Science.gov

Sample records for insect tissue culture

  1. Insect cell culture in reagent bottles

    PubMed Central

    Rieffel, S.; Roest, S.; Klopp, J.; Carnal, S.; Marti, S.; Gerhartz, B.; Shrestha, B.

    2014-01-01

    Growing insect cells with high air space in culture vessel is common from the early development of suspension cell culture. We believed and followed it with the hope that it allows sufficient air for optimal cell growth. However, we missed to identify how much air exactly cells need for its growth and multiplication. Here we present the innovative method that changed the way we run insect cell culture. The method is easy to adapt, cost-effective and useful for both academic and industrial research labs. We believe this method will revolutionize the way we run insect cell culture by increasing throughput in a cost-effective way. In our study we identified:•Insect cells need to be in suspension; air space in culture vessel and type of culture vessel is of less importance. Shaking condition that introduces small air bubbles and maintains it in suspension for longer time provides better oxygen transfer in liquid. For this, high-fill volume in combination with speed and shaking diameter are important.•Commercially available insect cells are not fragile as original isolates. These cells can easily withstand higher shaking speed.•Growth condition in particular lab set-up needs to be optimized. The condition used in one lab may not be optimum for another lab due to different incubators from different vendors. PMID:26150948

  2. Recombinant protein production and insect cell culture and process

    NASA Technical Reports Server (NTRS)

    Spaulding, Glenn (Inventor); Prewett, Tacey (Inventor); Goodwin, Thomas (Inventor); Francis, Karen (Inventor); Andrews, Angela (Inventor); Oconnor, Kim (Inventor)

    1993-01-01

    A process has been developed for recombinant production of selected polypeptides using transformed insect cells cultured in a horizontally rotating culture vessel modulated to create low shear conditions. A metabolically transformed insect cell line is produced using the culture procedure regardless of genetic transformation. The recombinant polypeptide can be produced by an alternative process using the cultured insect cells as host for a virus encoding the described polypeptide such as baculovirus. The insect cells can also be a host for viral production.

  3. Recombinant Protein Production and Insect Cell Culture and Process

    NASA Technical Reports Server (NTRS)

    Spaulding, Glenn F. (Inventor); Goodwin, Thomas J. (Inventor); OConnor, Kim C. (Inventor); Francis, Karen M. (Inventor); Andrews, Angela D. (Inventor); Prewett, Tracey L. (Inventor)

    1997-01-01

    A process has been developed for recombinant production of selected polypeptides using transformed insect cells cultured in a horizontally rotating culture vessel modulated to create low shear conditions. A metabolically transformed insect cell line is produced using the culture procedure regardless of genetic transformation. The recombinant polypeptide can be produced by an alternative process using virtually infected or stably transformed insect cells containing a gene encoding the described polypeptide. The insect cells can also be a host for viral production.

  4. Tissue Culture in Microgravity

    NASA Technical Reports Server (NTRS)

    Pellis, Neal R.; Duray, Paul H.; Hatfill, Steven J.

    1997-01-01

    Attempts to simulate normal tissue micro-environments in vitro have been thwarted by the complexity and plasticity of the extracellular matrix, which is important in regulating cytoskeletal and nuclear matrix proteins. Gravity is one of the problems, tending to separate components that should be kept together. For space shuttle experiments, NASA engineers devised a double-walled rotating bioreactor, which is proving to be a useful tissue culture device on earth as well as in space.

  5. Plant Tissue Culture Studies.

    ERIC Educational Resources Information Center

    Smith, Robert Alan

    Plant tissue culture has developed into a valid botanical discipline and is considered a key area of biotechnology, but it has not been a key component of the science curriculum because of the expensive and technical nature of research in this area. This manual presents a number of activities that are relatively easy to prepare and perform. The…

  6. NASA Bioreactor tissue culture

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Dr. Lisa E. Freed of the Massachusetts Institute of Technology and her colleagues have reported that initially disc-like specimens tend to become spherical in space, demonstrating that tissues can grow and differentiate into distinct structures in microgravity. The Mir Increment 3 (Sept. 16, 1996 - Jan. 22, 1997) samples were smaller, more spherical, and mechanically weaker than Earth-grown control samples. These results demonstrate the feasibility of microgravity tissue engineering and may have implications for long human space voyages and for treating musculoskeletal disorders on earth. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  7. Calcium signaling mediates cold sensing in insect tissues.

