the most conserved OR genes in the drosophilid olfactome. Furthermore, seven of eight visiting drosophilid species show a congruent olfactory response pattern to the lily, in spite of comprising species pairs separated by ∼40 million years [2], showing that the lily targets a basal function of the fly nose, shared by species with similar ecological preference. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Neural Correlates of Odor Learning in the Presynaptic Microglomerular Circuitry in the Honeybee Mushroom Body Calyx.

    PubMed

    Haenicke, Joachim; Yamagata, Nobuhiro; Zwaka, Hanna; Nawrot, Martin; Menzel, Randolf

    2018-01-01

    The mushroom body (MB) in insects is known as a major center for associative learning and memory, although exact locations for the correlating memory traces remain to be elucidated. Here, we asked whether presynaptic boutons of olfactory projection neurons (PNs) in the main input site of the MB undergo neuronal plasticity during classical odor-reward conditioning and correlate with the conditioned behavior. We simultaneously measured Ca 2+ responses in the boutons and conditioned behavioral responses to learned odors in honeybees. We found that the absolute amount of the neural change for the rewarded but not for the unrewarded odor was correlated with the behavioral learning rate across individuals. The temporal profile of the induced changes matched with odor response dynamics of the MB-associated inhibitory neurons, suggestive of activity modulation of boutons by this neural class. We hypothesize the circuit-specific neural plasticity relates to the learned value of the stimulus and underlies the conditioned behavior of the bees.

  12. The Odorant Receptor Co-Receptor from the Bed Bug, Cimex lectularius L

    PubMed Central

    Hansen, Immo A.; Rodriguez, Stacy D.; Drake, Lisa L.; Price, David P.; Blakely, Brittny N.; Hammond, John I.; Tsujimoto, Hitoshi; Monroy, Erika Y.; Maio, William A.; Romero, Alvaro

    2014-01-01

    Recently, the bed bug, Cimex lectularius L. has re-emerged as a serious and growing problem in many parts of the world. Presence of resistant bed bugs and the difficulty to eliminate them has renewed interest in alternative control tactics. Similar to other haematophagous arthropods, bed bugs rely on their olfactory system to detect semiochemicals in the environment. Previous studies have morphologically characterized olfactory organs of bed bugs’ antenna and have physiologically evaluated the responses of olfactory receptor neurons (ORNs) to host-derived chemicals. To date, odorant binding proteins (OBPs) and odorant receptors (ORs) associated with these olfaction processes have not been studied in bed bugs. Chemoreception in insects requires formation of heteromeric complexes of ORs and a universal OR coreceptor (Orco). Orco is the constant chain of every odorant receptor in insects and is critical for insect olfaction but does not directly bind to odorants. Orco agonists and antagonists have been suggested as high-value targets for the development of novel insect repellents. In this study, we have performed RNAseq of bed bug sensory organs and identified several odorant receptors as well as Orco. We characterized Orco expression and investigated the effect of chemicals targeting Orco on bed bug behavior and reproduction. We have identified partial cDNAs of six C. lectularius OBPs and 16 ORs. Full length bed bug Orco was cloned and sequenced. Orco is widely expressed in different parts of the bed bug including OR neurons and spermatozoa. Treatment of bed bugs with the agonist VUAA1 changed bed bug pheromone-induced aggregation behavior and inactivated spermatozoa. We have described and characterized for the first time OBPs, ORs and Orco in bed bugs. Given the importance of these molecules in chemoreception of this insect they are interesting targets for the development of novel insect behavior modifiers. PMID:25411789

  13. The odorant receptor co-receptor from the bed bug, Cimex lectularius L.

    PubMed

    Hansen, Immo A; Rodriguez, Stacy D; Drake, Lisa L; Price, David P; Blakely, Brittny N; Hammond, John I; Tsujimoto, Hitoshi; Monroy, Erika Y; Maio, William A; Romero, Alvaro

    2014-01-01

    Recently, the bed bug, Cimex lectularius L. has re-emerged as a serious and growing problem in many parts of the world. Presence of resistant bed bugs and the difficulty to eliminate them has renewed interest in alternative control tactics. Similar to other haematophagous arthropods, bed bugs rely on their olfactory system to detect semiochemicals in the environment. Previous studies have morphologically characterized olfactory organs of bed bugs' antenna and have physiologically evaluated the responses of olfactory receptor neurons (ORNs) to host-derived chemicals. To date, odorant binding proteins (OBPs) and odorant receptors (ORs) associated with these olfaction processes have not been studied in bed bugs. Chemoreception in insects requires formation of heteromeric complexes of ORs and a universal OR coreceptor (Orco). Orco is the constant chain of every odorant receptor in insects and is critical for insect olfaction but does not directly bind to odorants. Orco agonists and antagonists have been suggested as high-value targets for the development of novel insect repellents. In this study, we have performed RNAseq of bed bug sensory organs and identified several odorant receptors as well as Orco. We characterized Orco expression and investigated the effect of chemicals targeting Orco on bed bug behavior and reproduction. We have identified partial cDNAs of six C. lectularius OBPs and 16 ORs. Full length bed bug Orco was cloned and sequenced. Orco is widely expressed in different parts of the bed bug including OR neurons and spermatozoa. Treatment of bed bugs with the agonist VUAA1 changed bed bug pheromone-induced aggregation behavior and inactivated spermatozoa. We have described and characterized for the first time OBPs, ORs and Orco in bed bugs. Given the importance of these molecules in chemoreception of this insect they are interesting targets for the development of novel insect behavior modifiers.

  14. Deletion of the Bombyx mori odorant receptor co-receptor (BmOrco) impairs olfactory sensitivity in silkworms.

    PubMed

    Liu, Qun; Liu, Wei; Zeng, Baosheng; Wang, Guirong; Hao, Dejun; Huang, Yongping

    2017-07-01

    Olfaction plays an essential role in many important insect behaviors such as feeding and reproduction. To detect olfactory stimuli, an odorant receptor co-receptor (Orco) is required. In this study, we deleted the Orco gene in the Lepidopteran model insect, Bombyx mori, using a binary transgene-based clustered regulatory interspaced short palindromic repeats (CRISPR)/Cas9 system. We initially generated somatic mutations in two targeted sites, from which we obtained homozygous mutants with deletion of a 866 base pair sequence. Because of the flight inability of B. mori, we developed a novel method to examine the adult mating behavior. Considering the specialization in larval feeding, we examined food selection behavior in Orco somatic mutants by the walking trail analysis of silkworm position over time. Single sensillum recordings indicated that the antenna of the homozygous mutant was unable to respond to either of the two sex pheromones, bombykol or bombykal. An adult mating behavior assay revealed that the Orco mutant displayed a significantly impaired mating selection behavior in response to natural pheromone released by a wild-type female moth as well as an 11:1 mixture of bombykol/bombykal. The mutants also exhibited a decreased response to bombykol and, similar to wild-type moths, they displayed no response to bombykal. A larval feeding behavior assay revealed that the Orco mutant displayed defective selection for mulberry leaves and different concentrations of the volatile compound cis-jasmone found in mulberry leaves. Deletion of BmOrco severely disrupts the olfactory system, suggesting that BmOrco is indispensable in the olfactory pathway. The approach used for generating somatic and homozygous mutations also highlights a novel method for mutagenesis. This study on BmOrco function provides insights into the insect olfactory system and also provides a paradigm for agroforestry pest control. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Galantamine improves olfactory learning in the Ts65Dn mouse model of Down syndrome

    PubMed Central

    Simoes de Souza, Fabio M.; Busquet, Nicolas; Blatner, Megan; Maclean, Kenneth N.; Restrepo, Diego

    2011-01-01

    Down syndrome (DS) is the most common form of congenital intellectual disability. Although DS involves multiple disturbances in various tissues, there is little doubt that in terms of quality of life cognitive impairment is the most serious facet and there is no effective treatment for this aspect of the syndrome. The Ts65Dn mouse model of DS recapitulates multiple aspects of DS including cognitive impairment. Here the Ts65Dn mouse model of DS was evaluated in an associative learning paradigm based on olfactory cues. In contrast to disomic controls, trisomic mice exhibited significant deficits in olfactory learning. Treatment of trisomic mice with the acetylcholinesterase inhibitor galantamine resulted in a significant improvement in olfactory learning. Collectively, our study indicates that olfactory learning can be a sensitive tool for evaluating deficits in associative learning in mouse models of DS and that galantamine has therapeutic potential for improving cognitive abilities. PMID:22355654

  16. Galantamine improves olfactory learning in the Ts65Dn mouse model of Down syndrome.

    PubMed

    de Souza, Fabio M Simoes; Busquet, Nicolas; Blatner, Megan; Maclean, Kenneth N; Restrepo, Diego

    2011-01-01

    Down syndrome (DS) is the most common form of congenital intellectual disability. Although DS involves multiple disturbances in various tissues, there is little doubt that in terms of quality of life cognitive impairment is the most serious facet and there is no effective treatment for this aspect of the syndrome. The Ts65Dn mouse model of DS recapitulates multiple aspects of DS including cognitive impairment. Here the Ts65Dn mouse model of DS was evaluated in an associative learning paradigm based on olfactory cues. In contrast to disomic controls, trisomic mice exhibited significant deficits in olfactory learning. Treatment of trisomic mice with the acetylcholinesterase inhibitor galantamine resulted in a significant improvement in olfactory learning. Collectively, our study indicates that olfactory learning can be a sensitive tool for evaluating deficits in associative learning in mouse models of DS and that galantamine has therapeutic potential for improving cognitive abilities.

  17. Odor Learning and Its Experience-Dependent Modulation in the South American Native Bumblebee Bombus atratus (Hymenoptera: Apidae).

    PubMed

    Palottini, Florencia; Estravis Barcala, María C; Farina, Walter M

    2018-01-01

    Learning about olfactory stimuli is essential in bumblebees' life since it is involved in orientation, recognition of nest sites, foraging efficiency and food yield for the colony as a whole. To evaluate associative learning abilities in bees under controlled environmental conditions, the proboscis extension response (PER) assay is a well-established method used in honey bees, stingless bees and successfully adapted to bumblebees of the genus Bombus . However, studies on the learning capacity of Bombus atratus (Hymenoptera: Apidae), one of the most abundant native species in South America, are non-existent. In this study, we examined the cognitive abilities of worker bees of this species, carrying out an olfactory PER conditioning experiment. Bumblebees were able to learn a pure odor when it was presented in paired association with sugared reward, but not when odor and reward were presented in an unpaired manner. Furthermore, if the bees were preexposed to the conditioned odor, the results differed depending on the presence of the scent either as a volatile in the rearing environment or diluted in the food. A decrement in learning performance results from the non-reinforced pre-exposure to the to-be-conditioned odor, showing a latent inhibition phenomenon. However, if the conditioned odor has been previously offered diluted in sugared reward, the food odor acts as a stimulus that improves the learning performance during PER conditioning. The native bumblebee B. atratus is thus a new hymenopteran species capable of being trained under controlled experimental conditions. Since it is an insect increasingly reared for pollination service, this knowledge could be useful in its management in crops.

  18. Odor Learning and Its Experience-Dependent Modulation in the South American Native Bumblebee Bombus atratus (Hymenoptera: Apidae)

    PubMed Central

    Palottini, Florencia; Estravis Barcala, María C.; Farina, Walter M.

    2018-01-01

    Learning about olfactory stimuli is essential in bumblebees’ life since it is involved in orientation, recognition of nest sites, foraging efficiency and food yield for the colony as a whole. To evaluate associative learning abilities in bees under controlled environmental conditions, the proboscis extension response (PER) assay is a well-established method used in honey bees, stingless bees and successfully adapted to bumblebees of the genus Bombus. However, studies on the learning capacity of Bombus atratus (Hymenoptera: Apidae), one of the most abundant native species in South America, are non-existent. In this study, we examined the cognitive abilities of worker bees of this species, carrying out an olfactory PER conditioning experiment. Bumblebees were able to learn a pure odor when it was presented in paired association with sugared reward, but not when odor and reward were presented in an unpaired manner. Furthermore, if the bees were preexposed to the conditioned odor, the results differed depending on the presence of the scent either as a volatile in the rearing environment or diluted in the food. A decrement in learning performance results from the non-reinforced pre-exposure to the to-be-conditioned odor, showing a latent inhibition phenomenon. However, if the conditioned odor has been previously offered diluted in sugared reward, the food odor acts as a stimulus that improves the learning performance during PER conditioning. The native bumblebee B. atratus is thus a new hymenopteran species capable of being trained under controlled experimental conditions. Since it is an insect increasingly reared for pollination service, this knowledge could be useful in its management in crops. PMID:29755391

  19. Roles for Drosophila Mushroom Body Neurons in Olfactory Learning and Memory

    ERIC Educational Resources Information Center

    Zong, Lin; Tanaka, Nobuaki K.; Ito, Kei; Davis, Ronald L.; Akalal, David-Benjamin G.; Wilson, Curtis F.

    2006-01-01

    Olfactory learning assays in Drosophila have revealed that distinct brain structures known as mushroom bodies (MBs) are critical for the associative learning and memory of olfactory stimuli. However, the precise roles of the different neurons comprising the MBs are still under debate. The confusion surrounding the roles of the different neurons…

  20. Brain organization and the origin of insects: an assessment

    PubMed Central

    Strausfeld, Nicholas James

    2009-01-01

    Within the Arthropoda, morphologies of neurons, the organization of neurons within neuropils and the occurrence of neuropils can be highly conserved and provide robust characters for phylogenetic analyses. The present paper reviews some features of insect and crustacean brains that speak against an entomostracan origin of the insects, contrary to received opinion. Neural organization in brain centres, comprising olfactory pathways, optic lobes and a central neuropil that is thought to play a cardinal role in multi-joint movement, support affinities between insects and malacostracan crustaceans. PMID:19324805

  1. Upregulation of Neurotrophic Factors Selectively in Frontal Cortex in Response to Olfactory Discrimination Learning

    PubMed Central

    Naimark, Ari; Barkai, Edi; Matar, Michael A.; Kaplan, Zeev; Kozlovsky, Nitzan; Cohen, Hagit

    2007-01-01

    We have previously shown that olfactory discrimination learning is accompanied by several forms of long-term enhancement in synaptic connections between layer II pyramidal neurons selectively in the piriform cortex. This study sought to examine whether the previously demonstrated olfactory-learning-task-induced modifications are preceded by suitable changes in the expression of mRNA for neurotrophic factors and in which brain areas this occurs. Rats were trained to discriminate positive cues in pair of odors for a water reward. The relationship between the learning task and local levels of mRNA for brain-derived neurotrophic factor, tyrosine kinase B, nerve growth factor, and neurotrophin-3 in the frontal cortex, hippocampal subregions, and other regions were assessed 24 hours post olfactory learning. The olfactory discrimination learning activated production of endogenous neurotrophic factors and induced their signal transduction in the frontal cortex, but not in other brain areas. These findings suggest that different brain areas may be preferentially involved in different learning/memory tasks. PMID:17710248

  2. Antennal transcriptome analysis and comparison of olfactory genes in two sympatric defoliators, Dendrolimus houi and Dendrolimus kikuchii (Lepidoptera: Lasiocampidae).

    PubMed

    Zhang, Sufang; Zhang, Zhen; Wang, Hongbin; Kong, Xiangbo

    2014-09-01

    The Yunnan pine and Simao pine caterpillar moths, Dendrolimus houi Lajonquière and Dendrolimus kikuchii Matsumura (Lepidoptera: Lasiocampidae), are two closely related and sympatric pests of coniferous forests in southwestern China, and olfactory communication systems of these two insects have received considerable attention because of their economic importance. However, there is little information on the molecular aspect of odor detection about these insects. Furthermore, although lepidopteran species have been widely used in studies of insect olfaction, few work made comparison between sister moths on the olfactory recognition mechanisms. In this study, next-generation sequencing of the antennal transcriptome of these two moths were performed to identify the major olfactory genes. After comparing the antennal transcriptome of these two moths, we found that they exhibit highly similar transcripts-associated GO terms. Chemosensory gene families were further analyzed in both species. We identified 23 putative odorant binding proteins (OBP), 17 chemosensory proteins (CSP), two sensory neuron membrane proteins (SNMP), 33 odorant receptors (OR), and 10 ionotropic receptors (IR) in D. houi; and 27 putative OBPs, 17 CSPs, two SNMPs, 33 ORs, and nine IRs in D. kikuchii. All these transcripts were full-length or almost full-length. The predicted protein sequences were compared with orthologs in other species of Lepidoptera and model insects, including Bombyx mori, Manduca sexta, Heliothis virescens, Danaus plexippus, Sesamia inferens, Cydia pomonella, and Drosophila melanogaster. The sequence homologies of the orthologous genes in D. houi and D. kikuchii are very high. Furthermore, the olfactory genes were classed according to their expression level, and the highly expressed genes are our target for further function investigation. Interestingly, many highly expressed genes are ortholog gene of D. houi and D. kikuchii. We also found that the Classic OBPs were further separated into three groups according to their motifs, which will help future functional researches. Surprisingly, no pheromone receptor was identified in the two Dendrolimus species, which may indicate a special pheromone identification mechanism in Dendrolimus. Our work allows for further functional studies of pheromones and host volatile recognition genes, and give novel candidate targets for pest management. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Roles of Octopamine and Dopamine Neurons for Mediating Appetitive and Aversive Signals in Pavlovian Conditioning in Crickets

    PubMed Central

    Mizunami, Makoto; Matsumoto, Yukihisa

    2017-01-01

    Revealing neural systems that mediate appetite and aversive signals in associative learning is critical for understanding the brain mechanisms controlling adaptive behavior in animals. In mammals, it has been shown that some classes of dopamine neurons in the midbrain mediate prediction error signals that govern the learning process, whereas other classes of dopamine neurons control execution of learned actions. In this review, based on the results of our studies on Pavlovian conditioning in the cricket Gryllus bimaculatus and by referring to the findings in honey bees and fruit-flies, we argue that comparable aminergic systems exist in the insect brain. We found that administrations of octopamine (the invertebrate counterpart of noradrenaline) and dopamine receptor antagonists impair conditioning to associate an olfactory or visual conditioned stimulus (CS) with water or sodium chloride solution (appetitive or aversive unconditioned stimulus, US), respectively, suggesting that specific octopamine and dopamine neurons mediate appetitive and aversive signals, respectively, in conditioning in crickets. These findings differ from findings in fruit-flies. In fruit-flies, appetitive and aversive signals are mediated by different dopamine neuron subsets, suggesting diversity in neurotransmitters mediating appetitive signals in insects. We also found evidences of “blocking” and “auto-blocking” phenomena, which suggested that the prediction error, the discrepancy between actual US and predicted US, governs the conditioning in crickets and that octopamine neurons mediate prediction error signals for appetitive US. Our studies also showed that activations of octopamine and dopamine neurons are needed for the execution of an appetitive conditioned response (CR) and an aversive CR, respectively, and we, thus, proposed that these neurons mediate US prediction signals that drive appetitive and aversive CRs. Our findings suggest that the basic principles of functioning of aminergic systems in associative learning, i.e., to transmit prediction error signals for conditioning and to convey US prediction signals for execution of CR, are conserved among insects and mammals, on account of the fact that the organization of the insect brain is much simpler than that of the mammalian brain. Further investigation of aminergic systems that govern associative learning in insects should lead to a better understanding of commonalities and diversities of computational rules underlying associative learning in animals. PMID:29311961

  4. Roles of Octopamine and Dopamine Neurons for Mediating Appetitive and Aversive Signals in Pavlovian Conditioning in Crickets.

    PubMed

    Mizunami, Makoto; Matsumoto, Yukihisa

    2017-01-01

    Revealing neural systems that mediate appetite and aversive signals in associative learning is critical for understanding the brain mechanisms controlling adaptive behavior in animals. In mammals, it has been shown that some classes of dopamine neurons in the midbrain mediate prediction error signals that govern the learning process, whereas other classes of dopamine neurons control execution of learned actions. In this review, based on the results of our studies on Pavlovian conditioning in the cricket Gryllus bimaculatus and by referring to the findings in honey bees and fruit-flies, we argue that comparable aminergic systems exist in the insect brain. We found that administrations of octopamine (the invertebrate counterpart of noradrenaline) and dopamine receptor antagonists impair conditioning to associate an olfactory or visual conditioned stimulus (CS) with water or sodium chloride solution (appetitive or aversive unconditioned stimulus, US), respectively, suggesting that specific octopamine and dopamine neurons mediate appetitive and aversive signals, respectively, in conditioning in crickets. These findings differ from findings in fruit-flies. In fruit-flies, appetitive and aversive signals are mediated by different dopamine neuron subsets, suggesting diversity in neurotransmitters mediating appetitive signals in insects. We also found evidences of "blocking" and "auto-blocking" phenomena, which suggested that the prediction error, the discrepancy between actual US and predicted US, governs the conditioning in crickets and that octopamine neurons mediate prediction error signals for appetitive US. Our studies also showed that activations of octopamine and dopamine neurons are needed for the execution of an appetitive conditioned response (CR) and an aversive CR, respectively, and we, thus, proposed that these neurons mediate US prediction signals that drive appetitive and aversive CRs. Our findings suggest that the basic principles of functioning of aminergic systems in associative learning, i.e., to transmit prediction error signals for conditioning and to convey US prediction signals for execution of CR, are conserved among insects and mammals, on account of the fact that the organization of the insect brain is much simpler than that of the mammalian brain. Further investigation of aminergic systems that govern associative learning in insects should lead to a better understanding of commonalities and diversities of computational rules underlying associative learning in animals.

  5. Sensing the Underground – Ultrastructure and Function of Sensory Organs in Root-Feeding Melolontha melolontha (Coleoptera: Scarabaeinae) Larvae

    PubMed Central

    Hansson, Bill S.; Hilker, Monika; Reinecke, Andreas

    2012-01-01

    Introduction Below ground orientation in insects relies mainly on olfaction and taste. The economic impact of plant root feeding scarab beetle larvae gave rise to numerous phylogenetic and ecological studies. Detailed knowledge of the sensory capacities of these larvae is nevertheless lacking. Here, we present an atlas of the sensory organs on larval head appendages of Melolontha melolontha. Our ultrastructural and electrophysiological investigations allow annotation of functions to various sensory structures. Results Three out of 17 ascertained sensillum types have olfactory, and 7 gustatory function. These sensillum types are unevenly distributed between antennae and palps. The most prominent chemosensory organs are antennal pore plates that in total are innervated by approximately one thousand olfactory sensory neurons grouped into functional units of three-to-four. In contrast, only two olfactory sensory neurons innervate one sensillum basiconicum on each of the palps. Gustatory sensilla chaetica dominate the apices of all head appendages, while only the palps bear thermo-/hygroreceptors. Electrophysiological responses to CO2, an attractant for many root feeders, are exclusively observed in the antennae. Out of 54 relevant volatile compounds, various alcohols, acids, amines, esters, aldehydes, ketones and monoterpenes elicit responses in antennae and palps. All head appendages are characterized by distinct olfactory response profiles that are even enantiomer specific for some compounds. Conclusions Chemosensory capacities in M. melolontha larvae are as highly developed as in many adult insects. We interpret the functional sensory units underneath the antennal pore plates as cryptic sensilla placodea and suggest that these perceive a broad range of secondary plant metabolites together with CO2. Responses to olfactory stimulation of the labial and maxillary palps indicate that typical contact chemo-sensilla have a dual gustatory and olfactory function. PMID:22848471

  6. Blocking and the detection of odor components in blends.

    PubMed

    Hosler, J S; Smith, B H

    2000-09-01

    Recent studies of olfactory blocking have revealed that binary odorant mixtures are not always processed as though they give rise to mixture-unique configural properties. When animals are conditioned to one odorant (A) and then conditioned to a mixture of that odorant with a second (X), the ability to learn or express the association of X with reinforcement appears to be reduced relative to animals that were not preconditioned to A. A recent model of odor-based response patterns in the insect antennal lobe predicts that the strength of the blocking effect will be related to the perceptual similarity between the two odorants, i.e. greater similarity should increase the blocking effect. Here, we test that model in the honeybee Apis mellifera by first establishing a generalization matrix for three odorants and then testing for blocking between all possible combinations of them. We confirm earlier findings demonstrating the occurrence of the blocking effect in olfactory learning of compound stimuli. We show that the occurrence and the strength of the blocking effect depend on the odorants used in the experiment. In addition, we find very good agreement between our results and the model, and less agreement between our results and an alternative model recently proposed to explain the effect.

  7. Association of Amine-Receptor DNA Sequence Variants with Associative Learning in the Honeybee.

    PubMed

    Lagisz, Malgorzata; Mercer, Alison R; de Mouzon, Charlotte; Santos, Luana L S; Nakagawa, Shinichi

    2016-03-01

    Octopamine- and dopamine-based neuromodulatory systems play a critical role in learning and learning-related behaviour in insects. To further our understanding of these systems and resulting phenotypes, we quantified DNA sequence variations at six loci coding octopamine-and dopamine-receptors and their association with aversive and appetitive learning traits in a population of honeybees. We identified 79 polymorphic sequence markers (mostly SNPs and a few insertions/deletions) located within or close to six candidate genes. Intriguingly, we found that levels of sequence variation in the protein-coding regions studied were low, indicating that sequence variation in the coding regions of receptor genes critical to learning and memory is strongly selected against. Non-coding and upstream regions of the same genes, however, were less conserved and sequence variations in these regions were weakly associated with between-individual differences in learning-related traits. While these associations do not directly imply a specific molecular mechanism, they suggest that the cross-talk between dopamine and octopamine signalling pathways may influence olfactory learning and memory in the honeybee.

  8. Rapid learning dynamics in individual honeybees during classical conditioning.

    PubMed

    Pamir, Evren; Szyszka, Paul; Scheiner, Ricarda; Nawrot, Martin P

    2014-01-01

    Associative learning in insects has been studied extensively by a multitude of classical conditioning protocols. However, so far little emphasis has been put on the dynamics of learning in individuals. The honeybee is a well-established animal model for learning and memory. We here studied associative learning as expressed in individual behavior based on a large collection of data on olfactory classical conditioning (25 datasets, 3298 animals). We show that the group-averaged learning curve and memory retention score confound three attributes of individual learning: the ability or inability to learn a given task, the generally fast acquisition of a conditioned response (CR) in learners, and the high stability of the CR during consecutive training and memory retention trials. We reassessed the prevailing view that more training results in better memory performance and found that 24 h memory retention can be indistinguishable after single-trial and multiple-trial conditioning in individuals. We explain how inter-individual differences in learning can be accommodated within the Rescorla-Wagner theory of associative learning. In both data-analysis and modeling we demonstrate how the conflict between population-level and single-animal perspectives on learning and memory can be disentangled.

  9. Rapid learning dynamics in individual honeybees during classical conditioning

    PubMed Central

    Pamir, Evren; Szyszka, Paul; Scheiner, Ricarda; Nawrot, Martin P.

    2014-01-01

    Associative learning in insects has been studied extensively by a multitude of classical conditioning protocols. However, so far little emphasis has been put on the dynamics of learning in individuals. The honeybee is a well-established animal model for learning and memory. We here studied associative learning as expressed in individual behavior based on a large collection of data on olfactory classical conditioning (25 datasets, 3298 animals). We show that the group-averaged learning curve and memory retention score confound three attributes of individual learning: the ability or inability to learn a given task, the generally fast acquisition of a conditioned response (CR) in learners, and the high stability of the CR during consecutive training and memory retention trials. We reassessed the prevailing view that more training results in better memory performance and found that 24 h memory retention can be indistinguishable after single-trial and multiple-trial conditioning in individuals. We explain how inter-individual differences in learning can be accommodated within the Rescorla–Wagner theory of associative learning. In both data-analysis and modeling we demonstrate how the conflict between population-level and single-animal perspectives on learning and memory can be disentangled. PMID:25309366

  10. Effects of field-realistic doses of glyphosate on honeybee appetitive behaviour.

    PubMed

    Herbert, Lucila T; Vázquez, Diego E; Arenas, Andrés; Farina, Walter M

    2014-10-01

    Glyphosate (GLY) is a broad-spectrum herbicide used for weed control. The sub-lethal impact of GLY on non-target organisms such as insect pollinators has not yet been evaluated. Apis mellifera is the main pollinator in agricultural environments and is a well-known model for behavioural research. Honeybees are also accurate biosensors of environmental pollutants and their appetitive behavioural response is a suitable tool with which to test sub-lethal effects of agrochemicals. We studied the effects of field-realistic doses of GLY on honeybees exposed chronically or acutely to the herbicide. We focused on sucrose sensitivity, elemental and non-elemental associative olfactory conditioning of the proboscis extension response (PER), and foraging-related behaviour. We found a reduced sensitivity to sucrose and learning performance for the groups chronically exposed to GLY concentrations within the range of recommended doses. When olfactory PER conditioning was performed with sucrose reward with the same GLY concentrations (acute exposure), elemental learning and short-term memory retention decreased significantly compared with controls. Non-elemental associative learning was also impaired by an acute exposure to GLY traces. Altogether, these results imply that GLY at concentrations found in agro-ecosystems as a result of standard spraying can reduce sensitivity to nectar reward and impair associative learning in honeybees. However, no effect on foraging-related behaviour was found. Therefore, we speculate that successful forager bees could become a source of constant inflow of nectar with GLY traces that could then be distributed among nestmates, stored in the hive and have long-term negative consequences on colony performance. © 2014. Published by The Company of Biologists Ltd.

  11. Expression of ionotropic receptors in terrestrial hermit crab's olfactory sensory neurons

    PubMed Central

    Groh-Lunow, Katrin C.; Getahun, Merid N.; Grosse-Wilde, Ewald; Hansson, Bill S.

    2015-01-01

    Coenobitidae are one out of at least five crustacean lineages which independently succeeded in the transition from water to land. This change in lifestyle required adaptation of the peripheral olfactory organs, the antennules, in order to sense chemical cues in the new terrestrial habitat. Hermit crab olfactory aesthetascs are arranged in a field on the distal segment of the antennular flagellum. Aesthetascs house approximately 300 dendrites with their cell bodies arranged in spindle-like complexes of ca. 150 cell bodies each. While the aesthetascs of aquatic crustaceans have been shown to be the place of odor uptake and previous studies identified ionotropic receptors (IRs) as the putative chemosensory receptors expressed in decapod antennules, the expression of IRs besides the IR co-receptors IR25a and IR93a in olfactory sensory neurons (OSNs) has not been documented yet. Our goal was to reveal the expression and distribution pattern of non-co-receptor IRs in OSNs of Coenobita clypeatus, a terrestrial hermit crab, with RNA in situ hybridization. We expanded our previously published RNAseq dataset, and revealed 22 novel IR candidates in the Coenobita antennules. We then used RNA probes directed against three different IRs to visualize their expression within the OSN cell body complexes. Furthermore we aimed to characterize ligand spectra of single aesthetascs by recording local field potentials and responses from individual dendrites. This also allowed comparison to functional data from insect OSNs expressing antennal IRs. We show that this orphan receptor subgroup with presumably non-olfactory function in insects is likely the basis of olfaction in terrestrial hermit crabs. PMID:25698921

  12. Sexual dimorphism and phenotypic plasticity in the antennal lobe of a stingless bee, Melipona scutellaris.

    PubMed

    Roselino, Ana Carolina; Hrncir, Michael; da Cruz Landim, Carminda; Giurfa, Martin; Sandoz, Jean-Christophe

    2015-07-01

    Among social insects, the stingless bees (Apidae, Meliponini), a mainly tropical group of highly eusocial bees, present an intriguing variety of well-described olfactory-dependent behaviors showing both caste- and sex-specific adaptations. By contrast, little is known about the neural structures underlying such behavioral richness or the olfactory detection and processing abilities of this insect group. This study therefore aimed to provide the first detailed description and comparison of the brains and primary olfactory centers, the antennal lobes, of the different members of a colony of the stingless bee Melipona scutellaris. Global neutral red staining, confocal laser scanning microscopy, and 3D reconstructions were used to compare the brain structures of males, workers, and virgin queens with a special emphasis on the antennal lobe. We found significant differences between both sexes and castes with regard to the relative volumes of olfactory and visual neuropils in the brain and also in the number and volume of the olfactory glomeruli. In addition, we identified one (workers, queens) and three or four (males) macroglomeruli in the antennal lobe. In both sexes and all castes, the largest glomerulus (G1) was located at a similar position relative to four identified landmark glomeruli, close to the entrance of the antennal nerve. This similarity in position suggests that G1s of workers, virgin queens, and males of M. scutellaris may correspond to the same glomerular entity, possibly tuned to queen-emitted volatiles since all colony members need this information. © 2015 Wiley Periodicals, Inc.

  13. Host Plant Species Differentiation in a Polyphagous Moth: Olfaction is Enough.

    PubMed

    Conchou, Lucie; Anderson, Peter; Birgersson, Göran

    2017-08-01

    Polyphagous herbivorous insects need to discriminate suitable from unsuitable host plants in complex plant communities. While studies on the olfactory system of monophagous herbivores have revealed close adaptations to their host plant's characteristic volatiles, such adaptive fine-tuning is not possible when a large diversity of plants is suitable. Instead, the available literature on polyphagous herbivore preferences suggests a higher level of plasticity, and a bias towards previously experienced plant species. It is therefore necessary to take into account the diversity of plant odors that polyphagous herbivores encounter in the wild in order to unravel the olfactory basis of their host plant choice behaviour. In this study we show that a polyphagous moth, Spodoptera littoralis, has the sensory ability to distinguish five host plant species using olfaction alone, this being a prerequisite to the ability to make a choice. We have used gas chromatography mass spectrometry (GC-MS) and gas chromatography electroantennographic detection (GC-EAD) in order to describe host plant odor profiles as perceived by S. littoralis. We find that each plant emits specific combinations and proportions of GC-EAD active volatiles, leading to statistically distinct profiles. In addition, at least four of these plants show GC-EAD active compound proportions that are conserved across individual plants, a characteristic that enables insects to act upon previous olfactory experiences during host plant choice. By identifying the volatiles involved in olfactory differentiation of alternative host plants by Spodoptera littoralis, we set the groundwork for deeper investigations of how olfactory perceptions translate into behaviour in polyphagous herbivores.

  14. An insect-inspired model for visual binding I: learning objects and their characteristics.

    PubMed

    Northcutt, Brandon D; Dyhr, Jonathan P; Higgins, Charles M

    2017-04-01

    Visual binding is the process of associating the responses of visual interneurons in different visual submodalities all of which are responding to the same object in the visual field. Recently identified neuropils in the insect brain termed optic glomeruli reside just downstream of the optic lobes and have an internal organization that could support visual binding. Working from anatomical similarities between optic and olfactory glomeruli, we have developed a model of visual binding based on common temporal fluctuations among signals of independent visual submodalities. Here we describe and demonstrate a neural network model capable both of refining selectivity of visual information in a given visual submodality, and of associating visual signals produced by different objects in the visual field by developing inhibitory neural synaptic weights representing the visual scene. We also show that this model is consistent with initial physiological data from optic glomeruli. Further, we discuss how this neural network model may be implemented in optic glomeruli at a neuronal level.

  15. Visualizing mushroom body response to a conditioned odor in honeybees

    NASA Astrophysics Data System (ADS)

    Faber, Till; Menzel, Randolf

    2001-11-01

    Combining differential conditioning with optophysiological recordings of bee brain activity allows the investigation of learning-related changes in complex neural systems. In this study we focused on the mushroom bodies of the bee brain. Presenting different odors to the animal leads to significant activation of the mushroom body lips. After differential conditioning, the rewarded odor leads to stronger activation than it did before training. Activation by the unrewarded odor remains unchanged. These results resemble findings in the bee's antennal lobes, which are the first olfactory relay station in the insect brain. As an integrative neural network, enhanced activation of the mushroom body lip may carry additional information, i.e., for processing odor concentrations.

  16. The Effects of Pre-Exposure to DEET on the Downstream Blood-Feeding Behaviors of Aedes aegypti Mosquitoes

    DTIC Science & Technology

    2016-06-10

    house the odorant receptor neurons (Amer 48 DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. UNCLASSIFIED 3 and...Mehlhorn 2006, Hallem et al. 2006, Paluch et al. 2010). The insect olfactory process starts 49 when odorant molecules enter the pores located on the...sensilla. Each sensillum contains 50 olfactory receptor neurons that have odorant receptors on its surface. As the molecule enters the 51 pores, the

  17. Identification of Putative Chemosensory Receptor Genes from the Athetis dissimilis Antennal Transcriptome

    PubMed Central

    Dong, Junfeng; Song, Yueqin; Li, Wenliang; Shi, Jie; Wang, Zhenying

    2016-01-01

    Olfaction plays a crucial role in insect population survival and reproduction. Identification of the genes associated with the olfactory system, without the doubt will promote studying the insect chemical communication system. In this study, RNA-seq technology was used to sequence the antennae transcriptome of Athetis dissimilis, an emerging crop pest in China with limited genomic information, with the purpose of identifying the gene set involved in olfactory recognition. Analysis of the transcriptome of female and male antennae generated 13.74 Gb clean reads in total from which 98,001 unigenes were assembled, and 25,930 unigenes were annotated. Total of 60 olfactory receptors (ORs), 18 gustatory receptors (GRs), and 12 ionotropic receptors (IRs) were identified by Blast and sequence similarity analyzes. One obligated olfactory receptor co-receptor (Orco) and four conserved sex pheromone receptors (PRs) were annotated in 60 ORs. Among the putative GRs, five genes (AdisGR1, 6, 7, 8 and 94) clustered in the sugar receptor family, and two genes (AdisGR3 and 93) involved in CO2 detection were identified. Finally, AdisIR8a.1 and AdisIR8a.2 co-receptors were identified in the group of candidate IRs. Furthermore, expression levels of these chemosensory receptor genes in female and male antennae were analyzed by mapping the Illumina reads. PMID:26812239

  18. EOL-1, the Homolog of the Mammalian Dom3Z, Regulates Olfactory Learning in C. elegans

    PubMed Central

    Shen, Yu; Zhang, Jiangwen; Calarco, John A.

    2014-01-01

    Learning is an essential function of the nervous system. However, our understanding of molecular underpinnings of learning remains incomplete. Here, we characterize a conserved protein EOL-1 that regulates olfactory learning in Caenorhabditis elegans. A recessive allele of eol-1 (enhanced olfactory learning) learns better to adjust its olfactory preference for bacteria foods and eol-1 acts in the URX sensory neurons to regulate learning. The mammalian homolog of EOL-1, Dom3Z, which regulates quality control of pre-mRNAs, can substitute the function of EOL-1 in learning regulation, demonstrating functional conservation between these homologs. Mutating the residues of Dom3Z that are critical for its enzymatic activity, and the equivalent residues in EOL-1, abolishes the function of these proteins in learning. Together, our results provide insights into the function of EOL-1/Dom3Z and suggest that its activity in pre-mRNA quality control is involved in neural plasticity. PMID:25274815

  19. Cross-modal interaction between visual and olfactory learning in Apis cerana.

    PubMed

    Zhang, Li-Zhen; Zhang, Shao-Wu; Wang, Zi-Long; Yan, Wei-Yu; Zeng, Zhi-Jiang

    2014-10-01

    The power of the small honeybee brain carrying out behavioral and cognitive tasks has been shown repeatedly to be highly impressive. The present study investigates, for the first time, the cross-modal interaction between visual and olfactory learning in Apis cerana. To explore the role and molecular mechanisms of cross-modal learning in A. cerana, the honeybees were trained and tested in a modified Y-maze with seven visual and five olfactory stimulus, where a robust visual threshold for black/white grating (period of 2.8°-3.8°) and relatively olfactory threshold (concentration of 50-25%) was obtained. Meanwhile, the expression levels of five genes (AcCREB, Acdop1, Acdop2, Acdop3, Actyr1) related to learning and memory were analyzed under different training conditions by real-time RT-PCR. The experimental results indicate that A. cerana could exhibit cross-modal interactions between visual and olfactory learning by reducing the threshold level of the conditioning stimuli, and that these genes may play important roles in the learning process of honeybees.

  20. Exposure of Solidago altissima plants to volatile emissions of an insect antagonist (Eurosta solidaginis) deters subsequent herbivory.

    PubMed

    Helms, Anjel M; De Moraes, Consuelo M; Tooker, John F; Mescher, Mark C

    2013-01-02

    Recent work indicates that plants respond to environmental odors. For example, some parasitic plants grow toward volatile cues from their host plants, and other plants have been shown to exhibit enhanced defense capability after exposure to volatile emissions from herbivore-damaged neighbors. Despite such intriguing discoveries, we currently know relatively little about the occurrence and significance of plant responses to olfactory cues in natural systems. Here we explore the possibility that some plants may respond to the odors of insect antagonists. We report that tall goldenrod (Solidago altissima) plants exposed to the putative sex attractant of a closely associated herbivore, the gall-inducing fly Eurosta solidaginis, exhibit enhanced defense responses and reduced susceptibility to insect feeding damage. In a field study, egg-laying E. solidaginis females discriminated against plants previously exposed to the sex-specific volatile emissions of males; furthermore, overall rates of herbivory were reduced on exposed plants. Consistent with these findings, laboratory assays documented reduced performance of the specialist herbivore Trirhabda virgata on plants exposed to male fly emissions (or crude extracts), as well as enhanced induction of the key defense hormone jasmonic acid in exposed plants after herbivory. These unexpected findings from a classic ecological study system provide evidence for a previously unexplored class of plant-insect interactions involving plant responses to insect-derived olfactory cues.

  1. Exposure of Solidago altissima plants to volatile emissions of an insect antagonist (Eurosta solidaginis) deters subsequent herbivory

    PubMed Central

    Helms, Anjel M.; De Moraes, Consuelo M.; Tooker, John F.; Mescher, Mark C.

    2013-01-01

    Recent work indicates that plants respond to environmental odors. For example, some parasitic plants grow toward volatile cues from their host plants, and other plants have been shown to exhibit enhanced defense capability after exposure to volatile emissions from herbivore-damaged neighbors. Despite such intriguing discoveries, we currently know relatively little about the occurrence and significance of plant responses to olfactory cues in natural systems. Here we explore the possibility that some plants may respond to the odors of insect antagonists. We report that tall goldenrod (Solidago altissima) plants exposed to the putative sex attractant of a closely associated herbivore, the gall-inducing fly Eurosta solidaginis, exhibit enhanced defense responses and reduced susceptibility to insect feeding damage. In a field study, egg-laying E. solidaginis females discriminated against plants previously exposed to the sex-specific volatile emissions of males; furthermore, overall rates of herbivory were reduced on exposed plants. Consistent with these findings, laboratory assays documented reduced performance of the specialist herbivore Trirhabda virgata on plants exposed to male fly emissions (or crude extracts), as well as enhanced induction of the key defense hormone jasmonic acid in exposed plants after herbivory. These unexpected findings from a classic ecological study system provide evidence for a previously unexplored class of plant–insect interactions involving plant responses to insect-derived olfactory cues. PMID:23237852

  2. Parallel processing in the honeybee olfactory pathway: structure, function, and evolution.

    PubMed

    Rössler, Wolfgang; Brill, Martin F

    2013-11-01

    Animals face highly complex and dynamic olfactory stimuli in their natural environments, which require fast and reliable olfactory processing. Parallel processing is a common principle of sensory systems supporting this task, for example in visual and auditory systems, but its role in olfaction remained unclear. Studies in the honeybee focused on a dual olfactory pathway. Two sets of projection neurons connect glomeruli in two antennal-lobe hemilobes via lateral and medial tracts in opposite sequence with the mushroom bodies and lateral horn. Comparative studies suggest that this dual-tract circuit represents a unique adaptation in Hymenoptera. Imaging studies indicate that glomeruli in both hemilobes receive redundant sensory input. Recent simultaneous multi-unit recordings from projection neurons of both tracts revealed widely overlapping response profiles strongly indicating parallel olfactory processing. Whereas lateral-tract neurons respond fast with broad (generalistic) profiles, medial-tract neurons are odorant specific and respond slower. In analogy to "what-" and "where" subsystems in visual pathways, this suggests two parallel olfactory subsystems providing "what-" (quality) and "when" (temporal) information. Temporal response properties may support across-tract coincidence coding in higher centers. Parallel olfactory processing likely enhances perception of complex odorant mixtures to decode the diverse and dynamic olfactory world of a social insect.

  3. Olfaction in the female sheep botfly

    NASA Astrophysics Data System (ADS)

    Poddighe, Simone; Dekker, Teun; Scala, Antonio; Angioy, Anna Maria

    2010-09-01

    The nasal botfly Oestrus ovis (Diptera, Cyclorrhapha: Oestridae) is a myiasis-causing insect species, which affects the health of sheep, goats and humans. Gravid females are viviparous and larviposit into the animal’s nostrils. Host-searching and larvipositing flies are visually guided and influenced by climatic conditions, whereas olfaction seemed to play no role in this process. However, here, we show that the antennae of adult O. ovis female flies are relatively small but well developed and inhabited by several types of olfactory sensilla. Further, we show that the antennal lobes of this species receive input from antennal afferents and consist of a clearly defined glomerular organisation. We also give the first evidence of the fly’s ability to detect several synthetic odour compounds. Our findings provide a morpho-functional basis for future investigations on olfactory-mediated behaviour of this insect pest.

  4. Protection via parasitism: Datura odors attract parasitoid flies, which inhibit Manduca larvae from feeding and growing but may not help plants.

    PubMed

    Wilson, J K; Woods, H A

    2015-12-01

    Insect carnivores frequently use olfactory cues from plants to find prey or hosts. For plants, the benefits of attracting parasitoids have been controversial, partly because parasitoids often do not kill their host insect immediately. Furthermore, most research has focused on the effects of solitary parasitoids on growth and feeding of hosts, even though many parasitoids are gregarious (multiple siblings inhabit the same host). Here, we examine how a gregarious parasitoid, the tachinid fly Drino rhoeo, uses olfactory cues from the host plant Datura wrightii to find the sphingid herbivore Manduca sexta, and how parasitism affects growth and feeding of host larvae. In behavioral trials using a Y-olfactometer, female flies were attracted to olfactory cues emitted by attacked plants and by cues emitted from the frass produced by larval Manduca sexta. M. sexta caterpillars that were parasitized by D. rhoeo grew to lower maximum weights, grew more slowly, and ate less of their host plant. We also present an analytical model to predict how tri-trophic interactions change with varying herbivory levels, parasitization rates and plant sizes. This model predicted that smaller plants gain a relatively greater benefit compared to large plants in attracting D. rhoeo. By assessing the behavior, the effects of host performance, and the variation in ecological parameters of the system, we can better understand the complex interactions between herbivorous insects, the plants they live on and the third trophic level members that attack them.

  5. Chronic neonicotinoid pesticide exposure and parasite stress differentially affects learning in honeybees and bumblebees

    PubMed Central

    2016-01-01

    Learning and memory are crucial functions which enable insect pollinators to efficiently locate and extract floral rewards. Exposure to pesticides or infection by parasites may cause subtle but ecologically important changes in cognitive functions of pollinators. The potential interactive effects of these stressors on learning and memory have not yet been explored. Furthermore, sensitivity to stressors may differ between species, but few studies have compared responses in different species. Here, we show that chronic exposure to field-realistic levels of the neonicotinoid clothianidin impaired olfactory learning acquisition in honeybees, leading to potential impacts on colony fitness, but not in bumblebees. Infection by the microsporidian parasite Nosema ceranae slightly impaired learning in honeybees, but no interactive effects were observed. Nosema did not infect bumblebees (3% infection success). Nevertheless, Nosema-treated bumblebees had a slightly lower rate of learning than controls, but faster learning in combination with neonicotinoid exposure. This highlights the potential for complex interactive effects of stressors on learning. Our results underline that one cannot readily extrapolate findings from one bee species to others. This has important implications for regulatory risk assessments which generally use honeybees as a model for all bees. PMID:27053744

  6. Herbivory by a Phloem-feeding insect inhibits floral volatile production.

    PubMed

    Pareja, Martin; Qvarfordt, Erika; Webster, Ben; Mayon, Patrick; Pickett, John; Birkett, Michael; Glinwood, Robert

    2012-01-01

    There is extensive knowledge on the effects of insect herbivory on volatile emission from vegetative tissue, but little is known about its impact on floral volatiles. We show that herbivory by phloem-feeding aphids inhibits floral volatile emission in white mustard Sinapis alba measured by gas chromatographic analysis of headspace volatiles. The effect of the Brassica specialist aphid Lipaphis erysimi was stronger than the generalist aphid Myzus persicae and feeding by chewing larvae of the moth Plutella xylostella caused no reduction in floral volatile emission. Field observations showed no effect of L. erysimi-mediated floral volatile emission on the total number of flower visits by pollinators. Olfactory bioassays suggested that although two aphid natural enemies could detect aphid inhibition of floral volatiles, their olfactory orientation to infested plants was not disrupted. This is the first demonstration that phloem-feeding herbivory can affect floral volatile emission, and that the outcome of interaction between herbivory and floral chemistry may differ depending on the herbivore's feeding mode and degree of specialisation. The findings provide new insights into interactions between insect herbivores and plant chemistry.

  7. The Influence of Learning on Host Plant Preference in a Significant Phytopathogen Vector, Diaphorina citri

    PubMed Central

    Stockton, Dara G.; Martini, Xavier; Patt, Joseph M.; Stelinski, Lukasz L.

    2016-01-01

    Although specialist herbivorous insects are guided by innate responses to host plant cues, host plant preference may be influenced by experience and is not dictated by instinct alone. The effect of learning on host plant preference was examined in the Asian citrus psyllid, Diaphorina citri; vector of the causal agent of citrus greening disease or huanglongbing. We investigated: a) whether development on specific host plant species influenced host plant preference in mature D. citri; and b) the extent of associative learning in D. citri in the form of simple and compound conditioning. Learning was measured by cue selection in a 2-choice behavioral assay and compared to naïve controls. Our results showed that learned responses in D. citri are complex and diverse. The developmental host plant species influenced adult host plant preference, with female psyllids preferring the species on which they were reared. However, such preferences were subject to change with the introduction of an alternative host plant within 24–48 hrs, indicating a large degree of experience-dependent response plasticity. Additionally, learning occurred for multiple sensory modalities where novel olfactory and visual environmental cues were associated with the host plant. However, males and females displayed differing discriminatory abilities. In compound conditioning tasks, males exhibited recognition of a compound stimulus alone while females were capable of learning the individual components. These findings suggest D. citri are dynamic animals that demonstrate host plant preference based on developmental and adult experience and can learn to recognize olfactory and visual host plant stimuli in ways that may be sex specific. These experience-based associations are likely used by adults to locate and select suitable host plants for feeding and reproduction and may suggest the need for more tailored lures and traps, which reflect region-specific cultivars or predominate Rutaceae in the area being monitored. PMID:26930355

  8. The Influence of Learning on Host Plant Preference in a Significant Phytopathogen Vector, Diaphorina citri.

    PubMed

    Stockton, Dara G; Martini, Xavier; Patt, Joseph M; Stelinski, Lukasz L

    2016-01-01

    Although specialist herbivorous insects are guided by innate responses to host plant cues, host plant preference may be influenced by experience and is not dictated by instinct alone. The effect of learning on host plant preference was examined in the Asian citrus psyllid, Diaphorina citri; vector of the causal agent of citrus greening disease or huanglongbing. We investigated: a) whether development on specific host plant species influenced host plant preference in mature D. citri; and b) the extent of associative learning in D. citri in the form of simple and compound conditioning. Learning was measured by cue selection in a 2-choice behavioral assay and compared to naïve controls. Our results showed that learned responses in D. citri are complex and diverse. The developmental host plant species influenced adult host plant preference, with female psyllids preferring the species on which they were reared. However, such preferences were subject to change with the introduction of an alternative host plant within 24-48 hrs, indicating a large degree of experience-dependent response plasticity. Additionally, learning occurred for multiple sensory modalities where novel olfactory and visual environmental cues were associated with the host plant. However, males and females displayed differing discriminatory abilities. In compound conditioning tasks, males exhibited recognition of a compound stimulus alone while females were capable of learning the individual components. These findings suggest D. citri are dynamic animals that demonstrate host plant preference based on developmental and adult experience and can learn to recognize olfactory and visual host plant stimuli in ways that may be sex specific. These experience-based associations are likely used by adults to locate and select suitable host plants for feeding and reproduction and may suggest the need for more tailored lures and traps, which reflect region-specific cultivars or predominate Rutaceae in the area being monitored.

  9. Olfactory Cued Learning Paradigm.

    PubMed

    Liu, Gary; McClard, Cynthia K; Tepe, Burak; Swanson, Jessica; Pekarek, Brandon; Panneerselvam, Sugi; Arenkiel, Benjamin R

    2017-05-05

    Sensory stimulation leads to structural changes within the CNS (Central Nervous System), thus providing the fundamental mechanism for learning and memory. The olfactory circuit offers a unique model for studying experience-dependent plasticity, partly due to a continuous supply of integrating adult born neurons. Our lab has recently implemented an olfactory cued learning paradigm in which specific odor pairs are coupled to either a reward or punishment to study downstream circuit changes. The following protocol outlines the basic set up for our learning paradigm. Here, we describe the equipment setup, programming of software, and method of behavioral training.

  10. Matching- and Nonmatching-to-Sample Concept Learning in Rats Using Olfactory Stimuli

    ERIC Educational Resources Information Center

    April, L. Brooke; Bruce, Katherine; Galizio, Mark

    2011-01-01

    Previous research has shown that rats can learn matching-to-sample relations with olfactory stimuli; however, the specific characteristics of this relational control are unclear. In Experiment 1, 6 rats were trained to either match or nonmatch to sample in a modified operant chamber using common household spices as olfactory stimuli. After…

  11. Odor-Induced Neuronal Rhythms in the Olfactory Bulb Are Profoundly Modified in ob/ob Obese Mice

    PubMed Central

    Chelminski, Yan; Magnan, Christophe; Luquet, Serge H.; Everard, Amandine; Meunier, Nicolas; Gurden, Hirac; Martin, Claire

    2017-01-01

    Leptin, the product of the Ob(Lep) gene, is a peptide hormone that plays a major role in maintaining the balance between food intake and energy expenditure. In the brain, leptin receptors are expressed by hypothalamic cells but also in the olfactory bulb, the first central structure coding for odors, suggesting a precise function of this hormone in odor-evoked activities. Although olfaction plays a key role in feeding behavior, the ability of the olfactory bulb to integrate the energy-related signal leptin is still missing. Therefore, we studied the fate of odor-induced activity in the olfactory bulb in the genetic context of leptin deficiency using the obese ob/ob mice. By means of an odor discrimination task with concomitant local field potential recordings, we showed that ob/ob mice perform better than wild-type (WT) mice in the early stage of the task. This behavioral gain of function was associated in parallel with profound changes in neuronal oscillations in the olfactory bulb. The distribution of the peaks in the gamma frequency range was shifted toward higher frequencies in ob/ob mice compared to WT mice before learning. More notably, beta oscillatory activity, which has been shown previously to be correlated with olfactory discrimination learning, was longer and stronger in expert ob/ob mice after learning. Since oscillations in the olfactory bulb emerge from mitral to granule cell interactions, our results suggest that cellular dynamics in the olfactory bulb are deeply modified in ob/ob mice in the context of olfactory learning. PMID:28154537

  12. Associative Learning during Early Adulthood Enhances Later Memory Retention in Honeybees

    PubMed Central

    Arenas, Andrés; Fernández, Vanesa M.; Farina, Walter M.

    2009-01-01

    Background Cognitive experiences during the early stages of life play an important role in shaping the future behavior in mammals but also in insects, in which precocious learning can directly modify behaviors later in life depending on both the timing and the rearing environment. However, whether olfactory associative learning acquired early in the adult stage of insects affect memorizing of new learning events has not been studied yet. Methodology Groups of adult honeybee workers that experienced an odor paired with a sucrose solution 5 to 8 days or 9 to 12 days after emergence were previously exposed to (i) a rewarded experience through the offering of scented food, or (ii) a non-rewarded experience with a pure volatile compound in the rearing environment. Principal Findings Early rewarded experiences (either at 1–4 or 5–8 days of adult age) enhanced retention performance in 9–12-day-conditioned bees when they were tested at 17 days of age. The highest retention levels at this age, which could not be improved with prior rewarded experiences, were found for memories established at 5–8 days of adult age. Associative memories acquired at 9–12 days of age showed a weak effect on retention for some pure pre-exposed volatile compounds; whereas the sole exposure of an odor at any younger age did not promote long-term effects on learning performance. Conclusions The associative learning events that occurred a few days after adult emergence improved memorizing in middle-aged bees. In addition, both the timing and the nature of early sensory inputs interact to enhance retention of new learning events acquired later in life, an important matter in the social life of honeybees. PMID:19956575

  13. EOL-1, the homolog of the mammalian Dom3Z, regulates olfactory learning in C. elegans.

    PubMed

    Shen, Yu; Zhang, Jiangwen; Calarco, John A; Zhang, Yun

    2014-10-01

    Learning is an essential function of the nervous system. However, our understanding of molecular underpinnings of learning remains incomplete. Here, we characterize a conserved protein EOL-1 that regulates olfactory learning in Caenorhabditis elegans. A recessive allele of eol-1 (enhanced olfactory learning) learns better to adjust its olfactory preference for bacteria foods and eol-1 acts in the URX sensory neurons to regulate learning. The mammalian homolog of EOL-1, Dom3Z, which regulates quality control of pre-mRNAs, can substitute the function of EOL-1 in learning regulation, demonstrating functional conservation between these homologs. Mutating the residues of Dom3Z that are critical for its enzymatic activity, and the equivalent residues in EOL-1, abolishes the function of these proteins in learning. Together, our results provide insights into the function of EOL-1/Dom3Z and suggest that its activity in pre-mRNA quality control is involved in neural plasticity. Copyright © 2014 the authors 0270-6474/14/3413364-07$15.00/0.

  14. Direct neural pathways convey distinct visual information to Drosophila mushroom bodies

    PubMed Central

    Vogt, Katrin; Aso, Yoshinori; Hige, Toshihide; Knapek, Stephan; Ichinose, Toshiharu; Friedrich, Anja B; Turner, Glenn C; Rubin, Gerald M; Tanimoto, Hiromu

    2016-01-01

    Previously, we demonstrated that visual and olfactory associative memories of Drosophila share mushroom body (MB) circuits (Vogt et al., 2014). Unlike for odor representation, the MB circuit for visual information has not been characterized. Here, we show that a small subset of MB Kenyon cells (KCs) selectively responds to visual but not olfactory stimulation. The dendrites of these atypical KCs form a ventral accessory calyx (vAC), distinct from the main calyx that receives olfactory input. We identified two types of visual projection neurons (VPNs) directly connecting the optic lobes and the vAC. Strikingly, these VPNs are differentially required for visual memories of color and brightness. The segregation of visual and olfactory domains in the MB allows independent processing of distinct sensory memories and may be a conserved form of sensory representations among insects. DOI: http://dx.doi.org/10.7554/eLife.14009.001 PMID:27083044

  15. Reciprocal synapses between mushroom body and dopamine neurons form a positive feedback loop required for learning.

    PubMed

    Cervantes-Sandoval, Isaac; Phan, Anna; Chakraborty, Molee; Davis, Ronald L

    2017-05-10

    Current thought envisions dopamine neurons conveying the reinforcing effect of the unconditioned stimulus during associative learning to the axons of Drosophila mushroom body Kenyon cells for normal olfactory learning. Here, we show using functional GFP reconstitution experiments that Kenyon cells and dopamine neurons from axoaxonic reciprocal synapses. The dopamine neurons receive cholinergic input via nicotinic acetylcholine receptors from the Kenyon cells; knocking down these receptors impairs olfactory learning revealing the importance of these receptors at the synapse. Blocking the synaptic output of Kenyon cells during olfactory conditioning reduces presynaptic calcium transients in dopamine neurons, a finding consistent with reciprocal communication. Moreover, silencing Kenyon cells decreases the normal chronic activity of the dopamine neurons. Our results reveal a new and critical role for positive feedback onto dopamine neurons through reciprocal connections with Kenyon cells for normal olfactory learning.

  16. Scientists train honeybees to detect explosives

    ScienceCinema

    None

    2017-12-09

    Members of the Los Alamos National Laboratory Stealthy Insect Sensor Project team have been able to harness the honeybee's exceptional olfactory sense by using the bees' natural reaction to nectar, a proboscis extension reflex (sticking out their tongue)

  17. Scientists train honeybees to detect explosives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2008-03-21

    Members of the Los Alamos National Laboratory Stealthy Insect Sensor Project team have been able to harness the honeybee's exceptional olfactory sense by using the bees' natural reaction to nectar, a proboscis extension reflex (sticking out their tongue)

  18. Excitatory Local Interneurons Enhance Tuning of Sensory Information

    PubMed Central

    Assisi, Collins; Stopfer, Mark; Bazhenov, Maxim

    2012-01-01

    Neurons in the insect antennal lobe represent odors as spatiotemporal patterns of activity that unfold over multiple time scales. As these patterns unspool they decrease the overlap between odor representations and thereby increase the ability of the olfactory system to discriminate odors. Using a realistic model of the insect antennal lobe we examined two competing components of this process –lateral excitation from local excitatory interneurons, and slow inhibition from local inhibitory interneurons. We found that lateral excitation amplified differences between representations of similar odors by recruiting projection neurons that did not receive direct input from olfactory receptors. However, this increased sensitivity also amplified noisy variations in input and compromised the ability of the system to respond reliably to multiple presentations of the same odor. Slow inhibition curtailed the spread of projection neuron activity and increased response reliability. These competing influences must be finely balanced in order to decorrelate odor representations. PMID:22807661

  19. Honey Bee Allatostatins Target Galanin/Somatostatin-Like Receptors and Modulate Learning: A Conserved Function?

    PubMed Central

    Urlacher, Elodie; Soustelle, Laurent; Parmentier, Marie-Laure; Verlinden, Heleen; Gherardi, Marie-Julie; Fourmy, Daniel; Mercer, Alison R.

    2016-01-01

    Sequencing of the honeybee genome revealed many neuropeptides and putative neuropeptide receptors, yet functional characterization of these peptidic systems is scarce. In this study, we focus on allatostatins, which were first identified as inhibitors of juvenile hormone synthesis, but whose role in the adult honey bee (Apis mellifera) brain remains to be determined. We characterize the bee allatostatin system, represented by two families: allatostatin A (Apime-ASTA) and its receptor (Apime-ASTA-R); and C-type allatostatins (Apime-ASTC and Apime-ASTCC) and their common receptor (Apime-ASTC-R). Apime-ASTA-R and Apime-ASTC-R are the receptors in bees most closely related to vertebrate galanin and somatostatin receptors, respectively. We examine the functional properties of the two honeybee receptors and show that they are transcriptionally expressed in the adult brain, including in brain centers known to be important for learning and memory processes. Thus we investigated the effects of exogenously applied allatostatins on appetitive olfactory learning in the bee. Our results show that allatostatins modulate learning in this insect, and provide important insights into the evolution of somatostatin/allatostatin signaling. PMID:26741132

  20. Tunicamycin impairs olfactory learning and synaptic plasticity in the olfactory bulb.

    PubMed

    Tong, Jia; Okutani, Fumino; Murata, Yoshihiro; Taniguchi, Mutsuo; Namba, Toshiharu; Wang, Yu-Jie; Kaba, Hideto

    2017-03-06

    Tunicamycin (TM) induces endoplasmic reticulum (ER) stress and inhibits N-glycosylation in cells. ER stress is associated with neuronal death in neurodegenerative disorders, such as Parkinson's disease and Alzheimer's disease, and most patients complain of the impairment of olfactory recognition. Here we examined the effects of TM on aversive olfactory learning and the underlying synaptic plasticity in the main olfactory bulb (MOB). Behavioral experiments demonstrated that the intrabulbar infusion of TM disabled aversive olfactory learning without affecting short-term memory. Histological analyses revealed that TM infusion upregulated C/EBP homologous protein (CHOP), a marker of ER stress, in the mitral and granule cell layers of MOB. Electrophysiological data indicated that TM inhibited tetanus-induced long-term potentiation (LTP) at the dendrodendritic excitatory synapse from mitral to granule cells. A low dose of TM (250nM) abolished the late phase of LTP, and a high dose (1μM) inhibited the early and late phases of LTP. Further, high-dose, but not low-dose, TM reduced the paired-pulse facilitation ratio, suggesting that the inhibitory effects of TM on LTP are partially mediated through the presynaptic machinery. Thus, our results support the hypothesis that TM-induced ER stress impairs olfactory learning by inhibiting synaptic plasticity via presynaptic and postsynaptic mechanisms in MOB. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. The sox gene Dichaete is expressed in local interneurons and functions in development of the Drosophila adult olfactory circuit.

    PubMed

    Melnattur, Krishna V; Berdnik, Daniela; Rusan, Zeid; Ferreira, Christopher J; Nambu, John R

    2013-02-01

    In insects, the primary sites of integration for olfactory sensory input are the glomeruli in the antennal lobes. Here, axons of olfactory receptor neurons synapse with dendrites of the projection neurons that relay olfactory input to higher brain centers, such as the mushroom bodies and lateral horn. Interactions between olfactory receptor neurons and projection neurons are modulated by excitatory and inhibitory input from a group of local interneurons. While significant insight has been gleaned into the differentiation of olfactory receptor and projection neurons, much less is known about the development and function of the local interneurons. We have found that Dichaete, a conserved Sox HMG box gene, is strongly expressed in a cluster of LAAL cells located adjacent to each antennal lobe in the adult brain. Within these clusters, Dichaete protein expression is detected in both cholinergic and GABAergic local interneurons. In contrast, Dichaete expression is not detected in mature or developing projection neurons, or developing olfactory receptor neurons. Analysis of novel viable Dichaete mutant alleles revealed misrouting of specific projection neuron dendrites and axons, and alterations in glomeruli organization. These results suggest noncell autonomous functions of Dichaete in projection neuron differentiation as well as a potential role for Dichaete-expressing local interneurons in development of the adult olfactory circuitry. Copyright © 2012 Wiley Periodicals, Inc.

