USDA-ARS?s Scientific Manuscript database
Insect pest control programs incorporating the sterile insect technique (SIT) rely on the mass production and release of sterilized insects to reduce the wild-type population through infertile matings. Most effective programs release only males to avoid any crop damage caused by female fruit flies o...
A reaction-diffusion model of the Darien Gap Sterile Insect Release Method
NASA Astrophysics Data System (ADS)
Alford, John G.
2015-05-01
The Sterile Insect Release Method (SIRM) is used as a biological control for invasive insect species. SIRM involves introducing large quantities of sterilized male insects into a wild population of invading insects. A fertile/sterile mating produces offspring that are not viable and the wild insect population will eventually be eradicated. A U.S. government program maintains a permanent sterile fly barrier zone in the Darien Gap between Panama and Columbia to control the screwworm fly (Cochliomyia Hominivorax), an insect that feeds off of living tissue in mammals and has devastating effects on livestock. This barrier zone is maintained by regular releases of massive quantities of sterilized male screwworm flies from aircraft. We analyze a reaction-diffusion model of the Darien Gap barrier zone. Simulations of the model equations yield two types of spatially inhomogeneous steady-state solutions representing a sterile fly barrier that does not prevent invasion and a barrier that does prevent invasion. We investigate steady-state solutions using both phase plane methods and monotone iteration methods and describe how barrier width and the sterile fly release rate affects steady-state behavior.
Yang, Mingjun; Wang, Bo; Gao, Jufang; Zhang, Yang; Xu, Wenping; Tao, Liming
2017-02-01
Spinosad, a reduced-risk insecticide, acts on the nicotinic acetylcholine receptors and the gamma-aminobutyric acid receptor in the nervous system of target insects. However, its mechanism of action in non-neural insect cells is unclear. This study aimed to evaluate mitochondrial functional changes associated with spinosad in Spodoptera frugiperda (Sf9) insect cells. Our results indicate that in Sf9 cells, spinosad induces programmed cell death and mitochondrial dysfunction through enhanced reactive oxygen species production, mitochondrial permeability transition pore (mPTP) opening, and mitochondrial membrane potential collapse, eventually leading to cytochrome C release and apoptosis. The cytochrome C release induced by spinosad treatment was partly inhibited by the mPTP inhibitors cyclosporin A and bongkrekic acid. Subsequently, we found that spinosad downregulated Bcl-2 expression and upregulated p53 and Bax expressions, activated caspase-9 and caspase-3, and triggered PARP cleavage in Sf9 cells. These findings suggested that spinosad-induced programmed cell death was modulated by mitochondrial dysfunction and cytochrome C release. Copyright © 2016 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Pest control managers can benefit from using mathematical approaches, particularly models, when implementing area-wide pest control programs that include sterile insect technique (SIT), especially when these are used to calculate required rates of sterile releases to result in suppression or eradica...
USDA-ARS?s Scientific Manuscript database
Field population surveillance of a targeted insect pest species is critical to the evaluation of management programs such as the sterile insect technique. Use of markers to distinguish released insects from the field population is essential, but fluorescent powder dyes used on tephritid species are ...
USDA-ARS?s Scientific Manuscript database
The stem borer, Diatraea saccharalis (F.), is an important insect pest of sugarcane in Louisiana. Growing resistant varieties is a component of the Integrated Pest Management Program as practiced in Louisiana for managing this insect; however, the release of stem borer resistant varieties is intermi...
USDA-ARS?s Scientific Manuscript database
Research, operational, and commercial programs which rely on mass-reared insects of high quality and performance, need accurate methods for monitoring quality degradation during each step of production, handling and release. With continued interest in the use of the sterile insect technique (SIT) a...
Ikegawa, Yusuke; Himuro, Chihiro
2017-05-21
The sterile insect technique (SIT) is a genetic pest control method wherein mass-reared sterile insects are periodically released into the wild, thereby impeding the successful reproduction of fertile pests. In Okinawa Prefecture, Japan, the SIT has been implemented to eradicate the West Indian sweet potato weevil Euscepes postfasciatus (Fairmaire), which is a flightless agricultural pest of sweet potatoes. It is known that E. postfasciatus is much less mobile than other insects to which the SIT has been applied. However, previous theoretical studies have rarely examined effects of low mobility of target pests and variation in the spatiotemporal evenness of sterile insect releases. To theoretically examine the effects of spatiotemporal evenness on the regional eradication of less mobile pests, we constructed a simple two-patch population model comprised of a pest and sterile insect moving between two habitats, and numerically simulated different release strategies (varying the number of released sterile insects and release intervals). We found that spatially biased releases allowed the pest to spatially escape from the sterile insect, and thus intensively lowered its controllability. However, we showed that the temporally counterbalancing spatially biased releases by swapping the number of released insects in the two habitats at every release (called temporal balancing) could greatly mitigate this negative effect and promote the controllability. We also showed that the negative effect of spatiotemporally biased releases was a result of the limited mobility of the target insect. Although directed dispersal of the insects in response to habitats of differing quality could lower the controllability in the more productive habitat, the temporal balancing could promote and eventually maximize the controllability as released insects increased. Copyright © 2017 Elsevier Ltd. All rights reserved.
Oléron Evans, Thomas P; Bishop, Steven R
2014-08-01
We present a simple mathematical model to replicate the key features of the sterile insect technique (SIT) for controlling pest species, with particular reference to the mosquito Aedes aegypti, the main vector of dengue fever. The model differs from the majority of those studied previously in that it is simultaneously spatially explicit and involves pulsed, rather than continuous, sterile insect releases. The spatially uniform equilibria of the model are identified and analysed. Simulations are performed to analyse the impact of varying the number of release sites, the interval between pulsed releases and the overall volume of sterile insect releases on the effectiveness of SIT programmes. Results show that, given a fixed volume of available sterile insects, increasing the number of release sites and the frequency of releases increases the effectiveness of SIT programmes. It is also observed that programmes may become completely ineffective if the interval between pulsed releases is greater that a certain threshold value and that, beyond a certain point, increasing the overall volume of sterile insects released does not improve the effectiveness of SIT. It is also noted that insect dispersal drives a rapid recolonisation of areas in which the species has been eradicated and we argue that understanding the density dependent mortality of released insects is necessary to develop efficient, cost-effective SIT programmes. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Birds Bug on Indirect Plant Defenses to Locate Insect Prey.
Hiltpold, Ivan; Shriver, W Gregory
2018-06-01
It has long been thought that most birds do not use volatile cues to perceive their environment. Aside from some scavenging birds, this large group of vertebrates was believed to mostly rely on highly developed vision while foraging and there are relatively few studies exploring bird response to volatile organic compounds. In response to insect herbivory, plants release volatile organic compounds to attract parasitoids and predators of the pests. To test if insectivorous birds use herbivore-induced plant volatiles (HIPV), dispensers emitting a synthetic blend of HIPV typically emitted after insect herbivory were deployed in a maize field along with imitation clay caterpillars. Significantly more imitation insects were attacked by birds when located close to dispensers releasing HIPV than close to dispenser with organic solvent only. Seven times more peck marks, an index of avian predation, were counted on caterpillars in the vicinity of the HIPV dispensers than on insects close to control dispensers. This is the first field demonstration that insectivorous birds cue on HIPV to locate prey in agricultural settings. These results support the growing evidence that foraging birds exploit volatile cues. This more accurate understanding of their behavior will be important when implementing pest management program involving insectivorous birds.
Viruses in laboratory-reared cactus moth, Cactoblastis cactorum (Lepidoptera: Pyralidae)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marti, O.G.; Myers, R.E.; Carpenter, J.E.
2007-03-15
The cactus moth, Cactoblastis cactorum (Lepidoptera: Pyralidae: Phycitinae), is a non-native species threatening a variety of native cacti, particularly endangered species of Opuntia (Zimmerman et al. 2001), on the coast of the Gulf of Mexico. Cactoblastis cactorum populations have expanded from Florida northward along the Atlantic coast as far as Charleston, SC, and westward along the Gulf of Mexico to Dauphin Island, south of Mobile, AL. It is feared that further movement to the west will allow C. cactorum to enter the US desert Southwest and Mexico, particularly the latter. Numerous cactus species, especially those of the genera Opuntia andmore » Nopalea, are native to the U.S. and Mexico. Local economies based on agricultural and horticultural uses of cacti could be devastated by C. cactorum (Vigueras and Portillo 2001). A bi-national control program between the US and Mexico is being developed, utilizing the sterile insect technique (SIT). In the SIT program, newly emerged moths are irradiated with a {sup 60}Co source and released to mate with wild individuals. The radiation dose completely sterilizes the females and partially sterilizes the males. When irradiated males mate with wild females, the F1 progeny of these matings are sterile. In order for the SIT program to succeed, large numbers of moths must be reared from egg to adult on artificial diet in a quarantined rearing facility (Carpenter et al. 2001). Irradiated insects must then be released in large numbers at the leading edge of the invasive population and at times which coincide with the presence of wild individuals available for mating. Mortality from disease in the rearing colony disrupts the SIT program by reducing the numbers of insects available for release.« less
Orozco-Dávila, Dina; Adriano-Anaya, Maria de Lourdes; Quintero-Fong, Luis; Salvador-Figueroa, Miguel
2015-01-01
A genetic sexing strain of Anastrepha ludens (Loew), Tapachula-7, was developed by the Mexican Program Against Fruit Flies to produce and release only males in programs where the sterile insect technique (SIT) is applied. Currently, breeding are found at a massive scale, and it is necessary to determine the optimum irradiation dose that releases sterile males with minimum damage to their sexual competitiveness. Under laboratory and field conditions, we evaluated the effects of gamma irradiation at doses of 0, 20, 40, 60 and 80 Gy on the sexual competitiveness of males, the induction of sterility in wild females and offspring survivorship. The results of the study indicate that irradiation doses have a significant effect on the sexual behavior of males. A reduction of mating capacity was inversely proportional to the irradiation dose of males. It is estimated that a dose of 60 Gy can induce more than 99% sterility in wild females. In all treatments, the degree of offspring fertility was correlated with the irradiation dose of the parents. In conclusion, the results of the study indicate that a dose of 60 Gy can be applied in sterile insect technique release programs. The application of this dose in the new genetic sexing strain of A. ludens is discussed.
Orozco-Dávila, Dina; Adriano-Anaya, Maria de Lourdes; Quintero-Fong, Luis; Salvador-Figueroa, Miguel
2015-01-01
A genetic sexing strain of Anastrepha ludens (Loew), Tapachula-7, was developed by the Mexican Program Against Fruit Flies to produce and release only males in programs where the sterile insect technique (SIT) is applied. Currently, breeding are found at a massive scale, and it is necessary to determine the optimum irradiation dose that releases sterile males with minimum damage to their sexual competitiveness. Under laboratory and field conditions, we evaluated the effects of gamma irradiation at doses of 0, 20, 40, 60 and 80 Gy on the sexual competitiveness of males, the induction of sterility in wild females and offspring survivorship. The results of the study indicate that irradiation doses have a significant effect on the sexual behavior of males. A reduction of mating capacity was inversely proportional to the irradiation dose of males. It is estimated that a dose of 60 Gy can induce more than 99% sterility in wild females. In all treatments, the degree of offspring fertility was correlated with the irradiation dose of the parents. In conclusion, the results of the study indicate that a dose of 60 Gy can be applied in sterile insect technique release programs. The application of this dose in the new genetic sexing strain of A. ludens is discussed. PMID:26274926
Venter, E; van der Merwe, C F; Buys, A V; Huismans, H; van Staden, V
2014-03-01
African horse sickness virus (AHSV) is an arbovirus capable of successfully replicating in both its mammalian host and insect vector. Where mammalian cells show a severe cytopathic effect (CPE) following AHSV infection, insect cells display no CPE. These differences in cell death could be linked to the method of viral release, i.e. lytic or non-lytic, that predominates in a specific cell type. Active release of AHSV, or any related orbivirus, has, however, not yet been documented from insect cells. We applied an integrated microscopy approach to compare the nanomechanical and morphological response of mammalian and insect cells to AHSV infection. Atomic force microscopy revealed plasma membrane destabilization, integrity loss and structural deformation of the entire surface of infected mammalian cells. Infected insect cells, in contrast, showed no morphological differences from mock-infected cells other than an increased incidence of circular cavities present on the cell surface. Transmission electron microscopy imaging identified a novel large vesicle-like compartment within infected insect cells, not present in mammalian cells, containing viral proteins and virus particles. Extracellular clusters of aggregated virus particles were visualized adjacent to infected insect cells with intact plasma membranes. We propose that foreign material is accumulated within these vesicles and that their subsequent fusion with the cell membrane releases entrapped viruses, thereby facilitating a non-lytic virus release mechanism different from the budding previously observed in mammalian cells. This insect cell-specific defence mechanism contributes to the lack of cell damage observed in AHSV-infected insect cells.
Impacts of Insect Herbivores on Plant Populations.
Myers, Judith H; Sarfraz, Rana M
2017-01-31
Apparent feeding damage by insects on plants is often slight. Thus, the influences of insect herbivores on plant populations are likely minor. The role of insects on host-plant populations can be elucidated via several methods: stage-structured life tables of plant populations manipulated by herbivore exclusion and seed-addition experiments, tests of the enemy release hypothesis, studies of the effects of accidentally and intentionally introduced insect herbivores, and observations of the impacts of insect species that show outbreak population dynamics. These approaches demonstrate that some, but not all, insect herbivores influence plant population densities. At times, insect-feeding damage kills plants, but more often, it reduces plant size, growth, and seed production. Plant populations for which seed germination is site limited will not respond at the population level to reduced seed production. Insect herbivores can influence rare plant species and need to be considered in conservation programs. Alterations due to climate change in the distributions of insect herbivores indicate the possibility of new influences on host plants. Long-term studies are required to show if density-related insect behavior stabilizes plant populations or if environmental variation drives most temporal fluctuations in plant densities. Finally, insects can influence plant populations and communities through changing the diversity of nonhost species, modifying nutrient fluxes, and rejuvenating over mature forests.
Alphey, Nina; Alphey, Luke; Bonsall, Michael B.
2011-01-01
Vector-borne diseases impose enormous health and economic burdens and additional methods to control vector populations are clearly needed. The Sterile Insect Technique (SIT) has been successful against agricultural pests, but is not in large-scale use for suppressing or eliminating mosquito populations. Genetic RIDL technology (Release of Insects carrying a Dominant Lethal) is a proposed modification that involves releasing insects that are homozygous for a repressible dominant lethal genetic construct rather than being sterilized by irradiation, and could potentially overcome some technical difficulties with the conventional SIT technology. Using the arboviral disease dengue as an example, we combine vector population dynamics and epidemiological models to explore the effect of a program of RIDL releases on disease transmission. We use these to derive a preliminary estimate of the potential cost-effectiveness of vector control by applying estimates of the costs of SIT. We predict that this genetic control strategy could eliminate dengue rapidly from a human community, and at lower expense (approximately US$ 2∼30 per case averted) than the direct and indirect costs of disease (mean US$ 86–190 per case of dengue). The theoretical framework has wider potential use; by appropriately adapting or replacing each component of the framework (entomological, epidemiological, vector control bio-economics and health economics), it could be applied to other vector-borne diseases or vector control strategies and extended to include other health interventions. PMID:21998654
USDA-ARS?s Scientific Manuscript database
Classical biological control programs rely on mass-production of high quality beneficial insects for subsequent releases into the field. Psyttalia lounsburyi (Silvestri) (Hymenoptera: Braconidae) is a koinobiont larval-pupal endoparasitoid of tephritid flies that is being reared to support a classic...
M. Miller-Pierce; D. C. Shaw; A. Demarco; P. T. Oester
2015-01-01
The larch casebearer [Coleophora laricella (Hubner)], a non-native insect, continues to impact western larch (Larix occidentalis Nutt.) through defoliation events in the Pacific Northwest. Biological control programs starting in the 1960s released seven species of parasitoid wasps to control C. laricella...
Bargielowski, Irka; Kaufmann, Christian; Alphey, Luke; Reiter, Paul; Koella, Jacob
2012-12-01
The ability of sterile males to survive, disperse, find, and mate with wild females is key to the success of sterile insect technique (SIT). The Release of Insects carrying a Dominant Lethal (RIDL) system is a genetics-based SIT strategy for Aedes aegypti. We examine two aspects of insect performance, flight potential (dispersal ability) and teneral energy reserves, by comparing wild-type (WT) males with genetically-modified lines carrying the tetracycline-repressible constructs OX513A and OX3604C. Our results show significant differences in the flight capacity of the modified lines. OX513A males bred with tetracycline covered 38% less distance, while OX3604C males reared without tetracycline spent 21% less time in flight than their WT counterparts. Such differences in flight performance should be considered when designing release programs (e.g., by placing release sites sufficiently close together to achieve adequate coverage). All mosquito lines had similar teneral carbohydrate contents, though males of the OX3604C line contained more lipids. The addition of tetracycline to the larval diet did not influence the flight potential of the males; however, it did change the teneral sugar reserves of the WT and the lipid reserves of both the WT and the OX3604C lines.
Harvey-Samuel, Tim; Ant, Thomas; Gong, Hongfei; Morrison, Neil I; Alphey, Luke
2014-01-01
Genetic control strategies offer great potential for the sustainable and effective control of insect pests. These strategies involve the field release of transgenic insects with the aim of introducing engineered alleles into wild populations, either permanently or transiently. Their efficacy can therefore be reduced if transgene-associated fitness costs reduce the relative performance of released insects. We describe a method of measuring the fitness costs associated with transgenes by analyzing their evolutionary trajectories when placed in competition with wild-type alleles in replicated cage populations. Using this method, we estimated lifetime fitness costs associated with two repressible female-lethal transgenes in the diamondback moth and olive fly as being acceptable for field suppression programs. Furthermore, using these estimates of genotype-level fitness costs, we were able to project longer-term evolutionary trajectories for the transgenes investigated. Results from these projections demonstrate that although transgene-associated fitness costs will ultimately cause these transgenes to become extinct, even when engineered lethality is repressed, they may persist for varying periods of time before doing so. This implies that tetracycline-mediated transgene field persistence in these strains is unlikely and suggests that realistic estimates of transgene-associated fitness costs may be useful in trialing ‘uncoupled’ gene drive system components in the field. PMID:24944572
Harvey-Samuel, Tim; Ant, Thomas; Gong, Hongfei; Morrison, Neil I; Alphey, Luke
2014-05-01
Genetic control strategies offer great potential for the sustainable and effective control of insect pests. These strategies involve the field release of transgenic insects with the aim of introducing engineered alleles into wild populations, either permanently or transiently. Their efficacy can therefore be reduced if transgene-associated fitness costs reduce the relative performance of released insects. We describe a method of measuring the fitness costs associated with transgenes by analyzing their evolutionary trajectories when placed in competition with wild-type alleles in replicated cage populations. Using this method, we estimated lifetime fitness costs associated with two repressible female-lethal transgenes in the diamondback moth and olive fly as being acceptable for field suppression programs. Furthermore, using these estimates of genotype-level fitness costs, we were able to project longer-term evolutionary trajectories for the transgenes investigated. Results from these projections demonstrate that although transgene-associated fitness costs will ultimately cause these transgenes to become extinct, even when engineered lethality is repressed, they may persist for varying periods of time before doing so. This implies that tetracycline-mediated transgene field persistence in these strains is unlikely and suggests that realistic estimates of transgene-associated fitness costs may be useful in trialing 'uncoupled' gene drive system components in the field.
The Smart Aerial Release Machine, a Universal System for Applying the Sterile Insect Technique
Mubarqui, Ruben Leal; Perez, Rene Cano; Kladt, Roberto Angulo; Lopez, Jose Luis Zavala; Parker, Andrew; Seck, Momar Talla; Sall, Baba; Bouyer, Jérémy
2014-01-01
Background Beyond insecticides, alternative methods to control insect pests for agriculture and vectors of diseases are needed. Management strategies involving the mass-release of living control agents have been developed, including genetic control with sterile insects and biological control with parasitoids, for which aerial release of insects is often required. Aerial release in genetic control programmes often involves the use of chilled sterile insects, which can improve dispersal, survival and competitiveness of sterile males. Currently available means of aerially releasing chilled fruit flies are however insufficiently precise to ensure homogeneous distribution at low release rates and no device is available for tsetse. Methodology/Principal Findings Here we present the smart aerial release machine, a new design by the Mubarqui Company, based on the use of vibrating conveyors. The machine is controlled through Bluetooth by a tablet with Android Operating System including a completely automatic guidance and navigation system (MaxNav software). The tablet is also connected to an online relational database facilitating the preparation of flight schedules and automatic storage of flight reports. The new machine was compared with a conveyor release machine in Mexico using two fruit flies species (Anastrepha ludens and Ceratitis capitata) and we obtained better dispersal homogeneity (% of positive traps, p<0.001) for both species and better recapture rates for Anastrepha ludens (p<0.001), especially at low release densities (<1500 per ha). We also demonstrated that the machine can replace paper boxes for aerial release of tsetse in Senegal. Conclusions/Significance This technology limits damages to insects and allows a large range of release rates from 10 flies/km2 for tsetse flies up to 600 000 flies/km2 for fruit flies. The potential of this machine to release other species like mosquitoes is discussed. Plans and operating of the machine are provided to allow its use worldwide. PMID:25036274
The smart aerial release machine, a universal system for applying the sterile insect technique.
Leal Mubarqui, Ruben; Perez, Rene Cano; Kladt, Roberto Angulo; Lopez, Jose Luis Zavala; Parker, Andrew; Seck, Momar Talla; Sall, Baba; Bouyer, Jérémy
2014-01-01
Beyond insecticides, alternative methods to control insect pests for agriculture and vectors of diseases are needed. Management strategies involving the mass-release of living control agents have been developed, including genetic control with sterile insects and biological control with parasitoids, for which aerial release of insects is often required. Aerial release in genetic control programmes often involves the use of chilled sterile insects, which can improve dispersal, survival and competitiveness of sterile males. Currently available means of aerially releasing chilled fruit flies are however insufficiently precise to ensure homogeneous distribution at low release rates and no device is available for tsetse. Here we present the smart aerial release machine, a new design by the Mubarqui Company, based on the use of vibrating conveyors. The machine is controlled through Bluetooth by a tablet with Android Operating System including a completely automatic guidance and navigation system (MaxNav software). The tablet is also connected to an online relational database facilitating the preparation of flight schedules and automatic storage of flight reports. The new machine was compared with a conveyor release machine in Mexico using two fruit flies species (Anastrepha ludens and Ceratitis capitata) and we obtained better dispersal homogeneity (% of positive traps, p<0.001) for both species and better recapture rates for Anastrepha ludens (p<0.001), especially at low release densities (<1500 per ha). We also demonstrated that the machine can replace paper boxes for aerial release of tsetse in Senegal. This technology limits damages to insects and allows a large range of release rates from 10 flies/km2 for tsetse flies up to 600,000 flies/km2 for fruit flies. The potential of this machine to release other species like mosquitoes is discussed. Plans and operating of the machine are provided to allow its use worldwide.
USDA-ARS?s Scientific Manuscript database
Advances in the genetic manipulation of agriculturally important insects now allows the development of genetic sexing and male sterility systems for more highly efficient biologically-based population control programs, most notably SIT, in fruit pests throughout the world. Potentially, these condit...
INSECT FAT BODY: ENERGY, METABOLISM, AND REGULATION
Arrese, Estela L.; Soulages, Jose L.
2010-01-01
The fat body plays major roles in the life of insects. It is a dynamic tissue involved in multiple metabolic functions. One of these functions is to store and release energy in response to the energy demands of the insect. Insects store energy reserves in the form of glycogen and triglycerides in the adipocytes, the main fat body cell. Insect adipocytes can store a great amount of lipid reserves as cytoplasmic lipid droplets. Lipid metabolism is essential for growth and reproduction and provides energy needed during extended nonfeeding periods. This review focuses on energy storage and release and summarizes current understanding of the mechanisms underlying these processes in insects. PMID:19725772
Release of genetically engineered insects: a framework to identify potential ecological effects
David, Aaron S; Kaser, Joe M; Morey, Amy C; Roth, Alexander M; Andow, David A
2013-01-01
Genetically engineered (GE) insects have the potential to radically change pest management worldwide. With recent approvals of GE insect releases, there is a need for a synthesized framework to evaluate their potential ecological and evolutionary effects. The effects may occur in two phases: a transitory phase when the focal population changes in density, and a steady state phase when it reaches a new, constant density. We review potential effects of a rapid change in insect density related to population outbreaks, biological control, invasive species, and other GE organisms to identify a comprehensive list of potential ecological and evolutionary effects of GE insect releases. We apply this framework to the Anopheles gambiae mosquito – a malaria vector being engineered to suppress the wild mosquito population – to identify effects that may occur during the transitory and steady state phases after release. Our methodology reveals many potential effects in each phase, perhaps most notably those dealing with immunity in the transitory phase, and with pathogen and vector evolution in the steady state phase. Importantly, this framework identifies knowledge gaps in mosquito ecology. Identifying effects in the transitory and steady state phases allows more rigorous identification of the potential ecological effects of GE insect release. PMID:24198955
Seirin Lee, S; Baker, R E; Gaffney, E A; White, S M
2013-08-21
The invasion of pest insects often changes or destroys a native ecosystem, and can result in food shortages and disease endemics. Issues such as the environmental effects of chemical control methods, the economic burden of maintaining control strategies and the risk of pest resistance still remain, and mosquito-borne diseases such as malaria and dengue fever prevail in many countries, infecting over 100 million worldwide in 2010. One environmentally friendly method for mosquito control is the Sterile Insect Technique (SIT). This species-specific method of insect control relies on the mass rearing, sterilization and release of large numbers of sterile insects. An alternative transgenic method is the Release of Insects carrying a Dominant Lethal (RIDL). Our objective is to consider contrasting control strategies for two invasive scenarios via SIT and RIDL: an endemic case and an emerging outbreak. We investigate how the release rate and size of release region influence both the potential for control success and the resources needed to achieve it, under a range of conditions and control strategies, and we discuss advantageous strategies with respect to reducing the release resources and strategy costs (in terms of control mosquito numbers) required to achieve complete eradication of wild-type mosquitoes. Copyright © 2013 Elsevier Ltd. All rights reserved.
Resistance to genetic insect control: Modelling the effects of space.
Watkinson-Powell, Benjamin; Alphey, Nina
2017-01-21
Genetic insect control, such as self-limiting RIDL 2 (Release of Insects Carrying a Dominant Lethal) technology, is a development of the sterile insect technique which is proposed to suppress wild populations of a number of major agricultural and public health insect pests. This is achieved by mass rearing and releasing male insects that are homozygous for a repressible dominant lethal genetic construct, which causes death in progeny when inherited. The released genetically engineered ('GE') insects compete for mates with wild individuals, resulting in population suppression. A previous study modelled the evolution of a hypothetical resistance to the lethal construct using a frequency-dependent population genetic and population dynamic approach. This found that proliferation of resistance is possible but can be diluted by the introgression of susceptible alleles from the released homozygous-susceptible GE males. We develop this approach within a spatial context by modelling the spread of a lethal construct and resistance trait, and the effect on population control, in a two deme metapopulation, with GE release in one deme. Results show that spatial effects can drive an increased or decreased evolution of resistance in both the target and non-target demes, depending on the effectiveness and associated costs of the resistant trait, and on the rate of dispersal. A recurrent theme is the potential for the non-target deme to act as a source of resistant or susceptible alleles for the target deme through dispersal. This can in turn have a major impact on the effectiveness of insect population control. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Controlled release of insect sex pheromones from paraffin wax and emulsions.
Atterholt, C A; Delwiche, M J; Rice, R E; Krochta, J M
1999-02-22
Paraffin wax and aqueous paraffin emulsions can be used as controlled release carriers for insect sex pheromones for mating disruption of orchard pests. Paraffin can be applied at ambient temperature as an aqueous emulsion, adheres to tree bark or foliage, releases pheromone for an extended period of time, and will slowly erode from bark and biodegrade in soil. Pheromone emulsions can be applied with simple spray equipment. Pheromone release-rates from paraffin were measured in laboratory flow-cell experiments. Pheromone was trapped from an air stream with an adsorbent, eluted periodically, and quantified by gas chromatography. Pheromone release from paraffin was partition-controlled, providing a constant (zero-order) release rate. A typical paraffin emulsion consisted of 30% paraffin, 4% pheromone, 4% soy oil, 1% vitamin E, 2% emulsifier, and the balance water. Soy oil and vitamin E acted as volatility suppressants. A constant release of oriental fruit moth pheromone from paraffin emulsions was observed in the laboratory for more than 100 days at 27 degreesC, with release-rates ranging from 0.4 to 2 mg/day, depending on the concentration and surface area of the dried emulsion. The use of paraffin emulsions is a viable method for direct application of insect pheromones for mating disruption. Sprayable formulations can be designed to release insect pheromones to the environment at a rate necessary for insect control by mating disruption. At temperatures below 38 degreesC, zero-order release was observed. At 38 degreesC and higher, pheromone oxidation occurred. A partition-controlled release mechanism was supported by a zero-order pheromone release-rate, low air/wax partition coefficients, and pheromone solubility in paraffin.
USDA-ARS?s Scientific Manuscript database
Background: Reliable marking systems are critical to the prospective field release of transgenic insect strains. This is to unambiguously distinguish released insects from wild insects in the field that are collected in field traps, and tissue-specific markers, such as those that are sperm-specific,...
Akter, Humayra; Adnan, Saleh; Morelli, Renata; Taylor, Phillip W.
2017-01-01
Tephritid fruit flies are amongst the most damaging insect pests of horticulture globally. Some of the key fruit fly species are managed using the sterile insect technique (SIT), whereby millions of sterile males are released to suppress reproduction of pest populations. Male annihilation technique (MAT), whereby sex specific lures are used to attract and kill males, is often used to reduce wild male numbers before SIT programs commence, providing released sterile males an increased numerical advantage. Overall program efficacy might be improved if MAT could be deployed simultaneously with SIT, continuously depleting fertile males from pest populations and replacing them with sterile males. However, such ‘male replacement’ requires a means of suppressing attraction of released sterile males to lures used in MAT. Previous studies have found that exposure of some fruit flies to lure compounds as mature adults can suppress subsequent response to those lures, raising the possibility of pre-release treatments. However, this approach requires holding flies until after maturation for treatment and then release. The present study takes a novel approach of exposing immature adult male Queensland fruit flies (Bactrocera tryoni, or ‘Qfly’) to raspberry ketone (RK) mixed in food, forcing these flies to ingest RK at ages far younger than they would naturally. After feeding on RK-supplemented food for two days after emergence, male Qflies exhibited a reduction in attraction to cuelure traps that lasted more than 20 days. This approach to RK exposure is compatible with current practises, in which Qflies are released as immature adults, and also yields advantages of accelerated reproductive development and increased mating propensity at young ages. PMID:28859132
R.A. Progar; G. Markin; J. Milan; T. Barbouletos; M.J. Rinella
2010-01-01
Inundative releases of beneficial insects are frequently used to suppress pest insects but not commonly attempted as a method of weed biological control because of the difficulty in obtaining the required large numbers of insects. The successful establishment of a flea beetle complex, mixed Aphthona lacertosa (Rosenhauer) and Aphthona...
USDA-ARS?s Scientific Manuscript database
The Sterile Insect Technique (SIT) is an important component of area wide programs to control invading or established populations of pestiferous tephritids. The SIT involves the production, sterilization, and release of large numbers of the target species, with the goal of obtaining sterile male x w...
Acoustic communication in insect disease vectors
Vigoder, Felipe de Mello; Ritchie, Michael Gordon; Gibson, Gabriella; Peixoto, Alexandre Afranio
2013-01-01
Acoustic signalling has been extensively studied in insect species, which has led to a better understanding of sexual communication, sexual selection and modes of speciation. The significance of acoustic signals for a blood-sucking insect was first reported in the XIX century by Christopher Johnston, studying the hearing organs of mosquitoes, but has received relatively little attention in other disease vectors until recently. Acoustic signals are often associated with mating behaviour and sexual selection and changes in signalling can lead to rapid evolutionary divergence and may ultimately contribute to the process of speciation. Songs can also have implications for the success of novel methods of disease control such as determining the mating competitiveness of modified insects used for mass-release control programs. Species-specific sound “signatures” may help identify incipient species within species complexes that may be of epidemiological significance, e.g. of higher vectorial capacity, thereby enabling the application of more focussed control measures to optimise the reduction of pathogen transmission. Although the study of acoustic communication in insect vectors has been relatively limited, this review of research demonstrates their value as models for understanding both the functional and evolutionary significance of acoustic communication in insects. PMID:24473800
R. A. Progar; G. Markin; J. Milan; T. Barbouletos; M. J. Rinella
2010-01-01
Inundative releases of beneficial insects are frequently used to suppress pest insects but not commonly attempted as a method of weed biological control because of the difficulty in obtaining the required large numbers of insects. The successful establishment of a flea beetle complex, mixed Aphthona lacertosa (Rosenhauer) and Aphthona nigriscutus Foundras (87 and 13%,...
R. A. Progar; G. P. Markin; J. Milan; T. Barbouletos; M. J. Rinella
2013-01-01
Inundative releases of beneficial insects are frequently used to suppress pest insects, but not commonly attempted as a method of weed biological control because of the difficulty in obtaining the required large numbers of insects. The successful establishment of a flea beetle complex, mixed Aphthona lacertosa Rosenhauer and A. nigriscutus Foudras (87% and 13%,...
Southern Idaho student "bug crews": Weeds, youth, and biocontrol in the rangelands of Idaho
Sharlyn Gunderson-Izurieta; George P. Markin; Nan Reedy; Becky Frieberg
2009-01-01
Biological control of noxious weeds is an effective and widespread method often used by rangeland managers in the western United States. However, once biological control agents, usually insects, are released onto public and private lands there are few, if any, programs to follow up and monitor the effectiveness of these agents. A technique being used by some...
Pest persistence and eradication conditions in a deterministic model for sterile insect release.
Gordillo, Luis F
2015-01-01
The release of sterile insects is an environment friendly pest control method used in integrated pest management programmes. Difference or differential equations based on Knipling's model often provide satisfactory qualitative descriptions of pest populations subject to sterile release at relatively high densities with large mating encounter rates, but fail otherwise. In this paper, I derive and explore numerically deterministic population models that include sterile release together with scarce mating encounters in the particular case of species with long lifespan and multiple matings. The differential equations account separately the effects of mating failure due to sterile male release and the frequency of mating encounters. When insects spatial spread is incorporated through diffusion terms, computations reveal the possibility of steady pest persistence in finite size patches. In the presence of density dependence regulation, it is observed that sterile release might contribute to induce sudden suppression of the pest population.
Protecting Yourself from Stinging Insects
... at risk of being stung by flying insects (bees, wasps, and hornets) and fire ants. While most ... by several stinging insects, run to get away. (Bees release a chemical when they sting, which attracts ...
Dispersal of Engineered Male Aedes aegypti Mosquitoes.
Winskill, Peter; Carvalho, Danilo O; Capurro, Margareth L; Alphey, Luke; Donnelly, Christl A; McKemey, Andrew R
2015-11-01
Aedes aegypti, the principal vector of dengue fever, have been genetically engineered for use in a sterile insect control programme. To improve our understanding of the dispersal ecology of mosquitoes and to inform appropriate release strategies of 'genetically sterile' male Aedes aegypti detailed knowledge of the dispersal ability of the released insects is needed. The dispersal ability of released 'genetically sterile' male Aedes aegypti at a field site in Brazil has been estimated. Dispersal kernels embedded within a generalized linear model framework were used to analyse data collected from three large scale mark release recapture studies. The methodology has been applied to previously published dispersal data to compare the dispersal ability of 'genetically sterile' male Aedes aegypti in contrasting environments. We parameterised dispersal kernels and estimated the mean distance travelled for insects in Brazil: 52.8 m (95% CI: 49.9 m, 56.8 m) and Malaysia: 58.0 m (95% CI: 51.1 m, 71.0 m). Our results provide specific, detailed estimates of the dispersal characteristics of released 'genetically sterile' male Aedes aegypti in the field. The comparative analysis indicates that despite differing environments and recapture rates, key features of the insects' dispersal kernels are conserved across the two studies. The results can be used to inform both risk assessments and release programmes using 'genetically sterile' male Aedes aegypti.
Termite and boring insect ground barrier for the protection of wooden structures
Voris, Peter Van; Cataldo, Dominic A.
1998-01-01
A method and device are disclosed which prevent the intrusion of insects onto wood structures by using a controlled release device capable of releasing insecticide. In the disclosed method, the device maintains a minimal effective level of insecticide for a predetermined period of time.
The Venus flytrap attracts insects by the release of volatile organic compounds.
Kreuzwieser, Jürgen; Scheerer, Ursel; Kruse, Jörg; Burzlaff, Tim; Honsel, Anne; Alfarraj, Saleh; Georgiev, Plamen; Schnitzler, Jörg-Peter; Ghirardo, Andrea; Kreuzer, Ines; Hedrich, Rainer; Rennenberg, Heinz
2014-02-01
Does Dionaea muscipula, the Venus flytrap, use a particular mechanism to attract animal prey? This question was raised by Charles Darwin 140 years ago, but it remains unanswered. This study tested the hypothesis that Dionaea releases volatile organic compounds (VOCs) to allure prey insects. For this purpose, olfactory choice bioassays were performed to elucidate if Dionaea attracts Drosophila melanogaster. The VOCs emitted by the plant were further analysed by GC-MS and proton transfer reaction-mass spectrometry (PTR-MS). The bioassays documented that Drosophila was strongly attracted by the carnivorous plant. Over 60 VOCs, including terpenes, benzenoids, and aliphatics, were emitted by Dionaea, predominantly in the light. This work further tested whether attraction of animal prey is affected by the nutritional status of the plant. For this purpose, Dionaea plants were fed with insect biomass to improve plant N status. However, although such feeding altered the VOC emission pattern by reducing terpene release, the attraction of Drosophila was not affected. From these results it is concluded that Dionaea attracts insects on the basis of food smell mimicry because the scent released has strong similarity to the bouquet of fruits and plant flowers. Such a volatile blend is emitted to attract insects searching for food to visit the deadly capture organ of the Venus flytrap.
The Venus flytrap attracts insects by the release of volatile organic compounds
Kreuzwieser, Jürgen; Honsel, Anne
2014-01-01
Does Dionaea muscipula, the Venus flytrap, use a particular mechanism to attract animal prey? This question was raised by Charles Darwin 140 years ago, but it remains unanswered. This study tested the hypothesis that Dionaea releases volatile organic compounds (VOCs) to allure prey insects. For this purpose, olfactory choice bioassays were performed to elucidate if Dionaea attracts Drosophila melanogaster. The VOCs emitted by the plant were further analysed by GC-MS and proton transfer reaction-mass spectrometry (PTR-MS). The bioassays documented that Drosophila was strongly attracted by the carnivorous plant. Over 60 VOCs, including terpenes, benzenoids, and aliphatics, were emitted by Dionaea, predominantly in the light. This work further tested whether attraction of animal prey is affected by the nutritional status of the plant. For this purpose, Dionaea plants were fed with insect biomass to improve plant N status. However, although such feeding altered the VOC emission pattern by reducing terpene release, the attraction of Drosophila was not affected. From these results it is concluded that Dionaea attracts insects on the basis of food smell mimicry because the scent released has strong similarity to the bouquet of fruits and plant flowers. Such a volatile blend is emitted to attract insects searching for food to visit the deadly capture organ of the Venus flytrap. PMID:24420576
USDA-ARS?s Scientific Manuscript database
The ability to rear a beneficial predatory insect is often required for its use in inoculative releases for classical biological control applications. However, affordable mass production is required before a beneficial predatory insect will be commercialized for large scale repetitive releases. The...
2009-06-01
capability. Mass Rearing: The ability to mass-produce large numbers of high quality insect biocontrol agents can be a tremendous asset when...implementing a biocontrol program. Common sense would dictate that releasing a high number of agents allows for higher establishment success, more rapid...varying densities of biocontrol agent (costs estimated using a constant weight). Table 1. Hypothetical calculation of Hydrellia pakistanae production cost
An, R; Suri, K S; Jurat-Fuentes, J L; Grewal, P S
2017-10-01
Entomopathogenic nematodes in the Heterorhabditis genus and their symbiotic Photorhabdus bacteria are important biocontrol agents of insect pests and models for the study of microbe-host interactions. In this work, we used larvae of the tobacco budworm (Heliothis virescens) as a model to study its defensive mechanisms against Heterorhabditis bacteriophora nematodes carrying symbiotic Photorhabdus temperata. We first determined time points of initial nematode entry and release of bacteria into the haemolymph to perform transcriptional analysis of insect gene expression during these steps in the infective process. RNA-Sequencing analyses were then performed to profile differential gene expression in the insect during nematode invasion, bacterial release and final steps of infection, relative to the untreated controls. Our results support the theory that insect immune response genes are induced upon nematode invasion, but the majority of these genes are suppressed upon the release of bacteria by the nematodes into the haemolymph. Overall, these findings provide information on the dynamics of the insect's response to a progressing infection by this entomopathogenic nematode-bacteria complex and facilitate development of Hel. virescens as a pest model for future functional studies of the key insect defence factors. © 2017 The Royal Entomological Society.
Field performance of a genetically engineered strain of pink bollworm.
Simmons, Gregory S; McKemey, Andrew R; Morrison, Neil I; O'Connell, Sinead; Tabashnik, Bruce E; Claus, John; Fu, Guoliang; Tang, Guolei; Sledge, Mickey; Walker, Adam S; Phillips, Caroline E; Miller, Ernie D; Rose, Robert I; Staten, Robert T; Donnelly, Christl A; Alphey, Luke
2011-01-01
Pest insects harm crops, livestock and human health, either directly or by acting as vectors of disease. The Sterile Insect Technique (SIT)--mass-release of sterile insects to mate with, and thereby control, their wild counterparts--has been used successfully for decades to control several pest species, including pink bollworm, a lepidopteran pest of cotton. Although it has been suggested that genetic engineering of pest insects provides potential improvements, there is uncertainty regarding its impact on their field performance. Discrimination between released and wild moths caught in monitoring traps is essential for estimating wild population levels. To address concerns about the reliability of current marking methods, we developed a genetically engineered strain of pink bollworm with a heritable fluorescent marker, to improve discrimination of sterile from wild moths. Here, we report the results of field trials showing that this engineered strain performed well under field conditions. Our data show that attributes critical to SIT in the field--ability to find a mate and to initiate copulation, as well as dispersal and persistence in the release area--were comparable between the genetically engineered strain and a standard strain. To our knowledge, these represent the first open-field experiments with a genetically engineered insect. The results described here provide encouragement for the genetic control of insect pests.
Regulation of Bt crops in Canada.
Macdonald, Phil; Yarrow, Stephen
2003-06-01
The Canadian Food Inspection Agency (CFIA) regulates environmental releases of plants with novel traits, which include transgenic plants such as Bt crops. Bt crops are regulated in Canada because they express insect resistance novel to their species. Commercialization of crops with novel traits such as the production of insecticidal Bt proteins requires an approval for environmental release, as well as approvals for use as feed and food. Environmental factors such as potential impacts on non-target species are considered. Insect resistance management (IRM) may be imposed as a condition for environmental release of Bt crops to delay the development of resistance in the target insect. Bt potato and European corn borer-resistant Bt corn have been released with mandatory IRM. The CFIA imposes an IRM plan consisting of appropriate refugia, education of farmers and seed dealers, and monitoring and mitigation. Industry, regulators, government extension staff and public researchers provide expert advice on IRM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolff, D.
In agricultural crop improvement, yield under various stress conditions and limiting factors is assessed experimentally. Of the stresses on plants which affect yield are those due to insects. Ostrinia nubilalis, the European corn borer (corn borer) is a major pest in sweet and field corn in the U.S. There are many ways to fight crop pests such as the corn borer, including (1) application of chemical insecticides, (2) application of natural predators and, (3) improving crop resistance through plant genetics programs. Randomized field trials are used to determine the effectiveness of pest management programs. These trials frequently consist of randomlymore » selected crop plots to which well-defined input regimes are instituted. For example, corn borers might be released onto crop plots in several densities at various stages of crop development, then sprayed with different levels of pesticide. These experiments are duplicated across regions and, in some cases across the country, to determine, in this instance for example, the best pesticide application rate for a given pest density and crop development stage. In order to release these pests onto crop plots, one must have an adequate supply of the insect pest. In winter months studies are carried out in the laboratory to examine chemical and natural pesticide effectiveness, as well as such things as the role of pheromones in moth behavior. The advantage in field trials is that yield data can be garnered directly. In this country, insects are raised for crop research primarily through the US Department of Agriculture, in cooperation with public Land Grant Universities and, by the private sector agricultural concerns - seed companies and others. This study quantifies the airborne allergen exposure of persons working in a Land Grant University entomology lab were allergy to European corn borer was suspected.« less
Suppressing Resistance to Bt Cotton with Sterile Insect Releases
USDA-ARS?s Scientific Manuscript database
Transgenic plants producing insecticidal proteins from Bacillus thuringiensis (Bt) are grown widely to control pests, but evolution of insect resistance can reduce their efficacy. The predominant strategy for delaying insect resistance to Bt crops requires refuges of non-Bt host plants to provide s...
7 CFR 58.147 - Insect and rodent control program.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 3 2010-01-01 2010-01-01 false Insect and rodent control program. 58.147 Section 58... Service 1 Operations and Operating Procedures § 58.147 Insect and rodent control program. In addition to... made responsible for the performance of a regularly scheduled insect and rodent control program...
7 CFR 58.147 - Insect and rodent control program.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 3 2011-01-01 2011-01-01 false Insect and rodent control program. 58.147 Section 58... Service 1 Operations and Operating Procedures § 58.147 Insect and rodent control program. In addition to... made responsible for the performance of a regularly scheduled insect and rodent control program...
7 CFR 58.247 - Insect and rodent control program.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 3 2010-01-01 2010-01-01 false Insect and rodent control program. 58.247 Section 58... Service 1 Operations and Operating Procedures § 58.247 Insect and rodent control program. In addition to... made responsible for the performance of a regularly scheduled insect and rodent control program as...
7 CFR 58.247 - Insect and rodent control program.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 3 2011-01-01 2011-01-01 false Insect and rodent control program. 58.247 Section 58... Service 1 Operations and Operating Procedures § 58.247 Insect and rodent control program. In addition to... made responsible for the performance of a regularly scheduled insect and rodent control program as...
Harvey-Samuel, Tim; Morrison, Neil I; Walker, Adam S; Marubbi, Thea; Yao, Ju; Collins, Hilda L; Gorman, Kevin; Davies, T G Emyr; Alphey, Nina; Warner, Simon; Shelton, Anthony M; Alphey, Luke
2015-07-16
Development and evaluation of new insect pest management tools is critical for overcoming over-reliance upon, and growing resistance to, synthetic, biological and plant-expressed insecticides. For transgenic crops expressing insecticidal proteins from the bacterium Bacillus thuringiensis ('Bt crops') emergence of resistance is slowed by maintaining a proportion of the crop as non-Bt varieties, which produce pest insects unselected for resistance. While this strategy has been largely successful, multiple cases of Bt resistance have now been reported. One new approach to pest management is the use of genetically engineered insects to suppress populations of their own species. Models suggest that released insects carrying male-selecting (MS) transgenes would be effective agents of direct, species-specific pest management by preventing survival of female progeny, and simultaneously provide an alternative insecticide resistance management strategy by introgression of susceptibility alleles into target populations. We developed a MS strain of the diamondback moth, Plutella xylostella, a serious global pest of crucifers. MS-strain larvae are reared as normal with dietary tetracycline, but, when reared without tetracycline or on host plants, only males will survive to adulthood. We used this strain in glasshouse-cages to study the effect of MS male P. xylostella releases on target pest population size and spread of Bt resistance in these populations. Introductions of MS-engineered P. xylostella males into wild-type populations led to rapid pest population decline, and then elimination. In separate experiments on broccoli plants, relatively low-level releases of MS males in combination with broccoli expressing Cry1Ac (Bt broccoli) suppressed population growth and delayed the spread of Bt resistance. Higher rates of MS male releases in the absence of Bt broccoli were also able to suppress P. xylostella populations, whereas either low-level MS male releases or Bt broccoli alone did not. These results support theoretical modeling, indicating that MS-engineered insects can provide a powerful pest population suppressing effect, and could effectively augment current Bt resistance management strategies. We conclude that, subject to field confirmation, MS insects offer an effective and versatile control option against P. xylostella and potentially other pests, and may reduce reliance on and protect insecticide-based approaches, including Bt crops.
Compounds that Inhibit Insect Host-Seeking Ability
USDA-ARS?s Scientific Manuscript database
Humans release hundreds of volatile compounds from their skin. Some of these compounds are used by mosquitoes and other insects to locate the host (kairomones) while a few compounds are found in trace amounts that tend to produce anosmia in these insects. The net result of this anosmic action on th...
Use of habitat odour by host-seeking insects.
Webster, Ben; Cardé, Ring T
2017-05-01
Locating suitable feeding or oviposition sites is essential for insect survival. Understanding how insects achieve this is crucial, not only for understanding the ecology and evolution of insect-host interactions, but also for the development of sustainable pest-control strategies that exploit insects' host-seeking behaviours. Volatile chemical cues are used by foraging insects to locate and recognise potential hosts but in nature these resources usually are patchily distributed, making chance encounters with host odour plumes rare over distances greater than tens of metres. The majority of studies on insect host-seeking have focussed on short-range orientation to easily detectable cues and it is only recently that we have begun to understand how insects overcome this challenge. Recent advances show that insects from a wide range of feeding guilds make use of 'habitat cues', volatile chemical cues released over a relatively large area that indicate a locale where more specific host cues are most likely to be found. Habitat cues differ from host cues in that they tend to be released in larger quantities, are more easily detectable over longer distances, and may lack specificity, yet provide an effective way for insects to maximise their chances of subsequently encountering specific host cues. This review brings together recent advances in this area, discussing key examples and similarities in strategies used by haematophagous insects, soil-dwelling insects and insects that forage around plants. We also propose and provide evidence for a new theory that general and non-host plant volatiles can be used by foraging herbivores to locate patches of vegetation at a distance in the absence of more specific host cues, explaining some of the many discrepancies between laboratory and field trials that attempt to make use of plant-derived repellents for controlling insect pests. © 2016 Cambridge Philosophical Society.
2014-01-01
Background The Sterile Insect Technique (SIT) is an accepted species-specific genetic control approach that acts as an insect birth control measure, which can be improved by biotechnological engineering to facilitate its use and widen its applicability. First transgenic insects carrying a single killing system have already been released in small scale trials. However, to evade resistance development to such transgenic approaches, completely independent ways of transgenic killing should be established and combined. Perspective Most established transgenic sexing and reproductive sterility systems are based on the binary tTA expression system that can be suppressed by adding tetracycline to the food. However, to create 'redundant killing' an additional independent conditional expression system is required. Here we present a perspective on the use of a second food-controllable binary expression system - the inducible Q system - that could be used in combination with site-specific recombinases to generate independent transgenic killing systems. We propose the combination of an already established transgenic embryonic sexing system to meet the SIT requirement of male-only releases based on the repressible tTA system together with a redundant male-specific reproductive sterility system, which is activated by Q-system controlled site-specific recombination and is based on a spermatogenesis-specifically expressed endonuclease acting on several species-specific target sites leading to chromosome shredding. Conclusion A combination of a completely independent transgenic sexing and a redundant reproductive male sterility system, which do not share any active components and mediate the induced lethality by completely independent processes, would meet the 'redundant killing' criteria for suppression of resistance development and could therefore be employed in large scale long-term suppression programs using biotechnologically enhanced SIT. PMID:25471733
USDA-ARS?s Scientific Manuscript database
The impact of insect herbivores on the performance of Brazilian peppertree, Schinus terebinthifolia Raddi (Anacardiaceae), was evaluated at two locations in Florida using an insecticide exclusion method. Although several species of insect herbivores were collected on the invasive tree, there was no...
DNA extracellular traps are part of the immune repertoire of Periplaneta americana.
Nascimento, M T C; Silva, K P; Garcia, M C F; Medeiros, M N; Machado, E A; Nascimento, S B; Saraiva, E M
2018-07-01
Extracellular traps (ETs), web-like structures composed of DNA and histones, are released by innate immune cells in a wide range of organisms. ETs capture microorganisms, thereby avoiding their spread, and also concentrate antimicrobial molecules, which helps to kill microbes. Although vertebrate innate immune systems share homology with the insect immune system, ETosis have yet to be characterized in insects. Here, we report that the hemocytes of the hemimetabolous insect Periplaneta americana release ETs upon in vitro stimulation. We further discuss the relationship between ETs and nodulation and in controlling bacterial spread in vivo. Copyright © 2018 Elsevier Ltd. All rights reserved.
Boullis, Antoine; Francis, Frederic; Verheggen, François J
2015-04-01
Insects are highly dependent on odor cues released into the environment to locate conspecifics or food sources. This mechanism is particularly important for insect predators that rely on kairomones released by their prey to detect them. In the context of climate change and, more specifically, modifications in the gas composition of the atmosphere, chemical communication-mediating interactions between phytophagous insect pests, their host plants, and their natural enemies is likely to be impacted. Several reports have indicated that modifications to plants caused by elevated carbon dioxide and ozone concentrations might indirectly affect insect herbivores, with community-level modifications to this group potentially having an indirect influence on higher trophic levels. The vulnerability of agricultural insect pests toward their natural enemies under elevated greenhouse gases concentrations has been frequently reported, but conflicting results have been obtained. This literature review shows that the higher levels of carbon dioxide, as predicted for the coming century, do not enhance the abundance or efficiency of natural enemies to locate hosts or prey in most published studies. Increased ozone levels lead to modifications in herbivore-induced volatile organic compounds (VOCs) released by damaged plants, which may impact the attractiveness of these herbivores to the third trophic level. Furthermore, other oxidative gases (such as SO2 and NO2) tend to reduce the abundance of natural enemies. The impact of changes in atmospheric gas emissions on plant-insect and insect-insect chemical communication has been under-documented, despite the significance of these mechanisms in tritrophic interactions. We conclude by suggesting some further prospects on this topic of research yet to be investigated. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Ritchie, Scott A; van den Hurk, Andrew F; Smout, Michael J; Staunton, Kyran M; Hoffmann, Ary A
2018-03-01
Historically, sustained control of Aedes aegypti, the vector of dengue, chikungunya, yellow fever, and Zika viruses, has been largely ineffective. Subsequently, two novel 'rear and release' control strategies utilizing mosquitoes infected with Wolbachia are currently being developed and deployed widely. In the incompatible insect technique, male Aedes mosquitoes, infected with Wolbachia, suppress populations through unproductive mating. In the transinfection strategy, both male and female Wolbachia-infected Ae. aegypti mosquitoes rapidly infect the wild population with Wolbachia, blocking virus transmission. It is critical to monitor the long-term stability of Wolbachia in host populations, and also the ability of this bacterium to continually inhibit virus transmission. Ongoing release and monitoring programs must be future-proofed should political support weaken when these vectors are successfully controlled. Copyright © 2017 Elsevier Ltd. All rights reserved.
An oppositely charged insect exclusion screen with gap-free multiple electric fields
NASA Astrophysics Data System (ADS)
Matsuda, Yoshinori; Kakutani, Koji; Nonomura, Teruo; Kimbara, Junji; Kusakari, Shin-ichi; Osamura, Kazumi; Toyoda, Hideyoshi
2012-12-01
An electric field screen was constructed to examine insect attraction mechanisms in multiple electric fields generated inside the screen. The screen consisted of two parallel insulated conductor wires (ICWs) charged with equal but opposite voltages and two separate grounded nets connected to each other and placed on each side of the ICW layer. Insects released inside the fields were charged either positively or negatively as a result of electricity flow from or to the insect, respectively. The force generated between the charged insects and opposite ICW charges was sufficient to capture all insects.
Welsh, T J; Stringer, L D; Caldwell, R; Carpenter, J E; Suckling, D M
2017-12-01
Brown marmorated stink bugs, Halyomorpha halys Stål (Hemiptera: Pentatomidae), are regularly intercepted, but there are few eradication tools. Currently, no sterile insect technique program exists for Hemiptera. Adult males were irradiated at 4-60 Gy, mated and their progeny reared for two generations, with mortality assessed at F 1 egg, F 1 adult and F 2 egg stages. The F 1 eggs showed a dose response to irradiation between 4 and 36 Gy, with 97% sterility at 16 Gy, and higher doses producing complete egg mortality. Only rare F 1 survivors had progeny, but the F 2 generation showed identical responses between maternal and paternal lines; most egg batches showed either very low or very high mortality. Irradiation with 16 Gy resulted in 98.5% sterility, cumulative over F 1 and F 2 . Lack of a dose response at the F 2 generation precludes the use of irradiation-induced inherited sterility. The conventional sterile insect technique appears possible by irradiation of males from ∼12 to 16 Gy. The effect of radiation dose on females is not known, thus we cannot conclude whether bi-sex release is feasible so for now the release of males only is recommended. More work is needed on the competitive fitness of irradiated males, and logistics such as mass rearing or field collection, in order to determine the feasibility of the approach.
Aerobic function in mitochondria persists beyond death by heat stress in insects.
Heinrich, Erica C; Gray, Emilie M; Ossher, Ashley; Meigher, Stephen; Grun, Felix; Bradley, Timothy J
2017-10-01
The critical thermal maximum (CT max ) of insects can be determined using flow-through thermolimit respirometry. It has been demonstrated that respiratory patterns cease and insects do not recover once the CT max temperature has been reached. However, if high temperatures are maintained following the CT max , researchers have observed a curious phenomenon whereby the insect body releases a large burst of carbon dioxide at a rate and magnitude that often exceed that of the live insect. This carbon dioxide release has been termed the post-mortal peak (PMP). We demonstrate here that the PMP is observed only at high temperatures, is oxygen-dependent, is prevented by cyanide exposure, and is associated with concomitant consumption of oxygen. We conclude that the PMP derives from highly active, aerobic metabolism in the mitochondria. The insect tracheal system contains air-filled tubes that reach deep into the tissues and allow mitochondria access to oxygen even upon organismal death. This unique condition permits the investigation of mitochondrial function during thermal failure in a manner that cannot be achieved using vertebrate organisms or in vitro preparations. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dong, Du-Juan; Jing, Yu-Pu; Liu, Wen; Wang, Jin-Xing; Zhao, Xiao-Fan
2015-01-01
The steroid hormone 20-hydroxyecdysone (20E) and the serine/threonine Ste20-like kinase Hippo signal promote programmed cell death (PCD) during development, although the interaction between them remains unclear. Here, we present evidence that 20E up-regulates Hippo to induce PCD during the metamorphic development of insects. We found that Hippo is involved in 20E-induced metamorphosis via promoting the phosphorylation and cytoplasmic retention of Yorkie (Yki), causing suppressed expression of the inhibitor of apoptosis (IAP), thereby releasing its inhibitory effect on caspase. Furthermore, we show that 20E induced the expression of Hippo at the transcriptional level through the ecdysone receptor (EcR), ultraspiracle protein (USP), and hormone receptor 3 (HR3). We also found that Hippo suppresses the binding of Yki complex to the HR3 promoter. In summary, 20E up-regulates the transcription of Hippo via EcRB1, USP1, and HR3 to induce PCD, and Hippo has negative feedback effects on HR3 expression. These two signaling pathways coordinate PCD during insect metamorphosis. PMID:26272745
Integrated Insect Control May Alter Pesticide Use Pattern
ERIC Educational Resources Information Center
Worthy, Ward
1973-01-01
Discusses the use of predators, parasites, bacteria, viruses, hormones, pheromones, and sterile-male release and insect-resistance imparting techniques in pest control. Concludes with comments from chemical pesticide companies as popular attitudes toward the integrated pest management. (CC)
2010-07-01
used to manipulate the environment by burning, grazing, or revegetation efforts. Five insect species and a fungus have been officially released as...satisfied, the fungus would probably do extremely well and stress the plant early in the growing season. Used in conjunction with seed- feeding insects , it...241 km) south of San Francisco. The fort is primarily used as a training facility, where activities such as field maneuvers and live fire
Microencapsulation of essential oil for insect repellent in food packaging system.
Chung, Seong Kyun; Seo, Ji Yeon; Lim, Jung Hoon; Park, Hyung Hwan; Yea, Myeong Jai; Park, Hyun Jin
2013-05-01
Microcapsules containing thyme oil were prepared by in situ polymerization, using melamine-formaldehyde prepolymer as a wall material and 3 different emulsifiers (pluronic F-127, tween 80, and sodium lauryl sulfate [SLS]). The general characteristics and release behavior of microcapsules, and their repellent effect against insects were investigated. The morphology of microcapsules using SLS was spherical shape with smooth surface. Microcapsules began to degrade at 150 °C. The particle size ranged from 1 to 10 μm and the loading efficiency of thyme oil was clearly affected by the emulsifier type. The highest loading efficiency appeared in microcapsules using SLS, which have good thermal resistance and smooth surface. The release rate of thyme oil from microcapsules was not only dependent on the storage temperature but also emulsifier type and microcapsules showed the sustained release properties for a long time. Diets, which were mixed with encapsulated thyme oil, expressed high insect repellent efficacy over 90% for 4 wk. © 2013 Institute of Food Technologists®
Sterile insect technique: A model for dose optimisation for improved sterile insect quality
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, A.; Mehta, K.
The sterile insect technique (SIT) is an environment-friendly pest control technique with application in the area-wide integrated control of key pests, including the suppression or elimination of introduced populations and the exclusion of new introductions. Reproductive sterility is normally induced by ionizing radiation, a convenient and consistent method that maintains a reasonable degree of competitiveness in the released insects. The cost and effectiveness of a control program integrating the SIT depend on the balance between sterility and competitiveness, but it appears that current operational programs with an SIT component are not achieving an appropriate balance. In this paper we discussmore » optimization of the sterilization process and present a simple model and procedure for determining the optimum dose. (author) [Spanish] La tecnica de insecto esteril (TIE) es una tecnologia de control de plagas favorable para el medio ambiente con una aplicacion de un control integrado de plagas claves para toda la area, incluyendo la supresion o eliminacion de poblaciones introducidas y la exclusion de nuevas introducciones. La esterilidad reproductiva es normalmente inducida por radiacion ionizada, un metodo conveniente y consistente que mantiene un grado razonable para la capacidad de competencia en insectos liberados. El costo y la eficacia de un programa de control que incluye TIE dependen en tener un balance entre la esterilidad y la capacidad para competir, pero parece que los programas operacionales corrientes con TIS como un componente no estan logrando el tener un balance apropiado. En esta publicacion, nosotros discutimos la optimizacion del proceso de esterilizacion y presentamos un modelo y procedimiento sencillos para determinar la dosis optima. (author)« less
Advances and perspectives in the application of CRISPR/Cas9 in insects.
Chen, Lei; Wang, Gui; Zhu, Ya-Nan; Xiang, Hui; Wang, Wen
2016-07-18
Insects compose more than half of all living organisms on earth, playing essential roles in global ecosystems and forming complex relationships with humans. Insect research has significant biological and practical importance. However, the application of genetic manipulation technology has long been restricted to several model insects only, such as gene knockout in Drosophila, which has severely restrained the development of insect biology research. Recently, with the increase in the release of insect genome data and the introduction of the CRISPR/Cas9 system for efficient genetic modification, it has been possible to conduct meaningful functional studies in a broad array of insect species. Here, we summarize the advances in CRISPR/Cas9 in different insect species, discuss methods for its promotion, and consider its application in future insect studies. This review provides detailed information about the application of the CRISPR/Cas9 system in insect research and presents possible ways to improve its use in functional studies and insect pest control.
Advances and perspectives in the application of CRISPR/Cas9 in insects
CHEN, Lei; WANG, Gui; ZHU, Ya-Nan; XIANG, Hui; WANG, Wen
2016-01-01
Insects compose more than half of all living organisms on earth, playing essential roles in global ecosystems and forming complex relationships with humans. Insect research has significant biological and practical importance. However, the application of genetic manipulation technology has long been restricted to several model insects only, such as gene knockout in Drosophila, which has severely restrained the development of insect biology research. Recently, with the increase in the release of insect genome data and the introduction of the CRISPR/Cas9 system for efficient genetic modification, it has been possible to conduct meaningful functional studies in a broad array of insect species. Here, we summarize the advances in CRISPR/Cas9 in different insect species, discuss methods for its promotion, and consider its application in future insect studies. This review provides detailed information about the application of the CRISPR/Cas9 system in insect research and presents possible ways to improve its use in functional studies and insect pest control. PMID:27469253
1982-06-01
of hydrilla treated statewide was 12,570. MINOR PLANTS The District’s Minor Plant Program is directed to those plant species, introduced and native...use of several different EPA-registered herbicides selected for their activity against the target species. Total acreage of minor plants treated...Hence, the releases at Lake Alice probably played a minor role as a source of insects for the colonization of other sites. This was probably due to the
Application of the Sterility Principle for Tsetse Fly Eradication or Control. Revision.
1981-08-14
1977. Digestive processes of haematophagous insects . XIII. Evidence for the digestive function of midgut proleinases in Glossina morsitans morsitans...FOOD AND AGRICULTURAL DEVELOPMENT ABSTRACT This review deals with the conditions required for the successful application of the sterile insect ...numbers of sterile male insects are released into a wild population so that they can disperse and compete with the fertile males of the natural population
Kaiser, Alexander; Hartzendorf, Sandra; Wobschall, Annabell; Hetz, Stefan K
2010-05-01
Understanding the mechanisms of gas exchange regulation in insects currently is a hot topic of insect physiology. Endogenous variation of metabolism during pupal development offers a great opportunity to study the regulation of respiratory patterns in insects. Here we show that metabolic rates during pupal development of the tenebrionid beetle Zophobas rugipes reveal a typical U-shaped curve and that, with the exception of 9-day-old pupae, the time between two bursts of CO(2) (interburst phase) was the only parameter of cyclic CO(2) gas exchange patterns that was adjusted to changing metabolic rates. The volume of CO(2) released in a burst was kept constant, suggesting a regulation for accumulation and release of a fixed amount of CO(2) throughout pupal development. We detected a variety of discontinuous and cyclic gas exchange patterns, which were not correlated with any periods of pupal development, suggesting a high among individual variability. An occasional occurrence of continuous CO(2) release patterns at low metabolic rates was very likely caused by single defective non-occluding spiracles. Copyright 2009 Elsevier Ltd. All rights reserved.
Johnson, Brian J.; Mitchell, Sara N.; Paton, Christopher J.; Stevenson, Jessica; Staunton, Kyran M.; Snoad, Nigel; Beebe, Nigel; White, Bradley J.; Ritchie, Scott A.
2017-01-01
Background Recent interest in male-based sterile insect technique (SIT) and incompatible insect technique (IIT) to control Aedes aegypti and Aedes albopictus populations has revealed the need for an economical, rapid diagnostic tool for determining dispersion and mating success of sterilized males in the wild. Previous reports from other insects indicated rhodamine B, a thiol-reactive fluorescent dye, administered via sugar-feeding can be used to stain the body tissue and seminal fluid of insects. Here, we report on the adaptation of this technique for male Ae. aegypti to allow for rapid assessment of competitiveness (mating success) during field releases. Methodology/Principle findings Marking was achieved by feeding males on 0.1, 0.2, 0.4 or 0.8% rhodamine B (w/v) in 50% honey solutions during free flight. All concentrations produced >95% transfer to females and successful body marking after 4 days of feeding, with 0.4 and 0.8% solutions producing the longest-lasting body marking. Importantly, rhodamine B marking had no effect on male mating competitiveness and proof-of-principle field releases demonstrated successful transfer of marked seminal fluid to females under field conditions and recapture of marked males. Conclusions/Significance These results reveal rhodamine B to be a potentially useful evaluation method for male-based SIT/IIT control strategies as well as a viable body marking technique for male-based mark-release-recapture experiments without the negative side-effects of traditional marking methods. As a standalone method for use in mating competitiveness assays, rhodamine B marking is less expensive than PCR (e.g. paternity analysis) and stable isotope semen labelling methods and less time-consuming than female fertility assays used to assess competitiveness of sterilised males. PMID:28957318
Johnson, Brian J; Mitchell, Sara N; Paton, Christopher J; Stevenson, Jessica; Staunton, Kyran M; Snoad, Nigel; Beebe, Nigel; White, Bradley J; Ritchie, Scott A
2017-09-01
Recent interest in male-based sterile insect technique (SIT) and incompatible insect technique (IIT) to control Aedes aegypti and Aedes albopictus populations has revealed the need for an economical, rapid diagnostic tool for determining dispersion and mating success of sterilized males in the wild. Previous reports from other insects indicated rhodamine B, a thiol-reactive fluorescent dye, administered via sugar-feeding can be used to stain the body tissue and seminal fluid of insects. Here, we report on the adaptation of this technique for male Ae. aegypti to allow for rapid assessment of competitiveness (mating success) during field releases. Marking was achieved by feeding males on 0.1, 0.2, 0.4 or 0.8% rhodamine B (w/v) in 50% honey solutions during free flight. All concentrations produced >95% transfer to females and successful body marking after 4 days of feeding, with 0.4 and 0.8% solutions producing the longest-lasting body marking. Importantly, rhodamine B marking had no effect on male mating competitiveness and proof-of-principle field releases demonstrated successful transfer of marked seminal fluid to females under field conditions and recapture of marked males. These results reveal rhodamine B to be a potentially useful evaluation method for male-based SIT/IIT control strategies as well as a viable body marking technique for male-based mark-release-recapture experiments without the negative side-effects of traditional marking methods. As a standalone method for use in mating competitiveness assays, rhodamine B marking is less expensive than PCR (e.g. paternity analysis) and stable isotope semen labelling methods and less time-consuming than female fertility assays used to assess competitiveness of sterilised males.
