Science.gov

Sample records for insect tissue culture

  1. Metabolomics Reveals the Heterogeneous Secretome of Two Entomopathogenic Fungi to Ex Vivo Cultured Insect Tissues

    PubMed Central

    de Bekker, Charissa; Smith, Philip B.; Patterson, Andrew D.; Hughes, David P.

    2013-01-01

    Fungal entomopathogens rely on cellular heterogeneity during the different stages of insect host infection. Their pathogenicity is exhibited through the secretion of secondary metabolites, which implies that the infection life history of this group of environmentally important fungi can be revealed using metabolomics. Here metabolomic analysis in combination with ex vivo insect tissue culturing shows that two generalist isolates of the genus Metarhizium and Beauveria, commonly used as biological pesticides, employ significantly different arrays of secondary metabolites during infectious and saprophytic growth. It also reveals that both fungi exhibit tissue specific strategies by a distinguishable metabolite secretion on the insect tissues tested in this study. In addition to showing the important heterogeneous nature of these two entomopathogens, this study also resulted in the discovery of several novel destruxins and beauverolides that have not been described before, most likely because previous surveys did not use insect tissues as a culturing system. While Beauveria secreted these cyclic depsipeptides when encountering live insect tissues, Metarhizium employed them primarily on dead tissue. This implies that, while these fungi employ comparable strategies when it comes to entomopathogenesis, there are most certainly significant differences at the molecular level that deserve to be studied. PMID:23940603

  2. In vitro cultivation of Herpetosoma trypanosomes in insect cell tissue culture media.

    PubMed

    Mohamed, H A; Molyneux, D H

    1987-01-01

    The cultivation of Herpetosoma trypanosomes in insect tissue culture media supplemented with foetal calf serum is described. Trypanosoma lewisi and T. musculi, which can be grown in blood agar media, were compared with four other species of Herpetosoma trypanosomes, T. microti, T. evotomys, T. grosi and T. nabiasi, in their growth in Schneider's Drosophila medium, Grace's, Mitsuhashi-Maramorosch, RPMI 1640, TCM 199 and nutrient blood agar media. Schneider's Drosophila and Grace's media supplemented with 20% foetal calf serum proved the most suitable media for growth of all parasites except T. nabiasi from rabbits which was not successfully established. Primary cultures were passaged after approximately 3 weeks and were maintained to continuously produce metacyclic trypomastigotes which produced less virulent infections although they maintained their infectivity to their respective hosts. The growth patterns in culture and morphology of the parasites are described.

  3. Expression and post-translational processing of a broad-spectrum organophosphorus-neurotoxin-degrading enzyme in insect tissue culture

    SciTech Connect

    Dave, K.I.; Phillips, L.; Luckow, V.A.; Wild, J.R.

    1994-12-31

    A recombinant baculovirus, Autographa californica nuclear polyhedrosis virus (AcNPV), has been utilized to express the opd (organophosphate-degrading) gene from Pseudomonas diminuta in insect tissue-culture cells (Sf9) of the fall armyworm (Spodoptera frugiperda). The broad-spectrum organophosphate hydrolase (EC 3.1.8.1) encoded by this gene is a member of a general class of enzymes (organophosphate (OP) anhyorolases) that include parathion hydrolases, di-isopropyl-fluorophosphatases (DFpases), somanases, and OP phosphotrlesterases. This particular enzyme possesses the ability to hydrolyse paraoxon (P-O bond), DFP, sarin (P-F bond), VX (P-S bond) and tabun (P-CN bond), as well as a number of other extensively used organophosphorus pesticides. The enzyme produced in infected Sf9 cells is post-translationally processed and resembles the mature form of the enzyme expressed in various bacterial cells as identified by immunoprecipitation on Western blots. N-terminal sequence analysis of enzyme expressed in insect cells revealed Gly-29 as the terminal residue, whereas expression in Escherichia coli removes this residue, exposing Ser-30 at the N-terminus. Conditions for optimal expression of the enzyme in this system are described. Furthermore, hydrolytic efficiency of some OPs with purified enzyme from this system is discussed in relation to the in situ activity of Pseudomonas diminuta MG cells.

  4. Expanding the host range of small insect RNA viruses: Providence virus (Carmotetraviridae) infects and replicates in a human tissue culture cell line.

    PubMed

    Jiwaji, Meesbah; Short, James Roswell; Dorrington, Rosemary Ann

    2016-10-01

    Tetraviruses are small, positive (+ve)-sense ssRNA viruses that infect the midgut cells of lepidopteran larvae. Providence virus (PrV) is the only member of the family Carmotetraviridae (previously Tetraviridae). PrV particles exhibit the characteristic tetraviral T=4 icosahedral symmetry, but PrV is distinct from other tetraviruses with respect to genome organization and viral non-structural proteins. Currently, PrV is the only tetravirus known to infect and replicate in lepidopteran cell culture lines. In this report we demonstrate, using immunofluorescence microscopy, that PrV infects and replicates in a human tissue culture cell line (HeLa), producing infectious virus particles. We also provide evidence for PrV replication in vitro in insect, mammalian and plant cell-free systems. This study challenges the long-held view that tetraviruses have a narrow host range confined to one or a few lepidopteran species and highlights the need to consider the potential for apparently non-infectious viruses to be transferred to new hosts in the laboratory.

  5. Insect cell culture in reagent bottles.

    PubMed

    Rieffel, S; Roest, S; Klopp, J; Carnal, S; Marti, S; Gerhartz, B; Shrestha, B

    2014-01-01

    Growing insect cells with high air space in culture vessel is common from the early development of suspension cell culture. We believed and followed it with the hope that it allows sufficient air for optimal cell growth. However, we missed to identify how much air exactly cells need for its growth and multiplication. Here we present the innovative method that changed the way we run insect cell culture. The method is easy to adapt, cost-effective and useful for both academic and industrial research labs. We believe this method will revolutionize the way we run insect cell culture by increasing throughput in a cost-effective way. In our study we identified:•Insect cells need to be in suspension; air space in culture vessel and type of culture vessel is of less importance. Shaking condition that introduces small air bubbles and maintains it in suspension for longer time provides better oxygen transfer in liquid. For this, high-fill volume in combination with speed and shaking diameter are important.•Commercially available insect cells are not fragile as original isolates. These cells can easily withstand higher shaking speed.•Growth condition in particular lab set-up needs to be optimized. The condition used in one lab may not be optimum for another lab due to different incubators from different vendors.

  6. Recombinant protein production and insect cell culture and process

    NASA Technical Reports Server (NTRS)

    Spaulding, Glenn (Inventor); Prewett, Tacey (Inventor); Goodwin, Thomas (Inventor); Francis, Karen (Inventor); Andrews, Angela (Inventor); Oconnor, Kim (Inventor)

    1993-01-01

    A process has been developed for recombinant production of selected polypeptides using transformed insect cells cultured in a horizontally rotating culture vessel modulated to create low shear conditions. A metabolically transformed insect cell line is produced using the culture procedure regardless of genetic transformation. The recombinant polypeptide can be produced by an alternative process using the cultured insect cells as host for a virus encoding the described polypeptide such as baculovirus. The insect cells can also be a host for viral production.

  7. Recombinant Protein Production and Insect Cell Culture and Process

    NASA Technical Reports Server (NTRS)

    Spaulding, Glenn F. (Inventor); Goodwin, Thomas J. (Inventor); OConnor, Kim C. (Inventor); Francis, Karen M. (Inventor); Andrews, Angela D. (Inventor); Prewett, Tracey L. (Inventor)

    1997-01-01

    A process has been developed for recombinant production of selected polypeptides using transformed insect cells cultured in a horizontally rotating culture vessel modulated to create low shear conditions. A metabolically transformed insect cell line is produced using the culture procedure regardless of genetic transformation. The recombinant polypeptide can be produced by an alternative process using virtually infected or stably transformed insect cells containing a gene encoding the described polypeptide. The insect cells can also be a host for viral production.

  8. Culture and manipulation of insect facultative symbionts.

    PubMed

    Pontes, Mauricio H; Dale, Colin

    2006-09-01

    Insects from many different taxonomic groups harbor maternally transmitted bacterial symbionts. Some of these associations are ancient in origin and obligate in nature whereas others originated more recently and are facultative. Previous research focused on the biology of ancient obligate symbionts with essential nutritional roles in their insect hosts. However, recent important advances in understanding the biology of facultative associations have been driven by the development of techniques for the culture, genetic modification and manipulation of facultative symbionts. In this review, we examine these available experimental techniques and illustrate how they have provided fascinating new insight into the nature of associations involving facultative symbionts. We also propose a rationale for future research based on the integration of genomics and experimentation.

  9. Tissue Culture in Microgravity

    NASA Technical Reports Server (NTRS)

    Pellis, Neal R.; Duray, Paul H.; Hatfill, Steven J.

    1997-01-01

    Attempts to simulate normal tissue micro-environments in vitro have been thwarted by the complexity and plasticity of the extracellular matrix, which is important in regulating cytoskeletal and nuclear matrix proteins. Gravity is one of the problems, tending to separate components that should be kept together. For space shuttle experiments, NASA engineers devised a double-walled rotating bioreactor, which is proving to be a useful tissue culture device on earth as well as in space.

  10. Plant Tissue Culture Studies.

    ERIC Educational Resources Information Center

    Smith, Robert Alan

    Plant tissue culture has developed into a valid botanical discipline and is considered a key area of biotechnology, but it has not been a key component of the science curriculum because of the expensive and technical nature of research in this area. This manual presents a number of activities that are relatively easy to prepare and perform. The…

  11. TISSUE CULTURE STUDIES

    PubMed Central

    Hull, Wayne; Kirk, Paul L.

    1950-01-01

    An improved procedure for measuring the uptake of tracer P32 by tissues in culture is described. It consisted of counting the β-emissions through a specially designed roller tube in which the culture medium could be effectively removed from the system without opening or damaging the cultures. In standard growth-promoting medium, the uptake was shown to be markedly greater than in Tyrode's solution. The uptake curve was found to be essentially parallel with the uptake of P32 in desoxyribo- and ribonucleic acids when standard medium was used, and in desoxyrihonucleic acid when Tyrode's solution was used. This is interpreted to signify that the total uptake of tracer phosphorus approximates the growth in the culture. The value of uptake measurements as a frame of reference for comparison of various types of media and of metabolic studies is indicated. PMID:15406372

  12. NASA Bioreactor tissue culture

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Dr. Lisa E. Freed of the Massachusetts Institute of Technology and her colleagues have reported that initially disc-like specimens tend to become spherical in space, demonstrating that tissues can grow and differentiate into distinct structures in microgravity. The Mir Increment 3 (Sept. 16, 1996 - Jan. 22, 1997) samples were smaller, more spherical, and mechanically weaker than Earth-grown control samples. These results demonstrate the feasibility of microgravity tissue engineering and may have implications for long human space voyages and for treating musculoskeletal disorders on earth. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  13. NASA Bioreactor tissue culture

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Dr. Lisa E. Freed of the Massachusetts Institute of Technology and her colleagues have reported that initially disc-like specimens tend to become spherical in space, demonstrating that tissues can grow and differentiate into distinct structures in microgravity. The Mir Increment 3 (Sept. 16, 1996 - Jan. 22, 1997) samples were smaller, more spherical, and mechanically weaker than Earth-grown control samples. These results demonstrate the feasibility of microgravity tissue engineering and may have implications for long human space voyages and for treating musculoskeletal disorders on earth. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  14. Relevant principal factors affecting the reproducibility of insect primary culture.

    PubMed

    Ogata, Norichika; Iwabuchi, Kikuo

    2017-02-22

    The primary culture of insect cells often suffers from problems with poor reproducibility in the quality of the final cell preparations. The cellular composition of the explants (cell number and cell types), surgical methods (surgical duration and surgical isolation), and physiological and genetic differences between donors may be critical factors affecting the reproducibility of culture. However, little is known about where biological variation (interindividual differences between donors) ends and technical variation (variance in replication of culture conditions) begins. In this study, we cultured larval fat bodies from the Japanese rhinoceros beetle, Allomyrina dichotoma, and evaluated, using linear mixed models, the effect of interindividual variation between donors on the reproducibility of the culture. We also performed transcriptome analysis of the hemocyte-like cells mainly seen in the cultures using RNA sequencing and ultrastructural analyses of hemocytes using a transmission electron microscope, revealing that the cultured cells have many characteristics of insect hemocytes.

  15. Insect cell transformation vectors that support high level expression and promoter assessment in insect cell culture

    USDA-ARS?s Scientific Manuscript database

    A somatic transformation vector, pDP9, was constructed that provides a simplified means of producing permanently transformed cultured insect cells that support high levels of protein expression of foreign genes. The pDP9 plasmid vector incorporates DNA sequences from the Junonia coenia densovirus th...

  16. Tissue culture: the unrealized potential

    PubMed Central

    2007-01-01

    Lack of differentiated functions of the tissue of origin in tissue culture thought to be due to dedifferentiation was shown to be due to selective overgrowth of fibroblasts. Enrichment culture techniques, (alternate animal and culture passage), designed to give the functionally differentiated cells selective advantage over the fibroblasts resulted in a large number of functionally differentiated clonal strains. Thus the dogma of dedifferentiation was destroyed. It is proposed to substitute the dedifferentiation hypothesis with the hypothesis that cells in culture accurately represent cells in vivo without the complex in vivo environment. With the development of hormonally defined media, combined with functionally differentiated clonal cell lines, the potential of tissue culture studies is greatly augmented. Hormonal responses and dependencies can be discovered in culture and the discovery of dependencies of cancer cells has led to a new rationale for therapy. PMID:19003154

  17. Invasion of Wolbachia into Anopheles and Other Insect Germlines in an Ex vivo Organ Culture System

    PubMed Central

    Xue, Ping; Rasgon, Jason L.

    2012-01-01

    The common bacterial endosymbiont Wolbachia manipulates its host's reproduction to promote its own maternal transmission, and can interfere with pathogen development in many insects making it an attractive agent for the control of arthropod-borne disease. However, many important species, including Anopheles mosquitoes, are uninfected. Wolbachia can be artificially transferred between insects in the laboratory but this can be a laborious and sometimes fruitless process. We used a simple ex vivo culturing technique to assess the suitability of Wolbachia-host germline associations. Wolbachia infects the dissected germline tissue of multiple insect species when the host tissue and bacteria are cultured together. Ovary and testis infection occurs in a density-dependent manner. Wolbachia strains are more capable of invading the germline of their native or closely related rather than divergent hosts. The ability of Wolbachia to associate with the germline of novel hosts is crucial for the development of stably-transinfected insect lines. Rapid assessment of the suitability of a strain-host combination prior to transinfection may dictate use of a particular Wolbachia strain. Furthermore, the cultured germline tissues of two major Anopheline vectors of Plasmodium parasites are susceptible to Wolbachia infection. This finding further enhances the prospect of using Wolbachia for the biological control of malaria. PMID:22558418

  18. Invasion of Wolbachia into Anopheles and other insect germlines in an ex vivo organ culture system.

    PubMed

    Hughes, Grant L; Pike, Andrew D; Xue, Ping; Rasgon, Jason L

    2012-01-01

    The common bacterial endosymbiont Wolbachia manipulates its host's reproduction to promote its own maternal transmission, and can interfere with pathogen development in many insects making it an attractive agent for the control of arthropod-borne disease. However, many important species, including Anopheles mosquitoes, are uninfected. Wolbachia can be artificially transferred between insects in the laboratory but this can be a laborious and sometimes fruitless process. We used a simple ex vivo culturing technique to assess the suitability of Wolbachia-host germline associations. Wolbachia infects the dissected germline tissue of multiple insect species when the host tissue and bacteria are cultured together. Ovary and testis infection occurs in a density-dependent manner. Wolbachia strains are more capable of invading the germline of their native or closely related rather than divergent hosts. The ability of Wolbachia to associate with the germline of novel hosts is crucial for the development of stably-transinfected insect lines. Rapid assessment of the suitability of a strain-host combination prior to transinfection may dictate use of a particular Wolbachia strain. Furthermore, the cultured germline tissues of two major Anopheline vectors of Plasmodium parasites are susceptible to Wolbachia infection. This finding further enhances the prospect of using Wolbachia for the biological control of malaria.

  19. Mammalian Cell Tissue Culture Techniques.

    PubMed

    Phelan, Katy; May, Kristin M

    2016-06-01

    Cultured tissues and cells are used extensively in physiological and pharmacological studies. In vitro cultures provide a means of examining cells and tissues without the complex interactions that would be present if the whole organism were studied. A number of special skills are required in order to preserve the structure, function, behavior, and biology of cells in culture. This unit describes the basic skills required to maintain and preserve cell cultures: maintaining aseptic technique, preparing media with the appropriate characteristics, passaging, freezing and storage, recovering frozen stocks, and counting viable cells. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  20. Radiosensitivity of cultured insect cells: II. Diptera

    SciTech Connect

    Koval, T.M.

    1983-10-01

    The radiosensitivity of five dipteran cell lines representing three mosquito genera and one fruit fly genus were examined. These lines are: (1) ATC-10, Aedes aegypti; (2) RU-TAE-14, Toxorhynchites amboinensis; (3) RU-ASE-2A, Anopheles stephensi; (4) WR69-DM-1, Drosophila melanogaster; and (5) WR69-DM-2, Drosophila melanogaster. Population doubling times for these lines range from approximately 16 to 48 hr. Diploid chromosome numbers are six for the mosquito cells and eight for the fruit fly cells D/sub 0/ values are 5.1 and 6.5 Gy for the Drosophila cell lines and 3.6, 6.2, and 10.2 Gy for the mosquito cell lines. The results of this study demonstrate that dipteran insect cells are a few times more resistant to radiation than mammalian cells, but not nearly as radioresistant as lepidopteran cells.

  1. History of plant tissue culture.

    PubMed

    Thorpe, Trevor A

    2007-10-01

    Plant tissue culture, or the aseptic culture of cells, tissues, organs, and their components under defined physical and chemical conditions in vitro, is an important tool in both basic and applied studies as well as in commercial application. It owes its origin to the ideas of the German scientist, Haberlandt, at the begining of the 20th century. The early studies led to root cultures, embryo cultures, and the first true callus/tissue cultures. The period between the 1940s and the 1960s was marked by the development of new techniques and the improvement of those that were already in use. It was the availability of these techniques that led to the application of tissue culture to five broad areas, namely, cell behavior (including cytology, nutrition, metabolism, morphogenesis, embryogenesis, and pathology), plant modification and improvement, pathogen-free plants and germplasm storage, clonal propagation, and product (mainly secondary metabolite) formation, starting in the mid-1960s. The 1990s saw continued expansion in the application of the in vitro technologies to an increasing number of plant species. Cell cultures have remained an important tool in the study of basic areas of plant biology and biochemistry and have assumed major significance in studies in molecular biology and agricultural biotechnology. The historical development of these in vitro technologies and their applications are the focus of this chapter.

  2. History of plant tissue culture.

    PubMed

    Thorpe, Trevor

    2012-01-01

    Plant tissue culture, or the aseptic culture of cells, tissues, organs, and their components under defined physical and chemical conditions in vitro, is an important tool in both basic and applied studies as well as in commercial application. It owes its origin to the ideas of the German scientist, Haberlandt, at the beginning of the twentieth century. The early studies led to root cultures, embryo cultures, and the first true callus/tissue cultures. The period between the 1940s and the 1960s was marked by the development of new techniques and the improvement of those that were already in use. It was the availability of these techniques that led to the application of tissue culture to five broad areas, namely, cell behavior (including cytology, nutrition, metabolism, morphogenesis, embryogenesis, and pathology), plant modification and improvement, pathogen-free plants and germplasm storage, clonal propagation, and product (mainly secondary metabolite) formation, starting in the mid-1960s. The 1990s saw continued expansion in the application of the in vitro technologies to an increasing number of plant species. Cell cultures have remained an important tool in the study of basic areas of plant biology and biochemistry and have assumed major significance in studies in molecular biology and agricultural biotechnology in the twenty-first century. The historical development of these in vitro technologies and their applications is the focus of this chapter.

  3. Biomedical advances from tissue culture.

    PubMed

    Okamoto, Tetsuji; Sato, J Denry; Barnes, David W; Sato, Gordon H

    2013-12-01

    The demonstration that the "dedifferentiation" of cells commonly observed in the early days of tissue culture was due to selective overgrowth of fibroblasts led to enrichment culture techniques (alternate animal and culture passage) designed to give a selective advantage to functionally differentiated tumor cells. These experiments resulted in the derivation of a large number of functionally differentiated clonal strains of a range of cell types. These results gave rise to the hypothesis that cells in culture accurately represent cells in vivo but without the complex in vivo environment. This concept has been strengthened with the development of hormonally defined culture media in combination with functionally differentiated clonal cell lines, which have augmented the potential of tissue culture studies. The use of hormonally defined media in place of serum-supplemented media demonstrates that hormonal responses and dependencies can be discovered in culture. Discoveries of hormonal dependencies of cancer cells has led to therapies targeting intracellular signaling pathways while discoveries of hormonal responses of pluripotent cells are helping to identify the potential application of stem cells. In these and other ways tissue culture technology will continue to contribute to solving problems of human health.

  4. Three Dimensional Optic Tissue Culture and Process

    NASA Technical Reports Server (NTRS)

    OConnor, Kim C. (Inventor); Spaulding, Glenn F. (Inventor); Goodwin, Thomas J. (Inventor); Aten, Laurie A. (Inventor); Francis, Karen M. (Inventor); Caldwell, Delmar R. (Inventor); Prewett, Tacey L. (Inventor); Fitzgerald, Wendy S. (Inventor)

    1999-01-01

    A process for artificially producing three-dimensional optic tissue has been developed. The optic cells are cultured in a bioireactor at low shear conditions. The tissue forms as normal, functional tissue grows with tissue organization and extracellular matrix formation.

  5. Room Temperature Operable Autonomously Moving Bio-Microrobot Powered by Insect Dorsal Vessel Tissue

    PubMed Central

    Akiyama, Yoshitake; Hoshino, Takayuki; Iwabuchi, Kikuo; Morishima, Keisuke

    2012-01-01

    Living muscle tissues and cells have been attracting attention as potential actuator candidates. In particular, insect dorsal vessel tissue (DVT) seems to be well suited for a bio-actuator since it is capable of contracting autonomously and the tissue itself and its cells are more environmentally robust under culturing conditions compared with mammalian tissues and cells. Here we demonstrate an autonomously moving polypod microrobot (PMR) powered by DVT excised from an inchworm. We fabricated a prototype of the PMR by assembling a whole DVT onto an inverted two-row micropillar array. The prototype moved autonomously at a velocity of 3.5×10−2 µm/s, and the contracting force of the whole DVT was calculated as 20 µN. Based on the results obtained by the prototype, we then designed and fabricated an actual PMR. We were able to increase the velocity significantly for the actual PMR which could move autonomously at a velocity of 3.5 µm/s. These results indicate that insect DVT has sufficient potential as the driving force for a bio-microrobot that can be utilized in microspaces. PMID:22808004

  6. Cultured normal mammalian tissue and process

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J. (Inventor); Prewett, Tacey L. (Inventor); Wolf, David A. (Inventor); Spaulding, Glenn F. (Inventor)

    1993-01-01

    Normal mammalian tissue and the culturing process has been developed for the three groups of organ, structural and blood tissue. The cells are grown in vitro under microgravity culture conditions and form three dimensional cell aggregates with normal cell function. The microgravity culture conditions may be microgravity or simulated microgravity created in a horizontal rotating wall culture vessel.

  7. Three dimensional optic tissue culture and process

    NASA Technical Reports Server (NTRS)

    Spaulding, Glenn F. (Inventor); Prewett, Tacey L. (Inventor); Goodwin, Thomas J. (Inventor); Francis, Karen M. (Inventor); Cardwell, Delmar R. (Inventor); Oconnor, Kim (Inventor); Fitzgerald, Wendy S. (Inventor); Aten, Laurie A. (Inventor)

    1994-01-01

    A process for artificially producing three-dimensional optic tissue has been developed. The optic cells are cultured in a bioreactor at low shear conditions. The tissue forms normal, functional tissue organization and extracellular matrix.

  8. Optical metabolic imaging of live tissue cultures

    NASA Astrophysics Data System (ADS)

    Walsh, Alex J.; Cook, Rebecca S.; Arteaga, Carlos L.; Skala, Melissa C.

    2013-02-01

    The fluorescence properties, both intensity and fluorescence lifetime, of NADH and FAD, two coenzymes of metabolism, are sensitive, high resolution measures of cellular metabolism. However, often in vivo measurements of tissue are not feasible. In this study, we investigate the stability over time of two-photon auto-fluorescence imaging of NADH and FAD in live-cultured tissues. Our results demonstrate that cultured tissues remain viable for at least several days post excision. Furthermore, the optical redox ratio, NADH fluorescence lifetime, and FAD fluorescence lifetime do not significantly change in the cultured tissues over time. With these findings, we demonstrate the potential of sustained tissue culture techniques for optical metabolic imaging.

  9. Plant Tissue Culture in a Bag.

    ERIC Educational Resources Information Center

    Beck, Mike

    2000-01-01

    Describes the use of an oven bag as a sterile chamber for culture initiation and tissue transfer. Plant tissue culture is an ideal tool for introducing students to plants, cloning, and experimental design. Includes materials, methods, discussion, and conclusion sections. (SAH)

  10. Walnut tissue culture: research and field applications

    Treesearch

    Jose M. Lopez

    2004-01-01

    Vitrotech Biotecnologia Vegetal began researching propagating Juglans regia (English walnut) and various Juglans hybrids by tissue culture in 1993 and has operated on a commercial scale since 1996. Since this time, more than one and a half million walnuts of different species have been propagated and field planted. Tissue cultured...

  11. Plant Tissue Culture in a Bag.

    ERIC Educational Resources Information Center

    Beck, Mike

    2000-01-01

    Describes the use of an oven bag as a sterile chamber for culture initiation and tissue transfer. Plant tissue culture is an ideal tool for introducing students to plants, cloning, and experimental design. Includes materials, methods, discussion, and conclusion sections. (SAH)

  12. Development of primary cell cultures using hemocytes and phagocytic tissue cells of Locusta migratoria: an application for locust immunity studies.

    PubMed

    Duressa, Tewodros Firdissa; Huybrechts, Roger

    2016-01-01

    Insect cell cultures played central roles in unraveling many insect physiological and immunological processes. Regardless, despite imminent needs, insect cell lines were developed primarily from Dipteran and Lepidopteran orders, leaving many important insects such as Orthopteran locusts under-represented. Besides the lack of cell lines, the slow progress in development of in vitro techniques is attributed to poor communications between different laboratories regarding optimized primary cell cultures. Therefore, we report here about methods developed for primary cell culture of Locusta migratoria hemocyte and phagocytic tissue cells by which we could maintain viable hemocytes in vitro for over 5 d and phagocytic tissue cells for over 12 d. 2-Mercaptoethanol and phenyl-thiourea supplements in Grace's medium together with addition of fetal bovine serum 30 min after cell seeding resulted in a successful setup of the primary cell cultures and a week-long survival of the hemocytes and phagocytic tissue cells in vitro.

  13. Gastric tissue biopsy and culture

    MedlinePlus

    ... culture can help detect: Cancer Infections, most commonly Helicobacter pylori , the bacteria that can cause stomach ulcers ... lining of the stomach becomes inflamed or swollen Helicobacter pylori infection

  14. Co-culture in cartilage tissue engineering.

    PubMed

    Hendriks, Jeanine; Riesle, Jens; van Blitterswijk, Clemens A

    2007-01-01

    For biotechnological research in vitro in general and tissue engineering specifically, it is essential to mimic the natural conditions of the cellular environment as much as possible. In choosing a model system for in vitro experiments, the investigator always has to balance between being able to observe, measure or manipulate cell behaviour and copying the in situ environment of that cell. Most tissues in the body consist of more than one cell type. The organization of the cells in the tissue is essential for the tissue's normal development, homeostasis and repair reaction. In a co-culture system, two or more cell types brought together in the same culture environment very likely interact and communicate. Co-culture has proved to be a powerful in vitro tool in unravelling the importance of cellular interactions during normal physiology, homeostasis, repair and regeneration. The first co-culture studies focused mainly on the influence of cellular interactions on oocytes maturation to a pre-implantation blastocyst. Therefore, a brief overview of these studies is given here. Later on in the history of co-culture studies, it was applied to study cell-cell communication, after which, almost immediately as the field of tissue engineering was recognized, it was introduced in tissue engineering to study cellular interactions and their influence on tissue formation. This review discusses the introduction and applications of co-culture systems in cell biology research, with the emphasis on tissue engineering and its possible application for studying cartilage regeneration.

  15. 21 CFR 876.5885 - Tissue culture media for human ex vivo tissue and cell culture processing applications.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... cell culture processing applications. 876.5885 Section 876.5885 Food and Drugs FOOD AND DRUG... DEVICES Therapeutic Devices § 876.5885 Tissue culture media for human ex vivo tissue and cell culture processing applications. (a) Identification. Tissue culture media for human ex vivo tissue and cell culture...

  16. 21 CFR 876.5885 - Tissue culture media for human ex vivo tissue and cell culture processing applications.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... cell culture processing applications. 876.5885 Section 876.5885 Food and Drugs FOOD AND DRUG... DEVICES Therapeutic Devices § 876.5885 Tissue culture media for human ex vivo tissue and cell culture processing applications. (a) Identification. Tissue culture media for human ex vivo tissue and cell culture...

  17. 21 CFR 876.5885 - Tissue culture media for human ex vivo tissue and cell culture processing applications.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... cell culture processing applications. 876.5885 Section 876.5885 Food and Drugs FOOD AND DRUG... DEVICES Therapeutic Devices § 876.5885 Tissue culture media for human ex vivo tissue and cell culture processing applications. (a) Identification. Tissue culture media for human ex vivo tissue and cell culture...

  18. 21 CFR 876.5885 - Tissue culture media for human ex vivo tissue and cell culture processing applications.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... cell culture processing applications. 876.5885 Section 876.5885 Food and Drugs FOOD AND DRUG... DEVICES Therapeutic Devices § 876.5885 Tissue culture media for human ex vivo tissue and cell culture processing applications. (a) Identification. Tissue culture media for human ex vivo tissue and cell culture...

  19. 21 CFR 876.5885 - Tissue culture media for human ex vivo tissue and cell culture processing applications.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... cell culture processing applications. 876.5885 Section 876.5885 Food and Drugs FOOD AND DRUG... DEVICES Therapeutic Devices § 876.5885 Tissue culture media for human ex vivo tissue and cell culture processing applications. (a) Identification. Tissue culture media for human ex vivo tissue and cell culture...

  20. Activation of tobacco retrotransposons during tissue culture.

    PubMed Central

    Hirochika, H

    1993-01-01

    Sequences of at least three new families of retrotransposons (Tto1-Tto3) were amplified by PCR from cDNA prepared from protoplasts of an established tobacco cell line, based on the fact that certain amino acids are highly conserved in the reverse transcriptases encoded by retrotransposons. Structural analysis indicates that Tto1 is 5.5 kb long and has features typical of retrotransposons. Transcription of Tto1 starting in the long terminal repeat was active only in cultured cells. Protoplast formation enhanced the transcription. The copy number of Tto1 increased 10-fold in established cell lines; it also increased in plants regenerated from tissue cultures and in transgenic plants. These results indicate that Tto1 is activated during tissue culture. This is the first demonstration of activation of a plant retrotransposon by tissue culture. The copy number of Tto2 and a previously isolated transposon, Tnt1, also increased in established cell lines, indicating that these two retrotransposons may also be activated by tissue culture. These three retrotransposons are cryptic in normally propagated plants: no difference in the copy number was observed between individuals of the same cultivars or even between different cultivars. Images PMID:8389699

  1. A Continuous-Exchange Cell-Free Protein Synthesis System Based on Extracts from Cultured Insect Cells

    PubMed Central

    Stech, Marlitt; Quast, Robert B.; Sachse, Rita; Schulze, Corina; Wüstenhagen, Doreen A.; Kubick, Stefan

    2014-01-01

    In this study, we present a novel technique for the synthesis of complex prokaryotic and eukaryotic proteins by using a continuous-exchange cell-free (CECF) protein synthesis system based on extracts from cultured insect cells. Our approach consists of two basic elements: First, protein synthesis is performed in insect cell lysates which harbor endogenous microsomal vesicles, enabling a translocation of de novo synthesized target proteins into the lumen of the insect vesicles or, in the case of membrane proteins, their embedding into a natural membrane scaffold. Second, cell-free reactions are performed in a two chamber dialysis device for 48 h. The combination of the eukaryotic cell-free translation system based on insect cell extracts and the CECF translation system results in significantly prolonged reaction life times and increased protein yields compared to conventional batch reactions. In this context, we demonstrate the synthesis of various representative model proteins, among them cytosolic proteins, pharmacological relevant membrane proteins and glycosylated proteins in an endotoxin-free environment. Furthermore, the cell-free system used in this study is well-suited for the synthesis of biologically active tissue-type-plasminogen activator, a complex eukaryotic protein harboring multiple disulfide bonds. PMID:24804975

  2. Artemisinin production in Artemisia annua tissue cultures

    SciTech Connect

    Martinez Isaza, B.C.

    1988-01-01

    Production of artemisinin was studied in both plants and tissue cultures of Artemisia annua L. Incorporation of (3{prime}-{sup 14}C) mevalonic acid sodium salt into artemisinin or arteannuin B was not found when field-grown plants were fed once with 10 or 50 {mu}Ci and harvested after 44, 144 or 288 hr. Artemisinin was not present in root organ cultures, but was present in the shoot cultures in a concentration of less than 5 mg/100 g dry weight. The content of artemisinin in a shoot culture line with elongated and indented shoots was significantly higher at p value of 0.01 from that with short and compact shoots. Induction of roots on shoot cultures was associated with increased artemisinin production. Shoot cultures that developed into plants with roots had higher artemisinin content than those shoots cultures with aerial roots, or shoots cultures with basal roots. The artemisinin content in shoot cultures apparently increased with age. Preliminary studies on the metabolism of arteannuin B demonstrated that shoot cultures absorbed the exogenous arteannuin B from the medium without an increase in artemisinin content.

  3. Recent advances of rearing cabinet instrumentation and control system for insect stock culture

    NASA Astrophysics Data System (ADS)

    Hermawan, Wawan; Kasmara, Hikmat; Melanie, Panatarani, Camellia; Joni, I. Made

    2017-01-01

    Helicoverpa armigera (Hubner) is one of a serious pest of horticulture in Indonesia. Helicoverpa armigera Nuclear Polyhedrovirus (HaNPV) has attracted interest for many researchers as a pest control for larvae of this species. Currently, we investigating the agrochemical formulations of HaNPV by introducing nanotechnology. Thus it is required an acceptable efficiency of insect stock cultures equipped with advance instruments to resolve the difficulties on insect stock seasons dependency. In addition, it is important to improve the insect survival with the aid of artificial natural environment and gain high insect production. This paper reports the rearing cabinet used as preparation of stock culture includes air-conditioning system, lighting, i.e. day and night control, and the main principles on recent technical and procedural advances apparatus of the system. The rearing system was moveable, designed and build by allowing air-conditioned cabinet for rearing insects, air motion and distribution as well as temperature and humidity being precisely controlled. The air was heated, humidified, and dehumidified respectively using a heater and ultrasonic nebulizer as actuators. Temperature and humidity can be controlled at any desired levels from room temperature (20°C) to 40 ± 1°C and from 0 to 80% RH with an accuracy of ±3% R.H. It is concluded that the recent design has acceptable performance based on the defined requirement for insect rearing and storage.

  4. Tissue engineering of cultured skin substitutes.

    PubMed

    Horch, Raymund E; Kopp, Jürgen; Kneser, Ulrich; Beier, Justus; Bach, Alexander D

    2005-01-01

    Skin replacement has been a challenging task for surgeons ever since the introduction of skin grafts by Reverdin in 1871. Recently, skin grafting has evolved from the initial autograft and allograft preparations to biosynthetic and tissue-engineered living skin replacements. This has been fostered by the dramatically improved survival rates of major burns where the availability of autologous normal skin for grafting has become one of the limiting factors. The ideal properties of a temporary and a permanent skin substitute have been well defined. Tissue-engineered skin replacements: cultured autologous keratinocyte grafts, cultured allogeneic keratinocyte grafts, autologous/allogeneic composites, acellular biological matrices, and cellular matrices including such biological substances as fibrin sealant and various types of collagen, hyaluronic acid etc. have opened new horizons to deal with such massive skin loss. In extensive burns it has been shown that skin substitution with cultured grafts can be a life-saving measure where few alternatives exist. Future research will aim to create skin substitutes with cultured epidermis that under appropriate circumstances may provide a wound cover that could be just as durable and esthetically acceptable as conventional split-thickness skin grafts. Genetic manipulation may in addition enhance the performance of such cultured skin substitutes. If cell science, molecular biology, genetic engineering, material science and clinical expertise join their efforts to develop optimized cell culture techniques and synthetic or biological matrices then further technical advances might well lead to the production of almost skin like new tissue-engineered human skin products resembling natural human skin.

  5. Ecosystem engineering and manipulation of host plant tissues by the insect borer Oncideres albomarginata chamela.

    PubMed

    Calderón-Cortés, Nancy; Uribe-Mú, Claudia A; Martínez-Méndez, A Karen; Escalera-Vázquez, Luis H; Cristobal-Pérez, E Jacob; García-Oliva, Felipe; Quesada, Mauricio

    2016-01-01

    Ecosystem engineering by insect herbivores occurs as the result of structural modification of plants manipulated by insects. However, only few studies have evaluated the effect of these modifications on the plant responses induced by stem-borers that act as ecosystem engineers. In this study, we evaluated the responses induced by the herbivory of the twig-girdler beetle Oncideres albomarginata chamela (Cerambycidae: Lamiinae) on its host plant Spondias purpurea (Anacardiaceae), and its relationship with the ecosystem engineering process carried out by this stem-borer. Our results demonstrated that O. albomarginata chamela branch removal induced the development of lateral branches increasing the resources needed for the development of future insect generations, of its own offspring and of many other insect species. Detached branches represent habitats with high content of nitrogen and phosphorous, which eventually can be incorporated into the ecosystem, increasing nutrient cycling efficiency. Consequently, branch removal and the subsequent plant tissue regeneration induced by O. albomarginata chamela represent key mechanisms underlying the ecosystem engineering process carried out by this stem-borer, which enhances arthropod diversity in the ecosystem. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Pathogen Propagation in Cultured Three-Dimensional Tissue Mass

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J. (Inventor); Spaulding, Glenn F. (Inventor); Wolf, David A. (Inventor)

    2000-01-01

    A process for propagating a pathogen in a three-dimensional tissue mass cultured at microgravity conditions in a culture vessel containing culture media and a culture matrix is provided. The three-dimensional tissue mass is inoculated with a pathogen and pathogen replication in the cells of the tissue mass achieved.

  7. Pathogen propagation in cultured three-dimensional tissue mass

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J. (Inventor); Spaulding, Glenn F. (Inventor); Wolf, David A. (Inventor)

    2000-01-01

    A process for propagating a pathogen in a three-dimensional tissue mass cultured at microgravity conditions in a culture vessel containing culture media and a culture matrix is provided. The three-dimensional tissue mass is inoculated with a pathogen and pathogen replication in the cells of the tissue mass achieved.

  8. Pathogen Propagation in Cultured Three-Dimensional Tissue Mass

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J. (Inventor); Spaulding, Glenn F. (Inventor); Wolf, David A. (Inventor)

    2000-01-01

    A process for propagating a pathogen in a three-dimensional tissue mass cultured at microgravity conditions in a culture vessel containing culture media and a culture matrix is provided. The three-dimensional tissue mass is inoculated with a pathogen and pathogen replication in the cells of the tissue mass achieved.

  9. Axonal growth from insect neurons in glia-free cultures.

    PubMed

    Chen, J S; Levi-Montalcini, R

    1970-05-01

    Mechanical dissociation of nerve and glial cells from 16-day embryos of the cockroach Periplaneta americana and their subsequent culture in a Co(2)-conditioned, chemically defined medium results in the survival of neurons but not of glial cells. The dissociated nerve cells remain alive and in excellent condition for many months and build a dense fibrillar network in presence of foregut explants from the same embryos. These explants are invaded by numerous and large fiber bundles emerging from the fibrillar network. The morphological characteristics of nerve cells and the structural and ultrastructural features of nerve bundles in long-term glia-free culture are described.

  10. A Cell-Free Translocation System Using Extracts of Cultured Insect Cells to Yield Functional Membrane Proteins

    PubMed Central

    Ezure, Toru; Nanatani, Kei; Sato, Yoko; Suzuki, Satomi; Aizawa, Keishi; Souma, Satoshi; Ito, Masaaki; Hohsaka, Takahiro; von Heijine, Gunnar; Utsumi, Toshihiko; Abe, Keietsu; Ando, Eiji; Uozumi, Nobuyuki

    2014-01-01

    Cell-free protein synthesis is a powerful method to explore the structure and function of membrane proteins and to analyze the targeting and translocation of proteins across the ER membrane. Developing a cell-free system based on cultured cells for the synthesis of membrane proteins could provide a highly reproducible alternative to the use of tissues from living animals. We isolated Sf21 microsomes from cultured insect cells by a simplified isolation procedure and evaluated the performance of the translocation system in combination with a cell-free translation system originating from the same source. The isolated microsomes contained the basic translocation machinery for polytopic membrane proteins including SRP-dependent targeting components, translocation channel (translocon)-dependent translocation, and the apparatus for signal peptide cleavage and N-linked glycosylation. A transporter protein synthesized with the cell-free system could be functionally reconstituted into a lipid bilayer. In addition, single and double labeling with non-natural amino acids could be achieved at both the lumen side and the cytosolic side in this system. Moreover, tail-anchored proteins, which are post-translationally integrated by the guided entry of tail-anchored proteins (GET) machinery, were inserted correctly into the microsomes. These results showed that the newly developed cell-free translocation system derived from cultured insect cells is a practical tool for the biogenesis of properly folded polytopic membrane proteins as well as tail-anchored proteins. PMID:25486605

  11. Comparison of cytotoxic extracts from fruiting bodies, infected insects and cultured mycelia of Cordyceps formosana.

    PubMed

    Lu, Rui-Li; Bao, Guan-Hu; Hu, Feng-Lin; Huang, Bo; Li, Chun-Ru; Li, Zeng-Zhi

    2014-02-15

    A resazurin method was employed to test and compare cytotoxicity of extracts from fruiting bodies, insects and cultured mycelia of Cordyceps formosana against Chinese hamster ovary (CHO) cells. Results showed that the cultured mycelia had much stronger cytotoxicity than that of the fruiting bodies and infected insects. This suggests that using cultured mycelia to substitute a natural Cordyceps may result in poisoning. A combined method of HPLC-PAD-HRMS and cytotoxic analysis revealed that the most toxic compound (Compound 1) was found mainly in the cultured mycelia and also a small amount in the infected insect body of the Cordyceps, but not in the fruiting body. The second toxic compound (Compound 2) was found in all structures of Cordyceps and in cultured mycelia. Different contents of the toxic compounds resulted in the different cytotoxicity of the extracts. Compound 1 and Compound 2 were prepared with preparative HPLC as yellow and orange powders, respectively. Cytotoxic tests showed that the median lethal dose (LD₅₀) against CHO cells of Compound 1 was 18.3 ± 0.2 and 103.7 ± 5.9 μg/mL for Compound 2. Compound 1 and Compound 2 were identified as rugulosin and skyrin by HRMS, UV and NMR data. The two compounds were never previously isolated from the genera Cordyceps and Hirsutella and their cytotoxicity against CHO cells was also reported for the first time. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Lipid Accumulation in Hypoxic Tissue Culture Cells

    PubMed Central

    Gordon, Gerald B.; Barcza, Maureen A.; Bush, Marilyn E.

    1977-01-01

    Lipid droplets have long been recognized by light microscopy to accumulate in hypoxic cells both in vivo and in vitro. In the present tissue culture experiments, correlative electron microscopic observations and lipid analyses were performed to determine the nature and significance of lipid accumulation in hypoxia. Strain L mouse fibroblasts were grown in suspension culture, both aerobically and under severe oxygen restriction obtained by gassing cultures daily with an 8% CO2-92% nitrogen mixture. After 48 hours, hypoxic cells showed an increase in total lipid/protein ratio of 42% over control cells. Most of this increase was accounted for by an elevation in the level of cellular triglyceride from 12.3 ± 0.9 μg/mg cell protein in aerobic cultures to 41.9 ± 0.7 in the hypoxic cultures, an increase of 240%. Levels of cellular free fatty acids (FFA) were 96% higher in the hypoxic cultures. No significant changes in the levels of cellular phospholipid or cholesterol were noted. Electron microscopic examination revealed the accumulation of homogeneous cytoplasmic droplets. The hypoxic changes were reversible upon transferring the cultures to aerobic atmospheres with disappearance of the lipid. These experiments indicate that hypoxic injury initially results in triglyceride and FFA accumulation from an inability to oxidize fatty acids taken up from the media and not from autophagic processes, as described in other types of cell injury associated with the sequestration of membranous residues and intracellular cholesterol and phospholipid accumulation. ImagesFigure 3Figure 4Figure 5Figure 6Figure 7Figure 1Figure 2 PMID:196505

  13. Tissue-Specific Transcriptomics of the Exotic Invasive Insect Pest Emerald Ash Borer (Agrilus planipennis)

    PubMed Central

    Mittapalli, Omprakash; Bai, Xiaodong; Bonello, Pierluigi; Herms, Daniel A.

    2010-01-01

    Background The insect midgut and fat body represent major tissue interfaces that deal with several important physiological functions including digestion, detoxification and immune response. The emerald ash borer (Agrilus planipennis), is an exotic invasive insect pest that has killed millions of ash trees (Fraxinus spp.) primarily in the Midwestern United States and Ontario, Canada. However, despite its high impact status little knowledge exists for A. planipennis at the molecular level. Methodology and Principal Findings Newer-generation Roche-454 pyrosequencing was used to obtain 126,185 reads for the midgut and 240,848 reads for the fat body, which were assembled into 25,173 and 37,661 high quality expressed sequence tags (ESTs) for the midgut and the fat body of A. planipennis larvae, respectively. Among these ESTs, 36% of the midgut and 38% of the fat body sequences showed similarity to proteins in the GenBank nr database. A high number of the midgut sequences contained chitin-binding peritrophin (248)and trypsin (98) domains; while the fat body sequences showed high occurrence of cytochrome P450s (85) and protein kinase (123) domains. Further, the midgut transcriptome of A. planipennis revealed putative microbial transcripts encoding for cell-wall degrading enzymes such as polygalacturonases and endoglucanases. A significant number of SNPs (137 in midgut and 347 in fat body) and microsatellite loci (317 in midgut and 571 in fat body) were predicted in the A. planipennis transcripts. An initial assessment of cytochrome P450s belonging to various CYP clades revealed distinct expression patterns at the tissue level. Conclusions and Significance To our knowledge this study is one of the first to illuminate tissue-specific gene expression in an invasive insect of high ecological and economic consequence. These findings will lay the foundation for future gene expression and functional studies in A. planipennis. PMID:21060843

  14. Manipulation of host plant cells and tissues by gall-inducing insects and adaptive strategies used by different feeding guilds.

    PubMed

    Oliveira, D C; Isaias, R M S; Fernandes, G W; Ferreira, B G; Carneiro, R G S; Fuzaro, L

    2016-01-01

    Biologists who study insect-induced plant galls are faced with the overwhelming diversity of plant forms and insect species. A challenge is to find common themes amidst this diversity. We discuss common themes that have emerged from our cytological and histochemical studies of diverse neotropical insect-induced galls. Gall initiation begins with recognition of reactive plant tissues by gall inducers, with subsequent feeding and/or oviposition triggering a cascade of events. Besides, to induce the gall structure insects have to synchronize their life cycle with plant host phenology. We predict that reactive oxygen species (ROS) play a role in gall induction, development and histochemical gradient formation. Controlled levels of ROS mediate the accumulation of (poly)phenols, and phytohormones (such as auxin) at gall sites, which contributes to the new cell developmental pathways and biochemical alterations that lead to gall formation. The classical idea of an insect-induced gall is a chamber lined with a nutritive tissue that is occupied by an insect that directly harvests nutrients from nutritive cells via its mouthparts, which function mechanically and/or as a delivery system for salivary secretions. By studying diverse gall-inducing insects we have discovered that insects with needle-like sucking mouthparts may also induce a nutritive tissue, whose nutrients are indirectly harvested as the gall-inducing insects feeds on adjacent vascular tissues. Activity of carbohydrate-related enzymes across diverse galls corroborates this hypothesis. Our research points to the importance of cytological and histochemical studies for elucidating mechanisms of induced susceptibility and induced resistance. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. [Determination of nutrient elements in transgenic insect-resistant cotton tissues by three different spectroscopical methods].

    PubMed

    Sun, Cai-Xia; Zhang, Yu-Lan; Sun, Yu-Quan; Yang, Lei; Wang, Jie; Cui, Zhen-Bo

    2009-11-01

    In order to find out the effects of exogenous genes, such as Bt and Bt coupled with CpTI, on nutrition metabolism in transgenic plants, totally eleven types of nutrient elements in transgenic Bt (Z30) and Bt-CpTI (CCRI41 and SGK321) cotton were determined using methods of flame atomic absorption spectroscopy, flame atomic emission spectroscopy and spectrophotometry at flowering stage and boll-opening stage. The results showed that the chemical composition of plant nutrition in transgenic insect-resistant cotton differed in comparison with non-transgenic cotton counterparts related to varieties, tissues and stages. The content of total N in transgenic cotton changed most significantly. Especially, it increased by 21% for transgenic Bt cotton Z30 compared to non-transgenic cotton Z16. These changes in total N content were probably caused by both transgenes expression in transgenic cotton and other processes not studied in this experiment. The content of Mg, Na and Cu in transgenic cotton varied significantly only in some certain varieties or tissues. It was unobvious how the incorporation of transgenes impacted on the content of organic C, total P, total S, K, Ca, Fe and Zn in transgenic cotton. The authors speculated that there were no significant changes in utilization and accumulation of these nutrient elements between transgenic insect-resistant cotton and their non-transgenic cotton counterparts (Z16, CCRI23 and SY321, respectively).

  16. Effect of culture conditions on the degree of sialylation of a recombinant glycoprotein expressed in insect cells.

    PubMed

    Joosten, Christoph E; Shuler, Michael L

    2003-01-01

    Secreted human placental alkaline phosphatase (SEAP) was produced in a nonengineered Trichoplusia ni insect cell line, Tn-4s, using a recombinant Autographa californica baculovirus expression vector. The effect of culture conditions on SEAP specific yield and glycosylation was studied. When cultured in the high aspect ratio vessel (HARV) or in tissue culture flasks (T-flasks), baculovirus-infected Tn-4s cells produced high levels of SEAP (13 and 23 U/10(6) cells, respectively; 4 days postinfection), but in those conditions SEAP possessed only high mannose, paucimannosidic, and hybrid structures. In spinner flasks, lower SEAP yields were obtained (<4 U/10(6) cells, 3 days postinfection), but in such cultures, sialylation of SEAP could be achieved. Several spinner-flask culture conditions were tested and resulted in different SEAP specific yields and levels of sialylation. The highest level of sialylation (9%) was obtained in the culture with the lowest agitation rate and lowest yield (1.2 U/10(6) cells), suggesting a limiting capacity of the Tn-4s cells to process glycoproteins to sialylation. High specific yield, low passage number Tn5B1-4 cells did not produce SEAP with complex glycosylation when cultured in a low agitation rate spinner-flask. On the basis of these results, we propose that the Golgi apparatus has a limited capacity for processing proteins to complex glycosylation and sialylation and that this capacity is easily overwhelmed by high levels of foreign protein productivity. Selected media additives such as Pluronic F-68, dextran sulfate (MW 12 500) and a lipids premix did not allow improvement of the specific yield of sialylated SEAP when supplemented to spinner-flask cultures.

  17. Development of germ-free plants and tissue culture

    NASA Technical Reports Server (NTRS)

    Venketeswaran, S.

    1973-01-01

    The botanical program is reported for experiments performed at the Lunar Receiving Laboratory. Papers prepared during this program are listed. The studies reported include: tissues cultured on various mediums, nutritional studies, preparation of plant cultures for Apollo 15, and pine tissue cultures.

  18. Aeroponics for the culture of organisms, tissues and cells.

    PubMed

    Weathers, P J; Zobel, R W

    1992-01-01

    Characteristics of aeroponics are discussed. Contrast is made, where appropriate, with hydroponics and aero-hydroponics as applies to research and commercial applications of nutrient mist technology. Topics include whole plants, plant tissue cultures, cell and microbial cultures, and animal tissue cultures with regard to operational considerations (moisture, temperature, minerals, gaseous atmosphere) and design of apparati.

  19. THE EFFECT OF BACTERIAL TOXINS ON TISSUE CULTURE

    DTIC Science & Technology

    Bacterial toxins (excepting tetanic) caused various degrees of degenerative changes in the cells of a tissue culture of human embryos. The dynamics...effects of bacterial toxins on the cells of various kinds of tissue culture were noted. With the combined action of exotoxins on a culture of human

  20. Organotypic slice culture of embryonic brain tissue.

    PubMed

    Daza, Ray A M; Englund, Chris; Hevner, Robert F

    2007-12-01

    INTRODUCTIONThis protocol describes how to dissect, assemble, and cultivate mouse embryonic (E) brain tissue from age E11.5 to E18.5 (days) for organotypic slice culture. These preparations can be used for a variety of assays and studies including coculture of different brain regions, cell migration assays, axon guidance assays, and DNA electroporation experiments. During electroporation, an electric current is applied to the surface of a specific target area of the brain slice in order to open holes in the plasma membrane and introduce a plasmid of coding DNA. The floating slice-on-membrane construct helps to preserve the structural integrity of the brain slices, while maintaining easy experimental access and optimal viability. Experiments can be monitored in living slices (e.g., with confocal imaging), and further studies can be completed using slices that have been fixed and cryosectioned at the end of the experiment. Any region of embryonic brain or spinal tissue can be used in this protocol.

  1. Potential for forest tree improvement via tissue culture

    SciTech Connect

    Karnosky, D.F.

    1981-02-01

    The culture of cells, tissues, and organs in vitro offers unparalleled opportunity for forest tree improvement. Vegetative propagation of selected superior genotypes and hybrids, production and culture of haploids, asexual hybridization via protoplast fusion, freeze preservation of valuable genotypes, and the selection of cell lines tolerant to stresses such as diseases, drought, heavy metals, or salts through tissue culture may someday provide forest geneticists efficient and economical methods to supplement tree improvement programs. Heat treatments and meristem culture currently provide a pratical means of eliminating harmful virus and mycoplasma diseases from vegatively propagated trees. For the most part, however, the forest tree tissue culture research is only in its infancy. Research must be expanded to realize the full potential available from tissue culture. Considerable effort will be necessary to solve the many problems now deterring practical use of tissue culture in forest tree improvement and reforestation programs. (Refs. 93).

  2. Study Progress on Tissue Culture of Maize Mature Embryo

    NASA Astrophysics Data System (ADS)

    Wang, Hongzhen; Cheng, Jun; Cheng, Yanping; Zhou, Xioafu

    It has been paid more and more attention on maize tissue culture as it is a basic work in maize genetic transformation, especially huge breakthrough has been made in maize tissue culture utilizing mature embryos as explants in the recent years. This paper reviewed the study progress on maize tissue culture and plant regeneration utilizing mature embryos as explants from callus induction, subculture, plant regeneration and browning reduction and so on.

  3. An insect TEP in a crustacean is specific for cuticular tissues and involved in intestinal defense.

    PubMed

    Wu, Chenglin; Noonin, Chadanat; Jiravanichpaisal, Pikul; Söderhäll, Irene; Söderhäll, Kenneth

    2012-02-01

    In an attempt to identify genes encoding thioester-containing proteins in the freshwater crayfish, Pacifastacus leniusculus, three different cDNAs were found. A phylogenetic analysis of these proteins indicates that they can be classified into two subfamilies: two alpha-2-macroglobulins (Pl-A2M1, Pl-A2M2) showing a close similarity to shrimp A2M, and one insect TEP-like protein (Pl-TEP). This is the first report of an insect TEP-like protein in a crustacean. Crayfish Pl-A2M1, Pl-A2M2 and Pl-TEP cDNAs encode proteins with 1480, 1586 or 1507 amino acids, respectively. Pl-A2M1, Pl-A2M2 and Pl-TEP have the basic domain structure and functionally important residues for each molecule, and their mRNA was detected in different parts of the body, suggesting that they may have different functions. Pl-A2M1 was mainly expressed in hemocytes and Pl-A2M2 was highly expressed in heart and nerve, while Pl-TEP was exclusively expressed in cuticular tissues such as gill and intestine. RNA interference of Pl-TEP in vivo resulted in that these animals were slightly less resistant when fed with the bacterium, Pseudomonas libanensis/gessardii. Furthermore, when TEP activity was blocked using methylamine followed by bacterial feeding, the animals were killed to a higher extent compared to a control group. Taken together, this indicates that Pl-TEP and/or Pl-A2M1, Pl-A2M2 may be important for the immune defense in crayfish intestine and function as a pattern recognition protein in crayfish cuticular tissues.

  4. CONNECTIVE TISSUE SYNTHESIS BY SCLERODERMA SKIN FIBROBLASTS IN CELL CULTURE

    PubMed Central

    Leroy, E. Carwile

    1972-01-01

    Skin fibroblasts from subjects with scleroderma and control subjects were grown in tissue culture to compare the characteristics of connective tissue metabolism. A striking increase in soluble collagen (media hydroxyproline) was observed in eight of nine scleroderma cultures when they were compared with identically handled control cultures matched for the age and sex of the donor and the anatomic site of the donor skin. Glycoprotein content as estimated by hexosamine and sialic acid was also significantly increased in the scleroderma cultures. Estimations of protein-polysaccharide content by uronic acid determinations were low in all cultures and not significantly increased in scleroderma cultures. This report demonstrates the feasibility of using fibroblast cell cultures to study chronic rheumatic and connective tissue disorders. The initial results suggest a net increase in collagen and glycoprotein synthesis in scleroderma fibroblast cultures. The implications of an abnormality of connective tissue metabolism by skin fibroblasts propagated in vitro in the acquired disorder scleroderma are discussed. PMID:4260235

  5. Citrus tissue culture employing vegetative explants.

    PubMed

    Chaturvedi, H C; Singh, S K; Sharma, A K; Agnihotri, S

    2001-11-01

    Citrus being a number one fruit of the world due to its high nutritional value, huge production of fruits and fruit products, the citrus industry may be considered a major fruit industry. Though citrus orchard area in India is comparable to USA, the produce is far less, while its export is nil. Biotechnology has played an outstanding role in boosting the citrus industry, e.g., in Spain, which is now the biggest exporter of citrus fruit with the application of micrografting. Amongst the fruit trees, perhaps the maximum tissue culture research has been done in citrus during the past four decades, however, the results of practical value are meagre. The shortfalls in citrus tissue culture research and some advancements made in this direction along with bright prospects are highlighted, restricting the review to vegetative explants only. Whilst utilization of nucellar embryogenesis is limited to rootstocks, the other aspects, like, regeneration and proliferation of shoot meristems measuring 200 microm in length--a global breakthrough--of two commercially important scion species, Citrus aurantifolia and C. sinensis and an important rootstock, C. limonia, improvement of micrografting technique, cloning of the same two scion species as well as some Indian rootstock species, employing nodal stem segments of mature trees, of immense practical value have been elaborated. A rare phenomenon of shift in the morphogenetic pattern of differentiation from shoot bud differentiation to embryoid formation occurred during the long-term culture of stem callus of C. grandis. Stem callus-regenerated plants of C. aurantifolia, C. sinensis and C. grandis showed variation in their ploidy levels and a somaclonal variant of C. sinensis, which produced seedless fruits was isolated. Tailoring of rooting in microshoots to a tap root-like system by changing the inorganic salt composition of the rooting medium, resulting in 100% transplant success, and germplasm preservation through normal growth

  6. Real-time imaging reveals unique heterogeneous population features in insect cell cultures.

    PubMed

    Hidalgo, David; Paz, Enrique; Palomares, Laura A; Ramírez, Octavio T

    2017-10-10

    Heterogeneity of cellular populations has been frequently observed. We used live cell imaging to follow Sf9 insect cells before and after infection with baculovirus, to understand population dynamics. It was possible to identify in real time cells with distinctive phenotypes. Mobile cells with an elongated bipolar shape were observed. They extended pseudopods and actively moved about the culture surface. The presence of actively moving elongated cells increased when cultures were subjected to oxygen limiting or excessive conditions, suggesting that stress triggered differentiation of cells to the mobile phenotype. A dual reporter baculovirus (DRBac), coding for two fluorescent proteins under promoters with different temporality, was designed to follow sequential phenomena through infection. Oxygen limitation reduced the number of cells that expressed the reporter proteins, possibly because it reduced the efficiency of baculovirus infection. Elongated cells did not show signs of infection. To our knowledge, this is the first time that actively moving cells are observed in real time in Sf9 cultures, which had distinctive responses towards infection. Anoxia was identified as a factor that modulates baculovirus infection. Results open a new approach for understanding the insect-cell baculovirus system. Particular cellular phenotypes with unique traits can be isolated for specific applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Development of an insect vector cell culture and RNA interference system to investigate the functional role of fijivirus replication protein.

    PubMed

    Jia, Dongsheng; Chen, Hongyan; Zheng, Ailing; Chen, Qian; Liu, Qifei; Xie, Lianhui; Wu, Zujian; Wei, Taiyun

    2012-05-01

    An in vitro culture system of primary cells from white-backed planthopper, an insect vector of Southern rice black-streaked dwarf virus (SRBSDV), a fijivirus, was established to study replication of the virus. Viroplasms, putative sites of viral replication, contained the nonstructural viral protein P9-1, viral RNA, outer-capsid proteins, and viral particles in virus-infected cultured insect vector cells, as revealed by transmission electron and confocal microscopy. Formation of viroplasm-like structures in non-host insect cells upon expression of P9-1 suggested that the matrix of viroplasms observed in virus-infected cells was composed basically of P9-1. In cultured insect vector cells, knockdown of P9-1 expression due to RNA interference (RNAi) induced by synthesized double-stranded RNA (dsRNA) from the P9-1 gene strongly inhibited viroplasm formation and viral infection. RNAi induced by ingestion of dsRNA strongly abolished viroplasm formation, preventing efficient viral spread in the body of intact vector insects. All these results demonstrated that P9-1 was essential for viroplasm formation and viral replication. This system, combining insect vector cell culture and RNA interference, can further advance our understanding of the biological activities of fijivirus replication proteins.

  8. In situ immune infrared fluorescent staining for detection and quantitation of bluetongue virus in Culicoides insect cell culture.

    PubMed

    Mecham, James O; Brown, Philip L; McHolland, Linda E

    2009-06-01

    Bluetongue virus (BTV) is transmitted to sheep, cattle and other ruminants by Culicoides spp. of biting midges. Cell lines have been developed from Culicoides sonorensis; however, techniques to detect and quantitate viable virus directly in these insect cells are lacking. In situ immune infrared fluorescent staining techniques were developed to visualize and quantitate BTV infection in Culicoides cell culture by both an endpoint titration and an agarose overlay fluorescent focus assay. Insect cell cultures infected with BTV were fixed, permeabilized and reacted with virus-specific monoclonal antibody and fluorescent-labeled secondary antibody. Virus replication in the infected cells was visualized and quantitated by measuring fluorescence with an infrared imager. The sensitivity of virus detection in insect cell culture using these techniques was comparable to or better than detection by standard techniques in vertebrate cell culture.

  9. Comparative venom toxicity between Pteromalus puparum and Nasonia vitripennis (Hymenoptera: Pteromalidae) toward the hemocytes of their natural hosts, non-target insects and cultured insect cells.

    PubMed

    Zhang, Zhong; Ye, Gong-Yin; Cai, Jun; Hu, Cui

    2005-09-01

    Crude venoms from two parasitoid species, Pteromalus puparum and Nasonia vitripennis (Hymenoptera: Pteromalidae) were assayed for biological activities toward hemocytes from two species of their natural hosts and eight species of their non-natural hosts as well as two lines of cultured Lepidoptera cells, respectively. By inhibiting the spreading and viability of insect hemocytes, the venom from P. puparum displayed significantly higher activities toward plasmatocytes and granular cells from both larvae and pupae of two natural hosts, Pieris rapae and Papilio xuthus, and lower activity toward those from Spodoptera litura, Musca domestica and Sarcophaga peregrina. However, no effect was found towards any type of hemocytes from other five insects tested, namely, Ectropis oblique, Galleria mellonella, Sesamia inferens, Bombyx mori and Parnara guttata. In contrast, the venom from N. vitripennis showed a narrower range of targeted insects. It appeared to have highly adverse effects on the spreading and viability of plasmatocytes and granular cells only from the natural hosts, M. domestica and S. peregrina, little toxicity to cells from P. rapae and P. xuthus, and no effect on any of the other insects tested. Pteromalus puparum venom also apparently presented a high ability to block the spreading of Tn-5B1-4 cells derived from Trichoplusia ni, and high cytotoxicity to the cells and Ha cells derived from Helicoverpa armigera. Nasonia vitripennis venom, however, only had a marked lethal effect to Ha cells. In addition, the possibility that the host range of a defined parasitoid could be assessed using our method of treating hemocytes from candidate insects with venom in vitro, and the potential of our venoms tested in the development of bio-insecticides, insect-resistant transgenic plants, are discussed.

  10. Effect of lunar materials on plant tissue culture.

    NASA Technical Reports Server (NTRS)

    Walkinshaw, C. H.; Venketeswaran, S.; Baur, P. S.; Croley, T. E.; Scholes, V. E.; Weete, J. D.; Halliwell, R. S.; Hall, R. H.

    1973-01-01

    Lunar material collected during the Apollo 11, 12, 14, and 15 missions has been used to treat 12 species of higher plant tissue cultures. Biochemical and morphological studies have been conducted on several of these species. Tobacco tissue cultures treated with 0.22 g of lunar material exhibited increased greening more complex chloroplasts, less cytoplasmic vacuolation and greater vesiculation. Pine tissue cultures reacted to treatment by an increased deposition of tannin-like materials. The percentage of dry weight and soluble protein was increased in cultures treated with either lunar or terrestrial rock materials.

  11. Effect of lunar materials on plant tissue culture.

    NASA Technical Reports Server (NTRS)

    Walkinshaw, C. H.; Venketeswaran, S.; Baur, P. S.; Croley, T. E.; Scholes, V. E.; Weete, J. D.; Halliwell, R. S.; Hall, R. H.

    1973-01-01

    Lunar material collected during the Apollo 11, 12, 14, and 15 missions has been used to treat 12 species of higher plant tissue cultures. Biochemical and morphological studies have been conducted on several of these species. Tobacco tissue cultures treated with 0.22 g of lunar material exhibited increased greening more complex chloroplasts, less cytoplasmic vacuolation and greater vesiculation. Pine tissue cultures reacted to treatment by an increased deposition of tannin-like materials. The percentage of dry weight and soluble protein was increased in cultures treated with either lunar or terrestrial rock materials.

  12. Basic techniques in mammalian cell tissue culture.

    PubMed

    Phelan, Katy; May, Kristin M

    2015-03-02

    Cultured mammalian cells are used extensively in cell biology studies. It requires a number of special skills in order to be able to preserve the structure, function, behavior, and biology of the cells in culture. This unit describes the basic skills required to maintain and preserve cell cultures: maintaining aseptic technique, preparing media with the appropriate characteristics, passaging, freezing and storage, recovering frozen stocks, and counting viable cells.

  13. Explant culture of sarcoma patients' tissue.

    PubMed

    Muff, Roman; Botter, Sander M; Husmann, Knut; Tchinda, Joelle; Selvam, Philomina; Seeli-Maduz, Franziska; Fuchs, Bruno

    2016-07-01

    Human sarcomas comprise a heterogeneous group of rare tumors that affect soft tissues and bone. Due to the scarcity and heterogeneity of these diseases, patient-derived cells that can be used for preclinical research are limited. In this study, we investigated whether the tissue explant technique can be used to obtain sarcoma cell lines from fresh as well as viable frozen tissue obtained from 8 out of 12 soft tissue and 9 out of 13 bone tumor entities as defined by the World Health Organization. The success rate, defined as the percent of samples that yielded sufficient numbers of outgrowing cells to be frozen, and the time to freeze were determined for a total of 734 sarcoma tissue specimens. In 552 cases (75%) enough cells were obtained to be frozen at early passage. Success rates were higher in bone tumors (82%) compared with soft tissue tumors (68%), and the mean time to freezing was lower in bone tumors (65 days) compared with soft tissue tumors (84 days). Overall, from 40% of the tissues cells could be frozen at early passage within <2 month after tissue removal. Comparable results as with fresh tissue were obtained after explant of viable frozen patient-derived material. In a selected number of bone and soft tissue sarcoma entities, conventional karyotyping and/or FISH (fluorescence in situ hybridization) analysis revealed a high amount (>60%) of abnormal cells in 41% of analyzed samples, especially in bone sarcomas (osteosarcoma and Ewing sarcoma). In conclusion, the explant technique is well suited to establish patient-derived cell lines for a large majority of bone and soft tissue sarcoma entities with adequate speed. This procedure thus opens the possibility for molecular analysis and drug testing for therapeutic decision making even during patient treatment.

  14. Plant Tissue Cultures of Juniperus virginiana.

    PubMed

    Kašparová, Marie; Spilková, Jirina; Cvak, Ladislav; Siatka, Tomáš; Martin, Jan

    2016-05-01

    Callus cultures of Juniperus virginiana L. (varieties 'Hetzii', 'Glauca', 'Grey Owl') were derived from fresh leaves of garden-grown trees on Schenk and Hildebrandt medium supplemented with 3.0 mg/L of α-naphthaleneacetic acid, 0.2 mg/L of kinetin and 15 mg/L of ascorbic acid. The growth characteristics of one-year-old and two-years-old cultures were determined. The maximum biomass in all varieties was achieved on the 35th day of the cultivation period. The increase in fresh weights of two-years-old callus cultures, when compared with one-year-old callus cultures, was as follows: variety 'Hetzii' by 25%, variety 'Glauca' by 29% and variety 'Grey Owl' by 49%. J. virginiana suspension cultures (varieties 'Hetzii', 'Glauca', 'Grey Owl') were derived from two-years-old callus cultures on Schenk and Hildebrandt medium supplemented with 3.0 mg/L of α-naphthaleneacetic acid, 0.2 mg/L of kinetin and 15 mg/L of ascorbic acid. The maximum biomass of all varieties was found on the 21st day of the cultivation period. These results indicate that a sub-cultivation interval of 35 days for callus cultures and of 21st days for suspension cultures can be recommended. The callus and suspension cultures of J. virginiana of the variety 'Glauca' have the best survivability and thus provide the most biomass.