  2. Neural Correlates of Olfactory Learning: Critical Role of Centrifugal Neuromodulation

    ERIC Educational Resources Information Center

    Fletcher, Max L.; Chen, Wei R.

    2010-01-01

    The mammalian olfactory system is well established for its remarkable capability of undergoing experience-dependent plasticity. Although this process involves changes at multiple stages throughout the central olfactory pathway, even the early stages of processing, such as the olfactory bulb and piriform cortex, can display a high degree of…

  3. Olfactory discrimination ability and brain expression of c-fos, Gir and Glut1 mRNA are altered in n-3 fatty acid-depleted rats.

    PubMed

    Hichami, Aziz; Datiche, Frédérique; Ullah, Sana; Liénard, Fabienne; Chardigny, Jean-Michel; Cattarelli, Martine; Khan, Naim Akhtar

    2007-11-22

    The long-chain polyunsaturated n-3 fatty acids (n-3 PUFA), particularly docosahexaenoic acid (DHA), are abundantly present in the central nervous system and play an important role in cognitive functions such as learning and memory. We, therefore, investigated the effects of n-3 PUFA-depletion in rats (F2 generation) on the learning of an olfactory discrimination task, progressively acquired within a four-arm maze, and on the mRNA expression of some candidate genes, i.e., c-fos, Gir and glucose transporter (Glut1), which could reflect the level of cerebral activity. We observed that DHA contents were dramatically decreased in the olfactory bulb, the piriform cortex and the neocortex of n-3-depleted rats. Furthermore, the n-3 deficiency resulted in a mild olfactory learning impairment as these rats required more days to master the olfactory task compared to control rats. Real-time RT-PCR experiments revealed that the training induced the expression of c-fos mRNA in all the three regions of the brain whereas Gir and Glut1 mRNA were induced only in olfactory bulb and neocortex. However, such an increase was less marked in the n-3-deficient rats. Taken together, these results allow us to assume that the behavioural impairment in n-3-deficient rats is linked to the depletion of n-3 fatty acids in brain regions processing olfactory cues. Data are discussed in view of the possible role of some of these genes in learning-induced neuronal olfactory plasticity.

  4. Auditory orientation in crickets: Pattern recognition controls reactive steering

    NASA Astrophysics Data System (ADS)

    Poulet, James F. A.; Hedwig, Berthold

    2005-10-01

    Many groups of insects are specialists in exploiting sensory cues to locate food resources or conspecifics. To achieve orientation, bees and ants analyze the polarization pattern of the sky, male moths orient along the females' odor plume, and cicadas, grasshoppers, and crickets use acoustic signals to locate singing conspecifics. In comparison with olfactory and visual orientation, where learning is involved, auditory processing underlying orientation in insects appears to be more hardwired and genetically determined. In each of these examples, however, orientation requires a recognition process identifying the crucial sensory pattern to interact with a localization process directing the animal's locomotor activity. Here, we characterize this interaction. Using a sensitive trackball system, we show that, during cricket auditory behavior, the recognition process that is tuned toward the species-specific song pattern controls the amplitude of auditory evoked steering responses. Females perform small reactive steering movements toward any sound patterns. Hearing the male's calling song increases the gain of auditory steering within 2-5 s, and the animals even steer toward nonattractive sound patterns inserted into the speciesspecific pattern. This gain control mechanism in the auditory-to-motor pathway allows crickets to pursue species-specific sound patterns temporarily corrupted by environmental factors and may reflect the organization of recognition and localization networks in insects. localization | phonotaxis

  5. A neonicotinoid impairs olfactory learning in Asian honey bees (Apis cerana) exposed as larvae or as adults

    PubMed Central

    Tan, Ken; Chen, Weiwen; Dong, Shihao; Liu, Xiwen; Wang, Yuchong; Nieh, James C.

    2015-01-01

    Xenobiotics such as the neonicotinoid pesticide, imidacloprid, are used globally, but their effects on native bee species are poorly understood. We studied the effects of sublethal doses of imidacloprid on olfactory learning in the native honey bee species, Apis cerana, an important pollinator of agricultural and native plants throughout Asia. We provide the first evidence that imidacloprid can impair learning in A. cerana workers exposed as adults or as larvae. Adults that ingested a single imidacloprid dose as low as 0.1 ng/bee had significantly reduced olfactory learning acquisition, which was 1.6-fold higher in control bees. Longer-term learning (1-17 h after the last learning trial) was also impaired. Bees exposed as larvae to a total dose of 0.24 ng/bee did not have reduced survival to adulthood. However, these larval-treated bees had significantly impaired olfactory learning when tested as adults: control bees exhibited up to 4.8-fold better short-term learning acquisition, though longer-term learning was not affected. Thus, sublethal cognitive deficits elicited by neonicotinoids on a broad range of native bee species deserve further study. PMID:26086769

  6. Tick Haller's Organ, a New Paradigm for Arthropod Olfaction: How Ticks Differ from Insects.

    PubMed

    Carr, Ann L; Mitchell, Robert D; Dhammi, Anirudh; Bissinger, Brooke W; Sonenshine, Daniel E; Roe, R Michael

    2017-07-18

    Ticks are the vector of many human and animal diseases; and host detection is critical to this process. Ticks have a unique sensory structure located exclusively on the 1st pairs of legs; the fore-tarsal Haller's organ, not found in any other animals, presumed to function like the insect antennae in chemosensation but morphologically very different. The mechanism of tick chemoreception is unknown. Utilizing next-generation sequencing and comparative transcriptomics between the 1st and 4th legs (the latter without the Haller's organ), we characterized 1st leg specific and putative Haller's organ specific transcripts from adult American dog ticks, Dermacentor variabilis . The analysis suggested that the Haller's organ is involved in olfaction, not gustation. No known odorant binding proteins like those found in insects, chemosensory lipocalins or typical insect olfactory mechanisms were identified; with the transcriptomic data only supporting a possible olfactory G-protein coupled receptor (GPCR) signal cascade unique to the Haller's organ. Each component of the olfactory GPCR signal cascade was identified and characterized. The expression of GPCR, G αo and β-arrestin transcripts identified exclusively in the 1st leg transcriptome, and putatively Haller's organ specific, were examined in unfed and blood-fed adult female and male D. variabilis . Blood feeding to repletion in adult females down-regulated the expression of all three chemosensory transcripts in females but not in males; consistent with differences in post-feeding tick behavior between sexes and an expected reduced chemosensory function in females as they leave the host. Data are presented for the first time of the potential hormonal regulation of tick chemosensation; behavioral assays confirmed the role of the Haller's organ in N , N -diethyl-meta-toluamide (DEET) repellency but showed no role for the Haller's organ in host attachment. Further research is needed to understand the potential role of the GPCR cascade in olfaction.

  7. Tick Haller’s Organ, a New Paradigm for Arthropod Olfaction: How Ticks Differ from Insects

    PubMed Central

    Carr, Ann L.; Mitchell III, Robert D.; Dhammi, Anirudh; Bissinger, Brooke W.; Sonenshine, Daniel E.; Roe, R. Michael

    2017-01-01

    Ticks are the vector of many human and animal diseases; and host detection is critical to this process. Ticks have a unique sensory structure located exclusively on the 1st pairs of legs; the fore-tarsal Haller’s organ, not found in any other animals, presumed to function like the insect antennae in chemosensation but morphologically very different. The mechanism of tick chemoreception is unknown. Utilizing next-generation sequencing and comparative transcriptomics between the 1st and 4th legs (the latter without the Haller’s organ), we characterized 1st leg specific and putative Haller’s organ specific transcripts from adult American dog ticks, Dermacentor variabilis. The analysis suggested that the Haller’s organ is involved in olfaction, not gustation. No known odorant binding proteins like those found in insects, chemosensory lipocalins or typical insect olfactory mechanisms were identified; with the transcriptomic data only supporting a possible olfactory G-protein coupled receptor (GPCR) signal cascade unique to the Haller’s organ. Each component of the olfactory GPCR signal cascade was identified and characterized. The expression of GPCR, Gαo and β-arrestin transcripts identified exclusively in the 1st leg transcriptome, and putatively Haller’s organ specific, were examined in unfed and blood-fed adult female and male D. variabilis. Blood feeding to repletion in adult females down-regulated the expression of all three chemosensory transcripts in females but not in males; consistent with differences in post-feeding tick behavior between sexes and an expected reduced chemosensory function in females as they leave the host. Data are presented for the first time of the potential hormonal regulation of tick chemosensation; behavioral assays confirmed the role of the Haller’s organ in N,N-diethyl-meta-toluamide (DEET) repellency but showed no role for the Haller’s organ in host attachment. Further research is needed to understand the potential role of the GPCR cascade in olfaction. PMID:28718821

  8. Mass Spectrometry-Based Screening Platform Reveals Orco Interactome in Drosophila melanogaster.

    PubMed

    Yu, Kate E; Kim, Do-Hyoung; Kim, Yong-In; Jones, Walton D; Lee, J Eugene

    2018-02-28

    Animals use their odorant receptors to receive chemical information from the environment. Insect odorant receptors differ from the G protein-coupled odorant receptors in vertebrates and nematodes, and very little is known about their protein-protein interactions. Here, we introduce a mass spectrometric platform designed for the large-scale analysis of insect odorant receptor protein-protein interactions. Using this platform, we obtained the first Orco interactome from Drosophila melanogaster . From a total of 1,186 identified proteins, we narrowed the interaction candidates to 226, of which only two-thirds have been named. These candidates include the known olfactory proteins Or92a and Obp51a. Around 90% of the proteins having published names likely function inside the cell, and nearly half of these intracellular proteins are associated with the endomembrane system. In a basic loss-of-function electrophysiological screen, we found that the disruption of eight (i.e., Rab5, CG32795, Mpcp, Tom70, Vir-1, CG30427, Eaat1, and CG2781) of 28 randomly selected candidates affects olfactory responses in vivo . Thus, because this Orco interactome includes physiologically meaningful candidates, we anticipate that our platform will help guide further research on the molecular mechanisms of the insect odorant receptor family.

  9. Neuronal pattern separation in the olfactory bulb improves odor discrimination learning

    PubMed Central

    Lagier, Samuel; Begnaud, Frédéric; Rodriguez, Ivan; Carleton, Alan

    2015-01-01

    Neuronal pattern separation is thought to enable the brain to disambiguate sensory stimuli with overlapping features thereby extracting valuable information. In the olfactory system, it remains unknown whether pattern separation acts as a driving force for sensory discrimination and the learning thereof. Here we show that overlapping odor-evoked input patterns to the mouse olfactory bulb (OB) are dynamically reformatted in the network at the timescale of a single breath, giving rise to separated patterns of activity in ensemble of output neurons (mitral/tufted cells; M/T). Strikingly, the extent of pattern separation in M/T assemblies predicts behavioral discrimination performance during the learning phase. Furthermore, exciting or inhibiting GABAergic OB interneurons, using optogenetics or pharmacogenetics, altered pattern separation and thereby odor discrimination learning in a bidirectional way. In conclusion, we propose that the OB network can act as a pattern separator facilitating olfactory stimuli distinction, a process that is sculpted by synaptic inhibition. PMID:26301325

  10. Effect of Flumethrin on Survival and Olfactory Learning in Honeybees

    PubMed Central

    Tan, Ken; Yang, Shuang; Wang, Zhengwei; Menzel, Randolf

    2013-01-01

    Flumethrin has been widely used as an acaricide for the control of Varroa mites in commercial honeybee keeping throughout the world for many years. Here we test the mortality of the Asian honeybee Apis cerana cerana after treatment with flumethrin. We also ask (1) how bees react to the odor of flumethrin, (2) whether its odor induces an innate avoidance response, (3) whether its taste transmits an aversive reinforcing component in olfactory learning, and (4) whether its odor or taste can be associated with reward in classical conditioning. Our results show that flumethrin has a negative effect on Apis ceranàs lifespan, induces an innate avoidance response, acts as a punishing reinforcer in olfactory learning, and interferes with the association of an appetitive conditioned stimulus. Furthermore flumethrin uptake within the colony reduces olfactory learning over an extended period of time. PMID:23785490

  11. Neuronal pattern separation in the olfactory bulb improves odor discrimination learning.

    PubMed

    Gschwend, Olivier; Abraham, Nixon M; Lagier, Samuel; Begnaud, Frédéric; Rodriguez, Ivan; Carleton, Alan

    2015-10-01

    Neuronal pattern separation is thought to enable the brain to disambiguate sensory stimuli with overlapping features, thereby extracting valuable information. In the olfactory system, it remains unknown whether pattern separation acts as a driving force for sensory discrimination and the learning thereof. We found that overlapping odor-evoked input patterns to the mouse olfactory bulb (OB) were dynamically reformatted in the network on the timescale of a single breath, giving rise to separated patterns of activity in an ensemble of output neurons, mitral/tufted (M/T) cells. Notably, the extent of pattern separation in M/T assemblies predicted behavioral discrimination performance during the learning phase. Furthermore, exciting or inhibiting GABAergic OB interneurons, using optogenetics or pharmacogenetics, altered pattern separation and thereby odor discrimination learning in a bidirectional way. In conclusion, we propose that the OB network can act as a pattern separator facilitating olfactory stimulus distinction, a process that is sculpted by synaptic inhibition.

  12. Methods to measure olfactory behavior in mice

    PubMed Central

    Zou, Junhui; Wang, Wenbin; Pan, Yung-Wei; Lu, Song; Xia, Zhengui

    2015-01-01

    Mice rely on the sense of olfaction to detect food sources, recognize social and mating partners, and avoid predators. Many behaviors of mice including learning and memory, social interaction, fear, and anxiety are closely associated with their function of olfaction, and behavior tasks designed to evaluate those brain functions may use odors as cues. Accurate assessment of olfaction is not only essential for the study of olfactory system but also critical for proper interpretation of various mouse behaviors especially learning and memory, emotionality and affect, and sociality. Here we describe a series of behavior experiments that offer multidimensional and quantitative assessments for mouse’s olfactory function, including olfactory habituation, discrimination, odor preference, odor detection sensitivity, and olfactory memory, to both social and nonsocial odors. PMID:25645244

  13. Drosophila TRPA1 channel is required to avoid the naturally occurring insect repellent citronellal.

    PubMed

    Kwon, Young; Kim, Sang Hoon; Ronderos, David S; Lee, Youngseok; Akitake, Bradley; Woodward, Owen M; Guggino, William B; Smith, Dean P; Montell, Craig

    2010-09-28

    Plants produce insect repellents, such as citronellal, which is the main component of citronellal oil. However, the molecular pathways through which insects sense botanical repellents are unknown. Here, we show that Drosophila use two pathways for direct avoidance of citronellal. The olfactory coreceptor OR83b contributes to citronellal repulsion and is essential for citronellal-evoked action potentials. Mutations affecting the Ca(2+)-permeable cation channel TRPA1 result in a comparable defect in avoiding citronellal vapor. The TRPA1-dependent aversion to citronellal relies on a G protein (Gq)/phospholipase C (PLC) signaling cascade rather than direct detection of citronellal by TRPA1. Loss of TRPA1, Gq, or PLC causes an increase in the frequency of citronellal-evoked action potentials in olfactory receptor neurons. Absence of the Ca(2+)-activated K(+) channel (BK channel) Slowpoke results in a similar impairment in citronellal avoidance and an increase in the frequency of action potentials. These results suggest that TRPA1 is required for activation of a BK channel to modulate citronellal-evoked action potentials and for aversion to citronellal. In contrast to Drosophila TRPA1, Anopheles gambiae TRPA1 is directly and potently activated by citronellal, thereby raising the possibility that mosquito TRPA1 may be a target for developing improved repellents to reduce insect-borne diseases such as malaria. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Omega-3 deficiency impairs honey bee learning

    PubMed Central

    Arien, Yael; Dag, Arnon; Zarchin, Shlomi; Masci, Tania

    2015-01-01

    Deficiency in essential omega-3 polyunsaturated fatty acids (PUFAs), particularly the long-chain form of docosahexaenoic acid (DHA), has been linked to health problems in mammals, including many mental disorders and reduced cognitive performance. Insects have very low long-chain PUFA concentrations, and the effect of omega-3 deficiency on cognition in insects has not been studied. We show a low omega-6:3 ratio of pollen collected by honey bee colonies in heterogenous landscapes and in many hand-collected pollens that we analyzed. We identified Eucalyptus as an important bee-forage plant particularly poor in omega-3 and high in the omega-6:3 ratio. We tested the effect of dietary omega-3 deficiency on olfactory and tactile associative learning of the economically highly valued honey bee. Bees fed either of two omega-3–poor diets, or Eucalyptus pollen, showed greatly reduced learning abilities in conditioned proboscis-extension assays compared with those fed omega-3–rich diets, or omega-3–rich pollen mixture. The effect on performance was not due to reduced sucrose sensitivity. Omega-3 deficiency also led to smaller hypopharyngeal glands. Bee brains contained high omega-3 concentrations, which were only slightly affected by diet, suggesting additional peripheral effects on learning. The shift from a low to high omega-6:3 ratio in the Western human diet is deemed a primary cause of many diseases and reduced mental health. A similar shift seems to be occurring in bee forage, possibly an important factor in colony declines. Our study shows the detrimental effect on cognitive performance of omega-3 deficiency in a nonmammal. PMID:26644556

  15. Olfactory Fear Conditioning Induces Field Potential Potentiation in Rat Olfactory Cortex and Amygdala

    ERIC Educational Resources Information Center

    Messaoudi, Belkacem; Granjon, Lionel; Mouly, Anne-Marie; Sevelinges, Yannick; Gervais, Remi

    2004-01-01

    The widely used Pavlovian fear-conditioning paradigms used for studying the neurobiology of learning and memory have mainly used auditory cues as conditioned stimuli (CS). The present work assessed the neural network involved in olfactory fear conditioning, using olfactory bulb stimulation-induced field potential signal (EFP) as a marker of…

  16. Neuromolecular basis of repellent action

    USDA-ARS?s Scientific Manuscript database

    Physical contact is not required for insect repellents to affect mosquito behavior; DEET not only interferes with the detection of host and oviposition sites suggesting the involvement of the olfactory pathway, but it also deters feeding, perhaps indicating involvement of the gustatory sense. Howev...

  17. A Tyrosine-Hydroxylase Characterization of Dopaminergic Neurons in the Honey Bee Brain

    PubMed Central

    Tedjakumala, Stevanus R.; Rouquette, Jacques; Boizeau, Marie-Laure; Mesce, Karen A.; Hotier, Lucie; Massou, Isabelle; Giurfa, Martin

    2017-01-01

    Dopamine (DA) plays a fundamental role in insect behavior as it acts both as a general modulator of behavior and as a value system in associative learning where it mediates the reinforcing properties of unconditioned stimuli (US). Here we aimed at characterizing the dopaminergic neurons in the central nervous system of the honey bee, an insect that serves as an established model for the study of learning and memory. We used tyrosine hydroxylase (TH) immunoreactivity (ir) to ensure that the neurons detected synthesize DA endogenously. We found three main dopaminergic clusters, C1–C3, which had been previously described; the C1 cluster is located in a small region adjacent to the esophagus (ES) and the antennal lobe (AL); the C2 cluster is situated above the C1 cluster, between the AL and the vertical lobe (VL) of the mushroom body (MB); the C3 cluster is located below the calyces (CA) of the MB. In addition, we found a novel dopaminergic cluster, C4, located above the dorsomedial border of the lobula, which innervates the visual neuropils of the bee brain. Additional smaller processes and clusters were found and are described. The profuse dopaminergic innervation of the entire bee brain and the specific connectivity of DA neurons, with visual, olfactory and gustatory circuits, provide a foundation for a deeper understanding of how these sensory modules are modulated by DA, and the DA-dependent value-based associations that occur during associative learning. PMID:28740466

  18. Olfactory Bulb [alpha][subscript 2]-Adrenoceptor Activation Promotes Rat Pup Odor-Preference Learning via a cAMP-Independent Mechanism

    ERIC Educational Resources Information Center

    Shakhawat, Amin MD.; Harley, Carolyn W.; Yuan, Qi

    2012-01-01

    In this study, three lines of evidence suggest a role for [alpha][subscript 2]-adrenoreceptors in rat pup odor-preference learning: olfactory bulb infusions of the [alpha][subscript 2]-antagonist, yohimbine, prevents learning; the [alpha][subscript 2]-agonist, clonidine, paired with odor, induces learning; and subthreshold clonidine paired with…

  19. Inhibiting DNA methylation alters olfactory extinction but not acquisition learning in Apis cerana and Apis mellifera.

    PubMed

    Gong, Zhiwen; Wang, Chao; Nieh, James C; Tan, Ken

    2016-07-01

    DNA methylation plays a key role in invertebrate acquisition and extinction memory. Honey bees have excellent olfactory learning, but the role of DNA methylation in memory formation has, to date, only been studied in Apis mellifera. We inhibited DNA methylation by inhibiting DNA methyltransferase (DNMT) with zebularine (zeb) and studied the resulting effects upon olfactory acquisition and extinction memory in two honey bee species, Apis cerana and A. mellifera. We used the proboscis extension reflex (PER) assay to measure memory. We provide the first demonstration that DNA methylation is also important in the olfactory extinction learning of A. cerana. DNMT did not reduce acquisition learning in either species. However, zeb bidirectionally and differentially altered extinction learning in both species. In particular, zeb provided 1h before acquisition learning improved extinction memory retention in A. mellifera, but reduced extinction memory retention in A. cerana. The reasons for these differences are unclear, but provide a basis for future studies to explore species-specific differences in the effects of methylation on memory formation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. A review of chemosensation and related behavior in aquatic insects.

    PubMed

    Crespo, José G

    2011-01-01

    Insects that are secondarily adapted to aquatic environments are able to sense odors from a diverse array of sources. The antenna of these insects, as in all insects, is the main chemosensory structure and its input to the brain allows for integration of sensory information that ultimately ends in behavioral responses. Only a fraction of the aquatic insect orders have been studied with respect to their sensory biology and most of the work has centered either on the description of the different types of sensilla, or on the behavior of the insect as a whole. In this paper, the literature is exhaustively reviewed and ways in which antennal morphology, brain structure, and associated behavior can advance better understanding of the neurobiology involved in processing of chemosensory information are discussed. Moreover, the importance of studying such group of insects is stated, and at the same time it is shown that many interesting questions regarding olfactory processing can be addressed by looking into the changes that aquatic insects undergo when leaving their aquatic environment.

  1. Temperature-dependent changes in the host-seeking behaviors of parasitic nematodes.

    PubMed

    Lee, Joon Ha; Dillman, Adler R; Hallem, Elissa A

    2016-05-06

    Entomopathogenic nematodes (EPNs) are lethal parasites of insects that are of interest as biocontrol agents for insect pests and disease vectors. Although EPNs have been successfully commercialized for pest control, their efficacy in the field is often inconsistent for reasons that remain elusive. EPN infective juveniles (IJs) actively search for hosts to infect using a diverse array of host-emitted odorants. Here we investigate whether their host-seeking behavior is subject to context-dependent modulation. We find that EPN IJs exhibit extreme plasticity of olfactory behavior as a function of cultivation temperature. Many odorants that are attractive for IJs grown at lower temperatures are repulsive for IJs grown at higher temperatures and vice versa. Temperature-induced changes in olfactory preferences occur gradually over the course of days to weeks and are reversible. Similar changes in olfactory behavior occur in some EPNs as a function of IJ age. EPNs also show temperature-dependent changes in their host-seeking strategy: IJs cultured at lower temperatures appear to more actively cruise for hosts than IJs cultured at higher temperatures. Furthermore, we find that the skin-penetrating rat parasite Strongyloides ratti also shows temperature-dependent changes in olfactory behavior, demonstrating that such changes occur in mammalian-parasitic nematodes. IJs are developmentally arrested and long-lived, often surviving in the environment through multiple seasonal temperature changes. Temperature-dependent modulation of behavior may enable IJs to optimize host seeking in response to changing environmental conditions, and may play a previously unrecognized role in shaping the interactions of both beneficial and harmful parasitic nematodes with their hosts.

  2. Parallel processing via a dual olfactory pathway in the honeybee.

    PubMed

    Brill, Martin F; Rosenbaum, Tobias; Reus, Isabelle; Kleineidam, Christoph J; Nawrot, Martin P; Rössler, Wolfgang

    2013-02-06

    In their natural environment, animals face complex and highly dynamic olfactory input. Thus vertebrates as well as invertebrates require fast and reliable processing of olfactory information. Parallel processing has been shown to improve processing speed and power in other sensory systems and is characterized by extraction of different stimulus parameters along parallel sensory information streams. Honeybees possess an elaborate olfactory system with unique neuronal architecture: a dual olfactory pathway comprising a medial projection-neuron (PN) antennal lobe (AL) protocerebral output tract (m-APT) and a lateral PN AL output tract (l-APT) connecting the olfactory lobes with higher-order brain centers. We asked whether this neuronal architecture serves parallel processing and employed a novel technique for simultaneous multiunit recordings from both tracts. The results revealed response profiles from a high number of PNs of both tracts to floral, pheromonal, and biologically relevant odor mixtures tested over multiple trials. PNs from both tracts responded to all tested odors, but with different characteristics indicating parallel processing of similar odors. Both PN tracts were activated by widely overlapping response profiles, which is a requirement for parallel processing. The l-APT PNs had broad response profiles suggesting generalized coding properties, whereas the responses of m-APT PNs were comparatively weaker and less frequent, indicating higher odor specificity. Comparison of response latencies within and across tracts revealed odor-dependent latencies. We suggest that parallel processing via the honeybee dual olfactory pathway provides enhanced odor processing capabilities serving sophisticated odor perception and olfactory demands associated with a complex olfactory world of this social insect.

  3. Unexpected Effects of Low Doses of a Neonicotinoid Insecticide on Behavioral Responses to Sex Pheromone in a Pest Insect

    PubMed Central

    Rabhi, Kaouther K.; Esancy, Kali; Voisin, Anouk; Crespin, Lucille; Le Corre, Julie; Tricoire-Leignel, Hélène; Anton, Sylvia; Gadenne, Christophe

    2014-01-01

    In moths, which include many agricultural pest species, males are attracted by female-emitted sex pheromones. Although integrated pest management strategies are increasingly developed, most insect pest treatments rely on widespread use of neurotoxic chemicals, including neonicotinoid insecticides. Residual accumulation of low concentrations of these insecticides in the environment is known to be harmful to beneficial insects such as honey bees. This environmental stress probably acts as an “info-disruptor” by modifying the chemical communication system, and therefore decreases chances of reproduction in target insects that largely rely on olfactory communication. However, low doses of pollutants could on the contrary induce adaptive processes in the olfactory pathway, thus enhancing reproduction. Here we tested the effects of acute oral treatments with different low doses of the neonicotinoid clothianidin on the behavioral responses to sex pheromone in the moth Agrotis ipsilon using wind tunnel experiments. We show that low doses of clothianidin induce a biphasic effect on pheromone-guided behavior. Surprisingly, we found a hormetic-like effect, improving orientation behavior at the LD20 dose corresponding to 10 ng clothianidin. On the contrary, a negative effect, disturbing orientation behavior, was elicited by a treatment with a dose below the LD0 dose corresponding to 0.25 ng clothianidin. No clothianidin effect was observed on behavioral responses to plant odor. Our results indicate that risk assessment has to include unexpected effects of residues on the life history traits of pest insects, which could then lead to their adaptation to environmental stress. PMID:25517118

  4. Olfactory receptor neurons use gain control and complementary kinetics to encode intermittent odorant stimuli

    PubMed Central

    Gorur-Shandilya, Srinivas; Demir, Mahmut; Long, Junjiajia; Clark, Damon A; Emonet, Thierry

    2017-01-01

    Insects find food and mates by navigating odorant plumes that can be highly intermittent, with intensities and durations that vary rapidly over orders of magnitude. Much is known about olfactory responses to pulses and steps, but it remains unclear how olfactory receptor neurons (ORNs) detect the intensity and timing of natural stimuli, where the absence of scale in the signal makes detection a formidable olfactory task. By stimulating Drosophila ORNs in vivo with naturalistic and Gaussian stimuli, we show that ORNs adapt to stimulus mean and variance, and that adaptation and saturation contribute to naturalistic sensing. Mean-dependent gain control followed the Weber-Fechner relation and occurred primarily at odor transduction, while variance-dependent gain control occurred at both transduction and spiking. Transduction and spike generation possessed complementary kinetic properties, that together preserved the timing of odorant encounters in ORN spiking, regardless of intensity. Such scale-invariance could be critical during odor plume navigation. DOI: http://dx.doi.org/10.7554/eLife.27670.001 PMID:28653907

  5. Distinct Mechanisms for Synchronization and Temporal Patterning of Odor-Encoding Neural Assemblies

    NASA Astrophysics Data System (ADS)

    MacLeod, Katrina; Laurent, Gilles

    1996-11-01

    Stimulus-evoked oscillatory synchronization of neural assemblies and temporal patterns of neuronal activity have been observed in many sensory systems, such as the visual and auditory cortices of mammals or the olfactory system of insects. In the locust olfactory system, single odor puffs cause the immediate formation of odor-specific neural assemblies, defined both by their transient synchronized firing and their progressive transformation over the course of a response. The application of an antagonist of ionotropic γ-aminobutyric acid (GABA) receptors to the first olfactory relay neuropil selectively blocked the fast inhibitory synapse between local and projection neurons. This manipulation abolished the synchronization of the odor-coding neural ensembles but did not affect each neuron's temporal response patterns to odors, even when these patterns contained periods of inhibition. Fast GABA-mediated inhibition, therefore, appears to underlie neuronal synchronization but not response tuning in this olfactory system. The selective desynchronization of stimulus-evoked oscillating neural assemblies in vivo is now possible, enabling direct functional tests of their significance for sensation and perception.

  6. Muscarinic ACh Receptors Contribute to Aversive Olfactory Learning in Drosophila.

    PubMed

    Silva, Bryon; Molina-Fernández, Claudia; Ugalde, María Beatriz; Tognarelli, Eduardo I; Angel, Cristian; Campusano, Jorge M

    2015-01-01

    The most studied form of associative learning in Drosophila consists in pairing an odorant, the conditioned stimulus (CS), with an unconditioned stimulus (US). The timely arrival of the CS and US information to a specific Drosophila brain association region, the mushroom bodies (MB), can induce new olfactory memories. Thus, the MB is considered a coincidence detector. It has been shown that olfactory information is conveyed to the MB through cholinergic inputs that activate acetylcholine (ACh) receptors, while the US is encoded by biogenic amine (BA) systems. In recent years, we have advanced our understanding on the specific neural BA pathways and receptors involved in olfactory learning and memory. However, little information exists on the contribution of cholinergic receptors to this process. Here we evaluate for the first time the proposition that, as in mammals, muscarinic ACh receptors (mAChRs) contribute to memory formation in Drosophila. Our results show that pharmacological and genetic blockade of mAChRs in MB disrupts olfactory aversive memory in larvae. This effect is not explained by an alteration in the ability of animals to respond to odorants or to execute motor programs. These results show that mAChRs in MB contribute to generating olfactory memories in Drosophila.

  7. Side-Specificity of Olfactory Learning in the Honeybee: Generalization between Odors and Sides

    PubMed Central

    Sandoz, Jean-Christophe; Menzel, Randolf

    2001-01-01

    Honeybees (Apis mellifera) can be trained to associate an odor stimulus with a sucrose reward. The neural structures involved in the detection and integration of olfactory stimuli are represented bilaterally in the brain. Little is known about the respective roles of the two sides of the brain in olfactory learning. Does each side learn independently of the other, or do they communicate, and if so, to what extent and at what level of neural integration? We addressed these questions using the proboscis extension response (PER) conditioning paradigm applied in a preparation that allows the separation of the two input sides during olfactory stimulations. Bees conditioned to two odorants A and B, one being learned on each side (A+/B+ training), showed in extinction tests rather unspecific responses: They responded to both odorants on both sides. This could be attributable to either a transfer of the learned information between sides, or to a generalization between odorants on each side. By subjecting bees to conditioning on one side only (A+/0 training), we found that the learned information is indeed transferred between sides. However, when bees were trained explicitly to give opposite values to the two odorants on the two sides (A+B−/B+A− training), they showed clear side-specific response patterns to these odorants. These results are used in the elaboration of a functional model of laterality of olfactory learning and memory processing in the honeybee brain. PMID:11584076

  8. Rapid evolution of chemosensory receptor genes in a pair of sibling species of orchid bees (Apidae: Euglossini).

    PubMed

    Brand, Philipp; Ramírez, Santiago R; Leese, Florian; Quezada-Euan, J Javier G; Tollrian, Ralph; Eltz, Thomas

    2015-08-28

    Insects rely more on chemical signals (semiochemicals) than on any other sensory modality to find, identify, and choose mates. In most insects, pheromone production is typically regulated through biosynthetic pathways, whereas pheromone sensory detection is controlled by the olfactory system. Orchid bees are exceptional in that their semiochemicals are not produced metabolically, but instead male bees collect odoriferous compounds (perfumes) from the environment and store them in specialized hind-leg pockets to subsequently expose during courtship display. Thus, the olfactory sensory system of orchid bees simultaneously controls male perfume traits (sender components) and female preferences (receiver components). This functional linkage increases the opportunities for parallel evolution of male traits and female preferences, particularly in response to genetic changes of chemosensory detection (e.g. Odorant Receptor genes). To identify whether shifts in pheromone composition among related lineages of orchid bees are associated with divergence in chemosensory genes of the olfactory periphery, we searched for patterns of divergent selection across the antennal transcriptomes of two recently diverged sibling species Euglossa dilemma and E. viridissima. We identified 3185 orthologous genes including 94 chemosensory loci from five different gene families (Odorant Receptors, Ionotropic Receptors, Gustatory Receptors, Odorant Binding Proteins, and Chemosensory Proteins). Our results revealed that orthologs with signatures of divergent selection between E. dilemma and E. viridissima were significantly enriched for chemosensory genes. Notably, elevated signals of divergent selection were almost exclusively observed among chemosensory receptors (i.e. Odorant Receptors). Our results suggest that rapid changes in the chemosensory gene family occurred among closely related species of orchid bees. These findings are consistent with the hypothesis that strong divergent selection acting on chemosensory receptor genes plays an important role in the evolution and diversification of insect pheromone systems.

  9. Silencing the Odorant Binding Protein RferOBP1768 Reduces the Strong Preference of Palm Weevil for the Major Aggregation Pheromone Compound Ferrugineol

    PubMed Central

    Antony, Binu; Johny, Jibin; Aldosari, Saleh A.

    2018-01-01

    In insects, perception of the environment—food, mates, and prey—is mainly guided by chemical signals. The dynamic process of signal perception involves transport to odorant receptors (ORs) by soluble secretory proteins, odorant binding proteins (OBPs), which form the first stage in the process of olfactory recognition and are analogous to lipocalin family proteins in vertebrates. Although OBPs involved in the transport of pheromones to ORs have been functionally identified in insects, there is to date no report for Coleoptera. Furthermore, there is a lack of information on olfactory perception and the molecular mechanism by which OBPs participate in the transport of aggregation pheromones. We focus on the red palm weevil (RPW) Rhynchophorus ferrugineus, the most devastating quarantine pest of palm trees worldwide. In this work, we constructed libraries of all OBPs and selected antenna-specific and highly expressed OBPs for silencing through RNA interference. Aggregation pheromone compounds, 4-methyl-5-nonanol (ferrugineol) and 4-methyl-5-nonanone (ferruginone), and a kairomone, ethyl acetate, were then sequentially presented to individual RPWs. The results showed that antenna-specific RferOBP1768 aids in the capture and transport of ferrugineol to ORs. Silencing of RferOBP1768, which is responsible for pheromone binding, significantly disrupted pheromone communication. Study of odorant perception in palm weevil is important because the availability of literature regarding the nature and role of olfactory signaling in this insect may reveal likely candidates representative of animal olfaction and, more generally, of molecular recognition. Knowledge of OBPs recognizing the specific pheromone ferrugineol will allow for designing biosensors for the detection of this key compound in weevil monitoring in date palm fields. PMID:29618982

  10. Norepinephrine and Learning-Induced Plasticity in Infant Rat Olfactory System

    PubMed Central

    Sullivan, Regina M.; Wilson, Donald A.; Leon, Michael

    2007-01-01

    Postnatal olfactory learning produces both a conditioned behavioral response and a modified olfactory bulb neural response to the learned odor. The present report describes the role of norepinephrine (NE) on both of these learned responses in neonatal rat pups. Pups received olfactory classical conditioning training from postnatal days (PN) 1-18. Training consisted of 18 trials with an intertrial interval of 24 hr. For the experimental group, a trial consisted of a pairing of unconditioned stimulus (UCS, stroking/tactile stimulation) and the conditioned stimulus (CS, odor). Control groups received either only the CS (Odor only) or only the UCS (Stroke only). Within each training condition, pups were injected with either the NE β-receptor agonist isoproterenol (1, 20, or 4 mg/kg), the NE β-receptor antagonist propranolol (10, 20, 40 mg/kg), or saline 30 min prior to training. On day 20, pups received one of the following tests: (1) behavioral conditioned responding, (2) injection with 14C-2-deoxyglucase (2-DG) and exposed to the CS odor, or (3) tested for olfactory bulb mitral/tufted cell single-unit responses to the CS odor. The results indicated that training with either: (1) Odor-Stroke-Saline, (2) Odor-Stroke-lsoproterenol-Propranolol, or (3) Odor only-lsoproterenol (2 mg/kg) was sufficient to produce a learned behavioral odor preference, enhanced uptake of 14C-2-DG in the odor-specific foci within the bulb, and a modified output signal from the bulb as measured by single-cell recordings of mitral/tufted cells. Moreover, propranolol injected prior to Odor-Stroke training blocked the acquisition of both the learned behavior and olfactory bulb responses. PMID:2585063

  11. The answer is blowing in the wind: free-flying honeybees can integrate visual and mechano-sensory inputs for making complex foraging decisions.

    PubMed

    Ravi, Sridhar; Garcia, Jair E; Wang, Chun; Dyer, Adrian G

    2016-11-01

    Bees navigate in complex environments using visual, olfactory and mechano-sensorial cues. In the lowest region of the atmosphere, the wind environment can be highly unsteady and bees employ fine motor-skills to enhance flight control. Recent work reveals sophisticated multi-modal processing of visual and olfactory channels by the bee brain to enhance foraging efficiency, but it currently remains unclear whether wind-induced mechano-sensory inputs are also integrated with visual information to facilitate decision making. Individual honeybees were trained in a linear flight arena with appetitive-aversive differential conditioning to use a context-setting cue of 3 m s -1 cross-wind direction to enable decisions about either a 'blue' or 'yellow' star stimulus being the correct alternative. Colour stimuli properties were mapped in bee-specific opponent-colour spaces to validate saliency, and to thus enable rapid reverse learning. Bees were able to integrate mechano-sensory and visual information to facilitate decisions that were significantly different to chance expectation after 35 learning trials. An independent group of bees were trained to find a single rewarding colour that was unrelated to the wind direction. In these trials, wind was not used as a context-setting cue and served only as a potential distracter in identifying the relevant rewarding visual stimuli. Comparison between respective groups shows that bees can learn to integrate visual and mechano-sensory information in a non-elemental fashion, revealing an unsuspected level of sensory processing in honeybees, and adding to the growing body of knowledge on the capacity of insect brains to use multi-modal sensory inputs in mediating foraging behaviour. © 2016. Published by The Company of Biologists Ltd.

  12. Preferences of the peripheral olfactory system of Western Flower Thrips, Frankliniella occidentalis towards stereoisomers of common plant volatiles.

    PubMed

    Abdullah, Zayed S; Butt, Tariq M

    Stereochemistry plays a significant role in structure-activity relationships of messenger chemicals. The ability to distinguish between enantiomers and geometric isomers, however, may be limited to certain stereoisomeric substances, depending on the receiver. In this study, we assessed the preference of the peripheral olfactometry system of Western Flower Thrips, F. occidentalis towards ubiquitously expressed host compounds, with a goal of establishing whether particular stereoisomers enhance host odour recognition. We demonstrate that the peripheral olfactory system of a highly polyphagous thysanopteran insect has evolved to become highly sensitive to a type of green leaf volatile, which is highly ubiquitous in the plant kingdom. We show that there is a significantly greater antennal response to the cis isomer, more so than the isomerisation by-product trans -3-hexen-1-ol. We demonstrate that the antennae of a highly polyphagous insect are capable of detecting common plant secondary metabolites in both enantiomeric forms.

  13. Visualizing the engram: learning stabilizes odor representations in the olfactory network.

    PubMed

    Shakhawat, Amin M D; Gheidi, Ali; Hou, Qinlong; Dhillon, Sandeep K; Marrone, Diano F; Harley, Carolyn W; Yuan, Qi

    2014-11-12

    The nature of memory is a central issue in neuroscience. How does our representation of the world change with learning and experience? Here we use the transcription of Arc mRNA, which permits probing the neural representations of temporally separated events, to address this in a well characterized odor learning model. Rat pups readily associate odor with maternal care. In pups, the lateralized olfactory networks are independent, permitting separate training and within-subject control. We use multiday training to create an enduring memory of peppermint odor. Training stabilized rewarded, but not nonrewarded, odor representations in both mitral cells and associated granule cells of the olfactory bulb and in the pyramidal cells of the anterior piriform cortex. An enlarged core of stable, likely highly active neurons represent rewarded odor at both stages of the olfactory network. Odor representations in anterior piriform cortex were sparser than typical in adult rat and did not enlarge with learning. This sparser representation of odor is congruent with the maturation of lateral olfactory tract input in rat pups. Cortical representations elsewhere have been shown to be highly variable in electrophysiological experiments, suggesting brains operate normally using dynamic and network-modulated representations. The olfactory cortical representations here are consistent with the generalized associative model of sparse variable cortical representation, as normal responses to repeated odors were highly variable (∼70% of the cells change as indexed by Arc). Learning and memory modified rewarded odor ensembles to increase stability in a core representational component. Copyright © 2014 the authors 0270-6474/14/3415394-08$15.00/0.

  14. Antennal transcriptome analysis of the Asian longhorned beetle Anoplophora glabripennis

    PubMed Central

    Hu, Ping; Wang, Jingzhen; Cui, Mingming; Tao, Jing; Luo, Youqing

    2016-01-01

    Olfactory proteins form the basis of insect olfactory recognition, which is crucial for host identification, mating, and oviposition. Using transcriptome analysis of Anoplophora glabripennis antenna, we identified 42 odorant-binding proteins (OBPs), 12 chemosensory proteins (CSPs), 14 pheromone-degrading enzymes (PDEs), 1 odorant-degrading enzymes (ODE), 37 odorant receptors (ORs), 11 gustatory receptors (GRs), 2 sensory neuron membrane proteins (SNMPs), and 4 ionotropic receptor (IR). All CSPs and PBPs were expressed in antennae, confirming the authenticity of the transcriptome data. CSP expression profiles showed that AglaCSP3, AglaCSP6, and AglaCSP12 were expressed preferentially in maxillary palps and AglaCSP7 and AglaCSP9 were strongly expressed in antennae. The vast majority of CSPs were highly expressed in multiple chemosensory tissues, suggesting their participation in olfactory recognition in almost all olfactory tissues. Intriguingly, the PBP AglaPBP2 was preferentially expressed in antenna, indicating that it is the main protein involved in efficient and sensitive pheromone recognition. Phylogenetic analysis of olfactory proteins indicated AglaGR1 may detect CO2. This study establishes a foundation for determining the chemoreception molecular mechanisms of A. glabripennis, which would provide a new perspective for controlling pest populations, especially those of borers. PMID:27222053

  15. Molecular evolution of the major chemosensory gene families in insects.

    PubMed

    Sánchez-Gracia, A; Vieira, F G; Rozas, J

    2009-09-01

    Chemoreception is a crucial biological process that is essential for the survival of animals. In insects, olfaction allows the organism to recognise volatile cues that allow the detection of food, predators and mates, whereas the sense of taste commonly allows the discrimination of soluble stimulants that elicit feeding behaviours and can also initiate innate sexual and reproductive responses. The most important proteins involved in the recognition of chemical cues comprise moderately sized multigene families. These families include odorant-binding proteins (OBPs) and chemosensory proteins (CSPs), which are involved in peripheral olfactory processing, and the chemoreceptor superfamily formed by the olfactory receptor (OR) and gustatory receptor (GR) families. Here, we review some recent evolutionary genomic studies of chemosensory gene families using the data from fully sequenced insect genomes, especially from the 12 newly available Drosophila genomes. Overall, the results clearly support the birth-and-death model as the major mechanism of evolution in these gene families. Namely, new members arise by tandem gene duplication, progressively diverge in sequence and function, and can eventually be lost from the genome by a deletion or pseudogenisation event. Adaptive changes fostered by environmental shifts are also observed in the evolution of chemosensory families in insects and likely involve reproductive, ecological or behavioural traits. Consequently, the current size of these gene families is mainly a result of random gene gain and loss events. This dynamic process may represent a major source of genetic variation, providing opportunities for FUTURE specific adaptations.

  16. Long-term avoidance memory formation is associated with a transient increase in mushroom body synaptic complexes in leaf-cutting ants

    PubMed Central

    Falibene, Agustina; Roces, Flavio; Rössler, Wolfgang

    2015-01-01

    Long-term behavioral changes related to learning and experience have been shown to be associated with structural remodeling in the brain. Leaf-cutting ants learn to avoid previously preferred plants after they have proved harmful for their symbiotic fungus, a process that involves long-term olfactory memory. We studied the dynamics of brain microarchitectural changes after long-term olfactory memory formation following avoidance learning in Acromyrmex ambiguus. After performing experiments to control for possible neuronal changes related to age and body size, we quantified synaptic complexes (microglomeruli, MG) in olfactory regions of the mushroom bodies (MBs) at different times after learning. Long-term avoidance memory formation was associated with a transient change in MG densities. Two days after learning, MG density was higher than before learning. At days 4 and 15 after learning—when ants still showed plant avoidance—MG densities had decreased to the initial state. The structural reorganization of MG triggered by long-term avoidance memory formation clearly differed from changes promoted by pure exposure to and collection of novel plants with distinct odors. Sensory exposure by the simultaneous collection of several, instead of one, non-harmful plant species resulted in a decrease in MG densities in the olfactory lip. We hypothesize that while sensory exposure leads to MG pruning in the MB olfactory lip, the formation of long-term avoidance memory involves an initial growth of new MG followed by subsequent pruning. PMID:25904854

  17. Selective impairment of subcategories of long-term memory in mice with hippocampal lesions accessed by the olfactory tubing maze.

    PubMed

    Chaillan, F A; Marchetti, E; Soumireu-Mourat, B; Roman, F S

    2005-03-30

    A new apparatus, the olfactory tubing maze for mice, was developed recently to study learning and memory processes in mice in regard to their ethological abilities. As in humans, BALB/c mice with selective bilateral lesions of the hippocampal formation showed selective impairment of subcategories of long-term memory when tested with the olfactory tubing maze. After three learning sessions, control mice reached a high percentage of correct responses. They consistently made the olfactory-reward associations, but antero-dorsal and postero-ventral hippocampal-lesioned mice did not. However, all lesioned mice learned the paradigm and the timing of the task as fast and as well as control mice. These data suggest that the olfactory tubing maze can be used to study subcategories of memory, such as declarative and non-declarative memory, which are similar in some respects to those observed in humans. Consequently, possible memory effects of classical approaches (i.e., pharmacological or lesion studies) or genetic modifications in transgenic or gene-targeting mice can be effectively analyzed using this new apparatus.

  18. An automated approach to detecting signals in electroantennogram data

    USGS Publications Warehouse

    Slone, D.H.; Sullivan, B.T.

    2007-01-01

    Coupled gas chromatography/electroantennographic detection (GC-EAD) is a widely used method for identifying insect olfactory stimulants present in mixtures of volatiles, and it can greatly accelerate the identification of insect semiochemicals. In GC-EAD, voltage changes across an insect's antenna are measured while the antenna is exposed to compounds eluting from a gas chromatograph. The antenna thus serves as a selective GC detector whose output can be compared to that of a "general" GC detector, commonly a flame ionization detector. Appropriate interpretation of GC-EAD results requires that olfaction-related voltage changes in the antenna be distinguishable from background noise that arises inevitably from antennal preparations and the GC-EAD-associated hardware. In this paper, we describe and compare mathematical algorithms for discriminating olfaction-generated signals in an EAD trace from background noise. The algorithms amplify signals by recognizing their characteristic shape and wavelength while suppressing unstructured noise. We have found these algorithms to be both powerful and highly discriminatory even when applied to noisy traces where the signals would be difficult to discriminate by eye. This new methodology removes operator bias as a factor in signal identification, can improve realized sensitivity of the EAD system, and reduces the number of runs required to confirm the identity of an olfactory stimulant. ?? 2007 Springer Science+Business Media, LLC.

  19. Olfactory learning prevents MK-801-induced psychosis-like behaviour in an animal model of schizophrenia.

    PubMed

    Naimark, Ari; Barkai, Edi; Michael, Matar A; Kozlovsky, Nitzan; Kaplan, Zeev; Cohen, Hagit

    2008-01-01

    There is mounting evidence to support the concept that education is associated with the formation of a functional reserve in the brain, a process that appears to provide some protection against certain aspects of severe central nervous system disorders. The goal of this study was to examine whether learning prevents psychosis-like behaviour in an animal model of schizophrenia. A series of behavioural tasks were used to assess olfactory learning-induced protection against the effects of NMDA channel blocker, MK801. This blocker caused sensory-motor disturbances, spatial learning acquisition deficit, and swimming strategy alterations in pseudo-trained and naive rats, but had a considerably lesser effect on trained rats. In sharp contrast, olfactory learning provided no protection against d-amphetamine application. Our data support the notion that learning-induced protection against schizophrenic behaviour is maintained by non-NMDA-mediated enhanced activation of local connections in the relevant cortical networks.

  20. Olfactory Proteins Mediating Chemical Communication in the Navel Orangeworm Moth, Amyelois transitella

    PubMed Central

    Leal, Walter S.; Ishida, Yuko; Pelletier, Julien; Xu, Wei; Rayo, Josep; Xu, Xianzhong; Ames, James B.

    2009-01-01

    Background The navel orangeworm, Amyelois transitella Walker (Lepidoptera: Pyralidae), is the most serious insect pest of almonds and pistachios in California for which environmentally friendly alternative methods of control — like pheromone-based approaches — are highly desirable. Some constituents of the sex pheromone are unstable and could be replaced with parapheromones, which may be designed on the basis of molecular interaction of pheromones and pheromone-detecting olfactory proteins. Methodology By analyzing extracts from olfactory and non-olfactory tissues, we identified putative olfactory proteins, obtained their N-terminal amino acid sequences by Edman degradation, and used degenerate primers to clone the corresponding cDNAs by SMART RACE. Additionally, we used degenerate primers based on conserved sequences of known proteins to fish out other candidate olfactory genes. We expressed the gene encoding a newly identified pheromone-binding protein, which was analyzed by circular dichroism, fluorescence, and nuclear magnetic resonance, and used in a binding assay to assess affinity to pheromone components. Conclusion We have cloned nine cDNAs encoding olfactory proteins from the navel orangeworm, including two pheromone-binding proteins, two general odorant-binding proteins, one chemosensory protein, one glutathione S-transferase, one antennal binding protein X, one sensory neuron membrane protein, and one odorant receptor. Of these, AtraPBP1 is highly enriched in male antennae. Fluorescence, CD and NMR studies suggest a dramatic pH-dependent conformational change, with high affinity to pheromone constituents at neutral pH and no binding at low pH. PMID:19789654

  1. Fragile X Mental Retardation Protein and Dendritic Local Translation of the Alpha Subunit of the Calcium/Calmodulin-Dependent Kinase II Messenger RNA Are Required for the Structural Plasticity Underlying Olfactory Learning.

    PubMed

    Daroles, Laura; Gribaudo, Simona; Doulazmi, Mohamed; Scotto-Lomassese, Sophie; Dubacq, Caroline; Mandairon, Nathalie; Greer, Charles August; Didier, Anne; Trembleau, Alain; Caillé, Isabelle

    2016-07-15

    In the adult brain, structural plasticity allowing gain or loss of synapses remodels circuits to support learning. In fragile X syndrome, the absence of fragile X mental retardation protein (FMRP) leads to defects in plasticity and learning deficits. FMRP is a master regulator of local translation but its implication in learning-induced structural plasticity is unknown. Using an olfactory learning task requiring adult-born olfactory bulb neurons and cell-specific ablation of FMRP, we investigated whether learning shapes adult-born neuron morphology during their synaptic integration and its dependence on FMRP. We used alpha subunit of the calcium/calmodulin-dependent kinase II (αCaMKII) mutant mice with altered dendritic localization of αCaMKII messenger RNA, as well as a reporter of αCaMKII local translation to investigate the role of this FMRP messenger RNA target in learning-dependent structural plasticity. Learning induces profound changes in dendritic architecture and spine morphology of adult-born neurons that are prevented by ablation of FMRP in adult-born neurons and rescued by an metabotropic glutamate receptor 5 antagonist. Moreover, dendritically translated αCaMKII is necessary for learning and associated structural modifications and learning triggers an FMRP-dependent increase of αCaMKII dendritic translation in adult-born neurons. Our results strongly suggest that FMRP mediates structural plasticity of olfactory bulb adult-born neurons to support olfactory learning through αCaMKII local translation. This reveals a new role for FMRP-regulated dendritic local translation in learning-induced structural plasticity. This might be of clinical relevance for the understanding of critical periods disruption in autism spectrum disorder patients, among which fragile X syndrome is the primary monogenic cause. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  2. MiR-132 regulated olfactory bulb proteins linked to olfactory learning in greater short-nosed fruit bat Cynopterus sphinx.

    PubMed

    Mukilan, Murugan; Rajathei, David Mary; Jeyaraj, Edwin; Kayalvizhi, Nagarajan; Rajan, Koilmani Emmanuvel

    2018-05-30

    Earlier, we showed that micro RNA-132 (miR-132) regulate the immediate early genes (IEGs) in the olfactory bulb (OB) of fruit bat Cynopterus sphinx during olfactory learning. This study was designed to examine whether the miR-132 regulate other proteins in OB during olfactory learning. To test this, miR-132 anti-sense oligodeoxynucleotide (AS-ODN) was delivered to the OB and then trained to novel odor. The 2-dimensional gel electrophoresis analysis showed that inhibition of miR-132 altered olfactory training induced expression of 321 proteins. Further, liquid chromatography-mass spectrometry (LC-MS/MS) analysis reveals the identity of differently expressed proteins such as phosphoribosyl transferase domain containing protein (PRTFDC 1), Sorting nexin-8 (SNX8), Creatine kinase B-type (CKB) and Annexin A11 (ANX A11). Among them PRTFDC 1 showing 189 matching peptides with highest sequence coverage (67.0%) and protein-protein interaction analysis showed that PRTFDC 1 is a homolog of hypoxanthine phosphoribosyltransferase-1 (HPRT-1). Subsequent immunohistochemical analysis (IHC) showed that inhibition of miR-132 down-regulated HPRT expression in OB of C. sphinx. In addition, western blot analysis depicts that HPRT, serotonin transporter (SERT), N-methyl-d-asparate (NMDA) receptors (2A,B) were down-regulated, but not altered in OB of non-sense oligodeoxynucleotide (NS-ODN) infused groups. These analyses suggest that miR-132 regulates the process of olfactory learning and memory formation through SERT and NMDA receptors signalling, which is possibly associated with the PRTFDC1-HPRT interaction. Copyright © 2017. Published by Elsevier B.V.

  3. Muscarinic ACh Receptors Contribute to Aversive Olfactory Learning in Drosophila

    PubMed Central

    Silva, Bryon; Molina-Fernández, Claudia; Ugalde, María Beatriz; Tognarelli, Eduardo I.; Angel, Cristian; Campusano, Jorge M.

    2015-01-01

    The most studied form of associative learning in Drosophila consists in pairing an odorant, the conditioned stimulus (CS), with an unconditioned stimulus (US). The timely arrival of the CS and US information to a specific Drosophila brain association region, the mushroom bodies (MB), can induce new olfactory memories. Thus, the MB is considered a coincidence detector. It has been shown that olfactory information is conveyed to the MB through cholinergic inputs that activate acetylcholine (ACh) receptors, while the US is encoded by biogenic amine (BA) systems. In recent years, we have advanced our understanding on the specific neural BA pathways and receptors involved in olfactory learning and memory. However, little information exists on the contribution of cholinergic receptors to this process. Here we evaluate for the first time the proposition that, as in mammals, muscarinic ACh receptors (mAChRs) contribute to memory formation in Drosophila. Our results show that pharmacological and genetic blockade of mAChRs in MB disrupts olfactory aversive memory in larvae. This effect is not explained by an alteration in the ability of animals to respond to odorants or to execute motor programs. These results show that mAChRs in MB contribute to generating olfactory memories in Drosophila. PMID:26380118

  4. ‘Peer pressure’ in larval Drosophila?

    PubMed Central

    Niewalda, Thomas; Jeske, Ines; Michels, Birgit; Gerber, Bertram

    2014-01-01

    ABSTRACT Understanding social behaviour requires a study case that is simple enough to be tractable, yet complex enough to remain interesting. Do larval Drosophila meet these requirements? In a broad sense, this question can refer to effects of the mere presence of other larvae on the behaviour of a target individual. Here we focused in a more strict sense on ‘peer pressure’, that is on the question of whether the behaviour of a target individual larva is affected by what a surrounding group of larvae is doing. We found that innate olfactory preference of a target individual was neither affected (i) by the level of innate olfactory preference in the surrounding group nor (ii) by the expression of learned olfactory preference in the group. Likewise, learned olfactory preference of a target individual was neither affected (iii) by the level of innate olfactory preference of the surrounding group nor (iv) by the learned olfactory preference the group was expressing. We conclude that larval Drosophila thus do not take note of specifically what surrounding larvae are doing. This implies that in a strict sense, and to the extent tested, there is no social interaction between larvae. These results validate widely used en mass approaches to the behaviour of larval Drosophila. PMID:24907371

  5. 'Peer pressure' in larval Drosophila?

    PubMed

    Niewalda, Thomas; Jeske, Ines; Michels, Birgit; Gerber, Bertram

    2014-06-06

    Understanding social behaviour requires a study case that is simple enough to be tractable, yet complex enough to remain interesting. Do larval Drosophila meet these requirements? In a broad sense, this question can refer to effects of the mere presence of other larvae on the behaviour of a target individual. Here we focused in a more strict sense on 'peer pressure', that is on the question of whether the behaviour of a target individual larva is affected by what a surrounding group of larvae is doing. We found that innate olfactory preference of a target individual was neither affected (i) by the level of innate olfactory preference in the surrounding group nor (ii) by the expression of learned olfactory preference in the group. Likewise, learned olfactory preference of a target individual was neither affected (iii) by the level of innate olfactory preference of the surrounding group nor (iv) by the learned olfactory preference the group was expressing. We conclude that larval Drosophila thus do not take note of specifically what surrounding larvae are doing. This implies that in a strict sense, and to the extent tested, there is no social interaction between larvae. These results validate widely used en mass approaches to the behaviour of larval Drosophila. © 2014. Published by The Company of Biologists Ltd.

  6. Context-dependent olfactory enhancement of optomotor flight control in Drosophila.

    PubMed

    Chow, Dawnis M; Frye, Mark A

    2008-08-01

    Sensing and following the chemical plume of food odors is a fundamental challenge faced by many organisms. For flying insects, the task is complicated by wind that distorts the plume and buffets the fly. To maintain an upwind heading, and thus stabilize their orientation in a plume, insects such as flies and moths make use of strong context-specific visual equilibrium reflexes. For example, flying straight requires the regulation of image rotation across the eye, whereas minimizing side-slip and avoiding a collision require regulation of image expansion. In flies, visual rotation stabilizes plume tracking, but rotation and expansion optomotor responses are controlled by separate visual pathways. Are olfactory signals integrated with optomotor responses in a manner dependent upon visual context? We addressed this question by investigating the effect of an attractive food odor on active optomotor flight control. Odorant caused flies both to increase aerodynamic power output and to steer straighter. However, when challenged with wide-field optic flow, odor resulted in enhanced amplitude rotation responses but reduced amplitude expansion responses. For both visual conditions, flies tracked motion signals more closely in odor, an indication of increased saliency. These results suggest a simple search algorithm by which olfactory signals improve the salience of visual stimuli and modify optomotor control in a context-dependent manner, thereby enabling an animal to fly straight up a plume and approach odiferous objects.

  7. Resistance to Interference of Olfactory Perceptual Learning

    ERIC Educational Resources Information Center

    Stevenson, Richard J.; Case, Trevor I.; Tomiczek, Caroline

    2007-01-01

    Olfactory memory is especially persistent. The current study explored whether this applies to a form of perceptual learning, in which experience of an odor mixture results in greater judged similarity between its elements. Experiment 1A contrasted 2 forms of interference procedure, "compound" (mixture AW, followed by presentation of new mixtures…

  8. A Review of Chemosensation and Related Behavior in Aquatic Insects

    PubMed Central

    Crespo, José G.

    2011-01-01

    Insects that are secondarily adapted to aquatic environments are able to sense odors from a diverse array of sources. The antenna of these insects, as in all insects, is the main chemosensory structure and its input to the brain allows for integration of sensory information that ultimately ends in behavioral responses. Only a fraction of the aquatic insect orders have been studied with respect to their sensory biology and most of the work has centered either on the description of the different types of sensilla, or on the behavior of the insect as a whole. In this paper, the literature is exhaustively reviewed and ways in which antennal morphology, brain structure, and associated behavior can advance better understanding of the neurobiology involved in processing of chemosensory information are discussed. Moreover, the importance of studying such group of insects is stated, and at the same time it is shown that many interesting questions regarding olfactory processing can be addressed by looking into the changes that aquatic insects undergo when leaving their aquatic environment. PMID:21864156

  9. Olfactory Ionotropic Receptors in Mosquito Aedes albopictus (Diptera: Culicidae).

    PubMed

    Chen, Qian; Man, Yahui; Li, Jianyong; Pei, Di; Wu, Wenjian

    2017-09-01

    Ionotropic glutamate receptors (iGluRs) are a conserved family of ligand-gated ion channels that primarily function to mediate neuronal communication at synapses. A variant subfamily of iGluRs, the ionotropic receptors (IRs), was recently identified in insects and proved with the function in odorant recognition. Ionotropic receptors participate in a distinct olfactory signaling pathway that is independent of olfactory receptors activity. In the present study, we identify 102 putative IR genes, dubbed as AalbIr genes, in mosquito Aedes albopictus (Skuse) by in silico comparative sequence analysis. Among AalbIr genes, 19 show expression in the female antenna by RT-PCR. These putative olfactory AalbIRs share four conservative hydrophobic domains of amino acids, similar to the transmembrane and ion channel pore regions found in conventional iGluRs. To determine the potential function of these olfactory AalbIRs in host-seeking, we compared their transcript expression levels in the antennae of blood-fed females with that of non-blood-fed females by quantitative real-time RT-PCR. Three AalbIr genes showed downregulation when the mosquito finished a bloodmeal. These results may help to improve our understanding of the IR-mediated olfactory signaling in mosquitoes. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Multimodal stimulation of the Colorado potato beetle: Prevalence of visual over olfactory cues

    USDA-ARS?s Scientific Manuscript database

    Orientation of insects to host plants and conspecifics is the result of detection and integration of chemical and physical cues present in the environment. Sensory organs have evolved to be sensitive to important signals, providing neural input for higher order processing and behavioral output. He...

  11. Bee visitation rates to cultivated sunflowers increase with the amount and accessibility of nectar sugars

    USDA-ARS?s Scientific Manuscript database

    Pollinators make foraging decisions based on numerous floral traits, including nectar and pollen rewards, and associated visual and olfactory cues. For insect-pollinated crops, identifying and breeding for attractive floral traits may increase yields. In this study, we examined floral trait variatio...

  12. Bees without flowers: before peak bloom, diverse native bees find insect-produced honeydew sugars

    USDA-ARS?s Scientific Manuscript database

    Bee foragers respond to complex visual, olfactory, and extrasensory cues to optimize searches for floral rewards. Their abilities to detect and distinguish floral colors, shapes, volatiles, and ultraviolet signals, and even gauge nectar availability from changes in floral humidity or electric fields...

  13. Cholinergic Modulation during Acquisition of Olfactory Fear Conditioning Alters Learning and Stimulus Generalization in Mice

    ERIC Educational Resources Information Center

    Pavesi, Eloisa; Gooch, Allison; Lee, Elizabeth; Fletcher, Max L.

    2013-01-01

    We investigated the role of cholinergic neurotransmission in olfactory fear learning. Mice receiving pairings of odor and foot shock displayed fear to the trained odor the following day. Pretraining injections of the nicotinic antagonist mecamylamine had no effect on subsequent freezing, while the muscarinic antagonist scopolamine significantly…

  14. Interaction of inhibitory and facilitatory effects of conditioning trials on long-term memory formation

    PubMed Central

    Hosono, Shouhei; Matsumoto, Yukihisa

    2016-01-01

    Animals learn through experience and consolidate the memories into long-time storage. Conditioning parameters to induce protein synthesis-dependent long-term memory (LTM) have been the subject of extensive studies in many animals. Here we found a case in which a conditioning trial inhibits or facilitates LTM formation depending on the intervals from preceding trials. We studied the effects of conditioning parameters on LTM formation in olfactory conditioning of maxillary-palpi extension response with sucrose reward in the cockroach Periplaneta americana. We found, at first, that translation- and transcription-dependent LTM forms 1 h after training, the fastest so far reported in insects. Second, we observed that multiple-trial training with an intertrial interval (ITI) of 20 or 30 sec, often called massed training, is more effective than spaced training for LTM formation, an observation that differs from the results of most studies in other animals. Third, we found that a conditioning trial inhibits LTM formation when the intervals from preceding trials were in the range of 10–16 min. This inhibitory effect is pairing-specific and is not due to decreased motivation for learning (overtraining effect). To our knowledge, no similar inhibition of LTM formation by a conditioning trial has been reported in any animals. We propose a model to account for the effects of trial number and ITIs on LTM formation. Olfactory conditioning in cockroaches should provide pertinent materials in which to study neuronal and molecular mechanisms underlying the inhibitory and facilitatory processes for LTM formation. PMID:27918270

  15. Preservation of Essential Odor-Guided Behaviors and Odor-Based Reversal Learning after Targeting Adult Brain Serotonin Synthesis.