Frank J. Krist
2010-01-01
The Forest Health Technology Enterprise Team (FHTET) of the U.S. Forest Service is leading an effort to produce the next version of the National Insect and Disease Risk Map (NIDRM) for targeted release in 2011. The goal of this effort is to update spatial depictions of risk of tree mortality based on: (1) newly derived 240-m geospatial information depicting the...
Gumus, Arife; Karagoz, Mehmet; Shapiro-Ilan, David; Hazir, Selcuk
2015-09-01
As a new application approach, we tested the efficacy of releasing live insect hosts that were pre-infected with entomopathogenic nematodes against insect pests living in cryptic habitats. We hypothesized that the pre-infected hosts could carry the next generation of emerging nematode infective juveniles to hard-to-reach target sites, and thereby facilitate enhanced control in cryptic habitats. Thus, the infected hosts act as "living insect bombs" against the target pest. We tested this approach using two model insect pests: a chestnut tree pest, the goat moth Cossus cossus (Lepidiptera: Cossidae), and a lawn caterpillar, Spodoptera cilium (Lepidoptera: Noctuidae). One pest is considered hard-to-reach via aqueous spray (C. cossus) and the other is more openly exposed in the environment (S. cilium). C. cossus and S. cilium studies were conducted in chestnut logs and Bermudagrass arenas, respectively. The living bomb approach was compared with standard nematode application in aqueous spray and controls (without nematode application); Steinernema carpocapsae (Rize isolate) was used in all experiments. The percentage larval mortality of C. cossus was 86% in the living insect bomb treatment, whereas, all other treatments and controls exhibited less than 4% mortality. The new approach (living bomb) was equally successful as standard aqueous application for the control of S. cilium larvae. Both methods exhibited more than 90% mortality in the turfgrass arena. Our new approach showed an immense potential to control insect pests living in hard-to-reach cryptic habitats. Copyright © 2015 Elsevier Inc. All rights reserved.
Measurement of semiochemical release rates with a dedicated environmental control system
Heping Zhu; Harold W. Thistle; Christopher M. Ranger; Hongping Zhou; Brian L. Strom
2015-01-01
Insect semiochemical dispensers are commonly deployed under variable environmental conditions over a specified period. Predictions of their longevity are hampered by a lack of methods to accurately monitor and predict how primary variables affect semiochemical release rate. A system was constructed to precisely determine semiochemical release rates under...
USDA-ARS?s Scientific Manuscript database
Semiochemicals released by plant-microbe associations are used by herbivorous insects to access and evaluate food resources and oviposition sites. Adult insects may utilize microbial-derived nutrients to prolong their lifespan, promote egg development and offer a high nutritional substrate to their ...
Dispersal of Warren root collar weevils (Coleoptera: Curculionidae) in three types of habitat.
Machial, Laura A; Lindgren, B Staffan; Steenweg, Robin W; Aukema, Brian H
2012-06-01
Warren root collar weevil, Hylobius warreni Wood, is a native, flightless insect distributed throughout the boreal forest of North America. It is an emerging problem in young plantings of lodgepole pine, Pinus contorta variety latifolia, in western Canada, where larval feeding can kill young trees by girdling the root collar. Susceptible plantings are becoming more abundant following salvage harvesting and replanting activities in the wake of an ongoing epidemic of mountain pine beetle, Dendroctonus ponderosae (Hopkins). Previous studies using mark-trap-recapture methods found that movement rates of adult H. warreni were elevated in areas with high numbers of dead trees, consistent with a hypothesis that the insects immigrate from stands with high mountain pine beetle-caused tree mortality to young plantings in search of live hosts. Sampling methods were necessarily biased to insects captured in traps; however, potentially missing individuals that had died, left the study area, or simply remained stationary. Here, we used harmonic radar to examine weevil movement in three different habitats: open field, forest edge, and within a forest. We were able to reliably monitor all but two of 36 insects initially released, over 96 h (4 d). Weevils released in the open field had the highest rates of movement, followed by weevils released at the forest edge, then weevils released within the forest. Movement declined with decreasing ambient air temperature. Our results suggest that weevils tend to be relatively stationary in areas of live hosts, and hence may concentrate in a suitable area once such habitat is found.
Dong, Du-Juan; Jing, Yu-Pu; Liu, Wen; Wang, Jin-Xing; Zhao, Xiao-Fan
2015-10-09
The steroid hormone 20-hydroxyecdysone (20E) and the serine/threonine Ste20-like kinase Hippo signal promote programmed cell death (PCD) during development, although the interaction between them remains unclear. Here, we present evidence that 20E up-regulates Hippo to induce PCD during the metamorphic development of insects. We found that Hippo is involved in 20E-induced metamorphosis via promoting the phosphorylation and cytoplasmic retention of Yorkie (Yki), causing suppressed expression of the inhibitor of apoptosis (IAP), thereby releasing its inhibitory effect on caspase. Furthermore, we show that 20E induced the expression of Hippo at the transcriptional level through the ecdysone receptor (EcR), ultraspiracle protein (USP), and hormone receptor 3 (HR3). We also found that Hippo suppresses the binding of Yki complex to the HR3 promoter. In summary, 20E up-regulates the transcription of Hippo via EcRB1, USP1, and HR3 to induce PCD, and Hippo has negative feedback effects on HR3 expression. These two signaling pathways coordinate PCD during insect metamorphosis. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Juan-Blasco, M; Sabater-Muñoz, B; Pla, I; Argilés, R; Castañera, P; Jacas, J A; Ibáñez-Gual, M V; Urbaneja, A
2014-04-01
Area-wide sterile insect technique (SIT) programs assume that offspring reduction of the target population correlates with the mating success of the sterile males released. However, there is a lack of monitoring tools to prove the success of these programs in real-time. Field-cage tests were conducted under the environmental conditions of the Mediterranean coast of Spain to estimate: (a) the mating success of sterile Vienna-8 (V8) Ceratitis capitata males using molecular markers and (b) their efficacy to reduce C. capitata populations under six release ratios of wild females to wild males to V8 males (1:0:0, 1:1:0, 1:1:1, 1:1:5, 1:1:10, and 1:1:20). Statistical models were developed to predict: (a) the number of females captured in traps, (b) sperm ID (sterile or not) in spermathecae of the trapped females, and (c) the viable offspring produced, using release ratio and temperature as predictors. The number of females captured was affected by relative humidity. However, its influence in the model was low. Female captures were significantly higher in ratios 1:0:0 compared to ratios where V8 males were released. The proportion of V8 sperm in spermathecae increased with temperature and with the number of V8 males released, but leveled off between ratios 1:1:10 and 1:1:20. In all seasons, except winter (no offspring), viable offspring increased with temperature and was lowest for ratio 1:1:20. For the first time, a strong negative relationship between proportion of V8 sperm detected by molecular tools and C. capitata offspring was established. The models obtained should contribute to enhance the efficacy of SIT programs against this pest.
Response of native insect communities to invasive plants.
Bezemer, T Martijn; Harvey, Jeffrey A; Cronin, James T
2014-01-01
Invasive plants can disrupt a range of trophic interactions in native communities. As a novel resource they can affect the performance of native insect herbivores and their natural enemies such as parasitoids and predators, and this can lead to host shifts of these herbivores and natural enemies. Through the release of volatile compounds, and by changing the chemical complexity of the habitat, invasive plants can also affect the behavior of native insects such as herbivores, parasitoids, and pollinators. Studies that compare insects on related native and invasive plants in invaded habitats show that the abundance of insect herbivores is often lower on invasive plants, but that damage levels are similar. The impact of invasive plants on the population dynamics of resident insect species has been rarely examined, but invasive plants can influence the spatial and temporal dynamics of native insect (meta)populations and communities, ultimately leading to changes at the landscape level.
Downey, Danielle; Chun, Stacey; Follett, Peter
2015-06-01
Small hive beetle, Aethina tumida Murray (Coleoptera: Nitidulidae), is considered a serious threat to beekeeping in the Western Hemisphere, Australia, and Europe mainly due to larval feeding on honey, pollen, and brood of the European honeybee, Apis mellifera L. Control methods are limited for this pest. Studies were conducted to provide information on the radiobiology of small hive beetle and determine the potential for sterile insect releases as a control strategy. Adult males and females were equally sensitive to a radiation dose of 80 Gy and died within 5-7 d after treatment. In reciprocal crossing studies, irradiation of females only lowered reproduction to a greater extent than irradiation of males only. For matings between unirradiated males and irradiated females, mean reproduction was reduced by >99% at 45 and 60 Gy compared with controls, and no larvae were produced at 75 Gy. Irradiation of prereproductive adults of both sexes at 45 Gy under low oxygen (1-4%) caused a high level of sterility (>99%) while maintaining moderate survivorship for several weeks, and should suffice for sterile insect releases. Sterile insect technique holds potential for suppressing small hive beetle populations in newly invaded areas and limiting its spread. Published by Oxford University Press on behalf of Entomological Society of America 2015. This work is written by US Government employees and is in the public domain in the US.
Wardle, A R; Borden, J H; Pierce, H D; Gries, R
2003-04-01
Volatile compounds released by disturbed and calm female and male Lygus lineolaris were collected and analyzed. Six major compounds were present in samples from disturbed bugs and from calm females: (E)-2-hexenal, 1-hexanol, (E)-2-hexenol, hexyl butyrate, (E)-2-hexenyl butyrate, and (E)-2,4-oxohexenal. (E)-2-hexenal was lacking in volatiles collected from calm males. Hexyl butyrate accounted for approximately 68% and 66% of volatiles released by agitated and calm females, and 87% and 88% of volatiles released by agitated and calm males, respectively. Blends released by disturbed insects differed quantitatively from blends released by calm insects, with amounts of compounds increasing 75-350 times in samples from disturbed insects. In static air bioassays, both females and males were repelled by natural volatiles collected from females and by five-component [(E)-2,4-oxohexenal excluded] and six-component synthetic blends at doses of 1 and 10 bug-hours, indicating that these volatiles may serve an alarm or epideictic function, as well as a possible role as defensive allomones. Adults also avoided hexyl butyrate, (E)-2-hexenyl butyrate, (E)-2-hexenol, and (E)-2,4-oxohexenal, but not 1-hexanol and (E)-2-hexenal when compounds were assayed individually in static air bioassays at doses equal to 1 bug-hour. When tested over 1 day in two-choice cage trials, adults did not prefer untreated bean plants over bean plants surrounded by vials releasing up to 8.1 mg/hr (= 234 bug-hours) of the five-component synthetic blend. Therefore, the volatiles produced by disturbed adults would not be useful as a repellent for L. lineolaris.
USDA-ARS?s Scientific Manuscript database
A large variety of releaser pheromones are used by insects to attract or disperse conspecifics, while group cohesion is often influenced by primer pheromones that induce behavioral or physiological changes. Differentiating the roles of such pheromones in insect taxa displaying intermediate levels of...
A flight cylinder bioassay as a simple, effective quality control test for Cydia pomonella
USDA-ARS?s Scientific Manuscript database
Assessment of quality of the sterile male insects that are being mass-reared for release in area-wide integrated pest management programmes that include a sterile insect technique component is crucial for the success of these programmes. Routine monitoring of sterile male quality needs to be carried...
2009-01-01
with a modified FastMoc 0.25 procedure using an Fmoc-strategy starting from Rink amide resin (Novabiochem, San Diego, CA, 0.5 mM/g). The Fmoc protecting...In vitro release of amylase by culekinins in two insects: Opsinia arenosella (Lepidoptera) and Rhynchophorus ferrugineus (Coleoptera). Trends Life...Drosophila melanogaster and the honey bee Apis mellifera. Prog. Neurobiol. 80, 1–19. Holman, G.M., Nachman, R.J., Wright, M.S., 1990. Insect
A review and meta-analysis of the enemy release hypothesis in plant–herbivorous insect systems
Meijer, Kim; Schilthuizen, Menno; Beukeboom, Leo
2016-01-01
A suggested mechanism for the success of introduced non-native species is the enemy release hypothesis (ERH). Many studies have tested the predictions of the ERH using the community approach (native and non-native species studied in the same habitat) or the biogeographical approach (species studied in their native and non-native range), but results are highly variable, possibly due to large variety of study systems incorporated. We therefore focused on one specific system: plants and their herbivorous insects. We performed a systematic review and compiled a large number (68) of datasets from studies comparing herbivorous insects on native and non-native plants using the community or biogeographical approach. We performed a meta-analysis to test the predictions from the ERH for insect diversity (number of species), insect load (number of individuals) and level of herbivory for both the community and biogeographical approach. For both the community and biogeographical approach insect diversity was significantly higher on native than on non-native plants. Insect load tended to be higher on native than non-native plants at the community approach only. Herbivory was not different between native and non-native plants at the community approach, while there was too little data available for testing the biogeographical approach. Our meta-analysis generally supports the predictions from the ERH for both the community and biogeographical approach, but also shows that the outcome is importantly determined by the response measured and approach applied. So far, very few studies apply both approaches simultaneously in a reciprocal manner while this is arguably the best way for testing the ERH. PMID:28028463
DOE Office of Scientific and Technical Information (OSTI.GOV)
Resilva, S.; Obra, G.; Zamora, N.
Quality control procedures for Bactrocera philippinensis Drew and Hancock 1994 (Diptera: Tephritidae) used in sterile insect technique (SIT) programs were established in the mass rearing facility at the Philippine Nuclear Research Institute. Basic studies on pupal irradiation, holding/packaging systems, shipping procedures, longevity, sterility studies, and pupal eye color determination in relation to physiological development at different temperature regimes were investigated. These studies will provide baseline data for the development of quality control protocols for an expansion of B. philippinensis field programs with an SIT component in the future. (author) [Spanish] Los procedimientos de control de calidad para Bactrocera philippinensis Drewmore » y Hancock 1994 (Diptera: Tephritidae) usados en programas de la tecnica de insecto esteril (TIE) fueron establecidos en la facilidad de cria en masa del Instituto Filipino de Investigacion Nuclear. Estudios basicos sobre la irradiacion de las pupas, sistemas de almacenaje/empaque, procedimientos del envio, longevidad, estudios de esterilidad y la determinacion del color de ojo de la pupa en relacion con el desarrollo fisiologico en regimenes diferentes de temperatura fueron investigados. Estos estudios proveeran una linea de informacion basica para el desarrollo de protocolos de control de calidad para una expansion de los programas de campo para B. philippinensis con un componente de TIS en el futuro. (author)« less
Using new technology and insect behavior in novel terrestrial and flying insect traps
USDA-ARS?s Scientific Manuscript database
Insect traps are commonly used for both population sampling and insect control, the former as part of an integrated pest management (IPM) program. We developed traps for two insects, one as part of a pesticide based IPM system and the other for population control. Our IPM trap is for crawling insect...
Urli, Morgane; Brown, Carissa D; Narváez Perez, Rosela; Chagnon, Pierre-Luc; Vellend, Mark
2016-11-01
The enemy release hypothesis is frequently invoked to explain invasion by nonnative species, but studies focusing on the influence of enemies on natural plant range expansion due to climate change remain scarce. We combined multiple approaches to study the influence of plant-enemy interactions on the upper elevational range limit of sugar maple (Acer saccharum) in southeastern Québec, Canada, where a previous study had demonstrated intense seed predation just beyond the range limit. Consistent with the hypothesis of release from natural enemies at the range limit, data from both natural patterns of regeneration and from seed and seedling transplant experiments showed higher seedling densities at the range edge than in the core of the species' distribution. A growth chamber experiment manipulating soil origin and temperature indicated that this so-called "happy edge" was not likely caused by temperature (i.e., the possibility that climate warming has made high elevation temperatures optimal for sugar maple) or by abiotic soil factors that vary along the elevational gradient. Finally, an insect-herbivore-exclusion experiment showed that insect herbivory was a major cause of seedling mortality in the core of sugar maple's distribution, whereas seedlings transplanted at or beyond the range edge experienced minimal herbivory (i.e., enemy release). Insect herbivory did not completely explain the high levels of seedling mortality in the core of the species' distribution, suggesting that seedlings at or beyond the range edge may also experience release from pathogens. In sum, while some effects of enemies are magnified beyond range edges (e.g., seed predation), others are dampened at and beyond the range edge (e.g., insect herbivory), such that understanding the net outcome of different biotic interactions within, at and beyond the edge of distribution is critical to predicting species' responses to global change. © 2016 by the Ecological Society of America.
Using insects for STEM outreach: Development and evaluation of the UA Insect Discovery Program
NASA Astrophysics Data System (ADS)
Beal, Benjamin D.
Science and technology impact most aspects of modern daily life. It is therefore important to create a scientifically literate society. Since the majority of Americans do not take college-level science courses, strong K-12 science education is essential. At the K-5 level, however, many teachers lack the time, resources and background for effective science teaching. Elementary teachers and students may benefit from scientist-led outreach programs created by Cooperative Extension or other institutions. One example is the University of Arizona Insect Discovery Program, which provides short-duration programing that uses insects to support science content learning, teach critical thinking and spark interest in science. We conducted evaluations of the Insect Discovery programming to determine whether the activities offered were accomplishing program goals. Pre-post tests, post program questionnaires for teachers, and novel assessments of children's drawings were used as assessment tools. Assessments were complicated by the short duration of the program interactions with the children as well as their limited literacy. In spite of these difficulties, results of the pre-post tests indicated a significant impact on content knowledge and critical thinking skills. Based on post-program teacher questionnaires, positive impacts on interest in science learning were noted as much as a month after the children participated in the program. New programming and resources developed to widen the potential for impact are also described.
Zotti, M J; Smagghe, G
2015-06-01
The time has passed for us to wonder whether RNA interference (RNAi) effectively controls pest insects or protects beneficial insects from diseases. The RNAi era in insect science began with studies of gene function and genetics that paved the way for the development of novel and highly specific approaches for the management of pest insects and, more recently, for the treatment and prevention of diseases in beneficial insects. The slight differences in components of RNAi pathways are sufficient to provide a high degree of variation in responsiveness among insects. The current framework to assess the negative effects of genetically modified (GM) plants on human health is adequate for RNAi-based GM plants. Because of the mode of action of RNAi and the lack of genomic data for most exposed non-target organisms, it becomes difficult to determine the environmental risks posed by RNAi-based technologies and the benefits provided for the protection of crops. A better understanding of the mechanisms that determine the variability in the sensitivity of insects would accelerate the worldwide release of commercial RNAi-based approaches.
Helinski, Michelle EH; Hassan, Mo'awia M; El-Motasim, Waleed M; Malcolm, Colin A; Knols, Bart GJ; El-Sayed, Badria
2008-01-01
Background The work described in this article forms part of a study to suppress a population of the malaria vector Anopheles arabiensis in Northern State, Sudan, with the Sterile Insect Technique. No data have previously been collected on the irradiation and transportation of anopheline mosquitoes in Africa, and the first series of attempts to do this in Sudan are reported here. In addition, experiments in a large field cage under near-natural conditions are described. Methods Mosquitoes were irradiated in Khartoum and transported as adults by air to the field site earmarked for future releases (400 km from the laboratory). The field cage was prepared for experiments by creating resting sites with favourable conditions. The mating and survival of (irradiated) laboratory males and field-collected males was studied in the field cage, and two small-scale competition experiments were performed. Results Minor problems were experienced with the irradiation of insects, mostly associated with the absence of a rearing facility in close proximity to the irradiation source. The small-scale transportation of adult mosquitoes to the release site resulted in minimal mortality (< 6%). Experiments in the field cage showed that mating occurred in high frequencies (i.e. an average of 60% insemination of females after one or two nights of mating), and laboratory reared males (i.e. sixty generations) were able to inseminate wild females at rates comparable to wild males. Based on wing length data, there was no size preference of males for mates. Survival of mosquitoes from the cage, based on recapture after mating, was satisfactory and approximately 60% of the insects were recaptured after one night. Only limited information on male competitiveness was obtained due to problems associated with individual egg laying of small numbers of wild females. Conclusion It is concluded that although conditions are challenging, there are no major obstacles associated with the small-scale irradiation and transportation of insects in the current setting. The field cage is suitable for experiments and studies to test the competitiveness of irradiated males can be pursued. The scaling up of procedures to accommodate much larger numbers of insects needed for a release is the next challenge and recommendations to further implementation of this genetic control strategy are presented. PMID:18439238
Process of infection of armored scale insects (Diaspididae) by an entomopathogenic Cosmospora sp.
Mauchline, Nicola; Hallett, Ian; Hill, Garry; Casonato, Seona
2011-09-01
Several species in the fungal genus Cosmospora (synonym Nectria) (anamorph Fusarium) are specialist entomopathogens of armored scale insects (Diaspididae), known to cause periodic epizootics in host populations. Inconsistent mortality rates recorded under laboratory conditions prompted a study into the process of infection of armored scale insects by this fungus. Scale insect mortality following exposure to a Cosmospora sp. (Culture Collection Number: CC89) from New Zealand was related to insect age, with reproductively mature insects having a significantly higher infection rate than immature insects. Examination using scanning electron microscopy found no evidence that the fungus penetrated directly through the wax test (cap) of the scale insect or through the un-lifted interface between the test and the substrate on which the insect resided. However, fungal hyphae were observed growing beneath the test when the test of the reproductively mature insect lifted away from the substrate for the purpose of releasing crawlers, the mobile pre-settled juveniles. Once the hyphae of CC89 advanced under the test, germ-tubes readily penetrated the insect body through a number of natural openings (e.g. spiracles, vulva, stylet), with mycosis observed within seven days after inoculation. Direct penetration through the cuticle of the scale insect was not observed. Copyright © 2011 Elsevier Inc. All rights reserved.
Sterile-Insect Methods for Control of Mosquito-Borne Diseases: An Analysis
Benedict, Mark; Bellini, Romeo; Clark, Gary G.; Dame, David A.; Service, Mike W.; Dobson, Stephen L.
2010-01-01
Abstract Effective vector control, and more specifically mosquito control, is a complex and difficult problem, as illustrated by the continuing prevalence (and spread) of mosquito-transmitted diseases. The sterile insect technique and similar methods control certain agricultural insect pest populations in a species-specific, environmentally sound, and effective manner; there is increased interest in applying this approach to vector control. Such an approach, like all others in use and development, is not a one-size-fits-all solution, and will be more appropriate in some situations than others. In addition, the proposed release of pest insects, and more so genetically modified pest insects, is bound to raise questions in the general public and the scientific community as to such a method's efficacy, safety, and sustainability. This article attempts to address these concerns and indicate where sterile-insect methods are likely to be useful for vector control. PMID:19725763
Kawada, Hitoshi; Saita, Susumu; Shimabukuro, Kozue; Hirano, Masachika; Koga, Masayuki; Iwashita, Toshiaki; Takagi, Masahiro
2006-09-01
EcoBio-Block S, a novel controlled release system (CRS) for the insect growth regulator pyriproxyfen, uses a water-purifying concrete block system (EcoBio-Block) composed of a porous volcanic rock and cement, and it incorporates the aerobic bacterial groups of Bacillus subtilis natto. EcoBio-Block S showed high inhibitory activity against mosquito emergence as well as a water-purifying effect. Chemical analysis and bioassay showed that EcoBio-Block S provides a high-performance CRS that controls the release of pyriproxyfen at low levels according to "zero order kinetics".
The first crop plant genetically engineered to release an insect pheromone for defence
Bruce, Toby J.A.; Aradottir, Gudbjorg I.; Smart, Lesley E.; Martin, Janet L.; Caulfield, John C.; Doherty, Angela; Sparks, Caroline A.; Woodcock, Christine M.; Birkett, Michael A.; Napier, Johnathan A.; Jones, Huw D.; Pickett, John A.
2015-01-01
Insect pheromones offer potential for managing pests of crop plants. Volatility and instability are problems for deployment in agriculture but could be solved by expressing genes for the biosynthesis of pheromones in the crop plants. This has now been achieved by genetically engineering a hexaploid variety of wheat to release (E)-β-farnesene (Eβf), the alarm pheromone for many pest aphids, using a synthetic gene based on a sequence from peppermint with a plastid targeting amino acid sequence, with or without a gene for biosynthesis of the precursor farnesyl diphosphate. Pure Eβf was produced in stably transformed wheat lines with no other detectable phenotype but requiring targeting of the gene produced to the plastid. In laboratory behavioural assays, three species of cereal aphids were repelled and foraging was increased for a parasitic natural enemy. Although these studies show considerable potential for aphid control, field trials employing the single and double constructs showed no reduction in aphids or increase in parasitism. Insect numbers were low and climatic conditions erratic suggesting the need for further trials or a closer imitation, in the plant, of alarm pheromone release. PMID:26108150
Conditions for success of engineered underdominance gene drive systems.
Edgington, Matthew P; Alphey, Luke S
2017-10-07
Engineered underdominance is one of a number of different gene drive strategies that have been proposed for the genetic control of insect vectors of disease. Here we model a two-locus engineered underdominance based gene drive system that is based on the concept of mutually suppressing lethals. In such a system two genetic constructs are introduced, each possessing a lethal element and a suppressor of the lethal at the other locus. Specifically, we formulate and analyse a population genetics model of this system to assess when different combinations of release strategies (i.e. single or multiple releases of both sexes or males only) and genetic systems (i.e. bisex lethal or female-specific lethal elements and different strengths of suppressors) will give population replacement or fail to do so. We anticipate that results presented here will inform the future design of engineered underdominance gene drive systems as well as providing a point of reference regarding release strategies for those looking to test such a system. Our discussion is framed in the context of genetic control of insect vectors of disease. One of several serious threats in this context are Aedes aegypti mosquitoes as they are the primary vectors of dengue viruses. However, results are also applicable to Ae. aegypti as vectors of Zika, yellow fever and chikungunya viruses and also to the control of a number of other insect species and thereby of insect-vectored pathogens. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Applications of cyclodextrins in medical textiles - review.
Radu, Cezar-Doru; Parteni, Oana; Ochiuz, Lacramioara
2016-02-28
This paper presents data on the general properties and complexing ability of cyclodextrins and assessment methods (phase solubility, DSC tests and X-ray diffraction, FTIR spectra, analytical method). It focuses on the formation of drug deposits on the surface of a textile underlayer, using a cyclodextrin compound favoring the inclusion of a drug/active principle and its release onto the dermis of patients suffering from skin disorders, or for protection against insects. Moreover, it presents the kinetics, duration, diffusion flow and release media of the cyclodextrin drug for in vitro studies, as well as the release modeling of the active principle. The information focuses on therapies: antibacterial, anti-allergic, antifungal, chronic venous insufficiency, psoriasis and protection against insects. The pharmacodynamic agents/active ingredients used on cotton, woolen and synthetic textile fabrics are presented. Copyright © 2016 Elsevier B.V. All rights reserved.
Yolk protein is expressed in the insect testis and interacts with sperm
Bebas, Piotr; Kotwica, Joanna; Joachimiak, Ewa; Giebultowicz, Jadwiga M
2008-01-01
Background Male and female gametes follow diverse developmental pathways dictated by their distinct roles in fertilization. While oocytes of oviparous animals accumulate yolk in the cytoplasm, spermatozoa slough off most of their cytoplasm in the process of individualization. Mammalian spermatozoa released from the testis undergo extensive modifications in the seminal ducts involving a variety of glycoproteins. Ultrastructural studies suggest that glycoproteins are involved in sperm maturation in insects; however, their characterization at the molecular level is lacking. We reported previously that the circadian clock controls sperm release and maturation in several insect species. In the moth, Spodoptera littoralis, the secretion of glycoproteins into the seminal fluid occurs in a daily rhythmic pattern. The purpose of this study was to characterize seminal fluid glycoproteins in this species and elucidate their role in the process of sperm maturation. Results We collected seminal fluid proteins from males before and after daily sperm release. These samples were separated by 2-D gel electrophoresis, and gels were treated with a glycoprotein-detecting probe. We observed a group of abundant glycoproteins in the sample collected after sperm release, which was absent in the sample collected before sperm release. Sequencing of these glycoproteins by mass spectroscopy revealed peptides bearing homology with components of yolk, which is known to accumulate in developing oocytes. This unexpected result was confirmed by Western blotting demonstrating that seminal fluid contains protein immunoreactive to antibody against yolk protein YP2 produced in the follicle cells surrounding developing oocytes. We cloned the fragment of yp2 cDNA from S. littoralis and determined that it is expressed in both ovaries and testes. yp2 mRNA and YP2 protein were detected in the somatic cyst cells enveloping sperm inside the testis. During the period of sperm release, YP2 protein appears in the seminal fluid and forms an external coat on spermatozoa. Conclusion One of the yolk protein precursors YP2, which in females accumulate in the oocytes to provision developing embryos, appears to have a second male-specific role. It is produced in the testes and released into the seminal fluid where it interacts with sperm. These data reveal unexpected common factor in the maturation of insect eggs and sperm. PMID:18549506
Zhang, Huijing; Yu, Hui; Zhao, Xi; Liu, Xiaoguang; Feng, Xianli; Huang, Xuri
2017-05-01
Takeout (To) proteins exist in a diverse range of insect species. They are involved in many important processes of insect physiology and behaviors. As the ligand carriers, To proteins can transport the small molecule to the target tissues. However, ligand release mechanism of To proteins is unclear so far. In this contribution, the process and pathway of the ligand binding and release are revealed by conventional molecular dynamics simulation, steered molecular dynamics simulation and umbrella sampling methods. Our results show that the α4-side of the protein is the unique gate for the ligand binding and release. The structural analysis confirms that the internal cavity of the protein has high rigidity, which is in accordance with the recent experimental results. By using the potential of mean force calculations in combination with residue cross correlation calculation, we concluded that the binding between the ligand and To proteins is a process of conformational selection. Furthermore, the conformational changes of To proteins and the hydrophobic interactions both are the key factors for ligand binding and release.
Protein self-marking by ectoparasites: a case study using bed bugs
USDA-ARS?s Scientific Manuscript database
1. The ability to mark individuals is a critical feature of many ecological and evolutionary investigations, including dispersal studies. Insect dispersal is generally investigated using mark-release-recapture techniques, whereby marked individuals are released at a known location and then captured ...
USDA-ARS?s Scientific Manuscript database
Empirical studies on the ecological causes of agricultural pest outbreaks have focused primarily on two biotic factors—release from natural enemies and changes in host plant quality. Release from competition, on the other hand, has been theorized as a potential cause but never tested. With the ex...
Plant stress signalling: understanding and exploiting plant-plant interactions.
Pickett, J A; Rasmussen, H B; Woodcock, C M; Matthes, M; Napier, J A
2003-02-01
When plants are attacked by insects, volatile chemical signals can be released, not only from the damaged parts, but also systemically from other parts of the plant and this continues after cessation of feeding by the insect. These signals are perceived by olfactory sensory mechanisms in both the herbivorous insects and their parasites. Molecular structures involved can be characterized by means of electrophysiological assays, using the insect sensory system linked to chemical analysis. Evidence is mounting that such signals can also affect neighbouring intact plants, which initiate defence by the induction of further signalling systems, such as those that increase parasitoid foraging. Furthermore, insect electrophysiology can be used in the identification of plant compounds having effects on the plants themselves. It has been found recently that certain plants can release stress signals even when undamaged, and that these can cause defence responses in intact plants. These discoveries provide the basis for new crop protection strategies, that are either delivered by genetic modification of plants or by conventionally produced plants to which the signal is externally applied. Delivery can also be made by means of mixed seed strategies in which the provoking and recipient plants are grown together. Related signalling discoveries within the rhizosphere seem set to extend these approaches into new ways of controlling weeds, by exploiting the elusive potential of allelopathy, but through signalling rather than by direct physiological effects.
Kim, Jungheon; Park, No-Hyung; Na, Ja Hyun; Han, Jaejoon
2016-08-01
The aims of this study were to develop insect-proof halloysite nanotubes (HNTs) and apply the HNTs to a low-density polyethylene (LDPE) film that will prevent Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae), commonly known as Indian mealmoth, from infesting the food. Clove bud oil (CO), an insect repellent, was encapsulated into HNTs with polyethylenimine (PEI) to bring about controlled release of CO. Chemical composition and insecticidal effect of CO were examined. The Fourier transform infrared (FTIR) spectrum of encapsulated CO was confirmed. The surface charges of uncoated HNTs (HNTs/CO) and coated HNTs with PEI by the layer-by-layer (LBL) method (HNTs/CO/LBL) were determined to be -37.23 and 36.33 mV, respectively. HNTs/CO/LBL showed slow, controlled release of CO compared to HNTs/CO. After 30 d, the residual amounts of CO in HNTs/CO and HNTs/CO/LBL were estimated to be 13.43 and 28.66 mg/g, respectively. HNTs/CO/LBL showed the most sustainable repellent effect. HNTs applied to gravure printing ink solution did not affect mechanical, optical, or thermal properties of the developed film. Gravure-printed LDPE film containing HNTs/CO/LBL displayed the greatest preventive effect on insect penetration, indicating its potential for use as insect-resistant food packaging materials. © 2016 Institute of Food Technologists®
Hamady, Dieng; Ruslan, Norrafiza Binti; Ahmad, Abu Hassan; Rawi, Che Salmah Md; Ahmad, Hamdan; Satho, Tomomitsu; Miake, Fumio; Zuharah, Wan Fatma; FuKumitsu, Yuki; Saad, Ahmad Ramli; Rajasaygar, Sudha; Vargas, Ronald Enrique Morales; Majid, Abdul Hafiz Ab; Fadzly, Nik; Ghani, Idris Abd; AbuBakar, Sazaly
2013-07-15
Mating is a physiological process of crucial importance underlying the size and maintenance of mosquito populations. In sterile and incompatible insect technologies (SIT and IIT), mating is essential for mass production, persistence, and success of released individuals, and is a central parameter for judging the effectiveness of SIT/IIT programs. Some mosquitoes have an enormous reproductive potential for both themselves and pathogens and mating may contribute to persistence of infection in nature. As Aedes albopictus can transmit flaviviruses both sexually and horizontally, and as infected insects are usually derived from laboratory colonies, we investigated the implications of mating between a long-term laboratory colony of Ae. albopictus and wild populations. Through a series of mating experiments, we examined the reproductive outcomes of sexual cross-affinity between laboratory-raised and wild adults of Ae. albopictus. The results indicated appreciable mating compatibility between laboratory-reared and wild adults, and equivalent levels of egg production among reciprocal crosses. We also observed comparable larval eclosion in lab females mated with wild males, and increased adult longevity in female offspring from wild females|×|laboratory males crosses. Taken together, these data suggest that Ae. albopictus can preserve its reproductive fitness over a long period of time in the laboratory environment and has valuable attributes for SIT application. These observations together with the ability to successfully inseminate heterospecific females indicate the potential of Ae. albopictus to act as an ecological barrier if non-sterilized males are massively released in areas occupied by Aedes aegypti. The observed substantial reproductive fitness combined with the capability to reproduce both, itself and viruses illustrates the potential of Ae. albopictus to pose a serious threat if infected and released accidentally.
ERIC Educational Resources Information Center
Robertson, Laura; Meyer, John R.
2010-01-01
Differences in insect morphology and movement during singing provide a fascinating opportunity for students to investigate insects while learning about the characteristics of sound. In the activities described here, students use a free online computer software program to explore the songs of the major singing insects and experiment with making…
Knipling, E F
1976-01-01
Insects produce pheromones as a chemical communication system to facilitate reproduction. These highly active chemical attractants have been synthesized for some of the most important insect pests, including the boll weevil, gypsy moth, codling moth, tobacco budworm, European corn borer, and several bark beetles. While none of the synthetic sex attractants have yet been developed for use in insect control, they offer opportunities for the future both as control agents and to greatly improved insect detection. Investigations are underway on insect trapping systems employing the phermones and on air permeation techniques to disrupt insect reproduction. The pheromones are generally highly species-specific and are not likely to pose hazards to nontarget organisms in the environment. Toxicological studies indicate that they are low in toxicity to mammals, birds, and fish, but adequate toxicological data are necessary before they can be registered for use in insect control. Another new class of compounds called kaironomes has been discovered. These chemicals are involved in the detection of hosts or prey by insect parasites and predators. Kairomones may prove useful in manipulating natural or released biological agents for more effective biological control of insect pests. No information is yet available on the toxicology of these chemicals. PMID:789061
Jarosz, J
1996-01-01
Insect immunity comprises a complex of several distinct systems, both haemocytic and humoral in nature, that cooperate together in a more or less coordinated way to provide protection of the body cavity from invading microorganisms. Insects can respond to infections by a selective synthesis of haemolymph immune proteins that are responsible for antibacterial immunity. Antibacterial activity of insect blood is attributable to innate compounds such as lysozome, and to induced polypeptides or small basic proteins absent in non-immunized insects. The cecropins and attacins in Lepidoptera, and diptericins in Diptera are the inducible antibacterial immune proteins well defined biochemically. Bacterial pathogens and some parasites of insects, preferably entomogenous rhabditid nematodes, have developed the mechanism by which they may counteract insect immunity. This phenomenon is realized either by escaping immune reactions or by degrading antimicrobial factors of haemolymph in an active process. Passive resistance of parasites to insect immunity is a result of a strong evolutionary pressure on parasites to develop mechanisms to escape insect immune reactions or to minimize their effectiveness through changes in the parasite itself. Active resistance to the insect non-self response system involves a partial or total destruction of immune proteins by extracellular proteinases released during parasitism.
Evaluation of recovery and monitoring methods for parasitoids released against Emerald Ash Borer
USDA-ARS?s Scientific Manuscript database
The emerald ash borer (Agrilus planipennis Fairmaire, EAB) is an invasive insect pest, and the target of an extensive biological control campaign designed to mitigate EAB driven ash tree (Fraxinus spp.) mortality. Since 2007, environmental releases of three species of hymenopteran parasitoids of EA...
Alternate hosts of Blepharipa pratensis (Meigen)
Paul A. Godwin; Thomas M. Odell
1977-01-01
A current tactic for biological control of the gypsy moth, Lymantria dispar Linnaeus, is to release its parasites in forests susceptible to gypsy moth damage before the gypsy moth arrives. The basic assumption in these anticipatory releases is that the parasites can find and utilize native insects as hosts in the interim. Blepharipa...
Vorhees, Ashley S; Bradley, Timothy J
2012-07-01
Thermal limits to activity profoundly affect the abundance and distribution of ectothermic animals. Upper thermal limits to activity are typically reported as the critical thermal maximum (CT(max)), the temperature at which activity becomes uncontrolled. Thermolimit respirometry is a new technique that allows CT(max) to be quantified in small animals, such as insects, as the point of spiracular failure by measuring CO(2) release from the animal as temperature increases. Although prior studies have reported a characteristic pattern of CO(2) release for insects during thermolimit respirometry trials, no studies have been carried out to determine the universality of this pattern across development, or at what point death occurs along this pattern. Here, we compared the CT(max) and patterns of CO(2) release among three life stages of a beetle species, Tenebrio molitor, and mapped heat death onto these patterns. Our study is the first to report distinct patterns of CO(2) release in different life stages of an insect species during thermolimit respirometry. Our results show that CT(max) was significantly higher in adult beetles than in either larvae or pupae (P<0.001) and, similarly, death occurred at higher temperatures in adults than in larvae and pupae. We also found that death during heating closely follows CT(max) in these animals, which confirms that measuring the loss of spiracular control with thermolimit respirometry successfully identifies the point of physiological limitation during heat stress.
Flow management for hydropower extirpates aquatic insects, undermining river food webs
Kennedy, Theodore A.; Muehlbauer, Jeffrey D.; Yackulic, Charles B.; Lytle, D.A.; Miller, S.A.; Dibble, Kimberly L.; Kortenhoeven, Eric W.; Metcalfe, Anya; Baxter, Colden V.
2016-01-01
Dams impound the majority of rivers and provide important societal benefits, especially daily water releases that enable on-peak hydroelectricity generation. Such “hydropeaking” is common worldwide, but its downstream impacts remain unclear. We evaluated the response of aquatic insects, a cornerstone of river food webs, to hydropeaking using a life history–hydrodynamic model. Our model predicts that aquatic-insect abundance will depend on a basic life-history trait—adult egg-laying behavior—such that open-water layers will be unaffected by hydropeaking, whereas ecologically important and widespread river-edge layers, such as mayflies, will be extirpated. These predictions are supported by a more-than-2500-sample, citizen-science data set of aquatic insects from the Colorado River in the Grand Canyon and by a survey of insect diversity and hydropeaking intensity across dammed rivers of the Western United States. Our study reveals a hydropeaking-related life history bottleneck that precludes viable populations of many aquatic insects from inhabiting regulated rivers.
James, David G.; Seymour, Lorraine; Lauby, Gerry; Buckley, Katie
2016-01-01
Native plant and beneficial insect associations are relatively unstudied yet are important in native habitat restoration programs for improving and sustaining conservation biological control of arthropod pests in agricultural crops. Milkweeds (Asclepias spp.) are currently the focus of restoration programs in the USA aimed at reversing a decline in populations of the milkweed-dependent monarch butterfly (Danaus plexippus); however, little is known of the benefits of these plants to other beneficial insects. Beneficial insects (predators, parasitoids, pollinators) attracted to two milkweed species (Asclepias speciosa, Asclepias fascicularis) in central Washington State, WA, USA were identified and counted on transparent sticky traps attached to blooms over five seasons. Combining all categories of beneficial insects, means of 128 and 126 insects per trap were recorded for A. speciosa and A. fascicularis, respectively. Predatory and parasitic flies dominated trap catches for A. speciosa while parasitic wasps were the most commonly trapped beneficial insects on A. fascicularis. Bees were trapped commonly on both species, especially A. speciosa with native bees trapped in significantly greater numbers than honey bees. Beneficial insect attraction to A. speciosa and A. fascicularis was substantial. Therefore, these plants are ideal candidates for habitat restoration, intended to enhance conservation biological control, and for pollinator conservation. In central Washington, milkweed restoration programs for enhancement of D. plexippus populations should also provide benefits for pest suppression and pollinator conservation. PMID:27367733
James, David G; Seymour, Lorraine; Lauby, Gerry; Buckley, Katie
2016-06-29
Native plant and beneficial insect associations are relatively unstudied yet are important in native habitat restoration programs for improving and sustaining conservation biological control of arthropod pests in agricultural crops. Milkweeds (Asclepias spp.) are currently the focus of restoration programs in the USA aimed at reversing a decline in populations of the milkweed-dependent monarch butterfly (Danaus plexippus); however, little is known of the benefits of these plants to other beneficial insects. Beneficial insects (predators, parasitoids, pollinators) attracted to two milkweed species (Asclepias speciosa, Asclepias fascicularis) in central Washington State, WA, USA were identified and counted on transparent sticky traps attached to blooms over five seasons. Combining all categories of beneficial insects, means of 128 and 126 insects per trap were recorded for A. speciosa and A. fascicularis, respectively. Predatory and parasitic flies dominated trap catches for A. speciosa while parasitic wasps were the most commonly trapped beneficial insects on A. fascicularis. Bees were trapped commonly on both species, especially A. speciosa with native bees trapped in significantly greater numbers than honey bees. Beneficial insect attraction to A. speciosa and A. fascicularis was substantial. Therefore, these plants are ideal candidates for habitat restoration, intended to enhance conservation biological control, and for pollinator conservation. In central Washington, milkweed restoration programs for enhancement of D. plexippus populations should also provide benefits for pest suppression and pollinator conservation.
Daborn, P. J.; Waterfield, N.; Silva, C. P.; Au, C. P. Y.; Sharma, S.; ffrench-Constant, R. H.
2002-01-01
Photorhabdus luminescens, a bacterium with alternate pathogenic and symbiotic phases of its lifestyle, represents a source of novel genes associated with both virulence and symbiosis. This entomopathogen lives in a “symbiosis of pathogens” with nematodes that invade insects. Thus the bacteria are symbiotic with entomopathogenic nematodes but become pathogenic on release from the nematode into the insect blood system. Within the insect, the bacteria need to both avoid the peptide- and cellular- (hemocyte) mediated immune response and also to kill the host, which then acts as a reservoir for bacterial and nematode reproduction. However, the mechanisms whereby Photorhabdus evades the insect immune system and kills the host are unclear. Here we show that a single large Photorhabdus gene, makes caterpillars floppy (mcf), is sufficient to allow Esherichia coli both to persist within and kill an insect. The predicted high molecular weight Mcf toxin has little similarity to other known protein sequences but carries a BH3 domain and triggers apoptosis in both insect hemocytes and the midgut epithelium. PMID:12136122
Daborn, P J; Waterfield, N; Silva, C P; Au, C P Y; Sharma, S; Ffrench-Constant, R H
2002-08-06
Photorhabdus luminescens, a bacterium with alternate pathogenic and symbiotic phases of its lifestyle, represents a source of novel genes associated with both virulence and symbiosis. This entomopathogen lives in a "symbiosis of pathogens" with nematodes that invade insects. Thus the bacteria are symbiotic with entomopathogenic nematodes but become pathogenic on release from the nematode into the insect blood system. Within the insect, the bacteria need to both avoid the peptide- and cellular- (hemocyte) mediated immune response and also to kill the host, which then acts as a reservoir for bacterial and nematode reproduction. However, the mechanisms whereby Photorhabdus evades the insect immune system and kills the host are unclear. Here we show that a single large Photorhabdus gene, makes caterpillars floppy (mcf), is sufficient to allow Esherichia coli both to persist within and kill an insect. The predicted high molecular weight Mcf toxin has little similarity to other known protein sequences but carries a BH3 domain and triggers apoptosis in both insect hemocytes and the midgut epithelium.
CRISPR/Cas9 in insects: Applications, best practices and biosafety concerns.
Taning, Clauvis Nji Tizi; Van Eynde, Benigna; Yu, Na; Ma, Sanyuan; Smagghe, Guy
2017-04-01
Discovered as a bacterial adaptive immune system, CRISPR/Cas9 (clustered, regularly interspaced, short palindromic repeat/CRISPR associated) is being developed as an attractive tool in genome editing. Due to its high specificity and applicability, CRISPR/Cas9-mediated gene editing has been employed in a multitude of organisms and cells, including insects, for not only fundamental research such as gene function studies, but also applied research such as modification of organisms of economic importance. Despite the rapid increase in the use of CRISPR in insect genome editing, results still differ from each study, principally due to existing differences in experimental parameters, such as the Cas9 and guide RNA form, the delivery method, the target gene and off-target effects. Here, we review current reports on the successes of CRISPR/Cas9 applications in diverse insects and insect cells. We furthermore summarize several best practices to give a useful checklist of CRISPR/Cas9 experimental setup in insects for beginners. Lastly, we discuss the biosafety concerns related to the release of CRISPR/Cas9-edited insects into the environment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Byers, John A
2008-09-01
The release rate of a semiochemical lure that attracts flying insects has a specific effective attraction radius (EAR) that corresponds to the lure's orientation response strength. EAR is defined as the radius of a passive sphere that intercepts the same number of insects as a semiochemical-baited trap. It is estimated by calculating the ratio of trap catches in the field in baited and unbaited traps and the interception area of the unbaited trap. EAR serves as a standardized method for comparing the attractive strengths of lures that is independent of population density. In two-dimensional encounter rate models that are used to describe insect mass trapping and mating disruption, a circular EAR (EAR(c)) describes a key parameter that affects catch or influence by pheromone in the models. However, the spherical EAR, as measured in the field, should be transformed to an EAR(c) for appropriate predictions in such models. The EAR(c) is calculated as (pi/2EAR(2))/F (L), where F (L) is the effective thickness of the flight layer where the insect searches. F (L) was estimated from catches of insects (42 species in the orders Coleoptera, Lepidoptera, Diptera, Hemiptera, and Thysanoptera) on traps at various heights as reported in the literature. The EAR(c) was proposed further as a simple but equivalent alternative to simulations of highly complex active-space plumes with variable response surfaces that have proven exceedingly difficult to quantify in nature. This hypothesis was explored in simulations where flying insects, represented as coordinate points, moved about in a correlated random walk in an area that contained a pheromone plume, represented as a sector of active space composed of a capture probability surface of variable complexity. In this plume model, catch was monitored at a constant density of flying insects and then compared to simulations in which a circular EAR(c) was enlarged until an equivalent rate was caught. This demonstrated that there is a circular EAR(c), where all insects that enter are caught, which corresponds in catch effect to any plume. Thus, the EAR(c), based on the field-observed EAR, can be used in encounter rate models to develop effective control programs based on mass trapping and/or mating disruption.
Haghighat-Khah, Roya Elaine; Scaife, Sarah; Martins, Sara; St John, Oliver; Matzen, Kelly Jean; Morrison, Neil; Alphey, Luke
2015-01-01
Genetically engineered insects are being evaluated as potential tools to decrease the economic and public health burden of mosquitoes and agricultural pest insects. Here we describe a new tool for the reliable and targeted genome manipulation of pest insects for research and field release using recombinase mediated cassette exchange (RMCE) mechanisms. We successfully demonstrated the established ΦC31-RMCE method in the yellow fever mosquito, Aedes aegypti, which is the first report of RMCE in mosquitoes. A new variant of this RMCE system, called iRMCE, combines the ΦC31-att integration system and Cre or FLP-mediated excision to remove extraneous sequences introduced as part of the site-specific integration process. Complete iRMCE was achieved in two important insect pests, Aedes aegypti and the diamondback moth, Plutella xylostella, demonstrating the transferability of the system across a wide phylogenetic range of insect pests. PMID:25830287
Liu, Kaiyu; Shu, Duanyang; Song, Na; Gai, Zhongchao; Yuan, Yuan; Li, Juan; Li, Min; Guo, Shuying; Peng, Jianxin; Hong, Huazhu
2012-01-01
There are conflicting reports on the role of cytochrome c during insect apoptosis. Our previous studies have showed that cytochrome c released from the mitochondria was an early event by western blot analysis and caspase-3 activation was closely related to cytochrome c release during apoptosis induced by baculovirus in Spodoptera litura cells (Sl-1 cell line). In the present study, alteration in mitochondrial morphology was observed by transmission electron microscopy, and cytochrome c release from mitochondria in apoptotic Sl-1 cells induced with Anagrapha falcifera multiple nuclear polyhedrosis virus (AfMNPV) has further been confirmed by immunofluoresence staining protocol, suggesting that structural disruption of mitochondria and the release of cytochrome c are important events during Lepidoptera insect cell apoptosis. We also used Sl-1 cell-free extract system and the technique of RNA interference to further investigate the role of cytochrome c in apoptotic Sl-1 cells induced by AfMNPV. Caspase-3 activity in cell-free extracts supplemented with exogenous cytochrome c was determined and showed an increase with the extension of incubation time. DsRNA-mediated silencing of cytochrome c resulted in the inhibition of apoptosis and protected the cells from AfMNPV-induced cell death. Silencing of expression of cytochrome c had a remarkable effect on pro-caspase-3 and pro-caspase-9 activation and resulted in the reduction of caspase-3 and caspase-9 activity in Sl-1 cells undergoing apoptosis. Caspase-9 inhibitor could inhibit activation of pro-caspase-3, and the inhibition of the function of Apaf-1 with FSBA blocked apoptosis, hinting that Apaf-1 could be involved in Sl-1 cell apoptosis induced by AfMNPV. Taken together, these results strongly demonstrate that cytochrome c plays an important role in apoptotic signaling pathways in Lepidopteran insect cells.
Zhang, Dongjing; Lees, Rosemary Susan; Xi, Zhiyong; Gilles, Jeremie R. L.; Bourtzis, Kostas
2015-01-01
Due to the absence of a perfect method for mosquito sex separation, the combination of the sterile insect technique and the incompatible insect technique is now being considered as a potentially effective method to control Aedes albopictus. In this present study first we examine the minimum pupal irradiation dose required to induce complete sterility in Wolbachia triple-infected (HC), double-infected (GUA) and uninfected (GT) female Ae. albopictus. The HC line is a candidate for Ae. albopictus population suppression programmes, but due to the risk of population replacement which characterizes this triple infected line, the individuals to be released need to be additionally irradiated. After determining the minimum irradiation dose required for complete female sterility, we test whether sterilization is sufficient to prevent invasion of the triple infection from the HC females into double-infected (GUA) populations. Our results indicate that irradiated Ae. albopictus HC, GUA and GT strain females have decreased fecundity and egg hatch rate when irradiated, inversely proportional to the dose, and the complete sterilization of females can be acquired by pupal irradiation with doses above 28 Gy. PCR-based analysis of F1 and F2 progeny indicate that the irradiated HC females, cannot spread the new Wolbachia wPip strain into a small cage GUA population, released at a 1:5 ratio. Considering the above results, we conclude that irradiation can be used to reduce the risk of population replacement caused by an unintentional release of Wolbachia triple-infected Ae. albopictus HC strain females during male release for population suppression. PMID:26252474
Efficacy of Sameodes albiguttalis as a biocontrol of waterhyacinth. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Center, T.D.; Durden, W.C.; Corman, D.A.
1984-01-01
Sameodes albiguttalis (Warren) is a South American pyralid moth species which was released in Florida in 1977 for the biological control of waterhyacinth. After it was determined that populations of this insect had become established in the field, various efficacy studies were begun. The first of these began in September 1978 and, ultimately, data were collected at 15 sites from throughout Florida. The objectives of these studies were to determine (a) if S. albiguttalis would be persistent, (b) if it could be augmented if it were not persistent, and (c) if it had a significant impact upon waterhyacinth populations withinmore » the context of comparisons among other control agents and the plant's ability to recover from serious injury. Data indicate that S. albiguttalis will, under certain conditions, be an effective biological control of waterhyacinth. This will generally be only where the waterhyacinth population is in a predominantly colonizing mode. Sameodes albiguttalis, more than either of the other two waterhyacinth insects (Neochetina eichhorneae and N. bruchi), should fit comfortably into a management scheme. Its effectiveness may be maximized in a maintenance program where the waterhyacinth population is constantly perturbed and is always in a colonizing mode. Many possible management strategies exist in which this insect and herbicidal or mechanical control could be integrated and experimentation along these lines should be given a high future priority. 61 references, 109 figures, 4 tables.« less
Dong, Yong-Cheng; Wang, Zhi-Jian; Chen, Zhen-Zhong; Clarke, Anthony R.; Niu, Chang-Ying
2016-01-01
RNA interference (RNAi) is a genetic technique which has novel application for sustainable pest control. The Sterile Insect Technique (SIT) uses releases of mass-produced, sterile male insects to out-compete wild males for mates to reduce pest populations. RNAi sterilization of SIT males would have several advantages over radiation sterilization, but to achieve this appropriate target genes must first be identified and then targeted with interference technology. With this goal, eight spermatogenesis related candidate genes were cloned and tested for potential activity in Bactrocera dorsalis. The knockdown of candidate genes by oral delivery of dsRNAs did not influence the mating of male flies, but significantly affected the daily average number of eggs laid by females, and reduced egg hatching rate by 16–60%. RNAi negatively affected spermatozoa quantitatively and qualitatively. Following the mating of lola-/topi-/rac-/rho-/upd-/magu-silenced males, we recorded a significant decrease in number and length of spermatozoa in female spermatheca compared to gfp-silenced control group. In a greenhouse trial, the number of damaged oranges and B. dorsalis larvae were significantly reduced in a dsrho-treated group compared with the dsgfp group. This study provides strong evidence for the use RNAi in pest management, especially for the improvement of SIT against B. dorsalis and other species. PMID:27767174
Plant Defense against Insect Herbivores
Fürstenberg-Hägg, Joel; Zagrobelny, Mika; Bak, Søren
2013-01-01
Plants have been interacting with insects for several hundred million years, leading to complex defense approaches against various insect feeding strategies. Some defenses are constitutive while others are induced, although the insecticidal defense compound or protein classes are often similar. Insect herbivory induce several internal signals from the wounded tissues, including calcium ion fluxes, phosphorylation cascades and systemic- and jasmonate signaling. These are perceived in undamaged tissues, which thereafter reinforce their defense by producing different, mostly low molecular weight, defense compounds. These bioactive specialized plant defense compounds may repel or intoxicate insects, while defense proteins often interfere with their digestion. Volatiles are released upon herbivory to repel herbivores, attract predators or for communication between leaves or plants, and to induce defense responses. Plants also apply morphological features like waxes, trichomes and latices to make the feeding more difficult for the insects. Extrafloral nectar, food bodies and nesting or refuge sites are produced to accommodate and feed the predators of the herbivores. Meanwhile, herbivorous insects have adapted to resist plant defenses, and in some cases even sequester the compounds and reuse them in their own defense. Both plant defense and insect adaptation involve metabolic costs, so most plant-insect interactions reach a stand-off, where both host and herbivore survive although their development is suboptimal. PMID:23681010
Li, Xiaogang; Liu, Biao
2013-01-01
Transgenic insect-resistant cotton has been released into the environment for more than a decade in China to effectively control the cotton bollworm (Helicoverpa armigera) and other Lepidoptera. Because of concerns about undesirable ecological side-effects of transgenic crops, it is important to monitor the potential environmental impact of transgenic insect-resistant cotton after commercial release. Our 2-year study included 1 cotton field where non-transgenic cotton had been planted continuously and 2 other cotton fields where transgenic insect-resistant cotton had been planted for different lengths of time since 1997 and since 2002. In 2 consecutive years (2009 and 2010), we took soil samples from 3 cotton fields at 4 different growth stages (seedling, budding, boll-forming and boll-opening stages), collected soil nematodes from soil with the sugar flotation and centrifugation method and identified the soil nematodes to the genus level. The generic composition, individual densities and diversity indices of the soil nematodes did not differ significantly between the 2 transgenic cotton fields and the non-transgenic cotton field, but significant seasonal variation was found in the individual densities of the principal trophic groups and in the diversity indices of the nematodes in all 3 cotton fields. The study used a comparative perspective to monitor the impact of transgenic insect-resistant cotton grown in typical ‘real world’ conditions. The results of the study suggested that more than 10 years of cultivation of transgenic insect-resistant cotton had no significant effects–adverse or otherwise–on soil nematodes. This study provides a theoretical basis for ongoing environmental impact monitoring of transgenic plants. PMID:23613899
DOE Office of Scientific and Technical Information (OSTI.GOV)
Driver, Crystal J.; Strenge, Dennis L.; Su, Yin-Fong
2007-04-01
A methodology for quantifying population dynamics and food source value of insect fauna in areas subjected to fog oil smoke was developed. Our approach employed an environmentally controlled re-circulating wind tunnel outfitted with a high-heat vaporization and re-condensation fog oil generator that has been shown to produce aerosols of comparable chemistry and droplet-size distribution as those of field releases of the smoke. This method provides reproducible exposures of insects under realistic climatic and environmental conditions to fog oil aerosols that duplicate chemical and droplet-size characteristics of field releases of the smoke. The responses measured take into account reduction in foodmore » sources due to death and to changes in availability of relevant life stages of insects that form the prey base for the listed Threatened and Endangered Species. The influence of key environmental factors, wind speed and canopy structure on these responses were characterized. Data generated using this method was used to develop response functions related to particle size, concentration, wind speed, and canopy structure that will allow military personnel to assess and manage impacts to endangered species from fog oil smoke used in military training.« less
Junglen, Sandra; Korries, Marvin; Grasse, Wolfgang; Wieseler, Janett; Kopp, Anne; Hermanns, Kyra; León-Juárez, Moises; Drosten, Christian; Kümmerer, Beate Mareike
2017-01-01
The genus Flavivirus contains emerging arthropod-borne viruses (arboviruses) infecting vertebrates, as well as insect-specific viruses (ISVs) (i.e., viruses whose host range is restricted to insects). ISVs are evolutionary precursors to arboviruses. Knowledge of the nature of the ISV infection block in vertebrates could identify functions necessary for the expansion of the host range toward vertebrates. Mapping of host restrictions by complementation of ISV and arbovirus genome functions could generate knowledge critical to predicting arbovirus emergence. Here we isolated a novel flavivirus, termed Niénokoué virus (NIEV), from mosquitoes sampled in Côte d'Ivoire. NIEV groups with insect-specific flaviviruses (ISFs) in phylogeny and grows in insect cells but not in vertebrate cells. We generated an infectious NIEV cDNA clone and a NIEV reporter replicon to study growth restrictions of NIEV in comparison to yellow fever virus (YFV), for which the same tools are available. Efficient RNA replication of the NIEV reporter replicon was observed in insect cells but not in vertebrate cells. Initial translation of the input replicon RNA in vertebrate cells was functional, but RNA replication did not occur. Chimeric YFV carrying the envelope proteins of NIEV was recovered via electroporation in C6/36 insect cells but did not infect vertebrate cells, indicating a block at the level of entry. Since the YF/NIEV chimera readily produced infectious particles in insect cells but not in vertebrate cells despite efficient RNA replication, restriction is also determined at the level of assembly/release. Taking the results together, the ability of ISF to infect vertebrates is blocked at several levels, including attachment/entry and RNA replication as well as assembly/release. IMPORTANCE Most viruses of the genus Flavivirus , e.g., YFV and dengue virus, are mosquito borne and transmitted to vertebrates during blood feeding of mosquitoes. Within the last decade, an increasing number of viruses with a host range exclusively restricted to insects in close relationship to the vertebrate-pathogenic flaviviruses were discovered in mosquitoes. To identify barriers that could block the arboviral vertebrate tropism, we set out to identify the steps at which the ISF replication cycle fails in vertebrates. Our studies revealed blocks at several levels, suggesting that flavivirus host range expansion from insects to vertebrates was a complex process that involved overcoming multiple barriers.
Junglen, Sandra; Korries, Marvin; Grasse, Wolfgang; Wieseler, Janett; Kopp, Anne; Hermanns, Kyra; León-Juárez, Moises; Drosten, Christian
2017-01-01
ABSTRACT The genus Flavivirus contains emerging arthropod-borne viruses (arboviruses) infecting vertebrates, as well as insect-specific viruses (ISVs) (i.e., viruses whose host range is restricted to insects). ISVs are evolutionary precursors to arboviruses. Knowledge of the nature of the ISV infection block in vertebrates could identify functions necessary for the expansion of the host range toward vertebrates. Mapping of host restrictions by complementation of ISV and arbovirus genome functions could generate knowledge critical to predicting arbovirus emergence. Here we isolated a novel flavivirus, termed Niénokoué virus (NIEV), from mosquitoes sampled in Côte d’Ivoire. NIEV groups with insect-specific flaviviruses (ISFs) in phylogeny and grows in insect cells but not in vertebrate cells. We generated an infectious NIEV cDNA clone and a NIEV reporter replicon to study growth restrictions of NIEV in comparison to yellow fever virus (YFV), for which the same tools are available. Efficient RNA replication of the NIEV reporter replicon was observed in insect cells but not in vertebrate cells. Initial translation of the input replicon RNA in vertebrate cells was functional, but RNA replication did not occur. Chimeric YFV carrying the envelope proteins of NIEV was recovered via electroporation in C6/36 insect cells but did not infect vertebrate cells, indicating a block at the level of entry. Since the YF/NIEV chimera readily produced infectious particles in insect cells but not in vertebrate cells despite efficient RNA replication, restriction is also determined at the level of assembly/release. Taking the results together, the ability of ISF to infect vertebrates is blocked at several levels, including attachment/entry and RNA replication as well as assembly/release. IMPORTANCE Most viruses of the genus Flavivirus, e.g., YFV and dengue virus, are mosquito borne and transmitted to vertebrates during blood feeding of mosquitoes. Within the last decade, an increasing number of viruses with a host range exclusively restricted to insects in close relationship to the vertebrate-pathogenic flaviviruses were discovered in mosquitoes. To identify barriers that could block the arboviral vertebrate tropism, we set out to identify the steps at which the ISF replication cycle fails in vertebrates. Our studies revealed blocks at several levels, suggesting that flavivirus host range expansion from insects to vertebrates was a complex process that involved overcoming multiple barriers. PMID:28101536
USDA-ARS?s Scientific Manuscript database
Empirical studies on the ecological causes of agricultural pest outbreaks have focused primarily on two biotic factors—release from natural enemies and changes in host plant quality. Release from competition, on the other hand, has been theorized as a potential cause but never tested. With the exp...
Radar, Insect Population Ecology, and Pest Management
NASA Technical Reports Server (NTRS)
Vaughn, C. R. (Editor); Wolf, W. (Editor); Klassen, W. (Editor)
1979-01-01
Discussions included: (1) the potential role of radar in insect ecology studies and pest management; (2) the potential role of radar in correlating atmospheric phenomena with insect movement; (3) the present and future radar systems; (4) program objectives required to adapt radar to insect ecology studies and pest management; and (5) the specific action items to achieve the objectives.
Cooking and disgust sensitivity influence preference for attending insect-based food events.
Hamerman, Eric J
2016-01-01
Insects are energy-efficient and sustainable sources of animal protein in a world with insufficient food resources to feed an ever-increasing population. However, much of the western world refuses to eat insects because they perceive them as disgusting. This research finds that both animal reminder disgust and core disgust reduced people's willingness to attend a program called "Bug Appétit" in which insects were served as food. Additionally, people who were low in sensitivity to animal reminder disgust were more willing to attend this program after having been primed to think about cooking. Cooking is a process by which raw ingredients are transformed into finished products, reducing the "animalness" of meat products that renders them disgusting. Sensitivity to core disgust did not interact with cooking to influence willingness to attend the program. While prior research has emphasized that direct education campaigns about the benefits of entomophagy (the consumption of insects) can increase willingness to attend events at which insect-based food is served, this is the first demonstration that indirect priming can have a similar effect among a subset of the population. Copyright © 2015 Elsevier Ltd. All rights reserved.
Burton, Lisa J; Cheng, Nadia; Bush, John W M
2014-12-01
We describe the inspiration, development, and deployment of a novel cocktail device modeled after a class of water-walking insects. Semi-aquatic insects like Microvelia and Velia evade predators by releasing a surfactant that quickly propels them across the water. We exploit an analogous propulsion mechanism in the design of an edible cocktail boat. We discuss how gradients in surface tension lead to motion across the water's surface, and detail the design considerations associated with the insect-inspired cocktail boat. © The Author 2014. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
Zhou, Jun; Wang, Zhangwei; Sun, Ting; Zhang, Huan; Zhang, Xiaoshan
2016-05-01
Forests are considered a pool of mercury in the global mercury cycle. However, few studies have investigated the distribution of mercury in the forested systems in China. Tieshanping forest catchment in southwest China was impacted by mercury emissions from industrial activities and coal combustions. Our work studied mercury content in atmosphere, soil, vegetation and insect with a view to estimating the potential for mercury release during forest fires. Results of the present study showed that total gaseous mercury (TGM) was highly elevated and the annual mean concentration was 3.51 ± 1.39 ng m(-2). Of the vegetation tissues, the mercury concentration follows the order of leaf/needle > root > bark > branch > bole wood for each species. Total ecosystem mercury pool was 103.5 mg m(-2) and about 99.4% of the mercury resides in soil layers (0-40 cm). The remaining 0.6% (0.50 mg m(-2)) of mercury was stored in biomass. The large mercury stocks in the forest ecosystem pose a serious threat for large pluses to the atmospheric mercury during potential wildfires and additional ecological stress to forest insect: dung beetles, cicada and longicorn, with mercury concentration of 1983 ± 446, 49 ± 38 and 7 ± 5 ng g(-1), respectively. Hence, the results obtained in the present study has implications for global estimates of mercury storage in forests, risks to forest insect and potential release to the atmosphere during wildfires. Copyright © 2016 Elsevier Ltd. All rights reserved.
A Compliant Mechanism Synthesis Theory for Fostering Innovation of Micro Air Vehicles
2016-04-01
ASME 2015 International Design Engineering Technical Conferences. Boston, MA. (2015): DETC201547271. 9. She, Y., Su, H.- J ., and Hurd, C ., " Shape ...Distribution approved for public release. [7] Klaptocz, A., Nicoud, J .-D., Floreano, D., Zufferey, J .- C ., Srinivasan, M., and Ellington, C ., 2010...inspired by insect flight”. In Flying Insects and Robots, D. Floreano, J .- C . Zufferey, M. V. Srinivasan, and C . Ellington, eds. Springer Berlin Heidelberg
2014-07-01
an important migratory habitat for many birds , the same habitats are nearly devoid of specialized bird species in North America, particularly of...noctuids on P. australis performance in Europe may not be present in North America. However, various North American bird species are increasingly being...and (5) assess the extent of hybridization between native and introduced genotypes. All selected insect species are stem miners that overwinter as
Social insects: from selfish genes to self organisation and beyond.
Boomsma, Jacobus J; Franks, Nigel R
2006-06-01
Selfish gene and self-organisation approaches have revolutionised the study of social insects and have provided unparalleled insights into the highly sophisticated nature of insect social evolution. Here, we briefly review the core programs and interfaces with communication and recognition studies that characterise these fields today, and offer an interdisciplinary future perspective for the study of social insect evolutionary biology.