    PubMed

    Teets, Nicholas M; Yi, Shu-Xia; Lee, Richard E; Denlinger, David L

    2013-05-28

    The ability to rapidly respond to changes in temperature is a critical adaptation for insects and other ectotherms living in thermally variable environments. In a process called rapid cold hardening (RCH), insects significantly enhance cold tolerance following brief (i.e., minutes to hours) exposure to nonlethal chilling. Although the ecological relevance of RCH is well-established, the underlying physiological mechanisms that trigger RCH are poorly understood. RCH can be elicited in isolated tissues ex vivo, suggesting cold-sensing and downstream hardening pathways are governed by brain-independent signaling mechanisms. We previously provided preliminary evidence that calcium is involved in RCH, and here we firmly establish that calcium signaling mediates cold sensing in insect tissues. In tracheal cells of the freeze-tolerant goldenrod gall fly, Eurosta solidaginis, chilling to 0 °C evoked a 40% increase in intracellular calcium concentration as determined by live-cell confocal imaging. Downstream of calcium entry, RCH conditions significantly increased the activity of calcium/calmodulin-dependent protein kinase II (CaMKII) while reducing phosphorylation of the inhibitory Thr306 residue. Pharmacological inhibitors of calcium entry, calmodulin activation, and CaMKII activity all prevented ex vivo RCH in midgut and salivary gland tissues, indicating that calcium signaling is required for RCH to occur. Similar results were obtained for a freeze-intolerant species, adults of the flesh fly, Sarcophaga bullata, suggesting that calcium-mediated cold sensing is a general feature of insects. Our results imply that insect tissues use calcium signaling to instantly detect decreases in temperature and trigger downstream cold-hardening mechanisms.

  8. Calcium signaling mediates cold sensing in insect tissues

    PubMed Central

    Teets, Nicholas M.; Yi, Shu-Xia; Lee, Richard E.; Denlinger, David L.

    2013-01-01

    The ability to rapidly respond to changes in temperature is a critical adaptation for insects and other ectotherms living in thermally variable environments. In a process called rapid cold hardening (RCH), insects significantly enhance cold tolerance following brief (i.e., minutes to hours) exposure to nonlethal chilling. Although the ecological relevance of RCH is well-established, the underlying physiological mechanisms that trigger RCH are poorly understood. RCH can be elicited in isolated tissues ex vivo, suggesting cold-sensing and downstream hardening pathways are governed by brain-independent signaling mechanisms. We previously provided preliminary evidence that calcium is involved in RCH, and here we firmly establish that calcium signaling mediates cold sensing in insect tissues. In tracheal cells of the freeze-tolerant goldenrod gall fly, Eurosta solidaginis, chilling to 0 °C evoked a 40% increase in intracellular calcium concentration as determined by live-cell confocal imaging. Downstream of calcium entry, RCH conditions significantly increased the activity of calcium/calmodulin-dependent protein kinase II (CaMKII) while reducing phosphorylation of the inhibitory Thr306 residue. Pharmacological inhibitors of calcium entry, calmodulin activation, and CaMKII activity all prevented ex vivo RCH in midgut and salivary gland tissues, indicating that calcium signaling is required for RCH to occur. Similar results were obtained for a freeze-intolerant species, adults of the flesh fly, Sarcophaga bullata, suggesting that calcium-mediated cold sensing is a general feature of insects. Our results imply that insect tissues use calcium signaling to instantly detect decreases in temperature and trigger downstream cold-hardening mechanisms. PMID:23671084