    PubMed

    Carlson, Kaitlin S; Whitney, Meredith S; Gadziola, Marie A; Deneris, Evan S; Wesson, Daniel W

    2016-01-01

    The neurotransmitter serotonin (5-HT) is considered a powerful modulator of sensory system organization and function in a wide range of animals. The olfactory system is innervated by midbrain 5-HT neurons into both its primary and secondary odor-processing stages. Facilitated by this circuitry, 5-HT and its receptors modulate olfactory system function, including odor information input to the olfactory bulb. It is unknown, however, whether the olfactory system requires 5-HT for even its most basic behavioral functions. To address this question, we established a conditional genetic approach to specifically target adult brain tryptophan hydroxylase 2 ( Tph2 ), encoding the rate-limiting enzyme in brain 5-HT synthesis, and nearly eliminate 5-HT from the mouse forebrain. Using this novel model, we investigated the behavior of 5-HT-depleted mice during performance in an olfactory go/no-go task. Surprisingly, the near elimination of 5-HT from the forebrain, including the olfactory bulbs, had no detectable effect on the ability of mice to perform the odor-based task. Tph2 -targeted mice not only were able to learn the task, but also had levels of odor acuity similar to those of control mice when performing coarse odor discrimination. Both groups of mice spent similar amounts of time sampling odors during decision-making. Furthermore, odor reversal learning was identical between 5-HT-depleted and control mice. These results suggest that 5-HT neurotransmission is not necessary for the most essential aspects of olfaction, including odor learning, discrimination, and certain forms of cognitive flexibility.

  16. Reappraising social insect behavior through aversive responsiveness and learning.

    PubMed

    Roussel, Edith; Carcaud, Julie; Sandoz, Jean-Christophe; Giurfa, Martin

    2009-01-01

    The success of social insects can be in part attributed to their division of labor, which has been explained by a response threshold model. This model posits that individuals differ in their response thresholds to task-associated stimuli, so that individuals with lower thresholds specialize in this task. This model is at odds with findings on honeybee behavior as nectar and pollen foragers exhibit different responsiveness to sucrose, with nectar foragers having higher response thresholds to sucrose concentration. Moreover, it has been suggested that sucrose responsiveness correlates with responsiveness to most if not all other stimuli. If this is the case, explaining task specialization and the origins of division of labor on the basis of differences in response thresholds is difficult. To compare responsiveness to stimuli presenting clear-cut differences in hedonic value and behavioral contexts, we measured appetitive and aversive responsiveness in the same bees in the laboratory. We quantified proboscis extension responses to increasing sucrose concentrations and sting extension responses to electric shocks of increasing voltage. We analyzed the relationship between aversive responsiveness and aversive olfactory conditioning of the sting extension reflex, and determined how this relationship relates to division of labor. Sucrose and shock responsiveness measured in the same bees did not correlate, thus suggesting that they correspond to independent behavioral syndromes, a foraging and a defensive one. Bees which were more responsive to shock learned and memorized better aversive associations. Finally, guards were less responsive than nectar foragers to electric shocks, exhibiting higher tolerance to low voltage shocks. Consequently, foragers, which are more sensitive, were the ones learning and memorizing better in aversive conditioning. Our results constitute the first integrative study on how aversive responsiveness affects learning, memory and social organization in honeybees. We suggest that parallel behavioral modules (e.g. appetitive, aversive) coexist within each individual bee and determine its tendency to adopt a given task. This conclusion, which is at odds with a simple threshold model, should open new opportunities for exploring the division of labor in social insects.

  17. Beta and gamma oscillatory activities associated with olfactory memory tasks: different rhythms for different functional networks?

    PubMed Central

    Martin, Claire; Ravel, Nadine

    2014-01-01

    Olfactory processing in behaving animals, even at early stages, is inextricable from top down influences associated with odor perception. The anatomy of the olfactory network (olfactory bulb, piriform, and entorhinal cortices) and its unique direct access to the limbic system makes it particularly attractive to study how sensory processing could be modulated by learning and memory. Moreover, olfactory structures have been early reported to exhibit oscillatory population activities easy to capture through local field potential recordings. An attractive hypothesis is that neuronal oscillations would serve to “bind” distant structures to reach a unified and coherent perception. In relation to this hypothesis, we will assess the functional relevance of different types of oscillatory activity observed in the olfactory system of behaving animals. This review will focus primarily on two types of oscillatory activities: beta (15–40 Hz) and gamma (60–100 Hz). While gamma oscillations are dominant in the olfactory system in the absence of odorant, both beta and gamma rhythms have been reported to be modulated depending on the nature of the olfactory task. Studies from the authors of the present review and other groups brought evidence for a link between these oscillations and behavioral changes induced by olfactory learning. However, differences in studies led to divergent interpretations concerning the respective role of these oscillations in olfactory processing. Based on a critical reexamination of those data, we propose hypotheses on the functional involvement of beta and gamma oscillations for odor perception and memory. PMID:25002840

  18. Multimodal Floral Signals and Moth Foraging Decisions

    PubMed Central

    Riffell, Jeffrey A.; Alarcón, Ruben

    2013-01-01

    Background Combinations of floral traits – which operate as attractive signals to pollinators – act on multiple sensory modalities. For Manduca sexta hawkmoths, how learning modifies foraging decisions in response to those traits remains untested, and the contribution of visual and olfactory floral displays on behavior remains unclear. Methodology/Principal Findings Using M. sexta and the floral traits of two important nectar resources in southwestern USA, Datura wrightii and Agave palmeri, we examined the relative importance of olfactory and visual signals. Natural visual and olfactory cues from D. wrightii and A. palmeri flowers permits testing the cues at their native intensities and composition – a contrast to many studies that have used artificial stimuli (essential oils, single odorants) that are less ecologically relevant. Results from a series of two-choice assays where the olfactory and visual floral displays were manipulated showed that naïve hawkmoths preferred flowers displaying both olfactory and visual cues. Furthermore, experiments using A. palmeri flowers – a species that is not very attractive to hawkmoths – showed that the visual and olfactory displays did not have synergistic effects. The combination of olfactory and visual display of D. wrightii, however – a flower that is highly attractive to naïve hawkmoths – did influence the time moths spent feeding from the flowers. The importance of the olfactory and visual signals were further demonstrated in learning experiments in which experienced moths, when exposed to uncoupled floral displays, ultimately chose flowers based on the previously experienced olfactory, and not visual, signals. These moths, however, had significantly longer decision times than moths exposed to coupled floral displays. Conclusions/Significance These results highlight the importance of specific sensory modalities for foraging hawkmoths while also suggesting that they learn the floral displays as combinatorial signals and use the integrated floral traits from their memory traces to mediate future foraging decisions. PMID:23991154

  19. Brain composition and olfactory learning in honey bees

    PubMed Central

    Gronenberg, Wulfila; Couvillon, Margaret J.

    2015-01-01

    Correlations between brain or brain component size and behavioral measures are frequently studied by comparing different animal species, which sometimes introduces variables that complicate interpretation in terms of brain function. Here, we have analyzed the brain composition of honey bees (Apis mellifera) that have been individually tested in an olfactory learning paradigm. We found that the total brain size correlated with the bees’ learning performance. Among different brain components, only the mushroom body, a structure known to be involved in learning and memory, showed a positive correlation with learning performance. In contrast, visual neuropils were relatively smaller in bees that performed better in the olfactory learning task, suggesting modality-specific behavioral specialization of individual bees. This idea is also supported by inter-individual differences in brain composition. Some slight yet statistically significant differences in the brain composition of European and Africanized honey bees are reported. Larger bees had larger brains, and by comparing brains of different sizes, we report isometric correlations for all brain components except for a small structure, the central body. PMID:20060918

  20. Developmentally defined forebrain circuits regulate appetitive and aversive olfactory learning.

    PubMed

    Muthusamy, Nagendran; Zhang, Xuying; Johnson, Caroline A; Yadav, Prem N; Ghashghaei, H Troy

    2017-01-01

    Postnatal and adult neurogenesis are region- and modality-specific, but the significance of developmentally distinct neuronal populations remains unclear. We demonstrate that chemogenetic inactivation of a subset of forebrain and olfactory neurons generated at birth disrupts responses to an aversive odor. In contrast, novel appetitive odor learning is sensitive to inactivation of adult-born neurons, revealing that developmentally defined sets of neurons may differentially participate in hedonic aspects of sensory learning.

  1. Formic and acetic acids in degradation products of plant volatiles elicit olfactory and behavorial responses from an insect vector

    USDA-ARS?s Scientific Manuscript database

    The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae) vectors the bacterial pathogen presumed to be the etiological agent of citrus greening disease, Huanglongbing (HLB), a major threat to citrus industry worldwide. We studied antennal and behavioral responses of Diaphorina citri...

  2. Biomimetic Nanosensor Arrays for Selective Small Molecule Detection

    DTIC Science & Technology

    2012-02-21

    Nanowires. Science 303, 213-217 (2004). 22. Pesenti, M. E. et al. Structural Basis of the Honey Bee PBP Pheromone and pH-Induced Conformational Change. J...receptors on the antennal olfactory sensilla. The exceptional ability of insects to detect chemical signatures has led to the use of trained bees in a

  3. Infrared radiation from hot cones on cool conifers attracts seed-feeding insects

    PubMed Central

    Takács, Stephen; Bottomley, Hannah; Andreller, Iisak; Zaradnik, Tracy; Schwarz, Joseph; Bennett, Robb; Strong, Ward; Gries, Gerhard

    2008-01-01

    Foraging animals use diverse cues to locate resources. Common foraging cues have visual, auditory, olfactory, tactile or gustatory characteristics. Here, we show a foraging herbivore using infrared (IR) radiation from living plants as a host-finding cue. We present data revealing that (i) conifer cones are warmer and emit more near-, mid- and long-range IR radiation than needles, (ii) cone-feeding western conifer seed bugs, Leptoglossus occidentalis (Hemiptera: Coreidae), possess IR receptive organs and orient towards experimental IR cues, and (iii) occlusion of the insects' IR receptors impairs IR perception. The conifers' cost of attracting cone-feeding insects may be offset by occasional mast seeding resulting in cone crops too large to be effectively exploited by herbivores. PMID:18945664

  4. Infrared radiation from hot cones on cool conifers attracts seed-feeding insects.

    PubMed

    Takács, Stephen; Bottomley, Hannah; Andreller, Iisak; Zaradnik, Tracy; Schwarz, Joseph; Bennett, Robb; Strong, Ward; Gries, Gerhard

    2009-02-22

    Foraging animals use diverse cues to locate resources. Common foraging cues have visual, auditory, olfactory, tactile or gustatory characteristics. Here, we show a foraging herbivore using infrared (IR) radiation from living plants as a host-finding cue. We present data revealing that (i) conifer cones are warmer and emit more near-, mid- and long-range IR radiation than needles, (ii) cone-feeding western conifer seed bugs, Leptoglossus occidentalis (Hemiptera: Coreidae), possess IR receptive organs and orient towards experimental IR cues, and (iii) occlusion of the insects' IR receptors impairs IR perception. The conifers' cost of attracting cone-feeding insects may be offset by occasional mast seeding resulting in cone crops too large to be effectively exploited by herbivores.

  5. Olfactory bulb size, odor discrimination and magnetic insensitivity in hummingbirds.

    PubMed

    Ioalé, P; Papi, F

    1989-05-01

    Relative olfactory bulb size with respect to telencephalic hemispheres (olfactory ratio) was measured in five species of hummingbirds. Trochiliformes were found to be next to last among 25 avian orders with respect to olfactory bulb development. One hummingbird species, the White-vented Violetear (Colibri serrirostris), was trained in a successive go/no-go discrimination task, and learned to feed or not to feed from a container dependent on the olfactory stimuli associated with it. Test birds learned to discriminate amyl acetate vs. turpentine essence, jasmine essence vs. lavender essence, eucalyptus essence vs. no odor, beta-ionone vs. no odor, carvone vs. eucalyptol. In contrast, 1-phenylethanol vs. beta-ionone discrimination, two odorants which appear similar to humans, was unsuccessful. Using a similar procedure, attempts were made to condition a White-vented Violetear and a Versicolored Emerald (Amazilia versicolor) to magnetic stimuli. The birds were unable to discriminate between a normal field and an oscillating field (square wave, 1 Hz, amplitude +/- 0.40 G).

  6. Sexual response of male Drosophila to honey bee queen mandibular pheromone: implications for genetic studies of social insects.

    PubMed

    Croft, Justin R; Liu, Tom; Camiletti, Alison L; Simon, Anne F; Thompson, Graham J

    2017-02-01

    Honey bees secrete a queen mandibular pheromone that renders workers reproductively altruistic and drones sexually attentive. This sex-specific function of QMP may have evolved from a sexually dimorphic signaling mechanism derived from pre-social ancestors. If so, there is potential for pre-social insects to respond to QMP, and in a manner that is comparable to its normal effect on workers and drones. Remarkably, QMP applied to female Drosophila does induce worker-like qualities [Camiletti et al. (Entomol Exp Appl 147:262, 2013)], and we here extend this comparison to examine the effects of bee pheromone on male fruit flies. We find that male Drosophila melanogaster consistently orient towards a source of queen pheromone in a T-maze, suggesting a recruitment response comparable to the pheromone's normal effect on drones. Moreover, exposure to QMP renders male flies more sexually attentive; they display intensified pre-copulatory behavior towards conspecific females. We can inhibit this sexual effect through a loss-of-olfactory-function mutation, which suggests that the pheromone-responsive behavioral mechanism is olfactory-driven. These pheromone-induced changes to male Drosophila behavior suggest that aspects of sexual signaling are conserved between these two distantly related taxa. Our results highlight a role for Drosophila as a genetically tractable pre-social model for studies of social insect biology.

  7. Olfactory learning without the mushroom bodies: Spiking neural network models of the honeybee lateral antennal lobe tract reveal its capacities in odour memory tasks of varied complexities

    PubMed Central

    2017-01-01

    The honeybee olfactory system is a well-established model for understanding functional mechanisms of learning and memory. Olfactory stimuli are first processed in the antennal lobe, and then transferred to the mushroom body and lateral horn through dual pathways termed medial and lateral antennal lobe tracts (m-ALT and l-ALT). Recent studies reported that honeybees can perform elemental learning by associating an odour with a reward signal even after lesions in m-ALT or blocking the mushroom bodies. To test the hypothesis that the lateral pathway (l-ALT) is sufficient for elemental learning, we modelled local computation within glomeruli in antennal lobes with axons of projection neurons connecting to a decision neuron (LHN) in the lateral horn. We show that inhibitory spike-timing dependent plasticity (modelling non-associative plasticity by exposure to different stimuli) in the synapses from local neurons to projection neurons decorrelates the projection neurons’ outputs. The strength of the decorrelations is regulated by global inhibitory feedback within antennal lobes to the projection neurons. By additionally modelling octopaminergic modification of synaptic plasticity among local neurons in the antennal lobes and projection neurons to LHN connections, the model can discriminate and generalize olfactory stimuli. Although positive patterning can be accounted for by the l-ALT model, negative patterning requires further processing and mushroom body circuits. Thus, our model explains several–but not all–types of associative olfactory learning and generalization by a few neural layers of odour processing in the l-ALT. As an outcome of the combination between non-associative and associative learning, the modelling approach allows us to link changes in structural organization of honeybees' antennal lobes with their behavioural performances over the course of their life. PMID:28640825

  8. Olfactory learning without the mushroom bodies: Spiking neural network models of the honeybee lateral antennal lobe tract reveal its capacities in odour memory tasks of varied complexities.

    PubMed

    MaBouDi, HaDi; Shimazaki, Hideaki; Giurfa, Martin; Chittka, Lars

    2017-06-01

    The honeybee olfactory system is a well-established model for understanding functional mechanisms of learning and memory. Olfactory stimuli are first processed in the antennal lobe, and then transferred to the mushroom body and lateral horn through dual pathways termed medial and lateral antennal lobe tracts (m-ALT and l-ALT). Recent studies reported that honeybees can perform elemental learning by associating an odour with a reward signal even after lesions in m-ALT or blocking the mushroom bodies. To test the hypothesis that the lateral pathway (l-ALT) is sufficient for elemental learning, we modelled local computation within glomeruli in antennal lobes with axons of projection neurons connecting to a decision neuron (LHN) in the lateral horn. We show that inhibitory spike-timing dependent plasticity (modelling non-associative plasticity by exposure to different stimuli) in the synapses from local neurons to projection neurons decorrelates the projection neurons' outputs. The strength of the decorrelations is regulated by global inhibitory feedback within antennal lobes to the projection neurons. By additionally modelling octopaminergic modification of synaptic plasticity among local neurons in the antennal lobes and projection neurons to LHN connections, the model can discriminate and generalize olfactory stimuli. Although positive patterning can be accounted for by the l-ALT model, negative patterning requires further processing and mushroom body circuits. Thus, our model explains several-but not all-types of associative olfactory learning and generalization by a few neural layers of odour processing in the l-ALT. As an outcome of the combination between non-associative and associative learning, the modelling approach allows us to link changes in structural organization of honeybees' antennal lobes with their behavioural performances over the course of their life.

  9. In-situ recording of ionic currents in projection neurons and Kenyon cells in the olfactory pathway of the honeybee

    PubMed Central

    Rössler, Wolfgang

    2018-01-01

    The honeybee olfactory pathway comprises an intriguing pattern of convergence and divergence: ~60.000 olfactory sensory neurons (OSN) convey olfactory information on ~900 projection neurons (PN) in the antennal lobe (AL). To transmit this information reliably, PNs employ relatively high spiking frequencies with complex patterns. PNs project via a dual olfactory pathway to the mushroom bodies (MB). This pathway comprises the medial (m-ALT) and the lateral antennal lobe tract (l-ALT). PNs from both tracts transmit information from a wide range of similar odors, but with distinct differences in coding properties. In the MBs, PNs form synapses with many Kenyon cells (KC) that encode odors in a spatially and temporally sparse way. The transformation from complex information coding to sparse coding is a well-known phenomenon in insect olfactory coding. Intrinsic neuronal properties as well as GABAergic inhibition are thought to contribute to this change in odor representation. In the present study, we identified intrinsic neuronal properties promoting coding differences between PNs and KCs using in-situ patch-clamp recordings in the intact brain. We found very prominent K+ currents in KCs clearly differing from the PN currents. This suggests that odor coding differences between PNs and KCs may be caused by differences in their specific ion channel properties. Comparison of ionic currents of m- and l-ALT PNs did not reveal any differences at a qualitative level. PMID:29351552

  10. Identification of Putative Olfactory Genes from the Oriental Fruit Moth Grapholita molesta via an Antennal Transcriptome Analysis

    PubMed Central

    Li, Yiping; Wu, Junxiang

    2015-01-01

    Background The oriental fruit moth, Grapholita molesta, is an extremely important oligophagous pest species of stone and pome fruits throughout the world. As a host-switching species, adult moths, especially females, depend on olfactory cues to a large extent in locating host plants, finding mates, and selecting oviposition sites. The identification of olfactory genes can facilitate investigation on mechanisms for chemical communications. Methodology/Principal Finding We generated transcriptome of female antennae of G.molesta using the next-generation sequencing technique, and assembled transcripts from RNA-seq reads using Trinity, SOAPdenovo-trans and Abyss-trans assemblers. We identified 124 putative olfactory genes. Among the identified olfactory genes, 118 were novel to this species, including 28 transcripts encoding for odorant binding proteins, 17 chemosensory proteins, 48 odorant receptors, four gustatory receptors, 24 ionotropic receptors, two sensory neuron membrane proteins, and one odor degrading enzyme. The identified genes were further confirmed through semi-quantitative reverse transcription PCR for transcripts coding for 26 OBPs and 17 CSPs. OBP transcripts showed an obvious antenna bias, whereas CSP transcripts were detected in different tissues. Conclusion Antennal transcriptome data derived from the oriental fruit moth constituted an abundant molecular resource for the identification of genes potentially involved in the olfaction process of the species. This study provides a foundation for future research on the molecules involved in olfactory recognition of this insect pest, and in particular, the feasibility of using semiochemicals to control this pest. PMID:26540284

  11. Syngeneic Transplantation of Olfactory Ectomesenchymal Stem Cells Restores Learning and Memory Abilities in a Rat Model of Global Cerebral Ischemia.

    PubMed

    Veron, Antoine D; Bienboire-Frosini, Cécile; Girard, Stéphane D; Sadelli, Kevin; Stamegna, Jean-Claude; Khrestchatisky, Michel; Alexis, Jennifer; Pageat, Patrick; Asproni, Pietro; Mengoli, Manuel; Roman, François S

    2018-01-01

    Stem cells are considered as promising tools to repair diverse tissue injuries. Among the different stem cell types, the "olfactory ectomesenchymal stem cells" (OE-MSCs) located in the adult olfactory mucosa stand as one of the best candidates. Here, we evaluated if OE-MSC grafts could decrease memory impairments due to ischemic injury. OE-MSCs were collected from syngeneic F344 rats. After a two-step global cerebral ischemia, inducing hippocampal lesions, learning abilities were evaluated using an olfactory associative discrimination task. Cells were grafted into the hippocampus 5 weeks after injury and animal's learning abilities reassessed. Rats were then sacrificed and the brains collected for immunohistochemical analyses. We observed significant impairments in learning and memory abilities following ischemia. However, 4 weeks after OE-MSC grafts, animals displayed learning and memory performances similar to those of controls, while sham rats did not improve them. Immunohistochemical analyses revealed that grafts promoted neuroblast and glial cell proliferation, which could permit to restore cognitive functions. These results demonstrated, for the first time, that syngeneic transplantations of OE-MSCs in rats can restore cognitive abilities impaired after brain injuries and provide support for the development of clinical studies based on grafts of OE-MSCs in amnesic patients following brain injuries.

  12. Food Avoidance Learning in Squirrel Monkeys and Common Marmosets

    PubMed Central

    Laska, Matthias; Metzker, Karin

    1998-01-01

    Using a conditioned food avoidance learning paradigm, six squirrel monkeys (Saimiri sciureus) and six common marmosets (Callithrix jacchus) were tested for their ability to (1) reliably form associations between visual or olfactory cues of a potential food and its palatability and (2) remember such associations over prolonged periods of time. We found (1) that at the group level both species showed one-trial learning with the visual cues color and shape, whereas only the marmosets were able to do so with the olfactory cue, (2) that all individuals from both species learned to reliably avoid the unpalatable food items within 10 trials, (3) a tendency in both species for quicker acquisition of the association with the visual cues compared with the olfactory cue, (4) a tendency for quicker acquisition and higher reliability of the aversion by the marmosets compared with the squirrel monkeys, and (5) that all individuals from both species were able to reliably remember the significance of the visual cues, color and shape, even after 4 months, whereas only the marmosets showed retention of the significance of the olfactory cues for up to 4 weeks. Furthermore, the results suggest that in both species tested, illness is not a necessary prerequisite for food avoidance learning but that the presumably innate rejection responses toward highly concentrated but nontoxic bitter and sour tastants are sufficient to induce robust learning and retention. PMID:10454364

  13. Novel insights into the ontogeny of nestmate recognition in Polistes social wasps.

    PubMed

    Signorotti, Lisa; Cappa, Federico; d'Ettorre, Patrizia; Cervo, Rita

    2014-01-01

    The importance of early experience in animals' life is unquestionable, and imprinting-like phenomena may shape important aspects of behaviour. Early learning typically occurs during a sensitive period, which restricts crucial processes of information storage to a specific developmental phase. The characteristics of the sensitive period have been largely investigated in vertebrates, because of their complexity and plasticity, both in behaviour and neurophysiology, but early learning occurs also in invertebrates. In social insects, early learning appears to influence important social behaviours such as nestmate recognition. Yet, the mechanisms underlying recognition systems are not fully understood. It is currently believed that Polistes social wasps are able to discriminate nestmates from non-nestmates following the perception of olfactory cues present on the paper of their nest, which are learned during a strict sensitive period, immediately after emergence. Here, through differential odour experience experiments, we show that workers of Polistes dominula develop correct nestmate recognition abilities soon after emergence even in absence of what have been so far considered the necessary cues (the chemicals spread on nest paper). P. dominula workers were exposed for the first four days of adult life to paper fragments from their nest, or from a foreign conspecific nest or to a neutral condition. Wasps were then transferred to their original nests where recognition abilities were tested. Our results show that wasps do not alter their recognition ability if exposed only to nest material, or in absence of nest material, during the early phase of adult life. It thus appears that the nest paper is not used as a source of recognition cues to be learned in a specific time window, although we discuss possible alternative explanations. Our study provides a novel perspective for the study of the ontogeny of nestmate recognition in Polistes wasps and in other social insects.

  14. Associative Processes in Early Olfactory Preference Acquisition

    PubMed Central

    Sullivan, Regina M.; Wilson, Donald A.; Leon, Michael

    2007-01-01

    Acquisition of behavioral conditioned responding and learned odor preferences during olfactory classical conditioning in rat pups requires forward or simultaneous pairings of the conditioned stimulus (CS) and the unconditioned stimulus (US). Other temporal relationships between the CS and US do not usually result in learning. The present study examined the influence of this CS-US relationship upon the neural olfactory bulb modifications that are acquired during early classical conditioning. Wistar rat pups were trained from Postnatal Days (PN) 1-18 with either forward (odor overlapping temporally with reinforcing stroking) or backward (stroking followed by odor) CS-US pairings. On PN 19, pups received either a behavioral odor preference test to the odor CS or an injection of 14C 2-DG and exposure to the odor CS, or olfactory bulb single unit responses were recorded in response to exposure to the odor CS. Only pups that received forward presentations of the CS and US exhibited both a preference for the CS and modified olfactory bulb neural responses to the CS. These results, then, suggest that the modified olfactory bulb neural responses acquired during classical conditioning are guided by the same temporal constraints as those which govern the acquisition of behavioral conditioned responses. PMID:17572798

  15. Successful acquisition of an olfactory discrimination test by Asian elephants, Elephas maximus.

    PubMed

    Arvidsson, Josefin; Amundin, Mats; Laska, Matthias

    2012-02-01

    The present study demonstrates that Asian elephants, Elephas maximus, can successfully be trained to cooperate in an olfactory discrimination test based on a food-rewarded two-alternative instrumental conditioning procedure. The animals learned the basic principle of the test within only 60 trials and readily mastered intramodal stimulus transfer tasks. Further, they were capable of distinguishing between structurally related odor stimuli and remembered the reward value of previously learned odor stimuli after 2, 4, 8, and 16 weeks of recess without any signs of forgetting. The precision and consistency of the elephants' performance in tests of odor discrimination ability and long-term odor memory demonstrate the suitability of this method for assessing olfactory function in this proboscid species. An across-species comparison of several measures of olfactory learning capabilities such as speed of initial task acquisition and ability to master intramodal stimulus transfer tasks shows that Asian elephants are at least as good in their performance as mice, rats, and dogs, and clearly superior to nonhuman primates and fur seals. The results support the notion that Asian elephants may use olfactory cues for social communication and food selection and that the sense of smell may play an important role in the control of their behavior. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Hyperlipidemic Diet Causes Loss of Olfactory Sensory Neurons, Reduces Olfactory Discrimination, and Disrupts Odor-Reversal Learning

    PubMed Central

    Thiebaud, Nicolas; Johnson, Melissa C.; Butler, Jessica L.; Bell, Genevieve A.; Ferguson, Kassandra L.; Fadool, Andrew R.; Fadool, James C.; Gale, Alana M.; Gale, David S.

    2014-01-01

    Currently, 65% of Americans are overweight, which leads to well-supported cardiovascular and cognitive declines. Little, however, is known concerning obesity's impact on sensory systems. Because olfaction is linked with ingestive behavior to guide food choice, its potential dysfunction during obesity could evoke a positive feedback loop to perpetuate poor ingestive behaviors. To determine the effect of chronic energy imbalance and reveal any structural or functional changes associated with obesity, we induced long-term, diet-induced obesity by challenging mice to high-fat diets: (1) in an obesity-prone (C57BL/6J) and obesity-resistant (Kv1.3−/−) line of mice, and compared this with (2) late-onset, genetic-induced obesity in MC4R−/− mice in which diabetes secondarily precipitates after disruption of the hypothalamic axis. We report marked loss of olfactory sensory neurons and their axonal projections after exposure to a fatty diet, with a concomitant reduction in electro-olfactogram amplitude. Loss of olfactory neurons and associated circuitry is linked to changes in neuronal proliferation and normal apoptotic cycles. Using a computer-controlled, liquid-based olfactometer, mice maintained on fatty diets learn reward-reinforced behaviors more slowly, have deficits in reversal learning demonstrating behavioral inflexibility, and exhibit reduced olfactory discrimination. When obese mice are removed from their high-fat diet to regain normal body weight and fasting glucose, olfactory dysfunctions are retained. We conclude that chronic energy imbalance therefore presents long-lasting structural and functional changes in the operation of the sensory system designed to encode external and internal chemical information and leads to altered olfactory- and reward-driven behaviors. PMID:24828650

  17. Role of olfactory bulb serotonin in olfactory learning in the greater short-nosed fruit bat, Cynopterus sphinx (Chiroptera: Pteropodidae).

    PubMed

    Ganesh, Ambigapathy; Bogdanowicz, Wieslaw; Haupt, Moritz; Marimuthu, Ganapathy; Rajan, Koilmani Emmanuvel

    2010-09-17

    The role of olfactory bulb (OB) serotonin [5-hydroxytryptamine (5-HT)] in olfactory learning and memory was tested in the greater short-nosed fruit bat, Cynopterus sphinx (family Pteropodidae). Graded concentrations (25, 40, and 60microg) of 5,7-dihydroxytryptamine (5,7-DHT) or saline were injected into the OB of bats one day before training to the novel odor. In a behavioral test, 5,7-DHT (60microg) injected bats made significantly fewer feeding attempts and bouts when compared to saline-injected bats during learning and in the memory test. Subsequent biochemical analysis showed that 5-HT level was effectively depleted in the OB of 5,7-DHT injected bats. To test odor-induced 5-HT mediated changes in 5-HT receptors and second messenger cascade in the OB, we examined the expression of 5-HT receptors and mitogen-activated protein kinase (MAPK)/Erk cascade after training to the novel odor. We found that odor stimulation up-regulated the expression of 5-HT(1A) receptor, Erk1 and Creb1 mRNA, and phosphorylation of ERK1 and CREB1. Odor stimulation failed to induce expression in 5-HT-depleted bats, which is similar to control bats and significantly low compared to saline-treated bats. Together these data revealed that the level of 5-HT in the OB may regulate olfactory learning and memory in C. sphinx through Erk and CREB.

  18. Central auditory neurons have composite receptive fields.

    PubMed

    Kozlov, Andrei S; Gentner, Timothy Q

    2016-02-02

    High-level neurons processing complex, behaviorally relevant signals are sensitive to conjunctions of features. Characterizing the receptive fields of such neurons is difficult with standard statistical tools, however, and the principles governing their organization remain poorly understood. Here, we demonstrate multiple distinct receptive-field features in individual high-level auditory neurons in a songbird, European starling, in response to natural vocal signals (songs). We then show that receptive fields with similar characteristics can be reproduced by an unsupervised neural network trained to represent starling songs with a single learning rule that enforces sparseness and divisive normalization. We conclude that central auditory neurons have composite receptive fields that can arise through a combination of sparseness and normalization in neural circuits. Our results, along with descriptions of random, discontinuous receptive fields in the central olfactory neurons in mammals and insects, suggest general principles of neural computation across sensory systems and animal classes.

  19. Willing and Able: The Coordination between Sexual Displays and Fertility.

    PubMed

    Aranha, Márcia M; Vasconcelos, Maria Luísa

    2016-06-15

    In insects, the role of reproductive hormones in coordinating fertility with mating activity is unclear. In this issue of Neuron, Lin et al. (2016) describe a mechanism in which juvenile hormone regulates courtship advantage of older Drosophila males by elevating the pheromone sensitivity of Or47b olfactory circuitry. Copyright © 2016. Published by Elsevier Inc.

  20. Olfactory pathway of the hornet Vespa velutina: New insights into the evolution of the hymenopteran antennal lobe.

    PubMed

    Couto, Antoine; Lapeyre, Benoit; Thiéry, Denis; Sandoz, Jean-Christophe

    2016-08-01

    In the course of evolution, eusociality has appeared several times independently in Hymenoptera, within different families such as Apidae (bees), Formicidae (ants), and Vespidae (wasps and hornets), among others. The complex social organization of eusocial Hymenoptera relies on sophisticated olfactory communication systems. Whereas the olfactory systems of several bee and ant species have been well characterized, very little information is as yet available in Vespidae, although this family represents a highly successful insect group, displaying a wide range of life styles from solitary to eusocial. Using fluorescent labeling, confocal microscopy, and 3D reconstructions, we investigated the organization of the olfactory pathway in queens, workers, and males of the eusocial hornet Vespa velutina. First, we found that caste and sex dimorphism is weakly pronounced in hornets, with regard to both whole-brain morphology and antennal lobe organization, although several male-specific macroglomeruli are present. The V. velutina antennal lobe contains approximately 265 glomeruli (in females), grouped in nine conspicuous clusters formed by afferent tract subdivisions. As in bees and ants, hornets display a dual olfactory pathway, with two major efferent tracts, the medial and the lateral antennal lobe tracts (m- and l-ALT), separately arborizing two antennal lobe hemilobes and projecting to partially different regions of higher order olfactory centers. Finally, we found remarkable anatomical similarities in the glomerular cluster organizations among hornets, ants, and bees, suggesting the possible existence of homologies in the olfactory pathways of these eusocial Hymenoptera. We propose a common framework for describing AL compartmentalization across Hymenoptera and discuss possible evolutionary scenarios. J. Comp. Neurol. 524:2335-2359, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Neuronal Nitric-Oxide Synthase Deficiency Impairs the Long-Term Memory of Olfactory Fear Learning and Increases Odor Generalization

    ERIC Educational Resources Information Center

    Pavesi, Eloisa; Heldt, Scott A.; Fletcher, Max L.

    2013-01-01

    Experience-induced changes associated with odor learning are mediated by a number of signaling molecules, including nitric oxide (NO), which is predominantly synthesized by neuronal nitric oxide synthase (nNOS) in the brain. In the current study, we investigated the role of nNOS in the acquisition and retention of conditioned olfactory fear. Mice…

  2. An Expressed Sequence Tag collection from the male antennae of the Noctuid moth Spodoptera littoralis: a resource for olfactory and pheromone detection research

    PubMed Central

    2011-01-01

    Background Nocturnal insects such as moths are ideal models to study the molecular bases of olfaction that they use, among examples, for the detection of mating partners and host plants. Knowing how an odour generates a neuronal signal in insect antennae is crucial for understanding the physiological bases of olfaction, and also could lead to the identification of original targets for the development of olfactory-based control strategies against herbivorous moth pests. Here, we describe an Expressed Sequence Tag (EST) project to characterize the antennal transcriptome of the noctuid pest model, Spodoptera littoralis, and to identify candidate genes involved in odour/pheromone detection. Results By targeting cDNAs from male antennae, we biased gene discovery towards genes potentially involved in male olfaction, including pheromone reception. A total of 20760 ESTs were obtained from a normalized library and were assembled in 9033 unigenes. 6530 were annotated based on BLAST analyses and gene prediction software identified 6738 ORFs. The unigenes were compared to the Bombyx mori proteome and to ESTs derived from Lepidoptera transcriptome projects. We identified a large number of candidate genes involved in odour and pheromone detection and turnover, including 31 candidate chemosensory receptor genes, but also genes potentially involved in olfactory modulation. Conclusions Our project has generated a large collection of antennal transcripts from a Lepidoptera. The normalization process, allowing enrichment in low abundant genes, proved to be particularly relevant to identify chemosensory receptors in a species for which no genomic data are available. Our results also suggest that olfactory modulation can take place at the level of the antennae itself. These EST resources will be invaluable for exploring the mechanisms of olfaction and pheromone detection in S. littoralis, and for ultimately identifying original targets to fight against moth herbivorous pests. PMID:21276261

  3. Brain architecture in the terrestrial hermit crab Coenobita clypeatus (Anomura, Coenobitidae), a crustacean with a good aerial sense of smell

    PubMed Central

    Harzsch, Steffen; Hansson, Bill S

    2008-01-01

    Background During the evolutionary radiation of Crustacea, several lineages in this taxon convergently succeeded in meeting the physiological challenges connected to establishing a fully terrestrial life style. These physiological adaptations include the need for sensory organs of terrestrial species to function in air rather than in water. Previous behavioral and neuroethological studies have provided solid evidence that the land hermit crabs (Coenobitidae, Anomura) are a group of crustaceans that have evolved a good sense of aerial olfaction during the conquest of land. We wanted to study the central olfactory processing areas in the brains of these organisms and to that end analyzed the brain of Coenobita clypeatus (Herbst, 1791; Anomura, Coenobitidae), a fully terrestrial tropical hermit crab, by immunohistochemistry against synaptic proteins, serotonin, FMRFamide-related peptides, and glutamine synthetase. Results The primary olfactory centers in this species dominate the brain and are composed of many elongate olfactory glomeruli. The secondary olfactory centers that receive an input from olfactory projection neurons are almost equally large as the olfactory lobes and are organized into parallel neuropil lamellae. The architecture of the optic neuropils and those areas associated with antenna two suggest that C. clypeatus has visual and mechanosensory skills that are comparable to those of marine Crustacea. Conclusion In parallel to previous behavioral findings of a good sense of aerial olfaction in C. clypeatus, our results indicate that in fact their central olfactory pathway is most prominent, indicating that olfaction is a major sensory modality that these brains process. Interestingly, the secondary olfactory neuropils of insects, the mushroom bodies, also display a layered structure (vertical and medial lobes), superficially similar to the lamellae in the secondary olfactory centers of C. clypeatus. More detailed analyses with additional markers will be necessary to explore the question if these similarities have evolved convergently with the establishment of superb aerial olfactory abilities or if this design goes back to a shared principle in the common ancestor of Crustacea and Hexapoda. PMID:18590553

  4. An olfactory receptor from Apolygus lucorum (Meyer-Dur) mainly tuned to volatiles from flowering host plants.

    PubMed

    Yan, Shu-Wei; Zhang, Jin; Liu, Yang; Li, Guo-Qing; Wang, Gui-Rong

    2015-08-01

    Apolygus lucorum (Meyer-Dür) (Hemiptera: Miridae) is one of the most serious agricultural pests, feeding on a wide range of cultivated plants, including cotton, cereals and vegetables in the north of China. This insect can frequently switch between habitats and host plants over seasons and prefer plants in bloom. A. lucorum relies heavily on olfaction to locate its host plants finely discriminating different plant volatiles in the environment. Despite its economical importance, research on the olfactory system of this species has been so far very limited. In this study, we have identified and characterized an olfactory receptor which is sensitively tuned to (Z)-3-Hexenyl acetate and several flowering compounds. Besides being present in the bouquet of some flowers, these compounds are produced by plants that have suffered attacks and are supposed to act as chemical messengers between plants. This OR may play an important role in the selection of host plants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Organization of the olfactory system of nymphalidae butterflies.

    PubMed

    Carlsson, Mikael A; Schäpers, Alexander; Nässel, Dick R; Janz, Niklas

    2013-05-01

    Olfaction is in many species the most important sense, essential for food search, mate finding, and predator avoidance. Butterflies have been considered a microsmatic group of insects that mainly rely on vision due to their diurnal lifestyle. However, an emerging number of studies indicate that butterflies indeed use the sense of smell for locating food and oviposition sites. To unravel the neural substrates for olfaction, we performed an anatomical study of 2 related butterfly species that differ in food and host plant preference. We found many of the anatomical structures and pathways, as well as distribution of neuroactive substances, to resemble that of their nocturnal relatives among the Lepidoptera. The 2 species differed in the number of one type of olfactory sensilla, thus indicating a difference in sensitivity to certain compounds. Otherwise no differences could be observed. Our findings suggest that the olfactory system in Lepidoptera is well conserved despite the long evolutionary time since butterflies and moths diverged from a common ancestor.

  6. Olfactory coding: giant inhibitory neuron governs sparse odor codes.

    PubMed

    Gupta, Nitin; Stopfer, Mark

    2011-07-12

    Electrophysiological investigations in locusts have revealed that the sparseness of odor representations, in the brain region expected to mediate olfactory learning, is shaped by a unique inhibitory neuron. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Egr-1 antisense oligodeoxynucleotide administration into the olfactory bulb impairs olfactory learning in the greater short-nosed fruit bat Cynopterus sphinx.

    PubMed

    Ganesh, Ambigapathy; Bogdanowicz, Wieslaw; Balamurugan, Krishnaswamy; Ragu Varman, Durairaj; Rajan, Koilmani Emmanuvel

    2012-08-30

    Postsynaptic densities (PSDs) contain proteins that regulate synaptic transmission. We examined two important examples of these, calcium/calmodulin-dependent protein kinase II (CaMKII) and PSD-95, in regard to the functional role of early growth response gene-1 (egr-1) in regulation of olfactory learning in the greater short-nosed fruit bat Cynopterus sphinx (family Pteropodidae). To test whether activation of egr-1 in the olfactory bulb (OB) is required for olfactory memory of these bats, bilaterally canulated individuals were infused with antisense (AS) or non-sense (NS)-oligodeoxynucleotides (ODN) of egr-1, or with phosphate buffer saline (PBS), 2h before the olfactory training. Our results showed that behavioral training significantly up-regulates immediate early gene (IEG) EGR-1 and key synaptic proteins Synaptotagmin-1(SYT-1), CaMKII and PSD-95, and phosphorylation of CaMKII in the OB at the protein level per se. Subsequently, we observed that egr-1 antisense-ODN infusion in the OB impaired olfactory memory and down regulates the expression of CaMKII and PSD-95, and the phosphorylation of CaMKII but not SYT-1. In contrast, NS-ODN or PBS had no effect on the expression of the PSDs CaMKII or PSD-95, or on the phosphorylation of CaMKII. When the egr-1 NS-ODN was infused in the OB after training for the novel odor there was no effect on olfactory memory. These findings suggest that egr-1 control the activation of CaMKII and PSD-95 during the process of olfactory memory formation. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. The Olfactory Mosaic: Bringing an Olfactory Network Together for Odor Perception.

    PubMed

    Courtiol, Emmanuelle; Wilson, Donald A

    2017-01-01

    Olfactory perception and its underlying neural mechanisms are not fixed, but rather vary over time, dependent on various parameters such as state, task, or learning experience. In olfaction, one of the primary sensory areas beyond the olfactory bulb is the piriform cortex. Due to an increasing number of functions attributed to the piriform cortex, it has been argued to be an associative cortex rather than a simple primary sensory cortex. In fact, the piriform cortex plays a key role in creating olfactory percepts, helping to form configural odor objects from the molecular features extracted in the nose. Moreover, its dynamic interactions with other olfactory and nonolfactory areas are also critical in shaping the olfactory percept and resulting behavioral responses. In this brief review, we will describe the key role of the piriform cortex in the larger olfactory perceptual network, some of the many actors of this network, and the importance of the dynamic interactions among the piriform-trans-thalamic and limbic pathways.

  9. Acute ethanol ingestion impairs appetitive olfactory learning and odor discrimination in the honey bee

    PubMed Central

    Mustard, Julie A; Wright, Geraldine A; Edgar, Elaina A; Mazade, Reece E.; Wu, Chen; Lillvis, Joshua L

    2008-01-01

    Invertebrates are valuable models for increasing our understanding of the effects of ethanol on the nervous system, but most studies on invertebrates and ethanol have focused on the effects of ethanol on locomotor behavior. In this work we investigate the influence of an acute dose of ethanol on appetitive olfactory learning in the honey bee (Apis mellifera), a model system for learning and memory. Adult worker honey bees were fed a range of doses (2.5, 5, 10 or 25%) of ethanol and then conditioned to associate an odor with a sucrose reward using either a simple or differential conditioning paradigm. Consumption of ethanol before conditioning significantly reduced both the rate of acquisition and the asymptotic strength of the association. Honey bees also exhibited a dose dependent reduction in arousal/attention during conditioning. Consumption of ethanol after conditioning did not affect recall 24 h later. The observed deficits in acquisition were not due to the affect of ethanol on gustatory sensitivity or motor function. However, honey bees given higher doses of ethanol had difficulty discriminating amongst different odors suggesting that ethanol consumption influences olfactory processing. Taken together, these results demonstrate that an acute dose of ethanol affects appetitive learning and olfactory perception in the honey bee. PMID:18723103

  10. Variations on a Theme: Antennal Lobe Architecture across Coleoptera

    PubMed Central

    Kollmann, Martin; Schmidt, Rovenna; Heuer, Carsten M.

    2016-01-01

    Beetles comprise about 400,000 described species, nearly one third of all known animal species. The enormous success of the order Coleoptera is reflected by a rich diversity of lifestyles, behaviors, morphological, and physiological adaptions. All these evolutionary adaptions that have been driven by a variety of parameters over the last about 300 million years, make the Coleoptera an ideal field to study the evolution of the brain on the interface between the basic bauplan of the insect brain and the adaptions that occurred. In the current study we concentrated on the paired antennal lobes (AL), the part of the brain that is typically responsible for the first processing of olfactory information collected from olfactory sensilla on antenna and mouthparts. We analyzed 63 beetle species from 22 different families and thus provide an extensive comparison of principal neuroarchitecture of the AL. On the examined anatomical level, we found a broad diversity including AL containing a wide range of glomeruli numbers reaching from 50 to 150 glomeruli and several species with numerous small glomeruli, resembling the microglomerular design described in acridid grasshoppers and diving beetles, and substructures within the glomeruli that have to date only been described for the small hive beetle, Aethina tumida. A first comparison of the various anatomical features of the AL with available descriptions of lifestyle and behaviors did so far not reveal useful correlations. In summary, the current study provides a solid basis for further studies to unravel mechanisms that are basic to evolutionary adaptions of the insect olfactory system. PMID:27973569

  11. Identification of Chemosensory Genes Based on the Transcriptomic Analysis of Six Different Chemosensory Organs in Spodoptera exigua.

    PubMed

    Zhang, Ya-Nan; Qian, Jia-Li; Xu, Ji-Wei; Zhu, Xiu-Yun; Li, Meng-Ya; Xu, Xiao-Xue; Liu, Chun-Xiang; Xue, Tao; Sun, Liang

    2018-01-01

    Insects have a complex chemosensory system that accurately perceives external chemicals and plays a pivotal role in many insect life activities. Thus, the study of the chemosensory mechanism has become an important research topic in entomology. Spodoptera exigua Hübner (Lepidoptera: Noctuidae) is a major agricultural polyphagous pest that causes significant agricultural economic losses worldwide. However, except for a few genes that have been discovered, its olfactory and gustatory mechanisms remain uncertain. In the present study, we acquired 144,479 unigenes of S. exigua by assembling 65.81 giga base reads from 6 chemosensory organs (female and male antennae, female and male proboscises, and female and male labial palps), and identified many differentially expressed genes in the gustatory and olfactory organs. Analysis of the transcriptome data obtained 159 putative chemosensory genes, including 24 odorant binding proteins (OBPs; 3 were new), 19 chemosensory proteins (4 were new), 64 odorant receptors (57 were new), 22 ionotropic receptors (16 were new), and 30 new gustatory receptors. Phylogenetic analyses of all genes and SexiGRs expression patterns using quantitative real-time polymerase chain reactions were investigated. Our results found that several of these genes had differential expression features in the olfactory organs compared to the gustatory organs that might play crucial roles in the chemosensory system of S. exigua , and could be utilized as targets for future functional studies to assist in the interpretation of the molecular mechanism of the system. They could also be used for developing novel behavioral disturbance agents to control the population of the moths in the future.

  12. Identification of Chemosensory Genes Based on the Transcriptomic Analysis of Six Different Chemosensory Organs in Spodoptera exigua

    PubMed Central

    Zhang, Ya-Nan; Qian, Jia-Li; Xu, Ji-Wei; Zhu, Xiu-Yun; Li, Meng-Ya; Xu, Xiao-Xue; Liu, Chun-Xiang; Xue, Tao; Sun, Liang

    2018-01-01

    Insects have a complex chemosensory system that accurately perceives external chemicals and plays a pivotal role in many insect life activities. Thus, the study of the chemosensory mechanism has become an important research topic in entomology. Spodoptera exigua Hübner (Lepidoptera: Noctuidae) is a major agricultural polyphagous pest that causes significant agricultural economic losses worldwide. However, except for a few genes that have been discovered, its olfactory and gustatory mechanisms remain uncertain. In the present study, we acquired 144,479 unigenes of S. exigua by assembling 65.81 giga base reads from 6 chemosensory organs (female and male antennae, female and male proboscises, and female and male labial palps), and identified many differentially expressed genes in the gustatory and olfactory organs. Analysis of the transcriptome data obtained 159 putative chemosensory genes, including 24 odorant binding proteins (OBPs; 3 were new), 19 chemosensory proteins (4 were new), 64 odorant receptors (57 were new), 22 ionotropic receptors (16 were new), and 30 new gustatory receptors. Phylogenetic analyses of all genes and SexiGRs expression patterns using quantitative real-time polymerase chain reactions were investigated. Our results found that several of these genes had differential expression features in the olfactory organs compared to the gustatory organs that might play crucial roles in the chemosensory system of S. exigua, and could be utilized as targets for future functional studies to assist in the interpretation of the molecular mechanism of the system. They could also be used for developing novel behavioral disturbance agents to control the population of the moths in the future. PMID:29740343

  13. An olfactory subsystem that detects carbon disulfide and mediates food-related social learning.

    PubMed

    Munger, Steven D; Leinders-Zufall, Trese; McDougall, Lisa M; Cockerham, Renee E; Schmid, Andreas; Wandernoth, Petra; Wennemuth, Gunther; Biel, Martin; Zufall, Frank; Kelliher, Kevin R

    2010-08-24

    Olfactory signals influence social interactions in a variety of species. In mammals, pheromones and other social cues can promote mating or aggression behaviors; can communicate information about social hierarchies, genetic identity and health status; and can contribute to associative learning. However, the molecular, cellular, and neural mechanisms underlying many olfactory-mediated social interactions remain poorly understood. Here, we report that a specialized olfactory subsystem that includes olfactory sensory neurons (OSNs) expressing the receptor guanylyl cyclase GC-D, the cyclic nucleotide-gated channel subunit CNGA3, and the carbonic anhydrase isoform CAII (GC-D(+) OSNs) is required for the acquisition of socially transmitted food preferences (STFPs) in mice. Using electrophysiological recordings from gene-targeted mice, we show that GC-D(+) OSNs are highly sensitive to the volatile semiochemical carbon disulfide (CS(2)), a component of rodent breath and a known social signal mediating the acquisition of STFPs. Olfactory responses to CS(2) are drastically reduced in mice lacking GC-D, CNGA3, or CAII. Disruption of this sensory transduction cascade also results in a failure to acquire STFPs from either live or surrogate demonstrator mice or to exhibit hippocampal correlates of STFP retrieval. Our findings indicate that GC-D(+) OSNs detect chemosignals that facilitate food-related social interactions. Copyright 2010 Elsevier Ltd. All rights reserved.

  14. First Transcriptome and Digital Gene Expression Analysis in Neuroptera with an Emphasis on Chemoreception Genes in Chrysopa pallens (Rambur).

    PubMed

    Li, Zhao-Qun; Zhang, Shuai; Ma, Yan; Luo, Jun-Yu; Wang, Chun-Yi; Lv, Li-Min; Dong, Shuang-Lin; Cui, Jin-Jie

    2013-01-01

    Chrysopa pallens (Rambur) are the most important natural enemies and predators of various agricultural pests. Understanding the sophisticated olfactory system in insect antennae is crucial for studying the physiological bases of olfaction and also could lead to effective applications of C. pallens in integrated pest management. However no transcriptome information is available for Neuroptera, and sequence data for C. pallens are scarce, so obtaining more sequence data is a priority for researchers on this species. To facilitate identifying sets of genes involved in olfaction, a normalized transcriptome of C. pallens was sequenced. A total of 104,603 contigs were obtained and assembled into 10,662 clusters and 39,734 singletons; 20,524 were annotated based on BLASTX analyses. A large number of candidate chemosensory genes were identified, including 14 odorant-binding proteins (OBPs), 22 chemosensory proteins (CSPs), 16 ionotropic receptors, 14 odorant receptors, and genes potentially involved in olfactory modulation. To better understand the OBPs, CSPs and cytochrome P450s, phylogenetic trees were constructed. In addition, 10 digital gene expression libraries of different tissues were constructed and gene expression profiles were compared among different tissues in males and females. Our results provide a basis for exploring the mechanisms of chemoreception in C. pallens, as well as other insects. The evolutionary analyses in our study provide new insights into the differentiation and evolution of insect OBPs and CSPs. Our study provided large-scale sequence information for further studies in C. pallens.

  15. Identification and comparative expression profiles of chemoreception genes revealed from major chemoreception organs of the rice leaf folder, Cnaphalocrocis medinalis (Lepidoptera: Pyralidae)

    USDA-ARS?s Scientific Manuscript database

    To better understand the olfactory mechanism in the rice leaf folder, Cnaphalocrocis medinalis (Guenée), one of the most serious insect pests of rice in Asia, we have established six partial transcriptomes from antennae, tarsus, and reproductive organs of male and female adults. A total of 102 genes...

  16. Antennal sensilla of the stonefly Dinocras cephalotes (Plecoptera: Perlidae).

    PubMed

    Rebora, Manuela; Tierno de Figueroa, José Manuel; Piersanti, Silvana

    2016-11-01

    Plecoptera, one of the most primitive groups of Neoptera, are important aquatic insects usually employed as bioindicators of high water quality. Notwithstanding the well-developed antennae of the adult, its sensory abilities are so far not well known. The present paper describes at ultrastructural level under scanning and transmission electron microscopy the antennal sensilla of the adult stonefly Dinocras cephalotes (Plecoptera, Perlidae). Adult males and females show a filiform antenna constituted of a scape, a pedicel and a flagellum composed of very numerous segments with no clear sexual dimorphism in the number and distribution of the antennal sensilla. The most represented sensilla are sensilla trichodea, with different length, whose internal structure reveal their mechanosensory function, sensilla chaetica, with an apical pore, with an internal structure revealing a typical gustatory function, porous pegs representing single-walled olfactory sensilla, digitated pegs with hollow cuticular spoke channels representing double-walled olfactory sensilla, pegs in pits for which we hypothesize a thermo-hygrosensory function. The diversity of described sensilla is discussed in relation to known biological aspects of the studied species. This opens new perspectives in the study of the behavior of these aquatic insects during their adult stage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Chiral discrimination of the Japanese beetle sex pheromone and a behavioral antagonist by a pheromone-degrading enzyme.

    PubMed

    Ishida, Yuko; Leal, Walter S

    2008-07-01

    The sophistication of the insect olfactory system is elegantly demonstrated by the reception of sex pheromone by the Japanese beetle. In this insect, two olfactory receptor neurons housed in antennal sensilla placodea are highly sensitive. One neuron specifically detects the sex pheromone produced by conspecific females (R,Z)-5-(-)-(1-decenyl)oxacyclopentan-2-one [(R)-japonilure]. The other neuron is tuned to (S)-japonilure, a sex pheromone from a closely related species and a behavioral antagonist for the Japanese beetle. These chemical signals are enzymatically terminated by antennal esterases that open the lactone rings to form physiologically inactive hydroxyacids. We have isolated a pheromone-degrading enzyme, PjapPDE, from >100,000 antennae of the Japanese beetle. PjapPDE was demonstrated to be expressed only in the antennal tissues housing the pheromone-detecting sensilla placodea. Baculovirus expression generated recombinant PjapPDE with likely the same posttranslational modifications as the native enzyme. Kinetic studies with pure native and recombinant PjapPDE showed a clear substrate preference, with an estimated half-life in vivo for the sex pheromone and a behavioral antagonist of approximately 30 and approximately 90 ms, respectively.

  18. A computational model of conditioning inspired by Drosophila olfactory system.

    PubMed

    Faghihi, Faramarz; Moustafa, Ahmed A; Heinrich, Ralf; Wörgötter, Florentin

    2017-03-01

    Recent studies have demonstrated that Drosophila melanogaster (briefly Drosophila) can successfully perform higher cognitive processes including second order olfactory conditioning. Understanding the neural mechanism of this behavior can help neuroscientists to unravel the principles of information processing in complex neural systems (e.g. the human brain) and to create efficient and robust robotic systems. In this work, we have developed a biologically-inspired spiking neural network which is able to execute both first and second order conditioning. Experimental studies demonstrated that volume signaling (e.g. by the gaseous transmitter nitric oxide) contributes to memory formation in vertebrates and invertebrates including insects. Based on the existing knowledge of odor encoding in Drosophila, the role of retrograde signaling in memory function, and the integration of synaptic and non-synaptic neural signaling, a neural system is implemented as Simulated fly. Simulated fly navigates in a two-dimensional environment in which it receives odors and electric shocks as sensory stimuli. The model suggests some experimental research on retrograde signaling to investigate neural mechanisms of conditioning in insects and other animals. Moreover, it illustrates a simple strategy to implement higher cognitive capabilities in machines including robots. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. A distinct entorhinal cortex to hippocampal CA1 direct circuit for olfactory associative learning.

    PubMed

    Li, Yiding; Xu, Jiamin; Liu, Yafeng; Zhu, Jia; Liu, Nan; Zeng, Wenbo; Huang, Ning; Rasch, Malte J; Jiang, Haifei; Gu, Xiang; Li, Xiang; Luo, Minhua; Li, Chengyu; Teng, Junlin; Chen, Jianguo; Zeng, Shaoqun; Lin, Longnian; Zhang, Xiaohui

    2017-04-01

    Lateral and medial parts of entorhinal cortex (EC) convey nonspatial 'what' and spatial 'where' information, respectively, into hippocampal CA1, via both the indirect EC layer 2→ hippocampal dentate gyrus→CA3→CA1 and the direct EC layer 3→CA1 paths. However, it remains elusive how the direct path transfers distinct information and contributes to hippocampal learning functions. Here we report that lateral EC projection neurons selectively form direct excitatory synapses onto a subpopulation of morphologically complex, calbindin-expressing pyramidal cells (PCs) in the dorsal CA1 (dCA1), while medial EC neurons uniformly innervate all dCA1 PCs. Optogenetically inactivating the distinct lateral EC-dCA1 connections or the postsynaptic dCA1 calbindin-expressing PC activity slows olfactory associative learning. Moreover, optetrode recordings reveal that dCA1 calbindin-expressing PCs develop more selective spiking responses to odor cues during learning. Thus, our results identify a direct lateral EC→dCA1 circuit that is required for olfactory associative learning.

  20. The Serotonergic Central Nervous System of the Drosophila Larva: Anatomy and Behavioral Function

    PubMed Central

    Apostolopoulou, Anthi A.; Widmann, Annekathrin; Pfitzenmaier, Johanna E.; Maiolo, Elena M.; Selcho, Mareike; Pauls, Dennis; von Essen, Alina; Gupta, Tripti; Sprecher, Simon G.; Birman, Serge; Riemensperger, Thomas; Stocker, Reinhard F.; Thum, Andreas S.

    2012-01-01

    The Drosophila larva has turned into a particularly simple model system for studying the neuronal basis of innate behaviors and higher brain functions. Neuronal networks involved in olfaction, gustation, vision and learning and memory have been described during the last decade, often up to the single-cell level. Thus, most of these sensory networks are substantially defined, from the sensory level up to third-order neurons. This is especially true for the olfactory system of the larva. Given the wealth of genetic tools in Drosophila it is now possible to address the question how modulatory systems interfere with sensory systems and affect learning and memory. Here we focus on the serotonergic system that was shown to be involved in mammalian and insect sensory perception as well as learning and memory. Larval studies suggested that the serotonergic system is involved in the modulation of olfaction, feeding, vision and heart rate regulation. In a dual anatomical and behavioral approach we describe the basic anatomy of the larval serotonergic system, down to the single-cell level. In parallel, by expressing apoptosis-inducing genes during embryonic and larval development, we ablate most of the serotonergic neurons within the larval central nervous system. When testing these animals for naïve odor, sugar, salt and light perception, no profound phenotype was detectable; even appetitive and aversive learning was normal. Our results provide the first comprehensive description of the neuronal network of the larval serotonergic system. Moreover, they suggest that serotonin per se is not necessary for any of the behaviors tested. However, our data do not exclude that this system may modulate or fine-tune a wide set of behaviors, similar to its reported function in other insect species or in mammals. Based on our observations and the availability of a wide variety of genetic tools, this issue can now be addressed. PMID:23082175

  1. The serotonergic central nervous system of the Drosophila larva: anatomy and behavioral function.

    PubMed

    Huser, Annina; Rohwedder, Astrid; Apostolopoulou, Anthi A; Widmann, Annekathrin; Pfitzenmaier, Johanna E; Maiolo, Elena M; Selcho, Mareike; Pauls, Dennis; von Essen, Alina; Gupta, Tripti; Sprecher, Simon G; Birman, Serge; Riemensperger, Thomas; Stocker, Reinhard F; Thum, Andreas S

    2012-01-01

    The Drosophila larva has turned into a particularly simple model system for studying the neuronal basis of innate behaviors and higher brain functions. Neuronal networks involved in olfaction, gustation, vision and learning and memory have been described during the last decade, often up to the single-cell level. Thus, most of these sensory networks are substantially defined, from the sensory level up to third-order neurons. This is especially true for the olfactory system of the larva. Given the wealth of genetic tools in Drosophila it is now possible to address the question how modulatory systems interfere with sensory systems and affect learning and memory. Here we focus on the serotonergic system that was shown to be involved in mammalian and insect sensory perception as well as learning and memory. Larval studies suggested that the serotonergic system is involved in the modulation of olfaction, feeding, vision and heart rate regulation. In a dual anatomical and behavioral approach we describe the basic anatomy of the larval serotonergic system, down to the single-cell level. In parallel, by expressing apoptosis-inducing genes during embryonic and larval development, we ablate most of the serotonergic neurons within the larval central nervous system. When testing these animals for naïve odor, sugar, salt and light perception, no profound phenotype was detectable; even appetitive and aversive learning was normal. Our results provide the first comprehensive description of the neuronal network of the larval serotonergic system. Moreover, they suggest that serotonin per se is not necessary for any of the behaviors tested. However, our data do not exclude that this system may modulate or fine-tune a wide set of behaviors, similar to its reported function in other insect species or in mammals. Based on our observations and the availability of a wide variety of genetic tools, this issue can now be addressed.

  2. Tools for detecting insect semiochemicals: a review.

    PubMed

    Brezolin, Alexandra Nava; Martinazzo, Janine; Muenchen, Daniela Kunkel; de Cezaro, Alana Marie; Rigo, Aline Andressa; Steffens, Clarice; Steffens, Juliana; Blassioli-Moraes, Maria Carolina; Borges, Miguel

    2018-07-01

    Semiochemicals are chemical compounds that are released by many species as a means of intra- and interspecific communication. Insects have extremely advanced olfactory systems; indeed, they rely on smell when performing many of their main behaviors, such as oviposition, breeding, prey location, and defense. This characteristic of insects implies that semiochemicals could be used for various applications, including in agriculture, where they could be employed along with other tools to control pest insects. The aim of this review is to present the main techniques used and the state of the art in the detection of semiochemicals, focusing on pheromones. In addition to the traditional methods of identifying semiochemicals, such as gas chromatography coupled to a high-resolution detection mode (e.g., flame ionization (FID), electron capture (ECD), photoionization (PID), or mass spectrometry (MS)), other tools are addressed in this review, including sensors and biosensors. While these new technologies may be used under laboratory conditions to improve or complement technologies that are already being used, they are mainly intended for use as new agricultural tools for detecting and controlling pest insects in the field.

  3. Learning defects in Drosophila growth restricted chico mutants are caused by attenuated adenylyl cyclase activity.

    PubMed

    Naganos, Shintaro; Ueno, Kohei; Horiuchi, Junjiro; Saitoe, Minoru

    2016-04-06

    Reduced insulin/insulin-like growth factor signaling (IIS) is a major cause of symmetrical intrauterine growth retardation (IUGR), an impairment in cell proliferation during prenatal development that results in global growth defects and mental retardation. In Drosophila, chico encodes the only insulin receptor substrate. Similar to other animal models of IUGR, chico mutants have defects in global growth and associative learning. However, the physiological and molecular bases of learning defects caused by chico mutations, and by symmetrical IUGR, are not clear. In this study, we found that chico mutations impair memory-associated synaptic plasticity in the mushroom bodies (MBs), neural centers for olfactory learning. Mutations in chico reduce expression of the rutabaga-type adenylyl cyclase (rut), leading to decreased cAMP synthesis in the MBs. Expressing a rut (+) transgene in the MBs restores memory-associated plasticity and olfactory associative learning in chico mutants, without affecting growth. Thus chico mutations disrupt olfactory learning, at least in part, by reducing cAMP signaling in the MBs. Our results suggest that some cognitive defects associated with reduced IIS may occur, independently of developmental defects, from acute reductions in cAMP signaling.