Pascacio-Villafán, Carlos; Birke, Andrea; Williams, Trevor; Aluja, Martín
2017-01-01
We modeled the cost-effectiveness of rearing Anastrepha ludens, a major fruit fly pest currently mass reared for sterilization and release in pest control programs implementing the sterile insect technique (SIT). An optimization model was generated by combining response surface models of artificial diet cost savings with models of A. ludens pupation, pupal weight, larval development time and adult emergence as a function of mixtures of yeast, a costly ingredient, with corn flour and corncob fractions in the diet. Our model revealed several yeast-reduced mixtures that could be used to prepare diets that were considerably cheaper than a standard diet used for mass rearing. Models predicted a similar production of insects (pupation and adult emergence), with statistically similar pupal weights and larval development times between yeast-reduced diets and the standard mass rearing diet formulation. Annual savings from using the modified diets could be up to 5.9% of the annual cost of yeast, corn flour and corncob fractions used in the standard diet, representing a potential saving of US $27.45 per ton of diet (US $47,496 in the case of the mean annual production of 1,730.29 tons of artificial diet in the Moscafrut mass rearing facility at Metapa, Chiapas, Mexico). Implementation of the yeast-reduced diet on an experimental scale at mass rearing facilities is still required to confirm the suitability of new mixtures of artificial diet for rearing A. ludens for use in SIT. This should include the examination of critical quality control parameters of flies such as adult flight ability, starvation resistance and male sexual competitiveness across various generations. The method used here could be useful for improving the cost-effectiveness of invertebrate or vertebrate mass rearing diets worldwide.
Birke, Andrea; Williams, Trevor; Aluja, Martín
2017-01-01
We modeled the cost-effectiveness of rearing Anastrepha ludens, a major fruit fly pest currently mass reared for sterilization and release in pest control programs implementing the sterile insect technique (SIT). An optimization model was generated by combining response surface models of artificial diet cost savings with models of A. ludens pupation, pupal weight, larval development time and adult emergence as a function of mixtures of yeast, a costly ingredient, with corn flour and corncob fractions in the diet. Our model revealed several yeast-reduced mixtures that could be used to prepare diets that were considerably cheaper than a standard diet used for mass rearing. Models predicted a similar production of insects (pupation and adult emergence), with statistically similar pupal weights and larval development times between yeast-reduced diets and the standard mass rearing diet formulation. Annual savings from using the modified diets could be up to 5.9% of the annual cost of yeast, corn flour and corncob fractions used in the standard diet, representing a potential saving of US $27.45 per ton of diet (US $47,496 in the case of the mean annual production of 1,730.29 tons of artificial diet in the Moscafrut mass rearing facility at Metapa, Chiapas, Mexico). Implementation of the yeast-reduced diet on an experimental scale at mass rearing facilities is still required to confirm the suitability of new mixtures of artificial diet for rearing A. ludens for use in SIT. This should include the examination of critical quality control parameters of flies such as adult flight ability, starvation resistance and male sexual competitiveness across various generations. The method used here could be useful for improving the cost-effectiveness of invertebrate or vertebrate mass rearing diets worldwide. PMID:28257496
Yang, Zhi; Jiang, Hongyan; Zhao, Xin; Lu, Zhuoyue; Luo, Zhibing; Li, Xuebing; Zhao, Jing; Zhang, Yongjun
2017-02-01
The insect fungal pathogen Beauveria bassiana produces a number of distinct cell types that include aerial conidia, blastospores and haemolymph-derived cells, termed hyphal bodies, to adapt varied environment niches and within the host insect. These cells display distinct biochemical properties and surface structures, and a highly ordered outermost brush-like structure uniquely present on hyphal bodies, but not on any in vitro cells. Here, we found that the outermost structure on the hyphal bodies mainly consisted of proteins associated to structural wall components in that most of it could be removed by dithiothreitol (DTT) or proteinase K. DTT-treatment also caused delayed germination, decreased tolerance to ultraviolet irradiation and virulence of conidia or blastospores, with decreased adherence and alternated carbohydrate epitopes, suggesting involvement in fungal development, stress responses and virulence. To characterize these cell surface molecules, proteins were released from the living cells using DTT, and identified and quantitated using label-free quantitative mass spectrometry. Thereafter, a series of bioinformatics programs were used to predict cell surface-associated proteins (CSAPs), and 96, 166 and 54 CSAPs were predicted from the identified protein pools of conidia, blastospores and hyphal bodies, respectively, which were involved in utilization of carbohydrate, nitrogen, and lipid, detoxification, pathogen-host interaction, and likely other cellular processes. Thirteen, sixty-nine and six CSAPs were exclusive in conidia, blastospores and hyphal bodies, respectively, which were verified by eGFP-tagged proteins at their N-terminus. Our data provide a crucial cue to understand mechanism of B. bassiana to adapt to varied environment and interaction with insect host. Copyright © 2016 Elsevier Inc. All rights reserved.
1981-02-11
GROUND, MD 21010 TOPICAL HAZARD EVALUATION PROGRAM OF CANDIDATE INSECT REPELLENT AI 3- 20816 -aUS DEPARTMENT OF AGRICULTURE PROPRIETARY COMPOUND STUDY NO...irritation A13- 20816 -a Photochemical irritation Topical Hazard Evaluation Sensitization Candidate repellent ALD Skin irritation 20. ABSTRACT (Continue an...reverse e e if necessary and identify by block number) A hazard evaluation of candidate insect repellent A13- 20816 -a was performed by means of laboratory
Alvarez-Twose, Iván; Zanotti, Roberta; González-de-Olano, David; Bonadonna, Patrizia; Vega, Arantza; Matito, Almudena; Sánchez-Muñoz, Laura; Morgado, José Mário; Perbellini, Omar; García-Montero, Andrés; De Matteis, Giovanna; Teodósio, Cristina; Rossini, Maurizio; Jara-Acevedo, María; Schena, Donatella; Mayado, Andrea; Zamò, Alberto; Mollejo, Manuela; Sánchez-López, Paula; Cabañes, Nieves; Orfao, Alberto; Escribano, Luis
2014-02-01
Indolent systemic mastocytosis (ISM) without skin lesions (ISMs(-)) shows a higher prevalence in males, lower serum baseline tryptase levels, and KIT mutation more frequently restricted to bone marrow (BM) mast cells (MCs) than ISM with skin lesions (ISMs(+)). Interestingly, in almost one-half of ISMs(-) patients, MC-mediator release episodes are triggered exclusively by insects. We aimed to determine the clinical and laboratory features of ISMs(-) associated with insect-induced anaphylaxis (insectISMs(-)) versus other patients with ISM. A total of 335 patients presenting with MC activation syndrome, including 143 insectISMs(-), 72 ISMs(-) triggered by other factors (otherISMs(-)), 56 ISMs(+), and 64 nonclonal MC activation syndrome, were studied. Compared with otherISMs(-) and ISMs(+) patients, insectISMs(-) cases showed marked male predominance (78% vs 53% and 46%; P < .001), a distinct pattern of MC-related symptoms, and significantly lower median serum baseline tryptase levels (22.4 vs 28.7 and 45.8 μg/L; P ≤ .009). Moreover, insectISMs(-) less frequently presented BM MC aggregates (46% vs 70% and 81%; P ≤ .001), and they systematically showed MC-restricted KIT mutation. ISMs(-) patients with anaphylaxis triggered exclusively by insects display clinical and laboratory features that are significantly different from other ISM cases, including other ISMs(-) and ISMs(+) patients, suggesting that they represent a unique subgroup of ISM with a particularly low BM MC burden in the absence of adverse prognostic factors. Copyright © 2013 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-18
.... ARS Biological Control Research The USDA Agricultural Research Service (ARS) is conducting research... agreement, CBP plans to provide funding and other support to ARS through fiscal years 2012 and 2013 for... take the form of agreements regarding the locations where ARS will release the Arundo wasp and Arundo...
Liu, Qing-Song; Li, Yun-He; Chen, Xiu-Ping; Peng, Yu-Fa
2014-08-01
Semiochemicals released by plants or insects play an important role in the communication among plants, phytophagous insects and their natural enemies. They thus form a chemical information network which regulates intra- and inter-specific behaviors and sustains the composition and structure of plant and insect communities. The application of insect-resistant genetically modified (IRGM) crops may affect the chemical communication within and among the tritrophic levels, and thus cause disturbances to the biotic community structure and the stability of the farmland ecosystem. This has raised concerns about the environmental safety of IRGM crops and triggered research worldwide. In the current article we provided a brief summary of the chemical communication among plants, herbivores and natural enemies; analyzed the potential of IRGM crops to affect the chemical communication between plants and arthropods and the related mechanisms; and discussed the current research progress and the future prospects in this field. We hope that this will promote the research in this field by Chinese scientists and increase our understanding of the potential effects of growing of IRGM crops on the arthropod community structure.
Not all GMOs are crop plants: non-plant GMO applications in agriculture.
Hokanson, K E; Dawson, W O; Handler, A M; Schetelig, M F; St Leger, R J
2014-12-01
Since tools of modern biotechnology have become available, the most commonly applied and often discussed genetically modified organisms are genetically modified crop plants, although genetic engineering is also being used successfully in organisms other than plants, including bacteria, fungi, insects, and viruses. Many of these organisms, as with crop plants, are being engineered for applications in agriculture, to control plant insect pests or diseases. This paper reviews the genetically modified non-plant organisms that have been the subject of permit approvals for environmental release by the United States Department of Agriculture/Animal and Plant Health Inspection Service since the US began regulating genetically modified organisms. This is an indication of the breadth and progress of research in the area of non-plant genetically modified organisms. This review includes three examples of promising research on non-plant genetically modified organisms for application in agriculture: (1) insects for insect pest control using improved vector systems; (2) fungal pathogens of insects to control insect pests; and (3) virus for use as transient-expression vectors for disease control in plants.
De Oliveira, E F; Silva, E A; Casaril, A E; Fernandes, C E S; Paranhos Filho, A C; Gamarra, R M; Ribeiro, A A; Brazil, R P; Oliveira, A G
2013-03-01
The study of some of the behavioral aspects of the main vector of Leishmania infantum chagasi Cunha & Chagas in the Americas, Lutzomyia longipalpis (Lutz & Neiva), such as dispersion, population size, and vector survival rates, is important for the elucidation of the mechanisms of visceral leishmaniasis transmission. These parameters were studied by means of capture-mark-release-recapture experiments in an urban area of Campo Grande municipality, an endemic area of visceral leishmaniasis, situated in Mato Grosso do Sul state, Brazil. Six capture-mark-release-recapture experiments were undertaken between November 2009 and November 2010 and once in January 2012 with a view to assessing the population size and survival rate of Lu. longipalpis. The insects were released in a peridomicile surrounded by 13 residences. The recaptures were undertaken with automatic light traps for four consecutive weeks after release in the surrounding area. In total, 3,354 sand flies were captured, marked, and released. The overall recapture rate during the capture-mark-release-recapture experiments was 4.23%, of which 92.45% were recaptured at the release site, indicating limited dispersal. The greatest distance recorded from the release site was 165 m for males and 241 m for females. The male daily survival rate, calculated on the basis of regressions from the numbers of marked recaptured insects during the 15 successive days after release was 0.897. The estimated male population size measured by the Lincoln Index was 10,947.127. Though Lu. longipalpis presented a limited dispersion the physical barriers typical of urban environments did not prevent the sand flies from flying long distances.
Unconventional mechanisms control cyclic respiratory gas release in flying Drosophila.
Lehmann, Fritz-Olaf; Heymann, Nicole
2005-10-01
The high power output of flight muscles places special demands on the respiratory gas exchange system in insects. In small insects, respiration relies on diffusion, and for elevated locomotor performance such as flight, instantaneous gas exchange rates typically co-vary with the animal's metabolic activity. By contrast, under certain conditions, instantaneous release rate of carbon dioxide from the fruit fly Drosophila flying in a virtual-reality flight arena may oscillate distinctly at low frequency (0.37+/-0.055 Hz), even though flight muscle mechanical power output requires constant metabolic activity. Cross-correlation analysis suggests that this uncoupling between respiratory and metabolic rate is not driven by conventional types of convective flow reinforcement such as abdominal pumping, but might result from two unusual mechanisms for tracheal breathing. Simplified analytical modeling of diffusive tracheal gas exchange suggests that cyclic release patterns in the insect occur as a consequence of the stochastically synchronized control of spiracle opening area by the four large thoracic spiracles. Alternatively, in-flight motion analysis of the abdomen and proboscis using infra-red video imaging suggests utilization of the proboscis extension reflex (PER) for tracheal convection. Although the respiratory benefit of synchronized spiracle opening activity in the fruit fly is unclear, proboscis-induced tracheal convection might potentially help to balance the local oxygen supply between different body compartments of the flying animal.
[Aquatic insects and water quality in Peñas Blancas watershed and reservoir].
Mora, Meyer Guevara
2011-06-01
The aquatic insects have been used to evaluate water quality of aquatic environments. The population of aquatic insects and the water quality of the area were characterized according to the natural and human alterations present in the study site. During the monthly-survey, pH, DO, temperature, water level, DBO, PO4 and NO3 were measured. Biological indexes (abundance, species richness and the BMWP-CR) were used to evaluate the water quality. No relation between environmental and aquatic insects was detected. Temporal and spatial differences attributed to the flow events (temporal) and the presence of Peñas Blancas reservoir (spatial). In the future, the investigations in Peñas Blancas watershed need to be focused on determining the real influence of the flows, sediment release and the possible water quality degradation because of agriculture activities.
A tool for developing an automatic insect identification system based on wing outlines
Yang, He-Ping; Ma, Chun-Sen; Wen, Hui; Zhan, Qing-Bin; Wang, Xin-Li
2015-01-01
For some insect groups, wing outline is an important character for species identification. We have constructed a program as the integral part of an automated system to identify insects based on wing outlines (DAIIS). This program includes two main functions: (1) outline digitization and Elliptic Fourier transformation and (2) classifier model training by pattern recognition of support vector machines and model validation. To demonstrate the utility of this program, a sample of 120 owlflies (Neuroptera: Ascalaphidae) was split into training and validation sets. After training, the sample was sorted into seven species using this tool. In five repeated experiments, the mean accuracy for identification of each species ranged from 90% to 98%. The accuracy increased to 99% when the samples were first divided into two groups based on features of their compound eyes. DAIIS can therefore be a useful tool for developing a system of automated insect identification. PMID:26251292
Quality management systems for fruit fly (Diptera: Tephritidae) sterile insect technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caceres, C.; Robinson, A.; McInnis, D.
The papers presented in this issue are focused on developing and validating procedures to improve the overall quality of sterile fruit flies for use in area-wide integrated pest management (AW-IPM) programs with a sterile insect technique (SIT) component. The group was coordinated and partially funded by the Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria, under a five-year Coordinated Research Project (CRP) on 'Quality Assurance in Mass-Reared and Released Fruit Flies for Use in SIT Programmes'. Participants in the CRP from 16 countries came from both basic and applied fields of expertisemore » to ensure that appropriate and relevant procedures were developed. A variety of studies was undertaken to develop protocols to assess strain compatibility and to improve colonization procedures and strain management. Specific studies addressed issues related to insect nutrition, irradiation protocols, field dispersal and survival, field cage behavior assessments, and enhancement of mating competitiveness. The main objective was to increase the efficiency of operational fruit fly programs using sterile insects and to reduce their cost. Many of the protocols developed or improved during the CRP will be incorporated into the international quality control manual for sterile tephritid fruit flies, standardizing key components of the production, sterilization, shipment, handling, and release of sterile insects. (author) [Spanish] Los articulos presentados en este numero se enfocan en el desarrollo y la validacion de procedimientos para mejorar la calidad total de moscas de las frutas esteriles para su uso en programas de manejo integrado de plagas en donde la tecnica del insecto esteril (TIE) es uno de los componentes clave. El grupo fue coordinado y parcialmente financiado por la Division Conjunta de Tecnicas Nucleares para la Alimentacion y la Agricultura de la FAO/OIEA, Viena, Austria, por un periodo de cinco anos bajo el proyecto de Investigacion Coordinada (PIC) sobre 'el Aseguramiento de la Calidad de Moscas de las Frutas Criadas y Liberadas para su Uso en Programas de TIE'. Los participantes en el PIC representan 16 paises con experiencia en campos de investigacion basica y aplicada. Para asegurar que los procedimientos desarrollados fueran apropiados y pertinentes, se realizaron una variedad de estudios para el desarrollo de protocolos para evaluar la compatibilidad y para mejorar los procedimientos de colonizacion y manejo de cepas salvajes. Estudios especificos trataron asuntos relacionados con la nutricion de insectos, los protocolos de irradiacion, la dispersion y supervivencia en el campo, evaluacion del comportamiento en jaulas de campo, y el mejoramiento de la competitividad sexual. Los objetivos fundamentales fueron el aumentar la eficiencia y reducir los costos de los programas operacionales de control de moscas de las frutas donde TIE es utilizada. Muchos de los protocolos desarrollados o mejorados durante el PIC seran incorporados en el Manual Internacional de Control de Calidad para Moscas Estriles de la familia Tephritidae, para estandarizar componentes claves como la produccion, esterilizacion, envio, manejo y liberacion de insectos esteriles. (author)« less
Endocrine and physiological changes in Atlantic salmon smolts following hatchery release
McCormick, S.D.; O'Dea, M. F.; Moeckel, Amy M.; Bjornsson, Bjorn Thrandur
2003-01-01
Physiological and endocrine changes during smolt development were examined in Atlantic salmon (Salmo salar) reared and released as part of a restoration program on the Connecticut River and its tributaries. Fish were reared in a cold water hatchery in Pittsford, VT and released into the Farmington River, CT (a major tributary of the Connecticut River) or into 'imprint ponds' fed by the Farmington River. Smelts were recaptured 10-20 days after their release at a smolt bypass facility 16 km downstream of their release site. Fish sampled at the hatchery from January to May had only moderate smolt development based on salinity tolerance, gill Na+,K+-ATPase activity and hormone profiles. In contrast, smolts released into the river or imprint ponds had higher salinity tolerance, gill Na+,K+-ATPase activity, plasma growth hormone, insulin-like growth factor I (IGF-I) and thyroxine than smolts that remained in the hatchery. These physiological and endocrine changes were nearly identical to those of smolts that had been released into the river 2 years earlier as fry and were captured as active migrants at the same bypass facility (stream-reared smolts). The stomach contents as a percent of body weight (primarily aquatic insects) varied greatly among individuals and were greater in hatchery-reared fish than stream-reared smolts. Results from the rearing of hatchery fish at temperatures similar to that of the Farmington River indicate that some of the physiological changes may be due to increased temperature after release, though other factors may also be involved. The results indicate that substantial physiological smolt development can occur after hatchery release, coincident with downstream migration. ?? 2003 Published by Elsevier Science B.V.
Nakaoka, Takayoshi; Iga, Masatoshi; Yamada, Tetsuya; Koujima, Ikumi; Takeshima, Mika; Zhou, Xiangying; Suzuki, Yutaka; Ogihara, Mari H.; Kataoka, Hiroshi
2017-01-01
Ecdysteroids are steroid hormones that induce molting and determine developmental timing in arthropods. In insect larva, the prothoracic gland (PG) is a major organ for ecdysone synthesis and release. Released ecdysone is converted into the active form, 20-hydroxyecdysone (20E) in the peripheral tissues. All processes from ecdysone synthesis and release from the PG to its conversion to 20E are called ecdysteroidogenesis and are under the regulation of numerous factors expressed in the PG and peripheral tissues. Classical genetic approaches and recent transcriptomic screening in the PG identified several genes responsible for ecdysone synthesis and release, whereas the regulatory mechanism remains largely unknown. We analyzed RNA-seq data of the silkworm Bombyx mori PG and employed the fruit fly Drosophila melanogaster GAL4/UAS binary RNAi system to comprehensively screen for genes involved in ecdysone synthesis and/or release. We found that the genes encoding δ-aminolevulinic acid synthase (CG3017/alas) and putative NAD kinase (CG33156) were highly expressed in the PG of both B. mori and D. melanogaster. Neither alas nor CG33156 RNAi-induced larvae could enter into the pupal stage, and they had a lower abundance of the active form ecdysteroids in their prolonged larval stage. These results demonstrated that alas and CG33156 are indispensable for ecdysteroidogenesis. PMID:28257485
Plants and insect eggs: how do they affect each other?
Hilker, Monika; Meiners, Torsten
2011-09-01
Plant-insect interactions are not just influenced by interactions between plants and the actively feeding stages, but also by the close relationships between plants and insect eggs. Here, we review both effects of plants on insect eggs and, vice versa, effects of eggs on plants. We consider the influence of plants on the production of insect eggs and address the role of phytochemicals for the biosynthesis and release of insect sex pheromones, as well as for insect fecundity. Effects of plants on insect oviposition by contact and olfactory plant cues are summarised. In addition, we consider how the leaf boundary layer influences both insect egg deposition behaviour and development of the embryo inside the egg. The effects of eggs on plants involve egg-induced changes of photosynthetic activity and of the plant's secondary metabolism. Except for gall-inducing insects, egg-induced changes of phytochemistry were so far found to be detrimental to the eggs. Egg deposition can induce hypersensitive-like plant response, formation of neoplasms or production of ovicidal plant substances; these plant responses directly harm the eggs. In addition, egg deposition can induce a change of the plant's odour and leaf surface chemistry which serve indirect plant defence with the help of antagonists of the insect eggs. These egg-induced changes lead to attraction of egg parasitoids and their arrestance on a leaf, respectively. Finally, we summarise knowledge of the elicitors of egg-induced plant changes and address egg-induced effects on the plant's transcriptional pattern. Copyright © 2011 Elsevier Ltd. All rights reserved.
Pollination by brood-site deception.
Urru, Isabella; Stensmyr, Marcus C; Hansson, Bill S
2011-09-01
Pollination is often regarded as a mutualistic relationship between flowering plants and insects. In such a relationship, both partners gain a fitness benefit as a result of their interaction. The flower gets pollinated and the insect typically gets a food-related reward. However, flower-insect communication is not always a mutualistic system, as some flowers emit deceitful signals. Insects are thus fooled by irresistible stimuli and pollination is accomplished. Such deception requires very fine tuning, as insects in their typically short life span, try to find mating/feeding breeding sites as efficiently as possible, and following deceitful signals thus is both costly and time-consuming. Deceptive flowers have thus evolved the ability to emit signals that trigger obligate innate or learned responses in the targeted insects. The behavior, and thus the signals, exploited are typically involved in reproduction, from attracting pheromones to brood/food-site cues. Chemical mimicry is one of the main modalities through which flowers trick their pollen vectors, as olfaction plays a pivotal role in insect-insect and insect-plant interactions. Here we focus on floral odors that specifically mimic an oviposition substrate, i.e., brood-site mimicry. The phenomenon is wide spread across unrelated plant lineages of Angiosperm, Splachnaceae and Phallaceae. Targeted insects are mainly beetles and flies, and flowers accordingly often emit, to the human nose, highly powerful and fetid smells that are conversely extremely attractive to the duped insects. Brood-site deceptive plants often display highly elaborate flowers and have evolved a trap-release mechanism. Chemical cues often act in unison with other sensory cues to refine the imitation. Copyright © 2011 Elsevier Ltd. All rights reserved.
Cerda, H; Mori, K; Nakayama, T; Jaffe, K
1998-01-01
Cosmopolites sordidus is an important pest on banana plantations worldwide. The chemistry of the aggregation pheromone of this insect has been recently resolved and here we present the first evidence from field trails that sordidin, a compound from the male released aggregation pheromone, attracts significant number of weevils only if host plant odors are also present. Sordidin attracts few insects when it is presented without the host plant tissue. However, the attractiveness of host plant tissue increases more than tenfold when it is presented simultaneously with sordidin in field traps. We confirm experimentally that sordidin may be used as part of a system for mass trapping and monitoring this insect.
Military Infectious Diseases Update on Vaccine Development
2011-01-24
Research Program (MIDRP) Insect Vector ControlDiagnostics Prevention Treatment Infectious diseases adversely impact military operations. Vaccines...appropriate treatment and aids commanders in the field. Most militarily relevant infectious diseases are transmitted by biting insects and other...based Insect Repellent (1946) Vaccines Protectants Antiparasitic Drugs Research Effort Advanced Development Fielded Products Malaria Rapid
Khan, Mohammed Abul Monjur; Manoukis, Nicholas C; Osborne, Terry; Barchia, Idris M; Gurr, Geoff M; Reynolds, Olivia L
2017-10-17
Queensland fruit fly, Bactrocera tryoni (Froggatt), is the most significant pest of Australia's $9 billion horticulture industry. The sterile insect technique (SIT) and cue-lure (a synthetic analogue of raspberry ketone (RK))-based male annihilation technique (MAT) are two of the most effective management tools against this pest. However, combining these two approaches is considered incompatible as MAT kills sterile and 'wild' males indiscriminately. In the present study we tested the effect of pre-release feeding of B. tryoni on RK on their post-release survival and response to MAT in field cages and in a commercial orchard. In both settings, survival was higher for RK supplemented adults compared to control (i.e. RK denied) adults. A lower number of RK supplemented sterile males were recaptured in MAT baited traps in both the field cages and orchard trials compared to RK denied sterile males. The advantage of this novel "male replacement" approach (relatively selective mortality of wild males at lure-baited traps while simultaneously releasing sterile males) is increasing the ratio of sterile to wild males in the field population, with potential for reducing the number of sterile males to be released.
Insecticide Resistance Management
2013-01-01
been a side effect of insect vector control programs since 1914, and insect disease vectors in over 45 countries are resistant to at least one...the CDC and WHO bioassays can be performed on various insects , the remainder of the guide will focus specifically on how to detect resistance in...mosquito vector populations. For a description of how to develop a bioassay for resistance testing in other groups of insects , refer to the following
Combining tactics to exploit allee effects for eradication of alien insect populations
David Maxwell Suckling; Patrick C. Tobin; Deborah G. McCullough; Daniel A. Herms
2012-01-01
Invasive species increasingly threaten ecosystems, food production, and human welfare worldwide. Hundreds of eradication programs have targeted a wide range of nonnative insect species to mitigate the economic and ecological impacts of biological invasions. Many such programs used multiple tactics to achieve this goal, but interactions between tactics have received...
Identification of Wolbachia Strains in Mosquito Disease Vectors
Osei-Poku, Jewelna; Han, Calvin; Mbogo, Charles M.; Jiggins, Francis M.
2012-01-01
Wolbachia bacteria are common endosymbionts of insects, and some strains are known to protect their hosts against RNA viruses and other parasites. This has led to the suggestion that releasing Wolbachia-infected mosquitoes could prevent the transmission of arboviruses and other human parasites. We have identified Wolbachia in Kenyan populations of the yellow fever vector Aedes bromeliae and its relative Aedes metallicus, and in Mansonia uniformis and Mansonia africana, which are vectors of lymphatic filariasis. These Wolbachia strains cluster together on the bacterial phylogeny, and belong to bacterial clades that have recombined with other unrelated strains. These new Wolbachia strains may be affecting disease transmission rates of infected mosquito species, and could be transferred into other mosquito vectors as part of control programs. PMID:23185484
Mann, Rajinder S.; Ali, Jared G.; Hermann, Sara L.; Tiwari, Siddharth; Pelz-Stelinski, Kirsten S.; Alborn, Hans T.; Stelinski, Lukasz L.
2012-01-01
Transmission of plant pathogens by insect vectors is a complex biological process involving interactions between the plant, insect, and pathogen. Pathogen-induced plant responses can include changes in volatile and nonvolatile secondary metabolites as well as major plant nutrients. Experiments were conducted to understand how a plant pathogenic bacterium, Candidatus Liberibacter asiaticus (Las), affects host preference behavior of its psyllid (Diaphorina citri Kuwayama) vector. D. citri were attracted to volatiles from pathogen-infected plants more than to those from non-infected counterparts. Las-infected plants were more attractive to D. citri adults than non-infected plants initially; however after feeding, psyllids subsequently dispersed to non-infected rather than infected plants as their preferred settling point. Experiments with Las-infected and non-infected plants under complete darkness yielded similar results to those recorded under light. The behavior of psyllids in response to infected versus non-infected plants was not influenced by whether or not they were carriers of the pathogen. Quantification of volatile release from non-infected and infected plants supported the hypothesis that odorants mediate psyllid preference. Significantly more methyl salicylate, yet less methyl anthranilate and D-limonene, was released by infected than non-infected plants. Methyl salicylate was attractive to psyllids, while methyl anthranilate did not affect their behavior. Feeding on citrus by D. citri adults also induced release of methyl salicylate, suggesting that it may be a cue revealing location of conspecifics on host plants. Infected plants were characterized by lower levels of nitrogen, phosphorus, sulfur, zinc, and iron, as well as, higher levels of potassium and boron than non-infected plants. Collectively, our results suggest that host selection behavior of D. citri may be modified by bacterial infection of plants, which alters release of specific headspace volatiles and plant nutritional contents. Furthermore, we show in a laboratory setting that this apparent pathogen-mediated manipulation of vector behavior may facilitate pathogen spread. PMID:22457628
Conceptual framework and rationale
Robinson, Alan S; Knols, Bart GJ; Voigt, Gabriella; Hendrichs, Jorge
2009-01-01
The sterile insect technique (SIT) has been shown to be an effective and sustainable genetic approach to control populations of selected major pest insects, when part of area-wide integrated pest management (AW-IPM) programmes. The technique introduces genetic sterility in females of the target population in the field following their mating with released sterile males. This process results in population reduction or elimination via embryo lethality caused by dominant lethal mutations induced in sperm of the released males. In the past, several field trials have been carried out for mosquitoes with varying degrees of success. New technology and experience gained with other species of insect pests has encouraged a reassessment of the use of the sterility principle as part of integrated control of malaria vectors. Significant technical and logistic hurdles will need to be overcome to develop the technology and make it effective to suppress selected vector populations, and its application will probably be limited to specific ecological situations. Using sterile males to control mosquito vector populations can only be effective as part of an AW-IPM programme. The area-wide concept entails the targeting of the total mosquito population within a defined area. It requires, therefore, a thorough understanding of the target pest population biology especially as regards mating behaviour, population dynamics, dispersal and level of reproductive isolation. The key challenges for success are: 1) devising methods to monitor vector populations and measuring competitiveness of sterile males in the field, 2) designing mass rearing, sterilization and release strategies that maintain competitiveness of the sterile male mosquitoes, 3) developing methods to separate sexes in order to release only male mosquitoes and 4) adapting suppression measures and release rates to take into account the high reproductive rate of mosquitoes. Finally, success in area-wide implementation in the field can only be achieved if close attention is paid to political, socio-economic and environmental sensitivities and an efficient management organization is established taking into account the interests of all potential stakeholders of an AW-IPM programme. PMID:19917070
Mann, Rajinder S; Ali, Jared G; Hermann, Sara L; Tiwari, Siddharth; Pelz-Stelinski, Kirsten S; Alborn, Hans T; Stelinski, Lukasz L
2012-01-01
Transmission of plant pathogens by insect vectors is a complex biological process involving interactions between the plant, insect, and pathogen. Pathogen-induced plant responses can include changes in volatile and nonvolatile secondary metabolites as well as major plant nutrients. Experiments were conducted to understand how a plant pathogenic bacterium, Candidatus Liberibacter asiaticus (Las), affects host preference behavior of its psyllid (Diaphorina citri Kuwayama) vector. D. citri were attracted to volatiles from pathogen-infected plants more than to those from non-infected counterparts. Las-infected plants were more attractive to D. citri adults than non-infected plants initially; however after feeding, psyllids subsequently dispersed to non-infected rather than infected plants as their preferred settling point. Experiments with Las-infected and non-infected plants under complete darkness yielded similar results to those recorded under light. The behavior of psyllids in response to infected versus non-infected plants was not influenced by whether or not they were carriers of the pathogen. Quantification of volatile release from non-infected and infected plants supported the hypothesis that odorants mediate psyllid preference. Significantly more methyl salicylate, yet less methyl anthranilate and D-limonene, was released by infected than non-infected plants. Methyl salicylate was attractive to psyllids, while methyl anthranilate did not affect their behavior. Feeding on citrus by D. citri adults also induced release of methyl salicylate, suggesting that it may be a cue revealing location of conspecifics on host plants. Infected plants were characterized by lower levels of nitrogen, phosphorus, sulfur, zinc, and iron, as well as, higher levels of potassium and boron than non-infected plants. Collectively, our results suggest that host selection behavior of D. citri may be modified by bacterial infection of plants, which alters release of specific headspace volatiles and plant nutritional contents. Furthermore, we show in a laboratory setting that this apparent pathogen-mediated manipulation of vector behavior may facilitate pathogen spread.
Air pollutants degrade floral scents and increase insect foraging times
NASA Astrophysics Data System (ADS)
Fuentes, Jose D.; Chamecki, Marcelo; Roulston, T.'ai; Chen, Bicheng; Pratt, Kenneth R.
2016-09-01
Flowers emit mixtures of scents that mediate plant-insect interactions such as attracting insect pollinators. Because of their volatile nature, however, floral scents readily react with ozone, nitrate radical, and hydroxyl radical. The result of such reactions is the degradation and the chemical modification of scent plumes downwind of floral sources. Large Eddy Simulations (LES) are developed to investigate dispersion and chemical degradation and modification of floral scents due to reactions with ozone, hydroxyl radical, and nitrate radical within the atmospheric surface layer. Impacts on foraging insects are investigated by utilizing a random walk model to simulate insect search behavior. Results indicate that even moderate air pollutant levels (e.g., ozone mixing ratios greater than 60 parts per billion on a per volume basis, ppbv) substantially degrade floral volatiles and alter the chemical composition of released floral scents. As a result, insect success rates of locating plumes of floral scents were reduced and foraging times increased in polluted air masses due to considerable degradation and changes in the composition of floral scents. Results also indicate that plant-pollinator interactions could be sensitive to changes in floral scent composition, especially if insects are unable to adapt to the modified scentscape. The increase in foraging time could have severe cascading and pernicious impacts on the fitness of foraging insects by reducing the time devoted to other necessary tasks.
Dushimirimana, Severin; Hance, Thierry; Damiens, David
2012-01-01
Summary The sterile insect technique (SIT) is increasingly used to control pest insect populations. The success of SIT control programs depends on the ability to release sterile males and on the capacity of sterile males to compete with wild males to inseminate wild females. In this study, we evaluated the mating performance of Schistocerca gregaria (Försk.) males irradiated with 4 Gray. We compared reproductive traits, such as duration of precopulation time, mating duration, quantity of sperm stored by females after copulation, number of females mated successively and postmating competition of irradiated males with non-irradiated males. Irradiated males were able to mate but the resulting number of offspring was dramatically reduced compared to the average number of offspring observed during a regular mating. During a single copulation, irradiated males transferred fewer sperm than regular males but, theoretically, this quantity is enough to fertilize all the eggs produced by a female during its reproductive life. Irradiated males also had the ability to remove sperm from a previous mating with unirraditated males. This new information on the mating strategies helps explain the post-copulation guarding behaviour of S. gregaria. PMID:23213413
Gehring, Catherine; Flores-Rentería, Dulce; Sthultz, Christopher M; Leonard, Tierra M; Flores-Rentería, Lluvia; Whipple, Amy V; Whitham, Thomas G
2014-03-01
Although the importance of plant-associated microbes is increasingly recognized, little is known about the biotic and abiotic factors that determine the composition of that microbiome. We examined the influence of plant genetic variation, and two stressors, one biotic and one abiotic, on the ectomycorrhizal (EM) fungal community of a dominant tree species, Pinus edulis. During three periods across 16 years that varied in drought severity, we sampled the EM fungal communities of a wild stand of P. edulis in which genetically based resistance and susceptibility to insect herbivory was linked with drought tolerance and the abundance of competing shrubs. We found that the EM fungal communities of insect-susceptible trees remained relatively constant as climate dried, while those of insect-resistant trees shifted significantly, providing evidence of a genotype by environment interaction. Shrub removal altered the EM fungal communities of insect-resistant trees, but not insect-susceptible trees, also a genotype by environment interaction. The change in the EM fungal community of insect-resistant trees following shrub removal was associated with greater shoot growth, evidence of competitive release. However, shrub removal had a 7-fold greater positive effect on the shoot growth of insect-susceptible trees than insect-resistant trees when shrub density was taken into account. Insect-susceptible trees had higher growth than insect-resistant trees, consistent with the hypothesis that the EM fungi associated with susceptible trees were superior mutualists. These complex, genetic-based interactions among species (tree-shrub-herbivore-fungus) argue that the ultimate impacts of climate change are both ecological and evolutionary. © 2013 John Wiley & Sons Ltd.
Role of nanotechnology in agriculture with special reference to management of insect pests.
Rai, Mahendra; Ingle, Avinash
2012-04-01
Nanotechnology is a promising field of interdisciplinary research. It opens up a wide array of opportunities in various fields like medicine, pharmaceuticals, electronics and agriculture. The potential uses and benefits of nanotechnology are enormous. These include insect pests management through the formulations of nanomaterials-based pesticides and insecticides, enhancement of agricultural productivity using bio-conjugated nanoparticles (encapsulation) for slow release of nutrients and water, nanoparticle-mediated gene or DNA transfer in plants for the development of insect pest-resistant varieties and use of nanomaterials for preparation of different kind of biosensors, which would be useful in remote sensing devices required for precision farming. Traditional strategies like integrated pest management used in agriculture are insufficient, and application of chemical pesticides like DDT have adverse effects on animals and human beings apart from the decline in soil fertility. Therefore, nanotechnology would provide green and efficient alternatives for the management of insect pests in agriculture without harming the nature. This review is focused on traditional strategies used for the management of insect pests, limitations of use of chemical pesticides and potential of nanomaterials in insect pest management as modern approaches of nanotechnology.
Genome scale transcriptomics of baculovirus-insect interactions.
Nguyen, Quan; Nielsen, Lars K; Reid, Steven
2013-11-12
Baculovirus-insect cell technologies are applied in the production of complex proteins, veterinary and human vaccines, gene delivery vectors' and biopesticides. Better understanding of how baculoviruses and insect cells interact would facilitate baculovirus-based production. While complete genomic sequences are available for over 58 baculovirus species, little insect genomic information is known. The release of the Bombyx mori and Plutella xylostella genomes, the accumulation of EST sequences for several Lepidopteran species, and especially the availability of two genome-scale analysis tools, namely oligonucleotide microarrays and next generation sequencing (NGS), have facilitated expression studies to generate a rich picture of insect gene responses to baculovirus infections. This review presents current knowledge on the interaction dynamics of the baculovirus-insect system' which is relatively well studied in relation to nucleocapsid transportation, apoptosis, and heat shock responses, but is still poorly understood regarding responses involved in pro-survival pathways, DNA damage pathways, protein degradation, translation, signaling pathways, RNAi pathways, and importantly metabolic pathways for energy, nucleotide and amino acid production. We discuss how the two genome-scale transcriptomic tools can be applied for studying such pathways and suggest that proteomics and metabolomics can produce complementary findings to transcriptomic studies.
Plant phenolics are detoxified by prophenoloxidase in the insect gut
Wu, Kai; Zhang, Jie; Zhang, Qiaoli; Zhu, Shoulin; Shao, Qimiao; Clark, Kevin D.; Liu, Yining; Ling, Erjun
2015-01-01
Plant phenolics are a group of important secondary metabolites that are toxic to many animals and insects if ingested at high concentrations. Because most insects consume plant phenolics daily, they have likely evolved the capacity to detoxify these compounds. Here, we used Drosophila melanogaster, Bombyx mori and Helicoverpa armigera as models to study the metabolism of plant phenolics by prophenoloxidases. We found that insect foreguts release prophenoloxidases into the lumen, and that the survival of prophenoloxidase-deletion mutants was impaired when fed several plant phenolics and tea extracts. Using l-DOPA as a model substrate, biochemical assays in large Lepidopteran insects demonstrated that low levels of l-DOPA are rapidly metabolized into intermediates by phenoloxidases. Feeding with excess l-DOPA showed that the metabolic intermediate 5,6-dihydroxyindole reached the hindgut either by passing directly through the midgut, or by transport through the hemolymph. In the hindgut, 5,6-dihydroxyindole was further oxidized by prophenoloxidases. Intermediates exerted no toxicity in the hemocoel or midgut. These results show that plant phenolics are not toxic to insects unless prophenoloxidase genes are lost or the levels of phenolics exceed the catalytic activity of the gut prophenoloxidases. PMID:26592948
KIBO Industry, innovates in aerospace
NASA Astrophysics Data System (ADS)
Paillard, Jean-Philippe
2016-07-01
The conquest of space is a true inspiration. Imagine a long-duration mission to a distant destination. What shall we take to produce our food? A cow, fish, chicken, or just eggs. In the current state of the animal production technologies are complicated and expensive to implement, except perhaps one: the breeding of edible insects. Based on this postulate KIBO in partnership with Space Agriculture Task Force and the university's department of Nutrition Nagoya most innovative research program is created in modern nutrition. This program is called Pegasus. Pegasus research program aims to develop food productions and modules applicable to the aerospace conquest. Kibo industry is the first entomocole production company creat in Europe to human food; it aims to become the world leader by 2020. Kibo industry is particularly specialized in producing entomosource (products with insects). The first phase of the program is to achieve an outcome cereal bar edible insect to aerospace. So we will present the issues and objectives of the project, for aerospace and us. Jean-Philippe Paillard is the KIBO industry CEO and Vice President of the FFPIDI insects farms federation. He is also the co computer alone authorization dossier on the market in Europe and therefore the privileged interlocutor of the General Directorate for Health and Customer Review on this topic. He intervened at the last conference on the insect organized by FAO in Wageningen and various universities in France.
KIBO Industry, innovates in aerospace
NASA Astrophysics Data System (ADS)
Katayama, Naomi; Paillard, Jean-Philippe
2016-07-01
The conquest of space is a true inspiration. Imagine a long-duration mission to a distant destination. What shall we take to produce our food? A cow, fish, chicken, or just eggs. In the current state of the animal production technologies are complicated and expensive to implement, except perhaps one: the breeding of edible insects. Based on industry KIBO is postulated in partnership with Space Agriculture Task Force and the university's department of Nutrition Nagoya most innovative research program is created in modern nutrition. This program is called Pegasus. Pegasus research program aims to develop food productions and modules applicable to the aerospace conquest. Kibo entomocole industry is the first production company in Europe to human food, it aims to become the world leader by 2020. Kibo industry is particularly specialized in producing entomosource (products with insects). The first phase of the program is to achieve an outcome cereal bar edible insect to aerospace. So we will present the issues and objectives of the project, for aerospace and us. Jean-Philippe Paillard is the KIBO industry CEO and Vice President of the FFPIDI insects farms federation. He is also the co computer alone authorization dossier on the market in Europe and therefore the privileged interlocutor of the General Directorate for Health and Customer Review on this topic. He intervened at the last conference on the insect organized by FAO in Wageningen and in the universities of Angers, Nantes, Lille.
USDA-ARS?s Scientific Manuscript database
Tamarixia radiata is natural enemy of the Asian citrus psyllid, the insect that transmits citrus greening disease. It is currently being mass reared for releases in Florida, Texas, and California for psyllid control. However, biological control of the psyllid following mass releases of Tamarixia rad...
Effects of gamma irradiation on the midgut ultrastructure of Glossina palpalis subspecies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stiles, J.K.; Molyneux, D.H.; Wallbanks, K.R.
1989-05-01
In the sterile insect technique, insects are sterilized prior to release in areas where they are pests. The sterile males compete for and with fertile wild individuals for mates, thus reducing the population's reproductive rate. Tsetse fly (Glossina spp.) populations have been eradicated after release of laboratory-bred flies sterilized by gamma irradiation. However, no studies exist on radiation-induced damage to the midgut morphology and function of the radiation-sterilized insects. After G. palpalis palpalis and G. p. gambiensis were subjected to 130 Gy gamma radiation, their midgut damage and recovery were monitored by electron microscopy. The first sign of damage wasmore » atrophy and loss of the microvillous border from epithelial cells. The rate of cell degeneration increased, with young as well as old cells being affected and cellular debris filling the ectoperitrophic space. Muscle cells were destroyed, patches of basal lamina were left bare, intracellular virus- and rickettsia-like organisms became more frequent, and many replacement cells became unusually large. Partial recovery occurred from the 10th day postirradiation. Such changes in midgut ultrastructure and the corresponding inhibition of functions may increase the susceptibility of the fly to trypanosome infection.« less
Dicko, Ahmadou H.; Lancelot, Renaud; Seck, Momar T.; Guerrini, Laure; Sall, Baba; Lo, Mbargou; Vreysen, Marc J. B.; Lefrançois, Thierry; Fonta, William M.; Peck, Steven L.; Bouyer, Jérémy
2014-01-01
Tsetse flies are vectors of human and animal trypanosomoses in sub-Saharan Africa and are the target of the Pan African Tsetse and Trypanosomiasis Eradication Campaign (PATTEC). Glossina palpalis gambiensis (Diptera: Glossinidae) is a riverine species that is still present as an isolated metapopulation in the Niayes area of Senegal. It is targeted by a national eradication campaign combining a population reduction phase based on insecticide-treated targets (ITTs) and cattle and an eradication phase based on the sterile insect technique. In this study, we used species distribution models to optimize control operations. We compared the probability of the presence of G. p. gambiensis and habitat suitability using a regularized logistic regression and Maxent, respectively. Both models performed well, with an area under the curve of 0.89 and 0.92, respectively. Only the Maxent model predicted an expert-based classification of landscapes correctly. Maxent predictions were therefore used throughout the eradication campaign in the Niayes to make control operations more efficient in terms of deployment of ITTs, release density of sterile males, and location of monitoring traps used to assess program progress. We discuss how the models’ results informed about the particular ecology of tsetse in the target area. Maxent predictions allowed optimizing efficiency and cost within our project, and might be useful for other tsetse control campaigns in the framework of the PATTEC and, more generally, other vector or insect pest control programs. PMID:24982143
Dicko, Ahmadou H; Lancelot, Renaud; Seck, Momar T; Guerrini, Laure; Sall, Baba; Lo, Mbargou; Vreysen, Marc J B; Lefrançois, Thierry; Fonta, William M; Peck, Steven L; Bouyer, Jérémy
2014-07-15
Tsetse flies are vectors of human and animal trypanosomoses in sub-Saharan Africa and are the target of the Pan African Tsetse and Trypanosomiasis Eradication Campaign (PATTEC). Glossina palpalis gambiensis (Diptera: Glossinidae) is a riverine species that is still present as an isolated metapopulation in the Niayes area of Senegal. It is targeted by a national eradication campaign combining a population reduction phase based on insecticide-treated targets (ITTs) and cattle and an eradication phase based on the sterile insect technique. In this study, we used species distribution models to optimize control operations. We compared the probability of the presence of G. p. gambiensis and habitat suitability using a regularized logistic regression and Maxent, respectively. Both models performed well, with an area under the curve of 0.89 and 0.92, respectively. Only the Maxent model predicted an expert-based classification of landscapes correctly. Maxent predictions were therefore used throughout the eradication campaign in the Niayes to make control operations more efficient in terms of deployment of ITTs, release density of sterile males, and location of monitoring traps used to assess program progress. We discuss how the models' results informed about the particular ecology of tsetse in the target area. Maxent predictions allowed optimizing efficiency and cost within our project, and might be useful for other tsetse control campaigns in the framework of the PATTEC and, more generally, other vector or insect pest control programs.
Apparent competition can compromise the safety of highly specific biocontrol agents.
Carvalheiro, Luisa G; Buckley, Yvonne M; Ventim, Rita; Fowler, Simon V; Memmott, Jane
2008-07-01
Despite current concern about the safety of biological control of weeds, assessing the indirect impacts of introduced agents is not common practice. Using 17 replicate food webs, we demonstrate that the use of a highly host-plant specific weed biocontrol agent, recently introduced into Australia, is associated with declines of local insect communities. The agent shares natural enemies (predators and parasitoids) with seed herbivore species from native plants, so apparent competition is the most likely cause for these losses. Both species richness and abundance in insect communities (seed herbivores and their parasitoids) were negatively correlated with the abundance of the biocontrol agent. Local losses of up to 11 species (dipteran seed herbivores and parasitoids) took place as the biocontrol agent abundance increased. Ineffective biocontrol agents that remain highly abundant in the community are most likely to have persistent, indirect negative effects. Our findings suggest that more investment is required in pre-release studies on the effectiveness of biocontrol agents, as well as in post-release studies assessing indirect impacts, to avoid or minimize the release of potentially damaging species.
Tools for detecting insect semiochemicals: a review.
Brezolin, Alexandra Nava; Martinazzo, Janine; Muenchen, Daniela Kunkel; de Cezaro, Alana Marie; Rigo, Aline Andressa; Steffens, Clarice; Steffens, Juliana; Blassioli-Moraes, Maria Carolina; Borges, Miguel
2018-07-01
Semiochemicals are chemical compounds that are released by many species as a means of intra- and interspecific communication. Insects have extremely advanced olfactory systems; indeed, they rely on smell when performing many of their main behaviors, such as oviposition, breeding, prey location, and defense. This characteristic of insects implies that semiochemicals could be used for various applications, including in agriculture, where they could be employed along with other tools to control pest insects. The aim of this review is to present the main techniques used and the state of the art in the detection of semiochemicals, focusing on pheromones. In addition to the traditional methods of identifying semiochemicals, such as gas chromatography coupled to a high-resolution detection mode (e.g., flame ionization (FID), electron capture (ECD), photoionization (PID), or mass spectrometry (MS)), other tools are addressed in this review, including sensors and biosensors. While these new technologies may be used under laboratory conditions to improve or complement technologies that are already being used, they are mainly intended for use as new agricultural tools for detecting and controlling pest insects in the field.
Re-evaluation of insect melanogenesis research: Views from the dark side.
Whitten, Miranda M A; Coates, Christopher J
2017-07-01
Melanins (eumelanin and pheomelanin) are synthesized in insects for several purposes including cuticle sclerotization and color patterning, clot formation, organogenesis, and innate immunity. Traditional views of insect immunity detail the storage of pro-phenoloxidases inside specialized blood cells (hemocytes) and their release upon recognition of foreign bodies. Activated phenoloxidases convert monophenols into reactive quinones in a two-step enzymatic reaction, and until recently, the mechanism of tyrosine hydroxylation remained a mystery. Herein, we present our interpretations of these enzyme-substrate complexes. The resultant melanins are deposited onto the surface of microbes to immobilize, agglutinate, and suffocate them. Phenoloxidase activity and melanin production are not limited to the blood (hemolymph) or cuticle, as recent evidence points to more diverse, sophisticated interactions in the gut and with the resident symbionts. This review offers insight into the somewhat neglected areas of insect melanogenesis research, particularly in innate immunity, its role in beneficial insects such as pollinators, the functional versatility of phenoloxidases, and the limitations of common experimental approaches that may impede progress inadvertently. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Insect-induced crystallization of white pine resins. I. white-pine weevil
Frank S., Jr. Santamour
1965-01-01
In breeding programs designed to produce insect-resistant plants, a serious obstacle to progress often is the lack of efficient selection and testing criteria. Natural infestations of some insects are large and severe enough to allow selection of resistant plants directly from the natural plant population. However, the attacks of the white-pine weevil (...
Olfactory Mechanisms for Discovery of Odorants to Reduce Insect-Host Contact
Clark, Jonathan T.; Ray, Anandasankar
2016-01-01
Insects have developed highly sophisticated and sensitive olfactory systems to find animal or plant hosts for feeding. Some insects vector pathogens that cause diseases in hundreds of millions of people and destroy billions of dollars of food products every year. There is great interest, therefore, in understanding how the insect olfactory system can be manipulated to reduce their contact with hosts. Here, we review recent advances in our understanding of insect olfactory detection mechanisms, which may serve as a foundation for designing insect control programs based on manipulation of their behaviors by using odorants. Because every insect species has a unique set of olfactory receptors and olfactory-mediated behaviors, we focus primarily on general principles of odor detection that potentially apply to most insects. While these mechanisms have emerged from studies on model systems for study of insect olfaction, such as Drosophila melanogaster, they provide a foundation for discovery of odorants to repel insects or reduce host-seeking behavior. PMID:27628342
Aketarawong, Nidchaya; Chinvinijkul, Suksom; Orankanok, Watchreeporn; Guglielmino, Carmela Rosalba; Franz, Gerald; Malacrida, Anna Rodolfa; Thanaphum, Sujinda
2011-01-01
The oriental fruit fly, Bactrocera dorsalis (Hendel), is a key pest that causes reduction of the crop yield within the international fruit market. Fruit flies have been suppressed by two Area-Wide Integrated Pest Management programs in Thailand using Sterile Insect Technique (AW-IPM-SIT) since the late 1980s and the early 2000s. The projects' planning and evaluation usually rely on information from pest status, distribution, and fruit infestation. However, the collected data sometimes does not provide enough detail to answer management queries and public concerns, such as the long term sterilization efficacy of the released fruit fly, skepticism about insect migration or gene flow across the buffer zone, and the re-colonisation possibility of the fruit fly population within the core area. Established microsatellite DNA markers were used to generate population genetic data for the analysis of the fruit fly sampling from several control areas, and non-target areas, as well as the mass-rearing facility. The results suggested limited gene flow (m < 0.100) across the buffer zones between the flies in the control areas and flies captured outside. In addition, no genetic admixture was revealed from the mass-reared colony flies from the flies within the control area, which supports the effectiveness of SIT. The control pests were suppressed to low density and showed weak bottleneck footprints although they still acquired a high degree of genetic variation. Potential pest resurgence from fragmented micro-habitats in mixed fruit orchards rather than pest incursion across the buffer zone has been proposed. Therefore, a suitable pest control effort, such as the SIT program, should concentrate on the hidden refuges within the target area.
Chen, Yong; Chen, Qian; Li, Manman; Mao, Qianzhuo; Chen, Hongyan; Wu, Wei; Jia, Dongsheng; Wei, Taiyun
2017-11-01
Many viral pathogens are persistently transmitted by insect vectors and cause agricultural or health problems. Generally, an insect vector can use autophagy as an intrinsic antiviral defense mechanism against viral infection. Whether viruses can evolve to exploit autophagy to promote their transmission by insect vectors is still unknown. Here, we show that the autophagic process is triggered by the persistent replication of a plant reovirus, rice gall dwarf virus (RGDV) in cultured leafhopper vector cells and in intact insects, as demonstrated by the appearance of obvious virus-containing double-membrane autophagosomes, conversion of ATG8-I to ATG8-II and increased level of autophagic flux. Such virus-containing autophagosomes seem able to mediate nonlytic viral release from cultured cells or facilitate viral spread in the leafhopper intestine. Applying the autophagy inhibitor 3-methyladenine or silencing the expression of Atg5 significantly decrease viral spread in vitro and in vivo, whereas applying the autophagy inducer rapamycin or silencing the expression of Torc1 facilitate such viral spread. Furthermore, we find that activation of autophagy facilitates efficient viral transmission, whereas inhibiting autophagy blocks viral transmission by its insect vector. Together, these results indicate a plant virus can induce the formation of autophagosomes for carrying virions, thus facilitating viral spread and transmission by its insect vector. We believe that such a role for virus-induced autophagy is common for vector-borne persistent viruses during their transmission by insect vectors.
Mao, Qianzhuo; Chen, Hongyan; Wu, Wei
2017-01-01
Many viral pathogens are persistently transmitted by insect vectors and cause agricultural or health problems. Generally, an insect vector can use autophagy as an intrinsic antiviral defense mechanism against viral infection. Whether viruses can evolve to exploit autophagy to promote their transmission by insect vectors is still unknown. Here, we show that the autophagic process is triggered by the persistent replication of a plant reovirus, rice gall dwarf virus (RGDV) in cultured leafhopper vector cells and in intact insects, as demonstrated by the appearance of obvious virus-containing double-membrane autophagosomes, conversion of ATG8-I to ATG8-II and increased level of autophagic flux. Such virus-containing autophagosomes seem able to mediate nonlytic viral release from cultured cells or facilitate viral spread in the leafhopper intestine. Applying the autophagy inhibitor 3-methyladenine or silencing the expression of Atg5 significantly decrease viral spread in vitro and in vivo, whereas applying the autophagy inducer rapamycin or silencing the expression of Torc1 facilitate such viral spread. Furthermore, we find that activation of autophagy facilitates efficient viral transmission, whereas inhibiting autophagy blocks viral transmission by its insect vector. Together, these results indicate a plant virus can induce the formation of autophagosomes for carrying virions, thus facilitating viral spread and transmission by its insect vector. We believe that such a role for virus-induced autophagy is common for vector-borne persistent viruses during their transmission by insect vectors. PMID:29125860
2017-06-01
Department of Agriculture (USDA), Agricultural Research Service (ARS), Invasive Plant Research Lab (IPRL) in Fort Lauderdale, Florida where it was...State University (LSU), Agriculture Center, Baton Rouge, Louisiana. These insects were maintained and used in 2015 for field releases and greenhouse...Group for the Biological and Integrated Control of Water Hyacinth. Beijing, China, 9-12 December 2000. Australian Centre for International Agricultural
Managing ammonia emissions from screwworm larval rearing media
USDA-ARS?s Scientific Manuscript database
Mass production, sterilization and release of screwworms (Cochliomyia hominivorax (Coquerel)) that were competitive in the field significantly contributed to the successful application of the sterile insect technique for eradication of screwworms from continental North America. Metabolic byproducts...
Commercializing Biological Control
ERIC Educational Resources Information Center
LeLeu, K. L.; Young, M. A.
1973-01-01
Describes the only commercial establishment involved in biological control in Australia. The wasp Aphitis melinus, which parasitizes the insect Red Scale, is bred in large numbers and released in the citrus groves where Red Scale is causing damage to the fruit. (JR)
Herbivore induced plant volatiles
War, Abdul Rashid; Sharma, Hari Chand; Paulraj, Michael Gabriel; War, Mohd Yousf; Ignacimuthu, Savarimuthu
2011-01-01
Plants respond to herbivory through different defensive mechanisms. The induction of volatile emission is one of the important and immediate response of plants to herbivory. Herbivore-induced plant volatiles (HIPVs) are involved in plant communication with natural enemies of the insect herbivores, neighboring plants, and different parts of the damaged plant. Release of a wide variety of HIPVs in response to herbivore damage and their role in plant-plant, plant-carnivore and intraplant communications represents a new facet of the complex interactions among different trophic levels. HIPVs are released from leaves, flowers, and fruits into the atmosphere or into the soil from roots in response to herbivore attack. Moreover, HIPVs act as feeding and/or oviposition deterrents to insect pests. HIPVs also mediate the interactions between the plants and the microorganisms. This review presents an overview of HIPVs emitted by plants, their role in plant defense against herbivores and their implications for pest management. PMID:22105032
Topical Hazard Evaluation Program of Candidate Insect Repellent AI3- 39053a
1987-05-01
StudyNo. 75-51-O 71-R7 Mnay 19R71 12 PERSONAL AUTHOR(S) William T. Huebsam, SGT, U.S.A.; Maurice H. Weeks 1I8. TYPE Of REPORT 13b TIME COVERED 114...ARMY u.S. AUT ENVIVIf[NNIAL HYGINE AMIdT ASCROELN PROVING GROUND. MARYLAND M1蚉 HSHB-MO-T TOPICAL HAZARD EVALUATION PROGRAM OF CANDIDATE INSECT
Morin, J P; Rochat, D; Malosse, C; Lettere, M; de Chenon, R D; Wibwo, H; Descoins, C
1996-07-01
Ethyl 4-methyloctanoate, which has already been described in Oryctes monoceros, has been identified, using extracts of effluvia collected from males, as being a major component of the male pheromone of O. rhinoceros. Field trials have been carried out in North Sumatra, Indonesia. Ethyl 4-methyloctanoate synthesized in the laboratory and released at 10 mg/d resulted in the capture of 6.8 insects per week per trap, whereas ethyl chrysanthemate (40 mg/d), an allelochemical compound once used as an attractant, only led to the capture of 0.3 insects, and the control none at all. The insects captured with the pheromone were 81% females, the majority being sexually mature. Discovery of this compound opens up new prospects for O. rhinoceros control.
Yang, Wenhui; He, Kanglai; Zhang, Jie; Guo, Shuyuan
2012-01-01
Crystal proteins synthesized by Bacillus thuringiensis (Bt) have been used as biopesticides because of their toxicity to the insect larval hosts. To protect the proteins from environmental stress to extend their activity, we have developed a new microcapsule formulation. Poly (acrylic acid) (PAH) and poly (styrene sulfonate) (PSS) were fabricated through layer-by-layer self-assembly based on a CaCO3 core. Cry1Ac protoxins were loaded into microcapsules through layer-by-layer self-assembly at low pH, and the encapsulated product was stored in water at 4°C. Scanning electron microscopy (SEM) was used to observe the morphology of the capsules. To confirm the successful encapsulation, the loading results were observed with a confocal laser scattering microscope (CLSM), using fluorescein-labeled Cry1Ac protoxin (FITC-Cry1Ac). The protoxins were released from the capsule under the alkaline condition corresponding to the midgut of certain insects, a condition which seldom exists elsewhere in the environment. The following bioassay experiment demonstrated that the microcapsules with Cry1Ac protoxins displayed approximately equivalent insecticidal activity to the Asian corn borer compared with free Cry1Ac protoxins, and empty capsules proved to have no effect on insects. Further result also indicated that the formulation could keep stable under the condition of heat and desiccation. These results suggest that this formulation provides a promising methodology that protects protoxins from the environment and releases them specifically in the target insects’ midgut, which has shown potential as biopesticide in the field. PMID:23024810
The insect spermatheca: an overview.
Pascini, Tales V; Martins, Gustavo F
2017-04-01
In the female insect, the spermatheca is an ectodermal organ responsible for receiving, maintaining, and releasing sperm to fertilize eggs. The number and morphology of spermathecae vary according to species. Within the spermathecal lumen, substances in the semen and secretions from the spermathecal gland nourish the sperm. Thus, the spermatheca provides an appropriate environment that ensures the long-term viability of sperm. Maintaining sperm viability for long periods within the spermatheca is crucial for insect reproductive success; however, the details of this process remain poorly understood. This review examines several aspects of and gaps in the current understanding of spermatheca biology, including morphology, function, reservoir filling, development, and biochemistry. Despite the importance of the spermatheca in insects, there is little information on the gland secretions and their role in the maintenance and protection of male gametes. Furthermore, in this review, we highlight the current information on spermathecal gland secretions and the likely roles they play in the maintenance and protection of sperm. Copyright © 2016 Elsevier GmbH. All rights reserved.
Parameters affecting plant defense pathway mediated recruitment of entomopathogenic nematodes
USDA-ARS?s Scientific Manuscript database
Entomopathogenic nematodes are natural enemies and effective biological control agents of subterranean insect herbivores. Interactions between her bivores, plants, and entomopathogenic nematodes are mediated by plant defense pathways that can induce release of volatiles that recruit entomopathogenic...
NASA Astrophysics Data System (ADS)
Weeks, Faith J.
Outreach programming can be an important way for local students and teachers to be exposed to new fields while enhancing classroom learning. University-based outreach programs are offered throughout the country, including most entomology departments as few individuals learn about insects in school and these programs can be excellent sources of entomological education, as well as models to teach environmental and science education. Each department utilizes different instructional delivery methods for teaching about insects, which may impact the way in which students and teachers understand the insect concepts presented. To determine the impact of using entomology to enhance science and environmental education, this study used a series of university-based entomology outreach programs to compare three of the most common delivery methods for their effect on teacher and student content knowledge and motivation, specifically student interest in entomology and teacher self-efficacy. Twenty fifth grade classrooms were assessed over the course of one school year. The results show that teacher knowledge significantly increased when teachers were unfamiliar with the content and when trained by an expert, and teacher self-efficacy did not decrease when asked about teaching with insects. For students, content knowledge increased for each lesson regardless of treatment, suggesting that outreach program providers should focus on working with local schools to integrate their field into the classroom through the delivery methods best suited to the needs of the university, teachers, and students. The lessons also had an impact on student interest in science and environmental education, with an overall finding that student interest increases when using insects in the classroom.
Darwin's bee-trap: The kinetics of Catasetum, a new world orchid.
Nicholson, Charles C; Bales, James W; Palmer-Fortune, Joyce E; Nicholson, Robert G
2008-01-01
The orchid genera Catasetum employs a hair-trigger activated, pollen release mechanism, which forcibly attaches pollen sacs onto foraging insects in the New World tropics. This remarkable adaptation was studied extensively by Charles Darwin and he termed this rapid response "sensitiveness." Using high speed video cameras with a frame speed of 1000 fps, this rapid release was filmed and from the subsequent footage, velocity, speed, acceleration, force and kinetic energy were computed.
Language of plants: Where is the word?
Šimpraga, Maja; Takabayashi, Junji; Holopainen, Jarmo K
2016-04-01
Plants emit biogenic volatile organic compounds (BVOCs) causing transcriptomic, metabolomic and behavioral responses in receiver organisms. Volatiles involved in such responses are often called "plant language". Arthropods having sensitive chemoreceptors can recognize language released by plants. Insect herbivores, pollinators and natural enemies respond to composition of volatiles from plants with specialized receptors responding to different types of compounds. In contrast, the mechanism of how plants "hear" volatiles has remained obscured. In a plant-plant communication, several individually emitted compounds are known to prime defense response in receiver plants with a specific manner according to the chemical structure of each volatile compound. Further, composition and ratio of volatile compounds in the plant-released plume is important in plant-insect and plant-plant interactions mediated by plant volatiles. Studies on volatile-mediated plant-plant signaling indicate that the signaling distances are rather short, usually not longer than one meter. Volatile communication from plants to insects such as pollinators could be across distances of hundreds of meters. As many of the herbivore induced VOCs have rather short atmospheric life times, we suggest that in long-distant communications with plant volatiles, reaction products in the original emitted compounds may have additional information value of the distance to emission source together with the original plant-emitted compounds. © 2015 Institute of Botany, Chinese Academy of Sciences.
Earwigs ( Labidura riparia) mimic rotting-flesh odor to deceive vertebrate predators
NASA Astrophysics Data System (ADS)
Byers, John A.
2015-08-01
Many insects repel predators with caustic chemicals, while insects mimicking odors of wastes/dead insects to fool predators have not been documented. We found that the shore earwig, Labidura riparia (Dermaptera: Labiduridae) when bitten by anole lizards, Anolis carolinenesus, spits a rotting-flesh odor that deceives these insectivores into rejecting prey. Once a lizard attacked and rejected an earwig, the lizard did not attack another earwig during several weeks despite consuming other prey, indicating associative learning after one trial. The fetid odor was found in the head-prothorax containing salivary glands of both male and female earwigs and was comprised of ˜100 ng dimethyl disulfide and ˜600 ng dimethyl trisulfide. Nymphs had <5 ng of either compound. Adults also spit odorous sulfides after prolonged attacks by harvester ants, Pogonomyrmex rugosus, who were only deterred by the earwig's forceps. Sulfides released by the earwig are similar to odors of carrion/feces, which may be innately repulsive to some vertebrate predators. The mean initial discharge percentage (IDP) of sulfides from a cohort of earwigs was 62 %; however, IDPs of individuals were highly variable (3-99 %; mean 57 %). The discharge refill time (DRT) to refill 50 % of the earwig's allomone reservoir was estimated at 13 h. A positive relationship in sulfide amounts with body weight was found only in females in 2009, suggesting metabolic cost tradeoffs were revealed when sulfide content was half that in 2010. This is the first report of insects releasing sulfur-containing compounds that may mimic carrion-fecal odors as a deceptive defense against vertebrate predators.
Metabolic regulation and behavior: how hunger produces arousal - an insect study.
Wicher, Dieter
2007-12-01
The metabolic state affects the level of general activity of an organism. Satiety is related to relaxation while hunger is coupled to elevated activity which supports the chance to balance the energy deficiency. The unrestricted food availability in modern industrial nations along with no required locomotor activity are risk factors to develop disorders such as obesity. One of the strategies to find new targets for future treatment of metabolic disorders in men is to gain detailed knowledge of molecular and cellular mechanisms involved in the regulation of metabolic homeostasis in less complex, i.e. invertebrate systems. This review reports recent molecular studies in insects about how hunger signals may be linked to global activation. Adipokinetic peptide hormones (AKHs) are the insect counterpart to the mammalian glucagon. They are released upon lack of energy and mobilize internal fuel reserves. In addition, AKHs stimulate the locomotor activity which involves their activity within the central nervous system. In the cockroach Periplaneta americana various neurons express the AKH receptor. Some of these, the dorsal unpaired median (DUM) neurons belonging to a general arousal system, release the biogenic amine octopamine, the insect counterpart to mammalian adrenergic hormones. The two Periplaneta AKHs activate Gs proteins, and AKH I also potently activates Gq proteins. AKH I and - less effectively - AKH II accelerate spiking of DUM neurons via an increase of a pacemaking Ca2+ current. Systemically injected AKH I stimulates locomotion in contrast to AKH II. This behavioral difference corresponds to the different effectiveness of the AKHs on the level of G-proteins.