  15. Influence of simulated microgravity on the longevity of insect-cell culture

    NASA Technical Reports Server (NTRS)

    Cowger, N. L.; O'Connor, K. C.; Bivins, J. E.

    1997-01-01

    Simulated microgravity within the NASA High Aspect Rotating-Wall Vessel (HARV) provides a quiescent environment to culture fragile insect cells. In this vessel, the duration of stationary and death phase for cultures of Spodoptera frugiperda cells was greatly extended over that achieved in shaker-flask controls. For both HARV and control cultures, S. frugiperda cells grew to concentrations in excess of 1 x 10(7) viable cells ml-1 with viabilities greater than 90%. In the HARV, stationary phase was maintained 9-15 days in contrast to 4-5 days in the shaker flask. Furthermore, the rate of cell death was reduced in the HARV by a factor of 20-90 relative to the control culture and was characterized with a death rate constant of 0.01-0.02 day-1. Beginning in the stationary phase and continuing in the death phase, there was a significant decrease in population size in the HARV versus an increase in the shaker flask. This phenomenon could represent cell adaptation to simulated microgravity and/or a change in the ratio of apoptotic to necrotic cells. Differences observed in this research between the HARV and its control were attributed to a reduction in hydrodynamic forces in the microgravity vessel.

  16. Influence of simulated microgravity on the longevity of insect-cell culture

    NASA Technical Reports Server (NTRS)

    Cowger, N. L.; O'Connor, K. C.; Bivins, J. E.

    1997-01-01

    Simulated microgravity within the NASA High Aspect Rotating-Wall Vessel (HARV) provides a quiescent environment to culture fragile insect cells. In this vessel, the duration of stationary and death phase for cultures of Spodoptera frugiperda cells was greatly extended over that achieved in shaker-flask controls. For both HARV and control cultures, S. frugiperda cells grew to concentrations in excess of 1 x 10(7) viable cells ml-1 with viabilities greater than 90%. In the HARV, stationary phase was maintained 9-15 days in contrast to 4-5 days in the shaker flask. Furthermore, the rate of cell death was reduced in the HARV by a factor of 20-90 relative to the control culture and was characterized with a death rate constant of 0.01-0.02 day-1. Beginning in the stationary phase and continuing in the death phase, there was a significant decrease in population size in the HARV versus an increase in the shaker flask. This phenomenon could represent cell adaptation to simulated microgravity and/or a change in the ratio of apoptotic to necrotic cells. Differences observed in this research between the HARV and its control were attributed to a reduction in hydrodynamic forces in the microgravity vessel.

  17. Ex Vivo Culture of Patient Tissue & Examination of Gene Delivery

    PubMed Central

    Rajendran, Simon; Salwa, Slawomir; Gao, Xuefeng; Tabirca, Sabin; O'Hanlon, Deirdre; O'Sullivan, Gerald C.; Tangney, Mark

    2010-01-01

    This video describes the use of patient tissue as an ex vivo model for the study of gene delivery. Fresh patient tissue obtained at the time of surgery is sliced and maintained in culture. The ex vivo model system allows for the physical delivery of genes into intact patient tissue and gene expression is analysed by bioluminescence imaging using the IVIS detection system. The bioluminescent detection system demonstrates rapid and accurate quantification of gene expression within individual slices without the need for tissue sacrifice. This slice tissue culture system may be used in a variety of tissue types including normal and malignant tissue and allows us to study the effects of the heterogeneous nature of intact tissue and the high degree of variability between individual patients. This model system could be used in certain situations as an alternative to animal models and as a complementary preclinical mode prior to entering clinical trial. PMID:21326169

  18. Tissue culture of Sophora tonkinensis Gapnep. and its quality evaluation.

    PubMed

    Kun-Hua, Wei; Lin-Xuan, Li; Yong-Cai, Huang; Mei-Ying, Wang; Cui, Li; Jian-Hua, Miao

    2013-10-01

    Sophora tonkinensis Gapnep. is an important rare medicinal plant in China. There were only a few papers on the rapid propagation of S. tonkinensis through in vitro tissue culture, and still no report focuses on the quality analysis of in vitro tissue culture plantlets. The different concentrations of 6-benzylaminopurine (BAP), kinetin (KT), and indole-3-acetic acid (IAA) were used to establish and screen the optimal rapid propagation technology of S. tonkinensis by orthogonal test; the different concentrations of a-naphthalene acetic acid (NAA), indole-3-butyric acid (IBA), and ABT rooting power (ABT) were used to screen the optimal rooting technology. For quality evaluation of tissue culture plants, three different sites were chose to finish planting experiment. The leaf characteristics, radix ex rhizoma yield, and contents of matrine and oxymatrine were evaluated, respectively, to provide evidence of high yield and good qualities of tissue culture plants. A large number of buds could be induced directly from epicotyl and hypocotyl explants on the Murashige and Skoog (MS) medium supplemented with 1.5 mg/l BAP, 0.5 mg/l IAA, and 0.5 mg/l KT; the best root induction medium was solid MS medium at half the macronutrient concentration supplemented with 1.0 mg/l NAA, 0.4 mg/l IBA, and 0.1 mg/l ABT. The rooting rate was 98%. All tissue culture plants showed normal leaf characteristics. Tissue culture plants from two sites possessed higher radix ex rhizoma yield and overall productivity of matrine and oxymatrine than those of seed plants. Tissue culture is a rapid, effective, and convenient propagation method for S. tonkinensis, and the quality of S. tonkinensis tissue culture plants meets the requirement of quality standard of China Pharmacopoeia (edition 2010), the crude drug from S. tonkinensis tissue culture plants will be suitable for substituting the crude drug from seed plants.

  19. Alkaloid production by callous tissue cultures of Cereus peruvianus (Cactaceae).

    PubMed

    de Oliveira, Arildo José Braz; Machado, Maria Fátima Pires da Silva

    2003-02-01

    The morphologically undifferentiated cells of nonregenerant callous tissue of Cereus peruvianus cultured in the original medium and in medium supplemented with tyrosine were used as an alkaloid source. Comparison of alkaloid production by C. peruvianus plants and by callous tissues indicated that alkaloid levels were almost twice as high in callous tissues as in shoots of C. peruvianus plants. The ratio of alkaloid concentration between mature plant and morphologically undifferentiated cells of callous tissue was 1:1.7. A relationship between culture medium containing tyrosine and alkaloid production was also observed in the callous tissues of C. peruvianus. Since increased alkaloid production may be induced by additional factors such as tyrosine, increasing levels of tyrosine or other conditions of the culture medium may be considered factors for inducing higher alkaloid production by C. peruvianus callous tissues.

  20. The isotopic composition and insect content of diet predict tissue isotopic values in a South American passerine assemblage.

    PubMed

    Sabat, Pablo; Ramirez-Otarola, Natalia; Bozinovic, Francisco; del Rio, Carlos Martínez

    2013-04-01

    We analyzed the carbon and nitrogen isotopic values of the muscle, liver, and crop contents ("diet") of 132 individuals of 16 species of Chilean birds. The nitrogen content of diet was tightly correlated with the fraction of gut contents represented by insects relative to plant material. The carbon and nitrogen isotopic values of diet, liver, and muscle were all linearly correlated, implying high temporal consistency in the isotopic value of the diet of these birds. However, δ(15)N was not significantly related with the percentage of insects in diet. These results cast doubt on the applicability of the use of (15)N enrichment to diagnose trophic level in, at least some, terrestrial ecosystems. However, the residuals of the relationship relating the isotopic value of bird tissues with those of their diet were weakly negatively correlated with insect intake. We hypothesize that this negative correlation stems from the higher quality of protein found in insects relative to that of plant materials. Finally, our data corroborated a perplexing and controversial negative relationship between tissue to diet isotopic discrimination and the isotopic value of diet. We suggest that this relationship is an example of the commonly observed regression to the mean effect that plagues many scientific studies.

  1. Flavonoids produced by tissue culture of Dracaena cambodiana.

    PubMed

    Wang, Hui; Luo, Guanyong; Wang, Jiayuan; Shen, Haiyan; Luo, Ying; Dai, Haofu; Mei, Wenli

    2014-01-01

    Dragon's blood is a traditional medicine used in many countries of many cultures because of its various therapeutic uses, and its main bioactive compounds are flavonoids, which mainly exhibit antitumor and antimicrobial activities. In the process of tissue culture of Dracaena cambodiana, one of its resource plants, red secretion was discovered in the culture when 6-benzylaminopurine was added. Analysis of its constituents by HPLC in comparison with dragon's blood and the standards proved that 17 compounds, including 10 flavonoids, are the same as those in dragon's blood. It is promising that flavonoids from dragon's blood could be produced by tissue culture of its resource plants for the development of new drugs.

  2. Cytological studies of lunar treated tissue cultures

    NASA Technical Reports Server (NTRS)

    Halliwell, R. S.

    1972-01-01

    An electron microscopic study was made of botanical materials, particularly pine tissues, treated with lunar materials collected by Apollo 12 quarantine mission. Results show unusual structural changes within several of the treated tissues. The bodies, as yet unidentified, resemble virus particles observed within infected plant cells. Although the size and shape of the structures are comparable to rod shaped virus particles such as Tobacco mosaic, the numerical distribution, affinity for stains, and intercellular location are different.

  3. Using Tissue Culture To Investigate Plant Cell Differentiation and Dedifferentiation.

    ERIC Educational Resources Information Center

    Bozzone, Donna M.

    1997-01-01

    Describes an experimental project that uses plant tissue culture techniques to examine cell differentiation in the carrot. Allows students to gain experience in some important techniques and to explore fundamental questions about cell differentiation. (DDR)

  4. Using Tissue Culture To Investigate Plant Cell Differentiation and Dedifferentiation.

    ERIC Educational Resources Information Center

    Bozzone, Donna M.

    1997-01-01

    Describes an experimental project that uses plant tissue culture techniques to examine cell differentiation in the carrot. Allows students to gain experience in some important techniques and to explore fundamental questions about cell differentiation. (DDR)

  5. Soybean Tissue Culture - Apollo 15 Lunar Material Growth

    NASA Image and Video Library

    1971-10-01

    S71-51315 (1 Oct. 1971) --- A close-up view of soybean tissue culture growing in a synthetic medium and Apollo 15 lunar material. Note the greening occurring in areas in contact with the soil particles.

  6. Three-dimensional tissue culture based on magnetic cell levitation.

    PubMed

    Souza, Glauco R; Molina, Jennifer R; Raphael, Robert M; Ozawa, Michael G; Stark, Daniel J; Levin, Carly S; Bronk, Lawrence F; Ananta, Jeyarama S; Mandelin, Jami; Georgescu, Maria-Magdalena; Bankson, James A; Gelovani, Juri G; Killian, T C; Arap, Wadih; Pasqualini, Renata

    2010-04-01

    Cell culture is an essential tool in drug discovery, tissue engineering and stem cell research. Conventional tissue culture produces two-dimensional cell growth with gene expression, signalling and morphology that can be different from those found in vivo, and this compromises its clinical relevance. Here, we report a three-dimensional tissue culture based on magnetic levitation of cells in the presence of a hydrogel consisting of gold, magnetic iron oxide nanoparticles and filamentous bacteriophage. By spatially controlling the magnetic field, the geometry of the cell mass can be manipulated, and multicellular clustering of different cell types in co-culture can be achieved. Magnetically levitated human glioblastoma cells showed similar protein expression profiles to those observed in human tumour xenografts. Taken together, these results indicate that levitated three-dimensional culture with magnetized phage-based hydrogels more closely recapitulates in vivo protein expression and may be more feasible for long-term multicellular studies.

  7. Three-dimensional tissue culture based on magnetic cell levitation

    NASA Astrophysics Data System (ADS)

    Souza, Glauco R.; Molina, Jennifer R.; Raphael, Robert M.; Ozawa, Michael G.; Stark, Daniel J.; Levin, Carly S.; Bronk, Lawrence F.; Ananta, Jeyarama S.; Mandelin, Jami; Georgescu, Maria-Magdalena; Bankson, James A.; Gelovani, Juri G.; Killian, T. C.; Arap, Wadih; Pasqualini, Renata

    2010-04-01

    Cell culture is an essential tool in drug discovery, tissue engineering and stem cell research. Conventional tissue culture produces two-dimensional cell growth with gene expression, signalling and morphology that can be different from those found in vivo, and this compromises its clinical relevance. Here, we report a three-dimensional tissue culture based on magnetic levitation of cells in the presence of a hydrogel consisting of gold, magnetic iron oxide nanoparticles and filamentous bacteriophage. By spatially controlling the magnetic field, the geometry of the cell mass can be manipulated, and multicellular clustering of different cell types in co-culture can be achieved. Magnetically levitated human glioblastoma cells showed similar protein expression profiles to those observed in human tumour xenografts. Taken together, these results indicate that levitated three-dimensional culture with magnetized phage-based hydrogels more closely recapitulates in vivo protein expression and may be more feasible for long-term multicellular studies.

  8. Tissue-Culture Method of Cloning Rubber Plants

    NASA Technical Reports Server (NTRS)

    Ball, E. A.

    1983-01-01

    Guayule plant, a high-yield rubber plant cloned by tissue-culture method to produce multiple new plants that mature quickly. By adjusting culture medium, excised shoot tip produces up to 50 identical guayule plants. Varying concentration of cytokinin, single excised tip produces either 1 or several (up to 50) new plants.

  9. Explant exenisation for tissue culture in marine macroalgae

    NASA Astrophysics Data System (ADS)

    Liu, Xuewu; Kloareg, Bernard

    1992-09-01

    Unialgal explants from Laminaria digitata, and from a variety of red algae, were obtained by hand removing the visible epiphytes, and stirring the tissue in the presence of glass beads. Two antibiotic mixtures were found to be efficient in removing the contaminating fungi and bacteria from the algae. The procedure proved suitable as a primary step in the tissue culture of the investigated species.

  10. [Issues of large scale tissue culture of medicinal plant].

    PubMed

    Lv, Dong-Mei; Yuan, Yuan; Zhan, Zhi-Lai

    2014-09-01

    In order to increase the yield and quality of the medicinal plant and enhance the competitive power of industry of medicinal plant in our country, this paper analyzed the status, problem and countermeasure of the tissue culture of medicinal plant on large scale. Although the biotechnology is one of the most efficient and promising means in production of medicinal plant, it still has problems such as stability of the material, safety of the transgenic medicinal plant and optimization of cultured condition. Establishing perfect evaluation system according to the characteristic of the medicinal plant is the key measures to assure the sustainable development of the tissue culture of medicinal plant on large scale.

  11. Isolation of mitochondria from tissue culture cells.

    PubMed

    Clayton, David A; Shadel, Gerald S

    2014-10-01

    The number of mitochondria per cell varies substantially from cell line to cell line. For example, human HeLa cells contain at least twice as many mitochondria as smaller mouse L cells. This protocol starts with a washed cell pellet of 1-2 mL derived from ∼10⁹ cells grown in culture. The cells are swollen in a hypotonic buffer and ruptured with a Dounce or Potter-Elvehjem homogenizer using a tight-fitting pestle, and mitochondria are isolated by differential centrifugation. © 2014 Cold Spring Harbor Laboratory Press.

  12. Tissue culture apparatus for flight experimentation

    NASA Technical Reports Server (NTRS)

    Scheld, H. W.; Magnuson, J. W.; Krikorian, A. D.

    1985-01-01

    The development of an apparatus for in-flight treatment of cells, tissues, or small organisms for microscopic and chemical analyses is discussed. The hardware for the apparatus is to have: (1) automated functions, (2) the capability to interface with ground-based facilities, (3) independently controlled chambers, (4) variable chamber configurations and volumes, and (4) the capabilities for processing the materials. The components of the equipment used on Skylab 3 for the study of animal cells are described. The design of an apparatus which incorporates all the required capabilities is proposed.

  13. Tissue culture apparatus for flight experimentation

    NASA Technical Reports Server (NTRS)

    Scheld, H. W.; Magnuson, J. W.; Krikorian, A. D.

    1985-01-01

    The development of an apparatus for in-flight treatment of cells, tissues, or small organisms for microscopic and chemical analyses is discussed. The hardware for the apparatus is to have: (1) automated functions, (2) the capability to interface with ground-based facilities, (3) independently controlled chambers, (4) variable chamber configurations and volumes, and (4) the capabilities for processing the materials. The components of the equipment used on Skylab 3 for the study of animal cells are described. The design of an apparatus which incorporates all the required capabilities is proposed.

  14. Associative Mechanisms Allow for Social Learning and Cultural Transmission of String Pulling in an Insect.

    PubMed

    Alem, Sylvain; Perry, Clint J; Zhu, Xingfu; Loukola, Olli J; Ingraham, Thomas; Søvik, Eirik; Chittka, Lars

    2016-10-01

    Social insects make elaborate use of simple mechanisms to achieve seemingly complex behavior and may thus provide a unique resource to discover the basic cognitive elements required for culture, i.e., group-specific behaviors that spread from "innovators" to others in the group via social learning. We first explored whether bumblebees can learn a nonnatural object manipulation task by using string pulling to access a reward that was presented out of reach. Only a small minority "innovated" and solved the task spontaneously, but most bees were able to learn to pull a string when trained in a stepwise manner. In addition, naïve bees learnt the task by observing a trained demonstrator from a distance. Learning the behavior relied on a combination of simple associative mechanisms and trial-and-error learning and did not require "insight": naïve bees failed a "coiled-string experiment," in which they did not receive instant visual feedback of the target moving closer when tugging on the string. In cultural diffusion experiments, the skill spread rapidly from a single knowledgeable individual to the majority of a colony's foragers. We observed that there were several sequential sets ("generations") of learners, so that previously naïve observers could first acquire the technique by interacting with skilled individuals and, subsequently, themselves become demonstrators for the next "generation" of learners, so that the longevity of the skill in the population could outlast the lives of informed foragers. This suggests that, so long as animals have a basic toolkit of associative and motor learning processes, the key ingredients for the cultural spread of unusual skills are already in place and do not require sophisticated cognition.

  15. Associative Mechanisms Allow for Social Learning and Cultural Transmission of String Pulling in an Insect

    PubMed Central

    Zhu, Xingfu; Ingraham, Thomas; Søvik, Eirik

    2016-01-01

    Social insects make elaborate use of simple mechanisms to achieve seemingly complex behavior and may thus provide a unique resource to discover the basic cognitive elements required for culture, i.e., group-specific behaviors that spread from “innovators” to others in the group via social learning. We first explored whether bumblebees can learn a nonnatural object manipulation task by using string pulling to access a reward that was presented out of reach. Only a small minority “innovated” and solved the task spontaneously, but most bees were able to learn to pull a string when trained in a stepwise manner. In addition, naïve bees learnt the task by observing a trained demonstrator from a distance. Learning the behavior relied on a combination of simple associative mechanisms and trial-and-error learning and did not require “insight”: naïve bees failed a “coiled-string experiment,” in which they did not receive instant visual feedback of the target moving closer when tugging on the string. In cultural diffusion experiments, the skill spread rapidly from a single knowledgeable individual to the majority of a colony’s foragers. We observed that there were several sequential sets (“generations”) of learners, so that previously naïve observers could first acquire the technique by interacting with skilled individuals and, subsequently, themselves become demonstrators for the next “generation” of learners, so that the longevity of the skill in the population could outlast the lives of informed foragers. This suggests that, so long as animals have a basic toolkit of associative and motor learning processes, the key ingredients for the cultural spread of unusual skills are already in place and do not require sophisticated cognition. PMID:27701411

  16. Three-dimensional Tissue Culture Based on Magnetic Cell Levitation

    PubMed Central

    Souza, Glauco R.; Molina, Jennifer R.; Raphael, Robert M.; Ozawa, Michael G.; Stark, Daniel J.; Levin, Carly S.; Bronk, Lawrence F.; Ananta, Jeyarama S.; Mandelin, Jami; Georgescu, Maria-Magdalena; Bankson, James A.; Gelovani, Juri G.

    2015-01-01

    Cell culture is an essential tool for drug discovery, tissue engineering, and stem cell research. Conventional tissue culture produces two-dimensional (2D) cell growth with gene expression, signaling, and morphology that can differ from those in vivo and thus compromise clinical relevancy1–5. Here we report a three-dimensional (3D) culture of cells based on magnetic levitation in the presence of hydrogels containing gold and magnetic iron oxide (MIO) nanoparticles plus filamentous bacteriophage. This methodology allows for control of cell mass geometry and guided, multicellular clustering of different cell types in co-culture through spatial variance of the magnetic field. Moreover, magnetic levitation of human glioblastoma cells demonstrates similar protein expression profiles to those observed in human tumor xenografts. Taken together, these results suggest levitated 3D culture with magnetized phage-based hydrogels more closely recapitulates in vivo protein expression and allows for long-term multi-cellular studies. PMID:20228788

  17. Use of diathermy for weeding heterogeneous tissue cultures.

    PubMed

    Marks, R M; Penny, R

    1986-06-01

    Cultures generated from tissues consisting of multiple types of cells are often heterogeneous. Unless the cell type of interest has or can be given some selective growth advantage it may be overgrown by other cells. While developing techniques for the tissue culture of microvascular endothelial cells we evaluated an electrosurgical generator (diathermy) to selectively kill nonendothelial cells. Primary cell cultures were observed at X 100 magnification under phase contrast microscopy and a needle electrode apposed to the cell to be destroyed. A return electrode was constructed by placing a sterile clip in contact with the culture medium. The diathermy power setting controlled the area of lysis. Use of this technique allowed weeding of unwanted cells without damage to endothelial cells, which were able to grow to confluence in pure culture.

  18. Analysing tissue and gene function in intestinal organ culture.

    PubMed

    Abud, Helen E; Young, Heather M; Newgreen, Donald F

    2008-01-01

    The study of growth, differentiation, and migration of different cell types within the developing intestine has been enhanced by the development of methods to grow intestinal tissue in organ culture. Here, we describe the innovative method of catenary culture where the tubular architecture of the intestine is maintained and normal cell differentiation occurs. Rapid analysis of gene function can be achieved using low voltage, square wave electroporation to introduce expression constructs into the epithelial cell layer of cultured explants. This whole-organ culture system allows cells, signalling pathways, and gene function to be analysed in intact explants of embryonic gut that are accessible for experimental manipulation and live cell imaging.

  19. Monolayer and three-dimensional cell culture and living tissue culture of gallbladder epithelium.

    PubMed

    Nakanuma, Y; Katayanagi, K; Kawamura, Y; Yoshida, K

    1997-10-01

    Several models for preparing and isolating human and animal gallbladder epithelial cells, including low-grade gallbladder carcinoma cells, as well as proposed systems for culturing these isolated epithelial cells are reviewed here. Several reports concerning tissue culture of the gallbladder are also reviewed. The cell culture systems are divided into monolayer cell culture on collagen-coated or uncoated culture dishes or other culture substrate and three-dimensional cell culture in collagen gel. To prepare and isolate gallbladder epithelial cells, digestion of the gallbladder mucosa, abrasion of the mucosal epithelial cells, and excision of epithelial outgrowth of mucosal explants are applied. In monolayer cell culture, most of the specific biological features of isolated and cultured cells characteristic to the gallbladder are gradually lost after several passages, though quantitative and objective analyses of the pathophysiology of cultured cells and their secretory substances can be performed. Tissue culture using explants of the gallbladder has mainly been used for physiological studies of the gallbladder, such as investigating the transport of water and electrolytes. In this tissue culture system, quantitative assessment is difficult, though the original and specific biological and histological characteristics of the gallbladder are retained. Three-dimensional collagen gel culture could be an ideal model combining monolayer cell culture and tissue culture systems, and create controllable conditions or environments when several biologically active substances, such as growth factors, proinflammatory cytokines and adhesion molecules, are added to the culture medium. Advantages and shortcomings of individual cultivation models are discussed, and selecting the culture model most appropriate to the purpose of the study will facilitate investigations of the biology and pathogenetic mechanisms of gallbladder diseases such as cholelithiasis.

  20. CHARACTERISTICS OF FROG CARCINOMA IN TISSUE CULTURE.

    PubMed

    Lucké, B

    1939-08-31

    The adenocarcinoma of leopard frogs may be cultivated with ease in plasma media. In such cultures two types of growth occur with regularity. The first is in the form of tubules which promptly grow out in the solid medium and retain their tubular form as long as they remain completely enveloped by plasma. When, however, they make contact with the surface of the glass, they adhere to it, the part in contact becomes flat, and its cells now grow no longer as tubules but as membranes. The manner of growth in vitro resembles the growth of transplants of the same tumor in the anterior chamber of the living eye, thus suggesting that in each case the habit of growth is determined by the same morphogenetic factors, i.e. those inherent in the cells themselves, and those depending on interfacial forces. The malignant cells of the frog carcinoma have the attributes which in general distinguish malignant cells from normal cells of corresponding type. In comparison with adult kidney cells, their normal homologues, the conspicuous properties of frog carcinoma cells are: larger and more variable size and shape of cell body, of nucleus, and nucleolus; coarser and denser structure of cytoplasm, of nucleoplasm, and of nuclear membrane; increase in number of mitochondria, and more frequent occurrence of mitosis. These cytological characteristics remain unaltered in cultures maintained for as long as six months. Frog carcinoma is a transmissible disease due to an agent which induces inclusion bodies, and which has other attributes indicating that it is a virus. The general correspondence in character between its cells and the malignant cells of mammalian tumors of diverse origin suggests that neoplastic phenomena are essentially alike, no matter in what group of animals they occur or what their causal factors may be.

  1. Baculovirus-encoded protein BV/ODV-E26 determines tissue tropism and virulence in lepidopteran insects.

    PubMed

    Katsuma, Susumu; Kobayashi, Jun; Koyano, Yasue; Matsuda-Imai, Noriko; Kang, WonKyung; Shimada, Toru

    2012-03-01

    Lepidopteran nucleopolyhedroviruses (NPVs) show distinct tissue tropism in host insect larvae. However, the molecular mechanism of this tropism is largely unknown. We quantitatively investigated NPV tissue tropism by measuring mRNA levels of viral genes in 16 tissues from Bombyx mori NPV (BmNPV)-infected B. mori larvae and found clear tissue tropism, i.e., BmNPV replicates poorly in the silk glands, midgut, and Malpighian tubule compared with other larval tissues. We next identified the viral genes determining tissue tropism in NPV infection by investigating the phenotypes of larvae infected with 44 BmNPV mutants in which one gene was functionally disrupted by a LacZ cassette insertion. We found that occlusion body (OB) production was markedly enhanced compared with that of the wild type in the middle silk glands (MSGs) of larvae infected with three mutants in which one of three tandemly arrayed genes (Bm7, Bm8, and Bm9) was disrupted. We generated additional mutants in which one or two genes of this gene cluster were partially deleted and showed that Bm8, also known as BV/ODV-E26, was solely required for the suppression of OB production in the MSGs of BmNPV-infected B. mori larvae. Western blotting showed that a LacZ cassette insertion in Bm7 or Bm9 resulted in aberrant expression of Bm8, presumably leading to abnormal OB production in the MSGs. Larval bioassays also revealed that disruption of Bm8 accelerated the death of B. mori larvae. These results suggest that the group I NPV-specific protein BV/ODV-E26 determines tissue tropism and virulence in host lepidopteran insects.

  2. Characterization of human myoblast cultures for tissue engineering.

    PubMed

    Stern-Straeter, Jens; Bran, Gregor; Riedel, Frank; Sauter, Alexander; Hörmann, Karl; Goessler, Ulrich Reinhart

    2008-01-01

    Skeletal muscle tissue engineering, a promising specialty, aims at the reconstruction of skeletal muscle loss. In vitro tissue engineering attempts to achieve this goal by creating differentiated, functional muscle tissue through a process in which stem cells are extracted from the patient, e.g. by muscle biopsies, expanded and differentiated in a controlled environment, and subsequently re-implanted. A prerequisite for this undertaking is the ability to cultivate and differentiate human skeletal muscle cell cultures. Evidently, optimal culture conditions must be investigated for later clinical utilization. We therefore analysed the proliferation of human cells in different environments and evaluated the differentiation potential of different culture media. It was shown that human myoblasts have a higher rate of proliferation in the alamarBlue assay when cultured on gelatin-coated culture flasks rather than polystyrene-coated flasks. We also demonstrated that myoblasts treated with a culture medium with a high concentration of growth factors [growth medium (GM)] showed a higher proliferation compared to cultures treated with a culture medium with lower amounts of growth factors [differentiation medium (DM)]. Differentiation of human myoblast cell cultures treated with GM and DM was analysed until day 16 and myogenesis was verified by expression of MyoD, myogenin, alpha-sarcomeric actin and myosin heavy chain by semi-quantitative RT-PCR. Immunohistochemical staining for desmin, Myf-5 and alpha-sarcomeric actin was performed to verify the myogenic phenotype of extracted satellite cells and to prove the maturation of cells. Cultures treated with DM showed positive staining for alpha-sarcomeric actin. Notably, markers of differentiation were also detected in cultures treated with GM, but there was no formation of myotubes. In the enzymatic assay of creatine phosphokinase, cultures treated with DM showed a higher activity, evidencing a higher degree of differentiation

  3. Silkworm (Bombyx mori) hemolymph unable to substitute fetal bovine serum in insect cell culture

    NASA Astrophysics Data System (ADS)

    Suparto, Irma H.; Khalam, Chandra Nur; Praira, Willy; Sajuthi, Dondin

    2014-03-01

    Fetal Bovine Serum (FBS) in animal cell culture media is an important source of nutrients for cell growth. However, the harvest and collection of FBS cause bioethical concerns. Efforts to reduce and preferably replace FBS with synthetic or other natural alternatives are continually being explored. Hemolymph silkworm (Bombyx mori) contains many nutrients needed for the process of metamorphosis. Therefore, there is possibility as an alternative nutritional supplement for cell culture to reduce the use of FBS. The objective of this study was to evaluate the macrocomponent of hemolymph and the possibility as medium supplement for Spodoptera fugiperda (Sf9) cell culture. Proximate analyses showed that hemolymph contains 89.76% of water, 2.52 mg/mL carbohydrate, 2.35% fat and 55.61 mg/mL protein. Further protein analysis, it consists of 15 fractions containing molecular weight of 22 - 152 kDa. The use of hemolymph as FBS substitution in Sf9 cell culture with various concentrations was unable to maintain and support cell growth. Further research still needed by prior adaptation of the tissue culture to minimal nutrition media before introduction of the hemolymph as supplement.

  4. Yield improvement strategies for the production of secondary metabolites in plant tissue culture: silymarin from Silybum marianum tissue culture.

    PubMed

    AbouZid, S

    2014-01-01

    Plant cell culture can be a potential source for the production of important secondary metabolites. This technology bears many advantages over conventional agricultural methods. The main problem to arrive at a cost-effective process is the low productivity. This is mainly due to lack of differentiation in the cultured cells. Many approaches have been used to maximise the yield of secondary metabolites produced by cultured plant cells. Among these approaches: choosing a plant with a high biosynthetic capacity, obtaining efficient cell line for growth and production of metabolite of interest, manipulating culture conditions, elicitation, metabolic engineering and organ culture. This article gives an overview of the various approaches used to maximise the production of pharmaceutically important secondary metabolites in plant cell cultures. Examples of using these different approaches are shown for the production of silymarin from Silybum marianum tissue culture.

  5. Selection of bacterial wilt-resistant tomato through tissue culture.

    PubMed

    Toyoda, H; Shimizu, K; Chatani, K; Kita, N; Matsuda, Y; Ouchi, S

    1989-06-01

    Bacterial wilt-resistant plants were obtained using a tomato tissue culture system. A virulent strain ofPseudomonas solanacearum secreted some toxic substances into the culture medium. Leaf explant-derived callus tissues which were resistant to these toxic substances in the culture filtrate were selectedin vitro and regenerated into plants. These plants expressed bacterial wilt resistance at the early infection stage to suppress or delay the growth of the inoculated bacteria. On the other hand, complete resistance was obtained in self-pollinated progeny of regenerants derived from non-selected callus tissues. These plants showed a high resistance when inoculated with this strain, and were also resistant when planted in a field infested with a different strain of the pathogen.

  6. Specimen Sample Preservation for Cell and Tissue Cultures

    NASA Technical Reports Server (NTRS)

    Meeker, Gabrielle; Ronzana, Karolyn; Schibner, Karen; Evans, Robert

    1996-01-01

    The era of the International Space Station with its longer duration missions will pose unique challenges to microgravity life sciences research. The Space Station Biological Research Project (SSBRP) is responsible for addressing these challenges and defining the science requirements necessary to conduct life science research on-board the International Space Station. Space Station will support a wide range of cell and tissue culture experiments for durations of 1 to 30 days. Space Shuttle flights to bring experimental samples back to Earth for analyses will only occur every 90 days. Therefore, samples may have to be retained for periods up to 60 days. This presents a new challenge in fresh specimen sample storage for cell biology. Fresh specimen samples are defined as samples that are preserved by means other than fixation and cryopreservation. The challenge of long-term storage of fresh specimen samples includes the need to suspend or inhibit proliferation and metabolism pending return to Earth-based laboratories. With this challenge being unique to space research, there have not been any ground based studies performed to address this issue. It was decided hy SSBRP that experiment support studies to address the following issues were needed: Fixative Solution Management; Media Storage Conditions; Fresh Specimen Sample Storage of Mammalian Cell/Tissue Cultures; Fresh Specimen Sample Storage of Plant Cell/Tissue Cultures; Fresh Specimen Sample Storage of Aquatic Cell/Tissue Cultures; and Fresh Specimen Sample Storage of Microbial Cell/Tissue Cultures. The objective of these studies was to derive a set of conditions and recommendations that can be used in a long duration microgravity environment such as Space Station that will permit extended storage of cell and tissue culture specimens in a state consistent with zero or minimal growth, while at the same time maintaining their stability and viability.

  7. A Tissue Culture Method for the Detection of Bacterial Enterotoxins

    DTIC Science & Technology

    1980-01-01

    toxicity and usually contain higher levels of pump adjusted to achieve a pressure no cyclic adenosine-3’:5’ monophosphate (cAMP) greater than 50 mm Hg...responding to 25%, 25 to 50%, 50 to 75%, wells. Other plastic tissue culture vessels , such Journal of Tissue Culture Methods Vol.6, No.2,1980 87...Hsieh, H. Inhibition of protease production of 22. Yolken , R. H.; Greenberg, H. B.; Merson, M. H.; Sack, R. B.; various bacteria by ammonium salts

  8. Bioreactors for tissue mass culture: design, characterization, and recent advances.

    PubMed

    Martin, Yves; Vermette, Patrick

    2005-12-01

    This paper reviews reports on three-dimensional mammalian tissue growth in bioreactors and the corresponding mammalian tissue growth requirements. The needs for nutrient and waste removal of several mammalian tissues are reviewed and compared with the environment of many reactors currently in use such as the continuous stirred tank, the hollow fiber, the Couette-Taylor, the airlift, and the rotating-wall reactors developed by NASA. Many studies conclude that oxygen supply appears to be one of the most important factors limiting tissue growth. Various correlations to describe oxygen mass transfer are presented and discussed with the aim to provide some guidance to design, construct, and test reactors for tissue mass culture. To obtain tissue thickness clinically valuable, dimensionless and other types of analysis tend to point out that diffusive transport will have to be matched with an important convection to bring sufficient oxygen molecular flux to the growing cells located within a tissue mass. As learned from solid-state fermentation and hairy root culture, during the growth of large biomass, heterogeneity (i.e., channeling, temperature gradients, non-uniform cell growth, transfer gradients, etc.) can cause some important problems and these should be addressed in tissue engineering as well. Reactors (along with the scaffolds) should be designed to minimize these issues. The role of the uterus, the reactor built by Nature, is examined, and the environment provided to a growing embryo is reported, yielding possible paths for further reactor developments. Finally, the importance of cell seeding methods is also addressed.

  9. The role of silicon in plant tissue culture.

    PubMed

    Sivanesan, Iyyakkannu; Park, Se Won

    2014-01-01

    Growth and morphogenesis of in vitro cultures of plant cells, tissues, and organs are greatly influenced by the composition of the culture medium. Mineral nutrients are necessary for the growth and development of plants. Several morpho-physiological disorders such as hooked leaves, hyperhydricity, fasciation, and shoot tip necrosis are often associated with the concentration of inorganic nutrient in the tissue culture medium. Silicon (Si) is the most abundant mineral element in the soil. The application of Si has been demonstrated to be beneficial for growth, development and yield of various plants and to alleviate various stresses including nutrient imbalance. Addition of Si to the tissue culture medium improves organogenesis, embryogenesis, growth traits, morphological, anatomical, and physiological characteristics of leaves, enhances tolerance to low temperature and salinity, protects cells and against metal toxicity, prevents oxidative phenolic browning and reduces the incidence of hyperhydricity in various plants. Therefore, Si possesses considerable potential for application in a wide range of plant tissue culture studies such as cryopreservation, organogenesis, micropropagation, somatic embryogenesis and secondary metabolites production.

  10. The role of silicon in plant tissue culture

    PubMed Central

    Sivanesan, Iyyakkannu; Park, Se Won

    2014-01-01

    Growth and morphogenesis of in vitro cultures of plant cells, tissues, and organs are greatly influenced by the composition of the culture medium. Mineral nutrients are necessary for the growth and development of plants. Several morpho-physiological disorders such as hooked leaves, hyperhydricity, fasciation, and shoot tip necrosis are often associated with the concentration of inorganic nutrient in the tissue culture medium. Silicon (Si) is the most abundant mineral element in the soil. The application of Si has been demonstrated to be beneficial for growth, development and yield of various plants and to alleviate various stresses including nutrient imbalance. Addition of Si to the tissue culture medium improves organogenesis, embryogenesis, growth traits, morphological, anatomical, and physiological characteristics of leaves, enhances tolerance to low temperature and salinity, protects cells and against metal toxicity, prevents oxidative phenolic browning and reduces the incidence of hyperhydricity in various plants. Therefore, Si possesses considerable potential for application in a wide range of plant tissue culture studies such as cryopreservation, organogenesis, micropropagation, somatic embryogenesis and secondary metabolites production. PMID:25374578

  11. Susceptibility of Tissue Cultures of Canine Origin to Viruses

    DTIC Science & Technology

    1965-08-01

    enteroviruses to grow in any canine tissue cultures was seemingly in conflict with an earlier investi- gation, during which ECHO type 6 virus was isolated on...Healthy Dogs. II. Iso- lation of Enteroviruses from Lower Intestine, " AEC Research and Development Report, LF-8, June 1963. 2. Cabasso, V. J., M. R...Cultures in the Study of Animal Viruses, III. Biological and Genetic Studies of Enteric Viruses of Man ( Enteroviruses ), " Yale J. Biol. Med. 33: 359-371

  12. Micromolded Gelatin Hydrogels for Extended Culture of Engineered Cardiac Tissues

    PubMed Central

    McCain, Megan L.; Agarwal, Ashutosh; Nesmith, Haley W.; Nesmith, Alexander P.; Parker, Kevin Kit

    2014-01-01

    Defining the chronic cardiotoxic effects of drugs during preclinical screening is hindered by the relatively short lifetime of functional cardiac tissues in vitro, which are traditionally cultured on synthetic materials that do not recapitulate the cardiac microenvironment. Because collagen is the primary extracellular matrix protein in the heart, we hypothesized that micromolded gelatin hydrogel substrates tuned to mimic the elastic modulus of the heart would extend the lifetime of engineered cardiac tissues by better matching the native chemical and mechanical microenvironment. To measure tissue stress, we used tape casting, micromolding, and laser engraving to fabricate gelatin hydrogel muscular thin film cantilevers. Neonatal rat cardiac myocytes adhered to gelatin hydrogels and formed aligned tissues as defined by the microgrooves. Cardiac tissues could be cultured for over three weeks without declines in contractile stress. Myocytes on gelatin had higher spare respiratory capacity compared to those on fibronectin-coated PDMS, suggesting that improved metabolic function could be contributing to extended culture lifetime. Lastly, human induced pluripotent stem cell-derived cardiac myocytes adhered to micromolded gelatin surfaces and formed aligned tissues that remained functional for four weeks, highlighting their potential for human-relevant chronic studies. PMID:24731714

  13. X-ray sterilization of insects and microorganisms for cultural heritage applications

    NASA Astrophysics Data System (ADS)

    Borgognoni, F.; Vadrucci, M.; Bazzano, G.; Ferrari, P.; Massa, S.; Moretti, R.; Calvitti, M.; Ronsivalle, C.; Moriani, A.; Picardi, L.

    2017-09-01

    The APAM (Development of Particle Accelerators and Medical Applications) Laboratory of the ENEA Frascati Research Center is engaged in the preservation of cultural heritage as part of the COBRA (Sviluppo e diffusione di metodi, tecnologie e strumenti avanzati per la COnservazione dei Beni culturali, basati sull'applicazione di Radiazioni e di tecnologie Abilitanti) project addressed to the transfer of innovative technologies and methodologies from research to small and medium enterprises involved in the restorative measures. This work aims to demonstrate the effectiveness of ionizing radiation on the disinfection of biodegraded art objects. The conventional methods for the disinfestation of works of art, using chemicals toxic to humans and environment, might cause some damage to the treated material even on micrometric scale (i. e. either cellulose degradation). Ionizing radiations interact with the infesting biological material causing an irreversible DNA degradation. For this reason, they are certainly suitable for removal treatments of both macro organisms and bacterial colonies. A 4.8 MeV electron linear accelerator, normally dedicated to the characterization of dose detectors and radiographies, has been employed to produce Bremsstrahlung X-rays through a lead converter. The spectral fluence of the radiation source has been calculated using the Monte Carlo MCNPX code. The dosimetric characterization of the radiation field has been made using radiochromic films sensitive in the dose range of our interest (from 50 to 500 Gy) calibrated with a Markus ionization chamber. The irradiation of the artifact prototypes are made within a lead shielded room at a variable distance from the X-rays source. Samples subjected to irradiation consist of a soil bacterium, Agrobacterium rhizogenes, and an insect, Stegobium paniceum, that are found as wall paintings invasive coloniser and as a pest of books, wood works and paintings, respectively. Tests of irradiation have been

  14. 21 CFR 864.2240 - Cell and tissue culture supplies and equipment.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Cell and tissue culture supplies and equipment... SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Cell And Tissue Culture Products § 864.2240 Cell and tissue culture supplies and equipment. (a) Identification. Cell and tissue culture...

  15. 21 CFR 864.2240 - Cell and tissue culture supplies and equipment.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Cell and tissue culture supplies and equipment... SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Cell And Tissue Culture Products § 864.2240 Cell and tissue culture supplies and equipment. (a) Identification. Cell and tissue culture...

  16. 21 CFR 864.2240 - Cell and tissue culture supplies and equipment.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Cell and tissue culture supplies and equipment... SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Cell And Tissue Culture Products § 864.2240 Cell and tissue culture supplies and equipment. (a) Identification. Cell and tissue culture...

  17. 21 CFR 864.2240 - Cell and tissue culture supplies and equipment.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Cell and tissue culture supplies and equipment... SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Cell And Tissue Culture Products § 864.2240 Cell and tissue culture supplies and equipment. (a) Identification. Cell and tissue culture...

  18. Tissue culture-mediated biotechnological intervention in pomegranate: a review.

    PubMed

    Naik, Soumendra K; Chand, Pradeep K

    2011-05-01

    The past 30 years have witnessed a series of systematic biotechnological advances made in pomegranate. These encompass optimization and establishment of in vitro culture techniques including micropropagation, somatic embryogenesis, synthetic seed production, plant regeneration via callus-mediated shoot organogenesis, adventitious shoot regeneration, anther culture, tetraploid induction and genetic transformation. This review attempts to provide a comprehensive account on the tissue culture-mediated biotechnological interventions made in pomegranate aimed at complementing conventional programmes for improvement of this nutraceutically important fruit crop.

  19. The use of animal tissues alongside human tissue: Cultural and ethical considerations.

    PubMed

    Kaw, Anu; Jones, D Gareth; Zhang, Ming

    2016-01-01

    Teaching and research facilities often use cadaveric material alongside animal tissues, although there appear to be differences in the way we handle, treat, and dispose of human cadaveric material compared to animal tissue. This study sought to analyze cultural and ethical considerations and provides policy recommendations on the use of animal tissues alongside human tissue. The status of human and animal remains and the respect because of human and animal tissues were compared and analyzed from ethical, legal, and cultural perspectives. The use of animal organs and tissues is carried out within the context of understanding human anatomy and function. Consequently, the interests of human donors are to be pre-eminent in any policies that are enunciated, so that if any donors find the presence of animal remains unacceptable, the latter should not be employed. The major differences appear to lie in differences in our perceptions of their respective intrinsic and instrumental values. Animals are considered to have lesser intrinsic value and greater instrumental value than humans. These differences stem from the role played by culture and ethical considerations, and are manifested in the resulting legal frameworks. In light of this discussion, six policy recommendations are proposed, encompassing the nature of consent, respect for animal tissues as well as human remains, and appropriate separation of both sets of tissues in preparation and display.

  20. Immunologic and tissue culture approaches to the neurobiology of aging.

    PubMed

    Rogers, J; Rovigatti, U

    1988-01-01

    The neurobiology of aging continues to attract scientists and techniques from the more fundamental disciplines, as witness the great strides now being made from molecular genetic approaches to Alzheimer's disease. The present report is a commentary on reviews of immune mechanisms and tissue culture methods applied to investigations of aging and age-related cognitive dysfunction.

  1. Developing hazelnut tissue culture medium free of ion confounding

    USDA-ARS?s Scientific Manuscript database

    The general approach for tissue culture medium optimization is to use salts as factors in experimental design and analysis. However, using salts as factors leads to ion confounding, making it difficult to detect the effects of individual ions on particular growth responses. This study focused on tes...

  2. Adaptive image segmentation applied to plant reproduction by tissue culture

    NASA Astrophysics Data System (ADS)

    Vazquez Rueda, Martin G.; Hahn, Federico; Zapata, Jose L.

    1997-04-01

    This paper presents that experimental results obtained on indoor tissue culture using the adaptive image segmentation system. The performance of the adaptive technique is contrasted with different non-adaptive techniques commonly used in the computer vision field to demonstrate the improvement provided by the adaptive image segmentation system.

  3. [Tissue culture of medicinal plant and abscisic acid].

    PubMed

    Fang, Hui-Yong; Zhu, Hong; Yao, Jian-Xun; Jia, Cai-Feng; Shan, Gao-Wei; Li, Min-Hui

    2013-01-01

    Abscisic acid (ABA) plays a key role in many physiological processes of plants, and it was also applied to fields of medicinal plant biotechnology. The article presents a review of some recent application of ABA in enhancing the production of secondary metabolites of medicinal plants, improving the in vitro conservation in medicinal plant tissue culture system.

  4. Practical Instruction in Tissue Culture and Cytogenetics for Sandwich Students.

    ERIC Educational Resources Information Center

    Williams, D. C.; Bishun, N. P.

    1973-01-01

    Describes the training and practical techniques taught to students involved in a sandwich course at the Tissue Culture and Cytogenetics Unit of the Marie Curie Memorial Foundation, Surrey, England. Students spend a minimum of six months involved in the sandwich course before returning to university for a final academic year. (JR)

  5. Effects of Microwave Radiation on Cells in Tissue Culture.

    DTIC Science & Technology

    1981-01-31

    gravity sedimentation, 0.7 ml of lymphocyte-rich serum was added to McCoy’s 5A chromsome medium containing 20% fetal bovine serum, phytohemaglutinin, and...tissue culture chromsomes . Proc. USNC/URSI, 102. Harrington, R.F. (1961). "Time-harmonic Electromagnetic Field", pp. 480, McGraw Hill, New York. Hell, J.H

  6. A Method to Preclude Moisture Condensation in Plated Tissue Cultures

    Treesearch

    Alex M. Diner

    1992-01-01

    Excessive condensate normally accumulates in in vitro-illuminated petri dishes containing plant tissue cultures, causing avariety of problems. A dark-colored rubber net-mesh placed over the petri dishes prevented such condensation, even when charcoal-supplemented media are used under high light intensity in a growth chamber.

  7. Practical Instruction in Tissue Culture and Cytogenetics for Sandwich Students.

    ERIC Educational Resources Information Center

    Williams, D. C.; Bishun, N. P.

    1973-01-01

    Describes the training and practical techniques taught to students involved in a sandwich course at the Tissue Culture and Cytogenetics Unit of the Marie Curie Memorial Foundation, Surrey, England. Students spend a minimum of six months involved in the sandwich course before returning to university for a final academic year. (JR)

  8. Immunomodulatory potential of shatavarins produced from Asparagus racemosus tissue cultures.

    PubMed

    Pise, Mashitha Vinod; Rudra, Jaishree Amal; Upadhyay, Avinash

    2015-01-01

    Medicinal properties of Asparagus racemosus (vernacular name: Shatavari) are attributed to its steroidal saponins called shatavarins. This plant is facing the threat of being endangered due to several developmental, seasonal constrains and malpractices involved in its collection and storage. To support its conservation, a tissue culture protocol is standardized which produces 20 fold higher levels of shatavarin. Here we evaluate the bioactivity and immunomodulatory potential of in vitro produced shatavarins from cell cultures of AR using human peripheral blood lymphocytes. In vitro produced shatavarin stimulated immune cell proliferation and IgG secretion in a dose dependent manner. It stimulated interleukin (IL)-12 production and inhibited production of IL-6. It also had strong modulatory effects on Th1/Th2 cytokine profile, indicating its potential application for immunotherapies where Th1/Th2 balance is envisaged. Our study demonstrating the bioactivity of tissue cultured AR extracts supports further in vivo evaluation of its immunomodulatory efficacy.

  9. Immunomodulatory potential of shatavarins produced from Asparagus racemosus tissue cultures

    PubMed Central

    Pise, Mashitha Vinod; Rudra, Jaishree Amal; Upadhyay, Avinash

    2015-01-01

    Medicinal properties of Asparagus racemosus (vernacular name: Shatavari) are attributed to its steroidal saponins called shatavarins. This plant is facing the threat of being endangered due to several developmental, seasonal constrains and malpractices involved in its collection and storage. To support its conservation, a tissue culture protocol is standardized which produces 20 fold higher levels of shatavarin. Here we evaluate the bioactivity and immunomodulatory potential of in vitro produced shatavarins from cell cultures of AR using human peripheral blood lymphocytes. In vitro produced shatavarin stimulated immune cell proliferation and IgG secretion in a dose dependent manner. It stimulated interleukin (IL)-12 production and inhibited production of IL-6. It also had strong modulatory effects on Th1/Th2 cytokine profile, indicating its potential application for immunotherapies where Th1/Th2 balance is envisaged. Our study demonstrating the bioactivity of tissue cultured AR extracts supports further in vivo evaluation of its immunomodulatory efficacy. PMID:26283842

  10. Coordinate regulation of proteins associated with radiation resistance in cultured insect cells

    SciTech Connect

    Rand, A.; Koval, T.M.

    1994-04-01

    Cultured TN-368 lepidopteran insect cells exhibit a pronounced resistance to the lethal effects of a variety of physical agents, including X rays and 254 nm UV light, as well as a large number of chemicals. The resistance to ionizing radiation has previously been associated with an inducible process which is not expressed in unirradiated cells or cells receiving less than some minimal amount of radiation necessary for activating the process. The studies in this paper were initiated in an attempt to identify and characterize the inducible proteins associated with the marked radiation resistance of the TN-368 cells. Cells were exposed to doses of 0, 25, 64 or 350 Gy of {sup 137}Cs {gamma} rays and incubated either for 3 h in medium containing [{sup 35}S]methionine or for 2 h without labeling. Labeled cells were separated into nuclear and cytoplasmic fractions and proteins were analyzed on two-dimensional polyacrylamide gels. Unlabeled cells were used to isolate total RNA which was translated in vitro in a rabbit reticulocyte lysate system with {sup 35}S label. These translation products were also analyzed by two-dimensional electrophoresis. Gamma irradiation of the TN-368 cells resulted in the de novo synthesis of several proteins as well as the complete inhibition of others. The number of such proteins identified was 19. These proteins ranged in size from 18-73 kDa, with a pI distribution of 4.7 to 6.1. In addition to the unique proteins, a large number of other proteins were also either up- or down-regulated. These observations were made in both nuclear and cytoplasmic fractions as well as in the translation products of RNA produced after irradiation. These studies indicate that RNA and protein synthesis in lepidopteran cells are coordinately regulated in response to ionizing radiation and may participate in the pronounced radioresistance of the TN-368 cells. 15 refs., 3 figs., 1 tab.

  11. Microcarriers designed for cell culture and tissue engineering of bone.

    PubMed

    Park, Jeong-Hui; Pérez, Román A; Jin, Guang-Zhen; Choi, Seung-Jun; Kim, Hae-Won; Wall, Ivan B

    2013-04-01

    Microspherical particulates have been an attractive form of biomaterials that find usefulness in cell delivery and tissue engineering. A variety of compositions, including bioactive ceramics, degradable polymers, and their composites, have been developed into a microsphere form and have demonstrated the potential to fill defective bone and to populate tissue cells on curved matrices. To enhance the capacity of cell delivery, the conventional solid form of spheres is engineered to have either a porous structure to hold cells or a thin shell to in-situ encapsulate cells within the structure. Microcarriers can also be a potential reservoir system of bioactive molecules that have therapeutic effects in regulating cell behaviors. Due to their specific form, advanced technologies to culture cell-loaded microcarriers are required, such as simple agitation or shaking, spinner flask, and rotating chamber system. Here, we review systematically, from material design to culture technology, the microspherical carriers used for the delivery of cells and tissue engineering, particularly of bone.

  12. The role of activated charcoal in plant tissue culture.

    PubMed

    Thomas, T Dennis

    2008-01-01

    Activated charcoal has a very fine network of pores with large inner surface area on which many substances can be adsorbed. Activated charcoal is often used in tissue culture to improve cell growth and development. It plays a critical role in micropropagation, orchid seed germination, somatic embryogenesis, anther culture, synthetic seed production, protoplast culture, rooting, stem elongation, bulb formation etc. The promotary effects of AC on morphogenesis may be mainly due to its irreversible adsorption of inhibitory compounds in the culture medium and substancially decreasing the toxic metabolites, phenolic exudation and brown exudate accumulation. In addition to this activated charcoal is involved in a number of stimulatory and inhibitory activities including the release of substances naturally present in AC which promote growth, alteration and darkening of culture media, and adsorption of vitamins, metal ions and plant growth regulators, including abscisic acid and gaseous ethylene. The effect of AC on growth regulator uptake is still unclear but some workers believe that AC may gradually release certain adsorbed products, such as nutrients and growth regulators which become available to plants. This review focuses on the various roles of activated charcoal in plant tissue culture and the recent developments in this area.

  13. The visual assessment of broth cultures for tissue bank samples.

    PubMed

    Varettas, Kerry

    2017-01-05

    The bioburden screening process of allograft musculoskeletal tissue samples received at the South Eastern Area Laboratory Services includes the routine use of solid agar and cooked meat (CM) broth media. CM has been routinely sub-cultured onto solid agar plates after aerobic incubation at 35 °C. This study will evaluate whether a visual assessment of CM can replace sub-culture by an in vitro inoculation and a prospective study. Eight challenge organisms were serially diluted and inoculated into CM. The average inoculum of 0.5-5.5 CFU produced visible turbidity of CM after 24-h incubation for 7 of the challenge organisms with one organism producing turbidity after 48-h incubation. The prospective study evaluated 222 CM of which 213 were visually clear and no-growth on sub-culture and 9 turbid CM which were culture positive. Broth cultures are an integral part of the bioburden screening process of allograft musculoskeletal tissue and swab samples and visual assessment of CM can replace sub-culture.

  14. Using a fed-batch culture strategy to enhance rAAV production in the baculovirus/insect cell system.

    PubMed

    Liu, Yu-Kuo; Yang, Ching-Jen; Liu, Chao-Lin; Shen, Chia-Rui; Shiau, Lie-Ding

    2010-08-01

    Recombinant adeno-associated virus (rAAV) is one of the most promising vectors for human gene therapy. However, the production systems that are currently available have a limited capacity and cannot provide sufficient quantities of rAAV for preclinical or clinical trials. Many novel methods for improving rAAV production have been developed, but few researchers have focused on the culture process. In this study, we use a fed-batch culture system to enhance rAAV yield in the baculovirus/insect cell system. When the insect cells were co-infected with MOI=5 of Bac-GFP at a ratio of 1:9:9 (Bac-GFP: Bac-Rep: Bac-VP), the fed-batch culture achieved optimal rAAV yields. In batch culture, the optimal cell density for producing rAAV was found to be 1x10(6) cells/ml, and the highest rAAV yield (1.22x10(8) IVP/ml, 122 IVP/cell) occurred at day 5 post-infection. In the fed-batch culture, rAAV yield reached 2.13x10(8) IVP/ml at day 4 post-infection, and the highest rAAV yield was 2.40x10(8) IVP/ml (240 IVP/cell) at day 5 post-infection. The cost of the batch and fed-batch cultures is similar; however, the rAAV yield was 2.6-fold higher in the fed-batch culture system compared with that in the batch culture system. Therefore, here we demonstrated an economical and efficient strategy for rAAV production.

  15. THE FORM AND FUNCTION OF SYNOVIAL CELLS IN TISSUE CULTURES

    PubMed Central

    Vaubel, Ernst

    1933-01-01

    1. Synovial cultures are differentiated in tissue cultures from other tissues of mesenchymal origin by their type of growth and cell function. 2. In these respects they are more closely allied to chondroblasts and osteoblasts than to fibroblasts. 3. Synovial cells in tissue cultures develop marked globular cytoplasmic granulations that stain easily with neutral red and sometimes with toluidine blue; they show marked polymorphism with all transitions from round to spindle, polygonal and star shapes and eventually form an epithelial-like membrane, composed of cells with numerous syncytial bridges. 4. In cultures of typically growing synovial cells a mucin-like substance is elaborated. Typical growth and maximal mucin production is best maintained in media containing a minimum of growth-stimulating substances. Transformation of synovial cell growths into fibroblastic growth is accompanied by a loss of mucin production. Dying cells apparently do not produce mucin. 5. Amitotic cell division and the formation of macrophage-like cells were observed. 6. Marked tendency to liquefaction of the plasma about the growths was observed and attributed to the elaboration of a proteolytic ferment. 7. The specific designation "synovioblasts" is proposed for these cells. PMID:19870183

  16. Development of Vibrational Culture Model Mimicking Vocal Fold Tissues.

    PubMed

    Kim, Dongjoo; Lim, Jae-Yol; Kwon, Soonjo

    2016-10-01

    The vocal folds (VFs) are connective tissues with complex matrix structures that provide the required mechanical properties for voice generation. VF injury leads to changes in tissue structure and properties, resulting in reduced voice quality. However, injury-induced biochemical changes and repair in scarred VF tissues have not been well characterized to date. To treat scarred VFs, it is essential to understand how physiological characteristics of VFs tissue change in response to external perturbation. In this study, we designed a simple vibrational culture model to mimic vibratory microenvironments observed in vivo. This model consists of a flexible culture plate, three linear actuators, a stereo splitter, and a function generator. Human vocal fold fibroblast (hVFF) monolayers were established on the flexible membrane, to which normal phonatory vibrations were delivered from linear actuators and a function generator. The hVFF monolayers were exposed to the vibrational stresses at a frequency of 205 Hz for 2, 6, and 10 h with maximum displacement of 47.1 μm, followed by a 6 h rest. We then observed the changes in cell morphology, cell viability, and gene expression related to extracellular matrix components. In our dynamic culture device mimicking normal phonatory frequencies, cell proliferation increased and expression of hyaluronic acid synthase 2 was downregulated in response to vibrational stresses. The results presented herein will be useful for evaluating cellular responses following VF injuries in the presence or absence of vibrational stresses.

  17. Improved Diagnosis of Prosthetic Joint Infection by Culturing Periprosthetic Tissue Specimens in Blood Culture Bottles

    PubMed Central

    Peel, Trisha N.; Dylla, Brenda L.; Hughes, John G.; Lynch, David T.; Greenwood-Quaintance, Kerryl E.; Cheng, Allen C.; Mandrekar, Jayawant N.

    2016-01-01

    ABSTRACT Despite known low sensitivity, culture of periprosthetic tissue specimens on agars and in broths is routine. Culture of periprosthetic tissue samples in blood culture bottles (BCBs) is potentially more convenient, but it has been evaluated in a limited way and has not been widely adopted. The aim of this study was to compare the sensitivity and specificity of inoculation of periprosthetic tissue specimens into blood culture bottles with standard agar and thioglycolate broth culture, applying Bayesian latent class modeling (LCM) in addition to applying the Infectious Diseases Society of America (IDSA) criteria for prosthetic joint infection. This prospective cohort study was conducted over a 9-month period (August 2013 to April 2014) at the Mayo Clinic, Rochester, MN, and included all consecutive patients undergoing revision arthroplasty. Overall, 369 subjects were studied; 117 (32%) met IDSA criteria for prosthetic joint infection, and 82% had late chronic infection. Applying LCM, inoculation of tissues into BCBs was associated with a 47% improvement in sensitivity compared to the sensitivity of conventional agar and broth cultures (92.1 versus 62.6%, respectively); this magnitude of change was similar when IDSA criteria were applied (60.7 versus 44.4%, respectively; P = 0.003). The time to microorganism detection was shorter with BCBs than with standard media (P < 0.0001), with aerobic and anaerobic BCBs yielding positive results within a median of 21 and 23 h, respectively. Results of our study demonstrate that the semiautomated method of periprosthetic tissue culture in blood culture bottles is more sensitive than and as specific as agar and thioglycolate broth cultures and yields results faster. PMID:26733067

  18. Chitinases and Imaginal disc growth factors organize the extracellular matrix formation at barrier tissues in insects.

    PubMed

    Pesch, Yanina-Yasmin; Riedel, Dietmar; Patil, Kapil R; Loch, Gerrit; Behr, Matthias

    2016-02-03

    The cuticle forms an apical extracellular-matrix (ECM) that covers exposed organs, such as epidermis, trachea and gut, for organizing morphogenesis and protection of insects. Recently, we reported that cuticle proteins and chitin are involved in ECM formation. However, molecular mechanisms that control assembly, maturation and replacement of the ECM and its components are not well known. Here we investigated the poorly described glyco-18-domain hydrolase family in Drosophila and identified the Chitinases (Chts) and imaginal-disc-growth-factors (Idgfs) that are essential for larval and adult molting. We demonstrate that Cht and idgf depletion results in deformed cuticles, larval and adult molting defects, and insufficient protection against wounding and bacterial infection, which altogether leads to early lethality. We show that Cht2/Cht5/Cht7/Cht9/Cht12 and idgf1/idgf3/idgf4/idgf5/idgf6 are needed for organizing proteins and chitin-matrix at the apical cell surface. Our data indicate that normal ECM formation requires Chts, which potentially hydrolyze chitin-polymers. We further suggest that the non-enzymatic idgfs act as structural proteins to maintain the ECM scaffold against chitinolytic degradation. Conservation of Chts and Idgfs proposes analogous roles in ECM dynamics across the insect taxa, indicating that Chts/Idgfs are new targets for species specific pest control.

  19. Chitinases and Imaginal disc growth factors organize the extracellular matrix formation at barrier tissues in insects

    PubMed Central

    Pesch, Yanina-Yasmin; Riedel, Dietmar; Patil, Kapil R; Loch, Gerrit; Behr, Matthias

    2016-01-01

    The cuticle forms an apical extracellular-matrix (ECM) that covers exposed organs, such as epidermis, trachea and gut, for organizing morphogenesis and protection of insects. Recently, we reported that cuticle proteins and chitin are involved in ECM formation. However, molecular mechanisms that control assembly, maturation and replacement of the ECM and its components are not well known. Here we investigated the poorly described glyco-18-domain hydrolase family in Drosophila and identified the Chitinases (Chts) and imaginal-disc-growth-factors (Idgfs) that are essential for larval and adult molting. We demonstrate that Cht and idgf depletion results in deformed cuticles, larval and adult molting defects, and insufficient protection against wounding and bacterial infection, which altogether leads to early lethality. We show that Cht2/Cht5/Cht7/Cht9/Cht12 and idgf1/idgf3/idgf4/idgf5/idgf6 are needed for organizing proteins and chitin-matrix at the apical cell surface. Our data indicate that normal ECM formation requires Chts, which potentially hydrolyze chitin-polymers. We further suggest that the non-enzymatic idgfs act as structural proteins to maintain the ECM scaffold against chitinolytic degradation. Conservation of Chts and Idgfs proposes analogous roles in ECM dynamics across the insect taxa, indicating that Chts/Idgfs are new targets for species specific pest control. PMID:26838602

  20. Mineralization and growth of cultured embryonic skeletal tissue in microgravity

    NASA Technical Reports Server (NTRS)

    Klement, B. J.; Spooner, B. S.

    1999-01-01

    Microgravity provides a unique environment in which to study normal and pathological phenomenon. Very few studies have been done to examine the effects of microgravity on developing skeletal tissue such as growth plate formation and maintenance, elongation of bone primordia, or the mineralization of growth plate cartilage. Embryonic mouse premetatarsal triads were cultured on three space shuttle flights to study cartilage growth, differentiation, and mineralization, in a microgravity environment. The premetatarsal triads that were cultured in microgravity all formed cartilage rods and grew in length. However, the premetatarsal cartilage rods cultured in microgravity grew less in length than the ground control cartilage rods. Terminal chondrocyte differentiation also occurred during culture in microgravity, as well as in the ground controls, and the matrix around the hypertrophied chondrocytes was capable of mineralizing in both groups. The same percentage of premetatarsals mineralized in the microgravity cultures as mineralized in the ground control cultures. In addition, the sizes of the mineralized areas between the two groups were very similar. However, the amount of 45Ca incorporated into the mineralized areas was significantly lower in the microgravity cultures, suggesting that the composition or density of the mineralized regions was compromised in microgravity. There was no significant difference in the amount of 45Ca liberated from prelabeled explants in microgravity or in the ground controls.

  1. Mineralization and growth of cultured embryonic skeletal tissue in microgravity.

    PubMed

    Klement, B J; Spooner, B S

    1999-04-01

    Microgravity provides a unique environment in which to study normal and pathological phenomenon. Very few studies have been done to examine the effects of microgravity on developing skeletal tissue such as growth plate formation and maintenance, elongation of bone primordia, or the mineralization of growth plate cartilage. Embryonic mouse premetatarsal triads were cultured on three space shuttle flights to study cartilage growth, differentiation, and mineralization, in a microgravity environment. The premetatarsal triads that were cultured in microgravity all formed cartilage rods and grew in length. However, the premetatarsal cartilage rods cultured in microgravity grew less in length than the ground control cartilage rods. Terminal chondrocyte differentiation also occurred during culture in microgravity, as well as in the ground controls, and the matrix around the hypertrophied chondrocytes was capable of mineralizing in both groups. The same percentage of premetatarsals mineralized in the microgravity cultures as mineralized in the ground control cultures. In addition, the sizes of the mineralized areas between the two groups were very similar. However, the amount of 45Ca incorporated into the mineralized areas was significantly lower in the microgravity cultures, suggesting that the composition or density of the mineralized regions was compromised in microgravity. There was no significant difference in the amount of 45Ca liberated from prelabeled explants in microgravity or in the ground controls.

  2. Mineralization and growth of cultured embryonic skeletal tissue in microgravity

    NASA Technical Reports Server (NTRS)

    Klement, B. J.; Spooner, B. S.

    1999-01-01

    Microgravity provides a unique environment in which to study normal and pathological phenomenon. Very few studies have been done to examine the effects of microgravity on developing skeletal tissue such as growth plate formation and maintenance, elongation of bone primordia, or the mineralization of growth plate cartilage. Embryonic mouse premetatarsal triads were cultured on three space shuttle flights to study cartilage growth, differentiation, and mineralization, in a microgravity environment. The premetatarsal triads that were cultured in microgravity all formed cartilage rods and grew in length. However, the premetatarsal cartilage rods cultured in microgravity grew less in length than the ground control cartilage rods. Terminal chondrocyte differentiation also occurred during culture in microgravity, as well as in the ground controls, and the matrix around the hypertrophied chondrocytes was capable of mineralizing in both groups. The same percentage of premetatarsals mineralized in the microgravity cultures as mineralized in the ground control cultures. In addition, the sizes of the mineralized areas between the two groups were very similar. However, the amount of 45Ca incorporated into the mineralized areas was significantly lower in the microgravity cultures, suggesting that the composition or density of the mineralized regions was compromised in microgravity. There was no significant difference in the amount of 45Ca liberated from prelabeled explants in microgravity or in the ground controls.

  3. Preventing Photochemistry in Culture Media by Long-Pass Light Filters Alters Growth of Cultured Tissues

    PubMed Central

    Stasinopoulos, Triant C.; Hangarter, Roger P.

    1990-01-01

    Exposure of plant tissue culture media to light from fluorescent bulbs changed the growth regulating properties of the media. The light caused nutrient medium-dependent photosensitized degradation of the phytohormone indole-3-acetic acid and other media components. Photochemical changes in culture media were caused by light from 290 to 450 nanometers and were prevented with a yellow long-pass filter. The use of appropriately filtered light when culturing plant material can eliminate unnecessary variability by stabilizing the culture media composition. PMID:16667626

  4. Mulberry improvements via plastid transformation and tissue culture engineering.

    PubMed

    Umate, Pavan

    2010-07-01

    The in vitro tissue culture and micropropagation studies for Morus spp., a pivotal sericulture plant, are well established. The rapid and reproducible in vitro response to plant growth regulator treatments has emerged as an essential complement of transformation studies for this plant species. A major area of study is the use of protoplast culture and fusion techniques where advantages to mulberry improvement can be applied. The advancements in genetic transformation of mulberry are reviewed, and a section on strategy for transforming plastids (chloroplasts) of mulberry is included. A role for mulberry in "molecular farming" is envisioned. The conclusions and future prospects for improvement of this economically important tree species are proposed.

  5. Gradients of metabolite accumulation and redifferentiation of nutritive cells associated with vascular tissues in galls induced by sucking insects

    PubMed Central

    Carneiro, Renê Gonçalves da Silva; Isaias, Rosy Mary dos Santos

    2015-01-01

    Plant cells respond to abiotic and biotic stimuli, which generate adaptive phenotypes in plant organs. In the case of plant galls, cell phenotypes are adaptive for the gall inducer and assume characteristics mainly linked to its protection and nutrition. Herein, the cytological development and histochemical profile of Nothotrioza cattleiani galls, a sucking insect, on the leaves of Psidium cattleianum are compared with those of other galls, especially N. myrtoidis galls, searching for conserved and divergent alterations in cell fates and cycles. Leaf cell fates are completely changed within galls, except for epidermal cells, but the comparison between Nothotrioza spp. galls shows conserved fates. Nevertheless, cytological development of N. cattleiani galls is different from the standby-redifferentiation of N. myrtoidis galls. Starch and lignins, and reducing sugars form centrifugal and centripetal gradients of accumulation, respectively. Proteins, total phenolics, terpenoids, proanthocyanidins and reactive oxygen species are detected in bidirectional gradients, i.e. weak or undetectable reaction in the median cortical cells that is gradually more intense in the cell layers towards the inner and outer surfaces of the gall. True nutritive cells associated with vascular tissues, together with the bidirectional gradients of metabolite accumulation, are herein reported for the first time in insect galls. The globoid galls of N. cattleiani, though macro-morphologically similar to the galls of N. myrtoidis, are distinct and unique among insect galls, as far as the cellular, subcellular and histochemical traits are concerned. Thus, the traits of the galls on P. cattleianum studied herein represent the extended phenotypes of their inducers. PMID:26209687

  6. Effects of cold atmospheric plasma on mucosal tissue culture

    NASA Astrophysics Data System (ADS)

    Welz, Christian; Becker, Sven; Li, Yang-Fang; Shimizu, Tetsuji; Jeon, Jin; Schwenk-Zieger, Sabina; Thomas, Hubertus M.; Isbary, Georg; Morfill, Gregor E.; Harréus, Ulrich; Zimmermann, Julia L.