  4. Evidence for inhibition of cholinesterases in insect and mammalian nervous systems by the insect repellent deet.

    PubMed

    Corbel, Vincent; Stankiewicz, Maria; Pennetier, Cédric; Fournier, Didier; Stojan, Jure; Girard, Emmanuelle; Dimitrov, Mitko; Molgó, Jordi; Hougard, Jean-Marc; Lapied, Bruno

    2009-08-05

    N,N-Diethyl-3-methylbenzamide (deet) remains the gold standard for insect repellents. About 200 million people use it every year and over 8 billion doses have been applied over the past 50 years. Despite the widespread and increased interest in the use of deet in public health programmes, controversies remain concerning both the identification of its target sites at the olfactory system and its mechanism of toxicity in insects, mammals and humans. Here, we investigated the molecular target site for deet and the consequences of its interactions with carbamate insecticides on the cholinergic system. By using toxicological, biochemical and electrophysiological techniques, we show that deet is not simply a behaviour-modifying chemical but that it also inhibits cholinesterase activity, in both insect and mammalian neuronal preparations. Deet is commonly used in combination with insecticides and we show that deet has the capacity to strengthen the toxicity of carbamates, a class of insecticides known to block acetylcholinesterase. These findings question the safety of deet, particularly in combination with other chemicals, and they highlight the importance of a multidisciplinary approach to the development of safer insect repellents for use in public health.

  5. Evidence for inhibition of cholinesterases in insect and mammalian nervous systems by the insect repellent deet

    PubMed Central

    Corbel, Vincent; Stankiewicz, Maria; Pennetier, Cédric; Fournier, Didier; Stojan, Jure; Girard, Emmanuelle; Dimitrov, Mitko; Molgó, Jordi; Hougard, Jean-Marc; Lapied, Bruno

    2009-01-01

    Background N,N-Diethyl-3-methylbenzamide (deet) remains the gold standard for insect repellents. About 200 million people use it every year and over 8 billion doses have been applied over the past 50 years. Despite the widespread and increased interest in the use of deet in public health programmes, controversies remain concerning both the identification of its target sites at the olfactory system and its mechanism of toxicity in insects, mammals and humans. Here, we investigated the molecular target site for deet and the consequences of its interactions with carbamate insecticides on the cholinergic system. Results By using toxicological, biochemical and electrophysiological techniques, we show that deet is not simply a behaviour-modifying chemical but that it also inhibits cholinesterase activity, in both insect and mammalian neuronal preparations. Deet is commonly used in combination with insecticides and we show that deet has the capacity to strengthen the toxicity of carbamates, a class of insecticides known to block acetylcholinesterase. Conclusion These findings question the safety of deet, particularly in combination with other chemicals, and they highlight the importance of a multidisciplinary approach to the development of safer insect repellents for use in public health. PMID:19656357

  6. An alarm pheromone reduces ventral tegmental area-nucleus accumbens shell responsivity.

    PubMed

    Gutiérrez-García, Ana G; Contreras, Carlos M; Saldivar-Lara, Mauricio

    2018-06-21

    2-Heptanone (methyl n-amyl ketone) is a ketone that produces alarm reactions in insects (e.g., bees and ants). As an olfactory stimulus, 2-heptanone produces anxiety reactions in the short term and despair in the long term in rodent models. Among the anatomical connections of the olfactory system that integrate behavioral responses, connections between the amygdala and nucleus accumbens are important, which in turn form a circuit with the ventral tegmental area (VTA). 2-Heptanone increases the firing rate of amygdala neurons without participation of the vomeronasal organ. The olfactory amygdala-VTA-nucleus accumbens circuit may integrate defensive behaviors, but the possible actions of 2-heptanone on the responsivity of VTA-nucleus accumbens connections have not yet been explored. In the present study, multiunit activity recordings were obtained in adult Wistar rats from the core and shell subregions of the nucleus accumbens during electrical stimulation of the VTA under basal conditions and later during simultaneous stimulation of the VTA and olfactory exposure to 2-heptanone. 2-Heptanone reduced the responsivity of the VTA-nucleus accumbens shell but did not influence the responsivity of the VTA-nucleus accumbens core. The lower VTA-nucleus accumbens shell excitability may be related to a primary defensive warning when exposed to an alarm pheromone. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Structural differences in the drone olfactory system of two phylogenetically distant Apis species, A. florea and A. mellifera

    NASA Astrophysics Data System (ADS)

    Brockmann, Axel; Brückner, Dorothea

    2001-01-01

    Male insects that are attracted by sex pheromones to find their female mates over long distances have specialized olfactory subsystems. Morphologically, these subsystems are characterized by a large number of receptor neurons sensitive to components of the female's pheromones and hypertrophied glomerular subunits ('macroglomeruli' or 'macroglomerular complexes') in the antennal lobes, in which the axons of the receptor neurons converge. The olfactory subsystems are adapted for an increased sensitivity to perceive minute amounts of pheromones. In Apis mellifera, drones have 18,600 olfactory poreplate sensilla per antenna, each equipped with receptor neurons sensitive to the queen's sex pheromone, and four voluminous macroglomeruli (MG1-MG4) in the antennal lobes. In contrast, we show that drones of the phylogenetically distant species, Apis florea, have only 1,200 poreplate sensilla per antenna and only two macroglomeruli in their antennal lobes. These macroglomeruli are homologous in anatomical position to the two most prominent macroglomeruli in A. mellifera, the MG1 and MG2, but they are much smaller in size. The morphological and anatomical differences described here suggest major modifications in the sex-pheromone processing subsystem of both species: (1) less pheromone sensitivity in A. florea and (2) a more complex sex-pheromone processing and thus a more complex sex-pheromone communication in A. mellifera.

  8. Short-term memory in olfactory network dynamics

    NASA Astrophysics Data System (ADS)

    Stopfer, Mark; Laurent, Gilles

    1999-12-01

    Neural assemblies in a number of animal species display self-organized, synchronized oscillations in response to sensory stimuli in a variety of brain areas.. In the olfactory system of insects, odour-evoked oscillatory synchronization of antennal lobe projection neurons (PNs) is superimposed on slower and stimulus-specific temporal activity patterns. Hence, each odour activates a specific and dynamic projection neuron assembly whose evolution during a stimulus is locked to the oscillation clock. Here we examine, using locusts, the changes in population dynamics of projection-neuron assemblies over repeated odour stimulations, as would occur when an animal first encounters and then repeatedly samples an odour for identification or localization. We find that the responses of these assemblies rapidly decrease in intensity, while they show a marked increase in spike time precision and inter-neuronal oscillatory coherence. Once established, this enhanced precision in the representation endures for several minutes. This change is stimulus-specific, and depends on events within the antennal lobe circuits, independent of olfactory receptor adaptation: it may thus constitute a form of sensory memory. Our results suggest that this progressive change in olfactory network dynamics serves to converge, over repeated odour samplings, on a more precise and readily classifiable odour representation, using relational information contained across neural assemblies.

  9. Serotonin is critical for rewarded olfactory short-term memory in Drosophila.

    PubMed

    Sitaraman, Divya; LaFerriere, Holly; Birman, Serge; Zars, Troy

    2012-06-01

    The biogenic amines dopamine, octopamine, and serotonin are critical in establishing normal memories. A common view for the amines in insect memory performance has emerged in which dopamine and octopamine are largely responsible for aversive and appetitive memories. Examination of the function of serotonin begins to challenge the notion of one amine type per memory because altering serotonin function also reduces aversive olfactory memory and place memory levels. Could the function of serotonin be restricted to the aversive domain, suggesting a more specific dopamine/serotonin system interaction? The function of the serotonergic system in appetitive olfactory memory was examined. By targeting the tetanus toxin light chain (TNT) and the human inwardly rectifying potassium channel (Kir2.1) to the serotonin neurons with two different GAL4 driver combinations, the serotonergic system was inhibited. Additional use of the GAL80(ts1) system to control expression of transgenes to the adult stage of the life cycle addressed a potential developmental role of serotonin in appetitive memory. Reduction in appetitive olfactory memory performance in flies with these transgenic manipulations, without altering control behaviors, showed that the serotonergic system is also required for normal appetitive memory. Thus, serotonin appears to have a more general role in Drosophila memory, and implies an interaction with both the dopaminergic and octopaminergic systems.

  10. Early olfactory environment influences social behaviour in adult Octodon degus.

    PubMed

    Márquez, Natalia; Martínez-Harms, Jaime; Vásquez, Rodrigo A; Mpodozis, Jorge

    2015-01-01

    We evaluated the extent to which manipulation of early olfactory environment can influence social behaviours in the South American Hystricognath rodent Octodon degus. The early olfactory environment of newborn degus was manipulated by scenting all litter members with eucalyptol during the first month of life. The social behaviour of sexually mature animals (5-7 months old) towards conspecifics was then assessed using a y-maze to compare the response of control (naïve) and treated animals to two different olfactory configurations (experiment 1): (i) a non-familiarized conspecific impregnated with eucalyptol (eucalyptol arm) presented against (ii) a non-familiarized unscented conspecific (control arm). In addition, in dyadic encounters, we assessed the behaviour of control and eucalyptol treated animals towards a non-familiarized conspecific scented with eucalyptol (experiment 2). We found that control subjects explored and spent significantly less time in the eucalyptol arm, indicating neophobic behaviours towards the artificially scented conspecific. Treated subjects explored and spent similar time in both arms of the maze, showing the same interest for both olfactory stimuli presented. During dyadic encounters in experiment 2, an interaction effect between early experience and sex was observed. Control males escaped and avoided their scented partner more frequently than eucalyptol treated male subjects and than females. Both groups did not differ in the exploration of their scented partners, suggesting that avoidance within agonistic context does not relate to neophobic behaviours. Our results suggest that the exposure to eucalyptol during early ontogeny decreases evasive behaviours within an agonistic context as a result of olfactory learning. Altogether, these results indicate that olfactory cues learned in early ontogeny can influence olfactory-guided behaviours in adult degus.

  11. Neuropeptide F neurons modulate sugar reward during associative olfactory learning of Drosophila larvae.

    PubMed

    Rohwedder, Astrid; Selcho, Mareike; Chassot, Bérénice; Thum, Andreas S

    2015-12-15

    All organisms continuously have to adapt their behavior according to changes in the environment in order to survive. Experience-driven changes in behavior are usually mediated and maintained by modifications in signaling within defined brain circuits. Given the simplicity of the larval brain of Drosophila and its experimental accessibility on the genetic and behavioral level, we analyzed if Drosophila neuropeptide F (dNPF) neurons are involved in classical olfactory conditioning. dNPF is an ortholog of the mammalian neuropeptide Y, a highly conserved neuromodulator that stimulates food-seeking behavior. We provide a comprehensive anatomical analysis of the dNPF neurons on the single-cell level. We demonstrate that artificial activation of dNPF neurons inhibits appetitive olfactory learning by modulating the sugar reward signal during acquisition. No effect is detectable for the retrieval of an established appetitive olfactory memory. The modulatory effect is based on the joint action of three distinct cell types that, if tested on the single-cell level, inhibit and invert the conditioned behavior. Taken together, our work describes anatomically and functionally a new part of the sugar reinforcement signaling pathway for classical olfactory conditioning in Drosophila larvae. © 2015 Wiley Periodicals, Inc.

  12. Effects of diversity in olfactory environment on children's sense of smell.

    PubMed

    Martinec Nováková, Lenka; Fialová, Jitka; Havlíček, Jan

    2018-02-13

    Diversity in children's everyday olfactory environment may affect the development of their olfactory abilities and odor awareness. To test this, we collected data on olfactory abilities using the Sniffin' Sticks and odor awareness with Children's Olfactory Behaviors in Everyday Life Questionnaire in 153 preschool children and retested them one and a half year later. Parents completed an inventory on children's exposure to a variety of odors and on their own odor awareness using the Odor Awareness Scale. We controlled for the effects of age and verbal fluency on the children's performance. We found that the children's odor identification and discrimination scores differed as a function of parental odor awareness. Although these effects were rather small, they were commensurate in size with those of gender and age. To the best of our knowledge, this study is the first to present evidence that diversity in children's olfactory environment affects variation in their olfactory abilities and odor awareness. We suggest that future studies consider the long-term impact of perceptual learning out of the laboratory and its consequences for olfactory development.

  13. Functional Neuroanatomy of "Drosophila" Olfactory Memory Formation

    ERIC Educational Resources Information Center

    Guven-Ozkan, Tugba; Davis, Ronald L.

    2014-01-01

    New approaches, techniques and tools invented over the last decade and a half have revolutionized the functional dissection of neural circuitry underlying "Drosophila" learning. The new methodologies have been used aggressively by researchers attempting to answer three critical questions about olfactory memories formed with appetitive…

  14. The participation of cortical amygdala in innate, odour-driven behaviour.

    PubMed

    Root, Cory M; Denny, Christine A; Hen, René; Axel, Richard

    2014-11-13

    Innate behaviours are observed in naive animals without prior learning or experience, suggesting that the neural circuits that mediate these behaviours are genetically determined and stereotyped. The neural circuits that convey olfactory information from the sense organ to the cortical and subcortical olfactory centres have been anatomically defined, but the specific pathways responsible for innate responses to volatile odours have not been identified. Here we devise genetic strategies that demonstrate that a stereotyped neural circuit that transmits information from the olfactory bulb to cortical amygdala is necessary for innate aversive and appetitive behaviours. Moreover, we use the promoter of the activity-dependent gene arc to express the photosensitive ion channel, channelrhodopsin, in neurons of the cortical amygdala activated by odours that elicit innate behaviours. Optical activation of these neurons leads to appropriate behaviours that recapitulate the responses to innate odours. These data indicate that the cortical amygdala plays a critical role in generating innate odour-driven behaviours but do not preclude its participation in learned olfactory behaviours.

  15. Teaching children with autism spectrum disorder to tact olfactory stimuli.

    PubMed

    Dass, Tina K; Kisamore, April N; Vladescu, Jason C; Reeve, Kenneth F; Reeve, Sharon A; Taylor-Santa, Catherine

    2018-05-28

    Research on tact acquisition by children with autism spectrum disorder (ASD) has often focused on teaching participants to tact visual stimuli. It is important to evaluate procedures for teaching tacts of nonvisual stimuli (e.g., olfactory, tactile). The purpose of the current study was to extend the literature on secondary target instruction and tact training by evaluating the effects of a discrete-trial instruction procedure involving (a) echoic prompts, a constant prompt delay, and error correction for primary targets; (b) inclusion of secondary target stimuli in the consequent portion of learning trials; and (c) multiple exemplar training on the acquisition of item tacts of olfactory stimuli, emergence of category tacts of olfactory stimuli, generalization of category tacts, and emergence of category matching, with three children diagnosed with ASD. Results showed that all participants learned the item and category tacts following teaching, participants demonstrated generalization across category tacts, and category matching emerged for all participants. © 2018 Society for the Experimental Analysis of Behavior.

  16. Differential Modifications of Synaptic Weights During Odor Rule Learning: Dynamics of Interaction Between the Piriform Cortex with Lower and Higher Brain Areas

    PubMed Central

    Cohen, Yaniv; Wilson, Donald A.; Barkai, Edi

    2015-01-01

    Learning of a complex olfactory discrimination (OD) task results in acquisition of rule learning after prolonged training. Previously, we demonstrated enhanced synaptic connectivity between the piriform cortex (PC) and its ascending and descending inputs from the olfactory bulb (OB) and orbitofrontal cortex (OFC) following OD rule learning. Here, using recordings of evoked field postsynaptic potentials in behaving animals, we examined the dynamics by which these synaptic pathways are modified during rule acquisition. We show profound differences in synaptic connectivity modulation between the 2 input sources. During rule acquisition, the ascending synaptic connectivity from the OB to the anterior and posterior PC is simultaneously enhanced. Furthermore, post-training stimulation of the OB enhanced learning rate dramatically. In sharp contrast, the synaptic input in the descending pathway from the OFC was significantly reduced until training completion. Once rule learning was established, the strength of synaptic connectivity in the 2 pathways resumed its pretraining values. We suggest that acquisition of olfactory rule learning requires a transient enhancement of ascending inputs to the PC, synchronized with a parallel decrease in the descending inputs. This combined short-lived modulation enables the PC network to reorganize in a manner that enables it to first acquire and then maintain the rule. PMID:23960200

  17. The redbay ambrosia beetle (Coleoptera: Curculionidae: Scolytinae) uses stem silhouette diameter as a visual host-finding cue

    Treesearch

    Albert (Bud) Mayfield; Cavell Brownie

    2013-01-01

    The redbay ambrosia beetle (Syleborus glabratus Eichhoff) is an invasive pest and vector of the pathogen that causes laurel wilt disease in Lauraceous tree species in the eastern United States. This insect uses olfactory cues during host finding, but use of visual cues by X. Glabratus has not been previously investigated and may help explain diameter...

  18. Chemical factors determine olfactory system beta oscillations in waking rats.

    PubMed

    Lowry, Catherine A; Kay, Leslie M

    2007-07-01

    Recent studies have pointed to olfactory system beta oscillations of the local field potential (15-30 Hz) and their roles both in learning and as specific responses to predator odors. To describe odorant physical properties, resultant behavioral responses and changes in the central olfactory system that may induce these oscillations without associative learning, we tested rats with 26 monomolecular odorants spanning 6 log units of theoretical vapor pressure (estimate of relative vapor phase concentration) and 10 different odor mixtures. We found odorant vapor phase concentration to be inversely correlated with investigation time on the first presentation, after which investigation times were brief and not different across odorants. Analysis of local field potentials from the olfactory bulb and anterior piriform cortex shows that beta oscillations in waking rats occur specifically in response to the class of volatile organic compounds with vapor pressures of 1-120 mmHg. Beta oscillations develop over the first three to four presentations and are weakly present for some odorants in anesthetized rats. Gamma oscillations show a smaller effect that is not restricted to the same range of odorants. Olfactory bulb theta oscillations were also examined as a measure of effective afferent input strength, and the power of these oscillations did not vary systematically with vapor pressure, suggesting that it is not olfactory bulb drive strength that determines the presence of beta oscillations. Theta band coherence analysis shows that coupling strength between the olfactory bulb and piriform cortex increases linearly with vapor phase concentration, which may facilitate beta oscillations above a threshold.

  19. A spiking neural network model of self-organized pattern recognition in the early mammalian olfactory system.

    PubMed

    Kaplan, Bernhard A; Lansner, Anders

    2014-01-01

    Olfactory sensory information passes through several processing stages before an odor percept emerges. The question how the olfactory system learns to create odor representations linking those different levels and how it learns to connect and discriminate between them is largely unresolved. We present a large-scale network model with single and multi-compartmental Hodgkin-Huxley type model neurons representing olfactory receptor neurons (ORNs) in the epithelium, periglomerular cells, mitral/tufted cells and granule cells in the olfactory bulb (OB), and three types of cortical cells in the piriform cortex (PC). Odor patterns are calculated based on affinities between ORNs and odor stimuli derived from physico-chemical descriptors of behaviorally relevant real-world odorants. The properties of ORNs were tuned to show saturated response curves with increasing concentration as seen in experiments. On the level of the OB we explored the possibility of using a fuzzy concentration interval code, which was implemented through dendro-dendritic inhibition leading to winner-take-all like dynamics between mitral/tufted cells belonging to the same glomerulus. The connectivity from mitral/tufted cells to PC neurons was self-organized from a mutual information measure and by using a competitive Hebbian-Bayesian learning algorithm based on the response patterns of mitral/tufted cells to different odors yielding a distributed feed-forward projection to the PC. The PC was implemented as a modular attractor network with a recurrent connectivity that was likewise organized through Hebbian-Bayesian learning. We demonstrate the functionality of the model in a one-sniff-learning and recognition task on a set of 50 odorants. Furthermore, we study its robustness against noise on the receptor level and its ability to perform concentration invariant odor recognition. Moreover, we investigate the pattern completion capabilities of the system and rivalry dynamics for odor mixtures.

  20. A spiking neural network model of self-organized pattern recognition in the early mammalian olfactory system

    PubMed Central

    Kaplan, Bernhard A.; Lansner, Anders

    2014-01-01

    Olfactory sensory information passes through several processing stages before an odor percept emerges. The question how the olfactory system learns to create odor representations linking those different levels and how it learns to connect and discriminate between them is largely unresolved. We present a large-scale network model with single and multi-compartmental Hodgkin–Huxley type model neurons representing olfactory receptor neurons (ORNs) in the epithelium, periglomerular cells, mitral/tufted cells and granule cells in the olfactory bulb (OB), and three types of cortical cells in the piriform cortex (PC). Odor patterns are calculated based on affinities between ORNs and odor stimuli derived from physico-chemical descriptors of behaviorally relevant real-world odorants. The properties of ORNs were tuned to show saturated response curves with increasing concentration as seen in experiments. On the level of the OB we explored the possibility of using a fuzzy concentration interval code, which was implemented through dendro-dendritic inhibition leading to winner-take-all like dynamics between mitral/tufted cells belonging to the same glomerulus. The connectivity from mitral/tufted cells to PC neurons was self-organized from a mutual information measure and by using a competitive Hebbian–Bayesian learning algorithm based on the response patterns of mitral/tufted cells to different odors yielding a distributed feed-forward projection to the PC. The PC was implemented as a modular attractor network with a recurrent connectivity that was likewise organized through Hebbian–Bayesian learning. We demonstrate the functionality of the model in a one-sniff-learning and recognition task on a set of 50 odorants. Furthermore, we study its robustness against noise on the receptor level and its ability to perform concentration invariant odor recognition. Moreover, we investigate the pattern completion capabilities of the system and rivalry dynamics for odor mixtures. PMID:24570657

  1. Host-location behavior of the tea green leafhopper Empoasca vitis Göthe (Hemiptera: Cicadellidae): olfactory and visual effects on their orientation.

    PubMed

    Zhang, X; Pengsakul, T; Tukayo, M; Yu, L; Fang, W; Luo, D

    2017-09-25

    The tea green leafhopper, Empoasca vitis Göthe, is one of the most serious pests in tea growing areas. This study investigated the roles played by olfaction and vision in host orientation behavior. The compound eye of E. vitis was found to be a photopic eye; few olfactory sensilla were found on the antennae, while abundant gustatory sensilla were recorded on the mouthparts. Three opsin genes (EV_LWop, EV_UVop, EV_Bop) were isolated and found to be mainly expressed in the compound eye compared with other parts of the body. Immunolocalization indicated that the opsins mainly located in the different regions of rhabdom. The transcription levels of EV_LWop, EV_Bop and EV_UVop were reduced by 77.3, 70.0 and 40.0%, respectively, by RNA interference induced by being fed a special RNA-rich diet for 6 days. The rate of tropism to host color was effectively impaired by 67.6 and 29.5% in the dsEV_LWop and dsEV_Bop treatment groups, but there was no significant change in the dsEV_UVop group. The determination of the cause of the tropism indicated that odors from the host over long distances were unable to attract E. vitis and were only detected when the insects were close to the host. The developed compound eye of E. vitis plays a leading role in host location, and the long-wavelength opsin significantly affects the tropism to host color; the lack of olfactory sensilla results in long-distance odors not being able to be detected until the insect is near to the host-plant. The understanding of these behavioral mechanisms, especially the importance of opsin genes is expected to be useful for pest management.

  2. A sensory code for host seeking in parasitic nematodes

    PubMed Central

    Hallem, Elissa A.; Dillman, Adler R.; Hong, Annie V.; Zhang, Yuanjun; Yano, Jessica M.; DeMarco, Stephanie F.

    2011-01-01

    Summary Nematodes comprise a large phylum of both free-living and parasitic species that show remarkably diverse lifestyles, ecological niches, and behavioral repertoires. Parasitic species in particular often display highly specialized host-seeking behaviors that reflect their specific host preferences. Many host-seeking behaviors can be triggered by the presence of host odors, yet little is known about either the specific olfactory cues that trigger these behaviors or the neural circuits that underlie them. Heterorhabditis bacteriophora and Steinernema carpocapsae are phylogenetically distant insect-parasitic nematodes whose host-seeking and host-invasion behavior resembles that of some of the most devastating human- and plant-parasitic nematodes. Here we compare the olfactory responses of H. bacteriophora and S. carpocapsae infective juveniles (IJs) to those of Caenorhabditis elegans dauers, which are analogous life stages [1]. We show that the broad host range of these parasites results from their ability to respond to the universally-produced signal carbon dioxide (CO2) as well as a wide array of odors, including host-specific odors that we identified using TD-GC-MS. We show that CO2 is attractive for the parasitic IJs and C. elegans dauers despite being repulsive for C. elegans adults [2–4], and we identify an ancient and conserved sensory neuron that mediates CO2 response in both parasitic and free-living species regardless of whether CO2 is an attractive or a repulsive cue. Finally, we show that the parasites’ odor response profiles are more similar to each other than to that of C. elegans despite their greater phylogenetic distance, likely reflecting evolutionary convergence to insect parasitism. Our results suggest that the olfactory responses of parasitic versus free-living nematodes are highly diverse and that this diversity is critical to the evolution of nematode behavior. PMID:21353558

  3. A model of olfactory associative learning

    NASA Astrophysics Data System (ADS)

    Tavoni, Gaia; Balasubramanian, Vijay

    We propose a mechanism, rooted in the known anatomy and physiology of the vertebrate olfactory system, by which presentations of rewarded and unrewarded odors lead to formation of odor-valence associations between piriform cortex (PC) and anterior olfactory nucleus (AON) which, in concert with neuromodulators release in the bulb, entrains a direct feedback from the AON representation of valence to a group of mitral cells (MCs). The model makes several predictions concerning MC activity during and after associative learning: (a) AON feedback produces synchronous divergent responses in a localized subset of MCs; (b) such divergence propagates to other MCs by lateral inhibition; (c) after learning, MC responses reconverge; (d) recall of the newly formed associations in the PC increases feedback inhibition in the MCs. These predictions have been confirmed in disparate experiments which we now explain in a unified framework. For cortex, our model further predicts that the response divergence developed during learning reshapes odor representations in the PC, with the effects of (a) decorrelating PC representations of odors with different valences, (b) increasing the size and reliability of those representations, and enabling recall correction and redundancy reduction after learning. Simons Foundation for Mathematical Modeling of Living Systems.

  4. First Transcriptome and Digital Gene Expression Analysis in Neuroptera with an Emphasis on Chemoreception Genes in Chrysopa pallens (Rambur)

    PubMed Central

    Li, Zhao-Qun; Zhang, Shuai; Ma, Yan; Luo, Jun-Yu; Wang, Chun-Yi; Lv, Li-Min; Dong, Shuang-Lin; Cui, Jin-Jie

    2013-01-01

    Background Chrysopa pallens (Rambur) are the most important natural enemies and predators of various agricultural pests. Understanding the sophisticated olfactory system in insect antennae is crucial for studying the physiological bases of olfaction and also could lead to effective applications of C. pallens in integrated pest management. However no transcriptome information is available for Neuroptera, and sequence data for C. pallens are scarce, so obtaining more sequence data is a priority for researchers on this species. Results To facilitate identifying sets of genes involved in olfaction, a normalized transcriptome of C. pallens was sequenced. A total of 104,603 contigs were obtained and assembled into 10,662 clusters and 39,734 singletons; 20,524 were annotated based on BLASTX analyses. A large number of candidate chemosensory genes were identified, including 14 odorant-binding proteins (OBPs), 22 chemosensory proteins (CSPs), 16 ionotropic receptors, 14 odorant receptors, and genes potentially involved in olfactory modulation. To better understand the OBPs, CSPs and cytochrome P450s, phylogenetic trees were constructed. In addition, 10 digital gene expression libraries of different tissues were constructed and gene expression profiles were compared among different tissues in males and females. Conclusions Our results provide a basis for exploring the mechanisms of chemoreception in C. pallens, as well as other insects. The evolutionary analyses in our study provide new insights into the differentiation and evolution of insect OBPs and CSPs. Our study provided large-scale sequence information for further studies in C. pallens. PMID:23826220

  5. Social modulation of associative fear learning by pheromone communication

    PubMed Central

    Bredy, Timothy W.; Barad, Mark

    2009-01-01

    Mice communicate through visual, vocal, and olfactory cues that influence innate, nonassociative behavior. We here report that exposure to a recently fear-conditioned familiar mouse impairs acquisition of conditioned fear and facilitates fear extinction, effects mimicked by both an olfactory chemosignal emitted by a recently fear-conditioned familiar mouse and by the putative stress-related anxiogenic pheromone β-phenylethylamine (β-PEA). Together, these findings suggest social modulation of higher-order cognitive processing through pheromone communication and support the concurrent excitor hypothesis of extinction learning. PMID:19117912

  6. Social modulation of associative fear learning by pheromone communication.

    PubMed

    Bredy, Timothy W; Barad, Mark

    2009-01-01

    Mice communicate through visual, vocal, and olfactory cues that influence innate, nonassociative behavior. We here report that exposure to a recently fear-conditioned familiar mouse impairs acquisition of conditioned fear and facilitates fear extinction, effects mimicked by both an olfactory chemosignal emitted by a recently fear-conditioned familiar mouse and by the putative stress-related anxiogenic pheromone beta-phenylethylamine (beta-PEA). Together, these findings suggest social modulation of higher-order cognitive processing through pheromone communication and support the concurrent excitor hypothesis of extinction learning.

  7. The gram-negative sensing receptor PGRP-LC contributes to grooming induction in Drosophila

    PubMed Central

    Neyen, Claudine; Lemaitre, Bruno; Marion-Poll, Frédéric

    2017-01-01

    Behavioral resistance protects insects from microbial infection. However, signals inducing insect hygiene behavior are still relatively unexplored. Our previous study demonstrated that olfactory signals from microbes enhance insect hygiene behavior, and gustatory signals even induce the behavior. In this paper, we postulated a cross-talk between behavioral resistance and innate immunity. To examine this hypothesis, we employed a previously validated behavioral test to examine the function of taste signals in inducing a grooming reflex in decapitated flies. Microbes, which activate different pattern recognition systems upstream of immune pathways, were applied to see if there was any correlation between microbial perception and grooming reflex. To narrow down candidate elicitors, the grooming induction tests were conducted with highly purified bacterial components. Lastly, the role of DAP-type peptidoglycan in grooming induction was confirmed. Our results demonstrate that cleaning behavior can be triggered through recognition of DAP-type PGN by its receptor PGRP-LC. PMID:29121087

  8. Social Modulation of Associative Fear Learning by Pheromone Communication

    ERIC Educational Resources Information Center

    Bredy, Timothy W.; Barad, Mark

    2009-01-01

    Mice communicate through visual, vocal, and olfactory cues that influence innate, nonassociative behavior. We here report that exposure to a recently fear-conditioned familiar mouse impairs acquisition of conditioned fear and facilitates fear extinction, effects mimicked by both an olfactory chemosignal emitted by a recently fear-conditioned…

  9. Distinct Neural Mechanisms Mediate Olfactory Memory Formation at Different Timescales

    ERIC Educational Resources Information Center

    McNamara, Ann Marie; Magidson, Phillip D.; Linster, Christiane; Wilson, Donald A.; Cleland, Thomas A.

    2008-01-01

    Habituation is one of the oldest forms of learning, broadly expressed across sensory systems and taxa. Here, we demonstrate that olfactory habituation induced at different timescales (comprising different odor exposure and intertrial interval durations) is mediated by different neural mechanisms. First, the persistence of habituation memory is…

  10. Plants and insect eggs: how do they affect each other?

    PubMed

    Hilker, Monika; Meiners, Torsten

    2011-09-01

    Plant-insect interactions are not just influenced by interactions between plants and the actively feeding stages, but also by the close relationships between plants and insect eggs. Here, we review both effects of plants on insect eggs and, vice versa, effects of eggs on plants. We consider the influence of plants on the production of insect eggs and address the role of phytochemicals for the biosynthesis and release of insect sex pheromones, as well as for insect fecundity. Effects of plants on insect oviposition by contact and olfactory plant cues are summarised. In addition, we consider how the leaf boundary layer influences both insect egg deposition behaviour and development of the embryo inside the egg. The effects of eggs on plants involve egg-induced changes of photosynthetic activity and of the plant's secondary metabolism. Except for gall-inducing insects, egg-induced changes of phytochemistry were so far found to be detrimental to the eggs. Egg deposition can induce hypersensitive-like plant response, formation of neoplasms or production of ovicidal plant substances; these plant responses directly harm the eggs. In addition, egg deposition can induce a change of the plant's odour and leaf surface chemistry which serve indirect plant defence with the help of antagonists of the insect eggs. These egg-induced changes lead to attraction of egg parasitoids and their arrestance on a leaf, respectively. Finally, we summarise knowledge of the elicitors of egg-induced plant changes and address egg-induced effects on the plant's transcriptional pattern. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Cloning and expression profile of ionotropic receptors in the parasitoid wasp Microplitis mediator (Hymenoptera: Braconidae).

    PubMed

    Wang, Shan-Ning; Peng, Yong; Lu, Zi-Yun; Dhiloo, Khalid Hussain; Zheng, Yao; Shan, Shuang; Li, Rui-Jun; Zhang, Yong-Jun; Guo, Yu-Yuan

    2016-07-01

    Ionotropic receptors (IRs) mainly detect the acids and amines having great importance in many insect species, representing an ancient olfactory receptor family in insects. In the present work, we performed RNAseq of Microplitis mediator antennae and identified seventeen IRs. Full-length MmedIRs were cloned and sequenced. Phylogenetic analysis of the Hymenoptera IRs revealed that ten MmedIR genes encoded "antennal IRs" and seven encoded "divergent IRs". Among the IR25a orthologous groups, two genes, MmedIR25a.1 and MmedIR25a.2, were found in M. mediator. Gene structure analysis of MmedIR25a revealed a tandem duplication of IR25a in M. mediator. The tissue distribution and development specific expression of the MmedIR genes suggested that these genes showed a broad expression profile. Quantitative gene expression analysis showed that most of the genes are highly enriched in adult antennae, indicating the candidate chemosensory function of this family in parasitic wasps. Using immunocytochemistry, we confirmed that one co-receptor, MmedIR8a, was expressed in the olfactory sensory neurons. Our data will supply fundamental information for functional analysis of the IRs in parasitoid wasp chemoreception. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Opposite effects depending on learning and memory demands in dorsomedial prefrontal cortex lesioned rats performing an olfactory task.

    PubMed

    Chaillan, F A; Marchetti, E; Delfosse, F; Roman, F S; Soumireu-Mourat, B

    1997-01-01

    In this study, the functional properties of the dorsomedial prefrontal cortex (dmPFC) of the rat were examined in two olfactory tasks. In a successive cue olfactory discrimination task, dmPFC lesioned animals improved performance across sessions more rapidly than operated control animals. In an olfactory task using fixed interval training, animals with similar lesions were impaired. Both effects, although opposite, can be explained by a temporal processing deficit. The present results seem to indicate that the dmPFC is required for timing, classified as part of non-declarative memory. As reference memory improved in the lesioned animals, the finding is that the dmPFC supports non-declarative memory and thus interacts with declarative memory in the long-term formation of the associations between a particular stimulus (olfactory cue) and particular responses.

  13. Experience during early adulthood shapes the learning capacities and the number of synaptic boutons in the mushroom bodies of honey bees (Apis mellifera).

    PubMed

    Cabirol, Amélie; Brooks, Rufus; Groh, Claudia; Barron, Andrew B; Devaud, Jean-Marc

    2017-10-01

    The honey bee mushroom bodies (MBs) are brain centers required for specific learning tasks. Here, we show that environmental conditions experienced as young adults affect the maturation of MB neuropil and performance in a MB-dependent learning task. Specifically, olfactory reversal learning was selectively impaired following early exposure to an impoverished environment lacking some of the sensory and social interactions present in the hive. In parallel, the overall number of synaptic boutons increased within the MB olfactory neuropil, whose volume remained unaffected. This suggests that experience of the rich in-hive environment promotes MB maturation and the development of MB-dependent learning capacities. © 2017 Cabirol et al.; Published by Cold Spring Harbor Laboratory Press.

  14. The volatile emission of Eurosta solidaginis primes herbivore-induced volatile production in Solidago altissima and does not directly deter insect feeding

    PubMed Central

    2014-01-01

    Background The induction of plant defenses in response to herbivory is well documented. In addition, many plants prime their anti-herbivore defenses following exposure to environmental cues associated with increased risk of subsequent attack, including induced volatile emissions from herbivore-damaged plant tissues. Recently, we showed in both field and laboratory settings that tall goldenrod plants (Solidago altissima) exposed to the putative sex attractant of a specialist gall-inducing fly (Eurosta solidaginis) experienced less herbivory than unexposed plants. Furthermore, we observed stronger induction of the defense phytohormone jasmonic acid in exposed plants compared to controls. These findings document a novel class of plant-insect interactions mediated by the direct perception, by plants, of insect-derived olfactory cues. However, our previous study did not exclude the possibility that the fly emission (or its residue) might also deter insect feeding via direct effects on the herbivores. Results Here we show that the E. solidaginis emission does not (directly) deter herbivore feeding on Cucurbita pepo or Symphyotrichum lateriflorum plants—which have no co-evolutionary relationship with E. solidaginis and thus are not expected to exhibit priming responses to the fly emission. We also document stronger induction of herbivore-induced plant volatiles (HIPV) in S. altissima plants given previous exposure to the fly emission relative to unexposed controls. No similar effect was observed in maize plants (Zea mays), which have no co-evolutionary relationship with E. solidaginis. Conclusions Together with our previous findings, these results provide compelling evidence that reduced herbivory on S. altissima plants exposed to the emission of male E. solidaginis reflects an evolved plant response to olfactory cues associated with its specialist herbivore and does not involve direct effects of the fly emission on herbivore feeding behavior. We further discuss mechanisms by which the priming of HIPV responses documented here might contribute to enhanced S. altissima defense against galling. PMID:24947749

  15. Volume and density of microglomeruli in the honey bee mushroom bodies do not predict performance on a foraging task.

    PubMed

    Van Nest, Byron N; Wagner, Ashley E; Marrs, Glen S; Fahrbach, Susan E

    2017-09-01

    The mushroom bodies (MBs) are insect brain regions important for sensory integration, learning, and memory. In adult worker honey bees (Apis mellifera), the volume of neuropil associated with the MBs is larger in experienced foragers compared with hive bees and less experienced foragers. In addition, the characteristic synaptic structures of the calycal neuropils, the microglomeruli, are larger but present at lower density in 35-day-old foragers relative to 1-day-old workers. Age- and experience-based changes in plasticity of the MBs are assumed to support performance of challenging tasks, but the behavioral consequences of brain plasticity in insects are rarely examined. In this study, foragers were recruited from a field hive to a patch comprising two colors of otherwise identical artificial flowers. Flowers of one color contained a sucrose reward mimicking nectar; flowers of the second were empty. Task difficulty was adjusted by changing flower colors according to the principle of honey bee color vision space. Microglomerular volume and density in the lip (olfactory inputs) and collar (visual inputs) compartments of the MB calyces were analyzed using anti-synapsin I immunolabeling and laser scanning confocal microscopy. Foragers displayed significant variation in microglomerular volume and density, but no correlation was found between these synaptic attributes and foraging performance. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1057-1071, 2017. © 2017 Wiley Periodicals, Inc.

  16. Male- and Female-Biased Gene Expression of Olfactory-Related Genes in the Antennae of Asian Corn Borer, Ostrinia furnacalis (Guenée) (Lepidoptera: Crambidae)

    PubMed Central

    Zhang, Tiantao; Coates, Brad S.; Ge, Xing; Bai, Shuxiong; He, Kanglai; Wang, Zhenying

    2015-01-01

    The Asian corn borer (ACB), Ostrinia furnacalis (Guenée), is a destructive pest insect of cultivated corn crops, for which antennal-expressed receptors are important to detect olfactory cues for mate attraction and oviposition. Few olfactory related genes were reported in ACB, so we sequenced and characterized the transcriptome of male and female O. furnacalis antennae. Non-normalized male and female O. furnacalis antennal cDNA libraries were sequenced on the Illumina HiSeq 2000 and assembled into a reference transcriptome. Functional gene annotations identified putative olfactory-related genes; 56 odorant receptors (ORs), 23 odorant binding proteins (OBPs), and 10 CSPs. RNA-seq estimates of gene expression respectively showed up- and down-regulation of 79 and 30 genes in female compared to male antennae, which included up-regulation of 8 ORs and 1 PBP gene in male antennae as well as 3 ORs in female antennae. Quantitative real-time RT-PCR analyses validated strong male antennal-biased expression of OfurOR3, 4, 6, 7, 8, 11, 12, 13 and 14 transcripts, whereas OfurOR17 and 18 were specially expressed in female antennae. Sex-biases gene expression described here provides important insight in gene functionalization, and provides candidate genes putatively involved in environmental perception, host plant attraction, and mate recognition. PMID:26062030

  17. Olfactory Blocking and Odorant Similarity in the Honeybee

    ERIC Educational Resources Information Center

    Gerber, Bertram; Giurfa, Martin; Guerrieri, Fernando; Lachnit, Harald

    2005-01-01

    Blocking occurs when previous training with a stimulus A reduces (blocks) subsequent learning about a stimulus B, when A and B are trained in compound. The question of whether blocking exists in olfactory conditioning of proboscis extension reflex (PER) in honeybees is under debate. The last published accounts on blocking in honeybees state that…

  18. Kinase Activity in the Olfactory Bulb Is Required for Odor Memory Consolidation

    ERIC Educational Resources Information Center

    Tong, Michelle T.; Kim, Tae-Young P.; Cleland, Thomas A.

    2018-01-01

    Long-term fear memory formation in the hippocampus and neocortex depends upon brain-derived neurotrophic factor (BDNF) signaling after acquisition. Incremental, appetitive odor discrimination learning is thought to depend substantially on the differentiation of adult-born neurons within the olfactory bulb (OB)--a process that is closely associated…

  19. Neonicotinoid-induced impairment of odour coding in the honeybee

    PubMed Central

    Andrione, Mara; Vallortigara, Giorgio; Antolini, Renzo; Haase, Albrecht

    2016-01-01

    Exposure to neonicotinoid pesticides is considered one of the possible causes of honeybee (Apis mellifera) population decline. At sublethal doses, these chemicals have been shown to negatively affect a number of behaviours, including performance of olfactory learning and memory, due to their interference with acetylcholine signalling in the mushroom bodies. Here we provide evidence that neonicotinoids can affect odour coding upstream of the mushroom bodies, in the first odour processing centres of the honeybee brain, i.e. the antennal lobes (ALs). In particular, we investigated the effects of imidacloprid, the most common neonicotinoid, in the AL glomeruli via in vivo two-photon calcium imaging combined with pulsed odour stimulation. Following acute imidacloprid treatment, odour-evoked calcium response amplitude in single glomeruli decreases, and at the network level the representations of different odours are no longer separated. This demonstrates that, under neonicotinoid influence, olfactory information might reach the mushroom bodies in a form that is already incorrect. Thus, some of the impairments in olfactory learning and memory caused by neonicotinoids could, in fact, arise from the disruption in odor coding and olfactory discrimination ability of the honey bees. PMID:27905515

  20. The participation of cortical amygdala in innate, odor-driven behavior

    PubMed Central

    Root, Cory M.; Denny, Christine A.; Hen, René; Axel, Richard

    2014-01-01

    Innate behaviors are observed in naïve animals without prior learning or experience, suggesting that the neural circuits that mediate these behaviors are genetically determined and stereotyped. The neural circuits that convey olfactory information from the sense organ to the cortical and subcortical olfactory centers have been anatomically defined1-3 but the specific pathways responsible for innate responses to volatile odors have not been identified. We have devised genetic strategies that demonstrate that a stereotyped neural circuit that transmits information from the olfactory bulb to cortical amygdala is necessary for innate aversive and appetitive behaviors. Moreover, we have employed the promoter of the activity-dependent gene, arc, to express the photosensitive ion channel, channelrhodopsin, in neurons of the cortical amygdala activated by odors that elicit innate behaviors. Optical activation of these neurons leads to appropriate behaviors that recapitulate the responses to innate odors. These data indicate that the cortical amygdala plays a critical role in the generation of innate odor-driven behaviors but do not preclude the participation of cortical amygdala in learned olfactory behaviors. PMID:25383519

  1. Prenatal cocaine exposure impairs selective attention: evidence from serial reversal and extradimensional shift tasks.

    PubMed

    Garavan, H; Morgan, R E; Mactutus, C F; Levitsky, D A; Booze, R M; Strupp, B J

    2000-08-01

    This study assessed the effects of prenatal cocaine exposure on cognitive functioning, using an intravenous (IV) rodent model that closely mimics the pharmacokinetics seen in humans after smoking or IV injection and that avoids maternal stress and undernutrition. Cocaine-exposed males were significantly impaired on a 3-choice, but not 2-choice, olfactory serial reversal learning task. Both male and female cocaine-exposed rats were significantly impaired on extradimensional shift tasks that required shifting from olfactory to spatial cues; however, they showed no impairment when required to shift from spatial to olfactory cues. In-depth analyses of discrete learning phases implicated deficient selective attention as the basis of impairment in both tasks. These data provide clear evidence that prenatal cocaine exposure produces long-lasting cognitive dysfunction, but they also underscore the specificity of the impairment.

  2. Learning and cognition in insects.

    PubMed

    Giurfa, Martin

    2015-01-01

    Insects possess small brains but exhibit sophisticated behavioral performances. Recent works have reported the existence of unsuspected cognitive capabilities in various insect species, which go beyond the traditional studied framework of simple associative learning. In this study, I focus on capabilities such as attention, social learning, individual recognition, concept learning, and metacognition, and discuss their presence and mechanistic bases in insects. I analyze whether these behaviors can be explained on the basis of elemental associative learning or, on the contrary, require higher-order explanations. In doing this, I highlight experimental challenges and suggest future directions for investigating the neurobiology of higher-order learning in insects, with the goal of uncovering l architectures underlying cognitive processing. © 2015 John Wiley & Sons, Ltd.

  3. Antennal tactile learning in the honeybee: effect of nicotinic antagonists on memory dynamics.

    PubMed

    Dacher, M; Lagarrigue, A; Gauthier, M

    2005-01-01

    Restrained worker honeybees (Apis mellifera L.) are able to learn to associate antennal-scanning of a metal plate with a sucrose reinforcement delivered to the mouthparts. Learning occurs reliably in a single association of the two sensory stimuli. The involvement of nicotinic pathways in memory formation and retrieval processes was tested by injecting, into the whole brain through the median ocellus, either mecamylamine (0.6 microg per bee) or alpha-bungarotoxin (2.4 ng per bee). Saline served as a control. Mecamylamine injected 10 min before the retrieval test impairs the retention level tested 3 h and 24 h after single- or multi-trial learning. Retrieval tests performed at various times after the injection show that the blocking effect of mecamylamine lasts about 1 h. The drug has no effect on the reconsolidation or extinction processes. Mecamylamine injected 10 min before conditioning impairs single-trial learning but has no effect on five-trial learning and on the consolidation process. By contrast, alpha-bungarotoxin only impairs the formation of long-term memory (24 h) induced by the five-trial learning and has no effect on medium-term memory (3 h), on single-trial learning or on the retrieval process. Hence, owing to previous data, at least two kinds of nicotinic receptors seem to be involved in honeybee memory, an alpha-bungarotoxin-sensitive and an alpha-bungarotoxin-insensitive receptor. Our results extend to antennal mechanosensory conditioning the role of the cholinergic system that we had previously described for olfactory conditioning in the honeybee. Moreover, we describe here in this insect a pharmacological dissociation between alpha-bungarotoxin sensitive long-term memory and alpha-bungarotoxin insensitive medium-term memory, the last one being affected by mecamylamine.

  4. Mammalian social odours: attraction and individual recognition

    PubMed Central

    Brennan, Peter A; Kendrick, Keith M

    2006-01-01

    Mammalian social systems rely on signals passed between individuals conveying information including sex, reproductive status, individual identity, ownership, competitive ability and health status. Many of these signals take the form of complex mixtures of molecules sensed by chemosensory systems and have important influences on a variety of behaviours that are vital for reproductive success, such as parent–offspring attachment, mate choice and territorial marking. This article aims to review the nature of these chemosensory cues and the neural pathways mediating their physiological and behavioural effects. Despite the complexities of mammalian societies, there are instances where single molecules can act as classical pheromones attracting interest and approach behaviour. Chemosignals with relatively high volatility can be used to signal at a distance and are sensed by the main olfactory system. Most mammals also possess a vomeronasal system, which is specialized to detect relatively non-volatile chemosensory cues following direct contact. Single attractant molecules are sensed by highly specific receptors using a labelled line pathway. These act alongside more complex mixtures of signals that are required to signal individual identity. There are multiple sources of such individuality chemosignals, based on the highly polymorphic genes of the major histocompatibility complex (MHC) or lipocalins such as the mouse major urinary proteins. The individual profile of volatile components that make up an individual odour signature can be sensed by the main olfactory system, as the pattern of activity across an array of broadly tuned receptor types. In addition, the vomeronasal system can respond highly selectively to non-volatile peptide ligands associated with the MHC, acting at the V2r class of vomeronasal receptor. The ability to recognize individuals or their genetic relatedness plays an important role in mammalian social behaviour. Thus robust systems for olfactory learning and recognition of chemosensory individuality have evolved, often associated with major life events, such as mating, parturition or neonatal development. These forms of learning share common features, such as increased noradrenaline evoked by somatosensory stimulation, which results in neural changes at the level of the olfactory bulb. In the main olfactory bulb, these changes are likely to refine the pattern of activity in response to the learned odour, enhancing its discrimination from those of similar odours. In the accessory olfactory bulb, memory formation is hypothesized to involve a selective inhibition, which disrupts the transmission of the learned chemosignal from the mating male. Information from the main olfactory and vomeronasal systems is integrated at the level of the corticomedial amygdala, which forms the most important pathway by which social odours mediate their behavioural and physiological effects. Recent evidence suggests that this region may also play an important role in the learning and recognition of social chemosignals. PMID:17118924

  5. Phenomenal and access consciousness in olfaction.

    PubMed

    Stevenson, Richard J

    2009-12-01

    Contemporary literature on consciousness, with some exceptions, rarely considers the olfactory system. In this article the characteristics of olfactory consciousness, viewed from the standpoint of the phenomenal (P)/access (A) distinction, are examined relative to the major senses. The review details several qualitative differences in both olfactory P consciousness (shifts in the felt location, universal synesthesia-like and affect-rich experiences, and misperceptions) and A consciousness (recovery from habituation, capacity for conscious processing, access to semantic and episodic memory, learning, attention, and in the serial-unitary nature of olfactory percepts). The basis for these differences is argued to arise from the functions that the olfactory system performs and from the unique neural architecture needed to instantiate them. These data suggest, at a minimum, that P and A consciousness are uniquely configured in olfaction and an argument can be made that the P and A distinction may not hold for this sensory system.

  6. Role of olfaction in the foraging behavior and trial-and-error learning in short-nosed fruit bat, Cynopterus sphinx.

    PubMed

    Zhang, Wei; Zhu, Guangjian; Tan, Liangjing; Yang, Jian; Chen, Yi; Liu, Qi; Shen, Qiqi; Chen, Jinping; Zhang, Libiao

    2014-03-01

    We observed the foraging behavior of short-nosed fruit bats, Cynopterus sphinx, in captivity. The role of olfaction in their foraging behavior was examined using real fruit, mimetic fruit, and mimetic fruit soaked in the juice of real fruit. The results showed that C. sphinx visited the real fruit more often than the mimetic fruit, but they had no preference between real fruit and treated mimetic fruit. Our experiment indicates that this bat has the ability to find and identify fruit by olfaction. We also tested for behavior of trial-and-error learning. Our observations revealed that the bats could form a sensory memory of the olfactory cue (cedar wood oil) after five days of training because they responded to the olfactory cues. Our results provide the evidence that C. sphinx can establish the connection between the fruit and a non-natural odor through learning and memory with the assistance of olfaction, and can thus recognize a variety of odors by trial-and-error learning. This behavioral flexibility based on olfactory cues will be beneficial for the short-nosed fruit bat in foraging. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. [Clinical assessment of olfactory performance - why patient interviews are not enough : A report on lessons learned in planning studies with anosmic patients].

    PubMed

    Schöpf, V; Kollndorfer, K

    2015-07-01

    Olfactory dysfunction and loss of smell are mostly associated with an immense decrease in the quality of life. The aim of the presented study was to report on particularities in the acquisition of patients with olfactory dysfunction. During July 2011 and May 2014 we were contacted by 300 potential patients with self-reported loss of smell, 95 (54 female, 41 male, mean age 53) of which were invited for clinical testing after phone interviews. Clinical smell testing revealed 46 patients with anosmia, 38 with hyposmia, and 11 with normosmia. Self-assessment of olfactory function only correlated with clinical scores if patients had nearly no olfactory function left. The ability of self-assessment of olfactory function was independent of age or sex. Further, most patients were not able to report on the reason for or the duration of their olfactory dysfunction. Our report shows that patients with olfactory dysfunction are hardly ever ably to assess their grade of performance reduction. Awareness among patients with a reduced sense of smell is of great general importance, since it can be an indicator of neurodegenerative diseases. This should especially be noted for patients older than 50 who are not able to indicate a reason for their loss of smell.

  8. Steroid Hormone (20-Hydroxyecdysone) Modulates the Acquisition of Aversive Olfactory Memories in Pollen Forager Honeybees

    ERIC Educational Resources Information Center

    Geddes, Lisa H.; McQuillan, H. James; Aiken, Alastair; Vergoz, Vanina; Mercer, Alison R.

    2013-01-01

    Here, we examine effects of the steroid hormone, 20-hydroxyecdysone (20-E), on associative olfactory learning in the honeybee, "Apis mellifera." 20-E impaired the bees' ability to associate odors with punishment during aversive conditioning, but did not interfere with their ability to associate odors with a food reward (appetitive…

  9. An Investigation into Spike-Based Neuromorphic Approaches for Artificial Olfactory Systems

    PubMed Central

    Osseiran, Adam

    2017-01-01

    The implementation of neuromorphic methods has delivered promising results for vision and auditory sensors. These methods focus on mimicking the neuro-biological architecture to generate and process spike-based information with minimal power consumption. With increasing interest in developing low-power and robust chemical sensors, the application of neuromorphic engineering concepts for electronic noses has provided an impetus for research focusing on improving these instruments. While conventional e-noses apply computationally expensive and power-consuming data-processing strategies, neuromorphic olfactory sensors implement the biological olfaction principles found in humans and insects to simplify the handling of multivariate sensory data by generating and processing spike-based information. Over the last decade, research on neuromorphic olfaction has established the capability of these sensors to tackle problems that plague the current e-nose implementations such as drift, response time, portability, power consumption and size. This article brings together the key contributions in neuromorphic olfaction and identifies future research directions to develop near-real-time olfactory sensors that can be implemented for a range of applications such as biosecurity and environmental monitoring. Furthermore, we aim to expose the computational parallels between neuromorphic olfaction and gustation for future research focusing on the correlation of these senses. PMID:29125586

  10. Sublethal Dosage of Imidacloprid Reduces the Microglomerular Density of Honey Bee Mushroom Bodies

    PubMed Central

    Peng, Yi-Chan; Yang, En-Cheng

    2016-01-01

    The dramatic loss of honey bees is a major concern worldwide. Previous studies have indicated that neonicotinoid insecticides cause behavioural abnormalities and have proven that exposure to sublethal doses of imidacloprid during the larval stage decreases the olfactory learning ability of adults. The present study shows the effect of sublethal doses of imidacloprid on the neural development of the honey bee brain by immunolabelling synaptic units in the calyces of mushroom bodies. We found that the density of the synaptic units in the region of the calyces, which are responsible for olfactory and visual functions, decreased after being exposed to a sublethal dose of imidacloprid. This not only links a decrease in olfactory learning ability to abnormal neural connectivity but also provides evidence that imidacloprid damages the development of the nervous system in regions responsible for both olfaction and vision during the larval stage of the honey bee. PMID:26757950

  11. Learning in Insect Pollinators and Herbivores.

    PubMed

    Jones, Patricia L; Agrawal, Anurag A

    2017-01-31

    The relationship between plants and insects is influenced by insects' behavioral decisions during foraging and oviposition. In mutualistic pollinators and antagonistic herbivores, past experience (learning) affects such decisions, which ultimately can impact plant fitness. The higher levels of dietary generalism in pollinators than in herbivores may be an explanation for the differences in learning seen between these two groups. Generalist pollinators experience a high level of environmental variation, which we suggest favors associative learning. Larval herbivores employ habituation and sensitization-strategies useful in their less variable environments. Exceptions to these patterns based on habitats, mobility, and life history provide critical tests of current theory. Relevant plant traits should be under selection to be easily learned and remembered in pollinators and difficult to learn in herbivores. Insect learning thereby has the potential to have an important, yet largely unexplored, role in plant-insect coevolution.

  12. More than apples and oranges - Detecting cancer with a fruit fly's antenna

    NASA Astrophysics Data System (ADS)

    Strauch, Martin; Lüdke, Alja; Münch, Daniel; Laudes, Thomas; Galizia, C. Giovanni; Martinelli, Eugenio; Lavra, Luca; Paolesse, Roberto; Ulivieri, Alessandra; Catini, Alexandro; Capuano, Rosamaria; di Natale, Corrado

    2014-01-01

    Cancer cells and non-cancer cells differ in their metabolism and they emit distinct volatile compound profiles, allowing to recognise cancer cells by their scent. Insect odorant receptors are excellent chemosensors with high sensitivity and a broad receptive range unmatched by current gas sensors. We thus investigated the potential of utilising the fruit fly's olfactory system to detect cancer cells. Using in vivo calcium imaging, we recorded an array of olfactory receptor neurons on the fruit fly's antenna. We performed multidimensional analysis of antenna responses, finding that cell volatiles from different cell types lead to characteristic response vectors. The distances between these response vectors are conserved across flies and can be used to discriminate healthy mammary epithelial cells from different types of breast cancer cells. This may expand the repertoire of clinical diagnostics, and it is the first step towards electronic noses equipped with biological sensors, integrating artificial and biological olfaction.

  13. Noradrenergic Control of Odor Recognition in a Nonassociative Olfactory Learning Task in the Mouse

    ERIC Educational Resources Information Center

    Veyrac, Alexandra; Nguyen, Veronique; Marien, Marc; Didier, Anne; Jourdan, Francois

    2007-01-01

    The present study examined the influence of pharmacological modulations of the locus coeruleus noradrenergic system on odor recognition in the mouse. Mice exposed to a nonrewarded olfactory stimulation (training) were able to memorize this odor and to discriminate it from a new odor in a recall test performed 15 min later. At longer delays (30 or…

  14. Bilateral Olfactory Mucosa Damage Induces the Disappearance of Olfactory Glomerulus and Reduces the Expression of Extrasynaptic α5GABAARs in the Hippocampus in Early Postnatal Sprague Dawley Rats.

    PubMed

    Zheng, Xiaomin; Liang, Liang; Hei, Changchun; Yang, Wenjuan; Zhang, Tingyuan; Wu, Kai; Qin, Yi; Chang, Qing

    2018-04-17

    Chloroform-induced olfactory mucosal degeneration has been reported in adult rats following gavage. We used fixed-point chloroform infusions on different postnatal days (PNDs) to investigate the effects of early olfactory bilateral deprivation on the main olfactory bulbs in Sprague Dawley rats. The experimental groups included rats infused with chloroform (5 μl) or saline (sham, 5 μl) on PNDs 3 and 8, and rats not receiving infusions (control) (n = 6 in all groups). Rats receiving chloroform on PND 3 showed significant hypoevolutism when compared to those in other groups (P < 0.05). There was a complete disappearance and a significant reduction in the size of olfactory glomeruli in the PND 3 and 8 groups, respectively, when compared to the respective sham groups. Rats receiving chloroform on PND 3 had significant memory impairment (P < 0.01) and increased levels of learned helplessness (P < 0.05), as measured using the Morris water maze and tail suspension tests, respectively. GABA A receptor alpha5 subunit (α5GABA A R) expression in hippocampal neurons was significantly lower in rats receiving chloroform on PND 3 than in rats in other groups (P < 0.01), as measured using immunohistochemistry and polymerase chain reaction. There was thus a critical period for the preservation of regenerative ability in olfactory receptor neurons, during which damage and olfactory deprivation led to altered rhinencephalon structure and disappearance of olfactory glomeruli, which induced hypoevolutism. Olfactory deprivation after the critical period had no significant effect on olfactory receptor neuron regeneration, leading to reduced developmental and behavioral effects in Sprague Dawley rats.

  15. The survival advantage of olfaction in a competitive environment.

    PubMed

    Asahina, Kenta; Pavlenkovich, Viktoryia; Vosshall, Leslie B

    2008-08-05

    Olfaction is generally assumed to be critical for survival because this sense allows animals to detect food and pheromonal cues. Although the ability to sense sex pheromones [1, 2, 3] is likely to be important for insects, the contribution of general odor detection to survival is unknown. We investigated the extent to which the olfactory system confers a survival advantage on Drosophila larvae foraging for food under conditions of limited resources and competition from other larvae.

  16. The insect repellent DEET (N,N-diethyl-3-methylbenzamide) increases the synthesis of glutathione S-transferase in cultured mosquito cells.

    PubMed

    Hellestad, Vanessa J; Witthuhn, Bruce A; Fallon, Ann M

    2011-04-01

    DEET (N,N-diethyl-3-methylbenzamide) is the active ingredient used in many commonly used insect repellents, but its mode of action remains poorly understood. Efforts to identify properties that could lead to the development of more effective active ingredients have distinguished among DEET's repellent, deterrent, and insecticidal activities. We used an Aedes albopictus mosquito cell line to evaluate DEET's toxicological properties in the absence of sensory input mediated by the olfactory system. When cells were treated with DEET and labeled with [(35)S]methionine/cysteine, a single 25-kDa protein was induced, relative to other proteins, on SDS-polyacrylamide gels. The 25-kDa band from DEET-treated cells was enriched in peptides corresponding to glutathione S-transferase D10 and/or theta in the Aedes aegypti genome. Consistent with the increased expression of the labeled protein, DEET-treated cells had increased glutathione S-transferase activity, and the radiolabeled band bound to Sepharose 4B containing reduced glutathione. By analyzing partial tryptic digests, we established that DEET induces the homolog of A. aegypti glutathione S-transferase, class theta, corresponding to protein XP_001658009.1 in the NCBI database. This specific effect of DEET at the subcellular level suggests that DEET induces physiological responses that extend beyond recognition by the peripheral olfactory system.

  17. Pheromone-sensitive glomeruli in the primary olfactory centre of ants.

    PubMed

    Yamagata, Nobuhiro; Nishino, Hiroshi; Mizunami, Makoto

    2006-09-07

    Tremendous evolutional success and the ecological dominance of social insects, including ants, termites and social bees, are due to their efficient social organizations and their underlying communication systems. Functional division into reproductive and sterile castes, cooperation in defending the nest, rearing the young and gathering food are all regulated by communication by means of various kinds of pheromones. No brain structures specifically involved in the processing of non-sexual pheromone have been physiologically identified in any social insects. By use of intracellular recording and staining techniques, we studied responses of projection neurons of the antennal lobe (primary olfactory centre) of ants to alarm pheromone, which plays predominant roles in colony defence. Among 23 alarm pheromone-sensitive projection neurons recorded and stained in this study, eight were uniglomerular projection neurons with dendrites in one glomerulus, a structural unit of the antennal lobe, and the remaining 15 were multiglomerular projection neurons with dendrites in multiple glomeruli. Notably, all alarm pheromone-sensitive uniglomerular projection neurons had dendrites in one of five 'alarm pheromone-sensitive (AS)' glomeruli that form a cluster in the dorsalmost part of the antennal lobe. All alarm pheromone-sensitive multiglomerular projection neurons had dendrites in some of the AS glomeruli as well as in glomeruli in the anterodorsal area of the antennal lobe. The results suggest that components of alarm pheromone are processed in a specific cluster of glomeruli in the antennal lobe of ants.

  18. Chemoreception to aggregation pheromones in the common bed bug, Cimex lectularius.

    PubMed

    Liu, Feng; Xiong, Caixing; Liu, Nannan

    2017-03-01

    The common bed bug, Cimex lectularius, is an obligate blood-feeding insect that is resurgent worldwide, posing a threat to human beings through its biting nuisance and disease transmission. Bed bug aggregation pheromone is considered a very promising attractant for use in the monitoring and management of bed bugs, but as yet little is known regarding the sensory physiology of bed bugs related to this pheromone. This study examined how the individual components of aggregation pheromone are perceived by the olfactory receptor neurons (ORNs) housed in different types of olfactory sensilla in bed bugs and the molecular basis for the ORNs' responses to the aggregation pheromone. We found that the ORNs in the D olfactory sensilla played a predominant role in detecting all the components of aggregation pheromone except for histamine, which was only recognized by the C sensilla. Bed bugs' E sensilla, which include four functionally distinct groups, showed only a very weak but variant sensitivity (both excitatory and inhibitory) to the components of aggregation pheromone. Functional tests of 15 odorant receptors (ORs) in response to the components of aggregation pheromone revealed that most of these components were encoded by multiple ORs with various tuning properties. This study provides a comprehensive understanding of how bed bug aggregation pheromone is perceived and recognized in the peripheral olfactory system and will contribute useful information to support the development of synthetic attractants for bed bug monitoring and control. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Transduction in Drosophila olfactory receptor neurons is invariant to air speed

    PubMed Central

    Zhou, Yi

    2012-01-01

    In the vertebrate nose, increasing air speed tends to increase the magnitude of odor-evoked activity in olfactory receptor neurons (ORNs), given constant odor concentration and duration. It is often assumed that the same is true of insect olfactory organs, but this has not been directly tested. In this study, we examined the effect of air speed on ORN responses in Drosophila melanogaster. We constructed an odor delivery device that allowed us to independently vary concentration and air speed, and we used a fast photoionization detector to precisely measure the actual odor concentration at the antenna while simultaneously recording spikes from ORNs in vivo. Our results demonstrate that Drosophila ORN odor responses are invariant to air speed, as long as odor concentration is kept constant. This finding was true across a >100-fold range of air speeds. Because odor hydrophobicity has been proposed to affect the air speed dependence of olfactory transduction, we tested a >1,000-fold range of hydrophobicity values and found that ORN responses are invariant to air speed across this full range. These results have implications for the mechanisms of odor delivery to Drosophila ORNs. Our findings are also significant because flies have a limited ability to control air flow across their antennae, unlike terrestrial vertebrates, which can control air flow within their nasal cavity. Thus, for the fly, invariance to air speed may be adaptive because it confers robustness to changing wind conditions. PMID:22815404

  20. Evidence for partial overlap of male olfactory cues in lampreys

    USGS Publications Warehouse

    Buchinger, Tyler J.; Li, Ke; Huertas, Mar; Baker, Cindy F.; Jia, Liang; Hayes, Michael C.; Li, Weiming; Johnson, Nicholas S.