Flinn, Paul W; Hagstrum, David W; Reed, Carl; Phillips, Tom W
2003-01-01
The USDA Agricultural Research Service (ARS) funded a demonstration project (1998-2002) for areawide IPM for stored wheat in Kansas and Oklahoma. This project was a collaboration of researchers at the ARS Grain Marketing and Production Research Center in Manhattan, Kansas, Kansas State University, and Oklahoma State University. The project utilized two elevator networks, one in each state, for a total of 28 grain elevators. These elevators stored approximately 31 million bushels of wheat, which is approximately 1.2% of the annual national production. Stored wheat was followed as it moved from farm to the country elevator and finally to the terminal elevator. During this study, thousands of grain samples were taken in concrete elevator silos. Wheat stored at elevators was frequently infested by several insect species, which sometimes reached high numbers and damaged the grain. Fumigation using aluminum phosphide pellets was the main method for managing these insect pests in elevators in the USA. Fumigation decisions tended to be based on past experience with controlling stored-grain insects, or were calendar based. Integrated pest management (IPM) requires sampling and risk benefit analysis. We found that the best sampling method for estimating insect density, without turning the grain from one bin to another, was the vacuum probe sampler. Decision support software, Stored Grain Advisor Pro (SGA Pro) was developed that interprets insect sampling data, and provides grain managers with a risk analysis report detailing which bins are at low, moderate or high risk for insect-caused economic losses. Insect density was predicted up to three months in the future based on current insect density, grain temperature and moisture. Because sampling costs money, there is a trade-off between frequency of sampling and the cost of fumigation. The insect growth model in SGA Pro reduces the need to sample as often, thereby making the program more cost-effective. SGA Pro was validated during the final year of the areawide program. Based on data from 533 bins, SGA Pro accurately predicted which bins were at low, moderate or high risk. Only in two out of 533 bins did SGA Pro incorrectly predict bins as being low risk and, in both cases, insect density was only high (> two insects kg(-1)) at the surface, which suggested recent immigration. SGA Pro is superior to calendar-based management because it ensures that grain is only treated when insect densities exceed economic thresholds (two insects kg(-1)). This approach will reduce the frequency of fumigation while maintaining high grain quality. Minimizing the use of fumigant improves worker safety and reduces both control costs and harm to the environment.
T.D. Paine; J.G. Millar; L.M. Hanks; J. Gould; Q. Wang; K. Daane; D.L. Dahlsten; E.G. McPherson
2015-01-01
As well as being planted for wind breaks, landscape trees, and fuel wood, eucalypts are also widely used as urban street trees in California. They now are besieged by exotic insect herbivores of four different feeding guilds. The objective of the current analysis was to determine the return on investment from biological control programs that have targeted these pests....
Catton, Haley A; Lalonde, Robert G; De Clerck-Floate, Rosemarie A
2015-03-01
Insects approved for classical biocontrol of weeds are often capable of using close relatives of their target weed for feeding, oviposition, or larval development, with reduced preference and performance. When nontarget herbivory occurs and is suspected to reduce survival, growth, or fecundity of individual plants, and insects are capable of reproducing on their nontarget host, characterization of spatial and temporal patterns of the occurrence and intensity of herbivory is valuable for predicting potential population-level effects. Here, we perform a novel post-release manipulative field experiment with a root-feeding biocontrol weevil, Mogulones crucifer, released in Canada to control the rangeland weed Cynoglossum officinale, to test for its ability to establish on the nontarget plant Hackelia micrantha. After Cynoglossum, M. crucifer exhibits its highest preference for and performance on Hackelia spp. We released M. crucifer on Canadian rangeland sites with naturally occurring populations of H. micrantha growing interspersed with the target weed or in the near absence of the target weed. Adult weevil feeding on surrounding plants was monitored for three summers after release (years 0, 1, and 2), and, subsequently, subsets of plants were destructively sampled to determine M. crucifer oviposition levels. Additional oviposition and larval development data were obtained from seven non-experimental sites where weevils were released zero, three, or four years earlier. M. crucifer was not detected on experimental sites without C. officinale after two years, and nontarget herbivory was restricted to rare, low-level spillover. Visible evidence of adult herbivory (i.e., scars on shoots) was associated with oviposition in 90% of targets but only 30% of nontarget plants. We infer, through ecological refuge theory, that nontarget population-level impacts from M. crucifer spillover are unlikely because of temporal, spatial, and probabilistic refuges from herbivory, and make recommendations for monitoring and management of biocontrol systems with similar attributes, such as removing target plants around nontarget populations of interest. Because M. crucifer is among the least host-specific of the modern weed biocontrol agents, and H. micrantha is likely one of its most highly preferred nontargets, these conclusions are, arguably, generally applicable to other nontarget plants and biocontrol systems.
Kim, In-Hah; Han, Jaejoon; Na, Ja Hyun; Chang, Pahn-Sik; Chung, Myung Sub; Park, Ki Hwan; Min, Sea C
2013-02-01
Insect-resistant films containing a microencapsulated insect-repelling agent were developed to protect food products from the Indian meal moth (Plodia interpunctella). Cinnamon oil (CO), an insect repelling agent, was encapsulated with gum arabic, whey protein isolate (WPI)/maltodextrin (MD), or poly(vinyl alcohol) (PVA). A low-density polyethylene (LDPE) film was coated with an ink or a polypropylene (PP) solution that incorporated the microcapsules. The encapsulation efficiency values obtained with gum arabic, WPI/MD, and PVA were 90.4%, 94.6%, and 80.7%, respectively. The films containing a microcapsule emulsion of PVA and CO or incorporating a microcapsule powder of WPI/MD and CO were the most effective (P < 0.05) at repelling moth larvae. The release rate of cinnamaldehyde, an active repellent of cinnamaldehyde, in the PP was 23 times lower when cinnamaldehyde was microencapsulated. Coating with the microcapsules did not alter the tensile properties of the films. The invasion of larvae into cookies was prevented by the insect-repellent films, demonstrating potential for the films in insect-resistant packaging for food products. The insect-repelling effect of cinnamon oil incorporated into LDPE films was more effective with microencapsulation. The system developed in this research with LDPE film may also be extended to other food-packaging films where the same coating platform can be used. This platform is interchangeable and easy to use for the delivery of insect-repelling agents. The films can protect a wide variety of food products from invasion by the Indian meal moth. © 2013 Institute of Food Technologists®
Evolutionary plasticity of insect immunity.
Vilcinskas, Andreas
2013-02-01
Many insect genomes have been sequenced and the innate immune responses of several species have been studied by transcriptomics, inviting the comparative analysis of immunity-related genes. Such studies have demonstrated significant evolutionary plasticity, with the emergence of novel proteins and protein domains correlated with insects adapting to both abiotic and biotic environmental stresses. This review article focuses on effector molecules such as antimicrobial peptides (AMPs) and proteinase inhibitors, which display greater evolutionary dynamism than conserved components such as immunity-related signaling molecules. There is increasing evidence to support an extended role for insect AMPs beyond defense against pathogens, including the management of beneficial endosymbionts. The total number of AMPs varies among insects with completed genome sequences, providing intriguing examples of immunity gene expansion and loss. This plasticity is discussed in the context of recent developments in evolutionary ecology suggesting that the maintenance and deployment of immune responses reallocates resources from other fitness-related traits thus requiring fitness trade-offs. Based on our recent studies using both model and non-model insects, I propose that insect immunity genes can be lost when alternative defense strategies with a lower fitness penalty have evolved, such as the so-called social immunity in bees, the chemical sanitation of the microenvironment by some beetles, and the release of antimicrobial secondary metabolites in the hemolymph. Conversely, recent studies provide evidence for the expansion and functional diversification of insect AMPs and proteinase inhibitors to reflect coevolution with a changing pathosphere and/or adaptations to habitats or food associated with microbial contamination. Copyright © 2012 Elsevier Ltd. All rights reserved.
NMR Studies of the Dynamics of Nitrophorin 2 Bound to Nitric Oxide†
Muthu, Dhanasekaran; Berry, Robert E.; Zhang, Hongjun; Walker, F. Ann
2013-01-01
The Rhodnius nitrophorins are β-barrel proteins of the lipocalin fold with a heme protruding from the open end of the barrel. They are found in the saliva of the blood-sucking insect Rhodnius prolixus, which synthesizes and stores nitric oxide (NO) in the salivary glands, where NO is bound to iron. NO is released by dilution and pH rise when the insect spits its saliva into the tissues of a victim, to aid in obtaining a blood meal. In the adult insect there are four nitrophorins, NP1, NP2, NP3 and NP4. At pH 7.3, NP4 releases NO 17 times faster than does NP2, as measured by stopped-flow kinetics. A number of crystal structures of the least abundant protein, NP4, are available. These structures have been used to propose that two loops between adjacent β-strands at the front opening of the protein, the A-B and G-H loops, determine the rate of NO release. In order to learn how the protein loops contribute to release of NO for each of the nitrophorins, the dynamics of these proteins are being studied in our laboratory. In this work, the NP2-NO complex has been investigated by NMR relaxation measurements to probe the pico- to nanosecond and micro- to millisecond time scale motions at three pH values, 5.0, 6.5, and 7.3. It is found that at pH 5.0 and 6.5, NP2-NO is rigid and only a few residues in the loop regions show dynamics, while at pH 7.3 somewhat more dynamics, particularly of the A-B loop, are observed. Comparison to other lipocalins shows that all are relatively rigid, and that the dynamics of lipocalins in general are much more subtle than those of mainly α-helical proteins. PMID:24116947
Mukherjee, Krishnendu; Vilcinskas, Andreas
2018-01-01
Parasitic fungi are the only pathogens that can infect insect hosts directly through their proteinaceous exoskeleton. Penetration of the cuticle requires the release of fungal enzymes, including proteinases, which act as virulence factors. Insects can sense fungal infections and activate innate immune responses, including the synthesis of antifungal peptides and proteinase inhibitors that neutralize the incoming proteinases. This well-studied host response is epigenetically regulated by histone acetylation/deacetylation. Here we show that entomopathogenic fungi can in turn sense the presence of insect-derived antifungal peptides and proteinase inhibitors, and respond by inducing the synthesis of chymotrypsin-like proteinases and metalloproteinases that degrade the host-derived defense molecules. The rapidity of this response is dependent on the virulence of the fungal strain. We confirmed the specificity of the pathogen response to host-derived defense molecules by LC/MS and RT-PCR analysis, and correlated this process with the epigenetic regulation of histone acetylation/deacetylation. This cascade of responses reveals that the coevolution of pathogens and hosts can involve a complex series of attacks and counterattacks based on communication between the invading fungal pathogen and its insect host. The resolution of this process determines whether or not pathogenesis is successful.
Molecular diversity of PBAN family peptides from fire ants
USDA-ARS?s Scientific Manuscript database
Insect neuropeptides are produced in the central or peripheral nerve tissues, and released to regulate various physiological and behavioral actions during development and reproduction. The PBAN (Pheromone Biosynthesis Activating Neuropeptide)/Pyrokinin peptide family is a major neuropeptide family c...
Optimal control of malaria: combining vector interventions and drug therapies.
Khamis, Doran; El Mouden, Claire; Kura, Klodeta; Bonsall, Michael B
2018-04-24
The sterile insect technique and transgenic equivalents are considered promising tools for controlling vector-borne disease in an age of increasing insecticide and drug-resistance. Combining vector interventions with artemisinin-based therapies may achieve the twin goals of suppressing malaria endemicity while managing artemisinin resistance. While the cost-effectiveness of these controls has been investigated independently, their combined usage has not been dynamically optimized in response to ecological and epidemiological processes. An optimal control framework based on coupled models of mosquito population dynamics and malaria epidemiology is used to investigate the cost-effectiveness of combining vector control with drug therapies in homogeneous environments with and without vector migration. The costs of endemic malaria are weighed against the costs of administering artemisinin therapies and releasing modified mosquitoes using various cost structures. Larval density dependence is shown to reduce the cost-effectiveness of conventional sterile insect releases compared with transgenic mosquitoes with a late-acting lethal gene. Using drug treatments can reduce the critical vector control release ratio necessary to cause disease fadeout. Combining vector control and drug therapies is the most effective and efficient use of resources, and using optimized implementation strategies can substantially reduce costs.
Heritable strategies for controlling insect vectors of disease.
Burt, Austin
2014-01-01
Mosquito-borne diseases are causing a substantial burden of mortality, morbidity and economic loss in many parts of the world, despite current control efforts, and new complementary approaches to controlling these diseases are needed. One promising class of new interventions under development involves the heritable modification of the mosquito by insertion of novel genes into the nucleus or of Wolbachia endosymbionts into the cytoplasm. Once released into a target population, these modifications can act to reduce one or more components of the mosquito population's vectorial capacity (e.g. the number of female mosquitoes, their longevity or their ability to support development and transmission of the pathogen). Some of the modifications under development are designed to be self-limiting, in that they will tend to disappear over time in the absence of recurrent releases (and hence are similar to the sterile insect technique, SIT), whereas other modifications are designed to be self-sustaining, spreading through populations even after releases stop (and hence are similar to traditional biological control). Several successful field trials have now been performed with Aedes mosquitoes, and such trials are helping to define the appropriate developmental pathway for this new class of intervention.
Hou, Xingwei; Fields, Paul G
2003-06-01
A granary trial was conducted to evaluate the efficacy of protein-enriched pea flour against three common stored-grain insects, Sitophilus oryzae (L.), Tribolium castaneum (Herbst), and Cryptolestes ferrugineus (Stephens). Six 30-t farm granaries were filled with approximately 11 t of barley. The barley was either not treated, treated with protein-enriched pea flour at 0.1% throughout the entire grain mass, or treated at 0.5% throughout the top half of the grain mass. Adult insects were released in screened boxes (two insects per kilogram barley for S. oryzae and T. castaneum 1.4 insects per kilogram barley for C. ferrugineus). Barley was sampled four times during the 70-d trial. The number and mortality of adults and emerged adults in the samples were noted. Four kinds of traps, flight, surface-pitfall, probe-pitfall, and sticky-bar, were placed at different locations in the granaries to estimate the movement of insects. The 0.1% protein-enriched pea flour treatment reduced adult numbers of S. oryzae by 93%, T. castaneum by 66%, and C. ferrugineus by 58%, and reduced the emerged adults by 87, 77, and 77%, respectively. Treating the top half of the barley with 0.5% protein-enriched pea flour had similar effects as treating the entire grain mass with 0.1% pea-protein flour. However, the top-half treatment failed to prevent insects from penetrating into the untreated lower layer. Differences between traps are discussed.
Barnard, J P; Pedersen, P L
1994-08-15
In the presence of glucose and ample oxygen, insect form African trypanosomes release pyruvate more than 100-fold more slowly than do bloodstream forms. This rate decrease could not be accounted for simply by an increased mitochondrial pyruvate oxidation rate as inhibiting mitochondrial respiration increases pyruvate efflux to rates only 2-3% of that observed for bloodstream form trypanosomes. Alternatively, decreased pyruvate efflux from insect form trypanosomes could not be accounted for by decreased pyruvate transporter activity, which, surprisingly, was nearly as high in insect form trypanosomes as reported by us earlier for bloodstream forms (J.P. Barnard, B. Reynafarje, and P.L. Pedersen (1993) J. Biol. Chem. 268, 3654-3661). Rather, the low pyruvate efflux rate appears to be due primarily to reduced levels of the enzyme pyruvate kinase, which, in contrast to conclusions of an earlier study, is readily detected in insect form trypanosomes in the absence of added activators at an activity level about 4% of that found in bloodstream forms. Insect form pyruvate kinase seems to be located in the cytosol and exhibits kinetic profiles and constants nearly identical to those reported by us earlier for the bloodstream form enzyme (J.P. Barnard, and P.L. Pedersen (1988) Mol. Biochem. Parasitol. 31, 141-148). It is suggested that the reduced levels of pyruvate kinase, and hence the reduced pyruvate efflux rates, in insect form trypanosomes result from down regulation of the gene encoding the cytosolic enzyme.
Pentzold, Stefan; Zagrobelny, Mika; Rook, Fred; Bak, Søren
2014-08-01
Insect herbivory is often restricted by glucosylated plant chemical defence compounds that are activated by plant β-glucosidases to release toxic aglucones upon plant tissue damage. Such two-component plant defences are widespread in the plant kingdom and examples of these classes of compounds are alkaloid, benzoxazinoid, cyanogenic and iridoid glucosides as well as glucosinolates and salicinoids. Conversely, many insects have evolved a diversity of counteradaptations to overcome this type of constitutive chemical defence. Here we discuss that such counter-adaptations occur at different time points, before and during feeding as well as during digestion, and at several levels such as the insects’ feeding behaviour, physiology and metabolism. Insect adaptations frequently circumvent or counteract the activity of the plant β-glucosidases, bioactivating enzymes that are a key element in the plant’s two-component chemical defence. These adaptations include host plant choice, non-disruptive feeding guilds and various physiological adaptations as well as metabolic enzymatic strategies of the insect’s digestive system. Furthermore, insect adaptations often act in combination, may exist in both generalists and specialists, and can act on different classes of defence compounds. We discuss how generalist and specialist insects appear to differ in their ability to use these different types of adaptations: in generalists, adaptations are often inducible, whereas in specialists they are often constitutive. Future studies are suggested to investigate in detail how insect adaptations act in combination to overcome plant chemical defences and to allow ecologically relevant conclusions.
A New Diagnostic Resource for Ceratitis capitata Strain Identification Based on QTL Mapping
Sim, Sheina B.; Ruiz-Arce, Raul; Barr, Norman B.; Geib, Scott M.
2017-01-01
The Mediterranean fruit fly Ceratitis capitata (Wiedemann) is a destructive agricultural pest and the subject of exclusion efforts in many countries. Suppression and eradication of invasive populations to prevent its establishment is facilitated by the release of sterile males using the sterile insect technique (SIT). In SIT release areas, it is critical to accurately discriminate between released sterile males and wild individuals to detect extremely rare invasive individuals in areas inundated with millions of sterile male flies. Current methods for discrimination exist but are not always definitive, and a more reliable method is necessary. To address this, we developed a genotyping assay that can be used to discriminate between sterile males from the SIT strain and wild individuals. This was achieved by identifying single nucleotide polymorphisms (SNPs) linked to the maintained traits that facilitate male-only releases, white pupae (wp) and temperature-sensitive lethal (tsl), via QTL mapping. This resulted in the identification of one SNP that was in near-perfect linkage disequilibrium between genotype at this locus and the pupal color phenotype. Medfly from many SIT colonies and wild individuals from across its geographic range were genotyped for this locus, and results show its consistency in identifying SIT flies. In addition, linkage and QTL mapping of wp and tsl have larger impacts as they can serve as foundational tools to identify the genetic basis of traits that facilitate the separation of males from female flies, which can be used to develop SIT programs in related species. PMID:28889103
Robischon, Marcel
2015-04-01
Cytokinins are plant hormones that have, among many other functions, senescence-modulatory effects in plant tissue. This is evident not only from biochemical data, but is vividly illustrated in the "green island" phenotype in plant leaves caused by cytokinins released for example by leaf mining insects or microbial pathogens. It is beyond doubt that, in addition to their roles in plants, cytokinins also provoke physiological and developmental effects in animals. It is hypothesized that the recently much discussed modification of plant metabolism by insects and associated microbes via cytokinin signals has a counterpart in direct cytokinin signalling that interferes with the animals' hormonal systems and impacts their population dynamics. © 2015 WILEY Periodicals, Inc.
Madakacherry, Odessa; Lees, Rosemary Susan; Gilles, Jeremie Roger Lionel
2014-04-01
To control the container-breeding mosquito and major vector of dengue and chikungunya Aedes albopictus, the sterile insect technique (SIT) is proposed as a component of integrated vector management programs in endemic areas. For the technique to be successful, released males, sterilized with 35 Gy of ionizing radiation during the pupal stage, must be able to compete for mating opportunities with wild counterparts and successfully copulate with wild females to induce sterility in the population. Any reduction in competitiveness can be compensated for by increasing the ratio of released sterile to wild males, a ratio which must be optimized for effectiveness and efficiency. Fruit fly SIT programs use field enclosures to test the competitiveness of sterile males to monitor the quality of the colony and adjust release ratios. This is laborious and time consuming, and for mosquito programs it would be advantageous if similarly useful results could be obtained by smaller scale laboratory tests, conducted on a more regular basis. In the present study we compared the competitiveness, as measured by hatching rate of resulting egg batches, of irradiated males measured in small and large laboratory cages and semi-field enclosures in a greenhouse setting, when competing in a 1:1, 3:1, and 5:1 ratio with fertile males. The sterile males were found to be equally competitive when compared to unirradiated counterparts, and a 5:1 ratio was sufficient to reduce, but not eliminate, the fertility of the female populations, irrespective of cage size. Variability in hatch rate in eggs laid by individual females and so-called indeterminate matings, when we could not be certain whether a female had mated a fertile or a sterile male, could be investigated by closer investigation of mating status and the frequency of multiple matings in Ae. albopictus. The laboratory results are encouraging for the effectiveness of the SIT using irradiated males of this species, and we support further assessment in the field. Copyright © 2013 International Atomic Energy Agency 2013. Published by Elsevier B.V. All rights reserved.
Multiple transgene traits may create un-intended fitness effects in Brassica napus
Increasingly, genetically modified crops are being developed to express multiple “stacked” traits for different types of transgenes, for example, herbicide resistance, insect resistance, crop quality and resistance to environmental factors. The release of crops that express mult...
Site-directed mutagenesis and PBAN activation of the Helicoverpa zea PBAN-receptor
USDA-ARS?s Scientific Manuscript database
Insect neuropeptides are produced in the central or peripheral nerve tissues, and released to regulate various physiological and behavioral actions during development and reproduction. Pheromone biosynthesis-activating neuropeptide (PBAN)/Pyrokinin is a major neuropeptide family characterized with a...
Barberà, M; Martínez-Torres, D
2017-10-01
Insect hormones control essential aspects of physiology, behaviour and development in insects. The majority of insect hormones are peptide hormones that perform a highly diverse catalogue of functions. Prothoracicotropic hormone (PTTH) is a brain neuropeptide hormone whose main function is to stimulate the secretion of ecdysone (the moulting hormone) by the prothoracic glands in insect larvae thus playing a key role in the control of moulting and metamorphosis. Moreover, both PTTH release or blockade have been reported to act as a switch to terminate or initiate larval and pupal diapauses. In insects, diapause is a prevalent response often regulated by the photoperiod. It has been shown that PTTH participates as an output of the circadian clock and a role in photoperiodic processes is suggested in some insect species. Aphids (Hemiptera: Aphididae) reproduce by cyclical parthenogenesis with a sexual phase, induced by short photoperiods, that leads to the production of diapausing eggs. With the availability of the pea aphid (Acyrthosiphon pisum) genome, efforts to identify and characterize genes relevant to essential aspects of aphid biology have multiplied. In spite of its relevance, several genomic and transcriptomic studies on aphid neuropeptides failed to detect aphid PTTH amongst them. Here we report on the first identification of the aphid PTTH coding gene and the neuroanatomical localization of its expression in the aphid brain. © 2017 The Royal Entomological Society.
Richards, Elaine H; Wontner-Smith, Tim; Bradish, Hannah; Dani, M Paulina; Cotterill, Jane V
2015-09-01
The objective was to develop an environmentally favourable microcapsule suitable for delivery of proteinaceous bioactive agents ('bioinsecticides') to pest insects. Utilising feeding bioassays, we determined that microspheres made of alginate can be produced in a variety of sizes and are palatable and non-toxic to larvae of the lepidopteran pest Lacanobia oleracea. Dehydrated microspheres were also readily ingested by larvae. Using a novel feeding bioassay and alginate microspheres containing a fluorescent marker material (coumarin 7 encapsulated in styrene maleic anhydride beads), we determined that the microspheres successfully deliver the marker to the insect gut. Moreover, the alginate microspheres rapidly break down in the alkaline conditions of the insect gut and release their contents, the beads passing through the gut in 2-3 h. Using bovine serum albumin as a test protein and western blotting, it was determined that alginate can successfully encapsulate protein, and that the microspheres can be stored in a CaCl2 solution for up to 24 days without extensive leakage. Importantly, it was also determined that alginate and the microsphere-making procedure developed do not inactivate rVPr1 (an insect immunosuppressive protein and potential bioinsecticide). An alginate-based microsphere has potential to deliver the proteinaceous bioactive rVPr1 to pest insects. © 2014 Crown copyright. Pest Management Science © 2014 Society of Chemical Industry.
A Serpin Released by an Entomopathogen Impairs Clot Formation in Insect Defense System
Hao, YouJin; Balasubramanian, Natesan; Jing, Yingjun; Montiel, Rafael; Faria, Tiago Q.; Brito, Rui M.; Simões, Nelson
2013-01-01
Steinernema carpocapsae is an entomopathogenic nematode widely used for the control of insect pests due to its virulence, which is mainly attributed to the ability the parasitic stage has to overcome insect defences. To identify the mechanisms underlying such a characteristic, we studied a novel serpin-like inhibitor (sc-srp-6) that was detected in a transcriptome analysis. Recombinant Sc-SRP-6 produced in Escherichia coli had a native fold of serpins belonging to the α-1-peptidase family and exhibited inhibitory activity against trypsin and α-chymotrypsin with Ki of 0.42×10−7 M and 1.22×10−7 M, respectively. Functional analysis revealed that Sc-SRP-6 inhibits insect digestive enzymes, thus preventing the hydrolysis of ingested particles. Moreover, Sc-SRP-6 impaired the formation of hard clots at the injury site, a major insect defence mechanism against invasive pathogens. Sc-SRP-6 does not prevent the formation of clot fibres and the activation of prophenoloxidases but impairs the incorporation of the melanin into the clot. Binding assays showed a complex formation between Sc-SRP-6 and three proteins in the hemolymph of lepidopteran required for clotting, apolipophorin, hexamerin and trypsin-like, although the catalytic inhibition occurred exclusively in trypsin-like. This data allowed the conclusion that Sc-SRP-6 promotes nematode virulence by inhibiting insect gut juices and by impairing immune clot reaction. PMID:23874900
More than two decades of research on insect neuropeptide GPCRs: an overview
Caers, Jelle; Verlinden, Heleen; Zels, Sven; Vandersmissen, Hans Peter; Vuerinckx, Kristel; Schoofs, Liliane
2012-01-01
This review focuses on the state of the art on neuropeptide receptors in insects. Most of these receptors are G protein-coupled receptors (GPCRs) and are involved in the regulation of virtually all physiological processes during an insect's life. More than 20 years ago a milestone in invertebrate endocrinology was achieved with the characterization of the first insect neuropeptide receptor, i.e., the Drosophila tachykinin-like receptor. However, it took until the release of the Drosophila genome in 2000 that research on neuropeptide receptors boosted. In the last decade a plethora of genomic information of other insect species also became available, leading to a better insight in the functions and evolution of the neuropeptide signaling systems and their intracellular pathways. It became clear that some of these systems are conserved among all insect species, indicating that they fulfill crucial roles in their physiological processes. Meanwhile, other signaling systems seem to be lost in several insect orders or species, suggesting that their actions were superfluous in those insects, or that other neuropeptides have taken over their functions. It is striking that the deorphanization of neuropeptide GPCRs gets much attention, but the subsequent unraveling of the intracellular pathways they elicit, or their physiological functions are often hardly examined. Especially in insects besides Drosophila this information is scarce if not absent. And although great progress made in characterizing neuropeptide signaling systems, even in Drosophila several predicted neuropeptide receptors remain orphan, awaiting for their endogenous ligand to be determined. The present review gives a précis of the insect neuropeptide receptor research of the last two decades. But it has to be emphasized that the work done so far is only the tip of the iceberg and our comprehensive understanding of these important signaling systems will still increase substantially in the coming years. PMID:23226142
Insect pest management decisions in food processing facilities
USDA-ARS?s Scientific Manuscript database
Pest management decision making in food processing facilities such as flour mills, rice mills, human and pet food manufacturing facilities, distribution centers and warehouses, and retail stores is a challenging undertaking. Insect pest management programs require an understanding of the food facili...
Zhou, Xue-Yong; Liu, Ning; Zhao, Man; Li, He; Zhou, Lang; Tang, Zong-Wen; Cao, Fei; Li, Wei
2011-05-01
With the large scale cultivation of transgenic crops expressing Bacillus thuringiensis (Bt) insecticidal crystal proteins in the world, the problem of environmental safety caused by these Bt crops has received extensive attention. These insecticidal crystal proteins can be released into the soil continuously in the growing period of Bt plants. If their accumulation of the insecticidal crystal proteins exceeds consumption by insect larvae and degradation by the environmental factors, these insecticidal crystal proteins could constitute a hazard to non-target insects and soil microbiota. There are three main ways to release insecticidal crystal proteins into soil for Bt plants: root exudates, pollen falling, and crop reside returning. The Bt insecticidal crystal proteins released into soil can be adsorbed rapidly by active soil particles and the absorption equilibrium attained within 1-3 h. The adsorption protects Bt insecticidal crystal proteins against soil microbial degradation or enzyme degradation, which leads to remarkable prolong of the persistence of insecticidal activity. The change of soil microorganism species is an important index for evaluating the effect of Bt plants on soil ecology. The research showed that these insecticidal crystal proteins released by the Bt plant root exudates or Bt organism had no toxicity to the soil earthworms, nematodes, protozoa, bacteria and fungi; however, it could reduce the mycelium length of the arbuscular mycorrhizal fungi (AMF) and restrain AMF to form invasion unit. The influencing degree of Bt protein on soil enzyme activity varied with the releasing modes or growth period of Bt crops. Bt Cry1Ab protein can be taken up from soil by parts of following crops; however, different results were obtained with different commercial kits. To better understand the soil ecological evaluation about the insecticidal crystal proteins released from transgenic Bt crops, this review provides a comprehensive overview about the release, adsorption and residue of Bt insecticidal crystal proteins in soil, as well as their effects on soil protozoa, soil microorganism, soil enzyme activity and following crops.
Zhang, Dongjing; Lees, Rosemary Susan; Xi, Zhiyong; Bourtzis, Kostas; Gilles, Jeremie R L
2016-01-01
Combination of the sterile insect technique with the incompatible insect technique is considered to be a safe approach to control Aedes albopictus populations in the absence of an accurate and scalable sex separation system or genetic sexing strain. Our previous study has shown that the triple Wolbachia-infected Ae. albopictus strain (wAlbA, wAlbB and wPip) was suitable for mass rearing and females could be completely sterilized as pupae with a radiation dose of at least 28 Gy. However, whether this radiation dose can influence the mating competitiveness of the triple infected males was still unknown. In this study we aimed to evaluate the effects of irradiation on the male mating competitiveness of the triple infected strain under laboratory and semi-field conditions. The results herein indicate that irradiation with a lower, female-sterilizing dose has no negative impact on the longevity of triple infected males while a reduced lifespan was observed in the wild type males (wAlbA and wAlbB) irradiated with a higher male-sterilizing dose, in small cages. At different sterile: fertile release ratios in small cages, triple-infected males induced 39.8, 81.6 and 87.8% sterility in a wild type female population at 1:1, 5:1 and 10:1 release ratios, respectively, relative to a fertile control population. Similarly, irradiated triple infected males induced 31.3, 70.5 and 89.3% sterility at 1:1, 5:1 and 10:1 release ratios, respectively, again relative to the fertile control. Under semi-field conditions at a 5:1 release ratio, relative to wild type males, the mean male mating competitiveness index of 28 Gy irradiated triple-infected males was significantly higher than 35 Gy irradiated wild type males, while triple infected males showed no difference in mean mating competitiveness to either irradiated triple-infected or irradiated wild type males. An unexpected difference was also observed in the relative male mating competitiveness of the triple infected strain after irradiation at 28 Gy dose in small vs large cages, with a higher male mating competitiveness index calculated from results of experiments in the large cages. Based on these results, we consider that the male mating performance of the triple infected strain after irradiation at 28 Gy, a dose required for complete female sterility and the avoidance of population replacement, is approximately equal to that of the wild type males under semi-field conditions. Though field evaluation is required, this suggests that the triple infected strain is suitable for irradiation and release as part of a combined SIT-IIT approach to Ae. albopictus control.
Zhang, Dongjing; Lees, Rosemary Susan; Xi, Zhiyong; Bourtzis, Kostas; Gilles, Jeremie R. L.
2016-01-01
Combination of the sterile insect technique with the incompatible insect technique is considered to be a safe approach to control Aedes albopictus populations in the absence of an accurate and scalable sex separation system or genetic sexing strain. Our previous study has shown that the triple Wolbachia-infected Ae. albopictus strain (wAlbA, wAlbB and wPip) was suitable for mass rearing and females could be completely sterilized as pupae with a radiation dose of at least 28 Gy. However, whether this radiation dose can influence the mating competitiveness of the triple infected males was still unknown. In this study we aimed to evaluate the effects of irradiation on the male mating competitiveness of the triple infected strain under laboratory and semi-field conditions. The results herein indicate that irradiation with a lower, female-sterilizing dose has no negative impact on the longevity of triple infected males while a reduced lifespan was observed in the wild type males (wAlbA and wAlbB) irradiated with a higher male-sterilizing dose, in small cages. At different sterile: fertile release ratios in small cages, triple-infected males induced 39.8, 81.6 and 87.8% sterility in a wild type female population at 1:1, 5:1 and 10:1 release ratios, respectively, relative to a fertile control population. Similarly, irradiated triple infected males induced 31.3, 70.5 and 89.3% sterility at 1:1, 5:1 and 10:1 release ratios, respectively, again relative to the fertile control. Under semi-field conditions at a 5:1 release ratio, relative to wild type males, the mean male mating competitiveness index of 28 Gy irradiated triple-infected males was significantly higher than 35 Gy irradiated wild type males, while triple infected males showed no difference in mean mating competitiveness to either irradiated triple-infected or irradiated wild type males. An unexpected difference was also observed in the relative male mating competitiveness of the triple infected strain after irradiation at 28 Gy dose in small vs large cages, with a higher male mating competitiveness index calculated from results of experiments in the large cages. Based on these results, we consider that the male mating performance of the triple infected strain after irradiation at 28 Gy, a dose required for complete female sterility and the avoidance of population replacement, is approximately equal to that of the wild type males under semi-field conditions. Though field evaluation is required, this suggests that the triple infected strain is suitable for irradiation and release as part of a combined SIT-IIT approach to Ae. albopictus control. PMID:26990981
Chemical signaling and insect attraction is a conserved trait in yeasts.
Becher, Paul G; Hagman, Arne; Verschut, Vasiliki; Chakraborty, Amrita; Rozpędowska, Elżbieta; Lebreton, Sébastien; Bengtsson, Marie; Flick, Gerhard; Witzgall, Peter; Piškur, Jure
2018-03-01
Yeast volatiles attract insects, which apparently is of mutual benefit, for both yeasts and insects. However, it is unknown whether biosynthesis of metabolites that attract insects is a basic and general trait, or if it is specific for yeasts that live in close association with insects. Our goal was to study chemical insect attractants produced by yeasts that span more than 250 million years of evolutionary history and vastly differ in their metabolism and lifestyle. We bioassayed attraction of the vinegar fly Drosophila melanogaster to odors of phylogenetically and ecologically distinct yeasts grown under controlled conditions. Baker's yeast Saccharomyces cerevisiae , the insect-associated species Candida californica , Pichia kluyveri and Metschnikowia andauensis , wine yeast Dekkera bruxellensis , milk yeast Kluyveromyces lactis , the vertebrate pathogens Candida albicans and Candida glabrata , and oleophilic Yarrowia lipolytica were screened for fly attraction in a wind tunnel. Yeast headspace was chemically analyzed, and co-occurrence of insect attractants in yeasts and flowering plants was investigated through a database search. In yeasts with known genomes, we investigated the occurrence of genes involved in the synthesis of key aroma compounds. Flies were attracted to all nine yeasts studied. The behavioral response to baker's yeast was independent of its growth stage. In addition to Drosophila , we tested the basal hexapod Folsomia candida (Collembola) in a Y-tube assay to the most ancient yeast, Y. lipolytica, which proved that early yeast signals also function on clades older than neopteran insects. Behavioral and chemical data and a search for selected genes of volatile metabolites underline that biosynthesis of chemical signals is found throughout the yeast clade and has been conserved during the evolution of yeast lifestyles. Literature and database reviews corroborate that yeast signals mediate mutualistic interactions between insects and yeasts. Moreover, volatiles emitted by yeasts are commonly found also in flowers and attract many insect species. The collective evidence suggests that the release of volatile signals by yeasts is a widespread and phylogenetically ancient trait, and that insect-yeast communication evolved prior to the emergence of flowering plants. Co-occurrence of the same attractant signals in yeast and flowers suggests that yeast-insect communication may have contributed to the evolution of insect-mediated pollination in flowers.
Mass production of entomopathogenic fungi: state of the art
USDA-ARS?s Scientific Manuscript database
Entomopathogenic fungi for the management of insect pests have been steadily gaining popularity in the last 50 years. Each year, more and more fungi are being commercialized all over the world for inundative application as mycoinsecticides, and some developed for inoculative release, as appreciation...
TOXICITY OF FIPRONIL AND ITS ENANTIOMERS TO MARINE AND FRESHWATER NON-TARGETS
Fipronil is a phenylpyrazole insecticide used in agricultural and domestic settings for controlling various insect pests in crops, lawns, and residential structures. Fipronil is chiral; however, it is released into the environment as a racemic mixture of two enantiomers. In this ...
Papaefthimiou, Chrisovalantis; Zafeiridou, Georgia; Topoglidi, Aglaia; Chaleplis, George; Zografou, Stella; Theophilidis, George
2003-07-01
Three triazine herbicides, atrazine, simazine and metribuzine, and some of their major metabolites (cyanuric acid and 6-azauracil) were investigated for their action on synaptic terminals using three different isolated tissue preparations from the atria of the frog, Rana ridibunda, the heart of the honeybee, Apis mellifera macedonica, and the ventral nerve cord of the beetle, Tenebrio molitor. The results indicate that triazines facilitate the release of neurotransmitters from nerve terminals, as already reported for the mammalian central nervous system. The no observed effect concentration, the maximum concentration of the herbicide diluted in the saline that has no effect on the physiological properties of the isolated tissue, was estimated for each individual preparation. According to their relative potency, the three triazines tested can be ranked as follows: atrazine (cyanuric acid), simazine>metribuzine (6-azauracil). The action of these compounds on the cholinergic (amphibians, insects), adrenergic (amphibian) and octopaminergic (insects) synaptic terminals is discussed.
Chang, Chiou Ling
2017-08-01
Sterile insect technique (SIT) is one of the most effective fruit fly control technologies. Irradiation has been used to sterilize male fruit flies before release to the field to compete with the wild males for females. Imagine an environmental and cost effective method using a rearing diet that can make insects sterile indefinitely, by feeding for 7days before release. This could replace costly irradiation process. A potential birth control diet was evaluated on fertility, mating, survival, and protein analysis for fruit fly species in Hawaii. Insects were continuously fed an agar diet with lufenuron (LFN) for 7d after emergence and then switched to a control diet to simulate the actual field condition. The influence on egg hatch was dose dependent. With dose of 2-4mg/g in the diet, egg hatch from LFN-fed was almost 100% suppressed for 24 experimental days if adults of Ceratitia capitate (Widemann), Bactrocera dorsalis (Hendel), and B. latifrons (Hendel) continued to feed on LFN diet. B. cucurbitae (Coquillett) was not affected by LFN. However, egg hatch from LFN fed B. latifrons and B. dorsalis were suppressed for at least 2weeks after switching to the control diet at 7d. Egg hatch did not recover >4% up to 24d. Proteome analysis revealed that ABD-4 protein was under expressed by 70-83% on LFN fed females and males of B. latifrons and B. dorsalis while Pbprp2 protein was significantly over expressed by 6-12 fold on LFN fed males only. These two proteins were not expressed in C. capitata and B. cucurbitae. Therefore, this report focused more on B. latifrons and B. dorsalis. This finding suggested a great potential for one alternative to sterilize fruit flies for SIT without irradiation. Published by Elsevier Inc.
Zhang, Ziyan; He, Kate S.; Li, Bo
2015-01-01
Release from specialist insect herbivores may allow invasive plants to evolve traits associated with decreased resistance and increased competitive ability. Given that there may be genetic trade-off between resistance and tolerance, invasive plants could also become more tolerant to herbivores. Although it is widely acknowledged that light availability affects tolerance to herbivores, little information is available for whether the effect of light availability on tolerance differ between the introduced and native populations. We conducted a common garden experiment in the introduced range of Alternanthera philoxeroides using ten invasive US and ten native Argentinean populations at two levels of light availability and in the presence or absence of a specialist stem-boring insect Agasicles hygrophila. Plant biomass (total and storage root biomass), two allocation traits (root/shoot ratio and branch intensity, branches biomass/main stem biomass) and two functional traits (specific stem length and specific leaf area), which are potentially associated with herbivore resistance and light capture, were measured. Overall, we found that A. philoxeroides from introduced ranges had comparable biomass and tolerance to specialist herbivores, lower branch intensity, lower specific stem length and specific leaf area. Moreover, introduced populations displayed higher shade tolerance of storage root biomass and lower plastic response to shading in specific stem length. Finally, light availability had no significant effect on evolution of tolerance to specialist herbivores of A. philoxeroides. Our results suggest that post-introduction evolution might have occurred in A. philoxeroides. While light availability did not influence the evolution of tolerance to specialist herbivores, increased shade tolerance and release from specialist insects might have contributed to the successful invasion of A. philoxeroides. PMID:26407176
The multiple strategies of an insect herbivore to overcome plant cyanogenic glucoside defence.
Pentzold, Stefan; Zagrobelny, Mika; Roelsgaard, Pernille Sølvhøj; Møller, Birger Lindberg; Bak, Søren
2014-01-01
Cyanogenic glucosides (CNglcs) are widespread plant defence compounds that release toxic hydrogen cyanide by plant β-glucosidase activity after tissue damage. Specialised insect herbivores have evolved counter strategies and some sequester CNglcs, but the underlying mechanisms to keep CNglcs intact during feeding and digestion are unknown. We show that CNglc-sequestering Zygaena filipendulae larvae combine behavioural, morphological, physiological and biochemical strategies at different time points during feeding and digestion to avoid toxic hydrolysis of the CNglcs present in their Lotus food plant, i.e. cyanogenesis. We found that a high feeding rate limits the time for plant β-glucosidases to hydrolyse CNglcs. Larvae performed leaf-snipping, a minimal disruptive feeding mode that prevents mixing of plant β-glucosidases and CNglcs. Saliva extracts did not inhibit plant cyanogenesis. However, a highly alkaline midgut lumen inhibited the activity of ingested plant β-glucosidases significantly. Moreover, insect β-glucosidases from the saliva and gut tissue did not hydrolyse the CNglcs present in Lotus. The strategies disclosed may also be used by other insect species to overcome CNglc-based plant defence and to sequester these compounds intact.
The pro-apoptotic action of the peptide hormone Neb-colloostatin on insect haemocytes.
Czarniewska, E; Mrówczynska, L; Kuczer, M; Rosinski, G
2012-12-15
The gonadoinhibitory peptide hormone Neb-colloostatin was first isolated from ovaries of the flesh fly Neobellieria bullata. This 19-mer peptide is thought to be a cleaved product of a collagen-like precursor molecule that is formed during remodelling of the extracellular matrix. In this study, we report that upon injection of picomolar and nanomolar doses, this peptide exerts a pro-apoptotic action on haemocytes of Tenebrio molitor adults, as visualized by changes in morphology and viability. The F-actin cytoskeleton was found to aggregate into distinctive patches. This may be responsible for the observed inhibition of adhesion of haemocytes and for the stimulation of filopodia formation. However, Neb-colloostatin injection did not induce the formation of autophagic vacuoles. Our results suggest that physiological concentrations of Neb-colloostatin play an important role in controlling the quantity and activity of haemocytes in insect haemolymph. They also suggest that during periods in which Neb-colloostatin is released, this peptide may cause a weakening of the insects' immune system. This is the first report that exposure to a peptide hormone causes apoptosis in insect haemocytes.
An immunological axis of biocontrol: infections in field-trapped insects
NASA Astrophysics Data System (ADS)
Tunaz, Hasan; Stanley, David
2009-09-01
Insect immunology is an active research arena, however, the vast majority of research in the area is conducted on model species taken from laboratory cultures. We tested the hypothesis that insects are regularly exposed to infections or invasions in nature and here report results of a field study designed to assess the extent of natural infections in insects collected from agrarian fields surrounding Kahramanmaraş, Turkey. Specimens were dissected to assess numbers of nodules. Formation of darkened, melanotic nodules is the predominant cellular immune reaction to microbial and parasitic infection, and once formed, the nodules are permanently attached to internal surfaces. The collected insects were healthy. Of the >400 examined specimens, at least some nodules were found in 98%. Numbers of nodules ranged from ˜2/individual to >100 nodules/individual. We conclude that insects are regularly challenged by microbial and parasitic infections from which they recover. The novel implication of our data is that insect immune systems may limit the host range and effectiveness of agents deployed in biological control programs. Knowledge of insect immune systems may contribute to increased use of biopesticides globally.
Young, Erica B; Sielicki, Jessica; Grothjan, Jacob J
2018-04-20
Carnivorous pitcher plants Sarracenia purpurea host diverse eukaryotic and bacterial communities which aid in insect prey digestion, but little is known about the functional processes mediated by the microbial communities. This study aimed to connect pitcher community diversity with functional nutrient transformation processes, identifying bacterial taxa, and measuring regulation of hydrolytic enzyme activity in response to prey and alternative nutrient sources. Genetic analysis identified diverse bacterial taxa known to produce hydrolytic enzyme activities. Chitinase, protease, and phosphatase activities were measured using fluorometric assays. Enzyme activity in field pitchers was positively correlated with bacterial abundance, and activity was suppressed by antibiotics suggesting predominantly bacterial sources of chitinase and protease activity. Fungi, algae, and rotifers observed could also contribute enzyme activity, but fresh insect prey released minimal chitinase activity. Activity of chitinase and proteases was upregulated in response to insect additions, and phosphatase activity was suppressed by phosphate additions. Particulate organic P in prey was broken down, appearing as increasing dissolved organic and inorganic P pools within 14 days. Chitinase and protease were not significantly suppressed by availability of dissolved organic substrates, though organic C and N stimulated bacterial growth, resulting in elevated enzyme activity. This comprehensive field and experimental study show that pitcher plant microbial communities dynamically regulate hydrolytic enzyme activity, to digest prey nutrients to simpler forms, mediating biogeochemical nutrient transformations and release of nutrients for microbial and host plant uptake.
Adamo, Shelley A
2017-02-01
The classic biomedical view is that stress hormone effects on the immune system are largely pathological, especially if the stress is chronic. However, more recent interpretations have focused on the potential adaptive function of these effects. This paper examines stress response-immune system interactions from a physiological network perspective, using insects because of their simpler physiology. For example, stress hormones can reduce disease resistance, yet activating an immune response results in the release of stress hormones in both vertebrates and invertebrates. From a network perspective, this phenomenon is consistent with the 'sharing' of the energy-releasing ability of stress hormones by both the stress response and the immune system. Stress-induced immunosuppression is consistent with the stress response 'borrowing' molecular components from the immune system to increase the capacity of stress-relevant physiological processes (i.e. a trade off). The insect stress hormones octopamine and adipokinetic hormone can also 'reconfigure' the immune system to help compensate for the loss of some of the immune system's molecular resources (e.g. apolipophorin III). This view helps explain seemingly maladaptive interactions between the stress response and immune system. The adaptiveness of stress hormone effects on individual immune components may be apparent only from the perspective of the whole organism. These broad principles will apply to both vertebrates and invertebrates. Copyright © 2016 Elsevier Inc. All rights reserved.
Wurdack, Mareike; Polidori, Carlo; Keller, Alexander; Feldhaar, Heike; Schmitt, Thomas
2017-11-01
The cuticle of insects is covered by a layer of hydrocarbons (CHC), whose original function is the protection from desiccation and pathogens. However, in most insects CHC profiles are species specific. While this variability among species was largely linked to communication and recognition functions, additional selective forces may shape insect CHC profiles. Here, we show that in Philanthinae digger wasps (Crabronidae) the CHC profile coevolved with a peculiar brood-care strategy. In particular, we found that the behavior to embalm prey stored in the nest with hydrocarbons is adaptive to protect larval food from fungi in those species hunting for Hymenoptera. The prey embalming secretion is identical in composition to the alkene-dominated CHC profile in these species, suggesting that their profile is adaptively conserved for this purpose. In contrast, prey embalming is not required in those species that switched to Coleoptera as prey. Released from this chemical brood-care strategy, Coleoptera-hunting species considerably diversified their CHC profiles. Differential needs to successfully protect prey types used as larval food have thus driven the diversification of CHCs profiles of female Philanthinae wasps. To the best of our knowledge, this is the first evidence of a direct link between selection pressure for food preservation and CHC diversity. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
Groenewald, Berlizé; Hetz, Stefan K; Chown, Steven L; Terblanche, John S
2012-07-01
Gas exchange dynamics in insects is of fundamental importance to understanding evolved variation in breathing patterns, such as discontinuous gas exchange cycles (DGCs). Most insects do not rely solely on diffusion for the exchange of respiratory gases but may also make use of respiratory movements (active ventilation) to supplement gas exchange at rest. However, their temporal dynamics have not been widely investigated. Here, intratracheal pressure, V(CO2) and body movements of the desert locust Schistocerca gregaria were measured simultaneously during the DGC and revealed several important aspects of gas exchange dynamics. First, S. gregaria employs two different ventilatory strategies, one involving dorso-ventral contractions and the other longitudinal telescoping movements. Second, although a true spiracular closed (C)-phase of the DGC could be identified by means of subatmospheric intratracheal pressure recordings, some CO(2) continued to be released. Third, strong pumping actions do not necessarily lead to CO(2) release and could be used to ensure mixing of gases in the closed tracheal system, or enhance water vapour reabsorption into the haemolymph from fluid-filled tracheole tips by increasing the hydrostatic pressure or forcing fluid into the haemocoel. Finally, this work showed that the C-phase of the DGC can occur at any pressure. These results provide further insights into the mechanistic basis of insect gas exchange.
Machine Learning for Characterization of Insect Vector Feeding
Willett, Nora S.; Stelinski, Lukasz L.; Lapointe, Stephen L.
2016-01-01
Insects that feed by ingesting plant and animal fluids cause devastating damage to humans, livestock, and agriculture worldwide, primarily by transmitting pathogens of plants and animals. The feeding processes required for successful pathogen transmission by sucking insects can be recorded by monitoring voltage changes across an insect-food source feeding circuit. The output from such monitoring has traditionally been examined manually, a slow and onerous process. We taught a computer program to automatically classify previously described insect feeding patterns involved in transmission of the pathogen causing citrus greening disease. We also show how such analysis contributes to discovery of previously unrecognized feeding states and can be used to characterize plant resistance mechanisms. This advance greatly reduces the time and effort required to analyze insect feeding, and should facilitate developing, screening, and testing of novel intervention strategies to disrupt pathogen transmission affecting agriculture, livestock and human health. PMID:27832081
Evolution in Oryctes baculovirus: rate and types of genomic change.
Crawford, A M; Zelazny, B
1990-01-01
Three cloned strains of Oryctes baculovirus were released into a previously unexposed population of the host insect, the coconut palm rhinoceros beetle, Oryctes rhinoceros. The experiment was conducted on Meemu Atoll in the Maldive Islands. Viruses were isolated from the beetle population at 1 year, 1.75 years, and 4 years after release. No changes in genotype were observed in viruses isolated after 1 and 1.75 years. After 4 years, however, three types of genomic change had occurred. A recombinant derived from two of the released strains, an isolate containing a 100-bp insert, and one example of a point mutation were found in the 22 isolates examined.
Carnivorous pitcher plants: insights in an old topic.
Mithöfer, Axel
2011-09-01
Plant insect interactions are usually recognized as a scenario where herbivorous insects feed on a host plant. However, also the opposite situation is known, where plants feed on insects. Carnivorous pitcher plants of the genus Nepenthes as well as other pitcher plants obtain many nutrients from caught insect prey. Special features of the pitcher traps' surface are responsible for attraction and trapping insects. Once caught, the prey is digested in the fluid of the pitchers to release nutrients and make them available for the plant. Nutrients are taken up by special glands localized on the inner surface of the pitchers. These glands also secrete the hydrolyzing enzymes into the digestion fluid. Although this is known for more than 100 years, our knowledge of the pitcher fluid composition is still limited. Only in recent years some enzymes have been purified from the pitcher fluid and their corresponding genes could be identified. Among them, many pathogenesis-related proteins have been identified, most of which exhibiting hydrolytic activities. The role of these proteins as well as the role of secondary metabolites, which have been identified in the pitcher fluid, is discussed in general and in the context of further studies on carnivorous plants that might give answers to basic questions in plant biology. Copyright © 2010 Elsevier Ltd. All rights reserved.
Soluble proteins of chemical communication: an overview across arthropods
Pelosi, Paolo; Iovinella, Immacolata; Felicioli, Antonio; Dani, Francesca R.
2014-01-01
Detection of chemical signals both in insects and in vertebrates is mediated by soluble proteins, highly concentrated in olfactory organs, which bind semiochemicals and activate, with still largely unknown mechanisms, specific chemoreceptors. The same proteins are often found in structures where pheromones are synthesized and released, where they likely perform a second role in solubilizing and delivering chemical messengers in the environment. A single class of soluble polypeptides, called Odorant-Binding Proteins (OBPs) is known in vertebrates, while two have been identified in insects, OBPs and CSPs (Chemosensory Proteins). Despite their common name, OBPs of vertebrates bear no structural similarity with those of insects. We observed that in arthropods OBPs are strictly limited to insects, while a few members of the CSP family have been found in crustacean and other arthropods, where however, based on their very limited numbers, a function in chemical communication seems unlikely. The question we address in this review is whether another class of soluble proteins may have been adopted by other arthropods to perform the role of OBPs and CSPs in insects. We propose that lipid-transporter proteins of the Niemann-Pick type C2 family could represent likely candidates and report the results of an analysis of their sequences in representative species of different arthropods. PMID:25221516
A New SAS program for behavioral analysis of electrical penetration graph data
USDA-ARS?s Scientific Manuscript database
Monitoring feeding behaviors of insects whose piercing-sucking mouthparts are inserted into plant tissue is done by making the insect part of an electronic circuit, using electropenetrography (EPG). Fluctuating voltage signals in the circuit are graphed, and resulting waveforms are interpreted as sp...
USDA-ARS?s Scientific Manuscript database
This investigation documents the expression of the in vivo dimorphic program exhibited by insect mycopathogen M. rileyi replicating. This insect mycopathogen represents the key mortality factor regulating various caterpillar populations in various legumes, including subtropical and tropical soybeans...
Bug City: Aquatic Insects [Videotape].
ERIC Educational Resources Information Center
1998
"Bug City" is a video series created to help children learn about insects and other small critters. All aspects of bug life are touched upon including body structure, food, habitat, life cycle, mating habits, camouflage, mutualism (symbiosis), adaptations, social behavior, and more. Each program features dramatic microscopic photography,…
ACUTE AND CHRONIC EFFECTS OF FIPRONIL AND ITS ENANTIOMERS TO AQUATIC ORGANISMS
Fipronil is a phenylpyrazole insecticide used in agriculture and domestic settings for controlling various insect pests in crops, lawns and residential structures. Fipronil is chiral; however, it is released into the environment as a racemic mixture of two enantiomers. In this st...
Methods for estimating litter decomposition. Chapter 8
Noah J. Karberg; Neal A. Scott; Christian P. Giardina
2008-01-01
Litterfall in terrestrial ecosystems represents the primary pathway for nutrient return to soil. Heterotrophic metabolism, facilitated through comminution by small insects and leaching during precipitation events, results in the release of plant litter carbon as CO2 into the atmosphere. The balance between litter inputs and heterotrophic litter...
1988-04-01
both north and south Florida were examined for water- lettuce populations during the period June 1985 thrrugh May 1986. A sample of at least 20 plants ...AQUATIC PLANT CONTROL C’ RESEARCH PROGRAM JX"O9 TECHNICAL REPORT A-88-6 A SURVEY OF THE FAUNA ASSOCIATED WITH PISTIA STRATIOTES L. (WATERLETTUCE) IN...and iaoentify by block number) FIELD GROUP SUB-GROIJP quatic plants ,, InsectS, tBiological control/ Waterlettuce d 19. ABSTRACT (Continue on torerse
Alquézar, Berta; Volpe, Haroldo Xavier Linhares; Magnani, Rodrigo Facchini; de Miranda, Marcelo Pedreira; Santos, Mateus Almeida; Wulff, Nelson Arno; Bento, Jose Mauricio Simões; Parra, José Roberto Postali; Bouwmeester, Harro; Peña, Leandro
2017-07-17
Production of citrus, the main fruit tree crop worldwide, is severely threatened by Huanglongbing (HLB), for which as yet a cure is not available. Spread of this bacterial disease in America and Asia is intimately connected with dispersal and feeding of the insect vector Diaphorina citri, oligophagous on rutaceous host plants. Effective control of this psyllid is an important component in successful HLB management programs. Volatiles released from the non-host guava have been shown to be repellent to the psyllid and to inhibit its response to citrus odour. By analysing VOC emission from guava we identified one volatile compound, (E)-β-caryophyllene, which at certain doses exerts a repellent effect on D. citri. Non-host plant rejection mediated by (E)-β-caryophyllene is demonstrated here by using Arabidopsis over-expression and knock-out lines. For the first time, results indicate that genetically engineered Arabidopsis plants with modified emission of VOCs can alter the behaviour of D. citri. This study shows that transgenic plants with an inherent ability to release (E)-β-caryophyllene can potentially be used in new protection strategies of citrus trees against HLB.
Khan, Aziz; Fornes, Oriol; Stigliani, Arnaud; Gheorghe, Marius; Castro-Mondragon, Jaime A; van der Lee, Robin; Bessy, Adrien; Chèneby, Jeanne; Kulkarni, Shubhada R; Tan, Ge; Baranasic, Damir; Arenillas, David J; Sandelin, Albin; Vandepoele, Klaas; Lenhard, Boris; Ballester, Benoît; Wasserman, Wyeth W; Parcy, François; Mathelier, Anthony
2018-01-04
JASPAR (http://jaspar.genereg.net) is an open-access database of curated, non-redundant transcription factor (TF)-binding profiles stored as position frequency matrices (PFMs) and TF flexible models (TFFMs) for TFs across multiple species in six taxonomic groups. In the 2018 release of JASPAR, the CORE collection has been expanded with 322 new PFMs (60 for vertebrates and 262 for plants) and 33 PFMs were updated (24 for vertebrates, 8 for plants and 1 for insects). These new profiles represent a 30% expansion compared to the 2016 release. In addition, we have introduced 316 TFFMs (95 for vertebrates, 218 for plants and 3 for insects). This release incorporates clusters of similar PFMs in each taxon and each TF class per taxon. The JASPAR 2018 CORE vertebrate collection of PFMs was used to predict TF-binding sites in the human genome. The predictions are made available to the scientific community through a UCSC Genome Browser track data hub. Finally, this update comes with a new web framework with an interactive and responsive user-interface, along with new features. All the underlying data can be retrieved programmatically using a RESTful API and through the JASPAR 2018 R/Bioconductor package. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Fornes, Oriol; Stigliani, Arnaud; Gheorghe, Marius; Castro-Mondragon, Jaime A; Bessy, Adrien; Chèneby, Jeanne; Kulkarni, Shubhada R; Tan, Ge; Baranasic, Damir; Arenillas, David J; Vandepoele, Klaas; Parcy, François
2018-01-01
Abstract JASPAR (http://jaspar.genereg.net) is an open-access database of curated, non-redundant transcription factor (TF)-binding profiles stored as position frequency matrices (PFMs) and TF flexible models (TFFMs) for TFs across multiple species in six taxonomic groups. In the 2018 release of JASPAR, the CORE collection has been expanded with 322 new PFMs (60 for vertebrates and 262 for plants) and 33 PFMs were updated (24 for vertebrates, 8 for plants and 1 for insects). These new profiles represent a 30% expansion compared to the 2016 release. In addition, we have introduced 316 TFFMs (95 for vertebrates, 218 for plants and 3 for insects). This release incorporates clusters of similar PFMs in each taxon and each TF class per taxon. The JASPAR 2018 CORE vertebrate collection of PFMs was used to predict TF-binding sites in the human genome. The predictions are made available to the scientific community through a UCSC Genome Browser track data hub. Finally, this update comes with a new web framework with an interactive and responsive user-interface, along with new features. All the underlying data can be retrieved programmatically using a RESTful API and through the JASPAR 2018 R/Bioconductor package. PMID:29140473
Bug City: House and Backyard Insects [Videotape].
ERIC Educational Resources Information Center
1998
"Bug City" is a video series created to help children learn about insects and other small critters. All aspects of bug life are touched upon including body structure, food, habitat, life cycle, mating habits, camouflage, mutualism (symbiosis), adaptations, social behavior, and more. Each program features dramatic microscopic photography,…
7 CFR 623.13 - Wetlands reserve plan of operations.
Code of Federal Regulations, 2012 CFR
2012-01-01
... program, including, but not limited to: (i) measures to control noxious weeds and insect pests in order to comply with applicable Federal, or State noxious weed and pest control laws; and (ii) measures to control other specified species of weeds, insects or pests; (3) Specify compatible land uses for personal...
7 CFR 623.13 - Wetlands reserve plan of operations.
Code of Federal Regulations, 2013 CFR
2013-01-01
... program, including, but not limited to: (i) Measures to control noxious weeds and insect pests in order to comply with applicable Federal, or State noxious weed and pest control laws; and (ii) Measures to control other specified species of weeds, insects or pests; (3) Specify compatible land uses for personal...
7 CFR 623.13 - Wetlands reserve plan of operations.
Code of Federal Regulations, 2014 CFR
2014-01-01
... program, including, but not limited to: (i) measures to control noxious weeds and insect pests in order to comply with applicable Federal, or State noxious weed and pest control laws; and (ii) measures to control other specified species of weeds, insects or pests; (3) Specify compatible land uses for personal...
USDA-ARS?s Scientific Manuscript database
As global trade increases, invasive insects inflict increasing economic damage to agriculture and urban landscapes in the United States yearly, despite a sophisticated array of interception methods and quarantine programs designed to exclude their entry. Insects that are hidden inside soil, wood, or...
ERIC Educational Resources Information Center
Corp, Mary K.; Rondon, Silivia I.; Van Vleet, Stephen M.
2013-01-01
The "train-the-trainer" model successfully created volunteer educators in insect identification. Intensive training programs prepared 71 individuals during 2 1/2-day (20 hour) training sessions. Trainees included university Extension faculty (13), agricultural professionals (13), and certified Master Gardeners (45). The sessions were…
Minibeasts and Butterflies. First Grade. Anchorage School District Elementary Science Program.
ERIC Educational Resources Information Center
Defendorf, Jean, Ed.
This publication provides information and activities for teaching about insects and process skills including observing, classifying, collecting and interpreting data, inferring, measuring, and predicting. There are 13 lessons. Lessons 1 through 3 deal with insects, in general, and with moths and butterflies. Lessons 4 through 7 consist of…
Profeta, Gerson S.; Pereira, Jessica A. S.; Costa, Samara G.; Azambuja, Patricia; Garcia, Eloi S.; Moraes, Caroline da Silva; Genta, Fernando A.
2017-01-01
Glycoside Hydrolases (GHs) are enzymes able to recognize and cleave glycosidic bonds. Insect GHs play decisive roles in digestion, in plant-herbivore, and host-pathogen interactions. GH activity is normally measured by the detection of a release from the substrate of products as sugars units, colored, or fluorescent groups. In most cases, the conditions for product release and detection differ, resulting in discontinuous assays. The current protocols result in using large amounts of reaction mixtures for the obtainment of time points in each experimental replica. These procedures restrain the analysis of biological materials with limited amounts of protein and, in the case of studies regarding small insects, implies in the pooling of samples from several individuals. In this respect, most studies do not assess the variability of GH activities across the population of individuals from the same species. The aim of this work is to approach this technical problem and have a deeper understanding of the variation of GH activities in insect populations, using as models the disease vectors Rhodnius prolixus (Hemiptera: Triatominae) and Lutzomyia longipalpis (Diptera: Phlebotominae). Here we standardized continuous assays using 4-methylumbelliferyl derived substrates for the detection of α-Glucosidase, β-Glucosidase, α-Mannosidase, N-acetyl-hexosaminidase, β-Galactosidase, and α-Fucosidase in the midgut of R. prolixus and L. longipalpis with results similar to the traditional discontinuous protocol. The continuous assays allowed us to measure GH activities using minimal sample amounts with a higher number of measurements, resulting in data that are more reliable and less time and reagent consumption. The continuous assay also allows the high-throughput screening of GH activities in small insect samples, which would be not applicable to the previous discontinuous protocol. We applied continuous GH measurements to 90 individual samples of R. prolixus anterior midgut homogenates using a high-throughput protocol. α-Glucosidase and α-Mannosidase activities showed the normal distribution in the population. β-Glucosidase, β-Galactosidase, N-acetyl-hexosaminidase, and α-Fucosidase activities showed non-normal distributions. These results indicate that GHs fluorescent-based high-throughput assays apply to insect samples and that the frequency distribution of digestive activities should be considered in data analysis, especially if a small number of samples is used. PMID:28553236
Creton, Benjamin; Pageat, Patrick; Robejean, Myriam; Lafont-Lecuelle, Céline; Cozzi, Alessandro
2016-08-30
Hematophagous insects can be vectors of pathogens and cause significant economic loss in zootechnical production. Among biting insects, many dipteran species feed on horse blood. The black fly (Diptera: Simuliidae) group, is responsible for several disorders in horses and inflicts painful bites that lead to undesirable behaviours in horses, particularly when bites occur in sensitive areas such as the inner ear. A field study was conducted in a French equestrian center during which a semiochemical was applied on horses' ears to assess repellent efficacy against simulid infestation. During the first phase of the study, efficacy was evaluated over a one hour period. Then, during the second phase of the study, persistency of the effect was tested at 8, 9 and 10h after application. The results of the study's first phase showed 90% efficacy over one hour, with 121.5 insects found in control ears and 12 insects in treated ears (p=0.001). In the second phase of the study, a total amount of 411 insects were observed on control ears whereas only 2 insects were observed on treated ears (p<0.0001); the treatment remained over 98% effective up to 10hours after application. When using a slow release excipient, this semiochemical may offer at least 10h of protection against simulids. This safe, efficient, and long lasting protection could help horses and their owners to manage simulid parasitism. Copyright © 2016 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Trichogramma Westwood egg parasitoids alone generally fail to suppress heliothine pests when released in established cotton growing regions. Factors hindering their success include indiscriminate use of detrimental insecticides, compensation for minimal pest larval hatch due to their activity via re...
Manipulation of insect behavior with Specialized Pheromone & Lure Application Technology (SPLAT®)
Agenor Mafra-Neto; Frédérique M. de Lame; Christopher J. Fettig; A. Steven Munson; Thomas M. Perring; Lukasz L. Stelinski; Lyndsie Stoltman; Leandro E.J. Mafra; Rafael Borges; Roger I. Vargas
2013-01-01
SPLAT® (Specialized Pheromone and Lure Application Technology) emulsion is a unique controlled-release technology that can be adapted to dispense and protect a wide variety of compounds from degradation, including semiochemicals, pesticides, and phagostimulants, in diverse environments. ISCA Technologies, Inc., in collaboration with colleagues in academia, government,...
Bittner, Norbert; Trauer-Kizilelma, Ute; Hilker, Monika
2017-05-01
Pinus sylvestris responds to insect egg deposition by ROS accumulation linked with reduced activity of the ROS scavenger catalase. Egg mortality in needles with hypersensitive response (HR)-like symptoms is enhanced. Aggressive reactive oxygen species (ROS) play an important role in plant defence against biotic stressors, including herbivorous insects. Plants may even generate ROS in response to insect eggs, thus effectively fighting against future larval herbivory. However, so far nothing is known on how ROS-mediated plant defence against insect eggs is enzymatically regulated. Neither do we know how insects cope with egg-induced plant ROS. We addressed these gaps of knowledge by studying the activities of ROS-related enzymes in Pinus sylvestris deposited with eggs of the herbivorous sawfly Diprion pini. This species cuts a slit into pine needles and inserts its eggs into the needle tissue. About a quarter of egg-deposited needles show chlorotic tissue at the oviposition sites, indicating hypersensitive response-like direct defence responses resulting in reduced larval hatching from eggs. Hydrogen peroxide and peroxidase sensitive staining of sections of egg-deposited pine needles revealed the presence of hydrogen peroxide and peroxidase activity in needle tissue close to the eggs. Activity of ROS-producing NADPH-oxidase did not increase after egg deposition. However, the activity of the ROS-detoxifying enzyme catalase decreased after egg deposition and ovipositional wounding of needles. These results show that local ROS accumulation at the oviposition site is not caused by increased NADPH-oxidase activity, but reduced activity of pine needle catalase may contribute to it. However, our data suggest that pine sawflies can counteract the egg deposition-induced hydrogen peroxide accumulation in pine needles by high catalase activity in their oviduct secretion which is released with the eggs into pine tissue.