    2013-01-01

    Thermal plasmas have been commonly used in medical applications such as plasma ablation and blood coagulation. Newer developments show that plasmas can be generated with ion temperatures close to room temperature: these non-thermal or so-called cold atmospheric plasmas (CAPs) therefore open up a wide range of further biomedical applications. Based on the understanding of the bactericidal, virucidal and fungicidal properties of CAPs, information about the effects of CAP on mucosal cells and tissue is still lacking. Therefore this study focuses on the interaction of CAP with healthy head and neck mucosal cells on a molecular level. To analyse this interaction in detail, fresh tissue samples from healthy nasal and pharyngeal mucosa were harvested during surgery, assembled to a three-dimensional tissue culture model (mini organ cultures) and treated with CAP for different treatment times. Effects on the viability, necrosis induction and mutagenic activity were evaluated with the trypan blue exclusion test, Annexin-V/PI staining and alkaline microgel electrophoresis (comet assay). Trypan blue exclusion test revealed that the CAP treatment significantly decreases the cell viability for all tested treatment times (5, 10, 30, 60 and 120 s p < 0.05), but only a treatment time of 120 s showed a cytotoxic effect as the viability dropped below 90%. Annexin-V/PI staining revealed a significant increase in necrosis in CAP treated pharyngeal tissue cultures for treatment times of 60 and 120 s (p < 0.05). For nasal tissue this effect was already detected for a 30 s treatment (p < 0.05). Comet assay analysis showed no mutagenic effects after exposure to CAP.

  7. Equine arteritis virus gP5 protein induces apoptosis in cultured insect cells.

    PubMed

    Metz, Germán Ernesto; Serena, María Soledad; Abeyá, María Mercedes; Dulbecco, Andrea Belén; Massone, Adriana; Díaz, Silvina; Echeverría, María Gabriela

    2014-04-01

    Equine Arteritis Virus (EAV) has been shown to induce apoptosis in vitro but the induction of this mechanism has not been previously associated with any viral gene product. In this work, we found a cytotoxicity effect of the EAV gP5 protein on baculovirus-insect cells and a low yield of protein recovery. Besides, different morphological features by electron transmission microscopy, DNA fragmentation in agarose gel, TUNEL analysis and caspase 3 activity were found. All these findings indicate that the EAV gP5 protein induces apoptosis in insect cells.

  8. Adipose tissue-organotypic culture system as a promising model for studying adipose tissue biology and regeneration

    PubMed Central

    Uchihashi, Kazuyoshi; Aoki, Shigehisa; Sonoda, Emiko; Yamasaki, Fumio; Piao, Meihua; Ootani, Akifumi; Yonemitsu, Nobuhisa; Sugihara, Hajime

    2009-01-01

    Adipose tissue consists of mature adipocytes, preadipocytes and mesenchymal stem cells (MSCs), but a culture system for analyzing their cell types within the tissue has not been established. We have recently developed “adipose tissue-organotypic culture system” that maintains unilocular structure, proliferative ability and functions of mature adipocytes for a long term, using three-dimensional collagen gel culture of the tissue fragments. In this system, both preadipocytes and MSCs regenerate actively at the peripheral zone of the fragments. Our method will open up a new way for studying both multiple cell types within adipose tissue and the cell-based mechanisms of obesity and metabolic syndrome. Thus, it seems to be a promising model for investigating adipose tissue biology and regeneration. In this article, we introduce adipose tissue-organotypic culture, and propose two theories regarding the mechanism of tissue regeneration that occurs specifically at peripheral zone of tissue fragments in vitro. PMID:19794899

  9. Hydrodynamic effects on cells in agitated tissue culture reactors

    NASA Technical Reports Server (NTRS)

    Cherry, R. S.; Papoutsakis, E. T.

    1986-01-01

    The mechanisms by which hydrodynamic forces can affect cells grown on microcarrier beads in agitated cell culture reactors were investigated by analyzing the motion of microcarriers relative to the surrounding fluid, to each other, and to moving or stationary solid surfaces. It was found that harmful effects on cell cultures that have been previously attributed to shear can be better explained as the effects of turbulence (of a size scale comparable to the microcarriers or the spacing between them) or collisions. The primary mechanisms of cell damage involve direct interaction between microcarriers and turbulent eddies, collisions between microcarriers in turbulent flow, and collisions against the impeller or other solid surfaces. The implications of these analytical results for the design of tissue culture reactors are discussed.

  10. Functional Interpretation of a Non-Gut Hemocoelic Tissue Aminopeptidase N (APN) in a Lepidopteran Insect Pest Achaea janata

    PubMed Central

    Ningshen, Thuirei Jacob; Aparoy, Polamarasetty; Ventaku, Venkat Rao; Dutta-Gupta, Aparna

    2013-01-01

    Insect midgut membrane-anchored aminopeptidases N (APNs) are Zn++ dependent metalloproteases. Their primary role in dietary protein digestion and also as receptors in Cry toxin-induced pathogenesis is well documented. APN expression in few non-gut hemocoelic tissues of lepidopteran insects has also been reported but their functions are widely unknown. In the present study, we observed specific in vitro interaction of Cry1Aa toxin with a 113 kDa AjAPN1 membrane protein of larval fat body, Malpighian tubule and salivary gland of Achaea janata. Analyses of 3D molecular structure of AjAPN1, the predominantly expressed APN isoform in these non-gut hemocoelic tissues of A. janata showed high structural similarity to the Cry1Aa toxin binding midgut APN of Bombyx mori, especially in the toxin binding region. Structural similarity was further substantiated by in vitro binding of Cry1Aa toxin. RNA interference (RNAi) resulted in significant down-regulation of AjAPN1 transcript and protein expression in fat body and Malpighian tubule but not in salivary gland. Consequently, reduced AjAPN1 expression resulted in larval mortality, larval growth arrest, development of lethal larval-pupal intermediates, development of smaller pupae and emergence of viable defective adults. In vitro Cry1Aa toxin binding analysis of non-gut hemocoelic tissues of AjAPN1 knockdown larvae showed reduced interaction of Cry1Aa toxin with the 113 kDa AjAPN1 protein, correlating well with the significant silencing of AjAPN1 expression. Thus, our observations suggest AjAPN1 expression in non-gut hemocoelic tissues to play important physiological role(s) during post-embryonic development of A. janata. Though specific interaction of Cry1Aa toxin with AjAPN1 of non-gut hemocoelic tissues of A. janata was demonstrated, evidences to prove its functional role as a Cry1Aa toxin receptor will require more in-depth investigation. PMID:24244508

  11. Fluorescent in situ hybridization for the localization of viruses, bacteria and other microorganisms in insect and plant tissues.

    PubMed

    Kliot, Adi; Ghanim, Murad

    2016-04-01

    Methods for the localization of cellular components such as nucleic acids, proteins, cellular vesicles and more, and the localization of microorganisms including viruses, bacteria and fungi have become an important part of any research program in biological sciences that enable the visualization of these components in fixed and live tissues without the need for complex processing steps. The rapid development of microscopy tools and technologies as well as related fluorescent markers and fluorophores for many cellular components, and the ability to design DNA and RNA sequence-based molecular probes and antibodies which can be visualized fluorescently, have rapidly advanced this field. This review will focus on some of the localizations methods which have been used in plants and insect pests in agriculture, and other microorganisms, which are rapidly advancing the research in agriculture-related fields. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Tissue deposition of the insect repellent DEET and the sunscreen oxybenzone from repeated topical skin applications in rats.

    PubMed

    Fediuk, Daryl J; Wang, Tao; Raizman, Joshua E; Parkinson, Fiona E; Gu, Xiaochen

    2010-12-01

    Insect repellent N,N-diethyl-m-toluamide (DEET) and sunscreen oxybenzone are capable of enhancing skin permeation of each other when applied simultaneously. We carried out a cellular study in rat astrocytes and neurons to assess cell toxicity of DEET and oxybenzone and a 30-day study in Sprague-Dawley rats to characterize skin permeation and tissue disposition of the compounds. Cellular toxicity occurred at 1 µg/mL for neurons and 7-day treatment for astrocytes and neurons. DEET and oxybenzone permeated across the skin to accumulate in blood, liver, and brain after repeated topical applications. DEET disappeared from the application site faster than oxybenzone. Combined application enhanced the disposition of DEET in liver. No overt sign of behavioral toxicity was observed from several behavioral testing protocols. It was concluded that despite measurable disposition of the study compounds in vivo, there was no evidence of neurotoxicological deficits from repeated topical applications of DEET, oxybenzone, or both.

  13. Tissue Engineered Bone Grafts: Biological Requirements, Tissue Culture and Clinical Relevance

    PubMed Central

    Fröhlich, Mirjam; Grayson, Warren L.; Wan, Leo Q.; Marolt, Darja; Drobnic, Matej; Vunjak-Novakovic, Gordana

    2009-01-01

    The tremendous need for bone tissue in numerous clinical situations and the limited availability of suitable bone grafts are driving the development of tissue engineering approaches to bone repair. In order to engineer viable bone grafts, one needs to understand the mechanisms of native bone development and fracture healing, as these processes should ideally guide the selection of optimal conditions for tissue culture and implantation. Engineered bone grafts have been shown to have capacity for osteogenesis, osteoconduction, osteoinduction and osteointegration - functional connection between the host bone and the graft. Cells from various anatomical sources in conjunction with scaffolds and osteogenic factors have been shown to form bone tissue in vitro. The use of bioreactor systems to culture cells on scaffolds before implantation further improved the quality of the resulting bone grafts. Animal studies confirmed the capability of engineered grafts to form bone and integrate with the host tissues. However, the vascularization of bone remains one of the hurdles that need to be overcome if clinically sized, fully viable bone grafts are to be engineered and implanted. We discuss here the biological guidelines for tissue engineering of bone, the bioreactor cultivation of human mesenchymal stem cells on three-dimensional scaffolds, and the need for vascularization and functional integration of bone grafts following implantation. PMID:19075755

  14. Lemongrass-Incorporated Tissue Conditioner Against Candida albicans Culture

    PubMed Central

    Amornvit, Pokpong; Srithavaj, Theerathavaj

    2014-01-01

    Background: Tissue conditioner is applied popularly with dental prosthesis during wound healing process but it becomes a reservoir of oral microbiota, especially Candida species after long-term usage. Several antifungal drugs have been mixed with this material to control fungal level. In this study, lemongrass essential oil was added into COE-COMFORT tissue conditioner before being determined for anti-Candida efficacy. Materials and Methods: Lemongrass (Cymbopogon citratus) essential oil was primarily determined for antifungal activity against C. albicans American type culture collection (ATCC) 10231 and MIC (minimum inhibitory concentration) value by agar disk diffusion and broth microdilution methods, respectively. COE-COMFORT tissue conditioner was prepared as recommended by the manufacturer after a fixed volume of the oil at its MIC or higher concentrations were mixed thoroughly in its liquid part. Antifungal efficacy of the tissue conditioner with/without herb was finally analyzed. Results: Lemongrass essential oil displayed potent antifungal activity against C. albicans ATCC 10231and its MIC value was 0.06% (v/v). Dissimilarly, the tissue conditioner containing the oil at MIC level did not cease the growth of the tested fungus. Both reference and clinical isolates of C. albicans were completely inhibited after exposed to the tissue conditioner containing at least 0.25% (v/v) of the oil (approximately 4-time MIC). The tissue conditioner without herb or with nystatin was employed as negative or positive control, respectively. Conclusion: COE-COMFORT tissue conditioner supplemented with lemongrass essential oil obviously demonstrated another desirable property as in vitro anti-Candida efficacy to minimize the risk of getting Candidal infection. PMID:25177638

  15. Critical tissue residue approach linking accumulated metals in aquatic insects to population and community-level effects

    USGS Publications Warehouse

    Schmidt, Travis S.; Clements, William H.; Zuellig, Robert E.; Mitchell, Katharine A.; Church, Stan E.; Wanty, Richard B.; San Juan, Carma A.; Adams, Monique; Lamothe, Paul J.

    2011-01-01

    Whole body Zn concentrations in individuals (n = 825) from three aquatic insect taxa (mayflies Rhithrogena spp. and Drunella spp. and the caddisfly Arctopsyche grandis) were used to predict effects on populations and communities (n = 149 samples). Both mayflies accumulated significantly more Zn than the caddisfly. The presence/absence of Drunella spp. most reliably distinguished sites with low and high Zn concentrations; however, population densities of mayflies were more sensitive to increases in accumulated Zn. Critical tissue residues (634 (mu or u)g/g Zn for Drunella spp. and 267 (mu or u)g/g Zn for Rhithrogena spp.) caused a 20% reduction in maximum (90th quantile) mayfly densities. These critical tissue residues were associated with exposure to 7.0 and 3.9 (mu or u)g/L dissolved Zn for Drunella spp. and Rhithrogena spp., respectively. A threshold in a measure of taxonomic completeness (observed/expected) was observed at 5.4 (mu or u)g/L dissolved Zn. Dissolved Zn concentrations associated with critical tissue residues in mayflies were also associated with adverse effects in the aquatic community as a whole. These effects on populations and communities occurred at Zn concentrations below the U.S. EPA hardness-adjusted continuous chronic criterion.

  16. Process analytical technology (PAT) in insect and mammalian cell culture processes: dielectric spectroscopy and focused beam reflectance measurement (FBRM).

    PubMed

    Druzinec, Damir; Weiss, Katja; Elseberg, Christiane; Salzig, Denise; Kraume, Matthias; Pörtner, Ralf; Czermak, Peter

    2014-01-01

    Modern bioprocesses demand for a careful definition of the critical process parameters (CPPs) already during the early stages of process development in order to ensure high-quality products and satisfactory yields. In this context, online monitoring tools can be applied to recognize unfavorable changes of CPPs during the production processes and to allow for early interventions in order to prevent losses of production batches due to quality issues. Process analytical technologies such as the dielectric spectroscopy or focused beam reflectance measurement (FBRM) are possible online monitoring tools, which can be applied to monitor cell growth as well as morphological changes. Since the dielectric spectroscopy only captures cells with intact cell membranes, even information about dead cells with ruptured or leaking cell membranes can be derived. The following chapter describes the application of dielectric spectroscopy on various virus-infected and non-infected cell lines with respect to adherent as well as suspension cultures in common stirred tank reactors. The adherent mammalian cell lines Vero (African green monkey kidney cells) and hMSC-TERT (telomerase-immortalized human mesenchymal stem cells) are thereby cultured on microcarrier, which provide the required growth surface and allow the cultivation of these cells even in dynamic culture systems. In turn, the insect-derived cell lines S2 and Sf21 are used as examples for cells typically cultured in suspension. Moreover, the FBRM technology as a further monitoring tool for cell culture applications has been included in this chapter using the example of Drosophila S2 insect cells.

  17. Design of a Miniature Tissue Culture System to Culture Mouse Heart Valves

    PubMed Central

    Lieber, Samuel C.; Kruithof, Boudewijn P. T.; Aubry, Nadine; Vatner, Stephen F.; Gaussin, Vinciane

    2010-01-01

    Valvular heart disease is a leading cause of morbidity and mortality in adults but little is known about the underlying etiology. A better understanding of the genetic and hemodynamic mechanisms involved in growth and remodeling of heart valves during physiological and pathological conditions is needed for a better understanding of valvular heart disease. Here, we report the design of a miniature tissue culture system (MTCS) that allows the culture of mitral valves from perinatal to adult mice. The design of the MTCS is novel in that fine positioning and cannulation can be conducted with hearts of different sizes (perinatal to adult). Perfusion of the heart and hence, culture of the mitral valve in its natural position, occurs in a hydraulically sealed culture bath environment. Using the MTCS, we successfully cultured the mitral valve of adult mouse hearts for 3 days. Histological analysis indicated that the cultured valves remained viable and their extracellular matrix organization was similar to age-matched native valves. Gene expression could also be modified in cultured valves by perfusion with medium containing beta-galactosidase-expressing adenovirus. Thus, the MTCS is a new tool to study the genetic and hemodynamic mechanisms underlying the three-dimensional organization of the heart valves, which could provide insights in the pathology of valvular heart disease and be used in animal models for the development of tissue-engineered heart valves. PMID:20099034

  18. Noninvasive Oxygen Monitoring in Three-Dimensional Tissue Cultures Under Static and Dynamic Culture Conditions

    PubMed Central

    Weyand, Birgit; Nöhre, Mariel; Schmälzlin, Elmar; Stolz, Marvin; Israelowitz, Meir; Gille, Christoph; von Schroeder, Herb P.; Reimers, Kerstin; Vogt, Peter M.

    2015-01-01

    Abstract We present a new method for noninvasive real-time oxygen measurement inside three-dimensional tissue-engineered cell constructs in static and dynamic culture settings in a laminar flow bioreactor. The OPAL system (optical oxygen measurement system) determines the oxygen-dependent phosphorescence lifetime of spherical microprobes and uses a two-frequency phase-modulation technique, which fades out the interference of background fluorescence from the cell carrier and culture medium. Higher cell densities in the centrum of the scaffolds correlated with lower values of oxygen concentration obtained with the OPAL system. When scaffolds were placed in the bioreactor, higher oxygen values were measured compared to statically cultured scaffolds in a Petri dish, which were significantly different at day 1–3 of culture. This technique allows the use of signal-weak microprobes in biological environments and monitors the culture process inside a bioreactor. PMID:26309802

  19. Addressing the Instability of DNA Nanostructures in Tissue Culture

    PubMed Central

    2015-01-01

    DNA nanotechnology is an advanced technique that could contribute diagnostic, therapeutic, and biomedical research devices to nanomedicine. Although such devices are often developed and demonstrated using in vitro tissue culture models, these conditions may not be compatible with DNA nanostructure integrity and function. The purpose of this study was to characterize the sensitivity of 3D DNA nanostructures produced via the origami method to the in vitro tissue culture environment and identify solutions to prevent loss of nanostructure integrity. We examined whether the physiological cation concentrations of cell culture medium and the nucleases present in fetal bovine serum (FBS) used as a medium supplement result in denaturation and digestion, respectively. DNA nanostructure denaturation due to cation depletion was design- and time-dependent, with one of four tested designs remaining intact after 24 h at 37 °C. Adjustment of medium by addition of MgSO4 prevented denaturation. Digestion of nanostructures by FBS nucleases in Mg2+-adjusted medium did not appear design-dependent and became significant within 24 h and when medium was supplemented with greater than 5% FBS. We estimated that medium supplemented with 10% FBS contains greater than 256 U/L equivalent of DNase I activity in digestion of DNA nanostructures. Heat inactivation at 75 °C and inclusion of actin protein in medium inactivated and inhibited nuclease activity, respectively. We examined the impact of medium adjustments on cell growth, viability, and phenotype. Adjustment of Mg2+ to 6 mM did not appear to have a detrimental impact on cells. Heat inactivation was found to be incompatible with in vitro tissue culture, whereas inclusion of actin had no observable effect on growth and viability. In two in vitro assays, immune cell activation and nanoparticle endocytosis, we show that using conditions compatible with cell phenotype and nanostructure integrity is critical for obtaining reliable experimental

  20. Addressing the instability of DNA nanostructures in tissue culture.

    PubMed

    Hahn, Jaeseung; Wickham, Shelley F J; Shih, William M; Perrault, Steven D

    2014-09-23

    DNA nanotechnology is an advanced technique that could contribute diagnostic, therapeutic, and biomedical research devices to nanomedicine. Although such devices are often developed and demonstrated using in vitro tissue culture models, these conditions may not be compatible with DNA nanostructure integrity and function. The purpose of this study was to characterize the sensitivity of 3D DNA nanostructures produced via the origami method to the in vitro tissue culture environment and identify solutions to prevent loss of nanostructure integrity. We examined whether the physiological cation concentrations of cell culture medium and the nucleases present in fetal bovine serum (FBS) used as a medium supplement result in denaturation and digestion, respectively. DNA nanostructure denaturation due to cation depletion was design- and time-dependent, with one of four tested designs remaining intact after 24 h at 37 °C. Adjustment of medium by addition of MgSO4 prevented denaturation. Digestion of nanostructures by FBS nucleases in Mg(2+)-adjusted medium did not appear design-dependent and became significant within 24 h and when medium was supplemented with greater than 5% FBS. We estimated that medium supplemented with 10% FBS contains greater than 256 U/L equivalent of DNase I activity in digestion of DNA nanostructures. Heat inactivation at 75 °C and inclusion of actin protein in medium inactivated and inhibited nuclease activity, respectively. We examined the impact of medium adjustments on cell growth, viability, and phenotype. Adjustment of Mg(2+) to 6 mM did not appear to have a detrimental impact on cells. Heat inactivation was found to be incompatible with in vitro tissue culture, whereas inclusion of actin had no observable effect on growth and viability. In two in vitro assays, immune cell activation and nanoparticle endocytosis, we show that using conditions compatible with cell phenotype and nanostructure integrity is critical for obtaining reliable

  1. Use of an insect cell culture growth medium to isolate bacteria from horses with effusive, fibrinous pericarditis: a preliminary study.

    PubMed

    Jones, Samuel L; Valenzisi, Amy; Sontakke, Sushama; Sprayberry, Kimberly A; Maggi, Ricardo; Hegarty, Barbara; Breitschwerdt, Edward

    2007-03-31

    Effusive, fibrinous pericarditis is an uncommon disease entity in horses. In 2001, pericarditis occurred in conjunction with an epizootic in central Kentucky that was associated with exposure to eastern tent caterpillars (ETCs). Bacterial isolation from equine pericardial fluid samples was attempted using an insect cell culture growth medium (ICCGM). Using previously cultured, stored frozen samples from four horses with fibrinous pericarditis, inoculation of 10% blood agar plates yielded no growth, whereas simultaneous inoculation of ICCGM resulted in the isolation of Proprionibacterium acnes, Staphylococcus equorum, a Streptococcus sp. and Pseudomonas rhodesiae from pericardial fluid samples. A similar or novel caterpillar-associated bacteria was not identified; however, use of an ICCGM might enhance isolation of bacteria from equine pericardial fluid.

  2. 21 CFR 864.2220 - Synthetic cell and tissue culture media and components.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Synthetic cell and tissue culture media and... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Cell And Tissue Culture Products § 864.2220 Synthetic cell and tissue culture media and components. (a) Identification. Synthetic...

  3. 21 CFR 864.2220 - Synthetic cell and tissue culture media and components.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Synthetic cell and tissue culture media and... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Cell And Tissue Culture Products § 864.2220 Synthetic cell and tissue culture media and components. (a) Identification. Synthetic...

  4. 21 CFR 864.2220 - Synthetic cell and tissue culture media and components.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Synthetic cell and tissue culture media and... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Cell And Tissue Culture Products § 864.2220 Synthetic cell and tissue culture media and components. (a) Identification. Synthetic...

  5. 21 CFR 864.2220 - Synthetic cell and tissue culture media and components.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Synthetic cell and tissue culture media and... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Cell And Tissue Culture Products § 864.2220 Synthetic cell and tissue culture media and components. (a) Identification. Synthetic...

  6. Anaerobic Cultures from Preserved Tissues of Baby Mammoth

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena V.; Hoover, Richard B.; Fisher, Daniel

    2011-01-01

    Microbiological analysis of several cold-preserved tissue samples from the Siberian baby mammoth known as Lyuba revealed a number of culturable bacterial strains that were grown on anaerobic media at 4 C. Lactic acid produced by LAB (lactic acid bacteria) group, usually by members of the genera Carnobacterium and Lactosphera, appears to be a wonderful preservative that prevents other bacteria from over-dominating a system. Permafrost and lactic acid preserved the body of this one-month old baby mammoth and kept it in exceptionally good condition, resulting in this mammoth being the most complete such specimen ever recovered. The diversity of novel anaerobic isolates was expressed on morphological, physiological and phylogenetic levels. Here we discuss the specifics of the isolation of new strains, differentiation from trivial contamination, and preliminary results for the characterization of cultures.

  7. Anaerobic cultures from preserved tissues of baby mammoth

    NASA Astrophysics Data System (ADS)

    Pikuta, Elena V.; Fisher, Daniel; Hoover, Richard B.

    2011-10-01

    Microbiological analysis of several cold-preserved tissue samples from the Siberian baby mammoth known as Lyuba revealed a number of culturable bacterial strains that were grown on anaerobic media at 3 oC. Lactic acid produced by LAB (lactic acid bacteria) group, usually by members of the genera Carnobacterium and Lactosphera, appears to be a wonderful preservative that keeps other bacteria from colonizing a system. Permafrost and lactic acid preserved the body of this one month-old baby mammoth and kept it in exceptionally good condition, resulting in this mammoth being the most complete sample of the species ever recovered. The diversity of novel psychrophilic anaerobic isolates was expressed on morphological, physiological and phylogenetic levels. Here, we discuss the specifics of the isolation of new psychrophilic strains, differentiation from trivial contamination, and preliminary results for characterization of the cultures.

  8. Organotypic tissue culture investigation of homocysteine thiolactone cardiotoxic effect.

    PubMed

    Lopatina, Ekaterina V; Kipenko, A V; Penniyaynen, V A; Pasatetskaya, N A; Djuric, D; Krylov, B V

    2015-06-01

    Homocysteine thiolactone was demonstrated to inhibit the growth of 10-12-day-old chicken embryo cardiac tissue explants at 7 × 10⁻⁹ -1 × 10⁻³ M concentrations in a dose-dependent manner. The maximal cardiotoxic effect of homocysteine thiolactone was detected at 1 × 10⁻³ M, which corresponds to severe hyperhomocysteinemia. The results of experiments on culturing of cardiac tissue explants in the medium containing homocysteine thiolactone (1 × 10⁻³ M) and ouabain at concentrations regulating the signal-transducing (1 × 10⁻¹⁰ M) and pumping (1 × 10⁻⁸ M) functions of Na⁺,K⁺ -ATPase indicate that the cardiotoxic effect of homocysteine thiolactone is supposed to result from inhibition of the Na⁺,K⁺ -ATPase pumping function.

  9. Organ culture preservation for corneal tissue. Technical and quality aspects.

    PubMed

    Pels, E; Rijneveld, W J

    2009-01-01

    The technical and quality aspects of organ culture as a storage method for human donor corneas are described. Data electronically stored since 1989 of > 41,000 corneas, processed in the Cornea Bank Amsterdam, are analysed. The technical information of eye banks collected in the Directory of the European Eye Bank Association (EEBA) is used as comparison. European Union (EU) directive for tissue banking and EEBA technical guidelines are references for the quality aspects. Organ culture allows the storage of donor corneas up to 4-5weeks. The storage phase is followed by a generally much shorter phase of 1-7 days, to reverse the corneal swelling occurring in the first phase and to transport the tissue to the clinic. Selection of the corneas based on inspection of the endothelium after storage as well as microbiological testing of the storage solution after a quarantine period are mandatory for this technique. General agreement exists about the outline of the method, but technical variations are applied to suit local circumstances and preferences of corneal surgeons. Agreement exists about a minimum endothelial cell count as selection criterion in case the donor endothelium is meant to be grafted. The use and cutoff points of other selection parameters for the cornea, e.g. the endothelial cell mosaic, are varying. According to EU regulations, a quality management system should be installed. This way each bank is able to issue a standardized product, while the production process is monitored with quality registrations. With the clinical outcome of the graft, the quality of the selection and storage procedures is verified. With the notification of adverse reactions such as primary graft failure and endophthalmitis, minimum risks will be assessed. The organ-cultured cornea is a well-documented product concerning microbiological safety and quality of the tissue. However, variations in performance and materials and no definite cut-off points for selection do not make an

  10. Scaffolds for tissue engineering and 3D cell culture.

    PubMed

    Carletti, Eleonora; Motta, Antonella; Migliaresi, Claudio

    2011-01-01

    In tissue engineering applications or even in 3D cell cultures, the biological cross talk between cells and the scaffold is controlled by the material properties and scaffold characteristics. In order to induce cell adhesion, proliferation, and activation, materials used for the fabrication of scaffolds must possess requirements such as intrinsic biocompatibility and proper chemistry to induce molecular biorecognition from cells. Materials, scaffold mechanical properties and degradation kinetics should be adapted to the specific tissue engineering application to guarantee the required mechanical functions and to accomplish the rate of the new-tissue formation. For scaffolds, pore distribution, exposed surface area, and porosity play a major role, whose amount and distribution influence the penetration and the rate of penetration of cells within the scaffold volume, the architecture of the produced extracellular matrix, and for tissue engineering applications, the final effectiveness of the regenerative process. Depending on the fabrication process, scaffolds with different architecture can be obtained, with random or tailored pore distribution. In the recent years, rapid prototyping computer-controlled techniques have been applied to the fabrication of scaffolds with ordered geometry. This chapter reviews the principal polymeric materials that are used for the fabrication of scaffolds and the scaffold fabrication processes, with examples of properties and selected applications.

  11. Dynamics of Necrophagous Insect and Tissue Bacteria for Postmortem Interval Estimation During the Warm Season in Romania.

    PubMed

    Iancu, Lavinia; Sahlean, Tiberiu; Purcarea, Cristina

    2016-01-01

    The estimation of postmortem interval (PMI) is affected by several factors including the cause of death, the place where the body lay after death, and the weather conditions during decomposition. Given the climatic differences among biogeographic locations, the understanding of necrophagous insect species biology and ecology is required when estimating PMI. The current experimental model was developed in Romania during the warm season in an outdoor location. The aim of the study was to identify the necrophagous insect species diversity and dynamics, and to detect the bacterial species present during decomposition in order to determine if their presence or incidence timing could be useful to estimate PMI. The decomposition process of domestic swine carcasses was monitored throughout a 14-wk period (10 July-10 October 2013), along with a daily record of meteorological parameters. The chronological succession of necrophagous entomofauna comprised nine Diptera species, with the dominant presence of Chrysomya albiceps (Wiedemann 1819) (Calliphoridae), while only two Coleoptera species were identified, Dermestes undulatus (L. 1758) and Creophilus maxillosus Brahm 1970. The bacterial diversity and dynamics from the mouth and rectum tissues, and third-instar dipteran larvae were identified using denaturing gradient gel electrophoresis analysis and sequencing of bacterial 16S rRNA gene fragments. Throughout the decomposition process, two main bacterial chronological groups were differentiated, represented by Firmicutes and Gammaproteobacteria. Twenty-six taxa from the rectal cavity and 22 from the mouth cavity were identified, with the dominant phylum in both these cavities corresponding to Firmicutes. The present data strengthen the postmortem entomological and microbial information for the warm season in this temperate-continental area, as well as the role of microbes in carcass decomposition.

  12. Media Compositions for Three Dimensional Mammalian Tissue Growth Under Microgravity Culture Conditions

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J. (Inventor)

    1998-01-01

    Normal mammalian tissue and the culturing process has been developed for the three groups of organ, structural and blood tissue. The cells are grown in vitro under microgravity culture conditions and form three dimensional cells aggregates with normal cell function. The microgravity culture conditions may be microgravity or simulated microgravity created in a horizontal rotating wall culture vessel.

  13. Media Compositions for Three-Dimensional Mammalian Tissue Growth under Microgravity Culture Conditions

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J. (Inventor)

    1998-01-01

    Normal mammalian tissue and the culturing process has been developed for the three groups of organ, structural and blood tissue.The cells are grown in vitro under microgravity culture conditions and form three dimensional cells aggregates with normal cell function. The microgravity culture conditions may be microgravity or simulated microgravity created in a horizontal rotating wall culture vessel.

  14. Tissue-specific promoter usage and diverse splicing variants of found in neurons, an ancestral Hu/ELAV-like RNA-binding protein gene of insects, in the direct-developing insect Gryllus bimaculatus.

    PubMed

    Watanabe, T; Aonuma, H

    2014-02-01

    Hu/ELAV-like RNA-binding proteins (RBPs) are involved in the post-transcriptional regulation of RNA metabolism including splicing, transport, translational control and turnover. The Hu/ELAV-like RBP genes are predominantly expressed in neurons, and are therefore used as common neuronal markers in many animals. Although the expression patterns and functions of the Hu/ELAV-like RBP genes have been extensively studied in the model insect Drosophila melanogaster, little is known in basal direct-developing insects. In the present study, we performed an identification and expression analysis of the found in neurons (fne) gene, an ancestral insect Hu/ELAV-like RBP gene, in the cricket Gryllus bimaculatus. Contrary to expectation that the Gryllus fne transcript would be predominantly expressed in the nervous system, expression analysis revealed that the Gryllus fne gene is expressed broadly. In addition, we discovered that alternative promoter usage directs tissue-specific and embryonic stage-dependent regulation of fne expression, and that alternative splicing contributes to the generation of diverse sets of fne transcripts. Our data provide novel insights into the evolutionary diversification of the Hu/ELAV-like RBP gene family in insects. © 2013 The Royal Entomological Society.

  15. Metabolic measurements in cell culture and tissue constructs

    NASA Astrophysics Data System (ADS)

    Rolfe, P.

    2008-10-01

    This paper concerns the study and use of biological cells in which there is a need for sensors and assemblies for the measurement of a diverse range of physical and chemical variables. In this field cell culture is used for basic research and for applications such as protein and drug synthesis, and in cell, tissue and organ engineering. Metabolic processes are fundamental to cell behaviour and must therefore be monitored reliably. Basic metabolic studies measure the transport of oxygen, glucose, carbon dioxide, lactic acid to, from, or within cells, whilst more advanced research requires examination of energy storage and utilisation. Assemblies are designed to incorporate bioreactor functions for cell culture together with appropriate sensing devices. Oxygen consumption by populations of cells is achieved in a flowthrough assembly that incorporates O2 micro-sensors based on either amperometry or fluorescence. Measurements in single cell are possible with intra-cellular fluorophores acting as biosensors together with optical stimulation and detection. Near infra-red spectroscopy (NIRS) is used for analysis within culture fluid, for example for estimation of glucose levels, as well as within cell populations, for example to study the respiratory enzymes.Â#

  16. Oncogenic transformation of diverse gastrointestinal tissues in primary organoid culture

    PubMed Central

    Li, Xingnan; Nadauld, Lincoln; Ootani, Akifumi; Corney, David C.; Pai, Reetesh K.; Gevaert, Olivier; Cantrell, Michael A.; Rack, Paul G.; Neal, James T.; Chan, Carol W-M.; Yeung, Trevor; Gong, Xue; Yuan, Jenny; Wilhelmy, Julie; Robine, Sylvie; Attardi, Laura D.; Plevritis, Sylvia K.; Hung, Kenneth E.; Chen, Chang-Zheng; Ji, Hanlee P.; Kuo, Calvin J.

    2014-01-01

    The application of primary organoid cultures containing epithelial and mesenchymal elements to cancer modeling holds promise for combining the accurate multilineage differentiation and physiology of in vivo systems with the facile in vitro manipulation of transformed cell lines. Here, a single air-liquid interface culture method was used without modification to engineer oncogenic mutations into primary epithelial/mesenchymal organoids from mouse colon, stomach and pancreas. Pancreatic and gastric organoids exhibited dysplasia upon KrasG12D expression and/or p53 loss, and readily generated adenocarcinoma upon in vivo transplantation. In contrast, primary colon organoids required combinatorial Apc, p53, KrasG12D and Smad4 mutations for progressive transformation to invasive adenocarcinoma-like histology in vitro and tumorigenicity in vivo, recapitulating multi-hit models of colorectal cancer (CRC), and versus more promiscuous transformation of small intestinal organoids. Colon organoid culture functionally validated the microRNA miR-483 as a dominant driver oncogene at the Insulin-like growth factor-2 (IGF2) 11p15.5 CRC amplicon, inducing dysplasia in vitro and tumorigenicity in vivo. These studies demonstrate the general utility of a highly tractable primary organoid system for cancer modeling and driver oncogene validation in diverse gastrointestinal tissues. PMID:24859528

  17. Curvature-dependent excitation propagation in cultured cardiac tissue

    NASA Astrophysics Data System (ADS)

    Kadota, S.; Kay, M. W.; Magome, N.; Agladze, K.

    2012-02-01

    The geometry of excitation wave front may play an important role on the propagation block and spiral wave formation. The wave front which is bent over the critical value due to interaction with the obstacles may partially cease to propagate and appearing wave breaks evolve into rotating waves or reentry. This scenario may explain how reentry spontaneously originates in a heart. We studied highly curved excitation wave fronts in the cardiac tissue culture and found that in the conditions of normal, non-inhibited excitability the curvature effects do not play essential role in the propagation. Neither narrow isthmuses nor sharp corners of the obstacles, being classical objects for production of extremely curved wave front, affect non-inhibited wave propagation. The curvature-related phenomena of the propagation block and wave detachment from the obstacle boundary were observed only after partial suppression of the sodium channels with Lidocaine. Computer simulations confirmed the experimental observations. The explanation of the observed phenomena refers to the fact that the heart tissue is made of finite size cells so that curvature radii smaller than the cardiomyocyte size loses sense, and in non-inhibited tissue the single cell is capable to transmit excitation to its neighbors.

  18. Transient Expression and Cellular Localization of Recombinant Proteins in Cultured Insect Cells.

    PubMed

    Fabrick, Jeffrey A; Hull, J Joe

    2017-04-20

    Heterologous protein expression systems are used for the production of recombinant proteins, the interpretation of cellular trafficking/localization, and the determination of the biochemical function of proteins at the sub-organismal level. Although baculovirus expression systems are increasingly used for protein production in numerous biotechnological, pharmaceutical, and industrial applications, nonlytic systems that do not involve viral infection have clear benefits but are often overlooked and underutilized. Here, we describe a method for generating nonlytic expression vectors and transient recombinant protein expression. This protocol allows for the efficient cellular localization of recombinant proteins and can be used to rapidly discern protein trafficking within the cell. We show the expression of four recombinant proteins in a commercially available insect cell line, including two aquaporin proteins from the insect Bemisia tabaci, as well as subcellular marker proteins specific for the cell plasma membrane and for intracellular lysosomes. All recombinant proteins were produced as chimeras with fluorescent protein markers at their carboxyl termini, which allows for the direct detection of the recombinant proteins. The double transfection of cells with plasmids harboring constructs for the genes of interest and a known subcellular marker allows for live cell imaging and improved validation of cellular protein localization.

  19. Clock genes of Mammalian cells: practical implications in tissue culture.

    PubMed

    Kaeffer, Bertrand; Pardini, Lissia

    2005-01-01

    The clock genes family is expressed by all the somatic cells driving central and peripheral circadian rhythms through transcription/translation feedback loops. The circadian clock provides a local time for a cell and a way to integrate the normal environmental changes to smoothly adapt the cellular machinery to new conditions. The central circadian rhythm is retained in primary cultures by neurons of the suprachiasmatic nuclei. The peripheral circadian rhythms of the other somatic cells are progressively dampened down up to loss unless neuronal signals of the central clock are provided for re-entrainment. Under typical culture conditions (obscurity, 37 +/- 1 degrees C, 5-7% CO(2)), freshly explanted peripheral cells harbor chaotic expression of clock genes for 12-14 h and loose, coordinated oscillating patterns of clock components. Cells of normal or cancerous phenotypes established in culture harbor low levels of clock genes idling up to the re-occurrence of new synchronizer signals. Synchronizers are physicochemical cues (like thermic oscillations, short-term exposure to high concentrations of serum or single medium exchange) able to re-induce molecular oscillations of clock genes. The environmental synchronizers are integrated by response elements located in the promoter region of period genes that drive the central oscillator complex (CLOCK:BMAL1 and NPAS2:BMAL1 heterodimers). Only a few cell lines from different species and lineages have been tested for the existence or the functioning of a circadian clockwork. The best characterized cell lines are the immortalized SCN2.2 neurons of rat suprachiasmatic nuclei for the central clock and the Rat-1 fibroblasts or the NIH/3T3 cells for peripheral clocks. Isolation methods of fragile cell phenotypes may benefit from research on the biological clocks to design improved tissue culture media and new bioassays to diagnose pernicious consequences for health of circadian rhythm alterations.

  20. Development of continuous cell culture of brown planthopper to trace the early infection process of oryzaviruses in insect vector cells.

    PubMed

    Chen, Hongyan; Zheng, Limin; Mao, Qianzhuo; Liu, Qifei; Jia, Dongsheng; Wei, Taiyun

    2014-04-01

    Rice ragged stunt virus (RRSV), an oryzavirus in the family Reoviridae, is transmitted by the brown planthopper, Nilaparvata lugens, in a persistent-propagative manner. Here, we established a continuous cell line of brown planthopper to investigate the mechanism underlying the formation of the viroplasm, the putative site for viral replication and assembly, during infection of RRSV in its insect vector cells. Within 24 h of viral infection of cultured cells, the viroplasm had formed and contained the viral nonstructural proteins Pns6 and Pns10, known to be constituents of viroplasm. Core capsid protein P3, core particles, and newly synthesized viral RNAs were accumulated inside the viroplasm, while outer capsid protein P8 and virions were accumulated at the periphery of the viroplasm, confirming that the viroplasm induced by RRSV infection was the site for viral replication and assembly. Pns10 formed viroplasm-like inclusions in the absence of viral infection, suggesting that the viroplasm matrix was largely composed of Pns10. Pns6 was recruited in the viroplasm by direct interaction with Pns10. Core capsid protein P3 was recruited to the viroplasm through specific association with Pns6. Knockdown of Pns6 and Pns10 expression using RNA interference inhibited viroplasm formation, virion assembly, viral protein expression, and viral double-stranded RNA synthesis. Thus, the present study shows that both Pns6 and Pns10 of RRSV play important roles in the early stages of viral life cycle in its insect vector cells, by recruiting or retaining components necessary for viral replication and assembly. The brown planthopper, a commonly distributed pest of rice in Asia, is the host of numerous insect endosymbionts, and the major vector of two rice viruses (RRSV and rice grassy stunt virus). For the first time, we successfully established the continuous cell line of brown planthopper. The unique uniformity of brown planthopper cells in the monolayer can support a consistent

  1. Dynamic Culturing of Cartilage Tissue: The Significance of Hydrostatic Pressure

    PubMed Central

    Pereira, Ana L.; Duarte, Ana R.C.; Frias, Ana M.; Pedro, Adriano J.; Oliveira, João T.; Sousa, Rui A.; Reis, Rui L.

    2012-01-01

    Human articular cartilage functions under a wide range of mechanical loads in synovial joints, where hydrostatic pressure (HP) is the prevalent actuating force. We hypothesized that the formation of engineered cartilage can be augmented by applying such physiologic stimuli to chondrogenic cells or stem cells, cultured in hydrogels, using custom-designed HP bioreactors. To test this hypothesis, we investigated the effects of distinct HP regimens on cartilage formation in vitro by either human nasal chondrocytes (HNCs) or human adipose stem cells (hASCs) encapsulated in gellan gum (GG) hydrogels. To this end, we varied the frequency of low HP, by applying pulsatile hydrostatic pressure or a steady hydrostatic pressure load to HNC-GG constructs over a period of 3 weeks, and evaluated their effects on cartilage tissue-engineering outcomes. HNCs (10×106 cells/mL) were encapsulated in GG hydrogels (1.5%) and cultured in a chondrogenic medium under three regimens for 3 weeks: (1) 0.4 MPa Pulsatile HP; (2) 0.4 MPa Steady HP; and (3) Static. Subsequently, we applied the pulsatile regimen to hASC-GG constructs and varied the amplitude of loading, by generating both low (0.4 MPa) and physiologic (5 MPa) HP levels. hASCs (10×106 cells/mL) were encapsulated in GG hydrogels (1.5%) and cultured in a chondrogenic medium under three regimens for 4 weeks: (1) 0.4 MPa Pulsatile HP; (2) 5 MPa Pulsatile HP; and (3) Static. In the HNC study, the best tissue development was achieved by the pulsatile HP regimen, whereas in the hASC study, greater chondrogenic differentiation and matrix deposition were obtained for physiologic loading, as evidenced by gene expression of aggrecan, collagen type II, and sox-9; metachromatic staining of cartilage extracellular matrix; and immunolocalization of collagens. We thus propose that both HNCs and hASCs detect and respond to physical forces, thus resembling joint loading, by enhancing cartilage tissue development in a frequency- and

  2. Lipid composition of slash pine tissue cultures grown with lunar and earth soils

    NASA Technical Reports Server (NTRS)

    Laseter, J. L.; Weete, J. D.; Baur, P. S.; Walkinshaw, C. H.

    1973-01-01

    Lipid analyses were conducted on slash pine tissues grown in culture in the presence of lunar (Apollo 15) and earth soils. Significant reductions in the total lipids, fatty acids, and sterol components were found in the tissues grown in contact with each of the soils employed when compared to the control. Tissues grown with lunar soil showed the greatest reductions. These results are discussed with respect to previous ultrastructural studies on similarly treated slash pine tissues and lipid analyses on tobacco tissue cultures.

  3. Lipid composition of slash pine tissue cultures grown with lunar and earth soils

    NASA Technical Reports Server (NTRS)

    Laseter, J. L.; Weete, J. D.; Baur, P. S.; Walkinshaw, C. H.

    1973-01-01

    Lipid analyses were conducted on slash pine tissues grown in culture in the presence of lunar (Apollo 15) and earth soils. Significant reductions in the total lipids, fatty acids, and sterol components were found in the tissues grown in contact with each of the soils employed when compared to the control. Tissues grown with lunar soil showed the greatest reductions. These results are discussed with respect to previous ultrastructural studies on similarly treated slash pine tissues and lipid analyses on tobacco tissue cultures.

  4. Flexible automation of cell culture and tissue engineering tasks.

    PubMed

    Knoll, Alois; Scherer, Torsten; Poggendorf, Iris; Lütkemeyer, Dirk; Lehmann, Jürgen

    2004-01-01

    Until now, the predominant use cases of industrial robots have been routine handling tasks in the automotive industry. In biotechnology and tissue engineering, in contrast, only very few tasks have been automated with robots. New developments in robot platform and robot sensor technology, however, make it possible to automate plants that largely depend on human interaction with the production process, e.g., for material and cell culture fluid handling, transportation, operation of equipment, and maintenance. In this paper we present a robot system that lends itself to automating routine tasks in biotechnology but also has the potential to automate other production facilities that are similar in process structure. After motivating the design goals, we describe the system and its operation, illustrate sample runs, and give an assessment of the advantages. We conclude this paper by giving an outlook on possible further developments.

  5. Methods for the Organogenesis of Skeletal Muscle in Tissue Culture

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman; Shansky, Janet; DelTatto, Michael; Chromiak, Joseph

    1997-01-01

    Skeletal muscle structure is regulated by many factors, including nutrition, hormones, electrical activity, and tension. The muscle cells are subjected to both passive and active mechanical forces at all stages of development and these forces play important but poorly understood roles in regulating muscle organogenesis and growth. For example, during embryogenesis, the rapidly growing skeleton places large passive mechanical forces on the attached muscle tissue. These forces not only help to organize the proliferating mononucleated myoblasts into the oriented, multinucleated myofibers of a functional muscle but also tightly couple the growth rate of muscle to that of bone. Postnatally, the actively contracting, innervated muscle fibers are subjected to different patterns of active and passive tensions which regulate longitudinal and cross sectional myofiber growth. These mechanically-induced organogenic processes have been difficult to study under normal tissue culture conditions, resulting in the development of numerous methods and specialized equipment to simulate the in vivo mechanical environment.These techniques have led to the "engineering" of bioartificial muscles (organoids) which display many of the characteristics of in vivo muscle including parallel arrays of postmitotic fibers organized into fascicle-like structures with tendon-like ends. They are contractile, express adult isoforms of contractile proteins, perform directed work, and can be maintained in culture for long periods. The in vivo-like characteristics and durability of these muscle organoids make them useful for long term in vitro studies on mechanotransduction mechanisms and on muscle atrophy induced by decreased tension. In this report, we described a simple method for generating muscle organoids from either primary embrionic avain or neonatal rodent myoblasts.

  6. Methods for the Organogenesis of Skeletal Muscle in Tissue Culture

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman; Shansky, Janet; DelTatto, Michael; Chromiak, Joseph

    1997-01-01

    Skeletal muscle structure is regulated by many factors, including nutrition, hormones, electrical activity, and tension. The muscle cells are subjected to both passive and active mechanical forces at all stages of development and these forces play important but poorly understood roles in regulating muscle organogenesis and growth. For example, during embryogenesis, the rapidly growing skeleton places large passive mechanical forces on the attached muscle tissue. These forces not only help to organize the proliferating mononucleated myoblasts into the oriented, multinucleated myofibers of a functional muscle but also tightly couple the growth rate of muscle to that of bone. Postnatally, the actively contracting, innervated muscle fibers are subjected to different patterns of active and passive tensions which regulate longitudinal and cross sectional myofiber growth. These mechanically-induced organogenic processes have been difficult to study under normal tissue culture conditions, resulting in the development of numerous methods and specialized equipment to simulate the in vivo mechanical environment.These techniques have led to the "engineering" of bioartificial muscles (organoids) which display many of the characteristics of in vivo muscle including parallel arrays of postmitotic fibers organized into fascicle-like structures with tendon-like ends. They are contractile, express adult isoforms of contractile proteins, perform directed work, and can be maintained in culture for long periods. The in vivo-like characteristics and durability of these muscle organoids make them useful for long term in vitro studies on mechanotransduction mechanisms and on muscle atrophy induced by decreased tension. In this report, we described a simple method for generating muscle organoids from either primary embrionic avain or neonatal rodent myoblasts.

  7. Selection and Characterization of Sethoxydim- Tolerant Maize Tissue Cultures 1

    PubMed Central

    Parker, William B.; Somers, David A.; Wyse, Donald L.; Keith, Robin A.; Burton, James D.; Gronwald, John W.; Gengenbach, Burle G.

    1990-01-01

    `Black Mexican Sweet' (BMS) maize (Zea mays L.) tissue cultures were selected for tolerance to sethoxydim. Sethoxydim, a cyclohexanedione, and haloxyfop, an aryloxyphenoxypropionate, exert herbicidal activity on most monocots including maize by inhibiting acetyl-coenzyme A carboxylase (ACCase). Selected line B10S grew on medium containing 10 micromolar sethoxydim. Lines B50S and B100S were subsequent selections from B10S that grew on medium containing 50 and 100 micromolar sethoxydim, respectively. Growth rates of BMS, B10S, B50S, and B100S were similar in the absence of herbicide. Herbicide concentrations reducing growth by 50% were 0.6, 4.5, 35, and 26 micromolar sethoxydim and 0.06, 0.5, 5.4, and 1.8 micromolar haloxyfop for BMS, B10S, B50S, and B100S, respectively. Sethoxydim and haloxyfop concentrations that inhibited ACCase by 50% were similar for BMS, B10S, B50S, and B100S. However, ACCase activities were 6.01, 10.7, 16.1, and 11.4 nmol HCO3− incorporated per milligram of protein per minute in extracts of BMS, B10S, B50S, and B100S, respectively, suggesting that increased wild-type ACCase activity conferred herbicide tolerance. Incorporation of [14C]acetate into the nonpolar lipid fraction was higher for B50S than for BMS in the absence of sethoxydim providing further evidence for an increase in ACCase activity in the selected line. In the presence of 5 micromolar sethoxydim, [14C]acetate incorporation by B50S was similar to that for untreated BMS. The levels of a biotin-containing polypeptide (about 220,000 molecular weight), presumably the ACCase subunit, were increased in the tissue cultures that exhibited elevated ACCase activity indicating overproduction of the ACCase enzyme. Images Figure 3 PMID:16667393

  8. Adipose Tissue Engineering in Three-Dimensional Levitation Tissue Culture System Based on Magnetic Nanoparticles

    PubMed Central

    Daquinag, Alexes C.; Souza, Glauco R.

    2013-01-01

    White adipose tissue (WAT) is becoming widely used in regenerative medicine/cell therapy applications, and its physiological and pathological importance is increasingly appreciated. WAT is a complex organ composed of differentiated adipocytes, stromal mesenchymal progenitors known as adipose stromal cells (ASC), as well as endothelial vascular cells and infiltrating leukocytes. Two-dimensional (2D) culture that has been typically used for studying adipose cells does not adequately recapitulate WAT complexity. Improved methods for reconstruction of functional WAT ex vivo are instrumental for understanding of physiological interactions between the composing cell populations. Here, we used a three-dimensional (3D) levitation tissue culture system based on magnetic nanoparticle assembly to model WAT development and growth in organoids termed adipospheres. We show that 3T3-L1 preadipocytes remain viable in spheroids for a long period of time, while in 2D culture, they lose adherence and die after reaching confluence. Upon adipogenesis induction in 3T3-L1 adipospheres, cells efficiently formed large lipid droplets typical of white adipocytes in vivo, while only smaller lipid droplet formation is achievable in 2D. Adiposphere-based coculture of 3T3-L1 preadipocytes with murine endothelial bEND.3 cells led to a vascular-like network assembly concomitantly with lipogenesis in perivascular cells. Adipocyte-depleted stromal vascular fraction (SVF) of mouse WAT cultured in 3D underwent assembly into organoids with vascular-like structures containing luminal endothelial and perivascular stromal cell layers. Adipospheres made from primary WAT cells displayed robust proliferation and complex hierarchical organization reflected by a matricellular gradient incorporating ASC, endothelial cells, and leukocytes, while ASC quickly outgrew other cell types in adherent culture. Upon adipogenesis induction, adipospheres derived from the SVF displayed more efficient lipid droplet

  9. Adipose tissue engineering in three-dimensional levitation tissue culture system based on magnetic nanoparticles.

    PubMed

    Daquinag, Alexes C; Souza, Glauco R; Kolonin, Mikhail G

    2013-05-01

    White adipose tissue (WAT) is becoming widely used in regenerative medicine/cell therapy applications, and its physiological and pathological importance is increasingly appreciated. WAT is a complex organ composed of differentiated adipocytes, stromal mesenchymal progenitors known as adipose stromal cells (ASC), as well as endothelial vascular cells and infiltrating leukocytes. Two-dimensional (2D) culture that has been typically used for studying adipose cells does not adequately recapitulate WAT complexity. Improved methods for reconstruction of functional WAT ex vivo are instrumental for understanding of physiological interactions between the composing cell populations. Here, we used a three-dimensional (3D) levitation tissue culture system based on magnetic nanoparticle assembly to model WAT development and growth in organoids termed adipospheres. We show that 3T3-L1 preadipocytes remain viable in spheroids for a long period of time, while in 2D culture, they lose adherence and die after reaching confluence. Upon adipogenesis induction in 3T3-L1 adipospheres, cells efficiently formed large lipid droplets typical of white adipocytes in vivo, while only smaller lipid droplet formation is achievable in 2D. Adiposphere-based coculture of 3T3-L1 preadipocytes with murine endothelial bEND.3 cells led to a vascular-like network assembly concomitantly with lipogenesis in perivascular cells. Adipocyte-depleted stromal vascular fraction (SVF) of mouse WAT cultured in 3D underwent assembly into organoids with vascular-like structures containing luminal endothelial and perivascular stromal cell layers. Adipospheres made from primary WAT cells displayed robust proliferation and complex hierarchical organization reflected by a matricellular gradient incorporating ASC, endothelial cells, and leukocytes, while ASC quickly outgrew other cell types in adherent culture. Upon adipogenesis induction, adipospheres derived from the SVF displayed more efficient lipid droplet

  10. Delivery of recombinant alphavirus into hippocampal slice tissue culture.

    PubMed

    Lundstrom, Kenneth

    2012-08-01

    The alphaviruses Semliki Forest virus (SFV) and Sindbis virus (SIN) have been used frequently as expression vectors in vitro and in vivo. Usually, these systems consist of replication-deficient vectors that require a helper vector for packaging of recombinant particles. Replication-proficient vectors have also been engineered. Alphaviral vectors can be used as nucleic-acid-based vectors (DNA and RNA) or infectious particles. High-titer viral production is achieved in <2 d. The broad host range of alphaviruses facilitates studies in mammalian and nonmammalian cell lines, primary cells in culture, and in vivo. The strong preference for expression in neuronal cells has made alphaviruses particularly useful in neurobiological studies. Unfortunately, their strong cytotoxic effect on host cells, relatively short-term transient expression patterns, and the reasonably high cost of viral production remain drawbacks. However, novel mutant alphaviruses have shown reduced cytotoxicity and prolonged expression. This protocol describes gene delivery of recombinant alphavirus to hippocampal slice cultures. Organotypic slices are covered by a layer of glial cells that impedes the penetration of viral particles to the neurons. Thus, viral particles should be injected manually into the extracellular space of the tissue.

  11. Human epithelial tissue culture study on restorative materials.

    PubMed

    Forster, András; Ungvári, Krisztina; Györgyey, Ágnes; Kukovecz, Ákos; Turzó, Kinga; Nagy, Katalin

    2014-01-01

    Health condition of the gingival tissues contacting the surfaces of fixed prostheses is a result of multiple etiologic factors. The aim of the investigation discussed here was to evaluate the attachment and proliferation rate of cultured human epithelial cells on three commonly used restorative materials under in vitro conditions. Morphological and chemical structure of polished lithium-disilicate (IPS e.max Press, Ivoclar Vivadent AG, Germany), yttrium modified zirconium dioxide (5-TEC ICE Zirkon Translucent, Zirkonzahn GmbH Srl, Germany) and cobalt chromium alloy (Remanium star, Dentaurum GmbH & Co. KG, Germany) discs were examined by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and atomic force microscopy (AFM). Human epithelial cells harvested and cultured from one donor, were applied to investigate cell attachment (24h observation) and proliferation (72h observation) via dimethylthiazol-diphenyl tetrazolium bromide (MTT) and AlamarBlue(®) (AB) assays on control surface (cell-culture plate) and on the restorative materials (n=3×20 specimens/material). SEM and AFM revealed typical morphology and roughness features for the materials. Zirconia presented significantly higher Ra value. EDS confirmed typical elements on the investigated restorative materials: lithium-disilicate (Si, O); Zirconia (Zi, Y, O); CoCr (Co, Cr, W). All surfaces except CoCr exhibited significant cell proliferation according to MTT and AB assays after 72h compared to 24h. Among the restorative materials, CoCr samples showed the highest cell attachment as indicated by MTT assay. AB results showed that attachment and proliferation of human epithelial cells is supported more on lithium-disilicate. Both assays indicated the lowest value for zirconia. The results indicate that the restorative materials examined are equally suitable for subgingival restorations. Lithium-disilicate exhibited the best biocompatibility. The examined materials are indicated for use

  12. Tissue-culture cell fractionation. Fractionation of membranes from tissue-culture cells homogenized by glycerol-induced lysis.

    PubMed

    Graham, J M; Sandall, J K

    1979-07-15

    1. The disruption of various types of tissue-culture cells by (a) incubation in solutions of 1.2 M-glycerol and (b) transfer of the glycerol-loaded cells to relatively hypo-osmotic solutions of 0.25 M-sucrose was studied. 2. Bivalent cations (2mM-Mg2+) were generally included to preserve the nuclei, but some cells (polyoma-virus-transformed baby-hamster kidney cells) failed to be disrupted adequately under these conditions. 3. Other cells (mouse-embryo fibroblasts) required additional gentle Dounce homogenization to effect complete cell breakage. 4. Purification of the whole homogenate was carried out by a combination of differential centrifugation and sedimentation or flotation through sucrose gradients. 5. Enzyme analysis showed that plasma-membrane, endoplasmic-reticulum and mitochondrial fractions were obtained in good yield and purity.

  13. Studies of human intervertebral disc cell function in a constrained in vitro tissue culture system.

    PubMed

    Le Maitre, Christine Lyn; Hoyland, Judith Alison; Freemont, Anthony J

    2004-06-01

    This is a laboratory-based study examining a novel in vitro culture system for intervertebral disc tissue. Address the hypothesis that "the novel culture system will preserve intervertebral disc tissue matrix and cell function and prevent cellular apoptosis for periods up to 21 days." Studies of cell function in human intervertebral disc tissue are scarce. In vivo study of human intervertebral disc cells remains impracticable; in situ molecular biology in histologic sections lacks a dynamic dimension; and as for in vitro studies, cell culture often lacks physiologic relevance and explant cultures are subject to loss of tissue integrity and altered cell behavior. There is a biologic and therapeutic need for a satisfactory explant culture system for studying human intervertebral disc tissue in a controlled environment. Samples of human intervertebral disc tissue, obtained at surgery, were examined for a number of tissue and cell parameters immediately after excision (controls) and following culture of tissue samples either in a plastic ring or unconstrained in tissue culture medium for up to 3 weeks. Data were compared between cultured tissue and controls. By comparison with control tissue, unconstrained explants swelled, tissue structure was disturbed, and there were profound changes in cell function. By contrast, tissue cultured in plastic rings maintained tissue structure, and after 3 weeks, the cellular parameters were the same as in controls. This is the first reported system to preserve cell function of human discal explants for long periods in tissue culture. It will be a useful tool for a wide range of investigations of intervertebral disc biology that have not hitherto been possible.

  14. Comparison of human nasal epithelial cells grown as explant outgrowth cultures or dissociated tissue cultures in vitro.

    PubMed

    Jiao, Jian; Meng, Na; Wang, Hong; Zhang, Luo

    2013-12-01

    The purpose of this study was to compare cell growth characteristics, ciliated cell differentiation, and function of human nasal epithelial cells established as explant outgrowth cultures or dissociated tissue cultures. Human nasal mucosa of the uncinate process was obtained by endoscopy and epithelial cell cultures were established by explant outgrowth or dissociated tissue culture methods. Epithelial cell growth characteristics were observed by inverted phase contrast microscopy. Ciliated cell differentiation was detected by β-tubulin IVand ZO-1 immunocytochemistry. Basal and ATP-stimulated ciliary beat frequency (CBF) was measured using a highspeed digital microscopic imaging system. Both the explant and dissociated tissue cultures established as monolayers with tight junctions and differentiated cell composition, with both types of cultures comprising ciliated and non-ciliated epithelial cells. Fibroblasts were also frequently found in explant cultures but rarely seen in dissociated tissue cultures. In both culture systems, the highest ciliated cell density appeared at 7th-10th culture day and declined with time, with the lifespan of ciliated cells ranging from 14 to 21 days. Overall, 10% of the cells in explant cultures and 20% of the cells in the dissociated tissue cultures were ciliated. These two cultures demonstrated similar ciliary beat frequency values at baseline (7.78 ± 1.99 Hz and 7.91 ± 2.52 Hz, respectively) and reacted equivalently following stimulation with 100 μM ATP. The results of this study indicate that both the explant outgrowth and dissociated tissue culture techniques are suitable for growing well-differentiated nasal ciliated and non-ciliated cells, which have growth characteristics and ciliary activity similar to those of nasal epithelial cells in vivo.

  15. Effects of Apollo 12 lunar material on lipid levels of tobacco tissue and slash pine cultures

    NASA Technical Reports Server (NTRS)

    Weete, J. D.

    1972-01-01

    Investigations of the lipid components of pine tissues (Pinus elloitii) are discussed, emphasizing fatty acids and steroids. The response by slash pine tissue cultures to growth in contact with Apollo lunar soil, earth basalt, and Iowa soil is studied. Tissue cultures of tobacco grown for 12 weeks in contact with lunar material from Apollo 12 flight contained 21 to 35 percent more total pigment than control tissues. No differences were noted in the fresh or dry weight of the experimental and control samples.

  16. Bone contamination and blood culture in tissue donors.

    PubMed

    Segur, Josep M; Almela, Manuel; Farinas, Oscar; Lazaro, Alexandre; Navarro, Aurora; Trias, Esteve; Domingo, Anna; Marco, Francesc

    2005-01-01

    Swab cultures are the most usual method to detect graft contamination; nevertheless it has been confirmed his limited sensibility. We have studied the relationship between blood cultures, swab surface cultures and cultures of entirely samples of cancellous bone. We have evaluated 5 donors with positive blood culture, from 70 multiorganic donors during 2002. Blood samples were obtained prior the heart arrest. The bone procurement was done just after the organ recovery under aseptic conditions, and surface cultures were performed of each bone. After storage at -80 degrees C, cancellous samples were obtained by trephine and were completely cultured. In one case, the same microorganism grown in blood culture, in 2 of 9 surface cultures, and in 15 of 26 samples of cancellous bone. We conclude that to guarantee allograft's safety it is recommended to add donor's blood culture to the habitual surface swab culture if secondary sterilisation is not performed.

  17. Inducibility of chemical defences by two chewing insect herbivores in pine trees is specific to targeted plant tissue, particular herbivore and defensive trait.

    PubMed

    Moreira, Xoaquín; Lundborg, Lina; Zas, Rafael; Carrillo-Gavilán, Amparo; Borg-Karlson, Anna-Karin; Sampedro, Luis

    2013-10-01

    There is increasing evidence that plants can react to biotic aggressions with highly specific responses. However, few studies have attempted to jointly investigate whether the induction of plant defences is specific to a targeted plant tissue, plant species, herbivore identity, and defensive trait. Here we studied those factors contributing to the specificity of induced defensive responses in two economically important pine species against two chewing insect pest herbivores. Juvenile trees of Pinus pinaster and P. radiata were exposed to herbivory by two major pest threats, the large pine weevil Hylobius abietis (a bark-feeder) and the pine processionary caterpillar Thaumetopoea pityocampa (a folivore). We quantified in two tissues (stem and needles) the constitutive (control plants) and herbivore-induced concentrations of total polyphenolics, volatile and non-volatile resin, as well as the profile of mono- and sesquiterpenes. Stem chewing by the pine weevil increased concentrations of non-volatile resin, volatile monoterpenes, and (marginally) polyphenolics in stem tissues. Weevil feeding also increased the concentration of non-volatile resin and decreased polyphenolics in the needle tissues. Folivory by the caterpillar had no major effects on needle defensive chemistry, but a strong increase in the concentration of polyphenolics in the stem. Interestingly, we found similar patterns for all these above-reported effects in both pine species. These results offer convincing evidence that induced defences are highly specific and may vary depending on the targeted plant tissue, the insect herbivore causing the damage and the considered defensive compound.

  18. Tissue culture tube contaminant inhibits excitatory synaptic channels.

    PubMed

    Reuhl, T O; Amador, M; Dani, J A

    1990-09-01

    Nicotinic acetylcholine receptors (nAChRs) were expressed in Xenopus oocytes. Large, slowly desensitizing macroscopic currents were induced by rapidly infusing an electrolyte solution containing 50 microM ACh in the presence of atropine. The N-methyl-D-aspartate (NMDA) subset of glutamate receptors was studied in CA1 hippocampal neurons. Macroscopic currents were induced by rapidly applying 30 microM NMDA and 10 microM glycine in the presence of picrotoxin, strychnine and tetrodotoxin. Exposing the electrolyte solutions to Falcon brand polypropylene tissue culture tubes (Becton Dickinson Labware) decreased the current through the nAChR channels or through the NMDA receptor channels (1). Purified water shaken in the Falcon brand tubes showed a broad absorbance peak near 200 nm. Before exposing the water to the Falcon tubes, the purified water gave no absorbance signal. The results indicate that a substance released from the Falcon tubes inhibits the currents through nAChR and NMDA receptor channels. Our experiments were with 50-ml Falcon 2098 tubes from lot numbers 72180188 and 80290188 and with 15-ml Falcon 2097 tubes from lot number 83560283. These were the only Falcon tubes we tested.

  19. Cloning of medicinal plants through tissue culture--a review.

    PubMed

    Chaturvedi, H C; Jain, Madhu; Kidwai, N R

    2007-11-01

    In order to have standardized formulations, the chemical constituents from plants and their parts are required to be uniform both qualitatively and quantitatively. Furthermore, an ever increasing demand of uniform medicinal plants based medicines warrants their mass cloning through plant tissue culture strategy. A good number of medicinal plants have been reported to regenerate in vitro from their various parts, but a critical evaluation of such reports reveals that only a few complete medicinal plants have been regenerated and still fewer have actually been grown in soil, while their micropropagation on a mass scale has rarely been achieved, particularly in those medicinal plants where conventional propagation is inadequate, like, the mass clonal propagation of Dioscorea floribunda leading to its successful field trials. Such facts make it imperative to document the factual position of micropropagation of medicinal plants bringing out the advancements made along with the short falls, in this important area. The present review deals with the futuristic view on the said subject restricted to higher plants.

  20. Embryogenesis and plant regeneration of Medicago spp. in tissue culture.

    PubMed

    Nagarajan, P; McKenzie, J S; Walton, P D

    1986-02-01

    Ten cultivars and breeding lines from two species of alfalfa (Medicago media and M. sativa) were screened for their ability to produce embryos and plantlets from the root and hypocotyl under three different tissue culture protocols. The three protocols differed in basal salt composition, vitamins, hormones and cytokinin additions. That protocol having a high 2-4,D low cytokinin induction step gave the highest percentage of embryogenic calli in some cultivars and lines. M. media cultivars and breeding lines had a high percentage of embryoid formation. M. sativa cultivars gave no embryoid formation. Two M. media breeding lines (Br1 and Le1), which were intermediate in the percentage of embryogenic calli formed from explants, had the highest number of regenerated plants established in soil. The creeping rooted M. media cultivar Heinrichs produced the highest percentage of embryogenic calli from explants but most of these embryoids were abnormal and failed to grow in soil or vermiculite. Accordingly, successful regeneration is directly related to the quality and quantity of the embryoids produced.