    2016-01-01

    Animals rely on a mosaic of complex information to find and evaluate mates. Pheromones, often comprised of multiple components, are considered to be particularly important for species-recognition in many species. While the evolution of species-specific pheromone blends is well-described in many insects, very few vertebrate pheromones have been studied in a macro-evolutionary context. Here, we report a phylogenetic comparison of multi-component male odours that guide reproduction in lampreys. Chemical profiling of sexually mature males from eleven species of lamprey, representing six of ten genera and two of three families, indicated the chemical profiles of sexually mature male odours are partially shared among species. Behavioural assays conducted with four species sympatric in the Laurentian Great Lakes indicated asymmetric female responses to heterospecific odours, where Petromyzon marinus were attracted to male odour collected from all species tested but other species generally preferred only the odour of conspecifics. Electro-olfactogram recordings from P. marinusindicated that although P. marinus exhibited behavioural responses to odours from males of all species, at least some of the compounds that elicited olfactory responses were different in conspecific male odours compared to heterospecific male odours. We conclude that some of the compounds released by sexually mature males are shared among species and elicit olfactory and behavioural responses in P. marinus, and suggest that our results provide evidence for partial overlap of male olfactory cues among lampreys. Further characterization of the chemical identities of odour components is needed to confirm shared pheromones among species.

  1. The Venus flytrap attracts insects by the release of volatile organic compounds.

    PubMed

    Kreuzwieser, Jürgen; Scheerer, Ursel; Kruse, Jörg; Burzlaff, Tim; Honsel, Anne; Alfarraj, Saleh; Georgiev, Plamen; Schnitzler, Jörg-Peter; Ghirardo, Andrea; Kreuzer, Ines; Hedrich, Rainer; Rennenberg, Heinz

    2014-02-01

    Does Dionaea muscipula, the Venus flytrap, use a particular mechanism to attract animal prey? This question was raised by Charles Darwin 140 years ago, but it remains unanswered. This study tested the hypothesis that Dionaea releases volatile organic compounds (VOCs) to allure prey insects. For this purpose, olfactory choice bioassays were performed to elucidate if Dionaea attracts Drosophila melanogaster. The VOCs emitted by the plant were further analysed by GC-MS and proton transfer reaction-mass spectrometry (PTR-MS). The bioassays documented that Drosophila was strongly attracted by the carnivorous plant. Over 60 VOCs, including terpenes, benzenoids, and aliphatics, were emitted by Dionaea, predominantly in the light. This work further tested whether attraction of animal prey is affected by the nutritional status of the plant. For this purpose, Dionaea plants were fed with insect biomass to improve plant N status. However, although such feeding altered the VOC emission pattern by reducing terpene release, the attraction of Drosophila was not affected. From these results it is concluded that Dionaea attracts insects on the basis of food smell mimicry because the scent released has strong similarity to the bouquet of fruits and plant flowers. Such a volatile blend is emitted to attract insects searching for food to visit the deadly capture organ of the Venus flytrap.

  2. The Venus flytrap attracts insects by the release of volatile organic compounds

    PubMed Central

    Kreuzwieser, Jürgen; Honsel, Anne

    2014-01-01

    Does Dionaea muscipula, the Venus flytrap, use a particular mechanism to attract animal prey? This question was raised by Charles Darwin 140 years ago, but it remains unanswered. This study tested the hypothesis that Dionaea releases volatile organic compounds (VOCs) to allure prey insects. For this purpose, olfactory choice bioassays were performed to elucidate if Dionaea attracts Drosophila melanogaster. The VOCs emitted by the plant were further analysed by GC-MS and proton transfer reaction-mass spectrometry (PTR-MS). The bioassays documented that Drosophila was strongly attracted by the carnivorous plant. Over 60 VOCs, including terpenes, benzenoids, and aliphatics, were emitted by Dionaea, predominantly in the light. This work further tested whether attraction of animal prey is affected by the nutritional status of the plant. For this purpose, Dionaea plants were fed with insect biomass to improve plant N status. However, although such feeding altered the VOC emission pattern by reducing terpene release, the attraction of Drosophila was not affected. From these results it is concluded that Dionaea attracts insects on the basis of food smell mimicry because the scent released has strong similarity to the bouquet of fruits and plant flowers. Such a volatile blend is emitted to attract insects searching for food to visit the deadly capture organ of the Venus flytrap. PMID:24420576

  3. Soluble proteins of chemical communication: an overview across arthropods

    PubMed Central

    Pelosi, Paolo; Iovinella, Immacolata; Felicioli, Antonio; Dani, Francesca R.

    2014-01-01

    Detection of chemical signals both in insects and in vertebrates is mediated by soluble proteins, highly concentrated in olfactory organs, which bind semiochemicals and activate, with still largely unknown mechanisms, specific chemoreceptors. The same proteins are often found in structures where pheromones are synthesized and released, where they likely perform a second role in solubilizing and delivering chemical messengers in the environment. A single class of soluble polypeptides, called Odorant-Binding Proteins (OBPs) is known in vertebrates, while two have been identified in insects, OBPs and CSPs (Chemosensory Proteins). Despite their common name, OBPs of vertebrates bear no structural similarity with those of insects. We observed that in arthropods OBPs are strictly limited to insects, while a few members of the CSP family have been found in crustacean and other arthropods, where however, based on their very limited numbers, a function in chemical communication seems unlikely. The question we address in this review is whether another class of soluble proteins may have been adopted by other arthropods to perform the role of OBPs and CSPs in insects. We propose that lipid-transporter proteins of the Niemann-Pick type C2 family could represent likely candidates and report the results of an analysis of their sequences in representative species of different arthropods. PMID:25221516

  4. Learning in the Absence of Experience-Dependent Regulation of NMDAR Composition

    ERIC Educational Resources Information Center

    Lebel, David; Sidhu, Nishchal; Barkai, Edi; Quinlan, Elizabeth M.

    2006-01-01

    Olfactory discrimination (OD) learning consists of two phases: an initial N-methyl-d-aspartate (NMDA) receptor--sensitive rule-learning phase, followed by an NMDA receptor (NMDAR)--insensitive pair-learning phase. The rule-learning phase is accompanied by changes in the composition and function of NMDARs at synapses in the piriform cortex,…

  5. Color Modulates Olfactory Learning in Honeybees by an Occasion-Setting Mechanism

    ERIC Educational Resources Information Center

    Mota, Theo; Giurfa, Martin; Sandoz, Jean-Christophe

    2011-01-01

    A sophisticated form of nonelemental learning is provided by occasion setting. In this paradigm, animals learn to disambiguate an uncertain conditioned stimulus using alternative stimuli that do not enter into direct association with the unconditioned stimulus. For instance, animals may learn to discriminate odor rewarded from odor nonrewarded…

  6. Ionotropic receptors (IRs): chemosensory ionotropic glutamate receptors in Drosophila and beyond.

    PubMed

    Rytz, Raphael; Croset, Vincent; Benton, Richard

    2013-09-01

    Ionotropic Receptors (IRs) are a recently characterized family of olfactory receptors in the fruit fly, Drosophila melanogaster. IRs are not related to insect Odorant Receptors (ORs), but rather have evolved from ionotropic glutamate receptors (iGluRs), a conserved family of synaptic ligand-gated ion channels. Here, we review the expression and function of IRs in Drosophila, highlighting similarities and differences with iGluRs. We also briefly describe the organization of the neuronal circuits in which IRs function, comparing and contrasting them with the sensory pathways expressing ORs. Finally, we summarize the bioinformatic identification and initial characterization of IRs in other species, which imply an evolutionarily conserved role for these receptors in chemosensation in insects and other protostomes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. A highly conserved candidate chemoreceptor expressed in both olfactory and gustatory tissues in the malaria vector Anopheles gambiae.

    PubMed

    Pitts, R Jason; Fox, A Nicole; Zwiebel, Laurence J

    2004-04-06

    Anopheles gambiae is a highly anthropophilic mosquito responsible for the majority of malaria transmission in Africa. The biting and host preference behavior of this disease vector is largely influenced by its sense of smell, which is presumably facilitated by G protein-coupled receptor signaling [Takken, W. & Knols, B. (1999) Annu. Rev. Entomol. 44, 131-157]. Because of the importance of host preference to the mosquitoes' ability to transmit disease, we have initiated studies intended to elucidate the molecular mechanisms underlying olfaction in An. gambiae. In the course of these studies, we have identified a number of genes potentially involved in signal transduction, including a family of candidate odorant receptors. One of these receptors, encoded by GPRor7 (hereafter referred to as AgOr7), is remarkably similar to an odorant receptor that is expressed broadly in olfactory tissues and has been identified in Drosophila melanogaster and other insects [Krieger, J., Klink, O., Mohl, C., Raming, K. & Breer, H. (2003) J. Comp. Physiol. A 189, 519-526; Vosshall, L. B., Amrein, H., Morozov, P. S., Rzhetsky, A. & Axel, R. (1999) Cell 96, 725-736]. We have observed AgOr7 expression in olfactory and gustatory tissues in adult An. gambiae and during several stages of the mosquitoes' development. Within the female adult peripheral chemosensory system, antiserum against the AgOR7 polypeptide labels most sensilla of the antenna and maxillary palp as well as a subset of proboscis sensilla. Furthermore, AgOR7 antiserum labeling is observed within the larval antenna and maxillary palpus. These results are consistent with a role for AgOr7 in both olfaction and gustation in An. gambiae and raise the possibility that AgOr7 orthologs may also be of general importance to both modalities of chemosensation in other insects.

  8. [Gender-dependent effects of histone deacetylase inhibitor sodium valproate on early olfactory learning in 129Sv mice].

    PubMed

    Burenkova, O V; Aleksandrova, E A; Zaraĭskaia, I Iu

    2013-02-01

    In the brain, histone acetylation underlies both learning and the maintenance of long-term sustained effects of early experience which is further epigenetically inherited. However, the role of acetylation in learning previously has only been studied in adult animals: high level of learning could be dependent on high levels of histone H3 acetylation in the brain. The role of acetylation in the mechanisms of early learning has not been studied. In the present work, we were interested whether histone deacetylase inhibitor sodium valproate which increases the level of histone H3 acetylation will affect early olfactory discrimination learning in 8-day-old pups of 129Sv mice that are characterized by low efficiency of learning with imitation of maternal grooming. Multiple valproate injections from 3rd to 6th postnatal day had a gender-dependent effect: learning was selectively improved in male but not in female pups. In the female pups, learning improvement was observed after multiple injections of saline. Possible epigenetic mechanisms underlying these sex differences are discussed.

  9. Kin recognition in zebrafish: a 24-hour window for olfactory imprinting

    PubMed Central

    Gerlach, Gabriele; Hodgins-Davis, Andrea; Avolio, Carla; Schunter, Celia

    2008-01-01

    Distinguishing kin from non-kin profoundly impacts the evolution of social behaviour. Individuals able to assess the genetic relatedness of conspecifics can preferentially allocate resources towards related individuals and avoid inbreeding. We have addressed the question of how animals acquire the ability to recognize kin by studying the development of olfactory kin preference in zebrafish (Danio rerio). Previously, we showed that zebrafish use an olfactory template to recognize even unfamiliar kin through phenotype matching. Here, we show for the first time that this phenotype matching is based on a learned olfactory imprinting process in which exposure to kin individuals on day 6 post fertilization (pf) is necessary and sufficient for imprinting. Larvae that were exposed to kin before or after but not on day 6 pf did not recognize kin. Larvae isolated from all contact with conspecifics did not imprint on their own chemical cues; therefore, we see no evidence for kin recognition through self-matching in this species. Surprisingly, exposure to non-kin odour during the sensitive phase of development did not result in imprinting on the odour cues of unrelated individuals, suggesting a genetic predisposition to kin odour. Urine-born peptides expressed by genes of the immune system (MHC) are important messengers carrying information about ‘self’ and ‘other’. We suggest that phenotype matching is acquired through a time-sensitive learning process that, in zebrafish, includes a genetic predisposition potentially involving MHC genes expressed in the olfactory receptor neurons. PMID:18544507

  10. Kin recognition in zebrafish: a 24-hour window for olfactory imprinting.

    PubMed

    Gerlach, Gabriele; Hodgins-Davis, Andrea; Avolio, Carla; Schunter, Celia

    2008-09-22

    Distinguishing kin from non-kin profoundly impacts the evolution of social behaviour. Individuals able to assess the genetic relatedness of conspecifics can preferentially allocate resources towards related individuals and avoid inbreeding. We have addressed the question of how animals acquire the ability to recognize kin by studying the development of olfactory kin preference in zebrafish (Danio rerio). Previously, we showed that zebrafish use an olfactory template to recognize even unfamiliar kin through phenotype matching. Here, we show for the first time that this phenotype matching is based on a learned olfactory imprinting process in which exposure to kin individuals on day 6 post fertilization (pf) is necessary and sufficient for imprinting. Larvae that were exposed to kin before or after but not on day 6 pf did not recognize kin. Larvae isolated from all contact with conspecifics did not imprint on their own chemical cues; therefore, we see no evidence for kin recognition through self-matching in this species. Surprisingly, exposure to non-kin odour during the sensitive phase of development did not result in imprinting on the odour cues of unrelated individuals, suggesting a genetic predisposition to kin odour. Urine-born peptides expressed by genes of the immune system (MHC) are important messengers carrying information about 'self' and 'other'. We suggest that phenotype matching is acquired through a time-sensitive learning process that, in zebrafish, includes a genetic predisposition potentially involving MHC genes expressed in the olfactory receptor neurons.

  11. Respective Role of the Dorsal Hippocampus and the Entorhinal Cortex during the Recombination of Previously Learned Olfactory-Tactile Associations in the Rat

    ERIC Educational Resources Information Center

    Boisselier, Lise; Ferry, Barbara; Gervais, Rémi

    2017-01-01

    The hippocampal formation has been extensively described as a key component for object recognition in conjunction with place and context. The present study aimed at describing neural mechanisms in the hippocampal formation that support olfactory-tactile (OT) object discrimination in a task where space and context were not taken into account. The…

  12. Odorant receptor-based discovery of natural repellents of human lice.

    PubMed

    Pelletier, Julien; Xu, Pingxi; Yoon, Kyong S; Clark, John M; Leal, Walter S

    2015-11-01

    The body louse, Pediculus humanus humanus, is an obligate blood-feeding ectoparasite and an important insect vector that mediates the transmission of diseases to humans. The analysis of the body louse genome revealed a drastic reduction of the chemosensory gene repertoires when compared to other insects, suggesting specific olfactory adaptations to host specialization and permanent parasitic lifestyle. Here, we present for the first time functional evidence for the role of odorant receptors (ORs) in this insect, with the objective to gain insight into the chemical ecology of this vector. We identified seven putative full-length ORs, in addition to the odorant receptor co-receptor (Orco), and expressed four of them in the Xenopus laevis oocytes system. When screened with a panel of ecologically-relevant odorants, PhumOR2 responded to a narrow set of compounds. At the behavior level, both head and body lice were repelled by the physiologically-active chemicals. This study presents the first evidence of the OR pathway being functional in lice and identifies PhumOR2 as a sensitive receptor of natural repellents that could be used to develop novel efficient molecules to control these insects. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Cognitive impairment and olfactory panic from occupational exposure to VOCs.

    PubMed

    Reinhartz, Abe

    2006-10-01

    A Canadian government clerical worker in her early thirties developed frontal lobe dysfunction from inhalation of volatile organic compounds off-gassed during an office renovation. Pulmonary function, bronchial provocation, allergy testing, and a brain (SPECT) scan were performed. SPECT scanning showed frontotemporal hypoperfusion and neuropsychologic testing revealed deficits in verbal learning and poor organizational memory. A significant component of this worker's impairment was the development of "olfactory panic," a debilitating aversion to odor accompanied by symptoms of panic. The Ontario Workplace Safety and Insurance Appeals Tribunal granted entitlement for her cognitive difficulties and olfactory panic as a result of her toxic exposure.

  14. Chemosensory receptors in tsetse flies provide link between chemical and behavioural ecology

    PubMed Central

    Masiga, Daniel; Obiero, George; Macharia, Rosaline; Mireji, Paul; Christoffels, Alan

    2015-01-01

    Tsetse flies survive in a variety of environments across tropical Africa, often rising to large numbers, despite their low birth rate of one offspring every seven to nine days. They use olfactory receptors to process chemical signals in their environments to find food, escape from predators, and locate suitable larviposition sites. We discuss the identification of odorant and gustatory receptors in Glossina morsitans morsitans and the role genomics could play in management of nuisance insects. PMID:25017128

  15. De Novo Transcriptome Analysis of the Common New Zealand Stick Insect Clitarchus hookeri (Phasmatodea) Reveals Genes Involved in Olfaction, Digestion and Sexual Reproduction.

    PubMed

    Wu, Chen; Crowhurst, Ross N; Dennis, Alice B; Twort, Victoria G; Liu, Shanlin; Newcomb, Richard D; Ross, Howard A; Buckley, Thomas R

    2016-01-01

    Phasmatodea, more commonly known as stick insects, have been poorly studied at the molecular level for several key traits, such as components of the sensory system and regulators of reproduction and development, impeding a deeper understanding of their functional biology. Here, we employ de novo transcriptome analysis to identify genes with primary functions related to female odour reception, digestion, and male sexual traits in the New Zealand common stick insect Clitarchus hookeri (White). The female olfactory gene repertoire revealed ten odorant binding proteins with three recently duplicated, 12 chemosensory proteins, 16 odorant receptors, and 17 ionotropic receptors. The majority of these olfactory genes were over-expressed in female antennae and have the inferred function of odorant reception. Others that were predominantly expressed in male terminalia (n = 3) and female midgut (n = 1) suggest they have a role in sexual reproduction and digestion, respectively. Over-represented transcripts in the midgut were enriched with digestive enzyme gene families. Clitarchus hookeri is likely to harbour nine members of an endogenous cellulase family (glycoside hydrolase family 9), two of which appear to be specific to the C. hookeri lineage. All of these cellulase sequences fall into four main phasmid clades and show gene duplication events occurred early in the diversification of Phasmatodea. In addition, C. hookeri genome is likely to express γ-proteobacteria pectinase transcripts that have recently been shown to be the result of horizontal transfer. We also predicted 711 male terminalia-enriched transcripts that are candidate accessory gland proteins, 28 of which were annotated to have molecular functions of peptidase activity and peptidase inhibitor activity, two groups being widely reported to regulate female reproduction through proteolytic cascades. Our study has yielded new insights into the genetic basis of odour detection, nutrient digestion, and male sexual traits in stick insects. The C. hookeri reference transcriptome, together with identified gene families, provides a comprehensive resource for studying the evolution of sensory perception, digestive systems, and reproductive success in phasmids.

  16. Enhancing Academic Performance: Seven Perceptual Styles of Learning.

    ERIC Educational Resources Information Center

    Higbee, Jeanne L.; And Others

    1991-01-01

    Presents Galbraith and James's taxonomy of seven perceptual modalities (i.e., print, aural, interactive, visual, haptic, kinesthetic, and olfactory). Discusses ways educators can demonstrate perceptual modalities in the classroom and help students identify their personal style of learning. Explains how this knowledge can facilitate learning in a…

  17. The functional divide for primary reinforcement of D-amphetamine lies between the medial and lateral ventral striatum: is the division of the accumbens core, shell, and olfactory tubercle valid?

    PubMed

    Ikemoto, Satoshi; Qin, Mei; Liu, Zhong-Hua

    2005-05-18

    When projection analyses placed the nucleus accumbens and olfactory tubercle in the striatal system, functional links between these sites began to emerge. The accumbens has been implicated in the rewarding effects of psychomotor stimulants, whereas recent work suggests that the medial accumbens shell and medial olfactory tubercle mediate the rewarding effects of cocaine. Interestingly, anatomical evidence suggests that medial portions of the shell and tubercle receive afferents from common zones in a number of regions. Here, we report results suggesting that the current division of the ventral striatum into the accumbens core and shell and the olfactory tubercle does not reflect the functional organization for amphetamine reward. Rats quickly learned to self-administer D-amphetamine into the medial shell or medial tubercle, whereas they failed to learn to do so into the accumbens core, ventral shell, or lateral tubercle. Our results suggest that primary reinforcement of amphetamine is mediated via the medial portion of the ventral striatum. Thus, the medial shell and medial tubercle are more functionally related than the medial and ventral shell or the medial and lateral tubercle. The current core-shell-tubercle scheme should be reconsidered in light of recent anatomical data and these functional findings.

  18. Key Odorants Regulate Food Attraction in Drosophila melanogaster

    PubMed Central

    Giang, Thomas; He, Jianzheng; Belaidi, Safaa; Scholz, Henrike

    2017-01-01

    In insects, the search for food is highly dependent on olfactory sensory input. Here, we investigated whether a single key odorant within an odor blend or the complexity of the odor blend influences the attraction of Drosophila melanogaster to a food source. A key odorant is defined as an odorant that elicits a difference in the behavioral response when two similar complex odor blends are offered. To validate that the observed behavioral responses were elicited by olfactory stimuli, we used olfactory co-receptor Orco mutants. We show that within a food odor blend, ethanol functions as a key odorant. In addition to ethanol other odorants might serve as key odorants at specific concentrations. However, not all odorants are key odorants. The intensity of the odor background influences the attractiveness of the key odorants. Increased complexity is only more attractive in a concentration-dependent range for single compounds in a blend. Orco is necessary to discriminate between two similarly attractive odorants when offered as single odorants and in food odor blends, supporting the importance of single odorant recognition in odor blends. These data strongly indicate that flies use more than one strategy to navigate to a food odor source, depending on the availability of key odorants in the odor blend and the alternative odor offered. PMID:28928642

  19. Identification and Comparative Expression Profiles of Chemoreception Genes Revealed from Major Chemoreception Organs of the Rice Leaf Folder, Cnaphalocrocis medinalis (Lepidoptera: Pyralidae)

    PubMed Central

    Zeng, Fang-Fang; Zhao, Zhen-Fei; Yan, Miao-Jun; Zhou, Wen; Zhang, Zan; Zhang, Aijun; Lu, Zhong-Xian; Wang, Man-Qun

    2015-01-01

    To better understand the olfactory mechanisms in the rice leaf folder, Cnaphalocrocis medinalis (Guenée), a serious pest of rice in Asia, we established six partial transcriptomes from antennae, protarsus, and reproductive organs of male and female adults. A total of 102 transcripts were identified, including 29 odorant receptors (ORs), 15 ionotropic receptors (IRs), 30 odorant-binding proteins (OBPs), 26 chemosensory proteins (CSPs), and 2 sensory neuron membrane proteins (SNMPs). The expression patterns of these genes were calculated by fragments per kilobase of exon per million fragments mapped (FPKM) and validated by real-time quantitative PCR (RT-qPCR). Some transcripts were exclusively expressed in specific organs, such as female protarsus, whereas others were universally expressed, this varied expression profile may provide insights into the specific functions mediated by chemoreception proteins in insects. To the best of our knowledge, among the 102 identified transcripts, 81 are novel and have never been reported before. In addition, it also is the first time that ORs and IRs are identified in C. medinalis. Our findings significantly enhance the currently limited understanding olfactory mechanisms of the olfactory mechanisms underlying the chemoreception system in C. medinalis. PMID:26657286

  20. Diaphorina citri Induces Huanglongbing-Infected Citrus Plant Volatiles to Repel and Reduce the Performance of Propylaea japonica.

    PubMed

    Lin, Yongwen; Lin, Sheng; Akutse, Komivi S; Hussain, Mubasher; Wang, Liande

    2016-01-01

    Transmission of plant pathogens through insect vectors is a complex biological process involving interactions between the host plants, insects, and pathogens. Simultaneous impact of the insect damage and pathogenic bacteria in infected host plants induce volatiles that modify not only the behavior of its insect vector but also of their natural enemies, such as parasitoid wasps. Therefore, it is essential to understand how insects such as the predator ladybird beetle responds to volatiles emitted from a host plant and how the disease transmission alters the interactions between predators, vector, pathogens, and plants. In this study, we investigated the response of Propylaea japonica to volatiles from citrus plants damaged by Diaphorina citri and Candidatus Liberibacter asiaticus through olfactometer bioassays. Synthetic chemical blends were also used to determine the active compounds in the plant volatile. The results showed that volatiles emitted by healthy plants attracted more P. japonica than other treatments, due to the presence of high quantities of D-limonene and beta-ocimene, and the lack of methyl salicylate. When using synthetic chemicals in the olfactory tests, we found that D-limonene attracted P. japonica while methyl salicylate repelled the predator. However, beta-ocimene attracted the insects at lower concentrations but repelled them at higher concentrations. These results indicate that P. japonica could not efficiently search for its host by using volatile cues emitted from psyllids- and Las bacteria-infected citrus plants.

  1. A Genome-Wide Identification and Analysis of the Basic Helix-Loop-Helix Transcription Factors in Brown Planthopper, Nilaparvata lugens

    PubMed Central

    Wan, Pin-Jun; Yuan, San-Yue; Wang, Wei-Xia; Chen, Xu; Lai, Feng-Xiang; Fu, Qiang

    2016-01-01

    The basic helix-loop-helix (bHLH) transcription factors in insects play essential roles in multiple developmental processes including neurogenesis, sterol metabolism, circadian rhythms, organogenesis and formation of olfactory sensory neurons. The identification and function analysis of bHLH family members of the most destructive insect pest of rice, Nilaparvata lugens, may provide novel tools for pest management. Here, a genome-wide survey for bHLH sequences identified 60 bHLH sequences (NlbHLHs) encoded in the draft genome of N. lugens. Phylogenetic analysis of the bHLH domains successfully classified these genes into 40 bHLH families in group A (25), B (14), C (10), D (1), E (8) and F (2). The number of NlbHLHs with introns is higher than many other insect species, and the average intron length is shorter than those of Acyrthosiphon pisum. High number of ortholog families of NlbHLHs was found suggesting functional conversation for these proteins. Compared to other insect species studied, N. lugens has the highest number of bHLH members. Furthermore, gene duplication events of SREBP, Kn(col), Tap, Delilah, Sim, Ato and Crp were found in N. lugens. In addition, a putative full set of NlbHLH genes is defined and compared with another insect species. Thus, our classification of these NlbHLH members provides a platform for further investigations of bHLH protein functions in the regulation of N. lugens, and of insects in general. PMID:27869716

  2. Honey Bees Modulate Their Olfactory Learning in the Presence of Hornet Predators and Alarm Component.

    PubMed

    Wang, Zhengwei; Qu, Yufeng; Dong, Shihao; Wen, Ping; Li, Jianjun; Tan, Ken; Menzel, Randolf

    2016-01-01

    In Southeast Asia the native honey bee species Apis cerana is often attacked by hornets (Vespa velutina), mainly in the period from April to November. During the co-evolution of these two species honey bees have developed several strategies to defend themselves such as learning the odors of hornets and releasing alarm components to inform other mates. However, so far little is known about whether and how honey bees modulate their olfactory learning in the presence of the hornet predator and alarm components of honey bee itself. In the present study, we test for associative olfactory learning of A. cerana in the presence of predator odors, the alarm pheromone component isopentyl acetate (IPA), or a floral odor (hexanal) as a control. The results show that bees can detect live hornet odors, that there is almost no association between the innately aversive hornet odor and the appetitive stimulus sucrose, and that IPA is less well associated with an appetitive stimulus when compared with a floral odor. In order to imitate natural conditions, e.g. when bees are foraging on flowers and a predator shows up, or alarm pheromone is released by a captured mate, we tested combinations of the hornet odor and floral odor, or IPA and floral odor. Both of these combinations led to reduced learning scores. This study aims to contribute to a better understanding of the prey-predator system between A. cerana and V. velutina.

  3. The reluctant visitor: an alkaloid in toxic nectar can reduce olfactory learning and memory in Asian honey bees.

    PubMed

    Zhang, Junjun; Wang, Zhengwei; Wen, Ping; Qu, Yufeng; Tan, Ken; Nieh, James C

    2018-03-01

    The nectar of the thunder god vine, Tripterygium hypoglaucum , contains a terpenoid, triptolide (TRP), that may be toxic to the sympatric Asian honey bee, Apis cerana , because honey produced from this nectar is toxic to bees. However, these bees will forage on, recruit for, and pollinate this plant during a seasonal dearth of preferred food sources. Olfactory learning plays a key role in forager constancy and pollination, and we therefore tested the effects of acute and chronic TRP feeding on forager olfactory learning, using proboscis extension reflex conditioning. At concentrations of 0.5-10 µg TRP ml -1 , there were no learning effects of acute exposure. However, memory retention (1 h after the last learning trial) significantly decreased by 56% following acute consumption of 0.5 µg TRP ml -1 Chronic exposure did not alter learning or memory, except at high concentrations (5 and 10 µg TRP ml -1 ). TRP concentrations in nectar may therefore not significantly harm plant pollination. Surprisingly, TRP slightly increased bee survival, and thus other components in T. hypoglaucum honey may be toxic. Long-term exposure to TRP could have colony effects but these may be ameliorated by the bees' aversion to T. hypoglaucum nectar when other food sources are available and, perhaps, by detoxification mechanisms. The co-evolution of this plant and its reluctant visitor may therefore likely illustrate a classic compromise between the interests of both actors. © 2018. Published by The Company of Biologists Ltd.

  4. Activity-dependent expression of miR-132 regulates immediate-early gene induction during olfactory learning in the greater short-nosed fruit bat, Cynopterus sphinx.

    PubMed

    Mukilan, Murugan; Ragu Varman, Durairaj; Sudhakar, Sivasubramaniam; Rajan, Koilmani Emmanuvel

    2015-04-01

    The activity-dependent expression of immediate-early genes (IEGs) and microRNA (miR)-132 has been implicated in synaptic plasticity and the formation of long-term memory (LTM). In the present study, we show that olfactory training induces the expression of IEGs (EGR-1, C-fos, C-jun) and miR-132 at similar time scale in olfactory bulb (OB) of Cynopterus sphinx. We examined the role of miR-132 in the OB using antisense oligodeoxynucleotide (AS-ODN) and demonstrated that a local infusion of AS-ODN in the OB 2h prior to training impaired olfactory memory formation in C. sphinx. However, the infusion of AS-ODN post-training did not cause a deficit in memory formation. Furthermore, the inhibition of miR-132 reduced the olfactory training-induced expression of IEGs and post synaptic density protein-95 (PSD-95) in the OB. Additionally, we show that miR-132 regulates the activation of calcium/calmodulin-dependent protein kinase-II (CaMKII) and cAMP response element binding protein (CREB), possibly through miR-148a. These data suggest that olfactory training induces the expression of miR-132 and IEGs, which in turn activates post-synaptic proteins that regulate olfactory memory formation. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Temporally diverse firing patterns in olfactory receptor neurons underlie spatiotemporal neural codes for odors

    PubMed Central

    Raman, Baranidharan; Joseph, Joby; Tang, Jeff; Stopfer, Mark

    2010-01-01

    Odorants are represented as spatiotemporal patterns of spikes in neurons of the antennal lobe (AL, insects) and olfactory bulb (OB, vertebrates). These response patterns have been thought to arise primarily from interactions within the AL/OB, an idea supported, in part, by the assumption that olfactory receptor neurons (ORNs) respond to odorants with simple firing patterns. However, activating the AL directly with simple pulses of current evoked responses in AL neurons that were much less diverse, complex, and enduring than responses elicited by odorants. Similarly, models of the AL driven by simplistic inputs generated relatively simple output. How then are dynamic neural codes for odors generated? Consistent with recent results from several other species, our recordings from locust ORNs showed a great diversity of temporal structure. Further, we found that, viewed as a population, many response features of ORNs were remarkably similar to those observed within the AL. Using a set of computational models constrained by our electrophysiological recordings, we found that the temporal heterogeneity of responses of ORNs critically underlies the generation of spatiotemporal odor codes in the AL. A test then performed in vivo confirmed that, given temporally homogeneous input, the AL cannot create diverse spatiotemporal patterns on its own; however, given temporally heterogeneous input, the AL generated realistic firing patterns. Finally, given the temporally structured input provided by ORNs, we clarified several separate, additional contributions of the AL to olfactory information processing. Thus, our results demonstrate the origin and subsequent reformatting of spatiotemporal neural codes for odors. PMID:20147528

  6. Analysis of the Antennal Transcriptome and Insights into Olfactory Genes in Hyphantria cunea (Drury)

    PubMed Central

    Wang, Tian-Tian; Zhang, Jing; Sun, Long; Yang, Yun-Qiu; Huang, Chang-Chun; Jiang, Li-Ya; Ding, De-Gui

    2016-01-01

    Hyphantria cunea (Drury) (Lepidoptera: Arctiidae) is an invasive insect pest which, in China, causes unprecedented damage and economic losses due to its extreme fecundity and wide host range, including forest and shade trees, and even crops. Compared to the better known lepidopteran species which use Type-I pheromones, little is known at the molecular level about the olfactory mechanisms of host location and mate choice in H. cunea, a species using Type-II lepidopteran pheromones. In the present study, the H. cunea antennal transcriptome was constructed by Illumina Hiseq 2500TM sequencing, with the aim of discovering olfaction-related genes. We obtained 64,020,776 clean reads, and 59,243 unigenes from the analysis of the transcriptome, and the putative gene functions were annotated using gene ontology (GO) annotation. We further identified 124 putative chemosensory unigenes based on homology searches and phylogenetic analysis, including 30 odorant binding proteins (OBPs), 17 chemosensory proteins (CSPs), 52 odorant receptors (ORs), 14 ionotropic receptors (IRs), nine gustatory receptors (GRs) and two sensory neuron membrane proteins (SNMPs). We also found many conserved motif patterns of OBPs and CSPs using a MEME system. Moreover, we systematically analyzed expression patterns of OBPs and CSPs based on reverse transcription PCR and quantitative real time PCR (RT-qPCR) with RNA extracted from different tissues and life stages of both sexes in H. cunea. The antennae-biased expression may provide a deeper further understanding of olfactory processing in H. cunea. The first ever identification of olfactory genes in H. cunea may provide new leads for control of this major pest. PMID:27741298

  7. Analysis of the Antennal Transcriptome and Insights into Olfactory Genes in Hyphantria cunea (Drury).

    PubMed

    Zhang, Long-Wa; Kang, Ke; Jiang, Shi-Chang; Zhang, Ya-Nan; Wang, Tian-Tian; Zhang, Jing; Sun, Long; Yang, Yun-Qiu; Huang, Chang-Chun; Jiang, Li-Ya; Ding, De-Gui

    2016-01-01

    Hyphantria cunea (Drury) (Lepidoptera: Arctiidae) is an invasive insect pest which, in China, causes unprecedented damage and economic losses due to its extreme fecundity and wide host range, including forest and shade trees, and even crops. Compared to the better known lepidopteran species which use Type-I pheromones, little is known at the molecular level about the olfactory mechanisms of host location and mate choice in H. cunea, a species using Type-II lepidopteran pheromones. In the present study, the H. cunea antennal transcriptome was constructed by Illumina Hiseq 2500TM sequencing, with the aim of discovering olfaction-related genes. We obtained 64,020,776 clean reads, and 59,243 unigenes from the analysis of the transcriptome, and the putative gene functions were annotated using gene ontology (GO) annotation. We further identified 124 putative chemosensory unigenes based on homology searches and phylogenetic analysis, including 30 odorant binding proteins (OBPs), 17 chemosensory proteins (CSPs), 52 odorant receptors (ORs), 14 ionotropic receptors (IRs), nine gustatory receptors (GRs) and two sensory neuron membrane proteins (SNMPs). We also found many conserved motif patterns of OBPs and CSPs using a MEME system. Moreover, we systematically analyzed expression patterns of OBPs and CSPs based on reverse transcription PCR and quantitative real time PCR (RT-qPCR) with RNA extracted from different tissues and life stages of both sexes in H. cunea. The antennae-biased expression may provide a deeper further understanding of olfactory processing in H. cunea. The first ever identification of olfactory genes in H. cunea may provide new leads for control of this major pest.

  8. Bias to pollen odors is affected by early exposure and foraging experience.

    PubMed

    Arenas, A; Farina, W M

    2014-07-01

    In many pollinating insects, foraging preferences are adjusted on the basis of floral cues learned at the foraging site. In addition, olfactory experiences gained at early adult stages might also help them to initially choose food sources. To understand pollen search behavior of honeybees, we studied how responses elicited by pollen-based odors are biased in foraging-age workers according to (i) their genetic predisposition to collect pollen, (ii) pollen related information gained during foraging and (iii) different experiences with pollen gained at early adult ages. Bees returning to the hive carrying pollen loads, were strongly biased to unfamiliar pollen bouquets when tested in a food choice device against pure odors. Moreover, pollen foragers' orientation response was specific to the odors emitted by the pollen type they were carrying on their baskets, which suggests that foragers retrieve pollen odor information to recognize rewarding flowers outside the hive. We observed that attraction to pollen odor was mediated by the exposure to a pollen diet during the first week of life. We did not observe the same attraction in foraging-age bees early exposed to an artificial diet that did not contain pollen. Contrary to the specific response observed to cues acquired during foraging, early exposure to single-pollen diets did not bias orientation response towards a specific pollen odor in foraging-age bees (i.e. bees chose equally between the exposed and the novel monofloral pollen odors). Our results show that pollen exposure at early ages together with olfactory experiences gained in a foraging context are both relevant to bias honeybees' pollen search behavior. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Plant stress signalling: understanding and exploiting plant-plant interactions.

    PubMed

    Pickett, J A; Rasmussen, H B; Woodcock, C M; Matthes, M; Napier, J A

    2003-02-01

    When plants are attacked by insects, volatile chemical signals can be released, not only from the damaged parts, but also systemically from other parts of the plant and this continues after cessation of feeding by the insect. These signals are perceived by olfactory sensory mechanisms in both the herbivorous insects and their parasites. Molecular structures involved can be characterized by means of electrophysiological assays, using the insect sensory system linked to chemical analysis. Evidence is mounting that such signals can also affect neighbouring intact plants, which initiate defence by the induction of further signalling systems, such as those that increase parasitoid foraging. Furthermore, insect electrophysiology can be used in the identification of plant compounds having effects on the plants themselves. It has been found recently that certain plants can release stress signals even when undamaged, and that these can cause defence responses in intact plants. These discoveries provide the basis for new crop protection strategies, that are either delivered by genetic modification of plants or by conventionally produced plants to which the signal is externally applied. Delivery can also be made by means of mixed seed strategies in which the provoking and recipient plants are grown together. Related signalling discoveries within the rhizosphere seem set to extend these approaches into new ways of controlling weeds, by exploiting the elusive potential of allelopathy, but through signalling rather than by direct physiological effects.

  10. Gall volatiles defend aphids against a browsing mammal

    PubMed Central

    2013-01-01

    Background Plants have evolved an astonishing array of survival strategies. To defend against insects, for example, damaged plants emit volatile organic compounds that attract the herbivore’s natural enemies. So far, plant volatile responses have been studied extensively in conjunction with leaf chewing and sap sucking insects, yet little is known about the relationship between plant volatiles and gall-inducers, the most sophisticated herbivores. Here we describe a new role for volatiles as gall-insects were found to benefit from this plant defence. Results Chemical analyses of galls triggered by the gregarious aphid Slavum wertheimae on wild pistachio trees showed that these structures contained and emitted considerably higher quantities of plant terpenes than neighbouring leaves and fruits. Behavioural assays using goats as a generalist herbivore confirmed that the accumulated terpenes acted as olfactory signals and feeding deterrents, thus enabling the gall-inducers to escape from inadvertent predation by mammals. Conclusions Increased emission of plant volatiles in response to insect activity is commonly looked upon as a “cry for help” by the plant to attract the insect’s natural enemies. In contrast, we show that such volatiles can serve as a first line of insect defences that extends the ‘extended phenotype’ represented by galls, beyond physical boundaries. Our data support the Enemy hypothesis insofar that high levels of gall secondary metabolites confer protection against natural enemies. PMID:24020365

  11. A Fully Automated Drosophila Olfactory Classical Conditioning and Testing System for Behavioral Learning and Memory Assessment

    PubMed Central

    Jiang, Hui; Hanna, Eriny; Gatto, Cheryl L.; Page, Terry L.; Bhuva, Bharat; Broadie, Kendal

    2016-01-01

    Background Aversive olfactory classical conditioning has been the standard method to assess Drosophila learning and memory behavior for decades, yet training and testing are conducted manually under exceedingly labor-intensive conditions. To overcome this severe limitation, a fully automated, inexpensive system has been developed, which allows accurate and efficient Pavlovian associative learning/memory analyses for high-throughput pharmacological and genetic studies. New Method The automated system employs a linear actuator coupled to an odorant T-maze with airflow-mediated transfer of animals between training and testing stages. Odorant, airflow and electrical shock delivery are automatically administered and monitored during training trials. Control software allows operator-input variables to define parameters of Drosophila learning, short-term memory and long-term memory assays. Results The approach allows accurate learning/memory determinations with operational fail-safes. Automated learning indices (immediately post-training) and memory indices (after 24 hours) are comparable to traditional manual experiments, while minimizing experimenter involvement. Comparison with Existing Methods The automated system provides vast improvements over labor-intensive manual approaches with no experimenter involvement required during either training or testing phases. It provides quality control tracking of airflow rates, odorant delivery and electrical shock treatments, and an expanded platform for high-throughput studies of combinational drug tests and genetic screens. The design uses inexpensive hardware and software for a total cost of ~$500US, making it affordable to a wide range of investigators. Conclusions This study demonstrates the design, construction and testing of a fully automated Drosophila olfactory classical association apparatus to provide low-labor, high-fidelity, quality-monitored, high-throughput and inexpensive learning and memory behavioral assays. PMID:26703418

  12. A fully automated Drosophila olfactory classical conditioning and testing system for behavioral learning and memory assessment.

    PubMed

    Jiang, Hui; Hanna, Eriny; Gatto, Cheryl L; Page, Terry L; Bhuva, Bharat; Broadie, Kendal

    2016-03-01

    Aversive olfactory classical conditioning has been the standard method to assess Drosophila learning and memory behavior for decades, yet training and testing are conducted manually under exceedingly labor-intensive conditions. To overcome this severe limitation, a fully automated, inexpensive system has been developed, which allows accurate and efficient Pavlovian associative learning/memory analyses for high-throughput pharmacological and genetic studies. The automated system employs a linear actuator coupled to an odorant T-maze with airflow-mediated transfer of animals between training and testing stages. Odorant, airflow and electrical shock delivery are automatically administered and monitored during training trials. Control software allows operator-input variables to define parameters of Drosophila learning, short-term memory and long-term memory assays. The approach allows accurate learning/memory determinations with operational fail-safes. Automated learning indices (immediately post-training) and memory indices (after 24h) are comparable to traditional manual experiments, while minimizing experimenter involvement. The automated system provides vast improvements over labor-intensive manual approaches with no experimenter involvement required during either training or testing phases. It provides quality control tracking of airflow rates, odorant delivery and electrical shock treatments, and an expanded platform for high-throughput studies of combinational drug tests and genetic screens. The design uses inexpensive hardware and software for a total cost of ∼$500US, making it affordable to a wide range of investigators. This study demonstrates the design, construction and testing of a fully automated Drosophila olfactory classical association apparatus to provide low-labor, high-fidelity, quality-monitored, high-throughput and inexpensive learning and memory behavioral assays. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Odorant-binding proteins display high affinities for behavioral attractants and repellents in the natural predator Chrysopa pallens.

    PubMed

    Li, Zhao-Qun; Zhang, Shuai; Luo, Jun-Yu; Wang, Si-Bao; Dong, Shuang-Lin; Cui, Jin-Jie

    2015-07-01

    Chrysopa pallens is an important natural predator of various pests in many different cropping systems. Understanding the sophisticated olfactory system of insect antennae is crucial for studying the physiological bases of olfaction and could also help enhance the effectiveness of C. pallens in biological control. However, functional studies of the olfactory genes in C. pallens are still lacking. In this study, we cloned five odorant-binding protein (OBP) genes from C. pallens (CpalOBPs). Quantitative RT-PCR results indicated that the five CpalOBPs had different tissue expression profiles. Ligand-binding assays showed that farnesol, farnesene, cis-3-hexenyl hexanoate, geranylacetone, beta-ionone, octyl aldehyde, decanal, nerolidol (Ki<20 μM), and especially 2-pentadecanone (Ki=1.19 μM) and 2-hexyl-1-decanol (Ki=0.37 μM) strongly bound to CpalOBP2. CpalOBP15 exhibited high binding affinities for beta-ionone, 2-tridecanone, trans-nerolidol, and dodecyl aldehyde. Behavioral trials using the 14 compounds exhibiting high binding affinities for the CpalOBPs revealed that nine were able to elicit significant behavioral responses from C. pallens. Among them, farnesene and its corresponding alcohol, farnesol, elicited remarkable repellent behavioral responses from C. pallens. Our study provides several compounds that could be selected to develop slow-release agents that attract/repel C. pallens and to improve the search for strategies to eliminate insect pests. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Learning and memory in disease vector insects

    PubMed Central

    Vinauger, Clément; Lahondère, Chloé; Cohuet, Anna; Lazzari, Claudio R.; Riffell, Jeffrey A.

    2016-01-01

    Learning and memory plays an important role in host preference and parasite transmission by disease vector insects. Historically there has been a dearth of standardized protocols that permit testing their learning abilities, thus limiting discussion on the potential epidemiological consequences of learning and memory to a largely speculative extent. However, with increasing evidence that individual experience and associative learning can affect processes such as oviposition site selection and host preference, it is timely to review the recently acquired knowledge, identify research gaps and discuss the implication of learning in disease vector insects in perspective with control strategies. PMID:27450224

  15. Nature as a model for biomimetic sensors

    NASA Astrophysics Data System (ADS)

    Bleckmann, H.

    2012-04-01

    Mammals, like humans, rely mainly on acoustic, visual and olfactory information. In addition, most also use tactile and thermal cues for object identification and spatial orientation. Most non-mammalian animals also possess a visual, acoustic and olfactory system. However, besides these systems they have developed a large variety of highly specialized sensors. For instance, pyrophilous insects use infrared organs for the detection of forest fires while boas, pythons and pit vipers sense the infrared radiation emitted by prey animals. All cartilaginous and bony fishes as well as some amphibians have a mechnaosensory lateral line. It is used for the detection of weak water motions and pressure gradients. For object detection and spatial orientation many species of nocturnal fish employ active electrolocation. This review describes certain aspects of the detection and processing of infrared, mechano- and electrosensory information. It will be shown that the study of these seemingly exotic sensory systems can lead to discoveries that are useful for the construction of technical sensors and artificial control systems.

  16. A magnetic tether system to investigate visual and olfactory mediated flight control in Drosophila.

    PubMed

    Duistermars, Brian J; Frye, Mark

    2008-11-21

    It has been clear for many years that insects use visual cues to stabilize their heading in a wind stream. Many animals track odors carried in the wind. As such, visual stabilization of upwind tracking directly aids in odor tracking. But do olfactory signals directly influence visual tracking behavior independently from wind cues? Also, the recent deluge of research on the neurophysiology and neurobehavioral genetics of olfaction in Drosophila has motivated ever more technically sophisticated and quantitative behavioral assays. Here, we modified a magnetic tether system originally devised for vision experiments by equipping the arena with narrow laminar flow odor plumes. A fly is glued to a small steel pin and suspended in a magnetic field that enables it to yaw freely. Small diameter food odor plumes are directed downward over the fly's head, eliciting stable tracking by a hungry fly. Here we focus on the critical mechanics of tethering, aligning the magnets, devising the odor plume, and confirming stable odor tracking.

  17. Odour discrimination learning in the Indian greater short-nosed fruit bat (Cynopterus sphinx): differential expression of Egr-1, C-fos and PP-1 in the olfactory bulb, amygdala and hippocampus.

    PubMed

    Mukilan, Murugan; Bogdanowicz, Wieslaw; Marimuthu, Ganapathy; Rajan, Koilmani Emmanuvel

    2018-06-15

    Activity-dependent expression of immediate-early genes (IEGs) is induced by exposure to odour. The present study was designed to investigate whether there is differential expression of IEGs ( Egr-1 , C-fos ) in the brain region mediating olfactory memory in the Indian greater short-nosed fruit bat, Cynopterus sphinx We assumed that differential expression of IEGs in different brain regions may orchestrate a preference odour (PO) and aversive odour (AO) memory in C. sphinx We used preferred (0.8% w/w cinnamon powder) and aversive (0.4% w/v citral) odour substances, with freshly prepared chopped apple, to assess the behavioural response and induction of IEGs in the olfactory bulb, hippocampus and amygdala. After experiencing PO and AO, the bats initially responded to both, later only engaging in feeding bouts in response to the PO food. The expression pattern of EGR-1 and c-Fos in the olfactory bulb, hippocampus and amygdala was similar at different time points (15, 30 and 60 min) following the response to PO, but was different for AO. The response to AO elevated the level of c-Fos expression within 30 min and reduced it at 60 min in both the olfactory bulb and the hippocampus, as opposed to the continuous increase noted in the amygdala. In addition, we tested whether an epigenetic mechanism involving protein phosphatase-1 (PP-1) acts on IEG expression. The observed PP-1 expression and the level of unmethylated/methylated promoter revealed that C-fos expression is possibly controlled by odour-mediated regulation of PP-1. These results in turn imply that the differential expression of C-fos in the hippocampus and amygdala may contribute to olfactory learning and memory in C. sphinx . © 2018. Published by The Company of Biologists Ltd.

  18. Distinct molecular underpinnings of Drosophila olfactory trace conditioning

    PubMed Central

    Shuai, Yichun; Hu, Ying; Qin, Hongtao; Campbell, Robert A. A.; Zhong, Yi

    2011-01-01

    Trace conditioning is valued as a simple experimental model to assess how the brain associates events that are discrete in time. Here, we adapted an olfactory trace conditioning procedure in Drosophila melanogaster by training fruit flies to avoid an odor that is followed by foot shock many seconds later. The molecular underpinnings of the learning are distinct from the well-characterized simultaneous conditioning, where odor and punishment temporally overlap. First, Rutabaga adenylyl cyclase (Rut-AC), a putative molecular coincidence detector vital for simultaneous conditioning, is dispensable in trace conditioning. Second, dominant-negative Rac expression, thought to sustain early labile memory, significantly enhances learning of trace conditioning, but leaves simultaneous conditioning unaffected. We further show that targeting Rac inhibition to the mushroom body (MB) but not the antennal lobe (AL) suffices to achieve the enhancement effect. Moreover, the absence of trace conditioning learning in D1 dopamine receptor mutants is rescued by restoration of expression specifically in the adult MB. These results suggest the MB as a crucial neuroanatomical locus for trace conditioning, which may harbor a Rac activity-sensitive olfactory “sensory buffer” that later converges with the punishment signal carried by dopamine signaling. The distinct molecular signature of trace conditioning revealed here shall contribute to the understanding of how the brain overcomes a temporal gap in potentially related events. PMID:22123966

  19. The Seat of Insect Learning.

    ERIC Educational Resources Information Center

    Dyer, Fred C.

    1997-01-01

    Describes the role of mushroom bodies--cup-shaped structures perched atop the brain of an insect--in learning. Mushroom bodies may help fruit flies in learning meaningful odors, cockroaches in spatial learning, and honeybees both in locating pollen and nectar and in navigating back to the colony. (PVD)

  20. A neuromorphic network for generic multivariate data classification

    PubMed Central

    Schmuker, Michael; Pfeil, Thomas; Nawrot, Martin Paul

    2014-01-01

    Computational neuroscience has uncovered a number of computational principles used by nervous systems. At the same time, neuromorphic hardware has matured to a state where fast silicon implementations of complex neural networks have become feasible. En route to future technical applications of neuromorphic computing the current challenge lies in the identification and implementation of functional brain algorithms. Taking inspiration from the olfactory system of insects, we constructed a spiking neural network for the classification of multivariate data, a common problem in signal and data analysis. In this model, real-valued multivariate data are converted into spike trains using “virtual receptors” (VRs). Their output is processed by lateral inhibition and drives a winner-take-all circuit that supports supervised learning. VRs are conveniently implemented in software, whereas the lateral inhibition and classification stages run on accelerated neuromorphic hardware. When trained and tested on real-world datasets, we find that the classification performance is on par with a naïve Bayes classifier. An analysis of the network dynamics shows that stable decisions in output neuron populations are reached within less than 100 ms of biological time, matching the time-to-decision reported for the insect nervous system. Through leveraging a population code, the network tolerates the variability of neuronal transfer functions and trial-to-trial variation that is inevitably present on the hardware system. Our work provides a proof of principle for the successful implementation of a functional spiking neural network on a configurable neuromorphic hardware system that can readily be applied to real-world computing problems. PMID:24469794

  1. Brain activation associated to olfactory conditioned same-sex partner preference in male rats.

    PubMed

    Coria-Avila, Genaro A; Cibrian-Llanderal, Tamara; Díaz-Estrada, Victor X; García, Luis I; Toledo-Cárdenas, Rebeca; Pfaus, James G; Manzo, Jorge

    2018-03-01

    Sexual preferences can be strongly modified by Pavlovian learning. For instance, olfactory conditioned same-sex partner preference can occur when a sexually naïve male cohabits with an scented male during repeated periods under the effects of enhanced D2-type activity. Preference is observed days later via social and sexual behaviors. Herein we explored brain activity related to learned same-sex preference (Fos-Immunoreactivity, IR) following exposure to a conditioned odor paired with same-sex preference. During conditioning trials males received either saline or the D2-type receptor agonist quinpirole (QNP) and cohabitated during 24 h with a stimulus male that bore almond scent on the back as conditioned stimulus. This was repeated every 4 days, for a total of three trials. In a drug-free final test we assessed socio/sexual partner preference between the scented male and a receptive female. The results indicated that QNP-conditioned males developed a same-sex preference observed via contact, time spent, olfactory investigations, and non-contact erections. By contrast, saline-conditioned and intact (non-exposed to conditioning) males expressed an unconditioned preference for the female. Four days later the males were exposed to almond scent and their brains were processed for Fos-IR. Results indicated that the QNP-conditioned group expressed more Fos-IR in the nucleus accumbens (AcbSh), medial preoptic area (MPA), piriform cortex (Pir) and ventromedial nucleus of the hypothalamus (VMH) as compared to saline-conditioned. Intact males expressed the lowest Fos-IR in AcbSh and VMH, but the highest in MPA and Pir. We discuss the role of these areas in the learning process of same-sex partner preferences and olfactory discrimination. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Olfactory enrichment and scent cue associative learning in captive birds of prey.

    PubMed

    Nelson Slater, Melissa; Hauber, Mark E

    2017-03-01

    As the use of enrichment in zoos has become a standardized husbandry practice, the continued improvement of enrichment programs should be concomitant with empirical validation of those practices. The role of scent as enrichment remains an unexplored avenue for many bird species. We conducted a multi-phase experiment to introduce wrapped food packages and scent cuing to indicate food presence into the exhibits of several birds of prey species at the Bronx Zoo, New York City, to assess if scent can function as enrichment in these species. Our research found support for these birds associating a novel scent cue from a package with the presence of food inside. When tested with sham (empty) packages, these individuals more often and more extensively handled scented versus unscented packages. Overall, these results indicate the ability of some our small sample of individuals to learn olfactory cues and provide support for trials to include olfactory enrichment as a potential part of the daily routine for some birds of prey in zoo settings. © 2017 Wiley Periodicals, Inc.

  3. Long-term enhancement of synaptic transmission between antennal lobe and mushroom body in cultured Drosophila brain.

    PubMed

    Ueno, Kohei; Naganos, Shintaro; Hirano, Yukinori; Horiuchi, Junjiro; Saitoe, Minoru

    2013-01-01

    In Drosophila, the mushroom body (MB) is a critical brain structure for olfactory associative learning. During aversive conditioning, the MBs are thought to associate odour signals, conveyed by projection neurons (PNs) from the antennal lobe (AL), with shock signals conveyed through ascending fibres of the ventral nerve cord (AFV). Although synaptic transmission between AL and MB might play a crucial role for olfactory associative learning, its physiological properties have not been examined directly. Using a cultured Drosophila brain expressing a Ca(2+) indicator in the MBs, we investigated synaptic transmission and plasticity at the AL-MB synapse. Following stimulation with a glass micro-electrode, AL-induced Ca(2+) responses in the MBs were mediated through Drosophila nicotinic acetylcholine receptors (dnAChRs), while AFV-induced Ca(2+) responses were mediated through Drosophila NMDA receptors (dNRs). AL-MB synaptic transmission was enhanced more than 2 h after the simultaneous 'associative-stimulation' of AL and AFV, and such long-term enhancement (LTE) was specifically formed at the AL-MB synapses but not at the AFV-MB synapses. AL-MB LTE was not induced by intense stimulation of the AL alone, and the LTE decays within 60 min after subsequent repetitive AL stimulation. These phenotypes of associativity, input specificity and persistence of AL-MB LTE are highly reminiscent of olfactory memory. Furthermore, similar to olfactory aversive memory, AL-MB LTE formation required activation of the Drosophila D1 dopamine receptor, DopR, along with dnAChR and dNR during associative stimulations. These physiological and genetic analogies indicate that AL-MB LTE might be a relevant cellular model for olfactory memory.

  4. Long-term enhancement of synaptic transmission between antennal lobe and mushroom body in cultured Drosophila brain

    PubMed Central

    Ueno, Kohei; Naganos, Shintaro; Hirano, Yukinori; Horiuchi, Junjiro; Saitoe, Minoru

    2013-01-01

    In Drosophila, the mushroom body (MB) is a critical brain structure for olfactory associative learning. During aversive conditioning, the MBs are thought to associate odour signals, conveyed by projection neurons (PNs) from the antennal lobe (AL), with shock signals conveyed through ascending fibres of the ventral nerve cord (AFV). Although synaptic transmission between AL and MB might play a crucial role for olfactory associative learning, its physiological properties have not been examined directly. Using a cultured Drosophila brain expressing a Ca2+ indicator in the MBs, we investigated synaptic transmission and plasticity at the AL–MB synapse. Following stimulation with a glass micro-electrode, AL-induced Ca2+ responses in the MBs were mediated through Drosophila nicotinic acetylcholine receptors (dnAChRs), while AFV-induced Ca2+ responses were mediated through Drosophila NMDA receptors (dNRs). AL–MB synaptic transmission was enhanced more than 2 h after the simultaneous ‘associative-stimulation’ of AL and AFV, and such long-term enhancement (LTE) was specifically formed at the AL–MB synapses but not at the AFV–MB synapses. AL–MB LTE was not induced by intense stimulation of the AL alone, and the LTE decays within 60 min after subsequent repetitive AL stimulation. These phenotypes of associativity, input specificity and persistence of AL–MB LTE are highly reminiscent of olfactory memory. Furthermore, similar to olfactory aversive memory, AL–MB LTE formation required activation of the Drosophila D1 dopamine receptor, DopR, along with dnAChR and dNR during associative stimulations. These physiological and genetic analogies indicate that AL–MB LTE might be a relevant cellular model for olfactory memory. PMID:23027817

  5. Active Sampling State Dynamically Enhances Olfactory Bulb Odor Representation.

    PubMed

    Jordan, Rebecca; Fukunaga, Izumi; Kollo, Mihaly; Schaefer, Andreas T

    2018-06-27

    The olfactory bulb (OB) is the first site of synaptic odor information processing, yet a wealth of contextual and learned information has been described in its activity. To investigate the mechanistic basis of contextual modulation, we use whole-cell recordings to measure odor responses across rapid learning episodes in identified mitral/tufted cells (MTCs). Across these learning episodes, diverse response changes occur already during the first sniff cycle. Motivated mice develop active sniffing strategies across learning that robustly correspond to the odor response changes, resulting in enhanced odor representation. Evoking fast sniffing in different behavioral states demonstrates that response changes during active sampling exceed those predicted from feedforward input alone. Finally, response changes are highly correlated in tufted cells, but not mitral cells, indicating there are cell-type-specific effects on odor representation during active sampling. Altogether, we show that active sampling is strongly associated with enhanced OB responsiveness on rapid timescales. Copyright © 2018 The Francis Crick Institute. Published by Elsevier Inc. All rights reserved.

  6. Differential associative training enhances olfactory acuity in Drosophila melanogaster.

    PubMed

    Barth, Jonas; Dipt, Shubham; Pech, Ulrike; Hermann, Moritz; Riemensperger, Thomas; Fiala, André

    2014-01-29

    Training can improve the ability to discriminate between similar, confusable stimuli, including odors. One possibility of enhancing behaviorally expressed discrimination (i.e., sensory acuity) relies on differential associative learning, during which animals are forced to detect the differences between similar stimuli. Drosophila represents a key model organism for analyzing neuronal mechanisms underlying both odor processing and olfactory learning. However, the ability of flies to enhance fine discrimination between similar odors through differential associative learning has not been analyzed in detail. We performed associative conditioning experiments using chemically similar odorants that we show to evoke overlapping neuronal activity in the fly's antennal lobes and highly correlated activity in mushroom body lobes. We compared the animals' performance in discriminating between these odors after subjecting them to one of two types of training: either absolute conditioning, in which only one odor is reinforced, or differential conditioning, in which one odor is reinforced and a second odor is explicitly not reinforced. First, we show that differential conditioning decreases behavioral generalization of similar odorants in a choice situation. Second, we demonstrate that this learned enhancement in olfactory acuity relies on both conditioned excitation and conditioned inhibition. Third, inhibitory local interneurons in the antennal lobes are shown to be required for behavioral fine discrimination between the two similar odors. Fourth, differential, but not absolute, training causes decorrelation of odor representations in the mushroom body. In conclusion, differential training with similar odors ultimately induces a behaviorally expressed contrast enhancement between the two similar stimuli that facilitates fine discrimination.

  7. The GABAergic Anterior Paired Lateral Neurons Facilitate Olfactory Reversal Learning in "Drosophila"

    ERIC Educational Resources Information Center

    Wu, Yanying; Ren, Qingzhong; Li, Hao; Guo, Aike

    2012-01-01

    Reversal learning has been widely used to probe the implementation of cognitive flexibility in the brain. Previous studies in monkeys identified an essential role of the orbitofrontal cortex (OFC) in reversal learning. However, the underlying circuits and molecular mechanisms are poorly understood. Here, we use the T-maze to investigate the neural…

  8. Modification of CO2 avoidance behaviour in Drosophila by inhibitory odorants.

    PubMed

    Turner, Stephanie Lynn; Ray, Anandasankar

    2009-09-10

    The fruitfly Drosophila melanogaster exhibits a robust and innate olfactory-based avoidance behaviour to CO(2), a component of odour emitted from stressed flies. Specialized neurons in the antenna and a dedicated neuronal circuit in the higher olfactory system mediate CO(2) detection and avoidance. However, fruitflies need to overcome this avoidance response in some environments that contain CO(2) such as ripening fruits and fermenting yeast, which are essential food sources. Very little is known about the molecular and neuronal basis of this unique, context-dependent modification of innate olfactory avoidance behaviour. Here we identify a new class of odorants present in food that directly inhibit CO(2)-sensitive neurons in the antenna. Using an in vivo expression system we establish that the odorants act on the Gr21a/Gr63a CO(2) receptor. The presence of these odorants significantly and specifically reduces CO(2)-mediated avoidance behaviour, as well as avoidance mediated by 'Drosophila stress odour'. We propose a model in which behavioural avoidance to CO(2) is directly influenced by inhibitory interactions of the novel odours with CO(2) receptors. Furthermore, we observe differences in the temporal dynamics of inhibition: the effect of one of these odorants lasts several minutes beyond the initial exposure. Notably, animals that have been briefly pre-exposed to this odorant do not respond to the CO(2) avoidance cue even after the odorant is no longer present. We also show that related odorants are effective inhibitors of the CO(2) response in Culex mosquitoes that transmit West Nile fever and filariasis. Our findings have broader implications in highlighting the important role of inhibitory odorants in olfactory coding, and in their potential to disrupt CO(2)-mediated host-seeking behaviour in disease-carrying insects like mosquitoes.

  9. Comparative analyses of olfactory systems in terrestrial crabs (Brachyura): evidence for aerial olfaction?

    PubMed Central

    Krieger, Jakob; Braun, Philipp; Rivera, Nicole T.; Schubart, Christoph D.; Müller, Carsten H.G.