Damage signals in the insect immune response
Krautz, Robert; Arefin, Badrul; Theopold, Ulrich
2014-01-01
Insects and mammals share an ancient innate immune system comprising both humoral and cellular responses. The insect immune system consists of the fat body, which secretes effector molecules into the hemolymph and several classes of hemocytes, which reside in the hemolymph and of protective border epithelia. Key features of wound- and immune responses are shared between insect and mammalian immune systems including the mode of activation by commonly shared microbial (non-self) patterns and the recognition of these patterns by dedicated receptors. It is unclear how metazoan parasites in insects, which lack these shared motifs, are recognized. Research in recent years has demonstrated that during entry into the insect host, many eukaryotic pathogens leave traces that alert potential hosts of the damage they have afflicted. In accordance with terminology used in the mammalian immune systems, these signals have been dubbed danger- or damage-associated signals. Damage signals are necessary byproducts generated during entering hosts either by mechanical or proteolytic damage. Here, we briefly review the current stage of knowledge on how wound closure and wound healing during mechanical damage is regulated and how damage-related signals contribute to these processes. We also discuss how sensors of proteolytic activity induce insect innate immune responses. Strikingly damage-associated signals are also released from cells that have aberrant growth, including tumor cells. These signals may induce apoptosis in the damaged cells, the recruitment of immune cells to the aberrant tissue and even activate humoral responses. Thus, this ensures the removal of aberrant cells and compensatory proliferation to replace lost tissue. Several of these pathways may have been co-opted from wound healing and developmental processes. PMID:25071815
Bourgeois, Lelania; Beaman, Lorraine
2017-08-01
A genetic stock identification (GSI) assay was developed in 2008 to distinguish Russian honey bees from other honey bee stocks that are commercially produced in the United States. Probability of assignment (POA) values have been collected and maintained since the stock release in 2008 to the Russian Honey Bee Breeders Association. These data were used to assess stability of the breeding program and the diversity levels of the contemporary breeding stock through comparison of POA values and genetic diversity parameters from the initial release to current values. POA values fluctuated throughout 2010-2016, but have recovered to statistically similar levels in 2016 (POA(2010) = 0.82, POA(2016) = 0.74; P = 0.33). Genetic diversity parameters (i.e., allelic richness and gene diversity) in 2016 also remained at similar levels when compared to those in 2010. Estimates of genetic structure revealed stability (FST(2009/2016) = 0.0058) with a small increase in the estimate of the inbreeding coefficient (FIS(2010) = 0.078, FIS(2016) = 0.149). The relationship among breeding lines, based on genetic distance measurement, was similar in 2008 and 2016 populations, but with increased homogeneity among lines (i.e., decreased genetic distance). This was expected based on the closed breeding system used for Russian honey bees. The successful application of the GSI assay in a commercial breeding program demonstrates the utility and stability of such technology to contribute to and monitor the genetic integrity of a breeding stock of an insect species. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by US Government employees and is in the public domain in the US.
M. Thompson Conkle
1981-01-01
These 10 symposium papers discuss gene resource management, basic genetics, genetic variation between and within tree species, genetic variability and growth, comparisons of tree life history characteristics, genetic variation in forest insects, breeding systems, and applied uses of isozymes in breeding programs.
Ecology of insects in California chaparral
Don C. Force
1990-01-01
Studies stimulated by the International Biological Program showed total insect faunal biomass and diversity to be greatest in the spring of the year, which matches increased plant growth and flowering at this time. Ground-inhabiting beetle studies indicated the family Tenebrionidae to be overwhelmingly dominant in biomass, but the family Staphylinidae to be richest in...
Insects as weapons of war, terror, and torture.
Lockwood, Jeffrey A
2012-01-01
For thousands of years insects have been incorporated into human conflict, with the goals of inflicting pain, destroying food, and transmitting pathogens. Early methods used insects as "found" weapons, functioning as tactical arms (e.g., hurled nests) or in strategic habitats (e.g., mosquito-infested swamps). In the twentieth century the relationship between insects and disease was exploited; vectors were mass-produced to efficiently deliver pathogens to an enemy. The two most sophisticated programs were those of the Japanese in World War II with plague-infected fleas and cholera-coated flies and of the Americans during the Cold War with yellow fever-infected mosquitoes. With continued advances, defenses in the form of insecticides and vaccines meant that insects were no longer considered as battlefield weapons. However, in recent times sociopolitical changes have put insects back into the realm of human conflict through asymmetrical conflicts pitting combatants from nonindustrialized regions against forces from militarily and economically superior nations. Copyright © 2012 by Annual Reviews. All rights reserved.
A Method for the Automatic Detection of Insect Clutter in Doppler-Radar Returns.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luke,E.; Kollias, P.; Johnson, K.
2006-06-12
The accurate detection and removal of insect clutter from millimeter wavelength cloud radar (MMCR) returns is of high importance to boundary layer cloud research (e.g., Geerts et al., 2005). When only radar Doppler moments are available, it is difficult to produce a reliable screening of insect clutter from cloud returns because their distributions overlap. Hence, screening of MMCR insect clutter has historically involved a laborious manual process of cross-referencing radar moments against measurements from other collocated instruments, such as lidar. Our study looks beyond traditional radar moments to ask whether analysis of recorded Doppler spectra can serve as the basismore » for reliable, automatic insect clutter screening. We focus on the MMCR operated by the Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) program at its Southern Great Plains (SGP) facility in Oklahoma. Here, archiving of full Doppler spectra began in September 2003, and during the warmer months, a pronounced insect presence regularly introduces clutter into boundary layer returns.« less
How Far is Far Enough? Invertebrate Responses to Physical Constraints on Drift Distance
NASA Astrophysics Data System (ADS)
Hoover, T. M.; Yonemitsu, N.; Richardson, J. S.
2005-05-01
Many stream insects enter the drift and disperse downstream. Once entrained, however, the probability of settling in a patch of suitable habitat is a function of the physical properties and behavior of the drifting insect, as well as the hydrodynamic characteristics of the habitat through which the insect is drifting. The roles that taxa-specific morphology and behavior play in determining drift distance were examined for four mayflies with different habitat requirements; two rheophilous taxa (Baetis and Epeorus) and two pool-dwelling taxa (Ameletus and Paraleptophlebia). Larvae were released in an experimental channel in low and high water velocities. The total distances traveled by live mayfly larvae (+ behavior, + morphology) were compared to heat-killed larvae (- behavior, + morphology), and a series of low-density tracer particles (- behavior, - morphology). Live Baetis and Epeorus drifted similar distances, whereas the drift distances of the two pool taxa differed substantially (Ameletus < Epeorus, Baetis < Paraleptophlebia). The settlement distributions of dead larvae and passive tracer particles show that settlement behaviors allow drifting larvae to avoid becoming entrained in large-scale turbulent flow structures. These results suggest that stream insects have evolved strategies that facilitate dispersal between patches of suitable habitat.
Mensah, Robert K.; Young, Alison; Rood-England, Leah
2015-01-01
Entomopathogenic fungi, when used as a microbial control agent against cotton pests, such as Helicoverpa spp., may have the potential to establish and spread in the environment and to have an impact on both pests and beneficial insects. Information on the effect of entomopathogenic fungi on pests and beneficial insects is crucial for a product to be registered as a biopesticide. The effect of the entomopathogenic fungus BC 639 (Aspergillus sp.) against Helicoverpa spp. and beneficial insects (mostly predatory insects) was studied in the laboratory and in cotton field trials. The results show that when Helicoverpa spp. second instar larvae were exposed to increasing concentrations (from 102 to 109) of the entomopathogenic fungus BC 639, the optimum dose required to kill over 50% of the insects was 1.0 × 107 spores/mL. In the field trials, the number of Helicoverpa spp. per metre on plots treated with 1.0 or 0.50 L/ha of BC 639 was the same as on plots treated with the recommended rate of the commercial insecticide, Indoxacarb. However, when plots were treated with 0.25 L/ha of BC 639, this was not as effective at controlling Helicoverpa spp. as 1.0 or 0.5 L/ha BC 639 or Indoxacarb. BC 639 had less effect on predatory insects when applied at lower rates (0.50 and 0.25 L/ha) than at higher rates (1.0 L/ha). Thus, BC 639 was more selective against predators when applied at lower rates than at the higher rate, but was also more selective than Indoxacarb. Thus, the ability of BC 639 to control Helicoverpa spp. effectively with a minimal effect on predatory insects indicates its potential for enhancing integrated pest management programs and to sustain cotton production. PMID:26463189
Potential ecological roles of artemisinin produced by Artemisia annua L.
Knudsmark Jessing, Karina; Duke, Stephen O; Cedergreeen, Nina
2014-02-01
Artemisia annua L. (annual wormwood, Asteraceae) and its secondary metabolite artemisinin, a unique sesquiterpene lactone with an endoperoxide bridge, has gained much attention due to its antimalarial properties. Artemisinin has a complex structure that requires a significant amount of energy for the plant to synthesize. So, what are the benefits to A. annua of producing this unique compound, and what is the ecological role of artemisinin? This review addresses these questions, discussing evidence of the potential utility of artemisinin in protecting the plant from insects and other herbivores, as well as pathogens and competing plant species. Abiotic factors affecting the artemisinin production, as well as mechanisms of artemisinin release to the surroundings also are discussed, and new data are provided on the toxicity of artemisinin towards soil and aquatic organisms. The antifungal and antibacterial effects reported are not very pronounced. Several studies have reported that extracts of A. annua have insecticidal effects, though few studies have proven that artemisinin could be the single compound responsible for the observed effects. However, the pathogen(s) or insect(s) that may have provided the selection pressure for the evolution of artemisinin synthesis may not have been represented in the research thus far conducted. The relatively high level of phytotoxicity of artemisinin in soil indicates that plant/plant allelopathy could be a beneficial function of artemisinin to the producing plant. The release routes of artemisinin (movement from roots and wash off from leaf surfaces) from A. annua to the soil support the rationale for allelopathy.
Zhang, Jing; Liu, Hongmei; Sun, Zhipeng; Xie, Jianjun; Zhong, Guohua; Yi, Xin
2017-01-01
Azadirachtin is a bio-rational insecticide used as an antifeedant and growth disruption agent against many insect species. However, recent studies have shown that there is a potential risk of this compound harming some beneficial insects. In such cases its application does not normally lead to death, but it may result in altered developmental regulation. Therefore, it is essential to obtain toxicological data to understand the mechanism of such sub-lethal effects, especially where they relate to important beneficial insects. Here, we found that azadirachtin could regulate growth and cocooning in silkworms, which may be associated with induced apoptotic effect on the prothoracic gland. However, azadirachtin treatment could not induce apoptosis in the prothoracic gland in vitro, in contrast to the effect of 20-hydroxyecdysone in vitro, which suggesting that the apoptosis might not be direct effect of azadirachtin. Then we examined the activity of Ca2+-Mg2+-ATPase and found that azadirachtin could trigger a significant increase in intracellular Ca2+ release in the Sf9 cell line, which suggested that the calcium signaling pathway might be involved in the process of apoptosis in prothoracic gland and growth regulation in vivo silkworms. Although more evidence is needed to fully understand the mechanism of azadirachtin in perturbing the growth of silkworms, this study provides some toxicological information and highlights the potential risks of azadirachtin in relation to silkworms. PMID:29230101
Zhang, Jing; Liu, Hongmei; Sun, Zhipeng; Xie, Jianjun; Zhong, Guohua; Yi, Xin
2017-01-01
Azadirachtin is a bio-rational insecticide used as an antifeedant and growth disruption agent against many insect species. However, recent studies have shown that there is a potential risk of this compound harming some beneficial insects. In such cases its application does not normally lead to death, but it may result in altered developmental regulation. Therefore, it is essential to obtain toxicological data to understand the mechanism of such sub-lethal effects, especially where they relate to important beneficial insects. Here, we found that azadirachtin could regulate growth and cocooning in silkworms, which may be associated with induced apoptotic effect on the prothoracic gland. However, azadirachtin treatment could not induce apoptosis in the prothoracic gland in vitro , in contrast to the effect of 20-hydroxyecdysone in vitro, which suggesting that the apoptosis might not be direct effect of azadirachtin. Then we examined the activity of Ca 2+ -Mg 2+ -ATPase and found that azadirachtin could trigger a significant increase in intracellular Ca 2+ release in the Sf9 cell line, which suggested that the calcium signaling pathway might be involved in the process of apoptosis in prothoracic gland and growth regulation in vivo silkworms. Although more evidence is needed to fully understand the mechanism of azadirachtin in perturbing the growth of silkworms, this study provides some toxicological information and highlights the potential risks of azadirachtin in relation to silkworms.
USDA-ARS?s Scientific Manuscript database
Fatty acid amino acid conjugates (FACs) are known elicitors of induced release of volatile compounds in plants that, in turn, attract foraging parasitoids. Since the discovery of volicitin [N-(17-hydroxylinolenoyl)-L-glutamine] in the regurgitant of larval Spodoptera exigua1, a series of related FAC...
USDA-ARS?s Scientific Manuscript database
Insect-resistant transgenic Bt cotton has, in general, increased yield and reduced insecticide use in cotton production by successfully managing target pests. In the southeast US, Bt cotton provides effective control of Helicpverpa zea and Heliothis virescens [Lepidoptera: Noctuidae]. However Bt c...
Impact of Production Practices on Physicochemical Properties of Rice Grain Quality
USDA-ARS?s Scientific Manuscript database
Planting rice (Oryza sativa L.) in rows using the bed and furrow system can be a great benefit to farmers by decreasing water usage, labor and fuel costs. However, the disadvantages are increased insect and weed infestation, increased diseases, and lower field yields. With the release of new culti...
Grazing limits natural biological controls of woody encroachment in Inner Mongolia Steppe
Guo, Hongyu; Guan, Linjing; Wang, Yinhua; Xie, Lina; Prather, Chelse M.; Liu, Chunguang
2017-01-01
ABSTRACT Woody encroachment in grasslands has become increasingly problematic globally. Grazing by domestic animals can facilitate woody encroachment by reducing competition from herbaceous plants and fire frequency. Herbivorous insects and parasitic plants can each exert forces that result in the natural biological control of encroaching woody plants through reducing seeding of their host woody plants. However, the interplay of grazing and dynamics of herbivorous insects or parasitic plants, and its effects on the potential biological control of woody encroachment in grasslands remains unclear. We investigated the flower and pod damage by herbivorous insects, and the infection rates of a parasitic plant on the shrub Caragana microphylla, which is currently encroaching in Inner Mongolia Steppe, under different grazing management treatments (33-year non-grazed, 7-year non-grazed, currently grazed). Our results showed that Caragana biomass was highest at the currently grazed site, and lowest at the 33-year non-grazed site. Herbaceous plant biomass followed the opposite pattern, suggesting that grazing is indeed facilitating the encroachment of Caragana plants in Inner Mongolia Steppe. Grazing also reduced the abundance of herbivorous insects per Caragana flower, numbers of flowers and pods damaged by insect herbivores, and the infection rates of the parasitic plant on Caragana plants. Our results suggest that grazing may facilitate woody encroachment in grasslands not only through canonical mechanisms (e.g. competitive release via feeding on grasses, reductions in fires, etc.), but also by limiting natural biological controls of woody plants (herbivorous insects and parasitic plants). Thus, management efforts must focus on preventing overgrazing to better protect grassland ecosystems from woody encroachment. PMID:28912357
Lester, Philip J; Bosch, Peter J; Gruber, Monica A M; Kapp, Eugene A; Peng, Lifeng; Brenton-Rule, Evan C; Buchanan, Joe; Stanislawek, Wlodek L; Archer, Michael; Corley, Juan C; Masciocchi, Maitè; Van Oystaeyen, Annette; Wenseleers, Tom
2015-01-01
When invasive species move to new environments they typically experience population bottlenecks that limit the probability that pathogens and parasites are also moved. The invasive species may thus be released from biotic interactions that can be a major source of density-dependent mortality, referred to as enemy release. We examined for evidence of enemy release in populations of the common wasp (Vespula vulgaris), which attains high densities and represents a major threat to biodiversity in its invaded range. Mass spectrometry proteomic methods were used to compare the microbial communities in wasp populations in the native (Belgium and England) and invaded range (Argentina and New Zealand). We found no evidence of enemy release, as the number of microbial taxa was similar in both the introduced and native range. However, some evidence of distinctiveness in the microbial communities was observed between countries. The pathogens observed were similar to a variety of taxa observed in honey bees. These taxa included Nosema, Paenibacillus, and Yersina spp. Genomic methods confirmed a diversity of Nosema spp., Actinobacteria, and the Deformed wing and Kashmir bee viruses. We also analysed published records of bacteria, viruses, nematodes and fungi from both V. vulgaris and the related invader V. germanica. Thirty-three different microorganism taxa have been associated with wasps including Kashmir bee virus and entomophagous fungi such as Aspergillus flavus. There was no evidence that the presence or absence of these microorganisms was dependent on region of wasp samples (i.e. their native or invaded range). Given the similarity of the wasp pathogen fauna to that from honey bees, the lack of enemy release in wasp populations is probably related to spill-over or spill-back from bees and other social insects. Social insects appear to form a reservoir of generalist parasites and pathogens, which makes the management of wasp and bee disease difficult.
Lester, Philip J.; Kapp, Eugene A.; Peng, Lifeng; Brenton-Rule, Evan C.; Buchanan, Joe; Stanislawek, Wlodek L.; Archer, Michael; Corley, Juan C.; Masciocchi, Maitè; Van Oystaeyen, Annette; Wenseleers, Tom
2015-01-01
When invasive species move to new environments they typically experience population bottlenecks that limit the probability that pathogens and parasites are also moved. The invasive species may thus be released from biotic interactions that can be a major source of density-dependent mortality, referred to as enemy release. We examined for evidence of enemy release in populations of the common wasp (Vespula vulgaris), which attains high densities and represents a major threat to biodiversity in its invaded range. Mass spectrometry proteomic methods were used to compare the microbial communities in wasp populations in the native (Belgium and England) and invaded range (Argentina and New Zealand). We found no evidence of enemy release, as the number of microbial taxa was similar in both the introduced and native range. However, some evidence of distinctiveness in the microbial communities was observed between countries. The pathogens observed were similar to a variety of taxa observed in honey bees. These taxa included Nosema, Paenibacillus, and Yersina spp. Genomic methods confirmed a diversity of Nosema spp., Actinobacteria, and the Deformed wing and Kashmir bee viruses. We also analysed published records of bacteria, viruses, nematodes and fungi from both V. vulgaris and the related invader V. germanica. Thirty-three different microorganism taxa have been associated with wasps including Kashmir bee virus and entomophagous fungi such as Aspergillus flavus. There was no evidence that the presence or absence of these microorganisms was dependent on region of wasp samples (i.e. their native or invaded range). Given the similarity of the wasp pathogen fauna to that from honey bees, the lack of enemy release in wasp populations is probably related to spill-over or spill-back from bees and other social insects. Social insects appear to form a reservoir of generalist parasites and pathogens, which makes the management of wasp and bee disease difficult. PMID:25798856
USDA-ARS?s Scientific Manuscript database
Maximum production and fitness of insect species that are mass-reared for biological control programs such as the sterile insect technique (SIT) have benefitted from the employment of quality control and quality management. With a growing interest in the use of SIT as a tactic for the suppression/e...
Strategies for selecting and breeding EAB-resistant ash
Jennifer L. Koch; Kathleen Knight; Therese Poland; David W. Carey; Daniel A. Herms; Mary E. Mason
2011-01-01
Breeding for pest resistance in forest trees is a proven approach for managing both native and nonnative insects and diseases. A recent study by the Food and Agriculture Organization of the United Nations reports 255 forest tree breeding programs for insect or disease resistance in 33 diff erent countries (http://www.fao.org/forestry/26445/en/). Advantages to...
Effect of seeding on the capture of six stored product beetle species: The relative species matters
USDA-ARS?s Scientific Manuscript database
n trapping programs prior capture of individuals of the same or different species may influence subsequent attractiveness of the trap. To evaluate this process with stored-product insects, the effect of the presence of dead or alive adults on the behavioral responses of six stored product insect spe...
Pest management in Douglas-fir seed orchards: a microcomputer decision method
James B. Hoy; Michael I. Haverty
1988-01-01
The computer program described provides a Douglas-fir seed orchard manager (user) with a quantitative method for making insect pest management decisions on a desk-top computer. The decision system uses site-specific information such as estimates of seed crop size, insect attack rates, insecticide efficacy and application costs, weather, and crop value. At sites where...
Breeding trees resistant to insects and diseases: putting theory into application
Richard A. Sniezko; Jennifer Koch
2017-01-01
Tree species world-wide are under increasing threat from diseases and insects, many of which are non-native. The integrity of our natural, urban and plantation forest ecosystems, and the services they provide are seriously imperiled. Breeding programs that harness the natural genetic resistance within tree species can provide a durable solution to these threats. In...
Berry, Robert E; Muthu, Dhanasekaran; Yang, Fei; Walker, F Ann
2015-01-20
The β-barrel nitrophorin (NP) heme proteins are found in the saliva of the blood-sucking insect Rhodnius prolixus, which synthesizes and stores nitric oxide (NO) in the salivary glands. NO is bound to iron of the NPs and is released by dilution and an increase in pH when the insect spits its saliva into the tissues of a victim, to aid in obtaining a blood meal. In the adult insect, there are four nitrophorins, NP1-NP4, which have sequence similarities in two pairs, NP1 and NP4 (90% identical) and NP2 and NP3 (80% identical). The available crystal structures of NP4 have been used to propose that pH-dependent changes in the conformation of two loops between adjacent β-strands at the front opening of the protein, the A-B and G-H loops, determine the rate of NO release. At pH 7.3, NP4 releases NO 17 times faster than NP2 does. In this work, the aqua complexes of NP4 and NP2 have been investigated by nuclear magnetic resonance (NMR) relaxation measurements to probe the pico- to nanosecond and micro- to millisecond time scale motions at two pH values, 6.5 and 7.3. It is found that NP4-OH2 is fairly rigid and only residues in the loop regions show dynamics at pH 6.5; at pH 7.3, much more dynamics of the loops and most of the β-strands are observed while the α-helices remain fairly rigid. In comparison, NP2-OH2 shows much less dynamics, albeit somewhat more than that of the previously reported NP2-NO complex [Muthu, D., Berry, R. E., Zhang, H., and Walker, F. A. (2013) Biochemistry 52, 7910-7925]. The reasons for this major difference between NP4 and NP2 are discussed.
2015-01-01
The β-barrel nitrophorin (NP) heme proteins are found in the saliva of the blood-sucking insect Rhodnius prolixus, which synthesizes and stores nitric oxide (NO) in the salivary glands. NO is bound to iron of the NPs and is released by dilution and an increase in pH when the insect spits its saliva into the tissues of a victim, to aid in obtaining a blood meal. In the adult insect, there are four nitrophorins, NP1–NP4, which have sequence similarities in two pairs, NP1 and NP4 (90% identical) and NP2 and NP3 (80% identical). The available crystal structures of NP4 have been used to propose that pH-dependent changes in the conformation of two loops between adjacent β-strands at the front opening of the protein, the A–B and G–H loops, determine the rate of NO release. At pH 7.3, NP4 releases NO 17 times faster than NP2 does. In this work, the aqua complexes of NP4 and NP2 have been investigated by nuclear magnetic resonance (NMR) relaxation measurements to probe the pico- to nanosecond and micro- to millisecond time scale motions at two pH values, 6.5 and 7.3. It is found that NP4-OH2 is fairly rigid and only residues in the loop regions show dynamics at pH 6.5; at pH 7.3, much more dynamics of the loops and most of the β-strands are observed while the α-helices remain fairly rigid. In comparison, NP2-OH2 shows much less dynamics, albeit somewhat more than that of the previously reported NP2-NO complex [Muthu, D., Berry, R. E., Zhang, H., and Walker, F. A. (2013) Biochemistry 52, 7910–7925]. The reasons for this major difference between NP4 and NP2 are discussed. PMID:25486224
Hopper, Keith R
2003-01-01
During 1999-2001, ARS scientists published over 100 papers on more than 30 species of insect pest and 60 species of predator and parasitoid. These papers address issues crucial to the three strategies of biological control: conservation, augmentation and introduction. Conservation biological control includes both conserving extant populations of natural enemies by using relatively non-toxic pesticides and increasing the abundance of natural enemies in crops by providing or improving refuges for population growth and dispersal into crops. ARS scientists have been very active in determining the effects of pesticides on beneficial arthropods and in studying movement of natural enemies from refuges into crops. Augmentation involves repeated releases of natural enemies in the field, which can be inoculative or inundative. Inoculative releases are used to initiate self-propagating populations at times or in places where they would be slow to colonize. ARS scientists have studied augmentative biological control of a variety of pest insects. The targets are mostly pests in annual crops or other ephemeral habitats, where self-reproducing populations of natural enemies are not sufficiently abundant early enough to keep pest populations in check. ARS research in augmentative biological control centers on methods for rearing large numbers of healthy, effective natural enemies and for releasing them where and when they are needed at a cost less than the value of the reduction in damage to the crop. ARS scientists have researched various aspects of introductions of exotic biological control agents against a diversity of pest insects. The major issues in biological control introductions are accurate identification and adequate systematics of both natural enemies and target pests, exploration for natural enemies, predicting the success of candidates for introduction and the likelihood of non-target impacts, quarantine and rearing methods, and post-introduction evaluation of establishment, control and non-target impacts. ARS scientists have published research on several general issues in biological control. Among the most important are the mechanisms affecting mate- and host-finding and host specificity.
Burrows, Malcolm; Shaw, Stephen R; Sutton, Gregory P
2008-01-01
Background Many insects jump by storing and releasing energy in elastic structures within their bodies. This allows them to release large amounts of energy in a very short time to jump at very high speeds. The fastest of the insect jumpers, the froghopper, uses a catapult-like elastic mechanism to achieve their jumping prowess in which energy, generated by the slow contraction of muscles, is released suddenly to power rapid and synchronous movements of the hind legs. How is this energy stored? Results The hind coxae of the froghopper are linked to the hinges of the ipsilateral hind wings by pleural arches, complex bow-shaped internal skeletal structures. They are built of chitinous cuticle and the rubber-like protein, resilin, which fluoresces bright blue when illuminated with ultra-violet light. The ventral and posterior end of this fluorescent region forms the thoracic part of the pivot with a hind coxa. No other structures in the thorax or hind legs show this blue fluorescence and it is not found in larvae which do not jump. Stimulating one trochanteral depressor muscle in a pattern that simulates its normal action, results in a distortion and forward movement of the posterior part of a pleural arch by 40 μm, but in natural jumping, the movement is at least 100 μm. Conclusion Calculations showed that the resilin itself could only store 1% to 2% of the energy required for jumping. The stiffer cuticular parts of the pleural arches could, however, easily meet all the energy storage needs. The composite structure therefore, combines the stiffness of the chitinous cuticle with the elasticity of resilin. Muscle contractions bend the chitinous cuticle with little deformation and therefore, store the energy needed for jumping, while the resilin rapidly returns its stored energy and thus restores the body to its original shape after a jump and allows repeated jumping. PMID:18826572
Liu, Yaping; Li, Chengjun; Gao, Jingkun; Wang, Wenlong; Huang, Li; Guo, Xuezhu; Li, Bin; Wang, Jianjun
2014-10-21
Ryanodine receptors (RyRs) and inositol 1,4,5-trisphosphate receptors (IP3Rs) are members of a family of tetrameric intracellular Ca(2+)-release channels (CRCs). While it is well known in mammals that RyRs and IP3Rs modulate multiple physiological processes, the roles of these two CRCs in the development and physiology of insects remain poorly understood. In this study, we cloned and functionally characterized RyR and IP3R cDNAs (named TcRyR and TcIP3R) from the red flour beetle, Tribolium castaneum. The composite TcRyR gene contains an ORF of 15,285 bp encoding a protein of 5,094 amino acid residues. The TcIP3R contains an 8,175 bp ORF encoding a protein of 2,724 amino acids. Expression analysis of TcRyR and TcIP3R revealed significant differences in mRNA expression levels among T. castaneum during different developmental stages. When the transcript levels of TcRyR were suppressed by RNA interference (RNAi), an abnormal folding of the adult hind wings was observed, while the RNAi-mediated knockdown of TcIP3R resulted in defective larval-pupal and pupal-adult metamorphosis. These results suggested that TcRyR is required for muscle excitation-contraction (E-C) coupling in T. castaneum, and that calcium release via IP3R might play an important role in regulating ecdysone synthesis and release during molting and metamorphosis in insects.
Plant-mediated interspecific horizontal transmission of an intracellular symbiont in insects
Gonella, Elena; Pajoro, Massimo; Marzorati, Massimo; Crotti, Elena; Mandrioli, Mauro; Pontini, Marianna; Bulgari, Daniela; Negri, Ilaria; Sacchi, Luciano; Chouaia, Bessem; Daffonchio, Daniele; Alma, Alberto
2015-01-01
Intracellular reproductive manipulators, such as Candidatus Cardinium and Wolbachia are vertically transmitted to progeny but rarely show co-speciation with the host. In sap-feeding insects, plant tissues have been proposed as alternative horizontal routes of interspecific transmission, but experimental evidence is limited. Here we report results from experiments that show that Cardinium is horizontally transmitted between different phloem sap-feeding insect species through plants. Quantitative PCR and in situ hybridization experiments indicated that the leafhopper Scaphoideus titanus releases Cardinium from its salivary glands during feeding on both artificial media and grapevine leaves. Successional time-course feeding experiments with S. titanus initially fed sugar solutions or small areas of grapevine leaves followed by feeding by the phytoplasma vector Macrosteles quadripunctulatus or the grapevine feeder Empoasca vitis revealed that the symbionts were transmitted to both species. Explaining interspecific horizontal transmission through plants improves our understanding of how symbionts spread, their lifestyle and the symbiont-host intermixed evolutionary pattern. PMID:26563507
Plant-mediated interspecific horizontal transmission of an intracellular symbiont in insects.
Gonella, Elena; Pajoro, Massimo; Marzorati, Massimo; Crotti, Elena; Mandrioli, Mauro; Pontini, Marianna; Bulgari, Daniela; Negri, Ilaria; Sacchi, Luciano; Chouaia, Bessem; Daffonchio, Daniele; Alma, Alberto
2015-11-13
Intracellular reproductive manipulators, such as Candidatus Cardinium and Wolbachia are vertically transmitted to progeny but rarely show co-speciation with the host. In sap-feeding insects, plant tissues have been proposed as alternative horizontal routes of interspecific transmission, but experimental evidence is limited. Here we report results from experiments that show that Cardinium is horizontally transmitted between different phloem sap-feeding insect species through plants. Quantitative PCR and in situ hybridization experiments indicated that the leafhopper Scaphoideus titanus releases Cardinium from its salivary glands during feeding on both artificial media and grapevine leaves. Successional time-course feeding experiments with S. titanus initially fed sugar solutions or small areas of grapevine leaves followed by feeding by the phytoplasma vector Macrosteles quadripunctulatus or the grapevine feeder Empoasca vitis revealed that the symbionts were transmitted to both species. Explaining interspecific horizontal transmission through plants improves our understanding of how symbionts spread, their lifestyle and the symbiont-host intermixed evolutionary pattern.
Seminal Fluid Regulation of Female Sexual Attractiveness in Drosophila melanogaster
NASA Astrophysics Data System (ADS)
Tram, Uyen; Wolfner, Mariana F.
1998-03-01
Finding a willing and suitable mate is critical for sexual reproduction. Visual, auditory, and chemical cues aid in locating and/or attracting partners. After mating, females from many insect species become less attractive. This is caused by changes in the quantity and/or quality of pheromones synthesized by the female and to changes in the female's behavior. For example, female insects may stop releasing pheromones, assume a mate refusal posture, or move less in response to males. Many postmating changes in female insects are triggered by seminal fluid proteins from the male's accessory gland proteins (Acps) and by sperm. To determine the role of seminal fluid components in mediating changes in attractiveness, we measured the attractiveness of Drosophila melanogaster females that had been mated to genetically altered males that lack sperm and/or Acps. We found that the drop in female attractiveness occurs in two phases. A short-term drop in attractiveness is triggered independent of the receipt of sperm and Acps. Maintenance of lowered attractiveness is dependent upon sperm.
Zhang, Yao; Lu, Yu-Xuan; Liu, Jian; Yang, Cui; Feng, Qi-Li; Xu, Wei-Hua
2013-01-01
Insect fat body is the organ for intermediary metabolism, comparable to vertebrate liver and adipose tissue. Larval fat body is disintegrated to individual fat body cells and then adult fat body is remodeled at the pupal stage. However, little is known about the dissociation mechanism. We find that the moth Helicoverpa armigera cathepsin L (Har-CL) is expressed heavily in the fat body and is released from fat body cells into the extracellular matrix. The inhibitor and RNAi experiments demonstrate that Har-CL functions in the fat body dissociation in H. armigera. Further, a nuclear protein is identified to be transcription factor Har-Relish, which was found in insect immune response and specifically binds to the promoter of Har-CL gene to regulate its activity. Har-Relish also responds to the steroid hormone ecdysone. Thus, the dissociation of the larval fat body is involved in the hormone (ecdysone)-transcription factor (Relish)-target gene (cathepsin L) regulatory pathway. PMID:23459255
Challenges with effective nutrient supplementation for amphibians: A review of cricket studies.
Livingston, Shannon; Lavin, Shana R; Sullivan, Kathleen; Attard, Lydia; Valdes, Eduardo V
2014-01-01
Over the last 25 years, numerous studies have investigated the impact of insect supplementation on insect nutrient content. In light of recent nutrition related challenges with regards to zoo amphibians fed an insect based diet, this review attempts to comprehensively compile both anecdotal and published data in the context of practical application on this topic. Insects, primarily crickets, used for amphibian diets historically demonstrate low concentrations of key nutrients including calcium and vitamin A. Commonly used practices for supplementation involving powder dusting or gut loading have been shown to improve delivery of calcium and vitamin A, though often not reaching desired nutrient concentrations. The large variety of factors influencing insect nutrient content are difficult to control, making study design, and results often inconsistent. Formulation and availability of more effective gut loading diets, combined with a standardized protocol for insect husbandry and dietary management may be the most effective way to supplement insects for use in amphibian feeding programs. Ideally, the nutritional improvement of feeder insects would begin at the breeder level; however, until this becomes a viable choice, we confirm that supplementation of crickets through both gut-loading and dusting appear necessary to support the nutritional health of amphibians and other insectivores in managed collections. © 2014 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crutsinger, Greg; Habenicht, Melissa N; Classen, Aimee T
2008-01-01
Plant-insect interactions can alter ecosystem processes, especially if the insects modify plant architecture, quality, or the quantity of leaf litter inputs. In this study, we investigated the interactions between the gall midge Rhopalomyia solidaginis and tall goldenrod, Solidago altissima, to quantify the degree to which the midge alters plant architecture and how the galls affect rates of litter decomposition and nutrient release in an old-field ecosystem. R. solidaginis commonly leads to the formation of a distinct apical rosette gall on S. altissima and approximately 15% of the ramets in a S. altissima patch were galled (range: 3-34%). Aboveground biomass ofmore » galled ramets was 60% higher and the leaf area density was four times greater on galled leaf tissue relative to the portions of the plant that were not affected by the gall. Overall decomposition rate constants did not differ between galled and ungalled leaf litter. However, leaf-litter mass loss was lower in galled litter relative to ungalled litter, which was likely driven by modest differences in initial litter chemistry; this effect diminished after 12 weeks of decomposition in the field. The proportion of N remaining was always higher in galled litter than in ungalled litter at each collection date indicating differential release of nitrogen in galled leaf litter. Several studies have shown that plant-insect interactions on woody species can alter ecosystem processes by affecting the quality or quantity of litter inputs. Our results illustrate how plant-insect interactions in an herbaceous species can affect ecosystem processes by altering the quality and quantity of litter inputs. Given that S. altissima dominates fields and roadsides and that R. solidaginis galls are highly abundant throughout eastern North America, these interactions are likely to be important for both the structure and function of old-field ecosystems.« less
Compson, Zacchaeus G; Adams, Kenneth J; Edwards, Joeseph A; Maestas, Jesse M; Whitham, Thomas G; Marks, Jane C
2013-10-01
Reciprocal subsidies between rivers and terrestrial habitats are common where terrestrial leaf litter provides energy to aquatic invertebrates while emerging aquatic insects provide energy to terrestrial predators (e.g., birds, lizards, spiders). We examined how aquatic insect emergence changed seasonally with litter from two foundation riparian trees, whose litter often dominates riparian streams of the southwestern United States: Fremont (Populus fremontii) and narrowleaf (Populus angustifolia) cottonwood. P. fremontii litter is fast-decomposing and lower in defensive phytochemicals (i.e., condensed tannins, lignin) relative to P. angustifolia. We experimentally manipulated leaf litter from these two species by placing them in leaf enclosures with emergence traps attached in order to determine how leaf type influenced insect emergence. Contrary to our initial predictions, we found that packs with slow-decomposing leaves tended to support more emergent insects relative to packs with fast-decomposing leaves. Three findings emerged. Firstly, abundance (number of emerging insects m(-2) day(-1)) was 25% higher on narrowleaf compared to Fremont leaves for the spring but did not differ in the fall, demonstrating that leaf quality from two dominant trees of the same genus yielded different emergence patterns and that these patterns changed seasonally. Secondly, functional feeding groups of emerging insects differed between treatments and seasons. Specifically, in the spring collector-gatherer abundance and biomass were higher on narrowleaf leaves, whereas collector-filterer abundance and biomass were higher on Fremont leaves. Shredder abundance and biomass were higher on narrowleaf leaves in the fall. Thirdly, diversity (Shannon's H') was higher on Fremont leaves in the spring, but no differences were found in the fall, showing that fast-decomposing leaves can support a more diverse, complex emergent insect assemblage during certain times of the year. Collectively, these results challenge the notion that leaf quality is a simple function of decomposition, suggesting instead that aquatic insects benefit differentially from different leaf types, such that some use slow-decomposing litter for habitat and its temporal longevity and others utilize fast-decomposing litter with more immediate nutrient release.
Storage and release of hydrogen cyanide in a chelicerate (Oribatula tibialis)
Brückner, Adrian; Raspotnig, Günther; Wehner, Katja; Meusinger, Reinhard; Norton, Roy A.; Heethoff, Michael
2017-01-01
Cyanogenesis denotes a chemical defensive strategy where hydrogen cyanide (HCN, hydrocyanic or prussic acid) is produced, stored, and released toward an attacking enemy. The high toxicity and volatility of HCN requires both chemical stabilization for storage and prevention of accidental self-poisoning. The few known cyanogenic animals are exclusively mandibulate arthropods (certain myriapods and insects) that store HCN as cyanogenic glycosides, lipids, or cyanohydrins. Here, we show that cyanogenesis has also evolved in the speciose Chelicerata. The oribatid mite Oribatula tibialis uses the cyanogenic aromatic ester mandelonitrile hexanoate (MNH) for HCN storage, which degrades via two different pathways, both of which release HCN. MNH is emitted from exocrine opisthonotal oil glands, which are potent organs for chemical defense in most oribatid mites. PMID:28289203
USDA-ARS?s Scientific Manuscript database
The sterile insect technique is currently used by the Comisión Panamá - Estados Unidos para la Erradicación y Prevención del Gusano Barrenador del Ganado (COPEG) to maintain a barrier at the border between Panama and Colombia that prevents screwworms, Cochliomyia hominivorax (Coquerel), from South A...
Yvette K. Ortega; Dean E. Pearson; Lauren P. Waller; Nancy J. Sturdevant; John L. Maron
2012-01-01
The intentional introduction of specialist insect herbivores for biological control of exotic weeds provides ideal but understudied systems for evaluating important ecological concepts related to top-down control, plant compensatory responses, indirect effects, and the influence of environmental context on these processes. Centaurea stoebe (spotted knapweed) is a...
USDA-ARS?s Scientific Manuscript database
Biological control of Tamarix spp. (saltcedar) with Diorhabda carinulata (the northern tamarisk beetle) is currently underway in several western states U.S.A. through historical releases and the natural migration of this insect. Given the widespread dispersal of this biological control agent and its...
USDA-ARS?s Scientific Manuscript database
Juvenile hormone levels and adult diet have important effects on the attractiveness and competitiveness of the male Anastrepha ludens (Loew) (Mexican fruit fly). Since the success of the sterile insect technique requires the release of males that can compete in the wild, these effects are very impor...
After biocontrol: assessing indirect effects of insect releases
Julie S. Denslow; Carla M. D' Antonio
2005-01-01
Development of biological control agents for weeds has been motivated by the need to reduce the abundance and distribution of a pest plant where chemical and mechanical control were not cost effective. Primary objectives have been direct reduction in abundance of the target and, secondarily, the increase of desirable species. Recently, wildland weeds have become a...
Jose F. Negron; Kurt Allen; McMillin. Joel; Henry Burkwhat
2006-01-01
In 2000 and 2002, Verbenone, a compound with anti-aggregation properties for mountain pine beetle, Dendroctonus ponderosae, was tested for reducing attacks by the insect in Ponderosa pine, Pinus ponderosae forests. The verbenone was released to the environment with the use of permeable membranes; the first year with plastic...
Plant host finding by parasitic plants: A new perspective on plant to plant communication
Mark C. Mescher; Justin B. Runyon; Consuelo M. De Moraes
2006-01-01
Plants release airborne chemicals that can convey ecologically relevant information to other organisms. These plant volatiles are known to mediate a large array of, often complex, interactions between plants and insects. It has been suggested that plant volatiles may have similar importance in mediating interactions among plant species, but there are few well-...
USDA-ARS?s Scientific Manuscript database
The New World screwworm (NWS), Cochliomyia hominivorax, is a devastating pest of livestock endemic to sub-tropical and tropical regions of the Western Hemisphere. The larvae feed on the tissue of living animals, including man, and can cause death if untreated. Over 60 years ago the sterile insect te...
NASA Technical Reports Server (NTRS)
Lewis, David; Copenhaver, Ken; Anderson, Daniel; Hilbert, Kent
2007-01-01
The EPA (U.S. Environmental Protection Agency) is tasked to monitor for insect pest resistance to transgenic crops. Several models have been developed to understand the resistance properties of insects. The Population Genetics Simulator model is used in the EPA PIRDSS (Pest Infestation and Resistance Decision Support System). The EPA Office of Pesticide Programs uses the DSS to help understand the potential for insect pest resistance development and the likelihood that insect pest resistance will negatively affect transgenic corn. Once the DSS identifies areas of concern, crews are deployed to collect insect pest samples, which are tested to identify whether they have developed resistance to the toxins in transgenic corn pesticides. In this candidate solution, VIIRS (Visible/Infrared Imager/Radiometer Suite) vegetation index products will be used to build hypertemporal layerstacks for crop type and phenology assessment. The current phenology attribute is determined by using the current time of year to index the expected growth stage of the crop. VIIRS might provide more accurate crop type assessment and also might give a better estimate on the crop growth stage.
Kalyanasundaram, M.; Mathew, Nisha; Elango, A.; Padmanabhan, V.
2011-01-01
Background & objectives: DPE-28, a substituted diphenyl ether (2,6-ditertiarybutyl phenyl-2’,4’-dinitro phenyl ether) was reported to exhibit promising insect growth regulating activity against Culex quinquefasciatus, the vector of lymphatic filariasis. A controlled release formulation (CRF) of DPE-28 has been developed to control Cx. quinquefasciatus in its breeding habitats. Toxicity of DPE-28, safety to non-target mosquito predators and the release profile of the CRF of DPE-28 are studied and discussed. Methods: The acute oral and dermal toxicity was tested in male and female Wistar rats as per the Organization for Economic Cooperation and Development (OECD) guidelines 425 and 402 respectively. The toxicity of DPE-28 to non-target predators was tested as per the reported procedure from this laboratory. The CRF of DPE-28 was prepared by following the reported procedure developed at this laboratory earlier. The concentration of DPE-28 released from the CRF was monitored by HPLC by constructing a calibration graph by plotting the peak area in the Y-axis and the concentration of DPE-28 in the X-axis. Results: DPE-28 has been tested for acute oral toxicity and found to be moderately toxic with LD50 value of 1098 mg/kg body weight (b.w). The results of the acute dermal toxicity and skin irritation studies reveal that DPE-28 is safe and non-irritant. DPE-28 when tested at 0.4 mg/litre against non-target mosquito predators did not produce any mortality. The release profile of the active ingredient DPE-28 from the CRF by HPLC technique showed that the average daily release (ADR) of DPE-28 ranged from 0.07 to 5.0 mg/litre during first four weeks. Thereafter the matrix started eroding and the ADR ranged from 5 to 11 mg/litre during the remaining 5 wk. The cumulative release of active ingredient showed that > 90 per cent of the active ingredient was released from the matrix. Interpretation & conclusions: The controlled release matrix of DPE-28 was thus found to inhibit the adult emergence (>80%) of Cx. quinquefasciatus for a period of nine weeks. The CRF of DPE-28 may play a useful role in field and may be recommended for mosquito control programme after evaluating the same under field conditions. PMID:21727665
A georeferenced Landsat digital database for forest insect-damage assessment
NASA Technical Reports Server (NTRS)
Williams, D. L.; Nelson, R. F.; Dottavio, C. L.
1985-01-01
In 1869, the gypsy moth caterpillar was introduced in the U.S. in connection with the experiments of a French scientist. Throughout the insect's period of establishment, gypsy moth populations have periodically increased to epidemic proportions. For programs concerned with preventing the insect's spread, it would be highly desirable to be able to employ a survey technique which could provide timely, accurate, and standardized assessments at a reasonable cost. A project was, therefore, initiated with the aim to demonstrate the usefulness of satellite remotely sensed data for monitoring the insect defoliation of hardwood forests in Pennsylvania. A major effort within this project involved the development of a map-registered Landsat digital database. A complete description of the database developed is provided along with information regarding the employed data management system.
Interest in Insects: The Role of Entomology in Environmental Education
Weeks, Faith J.; Oseto, Christian Y.
2018-01-01
University-based outreach programs have a long history of offering environmental education programs to local schools, but often these lessons are not evaluated for their impact on teachers and students. The impact of these outreach efforts can be influenced by many things, but the instructional delivery method can affect how students are exposed to new topics or how confident teachers feel about incorporating new concepts into the classroom. A study was conducted with a series of university entomology outreach programs using insects as a vehicle for teaching environmental education. These programs were used to assess differences between three of the most common university-based outreach delivery methods (Scientist in the Classroom, Teacher Training Workshops, and Online Curriculum) for their effect on student interest and teacher self-efficacy. Surveys administered to 20 fifth grade classrooms found that the delivery method might not be as important as simply getting insects into activities. This study found that the lessons had a significant impact on student interest in environmental and entomological topics, regardless of treatment. All students found the lessons to be more interesting, valuable, and important over the course of the year. Treatment also did not influence teacher self-efficacy, as it remained high for all teachers. PMID:29473884
Zhang, Chuanliang; Qu, Yanyan; Wu, Xiaoqing; Song, Dunlun; Ling, Yun; Yang, Xinling
2015-05-13
Insect kinin neuropeptides are pleiotropic peptides that are involved in the regulation of hindgut contraction, diuresis, and digestive enzyme release. They share a common C-terminal pentapeptide sequence of Phe(1)-Xaa(2)-Yaa(3)-Trp(4)-Gly(5)-NH2 (where Xaa(2) = His, Asn, Phe, Ser, or Tyr; Yaa(3) = Pro, Ser, or Ala). Recently, the aphicidal activity of insect kinin analogues has attracted the attention of researchers. Our previous work demonstrated that the sequence-simplified insect kinin pentapeptide analogue Phe-Phe-[Aib]-Trp-Gly-NH2 could retain good aphicidal activity and be the lead compound for the further discovery of eco-friendly insecticides which encompassed a broad array of biochemicals derived from micro-organisms and other natural sources. Using the peptidomimetics strategy, we chose Phe-Phe-[Aib]-Trp-Gly-NH2 as the lead compound, and we designed and synthesized three series, including 31 novel insect kinin analogues. The aphicidal activity of the new analogues against soybean aphid was determined. The results showed that all of the analogues exhibited aphicidal activity. Of particular interest was the analogue II-1, which exhibited improved aphicidal activity with an LC50 of 0.019 mmol/L compared with the lead compound (LC50 = 0.045 mmol/L) or the commercial insecticide pymetrozine (LC50 = 0.034 mmol/L). This suggests that the analogue II-1 could be used as a new lead for the discovery of potential eco-friendly insecticides.
An Automated Flying-Insect-Detection System
NASA Technical Reports Server (NTRS)
Vann, Timi; Andrews, Jane C.; Howell, Dane; Ryan, Robert
2005-01-01
An automated flying-insect-detection system (AFIDS) was developed as a proof-of-concept instrument for real-time detection and identification of flying insects. This type of system has use in public health and homeland security decision support, agriculture and military pest management, and/or entomological research. Insects are first lured into the AFIDS integrated sphere by insect attractants. Once inside the sphere, the insect's wing beats cause alterations in light intensity that is detected by a photoelectric sensor. Following detection, the insects are encouraged (with the use of a small fan) to move out of the sphere and into a designated insect trap where they are held for taxonomic identification or serological testing. The acquired electronic wing beat signatures are preprocessed (Fourier transformed) in real-time to display a periodic signal. These signals are sent to the end user where they are graphically displayed. All AFIDS data are pre-processed in the field with the use of a laptop computer equipped with LABVIEW. The AFIDS software can be programmed to run continuously or at specific time intervals when insects are prevalent. A special DC-restored transimpedance amplifier reduces the contributions of low-frequency background light signals, and affords approximately two orders of magnitude greater AC gain than conventional amplifiers. This greatly increases the signal-to-noise ratio and enables the detection of small changes in light intensity. The AFIDS light source consists of high-intensity Al GaInP light-emitting diodes (LEDs). The AFIDS circuitry minimizes brightness fluctuations in the LEDs and when integrated with an integrating sphere, creates a diffuse uniform light field. The insect wing beats isotropically scatter the diffuse light in the sphere and create wing beat signatures that are detected by the sensor. This configuration minimizes variations in signal associated with insect flight orientation.
Grazing limits natural biological controls of woody encroachment in Inner Mongolia Steppe.
Guo, Hongyu; Guan, Linjing; Wang, Yinhua; Xie, Lina; Prather, Chelse M; Liu, Chunguang; Ma, Chengcang
2017-10-15
Woody encroachment in grasslands has become increasingly problematic globally. Grazing by domestic animals can facilitate woody encroachment by reducing competition from herbaceous plants and fire frequency. Herbivorous insects and parasitic plants can each exert forces that result in the natural biological control of encroaching woody plants through reducing seeding of their host woody plants. However, the interplay of grazing and dynamics of herbivorous insects or parasitic plants, and its effects on the potential biological control of woody encroachment in grasslands remains unclear. We investigated the flower and pod damage by herbivorous insects, and the infection rates of a parasitic plant on the shrub Caragana microphylla , which is currently encroaching in Inner Mongolia Steppe, under different grazing management treatments (33-year non-grazed, 7-year non-grazed, currently grazed). Our results showed that Caragana biomass was highest at the currently grazed site, and lowest at the 33-year non-grazed site. Herbaceous plant biomass followed the opposite pattern, suggesting that grazing is indeed facilitating the encroachment of Caragana plants in Inner Mongolia Steppe. Grazing also reduced the abundance of herbivorous insects per Caragana flower, numbers of flowers and pods damaged by insect herbivores, and the infection rates of the parasitic plant on Caragana plants. Our results suggest that grazing may facilitate woody encroachment in grasslands not only through canonical mechanisms (e.g. competitive release via feeding on grasses, reductions in fires, etc.), but also by limiting natural biological controls of woody plants (herbivorous insects and parasitic plants). Thus, management efforts must focus on preventing overgrazing to better protect grassland ecosystems from woody encroachment. © 2017. Published by The Company of Biologists Ltd.
Miller, Barbara; Madilao, Lufiani L.; Ralph, Steven; Bohlmann, Jörg
2005-01-01
Stem-boring insects and methyl jasmonate (MeJA) are thought to induce similar complex chemical and anatomical defenses in conifers. To compare insect- and MeJA-induced terpenoid responses, we analyzed traumatic oleoresin mixtures, emissions of terpenoid volatiles, and expression of terpenoid synthase (TPS) genes in Sitka spruce (Picea sitchensis) following attack by white pine weevils (Pissodes strobi) or application of MeJA. Both insects and MeJA caused traumatic resin accumulation in stems, with more accumulation induced by the weevils. Weevil-induced terpenoid emission profiles were also more complex than emissions induced by MeJA. Weevil feeding caused a rapid release of a blend of monoterpene olefins, presumably by passive evaporation of resin compounds from stem feeding sites. These compounds were not found in MeJA-induced emissions. Both weevils and MeJA caused delayed, diurnal emissions of (−)-linalool, indicating induced de novo biosynthesis of this compound. TPS transcripts strongly increased in stems upon insect attack or MeJA treatment. Time courses and intensity of induced TPS transcripts were different for monoterpene synthases, sesquiterpene synthases, and diterpene synthases. Increased levels of weevil- and MeJA-induced TPS transcripts accompanied major changes in terpenoid accumulation in stems. Induced TPS expression profiles in needles were less complex than those in stems and matched induced de novo emissions of (−)-linalool. Overall, weevils and MeJA induced similar, but not identical, terpenoid defense responses in Sitka spruce. Findings of insect- and MeJA-induced accumulation of allene oxide synthase-like and allene oxide cyclase-like transcripts are discussed in the context of traumatic resinosis and induced volatile emissions in this gymnosperm system. PMID:15618433
Arredondo, José; Ruiz, Lía; Hernández, Emilio; Montoya, Pablo; Díaz-Fleischer, Francisco
2016-04-01
The use of genetic sexing strain (GSS) insects in the sterile insect technique (SIT) makes necessary the revision of quality parameters of some stressful steps used during the packing process for aerial release because of possible differences in tolerance between fly strains. Here, we determined the effect of three periods of hypoxia (12, 24, and 36 h at pupal stage), three cage densities (1.0, 1.3, and 1.5 flies/cm2), two different foods (protein/sugar (1/24) and Mubarqui), and three chilling times (20 min [control], 90, and 180 min) on the quality parameters of flies of two Anastrepha ludens (Loew) strains (bisexual and GSS Tapachula-7). In general, the response to stressful conditions of both fly strains was qualitatively equivalent but quantitatively different, as flies of both strains responded equally to the stressful factors; however, flies of Tapachula-7 exhibited lower quality parameters than the control flies. Thus, hypoxia affected the flying ability but not the emergence or longevity of flies. The food type affected the adult weight; protein/sugar produced heavier flies that also survived longer and had a greater mating propensity. Flies under the lowest density were better fliers that those at the other two densities. Increasing chilling time reduced flight ability but not longevity or mating propensity. The implications of these findings for the use of A. ludens GSS in SIT programs are discussed herein.
David Trotter
2002-01-01
Insects, weeds, and diseases are a significant part of the production process that nursery growers must consider in order to effectively grow the desired conifer seedling. For the pests and seedlings, the underlying theme is survival, which encompasses 3 major components: stimulus, recognition, and response (Shigo 1991). Thus, the continuation of any system depends on...
Ghosh, Saikat Kumar B; Hunter, Wayne B; Park, Alexis L; Gundersen-Rindal, Dawn E
2018-05-04
Phloem and plant sap feeding insects invade the integrity of crops and fruits to retrieve nutrients, in the process damaging food crops. Hemipteran insects account for a number of economically substantial pests of plants that cause damage to crops by feeding on phloem sap. The brown marmorated stink bug (BMSB), Halyomorpha halys (Heteroptera: Pentatomidae) and the Asian citrus psyllid (ACP), Diaphorina citri Kuwayama (Hemiptera: Liviidae) are hemipteran insect pests introduced in North America, where they are an invasive agricultural pest of high-value specialty, row, and staple crops and citrus fruits, as well as a nuisance pest when they aggregate indoors. Insecticide resistance in many species has led to the development of alternate methods of pest management strategies. Double-stranded RNA (dsRNA)-mediated RNA interference (RNAi) is a gene silencing mechanism for functional genomic studies that has potential applications as a tool for the management of insect pests. Exogenously synthesized dsRNA or small interfering RNA (siRNA) can trigger highly efficient gene silencing through the degradation of endogenous RNA, which is homologous to that presented. Effective and environmental use of RNAi as molecular biopesticides for biocontrol of hemipteran insects requires the in vivo delivery of dsRNAs through feeding. Here we demonstrate methods for delivery of dsRNA to insects: loading of dsRNA into green beans by immersion, and absorbing of gene-specific dsRNA with oral delivery through ingestion. We have also outlined non-transgenic plant delivery approaches using foliar sprays, root drench, trunk injections as well as clay granules, all of which may be essential for sustained release of dsRNA. Efficient delivery by orally ingested dsRNA was confirmed as an effective dosage to induce a significant decrease in expression of targeted genes, such as juvenile hormone acid O-methyltransferase (JHAMT) and vitellogenin (Vg). These innovative methods represent strategies for delivery of dsRNA to use in crop protection and overcome environmental challenges for pest management.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendrichs, M.; Wornoayporn, V.; Hendrichs, J.
Sterile male insects, mass-reared and released as part of sterile insect technique (SIT) programs, must survive long enough in the field to mature sexually and compete effectively with wild males for wild females. An often reported problem in Mediterranean fruit fly (medfly) Ceratitis capitata (Wiedemann) SIT programs is that numbers of released sterile males decrease rapidly in the field for various reasons, including losses to different types of predators. This is a serious issue in view that most operational programs release sterile flies at an age when they are still immature. Previous field and field-cage tests have confirmed that fliesmore » of laboratory strains are less able to evade predators than wild flies. Such tests involve, however, considerable manipulation and observation of predators and are therefore not suitable for routine measurements of predator evasion. Here we describe a simple quality control method with aspirators to measure agility in medflies and show that this parameter is related to the capacity of flies to evade predators. Although further standardization of the test is necessary to allow more accurate inter-strain comparisons, results confirm the relevance of measuring predator evasion in mass-reared medfly strains. Besides being a measure of this sterile male quality parameter, the described method could be used for the systematic selection of strains with a higher capacity for predator evasion. (author) [Spanish] Insectos machos esteriles criados en forma masiva para ser liberados en programas que utilizan la tecnica del insecto esteril (TIE), tienen que tener la capacidad de sobrevivir en el campo el tiempo necesario para poder madurar sexualmente y competir efectivamente con los machos silvestres por hembras silvestres. Un problema frecuentemente reportado por dichos programas de la mosca del Mediterraneo, Ceratitis capitata (Wiedemann), es que el numero de machos esteriles de laboratorio liberados en el campo, decrecen rapidamente por varias razones, incluyendo perdidas debidas a diferentes tipos de depredadores. Estudios anteriores conducidos en el campo, y en jaulas de campo, han confirmado que las cepas de machos de laboratorio tienen menos capacidad de evadir depredadores que los machos silvestres. Estos estudios involucran, sin embargo, una considerable cantidad de manipulacion y observacion de depredadores, por lo que no son adecuados para ser usados como medidas rutinarias en los programas de cria masiva. Aqui describimos un metodo sencillo de control de calidad usando aspiradores para medir agilidad en la mosca del Mediterraneo y mostramos que este parametro esta relacionado a la capacidad de la moscas a evadir a depredadores. Aunque aun es necesario refinar la estandarizacion de este metodo para permitir la comparacion entre cepas, los resultados confirman la importancia de tener un metodo rutinario para medir la capacidad de evasion de depredadores en cepas de cria de laboratorio de la mosca del Mediterraneo. Ademas de medir este parametro de control de calidad de los machos esteriles, el metodo descrito podria tambien ser usado para la seleccion sistematica de cepas con una mayor capacidad de evasion de depredadores. (author)« less
Terada, Takatoshi; Tagami, Manabu; Ohtsubo, Toshiro; Iwao, Yasunori; Noguchi, Shuji; Itai, Shigeru
2016-07-25
In this report, a new solventless microencapsulation method by synthesizing polyurethane (PU) from polyol and isocyanate during an agglomeration process in a high-speed mixing apparatus was developed. Clothianidin (CTD), which is a neonicotinoid insecticide and highly effective against a wide variety of insect pests, was used as the model compound. The microencapsulated samples covered with PU (CTD microspheres) had a median diameter of <75μm and sustained-release properties. The CTD microspheres were analyzed by synchrotron X-ray computed tomography measurements. Multiple cores of CTD and other solid excipient were dispersed in PU. Although voids appeared in the CTD microspheres after CTD release, the spherical shape of the microspheres remained stable and no change in its framework was observed. The experimental release data were highly consistent with the Baker-Lonsdale model derived from drug release of spherical monolithic dispersions and consistent with the computed tomography measurements. Copyright © 2016 Elsevier B.V. All rights reserved.
Hernández, Emilio; Liedo, Pablo; Toledo, Jorge; Montoya, Pablo; Perales, Hugo; Ruiz-Montoya, Lorena
2017-12-05
The sterile insect technique uses males that have been mass-reared in a controlled environment. The insects, once released in the field, must compete to mate. However, the mass-rearing condition supposes a loss of fitness that will be noticeable by wild females. To compare the fitness of wild males and mass-reared males, three competition settings were established. In setting 1, wild males, mass-reared males and wild females were released in field cages. In setting 2, wild females and wild males were released without competition, and in setting 3, mass-reared males and mass-reared females were also released without competition. Male fitness was based on their mating success, fecundity, weight and longevity. The fitness of the females was measured based on weight and several demographic parameters. The highest percentage of mating was between wild males and wild females between 0800 and 0900 h in the competition condition, while the mass-reared males started one hour later. The successful wild males weighed more and showed longer mating times, greater longevity and a higher number of matings than the mass-reared males. Although the mass-reared males showed the lowest percentage of matings, their fecundity when mating with wild females indicated a high fitness. Since the survival and fecundity of wild females that mated with mass-reared males decreased to become similar to those of mass-reared females that mated with mass-reared males, females seem to be influenced by the type of male (wild or mass-reared). © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
If a tree falls in the woods, who will measure it? DecAID decayed wood advisor.
Jonathan Thompson
2006-01-01
Decayed wood plays many critical roles in forest ecosystems. Standing dead trees, called snags, provide habitat for a suite of wildlife, including several species of birds, insects, bats, and other mammals. Down wood provides wildlife habitat and performs ecosystem services such as releasing humus, nitrogen, and phosphorus into the forest soil, storing pockets of...
ERIC Educational Resources Information Center
McQuillan, H. James; Nakagawa, Shinichi; Mercer, Alison R.
2012-01-01
Dopamine and octopamine released in the mushroom bodies of the insect brain play a critical role in the formation of aversive and appetitive memories, respectively. As recent evidence suggests a complex relationship between the effects of these two amines on the output of mushroom body circuits, we compared the expression of dopamine- and…
USDA-ARS?s Scientific Manuscript database
Federal regulations mandate that researchers in the field of classical weed biological control follow the precautionary principle when proposing the release of an organism that can affect our environment. However, the host range observed in traditional laboratory cage experiments typically is broad...
Brian T. Sullivan; Christopher J. Fettig; William J. Otrosina; Mark J. Dalusky; C. Wayne Berisford
2003-01-01
A randomized complete block experiment was performed to measure the effect of prescribed, dormant-season burns of three different levels of severity (measured as fuel consumption and soil surface heating) on subsequent insect infestation and mortality of mature longleaf pine (Pinus palustris Mill.). Multiple-funnel traps baited with a low release...
USDA-ARS?s Scientific Manuscript database
The verde plant bug, Creontiades signatus Distant (Hemiptera: Miridae), has emerged as a threat to cotton in South Texas, causing boll damage similar to boll-feeding stink bugs (Hemiptera: Pentatomidae). Verde plant bugs were released into caged cotton for a one-week period to characterize the effec...
The impacts of a stem boring weevil, Mecinus janthinus, on dalmatian toadflax, Linaria dalmatica
Marjolein Schat
2008-01-01
Classical biological control of weeds is generally considered an effective, safe, and cost effective tool for controlling widespread weeds in natural areas. However, only 60% of releases have become established and, of those, only 50% have led to control. Therefore, understanding the impacts of agents on target weeds across spatial scales, at different insect densities...
Non-target effects of an introduced biological control agent on deer mouse ecology
Dean E. Pearson; Kevin S. McKelvey; Leonard F. Ruggiero
2000-01-01
Release of exotic insects as biological control agents is a common approach to controlling exotic plants. Though controversy has ensued regarding the deleterious direct effects of biological control agents to non-target species, few have examined the indirect effects of a "well-behaved" biological control agent on native fauna. We studied a grassland in west-...
Insects in fluctuating thermal environments.
Colinet, Hervé; Sinclair, Brent J; Vernon, Philippe; Renault, David
2015-01-07
All climate change scenarios predict an increase in both global temperature means and the magnitude of seasonal and diel temperature variation. The nonlinear relationship between temperature and biological processes means that fluctuating temperatures lead to physiological, life history, and ecological consequences for ectothermic insects that diverge from those predicted from constant temperatures. Fluctuating temperatures that remain within permissive temperature ranges generally improve performance. By contrast, those which extend to stressful temperatures may have either positive impacts, allowing repair of damage accrued during exposure to thermal extremes, or negative impacts from cumulative damage during successive exposures. We discuss the mechanisms underlying these differing effects. Fluctuating temperatures could be used to enhance or weaken insects in applied rearing programs, and any prediction of insect performance in the field-including models of climate change or population performance-must account for the effect of fluctuating temperatures.
Min, Kyung Jin; Jones, Nathan; Borst, David W; Rankin, Mary Ann
2004-06-01
Although, in many insects, migration imposes a cost in terms of timing or amount of reproduction, in the migratory grasshopper Melanoplus sanguinipes performance of long-duration flight to voluntary cessation or exhaustion accelerates the onset of first reproduction and enhances reproductive success over the entire lifetime of the insect. Since juvenile hormone (JH) is involved in the control of reproduction in most species, we examined JH titer after long flight using a chiral selective radioimmunoassay. JH levels increased on days 5 and 8 in animals flown to exhaustion on day 4 but not in 1-h or non-flier controls. No difference was seen in the diel pattern of JH titer, but hemolymph samples were taken between 5 and 7 h after lights on. Treatment of grasshoppers with JH-III mimicked the effect of long-duration flight in the induction of early reproduction. The increased JH titer induced by performance of long-duration flight is thus at least one component of flight-enhanced reproduction. To test the possibility that post-flight JH titer increases are caused by adipokinetic hormone (AKH) released during long flights, a series of injections of physiological doses of Lom-AKH I were given to unflown animals to simulate AKH release during long flight. This treatment had no effect on JH titers. Thus, although AKH is released during flight and controls lipid mobilization, it is not the factor responsible for increased JH titers after long-duration flight.
The School Malaise Trap Program: Coupling educational outreach with scientific discovery
Breton, Vanessa; Berzitis, Emily; Hebert, Paul D. N.
2017-01-01
The School Malaise Trap Program (SMTP) provides a technologically sophisticated and scientifically relevant educational experience that exposes students to the diversity of life, enhancing their understanding of biodiversity while promoting environmental stewardship. Since 2013, the SMTP has allowed 15,000 students at 350 primary and secondary schools to explore insect diversity in Canadian schoolyards. Students at each school collected hundreds of insects for an analysis of DNA sequence variation that enabled their rapid identification to a species. Through this hands-on approach, they participated in a learning exercise that conveys a real sense of scientific discovery. As well, the students contributed valuable data to the largest biodiversity genomics initiative ever undertaken: the International Barcode of Life project. To date, the SMTP has sequenced over 80,000 insect specimens, which includes representatives of 7,990 different species, nearly a tenth of the Canadian fauna. Both surprisingly and importantly, the collections generated the first DNA barcode records for 1,288 Canadian species. PMID:28437475
DOE Office of Scientific and Technical Information (OSTI.GOV)
SLACK, JEFFREY, M.
Wood is a potential source for biofuels such as ethanol if it can be digested into sugars and fermented by yeast. Biomass derived from wood is a challenging substrate for ethanol production since it is made of lignin and cellulose which cannot be broken down easily into fermentable sugars. Some insects, and termites in particular, are specialized at using enzymes in their guts to digest wood into sugars. If termite gut enzymes could be made abundantly by a recombinant protein expression vector system, they could be applied to an industrial process to make biofuels from wood. In this study, amore » large cDNA library of relevant termite genes was made using termites fed a normal diet, or a diet with added lignin. A subtracted library yielded genes that were overexpressed in the presence of lignin. Termite gut enzyme genes were identified and cloned into recombinant insect viruses called baculoviruses. Using our PERLXpress system for protein expression, these termite gene recombinant baculoviruses were prepared and used to infect insect larvae, which then expressed abundant recombinant termite enzymes. Many of these expressed enzymes were prepared to very high purity, and the activities were studied in conjunction with collaborators at Purdue University. Recombinant termite enzymes expressed in caterpillars were shown to be able to release sugars from wood. Mixing different combinations of these enzymes increased the amount of sugars released from a model woody biomass substrate. The most economical, fastest and energy conserving way to prepare termite enzymes expressed by recombinant baculoviruses in caterpillars was by making crude liquid homogenates. Making enzymes stable in homogenates therefore was a priority. During the course of these studies, improvements were made to the recombinant baculovirus expression platform so that caterpillar-derived homogenates containing expressed termite enzymes would be more stable. These improvements in the baculoviruses included significantly reducing proteases and preventing blackening immune reactions that occur when caterpillars are homogenized. Proteases may degrade enzymes and immune reaction blackening may inactivate enzymes thus compromising the ability of these crude recombinant expressed termite enzyme preparations to release sugars. Commercial preparations of fungal enzymes currently are used to digest wood for ethanol production. We demonstrated in this study that termite enzymes could improve the efficiency of fungal enzyme cocktails. Although the economic feasibility of using caterpillar expressed termite enzymes alone to treat wood was not proven, this work points to the potential to combine C-PERLXpressed insect enzymes with industrial enzyme cocktails to boost their efficiency at treating wood for biofuels.« less
Engineered Surfaces for Mitigation of Insect Residue Adhesion
NASA Technical Reports Server (NTRS)
Siochi, Emilie J.; Smith, Joseph G.; Wohl, Christopher J.; Gardner, J. M.; Penner, Ronald K.; Connell, John W.