  9. Calcium signaling mediates cold sensing in insect tissues.

    PubMed

    Teets, Nicholas M; Yi, Shu-Xia; Lee, Richard E; Denlinger, David L

    2013-05-28

    The ability to rapidly respond to changes in temperature is a critical adaptation for insects and other ectotherms living in thermally variable environments. In a process called rapid cold hardening (RCH), insects significantly enhance cold tolerance following brief (i.e., minutes to hours) exposure to nonlethal chilling. Although the ecological relevance of RCH is well-established, the underlying physiological mechanisms that trigger RCH are poorly understood. RCH can be elicited in isolated tissues ex vivo, suggesting cold-sensing and downstream hardening pathways are governed by brain-independent signaling mechanisms. We previously provided preliminary evidence that calcium is involved in RCH, and here we firmly establish that calcium signaling mediates cold sensing in insect tissues. In tracheal cells of the freeze-tolerant goldenrod gall fly, Eurosta solidaginis, chilling to 0 °C evoked a 40% increase in intracellular calcium concentration as determined by live-cell confocal imaging. Downstream of calcium entry, RCH conditions significantly increased the activity of calcium/calmodulin-dependent protein kinase II (CaMKII) while reducing phosphorylation of the inhibitory Thr306 residue. Pharmacological inhibitors of calcium entry, calmodulin activation, and CaMKII activity all prevented ex vivo RCH in midgut and salivary gland tissues, indicating that calcium signaling is required for RCH to occur. Similar results were obtained for a freeze-intolerant species, adults of the flesh fly, Sarcophaga bullata, suggesting that calcium-mediated cold sensing is a general feature of insects. Our results imply that insect tissues use calcium signaling to instantly detect decreases in temperature and trigger downstream cold-hardening mechanisms. PMID:23671084

  10. Invasion of Wolbachia into Anopheles and Other Insect Germlines in an Ex vivo Organ Culture System

    PubMed Central

    Xue, Ping; Rasgon, Jason L.

    2012-01-01

    The common bacterial endosymbiont Wolbachia manipulates its host's reproduction to promote its own maternal transmission, and can interfere with pathogen development in many insects making it an attractive agent for the control of arthropod-borne disease. However, many important species, including Anopheles mosquitoes, are uninfected. Wolbachia can be artificially transferred between insects in the laboratory but this can be a laborious and sometimes fruitless process. We used a simple ex vivo culturing technique to assess the suitability of Wolbachia-host germline associations. Wolbachia infects the dissected germline tissue of multiple insect species when the host tissue and bacteria are cultured together. Ovary and testis infection occurs in a density-dependent manner. Wolbachia strains are more capable of invading the germline of their native or closely related rather than divergent hosts. The ability of Wolbachia to associate with the germline of novel hosts is crucial for the development of stably-transinfected insect lines. Rapid assessment of the suitability of a strain-host combination prior to transinfection may dictate use of a particular Wolbachia strain. Furthermore, the cultured germline tissues of two major Anopheline vectors of Plasmodium parasites are susceptible to Wolbachia infection. This finding further enhances the prospect of using Wolbachia for the biological control of malaria. PMID:22558418

  11. Insect cell transformation vectors that support high level expression and promoter assessment in insect cell culture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A somatic transformation vector, pDP9, was constructed that provides a simplified means of producing permanently transformed cultured insect cells that support high levels of protein expression of foreign genes. The pDP9 plasmid vector incorporates DNA sequences from the Junonia coenia densovirus th...

  12. Radiosensitivity of cultured insect cells: I. Lepidoptera

    SciTech Connect

    Koval, T.M.

    1983-10-01

    The radiosensitivity of five lepidopteran insect cell lines representing five different genera has been investigated. These lines are: (1) TN-368, Trichoplusia ni; (2) IPLB-SF-1254, Spodoptera frugiperda; (3) IPLB-1075, Heliothis zea; (4) MRRL-CHl, clone GVl, Manduca sexta; and (5) IAL-PID2, Plodia interpunctella. The cell lines grew at different rates and had population doubling times that ranged from 19 to 52 hr. All of the lines are highly heteroploid and have approximate chromosome numbers near or above 100. The chromosomes are very small. All of the lines are extremely radioresistant; cell populations are able to recover from 260 kVp X-ray exposures up to and including 400 Gy, the highest dose examined. Cell survival curves were obtainable for only the TN-368 and IPLB-SF-1254 lines. The TN-368 cells displayed a biphasic survival response with D/sub 0/, d/sub q/, and n values of 65.7 and 130.2 Gy, 9.0 and -36.1 Gy, and 1.2 and 0.8, respectively, for the steep and shallow portions of the curve. The IPLB-SF-1254 cells had a D/sub 0/ of 63.9 Gy. D/sub q/ of 19.0 Gy, and n value of 1.4. These studies provide definitive evidence of the radioresistance of lepidopteran cells, and suggest that this radioresistance is a characteristic of lepidopteran insects.