    2015-01-01

    Adaptations to a terrestrial lifestyle occurred convergently multiple times during the evolution of the arthropods. This holds also true for the “true crabs” (Brachyura), a taxon that includes several lineages that invaded land independently. During an evolutionary transition from sea to land, animals have to develop a variety of physiological and anatomical adaptations to a terrestrial life style related to respiration, reproduction, development, circulation, ion and water balance. In addition, sensory systems that function in air instead of in water are essential for an animal’s life on land. Besides vision and mechanosensory systems, on land, the chemical senses have to be modified substantially in comparison to their function in water. Among arthropods, insects are the most successful ones to evolve aerial olfaction. Various aspects of terrestrial adaptation have also been analyzed in those crustacean lineages that evolved terrestrial representatives including the taxa Anomala, Brachyura, Amphipoda, and Isopoda. We are interested in how the chemical senses of terrestrial crustaceans are modified to function in air. Therefore, in this study, we analyzed the brains and more specifically the structure of the olfactory system of representatives of brachyuran crabs that display different degrees of terrestriality, from exclusively marine to mainly terrestrial. The methods we used included immunohistochemistry, detection of autofluorescence- and confocal microscopy, as well as three-dimensional reconstruction and morphometry. Our comparative approach shows that both the peripheral and central olfactory pathways are reduced in terrestrial members in comparison to their marine relatives, suggesting a limited function of their olfactory system on land. We conclude that for arthropod lineages that invaded land, evolving aerial olfaction is no trivial task. PMID:26713228

  10. Experience during Early Adulthood Shapes the Learning Capacities and the Number of Synaptic Boutons in the Mushroom Bodies of Honey Bees ("Apis mellifera")

    ERIC Educational Resources Information Center

    Cabirol, Amélie; Brooks, Rufus; Groh, Claudia; Barron, Andrew B.; Devaud, Jean-Marc

    2017-01-01

    The honey bee mushroom bodies (MBs) are brain centers required for specific learning tasks. Here, we show that environmental conditions experienced as young adults affect the maturation of MB neuropil and performance in a MB-dependent learning task. Specifically, olfactory reversal learning was selectively impaired following early exposure to an…

  11. Candidate pheromone receptors of codling moth Cydia pomonella respond to pheromones and kairomones

    PubMed Central

    Cattaneo, Alberto Maria; Gonzalez, Francisco; Bengtsson, Jonas M.; Corey, Elizabeth A.; Jacquin-Joly, Emmanuelle; Montagné, Nicolas; Salvagnin, Umberto; Walker, William B.; Witzgall, Peter; Anfora, Gianfranco; Bobkov, Yuriy V.

    2017-01-01

    Olfaction plays a dominant role in the mate-finding and host selection behaviours of the codling moth (Cydia pomonella), an important pest of apple, pear and walnut orchards worldwide. Antennal transcriptome analysis revealed a number of abundantly expressed genes related to the moth olfactory system, including those encoding the olfactory receptors (ORs) CpomOR1, CpomOR3 and CpomOR6a, which belong to the pheromone receptor (PR) lineage, and the co-receptor (CpomOrco). Using heterologous expression, in both Drosophila olfactory sensory neurones and in human embryonic kidney cells, together with electrophysiological recordings and calcium imaging, we characterize the basic physiological and pharmacological properties of these receptors and demonstrate that they form functional ionotropic receptor channels. Both the homomeric CpomOrco and heteromeric CpomOrco + OR complexes can be activated by the common Orco agonists VUAA1 and VUAA3, as well as inhibited by the common Orco antagonists amiloride derivatives. CpomOR3 responds to the plant volatile compound pear ester ethyl-(E,Z)-2,4-decadienoate, while CpomOR6a responds to the strong pheromone antagonist codlemone acetate (E,E)-8,10-dodecadien-1-yl acetate. These findings represent important breakthroughs in the deorphanization of codling moth pheromone receptors, as well as more broadly into insect ecology and evolution and, consequently, for the development of sustainable pest control strategies based on manipulating chemosensory communication. PMID:28117454

  12. Uncovering the functional constraints underlying the genomic organization of the odorant-binding protein genes.

    PubMed

    Librado, Pablo; Rozas, Julio

    2013-01-01

    Animal olfactory systems have a critical role for the survival and reproduction of individuals. In insects, the odorant-binding proteins (OBPs) are encoded by a moderately sized gene family, and mediate the first steps of the olfactory processing. Most OBPs are organized in clusters of a few paralogs, which are conserved over time. Currently, the biological mechanism explaining the close physical proximity among OBPs is not yet established. Here, we conducted a comprehensive study aiming to gain insights into the mechanisms underlying the OBP genomic organization. We found that the OBP clusters are embedded within large conserved arrangements. These organizations also include other non-OBP genes, which often encode proteins integral to plasma membrane. Moreover, the conservation degree of such large clusters is related to the following: 1) the promoter architecture of the confined genes, 2) a characteristic transcriptional environment, and 3) the chromatin conformation of the chromosomal region. Our results suggest that chromatin domains may restrict the location of OBP genes to regions having the appropriate transcriptional environment, leading to the OBP cluster structure. However, the appropriate transcriptional environment for OBP and the other neighbor genes is not dominated by reduced levels of expression noise. Indeed, the stochastic fluctuations in the OBP transcript abundance may have a critical role in the combinatorial nature of the olfactory coding process.

  13. Peripheral and Central Olfactory Tuning in a Moth

    PubMed Central

    Ong, Rose C.

    2012-01-01

    Animals can be innately attracted to certain odorants. Because these attractants are particularly salient, they might be expected to induce relatively strong responses throughout the olfactory pathway, helping animals detect the most relevant odors but limiting flexibility to respond to other odors. Alternatively, specific neural wiring might link innately preferred odors to appropriate behaviors without a need for intensity biases. How nonpheromonal attractants are processed by the general olfactory system remains largely unknown. In the moth Manduca sexta, we studied this with a set of innately preferred host plant odors and other, neutral odors. Electroantennogram recordings showed that, as a population, olfactory receptor neurons (ORNs) did not respond with greater intensity to host plant odors, and further local field potential recordings showed that no specific amplification of signals induced by host plant odors occurred between the first olfactory center and the second. Moreover, when odorants were mutually diluted to elicit equally intense output from the ORNs, moths were able to learn to associate all tested odorants equally well with food reward. Together, these results suggest that, although nonpheromonal host plant odors activate broadly distributed responses, they may be linked to attractive behaviors mainly through specific wiring in the brain. PMID:22362866

  14. Perceptual and Neural Olfactory Similarity in Honeybees

    PubMed Central

    Sandoz, Jean-Christophe

    2005-01-01

    The question of whether or not neural activity patterns recorded in the olfactory centres of the brain correspond to olfactory perceptual measures remains unanswered. To address this question, we studied olfaction in honeybees Apis mellifera using the olfactory conditioning of the proboscis extension response. We conditioned bees to odours and tested generalisation responses to different odours. Sixteen odours were used, which varied both in their functional group (primary and secondary alcohols, aldehydes and ketones) and in their carbon-chain length (from six to nine carbons).The results obtained by presentation of a total of 16 × 16 odour pairs show that (i) all odorants presented could be learned, although acquisition was lower for short-chain ketones; (ii) generalisation varied depending both on the functional group and the carbon-chain length of odours trained; higher generalisation was found between long-chain than between short-chain molecules and between groups such as primary and secondary alcohols; (iii) for some odour pairs, cross-generalisation between odorants was asymmetric; (iv) a putative olfactory space could be defined for the honeybee with functional group and carbon-chain length as inner dimensions; (v) perceptual distances in such a space correlate well with physiological distances determined from optophysiological recordings of antennal lobe activity. We conclude that functional group and carbon-chain length are inner dimensions of the honeybee olfactory space and that neural activity in the antennal lobe reflects the perceptual quality of odours. PMID:15736975

  15. The impact of expertise in olfaction

    PubMed Central

    Royet, Jean-Pierre; Plailly, Jane; Saive, Anne-Lise; Veyrac, Alexandra; Delon-Martin, Chantal

    2013-01-01

    Olfactory expertise remains poorly understood, most likely because experts in odor, such as perfumers, sommeliers, and oenologists, are much rarer than experts in other modalities, such as musicians or sportsmen. In this review, we address the specificities of odor expertise in both odor experts and in a priori untrained individuals who have undergone specific olfactory training in the frame of an experiment, such as repeated exposure to odors or associative learning. Until the 21st century, only the behavioral effects of olfactory training of untrained control individuals had been reported, revealing an improvement of olfactory performance in terms of sensitivity, discrimination, memory, and identification. Behavioral studies of odor experts have been scarce, with inconsistent or inconclusive results. Recently, the development of cerebral imaging techniques has enabled the identification of brain areas and neural networks involved in odor processing, revealing functional and structural modifications as a function of experience. The behavioral approach to odor expertise has also evolved. Researchers have particularly focused on odor mental imagery, which is characteristic of odor experts, because this ability is absent in the average person but is part of a perfumer’s professional practice. This review summarizes behavioral, functional, and structural findings on odor expertise. These data are compared with those obtained using animals subjected to prolonged olfactory exposure or to olfactory-enriched environments and are discussed in the context of functional and structural plasticity. PMID:24379793

  16. Odor Preference Learning and Memory Modify GluA1 Phosphorylation and GluA1 Distribution in the Neonate Rat Olfactory Bulb: Testing the AMPA Receptor Hypothesis in an Appetitive Learning Model

    ERIC Educational Resources Information Center

    Cui, Wen; Darby-King, Andrea; Grimes, Matthew T.; Howland, John G.; Wang, Yu Tian; McLean, John H.; Harley, Carolyn W.

    2011-01-01

    An increase in synaptic AMPA receptors is hypothesized to mediate learning and memory. AMPA receptor increases have been reported in aversive learning models, although it is not clear if they are seen with memory maintenance. Here we examine AMPA receptor changes in a cAMP/PKA/CREB-dependent appetitive learning model: odor preference learning in…

  17. Attraction of female grapevine moth to common and specific olfactory cues from 2 host plants.

    PubMed

    Tasin, Marco; Bäckman, Anna-Carin; Anfora, Gianfranco; Carlin, Silvia; Ioriatti, Claudio; Witzgall, Peter

    2010-01-01

    In herbivorous insects with more than 1 host plant, attraction to host odor could conceptually be mediated by common compounds, by specific compounds released by each plant or by combinations of common and specific compounds. We have compared the attraction of female grapevine moth, Lobesia botrana, with specific and common (shared) odors from 2 different plants: a wild host (Daphne gnidium) and a recently colonized host (Vitis vinifera). Odor blends eliciting female attraction to V. vinifera have previously been identified. In this study, olfactory cues from D. gnidium were identified by electroantennographic detection and chemical analysis. The attraction of mated females to synthetic odor blends was then tested in a wind tunnel bioassay. Female attraction was elicited by a blend of compounds released by both from D. gnidium and V. vinifera and by 2 blends with the compounds released specifically from each host. However, more complete odor blends of the 2 plants elicited stronger attraction. The common compounds in combination with the specific compounds of D. gnidium were the most attractive blend. This blend was tested with the common compounds presented both in the ratio emitted by D. gnidium and by V. vinifera, but there was no difference in female attraction. Our findings suggest that specific as well as common plant odor cues play a role in L. botrana host recognition and that there is plasticity in attraction to partial blends. The results are discussed in relation to mechanisms behind host odor recognition and the evolution of insect-plant associations.

  18. Comparative analysis of behavioral and transcriptional variation underlying CO2 sensory neuron function and development in Drosophila.

    PubMed

    Pan, Jia Wern; McLaughlin, Joi; Yang, Haining; Leo, Charles; Rambarat, Paula; Okuwa, Sumie; Monroy-Eklund, Anaïs; Clark, Sabrina; Jones, Corbin D; Volkan, Pelin Cayirlioglu

    2017-10-02

    Carbon dioxide is an important environmental cue for many insects, regulating many behaviors including some that have direct human impacts. To further improve our understanding of how this system varies among closely related insect species, we examined both the behavioral response to CO 2 as well as the transcriptional profile of key developmental regulators of CO 2 sensory neurons in the olfactory system across the Drosophila genus. We found that CO 2 generally evokes repulsive behavior across most of the Drosophilids we examined, but this behavior has been lost or reduced in several lineages. Comparisons of transcriptional profiles from the developing and adult antennae for subset these species suggest that behavioral differences in some species may be due to differences in the expression of the CO 2 co-receptor Gr63a. Furthermore, these differences in Gr63a expression are correlated with changes in the expression of a few genes known to be involved in the development of the CO 2 circuit, namely dac, an important regulator of sensilla fate for sensilla that house CO 2 ORNs, and mip120, a member of the MMB/dREAM epigenetic regulatory complex that regulates CO 2 receptor expression. In contrast, most of the other known structural, molecular, and developmental components of the peripheral Drosophila CO 2 olfactory system seem to be well-conserved across all examined lineages. These findings suggest that certain components of CO 2 sensory ORN development may be more evolutionarily labile, and may contribute to differences in CO 2 -evoked behavioral responses across species.

  19. An information theoretic model of information processing in the Drosophila olfactory system: the role of inhibitory neurons for system efficiency.

    PubMed

    Faghihi, Faramarz; Kolodziejski, Christoph; Fiala, André; Wörgötter, Florentin; Tetzlaff, Christian

    2013-12-20

    Fruit flies (Drosophila melanogaster) rely on their olfactory system to process environmental information. This information has to be transmitted without system-relevant loss by the olfactory system to deeper brain areas for learning. Here we study the role of several parameters of the fly's olfactory system and the environment and how they influence olfactory information transmission. We have designed an abstract model of the antennal lobe, the mushroom body and the inhibitory circuitry. Mutual information between the olfactory environment, simulated in terms of different odor concentrations, and a sub-population of intrinsic mushroom body neurons (Kenyon cells) was calculated to quantify the efficiency of information transmission. With this method we study, on the one hand, the effect of different connectivity rates between olfactory projection neurons and firing thresholds of Kenyon cells. On the other hand, we analyze the influence of inhibition on mutual information between environment and mushroom body. Our simulations show an expected linear relation between the connectivity rate between the antennal lobe and the mushroom body and firing threshold of the Kenyon cells to obtain maximum mutual information for both low and high odor concentrations. However, contradicting all-day experiences, high odor concentrations cause a drastic, and unrealistic, decrease in mutual information for all connectivity rates compared to low concentration. But when inhibition on the mushroom body is included, mutual information remains at high levels independent of other system parameters. This finding points to a pivotal role of inhibition in fly information processing without which the system efficiency will be substantially reduced.

  20. Focal Uncaging of GABA Reveals a Temporally Defined Role for GABAergic Inhibition during Appetitive Associative Olfactory Conditioning in Honeybees

    ERIC Educational Resources Information Center

    Raccuglia, Davide; Mueller, Uli

    2013-01-01

    Throughout the animal kingdom, the inhibitory neurotransmitter ?-aminobutyric acid (GABA) is a key modulator of physiological processes including learning. With respect to associative learning, the exact time in which GABA interferes with the molecular events of learning has not yet been clearly defined. To address this issue, we used two…

  1. Chronically Increased G[subscript s][alpha] Signaling Disrupts Associative and Spatial Learning

    ERIC Educational Resources Information Center

    Bourtchouladze, Rusiko; Patterson, Susan L.; Kelly, Michele P.; Kreibich, Arati; Kandel, Eric R.; Abel, Ted

    2006-01-01

    The cAMP/PKA pathway plays a critical role in learning and memory systems in animals ranging from mice to "Drosophila" to "Aplysia." Studies of olfactory learning in "Drosophila" suggest that altered expression of either positive or negative regulators of the cAMP/PKA signaling pathway beyond a certain optimum range may be deleterious. Here we…

  2. Persistent ERK Activation Maintains Learning-Induced Long-Lasting Modulation of Synaptic Connectivity

    ERIC Educational Resources Information Center

    Cohen-Matsliah, Sivan Ida; Seroussi, Yaron; Rosenblum, Kobi; Barkai, Edi

    2008-01-01

    Pyramidal neurons in the piriform cortex from olfactory-discrimination (OD) trained rats undergo synaptic modifications that last for days after learning. A particularly intriguing modification is reduced paired-pulse facilitation (PPF) in the synapses interconnecting these cells; a phenomenon thought to reflect enhanced synaptic release. The…

  3. CaMKII knockdown affects both early and late phases of olfactory long-term memory in the honeybee.

    PubMed

    Scholl, Christina; Kübert, Natalie; Muenz, Thomas S; Rössler, Wolfgang

    2015-12-01

    Honeybees are able to solve complex learning tasks and memorize learned information for long time periods. The molecular mechanisms mediating long-term memory (LTM) in the honeybee Apis mellifera are, to a large part, still unknown. We approached this question by investigating the potential function of the calcium/calmodulin-dependent protein kinase II (CaMKII), an enzyme known as a 'molecular memory switch' in vertebrates. CaMKII is able to switch to a calcium-independent constitutively active state, providing a mechanism for a molecular memory and has further been shown to play an essential role in structural synaptic plasticity. Using a combination of knockdown by RNA interference and pharmacological manipulation, we disrupted the function of CaMKII during olfactory learning and memory formation. We found that learning, memory acquisition and mid-term memory were not affected, but all manipulations consistently resulted in an impaired LTM. Both early LTM (24 h after learning) and late LTM (72 h after learning) were significantly disrupted, indicating the necessity of CaMKII in two successive stages of LTM formation in the honeybee. © 2015. Published by The Company of Biologists Ltd.

  4. Genealogical correspondence of a forebrain centre implies an executive brain in the protostome–deuterostome bilaterian ancestor

    PubMed Central

    2016-01-01

    Orthologous genes involved in the formation of proteins associated with memory acquisition are similarly expressed in forebrain centres that exhibit similar cognitive properties. These proteins include cAMP-dependent protein kinase A catalytic subunit (PKA-Cα) and phosphorylated Ca2+/calmodulin-dependent protein kinase II (pCaMKII), both required for long-term memory formation which is enriched in rodent hippocampus and insect mushroom bodies, both implicated in allocentric memory and both possessing corresponding neuronal architectures. Antibodies against these proteins resolve forebrain centres, or their equivalents, having the same ground pattern of neuronal organization in species across five phyla. The ground pattern is defined by olfactory or chemosensory afferents supplying systems of parallel fibres of intrinsic neurons intersected by orthogonal domains of afferent and efferent arborizations with local interneurons providing feedback loops. The totality of shared characters implies a deep origin in the protostome–deuterostome bilaterian ancestor of elements of a learning and memory circuit. Proxies for such an ancestral taxon are simple extant bilaterians, particularly acoels that express PKA-Cα and pCaMKII in discrete anterior domains that can be properly referred to as brains. PMID:26598732

  5. Improved spatial accuracy of functional maps in the rat olfactory bulb using supervised machine learning approach.

    PubMed

    Murphy, Matthew C; Poplawsky, Alexander J; Vazquez, Alberto L; Chan, Kevin C; Kim, Seong-Gi; Fukuda, Mitsuhiro

    2016-08-15

    Functional MRI (fMRI) is a popular and important tool for noninvasive mapping of neural activity. As fMRI measures the hemodynamic response, the resulting activation maps do not perfectly reflect the underlying neural activity. The purpose of this work was to design a data-driven model to improve the spatial accuracy of fMRI maps in the rat olfactory bulb. This system is an ideal choice for this investigation since the bulb circuit is well characterized, allowing for an accurate definition of activity patterns in order to train the model. We generated models for both cerebral blood volume weighted (CBVw) and blood oxygen level dependent (BOLD) fMRI data. The results indicate that the spatial accuracy of the activation maps is either significantly improved or at worst not significantly different when using the learned models compared to a conventional general linear model approach, particularly for BOLD images and activity patterns involving deep layers of the bulb. Furthermore, the activation maps computed by CBVw and BOLD data show increased agreement when using the learned models, lending more confidence to their accuracy. The models presented here could have an immediate impact on studies of the olfactory bulb, but perhaps more importantly, demonstrate the potential for similar flexible, data-driven models to improve the quality of activation maps calculated using fMRI data. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Elevated Carbon Dioxide Concentration Reduces Alarm Signaling in Aphids.

    PubMed

    Boullis, Antoine; Fassotte, Bérénice; Sarles, Landry; Lognay, Georges; Heuskin, Stéphanie; Vanderplanck, Maryse; Bartram, Stefan; Haubruge, Eric; Francis, Frédéric; Verheggen, François J

    2017-02-01

    Insects often rely on olfaction to communicate with conspecifics. While the chemical language of insects has been deciphered in recent decades, few studies have assessed how changes in atmospheric greenhouse gas concentrations might impact pheromonal communication in insects. Here, we hypothesize that changes in the concentration of atmospheric carbon dioxide affect the whole dynamics of alarm signaling in aphids, including: (1) the production of the active compound (E)-β-farnesene (Eβf), (2) emission behavior when under attack, (3) perception by the olfactory apparatus, and (4) the escape response. We reared two strains of the pea aphid, Acyrthosiphon pisum, under ambient and elevated CO 2 concentrations over several generations. We found that an increase in CO 2 concentration reduced the production (i.e., individual content) and emission (released under predation events) of Eβf. While no difference in Eβf neuronal perception was observed, we found that an increase in CO 2 strongly reduced the escape behavior expressed by an aphid colony following exposure to natural doses of alarm pheromone. In conclusion, our results confirm that changes to greenhouse gases impact chemical communication in the pea aphid, and could potentially have a cascade effect on interactions with higher trophic levels.

  7. The Mantis Project.

    ERIC Educational Resources Information Center

    Palopoli, Maria L.

    1998-01-01

    Explains an integrated insect unit in which students learn about the characteristics, life cycle, and environment of an organism; learn about specific body structures; and make inferences about the body structure and behaviors of the insects. (DDR)

  8. Repellent and deterrent effects of SS220, Picaridin, and Deet suppress human blood feeding by Aedes aegypti, Anopheles stephensi, and Phlebotomus papatasi.

    PubMed

    Klun, Jerome A; Khrimian, Ashot; Debboun, Mustapha

    2006-01-01

    A series of behavioral tests with Aedes aegypti (L.), Anopheles stephensi Liston, mosquitoes, and the sand fly Phlebotomus papatasi Scopoli in the presence of Deet, SS220, and Picaridin topically applied to the skin of human volunteers showed that the insects were deterred from feeding on and repelled from surfaces emanating the compounds. When offered a 12- or 24-cm2 area of skin, one-half treated with compound and one-half untreated, the insects fed almost exclusively on untreated skin. The sand flies and mosquitoes did not at any time physically contact chemically treated surfaces. When treated and untreated skin areas were covered with cloth, insects contacted, landed, and bit only through cloth covering untreated skin. These observations provided evidence that the compounds deterred feeding and repelled insects from treated surfaces primarily as a result of olfactory sensing. When cloth, one-half untreated and one-half treated with chemical, was placed over untreated skin, insects only touched and specifically bit through the untreated cloth. This showed that the activity of the chemicals does not involve a chemical x skin interaction. In the presence of any of the three chemicals, no matter how they were presented to the insects, overall population biting activity was reduced by about one-half relative to controls. This reduction showed a true repellent effect for the compounds. Results clearly showed that Deet, SS220, and Picaridin exert repellent and deterrent effects upon the behavior of mosquitoes and sand flies. Heretofore, the combined behavioral effects of these compounds upon mosquito and sand fly behavior were unknown. Moreover, protection afforded by Deet, SS220, and Picaridin against the feeding of these three disease vectors on humans is mechanistically a consequence of the two chemical effects.

  9. Olfactory function and quality of life after olfaction rehabilitation in total laryngectomees.

    PubMed

    Santos, Christiane Gouvêa Dos; Bergmann, Anke; Coça, Kaliani Lima; Garcia, Angela Albuquerque; Valente, Tânia Cristina de Oliveira

    2016-01-01

    To evaluate the effects of olfaction rehabilitation in the olfactory function and quality of life of total laryngectomized patients. Pre-post intervention clinical study conducted with total laryngectomees submitted to olfaction rehabilitation by means of the Nasal Airflow-Inducing Maneuver (NAIM) using the University of Pennsylvania Smell Identification Test (UPSIT), Olfactory Acuity Questionnaires, a Monitoring Questionnaire, and the University of Washington Quality of Life Questionnaire (UW-QOL). Participants were 45 total laryngectomees. Before olfaction rehabilitation, 48.9% of the participants had their olfactic abilities classified as anosmia, 46.8% as microsmia, and 4.4% were considered within the normal range. After olfaction rehabilitation, 4.4% of the participants were classified as anosmia and 31.1% were within the normal range. In the Smell Identification Test, the mean score after rehabilitation showed statistically significant improvement. Reponses to the Olfactory Acuity Questionnaires after rehabilitation showed improvement in the frequency of perception regarding smell, taste, and the ability to smell perfume, food, leaking gas, and smoke, after learning the maneuver. Although the scores in the Quality of Life Questionnaire already indicated good quality of life before the surgery, post-intervention values were statistically significant. Olfaction rehabilitation improves olfactory function and has a positive impact on the activities of daily living and quality of life of total laryngectomized patients.

  10. A Behavioral and Genetic Dissection of Two Forms of Olfactory Plasticity in Caenorhabditis elegans: Adaptation and Habituation

    PubMed Central

    Bernhard, Nirit; van der Kooy, Derek

    2000-01-01

    Continuous presentation of an olfactory stimulus causes a decrement of the chemotaxis response in the nematode Caenorhabditis elegans. However, the differences between the learning process of habituation (a readily reversible decrease in behavioral response) and other types of olfactory plasticity such as adaptation (a decrement in response due to sensory fatigue, which cannot be dishabituated) have not been addressed. The volatile odorant diacetyl (DA) was used within a single paradigm to assess the distinct processes of olfactory adaptation and habituation. Preexposing and testing worms to 100% DA vapors caused a chemotaxis decrement that was not reversible despite the presentation of potentially dishabituating stimuli. This DA adaptation was abolished in worms with an odr-10 mutation (encoding a high-affinity DA receptor on the AWA neuron), even though naive chemotaxis remained unaffected. Conversely, DA adaptation remained intact in odr-1 mutants (defective in AWC neuron-mediated olfactory behavior), even though naive chemotaxis to DA decreased. Surprisingly, exposure to vapors of intermediate concentrations of DA (0.01% and 25%) did not cause worms to exhibit any response decrement. In contrast to preexposure to high DA concentrations, preexposure to low DA concentrations (0.001%) produced habituation of the chemotaxis response (a dishabituating stimulus could reverse the response decrement back to baseline levels). The distinct behavioral effects produced by DA preexposure highlight a concentration-dependent dissociation between two decremental olfactory processes: adaptation at high DA concentrations versus habituation at low DA concentrations. PMID:10940320

  11. Plant scents modify innate colour preference in foraging swallowtail butterflies.

    PubMed

    Yoshida, Mina; Itoh, Yuki; Ômura, Hisashi; Arikawa, Kentaro; Kinoshita, Michiyo

    2015-07-01

    Flower-visiting insects exhibit innate preferences for particular colours. A previous study demonstrated that naive Papilio xuthus females prefer yellow and red, whereas males are more attracted to blue. Here, we demonstrate that the innate colour preference can be modified by olfactory stimuli in a sexually dimorphic manner. Naive P. xuthus were presented with four coloured discs: blue, green, yellow and red. The innate colour preference (i.e. the colour first landed on) of the majority of individuals was blue. When scent from essential oils of either orange flower or lily was introduced to the room, females' tendency to select the red disc increased. Scents of lavender and flowering potted Hibiscus rosa-sinensis, however, were less effective. Interestingly, the odour of the non-flowering larval host plant, Citrus unshiu, shifted the preference to green in females. In males, however, all plant scents were less effective than in females, such that blue was always the most favoured colour. These observations indicate that interactions between visual and olfactory cues play a more prominent role in females. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  12. Aversive Olfactory Learning and Associative Long-Term Memory in "Caenorhabditis elegans"

    ERIC Educational Resources Information Center

    Amano, Hisayuki; Maruyama, Ichiro N.

    2011-01-01

    The nematode "Caenorhabditis elegans" ("C. elegans") adult hermaphrodite has 302 invariant neurons and is suited for cellular and molecular studies on complex behaviors including learning and memory. Here, we have developed protocols for classical conditioning of worms with 1-propanol, as a conditioned stimulus (CS), and hydrochloride (HCl) (pH…

  13. Olfactory Interference during Inhibitory Backward Pairing in Honey Bees

    PubMed Central

    Dacher, Matthieu; Smith, Brian H.

    2008-01-01

    Background Restrained worker honey bees are a valuable model for studying the behavioral and neural bases of olfactory plasticity. The proboscis extension response (PER; the proboscis is the mouthpart of honey bees) is released in response to sucrose stimulation. If sucrose stimulation is preceded one or a few times by an odor (forward pairing), the bee will form a memory for this association, and subsequent presentations of the odor alone are sufficient to elicit the PER. However, backward pairing between the two stimuli (sucrose, then odor) has not been studied to any great extent in bees, although the vertebrate literature indicates that it elicits a form of inhibitory plasticity. Methodology/Principal Findings If hungry bees are fed with sucrose, they will release a long lasting PER; however, this PER can be interrupted if an odor is presented 15 seconds (but not 7 or 30 seconds) after the sucrose (backward pairing). We refer to this previously unreported process as olfactory interference. Bees receiving this 15 second backward pairing show reduced performance after a subsequent single forward pairing (excitatory conditioning) trial. Analysis of the results supported a relationship between olfactory interference and a form of backward pairing-induced inhibitory learning/memory. Injecting the drug cimetidine into the deutocerebrum impaired olfactory interference. Conclusions/Significance Olfactory interference depends on the associative link between odor and PER, rather than between odor and sucrose. Furthermore, pairing an odor with sucrose can lead either to association of this odor to PER or to the inhibition of PER by this odor. Olfactory interference may provide insight into processes that gate how excitatory and inhibitory memories for odor-PER associations are formed. PMID:18946512

  14. Childhood Esthesioneuroblastoma Treatment (PDQ®)—Patient Version

    Cancer.gov

    Childhood esthesioneuroblastoma (olfactory neuroblastoma) treatment options may include surgery, radiation therapy, and/or chemotherapy. Learn more about the symptoms, diagnosis, prognosis, and treatment of childhood esthesioneuroblastoma in this expert-reviewed summary.

  15. Reference memory, anxiety and estrous cyclicity in C57BL/6NIA mice are affected by age and sex.

    PubMed

    Frick, K M; Burlingame, L A; Arters, J A; Berger-Sweeney, J

    2000-01-01

    Age-related changes in learning and memory are common in rodents. However, direct comparisons of the effects of aging on learning and memory in both males and females are lacking. The present study examined whether memory deteriorates with increasing age in C57BL/6NIA mice, and whether age-related changes in learning and memory are similar in both sexes. Male and female mice (five, 17 and 25 months of age) were tested in a battery of behavioral tasks including the Morris water maze (spatial and non-spatial reference memory), simple odor discrimination (olfactory reference memory), plus maze (anxiety/exploration), locomotor activity, and basic reflexes. Five-month-old mice learned the water maze and odor discrimination tasks rapidly. Relative to five-month-old mice, 25-month-old mice exhibited impaired spatial and olfactory reference memory, but intact non-spatial reference memory. The spatial reference memory of 17-month-old mice was also impaired, but less so than 25-month mice. Seventeen-month-old mice exhibited intact non-spatial (visual and olfactory) reference memory. Five and 25-month-old mice had similar levels of plus maze exploration and locomotor activity, whereas 17-month-old mice were more active than both groups and were slightly less exploratory than five-month-old mice. Although sex differences were not observed in the five- and 25-month groups, 17-month-old females exhibited more impaired spatial reference memory and increased anxiety relative to 17-month-old males. Estrous cycling in females deteriorated significantly with increased age; all 25-month-old females had ceased cycling and 80% of 17-month-old females displayed either irregular or absent estrous cycling. This study is the first to directly compare age-related mnemonic decline in male and female mice. The results suggest that: (i) aged mice exhibit significant deficits in spatial and olfactory reference memory relative to young mice, whereas middle-aged mice exhibit only a moderate spatial memory deficit and; (ii) spatial reference memory decline begins at an earlier age in females than in males, a finding that may be related to the cessation of estrous cycling.

  16. Predicting human olfactory perception from chemical features of odor molecules.

    PubMed

    Keller, Andreas; Gerkin, Richard C; Guan, Yuanfang; Dhurandhar, Amit; Turu, Gabor; Szalai, Bence; Mainland, Joel D; Ihara, Yusuke; Yu, Chung Wen; Wolfinger, Russ; Vens, Celine; Schietgat, Leander; De Grave, Kurt; Norel, Raquel; Stolovitzky, Gustavo; Cecchi, Guillermo A; Vosshall, Leslie B; Meyer, Pablo

    2017-02-24

    It is still not possible to predict whether a given molecule will have a perceived odor or what olfactory percept it will produce. We therefore organized the crowd-sourced DREAM Olfaction Prediction Challenge. Using a large olfactory psychophysical data set, teams developed machine-learning algorithms to predict sensory attributes of molecules based on their chemoinformatic features. The resulting models accurately predicted odor intensity and pleasantness and also successfully predicted 8 among 19 rated semantic descriptors ("garlic," "fish," "sweet," "fruit," "burnt," "spices," "flower," and "sour"). Regularized linear models performed nearly as well as random forest-based ones, with a predictive accuracy that closely approaches a key theoretical limit. These models help to predict the perceptual qualities of virtually any molecule with high accuracy and also reverse-engineer the smell of a molecule. Copyright © 2017, American Association for the Advancement of Science.

  17. The orexin component of fasting triggers memory processes underlying conditioned food selection in the rat.

    PubMed

    Ferry, Barbara; Duchamp-Viret, Patricia

    2014-03-14

    To test the selectivity of the orexin A (OXA) system in olfactory sensitivity, the present study compared the effects of fasting and of central infusion of OXA on the memory processes underlying odor-malaise association during the conditioned odor aversion (COA) paradigm. Animals implanted with a cannula in the left ventricle received ICV infusion of OXA or artificial cerebrospinal fluid (ACSF) 1 h before COA acquisition. An additional group of intact rats were food-deprived for 24 h before acquisition. Results showed that the increased olfactory sensitivity induced by fasting and by OXA infusion was accompanied by enhanced COA performance. The present results suggest that fasting-induced central OXA release influenced COA learning by increasing not only olfactory sensitivity, but also the memory processes underlying the odor-malaise association.

  18. The orexin component of fasting triggers memory processes underlying conditioned food selection in the rat

    PubMed Central

    Ferry, Barbara; Duchamp-Viret, Patricia

    2014-01-01

    To test the selectivity of the orexin A (OXA) system in olfactory sensitivity, the present study compared the effects of fasting and of central infusion of OXA on the memory processes underlying odor–malaise association during the conditioned odor aversion (COA) paradigm. Animals implanted with a cannula in the left ventricle received ICV infusion of OXA or artificial cerebrospinal fluid (ACSF) 1 h before COA acquisition. An additional group of intact rats were food-deprived for 24 h before acquisition. Results showed that the increased olfactory sensitivity induced by fasting and by OXA infusion was accompanied by enhanced COA performance. The present results suggest that fasting-induced central OXA release influenced COA learning by increasing not only olfactory sensitivity, but also the memory processes underlying the odor–malaise association. PMID:24634353

  19. The olfactory neuron AWC promotes avoidance of normally palatable food following chronic dietary restriction

    PubMed Central

    Olofsson, Birgitta

    2014-01-01

    Changes in metabolic state alter foraging behavior and food preference in animals. Here, I show that normally attractive food becomes repulsive to Caenorhabditis elegans if animals are chronically undernourished as a result of alimentary tract defects. This behavioral plasticity is achieved in two ways: increased food leaving and induction of aversive behavior towards food. A particularly strong food avoider is defective in the chitin synthase that makes the pharyngeal lining. Food avoidance induced by underfeeding is mediated by cGMP signaling in the olfactory neurons AWC and AWB, and the gustatory neurons ASJ and ASK. Food avoidance is enhanced by increased population density and is reduced if the animals are unable to correctly interpret their nutritional state as a result of defects in the AMP kinase or TOR/S6kinase pathways. The TGF-β/DBL-1 pathway suppresses food avoidance and the cellular basis for this is distinct from its role in aversive olfactory learning of harmful food. This study suggests that nutritional state feedback via nutrient sensors, population size and olfactory neurons guides food preference in C. elegans. PMID:24577446

  20. IGF1-Dependent Synaptic Plasticity of Mitral Cells in Olfactory Memory during Social Learning.

    PubMed

    Liu, Zhihui; Chen, Zijun; Shang, Congping; Yan, Fei; Shi, Yingchao; Zhang, Jiajing; Qu, Baole; Han, Hailin; Wang, Yanying; Li, Dapeng; Südhof, Thomas C; Cao, Peng

    2017-07-05

    During social transmission of food preference (STFP), mice form long-term memory of food odors presented by a social partner. How does the brain associate a social context with odor signals to promote memory encoding? Here we show that odor exposure during STFP, but not unconditioned odor exposure, induces glomerulus-specific long-term potentiation (LTP) of synaptic strength selectively at the GABAergic component of dendrodendritic synapses of granule and mitral cells in the olfactory bulb. Conditional deletion of synaptotagmin-10, the Ca 2+ sensor for IGF1 secretion from mitral cells, or deletion of IGF1 receptor in the olfactory bulb prevented the socially relevant GABAergic LTP and impaired memory formation after STFP. Conversely, the addition of IGF1 to acute olfactory bulb slices elicited the GABAergic LTP in mitral cells by enhancing postsynaptic GABA receptor responses. Thus, our data reveal a synaptic substrate for a socially conditioned long-term memory that operates at the level of the initial processing of sensory information. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. c-Fos expression predicts long-term social memory retrieval in mice.

    PubMed

    Lüscher Dias, Thomaz; Fernandes Golino, Hudson; Moura de Oliveira, Vinícius Elias; Dutra Moraes, Márcio Flávio; Schenatto Pereira, Grace

    2016-10-15

    The way the rodent brain generally processes socially relevant information is rather well understood. How social information is stored into long-term social memory, however, is still under debate. Here, brain c-Fos expression was measured after adult mice were exposed to familiar or novel juveniles and expression was compared in several memory and socially relevant brain areas. Machine Learning algorithm Random Forest was then used to predict the social interaction category of adult mice based on c-Fos expression in these areas. Interaction with a familiar co-specific altered brain activation in the olfactory bulb, amygdala, hippocampus, lateral septum and medial prefrontal cortex. Remarkably, Random Forest was able to predict interaction with a familiar juvenile with 100% accuracy. Activity in the olfactory bulb, amygdala, hippocampus and the medial prefrontal cortex were crucial to this prediction. From our results, we suggest long-term social memory depends on initial social olfactory processing in the medial amygdala and its output connections synergistically with non-social contextual integration by the hippocampus and medial prefrontal cortex top-down modulation of primary olfactory structures. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Ensemble Response in Mushroom Body Output Neurons of the Honey Bee Outpaces Spatiotemporal Odor Processing Two Synapses Earlier in the Antennal Lobe

    PubMed Central

    Strube-Bloss, Martin F.; Herrera-Valdez, Marco A.; Smith, Brian H.

    2012-01-01

    Neural representations of odors are subject to computations that involve sequentially convergent and divergent anatomical connections across different areas of the brains in both mammals and insects. Furthermore, in both mammals and insects higher order brain areas are connected via feedback connections. In order to understand the transformations and interactions that this connectivity make possible, an ideal experiment would compare neural responses across different, sequential processing levels. Here we present results of recordings from a first order olfactory neuropile – the antennal lobe (AL) – and a higher order multimodal integration and learning center – the mushroom body (MB) – in the honey bee brain. We recorded projection neurons (PN) of the AL and extrinsic neurons (EN) of the MB, which provide the outputs from the two neuropils. Recordings at each level were made in different animals in some experiments and simultaneously in the same animal in others. We presented two odors and their mixture to compare odor response dynamics as well as classification speed and accuracy at each neural processing level. Surprisingly, the EN ensemble significantly starts separating odor stimuli rapidly and before the PN ensemble has reached significant separation. Furthermore the EN ensemble at the MB output reaches a maximum separation of odors between 84–120 ms after odor onset, which is 26 to 133 ms faster than the maximum separation at the AL output ensemble two synapses earlier in processing. It is likely that a subset of very fast PNs, which respond before the ENs, may initiate the rapid EN ensemble response. We suggest therefore that the timing of the EN ensemble activity would allow retroactive integration of its signal into the ongoing computation of the AL via centrifugal feedback. PMID:23209711

  3. A Low Concentration of Ethanol Impairs Learning but Not Motor and Sensory Behavior in Drosophila Larvae

    PubMed Central

    Ghezzi, Alfredo; Cady, Amanda M.; Najjar, Kristina; Hatch, Michael M.; Shah, Ruchita R.; Bhat, Amar; Hariri, Omar; Haroun, Kareem B.; Young, Melvin C.; Fife, Kathryn; Hooten, Jeff; Tran, Tuan; Goan, Daniel; Desai, Foram; Husain, Farhan; Godinez, Ryan M.; Sun, Jeffrey C.; Corpuz, Jonathan; Moran, Jacxelyn; Zhong, Allen C.; Chen, William Y.; Atkinson, Nigel S.

    2012-01-01

    Drosophila melanogaster has proven to be a useful model system for the genetic analysis of ethanol-associated behaviors. However, past studies have focused on the response of the adult fly to large, and often sedating, doses of ethanol. The pharmacological effects of low and moderate quantities of ethanol have remained understudied. In this study, we tested the acute effects of low doses of ethanol (∼7 mM internal concentration) on Drosophila larvae. While ethanol did not affect locomotion or the response to an odorant, we observed that ethanol impaired associative olfactory learning when the heat shock unconditioned stimulus (US) intensity was low but not when the heat shock US intensity was high. We determined that the reduction in learning at low US intensity was not a result of ethanol anesthesia since ethanol-treated larvae responded to the heat shock in the same manner as untreated animals. Instead, low doses of ethanol likely impair the neuronal plasticity that underlies olfactory associative learning. This impairment in learning was reversible indicating that exposure to low doses of ethanol does not leave any long lasting behavioral or physiological effects. PMID:22624024

  4. Oviposition in Delia platura (Diptera, Anthomyiidae): the role of volatile and contact cues of bean.

    PubMed

    Gouinguené, Sandrine P; Städler, Erich

    2006-07-01

    The choice of a suitable oviposition site by female insects is essential for survival of their progeny. Both olfactory and contact cues of the oviposition site may mediate this choice. The polyphagous Delia platura (Diptera: Anthomyiidae), a severe agricultural pest of numerous crops, lays eggs in the soil close to germinating seeds. Maggots feed upon the cotyledons. Only little is known about the cues guiding oviposition behavior. In this study, the effects of both olfactory and contact cues of beans (Phaseolus vulgaris) on oviposition of D. platura females were tested. Egg deposition on germinated beans was preferred to egg deposition on ungerminated beans or on beans in different postgerminating developmental stages. Olfactory cues of germinating beans alone stimulated female flies to lay eggs. Additional contact cues of germinating beans seemed to enhance the response, but the difference was not significant. Surface extracts of germinating beans sprayed on surrogate beans showed that both polar and nonpolar substances stimulated oviposition of D. platura flies. Gas chromatography-electroantennographic detection recordings of head space samples of germinating beans showed positive response of females to different compounds. We conclude that olfaction plays a major role when D. platura females are searching for oviposition sites. Volatile compounds released from germinating beans such as 4-hydroxy-4-methyl-2-pentanone, 1-hepten-3-one, 1-octen-3-ol, and 3-octanone should be considered as key compounds that mediate oviposition behavior. The use of different sensory modalities by closely related species of Delia is discussed.

  5. Insects: An Interdisciplinary Unit

    ERIC Educational Resources Information Center

    Leger, Heather

    2007-01-01

    The author talks about an interdisciplinary unit on insects, and presents activities that can help students practice communication skills (interpersonal, interpretive, and presentational) and learn about insects with hands-on activities.

  6. Semiochemicals of the common bed bug, Cimex lectularius L. (Hemiptera: Cimicidae), and their potential for use in monitoring and control.

    PubMed

    Weeks, Emma N I; Birkett, Mike A; Cameron, Mary M; Pickett, John A; Logan, James G

    2011-01-01

    The recent resurgence of the common bed bug, Cimex lectularius L., has driven an increase in research into the biology and behaviour of this pest. Current control is reliant on the application of insecticides, but, owing to the development of insecticide resistance, there is a need for new tools and techniques. Semiochemicals (behaviour- and physiology-modifying chemicals) could be exploited for management of bed bugs. The aim of this review was to evaluate studies undertaken in bed bug chemical ecology to date, with particular reference to how the research could be exploited for monitoring and control. Bed bugs, like many other insects, have a complex olfactory system. Recent studies have characterised the olfactory sensilla, located on the terminal segment of the antennae, to functional classes by electrophysiological screening. Behavioural studies have revealed the presence of an alarm pheromone and potential airborne aggregation semiochemicals, but it is not yet understood if bed bugs use a sex pheromone during mating. Host location cues have been investigated, and carbon dioxide has been found to be highly attractive both in laboratory and in field studies. Recent field trials have tested blends of other potential kairomones, which have been shown to have an additive effect when used in a heated bed bug trap with carbon dioxide. The trap, which combines heat and kairomones, is the only trap currently available with proven efficacy in the field. In order for semiochemicals to be useful for bed bug management, an increased knowledge and understanding of the biology, behaviour and chemical ecology of this insect is essential. Copyright © 2010 Society of Chemical Industry.

  7. Dopamine- and Tyrosine Hydroxylase-Immunoreactive Neurons in the Brain of the American Cockroach, Periplaneta americana

    PubMed Central

    Hamanaka, Yoshitaka; Minoura, Run; Nishino, Hiroshi; Miura, Toru; Mizunami, Makoto

    2016-01-01

    The catecholamine dopamine plays several vital roles in the central nervous system of many species, but its neural mechanisms remain elusive. Detailed neuroanatomical characterization of dopamine neurons is a prerequisite for elucidating dopamine’s actions in the brain. In the present study, we investigated the distribution of dopaminergic neurons in the brain of the American cockroach, Periplaneta americana, using two antisera: 1) an antiserum against dopamine, and 2) an antiserum against tyrosine hydroxylase (TH, an enzyme required for dopamine synthesis), and identified about 250 putatively dopaminergic neurons. The patterns of dopamine- and TH-immunoreactive neurons were strikingly similar, suggesting that both antisera recognize the same sets of “dopaminergic” neurons. The dopamine and TH antibodies intensively or moderately immunolabeled prominent brain neuropils, e.g. the mushroom body (memory center), antennal lobe (first-order olfactory center) and central complex (motor coordination center). All subdivisions of the mushroom body exhibit both dopamine and TH immunoreactivity. Comparison of immunolabeled neurons with those filled by dye injection revealed that a group of immunolabeled neurons with cell bodies near the calyx projects into a distal region of the vertical lobe, which is a plausible site for olfactory memory formation in insects. In the antennal lobe, ordinary glomeruli as well as macroglomeruli exhibit both dopamine and TH immunoreactivity. It is noteworthy that the dopamine antiserum labeled tiny granular structures inside the glomeruli whereas the TH antiserum labeled processes in the marginal regions of the glomeruli, suggesting a different origin. In the central complex, all subdivisions excluding part of the noduli and protocerebral bridge exhibit both dopamine and TH immunoreactivity. These anatomical findings will accelerate our understanding of dopaminergic systems, specifically in neural circuits underlying aversive memory formation and arousal, in insects. PMID:27494326

  8. orco mutant mosquitoes lose strong preference for humans and are not repelled by volatile DEET.

    PubMed

    DeGennaro, Matthew; McBride, Carolyn S; Seeholzer, Laura; Nakagawa, Takao; Dennis, Emily J; Goldman, Chloe; Jasinskiene, Nijole; James, Anthony A; Vosshall, Leslie B

    2013-06-27

    Female mosquitoes of some species are generalists and will blood-feed on a variety of vertebrate hosts, whereas others display marked host preference. Anopheles gambiae and Aedes aegypti have evolved a strong preference for humans, making them dangerously efficient vectors of malaria and Dengue haemorrhagic fever. Specific host odours probably drive this strong preference because other attractive cues, including body heat and exhaled carbon dioxide (CO2), are common to all warm-blooded hosts. Insects sense odours via several chemosensory receptor families, including the odorant receptors (ORs), membrane proteins that form heteromeric odour-gated ion channels comprising a variable ligand-selective subunit and an obligate co-receptor called Orco (ref. 6). Here we use zinc-finger nucleases to generate targeted mutations in the orco gene of A. aegypti to examine the contribution of Orco and the odorant receptor pathway to mosquito host selection and sensitivity to the insect repellent DEET (N,N-diethyl-meta-toluamide). orco mutant olfactory sensory neurons have greatly reduced spontaneous activity and lack odour-evoked responses. Behaviourally, orco mutant mosquitoes have severely reduced attraction to honey, an odour cue related to floral nectar, and do not respond to human scent in the absence of CO2. However, in the presence of CO2, female orco mutant mosquitoes retain strong attraction to both human and animal hosts, but no longer strongly prefer humans. orco mutant females are attracted to human hosts even in the presence of DEET, but are repelled upon contact, indicating that olfactory- and contact-mediated effects of DEET are mechanistically distinct. We conclude that the odorant receptor pathway is crucial for an anthropophilic vector mosquito to discriminate human from non-human hosts and to be effectively repelled by volatile DEET.

  9. Ovipositor setation in oldest insects (Insecta: Archaeognatha) revealed by SEM and He-ion microscopy.

    PubMed

    Matushkina, Nataliia A

    2017-10-01

    Archaeognatha represent the oldest living lineage of true insects (=Ectognatha), which are remarkable, among others, for plesiomorphic genital morphology and complicated mating behaviour. I used scanning electron microscopy and He-ion microscopy to examine the ovipositor morphology of seven species, in order to describe the cuticle microsculpture. The species studied are characterised by different types of the ovipositor setation pattern, which are considered an important taxonomic feature for Archaeognatha. The common and well discernible elements of ovipositor setation in Archaeognatha are: (1) non-articulated terminal seta, (2) grooved type I basiconic sensillum with apical pore, (3) multiporous type II basiconic sensillum, (4) articulated setae of different length. Coeloconica-like sensilla and campaniform sensilla demonstrate a variety of transient morphology. Results of this study provide morphological evidence of presence of olfactory receptors on the ovipositor in Archaeognatha. The possible functions of the ovipositor setation in Archaeognatha are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Bees without Flowers: Before Peak Bloom, Diverse Native Bees Find Insect-Produced Honeydew Sugars.

    PubMed

    Meiners, Joan M; Griswold, Terry L; Harris, David J; Ernest, S K Morgan

    2017-08-01

    Bee foragers respond to complex visual, olfactory, and extrasensory cues to optimize searches for floral rewards. Their abilities to detect and distinguish floral colors, shapes, volatiles, and ultraviolet signals and even gauge nectar availability from changes in floral humidity or electric fields are well studied. Bee foraging behaviors in the absence of floral cues, however, are rarely considered. We observed 42 species of wild bees visiting inconspicuous, nonflowering shrubs during early spring in a protected Mediterranean habitat. We determined experimentally that these bees were accessing sugary honeydew secretions from scale insects without the aid of standard cues. While honeydew use is known among some social Hymenoptera, its use across a diverse community of solitary bees is a novel observation. The widespread ability of native bees to locate and use unadvertised, nonfloral sugars suggests unappreciated sensory mechanisms and/or the existence of an interspecific foraging network among solitary bees that may influence how native bees cope with scarcity of floral resources and increasing environmental change.

  11. The fungal aroma gene ATF1 promotes dispersal of yeast cells through insect vectors.

    PubMed

    Christiaens, Joaquin F; Franco, Luis M; Cools, Tanne L; De Meester, Luc; Michiels, Jan; Wenseleers, Tom; Hassan, Bassem A; Yaksi, Emre; Verstrepen, Kevin J

    2014-10-23

    Yeast cells produce various volatile metabolites that are key contributors to the pleasing fruity and flowery aroma of fermented beverages. Several of these fruity metabolites, including isoamyl acetate and ethyl acetate, are produced by a dedicated enzyme, the alcohol acetyl transferase Atf1. However, despite much research, the physiological role of acetate ester formation in yeast remains unknown. Using a combination of molecular biology, neurobiology, and behavioral tests, we demonstrate that deletion of ATF1 alters the olfactory response in the antennal lobe of fruit flies that feed on yeast cells. The flies are much less attracted to the mutant yeast cells, and this in turn results in reduced dispersal of the mutant yeast cells by the flies. Together, our results uncover the molecular details of an intriguing aroma-based communication and mutualism between microbes and their insect vectors. Similar mechanisms may exist in other microbes, including microbes on flowering plants and pathogens. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  12. What Do Secondary Students Really Learn during Investigations with Living Animals? Parameters for Effective Learning with Social Insects

    ERIC Educational Resources Information Center

    Sammet, Rebecca; Dreesmann, Daniel

    2017-01-01

    Exemplary for social insects, "Temnothorax" ants allow for various hands-on investigations in biology classes. The aim of this study was to provide a quantitative and qualitative analysis of secondary school students' learning achievement after teaching units with ants lasting between one and six weeks. The questionnaires included…

  13. Nitric oxide augments single Ca(2+) channel currents via cGMP-dependent protein kinase in Kenyon cells isolated from the mushroom body of the cricket brain.

    PubMed

    Kosakai, Kumiko; Tsujiuchi, Yuuki; Yoshino, Masami

    2015-07-01

    Behavioral and pharmacological studies in insects have suggested that the nitric oxide (NO)/cyclic GMP (cGMP) signaling pathway is involved in the formation of long-term memory (LTM) associated with olfactory learning. However, the target molecules of NO and the downstream signaling pathway are still not known. In this study, we investigated the action of NO on single voltage-dependent Ca(2+) channels in the intrinsic neurons known as Kenyon cells within the mushroom body of the cricket brain, using the cell-attached configuration of the patch-clamp technique. Application of the NO donor S-nitrosoglutathione (GSNO) increased the open probability (NPO) of single Ca(2+) channel currents. This GSNO-induced increase was blocked by ODQ, a soluble guanylate cyclase (sGC) inhibitor, suggesting that the NO generated by GSNO acts via sGC to raise cGMP levels. The membrane-permeable cGMP analog 8-Bro-cGMP also increased the NPO of single Ca(2+) channel currents. Pretreatment of cells with KT5823, a protein kinase G blocker, abolished the excitatory effect of GSNO. These results suggest that NO augments the activity of single Ca(2+) channels via the cGMP/PKG signaling pathway. To gain insight into the physiological role of NO, we examined the effect of GSNO on action potentials of Kenyon cells under current-clamp conditions. Application of GSNO increased the frequency of action potentials elicited by depolarizing current injections, indicating that NO acts as a modulator resulting in a stimulatory signal in Kenyon cells. We discuss the increased Ca(2+) influx through these Ca(2+) channels via the NO/cGMP signaling cascade in relation to the formation of olfactory LTM. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Exploring Sound with Insects

    ERIC Educational Resources Information Center

    Robertson, Laura; Meyer, John R.

    2010-01-01

    Differences in insect morphology and movement during singing provide a fascinating opportunity for students to investigate insects while learning about the characteristics of sound. In the activities described here, students use a free online computer software program to explore the songs of the major singing insects and experiment with making…

  15. The vomeronasal cortex - afferent and efferent projections of the posteromedial cortical nucleus of the amygdala in mice.

    PubMed

    Gutiérrez-Castellanos, Nicolás; Pardo-Bellver, Cecília; Martínez-García, Fernando; Lanuza, Enrique

    2014-01-01

    Most mammals possess a vomeronasal system that detects predominantly chemical signals of biological relevance. Vomeronasal information is relayed to the accessory olfactory bulb (AOB), whose unique cortical target is the posteromedial cortical nucleus of the amygdala. This cortical structure should therefore be considered the primary vomeronasal cortex. In the present work, we describe the afferent and efferent connections of the posteromedial cortical nucleus of the amygdala in female mice, using anterograde (biotinylated dextranamines) and retrograde (Fluorogold) tracers, and zinc selenite as a tracer specific for zinc-enriched (putative glutamatergic) projections. The results show that the posteromedial cortical nucleus of the amygdala is strongly interconnected not only with the rest of the vomeronasal system (AOB and its target structures in the amygdala), but also with the olfactory system (piriform cortex, olfactory-recipient nuclei of the amygdala and entorhinal cortex). Therefore, the posteromedial cortical nucleus of the amygdala probably integrates olfactory and vomeronasal information. In addition, the posteromedial cortical nucleus of the amygdala shows moderate interconnections with the associative (basomedial) amygdala and with the ventral hippocampus, which may be involved in emotional and spatial learning (respectively) induced by chemical signals. Finally, the posteromedial cortical nucleus of the amygdala gives rise to zinc-enriched projections to the ventrolateral septum and the ventromedial striatum (including the medial islands of Calleja). This pattern of intracortical connections (with the olfactory cortex and hippocampus, mainly) and cortico-striatal excitatory projections (with the olfactory tubercle and septum) is consistent with its proposed nature as the primary vomeronasal cortex. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  16. Sensory memory for odors is encoded in spontaneous correlated activity between olfactory glomeruli.

    PubMed

    Galán, Roberto F; Weidert, Marcel; Menzel, Randolf; Herz, Andreas V M; Galizia, C Giovanni

    2006-01-01

    Sensory memory is a short-lived persistence of a sensory stimulus in the nervous system, such as iconic memory in the visual system. However, little is known about the mechanisms underlying olfactory sensory memory. We have therefore analyzed the effect of odor stimuli on the first odor-processing network in the honeybee brain, the antennal lobe, which corresponds to the vertebrate olfactory bulb. We stained output neurons with a calcium-sensitive dye and measured across-glomerular patterns of spontaneous activity before and after a stimulus. Such a single-odor presentation changed the relative timing of spontaneous activity across glomeruli in accordance with Hebb's theory of learning. Moreover, during the first few minutes after odor presentation, correlations between the spontaneous activity fluctuations suffice to reconstruct the stimulus. As spontaneous activity is ubiquitous in the brain, modifiable fluctuations could provide an ideal substrate for Hebbian reverberations and sensory memory in other neural systems.

  17. Translating basic research into clinical practice or what else do we have to learn about olfactory ensheathing cells?

    PubMed

    Radtke, Christine; Wewetzer, Konstantin

    2009-06-12

    Olfactory ensheathing cells (OECs) are Schwann cell-like glial cells of the olfactory system that have been shown to promote axonal regeneration and remyelination in a variety of different lesion paradigms. It is still a matter of debate in how far OECs differ from Schwann cells regarding their regenerative potential and molecular setup. The fact that OECs have been already used for transplantation in humans may imply that the need of the hour is the fine-tuning of clinical application details rather than to cross the bridge between laboratory animal and man. Considering the therapeutic transplantation of OECs, however, the basic question to date is not 'how' to translate but rather 'what' to translate into clinical practice. The aim of the present article is to provide a summary of the current literature and to define the open issues relevant for translating basic research on OECs into clinical practice.

  18. Neural correlates of olfactory and visual memory performance in 3D-simulated mazes after intranasal insulin application.

    PubMed

    Brünner, Yvonne F; Rodriguez-Raecke, Rea; Mutic, Smiljana; Benedict, Christian; Freiherr, Jessica

    2016-10-01

    This fMRI study intended to establish 3D-simulated mazes with olfactory and visual cues and examine the effect of intranasally applied insulin on memory performance in healthy subjects. The effect of insulin on hippocampus-dependent brain activation was explored using a double-blind and placebo-controlled design. Following intranasal administration of either insulin (40IU) or placebo, 16 male subjects participated in two experimental MRI sessions with olfactory and visual mazes. Each maze included two separate runs. The first was an encoding maze during which subjects learned eight olfactory or eight visual cues at different target locations. The second was a recall maze during which subjects were asked to remember the target cues at spatial locations. For eleven included subjects in the fMRI analysis we were able to validate brain activation for odor perception and visuospatial tasks. However, we did not observe an enhancement of declarative memory performance in our behavioral data or hippocampal activity in response to insulin application in the fMRI analysis. It is therefore possible that intranasal insulin application is sensitive to the methodological variations e.g. timing of task execution and dose of application. Findings from this study suggest that our method of 3D-simulated mazes is feasible for studying neural correlates of olfactory and visual memory performance. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Olfactory specialization for perfume collection in male orchid bees.

    PubMed

    Mitko, Lukasz; Weber, Marjorie G; Ramirez, Santiago R; Hedenström, Erik; Wcislo, William T; Eltz, Thomas

    2016-05-15

    Insects rely on the olfactory system to detect a vast diversity of airborne molecules in their environment. Highly sensitive olfactory tuning is expected to evolve when detection of a particular chemical with great precision is required in the context of foraging and/or finding mates. Male neotropical orchid bees (Euglossini) collect odoriferous substances from multiple sources, store them in specialized tibial pouches and later expose them at display sites, presumably as mating signals to females. Previous analysis of tibial compounds among sympatric species revealed substantial chemical disparity in chemical composition among lineages with outstanding divergence between closely related species. Here, we tested whether specific perfume phenotypes coevolve with matching olfactory adaptations in male orchid bees to facilitate the location and harvest of species-specific perfume compounds. We conducted electroantennographic (EAG) measurements on males of 15 sympatric species in the genus Euglossa that were stimulated with 18 compounds present in variable proportions in male hind tibiae. Antennal response profiles were species-specific across all 15 species, but there was no conspicuous differentiation between closely related species. Instead, we found that the observed variation in EAG activity follows a Brownian motion model of trait evolution, where the probability of differentiation increases proportionally with lineage divergence time. However, we identified strong antennal responses for some chemicals that are present as major compounds in the perfume of the same species, thus suggesting that sensory specialization has occurred within multiple lineages. This sensory specialization was particularly apparent for semi-volatile molecules ('base note' compounds), thus supporting the idea that such compounds play an important role in chemical signaling of euglossine bees. Overall, our study found no close correspondence between antennal responses and behavioral preferences/tibial contents, but confirms the utility of EAG profiling for discovering certain behaviorally active compounds. © 2016. Published by The Company of Biologists Ltd.

  20. Insights into the olfactory system of the ectoparasite Caligus rogercresseyi: molecular characterization and gene transcription analysis of novel ionotropic receptors.

    PubMed

    Núñez-Acuña, Gustavo; Valenzuela-Muñoz, Valentina; Marambio, Jorge Pino; Wadsworth, Simon; Gallardo-Escárate, Cristian

    2014-10-01

    Although various elements of the olfactory system have been elucidated in insects, it remains practically unstudied in crustaceans at a molecular level. Among crustaceans, some species are classified as ectoparasites that impact the finfish aquaculture industry. Thus, there is an urgent need to identify and comprehend the signaling pathways used by these in host recognition. The present study, through RNA-seq and qPCR analyses, found novel transcripts involved in the olfactory system of Caligus rogercresseyi, in addition to the transcriptomic patterns expressed during different stages of salmon lice development. From a transcriptomic library generated by Illumina sequencing, contigs that annotated for ionotropic receptors and other genes implicated in the olfactory system were identified and extracted. Full length mRNA was obtained for the ionotropic glutamate receptor 25, which had 3923 bp, and for the glutamate receptor ionotropic kainate 2, which had 2737 bp. Furthermore, two other transcripts identified as glutamate receptor, ionotropic kainate 2-like were found. In silico analysis was performed for the transcription expression from different stages of development in C. rogercresseyi, and clusters according to RPKM values were constructed. Gene transcription data were validated through qPCR assays in ionotropic receptors, and showed an expression of glutamate receptor 25 associated with the copepodid stage whereas adults, especially male adults, were associated with the kainate 2 and kainate 2-like transcripts. Additionally, gene transcription analysis of the ionotropic receptors showed an overexpression in response to the presence of masking compounds and immunostimulant in salmon diets. This response correlated to a reduction in sea lice infection following in vivo challenge. Diets with masking compounds showed a decrease of lice infestation of up to 25%. This work contributes to the available knowledge on chemosensory systems in this ectoparasite, providing novel elements towards understanding the host-finding process of the salmon louse C. rogercresseyi. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Behavioral consequences of innate preferences and olfactory learning in hawkmoth–flower interactions

    PubMed Central

    Riffell, Jeffrey A.; Alarcón, Ruben; Abrell, Leif; Davidowitz, Goggy; Bronstein, Judith L.; Hildebrand, John G.

    2008-01-01

    Spatiotemporal variability in floral resources can have ecological and evolutionary consequences for both plants and the pollinators on which they depend. Seldom, however, can patterns of flower abundance and visitation in the field be linked with the behavioral mechanisms that allow floral visitors to persist when a preferred resource is scarce. To explore these mechanisms better, we examined factors controlling floral preference in the hawkmoth Manduca sexta in the semiarid grassland of Arizona. Here, hawkmoths forage primarily on flowers of the bat-adapted agave, Agave palmeri, but shift to the moth-adapted flowers of their larval host plant, Datura wrightii, when these become abundant. Both plants emit similar concentrations of floral odor, but scent composition, nectar, and flower reflectance are distinct between the two species, and A. palmeri flowers provide six times as much chemical energy as flowers of D. wrightii. Behavioral experiments with both naïve and experienced moths revealed that hawkmoths learn to feed from agave flowers through olfactory conditioning but readily switch to D. wrightii flowers, for which they are the primary pollinator, based on an innate odor preference. Behavioral flexibility and the olfactory contrast between flowers permit the hawkmoths to persist within a dynamic environment, while at the same time to function as the major pollinator of one plant species. PMID:18305169

  2. Adaptive regulation of sparseness by feedforward inhibition

    PubMed Central

    Assisi, Collins; Stopfer, Mark; Laurent, Gilles; Bazhenov, Maxim

    2014-01-01

    In the mushroom body of insects, odors are represented by very few spikes in a small number of neurons, a highly efficient strategy known as sparse coding. Physiological studies of these neurons have shown that sparseness is maintained across thousand-fold changes in odor concentration. Using a realistic computational model, we propose that sparseness in the olfactory system is regulated by adaptive feedforward inhibition. When odor concentration changes, feedforward inhibition modulates the duration of the temporal window over which the mushroom body neurons may integrate excitatory presynaptic input. This simple adaptive mechanism could maintain the sparseness of sensory representations across wide ranges of stimulus conditions. PMID:17660812

  3. Characterization of the Adult Head Transcriptome and Identification of Migration and Olfaction Genes in the Oriental Armyworm Mythimna separate.