  1. Transmembrane chloride flux in tissue-cultured chick heart cells

    PubMed Central

    1983-01-01

    To evaluate the transmembrane movement of chloride in a preparation of cardiac muscle lacking the extracellular diffusion limitations of natural specimens, intracellular chloride concentration ( [Cl] i) and transmembrane 36Cl efflux have been determined in growth-oriented embryonic chick heart cells in tissue culture. Using the method of isotopic equilibrium, [Cl]i was 25.1 +/- 7.3 mmol x (liter cell water)- 1, comparable to the value of 24.9 +/- 5.4 mmol x (liter cell water)-1 determined by coulometric titration. Two cellular 36Cl compartments were found; one exchanged with a rate constant of 0.67 +/- 0.12 min-1 and was associated with the cardiac muscle cells; the other, attributed to the fibroblasts, exchanged with a rate constant of 0.18 +/- 0.05 min- 1. At 37 degrees C, transmembrane Cl flux of cardiac muscle under steady-state conditions was 30 pmol x cm-2 x s-1. In K-free, normal, or high-Ko solutions, the responses of the membrane potential to changes in external Cl concentration suggested that chloride conductance was low. These results indicate that Cl transport across the myocardial cell membrane is more rapid than K transport and is largely electrically silent. PMID:6864192

  2. Flowering of Woody Bamboo in Tissue Culture Systems.

    PubMed

    Yuan, Jin-Ling; Yue, Jin-Jun; Gu, Xiao-Ping; Lin, Choun-Sea

    2017-01-01

    Flowering and subsequent seed set are not only normal activities in the life of most plants, but constitute the very reason for their existence. Woody bamboos can take a long time to flower, even over 100 years. This makes it difficult to breed bamboo, since flowering time cannot be predicted and passing through each generation takes too long. Another unique characteristic of woody bamboo is that a bamboo stand will often flower synchronously, both disrupting the supply chain within the bamboo industry and affecting local ecology. Therefore, an understanding of the mechanism that initiates bamboo flowering is important not only for biology research, but also for the bamboo industry. Induction of flowering in vitro is an effective way to both shorten the flowering period and control the flowering time, and has been shown for several species of bamboo. The use of controlled tissue culture systems allows investigation into the mechanism of bamboo flowering and facilitates selective breeding. Here, after a brief introduction of flowering in bamboo, we review the research on in vitro flowering of bamboo, including our current understanding of the effects of plant growth regulators and medium components on flower induction and how in vitro bamboo flowers can be used in research.

  3. 21 CFR 864.2240 - Cell and tissue culture supplies and equipment.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cell and tissue culture supplies and equipment. 864.2240 Section 864.2240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Cell And Tissue Culture...

  4. Cell culture approaches to understanding the actions of steroid hormones on the insect nervous system.

    PubMed

    Levine, R B; Weeks, J C

    1996-01-01

    During metamorphosis of the hawkmoth, Manduca sexta, ecdysteroids regulate the dendritic remodeling and programmed death of identified motoneurons. These changes contribute to the dramatic reorganization of behavior that accompanies metamorphosis. As a step toward elucidating cellular and molecular mechanisms by which ecdysteroids affect neuronal phenotype, we have investigated the responses of Manduca motoneurons to ecdysteroids in vitro. Following dendritic regression at the end of larval life, thoracic leg motoneurons placed in culture respond to ecdysteroids by an increase in branching complexity, similar to events in vivo. Growth cone structure is affected markedly by ecdysteroids. At pupation, a rise in ecdysteroids triggers the segment-specific death of proleg motoneurons: the same segmental pattern of death is observed when motoneurons from different segments are removed from the nervous system and exposed to ecdysteroids in vitro. These studies provide strong evidence that Manduca motoneurons are direct targets of steroid action and set the stage for further studies of the specific mechanisms involved.

  5. Advances in tissue engineering through stem cell-based co-culture.

    PubMed

    Paschos, Nikolaos K; Brown, Wendy E; Eswaramoorthy, Rajalakshmanan; Hu, Jerry C; Athanasiou, Kyriacos A

    2015-05-01

    Stem cells are the future in tissue engineering and regeneration. In a co-culture, stem cells not only provide a target cell source with multipotent differentiation capacity, but can also act as assisting cells that promote tissue homeostasis, metabolism, growth and repair. Their incorporation into co-culture systems seems to be important in the creation of complex tissues or organs. In this review, critical aspects of stem cell use in co-culture systems are discussed. Direct and indirect co-culture methodologies used in tissue engineering are described, along with various characteristics of cellular interactions in these systems. Direct cell-cell contact, cell-extracellular matrix interaction and signalling via soluble factors are presented. The advantages of stem cell co-culture strategies and their applications in tissue engineering and regenerative medicine are portrayed through specific examples for several tissues, including orthopaedic soft tissues, bone, heart, vasculature, lung, kidney, liver and nerve. A concise review of the progress and the lessons learned are provided, with a focus on recent developments and their implications. It is hoped that knowledge developed from one tissue can be translated to other tissues. Finally, we address challenges in tissue engineering and regenerative medicine that can potentially be overcome via employing strategies for stem cell co-culture use. Copyright © 2014 John Wiley & Sons, Ltd.

  6. Collagen gels and the 'Bornstein legacy': from a substrate for tissue culture to cell culture systems and biomaterials for tissue regeneration.

    PubMed

    García-Gareta, Elena

    2014-07-01

    As collagen is the main structural component of connective tissues and skin, much effort was made in the past and still today to use it in cell culture applications. Moreover, collagen biomaterials are widely used in tissue regeneration, including the treatment of burns and chronic wounds. The great implications of the research carried out by Bornstein, Ehrmann and Gey on collagen preparations in the 1950s for cell culture and more recently tissue engineering and regeneration are described in this commentary. Specifically, it is explored why the 1958 paper on 'Reconstituted Rat-Tail Collagen Used as Substrate for Tissue Cultures on Coverslips in Maximow Slides and Roller Tubes' by M. B. Bornstein has made an invaluable contribution to the field.

  7. Comparative study on Allium schoenoprasum cultivated plant and Allium schoenoprasum tissue culture organs antioxidant status.

    PubMed

    Stajner, D; Popović, B M; Calić-Dragosavac, D; Malenčić, D; Zdravković-Korać, S

    2011-11-01

    This study was designed to examine Allium schoenoprasum tissue culture organs antioxidant and scavenging activity and to make a comparison between Allium schoenoprasum cultivated plant and Allium schoenoprasum tissue culture organs antioxidant activity. This study reports the results on the root, stalk and leaf antioxidant enzyme activities (superoxide dismutase, catalase, guaiacol peroxidase and glutathione peroxidase), reduced glutathione quantity, flavonoids and soluble protein contents and quantities of malonyldialdehyde and ·OH radical. In Allium schoenoprasum tissue culture organs the total antioxidant capacity was determined by the FRAP method and scavenger activity by the DPPH method. The present results indicated that the crude extract of Allium schoenoprasum tissue culture exhibited antioxidant and scavenging abilities in all investigated plant parts, especially in the roots. According to our results, the tissue culture plants exhibited the highest activities in the roots in contrast to the cultivated plants where highest activities were observed in the leaves.

  8. Pre-metatarsal skeletal development in tissue culture at unit- and microgravity

    NASA Technical Reports Server (NTRS)

    Klement, B. J.; Spooner, B. S.

    1994-01-01

    Explant organ culture was used to demonstrate that isolated embryonic mouse pre-metatarsal mesenchyme is capable of undergoing a series of differentiative and morphogenetic developmental events. Mesenchyme differentiation into chondrocytes, and concurrent morphogenetic patterning of the cartilage tissue, and terminal chondrocyte differentiation with subsequent matrix mineralization show that cultured tissue closely parallels in vivo development. Whole mount alizarin red staining of the cultured tissue demonstrates that the extracellular matrix around the hypertrophied chondrocytes is competent to support mineralization. Intensely stained mineralized bands are similar to those formed in pre-metatarsals developing in vivo. We have adapted the culture strategy for experimentation in a reduced gravity environment on the Space Shuttle. Spaceflight culture of pre-metatarsals, which have already initiated chondrogenesis and morphogenetic patterning, results in an increase in cartilage rod size and maintenance of rod shape, compared to controls. Older pre-metatarsal tissue, already terminally differentiated to hypertrophied cartilage, maintained rod structure and cartilage phenotype during spaceflight culture.

  9. Dynamic quantitative phase images of pond life, insect wings, and in vitro cell cultures

    NASA Astrophysics Data System (ADS)

    Creath, Katherine

    2010-08-01

    This paper presents images and data of live biological samples taken with a novel Linnik interference microscope. The specially designed optical system enables instantaneous and 3D video measurements of dynamic motions within and among live cells without the need for contrast agents. This "label-free", vibration insensitive imaging system enables measurement of biological objects in reflection using harmless light levels with current magnifications of 10X (NA 0.3) and 20X (NA 0.5) and wavelengths of 660 nm and 785 nm over fields of view from several hundred microns up to a millimeter. At the core of the instrument is a phasemeasurement camera (PMC) enabling simultaneous measurement of multiple interference patterns utilizing a pixelated phase mask taking advantage of the polarization properties of light. Utilizing this technology enables the creation of phase image movies in real time at video rates so that dynamic motions and volumetric changes can be tracked. Objects are placed on a reflective surface in liquid under a coverslip. Phase values are converted to optical thickness data enabling volumetric, motion and morphological studies. Data from a number of different mud puddle organisms such as paramecium, flagellates and rotifers will be presented, as will measurements of flying ant wings and cultures of human breast cancer cells. These data highlight examples of monitoring different biological processes and motions. The live presentation features 4D phase movies of these examples.

  10. Dynamic quantitative phase images of pond life, insect wings, and in vitro cell cultures

    PubMed Central

    Creath, Katherine

    2011-01-01

    This paper presents images and data of live biological samples taken with a novel Linnik interference microscope. The specially designed optical system enables instantaneous and 3D video measurements of dynamic motions within and among live cells without the need for contrast agents. This “label-free”, vibration insensitive imaging system enables measurement of biological objects in reflection using harmless light levels with current magnifications of 10X (NA 0.3) and 20X (NA 0.5) and wavelengths of 660 nm and 785 nm over fields of view from several hundred microns up to a millimeter. At the core of the instrument is a phase-measurement camera (PMC) enabling simultaneous measurement of multiple interference patterns utilizing a pixelated phase mask taking advantage of the polarization properties of light. Utilizing this technology enables the creation of phase image movies in real time at video rates so that dynamic motions and volumetric changes can be tracked. Objects are placed on a reflective surface in liquid under a coverslip. Phase values are converted to optical thickness data enabling volumetric, motion and morphological studies. Data from a number of different mud puddle organisms such as paramecium, flagellates and rotifers will be presented, as will measurements of flying ant wings and cultures of human breast cancer cells. These data highlight examples of monitoring different biological processes and motions. The live presentation features 4D phase movies of these examples. PMID:24357900

  11. Saponins do not affect the ecdysteroid receptor complex but cause membrane permeation in insect culture cell lines.

    PubMed

    De Geyter, Ellen; Swevers, Luc; Soin, Thomas; Geelen, Danny; Smagghe, Guy

    2012-01-01

    This project studied the effects of four saponins with a triterpenoid (Quillajasaponaria saponin and aescin) or steroid structure (digitonin and diosgenin which is the deglycosylated form of dioscin) on insect cells, namely Schneider S2 cells of Drosophila melanogaster (Diptera). A series of different experiments were performed to investigate potential mechanisms of action by saponins with regard to ecdysteroid receptor (EcR) responsiveness, cell viability, cell membrane permeation, and induction of apoptosis with DNA fragmentation and caspase-3 like activity. Major results were that (1) exposure of S2 cells containing an EcR-based reporter construct to a concentration series of each saponin scored no EcR activation, while (2) a loss of ecdysteroid signaling was observed with median inhibitory concentrations (IC(50)'s) of 3-50 μM, and in parallel (3) a concentration-dependent change in loss of cell numbers in an cell viability assay with median effective concentrations (EC(50)'s) of 8-699 μM. In continuation, it was of interest that (4) a trypan blue assay with Q. saponaria saponin confirmed the cell membrane permeation effect leading to cell toxicity with a median lethal concentration (LC(50)) value of 44 μM, and interestingly this effect was very rapid. Another three interesting observations were that (5) exposure to 20E at 500 nM as used in the EcR-based report assay induced caspase-3 like activities which may help to explain the discrepancies between loss of EcR-responsiveness and cell viability, (6) low concentrations of saponins induced DNA fragmentation and caspase-3 like activities, confirming their potential to induce apoptosis, and (7) the saponin effects were counteracted with addition of cholesterol to the culture medium. In general the data obtained provide evidence that the anti-ecdysteroid action by saponins is not based on a true antagonistic interaction with EcR signaling, but can be explained by a cytotoxic action due to permeation of the

  12. Discovery of Hyperpolarized Molecular Imaging Biomarkers in a Novel Prostate Tissue Slice Culture Model

    DTIC Science & Technology

    2013-06-01

    compatible bioreactor and that hyperpolarized 13C spectroscopy could be employed to study real-time metabolism of normal and malignant tissues. The...function of prostate tissue slice cultures (TCSs) in an nuclear magnetic resonance (NMR)-compatible, 3-dimensional tissue culture bioreactor , (2) to use...the TSC/NMR bioreactor model to identify hyperpolarized metabolic biomarkers of prostate cancer presence and aggressiveness, and (3) to use the TSC

  13. Stem tissue mass density is linked to growth and resistance to a stem-boring insect in Alternanthera philoxeroides

    USDA-ARS?s Scientific Manuscript database

    To investigate how stem anatomical structure is linked to growth and resistance to stem-boring insects in a herbaceous species, six populations of alligatorweed (Alternanthera philoxeroides) were grown in a common garden. Stem growth rate (GR) of A. philoxeroides and pupation rate as an estimate of ...

  14. Inducible Transposition of a Heat-Activated Retrotransposon in Tissue Culture.

    PubMed

    Masuta, Yukari; Nozawa, Kosuke; Takagi, Hiroki; Yaegashi, Hiroki; Tanaka, Keisuke; Ito, Tasuku; Saito, Hideyuki; Kobayashi, Hisato; Matsunaga, Wataru; Masuda, Seiji; Kato, Atsushi; Ito, Hidetaka

    2016-12-23

    A transposition of a heat-activated retrotransposon named ONSEN required compromise of a small RNA-mediated epigenetic regulation that includes RNA-directed DNA methylation (RdDM) machinery after heat treatment. In the current study, we analyzed the transcriptional and transpositional activation of ONSEN to better understand the underlying molecular mechanism involved in the maintenance and/or induction of transposon activation in plant tissue culture. We found the transposition of heat-primed ONSEN during tissue culture independently of RdDM mutation. The heat activation of ONSEN transcripts was not significantly up-regulated in tissue culture compared with that in heat-stressed seedlings, indicating that the transposition of ONSEN was regulated independently of the transcript level. RdDM-related genes were up-regulated by heat stress in both tissue culture and seedlings. The level of DNA methylation of ONSEN did not show any change in tissue culture, and the amount of ONSEN-derived small RNAs was not affected by heat stress. The results indicated that the transposition of ONSEN was regulated by an alternative mechanism in addition to the RdDM-mediated epigenetic regulation in tissue culture. We applied the tissue culture-induced transposition of ONSEN to Japanese radish, an important breeding species of the family Brassicaceae. Several new insertions were detected in a regenerated plant derived from heat-stressed tissues and its self-fertilized progeny, revealing the possibility of molecular breeding without genetic modification.

  15. Differential Expression Patterns in Chemosensory and Non-Chemosensory Tissues of Putative Chemosensory Genes Identified by Transcriptome Analysis of Insect Pest the Purple Stem Borer Sesamia inferens (Walker)

    PubMed Central

    Zhang, Ya-Nan; Jin, Jun-Yan; Jin, Rong; Xia, Yi-Han; Zhou, Jing-Jiang; Deng, Jian-Yu; Dong, Shuang-Lin

    2013-01-01

    Background A large number of insect chemosensory genes from different gene subfamilies have been identified and annotated, but their functional diversity and complexity are largely unknown. A systemic examination of expression patterns in chemosensory organs could provide important information. Methodology/Principal Findings We identified 92 putative chemosensory genes by analysing the transcriptome of the antennae and female sex pheromone gland of the purple stem borer Sesamia inferens, among them 87 are novel in this species, including 24 transcripts encoding for odorant binding proteins (OBPs), 24 for chemosensory proteins (CSPs), 2 for sensory neuron membrane proteins (SNMPs), 39 for odorant receptors (ORs) and 3 for ionotropic receptors (IRs). The transcriptome analyses were validated and quantified with a detailed global expression profiling by Reverse Transcription-PCR for all 92 transcripts and by Quantitative Real Time RT-PCR for selected 16 ones. Among the chemosensory gene subfamilies, CSP transcripts are most widely and evenly expressed in different tissues and stages, OBP transcripts showed a clear antenna bias and most of OR transcripts are only detected in adult antennae. Our results also revealed that some OR transcripts, such as the transcripts of SNMP2 and 2 IRs were expressed in non-chemosensory tissues, and some CSP transcripts were antenna-biased expression. Furthermore, no chemosensory transcript is specific to female sex pheromone gland and very few are found in the heads. Conclusion Our study revealed that there are a large number of chemosensory genes expressed in S. inferens, and some of them displayed unusual expression profile in non-chemosensory tissues. The identification of a large set of putative chemosensory genes of each subfamily from a single insect species, together with their different expression profiles provide further information in understanding the functions of these chemosensory genes in S. inferens as well as other

  16. Comparison of chronic wound culture techniques: swab versus curetted tissue for microbial recovery.

    PubMed

    Smith, Maria Elisa; Robinowitz, Natanya; Chaulk, Patrick; Johnson, Kristine

    2014-09-01

    Health-care professionals are increasingly relying on wound cultures as part of their clinical assessment. Tissue viability nurses in the UK use wound swabbing as the standard specimen-taking technique, but others are used globally and there is no worldwide standard. This study compares two wound culture techniques in uninfected chronic wounds of active and former injection drug users seeking care through a civic needle exchange mobile wound clinic. For each wound, two sampling approaches were applied during the same visit: swab culture and curetted tissue culture. A total of 12 chronic wounds were assessed among 9 patients, including 19 swab cultures and 19 tissue cultures. These 38 cultures grew a total of 157 individually identified bacterial organisms, including 27 anaerobic organisms (17.2%), 63 Gram-positive species (40.1%), and 67 Gram-negative species (42.7%). The swab technique yielded a greater percentage recovery rate of anaerobic (55.6%), Gram-positive (52.4%), and all species (51.6%) compared to tissue culture (P>0.05). Recovery of common wound species, such as methicillin-sensitive Staphylococcus aureus, methicillin-resistant Staphylococcus aureus, and Pseudomonas aeruginosa was the same using either method (50.0%). Swab and curetted tissue cultures yielded similar recovery rates for common wound bacteria. Therefore, swabs (including a vacuum transport container) may offer an advantage in the recovery of anaerobes. Based upon this analysis, the swabbased culture method for chronic wounds currently used in the UK is reasonable.

  17. Biomaterials in co-culture systems: towards optimizing tissue integration and cell signaling within scaffolds.

    PubMed

    Battiston, Kyle G; Cheung, Jane W C; Jain, Devika; Santerre, J Paul

    2014-05-01

    Most natural tissues consist of multi-cellular systems made up of two or more cell types. However, some of these tissues may not regenerate themselves following tissue injury or disease without some form of intervention, such as from the use of tissue engineered constructs. Recent studies have increasingly used co-cultures in tissue engineering applications as these systems better model the natural tissues, both physically and biologically. This review aims to identify the challenges of using co-culture systems and to highlight different approaches with respect to the use of biomaterials in the use of such systems. The application of co-culture systems to stimulate a desired biological response and examples of studies within particular tissue engineering disciplines are summarized. A description of different analytical co-culture systems is also discussed and the role of biomaterials in the future of co-culture research are elaborated on. Understanding the complex cell-cell and cell-biomaterial interactions involved in co-culture systems will ultimately lead the field towards biomaterial concepts and designs with specific biochemical, electrical, and mechanical characteristics that are tailored towards the needs of distinct co-culture systems.

  18. Demonstration of the economic feasibility of plant tissue culture for jojoba (Simmondsia chinensis) and Euphorbia spp

    SciTech Connect

    Sluis, C.

    1980-09-01

    The economic feasibility of plant tissue culture was demonstrated as applied to two plants: jojoba (Simmondsia chinensis) and Euphorbia spp. The gopher weed (Euphorbia lathyris) was selected as the species of Euphorbia to research due to the interest in this plant as a potential source of hydrocarbon-like compounds. High yield female selections of jojoba were chosen from native stands and were researched to determine the economic feasibility of mass producing these plants via a tissue culture micropropagation program. The female jojoba selection was successfully mass produced through tissue culture. Modifications in initiation techniques, as well as in multiplication media and rooting parameters, were necessary to apply the tissue culture system, which had been developed for juvenile seedling tissue, to mature jojobas. Since prior attempts at transfer of tissue cultured plantlets were unsuccessful, transfer research was a major part of the project and has resulted in a system for transfer of rooted jojoba plantlets to soil. Euphorbia lathyris was successfully cultured using shoot tip cultures. Media and procedures were established for culture initiation, multiplication of shoots, callus induction and growth, and root initiation. Well-developed root systems were not attained and root initiation percentages should be increased if the system is to become commercially feasible.

  19. Gas-permeable membranes and co-culture with fibroblasts enable high-density hepatocyte culture as multilayered liver tissues.

    PubMed

    Evenou, Fanny; Hamon, Morgan; Fujii, Teruo; Takeuchi, Shoji; Sakai, Yasuyuki

    2011-07-01

    To engineer reliable in vitro liver tissue equivalents expressing differentiated hepatic functions at a high level and over a long period of time, it appears necessary to have liver cells organized into a three-dimensional (3D) multicellular structure closely resembling in vivo liver cytoarchitecture and promoting both homotypic and heterotypic cell-cell contacts. In addition, such high density 3D hepatocyte cultures should be adequately supplied with nutrients and particularly with oxygen since it is one of the most limiting nutrients in hepatocyte cultures. Here we propose a novel but simple hepatocyte culture system in a microplate-based format, enabling high density hepatocyte culture as a stable 3D-multilayer. Multilayered co-cultures of hepatocytes and 3T3 fibroblasts were engineered on collagen-conjugated thin polydimethylsiloxane (PDMS) membranes which were assembled on bottomless frames to enable oxygen diffusion through the membrane. To achieve high density multilayered co-cultures, primary rat hepatocytes were seeded in large excess what was rendered possible due to the removal of oxygen shortage generally encountered in microplate-based hepatocyte cultures. Hepatocyte/3T3 fibroblasts multilayered co-cultures were maintained for at least 1 week; the so-cultured cells were normoxic and sustained differentiated metabolic functions like albumin and urea synthesis at higher levels than hepatocytes monocultures. Such a microplate-based cell culture system appears suitable for engineering in vitro miniature liver tissues for implantation, bioartificial liver (BAL) development, or chemical/drug screening.

  20. Transcriptional profiles of valvular interstitial cells cultured on tissue culture polystyrene, on 2D hydrogels, or within 3D hydrogels.

    PubMed

    Mabry, Kelly M; Payne, Samuel Z; Anseth, Kristi S

    2015-12-01

    Valvular interstitial cells (VICs) actively maintain and repair heart valve tissue; however, persistent activation of VICs to a myofibroblast phenotype can lead to aortic stenosis (Chen and Simmons, 2011) [1]. To better understand and quantify how microenvironmental cues influence VIC phenotype, we compared expression profiles of VICs cultured on/in poly(ethylene glycol) (PEG) gels to those cultured on tissue culture polystyrene (TCPS), as well as fresh isolates. Here, we present both the raw and processed microarray data from these culture conditions. Interpretation of this data can be found in a research article entitled "Microarray analyses to quantify advantages of 2D and 3D hydrogel culture systems in maintaining the native valvular interstitial cell phenotype" (Mabry et al., 2015) [2].

  1. Insect transferrins: multifunctional proteins.

    PubMed

    Geiser, Dawn L; Winzerling, Joy J

    2012-03-01

    Many studies have been done evaluating transferrin in insects. Genomic analyses indicate that insects could have more than one transferrin. However, the most commonly studied insect transferrin, Tsf1, shows greatest homology to mammalian blood transferrin. Aspects of insect transferrin structure compared to mammalian transferrin and the roles transferrin serves in insects are discussed in this review. Insect transferrin can have one or two lobes, and can bind iron in one or both. The iron binding ligands identified for the lobes of mammalian blood transferrin are generally conserved in the lobes of insect transferrins that have an iron binding site. Available information supports that the form of dietary iron consumed influences the regulation of insect transferrin. Although message is expressed in several tissues in many insects, fat body is the likely source of hemolymph transferrin. Insect transferrin is a vitellogenic protein that is down-regulated by Juvenile Hormone. It serves a role in transporting iron to eggs in some insects, and transferrin found in eggs appears to be endowed from the female. In addition to the roles of transferrin in iron delivery, this protein also functions to reduce oxidative stress and to enhance survival of infection. Future studies in Tsf1 as well as the other insect transferrins that bind iron are warranted because of the roles of transferrin in preventing oxidative stress, enhancing survival to infections and delivering iron to eggs for development. This article is part of a Special Issue entitled Transferrins: Molecular mechanisms of iron transport and disorders. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Equine ovarian tissue viability after cryopreservation and in vitro culture

    USDA-ARS?s Scientific Manuscript database

    The efficiency of several cryoprotective agents were compared using both slow-freezing and vitrification methods. Results indicate that the viability of ovarian tissue cells increases when DMSO (slow-freezing) and ethylene glycol (vitrification) are used....

  3. SEROLOGICAL TESTS FOR HOMOLOGOUS SERUM PROTEINS IN TISSUE CULTURES MAINTAINED ON A FOREIGN MEDIUM

    PubMed Central

    Landsteiner, Karl; Parker, Raymond C.

    1940-01-01

    Connective tissue cells (fibroblasts) derived from skeletal muscle of 12 day old chick embryos were cultivated for almost 8 months (35 weekly passages) in rabbit plasma and rabbit embryo tissue juice diluted with Tyrode's solution. When fluids separated from these cultures were tested with immune precipitins developed against chicken serum, they gave positive reactions which showed no tendency to diminish with an increasing number of culture generations. Barring the intervention of unknown precipitable substances, these results indicate that connective tissue can produce proteins which are identical with, or closely related to, serum proteins. The experiments further demonstrated that tissues cultivated in a foreign plasma do not lose their species specificity. PMID:19870958

  4. Tissue, developmental, and caste-specific expression of odorant binding proteins in a eusocial insect, the red imported fire ant, Solenopsis invicta.

    PubMed

    Zhang, Wei; Wanchoo, Arun; Ortiz-Urquiza, Almudena; Xia, Yuxian; Keyhani, Nemat O

    2016-10-21

    Insects interact with the surrounding environment via chemoreception, and in social insects such as ants, chemoreception functions to mediate diverse behaviors including food acquisition, self/non-self recognition, and intraspecific communication. The invasive red imported fire ant, Solenopsis invicta, has spread worldwide, displaying a remarkable environmental adaptability. Odorant binding proteins (OBPs) are chemical compound carriers, involved in diverse physiological processes including odor detection and chemical transport. S. invicta contains a highly divergent 17-member OBP gene family, that includes an ant-specific expansion and the social organization implicated Gp-9 (OBP3) gene. A systematic gene expression analysis of the SiOBP repertoire was performed across social caste (workers, male and female alates), tissues (antennae, head, thorax, and abdomen), and developmental stages (egg, larvae, and pupae), revealing that although SiOBPs were expressed in the antennae, the major regions of expression were in the head and thorax across all castes, and the abdomen in male and female alates. SiOBPs were very highly expressed in female alates and at somewhat lower levels in male alates and workers. SiOBPs were differentially expressed, with unique signatures in various castes and tissues, suggesting functionality of SiOBPs beyond olfaction Expression patterns of SiOBP subgroups also showed relationships with their evolutionary relatedness.

  5. Tissue, developmental, and caste-specific expression of odorant binding proteins in a eusocial insect, the red imported fire ant, Solenopsis invicta

    PubMed Central

    Zhang, Wei; Wanchoo, Arun; Ortiz-Urquiza, Almudena; Xia, Yuxian; Keyhani, Nemat O.

    2016-01-01

    Insects interact with the surrounding environment via chemoreception, and in social insects such as ants, chemoreception functions to mediate diverse behaviors including food acquisition, self/non-self recognition, and intraspecific communication. The invasive red imported fire ant, Solenopsis invicta, has spread worldwide, displaying a remarkable environmental adaptability. Odorant binding proteins (OBPs) are chemical compound carriers, involved in diverse physiological processes including odor detection and chemical transport. S. invicta contains a highly divergent 17-member OBP gene family, that includes an ant-specific expansion and the social organization implicated Gp-9 (OBP3) gene. A systematic gene expression analysis of the SiOBP repertoire was performed across social caste (workers, male and female alates), tissues (antennae, head, thorax, and abdomen), and developmental stages (egg, larvae, and pupae), revealing that although SiOBPs were expressed in the antennae, the major regions of expression were in the head and thorax across all castes, and the abdomen in male and female alates. SiOBPs were very highly expressed in female alates and at somewhat lower levels in male alates and workers. SiOBPs were differentially expressed, with unique signatures in various castes and tissues, suggesting functionality of SiOBPs beyond olfaction Expression patterns of SiOBP subgroups also showed relationships with their evolutionary relatedness. PMID:27765943

  6. Therapeutically important proteins from in vitro plant tissue culture systems.

    PubMed

    Doran, Pauline M

    2013-01-01

    Plant cells cultured in liquid medium in bioreactors are now being used commercially to produce biopharmaceutical proteins. The emergence of in vitro plant cell culture as a production vehicle reflects the importance of key biosafety and biocontainment concerns affecting the competitiveness of alternative systems such as mammalian cell culture and agriculture. Food plant species are particularly attractive as hosts for in vitro protein production: the risk of transgene escape and food chain contamination is eliminated using containment facilities, while regulatory approval for oral delivery of drugs may be easier than if non-edible species were used. As in whole plants, proteolysis in cultured plant cells can lead to significant degradation of foreign proteins after synthesis; however, substantial progress has been made to counter the destructive effects of proteases in plant systems. Although protein secretion into the culture medium is advantageous for product recovery and purification, measures are often required to minimise extracellular protease activity and product losses due to irreversible surface adsorption. Disposable plastic bioreactors, which are being used increasingly in mammalian cell bioprocessing, are also being adopted for plant cell culture to allow rapid scale-up and generation of saleable product. This review examines a range of technical and regulatory issues affecting the choice of industrial production platform for foreign proteins, and assesses progress in the development of in vitro plant systems for biopharmaceutical production.

  7. Long term organ culture of human prostate tissue in a NASA-designed rotating wall bioreactor

    NASA Technical Reports Server (NTRS)

    Margolis, L.; Hatfill, S.; Chuaqui, R.; Vocke, C.; Emmert-Buck, M.; Linehan, W. M.; Duray, P. H.

    1999-01-01

    PURPOSE: To maintain ex vivo integral prostatic tissue including intact stromal and ductal elements using the NASA-designed Rotating Wall Vessel (RWV) which maintains colocalized cells in an environment that promotes both three-dimensional cellular interactions together with the uniform mass transfer of nutrients and metabolic wastes. MATERIALS AND METHODS: Samples of normal prostate were obtained as a byproduct of transurethral prostatectomy or needle biopsy. Prostatic tissue dissected into small 1 x 1 mm. blocks was cultured in the Rotating Wall Vessel (RWV) Bioreactor for various time periods and analyzed using histological, immunochemical, and total cell RNA assays. RESULTS: We report the long term maintenance of benign explanted human prostate tissue grown in simple culture medium, under the simulated microgravity conditions afforded by the RWV bioreactor. Mesenchymal stromal elements including blood vessels and architecturally preserved tubuloglandular acini were maintained for a minimum of 28 days. Cytokeratins, vimentin and TGF-beta2 receptor and ligand were preserved through the entire culture period as revealed by immunocytochemistry. Prostatic acid phosphatase (PAP) was continuously expressed during the culture period, although somewhat decreased. Prostatic specific antigen (PSA) and its transcript were down regulated over time of culture. Prostatic carcinoma cells from the TSU cell line were able to invade RWV-cultured benign prostate tissue explants. CONCLUSIONS: The RWV bioreactor represents an additional new technology for culturing prostate tissue for further investigations concerning the basic physiology and pathobiology of this clinically important tissue.

  8. Long term organ culture of human prostate tissue in a NASA-designed rotating wall bioreactor.

    PubMed

    Margolis, L; Hatfill, S; Chuaqui, R; Vocke, C; Emmert-Buck, M; Linehan, W M; Duray, P H

    1999-01-01

    To maintain ex vivo integral prostatic tissue including intact stromal and ductal elements using the NASA-designed Rotating Wall Vessel (RWV) which maintains colocalized cells in an environment that promotes both three-dimensional cellular interactions together with the uniform mass transfer of nutrients and metabolic wastes. Samples of normal prostate were obtained as a byproduct of transurethral prostatectomy or needle biopsy. Prostatic tissue dissected into small 1 x 1 mm. blocks was cultured in the Rotating Wall Vessel (RWV) Bioreactor for various time periods and analyzed using histological, immunochemical, and total cell RNA assays. We report the long term maintenance of benign explanted human prostate tissue grown in simple culture medium, under the simulated microgravity conditions afforded by the RWV bioreactor. Mesenchymal stromal elements including blood vessels and architecturally preserved tubuloglandular acini were maintained for a minimum of 28 days. Cytokeratins, vimentin and TGF-beta2 receptor and ligand were preserved through the entire culture period as revealed by immunocytochemistry. Prostatic acid phosphatase (PAP) was continuously expressed during the culture period, although somewhat decreased. Prostatic specific antigen (PSA) and its transcript were down regulated over time of culture. Prostatic carcinoma cells from the TSU cell line were able to invade RWV-cultured benign prostate tissue explants. The RWV bioreactor represents an additional new technology for culturing prostate tissue for further investigations concerning the basic physiology and pathobiology of this clinically important tissue.

  9. A method for establishing human primary gastric epithelial cell culture from fresh surgical gastric tissues.

    PubMed

    Aziz, Faisal; Yang, Xuesong; Wen, Qingping; Yan, Qiu

    2015-08-01

    At present, biopsy specimens, cancer cell lines and tissues obtained by gastric surgery are used in the study and analysis of gastric cancer, including the molecular mechanisms and proteomics. However, fibroblasts and other tissue components may interfere with these techniques. Therefore, the present study aimed to develop a procedure for the isolation of viable human gastric epithelial cells from gastric surgical tissues. A method was developed to culture human gastric epithelial cells using fresh, surgically excised tissues and was evaluated using immunocytochemistry, periodic acid-Schiff (PAS) staining and cell viability assays. Low cell growth was observed surrounding the gastric tissue on the seventh day of tissue explant culture. Cell growth subsequently increased, and at 12 days post-explant a high number of pure epithelial cells were detected. The gastric cancer cells exhibited rapid growth with a doubling time of 13-52 h, as compared to normal cells, which had a doubling time of 20-53 h. Immunocytochemical analyses of primary gastric cells revealed positive staining for cytokeratin 18 and 19, which indicated that the culture was comprised of pure epithelial cells and contained no fibroblasts. Furthermore, PAS staining demonstrated that the cultured gastric cells produced neutral mucin. Granulin and carbohydrate antigen 724 staining confirmed the purity of gastric cancer and normal cells in culture. This method of cell culture indicated that the gastric cells in primary culture consisted of mucin-secreting gastric epithelial cells, which may be useful for the study of gastric infection with Helicobacter pylori and gastric cancer.

  10. Long term organ culture of human prostate tissue in a NASA-designed rotating wall bioreactor

    NASA Technical Reports Server (NTRS)

    Margolis, L.; Hatfill, S.; Chuaqui, R.; Vocke, C.; Emmert-Buck, M.; Linehan, W. M.; Duray, P. H.

    1999-01-01

    PURPOSE: To maintain ex vivo integral prostatic tissue including intact stromal and ductal elements using the NASA-designed Rotating Wall Vessel (RWV) which maintains colocalized cells in an environment that promotes both three-dimensional cellular interactions together with the uniform mass transfer of nutrients and metabolic wastes. MATERIALS AND METHODS: Samples of normal prostate were obtained as a byproduct of transurethral prostatectomy or needle biopsy. Prostatic tissue dissected into small 1 x 1 mm. blocks was cultured in the Rotating Wall Vessel (RWV) Bioreactor for various time periods and analyzed using histological, immunochemical, and total cell RNA assays. RESULTS: We report the long term maintenance of benign explanted human prostate tissue grown in simple culture medium, under the simulated microgravity conditions afforded by the RWV bioreactor. Mesenchymal stromal elements including blood vessels and architecturally preserved tubuloglandular acini were maintained for a minimum of 28 days. Cytokeratins, vimentin and TGF-beta2 receptor and ligand were preserved through the entire culture period as revealed by immunocytochemistry. Prostatic acid phosphatase (PAP) was continuously expressed during the culture period, although somewhat decreased. Prostatic specific antigen (PSA) and its transcript were down regulated over time of culture. Prostatic carcinoma cells from the TSU cell line were able to invade RWV-cultured benign prostate tissue explants. CONCLUSIONS: The RWV bioreactor represents an additional new technology for culturing prostate tissue for further investigations concerning the basic physiology and pathobiology of this clinically important tissue.

  11. Comparison of manual and automated cultures of bone marrow stromal cells for bone tissue engineering.

    PubMed

    Akiyama, Hirokazu; Kobayashi, Asako; Ichimura, Masaki; Tone, Hiroshi; Nakatani, Masaru; Inoue, Minoru; Tojo, Arinobu; Kagami, Hideaki

    2015-11-01

    The development of an automated cell culture system would allow stable and economical cell processing for wider clinical applications in the field of regenerative medicine. However, it is crucial to determine whether the cells obtained by automated culture are comparable to those generated by manual culture. In the present study, we focused on the primary culture process of bone marrow stromal cells (BMSCs) for bone tissue engineering and investigated the feasibility of its automation using a commercially available automated cell culture system in a clinical setting. A comparison of the harvested BMSCs from manual and automated cultures using clinically acceptable protocols showed no differences in cell yields, viabilities, surface marker expression profiles, and in vivo osteogenic abilities. Cells cultured with this system also did not show malignant transformation and the automated process was revealed to be safe in terms of microbial contamination. Taken together, the automated procedure described in this report provides an approach to clinical bone tissue engineering.

  12. Broth versus solid agar culture of swab samples of cadaveric allograft musculoskeletal tissue.

    PubMed

    Varettas, Kerry

    2013-12-01

    As part of the donor assessment protocol, bioburden assessment must be performed on allograft musculoskeletal tissue samples collected at the time of tissue retrieval. Swab samples of musculoskeletal tissue allografts from cadaveric donors are received at the microbiology department of the South Eastern Area Laboratory Services (Australia) to determine the presence of bacteria and fungi. This study will review the isolation rate of organisms from solid agar and broth culture of swab samples of cadaveric allograft musculoskeletal tissue over a 6-year period, 2006-2011. Swabs were inoculated onto horse blood agar (anaerobic, 35 °C) and chocolate agar (CO2, 35 °C) and then placed into a cooked meat broth (aerobic, 35 °C). A total of 1,912 swabs from 389 donors were received during the study period. 557 (29.1 %) swabs were culture positive with the isolation of 713 organisms, 249 (34.9 %) from solid agar culture and an additional 464 (65.1 %) from broth culture only. This study has shown that the broth culture of cadaveric allograft musculoskeletal swab samples recovered a greater amount of organisms than solid agar culture. Isolates such as Clostridium species and Staphylococcus aureus would not have been isolated from solid agar culture alone. Broth culture is an essential part of the bioburden assessment protocol of swab samples of cadaveric allograft musculoskeletal tissue in this laboratory.

  13. An Air-Liquid Interface Culture System for 3D Organoid Culture of Diverse Primary Gastrointestinal Tissues.

    PubMed

    Li, Xingnan; Ootani, Akifumi; Kuo, Calvin

    2016-01-01

    Conventional in vitro analysis of gastrointestinal epithelium usually relies on two-dimensional (2D) culture of epithelial cell lines as monolayer on impermeable surfaces. However, the lack of context of differentiation and tissue architecture in 2D culture can hinder the faithful recapitulation of the phenotypic and morphological characteristics of native epithelium. Here, we describe a robust long-term three-dimensional (3D) culture methodology for gastrointestinal culture, which incorporates both epithelial and mesenchymal/stromal components into a collagen-based air-liquid interface 3D culture system. This system allows vigorously expansion of primary gastrointestinal epithelium for over 60 days as organoids with both proliferation and multilineage differentiation, indicating successful long-term intestinal culture within a microenvironment accurately recapitulating the stem cell niche.

  14. How-To-Do-It: Using Cauliflower to Demonstrate Plant Tissue Culture.

    ERIC Educational Resources Information Center

    Haldeman, Janice H.; Ellis, Jane P.

    1988-01-01

    Presents techniques used for disinfestation of plant material, preparation of equipment and media, and laboratory procedures for tissue culture using cauliflower. Details methods for preparing solutions and plant propagation by cloning. (CW)

  15. How-To-Do-It: Using Cauliflower to Demonstrate Plant Tissue Culture.

    ERIC Educational Resources Information Center

    Haldeman, Janice H.; Ellis, Jane P.

    1988-01-01

    Presents techniques used for disinfestation of plant material, preparation of equipment and media, and laboratory procedures for tissue culture using cauliflower. Details methods for preparing solutions and plant propagation by cloning. (CW)

  16. Assay of Vitamins and Amino Acids With Cultured Tissue Cells and Antimetabolites

    PubMed Central

    Savchuck, W. B.; Merriman, M. E.; Lockhart, W. L.

    1964-01-01

    A survey of growth responses of tissue-culture cells to vitamins and amino acids was undertaken to explore the potentialities of tissue culture in the assay of growth factors. An antagonist of the nutrient was included in each test system to improve its sensitivity. Addition of an antimetabolite was advantageous in the thiamine and phenylalanine assays. Tissue-culture assays of tryptophan and of phenylalanine supplemented with β-2-thienylalanine compared favorably with microbial assays, and may serve as confirmatory or supplementary test systems. The sensitivity of cultured tissue cells to minute amounts of a variety of physiologically active substances suggests their employment in hormone and toxic compound assays. Images FIG. 7 PMID:14199020

  17. Variation in bioactive principles of Artemisia amygdalina Decne. in wild and tissue culture regenerants.

    PubMed

    Rasool, Rafia; Ganai, Bashir Ahmad; Akbar, Seema; Kamili, Azra Nahaid; Dar, Muhammad Younus; Masood, Akbar

    2013-05-01

    Wild and tissue culture raised regenerants of Artemisia amygdalina, a critically endangered and endemic plant of Kashmir and North West Frontier Provinces of Pakistan were screened for the amount of bioactive principles and in particular antimalarial compound artemesinin. Phytochemical screening of extracts revealed the presence of terpenes, alkaloids, phenolics, tannins (polyphenolics), cardiac glycosides and steroids in wild (aerial, inflorescence) and tissue culture regenerants (in vitro grown plant, callus and green house acclimatized plants). HPLC of Artemisia amygdalina revealed the presence of artemesinin in petroleum ether extracts of wild aerial part, tissue culture raised plant and green house acclimatized plants. Acetonitrile and water in 70:30 ratios at flow rate of 1ml/min was standardised as mobile phase. Retention time for standard chromatogram was 6.7. Wild inflorescences and callus does not produce artemesinin. This is the first report of phytochemical screening and artemesinin estimation of wild and tissue culture raised regenerants of Artemisia amygdalina.

  18. In vitro propagation of plant virus using different forms of plant tissue culture and modes of culture operation.

    PubMed

    Shih, Sharon M-H; Doran, Pauline M

    2009-09-10

    Plant virus accumulation was investigated in vitro using three different forms of plant tissue culture. Suspended cells, hairy roots and shooty teratomas of Nicotiana benthamiana were infected with tobacco mosaic virus (TMV) using the same initial virus:biomass ratio. Viral infection did not affect tissue growth or morphology in any of the three culture systems. Average maximum virus concentrations in hairy roots and shooty teratomas were similar and about an order of magnitude higher than in suspended cells. Hairy roots were considered the preferred host because of their morphological stability in liquid medium and relative ease of culture. The average maximum virus concentration in the hairy roots was 0.82+/-0.14 mg g(-1) dry weight; viral coat protein represented a maximum of approximately 6% of total soluble protein in the biomass. Virus accumulation in hairy roots was investigated further using different modes of semi-continuous culture operation aimed at prolonging the root growth phase and providing nutrient supplementation; however, virus concentrations in the roots were not enhanced compared with simple batch culture. The relative infectivity of virus in the biomass declined by 80-90% during all the cultures tested, irrespective of the form of plant tissue used or mode of culture operation. Hairy root cultures inoculated with a transgenic TMV-based vector in batch culture accumulated green fluorescent protein (GFP); however, maximum GFP concentrations in the biomass were relatively low at 39 microg g(-1) dry weight, probably due to genetic instability of the vector. This work highlights the advantages of using hairy roots for in vitro propagation of TMV compared with shooty teratomas and suspended plant cells, and demonstrates that batch root culture is more effective than semi-continuous operations for accumulation of high virus concentrations in the biomass.

  19. Harvesting Human Prostate Tissue Material and Culturing Primary Prostate Epithelial Cells.

    PubMed

    Frame, Fiona M; Pellacani, Davide; Collins, Anne T; Maitland, Norman J

    2016-01-01

    In order to fully explore the biology of a complex solid tumor such as prostate cancer, it is desirable to work with patient tissue. Only by working with cells from a tissue can we take into account patient variability and tumor heterogeneity. Cell lines have long been regarded as the workhorse of cancer research and it could be argued that they are of most use when considered within a panel of cell lines, thus taking into account specified mutations and variations in phenotype between different cell lines. However, often very different results are obtained when comparing cell lines to primary cells cultured from tissue. It stands to reason that cells cultured from patient tissue represents a close-to-patient model that should and does produce clinically relevant data. This chapter aims to illustrate the methods of processing, storing and culturing cells from prostate tissue, with a description of potential uses.

  20. Biological tissue and cell culture specimen preparation for TEM nanoparticle characterization.

    PubMed

    Nagashima, Kunio; Zheng, Jiwen; Parmiter, David; Patri, Anil K

    2011-01-01

    This chapter outlines the procedures for ex vivo TEM preparation of nanoparticle-containing tissue or cell culture samples using an epoxy resin embedding method. The purpose of this procedure is to preserve the structure of tissue in a hardened epoxy block with minimal disruption of cellular structures, to aid in the meaningful analysis of in vivo or cell culture experiments. The process begins with hydrated tissue and ends with tissue that is virtually water-free and preserved in a static state within a plastic resin matrix. The resin mixture permeates the dehydrated tissue, making the sample firm enough to cut. Procedures are also given for fixing nanoparticle-containing cell culture samples.

  1. Influence of postmortem time on the outcome of blood cultures among cadaveric tissue donors.

    PubMed

    Saegeman, V; Verhaegen, J; Lismont, D; Verduyckt, B; De Rijdt, T; Ectors, N

    2009-02-01

    Tissue banks provide tissues of human cadaver donors for transplantation. The maximal time limit for tissue retrieval has been set at 24 h postmortem. This study aimed at evaluating the evidence for this limit from a microbiological point of view. The delay of growth in postmortem blood cultures, the identification of the species isolated and clinical/environmental factors were investigated among 100 potential tissue donors. No significant difference was found in the rate of donors with grown blood cultures within (25/65=38%) compared with after (24/65=37%) 24 h of death. Coagulase-negative staphylococci and gastro-intestinal microorganisms were isolated within and after 24 h of death. Two factors--antimicrobial therapy and "delay before body cooling"--were significantly inversely related with donors' blood culture results. From a microbiological point of view, there is no evidence for avoiding tissue retrieval among donors after 24 h of death.

  2. Cloning higher plants from aseptically cultured tissues and cells

    NASA Technical Reports Server (NTRS)

    Krikorian, A. D.

    1982-01-01

    A review of aseptic culture methods for higher plants is presented, which focuses on the existing problems that limit or prevent the full realization of cloning plants from free cells. It is shown that substantial progress in clonal multiplication has been made with explanted stem tips or lateral buds which can be stimulated to produce numerous precocious axillary branches. These branches can then be separated or subdivided and induced to root in order to yield populations of genetically and phenotypically uniorm plantlets. Similarly, undifferentiated calluses can sometimes be induced to form shoots and/or roots adventitiously. Although the cell culture techniques required to produce somatic embryos are presently rudimentary, steady advances are being made in learning how to stimulate formation of somatic or adventive embryos from totipotent cells grown in suspension cultures. It is concluded that many problems exist in the producing and growing of totipotent or morphogenetically competent cell suspensions, but the potential benefits are great.

  3. Cloning higher plants from aseptically cultured tissues and cells

    NASA Technical Reports Server (NTRS)

    Krikorian, A. D.

    1982-01-01

    A review of aseptic culture methods for higher plants is presented, which focuses on the existing problems that limit or prevent the full realization of cloning plants from free cells. It is shown that substantial progress in clonal multiplication has been made with explanted stem tips or lateral buds which can be stimulated to produce numerous precocious axillary branches. These branches can then be separated or subdivided and induced to root in order to yield populations of genetically and phenotypically uniorm plantlets. Similarly, undifferentiated calluses can sometimes be induced to form shoots and/or roots adventitiously. Although the cell culture techniques required to produce somatic embryos are presently rudimentary, steady advances are being made in learning how to stimulate formation of somatic or adventive embryos from totipotent cells grown in suspension cultures. It is concluded that many problems exist in the producing and growing of totipotent or morphogenetically competent cell suspensions, but the potential benefits are great.

  4. Non-destructive monitoring of viability in an ex vivo organ culture model of osteochondral tissue.

    PubMed

    Elson, K M; Fox, N; Tipper, J L; Kirkham, J; Hall, R M; Fisher, J; Ingham, E

    2015-06-30

    Organ culture is an increasingly important tool in research, with advantages over monolayer cell culture due to the inherent natural environment of tissues. Successful organ cultures must retain cell viability. The aim of this study was to produce viable and non-viable osteochondral organ cultures, to assess the accumulation of soluble markers in the conditioned medium for predicting tissue viability. Porcine femoral osteochondral plugs were cultured for 20 days, with the addition of Triton X-100 on day 6 (to induce necrosis), camptothecin (to induce apoptosis) or no toxic additives. Tissue viability was assessed by the tissue destructive XTT (2,3-bis[2-methoxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxyanilide tetrazolium salt) assay method and LIVE/DEAD® staining of the cartilage at days 0, 6 and 20. Tissue structure was assessed by histological evaluation using haematoxylin & eosin and safranin O. Conditioned medium was assessed every 3-4 days for glucose depletion, and levels of lactate dehydrogenase (LDH), alkaline phosphatase (AP), glycosaminoglycans (GAGs), and matrix metalloproteinase (MMP)-2 and MMP-9. Necrotic cultures immediately showed a reduction in glucose consumption, and an immediate increase in LDH, GAG, MMP-2 and MMP-9 levels. Apoptotic cultures showed a delayed reduction in glucose consumption and delayed increase in LDH, a small rise in MMP-2 and MMP-9, but no significant effect on GAGs released into the conditioned medium. The data showed that tissue viability could be monitored by assessing the conditioned medium for the aforementioned markers, negating the need for tissue destructive assays. Physiologically relevant whole- or part-joint organ culture models, necessary for research and pre-clinical assessment of therapies, could be monitored this way, reducing the need to sacrifice tissues to determine viability, and hence reducing the sample numbers necessary.

  5. Consistent and heritable alterations of DNA methylation are induced by tissue culture in maize.

    PubMed

    Stelpflug, Scott C; Eichten, Steven R; Hermanson, Peter J; Springer, Nathan M; Kaeppler, Shawn M

    2014-09-01

    Plants regenerated from tissue culture and their progenies are expected to be identical clones, but often display heritable molecular and phenotypic variation. We characterized DNA methylation patterns in callus, primary regenerants, and regenerant-derived progenies of maize using immunoprecipitation of methylated DNA (meDIP) to assess the genome-wide frequency, pattern, and heritability of DNA methylation changes. Although genome-wide DNA methylation levels remained similar following tissue culture, numerous regions exhibited altered DNA methylation levels. Hypomethylation events were observed more frequently than hypermethylation following tissue culture. Many of the hypomethylation events occur at the same genomic sites across independent regenerants and cell lines. The DNA methylation changes were often heritable in progenies produced from self-pollination of primary regenerants. Methylation changes were enriched in regions upstream of genes and loss of DNA methylation at promoters was associated with altered expression at a subset of loci. Differentially methylated regions (DMRs) found in tissue culture regenerants overlap with the position of naturally occurring DMRs more often than expected by chance with 8% of tissue culture hypomethylated DMRs overlapping with DMRs identified by profiling natural variation, consistent with the hypotheses that genomic stresses similar to those causing somaclonal variation may also occur in nature, and that certain loci are particularly susceptible to epigenetic change in response to these stresses. The consistency of methylation changes across regenerants from independent cultures suggests a mechanistic response to the culture environment as opposed to an overall loss of fidelity in the maintenance of epigenetic states.

  6. OA01.43. Phytochemical And Tissue Culture Studies With Terminalia Arjuna

    PubMed Central

    Srivastava, D P; Asthana, Aditi; Singh, Vandana; Srivastava, Kuldeep; Sharma, Vinamra

    2012-01-01

    Purpose: There is genetic variability in Terminalia species which is a very tall tree ranging from 5 to 30 meters. Government of India has established a tissue culture laboratory and the callus formation and differentiation tests were conducted at Ranchi, and it was found that this plant can be used for pharmacognosy and fibre. Method: In pharmacognosy, through tissue culture, anti-oxidative properties of ethanol extract of Terminalia bark was tested against sodium flouride induced oxidative stress in heart. The activities of various antioxidant enzymes, levels of cellular metabolites reduced carbonyl contents were already determined in the cardiac tissue. Tissue culture is a specialised area of production which should be exploited by Ayurvedic researches. Terminalia Arjuna was cultured on nutrient media supplemented with different concentration of phyto-hormones along with auxins and cytokinins implemented with coconut water. Result: Adenine Sulphate at the rate 25 mg/lt were added for nodal and auxiliary explants, and these nodal explants and shoot tips of T. arjuna were cultured again to have shoot proliferation. This can be used for other herbal plants for exploitation in medicinal and other useful purposes. In Ayurveda it can help in cost reduction and efficacy enhancement. Conclusion: Culture the new variety of Terminalia species can be developed with the help of tissue culture from Ayurvedic point of view, which can reduce the level of lipid profile, and angiotensin activity should be compared with others.

  7. [Determination of Nucleosides and Nucleobases in Natural, Cultured and Tissue Culture Anoectochilus roxburghii Using LC-MS].

    PubMed

    Zheng, Li-hong; Huang, Li-ying; Chen, Yu; Lin, Shou-er; Huang, Bing-lan

    2015-11-01

    To establish a method for simultaneous determination of nucleosides and nucleobases in natural, cultured and tissue culture Anoectochilus roxburghii by high performance liquid chromatography-electrospray ionization/ion trap mass spectrometry (HPLC-ESI/MS). The separation was performed on a Welch Ultimate XB-C18 column (250 mm x 4.6 mm,5 μm). 20 mmol/L ammonium acetate solution and methanol were adopted as the mobile phase with gradient elution. The flow rate was 1.0 mL/min. The injection volume was 20 μL. The column temperature and UV wavelength were set at 30 degrees C and 260 nm, respectively. Cytosine, uracil, cytidine, uridine, hypoxanthine, adenine, inosine, guanosine,fl-thymidine and adenosine were identified in natural, cultured and tissue culture Anoectochilus roxburghii. The total content of nucleosides and nucleotides in Anoectochilus roxburghii were 1.6639, 1.8568 and 2.2013 mg/g,respectively. The contents of nucleosides and nucleobases in herb are affected by its growth pattern. The total content of nucleosides and nucleotides was tissue culture herb > cultured herb > natural herb. This investigation would provide the theoretic basis for quality standards and applications of Anoectochilus roxburghii in clinical research.

  8. Expression of Ethylene Biosynthesis Genes in Barley Tissue Culture

    USDA-ARS?s Scientific Manuscript database

    The plant hormone ethylene influences green plant regeneration rates from barley callus cultures. Our studies have focused on the effects of short treatments of an ethylene inhibitor or an ethylene precursor on green plant regeneration from two barley cultivars and the expression patterns of two eth...

  9. Environmental carcinogens in human target tissues in culture. Progress report

    SciTech Connect

    Hsu, I.C.

    1984-10-19

    The metabolism and mutagenicity of 1-nitropyrene, 1-aminopyrene, 2-aminofluorene and acetylaminofluarene in hepatic cell cultures is investigated. Metabolic products were assayed by thin-layer chromatography. Ancillary studies on Ames' assary mutagencity screening, unscheduled DNA synthesis by hepatocytes and binding to nuclear structures are also reported. 1 fig., 1 tab.

  10. Apollo 12 lunar material - Effects on lipid levels of tobacco tissue cultures.

    NASA Technical Reports Server (NTRS)

    Weete, J. D.; Walkinshaw, C. H.; Laseter, J. L.

    1972-01-01

    Tobacco tissue cultures grown in contact with lunar material from Apollo 12, for a 12-week period, resulted in fluctuations of both the relative and absolute concentrations of endogenous sterols and fatty acids. The experimental tissues contained higher concentrations of sterols than the controls did. The ratio of campesterol to stigmasterol was greater than 1 in control tissues, but less than 1 in the experimental tissues after 3 weeks. High relative concentrations (17.1 to 22.2 per cent) of an unidentified compound or compounds were found only in control tissues that were 3 to 9 weeks of age.

  11. Apollo 12 lunar material: effects on lipid levels of tobacco tissue cultures.

    PubMed

    Weete, J D; Walkinshaw, C H; Laseter, J L

    1972-02-11

    Tobacco tissue cultures grown in contact with lunar material from Apollo 12, for a 12-week period, resulted in fluctuations of both the relative and absolute concentrations of endogenous sterols and fatty acids. The experimental tissues contained higher concentrations of sterols than the controls did. The ratio of campesterol to stigmasterol was greater than 1 in control tissues, but less than 1 in the experimental tissues after 3 weeks. High relative concentrations (17.1 to 22.2 percent) of an unidentified compound or compounds were found only in control tissues that were 3 to 9 weeks of age.

  12. Optimizing seeding and culture methods to engineer smooth muscle tissue on biodegradable polymer matrices.

    PubMed

    Kim, B S; Putnam, A J; Kulik, T J; Mooney, D J

    1998-01-05

    The engineering of functional smooth muscle (SM) tissue is critical if one hopes to successfully replace the large number of tissues containing an SM component with engineered equivalents. This study reports on the effects of SM cell (SMC) seeding and culture conditions on the cellularity and composition of SM tissues engineered using biodegradable matrices (5 x 5 mm, 2-mm thick) of polyglycolic acid (PGA) fibers. Cells were seeded by injecting a cell suspension into polymer matrices in tissue culture dishes (static seeding), by stirring polymer matrices and a cell suspension in spinner flasks (stirred seeding), or by agitating polymer matrices and a cell suspension in tubes with an orbital shaker (agitated seeding). The density of SMCs adherent to these matrices was a function of cell concentration in the seeding solution, but under all conditions a larger number (approximately 1 order of magnitude) and more uniform distribution of SMCs adherent to the matrices were obtained with dynamic versus static seeding methods. The dynamic seeding methods, as compared to the static method, also ultimately resulted in new tissues that had a higher cellularity, more uniform cell distribution, and greater elastin deposition. The effects of culture conditions were next studied by culturing cell-polymer constructs in a stirred bioreactor versus static culture conditions. The stirred culture of SMC-seeded polymer matrices resulted in tissues with a cell density of 6.4 +/- 0.8 x 10(8) cells/cm3 after 5 weeks, compared to 2.0 +/- 1.1 x 10(8) cells/cm3 with static culture. The elastin and collagen synthesis rates and deposition within the engineered tissues were also increased by culture in the bioreactors. The elastin content after 5-week culture in the stirred bioreactor was 24 +/- 3%, and both the elastin content and the cellularity of these tissues are comparable to those of native SM tissue. New tissues were also created in vivo when dynamically seeded polymer matrices were

  13. Exploring processes of organization of normal and neoplastic epithelial tissues in gradient culture.

    PubMed

    Leighton, J

    1994-09-01

    The biology of animal cells in culture is often studied in individual cells or in sheets of cells. The relevance of such studies to the intact animal is unclear, since the spatial conditions encountered by cells in animals is one of dense three-dimensional masses of cells, with limits to migration, and with gradients both of diffusion of metabolites and of morphologic maturation. These spatial requisites have gradually been met in culture. A brief account describes sponge matrix culture for three-dimensional growth and unilaminar, bilaminar, and radial histophysiologic gradient cultures. Some of the common neoplastic abnormalities of surface epithelial tissues are considered. Proposals for investigating the histokinetic mechanisms regulating some epithelial tissue processes are suggested. In the most recent development of gradient culture methods, a thin permeable transparent collagen membrane is intrinsically strengthened by producing a waffle membrane pattern for histophysiologic gradient culture.

  14. Aerosols as a Source of Widespread Mycoplasma Contamination of Tissue Cultures1

    PubMed Central

    O'Connell, Robert C.; Wittler, Ruth G.; Faber, John E.

    1964-01-01

    Mycoplasma isolates were cultured from 15 antibiotic-free cell cultures obtained from a single laboratory. Complement-fixation tests showed that these isolates were antigenically related to each other but were unrelated to M. hominis type 1, M. hominis type 2, M. arthritidis, M. laidlawii type B, Mycoplasma sp. H.Ep. #2 (Barile), or M. salivarium. Examination of serum used to feed the infected cell lines revealed no Mycoplasma. Infection resulting from cross-contamination by a single Mycoplasma strain from one cell culture to another was investigated. Although the organisms were not found in the air over the work area, aerosols containing these contaminants were produced in tissue culture bottles during the trypsinization of cell monolayers. The minimal infectious dose of Mycoplasma for tissue cultures was measured, and it was determined that one organism was capable of initiating an infection in a tissue culture. The pattern of contamination and the small dose required for infection indicated that Mycoplasma contamination was spread from one tissue culture to another via aerosols. It was demonstrated that Mycoplasma can be transferred from one cell culture to another through the use of a common burette for dispensing medium. PMID:14199025

  15. The bionomics of the cottonwood leaf beetle, Chrysomela scripta Fab., on tissue culture hybrid poplars

    Treesearch

    T.R. Burkot; D.M. Benjamin

    1977-01-01

    Tissue culture methods are applied to poplars of the Aigeiros group in attempts to overcome premature decline thought to be associated with viral infections. Hybrid selections from such cultures outplanted in 1975 at the F. G. Wilson Nursery in Boscobel, Wisconsin subsequently were severely infested by the Cottonwood Leaf Beetle, Chrysomela scripta Fab. Beetle...

  16. 21 CFR 864.2220 - Synthetic cell and tissue culture media and components.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Synthetic cell and tissue culture media and components. 864.2220 Section 864.2220 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Cell And Tissue...

  17. Cytokinin Autonomy in Tissue Cultures of Phaseolus: A Genotype-Specific and Heritable Trait

    PubMed Central

    Mok, Machteld C.; Mok, David W. S.; Armstrong, Donald J.; Rabakoarihanta, Aimée; Kim, Sang-Gu

    1980-01-01

    Intra- and interspecific differences in cytokinin requirement were detected in callus cultures of Phaseolus vulgaris L. and P. lunatus L. Of the ten genotypes of P. vulgaris tested in the present study, one required cytokinin for callus growth, six exhibited some to moderate growth on cytokinin-free medium, and the remaining three grew uniformly in the absence of cytokinin. In contrast, six of the P. lunatus genotypes were strictly cytokinin-dependent, while four genotypes displayed irregular amount of callus growth on cytokinin-free medium. The genotype-specific behavior of Phaseolus callus tissues was independent of the tissue of origin and the time in culture. The inheritance of the cytokinin requirement of Phaseolus tissue cultures was studied in hybrid tissues resulting from crosses between a strictly cytokinin-dependent genotype (P.I. 200960) and two independent genotypes (cv. G 50 and P.I. 286303) of P. vulgaris. Fresh weights of hybrid tissues on cytokinin-free medium were intermediate between and significantly different from the parental tissues. No differences were found between reciprocal hybrids. These results suggest that cytokinin autonomy in tissue cultures of P. vulgaris is a genetic trait under nuclear control. Both parental and intermediate phenotypes were recovered in the F2 progeny. The frequency distribution of cytokinin-dependent progeny in F2 and backcross populations indicates that the cytokinin requirement of P. vulgaris callus tissue may be regulated by one set of alleles. PMID:17249014

  18. Co-culture systems-based strategies for articular cartilage tissue engineering.

    PubMed

    Zhang, Yu; Guo, Weimin; Wang, Mingjie; Hao, Chunxiang; Lu, Liang; Gao, Shuang; Zhang, Xueliang; Li, Xu; Chen, Mingxue; Li, Penghao; Jiang, Peng; Lu, Shibi; Liu, Shuyun; Guo, Quanyi

    2017-05-26

    Cartilage engineering facilitates repair and regeneration of damaged cartilage using engineered tissue that restores the functional properties of the impaired joint. The seed cells used most frequently in tissue engineering, are chondrocytes and mesenchymal stem cells. Seed cells activity plays a key role in the regeneration of functional cartilage tissue. However, seed cells undergo undesirable changes after in vitro processing procedures, such as degeneration of cartilage cells and induced hypertrophy of mesenchymal stem cells, which hinder cartilage tissue engineering. Compared to monoculture, which does not mimic the in vivo cellular environment, co-culture technology provides a more realistic microenvironment in terms of various physical, chemical, and biological factors. Co-culture technology is used in cartilage tissue engineering to overcome obstacles related to the degeneration of seed cells, and shows promise for cartilage regeneration and repair. In this review, we focus first on existing co-culture systems for cartilage tissue engineering and related fields, and discuss the conditions and mechanisms thereof. This is followed by methods for optimizing seed cell co-culture conditions to generate functional neo-cartilage tissue, which will lead to a new era in cartilage tissue engineering. © 2017 Wiley Periodicals, Inc.

  19. Spontaneous aneuploidy and clone formation in adipose tissue stem cells during different periods of culturing.

    PubMed

    Buyanovskaya, O A; Kuleshov, N P; Nikitina, V A; Voronina, E S; Katosova, L D; Bochkov, N P

    2009-07-01

    Cytogenetic analysis of 13 mesenchymal stem cell cultures isolated from normal human adipose tissue was carried out at different stages of culturing. The incidence of chromosomes 6, 8, 11, and X aneuploidy and polyploidy was studied by fluorescent in situ hybridization. During the early passages, monosomal cells were more often detected than trisomal ones. A clone with chromosome 6 monosomy was detected in three cultures during late passages.

  20. 3D co-cultures of keratinocytes and melanocytes and cytoprotective effects on keratinocytes against reactive oxygen species by insect virus-derived protein microcrystals.

    PubMed

    Shimabukuro, Junji; Yamaoka, Ayako; Murata, Ken-Ichi; Kotani, Eiji; Hirano, Tomoko; Nakajima, Yumiko; Matsumoto, Goichi; Mori, Hajime

    2014-09-01

    Stable protein microcrystals called polyhedra are produced by certain insect viruses. Cytokines, such as fibroblast growth factors (FGFs), can be immobilized within polyhedra. Here, we investigated three-dimensional (3D) co-cultures of keratinocytes and melanocytes on collagen gel containing FGF-2 and FGF-7 polyhedra. Melanocytes were observed to reside at the base of the 3D cell culture and melanin was also typically observed in the lower layer. The 3D cell culture model with FGF-2 and FGF-7 polyhedra was a useful in vitro model of the epidermis due to effective melanogenesis, proliferation and differentiation of keratinocytes. FGF-7 polyhedra showed a potent cytoprotective effect when keratinocytes were treated with menadione, which is a generator of reactive oxygen species. The cytoprotective effect was activated by the inositol triphosphate kinase-Akt pathway leading to upregulation of the antioxidant enzymes superoxide dismutase and peroxiredoxin 6.

  1. Pattern matching and adaptive image segmentation applied to plant reproduction by tissue culture

    NASA Astrophysics Data System (ADS)

    Vazquez Rueda, Martin G.; Hahn, Federico

    1999-03-01

    This paper shows the results obtained in a system vision applied to plant reproduction by tissue culture using adaptive image segmentation and pattern matching algorithms, this analysis improves the number of tissue obtained and minimize errors, the image features of tissue are considered join to statistical analysis to determine the best match and results. Tests make on potato plants are used to present comparative results with original images processed with adaptive segmentation algorithm and non adaptive algorithms and pattern matching.

  2. Polyphosphoinositides are present in plant tissue culture cells

    SciTech Connect

    Boss, W.F.; Massel, M.O.

    1985-11-15

    Polyphosphoinositides have been isolated from wild carrot cells grown in suspension culture. This is the first report of polyphosphoinositides in plant cells. The phospholipids were identified by comigration with known standards on thin-layer plates. After overnight labeling of the cells with myo-(2-/sup 3/H) inositol, the phosphoinositides as percent recovered inositol were 93% phosphatidylinositol., 3.7% lysophosphatidylinositol, 1.7% phosphatidylinositol monophosphate, 0.8% phosphatidylinositol bisphosphate.

  3. Effects of melatonin on ionic currents in cultured ocular tissues.

    PubMed

    Rich, A; Farrugia, G; Rae, J L

    1999-04-01

    The effects of melatonin on ionic conductances in a cultured mouse lens epithelial cell line (alpha-TN4) and in cultured human trabecular meshwork (HTM) cells were measured using the amphotericin perforated patch whole cell voltage-clamp technique. Melatonin stimulated a voltage-dependent Na+-selective current in lens epithelial cells and trabecular meshwork cells. The effects of melatonin were observed at 50 pM and were maximal at 100 microM. Melatonin enhanced activation and inactivation kinetics, but no change was observed in the voltage dependence of activation. The results are consistent with an increase in the total number of ion channels available for activation by membrane depolarization. Melatonin was also found to stimulate a K+-selective current at high doses (1 mM). Melatonin did not affect the inwardly rectifying K+ current or the delayed rectifier type K+ current that has been described in cultured mouse lens epithelial cells. The results show that melatonin specifically stimulated the TTX-insensitive voltage-dependent Na+ current by an apparently novel mechanism.

  4. Tissue Factor Activity in Lymphocyte Cultures from Normal Individuals and Patients with Hemophilia A

    PubMed Central

    Rickles, Frederick R.; Hardin, John A.; Pitlick, Frances A.; Hoyer, Leon W.; Conrad, Marcel E.

    1973-01-01

    The procoagulant material of lymphocytes has been characterized as tissue factor. Lymphocytes stimulated with phytohemagglutinin or the purified protein derivative of the tubercle bacillus developed procoagulant activity with incubation in tissue culture. While this material corrected the prolonged clotting time of factor VIII (AHF) deficient plasma, we have shown, utilizing a sensitive radioimmunoassay, that no AHF antigen was present in the cell cultures. Further, we have demonstrated this material to be tissue factor by coagulation techniques and immunological cross-reactivity. The published data regarding factor VIII synthesis is reviewed in light of these observations and comments are made regarding the role of the lymphocyte procoagulant. PMID:4634046

  5. Production of Limonoids with Insect Antifeedant Activity in a Two-Stage Bioreactor Process with Cell Suspension Culture of Azadirachta indica.