2013-01-01
Maintenance of laminar flow under operational flight conditions is being investigated under NASA s Environmentally Responsible Aviation (ERA) Program. Among the challenges with natural laminar flow is the accretion of residues from insect impacts incurred during takeoff or landing. Depending on air speed, temperature, and wing structure, the critical residue height for laminar flow disruption can be as low as 4 microns near the leading edge. In this study, engineered surfaces designed to minimize insect residue adhesion were examined. The coatings studied included chemical compositions containing functional groups typically associated with abhesive (non-stick) surfaces. To reduce surface contact by liquids and enhance abhesion, the engineered surfaces consisted of these coatings doped with particulate additives to generate random surface topography, as well as coatings applied to laser ablated surfaces having precision patterned topographies. Performance evaluation of these surfaces included contact angle goniometry of pristine coatings and profilometry of surfaces after insect impacts were incurred in laboratory scale tests, wind tunnel tests and flight tests. The results illustrate the complexity of designing antifouling surfaces for effective insect contamination mitigation under dynamic conditions and suggest that superhydrophobic surfaces may not be the most effective solution for preventing insect contamination on aircraft wing leading edges.
Combination of Methoprene and Controlled Aeration to Manage Insects in Stored Wheat.
Liu, Samuel S; Arthur, Frank H; VanGundy, Douglas; Phillips, Thomas W
2016-06-17
A commercial formulation of the insect growth regulator methoprene was applied to wheat stored in small bins either alone or in combination with controlled aeration of the bins, to lower grain temperature for insect pest management of stored wheat. Grain temperatures were monitored and modified by a computer-controlled thermocouple system that also activated the aeration system at programmed set-points to move cool ambient air through the grain mass to lower grain temperature. Results from sampling insect populations in experimental storage bins along with laboratory mortality bioassays of insects placed on wheat taken from the bins over the course of the storage period showed that methoprene was very effective in controlling infestation by the externally-feeding stored grain insects Plodia interpunctella (Hübner), the Indian meal moth Tribolium castaneum (Herbst), the red flour beetle, Cryptolestes ferrugineus (Stephens), the rusty grain beetle, and also for the internal-feeding pest Rhyzopertha dominica( Fauvel), the lesser grain borer. Methoprene did not give good control of the internal-feeding pest Sitophilus oryzae (L.), the rice weevil. Aeration alone was somewhat effective in suppressing insect population development, while methoprene alone or when combined with aeration greatly enhanced insect control. Commercial grain grading for industry quality standards at the end of the storage period confirmed the impact of insect suppression on maintaining high quality of the stored wheat. This field experiment shows that methoprene combined with aeration to cool grain can be effective for pest management of stored wheat in the southern plains of the United States of America.
Clustering of adhesion receptors following exposure of insect blood cells to foreign surfaces.
Nardi, James B; Zhuang, Shufei; Pilas, Barbara; Bee, Charles Mark; Kanost, Michael R
2005-05-01
Cell-mediated immune responses of insects involve interactions of two main classes of blood cells (hemocytes) known as granular cells and plasmatocytes. In response to a foreign surface, these hemocytes suddenly transform from circulating, non-adherent cells to cells that interact and adhere to each other and the foreign surface. This report presents evidence that during this adhesive transformation the extracellular matrix (ECM) proteins lacunin and a ligand for peanut agglutinin (PNA) lectin are released by granular cells and bind to surfaces of both granular cells and plasmatocytes. ECM protein co-localizes on cell surfaces with the adhesive receptors integrin and neuroglian, a member of the immunoglobulin superfamily. The ECM protein(s) secreted by granular cells are hypothesized to interact with adhesion receptors such as neuroglian and integrin by cross linking and clustering them on hemocyte surfaces. This clustering of receptors is known to enhance the adhesiveness (avidity) of interacting mammalian immune cells. The formation of ring-shaped clusters of these adhesion receptors on surfaces of insect immune cells represents an evolutionary antecedent of the mammalian immunological synapse.
2014-07-01
urban structures. An insect growth regulator was also applied to determine howwell each sprayer delivered lethal doses of active ingredient to indoor...vector suppressionwhencombinedwith aneffective insect growth regulator. However, during a dengue outbreak, either delivery system should provide an...sion(Morrisonetal. 2008,Eisenetal. 2009). Successful control programs rely on a combination of intradomi- ciliary adulticide application, larvicidal
Management of a stage-structured insect pest: an application of approximate optimization.
Hackett, Sean C; Bonsall, Michael B
2018-06-01
Ecological decision problems frequently require the optimization of a sequence of actions over time where actions may have both immediate and downstream effects. Dynamic programming can solve such problems only if the dimensionality is sufficiently low. Approximate dynamic programming (ADP) provides a suite of methods applicable to problems of arbitrary complexity at the expense of guaranteed optimality. The most easily generalized method is the look-ahead policy: a brute-force algorithm that identifies reasonable actions by constructing and solving a series of temporally truncated approximations of the full problem over a defined planning horizon. We develop and apply this approach to a pest management problem inspired by the Mediterranean fruit fly, Ceratitis capitata. The model aims to minimize the cumulative costs of management actions and medfly-induced losses over a single 16-week season. The medfly population is stage-structured and grows continuously while management decisions are made at discrete, weekly intervals. For each week, the model chooses between inaction, insecticide application, or one of six sterile insect release ratios. Look-ahead policy performance is evaluated over a range of planning horizons, two levels of crop susceptibility to medfly and three levels of pesticide persistence. In all cases, the actions proposed by the look-ahead policy are contrasted to those of a myopic policy that minimizes costs over only the current week. We find that look-ahead policies always out-performed a myopic policy and decision quality is sensitive to the temporal distribution of costs relative to the planning horizon: it is beneficial to extend the planning horizon when it excludes pertinent costs. However, longer planning horizons may reduce decision quality when major costs are resolved imminently. ADP methods such as the look-ahead-policy-based approach developed here render questions intractable to dynamic programming amenable to inference but should be applied carefully as their flexibility comes at the expense of guaranteed optimality. However, given the complexity of many ecological management problems, the capacity to propose a strategy that is "good enough" using a more representative problem formulation may be preferable to an optimal strategy derived from a simplified model. © 2018 by the Ecological Society of America.
Evaluation of Bt (Bacillus thuringiensis) rice varieties against stem borer (Chilo suppressalis).
Kiani, Ghaffar; Nematzadeh, Ghorban Ali; Ghareyazie, Behzad; Sattari, Majid
2008-02-15
Three transgenic rice varieties namely Khazar, Neda and Nemat, all containing a cry1Ab gene, were evaluated through PCR analysis and field examinations for their resistance at natural infestation of insect pests during 2007. The results showed that all transgenic varieties produced 1.2 kb PCR product derived from application of cry1Ab gene. In field conditions, transgenic varieties exhibited high levels of resistance against natural infestation of stem borer and the damaged plants based on dead heart or white heat for them were less than 1%. Moreover, in stem-cut bioassay 100% of released larvae died within four days after infestation. These results demonstrate that expression of cry1Ab gene in the genome of transgenic varieties provided season-long protection from the natural infestation of lepidopteran insects.
Spread of plant pathogens and insect vectors at the northern range margin of cypress in Italy
NASA Astrophysics Data System (ADS)
Zocca, Alessia; Zanini, Corrado; Aimi, Andrea; Frigimelica, Gabriella; La Porta, Nicola; Battisti, Andrea
2008-05-01
The Mediterranean cypress ( Cupressus sempervirens) is a multi-purpose tree widely used in the Mediterranean region. An anthropogenic range expansion of cypress has taken place at the northern margin of the range in Italy in recent decades, driven by ornamental planting in spite of climatic constraints imposed by low winter temperature. The expansion has created new habitats for pathogens and pests, which strongly limit tree survival in the historical (core) part of the range. Based on the enemy release hypothesis, we predicted that damage should be lower in the expansion area. By comparing tree and seed cone damage by pathogens and pests in core and expansion areas of Trentino, a district in the southern Alps, we showed that tree damage was significantly higher in the core area. Seed cones of C. sempervirens are intensively colonized by an aggressive and specific pathogen (the canker fungus Seiridium cardinale, Coelomycetes), associated with seed insect vectors Megastigmus wachtli (Hymenoptera Torymidae) and Orsillus maculatus (Heteroptera Lygaeidae). In contrast, we observed lower tree damage in the expansion area, where a non-aggressive fungus ( Pestalotiopsis funerea, Coelomycetes) was more frequently associated with the same insect vectors. Our results indicate that both insect species have a great potential to reach the range margin, representing a continuous threat of the arrival of fungal pathogens to trees planted at extreme sites. Global warming may accelerate this process since both insects and fungi profit from increased temperature. In the future, cypress planted at the range margin may then face similar pest and pathogen threats as in the historical range.
Shelly, Todd E.; Edu, James; McInnis, Donald
2010-01-01
The sterile insect technique may be implemented to control populations of the oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), when environmental concerns preclude widespread use of chemical attractants or toxicants. The goal of the present study was to evaluate whether the mating competitiveness of sterile B. dorsalis males could be increased via pre-release feeding on methyl eugenol. Males of the oriental fruit fly are strongly attracted to this plant-borne compound, which they ingest and use in the synthesis of the sex pheromone. Previous studies conducted in the laboratory and small field-cages have shown that males given methyl eugenol produce a more attractive pheromone for females and have a higher mating success rate than males denied methyl eugenol. Here, levels of egg sterility were compared following the release of wild-like flies and either methyl eugenol-fed (treated) or methyl eugenol-deprived (control) sterile males in large field enclosures at four over flooding ratios ranging from 5:1 to 60:1 (sterile: wild-like males). Treated sterile males were fed methyl eugenol for 1–4 h (depending on the over flooding ratio tested) 3 d prior to release. Eggs were dissected from introduced fruits (apples), incubated in the laboratory, and scored for hatch rate. The effect of methyl eugenol was most pronounced at lower over flooding ratios. At the 5:1 and 10:1 over flooding ratios, the level of egg sterility observed for treated, sterile males was significantly greater than that observed for control, sterile males. In addition, the incidence of egg sterility reported for treated sterile males at these lower over flooding ratios was similar to that noted for treated or control sterile males at the 30:1 or 60:1 over flooding ratios. This latter result, in particular, suggests that pre-release feeding on methyl eugenol allows for a reduction in the number of sterile flies that are produced and released, thus increasing the cost-effectiveness of the sterile insect technique. PMID:20569140
Kumar, Jitendra; Shakil, Najam A; Singh, Manish K; Singh, Mukesh K; Pandey, Alka; Pandey, Ravi P
2010-05-01
Controlled release (CR) formulations of azadirachtin-A, a bioactive constituent derived from the seed of Azadirachta indica A. Juss (Meliaceae), have been prepared using commercially available polyvinyl chloride, polyethylene glycol (PEG) and laboratory synthesized poly ethylene glycol-based amphiphilic copolymers. Copolymers of polyethylene glycol and various dimethyl esters, which self assemble into nano micellar aggregates in aqueous media, have been synthesized. The kinetics of azadirachtin-A, release in water from the different formulations was studied. Release from the commercial polyethylene glycol (PEG) formulation was faster than the other CR formulations. The rate of release of encapsulated azadirachtin-A from nano micellar aggregates is reduced by increasing the molecular weight of PEG. The diffusion exponent (n value) of azadirachtin-A, in water ranged from 0.47 to 1.18 in the tested formulations. The release was diffusion controlled with a half release time (t(1/2)) of 3.05 to 42.80 days in water from different matrices. The results suggest that depending upon the polymer matrix used, the application rate of azadirachtin-A can be optimized to achieve insect control at the desired level and period.
NASA Astrophysics Data System (ADS)
Duffek, J.
2008-12-01
for Educational Program IYA Dark Skies Education Session Fall American Geophysical Union San Francisco, December 15-19, 2008 Light Pollution and Wildlife This is a very exciting time to be a part of the mission to keep the nighttime skies natural. The International Year of Astronomy (IYA) 2009 is developing programs for all areas of Dark Skies Awareness. For many years the issue of light pollution focused on the impact to the astronomy industry. While this is an important area, research has shown that light pollution negatively impacts wildlife, their habitat, human health, and is a significant waste of energy. Since the message and impact of the effects of light pollution are much broader now, the message conveyed to the public must also be broader. Education programs directed at youth are a new frontier to reach out to a new audience about the adverse effects of too much artificial light at night. The International Dark-Sky Association (IDA) has developed educational presentations using the National Science Teachers Association Education Standards. These programs focus on youth between the ages of 5 to 17exploring new territory in the education of light pollution. The IDA education programs are broken down into three age groups; ages 5-9, 8-13, 12 and older. The presentations come complete with PowerPoint slides, discussion notes for each slide, and workbooks including age appropriate games to keep young audiences involved. A new presentation reflects the growing area of interest regarding the effects of too much artificial light at night on wildlife. This presentation outlines the known problems for ecosystems caused by artificial light at night. Insects are attracted to artificial lights and may stay near that light all night. This attraction interferes with their ability to migrate, mate, and look for food. Such behavior leads to smaller insect populations. Fewer insects in turn affect birds and bats, because they rely on insects as a food source. The IDA education programs show children how all of these issues are interrelated. Insects are not the only organisms adversely affected by light at night. Reptiles, mammals, birds and amphibians are also negatively impacted. All creatures have a biological clock which determines when they rest, hunt, migrate, and mate. Bright lights create confusion in many species by disrupting this internal biological clock. IDA presents the solutions to these problems as quality outdoor lighting, and the presentations show examples of dark sky friendly lighting. The youth audience is an excellent venue for wildlife education outreach. The IDA youth education programs are completed and ready for use. They can be used by professional teachers, parents, community organizers, or anyone advocating to keep the skies natural. This is a great time to promote the win-win benefits of good nighttime lighting.
Song, Ah Young; Choi, Ha Young; Lee, Eun Song; Han, Jaejoon; Min, Sea C
2018-04-01
Films containing microencapsulated cinnamon oil (CO) were developed using a large-scale production system to protect against the Indian meal moth (Plodia interpunctella). CO at concentrations of 0%, 0.8%, or 1.7% (w/w ink mixture) was microencapsulated with polyvinyl alcohol. The microencapsulated CO emulsion was mixed with ink (47% or 59%, w/w) and thinner (20% or 25%, w/w) and coated on polypropylene (PP) films. The PP film was then laminated with a low-density polyethylene (LDPE) film on the coated side. The film with microencapsulated CO at 1.7% repelled P. interpunctella most effectively. Microencapsulation did not negatively affect insect repelling activity. The release rate of cinnamaldehyde, an active repellent, was lower when CO was microencapsulated than that in the absence of microencapsulation. Thermogravimetric analysis exhibited that microencapsulation prevented the volatilization of CO. The tensile strength, percentage elongation at break, elastic modulus, and water vapor permeability of the films indicated that microencapsulation did not affect the tensile and moisture barrier properties (P > 0.05). The results of this study suggest that effective films for the prevention of Indian meal moth invasion can be produced by the microencapsulation of CO using a large-scale film production system. Low-density polyethylene-laminated polypropylene films printed with ink incorporating microencapsulated cinnamon oil using a large-scale film production system effectively repelled Indian meal moth larvae. Without altering the tensile and moisture barrier properties of the film, microencapsulation resulted in the release of an active repellent for extended periods with a high thermal stability of cinnamon oil, enabling commercial film production at high temperatures. This anti-insect film system may have applications to other food-packaging films that use the same ink-printing platform. © 2018 Institute of Food Technologists®.
Lee, Doo-Hyung; Wright, Starker E; Boiteau, Gilles; Vincent, Charles; Leskey, Tracy C
2013-06-01
We evaluated the effectiveness of three cyanoacrylate glues (trade names: Krazy [Elmer's Products Inc., Westerville, OH], Loctite [Henkel Corporation, Rocky Hill, CT], and FSA [Barnes Distribution, Cleveland, OH]) to attach harmonic radar tags securely on adult Halyomorpha halys (Stål) (Hemiptera: Pentatomidae) and quantified the effect of the radar tag attachment on insect survivorship and mobility. In the laboratory, the strength of the glue bond between the radar tag and H. halys pronotum was significantly increased when the pronotum was sanded to remove cuticular waxes. The adhesive bond of the radar tag to the sanded pronotum of H. halys had strength of 160-190-g force and there was no significant difference among the three types of glue tested. The three glues had no measurable effect on the survivorship of radar-tagged H. halys over 7 d, compared with untagged insects. Over a 7-d period in the laboratory, horizontal distance traveled, horizontal walking velocity, and vertical climbing distance were all unaffected by the presence of the tags regardless of glue. A field experiment was conducted to compare the free flight behavior of untagged and radar-tagged H. halys. Adults were released on a vertical dowel and their flights were tracked visually up to ≍200 m from the release point. There was no significant difference in take-off time or in flight distance, time, or speed between untagged and radar-tagged individuals. In addition, prevailing flight direction was not significantly different between untagged and radar-tagged individuals. The absence of measurable impact of the radar tag attachment on H. halys survivorship or mobility validates the use of harmonic radar tags to study the dispersal ecology of this insect in field conditions.
Golden, Gilad; Quinn, Elazar; Shaaya, Eli; Kostyukovsky, Moshe; Poverenov, Elena
2018-04-01
One of the most significant contributors to the global food crisis is grain loss during storage, mainly caused by pest insects. Currently, there are two main methods used for insect pest control: fumigation and grain protection using contact insecticides. As some chemical insecticides can harm humans and the environment, there is a global tendency to reduce their use by finding alternative eco-friendly approaches. In this study, the natural pest-managing agent pulegone was encapsulated into coarse and nano emulsions. The emulsions were characterized using spectroscopic and microscopic methods and their stability and pulegone release ability were examined. The insecticidal activity of the prepared formulations against two stored product insects, rice weevil (Sitophilus oryzae L.) and red flour beetle (Tribolium castaneum Herbst), was demonstrated. The nano emulsion-based formulation offered significant advantages and provided powerful bioactivity, with high (> 90%) mortality rates for as long as 5 weeks for both insects, whereas coarse emulsions showed high efficacy for only 1 week. The developed pulegone-based nano emulsions could serve as a model for an effective alternative method for pest control. Although pulegone is from a natural source, toxicological studies should be performed before the widespread application of pulegone or pulegone-containing essential oils to dry food products. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Sarkar, Nupur; Karmakar, Amarnath; Barik, Anandamay
2016-10-01
Epilachna vigintioctopunctata Fabr. (Coleoptera: Coccinellidae) and Aulacophora foveicollis Lucas (Coleoptera: Chrysomelidae) are important pests of Solena amplexicaulis (Lam.) Gandhi (Cucurbitaceae), commonly known as creeping cucumber. The profiles of volatile organic compounds from undamaged plants, plants after 48 hr continuous feeding of adult females of either E. vigintioctopunctata or A. foveicollis, by adults of both species, and after mechanical damaging were identified and quantified by GC-MS and GC-FID analyses. Thirty two compounds were detected in volatiles of all treatments. In all plants, methyl jasmonate was the major compound. In Y-shaped glass tube olfactometer bioassays under laboratory conditions, both insect species showed a significant preference for complete volatile blends from insect damaged plants, compared to those of undamaged plants. Neither E. vigintioctopunctata nor A. foveicollis showed any preference for volatiles released by heterospecifically damaged plants vs. conspecifically damaged plants or plants attacked by both species. Epilachna vigintioctopunctata and A. foveicollis showed attraction to three different synthetic compounds, linalool oxide, nonanal, and E-2-nonenal in proportions present in volatiles of insect damaged plants. Both species were attracted by a synthetic blend of 1.64 μg linalool oxide + 3.86 μg nonanal + 2.23 μg E-2-nonenal, dissolved in 20 μl methylene chloride. This combination might be used as trapping tools in pest management strategies.
Alvarenga, R; Moraes, J C; Auad, A M; Coelho, M; Nascimento, A M
2017-08-01
The aim of this study was to evaluate the effects of silicon application and administration of the phytohormone gibberellic acid on resistance of the corn plants to the fall armyworm (FAW), Spodoptera frugiperda, and their vegetative characteristics. We evaluated larval and pupal duration, survival and biomass, and adult longevity, malformation and fecundity of S. frugiperda after feeding on plant matter treated with silicon and/or gibberellic acid. The feeding preference of FAW first-instar larvae, the total leaf area consumed by the insects, and the vegetative parameters of corn plants were also evaluated. No significant differences were observed in the measured parameters of larval and pupal stages of S. frugiperda in response to silicon or gibberellic acid. In adult stage insects, the number of eggs per female was significantly reduced in insects derived from larvae fed plants treated with silicon or gibberellic acid. In a non-preference test, 48 h after release, caterpillars preferred control untreated plants and consumed less matter from plants that had received hormonal treatment (gibberellic acid). Gibberellic acid also altered the vegetative characteristics of plants, by increasing their height, shoot fresh and dry mass, and silicon content. We conclude that gibberellic acid can alter the vegetative characteristics and silicon uptake of corn plants, leading to a reduction in their consumption by S. frugiperda larvae and a decrease in female insect oviposition.
ERIC Educational Resources Information Center
Bush, Diane; Dreistadt, Steve
This program has 10 units, each to be taught in 40-50 minute periods. Each unit includes a statement of purpose, concepts to be taught, a list of necessary materials, preparation, and graphics. Guidelines are provided for 10-15 minutes of introduction with classroom discussion, 15-20 minutes of activities and 5-10 minutes of wrap-up discussion.…
Chidawanyika, Frank; Mudavanhu, Pride; Nyamukondiwa, Casper
2012-11-09
The current changes in global climatic regimes present a significant societal challenge, affecting in all likelihood insect physiology, biochemistry, biogeography and population dynamics. With the increasing resistance of many insect pest species to chemical insecticides and an increasing organic food market, pest control strategies are slowly shifting towards more sustainable, ecologically sound and economically viable options. Biologically based pest management strategies present such opportunities through predation or parasitism of pests and plant direct or indirect defense mechanisms that can all be important components of sustainable integrated pest management programs. Inevitably, the efficacy of biological control systems is highly dependent on natural enemy-prey interactions, which will likely be modified by changing climates. Therefore, knowledge of how insect pests and their natural enemies respond to climate variation is of fundamental importance in understanding biological insect pest management under global climate change. Here, we discuss biological control, its challenges under climate change scenarios and how increased global temperatures will require adaptive management strategies to cope with changing status of insects and their natural enemies.
Sadekuzzaman, Md; Kim, Yonggyun
2017-10-01
Phospholipase A 2 (PLA 2 ) hydrolyzes ester bond of phospholipids at the sn-2 position to release free fatty acid and lysophospholipids. Some PLA 2 s preferentially release arachidonic acid which is subsequently oxygenated into eicosanoids to mediate immune responses in insects. Xenorhabdus hominickii is an entomopathogenic bacterium that can suppress insect immunity by inhibiting PLA 2 activity. However, little is known about target PLA 2 types inhibited by X. hominickii. Therefore, the objective of this study was to determine PLA 2 types in the host insect, Spodoptera exigua using specific inhibitors. All developmental stages of S. exigua possessed significant PLA 2 activities, with late larval stages showing relatively higher PLA 2 activities. In different larval tissues, hemocytes had higher PLA 2 activities than fat body, gut, or epidermis. Various developmental and tissue extracts exhibited differential susceptibilities to three different PLA 2 inhibitors. Late larva-to-adult stages were highly susceptible to all three different types of PLA 2 inhibitors. In contrast, extracts from egg and young larval stages were not susceptible to secretory PLA 2 (sPLA 2 ) or calcium-independent cellular PLA 2 (iPLA 2 ) inhibitors, although they were susceptible to a calcium-dependent cellular PLA 2 (cPLA 2 ) inhibitor in a dose-dependent manner. Different tissues of fifth instars exhibited variation in susceptibility to inhibitors, with epidermal tissue being sensitive to cPLA 2 inhibitor only while other tissues were sensitive to all three types of inhibitors. Bacterial challenge with heat-killed X. hominickii significantly increased PLA 2 activity. However, live bacteria suppressed the induction of PLA 2 activity. An organic extract of X. hominickii-culture broth inhibited the susceptibility of S. exigua to sPLA 2 - and iPLA 2 - specific inhibitors, but not to cPLA 2 -specific inhibitor. Oxindole, a component of the organic extract, exhibited an inhibitory pattern similar to the organic extract. Taken together, our results indicate that S. exigua possesses different PLA 2 types and that X. hominickii can inhibit PLA 2 s susceptible to sPLA 2 - and iPLA 2 - specific inhibitors. Copyright © 2017 Elsevier Inc. All rights reserved.
Leach, Adrian W.; Benedict, Mark Q.; Facchinelli, Luca; Quinlan, M. Megan
2018-01-01
Abstract Transgenic mosquitoes are being developed as novel components of area-wide approaches to vector-borne disease control. Best practice is to develop these in phases, beginning with laboratory studies, before moving to field testing and inclusion in control programs, to ensure safety and prevent costly field testing of unsuitable strains. The process of identifying and developing good candidate strains requires maintenance of transgenic colonies over many generations in containment facilities. By working in disease endemic countries with target vector populations, laboratory strains may be developed and selected for properties that will enhance intended control efficacy in the next phase, while avoiding traits that introduce unnecessary risks. Candidate strains aiming toward field use must consistently achieve established performance criteria, throughout the process of scaling up from small study colonies to production of sufficient numbers for field testing and possible open release. Maintenance of a consistent quality can be demonstrated by a set of insect quality and insectary operating indicators, measured over time at predetermined intervals. These indicators: inform comparability of studies using various candidate strains at different times and locations; provide evidence of conformity relevant to compliance with terms of approval for regulated use; and can be used to validate some assumptions related to risk assessments covering the contained phase and for release into the environment. PMID:29337661
Mumford, John D; Leach, Adrian W; Benedict, Mark Q; Facchinelli, Luca; Quinlan, M Megan
2018-01-01
Transgenic mosquitoes are being developed as novel components of area-wide approaches to vector-borne disease control. Best practice is to develop these in phases, beginning with laboratory studies, before moving to field testing and inclusion in control programs, to ensure safety and prevent costly field testing of unsuitable strains. The process of identifying and developing good candidate strains requires maintenance of transgenic colonies over many generations in containment facilities. By working in disease endemic countries with target vector populations, laboratory strains may be developed and selected for properties that will enhance intended control efficacy in the next phase, while avoiding traits that introduce unnecessary risks. Candidate strains aiming toward field use must consistently achieve established performance criteria, throughout the process of scaling up from small study colonies to production of sufficient numbers for field testing and possible open release. Maintenance of a consistent quality can be demonstrated by a set of insect quality and insectary operating indicators, measured over time at predetermined intervals. These indicators: inform comparability of studies using various candidate strains at different times and locations; provide evidence of conformity relevant to compliance with terms of approval for regulated use; and can be used to validate some assumptions related to risk assessments covering the contained phase and for release into the environment.
Qpais: A Web-Based Expert System for Assistedidentification of Quarantine Stored Insect Pests
NASA Astrophysics Data System (ADS)
Huang, Han; Rajotte, Edwin G.; Li, Zhihong; Chen, Ke; Zhang, Shengfang
Stored insect pests can seriously depredate stored products causing worldwide economic losses. Pests enter countries traveling with transported goods. Inspection and Quarantine activities are essential to prevent the invasion and spread of pests. Identification of quarantine stored insect pests is an important component of the China's Inspection and Quarantine procedure, and it is necessary not only to identify whether the species captured is an invasive species, but determine control procedures for stored insect pests. With the development of information technologies, many expert systems that aid in the identification of agricultural pests have been developed. Expert systems for the identification of quarantine stored insect pests are rare and are mainly developed for stand-alone PCs. This paper describes the development of a web-based expert system for identification of quarantine stored insect pests as part of the China 11th Five-Year National Scientific and Technological Support Project (115 Project). Based on user needs, textual knowledge and images were gathered from the literature and expert interviews. ASP.NET, C# and SQL language were used to program the system. Improvement of identification efficiency and flexibility was achieved using a new inference method called characteristic-select-based spatial distance method. The expert system can assist identifying 150 species of quarantine stored insect pests and provide detailed information for each species. The expert system has also been evaluated using two steps: system testing and identification testing. With a 85% rate of correct identification and high efficiency, the system evaluation shows that this expert system can be used in identification work of quarantine stored insect pests.
Insect Residue Contamination on Wing Leading Edge Surfaces: A Materials Investigation for Mitigation
NASA Technical Reports Server (NTRS)
Lorenzi, Tyler M.; Wohl, Christopher J.; Penner, Ronald K.; Smith, Joseph G.; Siochi, Emilie J.
2011-01-01
Flight tests have shown that residue from insect strikes on aircraft wing leading edge surfaces may induce localized transition of laminar to turbulent flow. The highest density of insect populations have been observed between ground level and 153 m during light winds (2.6 -- 5.1 m/s), high humidity, and temperatures from 21 -- 29 C. At a critical residue height, dependent on the airfoil and Reynolds number, boundary layer transition from laminar to turbulent results in increased drag and fuel consumption. Although this represents a minimal increase in fuel burn for conventional transport aircraft, future aircraft designs will rely on maintaining laminar flow across a larger portion of wing surfaces to reduce fuel burn during cruise. Thus, insect residue adhesion mitigation is most critical during takeoff and initial climb to maintain laminar flow in fuel-efficient aircraft configurations. Several exterior treatments investigated to mitigate insect residue buildup (e.g., paper, scrapers, surfactants, flexible surfaces) have shown potential; however, implementation has proven to be impractical. Current research is focused on evaluation of wing leading edge surface coatings that may reduce insect residue adhesion. Initial work under NASA's Environmentally Responsible Aviation Program focused on evaluation of several commercially available products (commercial off-the-shelf, COTS), polymers, and substituted alkoxy silanes that were applied to aluminum (Al) substrates. Surface energies of these coatings were determined from contact angle data and were correlated to residual insect excrescence on coated aluminum substrates using a custom-built "bug gun." Quantification of insect excrescence surface coverage was evaluated by a series of digital photographic image processing techniques.
Packing of Fruit Fly Parasitoids for Augmentative Releases
Montoya, Pablo; Cancino, Jorge; Ruiz, Lía
2012-01-01
The successful application of Augmentative Biological Control (ABC) to control pest fruit flies (Diptera: Tephritidae) confronts two fundamental requirements: (1) the establishment of efficient mass rearing procedures for the species to be released, and (2) the development of methodologies for the packing and release of parasitoids that permit a uniform distribution and their optimal field performance under an area-wide approach. Parasitoid distributions have been performed by ground and by air with moderate results; both options face challenges that remain to be addressed. Different devices and strategies have been used for these purposes, including paper bags and the chilled adult technique, both of which are commonly used when releasing sterile flies. However, insect parasitoids have morphological and behavioral characteristics that render the application of such methodologies suboptimal. In this paper, we discuss an alternate strategy for the augmentative release of parasitoids and describe packing conditions that favor the rearing and emergence of adult parasitoids for increased field performance. We conclude that the use of ABC, including the packaging of parasitoids, requires ongoing development to ensure that this technology remains a viable and effective control technique for pest fruit flies. PMID:26466634
Muñoz, Lourdes; Dimov, Nikolay; Carot-Sans, Gerard; Bula, Wojciech P.; Guerrero, Angel; Gardeniers, Han J. G. E.
2012-01-01
Infochemical production, release and detection of (Z,E)-9,11-tetradecadienyl acetate, the major component of the pheromone of the moth Spodoptera littoralis, is achieved in a novel microfluidic system designed to mimic the final step of the pheromone biosynthesis by immobilized recombinant alcohol acetyl transferase. The microfluidic system is part of an “artificial gland”, i.e., a chemoemitter that comprises a microreactor connected to a microevaporator and is able to produce and release a pre-defined amount of the major component of the pheromone from the corresponding (Z,E)-9,11-tetradecadienol. Performance of the entire chemoemitter has been assessed in electrophysiological and behavioral experiments. Electroantennographic depolarizations of the pheromone produced by the chemoemitter were ca. 40% relative to that evoked by the synthetic pheromone. In a wind tunnel, the pheromone released from the evaporator elicited on males a similar attraction behavior as 3 virgin females in most of the parameters considered. PMID:23155372
Eleutherodactylus frog introductions to Hawaii
Kraus, Fred; Campbell, Earl W.; Allison, Allen; Pratt, Thane K.
1999-01-01
As an oceanic archipelago isolated from continental source areas, Hawaii lacks native terrestrial reptiles and amphibians, Polynesians apparently introduced seven gecko and skink species after discovering the islands approximately 1500 years ago, and another 15 reptiles and five frogs have been introduced in the last century and a half (McKeown 1996). The Polynesian introductions are probably inadvertent because the species involved are known stowaway dispersers (Gibbons 1985; Dye and Steadman 1990), In contrast, most of the herpetological introductions since European contact with Hawaii have been intentional. Several frog species were released for biocontrol of insects (e.g., Dendrobates auratus, Bufo marinus, Rana rugosa, Bryan 1932; Oliver and Shaw 1953), and most of the remaining species are released or escaped pets (e.g., Phelsuma spp., Chamaeleo jacksonii, Iguana iguana, McKeown 1996), Government-approved releases have not occurred for many years, but the rate of establishment of new species has increased in the past few decades because of the importation and subsequent release of pets.
Cross Reference Index for Bioenvironmental Engineer and Military Public Health Offices
1992-03-01
Food Recall AFR 161-42 DOD Hazardous Food and Nonprescription Drug Recall System Insects and Mite Pests in Food AGR-HB-655 Insects and Mite Pests in Food...Solution, 11 Hazard Communication, 12 Hazardous Energy Control, 21, 22 Hazardous Food Recall Program, 9 Hazardous Waste, 11, 26 Hazardous Materials...34Institutional Meat Purchase Specification" NAMPS "National Association of Meat Purveyor’s" DPSC Support DOD 4155.6 Subsistence Inspection Manual Hazardous
Yan, Kelly; Merritt, Hanne; Crawford, Kenneth; Pardee, Gwynn; Cheng, Jan Marie; Widger, Stephania; Hekmat-Nejad, Mohammad; Zaror, Isabel; Sim, Janet
2015-06-01
Extracellular signal-regulated kinase 2 (ERK2) is a serine/threonine protein kinase involved in many cellular programs, such as cell proliferation, differentiation, motility and programed cell-death. It is therefore considered an important target in the treatment of cancer. In an effort to support biochemical screening and small molecule drug discovery, we established a robust system to generate both inactive and active forms of ERK2 using insect expression system. We report here, for the first time, that inactive ERK2 can be expressed and purified with 100% homogeneity in the unphosphorylated form using insect system. This resulted in a significant 20-fold yield improvement compared to that previously reported using bacterial expression system. We also report a newly developed system to generate active ERK2 in insect cells through in vivo co-expression with a constitutively active MEK1 (S218D S222D). Isolated active ERK2 was confirmed to be doubly phosphorylated at the correct sites, T185 and Y187, in the activation loop of ERK2. Both ERK2 forms, inactive and active, were well characterized by biochemical activity assay for their kinase function. Inactive and active ERK2 were the two key reagents that enabled successful high through-put biochemical assay screen and structural drug discovery studies. Copyright © 2015 Elsevier Inc. All rights reserved.
Ávalos, J A; Balasch, S; Soto, A
2016-10-01
The flight ability and patterns of an insect influence its spread, and the study of its behaviour can be used to improve the strategies to control the pest. Regarding Rhynchophorus ferrugineus (Olivier) (Coleoptera: Dryophthoridae), one of the worst threats to palm trees worldwide, laboratory experiments have been conducted to analyze their flight potential. However, these data must be complemented with tests that allow us to know its flight behaviour and dispersal patterns under field conditions. Two mark-release-recapture experiments were conducted in areas with R. ferrugineus infestations. In the first, the effects of weevil sex, temperature, solar radiation, and relative humidity, on the take-off and flight mobility of adults were analyzed. The second experiment aimed to determine the maximum flight distance covered by adults in field. The take-off rate for R. ferrugineus males was significantly greater than for females, and was positively influenced by temperature (optimum take-off around 25°C) and solar radiation, both factors being highly correlated. Female weevil recaptures were significantly higher, especially as temperatures increased (optimum recapture around 21°C). Dispersal distances of weevil adults increased when temperatures rose, and while this insect tended to fly short distances (<500 m), it was able to cover up to 7 km. The dispersal of R. ferrugineus adults mainly occurred during the first 7 days after their release, and when relative humidity increased, their dispersal time was reduced. The results obtained will permit a more effective implementation of certain measures used to control R. ferrugineus, such as olfactory trapping or intensive surveillance around pest outbreaks.
Attraction of female grapevine moth to common and specific olfactory cues from 2 host plants.
Tasin, Marco; Bäckman, Anna-Carin; Anfora, Gianfranco; Carlin, Silvia; Ioriatti, Claudio; Witzgall, Peter
2010-01-01
In herbivorous insects with more than 1 host plant, attraction to host odor could conceptually be mediated by common compounds, by specific compounds released by each plant or by combinations of common and specific compounds. We have compared the attraction of female grapevine moth, Lobesia botrana, with specific and common (shared) odors from 2 different plants: a wild host (Daphne gnidium) and a recently colonized host (Vitis vinifera). Odor blends eliciting female attraction to V. vinifera have previously been identified. In this study, olfactory cues from D. gnidium were identified by electroantennographic detection and chemical analysis. The attraction of mated females to synthetic odor blends was then tested in a wind tunnel bioassay. Female attraction was elicited by a blend of compounds released by both from D. gnidium and V. vinifera and by 2 blends with the compounds released specifically from each host. However, more complete odor blends of the 2 plants elicited stronger attraction. The common compounds in combination with the specific compounds of D. gnidium were the most attractive blend. This blend was tested with the common compounds presented both in the ratio emitted by D. gnidium and by V. vinifera, but there was no difference in female attraction. Our findings suggest that specific as well as common plant odor cues play a role in L. botrana host recognition and that there is plasticity in attraction to partial blends. The results are discussed in relation to mechanisms behind host odor recognition and the evolution of insect-plant associations.
Mutika, Gratian N.; Marin, Carmen; Parker, Andrew G.; Boucias, Drion G.; Vreysen, Marc J. B.; Abd-Alla, Adly M. M.
2012-01-01
Many species of tsetse flies are infected by a virus (GpSGHV) that causes salivary gland hypertrophy (SGH). Female Glossina pallidipes (Austen) with SGH symptoms (SGH+) have reduced fecundity and SGH+ male G. pallidipes are unable to inseminate female flies. Consequently, G. pallidipes laboratory colonies with a high prevalence of SGH have been difficult to maintain and have collapsed on several occasions. To assess the potential impact of the release of SGH+ sterile male G. pallidipes on the efficacy of an integrated control programme with a sterile insect technique (SIT) component, we examined the mating efficiency and behaviour of male G. pallidipes in field cages in relation to SGH prevalence. The results showed in a field cage setting a significantly reduced mating frequency of 19% for a male G. pallidipes population with a high prevalence of SGH (83%) compared to 38% for a male population with a low prevalence of SGH (7%). Premating period and mating duration did not vary significantly with SGH status. A high percentage (>80%) of females that had mated with SGH+ males had empty spermathecae. The remating frequency of female G. pallidipes was very low irrespective of the SGH status of the males in the first mating. These results indicate that a high prevalence of SGH+ in G. pallidipes not only affects colony stability and performance but, in view of their reduced mating propensity and competitiveness, releasing SGH+ sterile male G. pallidipes will reduce the efficiency of a sterile male release programme. PMID:22912687
The city as a refuge for insect pollinators.
Hall, Damon M; Camilo, Gerardo R; Tonietto, Rebecca K; Ollerton, Jeff; Ahrné, Karin; Arduser, Mike; Ascher, John S; Baldock, Katherine C R; Fowler, Robert; Frankie, Gordon; Goulson, Dave; Gunnarsson, Bengt; Hanley, Mick E; Jackson, Janet I; Langellotto, Gail; Lowenstein, David; Minor, Emily S; Philpott, Stacy M; Potts, Simon G; Sirohi, Muzafar H; Spevak, Edward M; Stone, Graham N; Threlfall, Caragh G
2017-02-01
Research on urban insect pollinators is changing views on the biological value and ecological importance of cities. The abundance and diversity of native bee species in urban landscapes that are absent in nearby rural lands evidence the biological value and ecological importance of cities and have implications for biodiversity conservation. Lagging behind this revised image of the city are urban conservation programs that historically have invested in education and outreach rather than programs designed to achieve high-priority species conservation results. We synthesized research on urban bee species diversity and abundance to determine how urban conservation could be repositioned to better align with new views on the ecological importance of urban landscapes. Due to insect pollinators' relatively small functional requirements-habitat range, life cycle, and nesting behavior-relative to larger mammals, we argue that pollinators put high-priority and high-impact urban conservation within reach. In a rapidly urbanizing world, transforming how environmental managers view the city can improve citizen engagement and contribute to the development of more sustainable urbanization. © 2016 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.
Oviposition behaviour of Phlebotomus argentipes--a laboratory-based study.
Kumar, Vijay; Rama, Aarti; Kesari, Shreekant; Bhunia, Gouri Sankar; Dinesh, Diwakar Singh; Das, Pradeep
2013-12-01
The breeding habitat of sandflies is a little studied and poorly understood phenomenon. More importantly, oviposition behaviour is a largely neglected aspect of sandfly biology and this knowledge gap further undermines our understanding of the biology of sandflies. Pheromones released by the eggs play an important role in identifying good sites for oviposition by female insects. Several recent studies have examined the oviposition pheromone. The present study provides a preliminary report on the oviposition behaviour of Phlebotomus argentipes, the only vector of kala-azar (or visceral leishmaniasis) on the Indian sub-continent. Sandflies prefer to oviposit their eggs on surfaces that contain organic substances, especially substances with an odour of decaying animal products and the remains of conspecific eggs. The results presented here suggest that the odour released by the organic substances of old sandfly colony remains that contain dead flies, old unhatched eggs, larval food containing vertebrate faeces, frass and other organic matter serves as an attractant for the ovipositing females of P. argentipes and hence greatly increases the number of oviposited eggs compared to eggs deposited in controlled oviposition pots. This result will be helpful in maintaining an efficient colony of P. argentipes and may be a promising tool for monitoring and controlling the target insect as part of a synergistic approach.
Hyperthermic overdrive: oxygen delivery does not limit thermal tolerance in Drosophila melanogaster.
Mölich, Andreas B; Förster, Thomas D; Lighton, John R B
2012-01-01
The causes of thermal tolerance limits in animals are controversial. In many aquatic species, it is thought that the inability to deliver sufficient oxygen at high temperatures is more critical than impairment of molecular functions of the mitochondria. However, terrestrial insects utilize a tracheal system, and the concept of a mismatch between metabolic demand and circulatory performance might not apply to them. Using thermo-limit respirometry, it has been shown earlier in Drosophila melanogaster that CO(2) release rates at temperatures above the upper thermal limit (CT(max)) exceed the rate at CT(max). The nature of this post-CT(max), or "post-mortal" peak, is unknown. Either its source is increased aerobic mitochondrial respiration (hyperthermic overdrive), or an anaerobic process such as liberation of stored CO(2) from the hemolymph. The post-mortal peak of CO(2) release was found to be oxygen dependent. As the rate of CO(2) emission is a conservative indicator of rate of O(2) consumption, aerobic flux at the thermal limit is submaximal, which contradicts the theory that oxygen availability limits metabolic activity at high temperatures in insects. Consequently, the tracheal system should be capable of delivering sufficient oxygen for aerobic activity of the mitochondria at and above Ct(max).
Kariyat, Rupesh R; Mauck, Kerry E; Balogh, Christopher M; Stephenson, Andrew G; Mescher, Mark C; De Moraes, Consuelo M
2013-04-22
Plant volatiles serve as key foraging and oviposition cues for insect herbivores as well as their natural enemies, but little is known about how genetic variation within plant populations influences volatile-mediated interactions among plants and insects. Here, we explore how inbred and outbred plants from three maternal families of the native weed horsenettle (Solanum carolinense) vary in the emission of volatile organic compounds during the dark phase of the photoperiod, and the effects of this variation on the oviposition preferences of Manduca sexta moths, whose larvae are specialist herbivores of Solanaceae. Compared with inbred plants, outbred plants consistently released more total volatiles at night and more individual compounds-including some previously reported to repel moths and attract predators. Female moths overwhelmingly chose to lay eggs on inbred (versus outbred) plants, and this preference persisted when olfactory cues were presented in the absence of visual and contact cues. These results are consistent with our previous findings that inbred plants recruit more herbivores and suffer greater herbivory under field conditions. Furthermore, they suggest that constitutive volatiles released during the dark portion of the photoperiod can convey accurate information about plant defence status (and/or other aspects of host plant quality) to foraging herbivores.
Spiny lobsters detect conspecific blood-borne alarm cues exclusively through olfactory sensilla.
Shabani, Shkelzen; Kamio, Michiya; Derby, Charles D
2008-08-01
When attacked by predators, diverse animals actively or passively release molecules that evoke alarm and related anti-predatory behavior by nearby conspecifics. The actively released molecules are alarm pheromones, whereas the passively released molecules are alarm cues. For example, many insects have alarm-signaling systems that involve active release of alarm pheromones from specialized glands and detection of these signals using specific sensors. Many crustaceans passively release alarm cues, but the nature of the cues, sensors and responses is poorly characterized. Here we show in laboratory and field experiments that injured Caribbean spiny lobsters, Panulirus argus, passively release alarm cues via blood (hemolymph) that induce alarm responses in the form of avoidance and suppression of feeding. These cues are detected exclusively through specific olfactory chemosensors, the aesthetasc sensilla. The alarm cues for Caribbean spiny lobsters are not unique to the species but do show some phylogenetic specificity: P. argus responds primarily with alarm behavior to conspecific blood, but with mixed alarm and appetitive behaviors to blood from the congener Panulirus interruptus, or with appetitive behaviors to blood from the blue crab Callinectes sapidus. This study lays the foundation for future neuroethological studies of alarm cue systems in this and other decapod crustaceans.
Ubiquitous water-soluble molecules in aquatic plant exudates determine specific insect attraction.
Sérandour, Julien; Reynaud, Stéphane; Willison, John; Patouraux, Joëlle; Gaude, Thierry; Ravanel, Patrick; Lempérière, Guy; Raveton, Muriel
2008-10-08
Plants produce semio-chemicals that directly influence insect attraction and/or repulsion. Generally, this attraction is closely associated with herbivory and has been studied mainly under atmospheric conditions. On the other hand, the relationship between aquatic plants and insects has been little studied. To determine whether the roots of aquatic macrophytes release attractive chemical mixtures into the water, we studied the behaviour of mosquito larvae using olfactory experiments with root exudates. After testing the attraction on Culex and Aedes mosquito larvae, we chose to work with Coquillettidia species, which have a complex behaviour in nature and need to be attached to plant roots in order to obtain oxygen. This relationship is non-destructive and can be described as commensal behaviour. Commonly found compounds seemed to be involved in insect attraction since root exudates from different plants were all attractive. Moreover, chemical analysis allowed us to identify a certain number of commonly found, highly water-soluble, low-molecular-weight compounds, several of which (glycerol, uracil, thymine, uridine, thymidine) were able to induce attraction when tested individually but at concentrations substantially higher than those found in nature. However, our principal findings demonstrated that these compounds appeared to act synergistically, since a mixture of these five compounds attracted larvae at natural concentrations (0.7 nM glycerol, <0.5 nM uracil, 0.6 nM thymine, 2.8 nM uridine, 86 nM thymidine), much lower than those found for each compound tested individually. These results provide strong evidence that a mixture of polyols (glycerol), pyrimidines (uracil, thymine), and nucleosides (uridine, thymidine) functions as an efficient attractive signal in nature for Coquillettidia larvae. We therefore show for the first time, that such commonly found compounds may play an important role in plant-insect relationships in aquatic eco-systems.
Zels, Sven; Dillen, Senne; Crabbé, Katleen; Spit, Jornt; Nachman, Ronald J; Vanden Broeck, Jozef
2015-06-01
Sulfakinin (SK) is a sulfated insect neuropeptide that is best known for its function as a satiety factor. It displays structural and functional similarities with the vertebrate peptides gastrin and cholecystokinin. Peptidomic studies in multiple insects, crustaceans and arachnids have revealed the widespread occurrence of SK in the arthropod phylum. Multiple studies in hemi- and holometabolous insects revealed the pleiotropic nature of this neuropeptide: in addition to its activity as a satiety factor, SK was also reported to affect muscle contraction, digestive enzyme release, odor preference, aggression and metabolism. However, the main site of action seems to be the digestive system of insects. In this study, we have investigated whether SK can intervene in the control of nutrient uptake and digestion in the migratory locust (Locusta migratoria). We provide evidence that sulfakinin reduces food uptake in this species. Furthermore, we discovered that SK has very pronounced effects on the main digestive enzyme secreting parts of the locust gut. It effectively reduced digestive enzyme secretion from both the midgut and gastric caeca. SK injection also elicited a reduction in absorbance and proteolytic activity of the gastric caeca contents. The characteristic sulfation of the tyrosine residue is crucial for the observed effects on digestive enzyme secretion. In an attempt to provide potential leads for the development of peptidomimetic compounds based on SK, we also tested two mimetic analogs of the natural peptide ligand in the digestive enzyme secretion assay. These analogs were able to mimic the effect of the natural SK, but their effects were milder. The results of this study provide new insights into the action of SK on the digestive system in (hemimetabolous) insects. Copyright © 2015 Elsevier Ltd. All rights reserved.
Involvement of the Electrophilic Isothiocyanate Sulforaphane in Arabidopsis Local Defense Responses1
Andersson, Mats X.; Nilsson, Anders K.; Johansson, Oskar N.; Boztaş, Gülin; Adolfsson, Lisa E.; Pinosa, Francesco; Petit, Christel Garcia; Aronsson, Henrik; Mackey, David; Tör, Mahmut; Hamberg, Mats; Ellerström, Mats
2015-01-01
Plants defend themselves against microbial pathogens through a range of highly sophisticated and integrated molecular systems. Recognition of pathogen-secreted effector proteins often triggers the hypersensitive response (HR), a complex multicellular defense reaction where programmed cell death of cells surrounding the primary site of infection is a prominent feature. Even though the HR was described almost a century ago, cell-to-cell factors acting at the local level generating the full defense reaction have remained obscure. In this study, we sought to identify diffusible molecules produced during the HR that could induce cell death in naive tissue. We found that 4-methylsulfinylbutyl isothiocyanate (sulforaphane) is released by Arabidopsis (Arabidopsis thaliana) leaf tissue undergoing the HR and that this compound induces cell death as well as primes defense in naive tissue. Two different mutants impaired in the pathogen-induced accumulation of sulforaphane displayed attenuated programmed cell death upon bacterial and oomycete effector recognition as well as decreased resistance to several isolates of the plant pathogen Hyaloperonospora arabidopsidis. Treatment with sulforaphane provided protection against a virulent H. arabidopsidis isolate. Glucosinolate breakdown products are recognized as antifeeding compounds toward insects and recently also as intracellular signaling and bacteriostatic molecules in Arabidopsis. The data presented here indicate that these compounds also trigger local defense responses in Arabidopsis tissue. PMID:25371552
Impact of Release Rates on the Effectiveness of Augmentative Biological Control Agents
Crowder, David W.
2007-01-01
To access the effect of augmentative biological control agents, 31 articles were reviewed that investigated the impact of release rates of 35 augmentative biological control agents on the control of 42 arthropod pests. In 64% of the cases, the release rate of the biological control agent did not significantly affect the density or mortality of the pest insect. Results where similar when parasitoidsor predators were utilized as the natural enemy. Within any order of natural enemy, there were more cases where release rates did not affect augmentative biological control than cases where release rates were significant. There were more cases in which release rates did not affect augmentative biological control when pests were from the orders Hemiptera, Acari, or Diptera, but not with pests from the order Lepidoptera. In most cases, there was an optimal release rate that produced effective control of a pest species. This was especially true when predators were used as a biological control agent. Increasing the release rate above the optimal rate did not improve control of the pest and thus would be economically detrimental. Lower release rates were of ten optimal when biological control was used in conjunction with insecticides. In many cases, the timing and method of biological control applications were more significant factors impacting the effectiveness of biological control than the release rate. Additional factors that may limit the relative impact of release rates include natural enemy fecundity, establishment rates, prey availability, dispersal, and cannibalism. PMID:20307240
Stoneflies and Campers: Teaching Campers about Aquatic Environments.
ERIC Educational Resources Information Center
Edelstein, Karen
1994-01-01
Summer camps can implement a biomonitoring program that determines water quality through study of aquatic insects. Such a program requires a minimum of equipment and allows campers to explore the natural world and absorb information that will affect their views of science and the environment. (LP)
USDA-ARS extension activities in medical, veterinary and urban entomology
USDA-ARS?s Scientific Manuscript database
Within the USDA Agricultural Research Service (USDA-ARS), National Program 104 conducts research on veterinary, medical, and urban entomology. The goal of this program is to develop more effective methods of preventing or suppressing insects, ticks, and mites that affect animal and human well-being....
Climate programs update: USDA Southwest Regional Climate Hub update
USDA-ARS?s Scientific Manuscript database
PROGRAM OVERVIEW: The overarching goal of the USDA SW Climate Hub is to assist farmers, ranchers and foresters in addressing the effects of climate change including prolonged drought, increased insect outbreaks and severe wildfires. In the first year of operations, the SW Climate Hub (est. Februa...
Elevated Carbon Dioxide Concentration Reduces Alarm Signaling in Aphids.
Boullis, Antoine; Fassotte, Bérénice; Sarles, Landry; Lognay, Georges; Heuskin, Stéphanie; Vanderplanck, Maryse; Bartram, Stefan; Haubruge, Eric; Francis, Frédéric; Verheggen, François J
2017-02-01
Insects often rely on olfaction to communicate with conspecifics. While the chemical language of insects has been deciphered in recent decades, few studies have assessed how changes in atmospheric greenhouse gas concentrations might impact pheromonal communication in insects. Here, we hypothesize that changes in the concentration of atmospheric carbon dioxide affect the whole dynamics of alarm signaling in aphids, including: (1) the production of the active compound (E)-β-farnesene (Eβf), (2) emission behavior when under attack, (3) perception by the olfactory apparatus, and (4) the escape response. We reared two strains of the pea aphid, Acyrthosiphon pisum, under ambient and elevated CO 2 concentrations over several generations. We found that an increase in CO 2 concentration reduced the production (i.e., individual content) and emission (released under predation events) of Eβf. While no difference in Eβf neuronal perception was observed, we found that an increase in CO 2 strongly reduced the escape behavior expressed by an aphid colony following exposure to natural doses of alarm pheromone. In conclusion, our results confirm that changes to greenhouse gases impact chemical communication in the pea aphid, and could potentially have a cascade effect on interactions with higher trophic levels.
Insect capa neuropeptides impact desiccation and cold tolerance
Terhzaz, Selim; Teets, Nicholas M.; Cabrero, Pablo; Henderson, Louise; Ritchie, Michael G.; Nachman, Ronald J.; Dow, Julian A. T.; Denlinger, David L.; Davies, Shireen-A.
2015-01-01
The success of insects is linked to their impressive tolerance to environmental stress, but little is known about how such responses are mediated by the neuroendocrine system. Here we show that the capability (capa) neuropeptide gene is a desiccation- and cold stress-responsive gene in diverse dipteran species. Using targeted in vivo gene silencing, physiological manipulations, stress-tolerance assays, and rationally designed neuropeptide analogs, we demonstrate that the Drosophila melanogaster capa neuropeptide gene and its encoded peptides alter desiccation and cold tolerance. Knockdown of the capa gene increases desiccation tolerance but lengthens chill coma recovery time, and injection of capa peptide analogs can reverse both phenotypes. Immunohistochemical staining suggests that capa accumulates in the capa-expressing Va neurons during desiccation and nonlethal cold stress but is not released until recovery from each stress. Our results also suggest that regulation of cellular ion and water homeostasis mediated by capa peptide signaling in the insect Malpighian (renal) tubules is a key physiological mechanism during recovery from desiccation and cold stress. This work augments our understanding of how stress tolerance is mediated by neuroendocrine signaling and illustrates the use of rationally designed peptide analogs as agents for disrupting protective stress tolerance. PMID:25730885
Han, F; Lu, A; Yuan, Y; Huang, W; Beerntsen, B T; Huang, J; Ling, E
2017-06-01
The insect cuticle works as the first line of defence to protect insects from pathogenic infections and water evaporation. However, the old cuticle must be shed in order to enter the next developmental stage. During each ecdysis, moulting fluids are produced and secreted into the area among the old and new cuticles. In a previous study, the protein Bombyx mori single domain von Willebrand factor type C (BmSVWC; BGIBMGA011399) was identified in the moulting fluids of Bo. mori and demonstrated to regulate ecdysis. In this study we show that in Bo. mori larvae, BmSVWC primarily locates to the integument (epidermal cells and cuticle), wing discs and head. During the moulting stage, BmSVWC is released into the moulting fluids, and is then produced again by epidermal cells after ecdysis. Fungal infection was shown to decrease the amount of BmSVWC in the cuticle, which indicates that BmSVWC is a target protein of entomopathogenic fungi. Thus, BmSVWC is mainly involved in maintaining the integrity of the integument structure, which serves to protect insects from physical damage and pathogenic infection. © 2017 The Royal Entomological Society.
Do Refuge Plants Favour Natural Pest Control in Maize Crops?
Quispe, Reinaldo; Mazón, Marina; Rodríguez-Berrío, Alexander
2017-01-01
The use of non-crop plants to provide the resources that herbivorous crop pests’ natural enemies need is being increasingly incorporated into integrated pest management programs. We evaluated insect functional groups found on three refuges consisting of five different plant species each, planted next to a maize crop in Lima, Peru, to investigate which refuge favoured natural control of herbivores considered as pests of maize in Peru, and which refuge plant traits were more attractive to those desirable enemies. Insects occurring in all the plants, including the maize crop itself, were sampled weekly during the crop growing cycle, from February to June 2011. All individuals collected were identified and classified into three functional groups: herbivores, parasitoids, and predators. Refuges were compared based on their effectiveness in enhancing the populations of predator and parasitoid insects of the crop enemies. Refuges A and B were the most effective, showing the highest richness and abundance of both predators and parasitoids, including several insect species that are reported to attack the main insect pests of maize (Spodoptera frugiperda and Rhopalosiphum maidis), as well as other species that serve as alternative hosts of these natural enemies. PMID:28718835
Planning and processing multistage samples with a computer programMUST.
John W. Hazard; Larry E. Stewart
1974-01-01
A computer program was written to handle multistage sampling designs in insect populations. It is, however, general enough to be used for any population where the number of stages does not exceed three. The program handles three types of sampling situations, all of which assume equal probability sampling. Option 1 takes estimates of sample variances, costs, and either...
Diagnosis of stinging insect allergy: utility of cellular in-vitro tests.
Scherer, Kathrin; Bircher, Andreas J; Heijnen, Ingmar Afm
2009-08-01
Diagnosis of stinging insect allergy is based on a detailed history, venom skin tests, and detection of venom-specific IgE. As an additional diagnostic tool, basophil responsiveness to venom allergens has been shown to be helpful in selected patients. This review summarizes the current diagnostic procedures for stinging insect allergy and discusses the latest developments in cellular in-vitro tests. Cellular assays have been evaluated in patients with Hymenoptera venom allergy. The diagnostic performance of the cellular mediator release test is similar to that of the flow cytometric basophil activation test (BAT), but the BAT has been the most intensively studied. BAT offers the possibility to assess basophil reactivity to allergens in their natural environment and to simultaneously analyze surface marker expression and intracellular signaling. It has been demonstrated that BAT represents a valuable additional diagnostic tool in selected patients when used in combination with other well established tests. A major limitation is the current lack of unified, standardized protocols. Flow cytometry offers huge possibilities to enhance knowledge of basophil functions. The BAT may be used as an additional test to confirm the diagnosis of stinging insect allergy in selected patients, provided that it is performed by an experienced laboratory using a validated assay. Test results have to be interpreted by clinicians familiar with the methodological aspects. The utility of the BAT to confirm allergy diagnosis and to predict the risk of subsequent systemic reactions may be improved by combined analysis of multiple surface markers and intracellular signaling pathways.
Gallardo-Ortiz, Uriel; Pérez-Staples, Diana; Liedo, Pablo; Toledo, Jorge
2018-04-02
The sterile insect technique (SIT) is used in area-wide pest management programs for establishing low pest prevalence and/or areas free of fruit flies (Diptera: Tephritidae). The aim of this technique is to induce high levels of sterility in the wild population, for this the released insects must have a high sexual competitiveness and field dispersal. However, radiation decreases these biological attributes that do not allow it to compete successfully with wild insects. In this study the sexual competitiveness, field survival and dispersal of Anastrepha obliqua (Macquart; Diptera: Tephritidae) irradiated at 0, 40, 50, 60, 70, and 80 Gy were evaluated in laboratory. A dose of 60 Gy produced 98% sterility, whereas doses of 70 and 80 Gy produced 99% sterility. Sexual competitiveness was assessed in field cages, comparing males irradiated at 0, 50, 60, 70, and 80 Gy against wild males for mating with wild fertile females. Males irradiated at 50 and 60 Gy achieved more matings than those irradiated at 70 and 80 Gy. Wild males were more competitive than mass-reared males, even when these were not irradiated (0 Gy). There was no effect of irradiation on mating latency, yet wild males showed significantly shorter mating latency than mass-reared males. Female remating did not differ among those that mated with wild males and those that mated with males irradiated with different doses. The relative sterility index (RSI) increased from 0.25 at 80 Gy to 0.37 at 60 Gy. The Fried competitiveness index was 0.69 for males irradiated at 70 Gy and 0.57 for those irradiated at 80 Gy, which indicates that a 10 Gy reduction in the irradiation dose produces greater induction of sterility in the wild population. There were no significant differences in field survival and dispersal between flies irradiated at 70 or 80 Gy. Reducing the irradiation dose to 60 or 70 Gy could improve the performance of sterile males and the effectiveness of the SIT. Our results also distinguish between the effects of irradiation and mass-rearing on the performance of sterile males.
Forest Insect Pest Management and Forest Management in China: An Overview
NASA Astrophysics Data System (ADS)
Ji, Lanzhu; Wang, Zhen; Wang, Xiaowei; An, Linli
2011-12-01
According to the Seventh National Forest Inventory (2004-2008), China's forests cover an area of 195.45 million ha, or 20.36% of the total land area. China has the most rapidly increasing forest resources in the world. However, China is also a country with serious forest pest problems. There are more than 8,000 species of potential forest pests in China, including insects, plant diseases, rodents and lagomorphs, and hazardous plants. Among them, 300 species are considered as economically or ecologically important, and half of these are serious pests, including 86 species of insects. Forest management and utilization have a considerable influence on the stability and sustainability of forest ecosystems. At the national level, forestry policies always play a major role in forest resource management and forest health protection. In this paper, we present a comprehensive overview of both achievements and challenges in forest management and insect pest control in China. First, we summarize the current status of forest resources and their pests in China. Second, we address the theories, policies, practices and major national actions on forestry and forest insect pest management, including the Engineering Pest Management of China, the National Key Forestry Programs, the Classified Forest Management system, and the Collective Forest Tenure Reform. We analyze and discuss three representative plantations— Eucalyptus, poplar and Masson pine plantations—with respect to their insect diversity, pest problems and pest management measures.
Forest insect pest management and forest management in China: an overview.
Ji, Lanzhu; Wang, Zhen; Wang, Xiaowei; An, Linli
2011-12-01
According to the Seventh National Forest Inventory (2004-2008), China's forests cover an area of 195.45 million ha, or 20.36% of the total land area. China has the most rapidly increasing forest resources in the world. However, China is also a country with serious forest pest problems. There are more than 8,000 species of potential forest pests in China, including insects, plant diseases, rodents and lagomorphs, and hazardous plants. Among them, 300 species are considered as economically or ecologically important, and half of these are serious pests, including 86 species of insects. Forest management and utilization have a considerable influence on the stability and sustainability of forest ecosystems. At the national level, forestry policies always play a major role in forest resource management and forest health protection. In this paper, we present a comprehensive overview of both achievements and challenges in forest management and insect pest control in China. First, we summarize the current status of forest resources and their pests in China. Second, we address the theories, policies, practices and major national actions on forestry and forest insect pest management, including the Engineering Pest Management of China, the National Key Forestry Programs, the Classified Forest Management system, and the Collective Forest Tenure Reform. We analyze and discuss three representative plantations-Eucalyptus, poplar and Masson pine plantations-with respect to their insect diversity, pest problems and pest management measures.
1982-08-01
002 I. - Nematode Studies I nt roduc t io n: Nematodes are multicellular animals that, like insects, have evolved to occupy nearly every biological...hoemocoel, the nematodes release an associated bacterium from their intestinal lumen into the hemolymph . The bacterium multiplies rapidly, causing a...with members of either the Neoaplectana or Heterothabditis. The relationship between the nematode and its associated bacterium, Xenorhabdus
2014-07-01
spread to include the southern and western United States and disjunct northern populations ( US Department of Agriculture/ Natural Resources...waterhyacinth in Louisiana currently exceeds $4 million.3 Primary control methods include the use of herbicides and release of insect biological control...C with natural daylight (Figure 4). Reverse osmosis (RO) water was used in the tanks with periodic application of nutrients. Waterhyacinth was
A review of compliant transmission mechanisms for bio-inspired flapping-wing micro air vehicles.
Zhang, C; Rossi, C
2017-02-15
Flapping-wing micro air vehicles (FWMAVs) are a class of unmanned aircraft that imitate flight characteristics of natural organisms such as birds, bats, and insects, in order to achieve maximum flight efficiency and manoeuvrability. Designing proper mechanisms for flapping transmission is an extremely important aspect for FWMAVs. Compliant transmission mechanisms have been considered as an alternative to rigid transmission systems due to their lower the number of parts, thereby reducing the total weight, lower energy loss thanks to little or practically no friction among parts, and at the same time, being able to store and release mechanical power during the flapping cycle. In this paper, the state-of-the-art research in this field is dealt upon, highlighting open challenges and research topics. An optimization method for designing compliant transmission mechanisms inspired by the thoraxes of insects is also introduced.
Pardo-López, Liliana; Soberón, Mario; Bravo, Alejandra
2013-01-01
Bacillus thuringiensis bacteria are insect pathogens that produce different Cry and Cyt toxins to kill their hosts. Here we review the group of three-domain Cry (3d-Cry) toxins. Expression of these 3d-Cry toxins in transgenic crops has contributed to efficient control of insect pests and a reduction in the use of chemical insecticides. The mode of action of 3d-Cry toxins involves sequential interactions with several insect midgut proteins that facilitate the formation of an oligomeric structure and induce its insertion into the membrane, forming a pore that kills midgut cells. We review recent progress in our understanding of the mechanism of action of these Cry toxins and focus our attention on the different mechanisms of resistance that insects have evolved to counter their action, such as mutations in cadherin, APN and ABC transporter genes. Activity of Cry1AMod toxins, which are able to form toxin oligomers in the absence of receptors, against different resistant populations, including those affected in the ABC transporter and the role of dominant negative mutants as antitoxins, supports the hypothesis that toxin oligomerization is a limiting step in the Cry insecticidal activity. Knowledge of the action of 3d-Cry toxin and the resistance mechanisms to these toxins will set the basis for a rational design of novel toxins to overcome insect resistance, extending the useful lifespan of Cry toxins in insect control programs. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Hollingsworth, Robert G; Chastagner, Gary A; Reimer, Neil J; Oishi, Darcy E; Landolt, Peter J; Paull, Robert E
2009-02-01
Insects are commonly found by Hawaii's quarantine inspectors on Christmas trees imported from the Pacific Northwest. To reduce the risk of importing yellowjacket (Vespula spp.) queens and other insects, an inspection and tree shaking certification program was begun in 1990. From 1993 to 2006, the annual percentage of shipped containers rated by Hawaii quarantine inspectors as moderately or highly infested with insects was significantly higher for manually shaken trees than for mechanically shaken trees. Between 1993 and 2001, 343 insect species in total were recovered from Christmas trees. Live western yellowjacket [Vespula pensylvanica (Saussure)] queens were intercepted both from containers certified as manually shaken and from containers certified as mechanically shaken. The standard manual shaking protocol removed about one-half of the queens from Douglas fir [Pseudotsuga menziesii (Mirb.) Franco] trees that were naturally infested with western yellowjacket queens. We investigated the use of preharvest sprays of permethrin as a complement to shaking procedures used to control yellowjackets and other insects. Western yellowjacket queens and honey bees (surrogates for wasp pests) were exposed to Noble fir foliage that had been sprayed in the field with permethrin > 6 wk before harvest. Pesticide residues provided complete control (moribundity or mortality) in both species. The sprays did not affect needle retention or quality of Noble fir foliage. We conclude that preharvest sprays of pyrethroid insecticides could be used in combination with mechanical shaking to greatly reduce the quarantine risk of yellowjacket queens and other insects in exported Christmas trees.