    PubMed

    Bian, Hai-Xu; Ma, Hong-Fang; Zheng, Xi-Xi; Peng, Ming-Hui; Li, Yu-Ping; Su, Jun-Fang; Wang, Huan; Li, Qun; Xia, Run-Xi; Liu, Yan-Qun; Jiang, Xing-Fu

    2017-05-24

    The oriental armyworm Mythimna separate is an economically important insect with a wide distribution and strong migratory activity. However, knowledge about the molecular mechanisms regulating the physiological and behavioural responses of the oriental armyworm is scarce. In the present study, we took a transcriptomic approach to characterize the gene network in the adult head of M. separate. The sequencing and de novo assembly yielded 63,499 transcripts, which were further assembled into 46,459 unigenes with an N50 of 1,153 bp. In the head transcriptome data, unigenes involved in the 'signal transduction mechanism' are the most abundant. In total, 937 signal transduction unigenes were assigned to 22 signalling pathways. The circadian clock, melanin synthesis, and non-receptor protein of olfactory gene families were then identified, and phylogenetic analyses were performed with these M. separate genes, the model insect Bombyx mori and other insects. Furthermore, 1,372 simple sequence repeats of 2-6 bp in unit length were identified. The transcriptome data represent a comprehensive molecular resource for the adult head of M. separate, and these identified genes can be valid targets for further gene function research to address the molecular mechanisms regulating the migratory and olfaction genes of the oriental armyworm.

  4. Differential expression of chemosensory-protein genes in midguts in response to diet of Spodoptera litura.

    PubMed

    Yi, Xin; Qi, Jiangwei; Zhou, Xiaofan; Hu, Mei Ying; Zhong, Guo Hua

    2017-03-22

    While it has been well characterized that chemosensory receptors in guts of mammals have great influence on food preference, much remains elusive in insects. Insect chemosensory proteins (CSPs) are soluble proteins that could deliver chemicals to olfactory and gustatory receptors. Recent studies have identified a number of CSPs expressed in midgut in Lepidoptera insects, which started to reveal their roles in chemical recognition and stimulating appetite in midgut. In this study, we examined expression patterns in midgut of 21 Spodoptera litura CSPs (SlitCSPs) characterized from a previously reported transcriptome, and three CSPs were identified to be expressed highly in midgut. The orthologous relationships between midgut expressed CSPs in S. litura and those in Bombyx mori and Plutella xylostella also suggest a conserved pattern of CSP expression in midgut. We further demonstrated that the expression of midgut-CSPs may change in response to different host plants, and SlitCSPs could bind typical chemicals from host plant in vitro. Overall, our results suggested midgut expressed SlitCSPs may have functional roles, likely contributing to specialization and adaption to different ecosystems. Better knowledge of this critical component of the chemsensation signaling pathways in midguts may improve our understanding of food preference processes in a new perspective.

  5. An inside look at the sensory biology of triatomines.

    PubMed

    Barrozo, Romina B; Reisenman, Carolina E; Guerenstein, Pablo; Lazzari, Claudio R; Lorenzo, Marcelo G

    Although kissing bugs (Triatominae: Reduviidae) are perhaps best known as vectors of Chagas disease, they are important experimental models in studies of insect sensory physiology, pioneered by the seminal studies of Wigglesworth and Gillet more than eighty years ago. Since then, many investigations have revealed that the thermal, hygric, visual and olfactory senses play critical roles in the orientation of these blood-sucking insects towards hosts. Here we review the current knowledge about the role of these sensory systems, focussing on relevant stimuli, sensory structures, receptor physiology and the molecular players involved in the complex and cryptic behavioural repertoire of these nocturnal insects. Odours are particularly relevant, as they are involved in host search and are used for sexual, aggregation and alarm communication. Tastants are critical for a proper recognition of hosts, food and conspecifics. Heat and relative humidity mediate orientation towards hosts and are also important for the selection of resting places. Vision, which mediates negative phototaxis and flight dispersion, is also critical for modulating shelter use and mediating escape responses. The molecular bases underlying the detection of sensory stimuli started to be uncovered by means of functional genetics due to both the recent publication of the genome sequence of Rhodnius prolixus and the availability of modern genome editing techniques. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Vertical T-maze Choice Assay for Arthropod Response to Odorants

    PubMed Central

    Stelinski, Lukasz; Tiwari, Siddharth

    2013-01-01

    Given the economic importance of insects and arachnids as pests of agricultural crops, urban environments or as vectors of plant and human diseases, various technologies are being developed as control tools. A subset of these tools focuses on modifying the behavior of arthropods by attraction or repulsion. Therefore, arthropods are often the focus of behavioral investigations. Various tools have been developed to measure arthropod behavior, including wind tunnels, flight mills, servospheres, and various types of olfactometers. The purpose of these tools is to measure insect or arachnid response to visual or more often olfactory cues. The vertical T-maze oflactometer described here measures choices performed by insects in response to attractants or repellents. It is a high throughput assay device that takes advantage of the positive phototaxis (attraction to light) and negative geotaxis (tendency to walk or fly upward) exhibited by many arthropods. The olfactometer consists of a 30 cm glass tube that is divided in half with a Teflon strip forming a T-maze. Each half serves as an arm of the olfactometer enabling the test subjects to make a choice between two potential odor fields in assays involving attractants. In assays involving repellents, lack of normal response to known attractants can also be measured as a third variable. PMID:23439130

  7. Pollination systems involving floral mimicry of fruit: aspects of their ecology and evolution.

    PubMed

    Goodrich, Katherine R; Jürgens, Andreas

    2018-01-01

    Floral mimicry of nonfloral resources is found across many angiosperm families, with mimicry of varied models including carrion, dung, fungi, insects and fruit. These systems provide excellent models to investigate the role of visual and olfactory cues for the ecology and evolution of plant-animal interactions. Interestingly, floral mimicry of fruit is least documented in the literature, although ripe or rotting fruits play an important role as a food or brood site in many insect groups such as Diptera, Hymenoptera and Coleoptera, and frugivorous vertebrates such as bats and birds. In ecosystems where fruit represents a frequent, reliable resource (e.g. tropical forests), this form of floral mimicry could represent a common mimicry class with specialization possible along multiple axes such as fruit of different species, stages of ripeness and microbial colonization. In this review, we summarize current research on floral mimicry of fruit. We place this review in the context of floral mimicry of a broader spectrum of nonfloral resources, and we discuss conceptual frameworks of mimicry vs generalized food deception or pre-existing sensory bias. Finally, we briefly review the specificity and complexity of fruit-insect ecological interactions, and we summarize important considerations and questions for moving forward in this field. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  8. Opioid Modulation of Fos Protein Expression and Olfactory Circuitry Plays a Pivotal Role in What Neonates Remember

    ERIC Educational Resources Information Center

    Roth, Tania L.; Moriceau, Stephanie; Sullivan, Regina M.

    2006-01-01

    Paradoxically, fear conditioning (odor-0.5 mA shock) yields a learned odor preference in the neonate, presumably due to a unique learning and memory circuit that does not include apparent amygdala participation. Post-training opioid antagonism with naltrexone (NTX) blocks consolidation of this odor preference and instead yields memory of a learned…

  9. Adult Mammalian Neurogenesis and Motivated Behaviors.

    PubMed

    Jorgensen, Claudia

    2018-05-31

    Adult neurogenesis continues to captivate the curiosity of the scientific community; and researchers seem to have a particular interest in identifying the functional implications of such plasticity. While the majority of research focuses on the association between adult neurogenesis and learning and memory (including spatial learning associated with hippocampal neurogenesis and olfactory discrimination associated with neurogenesis in the olfactory system), the following review will explore the link to motivated behaviors. In particular, goal-directed behaviors such as sociosexual, parental, aggressive, as well as depression- and anxiety-like behaviors and their reciprocal association to adult neurogenesis will be evaluated. The review will detail research in humans and other mammalian species. Furthermore, the potential mechanisms underlying these neurogenic alterations will be highlighted. Lastly, the review will conclude with a discussion on the functional significance of these newly generated cells in mediating goal-directed behaviors. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  10. Sucrose acceptance and different forms of associative learning of the honey bee (apis mellifera L.) in the field and laboratory.

    PubMed

    Mujagic, Samir; Sarkander, Jana; Erber, Barbara; Erber, Joachim

    2010-01-01

    The experiments analyze different forms of learning and 24-h retention in the field and in the laboratory in bees that accept sucrose with either low (/=30% or >/=50%) concentrations. In the field we studied color learning at a food site and at the hive entrance. In the laboratory olfactory conditioning of the proboscis extension response (PER) was examined. In the color learning protocol at a feeder, bees with low sucrose acceptance thresholds (/=50%). Retention after 24 h is significantly different between the two groups of bees and the choice reactions converge. Bees with low and high acceptance thresholds in the field show no differences in the sucrose sensitivity PER tests in the laboratory. Acceptance thresholds in the field are thus a more sensitive behavioral measure than PER responsiveness in the laboratory. Bees with low acceptance thresholds show significantly better acquisition and 24-h retention in olfactory learning in the laboratory compared to bees with high thresholds. In the learning protocol at the hive entrance bees learn without sucrose reward that a color cue signals an open entrance. In this experiment, bees with high sucrose acceptance thresholds showed significantly better learning and reversal learning than bees with low thresholds. These results demonstrate that sucrose acceptance thresholds affect only those forms of learning in which sucrose serves as the reward. The results also show that foraging behavior in the field is a good predictor for learning behavior in the field and in the laboratory.

  11. Ubiquitous water-soluble molecules in aquatic plant exudates determine specific insect attraction.

    PubMed

    Sérandour, Julien; Reynaud, Stéphane; Willison, John; Patouraux, Joëlle; Gaude, Thierry; Ravanel, Patrick; Lempérière, Guy; Raveton, Muriel

    2008-10-08

    Plants produce semio-chemicals that directly influence insect attraction and/or repulsion. Generally, this attraction is closely associated with herbivory and has been studied mainly under atmospheric conditions. On the other hand, the relationship between aquatic plants and insects has been little studied. To determine whether the roots of aquatic macrophytes release attractive chemical mixtures into the water, we studied the behaviour of mosquito larvae using olfactory experiments with root exudates. After testing the attraction on Culex and Aedes mosquito larvae, we chose to work with Coquillettidia species, which have a complex behaviour in nature and need to be attached to plant roots in order to obtain oxygen. This relationship is non-destructive and can be described as commensal behaviour. Commonly found compounds seemed to be involved in insect attraction since root exudates from different plants were all attractive. Moreover, chemical analysis allowed us to identify a certain number of commonly found, highly water-soluble, low-molecular-weight compounds, several of which (glycerol, uracil, thymine, uridine, thymidine) were able to induce attraction when tested individually but at concentrations substantially higher than those found in nature. However, our principal findings demonstrated that these compounds appeared to act synergistically, since a mixture of these five compounds attracted larvae at natural concentrations (0.7 nM glycerol, <0.5 nM uracil, 0.6 nM thymine, 2.8 nM uridine, 86 nM thymidine), much lower than those found for each compound tested individually. These results provide strong evidence that a mixture of polyols (glycerol), pyrimidines (uracil, thymine), and nucleosides (uridine, thymidine) functions as an efficient attractive signal in nature for Coquillettidia larvae. We therefore show for the first time, that such commonly found compounds may play an important role in plant-insect relationships in aquatic eco-systems.

  12. Flight motor networks modulate primary olfactory processing in the moth Manduca sexta.

    PubMed

    Chapman, Phillip D; Burkland, Rex; Bradley, Samual P; Houot, Benjamin; Bullman, Victoria; Dacks, Andrew M; Daly, Kevin C

    2018-05-22

    Nervous systems must distinguish sensory signals derived from an animal's own movements (reafference) from environmentally derived sources (exafference). To accomplish this, motor networks producing reafference transmit motor information, via a corollary discharge circuit (CDC), to affected sensory networks, modulating sensory function during behavior. While CDCs have been described in most sensory modalities, none have been observed projecting to an olfactory pathway. In moths, two mesothoracic to deutocerebral histaminergic neurons (MDHns) project from flight sensorimotor centers in the mesothoracic neuromere to the antennal lobe (AL), where they provide the sole source of histamine (HA), but whether they represent a CDC is unknown. We demonstrate that MDHn spiking activity is positively correlated with wing-motor output and increased before bouts of motor activity, suggesting that MDHns communicate global locomotor state, rather than providing a precisely timed motor copy. Within the AL, HA application sharpened entrainment of projection neuron responses to odor stimuli embedded within simulated wing-beat-induced flows, whereas MDHn axotomy or AL HA receptor (HA-r) blockade reduced entrainment. This finding is consistent with higher-order CDCs, as the MDHns enhanced rather than filtered entrainment of AL projection neurons. Finally, HA-r blockade increased odor detection and discrimination thresholds in behavior assays. These results establish MDHns as a CDC that modulates AL temporal resolution, enhancing odor-guided behavior. MDHns thus appear to represent a higher-order CDC to an insect olfactory pathway; this CDC's unique nature highlights the importance of motor-to-sensory signaling as a context-specific mechanism that fine-tunes sensory function. Copyright © 2018 the Author(s). Published by PNAS.

  13. Identification and Differential Expression of a Candidate Sex Pheromone Receptor in Natural Populations of Spodoptera litura

    PubMed Central

    Lin, Xinda; Zhang, Qinhui; Wu, Zhongnan; Du, Yongjun

    2015-01-01

    Olfaction is primarily mediated by highly specific olfactory receptors (ORs), a subfamily of which are the pheromone receptors that play a key role in sexual communication and can contribute to reproductive isolation. Here we cloned and identified an olfactory receptor, SlituOR3 (Genbank NO. JN835270), from Spodoptera litura, to be the candidate pheromone receptor. It exhibited male-biased expression in the antennae, where they were localized at the base of sensilla trichoidea. Conserved orthologues of these receptors were found amongst known pheromone receptors within the Lepidoptera, and SlituOR3 were placed amongst a clade of candidate pheromone receptors in a phylogeny tree of insect ORs. SlituOR3 is required for the EAG responses to both Z9E11-14:OAc and Z9E12-14:OAc SlituOR3 showed differential expression in S. litura populations attracted to traps baited with a series of sex pheromone blends composed of different ratios of (9Z,11E)-tetradecadienyl acetate (Z9E11-14:OAc) and (9Z,12E)-tetradecadienyl acetate (Z9E12-14:OAc). The changes in the expression level of SlitOR3 and antennal responses after SlitOR3 silencing suggested that SlitOR3 is required for the sex pheromone signaling. We infer that variation in transcription levels of olfactory receptors may modulate sex pheromone perception in male moths and could affect both of pest control and monitoring efficiency by pheromone application after long time mass trapping with one particular ratio of blend in the field. PMID:26126192

  14. Olfactory cues from plants infected by powdery mildew guide foraging by a mycophagous ladybird beetle.

    PubMed

    Tabata, Jun; De Moraes, Consuelo M; Mescher, Mark C

    2011-01-01

    Powdery mildews (Erysiphales) are economically important plant pathogens that attack many agricultural crops. Conventional management strategies involving fungicide application face challenges, including the evolution of resistance and concerns over impacts on non-target organisms, that call for investigation of more sustainable alternatives. Mycophagous ladybird beetles (Coleoptera: Coccinellidae) feed on powdery mildew and have considerable potential as biological control agents; however, the foraging ecology and behavior of these beetles is not well understood. Here we document the olfactory cues presented by squash plants (Cucurbita moschata) infected by powdery mildew (Podosphaera sp.) and the behavioral responses of twenty-spotted ladybird beetles (Psyllobora vigintimaculata) to these cues. Volatile analyses through gas chromatography revealed a number of volatile compounds characteristic of infected plants, including 3-octanol and its analogues 1-octen-3-ol and 3-octanone. These compounds are typical "moldy" odorants previously reported in volatiles collected from other fungi. In addition, infected plants exhibited elevated emissions of several compounds also observed in collections from healthy leaves, including linalool and benzyl alcohol, which are reported to have anti-fungal properties. In Y-tube choice assays, P. vigintimaculata beetles displayed a significant preference for the odors of infected plants compared to those of healthy plants. Moreover, beetles exhibited strong attraction to one individual compound, 1-octen-3-ol, which was the most abundant of the characteristic fungal compounds identified. These results enhance our understanding of the olfactory cues that guide foraging by mycophagous insects and may facilitate the development of integrated disease-management strategies informed by an understanding of underlying ecological mechanisms.

  15. Olfactory Cues from Plants Infected by Powdery Mildew Guide Foraging by a Mycophagous Ladybird Beetle

    PubMed Central

    Tabata, Jun; De Moraes, Consuelo M.; Mescher, Mark C.

    2011-01-01

    Powdery mildews (Erysiphales) are economically important plant pathogens that attack many agricultural crops. Conventional management strategies involving fungicide application face challenges, including the evolution of resistance and concerns over impacts on non-target organisms, that call for investigation of more sustainable alternatives. Mycophagous ladybird beetles (Coleoptera: Coccinellidae) feed on powdery mildew and have considerable potential as biological control agents; however, the foraging ecology and behavior of these beetles is not well understood. Here we document the olfactory cues presented by squash plants (Cucurbita moschata) infected by powdery mildew (Podosphaera sp.) and the behavioral responses of twenty-spotted ladybird beetles (Psyllobora vigintimaculata) to these cues. Volatile analyses through gas chromatography revealed a number of volatile compounds characteristic of infected plants, including 3-octanol and its analogues 1-octen-3-ol and 3-octanone. These compounds are typical “moldy” odorants previously reported in volatiles collected from other fungi. In addition, infected plants exhibited elevated emissions of several compounds also observed in collections from healthy leaves, including linalool and benzyl alcohol, which are reported to have anti-fungal properties. In Y-tube choice assays, P. vigintimaculata beetles displayed a significant preference for the odors of infected plants compared to those of healthy plants. Moreover, beetles exhibited strong attraction to one individual compound, 1-octen-3-ol, which was the most abundant of the characteristic fungal compounds identified. These results enhance our understanding of the olfactory cues that guide foraging by mycophagous insects and may facilitate the development of integrated disease-management strategies informed by an understanding of underlying ecological mechanisms. PMID:21876772

  16. Impaired associative learning after chronic exposure to pesticides in young adult honey bees.

    PubMed

    Mengoni Goñalons, Carolina; Farina, Walter M

    2018-04-11

    Neonicotinoids are the most widespread insecticides in agriculture, preferred for their low toxicity to mammals and their systemic nature. Nevertheless, there have been increasing concerns regarding their impact on non-target organisms. Glyphosate is also widely used in crops and, therefore, traces of this pesticide are likely to be found together with neonicotinoids. Although glyphosate is considered a herbicide, adverse effects have been found on animal species, including honey bees. Apis mellifera is one of the most important pollinators in agroecosystems and is exposed to both these pesticides. Traces can be found in nectar and pollen of flowers that honey bees visit, but also in honey stores inside the hive. Young workers, which perform in-hive tasks that are crucial for colony maintenance, are potentially exposed to both these contaminated resources. These workers present high plasticity and are susceptible to stimuli that can modulate their behaviour and impact on colony state. Therefore, by performing standardised assays to study sublethal effects of these pesticides, these bees can be used as bioindicators. We studied the effect of chronic joint exposure to field-realistic concentrations of the neonicotinoid imidacloprid and glyphosate on gustatory perception and olfactory learning. Both pesticides reduced sucrose responsiveness and had a negative effect on olfactory learning. Glyphosate also reduced food uptake during rearing. The results indicate differential susceptibility according to honey bee age. The two agrochemicals had adverse effects on different aspects of honey bee appetitive behaviour, which could have repercussions for food distribution, propagation of olfactory information and task coordination within the nest. © 2018. Published by The Company of Biologists Ltd.

  17. Decoding an olfactory mechanism of kin recognition and inbreeding avoidance in a primate.

    PubMed

    Boulet, Marylène; Charpentier, Marie J E; Drea, Christine M

    2009-12-03

    Like other vertebrates, primates recognize their relatives, primarily to minimize inbreeding, but also to facilitate nepotism. Although associative, social learning is typically credited for discrimination of familiar kin, discrimination of unfamiliar kin remains unexplained. As sex-biased dispersal in long-lived species cannot consistently prevent encounters between unfamiliar kin, inbreeding remains a threat and mechanisms to avoid it beg explanation. Using a molecular approach that combined analyses of biochemical and microsatellite markers in 17 female and 19 male ring-tailed lemurs (Lemur catta), we describe odor-gene covariance to establish the feasibility of olfactory-mediated kin recognition. Despite derivation from different genital glands, labial and scrotal secretions shared about 170 of their respective 338 and 203 semiochemicals. In addition, these semiochemicals encoded information about genetic relatedness within and between the sexes. Although the sexes showed opposite seasonal patterns in signal complexity, the odor profiles of related individuals (whether same-sex or mixed-sex dyads) converged most strongly in the competitive breeding season. Thus, a strong, mutual olfactory signal of genetic relatedness appeared specifically when such information would be crucial for preventing inbreeding. That weaker signals of genetic relatedness might exist year round could provide a mechanism to explain nepotism between unfamiliar kin. We suggest that signal convergence between the sexes may reflect strong selective pressures on kin recognition, whereas signal convergence within the sexes may arise as its by-product or function independently to prevent competition between unfamiliar relatives. The link between an individual's genome and its olfactory signals could be mediated by biosynthetic pathways producing polymorphic semiochemicals or by carrier proteins modifying the individual bouquet of olfactory cues. In conclusion, we unveil a possible olfactory mechanism of kin recognition that has specific relevance to understanding inbreeding avoidance and nepotistic behavior observed in free-ranging primates, and broader relevance to understanding the mechanisms of vertebrate olfactory communication.

  18. Biological complexity and adaptability of simple mammalian olfactory memory systems.

    PubMed

    Brennan, P; Keverne, E B

    2015-03-01

    Chemosensory systems play vital roles in the lives of most mammals, including the detection and identification of predators, as well as sex and reproductive status and the identification of individual conspecifics. All of these capabilities require a process of recognition involving a combination of innate (kairomonal/pheromonal) and learned responses. Across very different phylogenies, the mechanisms for pheromonal and odour learning have much in common. They are frequently associated with plasticity of GABA-ergic feedback at the initial level of processing the chemosensory information, which enhances its pattern separation capability. Association of odourant features into an odour object primarily involves anterior piriform cortex for non-social odours. However, the medial amygdala appears to be involved in both the recognition of social odours and their association with chemosensory information sensed by the vomeronasal system. Unusually not only the sensory neurons themselves, but also the GABA-ergic interneurons in the olfactory bulb are continually being replaced, with implications for the induction and maintenance of learned chemosensory responses. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  19. Developmental distribution of CaM kinase II in the antennal lobe of the sphinx moth Manduca sexta.

    PubMed

    Lohr, Christian; Bergstein, Sandra; Hirnet, Daniela

    2007-01-01

    The antennal lobe (primary olfactory center of insects) is completely reorganized during metamorphosis. This reorganization is accompanied by changing patterns of calcium signaling in neurons and glial cells. In the present study, we investigated the developmental distribution of a major calcium-dependent protein, viz., calcium/calmodulin-dependent protein kinase II (CaM kinase II), in the antennal lobe of the sphinx moth Manduca sexta by using a monoclonal antibody. During synaptogenesis (developmental stages 6-10), we found a redistribution of CaM kinase II immunoreactivity, from a homogeneous distribution in the immature neuropil to an accumulation in the neuropil of the glomeruli. CaM kinase II immunoreactivity was less intense in olfactory receptor axons of the antennal nerve and antennal lobe glial cells. Western blot analysis revealed a growing content of CaM kinase II in antennal lobe tissue throughout metamorphosis. Injection of the CaM kinase inhibitor KN-93 into pupae resulted in a reduced number of antennal lobe glial cells migrating into the neuropil to form borders around glomeruli. The results suggest that CaM kinase II is involved in glial cell migration.

  20. Spiny lobsters detect conspecific blood-borne alarm cues exclusively through olfactory sensilla.

    PubMed

    Shabani, Shkelzen; Kamio, Michiya; Derby, Charles D

    2008-08-01

    When attacked by predators, diverse animals actively or passively release molecules that evoke alarm and related anti-predatory behavior by nearby conspecifics. The actively released molecules are alarm pheromones, whereas the passively released molecules are alarm cues. For example, many insects have alarm-signaling systems that involve active release of alarm pheromones from specialized glands and detection of these signals using specific sensors. Many crustaceans passively release alarm cues, but the nature of the cues, sensors and responses is poorly characterized. Here we show in laboratory and field experiments that injured Caribbean spiny lobsters, Panulirus argus, passively release alarm cues via blood (hemolymph) that induce alarm responses in the form of avoidance and suppression of feeding. These cues are detected exclusively through specific olfactory chemosensors, the aesthetasc sensilla. The alarm cues for Caribbean spiny lobsters are not unique to the species but do show some phylogenetic specificity: P. argus responds primarily with alarm behavior to conspecific blood, but with mixed alarm and appetitive behaviors to blood from the congener Panulirus interruptus, or with appetitive behaviors to blood from the blue crab Callinectes sapidus. This study lays the foundation for future neuroethological studies of alarm cue systems in this and other decapod crustaceans.

  1. Molecular and Functional Characterization of Odorant-Binding Protein Genes in an Invasive Vector Mosquito, Aedes albopictus

    PubMed Central

    Deng, Yuhua; Yan, Hui; Gu, Jinbao; Xu, Jiabao; Wu, Kun; Tu, Zhijian; James, Anthony A.; Chen, Xiaoguang

    2013-01-01

    Aedes albopictus is a major vector of dengue and Chikungunya viruses. Olfaction plays a vital role in guiding mosquito behaviors and contributes to their ability to transmit pathogens. Odorant-binding proteins (OBPs) are abundant in insect olfactory tissues and involved in the first step of odorant reception. While comprehensive descriptions are available of OBPs from Aedes aegypti, Culex quinquefasciatus and Anopheles gambiae, only a few genes from Ae. albopictus have been reported. In this study, twenty-one putative AalbOBP genes were cloned using their homologues in Ae. aegypti to query an Ae. albopictus partial genome sequence. Two antenna-specific OBPs, AalbOBP37 and AalbOBP39, display a remarkable similarity in their overall folding and binding pockets, according to molecular modeling. Binding affinity assays indicated that AalbOBP37 and AalbOBP39 had overlapping ligand affinities and are affected in different pH condition. Electroantennagrams (EAG) and behavioral tests show that these two genes were involved in olfactory reception. An improved understanding of the Ae. albopictus OBPs is expected to contribute to the development of more efficient and environmentally-friendly mosquito control strategies. PMID:23935894

  2. Machine learning for characterization of insect vector feeding

    USDA-ARS?s Scientific Manuscript database

    Insects that feed by ingesting plant and animal fluids cause devastating damage to humans, livestock, and agriculture worldwide, primarily by transmitting phytopathogenic and zoonotic pathogens. The feeding processes required for successful disease transmission by sucking insects can be recorded by ...

  3. It takes two-coincidence coding within the dual olfactory pathway of the honeybee.

    PubMed

    Brill, Martin F; Meyer, Anneke; Rössler, Wolfgang

    2015-01-01

    To rapidly process biologically relevant stimuli, sensory systems have developed a broad variety of coding mechanisms like parallel processing and coincidence detection. Parallel processing (e.g., in the visual system), increases both computational capacity and processing speed by simultaneously coding different aspects of the same stimulus. Coincidence detection is an efficient way to integrate information from different sources. Coincidence has been shown to promote associative learning and memory or stimulus feature detection (e.g., in auditory delay lines). Within the dual olfactory pathway of the honeybee both of these mechanisms might be implemented by uniglomerular projection neurons (PNs) that transfer information from the primary olfactory centers, the antennal lobe (AL), to a multimodal integration center, the mushroom body (MB). PNs from anatomically distinct tracts respond to the same stimulus space, but have different physiological properties, characteristics that are prerequisites for parallel processing of different stimulus aspects. However, the PN pathways also display mirror-imaged like anatomical trajectories that resemble neuronal coincidence detectors as known from auditory delay lines. To investigate temporal processing of olfactory information, we recorded PN odor responses simultaneously from both tracts and measured coincident activity of PNs within and between tracts. Our results show that coincidence levels are different within each of the two tracts. Coincidence also occurs between tracts, but to a minor extent compared to coincidence within tracts. Taken together our findings support the relevance of spike timing in coding of olfactory information (temporal code).

  4. The Lepidoptera Odorant Binding Protein gene family: Gene gain and loss within the GOBP/PBP complex of moths and butterflies.

    PubMed

    Vogt, Richard G; Große-Wilde, Ewald; Zhou, Jing-Jiang

    2015-07-01

    Butterflies and moths differ significantly in their daily activities: butterflies are diurnal while moths are largely nocturnal or crepuscular. This life history difference is presumably reflected in their sensory biology, and especially the balance between the use of chemical versus visual signals. Odorant Binding Proteins (OBP) are a class of insect proteins, at least some of which are thought to orchestrate the transfer of odor molecules within an olfactory sensillum (olfactory organ), between the air and odor receptor proteins (ORs) on the olfactory neurons. A Lepidoptera specific subclass of OBPs are the GOBPs and PBPs; these were the first OBPs studied and have well documented associations with olfactory sensilla. We have used the available genomes of two moths, Manduca sexta and Bombyx mori, and two butterflies, Danaus plexippus and Heliconius melpomene, to characterize the GOBP/PBP genes, attempting to identify gene orthologs and document specific gene gain and loss. First, we identified the full repertoire of OBPs in the M. sexta genome, and compared these with the full repertoire of OBPs from the other three lepidopteran genomes, the OBPs of Drosophila melanogaster and select OBPs from other Lepidoptera. We also evaluated the tissue specific expression of the M. sexta OBPs using an available RNAseq databases. In the four lepidopteran species, GOBP2 and all PBPs reside in single gene clusters; in two species GOBP1 is documented to be nearby, about 100 kb from the cluster; all GOBP/PBP genes share a common gene structure indicating a common origin. As such, the GOBP/PBP genes form a gene complex. Our findings suggest that (1) the lepidopteran GOBP/PBP complex is a monophyletic lineage with origins deep within Lepidoptera phylogeny, (2) within this lineage PBP gene evolution is much more dynamic than GOBP gene evolution, and (3) butterflies may have lost a PBP gene that plays an important role in moth pheromone detection, correlating with a shift from olfactory (moth) to visual (butterfly) communication, at least regarding long distance mate recognition. These findings will be clarified by additional lepidopteran genomic data, but the observation that moths and butterflies share most of the PBP/GOBP genes suggests that they also share common chemosensory-based behavioral pathways. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Context-dependent memory: colour versus odour.

    PubMed

    Pointer, S C; Bond, N W

    1998-06-01

    An olfactory stimulus and a visual stimulus were employed in a context-dependent memory study using a prose passage as the to-be-remembered item. Ninety-five university students (aged 17-35 years) learned the passage of prose in the presence of one of the stimuli and were then asked to recall the passage with the original context either reinstated or not reinstated. The results revealed a significant context-dependent memory effect for the olfactory cue but not for the visual cue. They demonstrate support for the effectiveness of odours as context cues and it is suggested that context-dependent memory processes may underlie the formation and retrieval of odour-evoked autobiographical memories.

  6. Hypnotherapeutic olfactory conditioning (HOC): case studies of needle phobia, panic disorder, and combat-induced PTSD.

    PubMed

    Abramowitz, Eitan G; Lichtenberg, Pesach

    2009-04-01

    The authors developed a technique, which they call hypnotherapeutic olfactory conditioning (HOC), for exploiting the ability of scents to arouse potent emotional reactions. During hypnosis, the patient learns to associate pleasant scents with a sense of security and self-control. The patient can subsequently use this newfound association to overcome phobias and prevent panic attacks. This may be especially effective for posttraumatic stress disorder (PTSD) with episodes of anxiety, flashbacks, and dissociation triggered by smells. The authors present 3 cases, patients with needle phobia, panic disorder, and combat-induced PTSD who were successfully treated with the HOC technique.

  7. Affect in Human-Robot Interaction

    DTIC Science & Technology

    2014-01-01

    is capable of learning and producing a large number of facial expressions based on Ekman’s Facial Action Coding System, FACS (Ekman and Friesen 1978... tactile (pushed, stroked, etc.), auditory (loud sound), temperature and olfactory (alcohol, smoke, etc.). The personality of the robot consists of...robot’s behavior through decision-making, learning , or action selection, a number of researchers used the fuzzy logic approach to emotion generation

  8. A Synergistic Transcriptional Regulation of Olfactory Genes Drives Blood-Feeding Associated Complex Behavioral Responses in the Mosquito Anopheles culicifacies.

    PubMed

    Das De, Tanwee; Thomas, Tina; Verma, Sonia; Singla, Deepak; Chauhan, Charu; Srivastava, Vartika; Sharma, Punita; Kumari, Seena; Tevatiya, Sanjay; Rani, Jyoti; Hasija, Yasha; Pandey, Kailash C; Dixit, Rajnikant

    2018-01-01

    Decoding the molecular basis of host seeking and blood feeding behavioral evolution/adaptation in the adult female mosquitoes may provide an opportunity to design new molecular strategy to disrupt human-mosquito interactions. Although there is a great progress in the field of mosquito olfaction and chemo-detection, little is known about the sex-specific evolution of the specialized olfactory system of adult female mosquitoes that enables them to drive and manage the complex blood-feeding associated behavioral responses. A comprehensive RNA-Seq analysis of prior and post blood meal olfactory system of An. culicifacies mosquito revealed a minor but unique change in the nature and regulation of key olfactory genes that may play a pivotal role in managing diverse behavioral responses. Based on age-dependent transcriptional profiling, we further demonstrated that adult female mosquito's chemosensory system gradually learned and matured to drive the host-seeking and blood feeding behavior at the age of 5-6 days. A time scale expression analysis of Odorant Binding Proteins (OBPs) unravels unique association with a late evening to midnight peak biting time. Blood meal-induced switching of unique sets of OBP genes and Odorant Receptors (Ors) expression coincides with the change in the innate physiological status of the mosquitoes. Blood meal follows up experiments further provide enough evidence that how a synergistic and concurrent action of OBPs-Ors may drive "prior and post blood meal" associated complex behavioral events. A dominant expression of two sensory appendages proteins (SAP-1 & SAP2) in the legs of An. culicifacies suggests that this mosquito species may draw an extra advantage of having more sensitive appendages than An. stephensi , an urban malarial vector in the Indian subcontinents. Finally, our molecular modeling analysis predicts crucial amino acid residues for future functional characterization of the sensory appendages proteins which may play a central role in regulating multiple behaviors of An. culicifacies mosquito. SIGNIFICANCE   Evolution and adaptation of blood feeding behavior not only favored the reproductive success of adult female mosquitoes but also make them important disease-transmitting vectors. An environmental exposure after emergence may favor the broadly tuned olfactory system of mosquitoes to drive complex behavioral responses. But, how these olfactory derived genetic factors manage female specific "pre and post" blood meal associated complex behavioral responses are not well known. Our findings suggest that a synergistic action of olfactory factors may govern an innate to prime learning strategy to facilitate rapid blood meal acquisition and downstream behavioral activities. A species-specific transcriptional profiling and an in-silico analysis predict that "sensory appendages protein" may be a unique target to design disorientation strategy against the mosquito Anopheles culicifacies .

  9. Machine learning for characterization of insect vector feeding

    USDA-ARS?s Scientific Manuscript database

    Insects that feed by ingesting plant and animal fluids cause devastating damage to humans, livestock, and agriculture worldwide, primarily by transmitting pathogens of plants and animals. The feeding processes required for successful pathogen transmission by sucking insects can be recorded by monito...

  10. Motor-Skill Learning in an Insect Inspired Neuro-Computational Control System

    PubMed Central

    Arena, Eleonora; Arena, Paolo; Strauss, Roland; Patané, Luca

    2017-01-01

    In nature, insects show impressive adaptation and learning capabilities. The proposed computational model takes inspiration from specific structures of the insect brain: after proposing key hypotheses on the direct involvement of the mushroom bodies (MBs) and on their neural organization, we developed a new architecture for motor learning to be applied in insect-like walking robots. The proposed model is a nonlinear control system based on spiking neurons. MBs are modeled as a nonlinear recurrent spiking neural network (SNN) with novel characteristics, able to memorize time evolutions of key parameters of the neural motor controller, so that existing motor primitives can be improved. The adopted control scheme enables the structure to efficiently cope with goal-oriented behavioral motor tasks. Here, a six-legged structure, showing a steady-state exponentially stable locomotion pattern, is exposed to the need of learning new motor skills: moving through the environment, the structure is able to modulate motor commands and implements an obstacle climbing procedure. Experimental results on a simulated hexapod robot are reported; they are obtained in a dynamic simulation environment and the robot mimicks the structures of Drosophila melanogaster. PMID:28337138

  11. Lateralization of visual learning in the honeybee.

    PubMed

    Letzkus, Pinar; Boeddeker, Norbert; Wood, Jeff T; Zhang, Shao-Wu; Srinivasan, Mandyam V

    2008-02-23

    Lateralization is a well-described phenomenon in humans and other vertebrates and there are interesting parallels across a variety of different vertebrate species. However, there are only a few studies of lateralization in invertebrates. In a recent report, we showed lateralization of olfactory learning in the honeybee (Apis mellifera). Here, we investigate lateralization of another sensory modality, vision. By training honeybees on a modified version of a visual proboscis extension reflex task, we find that bees learn a colour stimulus better with their right eye.

  12. Convergent evolution of complex brains and high intelligence

    PubMed Central

    Roth, Gerhard

    2015-01-01

    Within the animal kingdom, complex brains and high intelligence have evolved several to many times independently, e.g. among ecdysozoans in some groups of insects (e.g. blattoid, dipteran, hymenopteran taxa), among lophotrochozoans in octopodid molluscs, among vertebrates in teleosts (e.g. cichlids), corvid and psittacid birds, and cetaceans, elephants and primates. High levels of intelligence are invariantly bound to multimodal centres such as the mushroom bodies in insects, the vertical lobe in octopodids, the pallium in birds and the cerebral cortex in primates, all of which contain highly ordered associative neuronal networks. The driving forces for high intelligence may vary among the mentioned taxa, e.g. needs for spatial learning and foraging strategies in insects and cephalopods, for social learning in cichlids, instrumental learning and spatial orientation in birds and social as well as instrumental learning in primates. PMID:26554042

  13. Sparse Coding and Lateral Inhibition Arising from Balanced and Unbalanced Dendrodendritic Excitation and Inhibition

    PubMed Central

    Migliore, Michele; Hines, Michael L.; Shepherd, Gordon M.

    2014-01-01

    The precise mechanism by which synaptic excitation and inhibition interact with each other in odor coding through the unique dendrodendritic synaptic microcircuits present in olfactory bulb is unknown. Here a scaled-up model of the mitral–granule cell network in the rodent olfactory bulb is used to analyze dendrodendritic processing of experimentally determined odor patterns. We found that the interaction between excitation and inhibition is responsible for two fundamental computational mechanisms: (1) a balanced excitation/inhibition in strongly activated mitral cells, leading to a sparse representation of odorant input, and (2) an unbalanced excitation/inhibition (inhibition dominated) in surrounding weakly activated mitral cells, leading to lateral inhibition. These results suggest how both mechanisms can carry information about the input patterns, with optimal level of synaptic excitation and inhibition producing the highest level of sparseness and decorrelation in the network response. The results suggest how the learning process, through the emergent development of these mechanisms, can enhance odor representation of olfactory bulb. PMID:25297097

  14. The wiring diagram of a glomerular olfactory system

    PubMed Central

    Berck, Matthew E; Khandelwal, Avinash; Claus, Lindsey; Hernandez-Nunez, Luis; Si, Guangwei; Tabone, Christopher J; Li, Feng; Truman, James W; Fetter, Rick D; Louis, Matthieu; Samuel, Aravinthan DT; Cardona, Albert

    2016-01-01

    The sense of smell enables animals to react to long-distance cues according to learned and innate valences. Here, we have mapped with electron microscopy the complete wiring diagram of the Drosophila larval antennal lobe, an olfactory neuropil similar to the vertebrate olfactory bulb. We found a canonical circuit with uniglomerular projection neurons (uPNs) relaying gain-controlled ORN activity to the mushroom body and the lateral horn. A second, parallel circuit with multiglomerular projection neurons (mPNs) and hierarchically connected local neurons (LNs) selectively integrates multiple ORN signals already at the first synapse. LN-LN synaptic connections putatively implement a bistable gain control mechanism that either computes odor saliency through panglomerular inhibition, or allows some glomeruli to respond to faint aversive odors in the presence of strong appetitive odors. This complete wiring diagram will support experimental and theoretical studies towards bridging the gap between circuits and behavior. DOI: http://dx.doi.org/10.7554/eLife.14859.001 PMID:27177418

  15. Local corticotropin releasing hormone (CRH) signals to its receptor CRHR1 during postnatal development of the mouse olfactory bulb.

    PubMed

    Garcia, Isabella; Bhullar, Paramjit K; Tepe, Burak; Ortiz-Guzman, Joshua; Huang, Longwen; Herman, Alexander M; Chaboub, Lesley; Deneen, Benjamin; Justice, Nicholas J; Arenkiel, Benjamin R

    2016-01-01

    Neuropeptides play important physiological functions during distinct behaviors such as arousal, learning, memory, and reproduction. However, the role of local, extrahypothalamic neuropeptide signaling in shaping synapse formation and neuronal plasticity in the brain is not well understood. Here, we characterize the spatiotemporal expression profile of the neuropeptide corticotropin-releasing hormone (CRH) and its receptor CRHR1 in the mouse OB throughout development. We found that CRH-expressing interneurons are present in the external plexiform layer, that its cognate receptor is expressed by granule cells, and show that both CRH and CRHR1 expression enriches in the postnatal period when olfaction becomes important towards olfactory-related behaviors. Further, we provide electrophysiological evidence that CRHR1-expressing granule cells functionally respond to CRH ligand, and that the physiological circuitry of CRHR1 knockout mice is abnormal, leading to impaired olfactory behaviors. Together, these data suggest a physiologically relevant role for local CRH signaling towards shaping the neuronal circuitry within the mouse OB.

  16. Odor Discrimination in Drosophila: From Neural Population Codes to Behavior

    PubMed Central

    Parnas, Moshe; Lin, Andrew C.; Huetteroth, Wolf; Miesenböck, Gero

    2013-01-01

    Summary Taking advantage of the well-characterized olfactory system of Drosophila, we derive a simple quantitative relationship between patterns of odorant receptor activation, the resulting internal representations of odors, and odor discrimination. Second-order excitatory and inhibitory projection neurons (ePNs and iPNs) convey olfactory information to the lateral horn, a brain region implicated in innate odor-driven behaviors. We show that the distance between ePN activity patterns is the main determinant of a fly’s spontaneous discrimination behavior. Manipulations that silence subsets of ePNs have graded behavioral consequences, and effect sizes are predicted by changes in ePN distances. ePN distances predict only innate, not learned, behavior because the latter engages the mushroom body, which enables differentiated responses to even very similar odors. Inhibition from iPNs, which scales with olfactory stimulus strength, enhances innate discrimination of closely related odors, by imposing a high-pass filter on transmitter release from ePN terminals that increases the distance between odor representations. PMID:24012006

  17. Odour-Mediated Orientation of Beetles Is Influenced by Age, Sex and Morph

    PubMed Central

    Arnold, Sarah E. J.; Stevenson, Philip C.; Belmain, Steven R.

    2012-01-01

    The behaviour of insects is dictated by a combination of factors and may vary considerably between individuals, but small insects are often considered en masse and thus these differences can be overlooked. For example, the cowpea bruchid Callosobruchus maculatus F. exists naturally in two adult forms: the active (flight) form for dispersal, and the inactive (flightless), more fecund but shorter-lived form. Given that these morphs show dissimilar biology, it is possible that they differ in odour-mediated orientation and yet studies of this species frequently neglect to distinguish morph type, or are carried out only on the inactive morph. Along with sex and age of individual, adult morph could be an important variable determining the biology of this and similar species, informing studies on evolution, ecology and pest management. We used an olfactometer with motion-tracking to investigate whether the olfactory behaviour and orientation of C. maculatus towards infested and uninfested cowpeas and a plant-derived repellent compound, methyl salicylate, differed between morphs or sexes. We found significant differences between the behaviour of male and female beetles and beetles of different ages, as well as interactive effects of sex, morph and age, in response to both host and repellent odours. This study demonstrates that behavioural experiments on insects should control for sex and age, while also considering differences between adult morphs where present in insect species. This finding has broad implications for fundamental entomological research, particularly when exploring the relationships between physiology, behaviour and evolutionary biology, and the application of crop protection strategies. PMID:23145074

  18. Normalization for sparse encoding of odors by a wide-field interneuron.

    PubMed

    Papadopoulou, Maria; Cassenaer, Stijn; Nowotny, Thomas; Laurent, Gilles

    2011-05-06

    Sparse coding presents practical advantages for sensory representations and memory storage. In the insect olfactory system, the representation of general odors is dense in the antennal lobes but sparse in the mushroom bodies, only one synapse downstream. In locusts, this transformation relies on the oscillatory structure of antennal lobe output, feed-forward inhibitory circuits, intrinsic properties of mushroom body neurons, and connectivity between antennal lobe and mushroom bodies. Here we show the existence of a normalizing negative-feedback loop within the mushroom body to maintain sparse output over a wide range of input conditions. This loop consists of an identifiable "giant" nonspiking inhibitory interneuron with ubiquitous connectivity and graded release properties.

  19. DELINEATING TOXIC AREAS BY CANINE OLFACTION

    EPA Science Inventory

    A research project was undertaken to learn how the highly acute olfactory sensitivity of the canine could be applied with advantage to environmental problems. The objectives were to determine how dogs could be trained to detect hazardous and toxic pollutants in the environment an...

  20. Feeding-induced rearrangement of green leaf volatiles reduces moth oviposition

    PubMed Central

    Allmann, Silke; Späthe, Anna; Bisch-Knaden, Sonja; Kallenbach, Mario; Reinecke, Andreas; Sachse, Silke; Baldwin, Ian T; Hansson, Bill S

    2013-01-01

    The ability to decrypt volatile plant signals is essential if herbivorous insects are to optimize their choice of host plants for their offspring. Green leaf volatiles (GLVs) constitute a widespread group of defensive plant volatiles that convey a herbivory-specific message via their isomeric composition: feeding of the tobacco hornworm Manduca sexta converts (Z)-3- to (E)-2-GLVs thereby attracting predatory insects. Here we show that this isomer-coded message is monitored by ovipositing M. sexta females. We detected the isomeric shift in the host plant Datura wrightii and performed functional imaging in the primary olfactory center of M. sexta females with GLV structural isomers. We identified two isomer-specific regions responding to either (Z)-3- or (E)-2-hexenyl acetate. Field experiments demonstrated that ovipositing Manduca moths preferred (Z)-3-perfumed D. wrightii over (E)-2-perfumed plants. These results show that (E)-2-GLVs and/or specific (Z)-3/(E)-2-ratios provide information regarding host plant attack by conspecifics that ovipositing hawkmoths use for host plant selection. DOI: http://dx.doi.org/10.7554/eLife.00421.001 PMID:23682312

  1. Disulfide connectivity and reduction in pheromone-binding proteins of the gypsy moth, Lymantria dispar

    NASA Astrophysics Data System (ADS)

    Honson, Nicolette S.; Plettner, Erika

    2006-06-01

    Males of the gypsy moth, Lymantria dispar, are attracted by a pheromone released by females. Pheromones are detected by olfactory neurons housed in specialized sensory hairs located on the antennae of the male moth. Once pheromone molecules enter the sensilla lymph, a highly abundant pheromone-binding protein (PBP) transports the molecule to the sensory neuron. The PBPs are members of the insect odorant-binding protein family, with six conserved cysteine residues. In this study, the disulfide bond connectivities of the pheromone-binding proteins PBP1 and PBP2 from the gypsy moth were found to be cysteines 19-54, 50-109, and 97-118 for PBP1, and cysteines 19-54, 50-110, and 97-119 for PBP2, as determined by cyanylation reactions and cyanogen bromide chemical cleavage. We have discovered that the second disulfide linkage is the most easily reduced of the three, and this same linkage is missing among four cysteine-containing insect odorant-binding proteins (OBPs). We are the first to identify the unique steric and electronic properties of this second disulfide linkage.

  2. Coral reef fish smell leaves to find island homes.

    PubMed

    Dixson, Danielle L; Jones, Geoffrey P; Munday, Philip L; Planes, Serge; Pratchett, Morgan S; Srinivasan, Maya; Syms, Craig; Thorrold, Simon R

    2008-12-22

    Recent studies have shown that some coral reef fish larvae return to natal reefs, while others disperse to distant reefs. However, the sensory mechanisms used to find settlement sites are poorly understood. One hypothesis is that larvae use olfactory cues to navigate home or find other suitable reef habitats. Here we show a strong association between the clownfish Amphiprion percula and coral reefs surrounding offshore islands in Papua New Guinea. Host anemones and A. percula are particularly abundant in shallow water beneath overhanging rainforest vegetation. A series of experiments were carried out using paired-choice flumes to evaluate the potential role of water-borne olfactory cues in finding islands. Recently settled A. percula exhibited strong preferences for: (i) water from reefs with islands over water from reefs without islands; (ii) water collected near islands over water collected offshore; and (iii) water treated with either anemones or leaves from rainforest vegetation. Laboratory reared-juveniles exhibited the same positive response to anemones and rainforest vegetation, suggesting that olfactory preferences are innate rather than learned. We hypothesize that A. percula use a suite of olfactory stimuli to locate vegetated islands, which may explain the high levels of self-recruitment on island reefs. This previously unrecognized link between coral reefs and island vegetation argues for the integrated management of these pristine tropical habitats.

  3. Coral reef fish smell leaves to find island homes

    PubMed Central

    Dixson, Danielle L; Jones, Geoffrey P; Munday, Philip L; Planes, Serge; Pratchett, Morgan S; Srinivasan, Maya; Syms, Craig; Thorrold, Simon R

    2008-01-01

    Recent studies have shown that some coral reef fish larvae return to natal reefs, while others disperse to distant reefs. However, the sensory mechanisms used to find settlement sites are poorly understood. One hypothesis is that larvae use olfactory cues to navigate home or find other suitable reef habitats. Here we show a strong association between the clownfish Amphiprion percula and coral reefs surrounding offshore islands in Papua New Guinea. Host anemones and A. percula are particularly abundant in shallow water beneath overhanging rainforest vegetation. A series of experiments were carried out using paired-choice flumes to evaluate the potential role of water-borne olfactory cues in finding islands. Recently settled A. percula exhibited strong preferences for: (i) water from reefs with islands over water from reefs without islands; (ii) water collected near islands over water collected offshore; and (iii) water treated with either anemones or leaves from rainforest vegetation. Laboratory reared-juveniles exhibited the same positive response to anemones and rainforest vegetation, suggesting that olfactory preferences are innate rather than learned. We hypothesize that A. percula use a suite of olfactory stimuli to locate vegetated islands, which may explain the high levels of self-recruitment on island reefs. This previously unrecognized link between coral reefs and island vegetation argues for the integrated management of these pristine tropical habitats. PMID:18755672

  4. Snowy Entomology

    ERIC Educational Resources Information Center

    Schmidt, Pamela; Chadde, Joan Schumaker; Buenzli, Michael

    2003-01-01

    Insects can be useful for investigations because they are numerous, relatively easy to find, and fascinating to students. Most elementary students have limited understandings of what exactly becomes of insects during the winter, often guessing that insects must "go to sleep" or "they just die." In this winter activity, students learn about insect…

  5. DNA Methylation Adjusts the Specificity of Memories Depending on the Learning Context and Promotes Relearning in Honeybees

    PubMed Central

    Biergans, Stephanie D.; Claudianos, Charles; Reinhard, Judith; Galizia, C. G.

    2016-01-01

    The activity of the epigenetic writers DNA methyltransferases (Dnmts) after olfactory reward conditioning is important for both stimulus-specific long-term memory (LTM) formation and extinction. It, however, remains unknown which components of memory formation Dnmts regulate (e.g., associative vs. non-associative) and in what context (e.g., varying training conditions). Here, we address these aspects in order to clarify the role of Dnmt-mediated DNA methylation in memory formation. We used a pharmacological Dnmt inhibitor and classical appetitive conditioning in the honeybee Apis mellifera, a well characterized model for classical conditioning. We quantified the effect of DNA methylation on naïve odor and sugar responses, and on responses following olfactory reward conditioning. We show that (1) Dnmts do not influence naïve odor or sugar responses, (2) Dnmts do not affect the learning of new stimuli, but (3) Dnmts influence odor-coding, i.e., ‘correct’ (stimulus-specific) LTM formation. Particularly, Dnmts reduce memory specificity when experience is low (one-trial training), and increase memory specificity when experience is high (multiple-trial training), generating an ecologically more useful response to learning. (4) In reversal learning conditions, Dnmts are involved in regulating both excitatory (re-acquisition) and inhibitory (forgetting) processes. PMID:27672359

  6. DNA Methylation Adjusts the Specificity of Memories Depending on the Learning Context and Promotes Relearning in Honeybees.

    PubMed

    Biergans, Stephanie D; Claudianos, Charles; Reinhard, Judith; Galizia, C G

    2016-01-01

    The activity of the epigenetic writers DNA methyltransferases (Dnmts) after olfactory reward conditioning is important for both stimulus-specific long-term memory (LTM) formation and extinction. It, however, remains unknown which components of memory formation Dnmts regulate (e.g., associative vs. non-associative) and in what context (e.g., varying training conditions). Here, we address these aspects in order to clarify the role of Dnmt-mediated DNA methylation in memory formation. We used a pharmacological Dnmt inhibitor and classical appetitive conditioning in the honeybee Apis mellifera, a well characterized model for classical conditioning. We quantified the effect of DNA methylation on naïve odor and sugar responses, and on responses following olfactory reward conditioning. We show that (1) Dnmts do not influence naïve odor or sugar responses, (2) Dnmts do not affect the learning of new stimuli, but (3) Dnmts influence odor-coding, i.e., 'correct' (stimulus-specific) LTM formation. Particularly, Dnmts reduce memory specificity when experience is low (one-trial training), and increase memory specificity when experience is high (multiple-trial training), generating an ecologically more useful response to learning. (4) In reversal learning conditions, Dnmts are involved in regulating both excitatory (re-acquisition) and inhibitory (forgetting) processes.

  7. Age- and sex-related disturbance in a battery of sensorimotor and cognitive tasks in Kunming mice.

    PubMed

    Chen, Gui-Hai; Wang, Yue-Ju; Zhang, Li-Qun; Zhou, Jiang-Ning

    2004-12-15

    A battery of tasks, i.e. beam walking, open field, tightrope, radial six-arm water maze (RAWM), novel-object recognition and olfactory discrimination, was used to determine whether there was age- and sex-related memory deterioration in Kunming (KM) mice, and whether these tasks are independent or correlated with each other. Two age groups of KM mice were used: a younger group (7-8 months old, 12 males and 11 females) and an older group (17-18 months old, 12 males and 12 females). The results showed that the spatial learning ability and memory in the RAWM were lower in older female KM mice relative to younger female mice and older male mice. Consistent with this, in the novel-object recognition task, a non-spatial cognitive task, older female mice but not older male mice had impairment of short-term memory. In olfactory discrimination, another non-spatial task, the older mice retained this ability. Interestingly, female mice performed better than males, especially in the younger group. The older females exhibited sensorimotor impairment in the tightrope task and low locomotor activity in the open-field task. Moreover, older mice spent a longer time in the peripheral squares of the open-field than younger ones. The non-spatial cognitive performance in the novel-object recognition and olfactory discrimination tasks was related to performance in the open-field, whereas the spatial cognitive performance in the RAWM was not related to performance in any of the three sensorimotor tasks. These results suggest that disturbance of spatial learning and memory, as well as selective impairment of non-spatial learning and memory, existed in older female KM mice.

  8. Non-pathogenic rhizobacteria interfere with the attraction of parasitoids to aphid-induced plant volatiles via jasmonic acid signalling.

    PubMed

    Pineda, Ana; Soler, Roxina; Weldegergis, Berhane T; Shimwela, Mpoki M; VAN Loon, Joop J A; Dicke, Marcel

    2013-02-01

    Beneficial soil-borne microbes, such as mycorrhizal fungi or rhizobacteria, can affect the interactions of plants with aboveground insects at several trophic levels. While the mechanisms of interactions with herbivorous insects, that is, the second trophic level, are starting to be understood, it remains unknown how plants mediate the interactions between soil microbes and carnivorous insects, that is, the third trophic level. Using Arabidopsis thaliana Col-0 and the aphid Myzus persicae, we evaluate here the underlying mechanisms involved in the plant-mediated interaction between the non-pathogenic rhizobacterium Pseudomonas fluorescens and the parasitoid Diaeretiella rapae, by combining ecological, chemical and molecular approaches. Rhizobacterial colonization modifies the composition of the blend of herbivore-induced plant volatiles. The volatile blend from rhizobacteria-treated aphid-infested plants is less attractive to an aphid parasitoid, in terms of both olfactory preference behaviour and oviposition, than the volatile blend from aphid-infested plants without rhizobacteria. Importantly, the effect of rhizobacteria on both the emission of herbivore-induced volatiles and parasitoid response to aphid-infested plants is lost in an Arabidopsis mutant (aos/dde2-2) that is impaired in jasmonic acid production. By modifying the blend of herbivore-induced plant volatiles that depend on the jasmonic acid-signalling pathway, root-colonizing microbes interfere with the attraction of parasitoids of leaf herbivores. © 2012 Blackwell Publishing Ltd.

  9. Convergent evolution of complex brains and high intelligence.

    PubMed

    Roth, Gerhard

    2015-12-19

    Within the animal kingdom, complex brains and high intelligence have evolved several to many times independently, e.g. among ecdysozoans in some groups of insects (e.g. blattoid, dipteran, hymenopteran taxa), among lophotrochozoans in octopodid molluscs, among vertebrates in teleosts (e.g. cichlids), corvid and psittacid birds, and cetaceans, elephants and primates. High levels of intelligence are invariantly bound to multimodal centres such as the mushroom bodies in insects, the vertical lobe in octopodids, the pallium in birds and the cerebral cortex in primates, all of which contain highly ordered associative neuronal networks. The driving forces for high intelligence may vary among the mentioned taxa, e.g. needs for spatial learning and foraging strategies in insects and cephalopods, for social learning in cichlids, instrumental learning and spatial orientation in birds and social as well as instrumental learning in primates. © 2015 The Author(s).

  10. Identification and Characterization of Candidate Chemosensory Gene Families from Spodoptera exigua Developmental Transcriptomes

    PubMed Central

    Liu, Nai-Yong; Zhang, Ting; Ye, Zhan-Feng; Li, Fei; Dong, Shuang-Lin

    2015-01-01

    Insect chemosensory genes have been considered as potential molecular targets to develop alternative strategies for pest control. However, in Spodoptera exigua, a seriously polyphagous agricultural pest, only a small part of such genes have been identified and characterized to date. Here, using a bioinformatics screen a total of 79 chemosensory genes were identified from a public transcriptomic data of different developmental stages (eggs, 1st to 5th instar larvae, pupae, female and male adults), including 34 odorant binding proteins (OBPs), 20 chemosensory proteins (CSPs), 22 chemosensory receptors (10 odorant receptors (ORs), six gustatory receptors (GRs) and six ionotropic receptors (IRs)) and three sensory neuron membrane proteins (SNMPs). Notably, a new group of lepidopteran SNMPs (SNMP3 group) was found for the first time in S. exigua, and confirmed in four other moth species. Further, reverse transcription PCR (RT-PCR) and quantitative real time PCR (qPCR) were employed respectively to validate the sequences and determine the expression patterns of 69 identified chemosensory genes regarding to sexes, tissues and stages. Results showed that 67 of these genes could be detected and reconstructed in at least one tissue tested. Further, 60 chemosensory genes were expressed in adult antennae and 52 in larval heads with the antennae, whereas over half of the genes were also detected in non-olfactory tissues like egg and thorax. Particularly, S. exigua OBP2 showed a predominantly larval head-biased expression, and functional studies further indicated its potentially olfactory roles in guiding food searching of larvae. This work suggests functional diversities of S. exigua chemosensory genes and could greatly facilitate the understanding of olfactory system in S. exigua and other lepidopteran species. PMID:26221071

  11. A coupled-oscillator model of olfactory bulb gamma oscillations

    PubMed Central

    2017-01-01

    The olfactory bulb transforms not only the information content of the primary sensory representation, but also its underlying coding metric. High-variance, slow-timescale primary odor representations are transformed by bulbar circuitry into secondary representations based on principal neuron spike patterns that are tightly regulated in time. This emergent fast timescale for signaling is reflected in gamma-band local field potentials, presumably serving to efficiently integrate olfactory sensory information into the temporally regulated information networks of the central nervous system. To understand this transformation and its integration with interareal coordination mechanisms requires that we understand its fundamental dynamical principles. Using a biophysically explicit, multiscale model of olfactory bulb circuitry, we here demonstrate that an inhibition-coupled intrinsic oscillator framework, pyramidal resonance interneuron network gamma (PRING), best captures the diversity of physiological properties exhibited by the olfactory bulb. Most importantly, these properties include global zero-phase synchronization in the gamma band, the phase-restriction of informative spikes in principal neurons with respect to this common clock, and the robustness of this synchronous oscillatory regime to multiple challenging conditions observed in the biological system. These conditions include substantial heterogeneities in afferent activation levels and excitatory synaptic weights, high levels of uncorrelated background activity among principal neurons, and spike frequencies in both principal neurons and interneurons that are irregular in time and much lower than the gamma frequency. This coupled cellular oscillator architecture permits stable and replicable ensemble responses to diverse sensory stimuli under various external conditions as well as to changes in network parameters arising from learning-dependent synaptic plasticity. PMID:29140973

  12. Olfactory bulb gamma oscillations are enhanced with task demands.

    PubMed

    Beshel, Jennifer; Kopell, Nancy; Kay, Leslie M

    2007-08-01

    Fast oscillations in neural assemblies have been proposed as a mechanism to facilitate stimulus representation in a variety of sensory systems across animal species. In the olfactory system, intervention studies suggest that oscillations in the gamma frequency range play a role in fine odor discrimination. However, there is still no direct evidence that such oscillations are intrinsically altered in intact systems to aid in stimulus disambiguation. Here we show that gamma oscillatory power in the rat olfactory bulb during a two-alternative choice task is modulated in the intact system according to task demands with dramatic increases in gamma power during discrimination of molecularly similar odorants in contrast to dissimilar odorants. This elevation in power evolves over the course of criterion performance, is specific to the gamma frequency band (65-85 Hz), and is independent of changes in the theta or beta frequency band range. Furthermore, these high amplitude gamma oscillations are restricted to the olfactory bulb, such that concurrent piriform cortex recordings show no evidence of enhanced gamma power during these high-amplitude events. Our results display no modulation in the power of beta oscillations (15-28 Hz) shown previously to increase with odor learning in a Go/No-go task, and we suggest that the oscillatory profile of the olfactory system may be influenced by both odor discrimination demands and task type. The results reported here indicate that enhancement of local gamma power may reflect a switch in the dynamics of the system to a strategy that optimizes stimulus resolution when input signals are ambiguous.

  13. Dissecting neural pathways for forgetting in Drosophila olfactory aversive memory

    PubMed Central

    Shuai, Yichun; Hirokawa, Areekul; Ai, Yulian; Zhang, Min; Li, Wanhe; Zhong, Yi

    2015-01-01

    Recent studies have identified molecular pathways driving forgetting and supported the notion that forgetting is a biologically active process. The circuit mechanisms of forgetting, however, remain largely unknown. Here we report two sets of Drosophila neurons that account for the rapid forgetting of early olfactory aversive memory. We show that inactivating these neurons inhibits memory decay without altering learning, whereas activating them promotes forgetting. These neurons, including a cluster of dopaminergic neurons (PAM-β′1) and a pair of glutamatergic neurons (MBON-γ4>γ1γ2), terminate in distinct subdomains in the mushroom body and represent parallel neural pathways for regulating forgetting. Interestingly, although activity of these neurons is required for memory decay over time, they are not required for acute forgetting during reversal learning. Our results thus not only establish the presence of multiple neural pathways for forgetting in Drosophila but also suggest the existence of diverse circuit mechanisms of forgetting in different contexts. PMID:26627257

  14. A program for undergraduate research into the mechanisms of sensory coding and memory decay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calin-Jageman, R J

    This is the final technical report for this DOE project, entitltled "A program for undergraduate research into the mechanisms of sensory coding and memory decay". The report summarizes progress on the three research aims: 1) to identify phyisological and genetic correlates of long-term habituation, 2) to understand mechanisms of olfactory coding, and 3) to foster a world-class undergraduate neuroscience program. Progress on the first aim has enabled comparison of learning-regulated transcripts across closely related learning paradigms and species, and results suggest that only a small core of transcripts serve truly general roles in long-term memory. Progress on the second aimmore » has enabled testing of several mutant phenotypes for olfactory behaviors, and results show that responses are not fully consistent with the combinitoral coding hypothesis. Finally, 14 undergraduate students participated in this research, the neuroscience program attracted extramural funding, and we completed a successful summer program to enhance transitions for community-college students into 4-year colleges to persue STEM fields.« less

  15. An engram found? Evaluating the evidence from fruit flies.

    PubMed

    Gerber, Bertram; Tanimoto, Hiromu; Heisenberg, Martin

    2004-12-01

    Is it possible to localize a memory trace to a subset of cells in the brain? If so, it should be possible to show: first, that neuronal plasticity occurs in these cells. Second, that neuronal plasticity in these cells is sufficient for memory. Third, that neuronal plasticity in these cells is necessary for memory. Fourth, that memory is abolished if these cells cannot provide output during testing. And fifth, that memory is abolished if these cells cannot receive input during training. With regard to olfactory learning in flies, we argue that the notion of the olfactory memory trace being localized to the Kenyon cells of the mushroom bodies is a reasonable working hypothesis.