    PubMed

    Vásquez-Rivera, Andrés; Chicaiza-Finley, Diego; Hoyos, Rodrigo A; Orozco-Sánchez, Fernando

    2015-09-01

    Neem tree (Azadirachta indica) cell suspension culture is an alternative for the production of limonoids for insect control that overcomes limitations related to the supply of neem seeds. To establish conditions for cell growth and azadiracthin-related limonoid production, the effect of different sucrose concentrations, nitrate and phosphate in Murashige and Skoog (MS) medium, and the addition of one precursor and three elicitors was evaluated in shake flasks. The process was scaled up to a 3-l stirred tank bioreactor in one- and two-stage batch cultivation. In shake flasks, more than fivefold increase in the production of limonoids with the modified MS medium was observed (increase from 0.77 to 4.52 mg limonoids/g dry cell weight, DCW), while an increase of more than fourfold was achieved by adding the elicitors chitosan, salicylic acid, and jasmonic acid together (increase from 1.03 to 4.32 mg limonoids/g DCW). In the bioreactor, the volumetric production of limonoids was increased more than threefold with a two-stage culture in day 18 (13.82 mg limonoids/l in control single-stage process and 41.44 mg/l in two-stage process). The cultivation and operating mode of the bioreactor reported in this study may be adapted and used in optimization and process plant development for production of insect antifeedant limonoids with A. indica cell suspension cultures.

  6. Culture methods of allograft musculoskeletal tissue samples in Australian bacteriology laboratories.

    PubMed

    Varettas, Kerry

    2013-12-01

    Samples of allograft musculoskeletal tissue are cultured by bacteriology laboratories to determine the presence of bacteria and fungi. In Australia, this testing is performed by 6 TGA-licensed clinical bacteriology laboratories with samples received from 10 tissue banks. Culture methods of swab and tissue samples employ a combination of solid agar and/or broth media to enhance micro-organism growth and maximise recovery. All six Australian laboratories receive Amies transport swabs and, except for one laboratory, a corresponding biopsy sample for testing. Three of the 6 laboratories culture at least one allograft sample directly onto solid agar. Only one laboratory did not use a broth culture for any sample received. An international literature review found that a similar combination of musculoskeletal tissue samples were cultured onto solid agar and/or broth media. Although variations of allograft musculoskeletal tissue samples, culture media and methods are used in Australian and international bacteriology laboratories, validation studies and method evaluations have challenged and supported their use in recovering fungi and aerobic and anaerobic bacteria.

  7. Application of plant tissue cultures in phytoremediation research: incentives and limitations.

    PubMed

    Doran, Pauline M

    2009-05-01

    The aim of this review is to critically assess the benefits and limitations associated with the use of in vitro plant cell and organ cultures as research tools in phytoremediation studies. Plant tissue cultures such as callus, cell suspensions, and hairy roots are applied frequently in phytoremediation research as model plant systems. In vitro cultures offer a range of experimental advantages in studies aimed at examining the intrinsic metabolic capabilities of plant cells and their capacity for toxicity tolerance. The ability to identify the contributions of plant cells to pollutant uptake and detoxification without interference from microorganisms is of particular significance in the search for fundamental knowledge about plants. However, if the ultimate goal of plant tissue culture experiments is the development of practical phytoremediation technology, the limitations inherent in the use of in vitro cultures as a representative of whole plants in the field must be recognized. The bioavailability of contaminants and the processes of pollutant uptake and metabolite distribution are likely to be substantially different in the two systems; this can lead to qualitative as well as quantitative differences in metabolic profiles and tolerance characteristics. Yet, many studies have demonstrated that plant tissue cultures are an extremely valuable tool in phytoremediation research. The results derived from tissue cultures can be used to predict the responses of plants to environmental contaminants, and to improve the design and thus reduce the cost of subsequent conventional whole plant experiments.

  8. In situ immune infrared fluorescent staining for detection and quantification of bluetongue virus in insect cell culture

    USDA-ARS?s Scientific Manuscript database

    Bluetongue virus (BTV) is transmitted to sheep, cattle and other ruminants by Culicoides spp. of biting midges. Cell lines developed from C. sonorensis have facilitated studies of virus replication and the role of the insect vector in BTV transmission. However, techniques for directly detecting viru...

  9. In Situ Immune Infrared Fluorescent Staining for Detection and Quantification of Bluetongue Virus in Cullicoides Insect Cell Culture

    USDA-ARS?s Scientific Manuscript database

    Bluetongue virus (BTV) is transmitted to sheep, cattle and other ruminants by Culicoides spp. of biting midges. Cell lines have been developed from C. sonorensis; however, techniques for directly detecting and quantifying virus in these insect cells are lacking. In situ immune infrared fluorescent s...

  10. Environmental carcinogens in human target tissues in culture. Progress report

    SciTech Connect

    Hsu, I.C.

    1986-02-19

    Cells from different organ or animal species have shown diverse activities in activation and detoxification of chemical carcinogens. Based on the mutation assays, human hepatocytes were more effective than animal hepatocytes in detoxification of aromatic nitrogen compounds. The adduct formation was also different in human and rodent hepatocytes exposed to aminofluorene (AF) or acetylaminofluorene (AAF). Both AF and AAF adduct DNA were observed in rat liver cells exposed to AF or AAF. However, very little acetylation or deacetyl of the DNA adducts occurred in the human hepatocytes. Human hepatocytes treated with AF in primary culture produced mainly AF adducted DNA while AAF treated cells formed AAF adduct DNA. 2 figs., 1 tab.

  11. Superiority of the sonication method against conventional periprosthetic tissue cultures for diagnosis of prosthetic joint infections.

    PubMed

    Tani, Sofia; Lepetsos, Panagiotis; Stylianakis, Antonios; Vlamis, John; Birbas, Konstantinos; Kaklamanos, Ioannis

    2017-07-17

    Diagnosis of periprosthetic infections is challenging. The aim of this study was to compare the diagnostic accuracy of conventional periprosthetic tissue culture and culture of sonication fluid of the explanted prostheses. We prospectively enrolled 114 patients undergoing revision hip or knee arthroplasty because of loosening of the prostheses, at our institution, between July 2012 and July 2016. Patients' medical history and demographic characteristics were recorded. The explanted hardware was separated in sterile containers and sonicated under sterile conditions. At least five samples of periprosthetic tissue were sent for culture and histological examination. We compared the culture of samples obtained by sonication of explanted hip and knee prostheses with conventional culture of periprosthetic tissue for the microbiological diagnosis of prosthetic joint infection. Infectious Diseases Society of America guidelines were used for the definition of prosthetic joint infection. Sixty-one patients had periprosthetic infection and 53 aseptic loosening (73 hip prostheses and 41 knee prostheses). The sensitivity of sonication fluid culture was 77.04%, and the sensitivity of conventional tissue cultures was 55.73% (p value = 0.012). The specificities of the two methods were 98.11 and 94.34%, respectively. The sensitivity of the histopathological examination of the periprosthetic tissue was 72.10%. There were 17 patients with PJI where the isolated pathogen was detected in SFC but not in PTC, while in five cases the pathogen was detected only in PTC. There were nine patients where no bacteria were detected by any microbiological method and the diagnosis was based on clinical and histological findings, according to the guidelines. The sonication method represents a reliable test for the diagnosis of prosthetic joint infections with a greater sensitivity and specificity than the conventional periprosthetic tissue cultures.

  12. The molt/intermolt cycle in the epidermis and other tissues of an insect Calpodes ethlius(Lepidoptera, Hesperiidae).

    PubMed

    Locke, M

    1970-01-01

    Tissue responses to the brain and prothoracic glands divide the 5th larval stage of Calpodes into three phases of development, characterized by growth, larval syntheses and pupal syntheses. Tissue specific patterns in the timing of nuclear events fall into one of two categories. In both, the cell number is determined mainly before the 4th to 5th ecdysis. Epidermal cells divide during the second phase coincidentally with an elevated rate of larval cuticle deposition, but in other tissues nuclear replication occurs without division during the first phase so that the cells are polyploid by the time they begin their massive larval syntheses.

  13. Single molecule microscopy in 3D cell cultures and tissues.

    PubMed

    Lauer, Florian M; Kaemmerer, Elke; Meckel, Tobias

    2014-12-15

    From the onset of the first microscopic visualization of single fluorescent molecules in living cells at the beginning of this century, to the present, almost routine application of single molecule microscopy, the method has well-proven its ability to contribute unmatched detailed insight into the heterogeneous and dynamic molecular world life is composed of. Except for investigations on bacteria and yeast, almost the entire story of success is based on studies on adherent mammalian 2D cell cultures. However, despite this continuous progress, the technique was not able to keep pace with the move of the cell biology community to adapt 3D cell culture models for basic research, regenerative medicine, or drug development and screening. In this review, we will summarize the progress, which only recently allowed for the application of single molecule microscopy to 3D cell systems and give an overview of the technical advances that led to it. While initially posing a challenge, we finally conclude that relevant 3D cell models will become an integral part of the on-going success of single molecule microscopy. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Pathogen and biological contamination management in plant tissue culture: phytopathogens, vitro pathogens, and vitro pests.

    PubMed

    Cassells, Alan C

    2012-01-01

    The ability to establish and grow plant cell, organ, and tissue cultures has been widely exploited for basic and applied research, and for the commercial production of plants (micro-propagation). Regardless of whether the application is for research or commerce, it is essential that the cultures be established in vitro free of biological contamination and be maintained as aseptic cultures during manipulation, growth, and storage. The risks from microbial contamination are spurious experimental results due to the effects of latent contaminants or losses of valuable experimental or commercial cultures. Much of the emphasis in culture contamination management historically focussed on the elimination of phytopathogens and the maintenance of cultures free from laboratory contamination by environmental bacteria, fungi (collectively referred to as "vitro pathogens", i.e. pathogens or environmental micro-organisms which cause culture losses), and micro-arthropods ("vitro pests"). Microbial contamination of plant tissue cultures is due to the high nutrient availability in the almost universally used Murashige and Skoog (Physiol Plant 15:473-497, 1962) basal medium or variants of it. In recent years, it has been shown that many plants, especially perennials, are at least locally endophytically colonized intercellularly by bacteria. The latter, and intracellular pathogenic bacteria and viruses/viroids, may pass latently into culture and be spread horizontally and vertically in cultures. Growth of some potentially cultivable endophytes may be suppressed by the high salt and sugar content of the Murashige and Skoog basal medium and suboptimal temperatures for their growth in plant tissue growth rooms. The management of contamination in tissue culture involves three stages: disease screening (syn. disease indexing) of the stock plants with disease and endophyte elimination where detected; establishment and pathogen and contaminant screening of established initial cultures

  15. Molecular Identification of Zygomycetes from Culture and Experimentally Infected Tissues

    PubMed Central

    Schwarz, Patrick; Bretagne, Stéphane; Gantier, Jean-Charles; Garcia-Hermoso, Dea; Lortholary, Olivier; Dromer, Françoise; Dannaoui, Eric

    2006-01-01

    Mucormycosis is an emerging infection associated with a high mortality rate. Identification of the causative agents remains difficult and time-consuming by standard mycological procedures. In this study, internal transcribed spacer (ITS) sequencing was validated as a reliable technique for identification of Zygomycetes to the species level. Furthermore, species identification directly from infected tissues was evaluated in experimentally infected mice. Fifty-four Zygomycetes strains belonging to 16 species, including the most common pathogenic species of Rhizopus spp., Absidia spp., Mucor spp., and Rhizomucor spp., were used to assess intra- and interspecies variability. Ribosomal DNA including the complete ITS1-5.8S-ITS2 region was amplified with fungal universal primers, sequenced, and compared. Overall, for a given species, sequence similarities between isolates were >98%. In contrast, ITS sequences were very different between species, allowing an accurate identification of Zygomycetes to the species level in most cases. Six species (Rhizopus oryzae, Rhizopus microsporus, Rhizomucor pusillus, Mucor circinelloides, and Mucor indicus) were also used to induce disseminated mucormycosis in mice and to demonstrate that DNA extraction, amplification of fungal DNA, sequencing, and molecular identification were possible directly from frozen tissues. PMID:16455881

  16. Xanthan gum: an economical substitute for agar in plant tissue culture media.

    PubMed

    Jain, R; Babbar, S B

    2006-03-01

    Xanthan gum, a microbial desiccation-resistant polysaccharide prepared commercially by aerobic submerged fermentation from Xanthomonas campestris, has been successfully used as a solidifying agent for plant tissue culture media. Its suitability as a substitute to agar was demonstrated for in vitro seed germination, caulogenesis and rhizogenesis of Albizzia lebbeck, androgenesis in anther cultures of Datura innoxia, and somatic embryogenesis in callus cultures of Calliandra tweedii. Culture media used for eliciting these morphogenic responses were gelled with either 1% xanthan gum or 0.9% agar. Xanthan gum, like agar, supported all these responses.

  17. LATENT VIRAL INFECTION OF CELLS IN TISSUE CULTURE

    PubMed Central

    Bader, John P.; Morgan, Herbert R.

    1961-01-01

    A study of the metabolic requirements for the growth of psittacosis virus in L cells has been extended to the water-soluble vitamins. In a system in which a balanced salt solution was used to deplete the cells of their vitamin constituents, only thiamine was essential for psittacosis virus production. Extended depletion of cells with media deficient in specific vitamins demonstrated that pantothenate, niacin (niacinamide), pyridoxine (pyridoxal), and choline, in addition to thiamine, were essential for maximal growth of psittacosis virus. No requirement for biotin, inositol, folic acid, or riboflavin was demonstrated, although the possibility of incomplete vitamin depletion of the cells has not been eliminated. In most cases in which a specific vitamin requirement was shown the decreased yield of virus was correlated with a delay in the cytopathic effects produced in the cell cultures by psittacosis virus. PMID:13685754

  18. Micropropagation of Dalbergia sissoo Roxb. through tissue culture technique.

    PubMed

    Sahu, Jyoti; Khan, Shagufta; Sahu, Ram Kumar; Roy, Amit

    2014-04-01

    Multiple shoots of Dalbergia sissoo Roxb. (Sissoo) were incited from seeds through indirect somatic embryogenesis method. Seeds were inoculated in Murashige and Skoog's medium without any growth hormone. Than cotyledonary leaves were struck and used for callus induction on MS medium amplified with 2, 4-dichlorophenoxyacetic acid (0.5 to 4 mg mL(-1)). After 3 to 4 weeks the embryogenic callus clumps was transferred to medium supplemented with cytokinin (BAP 1 to 5 mg L(-1), kinetin 1-5.0 mg L(-1)) for embryo maturation and germination. The high-frequency shoot proliferation (82%) and maximum number of shoots per explants were recorded in MS medium containing NAA (0.5)+BAP (0.5). The findings of recent investigations have shown that, it is possible to induce indirect somatic embryogenesis in Dalbergia sissoo and plant regeneration from callus cultures derived from cotyledonary leaves as explants.

  19. Oil palm (Elaeis guineensis Jacq.) tissue culture ESTs: identifying genes associated with callogenesis and embryogenesis.

    PubMed

    Low, Eng-Ti L; Alias, Halimah; Boon, Soo-Heong; Shariff, Elyana M; Tan, Chi-Yee A; Ooi, Leslie Cl; Cheah, Suan-Choo; Raha, Abdul-Rahim; Wan, Kiew-Lian; Singh, Rajinder

    2008-05-29

    Oil palm (Elaeis guineensis Jacq.) is one of the most important oil bearing crops in the world. However, genetic improvement of oil palm through conventional breeding is extremely slow and costly, as the breeding cycle can take up to 10 years. This has brought about interest in vegetative propagation of oil palm. Since the introduction of oil palm tissue culture in the 1970s, clonal propagation has proven to be useful, not only in producing uniform planting materials, but also in the development of the genetic engineering programme. Despite considerable progress in improving the tissue culture techniques, the callusing and embryogenesis rates from proliferating callus cultures remain very low. Thus, understanding the gene diversity and expression profiles in oil palm tissue culture is critical in increasing the efficiency of these processes. A total of 12 standard cDNA libraries, representing three main developmental stages in oil palm tissue culture, were generated in this study. Random sequencing of clones from these cDNA libraries generated 17,599 expressed sequence tags (ESTs). The ESTs were analysed, annotated and assembled to generate 9,584 putative unigenes distributed in 3,268 consensi and 6,316 singletons. These unigenes were assigned putative functions based on similarity and gene ontology annotations. Cluster analysis, which surveyed the relatedness of each library based on the abundance of ESTs in each consensus, revealed that lipid transfer proteins were highly expressed in embryogenic tissues. A glutathione S-transferase was found to be highly expressed in non-embryogenic callus. Further analysis of the unigenes identified 648 non-redundant simple sequence repeats and 211 putative full-length open reading frames. This study has provided an overview of genes expressed during oil palm tissue culture. Candidate genes with expression that are modulated during tissue culture were identified. However, in order to confirm whether these genes are suitable as

  20. Oil palm (Elaeis guineensis Jacq.) tissue culture ESTs: Identifying genes associated with callogenesis and embryogenesis

    PubMed Central

    Low, Eng-Ti L; Alias, Halimah; Boon, Soo-Heong; Shariff, Elyana M; Tan, Chi-Yee A; Ooi, Leslie CL; Cheah, Suan-Choo; Raha, Abdul-Rahim; Wan, Kiew-Lian; Singh, Rajinder

    2008-01-01

    Background Oil palm (Elaeis guineensis Jacq.) is one of the most important oil bearing crops in the world. However, genetic improvement of oil palm through conventional breeding is extremely slow and costly, as the breeding cycle can take up to 10 years. This has brought about interest in vegetative propagation of oil palm. Since the introduction of oil palm tissue culture in the 1970s, clonal propagation has proven to be useful, not only in producing uniform planting materials, but also in the development of the genetic engineering programme. Despite considerable progress in improving the tissue culture techniques, the callusing and embryogenesis rates from proliferating callus cultures remain very low. Thus, understanding the gene diversity and expression profiles in oil palm tissue culture is critical in increasing the efficiency of these processes. Results A total of 12 standard cDNA libraries, representing three main developmental stages in oil palm tissue culture, were generated in this study. Random sequencing of clones from these cDNA libraries generated 17,599 expressed sequence tags (ESTs). The ESTs were analysed, annotated and assembled to generate 9,584 putative unigenes distributed in 3,268 consensi and 6,316 singletons. These unigenes were assigned putative functions based on similarity and gene ontology annotations. Cluster analysis, which surveyed the relatedness of each library based on the abundance of ESTs in each consensus, revealed that lipid transfer proteins were highly expressed in embryogenic tissues. A glutathione S-transferase was found to be highly expressed in non-embryogenic callus. Further analysis of the unigenes identified 648 non-redundant simple sequence repeats and 211 putative full-length open reading frames. Conclusion This study has provided an overview of genes expressed during oil palm tissue culture. Candidate genes with expression that are modulated during tissue culture were identified. However, in order to confirm

  1. Clonal propagation of Leptospermum spp. by tissue culture.

    PubMed

    Shipton, W A; Jackes, B R

    1986-02-01

    Propagation by axillary and multiple axillary bud development was achieved in three native Leptospermum spp. when axillary buds derived from nodal tissues ex mature plants were placed in benzylaminopurine media (0.04-1.0 μM) containing macro- and micro-nutrients, sucrose (0.06 M) and a vitamin/amino acid supplement. Reduction of agar concentration from 0.8 to 0.2% greatly stimulated axillary bud development and growth in L. flavescens and L. brachyandrum. Rooting of axillary shoots was stimulated by 2,4-dichlorophenoxyacetic acid and p-chlorophenoxy acetic acid in L. flavescens at concentrations of 5 and 1 μM respectively. In L. petersonii ssp. root initiation and development was favoured by β-naphthoxyacetic acid (1 μM) and in L. brachyandrum indole butyric acid and α-naphthalene acetic acid (1 μM) were almost equally effective.

  2. Human colon tissue in organ culture: calcium and multi-mineral-induced mucosal differentiation.

    PubMed

    Dame, Michael K; Veerapaneni, Indiradevi; Bhagavathula, Narasimharao; Naik, Madhav; Varani, James

    2011-01-01

    We have recently shown that a multi-mineral extract from the marine red algae, Lithothamnion calcareum, suppresses colon polyp formation and inflammation in mice. In the present study, we used intact human colon tissue in organ culture to compare responses initiated by Ca(2+) supplementation versus the multi-mineral extract. Normal human colon tissue was treated for 2 d in culture with various concentrations of calcium or the mineral-rich extract. The tissue was then prepared for histology/immunohistochemistry, and the culture supernatants were assayed for levels of type I procollagen and type I collagen. At higher Ca(2+) concentrations or with the mineral-rich extract, proliferation of epithelial cells at the base and walls of the mucosal crypts was suppressed, as visualized by reduced Ki67 staining. E-cadherin, a marker of differentiation, was more strongly expressed at the upper third of the crypt and at the luminal surface. Treatment with Ca(2+) or with the multi-mineral extract influenced collagen turnover, with decreased procollagen and increased type I collagen. These data suggest that calcium or mineral-rich extract has the capacity to (1) promote differentiation in human colon tissue in organ culture and (2) modulate stromal function as assessed by increased levels of type I collagen. Taken together, these data suggest that human colon tissue in organ culture (supporting in vivo finding in mice) will provide a valuable model for the preclinical assessment of agents that regulate growth and differentiation in the colonic mucosa.

  3. A Comparison of Tissue versus Swab Culturing of Infected Diabetic Foot Wounds.

    PubMed

    Huang, Ying; Cao, Ying; Zou, Mengchen; Luo, Xiangrong; Jiang, Ya; Xue, Yaoming; Gao, Fang

    2016-01-01

    Objective. To compare the efficacy of swabbing versus tissue biopsy for microbiological diagnosis of diabetic foot infection. Methods. This was a prospective trial. Fifty-six patients with diabetic foot infection were divided into the following 3 groups according to the PEDIS grading system: grade 2 (n = 10), grade 3 (n = 29), and grade 4 (n = 17). Two specimens were collected from each wound for microbial culturing after debridement, including a superficial swab and a deep tissue punch biopsy specimen. Results. Swab culturing identified all of the microorganisms isolated from the corresponding deep tissue specimens in 9/10 of grade 2 wounds (90.0%), and this proportion decreased to 12/29 (41.4%) and 7/17 (41.2%) for grades 3 and 4 wounds, respectively (p = 0.02). Moreover, the sensitivity for identifying Gram-negative bacteria, such as E. coli and Citrobacter, by swabbing was low (33.3%). In addition, some Gram-negative bacteria, such as Serratia and Ralstonia pickettii, were isolated from deep tissues but not from swabs. Conclusions. Swab culturing may be reliable for identification of pathogens in diabetic foot wounds classified as grade 2. However, it is advisable to culture deep tissue specimens for wounds of grade ≥3 because swab culturing is associated with a high risk of missing pathogens, especially Gram-negative bacteria.

  4. Robust Circadian Rhythms of Gene Expression in Brassica rapa Tissue Culture1[W][OA

    PubMed Central

    Xu, Xiaodong; Xie, Qiguang; McClung, C. Robertson

    2010-01-01

    Circadian clocks provide temporal coordination by synchronizing internal biological processes with daily environmental cycles. To date, study of the plant circadian clock has emphasized Arabidopsis (Arabidopsis thaliana) as a model, but it is important to determine the extent to which this model applies in other species. Accordingly, we have investigated circadian clock function in Brassica rapa. In Arabidopsis, analysis of gene expression in transgenic plants in which luciferase activity is expressed from clock-regulated promoters has proven a useful tool, although technical challenges associated with the regeneration of transgenic plants has hindered the implementation of this powerful tool in B. rapa. The circadian clock is cell autonomous, and rhythmicity has been shown to persist in tissue culture from a number of species. We have established a transgenic B. rapa tissue culture system to allow the facile measurement and manipulation of clock function. We demonstrate circadian rhythms in the expression of several promoter:LUC reporters in explant-induced tissue culture of B. rapa. These rhythms are temperature compensated and are reset by light and temperature pulses. We observe a strong positive correlation in period length between the tissue culture rhythm in gene expression and the seedling rhythm in cotyledon movement, indicating that the circadian clock in B. rapa tissue culture provides a good model for the clock in planta. PMID:20406912

  5. Determinants of microstructural load transfer in cartilage tissue from chondrocyte culture

    NASA Astrophysics Data System (ADS)

    Fedewa, Michelle Marie

    2000-10-01

    The goals of this research were to (i) develop a tissue model system for studying the microstructure of matrix produced by chondrocytes, (ii) characterize the biochemical and mechanical properties of the chondrocyte culture tissue, (iii) evaluate the response of the chondrocyte culture tissue to various stimulants (retinoic acid, interleukin-1beta, and xyloside), (iv) investigate the roles of proteoglycan and collagen in the tearing and tensile properties of a chondrocyte culture tissue, and (v) develop a finite element model of the chondrocyte culture tissue microstructure to study its tensile pre-failure properties. The roles of proteoglycan and collagen were explored by experimentation using a cultured cartilage tissue, and by development of a theoretical finite element model which related the cartilage tissue microstructure to its macroscopic properties. Tear and tensile testing was performed. Failure testing is valuable because it is known that cracks exist and propagate from the cartilage surface in osteoarthritic joints. It was found that collagen was important for providing the material stiffness of the cultured tissue, and that both collagen and proteoglycan were important for providing the tear toughness of the tissue. It was also found that as the collagen density or collagen material stiffness increased, the material stiffness of the cultured tissue increased, and as the proteoglycan or collagen densities increased, the tear toughness of the tissue increased. A three-dimensional finite element microstructural model of cartilage was developed, consisting of linear elastic collagen fibrils embedded in a linear viscoelastic proteoglycan solid matrix. Fluid flow in the cartilage matrix was not included in this model. Viscoelastic time dependent behavior was an appropriate model for the cartilage. The results of this model were comparable to the experimental results, as well as to past continuum models of cartilage. Collagen and proteoglycan material moduli

  6. A Troubled Past? Reassessing Ethics in the History of Tissue Culture.

    PubMed

    Wilson, Duncan

    2016-09-01

    Recent books, articles and plays about the 'immortal' HeLa cell line have prompted renewed interest in the history of tissue culture methods that were first employed in 1907 and became common experimental tools during the twentieth century. Many of these sources claim tissue cultures like HeLa had a "troubled past" because medical researchers did not seek informed consent before using tissues in research, contravening a long held desire for self-determination on the part of patients and the public. In this article, I argue these claims are unfair and misleading. No professional guidelines required informed consent for tissue culture during the early and mid twentieth century, and popular sources expressed no concern at the widespread use of human tissues in research. When calls for informed consent did emerge in the 1970s and 1980s, moreover, they reflected specific political changes and often emanated from medical researchers themselves. I conclude by arguing that more balanced histories of tissue culture can make a decisive contribution to public debates today: by refuting a false dichotomy between science and its publics, and showing how ethical concepts such as informed consent arise from a historically specific engagement between professional and social groups.

  7. Glioma tissue obtained by modern ultrasonic aspiration with a simple sterile suction trap for primary cell culture and pathological evaluation.

    PubMed

    Schroeteler, Juliane; Reeker, Ralf; Suero Molina, Eric; Brokinkel, Benjamin; Holling, Markus; Grauer, Oliver M; Senner, Volker; Stummer, Walter; Ewelt, Christian

    2014-01-01

    Ultrasonic aspiration is widely used in the resection of brain tumors. Nevertheless, tumor tissue fragments obtained by ultrasonic aspiration are usually discarded. In this study, we demonstrate that these fragments are possible sources of material for histopathological study and tissue culture and compare their microscopic features and viability in tissue culture of cavitron ultrasonic surgical aspirator tissue fragments. Brain tumor tissue collected by ultrasonic aspiration (CUSA EXcel®; Integra Radionics Inc.) in a simple sterile suction trap during resection was processed for primary cell culture. Cell viability and immunohistological markers were measured by the WST-1 test, microscopy and immunofluorescent evaluation. Six gliomas are presented to demonstrate that these tissue fragments show good preservation of histological detail and tissue viability in culture. Utilization of this material may facilitate pathological interpretation by providing a more representative sample of tumor histology as well as an adequate and sterile biosource of material for tissue culture studies.

  8. Hollow Fiber Bioreactors for In Vivo-like Mammalian Tissue Culture

    PubMed Central

    Storm, Michael P.; Sorrell, Ian; Shipley, Rebecca; Regan, Sophie; Luetchford, Kim A.; Sathish, Jean; Webb, Steven; Ellis, Marianne J.

    2016-01-01

    Tissue culture has been used for over 100 years to study cells and responses ex vivo. The convention of this technique is the growth of anchorage dependent cells on the 2-dimensional surface of tissue culture plastic. More recently, there is a growing body of data demonstrating more in vivo-like behaviors of cells grown in 3-dimensional culture systems. This manuscript describes in detail the set-up and operation of a hollow fiber bioreactor system for the in vivo-like culture of mammalian cells. The hollow fiber bioreactor system delivers media to the cells in a manner akin to the delivery of blood through the capillary networks in vivo. The system is designed to fit onto the shelf of a standard CO2 incubator and is simple enough to be set-up by any competent cell biologist with a good understanding of aseptic technique. The systems utility is demonstrated by culturing the hepatocarcinoma cell line HepG2/C3A for 7 days. Further to this and in line with other published reports on the functionality of cells grown in 3-dimensional culture systems the cells are shown to possess increased albumin production (an important hepatic function) when compared to standard 2-dimensional tissue culture. PMID:27285826

  9. Evaluation of VP22 spread in tissue culture.

    PubMed

    Brewis, N; Phelan, A; Webb, J; Drew, J; Elliott, G; O'Hare, P

    2000-01-01

    We compare methods of detection of intercellular transport of the herpes simplex virus protein VP22 and of a green fluorescent protein (GFP)-VP22 fusion protein. Spread of both proteins was observed by immunofluorescence (IF) using organic fixatives. Spread of both proteins was also detected by IF after paraformaldehyde (PFA) fixation and detergent permeabilization, albeit at reduced levels. However, while spread of GFP-VP22 was observed by examining intrinsic GFP fluorescence after methanol fixation, little spread was observed after PFA fixation, suggesting that the levels of the fusion protein in recipient cells were below the detection limits of intrinsic-fluorescence or that PFA fixation quenches the fluorescence of GFP-VP22. We further considered whether elution of VP22 from methanol-fixed cells and postfixation binding to surrounding cells contributed to the increased detection of spread observed after methanol fixation. The results show that while this could occur, it appeared to be a minor effect not accounting for the observed VP22 cell-to-cell spread in culture.

  10. A physiological study of chick myotubes grown in tissue culture

    PubMed Central

    Harris, J. B.; Marshall, M. W.; Wilson, P.

    1973-01-01

    1. A study has been made of some passive and active membrane properties of myotubes of different ages obtained in culture from explants of chick embryo thigh muscle. 2. After 3 days in vitro the mean values for the myotube resting membrane potential and input resistance were - 63·8 mV and 1·30 MΩ respectively. By 13 days these values had fallen to - 51·0 mV and 0·80 MΩ. 3. Current/voltage relations were measured in the presence of tetrodotoxin. The relations were linear for membrane potentials between - 120 and - 35 mV. Further depolarization usually resulted in a delayed increase in conductance which inactivated with time. 4. All myotubes tested using anodal break excitation were capable of generating action potentials. Action potentials were blocked by tetrodotoxin, saxitoxin and procaine. 5. All myotubes were sensitive to iontophoretically applied ACh. The potential change produced by ACh reversed polarity at a membrane potential between 0 and + 10 mV. The depolarization produced by ACh was unaffected by anticholinesterases. 6. The ACh response was blocked by cobra neurotoxin, D-tubocurarine and atropine. 7. The electrical properties of the myotubes appear to resemble those of normal adult twitch-type skeletal muscle fibres. 8. The pharmacological properties of the myotube cholinergic receptor have been compared with those of the neuromuscular junction and the denervated muscle fibre membrane. ImagesPlate 1Plate 2 PMID:4735059

  11. Quantitation of ranaviruses in cell culture and tissue samples.

    PubMed

    Holopainen, Riikka; Honkanen, Jarno; Jensen, Britt Bang; Ariel, Ellen; Tapiovaara, Hannele

    2011-01-01

    A quantitative real-time PCR (qPCR) based on a standard curve was developed for detection and quantitation of ranaviruses. The target gene for the qPCR was viral DNA polymerase (DNApol). All ten ranavirus isolates studied (Epizootic haematopoietic necrosis virus, EHNV; European catfish virus, ECV; European sheatfish virus, ESV; Frog virus 3, FV3; Bohle iridovirus, BIV; Doctor fish virus, DFV; Guppy virus 6, GV6; Pike-perch iridovirus, PPIV; Rana esculenta virus Italy 282/I02, REV282/I02 and Short-finned eel ranavirus, SERV) were detected with the qPCR assay. In addition, two fish cell lines - epithelioma papulosum cyprini (EPC) and bluegill fry (BF-2) - were infected with four of the isolates (EHNV, ECV, FV3 and DFV), and the viral quantity was determined from seven time points during the first three days after infection. The qPCR was also used to determine the viral load in tissue samples from pike (Esox lucius) fry challenged experimentally with EHNV. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Insect Allergy.

    PubMed

    Lee, Hobart; Halverson, Sara; Mackey, Regina

    2016-09-01

    Insect bites and stings are common. Risk factors are mostly associated with environmental exposure. Most insect bites and stings result in mild, local, allergic reactions. Large local reactions and systemic reactions like anaphylaxis are possible. Common insects that bite or sting include mosquitoes, ticks, flies, fleas, biting midges, bees, and wasps. The diagnosis is made clinically. Identification of the insect should occur when possible. Management is usually supportive. For anaphylaxis, patients should be given epinephrine and transported to the emergency department for further evaluation. Venom immunotherapy (VIT) has several different protocols. VIT is highly effective in reducing systemic reactions and anaphylaxis.

  13. Plants regenerated from tissue culture contain stable epigenome changes in rice.

    PubMed

    Stroud, Hume; Ding, Bo; Simon, Stacey A; Feng, Suhua; Bellizzi, Maria; Pellegrini, Matteo; Wang, Guo-Liang; Meyers, Blake C; Jacobsen, Steven E

    2013-03-19

    Most transgenic crops are produced through tissue culture. The impact of utilizing such methods on the plant epigenome is poorly understood. Here we generated whole-genome, single-nucleotide resolution maps of DNA methylation in several regenerated rice lines. We found that all tested regenerated plants had significant losses of methylation compared to non-regenerated plants. Loss of methylation was largely stable across generations, and certain sites in the genome were particularly susceptible to loss of methylation. Loss of methylation at promoters was associated with deregulated expression of protein-coding genes. Analyses of callus and untransformed plants regenerated from callus indicated that loss of methylation is stochastically induced at the tissue culture step. These changes in methylation may explain a component of somaclonal variation, a phenomenon in which plants derived from tissue culture manifest phenotypic variability. DOI:http://dx.doi.org/10.7554/eLife.00354.001.

  14. Radiosensitivity of different tissues from carrot root at different phases of growth in culture

    SciTech Connect

    Degani, N.; Pickholtz, D.

    1980-09-01

    The present work compares the effect of ..gamma..-radiation dose and time in culture on the growth of cambium and phloem carrot (Daucus carota) root explants. It was found that the phloem is more radiosensitive than the cambium and that both tissues were more radiosensitive when irradiated on excision at the G/sub 1/ phase rather than at the end of the lag phase on the ninth day of growth in culture when cells were predominantly at the G/sub 2/ phase. The nuclear volumes of cells from both tissues were similar but were larger at the end of the more radioresistant lag phase than those of the G/sub 1/ phase on excision. However, nuclear volume could not account for the differences in radiosensitivity between either the tissues or irradiation times in culture.

  15. Tissue culture system using a PANDA ring resonator and wavelength router for hydroponic plant.

    PubMed

    Kamoldilok, Surachart; Suwanpayak, Nathaporn; Suttirak, Saisudawan; Yupapin, Preecha P

    2012-06-01

    A novel system of nanofluidics trapping and delivery, which is known as a tissue culture system is proposed. By using the intense optical pulse(i.e., a soliton pulse) and a system constructed by a liquid core waveguide, the optical vortices (gradient optical fields/wells) can be generated, where the trapping tools in the same way as the optical tweezers in the PANDA ring resonator can be formed. By controlling the suitable parameters, the intense optical vortices can be generated within the PANDA ring resonator, in which the nanofluidics can be trapped and moved (transported) dynamically within the Tissue culture system(a wavelength router), which can be used for tissue culture and delivery in the hydroponic plant system.

  16. Comparison of scaffolds and culture conditions for tissue engineering of the knee meniscus.

    PubMed

    Aufderheide, Adam C; Athanasiou, Kyriacos A

    2005-01-01

    The menisci of the knee are semilunar fibrocartilaginous structures critical in load bearing, shock absorption, stability, and lubrication. In this study, two commonly used biomaterials, a hydrogel (agarose) and a nonwoven mesh polymer [poly(glycolic acid); PGA], were compared for suitability as scaffold materials for tissue engineering the knee meniscus. In addition, a rotating wall bioreactor culture of both scaffold materials was compared with static cultures. Constructs were cultured for up to 7 weeks in static and rotating wall bioreactor culture. Cell numbers were 22 times higher in PGA than agarose after 7 weeks in culture. Static PGA scaffolds had more than twice the amount of sulfated glycosaminoglycans and three times the amount of collagen compared to static agarose constructs at week 7. The rotating wall bioreactor was not found with increase matrix production or cell proliferation significantly over static cultures.

  17. Aluminum ions stimulate mitosis in murine cells in tissue culture.

    PubMed

    Jones, T R; Antonetti, D L; Reid, T W

    1986-01-01

    Addition of aluminum to the culture medium of Nakano mouse lens epithelial (NMLE) cells and Swiss 3T3K cells induced both 3H-thymidine incorporation and mitosis. This is in contrast to other metal ions such as vanadium, which, at concentrations high enough to increase 3H-thymidine incorporation, actually inhibits mitosis (Jones and Reid, J Cell Physiol 121:199, 1984). Aluminum concentrations between 20 microM and 50 microM were most effective. The 3T3 cells respond to aluminum with a 7.6-fold increase, and NMLE cells respond with a 21-fold increase in 3H-thymidine incorporation. DNA synthesis in NMLE cells was also found to be synergistically stimulated by aluminum and low concentrations of insulin (4.5 X 10(-8) M). A 3.25-hr incubation with 50 microM aluminum was sufficient to induce 50% of maximum 3H-thymidine incorporation during the 40-hr assay. Aluminum-stimulated 3H-thymidine incorporation is inhibited by hydroxyurea, and aluminum causes an increase in cell number. Also, by sedimentation equilibrium analysis of the product of aluminum-stimulated DNA synthesis it was found that a single copy of DNA was synthesized following addition of aluminum to quiescent cells. These facts indicate that aluminum induces both S-phase DNA synthesis and mitosis. However, only 48% of the NMLE cells found to be labeled with DNA went on to divide. In contrast, although only a small percentage of 3T3 cells were found to be labeled after aluminum treatment, all of these cells appeared to go through mitosis.

  18. Ligand specificity and affinity of BT-R1, the Bacillus thuringiensis Cry1A toxin receptor from Manduca sexta, expressed in mammalian and insect cell cultures.

    PubMed Central

    Keeton, T P; Bulla, L A

    1997-01-01

    The Manduca sexta receptor for the Bacillus thuringiensis Cry1Aa, Cry1Ab, and Cry1Ac toxins, BT-R1, has been expressed in heterologous cell culture, and its ligand binding characteristics have been determined. When transfected with the BT-R1 cDNA, insect and mammalian cell cultures produce a binding protein of approximately 195 kDa, in contrast to natural BT-R1 from M. sexia, which has an apparent molecular weight of 210 kDa. Transfection of cultured Spodoptera frugiperda cells with the BT-R1 cDNA imparts Cry1A-specific high-affinity binding activity typical of membranes prepared from larval M. sexta midguts. Competition assays with BT-R1 prepared from larval M. sexta midguts and transiently expressed in cell culture reveal virtually identical affinities for the Cry1Aa, Cry1Ab, and Cry1Ac toxins, clearly demonstrating the absolute specificity of the receptor for toxins of the lepidopteran-specific Cry1A family. BT-R1 therefore remains the only M. sexta Cry1A binding protein to be purified, cloned, and functionally expressed in heterologous cell culture, and for the first time, we are able to correlate the Cry1Aa, Cry1Ab, and Cry1Ac toxin sensitivities of M. sexta to the identity and ligand binding characteristics of a single midgut receptor molecule. PMID:9292994

  19. Identification of Stevioside Using Tissue Culture-Derived Stevia (Stevia rebaudiana) Leaves

    PubMed Central

    Karim, Md. Ziaul; Uesugi, Daisuke; Nakayama, Noriyuki; Hossain, M. Monzur; Ishihara, Kohji; Hamada, Hiroki

    2015-01-01

    Stevioside is a natural sweetener from Stevia leaf, which is 300 times sweeter than sugar. It helps to reduce blood sugar levels dramatically and thus can be of benefit to diabetic people. Tissue culture is a very potential modern technology that can be used in large-scale disease-free stevia production throughout the year. We successfully produced stevia plant through in vitro culture for identification of stevioside in this experiment. The present study describes a potential method for identification of stevioside from tissue culture-derived stevia leaf. Stevioside in the sample was identified using HPLC by measuring the retention time. The percentage of stevioside content in the leaf samples was found to be 9.6%. This identification method can be used for commercial production and industrialization of stevia through in vitro culture across the world. PMID:28008268

  20. Microfluidic 3D cell culture: potential application for tissue-based bioassays

    PubMed Central

    Li, XiuJun (James); Valadez, Alejandra V.; Zuo, Peng; Nie, Zhihong

    2014-01-01

    Current fundamental investigations of human biology and the development of therapeutic drugs, commonly rely on two-dimensional (2D) monolayer cell culture systems. However, 2D cell culture systems do not accurately recapitulate the structure, function, physiology of living tissues, as well as highly complex and dynamic three-dimensional (3D) environments in vivo. The microfluidic technology can provide micro-scale complex structures and well-controlled parameters to mimic the in vivo environment of cells. The combination of microfluidic technology with 3D cell culture offers great potential for in vivo-like tissue-based applications, such as the emerging organ-on-a-chip system. This article will review recent advances in microfluidic technology for 3D cell culture and their biological applications. PMID:22793034

  1. Identification of Stevioside Using Tissue Culture-Derived Stevia (Stevia rebaudiana) Leaves.

    PubMed

    Karim, Md Ziaul; Uesugi, Daisuke; Nakayama, Noriyuki; Hossain, M Monzur; Ishihara, Kohji; Hamada, Hiroki

    2015-01-01

    Stevioside is a natural sweetener from Stevia leaf, which is 300 times sweeter than sugar. It helps to reduce blood sugar levels dramatically and thus can be of benefit to diabetic people. Tissue culture is a very potential modern technology that can be used in large-scale disease-free stevia production throughout the year. We successfully produced stevia plant through in vitro culture for identification of stevioside in this experiment. The present study describes a potential method for identification of stevioside from tissue culture-derived stevia leaf. Stevioside in the sample was identified using HPLC by measuring the retention time. The percentage of stevioside content in the leaf samples was found to be 9.6%. This identification method can be used for commercial production and industrialization of stevia through in vitro culture across the world.

  2. Fractals in tissue engineering: toward biomimetic cell-culture matrices, microsystems and microstructured implants.

    PubMed

    Díaz Lantada, Andrés; Pareja Sánchez, Beatriz; Gómez Murillo, Cristina; Urbieta Sotillo, Javier

    2013-09-01

    Tissue engineering is a rapidly evolving field in which the complexity of biomaterials and biostructures, with typically non-Euclidean or fractal-like geometries, has to be adequately taken into account for the promotion of enhanced and even personalized diagnostic and therapeutic solutions. This study covers the main applications of fractals in the field of tissue engineering, including their advantages for modeling biological processes and cell-culture procedures, but specially focusing on their benefits for describing the complex geometries and structures of biomaterials (both natural and synthetic), many of which have potential uses for the development of cell culture microsystems, scaffolds for tissue repair and implants for tissue repair in general. We also explore the main supporting design, simulation and manufacturing technologies, as well as the most remarkable difficulties and limitations linked to the generalized use of fractals in engineering design, and also detail some current solution proposals and future directions.

  3. Investigating the establishment of primary cell culture from different abalone (Haliotis midae) tissues

    PubMed Central

    Auzoux-Bordenave, Stéphanie; Niesler, Carola; Roodt-Wilding, Rouvay

    2010-01-01

    The abalone, Haliotis midae, is the most valuable commodity in South African aquaculture. The increasing demand for marine shellfish has stimulated research on the biology and physiology of target species in order to improve knowledge on growth, nutritional requirements and pathogen identification. The slow growth rate and long generation time of abalone restrict efficient design of in vivo experiments. Therefore, in vitro systems present an attractive alternative for short term experimentation. The use of marine invertebrate cell cultures as a standardised and controlled system to study growth, endocrinology and disease contributes to the understanding of the biology of economically important molluscs. This paper investigates the suitability of two different H. midae tissues, larval and haemocyte, for establishing primary cell cultures. Cell cultures are assessed in terms of culture initiation, cell yield, longevity and susceptibility to contamination. Haliotis midae haemocytes are shown to be a more feasible tissue for primary cell culture as it could be maintained without contamination more readily than larval cell cultures. The usefulness of short term primary haemocyte cultures is demonstrated here with a growth factor trial. Haemocyte cultures can furthermore be used to relate phenotypic changes at the cellular level to changes in gene expression at the molecular level. PMID:20680682

  4. Investigating the establishment of primary cell culture from different abalone (Haliotis midae) tissues.

    PubMed

    van der Merwe, Mathilde; Auzoux-Bordenave, Stéphanie; Niesler, Carola; Roodt-Wilding, Rouvay

    2010-07-01

    The abalone, Haliotis midae, is the most valuable commodity in South African aquaculture. The increasing demand for marine shellfish has stimulated research on the biology and physiology of target species in order to improve knowledge on growth, nutritional requirements and pathogen identification. The slow growth rate and long generation time of abalone restrict efficient design of in vivo experiments. Therefore, in vitro systems present an attractive alternative for short term experimentation. The use of marine invertebrate cell cultures as a standardised and controlled system to study growth, endocrinology and disease contributes to the understanding of the biology of economically important molluscs. This paper investigates the suitability of two different H. midae tissues, larval and haemocyte, for establishing primary cell cultures. Cell cultures are assessed in terms of culture initiation, cell yield, longevity and susceptibility to contamination. Haliotis midae haemocytes are shown to be a more feasible tissue for primary cell culture as it could be maintained without contamination more readily than larval cell cultures. The usefulness of short term primary haemocyte cultures is demonstrated here with a growth factor trial. Haemocyte cultures can furthermore be used to relate phenotypic changes at the cellular level to changes in gene expression at the molecular level.

  5. Development of an experimental tissue culture vaccine against Mediterranean theileriosis in Spain.

    PubMed

    Viseras, J; García-Fernández, P; Adroher, F J

    1998-02-01

    Vaccines against Mediterranean theileriosis have been developed in several countries where the disease is an economic problem. Tissue culture vaccines have been widely and successfully used to immunize cattle. Although Mediterranean theileriosis represents a constraint to dairy cattle production in Spain, no vaccines against this disease have been developed previously. The successful development of a tissue culture vaccine consisting of attenuated Theileria annulata schizont infected cells from an enzootic area of Spain and its efficacy under experimental conditions is reported. Vaccinated calves were resistant to homologous challenge showing no signs of theileriosis while non-vaccinated calves showed typical signs of disease.

  6. Production of immunoglobulins in gingival tissue explant cultures from juvenile periodontitis patients

    SciTech Connect

    Hall, E.R.; Falkler, W.A. Jr.; Suzuki, J.B. )

    1990-10-01

    B lymphocytes and plasma cells are histologically observed in granulomatous periodontal tissues of juvenile periodontitis (JP) patients. Local immune processes may participate in protective or immunopathologic roles in the pathogenesis of this disease. An in vitro explant culture system was utilized to demonstrate the production of immunoglobulins by diseased JP tissues. Immunodiffusion studies using goat anti-human gamma, alpha, or mu chain serum revealed IgG to be the major immunoglobulin present in 92% of the day 1 supernatant fluids (SF) of the 47 JP gingival tissue explant cultures. IgA was present in 15% of the SF; however, no IgM was detected. Staph Protein A isolated 14C-labeled IgG from the SF, when allowed to react with goat anti-human gamma chain serum, formed lines of precipitation. Positive autoradiographs confirmed the biosynthesis of IgG by the explant cultures. The in vitro gingival tissue explant culture system described provides a useful model for the study of localized immunoglobulins produced by diseased tissues of JP patients.

  7. A novel approach to regenerating periodontal tissue by grafting autologous cultured periosteum.

    PubMed

    Mizuno, Hirokazu; Hata, Ken-Ichiro; Kojima, Koji; Bonassar, Lawrence J; Vacanti, Charles A; Ueda, Minoru

    2006-05-01

    In the field of oral and maxillofacial surgery, tissue-engineering techniques have been found useful in regenerating lost tissues. Periodontal disease causes severe destruction of periodontal tissue, including the alveolar bone. In this study we attempted to regenerate canine periodontal tissue defects by grafting autologous cultured membrane derived from the periosteum. Under appropriate culture conditions, periosteal cells produce enough extracellular matrix to form sheets. Periosteum specimens were peeled from the mandibular body of adult hybrid dogs and were cultured until cells formed membrane. ALP activity was measured to determine an optimal time for grafting. The cultured periosteum (CP) was grafted and sutured on a mechanically made Class III furcation defect in the 4th mandibular premolars. After 3 months, the samples were harvested and observed radiologically and histologically. In cases of CP, the bone defects were regenerated and filled with newly formed hard tissue, whereas in the controls the defects remained. These results show that our novel treatment is effective in regenerating alveolar bone for the treatment of periodontal disease.

  8. Mapping the cellular and molecular heterogeneity of normal and malignant breast tissues and cultured cell lines

    PubMed Central

    2010-01-01

    Introduction Normal and neoplastic breast tissues are comprised of heterogeneous populations of epithelial cells exhibiting various degrees of maturation and differentiation. While cultured cell lines have been derived from both normal and malignant tissues, it remains unclear to what extent they retain similar levels of differentiation and heterogeneity as that found within breast tissues. Methods We used 12 reduction mammoplasty tissues, 15 primary breast cancer tissues, and 20 human breast epithelial cell lines (16 cancer lines, 4 normal lines) to perform flow cytometry for CD44, CD24, epithelial cell adhesion molecule (EpCAM), and CD49f expression, as well as immunohistochemistry, and in vivo tumor xenograft formation studies to extensively analyze the molecular and cellular characteristics of breast epithelial cell lineages. Results Human breast tissues contain four distinguishable epithelial differentiation states (two luminal phenotypes and two basal phenotypes) that differ on the basis of CD24, EpCAM and CD49f expression. Primary human breast cancer tissues also contain these four cellular states, but in altered proportions compared to normal tissues. In contrast, cultured cancer cell lines are enriched for rare basal and mesenchymal epithelial phenotypes, which are normally present in small numbers within human tissues. Similarly, cultured normal human mammary epithelial cell lines are enriched for rare basal and mesenchymal phenotypes that represent a minor fraction of cells within reduction mammoplasty tissues. Furthermore, although normal human mammary epithelial cell lines exhibit features of bi-potent progenitor cells they are unable to differentiate into mature luminal breast epithelial cells under standard culture conditions. Conclusions As a group breast cancer cell lines represent the heterogeneity of human breast tumors, but individually they exhibit increased lineage-restricted profiles that fall short of truly representing the intratumoral

  9. Tissue-culture investigations into mechanisms of biomass enhancement. Annual report, June 1984-July 1985

    SciTech Connect

    Nabors, M.W.

    1985-07-01

    The cost effectiveness of biogas production can be considerably improved by producing cultivars of sorghum and Napier grass with increased biomass and tolerance to common soil stresses such as salinity and drought. In addition, increased fertilizer efficiency of plants used for biomass is also desired. Tissue-culture methodologies provide a means for generating improved sorghum and Napier grass cultivars and for selecting cells and plants with tolerance to salinity, drought, and low levels of applied nitrogen fertilizer. To this end, tissue cultures of sorghum and Napier grass were established. Media were devised to enhance high-frequency, long-term plant production from these cultures. Existing methods were considerably improved and the first plant regeneration techniques from callus cultures of sweet sorghum were devised. Over 1000 plants were regenerated from callus cultures during the first year. These are being used in biomass production assays. Tissue culture selection for salt tolerance has been initiated using high levels of NaCl or hydroxyproline in the medium. Sodium chloride stress represents direct selection; hydroxyproline stress selects cells with increased levels of proline, an amino acid known to be associated with salt tolerance. Selection for cell variants efficient in reducing nitrate are planned; cells will be grown in the presence of chlorate, a nitrate analogue. Selections are carried out on either solid or liquid media. Cell suspension systems, allowing more efficient selection, are being developed for all cultivars under study.

  10. The limited role of microbiological culture and sensitivity in the management of superficial soft tissue abscesses.

    PubMed

    Khan, Muhammad N; Vidya, Raghavan; Lee, Richard E

    2006-09-06

    The aim of this study was to assess the role of the routine practice of microbial culture and sensitivity at incision and drainage of superficial soft tissue abscesses. The case notes of 162 consecutive patients, selected from the microbiology database over a period of 1 year, were reviewed. All had incision and drainage of superficial soft tissue abscesses and included perianal, pilonidal, axillary, and breast abscesses. Patients with chronic wounds, recurrent abscesses, diabetes, pregnancy, and immunosuppression were excluded. The impact of pus culture and sensitivity (C/S) on management and clinical outcome was documented. Out of 162 patients, 97 were male (59.8%) and 65 were female (40.1%). Only 115 (70.9%) yielded positive cultures and 47 (29.1%) were sterile. The cultured microbial flora was predictable and sensitive to empirical antibiotics. In four patients, the results of microbial culture sensitivity showed microbial resistance to empirical antibiotics; however, it did not affect the management or the outcome for these patients. The routine practice of sending swabs for C/S after incision and drainage of superficial soft tissue abscesses does not contribute significantly towards patient management. Most patients are already on antibiotics prior to the referral and in the remainder, surgeons start antibiotics empirically. These broad-spectrum antibiotics cover the common pathogens involved, and there is no significant change in the antibiotic treatment after reviewing the culture reports following incision and drainage of uncomplicated superficial skin abscesses.

  11. An Assessment of Cell Culture Plate Surface Chemistry for in Vitro Studies of Tissue Engineering Scaffolds

    PubMed Central

    Röder, Alexander; García-Gareta, Elena; Theodoropoulos, Christina; Ristovski, Nikola; Blackwood, Keith A.; Woodruff, Maria A.

    2015-01-01

    The use of biopolymers as a three dimensional (3D) support structure for cell growth is a leading tissue engineering approach in regenerative medicine. Achieving consistent cell seeding and uniform cell distribution throughout 3D scaffold culture in vitro is an ongoing challenge. Traditionally, 3D scaffolds are cultured within tissue culture plates to enable reproducible cell seeding and ease of culture media change. In this study, we compared two different well-plates with different surface properties to assess whether seeding efficiencies and cell growth on 3D scaffolds were affected. Cell attachment and growth of murine calvarial osteoblast (MC3T3-E1) cells within a melt-electrospun poly-ε-caprolactone scaffold were assessed when cultured in either “low-adhesive” non-treated or corona discharged-treated well-plates. Increased cell adhesion was observed on the scaffold placed in the surface treated culture plates compared to the scaffold in the non-treated plates 24 h after seeding, although it was not significant. However, higher cell metabolic activity was observed on the bases of all well-plates than on the scaffold, except for day 21, well metabolic activity was higher in the scaffold contained in non-treated plate than the base. These results indicate that there is no advantage in using non-treated plates to improve initial cell seeding in 3D polymeric tissue engineering scaffolds, however non-treated plates may provide an improved metabolic environment for long-term studies. PMID:26703748

  12. Insect Keepers

    ERIC Educational Resources Information Center

    Moore, Virginia J.; Chessin, Debby A.; Theobald, Becky

    2010-01-01

    Insects are fascinating creatures--especially when you and your students get up close and personal with them! To that end, the authors facilitated an inquiry-based investigation with an emphasis on identification of the different types of insects found in the school yard, their characteristics, their habitat, and what they eat, while engaging the…

  13. III. Insects

    Treesearch

    Jose F. Negron

    2011-01-01

    RMRS research on insect pests focuses mostly on conifer pests. There is a long history of invasive insects causing significant impacts, mortality, and changes in forest ecosystem structure in North America. Perhaps the most evident example is the introduction of the gypsy moth, Lymantria dispar, into eastern North America in the 1860s (Forbush and Frenald 1896)....

  14. Insect Keepers

    ERIC Educational Resources Information Center

    Moore, Virginia J.; Chessin, Debby A.; Theobald, Becky

    2010-01-01

    Insects are fascinating creatures--especially when you and your students get up close and personal with them! To that end, the authors facilitated an inquiry-based investigation with an emphasis on identification of the different types of insects found in the school yard, their characteristics, their habitat, and what they eat, while engaging the…

  15. Incredible Insects.

    ERIC Educational Resources Information Center

    Braus, Judy, Ed.

    1989-01-01

    Ranger Rick's NatureScope is a creative education series dedicated to inspiring in children an understanding and appreciation of the natural world while developing the skills they will need to make responsible decisions about the environment. Contents are organized into the following sections: (1) "What Makes an Insect an Insect?,"…

  16. Low yield of blood and wound cultures in patients with skin and soft-tissue infections.

    PubMed

    Torres, Jesus; Avalos, Nathaniel; Echols, Lamarr; Mongelluzzo, Jillian; Rodriguez, Robert M

    2017-08-01

    Current guidelines recommend blood cultures in skin and soft-tissue infection (SSTI) patients only with signs of systemic toxicity and wound cultures for severe purulent infections. Our objectives were to determine: 1) blood and wound culture yields in patients admitted with SSTIs; 2) whether injection drug users (IDUs) and febrile patients had higher blood culture yields; and 3) whether blood and wound cultures grew organisms sensitive to typical SSTI empiric antibiotics. We prospectively enrolled adult patients admitted from the ED with SSTIs at an urban hospital. We recorded patient characteristics, including IDU, comorbidities and temperatures, and followed admitted patients throughout their hospital course. Of 734 SSTI patients enrolled, 246 (33.5%) were admitted. Of 86 (35.0%) patients who had blood cultures, six had positive cultures (yield=7.0%; 95% confidence intervals [CIs] 3.2-14.4); 4 were methicillin sensitive Staphylococcus aureus (MSSA) and 2 were methicillin resistant (MRSA). Of 29 febrile patients, 1 had a positive culture (yield=3.5%; 95% CI 0.6-17.2). Of 101 admitted IDU patients, 46 (46%) received blood cultures, and 4 had positive cultures (yield=8.7%; 95% CI 3.4-20.3). Of 89 patients with purulent wounds, 44 (49.4%) patients had ED wound cultures. Thirteen had positive cultures (yield=29.6%; 95% CI 18.2-44.2%). Most were MRSA, MSSA, and group A Streptococcus species - all sensitive to Vancomycin. Febrile and IDU patients had low yields of blood cultures similar to yields in non-IDU and afebrile patients. All blood and wound culture species were adequately covered by currently recommended empiric antibiotic regimens. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Tissue Culture and in Vivo Modeling of Corneal Opacification and Ocular Injuries Induced by Pulsed Millimeter Waves.

    DTIC Science & Technology

    1985-02-01

    A179 878 TISSUE CULTURE AND IN VIVO MODELING OF COREL OPACIFICATION AND OCULAR I (U) UNIVERSITY OF NESTERN ONTARIO LONDON DEPT OF BIOCHEMISTRY J R...NATIONAL AiURfAU IF ;’ANUAI ,f’ 1q% A ’ , %’- . II AD _ _ _ _ TISSUE CULTURE AND IN VIVO MODELLING OF CORNEAL OPACIFICATION AND OCULAR INJURIES...Tissue Culture and In Vivo Modeling of Corneal Annual and Final Report Opacification and Ocular Injuries by Pulsed Oct. 1980 - 31 May 1984 Millimeter

  18. Insect phylogenomics.

    PubMed

    Behura, S K

    2015-08-01

    Phylogenomics, the integration of phylogenetics with genome data, has emerged as a powerful approach to study the evolution and systematics of species. Recently, several studies employing phylogenomic tools have provided better insights into insect evolution. Next-generation sequencing methods are now increasingly used by entomologists to generate genomic and transcript sequences of various insect species and strains. These data provide opportunities for comparative genomics and large-scale multigene phylogenies of diverse lineages of insects. Phy-logenomic investigations help us to better understand systematic and evolutionary relationships of insect species that play important roles as herbivores, predators, detritivores, pollinators and disease vectors. It is important that we critically assess the prospects and limitations of phylogenomic methods. In this review, I describe the current status, outline the major challenges and remark on potential future applications of phylogenomic tools in studying insect systematics and evolution. © 2015 The Royal Entomological Society.

  19. Insect immunology and hematopoiesis.

    PubMed

    Hillyer, Julián F

    2016-05-01

    Insects combat infection by mounting powerful immune responses that are mediated by hemocytes, the fat body, the midgut, the salivary glands and other tissues. Foreign organisms that have entered the body of an insect are recognized by the immune system when pathogen-associated molecular patterns bind host-derived pattern recognition receptors. This, in turn, activates immune signaling pathways that amplify the immune response, induce the production of factors with antimicrobial activity, and activate effector pathways. Among the immune signaling pathways are the Toll, Imd, Jak/Stat, JNK, and insulin pathways. Activation of these and other pathways leads to pathogen killing via phagocytosis, melanization, cellular encapsulation, nodulation, lysis, RNAi-mediated virus destruction, autophagy and apoptosis. This review details these and other aspects of immunity in insects, and discusses how the immune and circulatory systems have co-adapted to combat infection, how hemocyte replication and differentiation takes place (hematopoiesis), how an infection prepares an insect for a subsequent infection (immune priming), how environmental factors such as temperature and the age of the insect impact the immune response, and how social immunity protects entire groups. Finally, this review highlights some underexplored areas in the field of insect immunobiology.

  20. Enhanced anthocyanins and resveratrol production in Vitis vinifera cell suspension culture by indanoyl-isoleucine, N-linolenoyl-L-glutamine and insect saliva.

    PubMed

    Cai, Zhenzhen; Knorr, Dietrich; Smetanska, Iryna

    2012-01-05

    The effects of two synthetic elicitor indanoyl-isoleucine (In-Ile), N-linolenoyl-L-glutamine (Lin-Gln) and one biotic elicitor insect saliva (from Manduca sexta larvae) on plant cell cultures with respect to the induction of secondary metabolite production were investigated. Stimulated production of secondary metabolites, particularly anthocyanins in plant cells and phenolic acids in culture medium, was studied by using suspension culture of Vitis vinifera L. cv. Gamay Fréaux as a model system. In the treatments with In-Ile, the production of anthocyanins was enhanced 2.6-fold. In-Ile, Lin-Gln and saliva significantly elevated the accumulation of phenolic acids, particularly 3-O-glucosyl-resveratrol. The used elicitors did not suppress cell growth. Secondary metabolites were differently responsive to elicitation. 3-O-glucosyl-resveratrol was the predominant phenolic acid in V. vinifera cell culture, and its production was significantly stimulated by saliva, with 7.0-fold of the control level 24 h after treatment. The production of 4-(3,5-dihydroxy-phenyl)-phenol was significantly stimulated by In-Ile with 6.4-fold of the control level 24 h after treatment.

  1. Assessment of three types of spaceflight hardware for tissue culture studies: Comparison of skeletal tissue growth and differentiation

    SciTech Connect

    Klement, B.J.; Spooner, B.S.

    1997-01-01

    Three different types of spaceflight hardware, the BioProcessing Module (BPM), the Materials Dispersion Apparatus (MDA), and the Fluid Processing Apparatus (FPA), were assessed for their ability to support pre-metatarsal growth and differentiation in experiments conducted on five space shuttle flights. BPM-cultured pre-metatarsal tissue showed no difference in flight and ground control lengths. Flight and ground controls cultured in the MDA grew 135 {mu}m and 141 {mu}m, respectively, in an 11 day experiment. Only five control rods and three flight rods mineralized. In another MDA experiment, pre-metatarsals were cultured at 4{degree}C (277K) or 20{degree}C (293K) for the 16 day mission, then cultured an additional 16 days in laboratory dishes at 37{degree}C (310K). The 20{degree}C (293K) cultures died post-flight. The 4{degree}C (277K) flight pre-metatarsals grew 417 {mu}m more than the 4{degree}C (277K) ground controls post-flight. In 5 and 6 day experiments done in FPAs, flight rods grew longer than ground control rods. In a 14 day experiment, ground control and flight rods also expanded in length, but there was no difference between them. The pre-metatarsals cultured in the FPAs did not mineralize, or terminally differentiate. These experiments demonstrate, that while supporting pre-metatarsal growth in length, the three types of hardware are not suitable to support routine differentiation. {copyright} {ital 1997 American Institute of Physics.}

  2. In vitro development of primordial follicles after long-term culture of goat ovarian tissue.

    PubMed

    Matos, M H T; Bruno, J B; Rocha, R M P; Lima-Verde, I B; Santos, K D B; Saraiva, M V A; Silva, J R V; Martins, F S; Chaves, R N; Báo, S N; Figueiredo, J R

    2011-06-01

    This study aims to investigate the effects of follicle stimulating hormone (FSH) and fibroblast growth factor-2 (FGF-2) on the survival and growth of caprine preantral follicles. Ovarian tissues were cultured for 1, 7, 14, 21 or 28 days in medium supplemented with FSH (FSH-2d or FSH-7d, i.e., with replacement of the culture medium every 2 or 7 days, respectively) or FSH+FGF-2 (replacement of the medium every 2 days). Non-cultured (control) and cultured ovarian fragments were processed for histological and ultrastructural analysis. After 28 days of culture, the media supplemented with FSH-2d was the most effective in maintaining the percentage of normal follicles and in promoting follicular growth. Furthermore, both treatments with FSH increased the percentage of the primary follicles. However, ultrastructural studies did not confirm follicular integrity from 14 days of culture onward. In conclusion, culturing tissue for up to 7 days in medium containing FSH alone or combined with FGF-2 maintains caprine preantral follicle integrity and promotes their growth in vitro.

  3. Participation of cob tissue in the transport of medium components into maize kernels cultured in vitro

    SciTech Connect

    Felker, F.C. )

    1990-05-01

    Maize (Zea mays L.) kernels cultured in vitro while still attached to cob pieces have been used as a model system to study the physiology of kernel development. In this study, the role of the cob tissue in uptake of medium components into kernels was examined. Cob tissue was essential for in vitro kernel growth, and better growth occurred with larger cob/kernel ratios. A symplastically transported fluorescent dye readily permeated the endosperm when supplied in the medium, while an apoplastic dye did not. Slicing the cob tissue to disrupt vascular connections, but not apoplastic continuity, greatly reduced ({sup 14}C)sucrose uptake into kernels. ({sup 14}C)Sucrose uptake by cob and kernel tissue was reduced 31% and 68%, respectively, by 5 mM PCMBS. L-({sup 14}C)glucose was absorbed much more slowly than D-({sup 14}C)glucose. These and other results indicate that phloem loading of sugars occurs in the cob tissue. Passage of medium components through the symplast cob tissue may be a prerequisite for uptake into the kernel. Simple diffusion from the medium to the kernels is unlikely. Therefore, the ability of substances to be transported into cob tissue cells should be considered in formulating culture medium.

  4. Development of human nervous tissue upon differentiation of embryonic stem cells in three-dimensional culture.

    PubMed

    Preynat-Seauve, Olivier; Suter, David M; Tirefort, Diderik; Turchi, Laurent; Virolle, Thierry; Chneiweiss, Herve; Foti, Michelangelo; Lobrinus, Johannes-Alexander; Stoppini, Luc; Feki, Anis; Dubois-Dauphin, Michel; Krause, Karl Heinz

    2009-03-01

    Researches on neural differentiation using embryonic stem cells (ESC) require analysis of neurogenesis in conditions mimicking physiological cellular interactions as closely as possible. In this study, we report an air-liquid interface-based culture of human ESC. This culture system allows three-dimensional cell expansion and neural differentiation in the absence of added growth factors. Over a 3-month period, a macroscopically visible, compact tissue developed. Histological coloration revealed a dense neural-like neural tissue including immature tubular structures. Electron microscopy, immunochemistry, and electrophysiological recordings demonstrated a dense network of neurons, astrocytes, and oligodendrocytes able to propagate signals. Within this tissue, tubular structures were niches of cells resembling germinal layers of human fetal brain. Indeed, the tissue contained abundant proliferating cells expressing markers of neural progenitors. Finally, the capacity to generate neural tissues on air-liquid interface differed for different ESC lines, confirming variations of their neurogenic potential. In conclusion, this study demonstrates in vitro engineering of a human neural-like tissue with an organization that bears resemblance to early developing brain. As opposed to previously described methods, this differentiation (a) allows three-dimensional organization, (b) yields dense interconnected neural tissue with structurally and functionally distinct areas, and (c) is spontaneously guided by endogenous developmental cues.

  5. The in vitro immunoregulatory properties of cultured murine trophoblast are not unique to this tissue.

    PubMed Central

    Drake, B L; Rodger, J C

    1985-01-01

    Primary cultures of murine trophoblast (ectoplacental cone and mid-term placenta) and their supernatants were found to inhibit in vitro lymphocyte proliferative responses to concanavalin A (77-87%) and allo-antigen (52-84%). However, cultures and cell-conditioned media from non-trophoblastic tissues (embryonic sac, adult lung and liver, and B16 melanoma line) produced similar results. In all cases, the inhibitory effects were not due to reduced cell viability. Addition of anti-progesterone serum to the ectoplacental cone-lymphocyte co-cultures, at a concentration known to bind the available trophoblast-derived progesterone, did not overcome the observed suppression. The results clearly demonstrate that a range of cultured cell types, and their conditioned media, will suppress immune responses in vitro. We conclude that cultured trophoblast is not an appropriate model for studies of placental immunoregulation. PMID:3159651

  6. Optimizing culture medium for meristem tissue culture of several Saccharum species and commercial hybrids

    USDA-ARS?s Scientific Manuscript database

    The optimal range of medium nutrients and plant growth regulators (PGR) was investigated for in vitro culture of diverse sugarcane species and cultivars. Macro-nutrients, nitrogen (N), phosphorous (P) and potassium (K), were essential for growth of leaf primordia. Although the best concentration of ...