Barloggio, G; Tamm, L; Nagel, P; Luka, H
2018-05-10
The importance of the right food source for the survival and reproduction of certain insect species is well documented. In the case of biocontrol agents, this is even more important in order to reach a high predation or parasitation performance. The egg parasitoid Telenomus laeviceps (Förster, 1861) (Hymenoptera: Scelionidae) is a promising candidate for mass release as a biological control agent of the cabbage moth Mamestra brassicae (Linnaeus, 1758) (Lepidoptera: Noctuidae). However, adult T. laeviceps need a sugar-rich food source to increase their parasitation performance and produce a good amount of female offspring. Released biocontrol agents were shown to benefit from conservation biocontrol, which includes the provision of selected flowers as nectar resources for beneficial insects. In Switzerland, Centaurea cyanus L. (Asteraceae), Fagopyrum esculentum Moench (Polygonaceae) and Vicia sativa L. (Fabaceae) are successfully implemented in the field to attract and promote natural enemies of different cabbage pests. In this study, we investigated the potential of these selected flowers to attract and promote T. laeviceps under laboratory conditions. In Y-tube olfactometer experiments, we first tested whether the three nectar providing plant species are attractive to T. laeviceps. Furthermore, we assessed their effects on survival and parasitation performance of adult T. laeviceps. We found that flowers of F. esculentum and C. cyanus were attractive in contrast to V. sativa. Also fecundity and the number of female offspring produced were higher for females kept on F. esculentum and C. cyanus than on V. sativa. In contrast, survival was similar on all treatments. Our findings present a further key step towards the implementation of T. laeviceps as a biocontrol agent.
Solter; Maddox; McManus
1997-03-01
Results of traditional laboratory bioassays may not accurately represent ecological (field) host specificity of entomopathogens but, if carefully interpreted, may be used to predict the ecological host specificity of pathogens being considered for release as classical biological control agents. We conducted laboratory studies designed to evaluate the physiological host specificity of microsporidia, which are common protozoan pathogens of insects. In these studies, 49 nontarget lepidopteran species indigenous to North America were fed five biotypes of microsporidia that occur in European populations of Lymantria dispar but are not found in North American populations of L. dispar. These microsporidia, Microsporidium sp. from Portugal, Microsporidium sp. from Romania, Microsporidium sp. from Slovakia, Nosema lymantriae, and Endoreticulatus sp. from Portugal, are candidates for release as classical biological control agents into L. dispar populations in the United States. The microsporidia produced a variety of responses in the nontarget hosts and, based on these responses, the nontarget hosts were placed in the following categories: (1) no infection (refractory), (2) atypical infections, and (3) heavy infections. Endoreticulatus sp. produced patent, host-like infections in nearly two-thirds of the nontarget hosts to which it was fed. Such generalist species should not be recommended for release. Infections comparable to those produced in L. dispar were produced in 2% of the nontarget hosts fed Microsporidium sp. from Portugal, 19% of nontarget hosts fed Microsporidium sp. from Romania, 13% fed spores of Microsporidium sp. from Slovakia, and 11% of nontarget species fed N. lymantriae. The remaining nontarget species developed infections that, despite production of mature spores, were not typical of infection in L. dispar. We believe it is very unlikely that these atypical infections would be horizontally transmitted within nontarget insect populations in the United States.
Log-normal spray drop distribution...analyzed by two new computer programs
Gerald S. Walton
1968-01-01
Results of U.S. Forest Service research on chemical insecticides suggest that large drops are not as effective as small drops in carrying insecticides to target insects. Two new computer programs have been written to analyze size distribution properties of drops from spray nozzles. Coded in Fortran IV, the programs have been tested on both the CDC 6400 and the IBM 7094...
Recidivism Among Licensed-Released Prisoners Who Participated in the EM Program in Israel.
Shoham, Efrat; Yehosha-Stern, Shirley; Efodi, Rotem
2015-08-01
Toward the end of 2006, a pilot program was launched in Israel wherein licensed-released prisoners were put under electronic monitoring (EM). In addition to EM, the pilot program, operated by the Prisoners' Rehabilitation Authority, provides programs of occupational supervision and personal therapy and is designed to allow for early release of those prisoners who, without increased supervision, would have been found unsuitable for early release. The aim of this study was to ascertain whether participation in the EM program among licensed-released prisoners in Israel might bring about lessened recidivism. For that matter, rates of arrests and incarceration were examined during a follow-up period of up to 4 years, among the entirety of licensed-released prisoners participating in the EM program between the years 2007 and 2009 (n = 155). To compare recidivism rates, a control group was assembled from among the entirety of released prisoners who were found unsuitable for early release in judicial conditions, and had therefore served the full term of their incarceration, to be released between the years 2005 and 2006 (a period of time during which an EM program was not yet operated among licensed-released prisoners in Israel). Study findings clearly show that while among the control group, 42% of released prisoners were re-incarcerated, at the end of a 4-year follow-up period, only 15% among the study group had returned to prison. These findings can be explained by combining the Social Control theory and the Self-Control theory which consider the period of time under EM program and the occupational and familial integration tools for reducing criminal connections and enhancing pro-social behavior. © The Author(s) 2014.
Loxdale, H. D.
1999-01-01
The majority of insect species do not show an innate behavioural migration, but rather populations expand into favourable new habitats or contract away from unfavourable ones by random changes of spatial scale. Over the past 50 years, the scientific fascination with dramatic long-distance and directed mass migratory events has overshadowed the more universal mode of population movement, involving much smaller stochastic displacement during the lifetime of the insects concerned. This may be limiting our understanding of insect population dynamics. In the following synthesis, we provide an overview of how herbivorous insect movement is governed by both abiotic and biotic factors, making these animals essentially 'slaves of their environment'. No displaced insect or insect population can leave a resource patch, migrate and flourish, leaving descendants, unless suitable habitat and/or resources are reached during movement. This must have constrained insects over geological time, bringing about species-specific adaptation in behaviour and movements in relation to their environment at a micro- and macrogeographical scale. With insects that undergo long-range spatial displacements, e.g. aphids and locusts, there is presumably a selection against movement unless overruled by factors, such as density-dependent triggering, which cause certain genotypes within the population to migrate. However, for most insect species, spatial changes of scale and range expansion are much slower and may occur over a much longer time-scale, and are not innate (nor directed). Ecologists may say that all animals and plants are figuratively speaking 'slaves of their environments', in the sense that their distribution is defined by their ecology and genotype. But in the case of insects, a vast number must perish daily, either out at sea or over other hostile habitats, having failed to find suitable resources and/or a habitat on which to feed and reproduce. Since many are blown by the vagaries of the wind, their chances of success are serendipitous in the extreme, especially over large distances. Hence, the strategies adopted by mass migratory species (innate pre-programmed flight behaviour, large population sizes and/or fast reproduction), which improve the chances that some of these individuals will succeed. We also emphasize the dearth of knowledge in the various interactions of insect movement and their environment, and describe how molecular markers (protein and DNA) may be used to examine the details of spatial scale over which movement occurs in relation to insect ecology and genotype.
An Automated Flying-Insect Detection System
NASA Technical Reports Server (NTRS)
Vann, Timi; Andrews, Jane C.; Howell, Dane; Ryan, Robert
2007-01-01
An automated flying-insect detection system (AFIDS) was developed as a proof-of-concept instrument for real-time detection and identification of flying insects. This type of system has use in public health and homeland-security decision support, agriculture and military pest management, and/or entomological research. Insects are first lured into the AFIDS integrated sphere by insect attractants. Once inside the sphere, the insect s wing beats cause alterations in light intensity that is detected by a photoelectric sensor. Following detection, the insects are encouraged (with the use of a small fan) to move out of the sphere and into a designated insect trap where they are held for taxonomic identification or serological testing. The acquired electronic wing-beat signatures are preprocessed (Fourier transformed) in real time to display a periodic signal. These signals are sent to the end user where they are graphically. All AFIDS data are preprocessed in the field with the use of a laptop computer equipped with LabVIEW. The AFIDS software can be programmed to run continuously or at specific time intervals when insects are prevalent. A special DC-restored transimpedance amplifier reduces the contributions of low-frequency background light signals, and affords approximately two orders of magnitude greater AC gain than conventional amplifiers. This greatly increases the signal-to-noise ratio and enables the detection of small changes in light intensity. The AFIDS light source consists of high-intensity Al-GaInP light-emitting diodes (LEDs). The AFIDS circuitry minimizes brightness fluctuations in the LEDs and when integrated with an integrating sphere, creates a diffuse uniform light field. The insect wing beats isotropically scatter the diffuse light in the sphere and create wing-beat signatures that are detected by the sensor. This configuration minimizes variations in signal associated with insect flight orientation. Preliminary data indicate that AFIDS has sufficient sensitivity and frequency measuring capability to differentiate between male and female mosquitoes (Figure 1, bottom panel) and fruit flies (data not shown). Similar studies show that AFIDS can be utilized to detect discrete differences between two mosquito species, Aedes aegypti and Aedes albopictus. When fully deployable, a wireless network of AFIDS monitors could be used in combination with other remotely sensed data and visually displayed in a geographic information system (GIS) to provide real-time surveillance (see Figure 2). More accurate and sensitive insect population forecasts and effective rapid response and mitigation of insect issues would then be possible.
Haase, Santiago; Sciocco-Cap, Alicia; Romanowski, Víctor
2015-01-01
Baculoviruses are known to regulate many insect populations in nature. Their host-specificity is very high, usually restricted to a single or a few closely related insect species. They are amongst the safest pesticides, with no or negligible effects on non-target organisms, including beneficial insects, vertebrates and plants. Baculovirus-based pesticides are compatible with integrated pest management strategies and the expansion of their application will significantly reduce the risks associated with the use of synthetic chemical insecticides. Several successful baculovirus-based pest control programs have taken place in Latin American countries. Sustainable agriculture (a trend promoted by state authorities in most Latin American countries) will benefit from the wider use of registered viral pesticides and new viral products that are in the process of registration and others in the applied research pipeline. The success of baculovirus-based control programs depends upon collaborative efforts among government and research institutions, growers associations, and private companies, which realize the importance of using strategies that protect human health and the environment at large. Initiatives to develop new regulations that promote the use of this type of ecological alternatives tailored to different local conditions and farming systems are underway. PMID:25941826
Agunbiade, Tolulope A.; Coates, Brad S.; Datinon, Benjamin; Djouaka, Rousseau; Sun, Weilin; Tamò, Manuele; Pittendrigh, Barry R.
2014-01-01
Maruca vitrata Fabricius (Lepidoptera: Crambidae) is a polyphagous insect pest that feeds on a variety of leguminous plants in the tropics and subtropics. The contribution of host-associated genetic variation on population structure was investigated using analysis of mitochondrial cytochrome oxidase 1 (cox1) sequence and microsatellite marker data from M. vitrata collected from cultivated cowpea (Vigna unguiculata L. Walp.), and alternative host plants Pueraria phaseoloides (Roxb.) Benth. var. javanica (Benth.) Baker, Loncocarpus sericeus (Poir), and Tephrosia candida (Roxb.). Analyses of microsatellite data revealed a significant global FST estimate of 0.05 (P≤0.001). The program STRUCTURE estimated 2 genotypic clusters (co-ancestries) on the four host plants across 3 geographic locations, but little geographic variation was predicted among genotypes from different geographic locations using analysis of molecular variance (AMOVA; among group variation −0.68%) or F-statistics (F ST Loc = −0.01; P = 0.62). These results were corroborated by mitochondrial haplotype data (φSTLoc = 0.05; P = 0.92). In contrast, genotypes obtained from different host plants showed low but significant levels of genetic variation (F ST Host = 0.04; P = 0.01), which accounted for 4.08% of the total genetic variation, but was not congruent with mitochondrial haplotype analyses (φSTHost = 0.06; P = 0.27). Variation among host plants at a location and host plants among locations showed no consistent evidence for M. vitrata population subdivision. These results suggest that host plants do not significantly influence the genetic structure of M. vitrata, and this has implications for biocontrol agent releases as well as insecticide resistance management (IRM) for M. vitrata in West Africa. PMID:24647356
Ito, Katsura; Nishikawa, Hiroshi; Shimada, Takuji; Ogawa, Kohei; Minamiya, Yukio; Tomoda, Masafumi; Nakahira, Kengo; Kodama, Rika; Fukuda, Tatsuya; Arakawa, Ryo
2011-01-01
Pilophorus typicus (Distant) (Heteroptera: Miridae) is a predatory bug occurring in East, Southeast, and South Asia. Because the active stages of P. typicus prey on various agricultural pest insects and mites, this species is a candidate insect as an indigenous natural enemy for use in biological control programs. However, the mass releasing of introduced natural enemies into agricultural fields may incur the risk of affecting the genetic integrity of species through hybridization with a local population. To clarify the genetic characteristics of the Japanese populations of P. typicus two portions of the mitochondrial DNA, the cytochrome oxidase subunit I (COI) (534 bp) and the cytochrome B (cytB) (217 bp) genes, were sequenced for 64 individuals collected from 55 localities in a wide range of Japan. Totals of 18 and 10 haplotypes were identified for the COI and cytB sequences, respectively (25 haplotypes over regions). Phylogenetic analysis using the maximum likelihood method revealed the existence of two genetically distinct groups in P. typicus in Japan. These groups were distributed in different geographic ranges: one occurred mainly from the Pacific coastal areas of the Kii Peninsula, the Shikoku Island, and the Ryukyu Islands; whereas the other occurred from the northern Kyushu district to the Kanto and Hokuriku districts of mainland Japan. However, both haplotypes were found in a single locality of the southern coast of the Shikoku Island. COI phylogeny incorporating other Pilophorus species revealed that these groups were only recently differentiated. Therefore, use of a certain population of P. typicus across its distribution range should be done with caution because genetic hybridization may occur. PMID:21526929
2016-06-10
house the odorant receptor neurons (Amer 48 DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. UNCLASSIFIED 3 and...Mehlhorn 2006, Hallem et al. 2006, Paluch et al. 2010). The insect olfactory process starts 49 when odorant molecules enter the pores located on the...sensilla. Each sensillum contains 50 olfactory receptor neurons that have odorant receptors on its surface. As the molecule enters the 51 pores, the
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. A dragonfly rests atop the highest stalk in foliage on the Merritt Island National Wildlife Refuge before resuming its daily activity. Large predatory insects with wingspans up to 5.5 inches, dragonflies snatch smaller insects from the air by means of their basket-like arrangement of legs. The refuge was established in 1963 on Kennedy Space Center land and water not used by NASA for the space program. It encompasses 92,000 acres that are a habitat for more than 331 species of birds, 31 mammals, 117 fishes, and 65 amphibians and reptiles.
Nagler, Pamela L.; Pearlstein, Susanna; Glenn, Edward P.; Brown, Tim B.; Bateman, Heather L.; Bean, Dan W.; Hultine, Kevin R.
2013-01-01
We measured the rate of dispersal of saltcedar leaf beetles (Diorhabda carinulata), a defoliating insect released on western rivers to control saltcedar shrubs (Tamarix spp.), on a 63 km reach of the Virgin River, U.S. Dispersal was measured by satellite imagery, ground surveys and phenocams. Pixels from the Moderate Resolution Imaging Spectrometer (MODIS) sensors on the Terra satellite showed a sharp drop in NDVI in midsummer followed by recovery, correlated with defoliation events as revealed in networked digital camera images and ground surveys. Ground surveys and MODIS imagery showed that beetle damage progressed downstream at a rate of about 25 km yr−1 in 2010 and 2011, producing a 50% reduction in saltcedar leaf area index and evapotranspiration by 2012, as estimated by algorithms based on MODIS Enhanced Vegetation Index values and local meteorological data for Mesquite, Nevada. This reduction is the equivalent of 10.4% of mean annual river flows on this river reach. Our results confirm other observations that saltcedar beetles are dispersing much faster than originally predicted in pre-release biological assessments, presenting new challenges and opportunities for land, water and wildlife managers on western rivers. Despite relatively coarse resolution (250 m) and gridding artifacts, single MODIS pixels can be useful in tracking the effects of defoliating insects in riparian corridors.
Assessing the consequences of global change for forest disturbance from herbivores and pathogens.
Ayres, M P; Lombardero, M J
2000-11-15
Herbivores and pathogens impact the species composition, ecosystem function, and socioeconomic value of forests. Herbivores and pathogens are an integral part of forests, but sometimes produce undesirable effects and a degradation of forest resources. In the United States, a few species of forest pests routinely have significant impacts on up to 20 million ha of forest with economic costs that probably exceed $1 billion/year. Climatic change could alter patterns of disturbance from herbivores and pathogens through: (1) direct effects on the development and survival of herbivores and pathogens; (2) physiological changes in tree defenses; and (3) indirect effects from changes in the abundance of natural enemies (e.g. parasitoids of insect herbivores), mutualists (e.g. insect vectors of tree pathogens), and competitors. Because of their short life cycles, mobility, reproductive potential, and physiological sensitivity to temperature, even modest climate change will have rapid impacts on the distribution and abundance of many forest insects and pathogens. We identify 32 syndromes of biotic disturbance in North American forests that should be carefully evaluated for their responses to climate change: 15 insect herbivores, browsing mammals; 12 pathogens; 1 plant parasite; and 3 undiagnosed patterns of forest decline. It is probable that climatic effects on some herbivores and pathogens will impact on biodiversity, recreation, property value, forest industry, and even water quality. Some scenarios are beneficial (e.g. decreased snow cover may increase winter mortality of some insect pests), but many are detrimental (e.g. warming tends to accelerate insect development rate and facilitate range expansions of pests and climate change tends to produce a mismatch between mature trees and their environment, which can increase vulnerability to herbivores and pathogens). Changes in forest disturbance can produce feedback to climate through affects on water and carbon flux in forest ecosystems; one alarming scenario is that climate warming may increase insect outbreaks in boreal forests, which would tend to increase forest fires and exacerbate further climate warming by releasing carbon stores from boreal ecosystems. We suggest a list of research priorities that will allow us to refine these risk assessments and adopt forest management strategies that anticipate changes in biotic disturbance regimes and mitigate the ecological, social, and economic risks.
Gaylor, Michael O; Harvey, Ellen; Hale, Robert C
2012-02-01
Polybrominated diphenyl ether (PBDE) flame retardants are added at percent levels to many polymers and textiles abundant in human spaces and vehicles, wherein they have been long assumed to be tightly sequestered. However, the mgkg(-1) burdens recently detected in indoor dust testify to substantial releases. The bulk of released PBDEs remain in the terrestrial environment, yet comparatively little research focuses on this compartment. There, insects/arthropods, such as crickets, are the most abundant invertebrate organisms and facilitate the trophic transfer of contaminants by breaking down complex organic matter (including discarded polymers) and serving as food for other organisms. Our experiments revealed that house crickets (Acheta domesticus) provided uncontaminated food and free access to PUF containing Penta-BDE (8.7%drywt) for 28 d accumulated substantial PBDE body burdens. Crickets allowed to depurate gut contents exhibited whole body burdens of up to 13.4 mg kg(-1) lipid ΣPenta-BDE, 1000-fold higher than typically reported in humans. Non-depurated crickets and molted exoskeletons incurred even higher ΣPenta-BDE, up to 80.6 and 63.3 mg kg(-1) lipid, respectively. Congener patterns of whole crickets and molts resembled those of PUF and the commercial Penta-BDE formulation, DE-71, indicative of minimal discrimination or biotransformation. Accumulation factor (AF) calculations were hampered by uncertainties in determining actual PUF ingestion. However, estimated AFs were low, in the range of 10(-4)-10(-3), suggesting that polymer-PBDE interactions limited uptake. Nonetheless, results indicate that substantial PBDE burdens may be incurred by insects in contact with current-use and derelict treated polymers within human spaces and solid waste disposal sites (e.g. landfills, automotive dumps, etc.). Once ingested, even burdens not absorbed across the gut wall may be dispersed within proximate terrestrial food webs via the insect's movements and/or predation. Copyright © 2011 Elsevier Ltd. All rights reserved.
Elzen, Gary W; Hardee, Dick D
2003-01-01
Insecticide resistance has developed within many classes of pesticide, and over 500 species of insects and mites are resistant to one or more insecticides. Insecticide resistance and the consequent losses of food and fiber caused by failure to control insect and mite pests causes economic losses of several billion dollars worldwide each year. It is the goal of insect resistance management (IRM) to preserve useful pesticides by slowing, preventing or reversing development of resistance in pests. Important aspects of this goal are understanding the development of resistance and monitoring to determine ways to prevent its development. We describe programs specific to missions of the US Department of Agriculture, Agricultural Research Service, which are designed to characterize insecticide resistance in insects and mites with the goal of managing pests in an ecologically acceptable manner. Resistance management of cotton, potatoes, vegetables, melons, ornamentals, greenhouse crops, corn, stored grains, livestock, honeybees and mites, as well as management of transgenic crops are evaluated. We conclude that IRM is a vital part of stewardship of any pest management product and must be a combined effort of manufacturers, growers, consultants, extension services and grower organizations, working closely with regulators, to achieve logistically and economically feasible systems that prolong the effectiveness of all pest-control products.
Automated Surveillance of Fruit Flies
Potamitis, Ilyas; Rigakis, Iraklis; Tatlas, Nicolaos-Alexandros
2017-01-01
Insects of the Diptera order of the Tephritidae family cause costly, annual crop losses worldwide. Monitoring traps are important components of integrated pest management programs used against fruit flies. Here we report the modification of typical, low-cost plastic traps for fruit flies by adding the necessary optoelectronic sensors to monitor the entrance of the trap in order to detect, time-stamp, GPS tag, and identify the species of incoming insects from the optoacoustic spectrum analysis of their wingbeat. We propose that the incorporation of automated streaming of insect counts, environmental parameters and GPS coordinates into informative visualization of collective behavior will finally enable better decision making across spatial and temporal scales, as well as administrative levels. The device presented is at product level of maturity as it has solved many pending issues presented in a previously reported study. PMID:28075346
Chang, Yoonjee; Lee, Soo-Hyun; Na, Ja Hyun; Chang, Pahn-Shick; Han, Jaejoon
2017-11-01
The purpose of this study was to develop an anti-insect pest repellent sachet to prevent Sitophilus oryzae (L.) (Coleoptera: Curculionidae) contamination in grain packaging. The anti-insect pest activities of essential oils (EOs) from garlic (Allium Sativum), ginger (Zingiber Officinalis), black pepper (Piper nigrum), onion (Allium cepa), and fennel (Foeniculum vulgare) as well as major compounds (allyl disulfide, AD; allyl mercaptan, AM) isolated from of garlic and onion (AD and AM) were measured against S. oryzae. The results revealed that garlic EO, onion EO, AD, and AM showed strong fumigant insecticidal activities. Among these, AM showed the highest acetylcholinesterase (AChE) inhibition rate, indicating that the fumigation insecticidal efficacy of AM is related with its AChE inhibition ability. Subsequently, the microcapsules were produced with a high efficiency (80.02%) by using AM as a core material and rice flour as a wall material. Finally, sachet composed of rice flour microcapsule containing 2% AM (RAM) was produced. Repellent assay was performed to measure anti-insect pest ability of the RAM sachet, showed remarkable repelling effect within 48 h both in the presence or absence of attractant. In a release profile of RAM sachet, it was expected to last over 20 mo during the distribution period of brown rice. Moreover, RAM sachet showed no undesirable changes to the sensory properties of the rice both before and after cooking. Taken together, these results suggest that the newly developed RAM sachet could be used as a packaging material to protect grain products from S. oryzae contamination. The rice weevil, Sitophilus oryzae (L.) (Coleoptera: Curculionidae), causes damages to stored products and its contamination in grain products has become a major problem in cereal market. To preserve brown rice, an anti-insect pest repellent sachet containing 2% allyl mercaptan was newly developed and it showed remarkable repellent abilities against S. oryzae. It could be used as an active food packaging system to protect grain products from insect pest contamination. © 2017 Institute of Food Technologists®.
A cascade of destabilizations: Combining Wolbachia and Allee effects to eradicate insect pests.
Blackwood, Julie C; Vargas, Roger; Fauvergue, Xavier
2018-01-01
The management of insect pests has long been dominated by the use of chemical insecticides, with the aim of instantaneously killing enough individuals to limit their damage. To minimize unwanted consequences, environmentally friendly approaches have been proposed that utilize biological control and take advantage of intrinsic demographic processes to reduce pest populations. We address the feasibility of a novel pest management strategy based on the release of insects infected with Wolbachia, which causes cytoplasmic incompatibilities in its host population, into a population with a pre-existing Allee effect. We hypothesize that the transient decline in population size caused by a successful invasion of Wolbachia can bring the population below its Allee threshold and, consequently, trigger extinction. We develop a stochastic population model that accounts for Wolbachia-induced cytoplasmic incompatibilities in addition to an Allee effect arising from mating failures at low population densities. Using our model, we identify conditions under which cytoplasmic incompatibilities and Allee effects successfully interact to drive insect pest populations towards extinction. Based on our results, we delineate control strategies based on introductions of Wolbachia-infected insects. We extend this analysis to evaluate control strategies that implement successive introductions of two incompatible Wolbachia strains. Additionally, we consider methods that combine Wolbachia invasion with mating disruption tactics to enhance the pre-existing Allee effect. We demonstrate that Wolbachia-induced cytoplasmic incompatibility and the Allee effect act independently from one another: the Allee effect does not modify the Wolbachia invasion threshold, and cytoplasmic incompatibilities only have a marginal effect on the Allee threshold. However, the interaction of these two processes can drive even large populations to extinction. The success of this method can be amplified by the introduction of multiple Wolbachia cytotypes as well as the addition of mating disruption. Our study extends the existing literature by proposing the use of Wolbachia introductions to capitalize on pre-existing Allee effects and consequently eradicate insect pests. More generally, it highlights the importance of transient dynamics, and the relevance of manipulating a cascade of destabilizatons for pest management. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.
NASA Technical Reports Server (NTRS)
Reasoner, David L.; Mccook, Morgan W. (Editor); Vaughan, William W. (Editor)
1990-01-01
The Defense Department and NASA have joined in a program to study the space environment which surrounds the earth and the effects of space radiation on modern satellite electronic systems. The Combined Release and Radiation Effects Satellite (CRRES) will carry an array of active experiments including chemical releases and a complement of sophisticated scientific instruments to accomplish these objectives. Other chemical release active experiments will be performed with sub-orbital rocket probes. The chemical releases will 'paint' the magnetic and electric fields of earthspace with clouds of glowing ions. Earthspace will be a laboratory, and the releases will be studied with an extensive network of ground-, aircraft-, and satellite-based diagnostic instruments. Some of the topics discussed include the following: the effects of earthspace; the need for active experiments; types of chemical releases; the CRRES program schedule; international support and coordinated studies; photographing chemical releases; information on locating chemical releases for observation by the amateur; and CRRES as a program.
NASA Astrophysics Data System (ADS)
Reasoner, David L.; McCook, Morgan W.; Vaughan, William W.
The Defense Department and NASA have joined in a program to study the space environment which surrounds the earth and the effects of space radiation on modern satellite electronic systems. The Combined Release and Radiation Effects Satellite (CRRES) will carry an array of active experiments including chemical releases and a complement of sophisticated scientific instruments to accomplish these objectives. Other chemical release active experiments will be performed with sub-orbital rocket probes. The chemical releases will 'paint' the magnetic and electric fields of earthspace with clouds of glowing ions. Earthspace will be a laboratory, and the releases will be studied with an extensive network of ground-, aircraft-, and satellite-based diagnostic instruments. Some of the topics discussed include the following: the effects of earthspace; the need for active experiments; types of chemical releases; the CRRES program schedule; international support and coordinated studies; photographing chemical releases; information on locating chemical releases for observation by the amateur; and CRRES as a program.
Tanahashi, Masahiko; Ikeda, Hiroshi; Kubota, Kôhei
2018-05-03
Wood degradation by insects plays important roles for the forest matter cycling. Since wood is deficient in nitrogen compared to the insect body, wood-feeding insects need to assimilate the nitrogen selectively and discard an excess carbon. Such a stoichiometric imbalance between food and body will cause high metabolic cost; therefore, wood-feeding insects may somehow alleviate the stoichiometric imbalance. Here, we investigated the carbon and nitrogen budgets of the larvae of stag beetle, Dorcus rectus, which feed on decaying wood. Assimilation efficiency of ingested wood was 22%, and those values based on the carbon and nitrogen were 27 and 45%, respectively, suggesting the selective digestion of nitrogen in wood. Element-based gross growth efficiency was much higher for nitrogen (45%) than for carbon (3%). As a result, the larvae released 24% of the ingested carbon as volatile, whereas almost no gaseous exchange was observed for nitrogen. Moreover, solubility-based elementary analysis revealed that the larvae mainly utilized alkaline-soluble-water-insoluble fraction of wood, which is rich in nitrogen. Actually, the midgut of the larvae was highly alkaline (pH 10.3). Stag beetle larvae are known to exhibit coprophagy, and here we also confirmed that alkaline-soluble-water-insoluble nitrogen increased again from fresh feces to old feces in the field. Stable isotope analysis suggested the utilization of aerial nitrogen by larvae; however, its actual contribution is still disputable. Those results suggest that D. rectus larvae selectively utilize alkaline-soluble nitrogenous substrates by using their highly alkaline midgut, and perhaps associate with microbes that enhance the nitrogen recycling in feces.
Palmberger, Dieter; Ashjaei, Kazem; Strell, Stephanie; Hoffmann-Sommergruber, Karin; Grabherr, Reingard
2014-09-01
The baculovirus/insect cell system has proven to be a very powerful tool for the expression of several therapeutics. Nevertheless, these products sometimes suffer from reduced biological activity and unwanted side effects. Several studies have demonstrated that glycosylation can greatly influence the structure, function, half-life, antigenicity and immunogenicity of various glycoproteins. Yet, the glycosylation pattern of insect cell-derived products is not favorable for many applications. Especially, the presence of core α1,3-linked fucose bears the risk of causing immediate hypersensitivity reactions in patients with allergy. In this study, we evaluated the impact of fucose residues on the allergenic potential of an insect cell-expressed vaccine candidate. In order to block the GDP-L-fucose de novo synthesis pathway, we integrated the Pseudomonas aeruginosa GDP-6-deoxy-D-lyxo-4-hexulose reductase (RMD) gene into a baculovirus backbone. This virus was then used for the expression of soluble influenza A virus hemagglutinin (HA). Expression studies showed that the co-expression of RMD did not influence the overall level of recombinant protein secretion. We confirmed the result of our strategy by analyzing PNGase A-released N-glycans using MALDI-TOF-MS. In order to evaluate the biological impact of defucosylation of influenza HA we tested the binding activity of IgE derived from the sera of patients with allergy to the purified antigen. The non-fucosylated HA showed a 10-fold decrease in IgE binding levels as compared to wildtype variants. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Tanahashi, Masahiko; Ikeda, Hiroshi; Kubota, Kôhei
2018-06-01
Wood degradation by insects plays important roles for the forest matter cycling. Since wood is deficient in nitrogen compared to the insect body, wood-feeding insects need to assimilate the nitrogen selectively and discard an excess carbon. Such a stoichiometric imbalance between food and body will cause high metabolic cost; therefore, wood-feeding insects may somehow alleviate the stoichiometric imbalance. Here, we investigated the carbon and nitrogen budgets of the larvae of stag beetle, Dorcus rectus, which feed on decaying wood. Assimilation efficiency of ingested wood was 22%, and those values based on the carbon and nitrogen were 27 and 45%, respectively, suggesting the selective digestion of nitrogen in wood. Element-based gross growth efficiency was much higher for nitrogen (45%) than for carbon (3%). As a result, the larvae released 24% of the ingested carbon as volatile, whereas almost no gaseous exchange was observed for nitrogen. Moreover, solubility-based elementary analysis revealed that the larvae mainly utilized alkaline-soluble-water-insoluble fraction of wood, which is rich in nitrogen. Actually, the midgut of the larvae was highly alkaline (pH 10.3). Stag beetle larvae are known to exhibit coprophagy, and here we also confirmed that alkaline-soluble-water-insoluble nitrogen increased again from fresh feces to old feces in the field. Stable isotope analysis suggested the utilization of aerial nitrogen by larvae; however, its actual contribution is still disputable. Those results suggest that D. rectus larvae selectively utilize alkaline-soluble nitrogenous substrates by using their highly alkaline midgut, and perhaps associate with microbes that enhance the nitrogen recycling in feces.
Selby, R D; Gage, S H; Whalon, M E
2014-04-01
Incorporating camera systems into insect traps potentially benefits insect phenology modeling, nonlethal insect monitoring, and research into the automated identification of traps counts. Cameras originally for monitoring mammals were instead adapted to monitor the entrance to pyramid traps designed to capture the plum curculio, Conotrachelus nenuphar (Herbst) (Coleoptera: Curculionidae). Using released curculios, two new trap designs (v.I and v.II) were field-tested alongside conventional pyramid traps at one site in autumn 2010 and at four sites in autumn 2012. The traps were evaluated on the basis of battery power, ease-of-maintenance, adaptability, required-user-skills, cost (including labor), and accuracy-of-results. The v.II design fully surpassed expectations, except that some trapped curculios were not photographed. In 2012, 13 of the 24 traps recorded every curculio entering the traps during the 18-d study period, and in traps where some curculios were not photographed, over 90% of the omissions could be explained by component failure or external interference with the motion sensor. Significantly more curculios entered the camera traps between 1800 and 0000 hours. When compared with conventional pyramid traps, the v.I traps collected a similar number of curculios. Two observed but not significant trends were that the v.I traps collected twice as many plum curculios as the v.II traps, while at the same time the v.II traps collected more than twice as many photos per plum curculio as the v.I traps. The research demonstrates that low-cost, precise monitoring of field insect populations is feasible without requiring extensive technical expertise.
2017-01-01
Plant- and animal-feeding insects secrete saliva inside their hosts, containing effectors, which may promote nutrient release and suppress immunity. Although for plant pathogenic microbes it is well established that effectors target host proteins to modulate host cell processes and promote disease, the host cell targets of herbivorous insects remain elusive. Here, we show that the existing plant pathogenic microbe effector paradigm can be extended to herbivorous insects in that effector-target interactions inside host cells modify critical host processes to promote plant susceptibility. We showed that the effector Mp1 from Myzus persicae associates with the host Vacuolar Protein Sorting Associated Protein52 (VPS52). Using natural variants, we provide a strong link between effector virulence activity and association with VPS52, and show that the association is highly specific to M. persicae-host interactions. Also, coexpression of Mp1, but not Mp1-like variants, specifically with host VPS52s resulted in effector relocalization to vesicle-like structures that associate with prevacuolar compartments. We show that high VPS52 levels negatively impact virulence, and that aphids are able to reduce VPS52 levels during infestation, indicating that VPS52 is an important virulence target. Our work is an important step forward in understanding, at the molecular level, how a major agricultural pest promotes susceptibility during infestation of crop plants. We give evidence that an herbivorous insect employs effectors that interact with host proteins as part of an effective virulence strategy, and that these effectors likely function in a species-specific manner. PMID:28100451
Evaluation of the House Fly Musca domestica as a Mechanical Vector for an Anthrax
Fasanella, Antonio; Scasciamacchia, Silvia; Garofolo, Giuliano; Giangaspero, Annunziata; Tarsitano, Elvira; Adone, Rosanna
2010-01-01
Anthrax is a disease of human beings and animals caused by the encapsulated, spore-forming, Bacillus anthracis. The potential role of insects in the spread of B. anthracis to humans and domestic animals during an anthrax outbreak has been confirmed by many studies. Among insect vectors, the house fly Musca domestica is considered a potential agent for disease transmission. In this study, laboratory-bred specimens of Musca domestica were infected by feeding on anthrax-infected rabbit carcass or anthrax contaminated blood, and the presence of anthrax spores in their spots (faeces and vomitus) was microbiologically monitored. It was also evaluated if the anthrax spores were able to germinate and replicate in the gut content of insects. These results confirmed the role of insects in spreading anthrax infection. This role, although not major, given the huge size of fly populations often associated with anthrax epidemics in domestic animals, cannot be neglected from an epidemiological point of view and suggest that fly control should be considered as part of anthrax control programs. PMID:20808920
A CRISPR-Cas9 sex-ratio distortion system for genetic control
Galizi, Roberto; Hammond, Andrew; Kyrou, Kyros; Taxiarchi, Chrysanthi; Bernardini, Federica; O’Loughlin, Samantha M.; Papathanos, Philippos-Aris; Nolan, Tony; Windbichler, Nikolai; Crisanti, Andrea
2016-01-01
Genetic control aims to reduce the ability of insect pest populations to cause harm via the release of modified insects. One strategy is to bias the reproductive sex ratio towards males so that a population decreases in size or is eliminated altogether due to a lack of females. We have shown previously that sex ratio distortion can be generated synthetically in the main human malaria vector Anopheles gambiae, by selectively destroying the X-chromosome during spermatogenesis, through the activity of a naturally-occurring endonuclease that targets a repetitive rDNA sequence highly-conserved in a wide range of organisms. Here we describe a CRISPR-Cas9 sex distortion system that targets ribosomal sequences restricted to the member species of the Anopheles gambiae complex. Expression of Cas9 during spermatogenesis resulted in RNA-guided shredding of the X-chromosome during male meiosis and produced extreme male bias among progeny in the absence of any significant reduction in fertility. The flexibility of CRISPR-Cas9 combined with the availability of genomic data for a range of insects renders this strategy broadly applicable for the species-specific control of any pest or vector species with an XY sex-determination system by targeting sequences exclusive to the female sex chromosome. PMID:27484623
Systematic analysis of rice (Oryza sativa) metabolic responses to herbivory.
Alamgir, Kabir Md; Hojo, Yuko; Christeller, John T; Fukumoto, Kaori; Isshiki, Ryutaro; Shinya, Tomonori; Baldwin, Ian T; Galis, Ivan
2016-02-01
Plants defend against attack from herbivores by direct and indirect defence mechanisms mediated by the accumulation of phytoalexins and release of volatile signals, respectively. While the defensive arsenals of some plants, such as tobacco and Arabidopsis are well known, most of rice's (Oryza sativa) defence metabolites and their effectiveness against herbivores remain uncharacterized. Here, we used a non-biassed metabolomics approach to identify many novel herbivory-regulated metabolic signatures in rice. Most were up-regulated by herbivore attack while only a few were suppressed. Two of the most prominent up-regulated signatures were characterized as phenolamides (PAs), p-coumaroylputrescine and feruloylputrescine. PAs accumulated in response to attack by both chewing insects, i.e. feeding of the lawn armyworm (Spodoptera mauritia) and the rice skipper (Parnara guttata) larvae, and the attack of the sucking insect, the brown planthopper (Nilaparvata lugens, BPH). In bioassays, BPH insects feeding on 15% sugar solution containing p-coumaroylputrescine or feruloylputrescine, at concentrations similar to those elicited by heavy BPH attack in rice, had a higher mortality compared to those feeding on sugar diet alone. Our results highlight PAs as a rapidly expanding new group of plant defence metabolites that are elicited by herbivore attack, and deter herbivores in rice and other plants. © 2015 John Wiley & Sons Ltd.
Stotz, Henrik U.; Pittendrigh, Barry R.; Kroymann, Jürgen; Weniger, Kerstin; Fritsche, Jacqueline; Bauke, Antje; Mitchell-Olds, Thomas
2000-01-01
The induction of plant defenses by insect feeding is regulated via multiple signaling cascades. One of them, ethylene signaling, increases susceptibility of Arabidopsis to the generalist herbivore Egyptian cotton worm (Spodoptera littoralis; Lepidoptera: Noctuidae). The hookless1 mutation, which affects a downstream component of ethylene signaling, conferred resistance to Egyptian cotton worm as compared with wild-type plants. Likewise, ein2, a mutant in a central component of the ethylene signaling pathway, caused enhanced resistance to Egyptian cotton worm that was similar in magnitude to hookless1. Moreover, pretreatment of plants with ethephon (2-chloroethanephosphonic acid), a chemical that releases ethylene, elevated plant susceptibility to Egyptian cotton worm. By contrast, these mutations in the ethylene-signaling pathway had no detectable effects on diamondback moth (Plutella xylostella) feeding. It is surprising that this is not due to nonactivation of defense signaling, because diamondback moth does induce genes that relate to wound-response pathways. Of these wound-related genes, jasmonic acid regulates a novel β-glucosidase 1 (BGL1), whereas ethylene controls a putative calcium-binding elongation factor hand protein. These results suggest that a specialist insect herbivore triggers general wound-response pathways in Arabidopsis but, unlike a generalist herbivore, does not react to ethylene-mediated physiological changes. PMID:11080278
Administering and Detecting Protein Marks on Arthropods for Dispersal Research.
Hagler, James R; Machtley, Scott A
2016-01-28
Monitoring arthropod movement is often required to better understand associated population dynamics, dispersal patterns, host plant preferences, and other ecological interactions. Arthropods are usually tracked in nature by tagging them with a unique mark and then re-collecting them over time and space to determine their dispersal capabilities. In addition to actual physical tags, such as colored dust or paint, various types of proteins have proven very effective for marking arthropods for ecological research. Proteins can be administered internally and/or externally. The proteins can then be detected on recaptured arthropods with a protein-specific enzyme-linked immunosorbent assay (ELISA). Here we describe protocols for externally and internally tagging arthropods with protein. Two simple experimental examples are demonstrated: (1) an internal protein mark introduced to an insect by providing a protein-enriched diet and (2) an external protein mark topically applied to an insect using a medical nebulizer. We then relate a step-by-step guide of the sandwich and indirect ELISA methods used to detect protein marks on the insects. In this demonstration, various aspects of the acquisition and detection of protein markers on arthropods for mark-release-recapture, mark-capture, and self-mark-capture types of research are discussed, along with the various ways that the immunomarking procedure has been adapted to suit a wide variety of research objectives.
Plant volatiles induced by herbivore egg deposition affect insects of different trophic levels.
Fatouros, Nina E; Lucas-Barbosa, Dani; Weldegergis, Berhane T; Pashalidou, Foteini G; van Loon, Joop J A; Dicke, Marcel; Harvey, Jeffrey A; Gols, Rieta; Huigens, Martinus E
2012-01-01
Plants release volatiles induced by herbivore feeding that may affect the diversity and composition of plant-associated arthropod communities. However, the specificity and role of plant volatiles induced during the early phase of attack, i.e. egg deposition by herbivorous insects, and their consequences on insects of different trophic levels remain poorly explored. In olfactometer and wind tunnel set-ups, we investigated behavioural responses of a specialist cabbage butterfly (Pieris brassicae) and two of its parasitic wasps (Trichogramma brassicae and Cotesia glomerata) to volatiles of a wild crucifer (Brassica nigra) induced by oviposition of the specialist butterfly and an additional generalist moth (Mamestra brassicae). Gravid butterflies were repelled by volatiles from plants induced by cabbage white butterfly eggs, probably as a means of avoiding competition, whereas both parasitic wasp species were attracted. In contrast, volatiles from plants induced by eggs of the generalist moth did neither repel nor attract any of the tested community members. Analysis of the plant's volatile metabolomic profile by gas chromatography-mass spectrometry and the structure of the plant-egg interface by scanning electron microscopy confirmed that the plant responds differently to egg deposition by the two lepidopteran species. Our findings imply that prior to actual feeding damage, egg deposition can induce specific plant responses that significantly influence various members of higher trophic levels.
Boguś, M I; Włóka, E; Wrońska, A; Kaczmarek, A; Kazek, M; Zalewska, K; Ligęza-Żuber, M; Gołębiowski, M
2017-03-01
Entomopathogenic fungi infect insects via penetration through the cuticle, which varies remarkably in chemical composition across species and life stages. Fungal infection involves the production of enzymes that hydrolyse cuticular proteins, chitin and lipids. Host specificity is associated with fungus-cuticle interactions related to substrate utilization and resistance to host-specific inhibitors. The soil fungus Conidiobolus coronatus (Constantin) (Entomophthorales: Ancylistaceae) shows virulence against susceptible species. The larvae and pupae of Calliphora vicina (Robineau-Desvoidy) (Diptera: Calliphoridae), Calliphora vomitoria (Linnaeus), Lucilia sericata (Meigen) (Diptera: Calliphoridae) and Musca domestica (Linnaeus) (Diptera: Muscidae) are resistant, but adults exposed to C. coronatus quickly perish. Fungus was cultivated for 3 weeks in a minimal medium. Cell-free filtrate, for which activity of elastase, N-acetylglucosaminidase, chitobiosidase and lipase was determined, was used for in vitro hydrolysis of the cuticle from larvae, puparia and adults. Amounts of amino acids, N-glucosamine and fatty acids released were measured after 8 h of incubation. The effectiveness of fungal enzymes was correlated with concentrations of compounds detected in the cuticles of tested insects. Positive correlations suggest compounds used by the fungus as nutrients, whereas negative correlations may indicate compounds responsible for insect resistance. Adult deaths result from the ingestion of conidia or fungal excretions. © 2016 The Royal Entomological Society.
IPM for fresh-market lettuce production in the desert southwest: the produce paradox.
Palumbo, John C; Castle, Steven J
2009-12-01
In the 'Integrated Control Concept', Stern et al. emphasized that, although insecticides are necessary for agricultural production, they should only be used as a last resort and as a complement to biological control. They argued that selective insecticide use should only be attempted after it has been determined that insect control with naturally occurring biotic agents is not capable of preventing economic damage. However, they concluded their seminal paper by emphasizing that integrated control will not work where natural enemies are inadequate or where economic thresholds are too low to rely on biological control. Thus, it is no surprise that insect control in high-value, fresh-market lettuce crops grown in the desert southwest have relied almost exclusively on insecticides to control a complex of mobile, polyphagous pests. Because lettuce and leafy greens are short-season annual crops with little or no tolerance for insect damage or contamination, biological control is generally considered unacceptable. High expectations from consumers for aesthetically appealing produce free of pesticide residues further forces vegetable growers to use chemical control tactics that are not only effective but safe. Consequently, scientists have been developing integrated pest management (IPM) programs for lettuce that are aimed at reducing the economic, occupational and dietary risks associated with chemical controls of the past. Most of these programs have drawn upon the integrated control concept and promote the importance of understanding the agroecosystem, and the need to sample for pest status and use action thresholds for cost-effective insect control. More recently, pest management programs have implemented newly developed, reduced-risk chemistries that are selectively efficacious against key pests. This paper discusses the influence that the integrated control concept, relative to zero-tolerance market standards and other constraints, has had on the adoption of pest management in desert lettuce crops. (c) 2009 Society of Chemical Industry.
Introducing the Equiangular Spiral by Using Logo to Model Nature.
ERIC Educational Resources Information Center
Boyadzhiev, Irina; Boyadzhiev, Khristo
1992-01-01
Describes the method for producing the equiangular spiral, the geometric curve generated by modeling an insect's orientation process to an illumination source, utilizing a LOGO Turtle program which is included. (JJK)
Shively, R.S.; Poe, T.P.; Sauter, S.T.
1996-01-01
We collected gut contents from northern squawfish Ptychocheilus oregonensis captured in the Clearwater River, Idaho, 0–6 km from its confluence with the Snake River, following the release of 1.1 million yearling chinook salmon Oncorhynchus tshawytscha from the Dworshak National Fish Hatchery. Before the hatchery release, northern squawfish gut contents (by weight) in the study area were 38% crayfish Pacifastacus spp., 26% insects, 19% nonsalmonid fish, and 16% wheat kernels Triticum spp. Juvenile salmonids constituted 54% of gut contents about 24 h after the hatchery release, 78% after 5 d, and 86% after 7 d. The mean number of salmonids per gut (1.2) after release was higher than typically seen in guts from northern squawfish collected in mid-reservoir areas away from hydroelectric dams on the Snake and Columbia rivers. Length-frequency distributions of juvenile salmonids eaten and those captured in a scoop trap 4 km upstream of the study area indicated that northern squawfish were selectively feeding on the smaller individuals. We attribute the high rates of predation in the study area to the artificially high density of juvenile salmonids resulting from the hatchery release and to the physical characteristics of the study area in which the river changed from free flowing to impounded. Our results suggest that northern squawfish can quickly exploit hatchery releases of juvenile salmonids away from release sites in the Columbia River basin.
De Loof, Arnold; Schoofs, Liliane; Huybrechts, Roger
2016-01-15
Drastic changes in hormone titers, in particular of steroid hormones, are intuitively interpreted as necessary and beneficial for optimal functioning of animals. Peaks in progesterone- and estradiol titers that accompany the estrus cycle in female vertebrates as well as in ecdysteroids at each molt and during metamorphosis of holometabolous insects are prominent examples. A recent analysis of insect metamorphosis yielded the view that, in general, a sharp rise in sex steroid hormone titer signals that somewhere in the body some tissue(s) is undergoing programmed cell death/apoptosis. Increased steroid production is part of this process. Typical examples are ovarian follicle cells in female vertebrates and invertebrates and the prothoracic gland cells, the main production site of ecdysteroids in larval insects. A duality emerges: programmed cell death-apoptosis is deleterious at the cellular level, but it may yield beneficial effects at the organismal level. Reconciling both opposites requires reevaluating the probable evolutionary origin and role of peptidic brain hormones that direct steroid hormone synthesis. Do e.g. Luteinizing Hormone in vertebrates and Prothoracicotropic Hormone (PTTH: acting through the Torso receptor) in insects still retain an ancient role as toxins in the early immune system? Does the functional link of some neuropeptides with Ca(2+)-induced apoptosis make sense in endocrine archeology? The endocrine system as a remnant of the ancient immune system is undoubtedly counterintuitive. Yet, we will argue that such paradigm enables the logical framing of many aspects, the endocrine one inclusive of both male and female reproductive physiology. Copyright © 2015 Elsevier Inc. All rights reserved.
Liu, Yong-Jie; Liu, Jing; Ying, Sheng-Hua; Liu, Shu-Sheng
2013-01-01
Fungal insecticides developed from filamentous pathogens of insects are notorious for their slow killing action through cuticle penetration, depressing commercial interest and practical application. Genetic engineering may accelerate their killing action but cause ecological risk. Here we show that a Beauveria bassiana formulation, HV8 (BbHV8), engineered for fast per os killing of caterpillars by an insect midgut-acting toxin (Vip3Aa1) overexpressed in conidia has both high field efficacy and safety in full-season protection of cabbage from the damage of an insect pest complex dominated by Pieris rapae larvae, followed by Plutella xylostella larvae and aphids. In two fields repeatedly sprayed during summer, BbHV8 resulted in overall mean efficacies of killing of 71% and 75%, which were similar or close to the 70% and 83% efficacies achieved by commercially recommended emamectin benzoate but much higher than the 31% and 48% efficacies achieved by the same formulation of the parental wild-type strain (WT). Both BbHV8 and WT sprays exerted no adverse effect on a nontarget spider community during the trials, and the sprays did not influence saprophytic fungi in soil samples taken from the field plots during 4 months after the last spray. Strikingly, BbHV8 and the WT showed low fitness when they were released into the environment because both were decreasingly recovered from the field lacking native B. bassiana strains (undetectable 5 months after the spray), and the recovered isolates became much less tolerant to high temperature and UV-B irradiation. Our results highlight for the first time that a rationally engineered fungal insecticide can compete with a chemical counterpart to combat insect pests at an affordable cost and with low ecological risk. PMID:23956386
NASA Astrophysics Data System (ADS)
Moore, D. J.; Wilkes, P.; Quaife, T. L.; Trahan, N. A.; Monson, R. K.; Stephens, B. B.
2010-12-01
A large scale insect outbreak has progressively infected North American Forests in the Rocky Mountains over the last 8 years causing the death of millions of trees. Loss of mature trees on this scale is likely to compromise the ability of these ecosystems to sequester carbon. While a reduction of live leaf area likely leads to reduced carbon uptake gross primary productivity (GPP) the impact of the outbreak on ecosystem respiration (RE) is not clear. We investigated the response of both GPP (2000 through 2010) and RE (2005-2010) to insect out break by contrasting two locations in the Rocky Mountains, the Fraser Experiment Forest (FEF; 39.91 N, 105.88 W) which has been heavily impacted by insects and Niwot Ridge (NWR; 40.05 N, 105.58 W) where the outbreak has not yet occurred. We used a modified estimate of GPP based on enhanced vegetation index (EVI) calibrated using eddy covariance measured at NWR to examine the impact of the beetle outbreak across the region. We found that while GPP decreased significantly at Fraser after the insect outbreak did not show a time dependent decline at NWR. Since 2005 near continuous atmospheric CO2 has been measured at the bottom of FEF. We used the diurnal variation in the CO2 concentration measured at the bottom of Fraser Valley as a proximate measurement of RE. We found that from 2005 through 2009 there was a decline in apparent RE while in 2010 apparent RE increased relative to 2009. Direct measurements of soil CO2 efflux appear to bear out this trend. Barring a large shift in temperature it is possible that the increase in apparent RE in 2010 may be the result of mobilization of N or potentially recovery of GPP from regenerating vegetation. The relative changes in GPP and RE are investigated from 2005 through 2010.
2013-07-01
major safety factor if this can be confirmed in the future. ERDC/EL TN-13-3 July 2013 10 Figure 2. Adult A. geminipuncta females marked... food after two weeks. In neither case did the larvae successfully develop to adult. With both species, over 50% of larvae-fed diet died within the...internally feeding larvae require hollow tubes with food lining the walls for a successful development. That most larvae died in the early instars is
Frederickx, C; Dekeirsschieter, J; Brostaux, Y; Wathelet, J-P; Verheggen, F J; Haubruge, E
2012-06-10
To evaluate postmortem intervals (PMIs), one should take into account the determined age of necrophagous flies present on the cadaver. However, PMI determination needs further improvement, and rapid and accurate approaches have therefore to be developed. While previous studies have focussed on insect cuticular hydrocarbons, here we explore the volatile profile released by larvae and pupae of Calliphora vicina Robineau-Desvoidy (Diptera: Calliphoridae). We monitored changes in volatile compounds daily, by headspace solid-phase microextraction, followed by gas chromatography-mass spectrometry. Branched and unbranched hydrocarbons, alcohols, esters and acids were identified, and the volatile profile was shown to vary, in both composition and quantity, with the age of the larva/pupa under investigation. We concluded, based on the analysis of the released volatile organic compounds, that it is possible to increase the accuracy of the estimated PMI, through improved estimation of the age of blowflies present on the cadaver. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
The NASA radar entomology program at Wallops Flight Center
NASA Technical Reports Server (NTRS)
Vaughn, C. R.
1979-01-01
NASA contribution to radar entomology is presented. Wallops Flight Center is described in terms of its radar systems. Radar tracking of birds and insects was recorded from helicopters for airspeed and vertical speed.
Larney, Sarah; Lai, Wilson; Dolan, Kate; Zador, Deborah
2016-11-01
Opioid substitution therapy (OST) is an effective treatment for opioid dependence that is provided in many correctional settings, including New South Wales (NSW), Australia. In 2011, changes to the clinical governance of the NSW prison OST program were implemented, including a more comprehensive assessment, additional specialist nurses, and centralization of program management and planning. This study aimed to document the NSW prison OST program, and assess the impact of the enhanced clinical governance arrangements on retention in treatment until release, the provision of an OST prescription to patients at release, and presentation to a community OST clinic within 48 hours of release from custody. Data from the NSW prison OST program were obtained for the calendar years 2007-2013. Outcomes were analyzed quarterly using log binomial segmented regression. 8577 people were treated with OST in NSW correctional centers, 2007-2013. Over the entire study period, patients were retained in OST until release in 82% of treatment episodes; a prescription for OST was able to be arranged prior to release in 90% of releases; and patients presented to a community clinic within 48 hours of release in 94% of releases with prescriptions. Following the introduction of the changes to clinical governance, there was a significant increasing trend in retention in OST until release, and in provision of an OST prescription at release. There was an initial increase, followed by a decreasing trend, in presentation to a community clinic within 48 hours of release. This large prison-based OST program has high rates of retention in treatment and continuity of care as patients transition from custody to the community. Strengthened clinical governance arrangements were associated with increased retention in treatment until release and increased provision of an OST prescription at release, but did not improve clinic attendance following release from custody. Copyright © 2016 Elsevier Inc. All rights reserved.
Johnson, Brian J; Ritchie, Scott A
2016-01-01
The need to capture male mosquitoes has intensified recently as a result of a number of male-based sterile insect technique (SIT) and population-modification programs focused on Aedes aegypti (L.) having initiated field releases. Here, we report the results of the successful exploitation of the attraction of male Ae. aegypti to female flight tones to enhance male collections in nonmechanical passive (nonbattery powered) Gravid Aedes Traps (GAT). Prior to field studies, male attraction to female flight tones of 484 and 560 Hz, as well as to a male flight tone of 715 Hz, were assessed in a series of controlled release-recapture and semifield trials. These trials determined that a pure tone of 484 Hz was significantly more attractive to free-flying males than the other flight tones and enabled their collection in sound-baited GATs (ca. 95% capture rate after 2 h; 484 Hz at 65 dB). In contrast, gravid females were unresponsive to male or female flight tones and were evenly distributed among sound-baited and control GATs. Importantly, under normal field conditions sound-baited GATs (484 Hz at 70 dB) captured significantly more male Ae. aegypti per 24-h trap interval (1.3 ± 0.37) than controls (0.2 ± 0.13). Overall, sound-bated GATs captured approximately twice as many Ae. aegypti (male and female; 3.0 ± 0.68 per interval, 30 total) than controls (1.5 ± 0.56 per interval, 15 total). These results reveal that sound-baited GATs are a simple and effective surveillance tool for Ae. aegypti that would allow current male-based SIT and population-modification programs to effectively monitor males in their target populations. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
A Computer Model of Insect Traps in a Landscape
NASA Astrophysics Data System (ADS)
Manoukis, Nicholas C.; Hall, Brian; Geib, Scott M.
2014-11-01
Attractant-based trap networks are important elements of invasive insect detection, pest control, and basic research programs. We present a landscape-level, spatially explicit model of trap networks, focused on detection, that incorporates variable attractiveness of traps and a movement model for insect dispersion. We describe the model and validate its behavior using field trap data on networks targeting two species, Ceratitis capitata and Anoplophora glabripennis. Our model will assist efforts to optimize trap networks by 1) introducing an accessible and realistic mathematical characterization of the operation of a single trap that lends itself easily to parametrization via field experiments and 2) allowing direct quantification and comparison of sensitivity between trap networks. Results from the two case studies indicate that the relationship between number of traps and their spatial distribution and capture probability under the model is qualitatively dependent on the attractiveness of the traps, a result with important practical consequences.
NASA Astrophysics Data System (ADS)
Alves, Tavvs Micael
Soybean aphid, Aphis glycines (Hemiptera: Aphididae) is the primary insect pest of soybean in the northcentral United States. Soybean aphid may cause stunted plants, leaf discoloration, plant death, and decrease soybean yield by 40%. Sampling plans have been developed for supporting soybean aphid management. However, growers' perception about time involved in direct insect counts has been contributing to a lower adoption of traditional pest scouting methods and may be associated with the use of prophylactic insecticide applications in soybean. Remote sensing of plant spectral (light-derived) responses to soybean aphid feeding is a promising alternative to estimate injury without direct insect counts and, thus, increase adoption and efficiency of scouting programs. This research explored the use of remote sensing of soybean reflectance for detection of soybean aphids and showed that foliar insecticides may have implications for subsequent use of soybean spectral reflectance for pest detection. (Abstract shortened by ProQuest.).
Colbourne, John K; Eads, Brian D; Shaw, Joseph; Bohuski, Elizabeth; Bauer, Darren J; Andrews, Justen
2007-01-01
Background Functional and comparative studies of insect genomes have shed light on the complement of genes, which in part, account for shared morphologies, developmental programs and life-histories. Contrasting the gene inventories of insects to those of the nematodes provides insight into the genomic changes responsible for their diversification. However, nematodes have weak relationships to insects, as each belongs to separate animal phyla. A better outgroup to distinguish lineage specific novelties would include other members of Arthropoda. For example, crustaceans are close allies to the insects (together forming Pancrustacea) and their fascinating aquatic lifestyle provides an important comparison for understanding the genetic basis of adaptations to life on land versus life in water. Results This study reports on the first characterization of cDNA libraries and sequences for the model crustacean Daphnia pulex. We analyzed 1,546 ESTs of which 1,414 represent approximately 787 nuclear genes, by measuring their sequence similarities with insect and nematode proteomes. The provisional annotation of genes is supported by expression data from microarray studies described in companion papers. Loci expected to be shared between crustaceans and insects because of their mutual biological features are identified, including genes for reproduction, regulation and cellular processes. We identify genes that are likely derived within Pancrustacea or lost within the nematodes. Moreover, lineage specific gene family expansions are identified, which suggest certain biological demands associated with their ecological setting. In particular, up to seven distinct ferritin loci are found in Daphnia compared to three in most insects. Finally, a substantial fraction of the sampled gene transcripts shares no sequence similarity with those from other arthropods. Genes functioning during development and reproduction are comparatively well conserved between crustaceans and insects. By contrast, genes that were responsive to environmental conditions (metal stress) and not sex-biased included the greatest proportion of genes with no matches to insect proteomes. Conclusion This study along with associated microarray experiments are the initial steps in a coordinated effort by the Daphnia Genomics Consortium to build the necessary genomic platform needed to discover genes that account for the phenotypic diversity within the genus and to gain new insights into crustacean biology. This effort will soon include the first crustacean genome sequence. PMID:17612412
Abzhanov, Arhat; Kaufman, Thomas C.
1999-01-01
cDNA fragments of the homologues of the Drosophila head homeotic genes labial (lab), proboscipedia (pb), and Deformed (Dfd) have been isolated from the crustacean Porcellio scaber. Because the accumulation domains of the head homeotic complex (Hox) genes had not been previously reported for crustaceans, we studied the expression patterns of these genes in P. scaber embryos by using in situ hybridization. The P. scaber lab homologue is expressed in the developing second antennal segment and its appendages. This expression domain in crustaceans and in the homologous intercalary segment of insects suggests that the lab gene specified this metamere in the last common ancestor of these two groups. The expression domain of the P. scaber pb gene is in the posterior part of the second antennal segment. This domain, in contrast to that in insects, is colinear with the domains of other head genes in P. scaber, and it differs from the insect pb gene expression domain in the posterior mouthparts, suggesting that the insect and crustacean patterns evolved independently from a broader ancestral domain similar to that found in modern chelicerates. P. scaber Dfd is expressed in the mandibular segment and paragnaths (a pair of ventral mouthpart structures associated with the stomodeum) and differs from insects, where expression is in the mandibular and maxillary segments. Thus, like pb, Dfd shows a divergent Hox gene deployment. We conclude that homologous structures of the mandibulate head display striking differences in their underlying developmental programs related to Hox gene expression. PMID:10468590
Reddy, Gadi V P
2011-08-01
Studies were conducted on experimental cabbage plantings in 2009 and on experimental and commercial plantings in 2010, comparing farmers' current chemical standard pesticide practices with an integrated pest management (IPM) program based on the use of neem (Aza-Direct) and DiPel (Bacillus thuringiensis). In experimental plantings, the IPM program used six or eight applications of neem and DiPel on a rotational basis. The standard-practice treatments consisted of six or eight applications of carbaryl and malathion or control treatment. The IPM treatments reduced pest populations and damage, resulting in a better yield than with the standard chemical or control treatment. When IPM treatment included three applications of neem plus three applications of DiPel (on a rotational basis in experimental fields), it again reduced the pest population and damage and produced a better yield than the standard practice. The lower input costs of the IPM program resulted in better economic returns in both trials. The IPM components neem and DiPel are suitable for use in an IPM program for managing insect pests on cabbage (Brassica spp.). Copyright © 2011 Society of Chemical Industry.
Detecting insect pollinator declines on regional and global scales
Lubuhn, Gretchen; Droege, Sam; Connor, Edward F.; Gemmill-Herren, Barbara; Potts, Simon G.; Minckley, Robert L.; Griswold, Terry; Jean, Robert; Kula, Emanuel; Roubik, David W.; Cane, Jim; Wright, Karen W.; Frankie, Gordon; Parker, Frank
2013-01-01
Recently there has been considerable concern about declines in bee communities in agricultural and natural habitats. The value of pollination to agriculture, provided primarily by bees, is >$200 billion/year worldwide, and in natural ecosystems it is thought to be even greater. However, no monitoring program exists to accurately detect declines in abundance of insect pollinators; thus, it is difficult to quantify the status of bee communities or estimate the extent of declines. We used data from 11 multiyear studies of bee communities to devise a program to monitor pollinators at regional, national, or international scales. In these studies, 7 different methods for sampling bees were used and bees were sampled on 3 different continents. We estimated that a monitoring program with 200-250 sampling locations each sampled twice over 5 years would provide sufficient power to detect small (2-5%) annual declines in the number of species and in total abundance and would cost U.S.$2,000,000. To detect declines as small as 1% annually over the same period would require >300 sampling locations. Given the role of pollinators in food security and ecosystem function, we recommend establishment of integrated regional and international monitoring programs to detect changes in pollinator communities.
ChtVis-Tomato, a genetic reporter for in vivo visualization of chitin deposition in Drosophila
Sobala, Lukasz F.; Wang, Ying; Adler, Paul N.
2015-01-01
Chitin is a polymer of N-acetylglucosamine that is abundant and widely found in the biological world. It is an important constituent of the cuticular exoskeleton that plays a key role in the insect life cycle. To date, the study of chitin deposition during cuticle formation has been limited by the lack of a method to detect it in living organisms. To overcome this limitation, we have developed ChtVis-Tomato, an in vivo reporter for chitin in Drosophila. ChtVis-Tomato encodes a fusion protein that contains an apical secretion signal, a chitin-binding domain (CBD), a fluorescent protein and a cleavage site to release it from the plasma membrane. The chitin reporter allowed us to study chitin deposition in time lapse experiments and by using it we have identified unexpected deposits of chitin fibers in Drosophila pupae. ChtVis-Tomato should facilitate future studies on chitin in Drosophila and other insects. PMID:26395478
Bats and birds increase crop yield in tropical agroforestry landscapes.
Maas, Bea; Clough, Yann; Tscharntke, Teja
2013-12-01
Human welfare is significantly linked to ecosystem services such as the suppression of pest insects by birds and bats. However, effects of biocontrol services on tropical cash crop yield are still largely unknown. For the first time, we manipulated the access of birds and bats in an exclosure experiment (day, night and full exclosures compared to open controls in Indonesian cacao agroforestry) and quantified the arthropod communities, the fruit development and the final yield over a long time period (15 months). We found that bat and bird exclusion increased insect herbivore abundance, despite the concurrent release of mesopredators such as ants and spiders, and negatively affected fruit development, with final crop yield decreasing by 31% across local (shade cover) and landscape (distance to primary forest) gradients. Our results highlight the tremendous economic impact of common insectivorous birds and bats, which need to become an essential part of sustainable landscape management. © 2013 John Wiley & Sons Ltd/CNRS.
Advanced release technologies program
NASA Technical Reports Server (NTRS)
Purdy, Bill
1994-01-01
The objective of the ARTS program was to develop lighter and less expensive spacecraft ordnance and release systems that answer to the requirements of a wide variety of spacecraft applications. These improvements were to be evaluated at the spacecraft system level, as it was determined that there were substantial system-level costs associated with the present ordnance and release subsystems. New, better devices were to be developed, then flight qualified, then integrated into a flight experiment in order to prove the reliability required for their subsequent use on high-reliability spacecraft. The secondary goal of the program was to quantify the system-level benefits of these new subsystems based upon the development program results. Three non-explosive release mechanisms and one laser-diode-based ordnance system were qualified under the program. The release devices being developed were required to release high preloads because it is easier to scale down a release mechanism than to scale it up. The laser initiator developed was required to be a direct replacement for NASA Standard Initiators, since these are the most common initiator in use presently. The program began in October, 1991, with completion of the flight experiment scheduled for February, 1994. This paper provides an overview of the ARTS program, discusses the benefits of using the ARTS components, introduces the new components, compares them with conventional systems and each other, and provides recommendations on how best to implement them.