  13. Artificial tissues in perfusion culture.

    PubMed

    Sittinger, M; Schultz, O; Keyszer, G; Minuth, W W; Burmester, G R

    1997-01-01

    In the stagnant environment of traditional culture dishes it is difficult to generate long term experiments or artificial tissues from human cells. For this reason a perfusion culture system with a stable supply of nutrients was developed. Human chondrocytes were seeded three-dimensionally in resorbable polymer fleeces. The cell-polymer tissues were then mounted in newly developed containers (W.W. Minuth et al, Biotechniques, 1996) and continuously perfused by fresh medium for 40 days. Samples from the effluate were analyzed daily, and the pH of the medium and glucose concentration remained stable during this period. The lactid acid concentration increased from 0.17 mg/ml to 0.35 mg/ml, which was influenced by the degradation of the resorbable polymer fibers used as three dimensional support material for the cells. This perfusion system proved to be reliable especially in long term cultures. Any components in the culture medium of the cells could be monitored without disturbances as caused by manual medium replacement. These results suggest the described perfusion culture system to be a valuable and convenient tool for many applications in tissue engineering, especially in the generation of artificial connective tissue.

  14. Radiosensitivity of cultured insect cells: II. Diptera

    SciTech Connect

    Koval, T.M.

    1983-10-01

    The radiosensitivity of five dipteran cell lines representing three mosquito genera and one fruit fly genus were examined. These lines are: (1) ATC-10, Aedes aegypti; (2) RU-TAE-14, Toxorhynchites amboinensis; (3) RU-ASE-2A, Anopheles stephensi; (4) WR69-DM-1, Drosophila melanogaster; and (5) WR69-DM-2, Drosophila melanogaster. Population doubling times for these lines range from approximately 16 to 48 hr. Diploid chromosome numbers are six for the mosquito cells and eight for the fruit fly cells D/sub 0/ values are 5.1 and 6.5 Gy for the Drosophila cell lines and 3.6, 6.2, and 10.2 Gy for the mosquito cell lines. The results of this study demonstrate that dipteran insect cells are a few times more resistant to radiation than mammalian cells, but not nearly as radioresistant as lepidopteran cells.

  15. Three Dimensional Optic Tissue Culture and Process

    NASA Technical Reports Server (NTRS)

    OConnor, Kim C. (Inventor); Spaulding, Glenn F. (Inventor); Goodwin, Thomas J. (Inventor); Aten, Laurie A. (Inventor); Francis, Karen M. (Inventor); Caldwell, Delmar R. (Inventor); Prewett, Tacey L. (Inventor); Fitzgerald, Wendy S. (Inventor)

    1999-01-01

    A process for artificially producing three-dimensional optic tissue has been developed. The optic cells are cultured in a bioireactor at low shear conditions. The tissue forms as normal, functional tissue grows with tissue organization and extracellular matrix formation.

  16. Three dimensional optic tissue culture and process

    NASA Technical Reports Server (NTRS)

    Spaulding, Glenn F. (Inventor); Prewett, Tacey L. (Inventor); Goodwin, Thomas J. (Inventor); Francis, Karen M. (Inventor); Cardwell, Delmar R. (Inventor); Oconnor, Kim (Inventor); Fitzgerald, Wendy S. (Inventor); Aten, Laurie A. (Inventor)

    1994-01-01

    A process for artificially producing three-dimensional optic tissue has been developed. The optic cells are cultured in a bioreactor at low shear conditions. The tissue forms normal, functional tissue organization and extracellular matrix.