  7. Smooth muscle myosin regulation by serum and cell density in cultured rat lung connective tissue cells.

    PubMed

    Babij, P; Zhao, J; White, S; Woodcock-Mitchell, J; Mitchell, J; Absher, M; Baldor, L; Periasamy, M; Low, R B

    1993-08-01

    RNA and protein analyses were used to detect expression of SM1 and SM2 smooth muscle myosin heavy chain (MHC) in cultured adult rat lung connective tissue cells (RL-90). Smooth muscle MHC mRNA expression in confluent cells grown in 10% serum was approximately 50% of the level in adult stomach. Similar results were obtained in cells cultured at low density (25% confluency) in 1% serum. However, in low-density cultures transferred to 10% serum for 24 h, the level of MHC mRNA decreased to approximately 20% of that in adult stomach. Smooth muscle alpha-actin showed a pattern of expression similar to that for smooth muscle MHC. Expression of nonmuscle MHC-A mRNA was higher in all culture conditions compared to stomach. MHC-A mRNA expression was less in low-density cultures in low serum and increased when low-density cultures were transferred to 10% serum for 24 h. MHC-B mRNA expression was less in low- vs. high-density cultures. In contrast to MHC-A, however, MHC-B mRNA expression in low-density cultures was higher in low serum. Immunofluorescence and immunoblotting with SM1-specific antibody demonstrated the presence of the SM1 protein isoform as well as reactivity to a protein band migrating slightly faster than SM2. These results demonstrate that cultured rat lung connective tissue cells express smooth muscle MHC and that expression is modulated by culture conditions.

  8. Co-expression vs. co-infection using baculovirus expression vectors in insect cell culture: Benefits and drawbacks.

    PubMed

    Sokolenko, Stanislav; George, Steve; Wagner, Andreas; Tuladhar, Anup; Andrich, Jonas M S; Aucoin, Marc G

    2012-01-01

    The baculovirus expression vector system (BEVS) is a versatile and powerful platform for protein expression in insect cells. With the ability to approach similar post-translational modifications as in mammalian cells, the BEVS offers a number of advantages including high levels of expression as well as an inherent safety during manufacture and of the final product. Many BEVS products include proteins and protein complexes that require expression from more than one gene. This review examines the expression strategies that have been used to this end and focuses on the distinguishing features between those that make use of single polycistronic baculovirus (co-expression) and those that use multiple monocistronic baculoviruses (co-infection). Three major areas in which researchers have been able to take advantage of co-expression/co-infection are addressed, including compound structure-function studies, insect cell functionality augmentation, and VLP production. The core of the review discusses the parameters of interest for co-infection and co-expression with time of infection (TOI) and multiplicity of infection (MOI) highlighted for the former and the choice of promoter for the latter. In addition, an overview of modeling approaches is presented, with a suggested trajectory for future exploration. The review concludes with an examination of the gaps that still remain in co-expression/co-infection knowledge and practice.

  9. Amending Storage Vessel and Media Improves Subculture Interval of Musa sp. Tissue Culture Plantlets

    USDA-ARS?s Scientific Manuscript database

    Bananas and plantains (Musa sp.) are some of the most important food crops in the world. The USDA-ARS, Tropical Agriculture Research Station Musa spp. collection consists of 140 accessions maintained as clonally propagated plants in field plots as well as in tissue culture. Accessions maintained i...

  10. Expression Analysis of Ethylene Biosynthesis and Receptor Genes From Barley Embryo and Tissue Culture

    USDA-ARS?s Scientific Manuscript database

    Ethylene affects regeneration of green plants from barley tissue culture. With the availability of the HarvEST barley database and barley GeneChip, genome-wide expression studies have focused on differential development between Morex and Golden Promise at various stages of plant growth. The data f...

  11. Image segmentation using common techniques and illumination applied to tissue culture

    NASA Astrophysics Data System (ADS)

    Vazquez Rueda, Martin G.; Hahn, Federico

    1998-03-01

    This paper present the comparation and performance on no adaptive image segmentation techniques using illumination and adaptive image segmentation techniques. Results obtained on indoor plant reproduction by tissue culture, show the improve in time process, simplify the image segmentation process, experimental results are presented using common techniques in image processing and illumination, contrasted with adaptive image segmentation.

  12. Soil water requirements of tissue-cultured Dwarf Cavendish banana ( Musa spp. L)

    NASA Astrophysics Data System (ADS)

    Shongwe, V. D.; Tumber, R.; Masarirambi, M. T.; Mutukumira, A. N.

    The banana is one of the most important fruit crops in the world. In terms of consumption, the banana fruit is ranked high yet there has not been much research particularly in relation to water requirements for propagules produced by tissue culture. In recent years, tissue culture banana planting material has become increasingly important due to its vigorous growth and high yields. The objective of this study was to investigate optimum soil water requirements of tissue-cultured banana. Dwarf Cavendish tissue-cultured plantlets grown in pots in a greenhouse were subjected to four irrigation regimes at 100% ETm, 85% ETm, 65% ETm, and 40% ETm. Plant parameters measured were leaf number, plant height, pseudo-stem girth, leaf length, leaf width, leaf area, leaf area index, leaf index, leaf colour, and plant vigour. Soil water potential measurements were also made over a three-month period. Differences between irrigating at 100% ETm and 85% ETm were not significantly ( P < 0.05) different. Both irrigation regimes resulted in significant ( P < 0.05) increases in leaf number, leaf length, leaf area, leaf area index, green leaf colour intensity, plant height, and plant height, compared to 65% and 40% ETm treatments. Pseudo-stem girth was highest from the 100% ETm compared to the other treatments. Economic yields of banana may be obtained with irrigation regimes ranging between 100% ETm and 85% ETm.

  13. Cell culture in autologous fibrin scaffolds for applications in tissue engineering.

    PubMed

    de la Puente, Pilar; Ludeña, Dolores

    2014-03-10

    In tissue engineering techniques, three-dimensional scaffolds are needed to adjust and guide cell growth and to allow tissue regeneration. The scaffold must be biocompatible, biodegradable and must benefit the interactions between cells and biomaterial. Some natural biomaterials such as fibrin provide a structure similar to the native extracellular matrix containing the cells. Fibrin was first used as a sealant based on pools of commercial fibrinogen. However, the high risk of viral transmission of these pools led to the development of techniques of viral inactivation and elimination and the use of autologous fibrins. In recent decades, fibrin has been used as a release system and three-dimensional scaffold for cell culture. Fibrin scaffolds have been widely used for the culture of different types of cells, and have found several applications in tissue engineering. The structure and development of scaffolds is a key point for cell culture because scaffolds of autologous fibrin offer an important alternative due to their low fibrinogen concentrations, which are more suitable for cell growth. With this review our aim is to follow methods of development, analyze the commercial and autologous fibrins available and assess the possible applications of cell culture in tissue engineering in these three-dimensional structures.

  14. Culture of domestic cat ovarian tissue in vitro and in the chick embryo chorioallantoic membrane.

    PubMed

    Vilela, J M V; Leonel, E C R; D'Oliveira, L; Paiva, R E G; Miranda-Vilela, A L; Amorim, C A; Pic-Taylor, A; Lucci, C M

    2016-10-15

    In vitro culture and transplantation procedures are essential protocols employed in the evaluation of ovarian follicle survival and development. Culture in the chorioallantoic membrane (CAM) of chick embryos is an intermediate method that provides important follicle development information and has not been tested for cat ovaries to date. The aim of this study was to investigate if in vitro and CAM culture could be used as short-term systems to study cat ovarian tissue development. The ovaries of eight cats were dissected into 3-mm(3) cubes, cultured in vitro and in CAM for up to 5 days, and stained with hematoxylin-eosin and Gomori trichrome. Cell proliferation was analyzed using anti-Ki67. Possible differences among groups were investigated by analysis of variance or the Kruskal-Wallis test followed by Bonferroni correction. The T-test or Wilcoxon test was used to verify differences between the CAM and IVC. Results revealed that 87.5% of all follicles were primordial during culture. The percentage of primordial follicles in the morphologically normal follicles (MNF) pool was always higher than 80%, with the exception of Day 3 of CAM culture, but the number of MNF reduced significantly from Day 0 (600 out of 777 follicles) to Day 5 in the CAM (91 out of 171) and IVC (296 out of 686). The number of primordial follicles in 1 mm(3) in Days 2, 3, and 5 in the CAM was significantly lower than that in the control (Day 0). No cellular proliferation was observed in culture. Vascularization occurred in the CAM culture, but with no association to follicular viability. In addition, both methods showed an increase in connective tissue during culture. Although no significant differences were observed in the percentage of MNF, there was a reduction in the total number of follicles, both for IVC and CAM-cultured ovarian tissue. Furthermore, anti-Ki67 did not stain any follicle after Day 0 in IVC or in CAM culture. Neither system was capable of promoting follicle growth and

  15. Quantification of the tissue-culture induced variation in barley (Hordeum vulgare L.)

    PubMed Central

    Bednarek, Piotr T; Orłowska, Renata; Koebner, Robert MD; Zimny, Janusz

    2007-01-01

    Background When plant tissue is passaged through in vitro culture, many regenerated plants appear to be no longer clonal copies of their donor genotype. Among the factors that affect this so-called tissue culture induced variation are explant genotype, explant tissue origin, medium composition, and the length of time in culture. Variation is understood to be generated via a combination of genetic and/or epigenetic changes. A lack of any phenotypic variation between regenerants does not necessarily imply a concomitant lack of genetic (or epigenetic) change, and it is therefore of interest to assay the outcomes of tissue culture at the genotypic level. Results A variant of methylation sensitive AFLP, based on the isoschizomeric combinations Acc65I/MseI and KpnI/MseI was applied to analyze, at both the sequence and methylation levels, the outcomes of regeneration from tissue culture in barley. Both sequence mutation and alteration in methylation pattern were detected. Two sets of regenerants from each of five DH donor lines were compared. One set was derived via androgenesis, and the other via somatic embryogenesis, developed from immature embryos. These comparisons delivered a quantitative assessment of the various types of somaclonal variation induced. The average level of variation was 6%, of which almost 1.7% could be accounted for by nucleotide mutation, and the remainder by changes in methylation state. The nucleotide mutation rates and the rate of epimutations were substantially similar between the andro- and embryo-derived sets of regenerants across all the donors. Conclusion We have developed an AFLP based approach that is capable of describing the qualitative and quantitative characteristics of the tissue culture-induced variation. We believe that this approach will find particular value in the study of patterns of inheritance of somaclonal variation, since non-heritable variation is of little interest for the improvement of plant species which are sexually

  16. Tissue culture characteristics of maize (Zea mays L.) haploid coleoptile sections.

    PubMed

    Jiang, L; Jing, G X; Li, X Y; Wang, X Q; Xing, Z; Deng, P K; Zhao, R G

    2015-12-08

    Doubled haploid (DH) technology, which is used for rapidly purifying genetic resources, is a key technology in modern maize breeding. The present study evaluated the tissue culture characteristics of maize haploid coleoptile sections, in order to provide a new way of haploid doubling. With 20 combinations of haploid coleoptile sections, obtained by hybridization within Reid, Tangsipingtou, and Term-tropical groups, as explants, we analyzed the induction and differentiation rate of callus, observed the number of root tip chromosomes in regenerated plants, and analyzed the pollen fertility. In addition, we used 47 SSR markers to analyze the genotypes of regenerated plants. The Reid and Tangsipingtou groups had significantly higher induction rates of haploid coleoptile callus compared to the Term-tropical group. Fifteen haploid plants were obtained which had 10 chromosomes in the root tips as assessed by I-KI staining. It was also noticed that the pollen of pollinated anthers were partially fertile. The haploid plants had genetic stability and showed no variation. The Reid and Tangsipingtou groups had good culture characteristics of haploid coleoptile sections, while the Term-tropical group had poor culture characteristics. Genotypes of haploid plants generated by tissue culture were evidenced to come from recombinant types of parents. Thus, this study established a tissue culture system of maize haploid coleoptile.

  17. Primary Culture of Mycobacterium ulcerans from Human Tissue Specimens after Storage in Semisolid Transport Medium▿

    PubMed Central

    Eddyani, Miriam; Debacker, Martine; Martin, Anandi; Aguiar, Julia; Johnson, Christian R.; Uwizeye, Cécile; Fissette, Krista; Portaels, Françoise

    2008-01-01

    Tissue specimens collected from patients with clinically suspected Buruli ulcer treated in two Buruli ulcer treatment centers in Benin between 1998 and 2004 were placed in semisolid transport medium and transported at ambient temperature for microbiological analysis at the Institute of Tropical Medicine in Antwerp, Belgium. The impact of the delay before microbiological analysis on primary culture of Mycobacterium ulcerans was investigated. The length of storage in semisolid transport medium varied from 6 days to 26 weeks. Of the 1,273 tissue fragments positive for M. ulcerans DNA by an IS2404-specific PCR, 576 (45.2%) yielded positive culture results. The sensitivity of direct smear examination was 64.6% (822/1,273 tissue fragments). The median time required to obtain a positive culture result was 11 weeks. Positive cultures were obtained even from samples kept for more than 2 months at ambient temperatures. Moreover, there was no reduction in the viability of M. ulcerans, as detected by culture, when specimens remained in semisolid transport medium for long periods of time (up to 26 weeks). We can conclude that the method with semisolid transport medium is very robust for clinical specimens from patients with Buruli ulcer that, due to circumstances, cannot be analyzed in a timely manner. This transport medium is thus very useful for the confirmation of a diagnosis of Buruli ulcer with specimens collected in the field. PMID:17989199

  18. Molecular farming of pharmaceutical proteins using plant suspension cell and tissue cultures.

    PubMed

    Schillberg, Stefan; Raven, Nicole; Fischer, Rainer; Twyman, Richard M; Schiermeyer, Andreas

    2013-01-01

    Plants have been used for more than 20 years to produce recombinant proteins but only recently has the focus shifted away from proof-of-principle studies (i.e. is my protein expressed and is it functional?) to a serious consideration of the requirements for sustainable productivity and the regulatory approval of pharmaceutical products (i.e. is my protein safe, is it efficacious, and does the product and process comply with regulatory guidelines?). In this context, plant tissue and cell suspension cultures are ideal production platforms whose potential has been demonstrated using diverse pharmaceutical proteins. Typically, cell/tissue cultures are grown in containment under defined conditions, allowing process controls to regulate growth and product formation, thus ensuring regulatory compliance. Recombinant proteins can also be secreted to the culture medium, facilitating recovery and subsequent purification because cells contain most of the contaminating proteins and can be removed from the culture broth. Downstream processing costs are therefore lower compared to whole plant systems, balancing the higher costs of the fermentation equipment. In this article, we compare different approaches for the production of valuable proteins in plant cell suspension and tissue cultures, describing the advantages and disadvantages as well as challenges that must be overcome to make this platform commercially viable. We also present novel strategies for system and process optimization, helping to increase yields and scalability.

  19. Hydrophobic metabolites of 2,4-dichlorophenoxyacetic acid (2,4-D) in cultured coconut tissue.

    PubMed

    López-Villalobos, Arturo; Hornung, Roland; Dodds, Peter F

    2004-10-01

    Cultures of inflorescence and plumular tissues of coconut palm (Cocos nucifera L.) were maintained in the presence of the auxin, [14C]2,4-dichlorophenoxyacetic acid (2,4-D), so that its metabolic fate could be studied. Thin layer chromatography of methanol extracts of the plumular tissue showed that four classes of metabolites, as well as the unchanged acid, were recovered in the extract. In inflorescence tissue, only the unchanged acid and the most polar class of metabolites (metabolite I) were recovered. Metabolite I was shown to consist mostly of a mixture of sugar conjugates and metabolite II (the next most polar) was an unidentified basic metabolite. Metabolites III and IV were both novel triacylglycerol analogues in which one of the natural fatty acids was replaced with a chain-elongated form of 2,4-D. Reversed-phase thin layer chromatography was used to identify the 2,4-D-derived acids and it was found that metabolite III contained the 2,4-dichlorophenoxy-moiety attached to a chain-length of between 2 and 12 carbons, whereas metabolite IV contained 12, 14 and 16 carbon chain lengths. In inflorescence tissue, and in plumular tissue at low sucrose or 2,4-D concentrations and after short periods in culture, metabolite I predominated. The other metabolites increased as a percentage when plumular culture was prolonged or when sucrose or 2,4-D concentrations were raised. These changes correlated with better development of the explant.

  20. Mass Spectrometry-Based Proteomics in Molecular Diagnostics: Discovery of Cancer Biomarkers Using Tissue Culture

    PubMed Central

    Paul, Debasish; Kumar, Avinash; Gajbhiye, Akshada; Santra, Manas K.; Srikanth, Rapole

    2013-01-01

    Accurate diagnosis and proper monitoring of cancer patients remain a key obstacle for successful cancer treatment and prevention. Therein comes the need for biomarker discovery, which is crucial to the current oncological and other clinical practices having the potential to impact the diagnosis and prognosis. In fact, most of the biomarkers have been discovered utilizing the proteomics-based approaches. Although high-throughput mass spectrometry-based proteomic approaches like SILAC, 2D-DIGE, and iTRAQ are filling up the pitfalls of the conventional techniques, still serum proteomics importunately poses hurdle in overcoming a wide range of protein concentrations, and also the availability of patient tissue samples is a limitation for the biomarker discovery. Thus, researchers have looked for alternatives, and profiling of candidate biomarkers through tissue culture of tumor cell lines comes up as a promising option. It is a rich source of tumor cell-derived proteins, thereby, representing a wide array of potential biomarkers. Interestingly, most of the clinical biomarkers in use today (CA 125, CA 15.3, CA 19.9, and PSA) were discovered through tissue culture-based system and tissue extracts. This paper tries to emphasize the tissue culture-based discovery of candidate biomarkers through various mass spectrometry-based proteomic approaches. PMID:23586059

  1. Studies on the polyphenol metabolism of tissue cultures derived from the tea plant (Camellia sinensis L.)

    PubMed Central

    Forrest, G. I.

    1969-01-01

    1. The growth characteristics on various media of solid and liquid suspension cultures derived from the stem of the tea plant are described; chlorophyll and anthocyanin synthesis occurred in the light. 2. Only the simplest catechins and leucoanthocyanins were present in callus tissue, although oligomeric and polymeric leucoanthocyanin fractions were also represented. Light caused an increase in all monomeric components analysed, but inhibited polymerization of the leucoanthocyanins. 3. The polyphenol oxidase activity of cultures was comparable with that of the apical regions of the intact plant, and was inversely correlated with growth rate. 4. Growth was stimulated by hormonal variation, and inhibited by high concentrations of sucrose and by high light-intensity; polyphenol concentrations were generally inversely correlated with growth rate. 5. From the inability of callus tissue and of cultured root apices to synthesize complex catechins, it is inferred that complex catechin formation in intact plants is associated with the process of cell vacuolation. PMID:5821008

  2. Design and validation of a biomechanical bioreactor for cartilage tissue culture.

    PubMed

    Correia, V; Panadero, J A; Ribeiro, C; Sencadas, V; Rocha, J G; Gomez Ribelles, J L; Lanceros-Méndez, S

    2016-04-01

    Specific tissues, such as cartilage, undergo mechanical solicitation under their normal performance in human body. In this sense, it seems necessary that proper tissue engineering strategies of these tissues should incorporate mechanical solicitations during cell culture, in order to properly evaluate the influence of the mechanical stimulus. This work reports on a user-friendly bioreactor suitable for applying controlled mechanical stimulation--amplitude and frequency--to three-dimensional scaffolds. Its design and main components are described, as well as its operation characteristics. The modular design allows easy cleaning and operating under laminar hood. Different protocols for the sterilization of the hermetic enclosure are tested and ensure lack of observable contaminations, complying with the requirements to be used for cell culture. The cell viability study was performed with KUM5 cells.

  3. An Alternative Gelling Agent for Culture and Studies of Nematodes, Bacteria, Fungi, and Plant Tissues

    PubMed Central

    Ko, M. P.; Van Gundy, S. D.

    1988-01-01

    Pluronic F127 polyol, a block copolymer of propylene oxide and ethylene oxide, was studied as an alternative to agar in culture media for nematodes, bacteria, fungi, actinomycetes, and plant tissues or seedlings, At a polyol concentration of 20% w/v, the culture media, semi-solid at room temperature (22 C) but liquid at lower temperatures, had minimal effects on the test organisms. Most of the fungi and bacteria grew as well in 20% polyol as in 1.5% agar media; however, various species of nematodes and plant seedlings or tissues exhibited differential sensitivities to different concentrations of the polyol. In cases where the organisms were unaffected, the polyol media had certain advantages over agar, including greater transparency and less contamination under nonaseptic conditions. Polyol media have potentially greater ease for recovery of embedded organisms or tissues inside the media by merely shifting to lower temperatures. PMID:19290241

  4. Distribution of phospholipase C isozymes in various rat tissues and cultured cells

    SciTech Connect

    Suh, P.G.; Ryu, S.H.; Choi, W.C.; Lee, K.Y.; Rhee, S.G.

    1987-05-01

    Monoclonal antibodies prepared against PLC-I or PLC-II enzyme did not cross-react with the other. Using a pair of antibodies which recognizes 2 different antigenic sites on the same molecule, radioimmunoassays were developed for the quantitation of PLC-I and PLC-II in homogenates of various tissues and cultured cells, prepared by homogenization in a 2 M KCl buffer. The contents of PLC enzymes were measured in 19 rat tissues, in human platelets and in 17 cultured cells. Results indicate that the concentration of PLC-I and PLC-II is very high in brain, PLC-I is localized mainly in brain and partly in seminal vesicles, PLC-II is found in most tissues and cells. PLC-I is highly localized even in brain: 5 different neuroblastoma did not contain PLC-I while 2 glioma and 1 astrocytoma contained significant amounts.

  5. Comparative gene expression profiling between human cultured myotubes and skeletal muscle tissue

    PubMed Central

    2010-01-01

    Background A high-sensitivity DNA microarray platform requiring nanograms of RNA input facilitates the application of transcriptome analysis to individual skeletal muscle (SM) tissue samples. Culturing myotubes from SM-biopsies enables investigating transcriptional defects and assaying therapeutic strategies. This study compares the transcriptome of aneurally cultured human SM cells versus that of tissue biopsies. Results We used the Illumina expression BeadChips to determine the transcriptomic differences between tissue and cultured SM samples from five individuals. Changes in the expression of several genes were confirmed by QuantiGene Plex assay or reverse transcription real-time PCR. In cultured myotubes compared to the tissue, 1216 genes were regulated: 583 down and 633 up. Gene ontology analysis showed that downregulated genes were mainly associated with cytoplasm, particularly mitochondria, and involved in metabolism and the muscle-system/contraction process. Upregulated genes were predominantly related to cytoplasm, endoplasmic reticulum, and extracellular matrix. The most significantly regulated pathway was mitochondrial dysfunction. Apoptosis genes were also modulated. Among the most downregulated genes detected in this study were genes encoding metabolic proteins AMPD1, PYGM, CPT1B and UCP3, muscle-system proteins TMOD4, MYBPC1, MYOZ1 and XIRP2, the proteolytic CAPN3 and the myogenic regulator MYF6. Coordinated reduced expression of five members of the GIMAP gene family, which form a cluster on chromosome 7, was shown, and the GIMAP4-reduction was validated. Within the most upregulated group were genes encoding senescence/apoptosis-related proteins CDKN1A and KIAA1199 and potential regulatory factors HIF1A, TOP2A and CCDC80. Conclusions Cultured muscle cells display reductive metabolic and muscle-system transcriptome adaptations as observed in muscle atrophy and they activate tissue-remodeling and senescence/apoptosis processes. PMID:20175888

  6. Comparative gene expression profiling between human cultured myotubes and skeletal muscle tissue.

    PubMed

    Raymond, Frederic; Métairon, Sylviane; Kussmann, Martin; Colomer, Jaume; Nascimento, Andres; Mormeneo, Emma; García-Martínez, Cèlia; Gómez-Foix, Anna M

    2010-02-22

    A high-sensitivity DNA microarray platform requiring nanograms of RNA input facilitates the application of transcriptome analysis to individual skeletal muscle (SM) tissue samples. Culturing myotubes from SM-biopsies enables investigating transcriptional defects and assaying therapeutic strategies. This study compares the transcriptome of aneurally cultured human SM cells versus that of tissue biopsies. We used the Illumina expression BeadChips to determine the transcriptomic differences between tissue and cultured SM samples from five individuals. Changes in the expression of several genes were confirmed by QuantiGene Plex assay or reverse transcription real-time PCR. In cultured myotubes compared to the tissue, 1216 genes were regulated: 583 down and 633 up. Gene ontology analysis showed that downregulated genes were mainly associated with cytoplasm, particularly mitochondria, and involved in metabolism and the muscle-system/contraction process. Upregulated genes were predominantly related to cytoplasm, endoplasmic reticulum, and extracellular matrix. The most significantly regulated pathway was mitochondrial dysfunction. Apoptosis genes were also modulated. Among the most downregulated genes detected in this study were genes encoding metabolic proteins AMPD1, PYGM, CPT1B and UCP3, muscle-system proteins TMOD4, MYBPC1, MYOZ1 and XIRP2, the proteolytic CAPN3 and the myogenic regulator MYF6. Coordinated reduced expression of five members of the GIMAP gene family, which form a cluster on chromosome 7, was shown, and the GIMAP4-reduction was validated. Within the most upregulated group were genes encoding senescence/apoptosis-related proteins CDKN1A and KIAA1199 and potential regulatory factors HIF1A, TOP2A and CCDC80. Cultured muscle cells display reductive metabolic and muscle-system transcriptome adaptations as observed in muscle atrophy and they activate tissue-remodeling and senescence/apoptosis processes.

  7. The Curious Connection Between Insects and Dreams.

    PubMed

    Klein, Barrett A

    2011-12-21

    A majority of humans spend their waking hours surrounded by insects, so it should be no surprise that insects also appear in humans' dreams as we sleep. Dreaming about insects has a peculiar history, marked by our desire to explain a dream's significance and by the tactic of evoking emotions by injecting insects in dream-related works of art, film, music, and literature. I surveyed a scattered literature for examples of insects in dreams, first from the practices of dream interpretation, psychiatry, and scientific study, then from fictional writings and popular culture, and finally in the etymology of entomology by highlighting insects with dream-inspired Latinate names. A wealth of insects in dreams, as documented clinically and culturally, attests to the perceived relevance of dreams and to the ubiquity of insects in our lives.

  8. The Curious Connection Between Insects and Dreams

    PubMed Central

    Klein, Barrett A.

    2011-01-01

    A majority of humans spend their waking hours surrounded by insects, so it should be no surprise that insects also appear in humans’ dreams as we sleep. Dreaming about insects has a peculiar history, marked by our desire to explain a dream’s significance and by the tactic of evoking emotions by injecting insects in dream-related works of art, film, music, and literature. I surveyed a scattered literature for examples of insects in dreams, first from the practices of dream interpretation, psychiatry, and scientific study, then from fictional writings and popular culture, and finally in the etymology of entomology by highlighting insects with dream-inspired Latinate names. A wealth of insects in dreams, as documented clinically and culturally, attests to the perceived relevance of dreams and to the ubiquity of insects in our lives. PMID:26467945

  9. Assay of anticancer drugs in tissue culture: cell cultures of biopsies from human astrocytoma.

    PubMed

    Morgan, D; Freshney, R I; Darling, J L; Thomas, D G; Celik, F

    1983-02-01

    A method has been developed for measuring the drug sensitivity of human gliomas in short-term culture, using scintillation counting or autofluorography. Cell cultures prepared from malignant astrocytomas were treated with anticancer drugs whilst in exponential growth in microtitration plates. After drug treatment and a recovery period, residual viability was measured by [3H] leucine incorporation followed by scintillation counting or by [35S] methionine incorporation and autofluorography in situ. In 5 glioma cell lines tested against 6 drugs, the microtitration method correlated well with monolayer cloning. Although replicate samples of the same tumour showed little variation in chemosensitivity, there was marked variation between the chemosensitivities of cultures derived from the tumours of different patients. However, as variability between replicates was apparent during drug exposure or shortly after, it is important to allow the assay to run as long as possible after drug removal. It is hoped that this assay may provide the basis of a method for the prediction of in vivo chemosensitivity or the screening of potential chemotherapeutic drugs.

  10. Assay of anticancer drugs in tissue culture: cell cultures of biopsies from human astrocytoma.

    PubMed Central

    Morgan, D.; Freshney, R. I.; Darling, J. L.; Thomas, D. G.; Celik, F.

    1983-01-01

    A method has been developed for measuring the drug sensitivity of human gliomas in short-term culture, using scintillation counting or autofluorography. Cell cultures prepared from malignant astrocytomas were treated with anticancer drugs whilst in exponential growth in microtitration plates. After drug treatment and a recovery period, residual viability was measured by [3H] leucine incorporation followed by scintillation counting or by [35S] methionine incorporation and autofluorography in situ. In 5 glioma cell lines tested against 6 drugs, the microtitration method correlated well with monolayer cloning. Although replicate samples of the same tumour showed little variation in chemosensitivity, there was marked variation between the chemosensitivities of cultures derived from the tumours of different patients. However, as variability between replicates was apparent during drug exposure or shortly after, it is important to allow the assay to run as long as possible after drug removal. It is hoped that this assay may provide the basis of a method for the prediction of in vivo chemosensitivity or the screening of potential chemotherapeutic drugs. PMID:6297528

  11. On-chip clearing of arrays of 3-D cell cultures and micro-tissues.

    PubMed

    Grist, S M; Nasseri, S S; Poon, T; Roskelley, C; Cheung, K C

    2016-07-01

    Three-dimensional (3-D) cell cultures are beneficial models for mimicking the complexities of in vivo tissues, especially in tumour studies where transport limitations can complicate response to cancer drugs. 3-D optical microscopy techniques are less involved than traditional embedding and sectioning, but are impeded by optical scattering properties of the tissues. Confocal and even two-photon microscopy limit sample imaging to approximately 100-200 μm depth, which is insufficient to image hypoxic spheroid cores. Optical clearing methods have permitted high-depth imaging of tissues without physical sectioning, but they are difficult to implement for smaller 3-D cultures due to sample loss in solution exchange. In this work, we demonstrate a microfluidic platform for high-throughput on-chip optical clearing of breast cancer spheroids using the SeeDB, Clear(T2), and ScaleSQ clearing methods. Although all three methods are able to effectively clear the spheroids, we find that SeeDB and ScaleSQ more effectively clear the sample than Clear(T2); however, SeeDB induces green autofluorescence while ScaleS causes sample expansion. Our unique on-chip implementation permits clearing arrays of 3-D cultures using perfusion while monitoring the 3-D cultures throughout the process, enabling visualization of the clearing endpoint as well as monitoring of transient changes that could induce image artefacts. Our microfluidic device is compatible with on-chip 3-D cell culture, permitting the use of on-chip clearing at the endpoint after monitoring the same spheroids during their culture. This on-chip method has the potential to improve readout from 3-D cultures, facilitating their use in cell-based assays for high-content drug screening and other applications.

  12. On-chip clearing of arrays of 3-D cell cultures and micro-tissues

    PubMed Central

    Grist, S. M.; Poon, T.; Roskelley, C.; Cheung, K. C.

    2016-01-01

    Three-dimensional (3-D) cell cultures are beneficial models for mimicking the complexities of in vivo tissues, especially in tumour studies where transport limitations can complicate response to cancer drugs. 3-D optical microscopy techniques are less involved than traditional embedding and sectioning, but are impeded by optical scattering properties of the tissues. Confocal and even two-photon microscopy limit sample imaging to approximately 100–200 μm depth, which is insufficient to image hypoxic spheroid cores. Optical clearing methods have permitted high-depth imaging of tissues without physical sectioning, but they are difficult to implement for smaller 3-D cultures due to sample loss in solution exchange. In this work, we demonstrate a microfluidic platform for high-throughput on-chip optical clearing of breast cancer spheroids using the SeeDB, ClearT2, and ScaleSQ clearing methods. Although all three methods are able to effectively clear the spheroids, we find that SeeDB and ScaleSQ more effectively clear the sample than ClearT2; however, SeeDB induces green autofluorescence while ScaleS causes sample expansion. Our unique on-chip implementation permits clearing arrays of 3-D cultures using perfusion while monitoring the 3-D cultures throughout the process, enabling visualization of the clearing endpoint as well as monitoring of transient changes that could induce image artefacts. Our microfluidic device is compatible with on-chip 3-D cell culture, permitting the use of on-chip clearing at the endpoint after monitoring the same spheroids during their culture. This on-chip method has the potential to improve readout from 3-D cultures, facilitating their use in cell-based assays for high-content drug screening and other applications. PMID:27493703

  13. Novel technique for suspension culture of autologous chondrocytes improves cell proliferation and tissue architecture.

    PubMed

    Takahashi, Toshiaki; Nieda, Takamasa; Miyazaki, Eriko; Enzan, Hideaki

    2003-01-01

    We have developed a new and simple method of chondrocyte suspension culture using a spinner bottle with rotation of the matrices. We compared the characteristics of chondrocytes cultured by this method with those grown in standard monolayer cultures. We also determined the optimal nutritional medium for suspension cultures. Periosteum explants seeded with chondrocytes were grown in monolayer and suspension cultures under three conditions: in medium with no additive (control), with 10% fetal bovine serum (FBS), or with 10% autologous serum (AS). After culturing, the explants were harvested, processed for histology, and stained with hematoxylin-eosin or TUNEL, or immunostained for type I, II, and III collagen, and Ki-67 antigen. In monolayer cultures, the attachment of the chondrocytes to the periosteum was weak and the superficial layer consisted of fibrotic tissue and few nucleated cells. Collagen type II staining was strong, but types I and II were weak. Among the suspension cultures the AS group produced the thickest layer of chondrocytes with the fewest apoptotic cells. The superficial layer of cartilage in these cultures stained positive for type I and III collagen and Ki-67 antigen. Among the suspension cultures, total chondroitin and chondroitin-4 sulfate (C-4S) concentration was highest in the AS group, while prostaglandin E2 (PGE2) was highest in the FBS group. In summary, our new method of suspension culture of periosteal explants using rotational matrices combined with AS nutritional media was the most effective method for maintaining the bond between the chondrocyte layer and periosteum, as well as the production of type I and III collagen in the superficial layer.

  14. BIOCHEMICAL STUDY OF CELLULAR ANTIGEN-ANTIBODY REACTION IN TISSUE CULTURE

    PubMed Central

    Hayashi, Hideo; Tokuda, Akira; Udaka, Keiji

    1960-01-01

    The correlation between morphological and biochemical changes produced by the antigen-antibody reaction was studied in cultures of tissue monocytes taken from sensitized animals. The cells were grown under conditions which allowed collection of samples from the culture fluid as well as microscopic observation. Introduction of the antigen into the culture medium causes rapid release of a protease characterized by its susceptibility to sulfhydryl block and its optimum pH in the neutral range. Protease activation occurs simultaneously with morphological changes in the cytoplasm of the cultured cells. Delayed changes affecting the mitochondria and Golgi bodies appear after the peak of the proteolytic reaction and may be secondary to it. The gradual inactivation of the protease observed in the course of the antigen-antibody reaction will be discussed in a separate paper. PMID:13712446

  15. [Species and tissue differences of reparative DNA synthesis in embryonic cell cultures treated with carcinogens].

    PubMed

    Budunova, I V; Belitskiĭ, G A

    1982-01-01

    DNA repair synthesis (RS) was studied in embryonic cell cultures exposed to different carcinogenic factors: UV-light, N-methyl-N-nitro-N-nitrosoguanidine, 4-nitroquinoline-1-oxide, aflatoxin BI and 7,12-dimethylbenz(a)anthracene. DNA RS level was shown to be higher in human liver cells than in murine ones. Tissue-dependent differences in DNA RS of cells damaged by carcinogens were found, too. RS-activity was higher in human, mouse and rat fibroblast cultures than in liver cultures of the same species. RS level in human kidney cultures was similar to that in human fibroblasts. The said differences should be taken into account in the evaluation of the results of testing of chemical agents for carcinogenicity, using their ability to cause DNA repair synthesis.

  16. Diolistic labeling of neuronal cultures and intact tissue using a hand-held gene gun

    PubMed Central

    O'Brien, John A; Lummis, Sarah CR

    2009-01-01

    Diolistic labeling is a highly efficient method for introducing dyes into cells using biolistic techniques. The use of lipophilic carbocyanine dyes, combined with particle-mediated biolistic delivery using a hand-held gene gun, allows non-toxic labeling of multiple cells in both living and fixed tissue. The technique is rapid (labeled cells can be visualized in minutes) and technically undemanding. Here, we provide a detailed protocol for diolistic labeling of cultured human embryonic kidney 293 cells and whole brain using a hand-held gene gun. There are four major steps: (i) coating gold microcarriers with one or more dyes; (ii) transferring the microcarriers into a cartridge to make a bullet; (iii) preparation of cells or intact tissue; and (iv) firing the microcarriers into cells or tissue. The method can be readily adapted to other cell types and tissues. This protocol can be completed in less than 1 h. PMID:17406443

  17. Growth of Leptospira pomona and Its Effect on Various Tissue Culture Systems1

    PubMed Central

    Miller, Robert E.; Miller, Norman G.; White, Roberta J.

    1966-01-01

    Miller, Robert E. (University of Nebraska College of Medicine, Omaha), Norman G. Miller, and Roberta J. White. Growth of Leptospira pomona and its effect on various tissue culture systems. J. Bacteriol. 92:502–509. 1966.—Leptospira pomona strain 3341 was grown in association with primary fetal bovine kidney (PBK) and human embryonic skin-muscle fibroblastic (HE) cells in Eagle's minimal essential medium (MEM) with 5% sheep serum. Growth curves of leptospires in PBK and HE cell cultures showed no substantial increase in growth above that obtained in Eagle's MEM in the absence of tissue culture cells. This suggested that no stimulatory growth factors for leptospires were produced by the tissue cells. Fibroblastic cells of the PBK monolayer showed separation, deterioration, and, finally, complete disintegration. Epithelial-like cells remained unaffected. HE cells showed the same cytopathic effect as PBK fibroblastic cells, indicating that this effect was not limited to PBK fibroblastic cells. Warthin-Starry stains of PBK and HE cell monolayers showed masses of leptospires adhering to fibroblastic cells, whereas only a few were seen on epithelial-like cells. Large numbers of leptospires on the surface of fibroblastic cells are very likely associated with the cytopathic effect. Dislodgment of leptospires from fibroblastic cells did not increase the total number of spirochetes in the culture. This indicated that leptospiral growth did not occur on the surface of these cells. Images PMID:16562141

  18. Single nanoparticle tracking of N-methyl-d-aspartate receptors in cultured and intact brain tissue

    PubMed Central

    Varela, Juan A.; Ferreira, Joana S.; Dupuis, Julien P.; Durand, Pauline; Bouchet, Delphine; Groc, Laurent

    2016-01-01

    Abstract. Recent developments in single-molecule imaging have revealed many biological mechanisms, providing high spatial and temporal resolution maps of molecular events. In neurobiology, these techniques unveiled that plasma membrane neurotransmitter receptors and transporters laterally diffuse at the surface of cultured brain cells. The photostability of bright nanoprobes, such as quantum dots (QDs), has given access to neurotransmitter receptor tracking over long periods of time with a high spatial resolution. However, our knowledge has been restricted to cultured systems, i.e., neurons and organotypic slices, therefore lacking several aspects of the intact brain rheology and connectivity. Here, we used QDs to track single glutamatergic N-methyl-d-aspartate receptors (NMDAR) in acute brain slices. By delivering functionalized nanoparticles in vivo through intraventricular injections to rats expressing genetically engineered-tagged NMDAR, we successfully tracked the receptors in native brain tissue. Comparing NMDAR tracking to different classical brain preparations (acute brain slices, cultured organotypic brain slices, and cultured neurons) revealed that the surface diffusion properties shared several features and are also influenced by the nature of the extracellular environment. Together, we describe the experimental procedures to track plasma membrane NMDAR in dissociated and native brain tissue, paving the way for investigations aiming at characterizing receptor diffusion biophysics in intact tissue and exploring the physiopathological roles of receptor surface dynamics. PMID:27429996

  19. Organ and tissue donation in migrants: advanced course for cross-cultural mediators.

    PubMed

    Potenza, R; Guermani, A; Grosso, M; Fossarello, L; Fontaneto, C; Casciola, A; Donadio, P P

    2013-09-01

    Between 2004 and 2010 in Piedmont (Italy Northern Region) 1556 brain-death situations were reported, including 113 (7.3%) in migrants as potential organ and tissue donors. The health staff often has to face migrants, who show great cultural differences and language difficulties. The Molinette Hospital Customer Care Service, the Piedmont Regional Tissue and Organ Procurement Coordination Agency (RPC), and the Cross-Cultural Mediators Association (CMA) organized a special course for intercultural mediators, to decrease misunderstandings between the health staff and the migrants' families and to improve professional communication. In 2011, 28 cultural-linguistic mediators representing different groups of migrants in Piemonte took part in a specific course. Over a 5 month period they were informed about emotional and communicative aspects, proper to the moment of death, as well as organ donation as an intercultural field, the professional role of the mediator, the clinical and forensic aspects of brain death and donation, and the psychological aspects of organ donation. The course was organized by cultural-linguistic mediators of the CMA, the staff of the RPC and the teachers at Turin University. The list of the 21 mediators who passed the final exam was given to organ and tissue donation hospital co-ordinators in Piedmont, so that if necessary, they could obtain the cooperation of these qualified people.

  20. Expression of biomineralisation genes in tissues and cultured cells of the abalone Haliotis tuberculata.

    PubMed

    O'Neill, Matthew; Gaume, Béatrice; Denis, Françoise; Auzoux-Bordenave, Stéphanie

    2013-10-01

    Mollusc shell biomineralisation involves a variety of organic macromolecules (matrix proteins and enzymes) that control calcium carbonate (CaCO3) deposition, growth of crystals, the selection of polymorph, and the microstructure of the shell. Since the mantle and the hemocytes play an important role in the control of shell formation, primary cell cultures have been developed to study the expression of three biomineralisation genes recently identified in the abalone Haliotis tuberculata: a matrix protein, Lustrin A, and two carbonic anhydrase enzymes. Mantle cells and hemocytes were successfully maintained in primary cultures and were evaluated for their viability and proliferation over time using a semi-automated assay (XTT). PCR and densitometric analysis were used to semi-quantify the gene expression and compare the level of expression in native tissues and cultured cells. The results demonstrated that the three genes of interest were being expressed in abalone tissues, with expression highest in the mantle and much lower in the hemocytes and the gills. Biomineralisation genes were also expressed significantly in mantle cells, confirming that primary cultures of target tissues are suitable models for in vitro investigation of matrix protein secretion.

  1. Extracellular matrix expression of human tenocytes in three-dimensional air-liquid and PLGA cultures compared with tendon tissue: implications for tendon tissue engineering.

    PubMed

    Stoll, Christiane; John, Thilo; Endres, Michaela; Rosen, Christian; Kaps, Christian; Kohl, Benjamin; Sittinger, Michael; Ertel, Wolfgang; Schulze-Tanzil, Gundula

    2010-09-01

    Tenocyte transplantation may prove to be an approach to support healing of tendon defects. Cell-cell and cell-matrix contacts within three-dimensional (3D) cultures may prevent tenocyte dedifferentiation observed in monolayer (2D) culture. The present study compares both neotissue formation and tenocyte extracellular matrix (ECM) expression in 2D and 3D cultures directly with that of native tendon, in order to determine optimal conditions for tendon tissue engineering. Primary human tenocytes were embedded in poly[lactic-co-glycolic-acid] (PLGA)-scaffolds and high-density cultures. Neotissue formation was examined by hematoxyline-eosine (H&E) and immunofluorescence staining. Gene expression of ECM proteins and vascular endothelial growth factor (VEGF) was compared at days 0 (2D), 14, and 28 in 3D cultures and tendon. Histomorphology of 3D culture showed tendon-like tissue as tenocyte cell nuclei became more elongated and ECM accumulated. Type I collagen gene expression was higher in 2D culture than in tendon and decreased in 4-week-old 3D cultures, whereas type III collagen was only elevated in high-density culture compared with tendon. Decorin and COMP were reduced in 2D and increased in 3D culture almost to ex vivo level. These results suggest that the 3D high-density or biodegradable scaffolds cultures encourage the differentiation of expanded monolayer tenocytes in vitro to tendon-like tissue. (c) 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  2. Desmoplastic small round cell tumor (DSRCT) xenografts and tissue culture lines: Establishment and initial characterization

    PubMed Central

    MARKIDES, CONSTANTINE S.A.; COIL, DOUGLAS R.; LUONG, LINH H.; MENDOZA, JOHN; KOZIELSKI, TONY; VARDEMAN, DANA; GIOVANELLA, BEPPINO C.

    2013-01-01

    Desmoplastic small round cell tumor (DSRCT) is an extremely rare and aggressive neoplasm, which mainly affects young males and generally presents as a widely disseminated tumor within the peritoneal cavity. Due to the rarity of the tumor, its younger and overall healthier patient population (compared with other tumor types) and the fact that it lacks definitive histological and immunohistological features, the diagnosis of DSRCT may be frequently delayed or the tumor may be entirely misdiagnosed as a different type of abdominal sarcoma. The present study aimed to rectify the lack of models that exist for this rare neoplasm, through the development of several DSRCT tissue cultures and xenograft lines. Samples were received from surgeries and biopsies from patients worldwide and were immediately processed for xenograft development in nude mice. Tumor tissues were minced and fragments were injected into the dorsal flanks of nude mice. Of the 14 samples received, nine were established into xenograft lines and five into tissue culture lines. Xenografts displayed the microscopic histology of their parent tumors and demonstrated two different growth rates among the established xenograft lines. Overall, the establishment of these xenograft and tissue culture lines provides researchers with tools to evaluate DSRCT responses to chemotherapy and to investigate DSRCT-specific signaling pathways or mechanisms. PMID:23759995

  3. A Protocol for Rapid, Measurable Plant Tissue Culture Using Stem Disc Meristem Micropropagation of Garlic ("Allium Sativum L.")

    ERIC Educational Resources Information Center

    Peat, Gerry; Jones, Meriel

    2012-01-01

    Plant tissue culture is becoming an important technique for the mass propagation of plants. Problems with existing techniques, such as slow growth and contamination, have restricted the practical work in plant tissue culture carried out in schools. The new protocol using garlic meristematic stem discs explained in this article addresses many of…

  4. A Protocol for Rapid, Measurable Plant Tissue Culture Using Stem Disc Meristem Micropropagation of Garlic ("Allium Sativum L.")

    ERIC Educational Resources Information Center

    Peat, Gerry; Jones, Meriel

    2012-01-01

    Plant tissue culture is becoming an important technique for the mass propagation of plants. Problems with existing techniques, such as slow growth and contamination, have restricted the practical work in plant tissue culture carried out in schools. The new protocol using garlic meristematic stem discs explained in this article addresses many of…

  5. Suberization: inhibition by washing and stimulation by abscisic Acid in potato disks and tissue culture.

    PubMed

    Soliday, C L; Dean, B B; Kolattukudy, P E

    1978-02-01

    Wounding of potato (Solanum tuberosum L.) tubers results in suberization, apparently triggered by the release of some chemical factor(s) at the cut surface. Suberization, as measured by diffusion resistance of the tissue surface to water vapor, was inhibited by mm concentrations of indoleacetic acid, unaffected by mm concentrations of traumatic acid, severely inhibited at mum concentrations of cytokinin, but stimulated by abscisic acid (ABA) at 10(-4)m. Thorough washing of potato disks up to 3 to 4 days after cutting resulted in severe inhibition of suberization as measured both by diffusion resistance and by the amount of the octadecene diol generated by hydrogenolysis (LiAlH(4)) of the tissue. Disks washed after 4 days did not show any inhibition of suberization. High performance liquid chromatographic analysis of the wash from fresh potato disks showed that about 14 ng of ABA was released into the wash per g of tissue. The amount of ABA released increased with time up to 4 to 6 hours of washing. The maximal amount of ABA was washed out after aging for 24 hours and after 2 days of aging ABA could no longer be found in the surface wash of the disks. Addition of ABA to the media of potato tissue cultures resulted in suberin formation whereas control cultures contained little suberin. The effect of ABA on suberization in the tissue cultures was shown to be linearly concentration-dependent up to 10(-4)m and a linear increase in suberin formation was seen up to about 8 days of culture growth on the media containing 10(-4)m ABA. From these results it is proposed that during the early phase of wound-healing ABA plays a role in triggering a chain of biochemical processes which eventually (in about 3 to 4 days) result in the formation of a suberization-inducing factor, responsible for the induction of the enzymes involved in suberin biosynthesis.

  6. Plant defense against insect herbivores.

    PubMed

    Fürstenberg-Hägg, Joel; Zagrobelny, Mika; Bak, Søren

    2013-05-16

    Plants have been interacting with insects for several hundred million years, leading to complex defense approaches against various insect feeding strategies. Some defenses are constitutive while others are induced, although the insecticidal defense compound or protein classes are often similar. Insect herbivory induce several internal signals from the wounded tissues, including calcium ion fluxes, phosphorylation cascades and systemic- and jasmonate signaling. These are perceived in undamaged tissues, which thereafter reinforce their defense by producing different, mostly low molecular weight, defense compounds. These bioactive specialized plant defense compounds may repel or intoxicate insects, while defense proteins often interfere with their digestion. Volatiles are released upon herbivory to repel herbivores, attract predators or for communication between leaves or plants, and to induce defense responses. Plants also apply morphological features like waxes, trichomes and latices to make the feeding more difficult for the insects. Extrafloral nectar, food bodies and nesting or refuge sites are produced to accommodate and feed the predators of the herbivores. Meanwhile, herbivorous insects have adapted to resist plant defenses, and in some cases even sequester the compounds and reuse them in their own defense. Both plant defense and insect adaptation involve metabolic costs, so most plant-insect interactions reach a stand-off, where both host and herbivore survive although their development is suboptimal.

  7. Plant Defense against Insect Herbivores

    PubMed Central

    Fürstenberg-Hägg, Joel; Zagrobelny, Mika; Bak, Søren

    2013-01-01

    Plants have been interacting with insects for several hundred million years, leading to complex defense approaches against various insect feeding strategies. Some defenses are constitutive while others are induced, although the insecticidal defense compound or protein classes are often similar. Insect herbivory induce several internal signals from the wounded tissues, including calcium ion fluxes, phosphorylation cascades and systemic- and jasmonate signaling. These are perceived in undamaged tissues, which thereafter reinforce their defense by producing different, mostly low molecular weight, defense compounds. These bioactive specialized plant defense compounds may repel or intoxicate insects, while defense proteins often interfere with their digestion. Volatiles are released upon herbivory to repel herbivores, attract predators or for communication between leaves or plants, and to induce defense responses. Plants also apply morphological features like waxes, trichomes and latices to make the feeding more difficult for the insects. Extrafloral nectar, food bodies and nesting or refuge sites are produced to accommodate and feed the predators of the herbivores. Meanwhile, herbivorous insects have adapted to resist plant defenses, and in some cases even sequester the compounds and reuse them in their own defense. Both plant defense and insect adaptation involve metabolic costs, so most plant-insect interactions reach a stand-off, where both host and herbivore survive although their development is suboptimal. PMID:23681010

  8. Tissue culture and associated biotechnological interventions for the improvement of coconut (Cocos nucifera L.): a review.

    PubMed

    Nguyen, Quang Thien; Bandupriya, H D Dharshani; López-Villalobos, Arturo; Sisunandar, S; Foale, Mike; Adkins, Steve W

    2015-11-01

    The present review discusses not only advances in coconut tissue culture and associated biotechnological interventions but also future research directions toward the resilience of this important palm crop. Coconut (Cocos nucifera L.) is commonly known as the 'tree of life'. Every component of the palm can be used to produce items of value and many can be converted into industrial products. Coconut cultivation faces a number of acute problems that reduce its productivity and competitiveness. These problems include various biotic and abiotic challenges as well as an unstable market for its traditional oil-based products. Around 10 million small-holder farmers cultivate coconut palms worldwide on c. 12 million hectares of land, and many more people own a few coconut palms that contribute to their livelihoods. Inefficiency in the production of seedlings for replanting remains an issue; however, tissue culture and other biotechnological interventions are expected to provide pragmatic solutions. Over the past 60 years, much research has been directed towards developing and improving protocols for (i) embryo culture; (ii) clonal propagation via somatic embryogenesis; (iii) homozygote production via anther culture; (iv) germplasm conservation via cryopreservation; and (v) genetic transformation. Recently other advances have revealed possible new ways to improve these protocols. Although effective embryo culture and cryopreservation are now possible, the limited frequency of conversion of somatic embryos to ex vitro seedlings still prevents the large-scale clonal propagation of coconut. This review illustrates how our knowledge of tissue culture and associated biotechnological interventions in coconut has so far developed. Further improvement of protocols and their application to a wider range of germplasm will continue to open up new horizons for the collection, conservation, breeding and productivity of coconut.

  9. Primary liver cells cultured on carbon nanotube substrates for liver tissue engineering and drug discovery applications.

    PubMed

    Che Abdullah, Che Azurahanim; Azad, Chihye Lewis; Ovalle-Robles, Raquel; Fang, Shaoli; Lima, Marcio D; Lepró, Xavier; Collins, Steve; Baughman, Ray H; Dalton, Alan B; Plant, Nick J; Sear, Richard P

    2014-07-09

    Here, we explore the use of two- and three-dimensional scaffolds of multiwalled-carbon nanotubes (MWNTs) for hepatocyte cell culture. Our objective is to study the use of these scaffolds in liver tissue engineering and drug discovery. In our experiments, primary rat hepatocytes, the parenchymal (main functional) cell type in the liver, were cultured on aligned nanogrooved MWNT sheets, MWNT yarns, or standard 2-dimensional culture conditions as a control. We find comparable cell viability between all three culture conditions but enhanced production of the hepatocyte-specific marker albumin for cells cultured on MWNTs. The basal activity of two clinically relevant cytochrome P450 enzymes, CYP1A2 and CYP3A4, are similar on all substrates, but we find enhanced induction of CYP1A2 for cells on the MWNT sheets. Our data thus supports the use of these substrates for applications including tissue engineering and enhancing liver-specific functions, as well as in in vitro model systems with enhanced predictive capability in drug discovery and development.

  10. Functional enhancement of chitosan and nanoparticles in cell culture, tissue engineering, and pharmaceutical applications

    PubMed Central

    Gao, Wenjuan; Lai, James C. K.; Leung, Solomon W.

    2012-01-01

    As a biomaterial, chitosan has been widely used in tissue engineering, wound healing, drug delivery, and other biomedical applications. It can be formulated in a variety of forms, such as powder, film, sphere, gel, and fiber. These features make chitosan an almost ideal biomaterial in cell culture applications, and cell cultures arguably constitute the most practical way to evaluate biocompatibility and biotoxicity. The advantages of cell cultures are that they can be performed under totally controlled environments, allow high throughput functional screening, and are less costly, as compared to other assessment methods. Chitosan can also be modified into multilayer composite by combining with other polymers and moieties to alter the properties of chitosan for particular biomedical applications. This review briefly depicts and discusses applications of chitosan and nanoparticles in cell culture, in particular, the effects of chitosan and nanoparticles on cell adhesion, cell survival, and the underlying molecular mechanisms: both stimulatory and inhibitory influences are discussed. Our aim is to update the current status of how nanoparticles can be utilized to modify the properties of chitosan to advance the art of tissue engineering by using cell cultures. PMID:22934070

  11. Plant tissue culture--an opportunity for the production of nutraceuticals.

    PubMed

    Lucchesini, Mariella; Mensuali-Sodi, Anna

    2010-01-01

    This chapter provides a short discussion about the opportunity to cultivate in vitro plant tissue of species which synthesize secondary metabolites of nutraceutical interest. The introduction of species of particular interest in cultivation and domestication, can be an alternative to the harvest of wild species. In vitro culture techniques are a useful tool to improve production and marketing nutraceutical species which allows to make a rapid clonal propagation of plants selected for their active principles. The techniques of tissue culture are described in detail. In particular, it is underlined the necessity to clone selected plants and produce true-type plants when standardized plant products are the main goal. This can be reached by conventional micropropagation protocols culturing plants in vitro through the five culture phases. Another approach consists in applying unconventional systems in the last phase of in vitro culture which permit to develop autotrophy of the explants. Autotrophic growth improves the quality of the multiplied shoots and facilitates the acclimatization of the plantlets.

  12. Functional enhancement of chitosan and nanoparticles in cell culture, tissue engineering, and pharmaceutical applications.

    PubMed

    Gao, Wenjuan; Lai, James C K; Leung, Solomon W

    2012-01-01

    As a biomaterial, chitosan has been widely used in tissue engineering, wound healing, drug delivery, and other biomedical applications. It can be formulated in a variety of forms, such as powder, film, sphere, gel, and fiber. These features make chitosan an almost ideal biomaterial in cell culture applications, and cell cultures arguably constitute the most practical way to evaluate biocompatibility and biotoxicity. The advantages of cell cultures are that they can be performed under totally controlled environments, allow high throughput functional screening, and are less costly, as compared to other assessment methods. Chitosan can also be modified into multilayer composite by combining with other polymers and moieties to alter the properties of chitosan for particular biomedical applications. This review briefly depicts and discusses applications of chitosan and nanoparticles in cell culture, in particular, the effects of chitosan and nanoparticles on cell adhesion, cell survival, and the underlying molecular mechanisms: both stimulatory and inhibitory influences are discussed. Our aim is to update the current status of how nanoparticles can be utilized to modify the properties of chitosan to advance the art of tissue engineering by using cell cultures.

  13. Long-term culture of tissue engineered cartilage in a perfused chamber with mechanical stimulation.

    PubMed

    Seidel, J O; Pei, M; Gray, M L; Langer, R; Freed, L E; Vunjak-Novakovic, G

    2004-01-01

    One approach to functional tissue engineering of cartilage is to utilize bioreactors to provide environmental conditions that stimulate chondrogenesis in cells cultured on biomaterial scaffolds. We report the combined use of a three-dimensional in vitro model and a novel bioreactor with perfusion of culture medium and mechanical stimulation in long-term studies of cartilage development and function. To engineer cartilage, scaffolds made of a non-woven mesh of polyglycolic acid (PGA) were seeded with bovine calf articular chondrocytes, cultured for an initial 30-day period under free swelling conditions, and cultured for an additional 37 day period in one of the three groups: (1) free-swelling, (2) static compression (on 24 h/day, strain control, static offset 10%), and (3) dynamic compression (on 1 h/day; off 23 h/day; strain control, static offset 2%, dynamic strain amplitude 5%; frequency 0.3 Hz). Constructs were sampled at timed intervals and assessed with respect to structure, biochemical composition, and mechanical function. Mechanical simulation had little effect on the compositions, morphologies and on mechanical properties of construct interiors discs, but it resulted in distincly different properties of the peripheral rings and face sides. Contructs cultured with mechanical loading maintained their cylindrical shape with flat and parallel top and bottom surfaces, and retained larger amounts of GAG. The modular bioreactor system with medium perfusion and mechanical loading can be utilized to define the conditions of cultivation for functional tissue engineering of cartilage.

  14. Tissue and swab culture in diabetic foot infections: neuropathic versus neuroischemic ulcers.

    PubMed

    Demetriou, Maria; Papanas, Nikolaos; Panopoulou, Maria; Papatheodorou, Konstantinos; Bounovas, Anastasios; Maltezos, Efstratios

    2013-06-01

    We evaluated the diagnostic performance of swabs versus tissue cultures in 28 diabetic patients with neuropathic (group A) and 22 diabetic patients with neuroischemic foot ulcer (group B) and the differences in bacterial isolates between the 2 groups. In group A, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of swab cultures for the diagnosis of infection were 100%, 40%, 88.5%, and 100%, respectively. In group B, the corresponding values were 100%, 22.2%, 65%, and 100%. In group A, sensitivity, specificity, PPV, and NPV of swab cultures for the identification of pathogens were 100%, 14.3%, 53.8%, and 100%, respectively. In group B, the corresponding values were 100%, 18.2%, 55%, and 100%. In each group, Staphylococcus aureus and Pseudomonas aeruginosa were the most common isolates. The number of isolates was significantly higher on swab versus tissue cultures only in group A (P = .033). No differences were observed between groups in number of isolates and colony forming units. In conclusion, swab cultures are highly sensitive but less specific and have an excellent NPV both in diabetic patients with neuropathic and in those with neuroischemic foot ulcer. There are no differences between the groups in microbial load.

  15. In vitro influences of TiO₂ nanoparticles on barley (Hordeum vulgare L.) tissue culture.

    PubMed

    Mandeh, Mahnaz; Omidi, Mansoor; Rahaie, Mahdi

    2012-12-01

    In the last decades, extensive research on the effects of nano-TiO₂ on plant systems and different microorganisms has confirmed its photocatalytic and antimicrobial activity. However, there is no report on its application in plant cell and tissue culture as well as its role in eliminating contaminating microorganisms in tissue culture. In this work, barley mature embryos were cultured in Murashige and Skoog medium with four concentrations (0, 10, 30, 60 μg/ml) of TiO₂ suspension in four repetitions. Quantitative and qualitative characteristics of calli were analyzed after each subculture. Data analysis for calli number in the first culture and callus size in all three cultures showed that the effect of treatment was significant at p > 0.95. As a result, quantitative features such as callus color, shape, embryogenesis, etc. were completely similar in both control and TiO₂ nanoparticle treatments; there is no doubt that TiO₂ nanoparticles could dramatically increase callugenesis and the size of calli. As well, TiO₂ nanoparticles are effective bactericides with an aseptic effect, causing no negative change in the quality of the callus. It is necessary to do more complementary works to identify mechanisms involved for the increased calli size and embryogenesis of explants in darkness.

  16. Electrospinning adipose tissue-derived extracellular matrix for adipose stem cell culture.

    PubMed

    Francis, Michael P; Sachs, Patrick C; Madurantakam, Parthasarathy A; Sell, Scott A; Elmore, Lynne W; Bowlin, Gary L; Holt, Shawn E

    2012-07-01

    Basement membrane-rich extracellular matrices, particularly murine sarcoma-derived Matrigel, play important roles in regenerative medicine research, exhibiting marked cellular responses in vitro and in vivo, although with limited clinical applications. We find that a human-derived matrix from lipoaspirate fat, a tissue rich in basement membrane components, can be fabricated by electrospinning and used to support cell culture. We describe practical applications and purification of extracellular matrix (ECM) from adipose tissue (At-ECM) and its use in electrospinning scaffolds and adipose stem cell (ASC) culture. The matrix composition of this purified and electrospun At-ECM was assessed histochemically for basement membrane, connective tissue, collagen, elastic fibers/elastin, glycoprotein, and proteoglycans. Each histochemical stain was positive in fat tissue, purified At-ECM, and electrospun At-ECM, and to some extent positive in a 10:90 blend with polydioxanone (PDO). We also show that electrospun At-ECM, alone and blended with PDO, supports ASC attachment and growth, suggesting that electrospun At-ECM scaffolds support ASC cultivation. These studies show that At-ECM can be isolated and electrospun as a basement membrane-rich tissue engineering matrix capable of supporting stem cells, providing the groundwork for an array of future regenerative medicine advances.

  17. Biodynamic imaging for phenotypic profiling of three-dimensional tissue culture

    NASA Astrophysics Data System (ADS)

    Sun, Hao; Merrill, Daniel; An, Ran; Turek, John; Matei, Daniela; Nolte, David D.

    2017-01-01

    Three-dimensional (3-D) tissue culture represents a more biologically relevant environment for testing new drugs compared to conventional two-dimensional cancer cell culture models. Biodynamic imaging is a high-content 3-D optical imaging technology based on low-coherence interferometry and digital holography that uses dynamic speckle as high-content image contrast to probe deep inside 3-D tissue. Speckle contrast is shown to be a scaling function of the acquisition time relative to the persistence time of intracellular transport and hence provides a measure of cellular activity. Cellular responses of 3-D multicellular spheroids to paclitaxel are compared among three different growth techniques: rotating bioreactor (BR), hanging-drop (HD), and nonadherent (U-bottom, UB) plate spheroids, compared with ex vivo living tissues. HD spheroids have the most homogeneous tissue, whereas BR spheroids display large sample-to-sample variability as well as spatial heterogeneity. The responses of BR-grown tumor spheroids to paclitaxel are more similar to those of ex vivo biopsies than the responses of spheroids grown using HD or plate methods. The rate of mitosis inhibition by application of taxol is measured through tissue dynamics spectroscopic imaging, demonstrating the ability to monitor antimitotic chemotherapy. These results illustrate the potential use of low-coherence digital holography for 3-D pharmaceutical screening applications.

  18. Biodynamic imaging for phenotypic profiling of three-dimensional tissue culture.

    PubMed

    Sun, Hao; Merrill, Daniel; An, Ran; Turek, John; Matei, Daniela; Nolte, David D

    2017-01-01

    Three-dimensional (3-D) tissue culture represents a more biologically relevant environment for testing new drugs compared to conventional two-dimensional cancer cell culture models. Biodynamic imaging is a high-content 3-D optical imaging technology based on low-coherence interferometry and digital holography that uses dynamic speckle as high-content image contrast to probe deep inside 3-D tissue. Speckle contrast is shown to be a scaling function of the acquisition time relative to the persistence time of intracellular transport and hence provides a measure of cellular activity. Cellular responses of 3-D multicellular spheroids to paclitaxel are compared among three different growth techniques: rotating bioreactor (BR), hanging-drop (HD), and nonadherent (U-bottom, UB) plate spheroids, compared with ex vivo living tissues. HD spheroids have the most homogeneous tissue, whereas BR spheroids display large sample-to-sample variability as well as spatial heterogeneity. The responses of BR-grown tumor spheroids to paclitaxel are more similar to those of ex vivo biopsies than the responses of spheroids grown using HD or plate methods. The rate of mitosis inhibition by application of taxol is measured through tissue dynamics spectroscopic imaging, demonstrating the ability to monitor antimitotic chemotherapy. These results illustrate the potential use of low-coherence digital holography for 3-D pharmaceutical screening applications.

  19. Evaluation of Biocompatibility of Alloplastic Materials: Development of a Tissue Culture In Vitro Test System.

    PubMed

    Gerullis, Holger; Georgas, Evangelos; Eimer, Christoph; Goretzki, Peter E; Lammers, Bernhard J; Klosterhalfen, Bernd; Boros, Mihaly; Wishahi, Mohamed; Heusch, Gerd; Otto, Thomas

    2011-12-01

    Optimized biocompatibility is a major requirement for alloplastic materials currently applied in surgical approaches for hernia, incontinence, and prolapse situations. Tissue ingrowth/adherence and formation of connective tissue seem to have important influence in mesh incorporation at the implant site. In an in vitro approach we randomly investigated 7 different mesh types currently used in surgeries with various indications with regard to their adherence performance. Using a tissue culture approach, meshes were incubated with tissue representative of fibroblasts, muscle cells, and endothelial cells originating from 10 different patients. After 6 weeks, the meshes were assessed microscopically and a ranking of their adherence performance was established. Tissue culture was successful in 100% of the probes. We did not remark on interindividual differences concerning the growth and adherence performance after incubation with the different meshes in the investigated 10 patients. The ranking was consistent in all patients. In this test system, PVDF Dynamesh® (FEG Textiltechnik, Aachen, Germany) was the mesh with the best growth-in score. The test system was feasible and reproducible. Pore size seems to be a predictor of adherence performance. The test system may be a helpful tool for further investigations, and the predictive value should be assessed in further in vitro and in vivo experiments.

  20. Explant culture: An advantageous method for isolation of mesenchymal stem cells from human tissues.

    PubMed

    Hendijani, Fatemeh

    2017-04-01

    Mesenchymal stem cell (MSC) research progressively moves towards clinical phases. Accordingly, a wide range of different procedures were presented in the literature for MSC isolation from human tissues; however, there is not yet any close focus on the details to offer precise information for best method selection. Choosing a proper isolation method is a critical step in obtaining cells with optimal quality and yield in companion with clinical and economical considerations. In this concern, current review widely discusses advantages of omitting proteolysis step in isolation process and presence of tissue pieces in primary culture of MSCs, including removal of lytic stress on cells, reduction of in vivo to in vitro transition stress for migrated/isolated cells, reduction of price, processing time and labour, removal of viral contamination risk, and addition of supporting functions of extracellular matrix and released growth factors from tissue explant. In next sections, it provides an overall report of technical highlights and molecular events of explant culture method for isolation of MSCs from human tissues including adipose tissue, bone marrow, dental pulp, hair follicle, cornea, umbilical cord and placenta. Focusing on informative collection of molecular and methodological data about explant methods can make it easy for researchers to choose an optimal method for their experiments/clinical studies and also stimulate them to investigate and optimize more efficient procedures according to clinical and economical benefits.

  1. Cytotoxic and Genotoxic Effects of Electronic Cigarette Liquids on Human Mucosal Tissue Cultures of the Oropharynx.

    PubMed

    Welz, Christian; Canis, Martin; Schwenk-Zieger, Sabina; Becker, Sven; Stucke, Vincent; Ihler, Friedrich; Baumeister, Philipp

    2016-01-01

    The popularity of electronic cigarettes (ECs) is rapidly growing and ECs are claimed to be an uncritically regarded alternative to conventional cigarettes. The mucosal tissue of the upper aerodigestive tract (UADT) is the first contact organ for xenobiotics such as liquids of ECs. The aim of this study is to investigate the bimolecular effects of e-liquids on human pharyngeal tissue cultures to evaluate whether e-liquids and their components present a risk factor for head and neck squamous cell carcinoma. Fresh tissue samples of healthy oropharyngeal mucosa were assembled into mucosal tissue cultures. Two fruit-flavored liquids (FLs), one tobacco-flavored liquid (TL) (all containing nicotine), and the corresponding base mixtures (free of nicotine and flavor) were used in three different dilutions. Cytotoxicity was assessed using the water-soluble tetrazolium-8 assay. DNA fragmentation was quantified using alkaline microgel electrophoresis. All liquids caused a significant reduction in cell viability. FLs especially showed a higher toxicity than TL. DNA fragmentation significantly increased by incubation with FL, whereas treatment with TL did not show serious DNA damage. E-liquids are cytotoxic to oropharyngeal tissue, and some liquids can induce relevant DNA damage. Thus, mutagenicity for mucosa of the UADT and e-liquids as risk factors for head and neck cancer cannot entirely be ruled out. Only the implementation of standards and regulations for liquid production and distribution can ensure a valid scientific investigation and assessment of carcinogenic potential of long-term EC use.

  2. Cell culture density affects the proliferation activity of human adipose tissue stem cells.

    PubMed

    Kim, Dae Seong; Lee, Myoung Woo; Ko, Young Jong; Chun, Yong Hoon; Kim, Hyung Joon; Sung, Ki Woong; Koo, Hong Hoe; Yoo, Keon Hee

    2016-01-01

    In this study, we investigated the effect of cell density on the proliferation activity of human mesenchymal stem cells (MSCs) derived from adipose tissue (AT-MSCs) over time in culture. Passage #4 (P4) and #12 (P12) AT-MSCs from two donors were plated at a density of 200 (culture condition 1, CC1) or 5000 (culture condition 2, CC2) cells cm(-2) . After 7 days of incubation, P4 and P12 AT-MSCs cultured in CC1 were thin and spindle-shaped, whereas those cultured in CC2 had extensive cell-to-cell contacts and an expanded cell volume. In addition, P4 and P12 AT-MSCs in CC1 divided more than three times, while those in CC2 divided less than once on average. Flow cytometric analysis using 5(6)-carboxyfluorescein diacetate N-succinimidyl ester dye showed that the fluorescence intensity of AT-MSCs was lower in CC1 than in CC2. Furthermore, expression of proliferation-associated genes, such as CDC45L, CDC20A and KIF20A, in P4 AT-MSCs was higher in CC1 than in CC2, and this difference was also observed in P12 AT-MSCs. These data demonstrated that cell culture density affects the proliferation activity of MSCs, suggesting that it is feasible to design a strategy to prepare suitable MSCs using specific culture conditions. Copyright © 2016 John Wiley & Sons, Ltd.