Photorhabdus luminescens genes induced upon insect infection
Münch, Anna; Stingl, Lavinia; Jung, Kirsten; Heermann, Ralf
2008-01-01
Background Photorhabdus luminescens is a Gram-negative luminescent enterobacterium and a symbiote to soil nematodes belonging to the species Heterorhabditis bacteriophora. P.luminescens is simultaneously highly pathogenic to insects. This bacterium exhibits a complex life cycle, including one symbiotic stage characterized by colonization of the upper nematode gut, and a pathogenic stage, characterized by release from the nematode into the hemocoel of insect larvae, resulting in rapid insect death caused by bacterial toxins. P. luminescens appears to sense and adapt to the novel host environment upon changing hosts, which facilitates the production of factors involved in survival within the host, host-killing, and -exploitation. Results A differential fluorescence induction (DFI) approach was applied to identify genes that are up-regulated in the bacterium after infection of the insect host Galleria mellonella. For this purpose, a P. luminescens promoter-trap library utilizing the mCherry fluorophore as a reporter was constructed, and approximately 13,000 clones were screened for fluorescence induction in the presence of a G. mellonella larvae homogenate. Since P. luminescens has a variety of regulators that potentially sense chemical molecules, like hormones, the screen for up-regulated genes or operons was performed in vitro, excluding physicochemical signals like oxygen, temperature or osmolarity as variables. Clones (18) were obtained exhibiting at least 2.5-fold induced fluorescence and regarded as specific responders to insect homogenate. In combination with a bioinformatics approach, sequence motifs were identified in these DNA-fragments that are similar to 29 different promoters within the P. luminescens genome. By cloning each of the predicted promoters upstream of the reporter gene, induction was verified for 27 promoters in vitro, and for 24 promoters in viable G. mellonella larvae. Among the validated promoters are some known to regulate the expression of toxin genes, including tccC1 (encoding an insecticidal toxin complex), and others encoding putative toxins. A comparably high number of metabolic genes or operons were observed to be induced upon infection; among these were eutABC, hutUH, and agaZSVCD, which encode proteins involved in ethanolamine, histidine and tagatose degradation, respectively. The results reflect rearrangements in metabolism and the use of other metabolites available from the insect. Furthermore, enhanced activity of promoters controlling the expression of genes encoding enzymes linked to antibiotic production and/or resistance was observed. Antibiotic production and resistance may influence competition with other bacteria, and thus might be important for a successful infection. Lastly, several genes of unknown function were identified that may represent novel pathogenicity factors. Conclusion We show that a DFI screen is useful for identifying genes or operons induced by chemical stimuli, such as diluted insect homogenate. A bioinformatics comparison of motifs similar to known promoters is a powerful tool for identifying regulated genes or operons. We conclude that signals for the regulation of those genes or operons induced in P. luminescens upon insect infection may represent a wide variety of compounds that make up the insect host. Our results provide insight into the complex response to the host that occurs in a bacterial pathogen, particularly reflecting the potential for metabolic shifts and other specific changes associated with virulence. PMID:18489737
1987-07-01
8217. -. , i U ELF ECOLOGICAL MONITORING PROGRAM INDEX OF 1986 ANNUAL REPORTS A. Herbaceous Plant Cover and Tree Studies \\ Michigan Technological University...SUBCONTRACT NUMBER EO 6549-84-C-005 LELF Communications System Ecological Monitoring Program BIOLOGICAL STUDIES ON POLLINATING INSECTS: MEGACHILID...such as those in the vicinity of the ELF antenna because they are pollinators of flowering plants , and are therefore important to the reproductive
Insect haptoelectrical stimulation of Venus flytrap triggers exocytosis in gland cells.
Scherzer, Sönke; Shabala, Lana; Hedrich, Benjamin; Fromm, Jörg; Bauer, Hubert; Munz, Eberhard; Jakob, Peter; Al-Rascheid, Khaled A S; Kreuzer, Ines; Becker, Dirk; Eiblmeier, Monika; Rennenberg, Heinz; Shabala, Sergey; Bennett, Malcolm; Neher, Erwin; Hedrich, Rainer
2017-05-02
The Venus flytrap Dionaea muscipula captures insects and consumes their flesh. Prey contacting touch-sensitive hairs trigger traveling electrical waves. These action potentials (APs) cause rapid closure of the trap and activate secretory functions of glands, which cover its inner surface. Such prey-induced haptoelectric stimulation activates the touch hormone jasmonate (JA) signaling pathway, which initiates secretion of an acidic hydrolase mixture to decompose the victim and acquire the animal nutrients. Although postulated since Darwin's pioneering studies, these secretory events have not been recorded so far. Using advanced analytical and imaging techniques, such as vibrating ion-selective electrodes, carbon fiber amperometry, and magnetic resonance imaging, we monitored stimulus-coupled glandular secretion into the flytrap. Trigger-hair bending or direct application of JA caused a quantal release of oxidizable material from gland cells monitored as distinct amperometric spikes. Spikes reminiscent of exocytotic events in secretory animal cells progressively increased in frequency, reaching steady state 1 d after stimulation. Our data indicate that trigger-hair mechanical stimulation evokes APs. Gland cells translate APs into touch-inducible JA signaling that promotes the formation of secretory vesicles. Early vesicles loaded with H + and Cl - fuse with the plasma membrane, hyperacidifying the "green stomach"-like digestive organ, whereas subsequent ones carry hydrolases and nutrient transporters, together with a glutathione redox moiety, which is likely to act as the major detected compound in amperometry. Hence, when glands perceive the haptoelectrical stimulation, secretory vesicles are tailored to be released in a sequence that optimizes digestion of the captured animal.
Dötterl, Stefan; David, Anja; Boland, Wilhelm; Silberbauer-Gottsberger, Ilse; Gottsberger, Gerhard
2012-12-01
Many plants attract their pollinators with floral scents, and these olfactory signals are especially important at night, when visual signals become inefficient. Dynastid scarab beetles are a speciose group of night-active pollinators, and several plants pollinated by these insects have methoxylated aromatic compounds in their scents. However, there is a large gap in our knowledge regarding the compounds responsible for beetle attraction. We used chemical analytical analyses to determine temporal patterns of scent emission and the composition of scent released from inflorescences of Philodendron selloum. The attractiveness of the main components in the scent to the dynastid scarab beetle Erioscelis emarginata, the exclusive pollinator of this plant, was assessed in field biotests. The amount of scent increased rapidly in the evening, and large amounts of scent were released during the activity time of the beetle pollinators. Inflorescences emitted a high number of compounds of different biosynthetic origin, among them both uncommon and also widespread flower scents. Methoxylated aromatic compounds dominated the scent, and 4-methoxystyrene, the most abundant compound, attracted E. emarginata beetles. Other compounds, such as (Z)-jasmone and possibly also the methoxylated aromatic compound 3,4-dimethoxystyrene increased the attractiveness of 4-methoxystyrene. Methoxylated aromatics, which are known from other dynastid pollinated plants as well, are important signals in many scarab beetles in a different context (e.g., pheromones), thus suggesting that these plants exploit pre-existing preferences of the beetles for attracting this group of insects as pollinators.
Wang, Ruohan; Xu, Sai; Liu, Xiangyu; Zhang, Yiyuan; Wang, Jianzhong; Zhang, Zhixiang
2014-01-01
Magnolia sprengeri Pamp. is an ornamentally and ecologically important tree that blooms at cold temperatures in early spring. In this study, thermogenesis and variation in the chemical compounds of floral odours and insect visitation in relation to flowering cycles were studied to increase our understanding of the role of floral thermogenesis in the pollination biology of M. sprengeri. There were five distinct floral stages across the floral cycle of this species: pre-pistillate, pistillate, pre-staminate, staminate and post-staminate. Floral thermogenesis during anthesis and consisted of two distinct peaks: one at the pistillate stage and the other at the staminate stage. Insects of five families visited M. sprengeri during the floral cycle, and sap beetles (Epuraea sp., Nitidulidae) were determined to be the most effective pollinators, whereas bees (Apis cerana, Apidae) were considered to be occasional pollinators. A strong fragrance was released during thermogenesis, consisting of 18 chemical compounds. Although the relative proportions of these compounds varied at different floral stages across anthesis, linalool, 1-iodo-2-methylundecane and 2,2,6-trimethyl-6-vinyltetrahydro-2H-pyran-3-ol were dominant. Importantly, we found that the floral blends released during the pistillate and staminate stages were very similar, and coincided with flower visitation by sap beetles and the two thermogenic episodes. Based on these results, we propose that odour acts as a signal for a reward (pollen) and that an odour mimicry of staminate-stage flowers occurs during the pistillate stage. PMID:24922537
Xu, Lin; Li, Sheng; Ran, Xueqin; Liu, Chang; Lin, Rutao; Wang, Jiafu
2016-09-01
Azadirachtin has been used as an antifeedant and growth disruption agent for many insect species. Previous investigations have reported the apoptotic effects of azadirachtin on some insect cells, but the molecular mechanisms are still not clear. This study investigated the underlying molecular mechanisms for the apoptotic effects induced by azadirachtin on Drosophila melanogaster S2 cells in vitro. The results of the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide assay demonstrated that azadirachtin exhibited significant cytotoxicity to S2 cells in a time- and dose-dependent manner. The changes in cellular morphology and the DNA fragmentation demonstrated that azadirachtin induced remarkable apoptosis of S2 cells. Expression levels of 276 genes were found to be significantly changed in S2 cells after exposure to azadirachtin, as detected by Drosophila genome array. Among these genes, calmodulin (CaM) was the most highly upregulated gene. Azadirachtin was further demonstrated to trigger intracellular Ca(2+) release in S2 cells. The genes related to the apoptosis pathway, determined from chip data, were validated by the real-time quantitative polymerase chain reaction method. The results showed that azadirachtin-mediated intracellular Ca(2+) release was the primary event that triggered apoptosis in Drosophila S2 cells through both pathways of the Ca(2+) -CaM and EcR/Usp signalling cascade. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
Li, Xiaogang; Liu, Biao; Wang, Xingxiang; Han, Zhengmin; Cui, Jinjie; Luo, Junyu
2012-03-01
Impacts on soil invertebrates are an important aspect of environmental risk assessment and post-release monitoring of transgenic insect-resistant plants. The purpose of this study was to research and survey the effects of transgenic insect-resistant cottons that had been planted over 10 years on the abundance and community structure of soil invertebrates under field conditions. During 3 consecutive years (2006-2008), eight common taxa (orders) of soil invertebrates belonging to the phylum Arthropoda were investigated in two different transgenic cotton fields and one non-transgenic cotton field (control). Each year, soil samples were taken at four different growth stages of cotton (seedling, budding, boll forming and boll opening). Animals were extracted from the samples using the improved Tullgren method, counted and determined to the order level. The diversity of the soil fauna communities in the different fields was compared using the Simpson's, Shannon's diversity indices and evenness index. The results showed a significant sampling time variation in the abundance of soil invertebrates monitored in the different fields. However, no difference in soil invertebrate abundance was found between the transgenic cotton fields and the control field. Both sampling time and cotton treatment had a significant effect on the Simpson's, Shannon's diversity indices and evenness index. They were higher in the transgenic fields than the control field at the growth stages of cotton. Long-term cultivation of transgenic insect-resistant cottons had no significant effect on the abundance of soil invertebrates. Collembola, Acarina and Araneae could act as the indicators of soil invertebrate in this region to monitor the environmental impacts of transgenic plants in the future. This journal is © The Royal Society of Chemistry 2012
An Aphid Effector Targets Trafficking Protein VPS52 in a Host-Specific Manner to Promote Virulence.
Rodriguez, Patricia A; Escudero-Martinez, Carmen; Bos, Jorunn I B
2017-03-01
Plant- and animal-feeding insects secrete saliva inside their hosts, containing effectors, which may promote nutrient release and suppress immunity. Although for plant pathogenic microbes it is well established that effectors target host proteins to modulate host cell processes and promote disease, the host cell targets of herbivorous insects remain elusive. Here, we show that the existing plant pathogenic microbe effector paradigm can be extended to herbivorous insects in that effector-target interactions inside host cells modify critical host processes to promote plant susceptibility. We showed that the effector Mp1 from Myzus persicae associates with the host Vacuolar Protein Sorting Associated Protein52 (VPS52). Using natural variants, we provide a strong link between effector virulence activity and association with VPS52, and show that the association is highly specific to M persicae -host interactions. Also, coexpression of Mp1, but not Mp1-like variants, specifically with host VPS52s resulted in effector relocalization to vesicle-like structures that associate with prevacuolar compartments. We show that high VPS52 levels negatively impact virulence, and that aphids are able to reduce VPS52 levels during infestation, indicating that VPS52 is an important virulence target. Our work is an important step forward in understanding, at the molecular level, how a major agricultural pest promotes susceptibility during infestation of crop plants. We give evidence that an herbivorous insect employs effectors that interact with host proteins as part of an effective virulence strategy, and that these effectors likely function in a species-specific manner. © 2017 American Society of Plant Biologists. All Rights Reserved.
ERIC Educational Resources Information Center
Theurer, Gregory; Lovell, David
2008-01-01
An intensive case management treatment program for mentally ill offenders (MIOs) is outlined, and subsequent recidivism of participants is evaluated. Features of the program and its development are discussed. Sixty-four (64) participants released from state prison between 1998 and 2003 were matched with a group of MIOs released earlier on eight…
Ning, Shuoying; Zhang, Wenchao; Sun, Yan; Feng, Jinian
2017-07-06
In this study, we first construct an age-stage, two-sex life table for onion maggot, Delia antiqua, grown on three host plants: onion, scallion, and garlic. We found that onion is the optimal host for this species and populations grown on onion have maximum fecundity, longest adult longevity and reproduction period, and the shortest immature developmental time. In contrast, the fecundity on other hosts was lower, particularly on garlic, but these crops can also serve as important secondary hosts for this pest. These data will be useful to the growers to develop specific integrated management programs for each of hosts. We also compared the demographic analyses of using individually-reared and group-reared methods. These two methods provided similar accurate outcomes for estimating insect population dynamics for this species. However, for gregarious species, using the individually-reared method to construct insect life tables produces inaccurate results, and researchers must use group-reared method for life table calculations. When studying large groups of insect, group-reared demographic analysis for age-stage, two-sex life table can also simplify statistical analysis, save considerable labor, and reduce experimental errors.
Quantifying bluetongue virus in adult Culicoides biting midges (Diptera: Ceratopogonidae).
Veronesi, Eva; Mertens, Peter P C; Shaw, Andrew E; Brownlie, Joe; Mellor, Philip S; Carpenter, Simon T
2008-01-01
A TissueLyser system (QIAGEN) was used to rapidly and accurately estimate bluetongue virus "loads" in individual adult Culicoides sonorensis Wirth & Jones (Diptera: Ceratopogonidae). The optimized homogenization program that was developed, involved shaking insects for 1 min at 25 Hz with 2- or 3-mm stainless steel ball bearings. This program was used to measure the quantities of bluetongue virus present in insects that had either been inoculated or had ingested a viremic bloodmeal through an artificial membrane. The virus titers obtained using either infection technique and the optimized program did not differ significantly from those obtained using a polypropylene motor-driven pestle, a method that is currently in common use for studies of vector competence). The advantages of the new method, as a rapid means of detecting fully disseminated infections in individual field-caught flies, are discussed. Its use is compared with the processing of pools of Culicoides by conventional methods, where the extent of dissemination of the virus is unknown and could wrongly implicate species that are of low importance in transmission.
A computer program to determine the possible daily release window for sky target experiments
NASA Technical Reports Server (NTRS)
Michaud, N. H.
1973-01-01
A computer program is presented which is designed to determine the daily release window for sky target experiments. Factors considered in the program include: (1) target illumination by the sun at release time and during the tracking period; (2) look angle elevation above local horizon from each tracking station to the target; (3) solar depression angle from the local horizon of each tracking station during the experimental period after target release; (4) lunar depression angle from the local horizon of each tracking station during the experimental period after target release; and (5) total sky background brightness as seen from each tracking station while viewing the target. Program output is produced in both graphic and data form. Output data can be plotted for a single calendar month or year. The numerical values used to generate the plots are furnished to permit a more detailed review of the computed daily release windows.
Peabody, Nathan C.; Pohl, Jascha B.; Diao, Fengqiu; Vreede, Andrew P.; Sandstrom, David J.; Wang, Howard; Zelensky, Paul K.; White, Benjamin H.
2009-01-01
After emergence, adult flies and other insects select a suitable perch and expand their wings. Wing expansion is governed by the hormone bursicon and can be delayed under adverse environmental conditions. How environmental factors delay bursicon release and alter perch selection and expansion behaviors has not been investigated in detail. Here we provide evidence that in Drosophila the motor programs underlying perch selection and wing expansion have different environmental dependencies. Using physical manipulations, we demonstrate that the decision to perch is based primarily on environmental valuations and is incrementally delayed under conditions of increasing perturbation and confinement. In contrast, the all-or-none motor patterns underlying wing expansion are relatively invariant in length regardless of environmental conditions. Using a novel technique for targeted activation of neurons, we show that the highly stereotyped wing expansion motor patterns can be initiated by stimulation of NCCAP, a small network of central neurons that regulates the release of bursicon. Activation of this network using the cold-sensitive rat TRPM8 channel is sufficient to trigger all essential behavioral and somatic processes required for wing expansion. The delay of wing expansion under adverse circumstances thus couples an environmentally-sensitive decision network to a command-like network that initiates a fixed action pattern. Because NCCAP mediates environmentally-insensitive ecdysis-related behaviors in Drosophila development prior to adult emergence, the study of wing expansion promises insights not only into how networks mediate behavioral choices, but also into how decision networks develop. PMID:19295141
Matsushima, Ayami; Takano, Katsuhiro; Yoshida, Taichi; Takeda, Yukimasa; Yokotani, Satoru; Shimohigashi, Yasuyuki; Shimohigashi, Miki
2007-06-01
Many lines of evidence have suggested that neuropeptides other than pigment-dispersing factor (PDF) are involved in regulating insect circadian rhythms, and FMRFamide-related peptides are additional candidates acting as such neuromodulators. Double-immunolabelling in insect brains with anti-crustacean beta-PDH and anti-FMRFamide antibodies had previously suggested that insect PDF and FMRFamide-like peptides may coexist in the same cells. However, it is critical for this kind of comparative investigations to use antibodies of proven specificity, to eliminate the possibility of both reciprocal cross-reactivity and the detection of unknown peptides. In the present study, we achieved the cDNA cloning of an fmrf mRNA from the housefly Musca domestica, for which co-localization of FMRFamide and PDF peptides was previously suggested. In order to examine the possible co-expression of this gene with the pdf gene, we carried out double-labelled in situ hybridization for simultaneous detection of both pdf and fmrf mRNAs in housefly, Musca brains. The results clearly indicated that they occur in distinctly different cells. This was also proven for the fruit fly Drosophila melanogaster by similar double-labelled in situ hybridization. The results thus revealed no reason to evoke the physiological release of FMRFamide and PDF peptides from the same neurons.
Triatomicidal effect of new spot-on formulations applied to poultry in semi-field conditions.
Juan, Laura W; Seccacini, Emilia A; Zerba, Eduardo N; Canale, Delmi; Alzogaray, Raúl A
2013-01-01
Chagas disease is an endemic disease affecting ten million people in the American continent. Produced by a parasite transmitted by triatomine insects, the main actions for reducing the incidence of this disease are focused on the control of insect vectors. This type of control has produced highly effective results within rural homes, but not in peridomestic areas (kitchens, warehouses, hen houses and other buildings not attached to the houses). The object of the present study was to assess the triatomicidal effect of new spot-on formulations developed by our laboratory in a semi-rural environment. The active ingredients of the formulations were β-cypermethrin, pyriproxyfen, or β-cypermethrin + pyriproxyfen. All formulations were applied to hens and tested in miniature replicas of rural households where experimental populations of Triatoma infestans, the main vector of Chagas disease in Argentina, had been previously released. The experimental populations exposed to formulations containing β-cypermethrin or β-cypermethrin + pyriproxyfen were noticeably reduced compared to non-treated control groups. However, no differences were observed between the effects produced by β-cypermethrin alone and β-cypermethrin + pyriproxyfen. Pyriproxyfen alone produced no significant reduction in the experimental populations of T. infestans. These results suggest that spot-on application of β-cypermethrin could be a useful complementary tool for controlling triatomine insects in the peridomestic areas of rural homes.
Dohanik, Virgínia Teles; Gonçalves, Wagner Gonzaga; Oliveira, Leandro Licursi; Zanuncio, José Cola; Serrão, José Eduardo
2018-05-13
Vitellogenin receptor (VgR) is a low-density lipoprotein receptor responsible for the mediated endocytosis of vitellogenin (Vg) during egg formation in insects. The maturing oocyte is enveloped by a follicular epithelium, which has large intercellular spaces during Vg accumulation (patency). However, Vg has been reported in the cytoplasm of follicular cells, indicating that there may be a transcellular route for its transport. This study verified the presence of VgR in the follicular cells of the ovaries of the honeybee Apis mellifera and the wasp Polistes simillimus in order to evaluate if Vg is transported via transcytosis in these insects. Antibodies specific for vitellogenin receptor (anti-VgR), vitellogenin (anti-Vg), and clathrin (anti-Clt) were used for immunolocalization. The results showed the presence of VgR on the apical and basal plasma membranes of follicular cells of the vitellogenic follicles in both species, indicating that VgR may have been transported from the basal to the apical cell domain, followed by its release into the perivitelline space, evidenced by the presence of apical plasma membrane projections containing VgR. Co-localization proved that Vg bind to VgR and that the transport of this protein is mediated by clathrin. These data suggest that, in these social insects, Vg is transported via clathrin-mediated VgR transcytosis in follicular cells.
Plant Volatiles Induced by Herbivore Egg Deposition Affect Insects of Different Trophic Levels
Fatouros, Nina E.; Lucas-Barbosa, Dani; Weldegergis, Berhane T.; Pashalidou, Foteini G.; van Loon, Joop J. A.; Dicke, Marcel; Harvey, Jeffrey A.; Gols, Rieta; Huigens, Martinus E.
2012-01-01
Plants release volatiles induced by herbivore feeding that may affect the diversity and composition of plant-associated arthropod communities. However, the specificity and role of plant volatiles induced during the early phase of attack, i.e. egg deposition by herbivorous insects, and their consequences on insects of different trophic levels remain poorly explored. In olfactometer and wind tunnel set-ups, we investigated behavioural responses of a specialist cabbage butterfly (Pieris brassicae) and two of its parasitic wasps (Trichogramma brassicae and Cotesia glomerata) to volatiles of a wild crucifer (Brassica nigra) induced by oviposition of the specialist butterfly and an additional generalist moth (Mamestra brassicae). Gravid butterflies were repelled by volatiles from plants induced by cabbage white butterfly eggs, probably as a means of avoiding competition, whereas both parasitic wasp species were attracted. In contrast, volatiles from plants induced by eggs of the generalist moth did neither repel nor attract any of the tested community members. Analysis of the plant’s volatile metabolomic profile by gas chromatography-mass spectrometry and the structure of the plant-egg interface by scanning electron microscopy confirmed that the plant responds differently to egg deposition by the two lepidopteran species. Our findings imply that prior to actual feeding damage, egg deposition can induce specific plant responses that significantly influence various members of higher trophic levels. PMID:22912893
A Technique for Thermal Desorption Analyses Suitable for Thermally-Labile, Volatile Compounds.
Alborn, Hans T
2018-02-01
Many plant and insect interactions are governed by odors released by the plants or insects and there exists a continual need for new or improved methods to collect and identify these odors. Our group has for some time studied below-ground, plant-produced volatile signals affecting nematode and insect behavior. The research requires repeated sampling of volatiles of intact plant/soil systems in the laboratory as well as the field with the help of probes to minimize unwanted effects on the systems we are studying. After evaluating solid adsorbent filters with solvent extraction or solid phase micro extraction fiber sample collection, we found dynamic sampling of small air volumes on Tenax TA filters followed by thermal desorption sample introduction to be the most suitable analytical technique for our applications. Here we present the development and evaluation of a low-cost and relatively simple thermal desorption technique where a cold trap cooled with liquid carbon dioxide is added as an integral part of a splitless injector. Temperature gradient-based focusing and low thermal mass minimizes aerosol formation and eliminates the need for flash heating, resulting in low sample degradation comparable to solvent-based on-column injections. Additionally, since the presence of the cold trap does not affect normal splitless injections, on-the-fly switching between splitless and thermal desorption modes can be used for external standard quantification.
Dispensing Pollen via Catapult: Explosive Pollen Release in Mountain Laurel (Kalmia latifolia).
Switzer, Callin M; Combes, Stacey A; Hopkins, Robin
2018-06-01
The astonishing amount of floral diversity has inspired countless assumptions about the function of diverse forms and their adaptive significance, yet many of these hypothesized functions are untested. We investigated an often-repeated adaptive hypothesis about how an extreme floral form functions. In this study, we conducted four investigations to understand the adaptive function of explosive pollination in Kalmia latifolia, the mountain laurel. We first performed a kinematic analysis of anther movement. Second, we constructed a heat map of pollen trajectories in three-dimensional space. Third, we conducted field observations of pollinators and their behaviors while visiting K. latifolia. Finally, we conducted a pollination experiment to investigate the importance of pollinators for fertilization success. Our results suggest that insect visitation dramatically improves fertilization success and that bees are the primary pollinators that trigger explosive pollen release.
An engineered anisotropic nanofilm with unidirectional wetting properties.
Malvadkar, Niranjan A; Hancock, Matthew J; Sekeroglu, Koray; Dressick, Walter J; Demirel, Melik C
2010-12-01
Anisotropic textured surfaces allow water striders to walk on water, butterflies to shed water from their wings and plants to trap insects and pollen. Capturing these natural features in biomimetic surfaces is an active area of research. Here, we report an engineered nanofilm, composed of an array of poly(p-xylylene) nanorods, which demonstrates anisotropic wetting behaviour by means of a pin-release droplet ratchet mechanism. Droplet retention forces in the pin and release directions differ by up to 80 μN, which is over ten times greater than the values reported for other engineered anisotropic surfaces. The nanofilm provides a microscale smooth surface on which to transport microlitre droplets, and is also relatively easy to synthesize by a bottom-up vapour-phase technique. An accompanying comprehensive model successfully describes the film's anisotropic wetting behaviour as a function of measurable film morphology parameters.
Program PIA Program GO-FAAR Program Other Opportunities Tourism Visits to Tololo Astro tourism in Chile Tourism in Chile Information for travelers Visit Tololo Media Relations News Press Release Publications
Renaud, Amandine; Jamart, Aliette; Goossens, Benoit; Ross, Caroline
2013-01-01
Simple Summary Wild chimpanzee populations are dramatically declining due to anthropogenic pressure. One way of increasing wild population numbers and/or repopulating areas where local extinction has occurred is to release captive animals. HELP Congo was the first project to successfully release wild-born orphan chimpanzees in their natural environment. We studied the behaviour of eight released chimpanzees over eight years. Over time, they modified their behaviour, suggesting long-term behavioural and ecological adaptations. This suggests that successful release programmes may reinforce existing populations of endangered species. Abstract Wild chimpanzee populations are still declining due to logging, disease transmission and hunting. The bushmeat trade frequently leads to an increase in the number of orphaned primates. HELP Congo was the first project to successfully release wild-born orphan chimpanzees into an existing chimpanzee habitat. A collection of post monitoring data over 16 years now offers the unique opportunity to investigate possible behavioural adaptations in these chimpanzees. We investigated the feeding and activity patterns in eight individuals via focal observation techniques from 1997–1999 and 2001–2005. Our results revealed a decline in the number of fruit and insect species in the diet of released chimpanzees over the years, whereas within the same period of time, the number of consumed seed species increased. Furthermore, we found a decline in time spent travelling, but an increase in time spent on social activities, such as grooming, as individuals matured. In conclusion, the observed changes in feeding and activity patterns seem to reflect important long-term behavioural and ecological adaptations in wild-born orphan released chimpanzees, demonstrating that the release of chimpanzees can be successful, even if it takes time for full adaptation. PMID:26487416
Zhang, Yinan; Samee, Md. Abul Hassan; Halfon, Marc S.; Sinha, Saurabh
2014-01-01
Many genes familiar from Drosophila development, such as the so-called gap, pair-rule, and segment polarity genes, play important roles in the development of other insects and in many cases appear to be deployed in a similar fashion, despite the fact that Drosophila-like “long germband” development is highly derived and confined to a subset of insect families. Whether or not these similarities extend to the regulatory level is unknown. Identification of regulatory regions beyond the well-studied Drosophila has been challenging as even within the Diptera (flies, including mosquitoes) regulatory sequences have diverged past the point of recognition by standard alignment methods. Here, we demonstrate that methods we previously developed for computational cis-regulatory module (CRM) discovery in Drosophila can be used effectively in highly diverged (250–350 Myr) insect species including Anopheles gambiae, Tribolium castaneum, Apis mellifera, and Nasonia vitripennis. In Drosophila, we have successfully used small sets of known CRMs as “training data” to guide the search for other CRMs with related function. We show here that although species-specific CRM training data do not exist, training sets from Drosophila can facilitate CRM discovery in diverged insects. We validate in vivo over a dozen new CRMs, roughly doubling the number of known CRMs in the four non-Drosophila species. Given the growing wealth of Drosophila CRM annotation, these results suggest that extensive regulatory sequence annotation will be possible in newly sequenced insects without recourse to costly and labor-intensive genome-scale experiments. We develop a new method, Regulus, which computes a probabilistic score of similarity based on binding site composition (despite the absence of nucleotide-level sequence alignment), and demonstrate similarity between functionally related CRMs from orthologous loci. Our work represents an important step toward being able to trace the evolutionary history of gene regulatory networks and defining the mechanisms underlying insect evolution. PMID:25173756
Evaluation of corn germplasm lines for multiple ear-colonizing insect and disease resistance.
Ni, Xinzhi; Xu, Wenwei; Blanco, Michael H; Wilson, Jeffrey P
2012-08-01
Ear-colonizing insects and diseases that reduce yield and impose health threats by mycotoxin contaminations in the grain, are critical impediments for corn (Zea mays L.) production in the southern United States. Ten germplasm lines from the Germplasm Enhancement of Maize (GEM) Program in Ames, IA, and Raleigh, NC, and 10 lines (derived from GEM germplasm) from the Texas Agricultural Experiment Station in Lubbock, TX, were examined in 2007 and 2008 with local resistant and susceptible controls. Four types of insect damage and smut disease (Ustilago maydis) infection, as well as gene X environment (G X E) interaction, was assessed on corn ears under field conditions. Insect damage on corn ears was further separated as cob and kernel damage. Cob penetration rating was used to assess corn earworm [Helicoverpa zea (Boddie)] and fall armyworm [Spodoptera frugiperda (J.E. Smith)] feeding on corn cobs, whereas kernel damage was assessed using three parameters: 1) percentage of kernels discolored by stink bugs (i.e., brown stink bug [Euschistus serous (Say)], southern green stink bug [Nezara viridula (L.)], and green stink bug [Chinavia (Acrosternum) hilare (Say)]; 2) percentage of maize weevil (Sitophilus zeamais Motschulsky)-damaged kernels; and 3) percentage of kernels damaged by sap beetle (Carpophilus spp.), "chocolate milkworm" (Moodna spp.), and pink scavenger caterpillar [Pyroderces (Anatrachyntis) rileyi (Walsingham)]. The smut infection rates on ears, tassels, and nodes also were assessed. Ear protection traits (i.e., husk tightness and extension) in relation to insect damage and smut infection also were examined. Significant differences in insect damage, smut infection, and husk protection traits were detected among the germplasm lines. Three of the 20 germplasm lines were identified as being multiple insect and smut resistant. Of the three lines, entries 5 and 7 were derived from DKXL370, which was developed using corn germplasm from Brazil, whereas entry 14 was derived from CUBA117.
Kazemian, Majid; Suryamohan, Kushal; Chen, Jia-Yu; Zhang, Yinan; Samee, Md Abul Hassan; Halfon, Marc S; Sinha, Saurabh
2014-09-01
Many genes familiar from Drosophila development, such as the so-called gap, pair-rule, and segment polarity genes, play important roles in the development of other insects and in many cases appear to be deployed in a similar fashion, despite the fact that Drosophila-like "long germband" development is highly derived and confined to a subset of insect families. Whether or not these similarities extend to the regulatory level is unknown. Identification of regulatory regions beyond the well-studied Drosophila has been challenging as even within the Diptera (flies, including mosquitoes) regulatory sequences have diverged past the point of recognition by standard alignment methods. Here, we demonstrate that methods we previously developed for computational cis-regulatory module (CRM) discovery in Drosophila can be used effectively in highly diverged (250-350 Myr) insect species including Anopheles gambiae, Tribolium castaneum, Apis mellifera, and Nasonia vitripennis. In Drosophila, we have successfully used small sets of known CRMs as "training data" to guide the search for other CRMs with related function. We show here that although species-specific CRM training data do not exist, training sets from Drosophila can facilitate CRM discovery in diverged insects. We validate in vivo over a dozen new CRMs, roughly doubling the number of known CRMs in the four non-Drosophila species. Given the growing wealth of Drosophila CRM annotation, these results suggest that extensive regulatory sequence annotation will be possible in newly sequenced insects without recourse to costly and labor-intensive genome-scale experiments. We develop a new method, Regulus, which computes a probabilistic score of similarity based on binding site composition (despite the absence of nucleotide-level sequence alignment), and demonstrate similarity between functionally related CRMs from orthologous loci. Our work represents an important step toward being able to trace the evolutionary history of gene regulatory networks and defining the mechanisms underlying insect evolution. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Kenawy, Mohamed A; Amer, Hanan S; Lotfy, Nadia M; Khamis, Nagwa; Abdel-Hamid, Yousrya M
2014-12-01
A study was planned to examine the insect fauna associated with two hospitals: urban (A) in Cairo and rural (B) in Banha, Egypt with varying hygienic levels and their adjacent residential areas (AC) and (BC), respectively and to investigate the effect of hygienic level on species composition and relative abundance. A total of 22 species belonging to 7 orders and 15 families were reported in the four study areas of which, Dipterous flies were the most common (8/22, 36.36% species). A total of 5257 adults were collected of which Dipterous flies were the abundant (3800, 72.28% insect) and Musca domestica was the most abundant species (3535, 67.24% insect) which was present in all areas where it was more common / predominant species (21.94%-90.91% insect). Moreover, higher densities of M domestica were in (B) and BC than in (A) or (AC). The heavily infested area was AC (54.55% species) followed by (A), (BC) and (B) however, the total number of the collected insects was higher in (BC) and (B) than in (AC) and (A). This was confirmed by finding maximum diversity indices in (AC) and minimum ones in B. In all areas, means of M domestica was more common during summer/autumn and spring than in the winter. Periplaneta americana collected oily during autumn in AC and was more common in autumn in (BC) while Blatella germanica collected only during summer in (AC) and was more common in autumn in (B). The prevalence and higher abundance of the medically important species mainly M domestica, P. americana and B. germanica in rural hospital than in urban one attribute mainly to the lower hygienic level of rural hospital This require a control program based mainly on sanitation supplemented by other measures to overcome the risk of disease transmission by such insects
1990-08-01
in ecological communities such as those in the vicinity of the ELF antenna because they are pollinators of flowering plants , and are therefore...I I IITRI E06620-4 Page v I I ELF COMMUNICATIONS SYSTEM ECOLOGICAL MONITORING PROGRAM I INDEX OF 1989 ANNUAL REPORTS I A. Herbaceous Plant Cover and...Communications System Ecological Monitoring Program; BIOLOGICAL STUDIES ON POLLINATING INSECTS: MEGACHILID BEES Reporting year: 11/1/88 - 10/31/89 5 Prepared by
1985-01-01
RD-Ai56 759 AQUATIC PLANT CONTROL RESEARCH PROGRAM LARGE-SCALE 1/2 OPERATIONS MRNAGEMENT..(U) ARMY ENGINEER WATERAYS EXPERIMENT STATION VICKSBURG MS...PO Box 631, Vicksburg, Aquatic Plant Control Mississippi 39180-0631 and University of Research Program Tennessee-Chattanooga, Chattanooga, 12...19. KEY WORDS (Continue on reverse side if necesary nd identify by block number) - Aquatic plant control Louisiana Biological control Plant
NASA Technical Reports Server (NTRS)
Carmichael, B. H.
1979-01-01
The potential of natural laminar flow for significant drag reduction and improved efficiency for aircraft is assessed. Past experience with natural laminar flow as reported in published and unpublished data and personal observations of various researchers is summarized. Aspects discussed include surface contour, waviness, and smoothness requirements; noise and vibration effects on boundary layer transition, boundary layer stability criteria; flight experience with natural laminar flow and suction stabilized boundary layers; and propeller slipstream, rain, frost, ice and insect contamination effects on boundary layer transition. The resilient leading edge appears to be a very promising method to prevent leading edge insect contamination.
A new method to evaluate the biocontrol potential of single spore isolates of fungal entomopathogens
Posada, Francisco J.; Vega, Fernando E.
2005-01-01
Fifty Beauveria bassiana (Balsamo) Vuillemin (Ascomycota: Hypocreales) strains isolated from the coffee berry borer were used to develop a novel screening method aimed at selecting strains with the highest biocontrol potential. The screening method is based on percent insect mortality, average survival time, mortality distribution, percent spore germination, fungal life cycle duration, and spore production on the insect. Based on these parameters, only 11 strains merited further study. The use of a sound scientific protocol for the selection of promising fungal entomopathogens should lead to more efficient use of time, labor, and financial resources in biological control programs. PMID:17119619
ERIC Educational Resources Information Center
Schultz, Carolyn
1985-01-01
Describes an enrichment program for preschool children which includes hands-on experiences with animals. Includes a chart with suggestions (large group activities, outdoor activities, science center activities, language and mathematics center activities, and arts/craft center activities) for the study of birds, insects, reptiles, mammals, trees…
AFLP Variation in Populations of Podisus maculiventris
USDA-ARS?s Scientific Manuscript database
We are developing methods to reduce costs of mass producing beneficial insect species for biological control programs. One of our methods entails selecting beneficials for optimal production traits. Currently we are selecting for increased fecundity. Selection protocols, whether based on phenotyp...
ERIC Educational Resources Information Center
School Science Review, 1981
1981-01-01
Presents a computer program for analyzing diets, a game designed to supplement a topic on insects, a technique for demonstrating the role of ethene in fruit ripening, an apparatus for removing arthropods from soil samples, activities using cichlids, and an activity on bonds stabilizing protein structure. (JN)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Classen, Aimee T; Chapman, Samantha K.; Whitham, Thomas G
2007-01-01
It is generally assumed that leaf and root litter decomposition have similar drivers and that nutrient release from these substrates is synchronized. Few studies have examined these assumptions, and none has examined how plant genetics (i.e., plant susceptibility to herbivory) could affect these relationships. Here we examine the effects of herbivore susceptibility and resistance on needle and fine root litter decomposition of pi on pine, Pinus edulis. The study population consists of individual trees that are either susceptible or resistant to herbivory by the pi on needle scale, Matsucoccus acalyptus, or the stem-boring moth, Dioryctria albovittella. Genetic analyses and experimentalmore » removals and additions of these insects have identified trees that are naturally resistant and susceptible to these insects. These herbivores increase the chemical quality of litter inputs and alter soil microclimate, both of which are important decomposition drivers. Our research leads to four major conclusions: Herbivore susceptibility and resistance effects on 1) needle litter mass loss and phosphorus (P) retention in moth susceptible and resistant litter are governed by microclimate, 2) root litter nitrogen (N) and P retention, and needle litter N retention are governed by litter chemical quality, 3) net nutrient release from litter can reverse over time, 4) root and needle litter mass loss and nutrient release are determined by location (above- vs. belowground), suggesting that the regulators of needle and root decomposition differ at the local scale. Understanding of decomposition and nutrient retention in ecosystems requires consideration of herbivore effects on above- and belowground processes and how these effects may be governed by plant genotype. Because an underlying genetic component to herbivory is common to most ecosystems of the world and herbivory may increase in climatic change scenarios, it is important to evaluate the role of plant genetics in affecting carbon and nutrient fluxes.« less
Schmidt, Arne K D; Römer, Heiner
2011-01-01
Insects often communicate by sound in mixed species choruses; like humans and many vertebrates in crowded social environments they thus have to solve cocktail-party-like problems in order to ensure successful communication with conspecifics. This is even more a problem in species-rich environments like tropical rainforests, where background noise levels of up to 60 dB SPL have been measured. Using neurophysiological methods we investigated the effect of natural background noise (masker) on signal detection thresholds in two tropical cricket species Paroecanthus podagrosus and Diatrypa sp., both in the laboratory and outdoors. We identified three 'bottom-up' mechanisms which contribute to an excellent neuronal representation of conspecific signals despite the masking background. First, the sharply tuned frequency selectivity of the receiver reduces the amount of masking energy around the species-specific calling song frequency. Laboratory experiments yielded an average signal-to-noise ratio (SNR) of -8 dB, when masker and signal were broadcast from the same side. Secondly, displacing the masker by 180° from the signal improved SNRs by further 6 to 9 dB, a phenomenon known as spatial release from masking. Surprisingly, experiments carried out directly in the nocturnal rainforest yielded SNRs of about -23 dB compared with those in the laboratory with the same masker, where SNRs reached only -14.5 and -16 dB in both species. Finally, a neuronal gain control mechanism enhances the contrast between the responses to signals and the masker, by inhibition of neuronal activity in interstimulus intervals. Thus, conventional speaker playbacks in the lab apparently do not properly reconstruct the masking noise situation in a spatially realistic manner, since under real world conditions multiple sound sources are spatially distributed in space. Our results also indicate that without knowledge of the receiver properties and the spatial release mechanisms the detrimental effect of noise may be strongly overestimated.
Schmidt, Arne K. D.; Römer, Heiner
2011-01-01
Background Insects often communicate by sound in mixed species choruses; like humans and many vertebrates in crowded social environments they thus have to solve cocktail-party-like problems in order to ensure successful communication with conspecifics. This is even more a problem in species-rich environments like tropical rainforests, where background noise levels of up to 60 dB SPL have been measured. Principal Findings Using neurophysiological methods we investigated the effect of natural background noise (masker) on signal detection thresholds in two tropical cricket species Paroecanthus podagrosus and Diatrypa sp., both in the laboratory and outdoors. We identified three ‘bottom-up’ mechanisms which contribute to an excellent neuronal representation of conspecific signals despite the masking background. First, the sharply tuned frequency selectivity of the receiver reduces the amount of masking energy around the species-specific calling song frequency. Laboratory experiments yielded an average signal-to-noise ratio (SNR) of −8 dB, when masker and signal were broadcast from the same side. Secondly, displacing the masker by 180° from the signal improved SNRs by further 6 to 9 dB, a phenomenon known as spatial release from masking. Surprisingly, experiments carried out directly in the nocturnal rainforest yielded SNRs of about −23 dB compared with those in the laboratory with the same masker, where SNRs reached only −14.5 and −16 dB in both species. Finally, a neuronal gain control mechanism enhances the contrast between the responses to signals and the masker, by inhibition of neuronal activity in interstimulus intervals. Conclusions Thus, conventional speaker playbacks in the lab apparently do not properly reconstruct the masking noise situation in a spatially realistic manner, since under real world conditions multiple sound sources are spatially distributed in space. Our results also indicate that without knowledge of the receiver properties and the spatial release mechanisms the detrimental effect of noise may be strongly overestimated. PMID:22163041
Sow, Adama; Sidibé, Issa; Bengaly, Zakaria; Bancé, Augustin Z.; Sawadogo, Germain J.; Solano, Philippe; Vreysen, Marc J. B.; Lancelot, Renaud; Bouyer, Jeremy
2012-01-01
Background Tsetse flies are the cyclical vectors of African trypanosomosis that constitute a major constraint to development in Africa. Their control is an important component of the integrated management of these diseases, and among the techniques available, the sterile insect technique (SIT) is the sole that is efficient at low densities. The government of Burkina Faso has embarked on a tsetse eradication programme in the framework of the PATTEC, where SIT is an important component. The project plans to use flies from a Glossina palpalis gambiensis colony that has been maintained for about 40 years at the Centre International de Recherche-Développement sur l'Elevage en zone Subhumide (CIRDES). It was thus necessary to test the competitiveness of the sterile males originating from this colony. Methodology/Principal Findings During the period January–February 2010, 16,000 sterile male G. p. gambiensis were released along a tributary of the Mouhoun river. The study revealed that with a mean sterile to wild male ratio of 1.16 (s.d. 0.38), the abortion rate of the wild female flies was significantly higher than before (p = 0.026) and after (p = 0.019) the release period. The estimated competitiveness of the sterile males (Fried index) was 0.07 (s.d. 0.02), indicating that a sterile to wild male ratio of 14.4 would be necessary to obtain nearly complete induced sterility in the female population. The aggregation patterns of sterile and wild male flies were similar. The survival rate of the released sterile male flies was similar to that observed in 1983–1985 for the same colony. Conclusions/Significance We conclude that gamma sterilised male G. p. gambiensis derived from the CIRDES colony have a competitiveness that is comparable to their competitiveness obtained 35 years ago and can still be used for an area-wide integrated pest management campaign with a sterile insect component in Burkina Faso. PMID:22590652
Oliva, Clelia F.; Jacquet, Maxime; Gilles, Jeremie; Lemperiere, Guy; Maquart, Pierre-Olivier; Quilici, Serge; Schooneman, François; Vreysen, Marc J. B.; Boyer, Sebastien
2012-01-01
Reunion Island suffers from high densities of the chikungunya and dengue vector Aedes albopictus. The sterile insect technique (SIT) offers a promising strategy for mosquito-borne diseases prevention and control. For such a strategy to be effective, sterile males need to be competitive enough to fulfil their intended function by reducing wild mosquito populations in natura. We studied the effect of irradiation on sexual maturation and mating success of males, and compared the sexual competitiveness of sterile versus wild males in the presence of wild females in semi-field conditions. For all untreated or sterile males, sexual maturation was completed within 13 to 20 h post-emergence and some males were able to inseminate females when 15 h old. In the absence of competition, untreated and sterile males were able to inseminate the same number of virgin females during 48 h, in small laboratory cages: an average of 93% of females was inseminated no matter the treatment, the age of males, and the sex ratio. Daily mating success of single sterile males followed the same pattern as for untreated ones, although they inseminated significantly fewer females after the ninth day. The competitiveness index of sterile males in semi-field conditions was only 0.14 when they were released at 1-day old, but improved to 0.53 when the release occurred after a 5-day period in laboratory conditions. In SIT simulation experiments, a 5∶1 sterile to wild male ratio allowed a two-fold reduction of the wild population’s fertility. This suggests that sterile males could be sufficiently competitive to mate with wild females within the framework of an SIT component as part of an AW-IPM programme for suppressing a wild population of Ae. albopictus in Reunion Island. It will be of interest to minimise the pre-release period in controlled conditions to ensure a good competitiveness without increasing mass rearing costs. PMID:23185329
[Blister dermatitis caused by Epicauta flagellaria (Erichson) (Coleoptera: Meloidae) species].
Méndez, E; Sáenz, R E; Johnson, C M
1989-09-01
This paper is the first published report of vesicular dermatitis due to blister beetles of the family Meloidae in Panamá. A familial outbreak of bullous dermatitis caused by Epicauta flagellaria (Erichson) is described. All previous cases known in the Gorgas Memorial Laboratory were associated with E. isthmica Werner. Bullous lesions are produced when cantharidin, a vesicating toxin contained in the beetle's body, is released at the time the insect is crushed or rubbed upon the exposed skin. Rules for the treatment and prevention of this disease are indicated.
Genetically Engineering Entomopathogenic Fungi.
Zhao, H; Lovett, B; Fang, W
2016-01-01
Entomopathogenic fungi have been developed as environmentally friendly alternatives to chemical insecticides in biocontrol programs for agricultural pests and vectors of disease. However, mycoinsecticides currently have a small market share due to low virulence and inconsistencies in their performance. Genetic engineering has made it possible to significantly improve the virulence of fungi and their tolerance to adverse conditions. Virulence enhancement has been achieved by engineering fungi to express insect proteins and insecticidal proteins/peptides from insect predators and other insect pathogens, or by overexpressing the pathogen's own genes. Importantly, protein engineering can be used to mix and match functional domains from diverse genes sourced from entomopathogenic fungi and other organisms, producing insecticidal proteins with novel characteristics. Fungal tolerance to abiotic stresses, especially UV radiation, has been greatly improved by introducing into entomopathogens a photoreactivation system from an archaean and pigment synthesis pathways from nonentomopathogenic fungi. Conversely, gene knockout strategies have produced strains with reduced ecological fitness as recipients for genetic engineering to improve virulence; the resulting strains are hypervirulent, but will not persist in the environment. Coupled with their natural insect specificity, safety concerns can also be mitigated by using safe effector proteins with selection marker genes removed after transformation. With the increasing public concern over the continued use of synthetic chemical insecticides and growing public acceptance of genetically modified organisms, new types of biological insecticides produced by genetic engineering offer a range of environmentally friendly options for cost-effective control of insect pests. Copyright © 2016 Elsevier Inc. All rights reserved.
2013-01-01
Background Ivermectin has longevity reducing effects in several insect species, including disease transmitting mosquitoes after feeding on hosts that have received ivermectin treatment. This has important implications in mosquito population control and thus the reduction of disease transmission. In addition, ivermectin could play an enormous role in mosquito control operations by its use in the female elimination process during mass-rearing, enabling the release of only sterile males in the context of the sterile insect technique (SIT). Methods Blood meals were spiked with various toxicants and were then offered to adult Anopheles arabiensis and killing effects were observed. Varying concentrations of the most effective substance were then tested in subsequent trials to obtain an optimal dose for quick and total female elimination. The remaining males were mated with untreated virgin females to assess whether their mating efficiency had been compromised. The most promising substance at the optimal concentration was further tested on a larger number of adults, after they had been irradiated and partially sterilised as pupae with 70 Gy to evaluate the feasibility of the method in a mass-rearing, and SIT context. The males resulting from the latter trial were also checked for mating efficiency post treatments. Results Ivermectin (Virbamec®) at a concentration of 7.5 ppm was chosen from the toxicants tested as sufficiently effective in eliminating all female An. arabiensis in 4 days, the shortest time required for female elimination of all chemicals tested. Mating efficiency of the non-blood feeding male mosquitoes was not compromised significantly compared to controls even when they were kept for a total of 4 days (from emergence) before theoretical release. The irradiation treatment did not affect overall female feeding behaviour in this setting, nor were the sterile males less competitive for mating with virgin females after the treatments than virgin sterile males that had not been in the ivermectin treatment environment. Conclusions Spiking bloodmeals with ivermectin has shown potential as a viable treatment to eliminate female An. arabiensis from laboratory colonies although its practical use in a mass-rearing facility still needs to be tested. PMID:23822117
Releasing captive-reared masked bobwhite for population recovery: A review
Gall, S.A.; Kuvlesky, W.P.; Gee, G.; Brennan, L.A.; Palmer, W.E.; Burger, L.W.; Pruden, T.L.
2000-01-01
Efforts to re-establish the endangered masked bobwhite (Colinus virginianus ridgwayi) to it's former southern Arizona range have been ongoing since establishment of the Buenos Aires National Wildlife Refuge in 1986. Pre-release conditioning techniques developed prior to Refuge establishment continued to be utilized in an effort to improve post-release survival of captive-reared masked bobwhite chicks. Foremost among these techniques was the use of wild Texas bobwhite (C. v. texanus) males as foster parents which were paired with all broods released on the Refuge. The efficacy of this technique was evaluated using radio telemetry in 1994, and the results indicated that the use of foster Texas males was not as effective as had been presumed because post-release chick survival was poor. Therefore, in 1995 pre-release conditioning protocol were modified in an effort to improve post-release survival. The primary intent of these modifications was to emphasize wild behavior among chicks prior to release. Modifications to established protocol included imprinting chicks to adult bobwhites immediately after eggs hatched and exposing 1-to-2 day old chicks to natural foods (insects and seeds) while they were in brooder units. Foster parents and their respective broods were then placed in flight pens that mimicked the natural conditions that would confront broods upon release. Family groups were held in flight pens for several weeks for acclimatization purposes and then transported to temporary enclosures erected at release sites where they were held for a week and then released. Finally all releases were conducted during fall after covey formation was apparent to ensure that foster parents and released chicks remained with a group of birds. Preliminary results indicated that post-release chick survival was higher than what was observed in 1994. Pre-conditioning research will continue in an effort to further quantify post-release survival of masked bobwhite chicks. Although the results of this research project are preliminary, it is possible that pre-release conditioning techniques developed for masked bobwhites will prove useful to quail reestablishment efforts throughout North America.
ERIC Educational Resources Information Center
Louisiana State Dept. of Education, Baton Rouge. Div. of Vocational Education.
This curriculum guide, the third volume of the series, outlines the basic program of vocational agriculture for Louisiana students in the ninth and tenth grades. Covered in the five units on plant science are growth processes of plants, cultural practices for plants, insects affecting plants, seed and plant selection, and diseases that affect…
Pyakurel, Poojan; Privman Champaloux, Eve; Venton, B Jill
2016-08-17
Octopamine is an endogenous biogenic amine neurotransmitter, neurohormone, and neuromodulator in invertebrates and has functional analogy with norepinephrine in vertebrates. Fast-scan cyclic voltammetry (FSCV) can detect rapid changes in neurotransmitters, but FSCV has not been optimized for octopamine detection in situ. The goal of this study was to characterize octopamine release in the ventral nerve cord of Drosophila larvae for the first time. A FSCV waveform was optimized so that the potential for octopamine oxidation would not be near the switching potential where interferences can occur. Endogenous octopamine release was stimulated by genetically inserting either the ATP sensitive channel, P2X2, or the red-light sensitive channelrhodopsin, CsChrimson, into cells expressing tyrosine decarboxylase (TDC), an octopamine synthesis enzyme. To ensure that release is due to octopamine and not the precursor tyramine, the octopamine synthesis inhibitor disulfiram was applied, and the signal decreased by 80%. Stimulated release was vesicular, and a 2 s continuous light stimulation of CsChrimson evoked 0.22 ± 0.03 μM of octopamine release in the larval ventral nerve cord. Repeated stimulations were stable with 2 or 5 min interstimulation times. With pulsed stimulations, the release was dependent on the frequency of applied light pulse. An octopamine transporter has not been identified, and blockers of the dopamine transporter and serotonin transporter had no significant effect on the clearance time of octopamine, suggesting that they do not take up octopamine. This study shows that octopamine can be monitored in Drosophila, facilitating future studies of how octopamine release functions in the insect brain.
Research Advances in the Screwworm Eradication Program over the Past 25 Years
USDA-ARS?s Scientific Manuscript database
Screwworms, Cochliomyia hominivorax (Coquerel) (Calliphoridae: Chrysomyinae), are devastating pests of warm blooded animals that cause significant economic damage to livestock. The successful campaign to eradicate screwworms from continental North America using the sterile insect technique, led by t...
Devising novel strategies against vector mosquitoes and house flies
USDA-ARS?s Scientific Manuscript database
In 1932, the United States Department of Agriculture established an entomological research laboratory in Orlando, Florida. The initial focus of the program was on investigations of mosquitoes (including malaria vectors under conditions “simulating those of South Pacific jungles”) and other insects ...
Mixtures of Two Bile Alcohol Sulfates Function as a Proximity Pheromone in Sea Lamprey.
Brant, Cory O; Huertas, Mar; Li, Ke; Li, Weiming
2016-01-01
Unique mixtures of pheromone components are commonly identified in insects, and have been shown to increase attractiveness towards conspecifics when reconstructed at the natural ratio released by the signaler. In previous field studies of pheromones that attract female sea lamprey (Petromyzon marinus, L.), putative components of the male-released mating pheromone included the newly described bile alcohol 3,12-diketo-4,6-petromyzonene-24-sulfate (DkPES) and the well characterized 3-keto petromyzonol sulfate (3kPZS). Here, we show chemical evidence that unequivocally confirms the elucidated structure of DkPES, electrophysiological evidence that each component is independently detected by the olfactory epithelium, and behavioral evidence that mature female sea lamprey prefer artificial nests activated with a mixture that reconstructs the male-released component ratio of 30:1 (3kPZS:DkPES, molar:molar). In addition, we characterize search behavior (sinuosity of swim paths) of females approaching ratio treatment sources. These results suggest unique pheromone ratios may underlie reproductive isolating mechanisms in vertebrates, as well as provide utility in pheromone-integrated control of invasive sea lamprey in the Great Lakes.
Koch, Jennifer L.; Carey, David W.
2014-01-01
Beech bark disease (BBD) results in high levels of initial mortality, leaving behind survivor trees that are greatly weakened and deformed. The disease is initiated by feeding activities of the invasive beech scale insect, Cryptococcus fagisuga, which creates entry points for infection by one of the Neonectria species of fungus. Without scale infestation, there is little opportunity for fungal infection. Using scale eggs to artificially infest healthy trees in heavily BBD impacted stands demonstrated that these trees were resistant to the scale insect portion of the disease complex1. Here we present a protocol that we have developed, based on the artificial infestation technique by Houston2, which can be used to screen for scale-resistant trees in the field and in smaller potted seedlings and grafts. The identification of scale-resistant trees is an important component of management of BBD through tree improvement programs and silvicultural manipulation. PMID:24894494
Mingchay, Pichanon; Sai-Ngam, Arkhom; Phumee, Atchara; Bhakdeenuan, Payu; Lorlertthum, Kittitouch; Thavara, Usavadee; Tawatsin, Apiwat; Choochote, Wej; Siriyasatien, Padet
2014-03-01
Filth flies, belonging to suborder Brachycera (Family; Muscidae, Calliphoridae and Sarcophagidae), are a major cause of nuisance and able to transmit pathogens to humans and animals. These insects are distributed worldwide and their populations are increasing especially in sub-tropical and tropical areas. One strategy for controlling insects employs Wolbachia, which is a group of maternally inherited intracellular bacteria, found in many insect species. The bacteria can cause reproductive abnormalities in their hosts, such as cytoplasmic incompatibility, feminization, parthenogenesis, and male lethality. In this study we determined Wolbachia endosymbionts in natural population of medically important flies (42 females and 9 males) from several geographic regions of Thailand. Wolbachia supergroups A or B were detected in 7 of female flies using PCR specific for wsp. Sequence analysis of wsp showed variations between and within the Wolbachia supergroup. Phylogenetics demonstrated that wsp is able to diverge between Wolbachia supergroups A and B. These data should be useful in future Wolbachia-based programs of fly control.
A Molecular View of Autophagy in Lepidoptera
2014-01-01
Metamorphosis represents a critical phase in the development of holometabolous insects, during which the larval body is completely reorganized: in fact, most of the larval organs undergo remodeling or completely degenerate before the final structure of the adult insect is rebuilt. In the past, increasing evidence emerged concerning the intervention of autophagy and apoptosis in the cell death processes that occur in larval organs of Lepidoptera during metamorphosis, but a molecular characterization of these pathways was undertaken only in recent years. In addition to developmentally programmed autophagy, there is growing interest in starvation-induced autophagy. Therefore we are now entering a new era of research on autophagy that foreshadows clarification of the role and regulatory mechanisms underlying this self-digesting process in Lepidoptera. Given that some of the most important lepidopteran species of high economic importance, such as the silkworm, Bombyx mori, belong to this insect order, we expect that this information on autophagy will be fully exploited not only in basic research but also for practical applications. PMID:25143951
Tuell, Julianna K; Isaacs, Rufus
2010-06-01
Wild bee conservation is regarded as essential for sustainable production of pollinator-dependent crops, yet little is known about the effects on wild bee communities of typical insect pest management programs used postbloom. We developed an insecticide program risk (IPR) index to quantify the relative risk to wild bees of insecticide programs applied to blueberry fields. This was used to determine the relationship between IPR and the abundance, diversity, and richness of wild bee communities sampled during three successive flowering seasons. In 2 of 3 yr, bee abundance and species richness declined with increasing IPR. Bee diversity declined with IPR in one of 3 yr. These results indicate that wild bee communities are negatively affected by increasingly intensive chemical pest management activities in crop fields and that interyear variability in bee populations has the potential to mask such effects in short-term studies. When several wild bee species were analyzed separately, two of three solitary and one of three social blueberry-foraging species declined with increasing IPR values, suggesting that different life histories and nesting habits may help some bee populations escape the negative effects of insecticides applied after bloom. Pollinator conservation programs aimed strictly at reducing insecticide use may have varying success, depending on the biology of the target bee species. The IPR index provides a standard method to compare pest management programs for their potential effect on wild bee communities, with broad application for use in other agricultural systems.
Sembower, Mark A.; Ertischek, Michelle D.; Buchholtz, Chloe; Dasgupta, Nabarun; Schnoll, Sidney H.
2013-01-01
This article examines rates of nonmedical use and diversion of extended-release amphetamine and extended-release oral methylphenidate in the United States. Prescription dispensing data were sourced from retail pharmacies. Nonmedical use data were collected from the Researched Abuse, Diversion and Addiction-Related Surveillance (RADARS) System Drug Diversion Program and Poison Center Program. Drug diversion trends nearly overlapped for extended-release amphetamine and extended-release oral methylphenidate. Calls to poison centers were generally similar; however, calls regarding extended-release amphetamine trended slightly lower than those for extended-release oral methylphenidate. Data suggest similar diversion and poison center call rates for extended-release amphetamine and extended-release oral methylphenidate. PMID:23480245
Štětina, Tomáš; Poupardin, Rodolphe; Korbelová, Jaroslava; Bruce, Alexander William
2017-01-01
Insects often overcome unfavorable seasons in a hormonally regulated state of diapause during which their activity ceases, development is arrested, metabolic rate is suppressed, and tolerance of environmental stress is bolstered. Diapausing insects pass through a stereotypic succession of eco-physiological phases termed “diapause development.” The phasing is varied in the literature, and the whole concept is sometimes criticized as being too artificial. Here we present the results of transcriptional profiling using custom microarrays representing 1,042 genes in the drosophilid fly, Chymomyza costata. Fully grown, third-instar larvae programmed for diapause by a photoperiodic (short-day) signal were assayed as they traversed the diapause developmental program. When analyzing the gradual dynamics in the transcriptomic profile, we could readily distinguish distinct diapause developmental phases associated with induction/initiation, maintenance, cold acclimation, and termination by cold or by photoperiodic signal. Accordingly, each phase is characterized by a specific pattern of gene expression, supporting the physiological relevance of the concept of diapause phasing. Further, we have dissected in greater detail the changes in transcript levels of elements of several signaling pathways considered critical for diapause regulation. The phase of diapause termination is associated with enhanced transcript levels in several positive elements stimulating direct development (the 20-hydroxyecdysone pathway: Ecr, Shd, Broad; the Wnt pathway: basket, c-jun) that are countered by up-regulation in some negative elements (the insulin-signaling pathway: Ilp8, PI3k, Akt; the target of rapamycin pathway: Tsc2 and 4EBP; the Wnt pathway: shaggy). We speculate such up-regulations may represent the early steps linked to termination of diapause programming. PMID:28720705
Aquatic insect predators and mosquito control.
Shaalan, Essam Abdel-Salam; Canyon, Deon V
2009-12-01
Mosquitoes are serious biting pests and obligate vectors of many vertebrate pathogens. Their immature larval and pupal life stages are a common feature in most tropical and many temperate water bodies and often form a significant proportion of the biomass. Control strategies rely primarily on the use of larvicides and environmental modification to reduce recruitment and adulticides during periods of disease transmission. Larvicides are usually chemical but can involve biological toxins, agents or organisms. The use of insect predators in mosquito control has been exploited in a limited fashion and there is much room for further investigation and implementation. Insects that are recognized as having predatorial capacity with regard to mosquito prey have been identified in the Orders Odonata, Coleoptera, Diptera (primarily aquatic predators), and Hemiptera (primarily surface predators). Although their capacity is affected by certain biological and physical factors, they could play a major role in mosquito control. Furthermore, better understanding for the mosquitoes-predators relationship(s) could probably lead to satisfactory reduction of mosquito-borne diseases by utilizing either these predators in control programs, for instance biological and/or integrated control, or their kairomones as mosquitoes' ovipoisting repellents. This review covers the predation of different insect species on mosquito larvae, predator-prey-habitat relationships, co-habitation developmental issues, survival and abundance, oviposition avoidance, predatorial capacity and integrated vector control.
Naturally Occurring Entomopathogenic Fungi Infecting Stored Grain Insect Species in Punjab, Pakistan
Wakil, Waqas; Usman Ghazanfar, Muhammad; Yasin, Muhammad
2014-01-01
Abstract The occurrence of entomopathogenic fungi isolated from stored grain insect pests sampled from various geographical regions of Punjab, Pakistan, was investigated. In total, 25,720 insects from six different species were evaluated, and 195 isolates from 24 different fungal species were recovered. These included the Ascomycetes Beauveria bassiana sensu lato (Balsamo) Vuillemin (Hypocreales: Clavicipitaceae) , Metarhizium anisopliae sensu lato (Metschnikoff) Sorokin (Hypocreales: Clavicipitaceae), Purpureocillium lilacinum (Thorn) Samson (Hypocreales: Ophiocordycipitaceae), and Lecanicillium attenuatum (Zare and W. Gams) (Hypocreales: Clavicipitaceae). The cadavers of red flour beetle Tribolium castaneum (Herbst.) (Coleoptera: Tenebrionidae) were significantly infected with the fungi followed by rice weevil Sitophilus oryzae (L.) (Coleoptera: Curculionidae), lesser grain borer Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae), rusty grain beetle Cryptolestes ferrugineus (Stephens) (Coleoptera: Cucujidae), and cowpea weevil Callosobruchus maculatus (F.) (Coleoptera: Bruchidae); however, the least were recovered from khapra beetle Trogoderma granarium (Everts) (Coleoptera: Dermestidae). The geographical attributes (altitude, longitude, and latitude) greatly influenced the occurrence of entomopathogenic fungi with highest number of isolates found from >400 (m) altitude, 33°–34′ N latitude, and 73°–74′ E longitude. The findings of the current surveys clearly indicated that the entomopathogenic fungi are widely distributed in the insect cadavers, which may later be used in successful Integrated Pest Management programs. PMID:25480970
Anglers' beliefs about tag-and-release programs
Maureen P. Donnelly; Jerry J. Vaske
1992-01-01
Scientific research and the popular literature have emphasized the biological value of tag-and-release fishing. Relatively few publications, however, have examined the anglers' beliefs about the importance of this activity. This paper summarizes sport fishermen's behavior and attitudes related to tag-and-release programs. The data were collected from three...
Curcumin overcomes the inhibitory effect of nitric oxide on Leishmania.
Chan, Marion Man-Ying; Adapala, Naga Suresh; Fong, Dunne
2005-04-01
Upon Leishmania infection, macrophages are activated to produce nitrogen and oxygen radicals simultaneously. It is well established that the infected host cells rely on nitric oxide (NO) as the major weapon against the intracellular parasite. In India where leishmaniasis is endemic, the spice turmeric is used prolifically in food and for insect bites. Curcumin, the active principle of turmeric, is a scavenger of NO. This report shows that curcumin protects promastigotes and amastigotes of the visceral species, Leishmania donovani, and promastigotes of the cutaneous species, L. major, against the actions of S-nitroso-N-acetyl-D,L-penicillamine (SNAP) and DETANONOate, which release NO, 3-morpholino-sydnonimine hydrochloride (SIN-1), which releases NO and superoxide, and peroxynitrite, which is formed from the reaction of NO with superoxide. Thus, curcumin, as an antioxidant, is capable of blocking the action of both NO and NO congeners on the Leishmania parasite.
Specific attraction of fig-pollinating wasps: role of volatile compounds released by tropical figs.
Grison-Pigé, Laure; Bessière, Jean-Marie; Hossaert-McKey, Martine
2002-02-01
Floral scents often act as pollinator attractants. In the case of obligate and specific plant-pollinator relationships, the role of floral signals may be crucial in allowing the encounter of the partners. About 750 Ficus species (Moraceae) are involved in such interactions, each with a distinct species of pollinating wasp (Chalcidoidea, Agaonidae). Several species have been shown to release volatile compounds, but their role in pollinator attraction has rarely been simultaneously tested. We investigated the floral scents of four tropical fig species and combined chemical analysis with biological tests of stimulation of insects. Pollinators of three species were stimulated by the odor of their associated fig species and generally not by the odor of another species. The fourth actually comprised two distinct varieties. The main compound was often a different one in each species. Floral blends of different species always shared compounds, but ratios of these compounds varied among species.
Nanoparticles from Degradation of Biodegradable Plastic Mulch
NASA Astrophysics Data System (ADS)
Flury, Markus; Sintim, Henry; Bary, Andy; English, Marie; Schaefer, Sean
2017-04-01
Plastic mulch films are commonly used in crop production. They provide multiple benefits, including control of weeds and insects, increase of soil and air temperature, reduction of evaporation, and prevention of soil erosion. The use of plastic mulch film in agriculture has great potential to increase food production and security. Plastic mulch films must be retrieved and disposed after usage. Biodegradable plastic mulch films, who can be tilled into the soil after usage offer great benefits as alternative to conventional polyethylene plastic. However, it has to be shown that the degradation of these mulches is complete and no micro- and nanoparticles are released during degradation. We conducted a field experiment with biodegradable mulches and tested mulch degradation. Mulch was removed from the field after the growing season and composted to facilitate degradation. We found that micro- and nanoparticles were released during degradation of the mulch films in compost. This raises concerns about degradation in soils as well.