  16. A Subtype of Olfactory Bulb Interneurons Is Required for Odor Detection and Discrimination Behaviors.

    PubMed

    Takahashi, Hiroo; Ogawa, Yoichi; Yoshihara, Sei-Ichi; Asahina, Ryo; Kinoshita, Masahito; Kitano, Tatsuro; Kitsuki, Michiko; Tatsumi, Kana; Okuda, Mamiko; Tatsumi, Kouko; Wanaka, Akio; Hirai, Hirokazu; Stern, Peter L; Tsuboi, Akio

    2016-08-03

    Neural circuits that undergo reorganization by newborn interneurons in the olfactory bulb (OB) are necessary for odor detection and discrimination, olfactory memory, and innate olfactory responses, including predator avoidance and sexual behaviors. The OB possesses many interneurons, including various types of granule cells (GCs); however, the contribution that each type of interneuron makes to olfactory behavioral control remains unknown. Here, we investigated the in vivo functional role of oncofetal trophoblast glycoprotein 5T4, a regulator for dendritic arborization of 5T4-expressing GCs (5T4 GCs), the level of which is reduced in the OB of 5T4 knock-out (KO) mice. Electrophysiological recordings with acute OB slices indicated that external tufted cells (ETCs) can be divided into two types, bursting and nonbursting. Optogenetic stimulation of 5T4 GCs revealed their connection to both bursting and nonbursting ETCs, as well as to mitral cells (MCs). Interestingly, nonbursting ETCs received fewer inhibitory inputs from GCs in 5T4 KO mice than from those in wild-type (WT) mice, whereas bursting ETCs and MCs received similar inputs in both mice. Furthermore, 5T4 GCs received significantly fewer excitatory inputs in 5T4 KO mice. Remarkably, in olfactory behavior tests, 5T4 KO mice had higher odor detection thresholds than the WT, as well as defects in odor discrimination learning. Therefore, the loss of 5T4 attenuates inhibitory inputs from 5T4 GCs to nonbursting ETCs and excitatory inputs to 5T4 GCs, contributing to disturbances in olfactory behavior. Our novel findings suggest that, among the various types of OB interneurons, the 5T4 GC subtype is required for odor detection and discrimination behaviors. Neuronal circuits in the brain include glutamatergic principal neurons and GABAergic interneurons. Although the latter is a minority cell type, they are vital for normal brain function because they regulate the activity of principal neurons. If interneuron function is impaired, brain function may be damaged, leading to behavior disorder. The olfactory bulb (OB) possesses various types of interneurons, including granule cells (GCs); however, the contribution that each type of interneuron makes to the control of olfactory behavior remains unknown. Here, we analyzed electrophysiologically and behaviorally the function of oncofetal trophoblast glycoprotein 5T4, a regulator for dendritic branching in OB GCs. We found that, among the various types of OB interneuron, the 5T4 GC subtype is required for odor detection and odor discrimination behaviors. Copyright © 2016 the authors 0270-6474/16/368211-18$15.00/0.

  17. Honeybees Learn Odour Mixtures via a Selection of Key Odorants

    PubMed Central

    Reinhard, Judith; Sinclair, Michael; Srinivasan, Mandyam V.; Claudianos, Charles

    2010-01-01

    Background The honeybee has to detect, process and learn numerous complex odours from her natural environment on a daily basis. Most of these odours are floral scents, which are mixtures of dozens of different odorants. To date, it is still unclear how the bee brain unravels the complex information contained in scent mixtures. Methodology/Principal Findings This study investigates learning of complex odour mixtures in honeybees using a simple olfactory conditioning procedure, the Proboscis-Extension-Reflex (PER) paradigm. Restrained honeybees were trained to three scent mixtures composed of 14 floral odorants each, and then tested with the individual odorants of each mixture. Bees did not respond to all odorants of a mixture equally: They responded well to a selection of key odorants, which were unique for each of the three scent mixtures. Bees showed less or very little response to the other odorants of the mixtures. The bees' response to mixtures composed of only the key odorants was as good as to the original mixtures of 14 odorants. A mixture composed of the other, non-key-odorants elicited a significantly lower response. Neither an odorant's volatility or molecular structure, nor learning efficiencies for individual odorants affected whether an odorant became a key odorant for a particular mixture. Odorant concentration had a positive effect, with odorants at high concentration likely to become key odorants. Conclusions/Significance Our study suggests that the brain processes complex scent mixtures by predominantly learning information from selected key odorants. Our observations on key odorant learning lend significant support to previous work on olfactory learning and mixture processing in honeybees. PMID:20161714

  18. Be a Bee and Other Approaches To Introducing Young Children to Entomology.

    ERIC Educational Resources Information Center

    Danoff-Burg, James A.

    2002-01-01

    Early and ongoing exposure to entomology promotes interest in insects, minimizes fear of nature, and instills appreciation for biodiversity. Three effective ways to introduce young children to the study of insects are: live collections for observation and investigation, re-creation of insects through artistic constructions to learn structure and…

  19. Visual Place Learning in Drosophila melanogaster

    PubMed Central

    Ofstad, Tyler A.; Zuker, Charles S.; Reiser, Michael B.

    2011-01-01

    The ability of insects to learn and navigate to specific locations in the environment has fascinated naturalists for decades. While the impressive navigation abilities of ants, bees, wasps, and other insects clearly demonstrate that insects are capable of visual place learning1–4, little is known about the underlying neural circuits that mediate these behaviors. Drosophila melanogaster is a powerful model organism for dissecting the neural circuitry underlying complex behaviors, from sensory perception to learning and memory. Flies can identify and remember visual features such as size, color, and contour orientation5, 6. However, the extent to which they use vision to recall specific locations remains unclear. Here we describe a visual place-learning platform and demonstrate that Drosophila are capable of forming and retaining visual place memories to guide selective navigation. By targeted genetic silencing of small subsets of cells in the Drosophila brain we show that neurons in the ellipsoid body, but not in the mushroom bodies, are necessary for visual place learning. Together, these studies reveal distinct neuroanatomical substrates for spatial versus non-spatial learning, and substantiate Drosophila as a powerful model for the study of spatial memories. PMID:21654803

  20. Olfactory Receptor Subgenomes Linked with Broad Ecological Adaptations in Sauropsida.

    PubMed

    Khan, Imran; Yang, Zhikai; Maldonado, Emanuel; Li, Cai; Zhang, Guojie; Gilbert, M Thomas P; Jarvis, Erich D; O'Brien, Stephen J; Johnson, Warren E; Antunes, Agostinho

    2015-11-01

    Olfactory receptors (ORs) govern a prime sensory function. Extant birds have distinct olfactory abilities, but the molecular mechanisms underlining diversification and specialization remain mostly unknown. We explored OR diversity in 48 phylogenetic and ecologically diverse birds and 2 reptiles (alligator and green sea turtle). OR subgenomes showed species- and lineage-specific variation related with ecological requirements. Overall 1,953 OR genes were identified in reptiles and 16,503 in birds. The two reptiles had larger OR gene repertoires (989 and 964 genes, respectively) than birds (182-688 genes). Overall, birds had more pseudogenes (7,855) than intact genes (1,944). The alligator had significantly more functional genes than sea turtle, likely because of distinct foraging habits. We found rapid species-specific expansion and positive selection in OR14 (detects hydrophobic compounds) in birds and in OR51 and OR52 (detect hydrophilic compounds) in sea turtle, suggestive of terrestrial and aquatic adaptations, respectively. Ecological partitioning among birds of prey, water birds, land birds, and vocal learners showed that diverse ecological factors determined olfactory ability and influenced corresponding olfactory-receptor subgenome. OR5/8/9 was expanded in predatory birds and alligator, suggesting adaptive specialization for carnivory. OR families 2/13, 51, and 52 were correlated with aquatic adaptations (water birds), OR families 6 and 10 were more pronounced in vocal-learning birds, whereas most specialized land birds had an expanded OR family 14. Olfactory bulb ratio (OBR) and OR gene repertoire were correlated. Birds that forage for prey (carnivores/piscivores) had relatively complex OBR and OR gene repertoires compared with modern birds, including passerines, perhaps due to highly developed cognitive capacities facilitating foraging innovations. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. De novo analysis of the Nilaparvata lugens (Stål) antenna transcriptome and expression patterns of olfactory genes.

    PubMed

    Zhou, Shuang-Shuang; Sun, Ze; Ma, Weihua; Chen, Wei; Wang, Man-Qun

    2014-03-01

    We sequenced the antenna transcriptome of the brown planthopper (BPH), Nilaparvata lugens (Stål), a global rice pest, and performed transcriptome analysis on BPH antenna. We obtained about 40million 90bp reads that were assembled into 75,874 unigenes with a mean size of 456bp. Among the antenna transcripts, 32,856 (43%) showed significant similarity (E-value <1e(-5)) to known proteins in the NCBI database. Gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were used to classify functions of BPH antenna genes. We identified 10 odorant-binding proteins (OBPs), including 7 previously unidentified, and 11 chemosensory proteins (CSPs), including two new members. The expression profiles of 4 OBPs and 2 CSPs were determined by q-PCR for antenna, abdomen, leg and wing of insects of different age, gender, and mating status including two BPH adult wing-morphology types. NlugCSP10 and 4 OBPs appeared to be antenna-specific because they were highly and differentially expressed in male and female antennae. NlugCSP11 was expressed ubiquitously, with particularly high expression in wings. The transcript levels of several olfactory genes depended on adult wing form, age, gender, and mating status, although no clear expression patterns were determined. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. NMDA Receptors Mediate Olfactory Learning and Memory in Drosophila

    PubMed Central

    Xia, Shouzhen; Miyashita, Tomoyuki; Fu, Tsai-Feng; Lin, Wei-Yong; Wu, Chia-Lin; Pyzocha, Lori; Lin, Inn-Ray; Saitoe, Minoru; Tully, Tim; Chiang, Ann-Shyn

    2011-01-01

    Summary Background Molecular and electrophysiological properties of NMDARs suggest that they may be the Hebbian “coincidence detectors” hypothesized to underlie associative learning. Because of the nonspecificity of drugs that modulate NMDAR function or the relatively chronic genetic manipulations of various NMDAR subunits from mammalian studies, conclusive evidence for such an acute role for NMDARs in adult behavioral plasticity, however, is lacking. Moreover, a role for NMDARs in memory consolidation remains controversial. Results The Drosophila genome encodes two NMDAR homologs, dNR1 and dNR2. When coexpressed in Xenopus oocytes or Drosophila S2 cells, dNR1 and dNR2 form functional NMDARs with several of the distinguishing molecular properties observed for vertebrate NMDARs, including voltage/Mg2+-dependent activation by glutamate. Both proteins are weakly expressed throughout the entire brain but show preferential expression in several neurons surrounding the dendritic region of the mushroom bodies. Hypomorphic mutations of the essential dNR1 gene disrupt olfactory learning, and this learning defect is rescued with wild-type transgenes. Importantly, we show that Pavlovian learning is disrupted in adults within 15 hr after transient induction of a dNR1 antisense RNA transgene. Extended training is sufficient to overcome this initial learning defect, but long-term memory (LTM) specifically is abolished under these training conditions. Conclusions Our study uses a combination of molecular-genetic tools to (1) generate genomic mutations of the dNR1 gene, (2) rescue the accompanying learning deficit with a dNR1+ transgene, and (3) rapidly and transiently knockdown dNR1+ expression in adults, thereby demonstrating an evolutionarily conserved role for the acute involvement of NMDARs in associative learning and memory. PMID:15823532

  3. NMDA receptors mediate olfactory learning and memory in Drosophila.

    PubMed

    Xia, Shouzhen; Miyashita, Tomoyuki; Fu, Tsai-Feng; Lin, Wei-Yong; Wu, Chia-Lin; Pyzocha, Lori; Lin, Inn-Ray; Saitoe, Minoru; Tully, Tim; Chiang, Ann-Shyn

    2005-04-12

    Molecular and electrophysiological properties of NMDARs suggest that they may be the Hebbian "coincidence detectors" hypothesized to underlie associative learning. Because of the nonspecificity of drugs that modulate NMDAR function or the relatively chronic genetic manipulations of various NMDAR subunits from mammalian studies, conclusive evidence for such an acute role for NMDARs in adult behavioral plasticity, however, is lacking. Moreover, a role for NMDARs in memory consolidation remains controversial. The Drosophila genome encodes two NMDAR homologs, dNR1 and dNR2. When coexpressed in Xenopus oocytes or Drosophila S2 cells, dNR1 and dNR2 form functional NMDARs with several of the distinguishing molecular properties observed for vertebrate NMDARs, including voltage/Mg(2+)-dependent activation by glutamate. Both proteins are weakly expressed throughout the entire brain but show preferential expression in several neurons surrounding the dendritic region of the mushroom bodies. Hypomorphic mutations of the essential dNR1 gene disrupt olfactory learning, and this learning defect is rescued with wild-type transgenes. Importantly, we show that Pavlovian learning is disrupted in adults within 15 hr after transient induction of a dNR1 antisense RNA transgene. Extended training is sufficient to overcome this initial learning defect, but long-term memory (LTM) specifically is abolished under these training conditions. Our study uses a combination of molecular-genetic tools to (1) generate genomic mutations of the dNR1 gene, (2) rescue the accompanying learning deficit with a dNR1+ transgene, and (3) rapidly and transiently knockdown dNR1+ expression in adults, thereby demonstrating an evolutionarily conserved role for the acute involvement of NMDARs in associative learning and memory.

  4. Olfactory memory formation and the influence of reward pathway during appetitive learning by honey bees.

    PubMed

    Wright, Geraldine A; Mustard, Julie A; Kottcamp, Sonya M; Smith, Brian H

    2007-11-01

    Animals possess the ability to assess food quality via taste and via changes in state that occur after ingestion. Here, we investigate the extent to which a honey bee's ability to assess food quality affected the formation of association with an odor stimulus and the retention of olfactory memories associated with reward. We used three different conditioning protocols in which the unconditioned stimulus (food) was delivered as sucrose stimulation to the proboscis (mouthparts), the antennae or to both proboscis and antennae. All means of delivery of the unconditioned stimulus produced robust associative conditioning with an odor. However, the memory of a conditioned odor decayed at a significantly greater rate for subjects experiencing antennal-only stimulation after either multiple- or single-trial conditioning. Finally, to test whether the act of feeding on a reward containing sucrose during conditioning affected olfactory memory formation, we conditioned honey bees to associate an odor with antennal stimulation with sucrose followed by feeding on a water droplet. We observed that a honey bee's ability to recall the conditioned odor was not significantly different from that of subjects conditioned with an antennal-only sucrose stimulus. Our results show that stimulation of the sensory receptors on the proboscis and/or ingestion of the sucrose reward during appetitive olfactory conditioning are necessary for long-term memory formation.

  5. Density of mushroom body synaptic complexes limits intraspecies brain miniaturization in highly polymorphic leaf-cutting ant workers

    PubMed Central

    Groh, Claudia; Kelber, Christina; Grübel, Kornelia; Rössler, Wolfgang

    2014-01-01

    Hymenoptera possess voluminous mushroom bodies (MBs), brain centres associated with sensory integration, learning and memory. The mushroom body input region (calyx) is organized in distinct synaptic complexes (microglomeruli, MG) that can be quantified to analyse body size-related phenotypic plasticity of synaptic microcircuits in these small brains. Leaf-cutting ant workers (Atta vollenweideri) exhibit an enormous size polymorphism, which makes them outstanding to investigate neuronal adaptations underlying division of labour and brain miniaturization. We particularly asked how size-related division of labour in polymorphic workers is reflected in volume and total numbers of MG in olfactory calyx subregions. Whole brains of mini, media and large workers were immunolabelled with anti-synapsin antibodies, and mushroom body volumes as well as densities and absolute numbers of MG were determined by confocal imaging and three-dimensional analyses. The total brain volume and absolute volumes of olfactory mushroom body subdivisions were positively correlated with head widths, but mini workers had significantly larger MB to total brain ratios. Interestingly, the density of olfactory MG was remarkably independent from worker size. Consequently, absolute numbers of olfactory MG still were approximately three times higher in large compared with mini workers. The results show that the maximum packing density of synaptic microcircuits may represent a species-specific limit to brain miniaturization. PMID:24807257

  6. Do chimpanzees (Pan troglodytes schweinfurthii) exhibit sleep related behaviors that minimize exposure to parasitic arthropods? A preliminary report on the possible anti-vector function of chimpanzee sleeping platforms.

    PubMed

    Samson, David R; Muehlenbein, Michael P; Hunt, Kevin D

    2013-01-01

    Great apes spend half of their lives in a nightly "nest" or sleeping platform (SP), a complex object created by modifying foliage, which functions as a stable substrate on which to sleep. Of the several purported functions of SPs, one hypothesis is that they protect against parasitic infection. Here we investigate the role of SP site choice in avoiding molestation by arthropods. This study presents preliminary data on the insect-repellent properties of preferred sleeping tree species Cynometra alexandri. Insect traps were deployed in gallery forest habitats in which chimpanzees typically "nest." We compared traps placed adjacent to SPs artificially manufactured with C. alexandri trees to an open area within the same habitat. Multiple measures of arthropod counts indicate that simulated C. alexandri SP sites have fewer arthropods than similar non-SP sites. Volatile compounds secreted by C. alexandri foliage are hypothesized to repel annoying arthropods and/or mask chimpanzee olfactory signals. Of the total insects captured (n = 6,318), n = 145 were mosquitoes. Of the total mosquitoes captured, n = 47 were identified as Anopheles (female, n = 12). The prominent malarial vector Anopheles gambiae was identified among the captured mosquito sample. These results suggest that the presence of broken branches of the tree species C. alexandri reduce the amount of insects a chimpanzee is exposed to throughout a night's sleep. This great ape behavioral and socio-technological adaptation may have evolved, in part, to increase quality of sleep as well as decrease exposure to vectors of disease.

  7. The first myriapod genome sequence reveals conservative arthropod gene content and genome organisation in the centipede Strigamia maritima.

    PubMed

    Chipman, Ariel D; Ferrier, David E K; Brena, Carlo; Qu, Jiaxin; Hughes, Daniel S T; Schröder, Reinhard; Torres-Oliva, Montserrat; Znassi, Nadia; Jiang, Huaiyang; Almeida, Francisca C; Alonso, Claudio R; Apostolou, Zivkos; Aqrawi, Peshtewani; Arthur, Wallace; Barna, Jennifer C J; Blankenburg, Kerstin P; Brites, Daniela; Capella-Gutiérrez, Salvador; Coyle, Marcus; Dearden, Peter K; Du Pasquier, Louis; Duncan, Elizabeth J; Ebert, Dieter; Eibner, Cornelius; Erikson, Galina; Evans, Peter D; Extavour, Cassandra G; Francisco, Liezl; Gabaldón, Toni; Gillis, William J; Goodwin-Horn, Elizabeth A; Green, Jack E; Griffiths-Jones, Sam; Grimmelikhuijzen, Cornelis J P; Gubbala, Sai; Guigó, Roderic; Han, Yi; Hauser, Frank; Havlak, Paul; Hayden, Luke; Helbing, Sophie; Holder, Michael; Hui, Jerome H L; Hunn, Julia P; Hunnekuhl, Vera S; Jackson, LaRonda; Javaid, Mehwish; Jhangiani, Shalini N; Jiggins, Francis M; Jones, Tamsin E; Kaiser, Tobias S; Kalra, Divya; Kenny, Nathan J; Korchina, Viktoriya; Kovar, Christie L; Kraus, F Bernhard; Lapraz, François; Lee, Sandra L; Lv, Jie; Mandapat, Christigale; Manning, Gerard; Mariotti, Marco; Mata, Robert; Mathew, Tittu; Neumann, Tobias; Newsham, Irene; Ngo, Dinh N; Ninova, Maria; Okwuonu, Geoffrey; Ongeri, Fiona; Palmer, William J; Patil, Shobha; Patraquim, Pedro; Pham, Christopher; Pu, Ling-Ling; Putman, Nicholas H; Rabouille, Catherine; Ramos, Olivia Mendivil; Rhodes, Adelaide C; Robertson, Helen E; Robertson, Hugh M; Ronshaugen, Matthew; Rozas, Julio; Saada, Nehad; Sánchez-Gracia, Alejandro; Scherer, Steven E; Schurko, Andrew M; Siggens, Kenneth W; Simmons, DeNard; Stief, Anna; Stolle, Eckart; Telford, Maximilian J; Tessmar-Raible, Kristin; Thornton, Rebecca; van der Zee, Maurijn; von Haeseler, Arndt; Williams, James M; Willis, Judith H; Wu, Yuanqing; Zou, Xiaoyan; Lawson, Daniel; Muzny, Donna M; Worley, Kim C; Gibbs, Richard A; Akam, Michael; Richards, Stephen

    2014-11-01

    Myriapods (e.g., centipedes and millipedes) display a simple homonomous body plan relative to other arthropods. All members of the class are terrestrial, but they attained terrestriality independently of insects. Myriapoda is the only arthropod class not represented by a sequenced genome. We present an analysis of the genome of the centipede Strigamia maritima. It retains a compact genome that has undergone less gene loss and shuffling than previously sequenced arthropods, and many orthologues of genes conserved from the bilaterian ancestor that have been lost in insects. Our analysis locates many genes in conserved macro-synteny contexts, and many small-scale examples of gene clustering. We describe several examples where S. maritima shows different solutions from insects to similar problems. The insect olfactory receptor gene family is absent from S. maritima, and olfaction in air is likely effected by expansion of other receptor gene families. For some genes S. maritima has evolved paralogues to generate coding sequence diversity, where insects use alternate splicing. This is most striking for the Dscam gene, which in Drosophila generates more than 100,000 alternate splice forms, but in S. maritima is encoded by over 100 paralogues. We see an intriguing linkage between the absence of any known photosensory proteins in a blind organism and the additional absence of canonical circadian clock genes. The phylogenetic position of myriapods allows us to identify where in arthropod phylogeny several particular molecular mechanisms and traits emerged. For example, we conclude that juvenile hormone signalling evolved with the emergence of the exoskeleton in the arthropods and that RR-1 containing cuticle proteins evolved in the lineage leading to Mandibulata. We also identify when various gene expansions and losses occurred. The genome of S. maritima offers us a unique glimpse into the ancestral arthropod genome, while also displaying many adaptations to its specific life history.

  8. The First Myriapod Genome Sequence Reveals Conservative Arthropod Gene Content and Genome Organisation in the Centipede Strigamia maritima

    PubMed Central

    Chipman, Ariel D.; Ferrier, David E. K.; Brena, Carlo; Qu, Jiaxin; Hughes, Daniel S. T.; Schröder, Reinhard; Torres-Oliva, Montserrat; Znassi, Nadia; Jiang, Huaiyang; Almeida, Francisca C.; Alonso, Claudio R.; Apostolou, Zivkos; Aqrawi, Peshtewani; Arthur, Wallace; Barna, Jennifer C. J.; Blankenburg, Kerstin P.; Brites, Daniela; Capella-Gutiérrez, Salvador; Coyle, Marcus; Dearden, Peter K.; Du Pasquier, Louis; Duncan, Elizabeth J.; Ebert, Dieter; Eibner, Cornelius; Erikson, Galina; Evans, Peter D.; Extavour, Cassandra G.; Francisco, Liezl; Gabaldón, Toni; Gillis, William J.; Goodwin-Horn, Elizabeth A.; Green, Jack E.; Griffiths-Jones, Sam; Grimmelikhuijzen, Cornelis J. P.; Gubbala, Sai; Guigó, Roderic; Han, Yi; Hauser, Frank; Havlak, Paul; Hayden, Luke; Helbing, Sophie; Holder, Michael; Hui, Jerome H. L.; Hunn, Julia P.; Hunnekuhl, Vera S.; Jackson, LaRonda; Javaid, Mehwish; Jhangiani, Shalini N.; Jiggins, Francis M.; Jones, Tamsin E.; Kaiser, Tobias S.; Kalra, Divya; Kenny, Nathan J.; Korchina, Viktoriya; Kovar, Christie L.; Kraus, F. Bernhard; Lapraz, François; Lee, Sandra L.; Lv, Jie; Mandapat, Christigale; Manning, Gerard; Mariotti, Marco; Mata, Robert; Mathew, Tittu; Neumann, Tobias; Newsham, Irene; Ngo, Dinh N.; Ninova, Maria; Okwuonu, Geoffrey; Ongeri, Fiona; Palmer, William J.; Patil, Shobha; Patraquim, Pedro; Pham, Christopher; Pu, Ling-Ling; Putman, Nicholas H.; Rabouille, Catherine; Ramos, Olivia Mendivil; Rhodes, Adelaide C.; Robertson, Helen E.; Robertson, Hugh M.; Ronshaugen, Matthew; Rozas, Julio; Saada, Nehad; Sánchez-Gracia, Alejandro; Scherer, Steven E.; Schurko, Andrew M.; Siggens, Kenneth W.; Simmons, DeNard; Stief, Anna; Stolle, Eckart; Telford, Maximilian J.; Tessmar-Raible, Kristin; Thornton, Rebecca; van der Zee, Maurijn; von Haeseler, Arndt; Williams, James M.; Willis, Judith H.; Wu, Yuanqing; Zou, Xiaoyan; Lawson, Daniel; Muzny, Donna M.; Worley, Kim C.; Gibbs, Richard A.; Akam, Michael; Richards, Stephen

    2014-01-01

    Myriapods (e.g., centipedes and millipedes) display a simple homonomous body plan relative to other arthropods. All members of the class are terrestrial, but they attained terrestriality independently of insects. Myriapoda is the only arthropod class not represented by a sequenced genome. We present an analysis of the genome of the centipede Strigamia maritima. It retains a compact genome that has undergone less gene loss and shuffling than previously sequenced arthropods, and many orthologues of genes conserved from the bilaterian ancestor that have been lost in insects. Our analysis locates many genes in conserved macro-synteny contexts, and many small-scale examples of gene clustering. We describe several examples where S. maritima shows different solutions from insects to similar problems. The insect olfactory receptor gene family is absent from S. maritima, and olfaction in air is likely effected by expansion of other receptor gene families. For some genes S. maritima has evolved paralogues to generate coding sequence diversity, where insects use alternate splicing. This is most striking for the Dscam gene, which in Drosophila generates more than 100,000 alternate splice forms, but in S. maritima is encoded by over 100 paralogues. We see an intriguing linkage between the absence of any known photosensory proteins in a blind organism and the additional absence of canonical circadian clock genes. The phylogenetic position of myriapods allows us to identify where in arthropod phylogeny several particular molecular mechanisms and traits emerged. For example, we conclude that juvenile hormone signalling evolved with the emergence of the exoskeleton in the arthropods and that RR-1 containing cuticle proteins evolved in the lineage leading to Mandibulata. We also identify when various gene expansions and losses occurred. The genome of S. maritima offers us a unique glimpse into the ancestral arthropod genome, while also displaying many adaptations to its specific life history. PMID:25423365

  9. What can forest managers learn from research on fossil insects? Linking forest ecological history, biodiversity and management

    Treesearch

    Nicki J. Whitehouse

    2006-01-01

    This paper outlines the usefulness of using fossil insects, particularly Coleoptera (beetles), preserved in waterlogged palaeoenvironmental and archaeological deposits in understanding the changing nature of forest ecosystems and their associated insect population dynamics over the last 10,000 years. Research in Europe has highlighted the complex nature of early forest...

  10. High-throughput olfactory conditioning and memory retention test show variation in Nasonia parasitic wasps

    PubMed Central

    Hoedjes, K M; Steidle, J L M; Werren, J H; Vet, L E M; Smid, H M

    2012-01-01

    Most of our knowledge on learning and memory formation results from extensive studies on a small number of animal species. Although features and cellular pathways of learning and memory are highly similar in this diverse group of species, there are also subtle differences. Closely related species of parasitic wasps display substantial variation in memory dynamics and can be instrumental to understanding both the adaptive benefit of and mechanisms underlying this variation. Parasitic wasps of the genus Nasonia offer excellent opportunities for multidisciplinary research on this topic. Genetic and genomic resources available for Nasonia are unrivaled among parasitic wasps, providing tools for genetic dissection of mechanisms that cause differences in learning. This study presents a robust, high-throughput method for olfactory conditioning of Nasonia using a host encounter as reward. A T-maze olfactometer facilitates high-throughput memory retention testing and employs standardized odors of equal detectability, as quantified by electroantennogram recordings. Using this setup, differences in memory retention between Nasonia species were shown. In both Nasonia vitripennis and Nasonia longicornis, memory was observed up to at least 5 days after a single conditioning trial, whereas Nasonia giraulti lost its memory after 2 days. This difference in learning may be an adaptation to species-specific differences in ecological factors, for example, host preference. The high-throughput methods for conditioning and memory retention testing are essential tools to study both ultimate and proximate factors that cause variation in learning and memory formation in Nasonia and other parasitic wasp species. PMID:22804968

  11. DNA methylation mediates neural processing after odor learning in the honeybee

    PubMed Central

    Biergans, Stephanie D.; Claudianos, Charles; Reinhard, Judith; Galizia, C. Giovanni

    2017-01-01

    DNA methyltransferases (Dnmts) - epigenetic writers catalyzing the transfer of methyl-groups to cytosine (DNA methylation) – regulate different aspects of memory formation in many animal species. In honeybees, Dnmt activity is required to adjust the specificity of olfactory reward memories and bees’ relearning capability. The physiological relevance of Dnmt-mediated DNA methylation in neural networks, however, remains unknown. Here, we investigated how Dnmt activity impacts neuroplasticity in the bees’ primary olfactory center, the antennal lobe (AL) an equivalent of the vertebrate olfactory bulb. The AL is crucial for odor discrimination, an indispensable process in forming specific odor memories. Using pharmacological inhibition, we demonstrate that Dnmt activity influences neural network properties during memory formation in vivo. We show that Dnmt activity promotes fast odor pattern separation in trained bees. Furthermore, Dnmt activity during memory formation increases both the number of responding glomeruli and the response magnitude to a novel odor. These data suggest that Dnmt activity is necessary for a form of homoeostatic network control which might involve inhibitory interneurons in the AL network. PMID:28240742

  12. Learning to smell: repeated exposure increases sensitivity to androstenone, a major component of boar taint.

    PubMed

    Mörlein, Daniel; Meier-Dinkel, Lisa; Moritz, Jasmin; Sharifi, Ahmad Reza; Knorr, Christoph

    2013-08-01

    This study aimed to assess whether repeated exposure affects subjects' ability to detect androstenone. Olfactory acuity of 77 female and 44 male subjects (age 37.5 ± 11.7 years) was assessed three times during six weeks. Replicate triangle tests using various dilutions of androstenone (0.5, 5.0, and 50.0 μg/g) on filter paper smell strips were applied. Subjects were either assigned to a test group (TRAIN) using androstenone for daily training, or to a control group (CONTR) using a placebo. For the low, the intermediate, and the high level of androstenone presented, detection rate increased from 14.1 to 30.6%, 40.5 to 62.8%, and 65.3 to 78.5% respectively within 6 weeks from the initial assessment. Results suggest that mere exposure during repeated olfactory testing increased subjects' ability to correctly discriminate androstenone. The olfactory improvement was, however, more pronounced in the TRAIN group. Androstenone detection appears to be associated with its individual appreciation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Odor discrimination in Drosophila: from neural population codes to behavior.

    PubMed

    Parnas, Moshe; Lin, Andrew C; Huetteroth, Wolf; Miesenböck, Gero

    2013-09-04

    Taking advantage of the well-characterized olfactory system of Drosophila, we derive a simple quantitative relationship between patterns of odorant receptor activation, the resulting internal representations of odors, and odor discrimination. Second-order excitatory and inhibitory projection neurons (ePNs and iPNs) convey olfactory information to the lateral horn, a brain region implicated in innate odor-driven behaviors. We show that the distance between ePN activity patterns is the main determinant of a fly's spontaneous discrimination behavior. Manipulations that silence subsets of ePNs have graded behavioral consequences, and effect sizes are predicted by changes in ePN distances. ePN distances predict only innate, not learned, behavior because the latter engages the mushroom body, which enables differentiated responses to even very similar odors. Inhibition from iPNs, which scales with olfactory stimulus strength, enhances innate discrimination of closely related odors, by imposing a high-pass filter on transmitter release from ePN terminals that increases the distance between odor representations. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Electroantennographic Bioassay as a Screening Tool for Host Plant Volatiles

    PubMed Central

    Beck, John J.; Light, Douglas M.; Gee, Wai S.

    2012-01-01

    Plant volatiles play an important role in plant-insect interactions. Herbivorous insects use plant volatiles, known as kairomones, to locate their host plant.1,2 When a host plant is an important agronomic commodity feeding damage by insect pests can inflict serious economic losses to growers. Accordingly, kairomones can be used as attractants to lure or confuse these insects and, thus, offer an environmentally friendly alternative to pesticides for insect control.3 Unfortunately, plants can emit a vast number volatiles with varying compositions and ratios of emissions dependent upon the phenology of the commodity or the time of day. This makes identification of biologically active components or blends of volatile components an arduous process. To help identify the bioactive components of host plant volatile emissions we employ the laboratory-based screening bioassay electroantennography (EAG). EAG is an effective tool to evaluate and record electrophysiologically the olfactory responses of an insect via their antennal receptors. The EAG screening process can help reduce the number of volatiles tested to identify promising bioactive components. However, EAG bioassays only provide information about activation of receptors. It does not provide information about the type of insect behavior the compound elicits; which could be as an attractant, repellent or other type of behavioral response. Volatiles eliciting a significant response by EAG, relative to an appropriate positive control, are typically taken on to further testing of behavioral responses of the insect pest. The experimental design presented will detail the methodology employed to screen almond-based host plant volatiles4,5 by measurement of the electrophysiological antennal responses of an adult insect pest navel orangeworm (Amyelois transitella) to single components and simple blends of components via EAG bioassay. The method utilizes two excised antennae placed across a "fork" electrode holder. The protocol demonstrated here presents a rapid, high-throughput standardized method for screening volatiles. Each volatile is at a set, constant amount as to standardize the stimulus level and thus allow antennal responses to be indicative of the relative chemoreceptivity. The negative control helps eliminate the electrophysiological response to both residual solvent and mechanical force of the puff. The positive control (in this instance acetophenone) is a single compound that has elicited a consistent response from male and female navel orangeworm (NOW) moth. An additional semiochemical standard that provides consistent response and is used for bioassay studies with the male NOW moth is (Z,Z)-11,13-hexdecadienal, an aldehyde component from the female-produced sex pheromone.6-8 PMID:22588282

  15. Overlapping Risky Decision-Making and Olfactory Processing Ability in HIV-Infected Individuals.

    PubMed

    Jackson, Christopher; Rai, Narayan; McLean, Charlee K; Hipolito, Maria Mananita S; Hamilton, Flora Terrell; Kapetanovic, Suad; Nwulia, Evaristus A

    2017-09-01

    Given neuroimaging evidences of overlap in the circuitries for decision-making and olfactory processing, we examined the hypothesis that impairment in psychophysical tasks of olfaction would independently predict poor performances on Iowa Gambling Task (IGT), a laboratory task that closely mimics real-life decision-making, in a US cohort of HIV-infected (HIV+) individuals. IGT and psychophysical tasks of olfaction were administered to a Washington DC-based cohort of largely African American HIV+ subjects (N=100), and to a small number of demographically-matched non-HIV healthy controls (N=43) from a different study. Constructs of olfactory ability and decision-making were examined through confirmatory factor analysis (CFA). Structural equation models (SEMs) were used to evaluate the validity of the path relationship between these two constructs. The 100 HIV+ participants (56% female; 96% African Americans; median age = 48 years) had median CD4 count of 576 cells/μl and median HIV RNA viral load <48 copies per milliliter. Majority of HIV+ participants performed randomly throughout the course of IGT tasks, and failed to demonstrate a learning curve. Confirmatory factor analysis provided support for a unidimensional factor underlying poor performances on IGT. Nomological validity for correlations between olfactory ability and IGT performance was confirmed through SEM. Finally, factor scores of olfactory ability and IGT performance strongly predicted 6 months history of drug use, while olfaction additionally predicted hallucinogen use. This study suggests that combination of simple, office-based tasks of olfaction and decision-making may identify those HIV+ individuals who are more prone to risky decision-making. This finding may have significant clinical, public health value if joint impairments in olfaction and IGT task correlates with more decreased activity in brain regions relevant to decision-making.

  16. Learning and memory in the honeybee.

    PubMed

    Hammer, M; Menzel, R

    1995-03-01

    Insects are favorable subjects for neuroethological studies. Their nervous systems are relatively small and contain many individually identifiable cells. The CNS is highly compartmentalized with clear separations between multisensory higher order neuropiles in the brain and neuropiles serving sensory-motor routines in the ventral cord (Huber, 1974). The rich behavior of insects includes orientation in space and time, visual, chemical, and mechanical communication, and complex motor routines for flying, walking, swimming, nest building, defense, and attack. Learning and memory, though, are not usually considered to be a strong point of insects. Rather, insect behavior is often regarded as highly stereotyped and under tight control of genetically programmed neural circuits. This view, however, does not do justice to the insect order of Hymenoptera (bees, wasps, ants). Most Hymenopteran species care for their brood either as individual females or as a social group of females. Consequently, they regularly return to their nest site to feed, protect, and nurse the larvae, store food, and hide from adverse environmental conditions. Since they search for food (prey; nectar and pollen on flowers) at unpredictable sites, they have to learn the celestial and terrestrial cues that guide their foraging trips over long distances and allow them to find their nest sites (central place foraging; von Frisch, 1967; Seeley, 1985). They learn to relate the sun's position and sky pattern of polarized light to the time of the day (Lindauer, 1959), and landmarks are learned in relationship to the nest site within the framework of the time-compensated sun compass. The honeybee communicates direction and distance of a feeding place to hive mates by performing a ritualized body movement, the waggle dance (von Frisch, 1967). Associative learning is an essential component of the bee's central place foraging behavior and dance communication. Hive mates attending a dance performance learn the odor emanating from the dancing bee and seek it at the indicated food site. The odor, color, and shape of flowers are learned when the bee experiences these stimuli shortly before it finds food (nectar, pollen). This appetitive learning in bees has many characteristics of associative learning well known from mammalian learning studies (Menzel, 1985, 1990; Bitterman, 1988). It follows the rules of classical and operant conditioning, respectively, so that stimuli or behavioral acts are associated with evaluating stimuli. Since associative learning, especially of the classical type, is well described at the phenomenological and operational level (Rescorla, 1988), it provides a favorable approach in the search for the neural substrate underlying learning and memory.(ABSTRACT TRUNCATED AT 400 WORDS)

  17. Insects & Other Arthropods. Animal Life in Action[TM]. Schlessinger Science Library. [Videotape].

    ERIC Educational Resources Information Center

    2000

    This 23-minute videotape for grades 5-8, presents the myriad of animal life that exists on the planet. Students can view and perform experiments and investigations that help explain animal traits and habits. They also learn that there are more species of insects than any other animal class in the world. Insects are incredible creatures with many…

  18. The Evolutionary Dynamics of the Odorant Receptor Gene Family in Corbiculate Bees

    PubMed Central

    Ramírez, Santiago R.

    2017-01-01

    Abstract Insects rely on chemical information to locate food, choose mates, and detect potential predators. It has been hypothesized that adaptive changes in the olfactory system facilitated the diversification of numerous insect lineages. For instance, evolutionary changes of Odorant Receptor (OR) genes often occur in parallel with modifications in life history strategies. Corbiculate bees display a diverse array of behaviors that are controlled through olfaction, including varying degrees of social organization, and manifold associations with floral resources. Here we investigated the molecular mechanisms driving the evolution of the OR gene family in corbiculate bees in comparison to other chemosensory gene families. Our results indicate that the genomic organization of the OR gene family has remained highly conserved for ∼80 Myr, despite exhibiting major changes in repertoire size among bee lineages. Moreover, the evolution of OR genes appears to be driven mostly by lineage-specific gene duplications in few genomic regions that harbor large numbers of OR genes. A selection analysis revealed that OR genes evolve under positive selection, with the strongest signals detected in recently duplicated copies. Our results indicate that chromosomal translocations had a minimal impact on OR evolution, and instead local molecular mechanisms appear to be main drivers of OR repertoire size. Our results provide empirical support to the longstanding hypothesis that positive selection shaped the diversification of the OR gene family. Together, our results shed new light on the molecular mechanisms underlying the evolution of olfaction in insects. PMID:28854688

  19. Scientists Train Honeybees to Detect Explosives

    ScienceCinema

    None

    2018-01-16

    Members of the Los Alamos National Laboratory Stealthy Insect Sensor Project team have been able to harness the honeybee's exceptional olfactory sense by using the bees' natural reaction to nectar, a proboscis extension reflex (sticking out their tongue) to record an unmistakable response to a scent. Using Pavlovian techniques, researchers were able to train the bees to give a positive detection response via the PER when exposed to vapors from TNT, C4, and TATP explosives. The Stealthy Insect Sensor Project was born out of a global threat from the growing use of improvised explosive devices or IEDs, especially those that present a critical vulnerability for American military troops in Iraq and Afghanistan, and as an emerging danger for civilians worldwide. Current strategies to detect explosives are expensive and, in the case of trained detection dogs, too obtrusive to be used very discreetly. With bees however, they are small and discreet, offering the element of surprise. They're also are inexpensive to maintain and even easier to train than dogs. As a result of this need, initial funding for the work was provided by a development grant from the Defense Advanced Research Projects Agency.

  20. Mimicry in plant-parasitic fungi.

    PubMed

    Ngugi, Henry K; Scherm, Harald

    2006-04-01

    Mimicry is the close resemblance of one living organism (the mimic) to another (the model), leading to misidentification by a third organism (the operator). Similar to other organism groups, certain species of plant-parasitic fungi are known to engage in mimetic relationships, thereby increasing their fitness. In some cases, fungal infection can lead to the formation of flower mimics (pseudo flowers) that attract insect pollinators via visual and/or olfactory cues; these insects then either transmit fungal gametes to accomplish outcrossing (e.g. in some heterothallic rust fungi belonging to the genera Puccinia and Uromyces) or vector infectious spores to healthy plants, thereby spreading disease (e.g. in the anther smut fungus Microbotryum violaceum and the mummy berry pathogen Monilinia vaccinii-corymbosi). In what is termed aggressive mimicry, some specialized plant-parasitic fungi are able to mimic host structures or host molecules to gain access to resources. An example is M. vaccinii-corymbosi, whose conidia and germ tubes, respectively, mimic host pollen grains and pollen tubes anatomically and physiologically, allowing the pathogen to gain entry into the host's ovary via stigma and style. We review these and other examples of mimicry by plant-parasitic fungi and some of the mechanisms, signals, and evolutionary implications.

  1. Scientists Train Honeybees to Detect Explosives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2008-03-21

    Members of the Los Alamos National Laboratory Stealthy Insect Sensor Project team have been able to harness the honeybee's exceptional olfactory sense by using the bees' natural reaction to nectar, a proboscis extension reflex (sticking out their tongue) to record an unmistakable response to a scent. Using Pavlovian techniques, researchers were able to train the bees to give a positive detection response via the PER when exposed to vapors from TNT, C4, and TATP explosives. The Stealthy Insect Sensor Project was born out of a global threat from the growing use of improvised explosive devices or IEDs, especially those thatmore » present a critical vulnerability for American military troops in Iraq and Afghanistan, and as an emerging danger for civilians worldwide. Current strategies to detect explosives are expensive and, in the case of trained detection dogs, too obtrusive to be used very discreetly. With bees however, they are small and discreet, offering the element of surprise. They're also are inexpensive to maintain and even easier to train than dogs. As a result of this need, initial funding for the work was provided by a development grant from the Defense Advanced Research Projects Agency.« less

  2. Zincergic innervation from the anterior olfactory nucleus to the olfactory bulb displays plastic responses after mitral cell loss.

    PubMed

    Airado, Carmen; Gómez, Carmela; Recio, Javier S; Baltanás, Fernando C; Weruaga, Eduardo; Alonso, José R

    2008-12-01

    Zinc ions are selectively accumulated in certain neurons (zinc-enriched neurons). The mouse olfactory bulb is richly innervated by zinc-enriched terminals. Here, the plasticity of the zincergic system was studied in the olfactory bulb of the Purkinje Cell Degeneration mutant mouse, an animal with specific postnatal neurodegeneration of the main projection neurons of the olfactory bulb. The analysis focused particularly on the anterior olfactory nucleus since most centrifugal afferents coming to the olfactory bulb arise from this structure. Zinc-enriched terminals in the olfactory bulb and zinc-enriched somata in the anterior olfactory nucleus were visualized after selenite injections. Immunohistochemistry against the vesicular zinc transporter was also carried out to confirm the distribution pattern of zinc-enriched terminals in the olfactory bulb. The mutant mice showed a clear reorganization of zincergic centrifugal projections from the anterior olfactory nucleus to the olfactory bulb. First, all zincergic contralateral neurons projecting to the olfactory bulb were absent in the mutant mice. Second, a significant increase in the number of stained somata was detected in the ipsilateral anterior olfactory nucleus. Since no noticeable changes were observed in the zinc-enriched terminals in the olfactory bulb, it is conceivable that mitral cell loss could induce a reorganization of zinc-enriched projections coming from the anterior olfactory nucleus, probably directed at balancing the global zincergic centrifugal modulation. These results show that zincergic anterior olfactory nucleus cells projecting to the olfactory bulb undergo plastic changes to adapt to the loss of mitral cells in the olfactory bulb of Purkinje Cell Degeneration mutant mice.

  3. Determining If Insect Repellent Skin Patch Products Must Be Registered Under FIFRA

    EPA Pesticide Factsheets

    Certain skin patch products that claim to repel insects are required to be registered under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA), while others are exempt. Learn more about this issue.

  4. Aversive olfactory associative memory loses odor specificity over time

    PubMed Central

    König, Christian; Antwi-Adjei, Emmanuel; Ganesan, Mathangi; Kilonzo, Kasyoka; Viswanathan, Vignesh; Durairaja, Archana; Voigt, Anne

    2017-01-01

    ABSTRACT Avoiding associatively learned predictors of danger is crucial for survival. Aversive memories can, however, become counter-adaptive when they are overly generalized to harmless cues and contexts. In a fruit fly odor–electric shock associative memory paradigm, we found that learned avoidance lost its specificity for the trained odor and became general to novel odors within a day of training. We discuss the possible neural circuit mechanisms of this effect and highlight the parallelism to over-generalization of learned fear behavior after an incubation period in rodents and humans, with due relevance for post-traumatic stress disorder. PMID:28468811

  5. Nosema parasitism in honey bees (Apis mellifera) impacts olfactory learning and memory and neurochemistry

    USDA-ARS?s Scientific Manuscript database

    Nosema sp. is an internal parasite of the honey bee, Apis mellifera, and one of the leading contributors to colony losses worldwide. This parasite is found in the honey bee midgut, and has profound consequences on the host’s physiology. There are reports that Nosema sp. impairs foraging performance ...

  6. Experimental Evaluation of Performance Feedback Using the Dismounted Infantry Virtual After Action Review System. Long Range Navy and Marine Corps Science and Technology Program

    DTIC Science & Technology

    2007-11-14

    Artificial intelligence and 4 23 education , Volume 1: Learning environments and tutoring systems. Hillsdale, NJ: Erlbaum. Wickens, C.D. (1984). Processing...and how to use it to best optimize the learning process. Some researchers (see Loftin & Savely, 1991) have proposed adding intelligent systems to the...is experienced as the cognitive centers in an individual’s brain process visual, tactile, kinesthetic , olfactory, proprioceptive, and auditory

  7. Activity-dependent gene expression in honey bee mushroom bodies in response to orientation flight.

    PubMed

    Lutz, Claudia C; Robinson, Gene E

    2013-06-01

    The natural history of adult worker honey bees (Apis mellifera) provides an opportunity to study the molecular basis of learning in an ecological context. Foragers must learn to navigate between the hive and floral locations that may be up to miles away. Young pre-foragers prepare for this task by performing orientation flights near the hive, during which they begin to learn navigational cues such as the appearance of the hive, the position of landmarks, and the movement of the sun. Despite well-described spatial learning and navigation behavior, there is currently limited information on the neural basis of insect spatial learning. We found that Egr, an insect homolog of Egr-1, is rapidly and transiently upregulated in the mushroom bodies in response to orientation. This result is the first example of an Egr-1 homolog acting as a learning-related immediate-early gene in an insect and also demonstrates that honey bee orientation uses a molecular mechanism that is known to be involved in many other forms of learning. This transcriptional response occurred both in naïve bees and in foragers induced to re-orient. Further experiments suggest that visual environmental novelty, rather than exercise or memorization of specific visual cues, acts as the stimulus for Egr upregulation. Our results implicate the mushroom bodies in spatial learning and emphasize the deep conservation of Egr-related pathways in experience-dependent plasticity.

  8. Hippocampal CA1 local field potential oscillations induced by olfactory cue of liked food.

    PubMed

    Samerphob, Nifareeda; Cheaha, Dania; Chatpun, Surapong; Kumarnsit, Ekkasit

    2017-07-01

    Eating motivation is induced not only by negative energy balance but also food related cues. However, neural processing for acquisition of learned food preference remains to be established. This study aimed to identify hippocampal neural signaling in response to olfactory cue (chocolate scent) after completion of repetitive chocolate sessions. Male Swiss albino mice implanted with intracranial electrode into the hippocampus were used for local field potential (LFP) recording. Animals were given chocolate sessions (a piece of 2g chocolate per each mouse to eat on day 1, 3, 5 and 7). Hippocampal CA1 LFP signals and exploratory behavior of animals receiving chocolate scent were analyzed before and after chocolate sessions. The experiment was performed in a place preference-like apparatus with the zones of normal food pellet and chocolate (both kept in a small perforated cup for smell dispersion) at the opposite ends. Following chocolate sessions, time spent in a chocolate zone and CA1 LFP patterns were analyzed in comparison to control levels. Two-way ANOVA revealed significant increase in time spent seeking for chocolate. Frequency analysis of LFP power spectra revealed significant increases in delta and theta powers. Phase-amplitude analysis showed significant increase in maximal modulation index and decrease in frequency for phase of theta-high gamma coupling. Taken together, neural signaling in the hippocampus was sensitive to chocolate olfactory cue that might underlie learning process in response to repeated chocolate consumptions that primed intense food approaching behavior. Ultimately, these LFP patterns might reflect motivation to eat and predict feeding probability. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Aging results in reduced epidermal growth factor receptor signaling, diminished olfactory neurogenesis, and deficits in fine olfactory discrimination.

    PubMed

    Enwere, Emeka; Shingo, Tetsuro; Gregg, Christopher; Fujikawa, Hirokazu; Ohta, Shigeki; Weiss, Samuel

    2004-09-22

    Previous studies demonstrating olfactory interneuron involvement in olfactory discrimination and decreased proliferation in the forebrain subventricular zone with age led us to ask whether olfactory neurogenesis and, consequently, olfactory discrimination were impaired in aged mice. Pulse labeling showed that aged mice (24 months of age) had fewer new interneurons in the olfactory bulb than did young adult (2 months of age) mice. However, the aged mice had more olfactory interneurons in total than their younger counterparts. Aged mice exhibited no differences from young adult mice in their ability to discriminate between two discrete odors but were significantly poorer at performing discriminations between similar odors (fine olfactory discrimination). Leukemia inhibitory factor receptor heterozygote mice, which have less neurogenesis and fewer olfactory interneurons than their wild-type counterparts, performed more poorly at fine olfactory discrimination than the wild types, suggesting that olfactory neurogenesis, rather than the total number of interneurons, was responsible for fine olfactory discrimination. Immunohistochemistry and Western blot analyses revealed a selective reduction in expression levels of epidermal growth factor (EGF) receptor (EGFR) signaling elements in the aged forebrain subventricular zone. Waved-1 mutant mice, which express reduced quantities of transforming growth factor-alpha, the predominant EGFR ligand in adulthood, phenocopy aged mice in olfactory neurogenesis and performance on fine olfactory discrimination tasks. These results suggest that the impairment in fine olfactory discrimination with age may result from a reduction in EGF-dependent olfactory neurogenesis.

  10. The relationship between smell identification and neuropsychological domains: Results from a sample of community-dwelling adults suspected of dementia.

    PubMed

    Goette, William F; Werry, Amy E; Schmitt, Andrew L

    2018-08-01

    This study aimed to test the theoretical relationships between smell identification and cognitive tasks based on existing neuroimaging and anatomical findings. Utilizing data collected from a memory assessment clinic, theory-derived mediation and moderation models were tested. The sample used in this study consisted of 103 (39 male, 64 female) individuals referred for memory assessments. The sample's mean education was 12.4 years (SD = 3.2), and the mean age of the sample was 77.2 years (SD = 6.3). The University of Pennsylvania Smell Identification Test (UPSIT) was a significant, partial mediator of the relationship between the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) Immediate and Delayed Memory indexes. Olfactory identification did not mediate list learning and retrieval; however, olfactory identification was a significant partial mediator of the relationship between story encoding and later memory retrieval of the story. Olfactory identification also fully mediated the relationship between a visuospatial construction task and its reconstruction from memory after a short delay. The relationship between processing speed and the olfactory identification was significantly mediated by semantic memory. Finally, the UPSIT moderated the relationship between a measure of premorbid ability, the Wechsler Test of Adult Reading, and current global cognitive functioning. Our results support theoretical relationships between olfaction and neuropsychological domains. Additionally, our results suggest that the UPSIT may serve as a proxy for cerebral integrity and is likely related to the duration of neurodegeneration.

  11. Afferent and efferent projections of the anterior cortical amygdaloid nucleus in the mouse.

    PubMed

    Cádiz-Moretti, Bernardita; Abellán-Álvaro, María; Pardo-Bellver, Cecília; Martínez-García, Fernando; Lanuza, Enrique

    2017-09-01

    The anterior cortical amygdaloid nucleus (ACo) is a chemosensory area of the cortical amygdala that receives afferent projections from both the main and accessory olfactory bulbs. The role of this structure is unknown, partially due to a lack of knowledge of its connectivity. In this work, we describe the pattern of afferent and efferent projections of the ACo by using fluorogold and biotinylated dextranamines as retrograde and anterograde tracers, respectively. The results show that the ACo is reciprocally connected with the olfactory system and basal forebrain, as well as with the chemosensory and basomedial amygdala. In addition, it receives dense projections from the midline and posterior intralaminar thalamus, and moderate projections from the posterior bed nucleus of the stria terminalis, mesocortical structures and the hippocampal formation. Remarkably, the ACo projects moderately to the central nuclei of the amygdala and anterior bed nucleus of the stria terminalis, and densely to the lateral hypothalamus. Finally, minor connections are present with some midbrain and brainstem structures. The afferent projections of the ACo indicate that this nucleus might play a role in emotional learning involving chemosensory stimuli, such as olfactory fear conditioning. The efferent projections confirm this view and, given its direct output to the medial part of the central amygdala and the hypothalamic 'aggression area', suggest that the ACo can initiate defensive and aggressive responses elicited by olfactory or, to a lesser extent, vomeronasal stimuli. © 2017 Wiley Periodicals, Inc.

  12. Immunocytochemistry of the olfactory marker protein.

    PubMed

    Monti-Graziadei, G A; Margolis, F L; Harding, J W; Graziadei, P P

    1977-12-01

    The olfactory marker protein has been localized, by means of immunohistochemical techniques in the primary olfactory neurons of mice. The olfactory marker protein is not present in the staminal cells of the olfactory neuroepithelium, and the protein may be regarded as indicative of the functional stage of the neurons. Our data indicate that the olfactory marker protein is present in the synaptic terminals of the olfactory neurons at the level of the olfactory bulb glomeruli. The postsynaptic profiles of both mitral and periglomerular cells are negative.

  13. Aminergic neuromodulation of associative visual learning in harnessed honey bees.

    PubMed

    Mancini, Nino; Giurfa, Martin; Sandoz, Jean-Christophe; Avarguès-Weber, Aurore

    2018-05-21

    The honey bee Apis mellifera is a major insect model for studying visual cognition. Free-flying honey bees learn to associate different visual cues with a sucrose reward and may deploy sophisticated cognitive strategies to this end. Yet, the neural bases of these capacities cannot be studied in flying insects. Conversely, immobilized bees are accessible to neurobiological investigation but training them to respond appetitively to visual stimuli paired with sucrose reward is difficult. Here we succeeded in coupling visual conditioning in harnessed bees with pharmacological analyses on the role of octopamine (OA), dopamine (DA) and serotonin (5-HT) in visual learning. We also studied if and how these biogenic amines modulate sucrose responsiveness and phototaxis behaviour as intact reward and visual perception are essential prerequisites for appetitive visual learning. Our results suggest that both octopaminergic and dopaminergic signaling mediate either the appetitive sucrose signaling or the association between color and sucrose reward in the bee brain. Enhancing and inhibiting serotonergic signaling both compromised learning performances, probably via an impairment of visual perception. We thus provide a first analysis of the role of aminergic signaling in visual learning and retention in the honey bee and discuss further research trends necessary to understand the neural bases of visual cognition in this insect. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. [Posttraumatic anosmia: olfactory event related potentials and MRI evaluation].

    PubMed

    Liu, Jian-Feng; You, Hui; Ni, Dao-Feng; Zhang, Qiu-Hang; Yang, Da-Zhang; Wang, Na-Ya

    2008-03-01

    Using olfactory event related potentials (OERP) and magnetic resonance to evaluate olfactory function in patients with posttraumatic anosmia. Twenty four patients with posttraumatic anosmia were reviewed retrospectively. A thorough medical history, physical examination, nasal endoscopy, T&T olfactory testing, olfactory event-related potentials, brain computed tomography scan and magnetic resonance image of olfactory pathway were performed in all patients. Subjective olfactory testing indicated 20 of 24 patients were birhinal anosmia, 2 with right nostril anosmia and left impairment, 2 with left anosmia and right normal. No OERP were obtained in 24 (20 were birhinal, 4 was monorhinal), except 4 cases with single nostril. Magnetic resonance imaging revealed the injures to the olfactory bulbs (100%), rectus gyrus (91.7%), orbital gyrus (67%), olfactory tracts (8%) and temporal lobes (8%). OERP can objectively evaluate posttraumatic olfactory function, and magnetic resonance of olfactory pathway can precisely identify the location and extent of injures.

  15. Environmental enrichment of young adult rats (Rattus norvegicus) in different sensory modalities has long-lasting effects on their ability to learn via specific sensory channels.

    PubMed

    Dolivo, Vassilissa; Taborsky, Michael

    2017-05-01

    Sensory modalities individuals use to obtain information from the environment differ among conspecifics. The relative contributions of genetic divergence and environmental plasticity to this variance remain yet unclear. Numerous studies have shown that specific sensory enrichments or impoverishments at the postnatal stage can shape neural development, with potential lifelong effects. For species capable of adjusting to novel environments, specific sensory stimulation at a later life stage could also induce specific long-lasting behavioral effects. To test this possibility, we enriched young adult Norway rats with either visual, auditory, or olfactory cues. Four to 8 months after the enrichment period we tested each rat for their learning ability in 3 two-choice discrimination tasks, involving either visual, auditory, or olfactory stimulus discrimination, in a full factorial design. No sensory modality was more relevant than others for the proposed task per se, but rats performed better when tested in the modality for which they had been enriched. This shows that specific environmental conditions encountered during early adulthood have specific long-lasting effects on the learning abilities of rats. Furthermore, we disentangled the relative contributions of genetic and environmental causes of the response. The reaction norms of learning abilities in relation to the stimulus modality did not differ between families, so interindividual divergence was mainly driven by environmental rather than genetic factors. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  16. A Population of Projection Neurons that Inhibits the Lateral Horn but Excites the Antennal Lobe through Chemical Synapses in Drosophila

    PubMed Central

    Shimizu, Kazumichi; Stopfer, Mark

    2017-01-01

    In the insect olfactory system, odor information is transferred from the antennal lobe (AL) to higher brain areas by projection neurons (PNs) in multiple AL tracts (ALTs). In several species, one of the ALTs, the mediolateral ALT (mlALT), contains some GABAergic PNs; in the Drosophila brain, the great majority of ventral PNs (vPNs) are GABAergic and project through this tract to the lateral horn (LH). Most excitatory PNs (ePNs), project through the medial ALT (mALT) to the mushroom body (MB) and the LH. Recent studies have shown that GABAergic vPNs play inhibitory roles at their axon terminals in the LH. However, little is known about the properties and functions of vPNs at their dendritic branches in the AL. Here, we used optogenetic and patch clamp techniques to investigate the functional roles of vPNs in the AL. Surprisingly, our results show that specific activation of vPNs reliably elicits strong excitatory postsynaptic potentials (EPSPs) in ePNs. Moreover, the connections between vPNs and ePNs are mediated by direct chemical synapses. Neither pulses of GABA, nor pharmagological, or genetic blockade of GABAergic transmission gave results consistent with the involvement of GABA in vPN-ePN excitatory transmission. These unexpected results suggest new roles for the vPN population in olfactory information processing. PMID:28515683

  17. Rapid modification in the olfactory signal of ants following a change in reproductive status

    NASA Astrophysics Data System (ADS)

    Cuvillier-Hot, Virginie; Renault, Valérie; Peeters, Christian

    2005-02-01

    In insect societies, the presence and condition of egg-layers can be assessed with pheromones. Exocrine secretions are expected to vary in time in order to give up-to-date information on an individual’s reproductive physiology. In the queenless monogynous ant Streblognathus peetersi, we allowed a previously infertile high-ranking worker to accede to the alpha rank, thus triggering the onset of her oogenesis (15 replicates). We then studied her interactions with an established egg-layer from the same colony after different durations, ranging from 20 h to several days. Even though her eggs are only ready to be laid after 30 days, the new alpha was recognised within 1 2 days. Detection occurred at a distance of a few millimetres, suggesting the involvement of a pheromone with low volatility, such as cuticular hydrocarbons. When the new alpha had differentiated for >48 h, she was attacked by the established egg-layer. In all cases, low-ranking workers eventually immobilised one of the two alphas: the new alpha was the target if she had differentiated only recently, suggesting that police workers select the dominant worker with the “less fertile” odour. Using the behaviour of ants as our measure, we demonstrate that a dominant’s olfactory signal changes rapidly with a modification in her social status, and it occurs well before the onset of egg-laying.

  18. Evolutionary dynamics of olfactory receptor genes in chordates: interaction between environments and genomic contents

    PubMed Central

    2009-01-01

    Olfaction is essential for the survival of animals. Versatile odour molecules in the environment are received by olfactory receptors (ORs), which form the largest multigene family in vertebrates. Identification of the entire repertories of OR genes using bioinformatics methods from the whole-genome sequences of diverse organisms revealed that the numbers of OR genes vary enormously, ranging from ~1,200 in rats and ~400 in humans to ~150 in zebrafish and ~15 in pufferfish. Most species have a considerable fraction of pseudogenes. Extensive phylogenetic analyses have suggested that the numbers of gene gains and losses are extremely large in the OR gene family, which is a striking example of the birth-and-death evolution. It appears that OR gene repertoires change dynamically, depending on each organism's living environment. For example, higher primates equipped with a well-developed vision system have lost a large number of OR genes. Moreover, two groups of OR genes for detecting airborne odorants greatly expanded after the time of terrestrial adaption in the tetrapod lineage, whereas fishes retain diverse repertoires of genes that were present in aquatic ancestral species. The origin of vertebrate OR genes can be traced back to the common ancestor of all chordate species, but insects, nematodes and echinoderms utilise distinctive families of chemoreceptors, suggesting that chemoreceptor genes have evolved many times independently in animal evolution. PMID:20038498

  19. A Population of Projection Neurons that Inhibits the Lateral Horn but Excites the Antennal Lobe through Chemical Synapses in Drosophila.

    PubMed

    Shimizu, Kazumichi; Stopfer, Mark

    2017-01-01

    In the insect olfactory system, odor information is transferred from the antennal lobe (AL) to higher brain areas by projection neurons (PNs) in multiple AL tracts (ALTs). In several species, one of the ALTs, the mediolateral ALT (mlALT), contains some GABAergic PNs; in the Drosophila brain, the great majority of ventral PNs (vPNs) are GABAergic and project through this tract to the lateral horn (LH). Most excitatory PNs (ePNs), project through the medial ALT (mALT) to the mushroom body (MB) and the LH. Recent studies have shown that GABAergic vPNs play inhibitory roles at their axon terminals in the LH. However, little is known about the properties and functions of vPNs at their dendritic branches in the AL. Here, we used optogenetic and patch clamp techniques to investigate the functional roles of vPNs in the AL. Surprisingly, our results show that specific activation of vPNs reliably elicits strong excitatory postsynaptic potentials (EPSPs) in ePNs. Moreover, the connections between vPNs and ePNs are mediated by direct chemical synapses. Neither pulses of GABA, nor pharmagological, or genetic blockade of GABAergic transmission gave results consistent with the involvement of GABA in vPN-ePN excitatory transmission. These unexpected results suggest new roles for the vPN population in olfactory information processing.

  20. Identification and expression analysis of an olfactory receptor gene family in green plant bug Apolygus lucorum (Meyer-Dür)

    PubMed Central

    An, Xing-Kui; Sun, Liang; Liu, Hang-Wei; Liu, Dan-Feng; Ding, Yu-Xiao; Li, Le-Mei; Zhang, Yong-Jun; Guo, Yu-Yuan

    2016-01-01

    Olfactory receptors are believed to play a central role in insects host-seeking, mating, and ovipositing. On the basis of male and female antennal transcriptome of adult Apolygus lucorum, a total of 110 candidate A. lucorum odorant receptors (AlucOR) were identified in this study including five previously annotated AlucORs. All the sequences were validated by cloning and sequencing. Tissue expression profiles analysis by RT-PCR indicated most AlucORs were antennal highly expressed genes. The qPCR measurements further revealed 40 AlucORs were significantly higher in the antennae. One AlucOR was primarily expressed in the female antennae, while nine AlucORs exhibited male-biased expression patterns. Additionally, both the RPKM value and RT-qPCR analysis showed AlucOR83 and AlucOR21 were much higher abundant in male antennae than in female antennae, suggesting their different roles in chemoreception of gender. Phylogenetic analysis of ORs from several Hemipteran species demonstrated that most AlucORs had orthologous genes, and five AlucOR-specific clades were defined. In addition, a sub-clade of potential male-based sex pheromone receptors were also identified in the phylogenetic tree of AlucORs. Our results will facilitate the functional studies of AlucORs, and thereby provide a foundation for novel pest management approaches based on these genes. PMID:27892490

Top