  3. Ovarian tissue culture in the presence of VEGF and fetuin stimulates follicle growth and steroidogenesis.

    PubMed

    Asadi, Ebrahim; Najafi, Atefeh; Moeini, Ashraf; Pirjani, Reihaneh; Hassanzadeh, Gholamreza; Mikaeili, Saideh; Salehi, Ensieh; Adutwum, Emmanuel; Soleimani, Mansoureh; Khosravi, Fariba; Barati, Mahmood; Abolhassani, Farid

    2017-02-01

    Ovarian tissue cryopreservation together with follicle culture provides a promising technique for fertility preservation in cancer patients. The study aimed to evaluate follicle parameters in a culture medium supplemented with VEGFA165 and/or fetuin. Vitrified-warmed ovarian cortical pieces were divided randomly into four culture groups consisting of basic culture medium (control), and the basic culture medium supplemented with VEGFA165, fetuin or both. After six days of culture, we evaluated the following: percentage of resting, primary and secondary growing follicles; survival rate; steroid hormones production; levels of reactive oxygen species, lipid peroxidation and total antioxidant capacity; and developmental and antioxidant gene expression. The addition of VEGFA165 alone or in combination with fetuin to the culture medium caused resting follicle activation and increased the number of growing follicles. In the VEGFA165 group, we found a significant increase in the concentrations of 17β-estradiol at day 6 and progesterone from 4th day of the culture period. In the VEGFA165 + fetuin group, the concentration of 17β-estradiol rose at day 4 of the culture period. The levels of BMP15, GDF9 and INHB mRNAs were increased in all treated groups. In the fetuin and fetuin + VEGFA165 groups, we observed a high level of total antioxidant capacity and expression of SOD1 and CAT genes, low reactive oxygen species and lipid peroxidation levels and increased number of viable follicles. In conclusion, the present study provides useful evidence that supplementation of culture medium with VEGFA165 + fetuin leads to primordial follicle activation and development and increased percentage of healthy secondary growing follicles. © 2017 Society for Endocrinology.

  4. Insect Repellents: Reducing Insect Bites

    MedlinePlus

    ... What is an insect repellent? Disease risk from mosquito and tick bites Ingredients in skin-applied repellents ... and Blogs Using Repellent Products to Protect against Mosquito-Borne Illnesses Federal Trade Commission Action on Deceptive ...

  5. Three-dimensional hydrogel cell culture systems for modeling neural tissue

    NASA Astrophysics Data System (ADS)

    Frampton, John

    Two-dimensional (2-D) neural cell culture systems have served as physiological models for understanding the cellular and molecular events that underlie responses to physical and chemical stimuli, control sensory and motor function, and lead to the development of neurological diseases. However, the development of three-dimensional (3-D) cell culture systems will be essential for the advancement of experimental research in a variety of fields including tissue engineering, chemical transport and delivery, cell growth, and cell-cell communication. In 3-D cell culture, cells are provided with an environment similar to tissue, in which they are surrounded on all sides by other cells, structural molecules and adhesion ligands. Cells grown in 3-D culture systems display morphologies and functions more similar to those observed in vivo, and can be cultured in such a way as to recapitulate the structural organization and biological properties of tissue. This thesis describes a hydrogel-based culture system, capable of supporting the growth and function of several neural cell types in 3-D. Alginate hydrogels were characterized in terms of their biomechanical and biochemical properties and were functionalized by covalent attachment of whole proteins and peptide epitopes. Methods were developed for rapid cross-linking of alginate hydrogels, thus permitting the incorporation of cells into 3-D scaffolds without adversely affecting cell viability or function. A variety of neural cell types were tested including astrocytes, microglia, and neurons. Cells remained viable and functional for longer than two weeks in culture and displayed process outgrowth in 3-D. Cell constructs were created that varied in cell density, type and organization, providing experimental flexibility for studying cell interactions and behavior. In one set of experiments, 3-D glial-endothelial cell co-cultures were used to model blood-brain barrier (BBB) structure and function. This co-culture system was

  6. In vitro-differentiated neural cell cultures progress towards donor-identical brain tissue

    PubMed Central

    Hjelm, Brooke E.; Salhia, Bodour; Kurdoglu, Ahmet; Szelinger, Szabolcs; Reiman, Rebecca A.; Sue, Lucia I.; Beach, Thomas G.; Huentelman, Matthew J.; Craig, David W.

    2013-01-01

    Multiple research groups have observed neuropathological phenotypes and molecular symptoms in vitro using induced pluripotent stem cell (iPSC)-derived neural cell cultures (i.e. patient-specific neurons and glia). However, the global differences/similarities that may exist between in vitro neural cells and their tissue-derived counterparts remain largely unknown. In this study, we compared temporal series of iPSC-derived in vitro neural cell cultures to endogenous brain tissue from the same autopsy donor. Specifically, we utilized RNA sequencing (RNA-Seq) to evaluate the transcriptional progression of in vitro-differentiated neural cells (over a timecourse of 0, 35, 70, 105 and 140 days), and compared this with donor-identical temporal lobe tissue. We observed in vitro progression towards the reference brain tissue, and the following three results support this conclusion: (i) there was a significant increasing monotonic correlation between the days of our timecourse and the number of actively transcribed protein-coding genes and long intergenic non-coding RNAs (lincRNAs) (P < 0.05), consistent with the transcriptional complexity of the brain; (ii) there was an increase in CpG methylation after neural differentiation that resembled the epigenomic signature of the endogenous tissue; and (iii) there was a significant decreasing monotonic correlation between the days of our timecourse and the percent of in vitro to brain-tissue differences (P < 0.05) for tissue-specific protein-coding genes and all putative lincRNAs. Taken together, these results are consistent with in vitro neural development and physiological progression occurring predominantly by transcriptional activation of downregulated genes rather than deactivation of upregulated genes. PMID:23666530

  7. EFFECT OF p-FLUOROPHENYLALANINE ON PSITTACOSIS VIRUS IN TISSUE CULTURES

    PubMed Central

    Tanami, Yoh; Pollard, Morris

    1962-01-01

    Tanami, Yoh (University of Texas Medical Branch, Galveston) and Morris Pollard. Effect of p-fluorophenylalanine on psittacosis virus in tissue cultures. J. Bacteriol. 83:437–442. 1962.—The inhibitory effect of p-fluorophenylalanine (FPA) on maturation of psittacosis virus was investigated, with attention to the time sequence of viral protein synthesis. Extracellular virus particles were not inactivated by FPA at a concentration of 100 μg per ml, at which level it interfered with maturation of intracellular virus. When FPA was added to infected tissue cultures earlier than 15 hr after infection, intracellular virus maturation was suppressed. However, when FPA was added after 15 hr, infective virus was produced, which indicates that the synthesis of a FPA-sensitive virus precursor (presumably viral protein) had already occurred. A latent (“dormant”) infection of psittacosis virus, established in a medium deficient in phenylalanine and tyrosine, was also investigated. PMID:13919507

  8. [Identification of fungi in tissues and cultures: the importance of argirophilic substances on its cellular walls].

    PubMed

    Piva, J R; Ortega, H H; Canal, A M; Piva, C E; Reus, V; Seib, E P

    2001-01-01

    An experimental development based on the combination of microwaves action with one of the methods of silver staining by Del Río Hortega is presented. Material from pathological tissues and culture of fungi were studied. Besides morphological studies, were considered the causes of reduction from ionic to metalic silver, some characteristics of the silver reagent and its relationship with histochemical constitution of cellular walls. It is pointed the rapidity in fungi demonstration, the satisfactory definition of affected tissues, the advantages of working with a stable reagent, the omission of carcinogenetic substances, the possibility of stain fungical structures in previously stained materials with anilinic techniques, and the extent of the method to cultured materials without necessity of previous formaldehidic fixation.

  9. [Extraction and analysis of chemical components of essential oil in Thymus vulgaris of tissue culture].

    PubMed

    Li, Xiao-Dong; Yang, Li; Xu, Shi-Qian; Li, Jian-Guo; Cheng, Zhi-Hui; Dang, Jian-Zhang

    2011-10-01

    To extract the essential oils from the Seedlings, the Aseptic Seedlings and the Tissue Culture Seedlings of Thymus vulgaris and analyze their chemical components and the relative contents. The essential oils were extracted by steam distillation, the chemical components and the relative contents were identified and analyzed by gas chromatography-mass spectrometry (GC/MS) and peak area normalization method. The main chemical components of essential oil in these three samples had no significant difference, they all contained the main components of essential oil in Thymus vulgaris: Thymol, Carvacrol, o-Cymene, gamma-Terpinene, Caryophyllene et al. and only had a slight difference in the relative content. This study provides important theoretical foundation and data reference for further study on production of essential oil in thyme by tissue culture technology.

  10. ANTAGONISTIC EFFECTS OF 6-MERCAPTOPURINE AND COENZYME A ON MITOCHONDRIA AND MITOSIS IN TISSUE CULTURE

    PubMed Central

    Biesele, John J.

    1955-01-01

    The partial mitotic inhibition caused by 6-mercaptopurine in tissue cultures of Crocker mouse sarcoma 180 and embryonic mouse skin is blocked by co-enzyme A. 6-Mercaptopurine and coenzyme A also have opposite effects on mitochondrial morphology. Mitochondria in cells treated with 6-mercaptopurine become thin and fragmented. Coenzyme A blocks this effect, and alone coenzyme A makes for longer and thicker mitochondria. 6-Mercaptopurine inhibits lipogenesis in embryo skin fibroblasts, and this inhibition is partly counteracted by coenzyme A, which by itself makes for a greater accumulation of lipid droplets in the cytoplasm. It is suggested that at least one part of the action by which 6-mercaptopurine decreases mitotic incidence in tissue cultures may be an interference on the part of 6-mercaptopurine, acting as an antimetabolite of coenzyme A, in mitochondrial function related to cell division. PMID:14381434

  11. Effect of Endophytic Fusarium oxysporum on Host Preference of Radopholus similis to Tissue Culture Banana Plants.

    PubMed

    Athman, Shahasi Y; Dubois, Thomas; Coyne, Daniel; Gold, Clifford S; Labuschagne, Nico; Viljoen, Altus

    2006-12-01

    The burrowing nematode Radopholus similis is one of the major constraints to banana (Musa spp.) production worldwide. Resource-poor farmers can potentially manage R. similis by using naturally occurring banana endophytes, such as nonpathogenic Fusarium oxysporum, that are inoculated into tissue culture banana plantlets. At present, it is unclear at what stage in the R. similis infection process the endophytes are most effective. In this study, the effect of three endophytic F. oxysporum isolates (V5w2, Eny1.31i and Eny7.11o) on R. similis host preference of either endophyte-treated or untreated banana plants was investigated. No differences were observed between the proportion of nematodes attracted to either root segments excised from endophyte-treated or untreated plants, or in experiments using endophyte-treated and untreated tissue culture banana plantlets. These results imply that the early processes of banana plant host recognition by R. similis are not affected by endophyte infection.

  12. Development of tissue culture techniques and hardware to study mineralization under microgravity conditions

    NASA Astrophysics Data System (ADS)

    van Loon, J. J. W. A.; Veldhuijzen, J. P.; Windgassen, E. J.; Brouwer, T.; Wattel, K.; van Vilsteren, M.; Maas, P.

    1994-08-01

    To study the effects of weightlessness on mouse fetal long bone rudiment growth and mineralization we have developed a tissue culture system for the Biorack facility of Spacelab. The technique uses standard liquid tissue culture medium, supplemented with Na-β-glycerophosphate, confined in gas permeable polyethylene bags mounted inside ESA Biorack Type I experiment containers. The containers can be flushed with an air/5% CO2 gas mixture necessary for the physiological bicarbonate buffer used. Small amounts of fluid can be introduced at the beginning (e.g. radioactive labels for incorporation studies) or at the end of the experiment (fixatives). A certain form of mechanical stimulation (continuous compression) can be used to counteract the, possibly, adverse effect of μ-gravity. Using 16 day old metatarsals the in vitro calcification process under μ-gravity conditions can be studied for a 4 day period.

  13. Insect Phylogenomics

    PubMed Central

    Behura, Susanta K.

    2015-01-01

    With the advent of next-generation sequencing methods, phylogenetics has taken a new turn in the recent years. Phylogenomics, the integration of phylogenetics with genome data, has emerged as a powerful approach to study systematics and evolution of species. Recently, breakthrough researches employing phylogenomic tools have provided better insights into the timing and pattern of insect evolution. The next-generation sequencing methods are now increasingly used by entomologists to generate genomic and transcript sequences of various insect species and strains. These data provide opportunities for comparative genomics and large-scale multigene phylogenies of diverse lineages of insects. Phylogenomic investigations help us better understand systematic and evolutionary relationships of insect species that play important roles as herbivores, predators, detritivores, pollinators, or disease vectors. It is important that we critically assess the prospects and limitations of phylogenomic methods. In this review, I describe the current status, outline the major challenges, and remark on potential future applications of phylogenomic tools in studying insect systematics and evolution. PMID:25963452

  14. Analysis of laser-induced fluorescence spectra of in vitro plant tissue cultures

    NASA Astrophysics Data System (ADS)

    Muñoz-Muñoz, Ana Celia; Gutiérrez-Pulido, Humberto; Rodríguez-Domínguez, José Manuel; Gutiérrez-Mora, Antonia; Rodríguez-Garay, Benjamín; Cervantes-Martínez, Jesús

    2007-04-01

    We demonstrate the effectiveness of laser-induced fluorescence (LIF) for monitoring the development and stress detection of in vitro tissue cultures in a nondestructive and noninvasive way. The changes in LIF spectra caused by the induction of organogenesis, the increase of the F690/F740 ratio as a result of the stress originated in the organogenic explants due to shoot emergence, and the relationship between fluorescence spectra and shoot development were detected by LIF through closed containers of Saintpaulia ionantha.

  15. Biochemical Basis of Resistance of Tobacco Callus Tissue Cultures to Hydroxyphenylethylamines.

    PubMed Central

    Negrel, J.; Javelle, F.; Paynot, M.

    1993-01-01

    It has been reported that hydroxyphenylethylamines, such as tyramine and octopamine, are toxic to tobacco (Nicotiana tabacum L.) callus cultures grown in the presence of auxins, whereas calli grown in the presence of cytokinins and crown gall cultures are resistant to these amines (P. Christou and K.A. Barton [1989] Plant Physiol 89: 564-568). In an attempt to understand the underlying mechanism of this resistance, we compared the fates of tyramine in tyramine-sensitive and tyramine-resistant tobacco tissue cultures (cv Xanthi nc). The very rapid formation of black-colored oxidation products from tyramine in sensitive tissues suggested that the toxicity might be caused by the oxidation of tyramine by phenol oxidases present in the tissues or released into the medium after subculture. This was confirmed through many indirect procedures (effect of exogenously added tyrosinase, induction of polyphenol oxidase [PPO] activity by auxin, etc.). The study of tyramine structure-activity relationships further suggested that the toxicity of tyramine might be due to the formation of indolequinones after oxidation by PPO. Subculture of calli grown on 2,4-dichlorophenoxyacetic acid in a medium containing benzyladenine triggered a slow decrease in PPO activity and dramatic increases in peroxidase and tyramine hydroxycinnamoyl transferase (THT) activities. THT was undetectable in calli grown on 2,4-dichlorophenoxyacetic acid but very active in tyramine-resistant crown gall cultures. Moreover, when [3H]tyramine was fed in vivo to tyramine-resistant tissues, it was rapidly integrated into cell walls in the wound periderm formed at the periphery of the calli. Both the conjugation of tyramine and its integration into cell walls could compete with the formation of toxic quinones and therefore play a part in the resistance. Thus, it seems likely that the control of the toxicity of hydroxyphenylethylamines by cytokinins results primarily from changes in the metabolism and the

  16. Conifer tissue culture and how it may impact the pulp and paper industry

    SciTech Connect

    Verma, D.C.; Einspahr, D.W.

    1983-11-01

    This is a report on the state-of-the-art of tissue culture of conifers. Developments in organogenesis and somatic embryogenesis are looked at. This technology is expected to help the pulp and paper industry in achieving its goal of maximum productivity in two principal ways: (a) by providing rapid and efficient in vitro propagation methods for elite trees, and (b) by providing a technology for producing desired hybrids via somatic cell genetics and hybridization.

  17. Functional expression and characterization of a Xenopus laevis peptidylglycine alpha-amidating monooxygenase, AE-II, in insect-cell culture.

    PubMed

    Suzuki, K; Ohta, M; Okamoto, M; Nishikawa, Y

    1993-04-01

    The alpha-amidating reaction of peptide hormones is a two-step process which is catalyzed by peptidylglycine alpha-hydroxylating monooxygenase (PHM) and peptidylhydroxyglycine N-C lyase (PHL). There are three types of mRNA for these amidating enzymes in Xenopus laevis, namely AE-I, AE-II and AE-III. AE-I encodes only PHM and AE-III encodes both PHM and PHL. AE-II seems to encode subtypes of both PHM and PHL. While AE-II mRNA is present in high amounts in frog skin, the actual enzymes originating from AE-II have not been detected. When we expressed AE-II in cultured insect-cells using the baculovirus expression vector system, the expressed enzyme was specifically localized to the membrane fraction due to its hydrophobic transmembrane domain. Alternatively, when the transmembrane-domain-deleted AE-II (Met1-Ile731) was expressed, the enzyme was secreted into the culture medium; this secreted enzyme was purified to homogeneity by a simple two-step procedure. We have verified that the reaction product of the purified enzyme was the amidated peptide, indicating that AE-II has the ability to catalyze the entire amidating reaction.

  18. Heavy metal accumulation in some aquatic insects (Coleoptera: Hydrophilidae) and tissues of Chondrostoma regium (Heckel, 1843) relevant to their concentration in water and sediments from Karasu River, Erzurum, Turkey.

    PubMed

    Aydoğan, Zeynep; Şişman, Turgay; İncekara, Ümit; Gürol, Ali

    2017-02-28

    The objectives of this research were to determine and compare the heavy element concentrations in two study areas in Erzurum, Turkey (Aşkale and Dumlu sites). Assessment of some heavy elements in sediment, water, fish (Chondrostoma regium) tissues, and some aquatic insects (Coleoptera: Hydrophilidae) were carried out in June to August 2014. Heavy element levels in aquatic insect samples and their associated water and sediment were analyzed by energy dispersive X-ray fluorescence (EDXRF) spectrometer. Fish tissues, from the same habitat, were measured by inductively coupled plasma mass spectrometry (ICP-MS). Eleven elements (Al, Cr, Mn, Fe, Ni, Cu, Zn, As, Cd, Hg, Pb) were measured in fish tissues, and 14 elements (Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Sr, Br, Pb) were measured in insects. According to the results, it can be said that insects were contaminated by water and sediment, thus accumulated higher concentration of some elements than their environment. The fish, which was caught from Aşkale station, accumulates significantly higher level of heavy metals than Dumlu station's fish. The results were compared with national and international standards. The values of some heavy elements were found at higher concentration than the acceptable limits. The possible consequences of these results are briefly discussed from the point of potential hazards to ecology and human health. Element concentrations in fish tissue are below the limits, which are proposed by Turkish Food Codex, FAO/WHO, and EC, and safe for human consumption in the edible parts of fish species in the regions.

  19. Air Exposure Induced Characteristics of Dry Eye in Conjunctival Tissue Culture

    PubMed Central

    Lin, Hui; Qu, Yangluowa; Geng, Zhixin; Li, Cheng; Wu, Huping; Dong, Nuo; Liu, Zuguo; Li, Wei

    2014-01-01

    There are several animal models illustrating dry eye pathophysiology. Current study would like to establish an ex vivo tissue culture model for characterizing dry eye. Human conjunctival explants were cultured under airlift or submerged conditions for up to 2 weeks, and only airlifted conjunctival cultures underwent increased epithelial stratification. Starting on day 4, the suprabasal cells displayed decreased K19 expression whereas K10 keratin became evident in airlift group. Pax6 nuclear expression attenuated already at 2 days, while its perinuclear and cytoplasmic expression gradually increased. MUC5AC and MUC19 expression dramatically decreased whereas the full thickness MUC4 and MUC16 expression pattern disappeared soon after initiating the airlift condition. Real time PCR showed K16, K10 and MUC16 gene up-regulated while K19, MUC5AC, MUC19 and MUC4 down-regulated on day 8 and day 14. On day 2 was the appearance of apoptotic epithelial and stromal cells appeared. The Wnt signaling pathway was transiently activated from day 2 to day 10. The inflammatory mediators IL-1β, TNF-α, and MMP-9 were detected in the conditioned media after 6 to 8 days. In conclusion, airlifted conjunctival tissue cultures demonstrated Wnt signaling pathway activation, coupled with squamous metaplasia, mucin pattern alteration, apoptosis and upregulation of proinflammatory cytokine expression. These changes mimic the pathohistological alterations described in dry eye. This correspondence suggests that insight into the pathophysiology of dry eye may be aided through the use of airlifted conjunctival tissue cultures. PMID:24498087

  20. New Fungus-Insect Symbiosis: Culturing, Molecular, and Histological Methods Determine Saprophytic Polyporales Mutualists of Ambrosiodmus Ambrosia Beetles

    PubMed Central

    Bateman, Craig C.; Short, Dylan P. G.; Kasson, Matthew T.; Rabaglia, Robert J.; Hulcr, Jiri

    2015-01-01

    Ambrosia symbiosis is an obligate, farming-like mutualism between wood-boring beetles and fungi. It evolved at least 11 times and includes many notorious invasive pests. All ambrosia beetles studied to date cultivate ascomycotan fungi: early colonizers of recently killed trees with poor wood digestion. Beetles in the widespread genus Ambrosiodmus, however, colonize decayed wood. We characterized the mycosymbionts of three Ambrosiodmus species using quantitative culturing, high-throughput metabarcoding, and histology. We determined the fungi to be within the Polyporales, closely related to Flavodon flavus. Culture-independent sequencing of Ambrosiodmus minor mycangia revealed a single operational taxonomic unit identical to the sequences from the cultured Flavodon. Histological sectioning confirmed that Ambrosiodmus possessed preoral mycangia containing dimitic hyphae similar to cultured F. cf. flavus. The Ambrosiodmus-Flavodon symbiosis is unique in several aspects: it is the first reported association between an ambrosia beetle and a basidiomycotan fungus; the mycosymbiont grows as hyphae in the mycangia, not as budding pseudo-mycelium; and the mycosymbiont is a white-rot saprophyte rather than an early colonizer: a previously undocumented wood borer niche. Few fungi are capable of turning rotten wood into complete animal nutrition. Several thousand beetle-fungus symbioses remain unstudied and promise unknown and unexpected mycological diversity and enzymatic innovations. PMID:26367271

  1. Full-thickness skin with mature hair follicles generated from tissue culture expanded human cells.

    PubMed

    Wu, Xunwei; Scott, Larry; Washenik, Ken; Stenn, Kurt

    2014-12-01

    The goal of regenerative medicine is to reconstruct fully functional organs from tissue culture expanded human cells. In this study, we report a method for human reconstructed skin (hRSK) when starting with human cells. We implanted tissue culture expanded human epidermal and dermal cells into an excision wound on the back of immunodeficient mice. Pigmented skin covered the wound 4 weeks after implantation. Hair shafts were visible at 12 weeks and prominent at 14 weeks. Histologically, the hRSK comprises an intact epidermis and dermis with mature hair follicles, sebaceous glands and most notably, and unique to this system, subcutis. Morphogenesis, differentiation, and maturation of the hRSK mirror the human fetal process. Human antigen markers demonstrate that the constituent cells are of human origin for at least 6 months. The degree of new skin formation is most complete when using tissue culture expanded cells from fetal skin, but it also occurs with expanded newborn and adult cells; however, no appendages formed when we grafted both adult dermal and epidermal cells. The hRSK system promises to be valuable as a laboratory model for studying biological, pathological, and pharmaceutical problems of human skin.

  2. Tissue culture methods for the clonal propagation and genetic improvement of Spanish red cedar (Cedrela odorata).

    PubMed

    Peña-Ramírez, Yuri; Juárez-Gómez, Juan; González-Rodríguez, José Antonio; Robert, Manuel L

    2012-01-01

    The choice of a method to culture red cedar tissues depends on the final objectives pursued. If homogeneous clonal material is required for experimental purposes, the easiest way is to generate the lines through adventitious shoot induction from seedlings germinated from seeds. If the objective is to generate high yielding material for plantation purposes, the choice will be the same method but starting from mature vegetative tissues from selected elite plants. Most of the process are the same, but the initial steps are less efficient and much more elaborate. If the purpose is to generate lines with new genetic characteristics through somaclonal variation, mutagenesis, or genetic transformation, somatic embryogenesis will be required. No single method in its present form is suitable for all purposes. Eventually, the efficient production of somatic embryos from rejuvenated shoots collected from mature selected plants is the ideal way to culture this species, but for the time being we have to choose one or the other. In this chapter, we present a grafting procedure to rejuvenate and maintain mother plants in the greenhouse and the in vitro culture systems we have developed for the production of Cedrela odorata propagules using explants from both young seedlings and mature tissues from selected old trees. Using a modified TY17 medium and the BioMINT(®) temporary immersion system, we obtained high multiplication and ex vitro transplantation rates for efficient large-scale propagation of this species.

  3. Identification of neurotoxic cytokines by profiling Alzheimer's disease tissues and neuron culture viability screening.

    PubMed

    Wood, Levi B; Winslow, Ashley R; Proctor, Elizabeth A; McGuone, Declan; Mordes, Daniel A; Frosch, Matthew P; Hyman, Bradley T; Lauffenburger, Douglas A; Haigis, Kevin M

    2015-11-13

    Alzheimer's disease (AD) therapeutics based on the amyloid hypothesis have shown minimal efficacy in patients, suggesting that the activity of amyloid beta (Aβ) represents only one aspect of AD pathogenesis. Since neuroinflammation is thought to play an important role in AD, we hypothesized that cytokines may play a direct role in promoting neuronal death. Here, we profiled cytokine expression in a small cohort of human AD and control brain tissues. We identified AD-associated cytokines using partial least squares regression to correlate cytokine expression with quantified pathologic disease state and then used neuron cultures to test whether cytokines up-regulated in AD tissues could affect neuronal viability. This analysis identified cytokines that were associated with the pathological severity. Of the top correlates, only TNF-α reduced viability in neuron culture when applied alone. VEGF also reduced viability when applied together with Aβ, which was surprising because VEGF has been viewed as a neuro-protective protein. We found that this synthetic pro-death effect of VEGF in the context of Aβ was commensurate with VEGFR-dependent changes in multiple signaling pathways that govern cell fate. Our findings suggest that profiling of tissues combined with a culture-based screening approach can successfully identify new mechanisms driving neuronal death.

  4. Investigation of Phenolic Acids in Suspension Cultures of Vitis vinifera Stimulated with Indanoyl-Isoleucine, N-Linolenoyl-L-Glutamine, Malonyl Coenzyme A and Insect Saliva

    PubMed Central

    Riedel, Heidi; Akumo, Divine N.; Saw, Nay Min Min Thaw; Smetanska, Iryna; Neubauer, Peter

    2012-01-01

    Vitis vinifera c.v. Muscat de Frontignan (grape) contains various high valuable bioactive phenolic compounds with pharmaceutical properties and industrial interest which are not fully exploited. The focus of this investigation consists in testing the effects of various biological elicitors on a non-morphogenic callus suspension culture of V. vinifera. The investigated elicitors: Indanoyl-isoleucine (IN), N-linolenoyl-L-glutamine (LG), insect saliva (IS) and malonyl coenzyme A (MCoA) were aimed at mimicking the influence of environmental pathogens on plants in their natural habitats and at provoking exogenous induction of the phenylpropanoid pathway. The elicitors’ indanoyl-isoleucine (IN), N-linolenoyl-L-glutamine (LG) and insect saliva (IS), as well as malonyl coenzyme A (MCoA), were independently inoculated to stimulate the synthesis of phenylpropanoids. All of the enhancers positively increased the concentration of phenolic compounds in grape cells. The highest concentration of phenolic acids was detected after 2 h for MCoA, after 48 h for IN and after 24 h for LG and IS respectively. At the maximum production time, treated grape cells had a 3.5-fold (MCoA), 1.6-fold (IN) and 1.5-fold (IS) higher phenolic acid content compared to the corresponding control samples. The HPLC results of grape cells showed two major resveratrol derivatives: 3-O-Glucosyl-resveratrol and 4-(3,5-dihydroxyphenyl)-phenol. Their influences of the different elicitors, time of harvest and biomass concentration (p < 0.0001) were statistically significant on the synthesis of phenolic compounds. The induction with MCoA was found to demonstrate the highest statistical effect corresponding to the strongest stress response within the phenylpropanoid pathway in grape cells. PMID:24957372

  5. Development of a refined tenocyte expansion culture technique for tendon tissue engineering.

    PubMed

    Qiu, Yiwei; Wang, Xiao; Zhang, Yaonan; Carr, Andrew J; Zhu, Liwei; Xia, Zhidao; Sabokbar, Afsie

    2014-12-01

    The aim of this study was to efficiently expand less differentiated tenocytes with minimum use of fetal bovine serum (FBS) for tenocyte-based tendon tissue engineering. To achieve this goal, human tenocytes were cultured in different concentrations of FBS and combinations of growth factors PDGF(BB), IGF-1 and bFGF. A number of growth factors were selected that could support tenocyte expansion at reduced differentiated state with minimum FBS usage. Results showed that the expansion of the tenocytes cultured for 14 days with 1% FBS, 50 ng/ml PDGF(BB) and 50 ng/ml bFGF was similar to that cultured in the 10% FBS control group. The tenocytes cultured in the treatment group showed significantly lower collagen synthesis and down-regulation of mRNA expression of tendon differentiation markers. Cell morphology confirmed that tenocytes cultured in the growth factors had reduced collagen fibril formation compared to tenocytes cultured in 10% FBS. Our findings confirm the feasibility of inducing human tenocyte expansion in vitro with the least amount of FBS usage, while controlling their differentiation until required. Copyright © 2012 John Wiley & Sons, Ltd.

  6. An evolutionary view of plant tissue culture: somaclonal variation and selection.

    PubMed

    Wang, Qin-Mei; Wang, Li

    2012-09-01

    Plants regenerated from in vitro cultures possess an array of genetic and epigenetic changes. This phenomenon is known as 'somaclonal variation' and the frequency of somaclonal variation (SV) is usually elevated far beyond that expected in nature. Initially, the relationship between time in culture and detected SV was found to support the widespread belief that SV accumulates with culture age. However, a few studies indicated that older cultures yielded regenerants with less SV. What leads to this seemed contradiction? In this article, we have proposed a novel in vitro callus selection hypothesis, differentiation bottleneck (D-bottleneck) and dedifferentiation bottleneck (Dd-bottleneck), which consider natural selection theory to be fit for cell population in vitro. The results of multiplication races between the cells with the true-to-type phenotype and the deleterious cells determine the increase/decrease of SV frequencies in calli or regenerants as in vitro culture time goes on. The possibility of interpreting the complex situation of time-related SV by the evolutionary theory is discussed in this paper. In addition, the SV threshold, space-determined hypothesis and D-bottleneck are proposed to interpret the loss of the regenerability through a long period of plant tissue culture (PTC).

  7. Biodynamic Doppler imaging of subcellular motion inside 3D living tissue culture and biopsies (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Nolte, David D.

    2016-03-01

    Biodynamic imaging is an emerging 3D optical imaging technology that probes up to 1 mm deep inside three-dimensional living tissue using short-coherence dynamic light scattering to measure the intracellular motions of cells inside their natural microenvironments. Biodynamic imaging is label-free and non-invasive. The information content of biodynamic imaging is captured through tissue dynamics spectroscopy that displays the changes in the Doppler signatures from intracellular constituents in response to applied compounds. The affected dynamic intracellular mechanisms include organelle transport, membrane undulations, cytoskeletal restructuring, strain at cellular adhesions, cytokinesis, mitosis, exo- and endo-cytosis among others. The development of 3D high-content assays such as biodynamic profiling can become a critical new tool for assessing efficacy of drugs and the suitability of specific types of tissue growth for drug discovery and development. The use of biodynamic profiling to predict clinical outcome of living biopsies to cancer therapeutics can be developed into a phenotypic companion diagnostic, as well as a new tool for therapy selection in personalized medicine. This invited talk will present an overview of the optical, physical and physiological processes involved in biodynamic imaging. Several different biodynamic imaging modalities include motility contrast imaging (MCI), tissue-dynamics spectroscopy (TDS) and tissue-dynamics imaging (TDI). A wide range of potential applications will be described that include process monitoring for 3D tissue culture, drug discovery and development, cancer therapy selection, embryo assessment for in-vitro fertilization and artificial reproductive technologies, among others.

  8. Cryopreservation, Culture, and Transplantation of Human Fetal Mesencephalic Tissue into Monkeys

    NASA Astrophysics Data System (ADS)

    Redmond, D. E.; Naftolin, F.; Collier, T. J.; Leranth, C.; Robbins, R. J.; Sladek, C. D.; Roth, R. H.; Sladek, J. R.

    1988-11-01

    Studies in animals suggest that fetal neural grafts might restore lost neurological function in Parkinson's disease. In monkeys, such grafts survive for many months and reverse signs of parkinsonism, without attendant graft rejection. The successful and reliable application of a similar transplantation procedure to human patients, however, will require neural tissue obtained from human fetal cadavers, with demonstrated cellular identity, viability, and biological safety. In this report, human fetal neural tissue was successfully grafted into the brains of monkeys. Neural tissue was collected from human fetal cadavers after 9 to 12 weeks of gestation and cryopreserved in liquid nitrogen. Viability after up to 2 months of storage was demonstrated by cell culture and by transplantation into monkeys. Cryopreservation and storage of human fetal neural tissue would allow formation of a tissue bank. The stored cells could then be specifically tested to assure their cellular identity, viability, and bacteriological and virological safety before clinical use. The capacity to collect and maintain viable human fetal neural tissue would also facilitate research efforts to understand the development and function of the human brain and provide opportunities to study neurological diseases.

  9. Astrocyte cultures derived from human brain tissue express angiotensinogen mRNA

    SciTech Connect

    Milsted, A.; Barna, B.P.; Ransohoff, R.M.; Brosnihan, K.B.; Ferrario, C.M. )

    1990-08-01

    The authors have identified human cultured cell lines that are useful for studying angiotensinogen gene expression and its regulation in the central nervous system. A model cell system of human central nervous system origin expressing angiotensinogen has not previously been available. Expression of angiotensinogen mRNA appears to be a basal property of noninduced human astrocytes, since astrocytic cell lines derived from human glioblastomas or nonneoplastic human brain tissue invariably produced angiotensinogen mRNA. In situ hybridization histochemistry revealed that angiotensinogen mRNA production was not limited to a subpopulation of astrocytes because >99% of cells in these cultures contained angiotensinogen mRNA. These cell lines will be useful in studies of the molecular mechanisms controlling angiotensin synthesis and the role of biologically active angiotensin in the human brain by allowing the authors to examine regulation of expression of the renin-angiotensin system in human astrocyte cultures.

  10. The structure of tissue on cell culture-extracted thyroglobulin is independent of its iodine content.

    PubMed

    Delain, E; Aouani, A; Vignal, A; Couture-Tosi, E; Hovsépian, S; Fayet, G

    1987-02-01

    The major protein synthesized in vitro by the ovine thyroid cell line OVNIS 6H is the prothyroid hormone thyroglobulin. Purified from serum-free cell culture media using sucrose gradient centrifugation, the thyroglobulin dimer was analysed for iodine content and observed by electron microscopy. In their usual medium, the OVNIS 6H cells produce a very poorly iodinated thyroglobulin containing 0.05 I atom per molecule. When cultured with methimazole or propylthiouracil, two inhibitors of iodide organification, less than 0.007 I atom/molecules was found. These molecules purified from cell cultures were compared to those purified from ovine thyroid tissue containing 26 I atoms/mol. Despite large differences in iodine content, the three preparations all consist of 19 S thyroglobulin dimers with the classical ovoidal shape. The variability in size measurements remains in a 2% range for all thyroglobulin types. Consequently, no real significant variation can be found between the highly iodinated thyroglobulin isolated from tissue, and the poorly or non-iodinated thyroglobulins isolated from cells cultured with or without methimazole or propylthiouracil.

  11. Cell Wall Regeneration around Protoplasts Isolated from Convolvulus Tissue Culture 1

    PubMed Central

    Horine, Randall K.; Ruesink, Albert W.

    1972-01-01

    Protoplasts of Convolvulus arvensis L. tissue culture regenerated a wall-like structure within 3 days in culture. Although unusually electron dense and atypically amorphous in the electron microscope, this structure could be digested with Myrothecium cellulase but was resistant to protease, a Rohm and Haas pectinase, and a β-1, 3-exoglucanase just like the original wall. A cytochemical test for callose was negative. Wall regeneration required a readily metabolized external carbon source and was not inhibited by a high concentration of cycloheximide, puromycin, or actinomycin D. Protoplast budding was correlated with the wall regeneration, and the latter was related quantitatively to the sucrose concentration in the medium. Although a concentration of 1 μm 2,4-dichlorophenoxy acetic acid is used normally for both general culture of the tissue and for wall regeneration, concentrations of 0 and 0.1 mm, which are highly deleterious to growth, have no appreciable effect on the incidence of the wall-like structure regenerated around protoplasts. The ability of protoplasts to undergo cell wall regeneration was decreased when they were cultured in the presence of proteolytic enzymes. Images PMID:16658192

  12. Free amino Acid contents of stem and phylloxera gall tissue cultures of grape.

    PubMed

    Warick, R P; Hildebrandt, A C

    1966-04-01

    Free amino acid constituents were determined of grape stem and Phylloxera leaf gall callus in tissue culture. Fast, medium and slow growing single cell clones of, respectively, stem and gall origins were grown on a mineral salt-sucrose medium supplemented with coconut milk and alpha-naphthaleneacetic acid. Stem and gall clones showed qualitative similarities and quantitative variations in the amino acids and nitrogenous constituents. Nineteen amino acids, glucosamine, ethanolamine, sarcosine, methionine sulfoxides and ammonia were identified. Two free polypeptides accounted for over 30% of the amino compounds in the stem and gall callus tissues which were not found in the intact plant parts. Stem clones of different growth rates grown on agar showed generally an excess of amino acid constituents over gall tissues of similar growth rates, except for the free polypeptides. Fast growing stem clones grown on agar medium contained lower amounts of certain amino acids than the fast growing gall clones, but when grown in liquid medium they contained higher amounts of these acids than the gall clones. The total and nonsoluble nitrogen of stem clones were higher than in the gall clones. Tissue cultures differed from the original plant parts with respect to their free polypeptides and high amino acid contents.

  13. Evaluation of osteoporosis prevention by adlay using a tissue culture model.

    PubMed

    Yang, Rong Sen; Chiang, Wenchang; Lu, Yi Hsiang; Liu, Shing Hwa

    2008-01-01

    Adlay (Coix lachryma-jobi L. var. ma-yuen Stapf ) is a grass crop, which has been used in traditional Chinese medicine and also as a nourishing food. Recently, some studies have indicated that adlay possesses some pharmacological effects including anti-allergic, anti-mutagenic, hypolipemic, and anti-diabetic effects. However, the effect of adlay on osteoporosis is still unknown. In this study, we investigated and evaluated the effect of adlay seed on the osteoporosis prevention. The methods of in vitro cultures of neonatal rat calvaria tissues or adult rat femoral metaphyseal tissues of bones isolated from normal or ovariectomized female rats were used for further investigation. Treatment with water extract of adlay seed could reverse the decreased alkaline phosphatase activities and calcium levels and increased tartrate-resistant acidic phosphatase activities induced by parathyroid hormone in cultured metaphyseal tissues. In ovariectomized rats, the alkaline phosphatase activities and calcium levels were significantly decreased and tartrate-resistant acidic phosphatase activities were increased in femoral metaphyseal tissues as compared with sham-control. Treatment with water extract of adlay seed could counteract these effects in ovariectomized rats. Taken together, these findings imply that adlay is capable of reversing the osteoporotic status in rats, and may be a helpful healthy food for osteoporosis prevention.

  14. Association of tissue factor activity with the surface of cultured cells.

    PubMed Central

    Maynard, J R; Heckman, C A; Pitlick, F A; Nemerson, Y

    1975-01-01

    Tissue factor occurs in a dormant state on the surface of cultured normal human fibroblasts and WISH 1 amnion cells. The activity of undisturbed monolayers or cells lifted with brief trypsin treatment (0.125 per cent trypsin for 1 min) increases up to 60-fold upon prolonged digestion with dilute trypsin (0.0025 per cent trypsin for 30 min); activity appears subsequent to cell detachment. Up to 70 per cent of the total cellular tissue factor becomes active under these conditions and is released from the cells. The ruthenium red staining coat of the cells is lost during detachment, but cell viability (more than 90 per cent exclude trypan blue) and cell morphology do not change during the subsequent development of tissue factor activity. Furthermore, less than 10 percent of four intracellular enzymes and less than 20 per cent of two plasma membrane enzymes are released during this period of time. We therefore conclude that cells in culture do have tissue factor activity, that it exists in a latent form, and that total cell disruption is not necessary for this activity to initiate blood coagulation. Images PMID:47334

  15. Neurite outgrowth in cultured mouse pelvic ganglia - Effects of neurotrophins and bladder tissue.

    PubMed

    Ekman, Mari; Zhu, Baoyi; Swärd, Karl; Uvelius, Bengt

    2017-07-01

    Neurotrophic factors regulate survival and growth of neurons. The urinary bladder is innervated via both sympathetic and parasympathetic neurons located in the major pelvic ganglion. The aim of the present study was to characterize the effects of the neurotrophins nerve growth factor (NGF), brain derived neurotrophic factor (BDNF) and neurotrophin 3 (NT-3) on the sprouting rate of sympathetic and parasympathetic neurites from the female mouse ganglion. The pelvic ganglion was dissected out and attached to a petri dish and cultured in vitro. All three factors (BDNF, NT-3 and NGF) stimulated neurite outgrowth of both sympathetic and parasympathetic neurites although BDNF and NT-3 had a higher stimulatory effect on parasympathetic ganglion cells. The neurotrophin receptors TrkA, TrkB and TrkC were all expressed in neurons of the ganglia. Co-culture of ganglia with urinary bladder tissue, but not diaphragm tissue, increased the sprouting rate of neurites. Active forms of BDNF and NT-3 were detected in urinary bladder tissue using western blotting whereas tissue from the diaphragm expressed NGF. Neurite outgrowth from the pelvic ganglion was inhibited by a TrkB receptor antagonist. We therefore suggest that the urinary bladder releases trophic factors, including BDNF and NT-3, which regulate neurite outgrowth via activation of neuronal Trk-receptors. These findings could influence future strategies for developing pharmaceuticals to improve re-innervation due to bladder pathologies. Copyright © 2017. Published by Elsevier B.V.

  16. Free Amino Acid Contents of Stem and Phylloxera Gall Tissue Cultures of Grape 1

    PubMed Central

    Warick, R. P.; Hildebrandt, A. C.

    1966-01-01

    Free amino acid constituents were determined of grape stem and Phylloxera leaf gall callus in tissue culture. Fast, medium and slow growing single cell clones of, respectively, stem and gall origins were grown on a mineral salt-sucrose medium supplemented with coconut milk and α-naphthaleneacetic acid. Stem and gall clones showed qualitative similarities and quantitative variations in the amino acids and nitrogenous constituents. Nineteen amino acids, glucosamine, ethanolamine, sarcosine, methionine sulfoxides and ammonia were identified. Two free polypeptides accounted for over 30% of the amino compounds in the stem and gall callus tissues which were not found in the intact plant parts. Stem clones of different growth rates grown on agar showed generally an excess of amino acid constituents over gall tissues of similar growth rates, except for the free polypeptides. Fast growing stem clones grown on agar medium contained lower amounts of certain amino acids than the fast growing gall clones, but when grown in liquid medium they contained higher amounts of these acids than the gall clones. The total and nonsoluble nitrogen of stem clones were higher than in the gall clones. Tissue cultures differed from the original plant parts with respect to their free polypeptides and high amino acid contents. Images PMID:16656290

  17. The expression of genes involved in myometrial contractility changes during ex situ culture of pregnant human uterine smooth muscle tissue.

    PubMed

    Ilicic, Marina; Butler, Trent; Zakar, Tamas; Paul, Jonathan W

    2017-01-01

    Ex situ analyses of human myometrial tissue has been used to investigate the regulation of uterine quiescence and transition to a contractile phenotype. Following concerns about the validity of cultured primary cells, we examined whether myometrial tissue undergoes culture-induced changes ex situ that may affect the validity of in vitro models. To determine whether human myometrial tissue undergoes culture-induced changes ex situ in Estrogen receptor 1 (ESR1), Prostaglandin-endoperoxide synthase 2 (PTGS2) and Oxytocin receptor (OXTR) expression. Additionally, to determine whether culture conditions approaching the in vivo environment influence the expression of these key genes. Term non-laboring human myometrial tissues were cultured in the presence of specific treatments, including; serum supplementation, progesterone and estrogen, cAMP, PMA, stretch or NF-κB inhibitors. ESR1, PTGS2 and OXTR mRNA abundance after 48 h culture was determined using quantitative RT-PCR. Myometrial tissue in culture exhibited culture-induced up-regulation of ESR1 and PTGS2 and down-regulation of OXTR mRNA expression. Progesterone prevented culture-induced increase in ESR1 expression. Estrogen further up-regulated PTGS2 expression. Stretch had no direct effect, but blocked the effects of progesterone and estrogen on ESR1 and PTGS2 expression. cAMP had no effect whereas PMA further up-regulated PTGS2 expression and prevented decline of OXTR expression. Human myometrial tissue in culture undergoes culture-induced gene expression changes consistent with transition toward a laboring phenotype. Changes in ESR1, PTGS2 and OXTR expression could not be controlled simultaneously. Until optimal culture conditions are determined, results of in vitro experiments with myometrial tissues should be interpreted with caution.

  18. Impact Assessment of Repeated Exposure of Organotypic 3D Bronchial and Nasal Tissue Culture Models to Whole Cigarette Smoke

    PubMed Central

    Kuehn, Diana; Majeed, Shoaib; Guedj, Emmanuel; Dulize, Remi; Baumer, Karine; Iskandar, Anita; Boue, Stephanie; Martin, Florian; Kostadinova, Radina; Mathis, Carole; Ivanov, Nikolai V.; Frentzel, Stefan; Hoeng, Julia; Peitsch, Manuel C.

    2015-01-01

    Cigarette smoke (CS) has a major impact on lung biology and may result in the development of lung diseases such as chronic obstructive pulmonary disease or lung cancer. To understand the underlying mechanisms of disease development, it would be important to examine the impact of CS exposure directly on lung tissues. However, this approach is difficult to implement in epidemiological studies because lung tissue sampling is complex and invasive. Alternatively, tissue culture models can facilitate the assessment of exposure impacts on the lung tissue. Submerged 2D cell cultures, such as normal human bronchial epithelial (NHBE) cell cultures, have traditionally been used for this purpose. However, they cannot be exposed directly to smoke in a similar manner to the in vivo exposure situation. Recently developed 3D tissue culture models better reflect the in vivo situation because they can be cultured at the air-liquid interface (ALI). Their basal sides are immersed in the culture medium; whereas, their apical sides are exposed to air. Moreover, organotypic tissue cultures that contain different type of cells, better represent the physiology of the tissue in vivo. In this work, the utilization of an in vitro exposure system to expose human organotypic bronchial and nasal tissue models to mainstream CS is demonstrated. Ciliary beating frequency and the activity of cytochrome P450s (CYP) 1A1/1B1 were measured to assess functional impacts of CS on the tissues. Furthermore, to examine CS-induced alterations at the molecular level, gene expression profiles were generated from the tissues following exposure. A slight increase in CYP1A1/1B1 activity was observed in CS-exposed tissues compared with air-exposed tissues. A network-and transcriptomics-based systems biology approach was sufficiently robust to demonstrate CS-induced alterations of xenobiotic metabolism that were similar to those observed in the bronchial and nasal epithelial cells obtained from smokers. PMID:25741927

  19. Perception of insect feeding by plants.

    PubMed

    Bonaventure, G

    2012-11-01

    The recognition of phytophagous insects by plants induces a set of very specific responses aimed at deterring tissue consumption and reprogramming metabolism and development of the plant to tolerate the herbivore. The recognition of insects by plants requires the plant's ability to perceive chemical cues generated by the insects and to distinguish a particular pattern of tissue disruption. Relatively little is known about the molecular basis of insect perception by plants and the signalling mechanisms directly associated with this perception. Importantly, the insect feeding behaviour (piercing-sucking versus chewing) is a decisive determinant of the plant's defence response, and the mechanisms used to perceive insects from different feeding guilds may be distinct. During insect feeding, components of the saliva of chewing or piercing-sucking insects come into contact with plant cells, and elicitors or effectors present in this insect-derived fluid are perceived by plant cells to initiate the activation of specific signalling cascades. Although receptor-ligand interactions controlling insect perception have yet not been molecularly described, a significant number of regulatory components acting downstream of receptors and involved in the activation of defence responses against insects has been reported. Some of these regulators mediate changes in the phytohormone network, while others directly control gene expression or the redox state of the cell. These processes are central in the orchestration of plant defence responses against insects. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.

  20. Differential Effects of Tissue Culture Coating Substrates on Prostate Cancer Cell Adherence, Morphology and Behavior

    PubMed Central

    Liberio, Michelle S.; Sadowski, Martin C.; Soekmadji, Carolina; Davis, Rohan A.; Nelson, Colleen C.

    2014-01-01

    Weak cell-surface adhesion of cell lines to tissue culture surfaces is a common problem and presents technical limitations to the design of experiments. To overcome this problem, various surface coating protocols have been developed. However, a comparative and precise real-time measurement of their impact on cell behavior has not been conducted. The prostate cancer cell line LNCaP, derived from a patient lymph node metastasis, is a commonly used model system in prostate cancer research. However, the cells’ characteristically weak attachment to the surface of tissue culture vessels and cover slips has impeded their manipulation and analysis and use in high throughput screening. To improve the adherence of LNCaP cells to the culture surface, we compared different coating reagents (poly-l-lysine, poly-l-ornithine, collagen type IV, fibronectin, and laminin) and culturing conditions and analyzed their impact on cell proliferation, adhesion, morphology, mobility and gene expression using real-time technologies. The results showed that fibronectin, poly-l-lysine and poly-l-ornithine improved LNCaP cells adherence and provoked cell morphology alterations, such as increase of nuclear and cellular area. These coating reagents also induced a higher expression of F-actin and reduced cell mobility. In contrast, laminin and collagen type IV did not improve adherence but promoted cell aggregation and affected cell morphology. Cells cultured in the presence of laminin displayed higher mobility than control cells. All the coating conditions significantly affected cell viability; however, they did not affect the expression of androgen receptor-regulated genes. Our comparative findings provide important insight for the selection of the ideal coating reagent and culture conditions for the cancer cell lines with respect to their effect on proliferation rate, attachment, morphology, migration, transcriptional response and cellular cytoskeleton arrangement. PMID:25375165

  1. Differential effects of tissue culture coating substrates on prostate cancer cell adherence, morphology and behavior.

    PubMed

    Liberio, Michelle S; Sadowski, Martin C; Soekmadji, Carolina; Davis, Rohan A; Nelson, Colleen C

    2014-01-01

    Weak cell-surface adhesion of cell lines to tissue culture surfaces is a common problem and presents technical limitations to the design of experiments. To overcome this problem, various surface coating protocols have been developed. However, a comparative and precise real-time measurement of their impact on cell behavior has not been conducted. The prostate cancer cell line LNCaP, derived from a patient lymph node metastasis, is a commonly used model system in prostate cancer research. However, the cells' characteristically weak attachment to the surface of tissue culture vessels and cover slips has impeded their manipulation and analysis and use in high throughput screening. To improve the adherence of LNCaP cells to the culture surface, we compared different coating reagents (poly-L-lysine, poly-L-ornithine, collagen type IV, fibronectin, and laminin) and culturing conditions and analyzed their impact on cell proliferation, adhesion, morphology, mobility and gene expression using real-time technologies. The results showed that fibronectin, poly-L-lysine and poly-L-ornithine improved LNCaP cells adherence and provoked cell morphology alterations, such as increase of nuclear and cellular area. These coating reagents also induced a higher expression of F-actin and reduced cell mobility. In contrast, laminin and collagen type IV did not improve adherence but promoted cell aggregation and affected cell morphology. Cells cultured in the presence of laminin displayed higher mobility than control cells. All the coating conditions significantly affected cell viability; however, they did not affect the expression of androgen receptor-regulated genes. Our comparative findings provide important insight for the selection of the ideal coating reagent and culture conditions for the cancer cell lines with respect to their effect on proliferation rate, attachment, morphology, migration, transcriptional response and cellular cytoskeleton arrangement.

  2. [THE REGULATING EFFECT OF DIPEPTIDES ON CELL PROLIFERATION IN NERVE TISSUE CULTURE IN MAMMALS AND ON ASSOCIATIVE LEARNING IN INSECTS].

    PubMed

    Chalisova, N I; Zachepilo, T G; Kamyshev, N G; Lopatina, N G

    2015-01-01

    The effect of dipeptides AspPro and AspSer and of their composing amino acids (asparagine acid--Asp, proline--Pro, serin--Ser) on the proliferative activity in the explants of cortex and subcortical structures of the rat brain and on the functional activity of CNS of the honeybee was studied. The square index defined as a proportion of the whole explant square to the square of its central zone was determined. The number of bees responded with the conditional reaction (proboscis extension in the direction to aromatized solution) after 1 min (short-term memory) and 180 min (long-term memory) was detected after single learning procedure. Both dipeptides, as well as the asparagine acid, stimulated an increase of the growth zone of the subcortical structure explants in rats and of the number of honeybees with retention of conditional reaction in the short-term/long-term memory independently of the effect of the second member of the dipeptide. The unidirectionality of the effect suggests the existence of common mechanisms of reception and signal transduction established during evolution that require the further study.

  3. Oxidation of External NAD(P)H by Mitochondria from Taproots and Tissue Cultures of Sugar Beet (Beta vulgaris).

    PubMed Central

    Zottini, M.; Mandolino, G.; Zannoni, D.

    1993-01-01

    The present study compares the exogenous NAD(P)H oxidation and the membrane potential ([delta][psi]) generated in mitochondria isolated from different tissues of an important agricultural crop, sugar beet (Beta vulgaris}. We observed that mitochondria from taproots, cold-stored taproots, and in vitro-grown tissue cultures contain a functional NADH dehydrogenase, whereas only those isolated from tissue cultures displayed a functional NAD(P)H dehydrogenase. It is interesting that the NADH-dependent [delta][psi] of mitochondria from cold-stored taproots and from tissue cultures was not affected by free Ca2+ ions, whereas free Ca2+ was required for the mitochondrial NADPH oxidation by in vitro-grown cells and cytosolic NADH oxidation by mitochondria from fresh taproots. A tentative model accounting for the different response to Ca2+ ions of the NADH dehydrogenase in mitochondria from cold-stored taproots and tissue cultures of B. vulgaris is discussed. PMID:12231847

  4. Comparing culture and molecular methods for the identification of microorganisms involved in necrotizing soft tissue infections.

    PubMed

    Rudkjøbing, Vibeke Børsholt; Thomsen, Trine Rolighed; Xu, Yijuan; Melton-Kreft, Rachael; Ahmed, Azad; Eickhardt, Steffen; Bjarnsholt, Thomas; Poulsen, Steen Seier; Nielsen, Per Halkjær; Earl, Joshua P; Ehrlich, Garth D; Moser, Claus

    2016-11-08

    Necrotizing soft tissue infections (NSTIs) are a group of infections affecting all soft tissues. NSTI involves necrosis of the afflicted tissue and is potentially life threatening due to major and rapid destruction of tissue, which often leads to septic shock and organ failure. The gold standard for identification of pathogens is culture; however molecular methods for identification of microorganisms may provide a more rapid result and may be able to identify additional microorganisms that are not detected by culture. In this study, tissue samples (n = 20) obtained after debridement of 10 patients with NSTI were analyzed by standard culture, fluorescence in situ hybridization (FISH) and multiple molecular methods. The molecular methods included analysis of microbial diversity by 1) direct 16S and D2LSU rRNA gene Microseq 2) construction of near full-length 16S rRNA gene clone libraries with subsequent Sanger sequencing for most samples, 3) the Ibis T5000 biosensor and 4) 454-based pyrosequencing. Furthermore, quantitative PCR (qPCR) was used to verify and determine the relative abundance of Streptococcus pyogenes in samples. For 70 % of the surgical samples it was possible to identify microorganisms by culture. Some samples did not result in growth (presumably due to administration of antimicrobial therapy prior to sampling). The molecular methods identified microorganisms in 90 % of the samples, and frequently detected additional microorganisms when compared to culture. Although the molecular methods generally gave concordant results, our results indicate that Microseq may misidentify or overlook microorganisms that can be detected by other molecular methods. Half of the patients were found to be infected with S. pyogenes, but several atypical findings were also made including infection by a) Acinetobacter baumannii, b) Streptococcus pneumoniae, and c) fungi, mycoplasma and Fusobacterium necrophorum. The study emphasizes that many pathogens can be involved

  5. Application of 3D printing to prototype and develop novel plant tissue culture systems.

    PubMed

    Shukla, Mukund R; Singh, Amritpal S; Piunno, Kevin; Saxena, Praveen K; Jones, A Maxwell P

    2017-01-01

    Due to the complex process of designing and manufacturing new plant tissue culture vessels through conventional means there have been limited efforts to innovate improved designs. Further, development and availability of low cost, energy efficient LEDs of various spectra has made it a promising light source for plant growth in controlled environments. However, direct replacement of conventional lighting sources with LEDs does not address problems with uniformity, spectral control, or the challenges in conducting statistically valid experiments to assess the effects of light. Prototyping using 3D printing and LED based light sources could help overcome these limitations and lead to improved culture systems. A modular culture vessel design in which the fluence rate and spectrum of light are independently controlled was designed, prototyped using 3D printing, and evaluated for plant growth. This design is compatible with semi-solid and liquid based culture systems. Observations on morphology, chlorophyll content, and chlorophyll fluorescence based stress parameters from in vitro plants cultured under different light spectra with similar overall fluence rate indicated different responses in Nicotiana tabacum and Artemisia annua plantlets. This experiment validates the utility of 3D printing to design and test functional vessels and demonstrated that optimal light spectra for in vitro plant growth is species-specific. 3D printing was successfully used to prototype novel culture vessels with independently controlled variable fluence rate/spectra LED lighting. This system addresses several limitations associated with current lighting systems, providing more uniform lighting and allowing proper replication/randomization for experimental plant biology while increasing energy efficiency. A complete procedure including the design and prototyping of a culture vessel using 3D printing, commercial scale injection molding of the prototype, and conducting a properly replicated

  6. Herbivore response in passion fruit (Passiflora edulis Sims) plants: induction of lipoxygenase activity in leaf tissue in response to generalist and specialist insect attack.

    PubMed

    Jardim, Bruno C; Perdïzio, Viviane A; Berbert-Molina, Marïlia A; Rodrigues, Deivid C; Botelho-Júnior, Sylvio; Vicente, Ana C P; Hansen, Ekkehard; Otsuki, Koko; Urmënyi, Turán P; Jacinto, Tânia

    2010-04-01

    Lipoxygenases (LOXs, EC 1.13.11.12) are a class of non-heme iron containing dioxygenases which catalyze the regiospecific and stereospecific hydroperoxidation of polyunsaturated fatty acids with 1,4-pentadiene system such as linoleic acid and linolenic acid in plants. In this work we studied the LOX activity in damaged as well as in distal leaves in response to specialist (Agraulis vanillae vanillae) or generalist (Spodoptera frugiperda) insect attack. Enzymatic assays showed that induction of LOX activity occurred locally and systemically in response to both insects' attacks. Northern blot analysis revealed that LOX expression is also insect-inducible in agreement with enzymatic assay results. In addition, northern analysis corroborated previous reports that LOX activity is wound- and methyl jasmonate-inducible. These results suggest that the herbivore-response in passion fruit is mediated by jasmonates, since a key enzyme of the biosynthetic pathway of jasmonic acid is induced upon lepidopteran insects' attacks.

  7. Transferability of Trypanosoma cruzi from mixed human host infection to Triatoma infestans and from insects to axenic culture.

    PubMed

    Ortiz, Sylvia; Zulantay, Inés; Apt, Werner; Saavedra, Miguel; Solari, Aldo

    2015-02-01

    The etiologic agent of Chagas disease is Trypanosoma cruzi, a protozoan whose life cycle involves obligatory passage through vertebrate and invertebrate hosts in a series of stages. The aim of this study was to explore the transferability of mixed discrete typing units (DTUs) of T. cruzi present in chronic chagasic patients when passed through an invertebrate host during xenodiagnosis (XD) and then when transferred to axenic cultures to obtain T. cruzi isolates. DTUs of T. cruzi present in these two hosts and axenic cultures were identified by kDNA PCR amplification and subsequent hybridization with DTU-specific probes. Mixtures of Tc I, Tc II, Tc V and Tc VI DTUs were detected in blood samples. However as a result of XD and axenic cultures it was possible to identify mostly Tc V. We conclude that the transferability of an isolate of T.cruzi derived from mixed DTUs present in human blood depends upon the starved invertebrate host used for xenodiagnosis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. A Tribolium castaneum whole-embryo culture protocol for studying the molecular mechanisms and morphogenetic movements involved in insect development.

    PubMed

    Macaya, Constanza C; Saavedra, Patricio E; Cepeda, Rodrigo E; Nuñez, Viviana A; Sarrazin, Andres F

    2016-01-01

    The development of the red flour beetle Tribolium castaneum is more representative of arthropods than the evolutionarily derived fly, Drosophila melanogaster. Thus, Tribolium is becoming an emerging organism model for studying the evolution of the mechanisms that control embryonic development in arthropods. In this regard, diverse genetic and molecular tools are currently available for Tribolium, as well as imaging and embryonic techniques. Recently, we developed a method for culturing embryos in order to study specific stages during Tribolium development. In this report, we present a detailed and "easy-to-follow" protocol for embryo handling and dissection, extending the use of whole-embryo culture to functional analysis by performing in vivo pharmacological manipulations. This experimental accessibility allowed us to study the relevance of microtubules in axis elongation, using nocodazole and taxol drugs to interfere with microtubule networks, followed by length measurement analysis. Additionally, we demonstrated that embryo handling had no effect on the development of Tribolium embryos, and we checked viability after dissection and bisection and during incubation using propidium iodide. The embryo culture protocol we describe here can be applied to study diverse developmental processes in Tribolium. We expect that this protocol can be adapted and applied to other arthropods.

  9. Tissue Culture as a Source of Replicates in Nonmodel Plants: Variation in Cold Response in Arabidopsis lyrata ssp. petraea.

    PubMed

    Kenta, Tanaka; Edwards, Jessica E M; Butlin, Roger K; Burke, Terry; Quick, W Paul; Urwin, Peter; Davey, Matthew P

    2016-12-07

    While genotype-environment interaction is increasingly receiving attention by ecologists and evolutionary biologists, such studies need genetically homogeneous replicates-a challenging hurdle in outcrossing plants. This could be potentially overcome by using tissue culture techniques. However, plants regenerated from tissue culture may show aberrant phenotypes and "somaclonal" variation. Here, we examined somaclonal variation due to tissue culturing using the response to cold treatment of photosynthetic efficiency (chlorophyll fluorescence measurements for Fv/Fm, Fv'/Fm', and ΦPSII, representing maximum efficiency of photosynthesis for dark- and light-adapted leaves, and the actual electron transport operating efficiency, respectively, which are reliable indicators of photoinhibition and damage to the photosynthetic electron transport system). We compared this to variation among half-sibling seedlings from three different families of Arabidopsis lyrata ssp. petraea Somaclonal variation was limited, and we could detect within-family variation in change in chlorophyll fluorescence due to cold shock successfully with the help of tissue-culture derived replicates. Icelandic and Norwegian families exhibited higher chlorophyll fluorescence, suggesting higher performance after cold shock, than a Swedish family. Although the main effect of tissue culture on Fv/Fm, Fv'/Fm', and ΦPSII was small, there were significant interactions between tissue culture and family, suggesting that the effect of tissue culture is genotype-specific. Tissue-cultured plantlets were less affected by cold treatment than seedlings, but to a different extent in each family. These interactive effects, however, were comparable to, or much smaller than the single effect of family. These results suggest that tissue culture is a useful method for obtaining genetically homogenous replicates for studying genotype-environment interaction related to adaptively-relevant phenotypes, such as cold response, in

  10. Tissue Culture as a Source of Replicates in Nonmodel Plants: Variation in Cold Response in Arabidopsis lyrata ssp. petraea

    PubMed Central

    Kenta, Tanaka; Edwards, Jessica E. M.; Butlin, Roger K.; Burke, Terry; Quick, W. Paul; Urwin, Peter; Davey, Matthew P.

    2016-01-01

    While genotype–environment interaction is increasingly receiving attention by ecologists and evolutionary biologists, such studies need genetically homogeneous replicates—a challenging hurdle in outcrossing plants. This could be potentially overcome by using tissue culture techniques. However, plants regenerated from tissue culture may show aberrant phenotypes and “somaclonal” variation. Here, we examined somaclonal variation due to tissue culturing using the response to cold treatment of photosynthetic efficiency (chlorophyll fluorescence measurements for Fv/Fm, Fv′/Fm′, and ΦPSII, representing maximum efficiency of photosynthesis for dark- and light-adapted leaves, and the actual electron transport operating efficiency, respectively, which are reliable indicators of photoinhibition and damage to the photosynthetic electron transport system). We compared this to variation among half-sibling seedlings from three different families of Arabidopsis lyrata ssp. petraea. Somaclonal variation was limited, and we could detect within-family variation in change in chlorophyll fluorescence due to cold shock successfully with the help of tissue-culture derived replicates. Icelandic and Norwegian families exhibited higher chlorophyll fluorescence, suggesting higher performance after cold shock, than a Swedish family. Although the main effect of tissue culture on Fv/Fm, Fv′/Fm′, and ΦPSII was small, there were significant interactions between tissue culture and family, suggesting that the effect of tissue culture is genotype-specific. Tissue-cultured plantlets were less affected by cold treatment than seedlings, but to a different extent in each family. These interactive effects, however, were comparable to, or much smaller than the single effect of family. These results suggest that tissue culture is a useful method for obtaining genetically homogenous replicates for studying genotype–environment interaction related to adaptively-relevant phenotypes, such

  11. Environmental RNAi in herbivorous insects

    PubMed Central

    Ivashuta, Sergey; Zhang, Yuanji; Wiggins, B. Elizabeth; Ramaseshadri, Partha; Segers, Gerrit C.; Johnson, Steven; Meyer, Steve E.; Kerstetter, Randy A.; McNulty, Brian C.; Bolognesi, Renata; Heck, Gregory R.

    2015-01-01

    Environmental RNAi (eRNAi) is a sequence-specific regulation of endogenous gene expression in a receptive organism by exogenous double-stranded RNA (dsRNA). Although demonstrated under artificial dietary conditions and via transgenic plant presentations in several herbivorous insects, the magnitude and consequence of exogenous dsRNA uptake and the role of eRNAi remains unknown under natural insect living conditions. Our analysis of coleopteran insects sensitive to eRNAi fed on wild-type plants revealed uptake of plant endogenous long dsRNAs, but not small RNAs. Subsequently, the dsRNAs were processed into 21 nt siRNAs by insects and accumulated in high quantities in insect cells. No accumulation of host plant-derived siRNAs was observed in lepidopteran larvae that are recalcitrant to eRNAi. Stability of ingested dsRNA in coleopteran larval gut followed by uptake and transport from the gut to distal tissues appeared to be enabling factors for eRNAi. Although a relatively large number of distinct coleopteran insect-processed plant-derived siRNAs had sequence complementarity to insect transcripts, the vast majority of the siRNAs were present in relatively low abundance, and RNA-seq analysis did not detect a significant effect of plant-derived siRNAs on insect transcriptome. In summary, we observed a broad genome-wide uptake of plant endogenous dsRNA and subsequent processing of ingested dsRNA into 21 nt siRNAs in eRNAi-sensitive insects under natural feeding conditions. In addition to dsRNA stability in gut lumen and uptake, dosage of siRNAs targeting a given insect transcript is likely an important factor in order to achieve measurable eRNAi-based regulation in eRNAi-competent insects that lack an apparent silencing amplification mechanism. PMID:25802407

  12. Environmental RNAi in herbivorous insects.

    PubMed

    Ivashuta, Sergey; Zhang, Yuanji; Wiggins, B Elizabeth; Ramaseshadri, Partha; Segers, Gerrit C; Johnson, Steven; Meyer, Steve E; Kerstetter, Randy A; McNulty, Brian C; Bolognesi, Renata; Heck, Gregory R

    2015-05-01

    Environmental RNAi (eRNAi) is a sequence-specific regulation of endogenous gene expression in a receptive organism by exogenous double-stranded RNA (dsRNA). Although demonstrated under artificial dietary conditions and via transgenic plant presentations in several herbivorous insects, the magnitude and consequence of exogenous dsRNA uptake and the role of eRNAi remains unknown under natural insect living conditions. Our analysis of coleopteran insects sensitive to eRNAi fed on wild-type plants revealed uptake of plant endogenous long dsRNAs, but not small RNAs. Subsequently, the dsRNAs were processed into 21 nt siRNAs by insects and accumulated in high quantities in insect cells. No accumulation of host plant-derived siRNAs was observed in lepidopteran larvae that are recalcitrant to eRNAi. Stability of ingested dsRNA in coleopteran larval gut followed by uptake and transport from the gut to distal tissues appeared to be enabling factors for eRNAi. Although a relatively large number of distinct coleopteran insect-processed plant-derived siRNAs had sequence complementarity to insect transcripts, the vast majority of the siRNAs were present in relatively low abundance, and RNA-seq analysis did not detect a significant effect of plant-derived siRNAs on insect transcriptome. In summary, we observed a broad genome-wide uptake of plant endogenous dsRNA and subsequent processing of ingested dsRNA into 21 nt siRNAs in eRNAi-sensitive insects under natural feeding conditions. In addition to dsRNA stability in gut lumen and uptake, dosage of siRNAs targeting a given insect transcript is likely an important factor in order to achieve measurable eRNAi-based regulation in eRNAi-competent insects that lack an apparent silencing amplification mechanism.

  13. Well Plate-Based Perfusion Culture Device for Tissue and Tumor Microenvironment Replication

    PubMed Central

    Zhang, W.; Gu, Y.; Hao, Y.; Sun, Q.; Konior, K.; Wang, H.

    2015-01-01

    There are significant challenges in developing in vitro human tissue and tumor models that can be used to support new drug development and evaluate personalized therapeutics. The challenges include: (1) working with primary cells which are often difficult to maintain ex vivo, (2) mimicking native microenvironments from which primary cells are harvested, and (3) lack of culture devices that can support these microenvironments to evaluate drug responses in a high-throughput manner. Here we report a versatile well plate-based perfusion culture device that was designed, fabricated and used to: (1) ascertain the role of perfusion in facilitating the expansion of human multiple myeloma cells and evaluate drug response of the cells, (2) preserve the physiological phenotype of primary murine osteocytes by reconstructing the 3D cellular network of osteocytes, and (3) circulate primary murine T cells through a layer of primary murine intestine epithelial cells to recapitulate the interaction of the immune cells with the epithelial cells. Through these diverse case studies, we demonstrate the device’s design features to support: (1) the convenient and spatiotemporal placement of cells and biomaterials into the culture wells of the device; (2) the replication of tissues and tumor microenvironments using perfusion, stromal cells, and/or biomaterials; (3) the circulation of non-adherent cells through the culture chambers; and (4) conventional tissue and cell characterization by plate reading, histology, and flow cytometry. Future challenges are identified and discussed from the perspective of manufacturing the device and making its operation for routine and wide use. PMID:26021852

  14. HGF, EGF and Dexamethasone induced gene expression patterns during formation of tissue in hepatic organoid cultures

    PubMed Central

    Michalopoulos, George K.; Bowen, William C.; Mulé, Karen; Luo, Jianhua

    2007-01-01

    Corticosteroids, HGF and EGF play important roles in hepatic biology. We have previously shown that these molecules are required for formation of tissue with specific histology in complex organoid cultures. Dexamethasone suppresses growth and induces hepatocyte maturation; HGF and EGF are needed for formation of the non-epithelial elements. All three are needed for formation of the biliary epithelium. The gene expression patterns by which corticosteroids, HGF and EGF mediate their effects in hepatic tissue formation are distinct. These patterns affect many gene families and are described in detail. In terms of main findings, Dexamethasone induces expression of both HNF4 and C/EBP-alpha, essential transcription factors for hepatocyte differentiation. It suppresses hepatocyte growth by suppressing many molecules associated with growth in liver and other tissues, including IL6, CXC-Chemokine receptor, Amphiregulin, COX-2, HIF, etc. HGF and EGF induce all members of the TGF-beta family. They also induced multiple CNS-related genes, probably associated with stellate cells. Dexamethasone, as well as HGF and EGF, induce expression of HNF6-beta, associated with biliary epithelium formation. Combined addition of all three molecules is associated with mature histology in which hepatocyte and biliary lineages are separate and HNF4 is expressed only in hepatocyte nuclei. In conclusion, the results provide new and often surprising information on the gene expression alterations by which corticosteroids, HGF and EGF exert their effects on formation of hepatic tissue. The results underscore the usefulness of the organoid cultures for generating information on histogenesis which cannot be obtained by other culture or whole animal models. PMID:12837037

  15. Review of vascularised bone tissue-engineering strategies with a focus on co-culture systems.

    PubMed

    Liu, Yuchun; Chan, Jerry K Y; Teoh, Swee-Hin

    2015-02-01

    Poor angiogenesis within tissue-engineered grafts has been identified as a main challenge limiting the clinical introduction of bone tissue-engineering (BTE) approaches for the repair of large bone defects. Thick BTE grafts often exhibit poor cellular viability particularly at the core, leading to graft failure and lack of integration with host tissues. Various BTE approaches have been explored for improving vascularisation in tissue-engineered constructs and are briefly discussed in this review. Recent investigations relating to co-culture systems of endothelial and osteoblast-like cells have shown evidence of BTE efficacy in increasing vascularization in thick constructs. This review provides an overview of key concepts related to bone formation and then focuses on the current state of engineered vascularized co-culture systems using bone repair as a model. It will also address key questions regarding the generation of clinically relevant vascularized bone constructs as well as potential directions and considerations for research with the objective of pursuing engineered co-culture systems in other disciplines of vascularized regenerative medicine. The final objective is to generate serious and functional long-lasting vessels for sustainable angiogenesis that will enable enhanced cellular survival within thick voluminous bone grafts, thereby aiding in bone formation and remodelling in the long term. However, more evidence about the quality of blood vessels formed and its associated functional improvement in bone formation as well as a mechanistic understanding of their interactions are necessary for designing better therapeutic strategies for translation to clinical settings. Copyright © 2012 John Wiley & Sons, Ltd.

  16. Insect Resistance

    USDA-ARS?s Scientific Manuscript database

    Insect pests exhibit a diverse array of genetic-based responses when interacting with crop systems; these changes can be in response to pathogens, symbiotic microbes, host plants, chemicals, and the environment. Agricultural research has for decades focused on gathering crucial information on the bi...

  17. Frozen and fresh ovarian tissue require different culture media to promote in vitro development of bovine preantral follicles.

    PubMed

    Castro, Simone Vieira; Carvalho, Adeline Andrade; Silva, Cleidson Manoel Gomes; Santos, Francielli Weber; Campello, Cláudio Cabral; de Figueiredo, José Ricardo; Rodrigues, Ana Paula Ribeiro

    2014-10-01

    The aim of this study was to evaluate the efficiency of different media in the in vitro culture of bovine preantral follicles that were used either fresh or following slow freezing treatment. Frozen and fresh noncultured or cultured ovarian fragments were processed for histological, viability, and cell proliferation analyses. For cryopreservation, a solution containing 1.5 M ethylene glycol was frozen in a programmable biological freezer. After thawing, a portion of the samples was destined for frozen controls. The remainder were cultured in vitro for 5 days in three media: α-MEM, McCoy, or M199. Samples from these culture media were collected on days 1 and 5 for quantification of reactive oxygen species (ROS) and for hormonal assays. In fresh-cultured tissues, the percentage of morphologically normal follicles was significantly higher when cultured in M199 compared to that in the other media. In frozen-cultured tissues, McCoy medium was significantly superior to the other media, and was the only treatment that helped in maintaining the viability similar to fresh and frozen controls. Upon quantification of the nucleolus organizer region, we observed greater proliferation of granulosa cells in the frozen-cultured tissues with McCoy medium, and lesser proliferation in fresh-cultured tissues only with α-MEM. In frozen-cultured tissues, ROS levels were highest at day 1 and progressively reduced during culture, independent of the media used. In conclusion, under the conditions used in this study, the M199 and McCoy media are recommended for the culture of follicles derived from fresh and frozen ovarian tissues, respectively.

  18. Changes in adipose tissue stromal-vascular cells in primary culture due to porcine sera

    SciTech Connect

    Jewell, D.E.; Hausman, G.J.

    1986-03-01

    This study was conducted to determine the response of rat stromal-vascular cells to pig sea. Sera were collected from unselected contemporary (lean) and high backfat thickness selected (obese) pigs. Sera from obese pigs were collected either by exsanguination or cannulation. sera from lean pigs during the growing phase (45 kg) and the fattening phase (100-110 kg) were collected. Stromal-vascular cells derived rom rat inguinal tissue were cultured on either 25 cm/sup 2/ flasks, collagen-coated coverslips or petri dishes. Cell proliferation was measured by (/sup 3/H)-thymidine incorporation during the fourth day of culture. Coverslip cultures were used for histochemical analysis. Petri dish cultures were used for analysis of Sn-glycerol-3-phosphate dehydrogenase (GPDH) activity. All cells were plated for 24 hours in media containing 10 fetal bovine sera. Test media contained 2.5, 5.0, 10.0% sera. Sera from obese pigs increased GPDH activity and fat cell production when compared to the lean controls. The increased concentration of sera increased esterase activity and lipid as measured with oil red O. The sera from obese pigs collected at slaughter stimulated more fat cell production than obese sera collected by cannulation. These studies show there are adipogenic factors in obese pigs sera which promote fat cell development in primary cell culture.

  19. Multilineage co-culture of adipose-derived stem cells for tissue engineering.

    PubMed

    Zhao, Yimu; Waldman, Stephen D; Flynn, Lauren E

    2015-07-01

    Stem cell interactions through paracrine cell signalling can regulate a range of cell responses, including metabolic activity, proliferation and differentiation. Moving towards the development of optimized tissue-engineering strategies with adipose-derived stem cells (ASCs), the focus of this study was on developing indirect co-culture models to study the effects of mature adipocytes, chondrocytes and osteoblasts on bovine ASC multilineage differentiation. For each lineage, ASC differentiation was characterized by histology, gene expression and protein expression, in the absence of key inductive differentiation factors for the ASCs. Co-culture with each of the mature cell populations was shown to successfully induce or enhance lineage-specific differentiation of the ASCs. In general, a more homogeneous but lower-level differentiation response was observed in co-culture as compared to stimulating the bovine ASCs with inductive differentiation media. To explore the role of the Wnt canonical and non-canonical signalling pathways within the model systems, the effects of the Wnt inhibitors WIF-1 and DKK-1 on multilineage differentiation in co-culture were assessed. The data indicated that Wnt signalling may play a role in mediating ASC differentiation in co-culture with the mature cell populations. Copyright © 2012 John Wiley & Sons, Ltd.

  20. Long-term immunologically competent human peripheral lymphoid tissue cultures in a 3D bioreactor

    PubMed Central

    Kuzin, Igor; Sun, Hongliang; Moshkani, Safiekhatoon; Feng, Changyong; Mantalaris, Athanasios; Wu, JH David; Bottaro, Andrea

    2011-01-01

    Peripheral lymphoid organs (PLOs), the primary sites of development of adaptive immune responses, display a complex structural organization reflecting separation of cellular subsets (e.g. T and B lymphocytes) and functional compartments which is critical for immune function. The generation of in vitro culture systems capable of recapitulating salient features of PLOs for experimental, biotechnological and clinical applications would be highly desirable, but has been hampered so far by the complexity of these systems. We have previously developed a three-dimensional bioreactor system for long-term, functional culture of human bone marrow cells on macroporous microspheres in a packed-bed bioreactor with frequent medium change. Here we adapt the same system for culture of human primary cells from PLOs (tonsil) in the absence of specific exogenous growth factors or activators. Cells in this system displayed higher viability over several weeks, and maintain population diversity and cell surface markers largely comparable to primary cells. Light microscopy showed cells organizing in large diverse clusters within the scaffold pores and presence of B cell-enriched areas. Strikingly, these cultures generated a significant number of antibody-producing B cells when challenged with a panel of diverse antigens, as expected from a lymphoid tissue. Thus the three-dimensional tonsil bioreactor culture system may serve as a useful model of PLOs by recapitulating their structural organization and function ex vivo. PMID:21309085

  1. Histochemical study of apoptotic epithelial cells depending on testosterone in primary cultured rat prostatic tissues.

    PubMed

    Furuya, T; Kubo, M; Ueno, A; Fujii, Y; Baba, T; Ohno, S

    2000-04-01

    To clarify whether apoptosis can be induced in cultured rat prostatic epithelial cells, they were investigated at various time points, depending on different concentrations of testosterone. Ventral lobes of rat prostates were cultured as small pieces of tissues up to 14 days. They were examined by anti-Fas antibody immunostaining and also compared to findings revealed by in situ end-labelling (ISEL) technique. To clarify apoptotic nuclei at high resolution, the quick-freezing and deep-etching (QF-DE) method was also used, as reported before. The localization and appearance of Fas-positive cells were detected more widely and earlier than those of ISEL-positive cells, but both label-positive localizations were closely related to each other. In addition, they were detected more often in epithelial cells cultured with low testosterone concentrations. By the QF-DE method, chromatin fibers were found to be broken in spotty parts of apoptotic nuclei. We could control the concentration of testosterone in culture medium and detect the appearance of Fas antigen in cultured prostatic epithelial cells, followed by apoptotic changes. So, Fas and Fas-ligand system is one candidate for apoptosis in the prostate glands, depending on removal of hormonal testosterone.

  2. Resistin induces lipolysis and suppresses adiponectin secretion in cultured human visceral adipose tissue.

    PubMed

    Chen, Neng; Zhou, Lingmei; Zhang, Zixiang; Xu, Jiaying; Wan, Zhongxiao; Qin, Liqiang

    2014-11-01

    Resistin is an adipokine secreted from adipose tissue, which is likely involved in the development of obesity and insulin resistance via its interaction with other organs, as well as affecting adipose tissue function. The impact of resistin treatment on lipolysis and adiponectin secretion in human visceral adipose tissue is currently unknown. Mesenteric adipose tissue samples were obtained from 14 male subjects [age 54±6 yr, body mass index (BMI) 23.59±0.44 kg/m(2)] undergoing abdominal surgeries. Adipose tissues were cultured and treated with resistin (100 ng/mL, 24h) in the absence or presence of different signaling inhibitors: H89 (1 μM), PD98059 (25 μM) and SB201290 (20 μM) for glycerol and non-esterified fatty acid (NEFA) measurement. Adiponectin level from media at 24 h was also measured via ELISA. Adipose tissue minces after resistin incubation (100 ng/mL, 24 h) were also collected for further Western blotting analysis. Resistin resulted in significant induction of glycerol (3.62±0.57 vs. 5.30±1.11 mmol/L/g tissue, p<0.05) and NEFA (5.99±1.06 vs. 8.48±1.57 mmol/L/g tissue, p<0.05) release at 24 h. H89 and PD98059 partially inhibited resistin induced glycerol and NEFA release, while SB201290 has no such effect. Resistin induced the phosphorylation of p-HSL at serine 563, PKA at ~62 kDa and ERK1/2 as measured by Western blotting. Resistin led to significant reduction of the secretion of adiponectin (38.16±10.43 vs. 21.81±4.21 ng/mL/g tissue, p<0.05). Our current findings implicate that resistin might play a significant role in obesity related pathologies in various tissues via its effect on adipose tissue function. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Surface functionalization of nanobiomaterials for application in stem cell culture, tissue engineering, and regenerative medicine.

    PubMed

    Rana, Deepti; Ramasamy, Keerthana; Leena, Maria; Jiménez, Constanza; Campos, Javier; Ibarra, Paula; Haidar, Ziyad S; Ramalingam, Murugan

    2016-05-01

    Stem cell-based approaches offer great application potential in tissue engineering and regenerative medicine owing to their ability of sensing the microenvironment and respond accordingly (dynamic behavior). Recently, the combination of nanobiomaterials with stem cells has paved a great way for further exploration. Nanobiomaterials with engineered surfaces could mimic the native microenvironment to which the seeded stem cells could adhere and migrate. Surface functionalized nanobiomaterial-based scaffolds could then be used to regulate or control the cellular functions to culture stem cells and regenerate damaged tissues or organs. Therefore, controlling the interactions between nanobiomaterials and stem cells is a critical factor. However, surface functionalization or modification techniques has provided an alternative approach for tailoring the nanobiomaterials surface in accordance to the physiological surrounding of a living cells; thereby, enhancing the structural and functional properties of the engineered tissues and organs. Currently, there are a variety of methods and technologies available to modify the surface of biomaterials according to the specific cell or tissue properties to be regenerated. This review highlights the trends in surface modification techniques for nanobiomaterials and the biological relevance in stem cell-based tissue engineering and regenerative medicine. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:554-567, 2016.

  4. Plasticity and banking potential of cultured adipose tissue derived mesenchymal stem cells.

    PubMed

    Dhanasekaran, M; Indumathi, S; Poojitha, R; Kanmani, A; Rajkumar, J S; Sudarsanam, D

    2013-06-01

    The present day research on stem cells is yet not filled to the gunwales. The correlation of stem cell technology with tissue repair still has a long way to go. Since Embryonic stem cells are a kind of thorn inside when it comes to therapeutics, there emerged few potent contemporary sources of stem cells. Though bone marrow proves to be the pioneer among these, they lose themselves to adipose tissue in various aspects. The major shortcoming of bone marrow lies in lieu of its loss in potency with age. Adipose tissue puts up a tough competition among leading edge stem cell sources like cord blood and cord matrix. Adipose tissue wins over its counterparts in that it possesses astounding proliferation potency in vitro and holds a prominent stand in showcasing in vivo tissue repair efficacy. In spite of its precedence, the whole enchilada of adipose derived stem cells is still in its salad days. In our work we aim at excogitating the Mesenchymal stem cell population present in cultured adipose derived stem cells, in a wide perspective. Furthermore, the coalition of cell adhesion molecules with the proliferation potency of MSC and analysis of growth curve of ADSC was also paid accolade. The presence of robust MSC with immense differentiation and transdifferentiation potency was endorsed by lucrative differentiation of P3 cells into mesodermal and neuronal lineages. Additionally, mesenchymal stem cells exhibiting coherent expression of surface markers at P3 in all samples can be cryopreserved for therapeutic applications.

  5. Native and recombinant bovine growth hormone antagonize insulin action in cultured bovine adipose tissue.

    PubMed

    Etherton, T D; Evock, C M; Kensinger, R S

    1987-08-01

    The current study was undertaken to determine if pituitary bovine GH (pbGH) and recombinant bGH (rbGH) antagonized insulin action in bovine adipose tissue after acute (2-h) and chronic (48-h) exposure and whether this was an intrinsic property of bGH. Insulin action (measured as the effect on incorporation of acetate-carbon into long-chain fatty acids) was unaffected by bGH in short term incubations regardless of whether hydrocortisone (HC) was present. After 48 h of culture, however, both pbGH and rbGH similarly antagonized the ability of insulin to maintain lipogenic capacity. This antagonism was dependent upon the presence of HC and was dose dependent, with half-maximal inhibition of insulin action occurring at about 0.5 ng/ml bGH. Bovine PRL did not mimic the effects of bGH on insulin action. These results establish that bGH antagonizes insulin action in bovine adipose tissue and that this effect is dependent upon long term exposure and the inclusion of HC in the culture medium. The fact that both rbGH and pbGH acted similarly indicates that this is an intrinsic property of bGH. The effect of bGH on insulin-dependent maintenance of lipogenic capacity may play an important role in redirecting nutrients away from adipose tissue to other tissues, such as muscle or mammary tissue. It is speculated that this metabolic effect of bGH plays an important role in the adaptive response to chronic bGH treatment, which increases milk yield of dairy cows and growth performance of beef cattle.

  6. Cardiac cell culture model as a left ventricle mimic for cardiac tissue generation.

    PubMed

    Nguyen, Mai-Dung; Tinney, Joseph P; Yuan, Fangping; Roussel, Thomas J; El-Baz, Ayman; Giridharan, Guruprasad; Keller, Bradley B; Sethu, Palaniappan

    2013-09-17

    A major challenge in cardiac tissue engineering is the delivery of hemodynamic mechanical cues that play a critical role in the early development and maturation of cardiomyocytes. Generation of functional cardiac tissue capable of replacing or augmenting cardiac function therefore requires physiologically relevant environments that can deliver complex mechanical cues for cardiomyocyte functional maturation. The goal of this work is the development and validation of a cardiac cell culture model (CCCM) microenvironment that accurately mimics pressure-volume changes seen in the left ventricle and to use this system to achieve cardiac cell maturation under conditions where mechanical loads such as pressure and stretch are gradually increased from the unloaded state to conditions seen in vivo. The CCCM platform, consisting of a cell culture chamber integrated within a flow loop was created to accomplish culture of 10 day chick embryonic ventricular cardiomyocytes subject to 4 days of stimulation (10 mmHg, ∼13% stretch at a frequency of 2 Hz). Results clearly show that CCCM conditioned cardiomyocytes accelerate cardiomyocyte structural and functional maturation in comparison to static unloaded controls as evidenced by increased proliferation, alignment of actin cytoskeleton, bundle-like sarcomeric α-actinin expression, higher pacing beat rate at lower threshold voltages, and increased shortening. These results confirm the CCCM microenvironment can accelerate immature cardiac cell structural and functional maturation for potential cardiac regenerative applications.

  7. An electrochemical approach to monitor pH change in agar media during plant tissue culture.

    PubMed

    Wang, Min; Ha, Yang

    2007-05-15

    In this work, metal oxide microelectrodes were developed to monitor pH change in agar media during plant tissue culture. An antimony wire was produced by a new approach "capillary melt method". The surface of the obtained antimony wire was oxidized in a potassium nitrate melt to fabricate an antimony oxide film for pH sensing. Characterization results show that the oxide layer grown on the wire surface consists of Sb(2)O(3) crystal phase. The sensing response, open-circuit potential, of the electrode has a good linear relationship (R(2)=1.00) with pH value of the test solution. Adding organic compounds into the test media would not affect the linear relationship, although the slope of the lines varied with different ingredients added. The antimony oxide electrodes were employed to continuously monitor pH change of agar culture media during a 2-week plant tissue culture of Dendrobium candidum. The antimony oxide electrode fabricated this way has the advantages of low cost, easy fabrication, fast response, and almost no contamination introduced into the system. It would be suitable for in situ and continuous pH measurement in many bio applications.

  8. Thick-tissue bioreactor as a platform for long-term organotypic culture and drug delivery

    PubMed Central

    Markov, Dmitry A.; Lu, Jenny Q.; Samson, Philip C.; Wikswo, John P.; McCawley, Lisa J.

    2013-01-01

    We have developed a novel, portable, gravity-fed, microfluidics-based platform suitable for optical interrogation of long-term organotypic cell culture. This system is designed to provide convenient control of cell maintenance, nutrients, and experimental reagent delivery to tissue-like cell densities housed in a transparent, low-volume microenvironment. To demonstrate the ability of our Thick-Tissue Bioreactor (TTB) to provide stable, long-term maintenance of high-density cellular arrays, we observed the morphogenic growth of human mammary epithelial cell lines, MCF-10A and their invasive variants, cultured under three-dimensional (3D) conditions inside our system. Over the course of 21 days, these cells typically develop into hollow “mammospheres” if cultured in standard 3D Matrigel. This complex morphogenic process requires alterations in a variety of cellular functions, including degradation of extracellular matrix that is regulated by cell-produced matrix proteinases. For our “drug” delivery testing and validation experiments we have introduced proteinase inhibitors into the fluid supply system, and we observed both reduced proteinase activity and inhibited cellular morphogenesis. The size inhibition results correlated well with the overall proteinase activities of the tested cells. PMID:22964798

  9. Beauveria bassiana (Balsamo) Vuillemin as an endophyte in tissue culture banana (Musa spp.).

    PubMed

    Akello, Juliet; Dubois, Thomas; Gold, Clifford S; Coyne, Daniel; Nakavuma, Jessica; Paparu, Pamela

    2007-09-01

    Beauveria bassiana is considered a virulent pathogen against the banana weevil Cosmopolites sordidus. However, current field application techniques for effective control against this pest remain a limitation and an alternative method for effective field application needs to be investigated. Three screenhouse experiments were conducted to determine the ability of B. bassiana to form an endophytic relationship with tissue culture banana (Musa spp.) plants and to evaluate the plants for possible harmful effects resulting from this relationship. Three Ugandan strains of B. bassiana (G41, S204 and WA) were applied by dipping the roots and rhizome in a conidial suspension, by injecting a conidial suspension into the plant rhizome and by growing the plants in sterile soil mixed with B. bassiana-colonized rice substrate. Four weeks after inoculation, plant growth parameters were determined and plant tissue colonization assessed through re-isolation of B. bassiana. All B. bassiana strains were able to colonize banana plant roots, rhizomes and pseudostem bases. Dipping plants in a conidial suspension achieved the highest colonization with no negative effect on plant growth or survival. Beauveria bassiana strain G41 was the best colonizer (up to 68%, 79% and 41% in roots, rhizome and pseudostem base, respectively) when plants were dipped. This study demonstrated that, depending on strain and inoculation method, B. bassiana can form an endophytic relationship with tissue culture banana plants, causing no harmful effects and might provide an alternative method for biological control of C. sordidus.

  10. Enhancing plant regeneration in tissue culture: a molecular approach through manipulation of cytokinin sensitivity.

    PubMed

    Hill, Kristine; Schaller, G Eric

    2013-10-01

    Micropropagation is used for commercial purposes worldwide, but the capacity to undergo somatic organogenesis and plant regeneration varies greatly among species. The plant hormones auxin and cytokinin are critical for plant regeneration in tissue culture, with cytokinin playing an instrumental role in shoot organogenesis. Type-B response regulators govern the transcriptional output in response to cytokinin and are required for plant regeneration. In our paper published in Plant Physiology, we explored the functional redundancy among the 11 type-B Arabidopsis response regulators (ARRs). Interestingly, we discovered that the enhanced expression of one family member, ARR10, induced hypersensitivity to cytokinin in multiple assays, including callus greening and shoot induction of explants. Here we 1) discuss the hormone dependence for in vitro plant regeneration, 2) how manipulation of the cytokinin response has been used to enhance plant regeneration, and 3) the potential of the ARR10 transgene as a tool to increase the regeneration capacity of agriculturally important crop plants. The efficacy of ARR10 for enhancing plant regeneration likely arises from its ability to transcriptionally regulate key cytokinin responsive genes combined with an enhanced protein stability of ARR10 compared with other type-B ARRs. By increasing the capacity of key tissues and cell types to respond to cytokinin, ARR10, or other type-B response regulators with similar properties, could be used as a tool to combat the recalcitrance of some crop species to tissue culture techniques.

  11. Targeted metabolomics in cultured cells and tissues by mass spectrometry: method development and validation.

    PubMed

    Abdel Rahman, Anas M; Pawling, Judy; Ryczko, Michael; Caudy, Amy A; Dennis, James W

    2014-10-03

    Metabolomics is the identification and quantitation of small bio-molecules (metabolites) in biological samples under various environmental and genetic conditions. Mass spectrometry provides the unique opportunity for targeted identification and quantification of known metabolites by selective reaction monitoring (SRM). However, reproducibility of this approach depends on careful consideration of sample preparation, chemical classes, and stability of metabolites to be evaluated. Herein, we introduce and validate a targeted metabolite profiling workflow for cultured cells and tissues by liquid chromatography-triple quadrupole tandem mass spectrometry. The method requires a one-step extraction of water-soluble metabolites and targeted analysis of central metabolites that include glycolysis, amino acids, nucleotides, citric acid cycle, and the hexosamine biosynthetic pathway. The sensitivity, reproducibility and molecular stability of each targeted metabolite were assessed under experimental conditions. Quantitation of metabolites by peak area ratio was linear with a dilution over a 4 fold dynamic range with minimal deviation R(2)=0.98. Inter- and intra-day precision with cells and tissues had an average coefficient of variation <15% for cultured cell lines, and somewhat higher for mouse liver tissues. The method applied in triplicate measurements readily distinguished immortalized cells from malignant cells, as well as mouse littermates based on their hepatic metabolic profiles.

  12. Long term culture of epithelia in a continuous fluid gradient for biomaterial testing and tissue engineering.

    PubMed

    Minuth, W W; Strehl, R; Schumacher, K; de Vries, U

    2001-01-01

    Epithelia perform barrier functions being exposed to different fluids on the luminal and basal side. For long-term testing of new biomaterials as artificial basement membrane substitutes, it is important to simulate this fluid gradient. Individually-selected biomaterials can be placed in tissue carriers and in gradient containers, where different media are superfused. Epithelia growing on the tissue carriers form a physiological barrier during the whole culture period. Frequently however, pressure differences between the luminal and basal compartments occur. This is caused by a unilateral accumulation of gas bubbles in the container compartments resulting in tissue damage. Consequently, the occurence of gas bubbles has to be minimized. Air bubbles in the perfusion culture medium preferentially accumulate at sites where different materials come into contact. The first development is new screw caps for media bottles, specifically designed to allow fluid contact with only the tube and not the cap material. The second development is the separation of remaining gas bubbles from the liquid phase in the medium using newly-developed gas expander modules. By the application of these new tools, the yield of embryonic renal collecting duct epithelia with intact barrier function on a fragile natural support material can be significantly increased compared to earlier experiments.

  13. Tissue engineering of autologous cartilage grafts in three-dimensional in vitro macroaggregate culture system.

    PubMed

    Naumann, Andreas; Dennis, James E; Aigner, Joachim; Coticchia, James; Arnold, James; Berghaus, Alexander; Kastenbauer, Ernst R; Caplan, Arnold I

    2004-01-01

    In the field of tissue engineering, techniques have been described to generate cartilage tissue with isolated chondrocytes and bioresorbable or nonbioresorbable biomaterials serving as three-dimensional cell carriers. In spite of successful cartilage engineering, problems of uneven degradation of biomaterial, and unforeseeable cell-biomaterial interactions remain. This study represents a novel technique to engineer cartilage by an in vitro macroaggregate culture system without the use of biomaterials. Human nasoseptal or auricular chondrocytes were enzymatically isolated and amplified in conventional monolayer culture before the cells were seeded into a cell culture insert with a track-etched membrane and cultured in vitro for 3 weeks. The new cartilage formed within the in vitro macroaggregates was analyzed by histology (toluidine blue, von Kossa-safranin O staining), and immunohistochemistry (collagen types I, II, V, VI, and X and elastin). The total glycosaminoglycan (GAG) content of native and engineered auricular as well as nasal cartilage was assayed colorimetrically in a safranin O assay. The biomechanical properties of engineered cartilage were determined by biphasic indentation assay. After 3 weeks of in vitro culture, nasoseptal and auricular chondrocytes synthesized new cartilage with the typical appearance of hyaline nasal cartilage and elastic auricular cartilage. Immunohistochemical staining of cartilage samples showed a characteristic pattern of staining for collagen antibodies that varied in location and intensity. In all samples, intense staining for cartilage-specific collagen types I, II, and X was observed. By the use of von Kossa-safranin O staining a few positive patches-a possible sign of beginning mineralization within the engineered cartilages-were detected. The unique pattern for nasoseptal cartilage is intense staining for type V collagen, whereas auricular cartilage is only weakly positive for collagen types V and VI. Engineered nasal

  14. In vitro differentiation of rat spermatogonia into round spermatids in tissue culture.

    PubMed

    Reda, A; Hou, M; Winton, T R; Chapin, R E; Söder, O; Stukenborg, J-B

    2016-09-01

    Do the organ culture conditions, previously defined for in vitro murine male germ cell differentiation, also result in differentiation of rat spermatogonia into post-meiotic germ cells exhibiting specific markers for haploid germ cells? We demonstrated the differentiation of rat spermatogonia into post-meiotic cells in vitro, with emphasis on exhibiting, protein markers described for round spermatids. Full spermatogenesis in vitro from immature germ cells using an organ culture technique in mice was first reported 5 years ago. However, no studies reporting the differentiation of rat spermatogonia into post-meiotic germ cells exhibiting the characteristic protein expression profile or into functional sperm have been reported. Organ culture of testicular fragments of 5 days postpartum (dpp) neonatal rats was performed for up to 52 days. Evaluation of microscopic morphology, testosterone levels, mRNA and protein expression as measured by RT-qPCR and immunostaining were conducted to monitor germ cell differentiation in vitro. Potential effects of melatonin, Glutamax® medium, retinoic acid and the presence of epidydimal fat tissue on the spermatogenic process were evaluated. A minimum of three biological replicates were performed for all experiments presented in this study. One-way ANOVA, ANOVA on ranks and student's t-test were applied to perform the statistical analysis. Male germ cells, present in testicular tissue pieces grown from 5 dpp rats, exhibited positive protein expression for Acrosin and Crem (cAMP (cyclic adenosine mono phosphate) response element modulator) after 52 days of culture in vitro. Intra-testicular testosterone production could be observed after 3 days of culture, while when epididymal fat tissue was added, spontaneous contractility of cultured seminiferous tubules could be observed after 21 days. However, no supportive effect of the supplementation with any factor or the co-culturing with epididymal fat tissue on germ cell differentiation in

  15. In vitro differentiation of rat spermatogonia into round spermatids in tissue culture

    PubMed Central

    Reda, A.; Hou, M.; Winton, T.R.; Chapin, R.E.; Söder, O.; Stukenborg, J.-B.

    2016-01-01

    STUDY QUESTION Do the organ culture conditions, previously defined for in vitro murine male germ cell differentiation, also result in differentiation of rat spermatogonia into post-meiotic germ cells exhibiting specific markers for haploid germ cells? SUMMARY ANSWER We demonstrated the differentiation of rat spermatogonia into post-meiotic cells in vitro, with emphasis on exhibiting, protein markers described for round spermatids. WHAT IS KNOWN ALREADY Full spermatogenesis in vitro from immature germ cells using an organ culture technique in mice was first reported 5 years ago. However, no studies reporting the differentiation of rat spermatogonia into post-meiotic germ cells exhibiting the characteristic protein expression profile or into functional sperm have been reported. STUDY DESIGN, SAMPLES/MATERIALS, METHODS Organ culture of testicular fragments of 5 days postpartum (dpp) neonatal rats was performed for up to 52 days. Evaluation of microscopic morphology, testosterone levels, mRNA and protein expression as measured by RT-qPCR and immunostaining were conducted to monitor germ cell differentiation in vitro. Potential effects of melatonin, Glutamax® medium, retinoic acid and the presence of epidydimal fat tissue on the spermatogenic process were evaluated. A minimum of three biological replicates were performed for all experiments presented in this study. One-way ANOVA, ANOVA on ranks and student's t-test were applied to perform the statistical analysis. MAIN RESULTS AND THE ROLE OF CHANCE Male germ cells, present in testicular tissue pieces grown from 5 dpp rats, exhibited positive protein expression for Acrosin and Crem (cAMP (cyclic adenosine mono phosphate) response element modulator) after 52 days of culture in vitro. Intra-testicular testosterone production could be observed after 3 days of culture, while when epididymal fat tissue was added, spontaneous contractility of cultured seminiferous tubules could be observed after 21 days. However, no

  16. Insects: A nutritional alternative

    NASA Technical Reports Server (NTRS)

    Dufour, P. A.

    1981-01-01

    Insects are considered as potential food sources in space. Types of insects consumed are discussed. Hazards of insect ingestion are considered. Insect reproduction, requirements, and raw materials conversion are discussed. Nutrition properties and composition of insects are considered. Preparation of insects as human food is discussed.

  17. Cell-surface glycoproteins of human sarcomas: differential expression in normal and malignant tissues and cultured cells

    SciTech Connect

    Rettig, W.F.; Garin-Chesa, P.; Beresford, H.R.; Oettgen, H.F.; Melamed, M.R.; Old, L.J.

    1988-05-01

    Normal differentiation and malignant transformation of human cells are characterized by specific changes in surface antigen phenotype. In the present study, the authors have defined six cell-surface antigens of human sarcomas and normal mesenchymal cells, by using mixed hemadsorption assays and immunochemical methods for the analysis of cultured cells and immunohistochemical staining for the analysis of normal tissues and > 200 tumor specimens. Differential patterns of F19, F24, G171, G253, S5, and Thy-1 antigen expression were found to characterize (i) subsets of cultured sarcoma cell lines, (ii) cultured fibroblasts derived from various organs, (iii) normal resting and activated mesenchymal tissues, and (iv) sarcoma and nonmesenchymal tumor tissues. These results provide a basic surface antigenic map for cultured mesenchymal cells and mesenchymal tissues and permit the classification of human sarcomas according to their antigenic phenotypes.

  18. Non-enzymatic, serum-free tissue culture of pre-invasive breast lesions for spontaneous generation of mammospheres.

    PubMed

    Espina, Virginia; Edmiston, Kirsten H; Liotta, Lance A

    2014-11-08

    Breast ductal carcinoma in situ (DCIS), by definition, is proliferation of neoplastic epithelial cells within the confines of the breast duct, without breaching the collagenous basement membrane. While DCIS is a non-obligate precursor to invasive breast cancers, the molecular mechanisms and cell populations that permit progression to invasive cancer are not fully known. To determine if progenitor cells capable of invasion existed within the DCIS cell population, we developed a methodology for collecting and culturing sterile human breast tissue at the time of surgery, without enzymatic disruption of tissue. Sterile breast tissue containing ductal segments is harvested from surgically excised breast tissue following routine pathological examination. Tissue containing DCIS is placed in nutrient rich, antibiotic-containing, serum free medium, and transported to the tissue culture laboratory. The breast tissue is further dissected to isolate the calcified areas. Multiple breast tissue pieces (organoids) are placed in a minimal volume of serum free medium in a flask with a removable lid and cultured in a humidified CO₂ incubator. Epithelial and fibroblast cell populations emerge from the organoid after 10 - 14 days. Mammospheres spontaneously form on and around the epithelial cell monolayer. Specific cell populations can be harvested directly from the flask without disrupting neighboring cells. Our non-enzymatic tissue culture system reliably reveals cytogenetically abnormal, invasive progenitor cells from fresh human DCIS lesions.

  19. Evaluation of viral clearance in the production of HPV-16 L1 virus-like particles purified from insect cell cultures.

    PubMed

    Jeong, Hye-Sung; Shin, Jin-Ho; Choi, Jung-Yun; Kim, Young-Lim; Bae, Jei-Jun; Kim, Byoung-Guk; Ryu, Seung-Rel; Kim, Soon-Nam; Min, Hong-Ki; Kim, Hong-Jin; Park, Sue-Nie

    2006-12-01

    Biopharmaceutical products produced from cell cultures have a potential for viral contamination from cell sources or from adventitious introduction during production. The objective of this study was to assess viral clearance in the production of insect cell-derived recombinant human papillomavirus (HPV)-16 type L1 virus-like particles (VLPs). We selected Japanese encephalitis virus (JEV), bovine viral diarrhea virus (BVDV), and minute virus of mice (MVM) as relevant viruses to achieve the aim of this study. A downstream process for the production of purified HPV-16 L1 VLPs consisted of detergent lysis of harvested cells, sonication, sucrose cushion centrifugation, and cesium chloride (CsCl) equilibrium density centrifugation. The capacity of each purification/treatment step to clear viruses was expressed as reduction factor by measuring the difference in log virus infectivity of sample pools before and after each process. As a result, detergent treatment (0.5% v/v, Nonidet P-40/phosphate-buffered saline) was effective for inactivating enveloped viruses such as JEV and BVDV, but no significant reduction (< 1.0 log(10)) was observed in the non-enveloped MVM. The CsCl equilibrium density centrifugation was fairly effective for separating all three relevant adventitious viruses with different CsCl buoyant density from that of HPV-16 L1 VLPs (JEV, BVDV, and MVM = 4.30, 3.10, > or = 4.40 log(10) reductions). Given the study conditions we used, overall cumulative reduction factors for clearance of JEV, BVDV, and MVM were > or = 10.50, > or = 9.20, and > or = 6.40 log(10) in 150 ml of starting cell cultures, respectively.

  20. Increased oxidative stress in the placenta tissue and cell culture of tumour-bearing pregnant rats.

    PubMed

    Toledo, M T; Ventrucci, G; Gomes-Marcondes, M C C

    2011-11-01

    Placental dysfunction leads to foetal damage, which jeopardises the exchange between the maternal and foetal systems. We evaluated the effects of tumour growth on the activity of antioxidant enzymes and oxidative stress in placental tissue and cell culture from tumour-bearing pregnant rats compared to non-tumour-bearing pregnant rats that were ascitic fluid injected. Ascitic fluid is obtained from Walker tumour-bearing rats and contains a cytokine called Walker factor (WF), which is a molecule similar to proteolysis-inducing factor (PIF), and induces changes in protein metabolism and oxidative stress. Pregnant Wistar rats were distributed into control (C), tumour-bearing (W) and ascitic fluid injected (A) groups and were sacrificed on days 16, 19 and 21 of pregnancy to analyse the profile of enzyme activities (glutathione-S-transferase (GST), catalase (CAT), alkaline phosphatase (AP)) and malondialdehyde (MDA) content in placental tissue. Meanwhile, placenta samples from all groups were obtained on day 21, placed in primary culture and treated with WF for 72 h. The presence of tumour or ascitic fluid reduced the protein content of the placental tissue. On day 16 there was a significant reduction in AP activity in W rats, and on day 19, CAT activity and MDA content significantly increased. These results indicate that the presence of cancer decreased antioxidant enzyme capacity in the placenta, increasing the amount of oxidation in these cells, which may contribute to irreversible placental damage and compromisefoetal development. WF treatment induces similar changes in placental cells in primary culture, resulting in less cell viability and increased oxidative stress. These results indicate that WF, provided by the tumour or inoculation of ascitic fluid, has negative effects on placental homeostasis, which impairs foetal health.

  1. Using organotypic (raft) epithelial tissue cultures for the biosynthesis and isolation of infectious human papillomaviruses

    PubMed Central

    Ozbun, Michelle A.; Patterson, Nicole A.

    2014-01-01

    Papillomaviruses have a strict tropism for epithelial cells and they are fully reliant on cellular differentiation for completion of their life cycles, resulting in the production of progeny virions. Thus, a permissive environment for full viral replication in vitro wherein virion morphogenesis occurs under cooperative viral and cellular cues requires the cultivation of epithelium. Presented in the first section of this unit is a protocol for growing differentiating epithelial tissues, whose structure and function mimics many important morphological and biochemical aspects of normal skin. The technique, pioneered by Asslineau and Pruniéras (Asselineau and Prunieras 1984) and modified by Kopan et al. (Kopan et al. 1987), involves growing epidermal cells atop a dermal equivalent consisting of live fibroblasts and a collagen lattice. Epithelial stratification and differentiation ensues when the keratinocyte-dermal equivalent is placed at the air-liquid interface. The apparent floating nature of the cell-matrix in this method led to the nickname “raft” cultures. The general technique can be applied to normal low passage keratinocytes, to cells stably transfected with papillomavirus genes or genomes, as well as keratinocytes established from neoplastic lesions. However, infectious papillomavirus particles have only been isolated from organotypic epithelial cultures initiated with cells that maintain oncogenic human papillomavirus genomes in an extrachomosomal replicative form. The second section of this unit is dedicated to a virion isolation method that minimizes aerosol and skin exposure to these human carcinogens. Although the focus of the protocols is on the growth of tissues that yields infectious papillomavirus progeny, this culture system facilitates the investigation of these fastidious viruses during their complex replicative cycles, and raft tissues can be manipulated and harvested at any point during the process. Importantly, a single step virus growth

  2. Using organotypic (raft) epithelial tissue cultures for the biosynthesis and isolation of infectious human papillomaviruses.

    PubMed

    Ozbun, Michelle A; Patterson, Nicole A

    2014-08-01

    Papillomaviruses have a strict tropism for epithelial cells, and they are fully reliant on cellular differentiation for completion of their life cycles, resulting in the production of progeny virions. Thus, a permissive environment for full viral replication in vitro-wherein virion morphogenesis occurs under cooperative viral and cellular cues-requires the cultivation of epithelium. Presented in the first section of this unit is a protocol to grow differentiating epithelial tissues that mimic many important morphological and biochemical aspects of normal skin. The technique involves growing epidermal cells atop a dermal equivalent consisting of live fibroblasts and a collagen lattice. Epithelial stratification and differentiation ensues when the keratinocyte-dermal equivalent is placed at the air-liquid interface. The apparent floating nature of the cell-matrix in this method led to the nickname "raft" cultures. The general technique can be applied to normal low passage keratinocytes, to cells stably transfected with papillomavirus genes or genomes, or keratinocytes established from neoplastic lesions. However, infectious papillomavirus particles have only been isolated from organotypic epithelial cultures initiated with cells that maintain oncogenic human papillomavirus genomes in an extrachomosomal replicative form. The second section of this unit is dedicated to a virion isolation method that minimizes aerosol and skin exposure to these human carcinogens. Although the focus of the protocols is on the growth of tissues that yields infectious papillomavirus progeny, this culture system facilitates the investigation of these fastidious viruses during their complex replicative cycles, and raft tissues can be manipulated and harvested at any point during the process. Importantly, a single-step virus growth cycle is achieved in this process, as it is unlikely that progeny virions are released to initiate subsequent rounds of infection.

  3. In Vivo-Like Culture Conditions in a Bioreactor Facilitate Improved Tissue Quality in Corneal Storage.

    PubMed

    Schmid, Richard; Tarau, Ioana-Sandra; Rossi, Angela; Leonhardt, Stefan; Schwarz, Thomas; Schuerlein, Sebastian; Lotz, Christian; Hansmann, Jan

    2017-09-05

    The cornea is the most-transplanted tissue worldwide. However, the availability and quality of grafts are limited due to the current methods of corneal storage. In this study, a dynamic bioreactor system is employed to enable the control of intraocular pressure and the culture at the air-liquid interface. Thereby, in vivo-like storage conditions are achieved. Different media combinations for endothelium and epithelium are tested in standard and dynamic conditions to enhance the viability of the tissue. In contrast to culture conditions used in eye banks, the combination of the bioreactor and biochrom medium 1 allows to preserve the corneal endothelium and the epithelium. Assessment of transparency, swelling, and the trans-epithelial-electrical-resistance (TEER) strengthens the impact of the in vivo-like tissue culture. For example, compared to corneas stored under static conditions, significantly lower optical densities and significantly higher TEER values were measured (p-value <0.05). Furthermore, healing of epithelial defects is enabled in the bioreactor, characterized by re-epithelialization and initiated stromal regeneration. Based on the obtained results, an easy-to-use 3D-printed bioreactor composed of only two parts was derived to translate the technology from the laboratory to the eye banks. This optimized bioreactor facilitates noninvasive microscopic monitoring. The improved storage conditions ameliorate the quality of corneal grafts and the storage time in the eye banks to increase availability and reduce re-grafting. © 2017 The Authors. Biotechnology Journal Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  4. Tissue culture-induced heritable genomic variation in rice, and their phenotypic implications.

    PubMed

    Zhang, Di; Wang, Zhenhui; Wang, Ningning; Gao, Yang; Liu, Ying; Wu, Ying; Bai, Yan; Zhang, Zhibin; Lin, Xiuyun; Dong, Yuzhu; Ou, Xiufang; Xu, Chunming; Liu, Bao

    2014-01-01

    Somaclonal variation generally occurs in plants regenerated from tissue culture. However, fundamental issues regarding molecular characteristics, mutation rates and mutation spectra of plant somatic variation as well as their phenotypic relevance have been addressed only recently. Moreover, these studies have reported highly discrepant results in different plant species and even in the same plant genotype. We investigated heritable genomic variation induced by tissue culture in rice by whole genome re-sequencing of an extensively selfed somaclonal line (TC-reg-2008) and its wild type (WT) donor (cv. Hitomebore). We computed the overall mutation rate, single nucleotide polymorphisms (SNPs), small scale insertions/deletions (Indels) and mobilization of transposable elements (TEs). We assessed chromosomal distribution of the various types of genomic variations, tested correlations between SNPs and Indels, and examined concomitancy between TE activity and its cytosine methylation states. We also performed gene ontology (GO) analysis of genes containing nonsynonymous mutations and large-effect mutations, and assayed effects of the genomic variations on phenotypes under both normal growing condition and several abiotic stresses. We found that heritable somaclonal genomic variation occurred extensively in rice. The genomic variations distributed non-randomly across each of the 12 rice chromosomes, and affected a large number of functional genes. The phenotypic penetrance of the genomic variations was condition-dependent. Tissue culture is a potent means to generate heritable genetic variations in rice, which bear distinct difference at least in space (chromosomal distribution) from those occurred under natural settings. Our findings have provided new information regarding the mutation rate and spectrum as well as chromosomal distribution pattern of somaclonal variation in rice. Our data also suggest that rice possesses a strong capacity to canalize genetic variations

  5. Reconstruction of auto-tissue-engineered lamellar cornea by dynamic culture for transplantation: a rabbit model.

    PubMed

    Wu, Zheng; Zhou, Qiang; Duan, Haoyun; Wang, Xiaoran; Xiao, Jianhui; Duan, Hucheng; Li, Naiyang; Li, Chaoyang; Wan, Pengxia; Liu, Ying; Song, Yiyue; Zhou, Chenjing; Huang, Zheqian; Wang, Zhichong

    2014-01-01

    To construct an auto-tissue-engineered lamellar cornea (ATELC) for transplantation, based on acellular porcine corneal stroma and autologous corneal limbal explants, a dynamic culture process, which composed of a submersion culture, a perfusion culture and a dynamic air-liquid interface culture, was performed using appropriate parameters. The results showed that the ATELC-Dynamic possessed histological structure and DNA content that were similar to native lamellar cornea (NLC, p>0.05). Compared to NLC, the protein contents of zonula occludens-1, desmocollin-2 and integrin β4 in ATELC-Dynamic reached 93%, 89% and 73%, respectively. The basal cells of ATELC-Dynamic showed a better differentiation phenotype (K3-, P63+, ABCG2+) compared with that of ATELC in static air-lift culture (ATELC-Static, K3+, P63-, ABCG2-). Accordingly, the cell-cloning efficiency of ATELC-Dynamic (9.72±3.5%) was significantly higher than that of ATELC-Static (2.13±1.46%, p<0.05). The levels of trans-epithelial electrical resistance, light transmittance and areal modulus variation in ATELC-Dynamic all reached those of NLC (p>0.05). Rabbit lamellar keratoplasty showed that the barrier function of ATELC-Dynamic was intact, and there were no signs of epithelial shedding or neovascularization. Furthermore, the ATELC-Dynamic group had similar optical properties and wound healing processes compared with the NLC group. Thus, the sequential dynamic culture process that was designed according to corneal physiological characteristics could successfully reconstruct an auto-lamellar cornea with favorable morphological characteristics and satisfactory physiological function.

  6. Cell culture density affects the stemness gene expression of adipose tissue-derived mesenchymal stem cells.

    PubMed

    Kim, Dae Seong; Lee, Myoung Woo; Lee, Tae-Hee; Sung, Ki Woong; Koo, Hong Hoe; Yoo, Keon Hee

    2017-03-01

    The results of clinical trials using mesenchymal stem cells (MSCs) are controversial due to the heterogeneity of human MSCs and differences in culture conditions. In this regard, it is important to identify gene expression patterns according to culture conditions, and to determine how the cells are expanded and when they should be clinically used. In the current study, stemness gene expression was investigated in adipose tissue-derived MSCs (AT-MSCs) harvested following culture at different densities. AT-MSCs were plated at a density of 200 or 5,000 cells/cm(2). After 7 days of culture, stemness gene expression was examined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis. The proliferation rate of AT-MSCs harvested at a low density (~50% confluent) was higher than that of AT-MSCs harvested at a high density (~90% confluent). Although there were differences in the expression levels of stemness gene, such as octamer-binding transcription factor 4, nanog homeobox (Nanog), SRY-box 2, Kruppel like factor 4, v-myc avian myelocytomatosis viral oncogene homolog (c-Myc), and lin-28 homolog A, in the AT-MSCs obtained from different donors, RT-qPCR analysis demonstrated differential gene expression patterns according to the cell culture density. Expression levels of stemness genes, particularly Nanog and c-Myc, were upregulated in AT-MSCs harvested at a low density (~50% confluent) in comparison to AT-MSCs from the same donor harvested at a high density (~90% confluent). These results imply that culture conditions, such as the cell density at harvesting, modulate the stemness gene expression and proliferation of MSCs.

  7. The safety assessment of food ingredients derived from plant cell, tissue and organ cultures: a review.

    PubMed

    Murthy, Hosakatte Niranjana; Georgiev, Milen I; Park, So-Young; Dandin, Vijayalaxmi S; Paek, Kee-Yoeup

    2015-06-01

    Plant cell, tissue and organ cultures (PCTOC) have become an increasingly attractive alternative for the production of various high molecular weight molecules which are used as flavourings, fragrances, colouring agents and food additives. Although PCTOC products are cultivated in vitro in a contamination free environment, the raw material produced from PCTOC may contain many components apart from the target compound. In some cases, PCTOC raw materials may also carry toxins, which may be naturally occurring or accumulated during the culture process. Assessment of the safety of PCTOC products is, therefore, a priority of the biotech industries involved in their production. The safety assessment involves the evaluation of starting material, production process and the end product. Before commercialisation, PCTOC products should be evaluated for their chemical and biological properties, as well as for their toxicity. In this review, measures and general criteria for biosafety evaluation of PCTOC products are addressed and thoroughly discussed.

  8. Isolation and Functional Analysis of Mitochondria from Cultured Cells and Mouse Tissue

    PubMed Central

    Lampl, Thomas; Crum, Jo A.; Davis, Taylor A.; Milligan, Carol; Del Gaizo Moore, Victoria

    2015-01-01

    Comparison between two or more distinct groups, such as healthy vs. disease, is necessary to determine cellular status. Mitochondria are at the nexus of cell heath due to their role in both cell metabolism and energy production as well as control of apoptosis. Therefore, direct evaluation of isolated mitochondria and mitochondrial perturbation offers the ability to determine if organelle-specific (dys)function is occurring. The methods described in this protocol include isolation of intact, functional mitochondria from HEK cultured cells and mouse liver and spinal cord, but can be easily adapted for use with other cultured cells or animal tissues. Mitochondrial function assessed by TMRE and the use of common mitochondrial uncouplers and inhibitors in conjunction with a fluorescent plate reader allow this protocol not only to be versatile and accessible to most research laboratories, but also offers high throughput. PMID:25866954

  9. Monitoring fibroblast behavior in tissue culture with an applied electric field.

    PubMed Central

    Giaever, I; Keese, C R

    1984-01-01

    Mammalian fibroblasts have been cultured on evaporated gold electrodes subjected to an alternating electric field at 4000 Hz. The system consists of a large (approximately equal to 2 cm2) and a small (approximately equal to 3 X 10(-4) cm2) electrode bathed in tissue culture medium. The applied electric field produces a voltage drop at the boundary between the solution and the small electrode of a few mV at a current density of a few mA/cm2. The small population of cells that attach and spread on this electrode have a marked effect on the measured impedance and also cause it to fluctuate with time. The amplitude of these fluctuations is greatly reduced by cytochalasin B (10 microM), suggesting they are a consequence of cell movement. Images PMID:6587391

  10. Response of tobacco tissue cultures growing in contact with lunar fines.

    NASA Technical Reports Server (NTRS)

    Weete, J. D.; Walkinshaw, C. H.; Laseter, J. L.

    1973-01-01

    During the quarantine periods following each Apollo mission to the moon, various biological systems were placed in the presence of lunar material to determine if pathogenic agents were present. Although no detrimental effects resulted, various responses by the several plant systems tested were noted. One such response was the increased pigmentation observed in the callus tissue cultures of tobacco. Further investigations revealed that these tissues grown in the presence of lunar material resulted in as much as a 35% increase in total pigments while differences in fatty acid and sterol concentrations were also noted when compared to the controls. It is believed that these changes brought about by the lunar material can be attributed to a change in the nutritional environment caused by its dissolution.

  11. Activity and Accumulation of Cell Division-Promoting Phenolics in Tobacco Tissue Cultures 1

    PubMed Central

    Teutonico, Rita A.; Dudley, Matthew W.; Orr, John D.; Lynn, David G.; Binns, Andrew N.

    1991-01-01

    Dehydrodiconiferyl alcohol glucosides (DCGs) are derivatives of the phenylpropanoid pathway that have been isolated from Catharansus roseus L. (Vinca rosea) crown gall tumors. Fractions containing purified DCGs have been shown previously to promote the growth of cytokinin-requiring tissues of tobacco in the absence of exogenous cytokinins. In this study, we utilized synthetic DCG isomers to confirm the cell division-promoting activity of DCG isomers A and B and show that they neither promote shoot meristem initiation on Nicotiana tabacum L., cv Havana 425, leaf explants nor induce betacyanin synthesis in amaranth seedlings. Analysis of cultured tobacco pith tissue demonstrated that DCG accumulation was stimulated by cytokinin treatment and correlated with cytokinin-induced cell division. Thus, the accumulation of metabolites that could replace cytokinin in cell division bioassays is stimulated by cytokinins. These data support the model that DCGs are a component of a cytokinin-mediated regulatory circuit controlling cell division. ImagesFigure 2 PMID:16668384

  12. Edible Insects in China: Utilization and Prospects.

    PubMed

    Feng, Ying; Chen, Xiao-Ming; Zhao, Min; He, Zhao; Sun, Long; Wang, Cheng-Ye; Ding, Wei-Feng

    2017-02-22

    The use of edible insects has a long history in China, where they have been consumed for more than two thousand years. In general, the level of acceptance is high for the consumption of insects in China. Many studies on edible insects have been conducted in the last twenty years, and the scope of the research includes the culture of entomophagy and the identification, nutritional value, farming and breeding of edible insects, in addition to food production and safety. Currently, 324 species of insects from 11 orders are documented that are either edible or associated with entomophagy in China, which include the common edible species, some less commonly consumed species, and some medicinal insects. However, only approximately 10 to 20 types of insects are consumed regularly. The nutritional values for 174 species are available in China, including edible, feed and medicinal species. Although the nutritional values vary among species, all the insects examined contain protein, fat, vitamins and minerals at levels that meet human nutritional requirements. Edible insects were, and continue to be, consumed by different ethnic groups in many parts of China. People directly consume insects or food products made from insects. The processing of products from insect protein powder, oil, and chitin and the development of health care foods has been studied in China. People also consume insects indirectly by eating livestock that were fed insects, which may be a more acceptable pathway to use insects in human diets. Although limited, the data on the food safety of insects indicate that insects are safe for food or feed. Incidences of allergic reactions after consuming silkworm pupae, cicades and crickets have been reported in China. Insect farming is a unique breeding industry in rural China and is a source of income for local people. Insects are reared and bred for human food, medicine and animal feed using two approaches in China: the insects are either fully domesticated and

  13. Cultured Human Adipose Tissue Pericytes and Mesenchymal Stromal Cells Display a Very Similar Gene Expression Profile

    PubMed Central

    Malta, Tathiane Maistro; de Deus Wagatsuma, Virgínia Mara; Palma, Patrícia Viana Bonini; Araújo, Amélia Goes; Ribeiro Malmegrim, Kelen Cristina; Morato de Oliveira, Fábio; Panepucci, Rodrigo Alexandre; Silva, Wilson Araújo; Kashima Haddad, Simone; Covas, Dimas Tadeu

    2015-01-01

    Mesenchymal stromal cells (MSCs) are cultured cells that can give rise to mature mesenchymal cells under appropriate conditions and secrete a number of biologically relevant molecules that may play an important role in regenerative medicine. Evidence indicates that pericytes (PCs) correspond to mesenchymal stem cells in vivo and can give rise to MSCs when cultured, but a comparison between the gene expression profiles of cultured PCs (cPCs) and MSCs is lacking. We have devised a novel methodology to isolate PCs from human adipose tissue and compared cPCs to MSCs obtained through traditional methods. Freshly isolated PCs expressed CD34, CD140b, and CD271 on their surface, but not CD146. Both MSCs and cPCs were able to differentiate along mesenchymal pathways in vitro, displayed an essentially identical surface immunophenotype, and exhibited the ability to suppress CD3+ lymphocyte proliferation in vitro. Microarray expression data of cPCs and MSCs formed a single cluster among other cell types. Further analyses showed that the gene expression profiles of cPCs and MSCs are extremely similar, although MSCs differentially expressed endothelial cell (EC)-specific transcripts. These results confirm, using the power of transcriptomic analysis, that PCs give rise to MSCs and suggest that low levels of ECs may persist in MSC cultures established using traditional protocols. PMID:26192741

  14. Tissue culture study of the medicinal plant leek (allium ampeloprasum L).

    PubMed

    Monemi, Mohammad Bagher; Kazemitabar, S Kamal; Bakhshee Khaniki, Gholamreza; Yasari, Esmaeil; Sohrevardi, Firouzeh; Pourbagher, Roghayeh

    2014-01-01

    Persian shallot, also called leek (Allium ampeloprasum), is a monocotyledon plant of the lily family (Liliaceae). It belongs to the genus Allium, has a characteristic taste and morphological features, making it to be considered as one of the popular herbal medicine. This research was conducted with the purpose of obtaining optimal conditions for tissue culture of Persian shallot and comparing its active ingredient production in vitro versus in vivo. In this study, the auxin 2, 4-D and benzyl aminopurine- 6 (BAP) hormones, each at two concentrations (0.5 and 0.1 mg/ L) and Kin at 0.5 mg/ L were used in the format of a randomized complete block design in three replications. Results showed that the best culture media for callus formation for leaf and seed explants were the MS cultures with the hormonal compositions (0.5 mg/ L of 2, 4- D, 0.1 mg/ L of BAP) and (0.5 mg/ L of Kin and 0.1 mg/ L of 2, 4- D). Identification of the chemical composition of the essential oils, extracted either from leek callus or leaf was carried out using GC mass analysis. Twenty one compounds were detected in the GC mass spectra, seven of which constitutv about 51.5% of the total amount of compounds present in the essential oils were identified. Our data demonstrate that the leek essential oil constituents as well as callus formation can be affected by culture medium condition.

  15. Cell culture models of higher complexity in tissue engineering and regenerative medicine.

    PubMed

    James Kirkpatrick, Charles; Fuchs, Sabine; Iris Hermanns, Maria; Peters, Kirsten; Unger, Ronald E

    2007-12-01

    Cell culture techniques have tended to be used in biomaterial research as a screening method prior to embarking on specific in vivo experimentation. This presentation aims at showing that it is possible to develop more sophisticated in vitro systems using primary human cells in co-culture with other cell types and biomaterials in a three-dimensional setting. While the predictive value of such systems is still not proven these models can be employed to unravel the complexity of biological systems in order to understand molecular mechanisms of cell-cell and cell-material interactions. The brief overview is under the headings of basic principles of relevant culture systems, the study of inflammation and the healing response, scenarios for specific biomaterial applications and future directions. How human endothelial cells can be usefully incorporated into more complex cell culture models is presented as an example of how relevant questions in tissue engineering and regenerative medicine can be addressed. The central tenet of this paper is that it is possible to refine in vitro methodology using cells of human origin to establish relevant assay systems that more closely simulate the cellular and molecular microenvironment encountered in a specific situation of regeneration using biomaterials.

  16. Target detect system in 3D using vision apply on plant reproduction by tissue culture

    NASA Astrophysics Data System (ADS)

    Vazquez Rueda, Martin G.; Hahn, Federico

    2001-03-01

    This paper presents the preliminary results for a system in tree dimension that use a system vision to manipulate plants in a tissue culture process. The system is able to estimate the position of the plant in the work area, first calculate the position and send information to the mechanical system, and recalculate the position again, and if it is necessary, repositioning the mechanical system, using an neural system to improve the location of the plant. The system use only the system vision to sense the position and control loop using a neural system to detect the target and positioning the mechanical system, the results are compared with an open loop system.

  17. Biotransformation of tissue-specific hormone tibolone with fungal culture Trichothecium roseum

    NASA Astrophysics Data System (ADS)

    Shah, Syed Adnan Ali; Sultan, Sadia; Zaimi bin Mohd Noor, M.

    2013-06-01

    Whole cells based biotransformation is an important tool for bioconversion of steroids. It can be used to synthesize biologically potent compounds with diverse structures. Biotransformation of tissue-specific hormone tibolone (1) with Trichothecium roseum (ATCC 13411) has being carried out for the first time. Two new and three known metabolites 2-6 were isolated from fermentation of tibolone (1) with Trichothecium roseum and their structures were characterized by 2D NMR spectroscopy and mass spectrometry. The relative stereochemistry of new metabolites 5 and 6 was deduced by 2D NOESY experiments. The effect of cultures on tibolone structural modifications and time-course studies has also been conducted.

  18. Three-dimensional hydrogel cultures for modeling changes in tissue impedance around microfabricated neural probes

    NASA Astrophysics Data System (ADS)

    Frampton, J. P.; Hynd, M. R.; Williams, J. C.; Shuler, M. L.; Shain, W.

    2007-12-01

    One limitation to the use of neuroprosthestic devices for chronic application, in the treatment of disease, is the reactive cell responses that occur surrounding the device after insertion. These cell and tissue responses result in increases in device impedance and failure of the device to interact with target populations of neurons. However, few tools are available to assess which components of the reactive response contribute most to changes in tissue impedance. An in vitro culture system has been developed that is capable of assessing individual components of the reactive response. The system utilizes alginate cell encapsulation to construct three-dimensional architectures that approach the cell densities found in rat cortex. The system was constructed around neuroNexus acute probes with on-board circuitry capable of monitoring the electrical properties of the surrounding tissue. This study demonstrates the utility of the system by demonstrating that differences in cell density within the three-dimensional alginate constructs result in differences in resistance and capacitance as measured by electrochemical impedance spectroscopy. We propose that this system can be used to model components of the reactive responses in brain tissue, and that the measurements recorded in vitro are comparable to measurements recorded in vivo.

  19. Insect evolution.

    PubMed

    Engel, Michael S

    2015-10-05

    It goes without saying that insects epitomize diversity, and with over a million documented species they stand out as one of the most remarkable lineages in the 3.5-billion-year history of life on earth (Figure 1). This reality is passé to even the layperson and is taken for granted in the same way none of us think much of our breathing as we go about our day, and yet insects are just as vital to our existence. Insects are simultaneously familiar and foreign to us, and while a small fraction are beloved or reviled, most are simply ignored. These inexorable evolutionary overachievers outnumber us all, their segmented body plan is remarkably labile, they combine a capacity for high rates of speciation with low levels of natural extinction, and their history of successes eclipses those of the more familiar ages of dinosaurs and mammals alike. It is their evolution - persisting over vast expanses of geological time and inextricably implicated in the diversification of other lineages - that stands as one of the most expansive subjects in biology.

  20. Hyaline cartilage tissue is formed through the co-culture of passaged human chondrocytes and primary bovine chondrocytes.

    PubMed

    Taylor, Drew W; Ahmed, Nazish; Hayes, Anthony J; Ferguson, Peter; Gross, Allan E; Caterson, Bruce; Kandel, Rita A

    2012-08-01

    To circumvent the problem of a sufficient number of cells for cartilage engineering, the authors previously developed a two-stage culture system to redifferentiate monolayer culture-expanded dedifferentiated human articular chondrocytes by co-culture with primary bovine chondrocytes (bP0). The aim of this study was to analyze the composition of the cartilage tissue formed in stage 1 and compare it with bP0 grown alone to determine the optimal length of the co-culture stage of the system. Biochemical data show that extracellular matrix accumulation was evident after 2 weeks of co-culture, which was 1 week behind the bP0 control culture. By 3 to 4 weeks, the amounts of accumulated proteoglycans and collagens were comparable. Expression of chondrogenic genes, Sox 9, aggrecan, and collagen type II, was also at similar levels by week 3 of culture. Immunohistochemical staining of both co-culture and control tissues showed accumulation of type II collagen, aggrecan, biglycan, decorin, and chondroitin sulfate in appropriate zonal distributions. These data indicate that co-cultured cells form cartilaginous tissue that starts to resemble that formed by bP0 after 3 weeks, suggesting that the optimal time to terminate the co-culture stage, isolate the now redifferentiated cells, and start stage 2 is just after 3 weeks.

  1. Method for Producing Non-Neoplastic, Three Dimensional, Mammalian Tissue and Cell Aggregates Under Microgravity Culture Conditions and the Products Produced Therefrom

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J. (Inventor); Wolf, David A. (Inventor); Spaulding, Glenn F. (Inventor); Prewett, Tracey L. (Inventor)

    1996-01-01

    Normal mammalian tissue and the culturing process has been developed for the three groups of organ, structural, and blood tissue. The cells are grown in vitro under microgravity culture conditions and form three dimensional cells aggregates with normal cell function. The microgravity culture conditions may be microgravity or simulated microgravity created in a horizontal rotating wall culture vessel.

  2. In vitro two-dimensional and three-dimensional tenocyte culture for tendon tissue engineering.

    PubMed

    Qiu, Yiwei; Wang, Xiao; Zhang, Yaonan; Carr, Andrew J; Zhu, Liwei; Xia, Zhidao; Sabokbar, Afsie

    2016-03-01

    In order to examine the differentiation potential of the tenocytes expanded in our defined culture medium (reported previously) and the effect of sequential combination of the two culture conditions on human tenocytes, a two-dimensional and three-dimensional experimental approach was used. Human tenocytes were sequentially exposed to 1% fetal bovine serum (FBS) + 50 ng/ml platelet-derived growth factor-BB (PDGFBB ) + 50 ng/ml basic fibroblast growth factor (bFGF) for the first 14 days (expansion phase) followed by a further 14-day culture in the presence of 10 ng/ml transforming growth factor β-3 plus 50 ng/ml insulin-like growth factor 1, but in the absence of serum (differentiation phase). The results showed that by sequential treatment of human tenocytes maintaining a long-term two-dimensional tenocyte culture in vitro for up to 28 days was possible. These findings were further verified using a three-dimensional scaffold (Bombyx silk) whereby the tendon-like constructs formed resembled macroscopically and microscopically the constructs formed in 10% FBS supplemented culture media and the human hamstring tendon. These findings were further substantiated using haematoxylin and eosin staining, scanning electron microscopy and by immunohistochemical detection of type I collagen. In addition, the mechanical properties of the three-dimensional constructs were determined to be significantly superior to that of the natural human hamstring tendon. This is the first report to demonstrate a possible approach in expanding and differentiating human tenocytes for tendon tissue engineering. Copyright © 2013 John Wiley & Sons, Ltd.

  3. The Early History of Tissue Culture in Britain: The Interwar Years

    PubMed Central

    WILSON, DUNCAN

    2005-01-01

    SUMMARY The technique of tissue culture has, throughout the twentieth century, become a mainstay of biomedical research, and exists today as a celebrated scientific tool. However, an examination of its early history demonstrates that it was once contested, with professional opinion differing as to its value to science and medicine, and, crucially for the purposes of this article, considerable public awareness of its potential and perceived pitfalls. Here, the hitherto neglected situation in the early British history of tissue culture will be studied, with the focus being the work performed at the Strangeways Research Laboratory in Cambridge during the interwar years of the last century. Examination of the early life of this institution shows that scientists eager to stress the technique’s viability tapped into popular sentiment to overstress its potential, in a fashion reminiscent of earlier experimental biologists and their contemporary American counterparts. This ultimately backfired on British culturists as the press coverage of their work became incredibly sensationalist, and increasingly sinister in tone, and scientific fact and fantastical speculation became inseparable. PMID:16532064

  4. Screenhouse and field persistence of nonpathogenic endophytic Fusarium oxysporum in Musa tissue culture plants.

    PubMed

    Paparu, Pamela; Dubois, Thomas; Gold, Clifford S; Niere, Björn; Adipala, Ekwamu; Coyne, Daniel

    2008-04-01

    Two major biotic constraints to highland cooking banana (Musa spp., genome group AAA-EA) production in Uganda are the banana weevil Cosmopolites sordidus and the burrowing nematode Radopholus similis. Endophytic Fusarium oxysporum strains inoculated into tissue culture banana plantlets have shown control of the banana weevil and the nematode. We conducted screenhouse and field experiments to investigate persistence in the roots and rhizome of two endophytic Fusarium oxysporum strains, V2w2 and III4w1, inoculated into tissue-culture banana plantlets of highlan