  17. Cultured normal mammalian tissue and process

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J. (Inventor); Prewett, Tacey L. (Inventor); Wolf, David A. (Inventor); Spaulding, Glenn F. (Inventor)

    1993-01-01

    Normal mammalian tissue and the culturing process has been developed for the three groups of organ, structural and blood tissue. The cells are grown in vitro under microgravity culture conditions and form three dimensional cell aggregates with normal cell function. The microgravity culture conditions may be microgravity or simulated microgravity created in a horizontal rotating wall culture vessel.

  18. Room Temperature Operable Autonomously Moving Bio-Microrobot Powered by Insect Dorsal Vessel Tissue

    PubMed Central

    Akiyama, Yoshitake; Hoshino, Takayuki; Iwabuchi, Kikuo; Morishima, Keisuke

    2012-01-01

    Living muscle tissues and cells have been attracting attention as potential actuator candidates. In particular, insect dorsal vessel tissue (DVT) seems to be well suited for a bio-actuator since it is capable of contracting autonomously and the tissue itself and its cells are more environmentally robust under culturing conditions compared with mammalian tissues and cells. Here we demonstrate an autonomously moving polypod microrobot (PMR) powered by DVT excised from an inchworm. We fabricated a prototype of the PMR by assembling a whole DVT onto an inverted two-row micropillar array. The prototype moved autonomously at a velocity of 3.5×10−2 µm/s, and the contracting force of the whole DVT was calculated as 20 µN. Based on the results obtained by the prototype, we then designed and fabricated an actual PMR. We were able to increase the velocity significantly for the actual PMR which could move autonomously at a velocity of 3.5 µm/s. These results indicate that insect DVT has sufficient potential as the driving force for a bio-microrobot that can be utilized in microspaces. PMID:22808004

  19. Optical metabolic imaging of live tissue cultures

    NASA Astrophysics Data System (ADS)

    Walsh, Alex J.; Cook, Rebecca S.; Arteaga, Carlos L.; Skala, Melissa C.

    2013-02-01

    The fluorescence properties, both intensity and fluorescence lifetime, of NADH and FAD, two coenzymes of metabolism, are sensitive, high resolution measures of cellular metabolism. However, often in vivo measurements of tissue are not feasible. In this study, we investigate the stability over time of two-photon auto-fluorescence imaging of NADH and FAD in live-cultured tissues. Our results demonstrate that cultured tissues remain viable for at least several days post excision. Furthermore, the optical redox ratio, NADH fluorescence lifetime, and FAD fluorescence lifetime do not significantly change in the cultured tissues over time. With these findings, we demonstrate the potential of sustained tissue culture techniques for optical metabolic imaging.

  20. Plant Tissue Culture in a Bag.

    ERIC Educational Resources Information Center

    Beck, Mike

    2000-01-01

    Describes the use of an oven bag as a sterile chamber for culture initiation and tissue transfer. Plant tissue culture is an ideal tool for introducing students to plants, cloning, and experimental design. Includes materials, methods, discussion, and conclusion sections. (SAH)

  1. Gastric tissue biopsy and culture

    MedlinePlus

    ... culture can help detect: Cancer Infections, most commonly Helicobacter pylori , the bacteria that can cause stomach ulcers ... lining of the stomach becomes inflamed or swollen Helicobacter pylori infection

  2. Tissue culture media and reagents*

    PubMed Central

    Perkins, F. T.

    1973-01-01

    The various factors that affect the growth of cell cultures in vitro are considered and suggestions are made as to where the standardization of components would help to provide more uniform products. The manufacture of powdered media in bulk and the establishment of cell banks have been major advances, but much research is needed for the standardization or replacement of serum. PMID:4206452

  3. Study on tissue culture for Gelidium seedling

    NASA Astrophysics Data System (ADS)

    Pei, Lu-Qing; Luo, Qi-Jun; Fei, Zhi-Qing; Ma, Bin

    1996-06-01

    As seedling culture is a crucial factor for successful cultivation of Gelidium, the authors researched tissue culture technology for producing seedlings. The morphogeny and experimental ecology were observed and studied fully in 2 5 mm isolated tissue fragments. Regeneration, appearance of branching creepers and attaching structure and new erect seedlings production and development were studied. Fragments were sown on bamboo slice and vinylon rope. The seedlings were cultured 20 30 days indoor, then cultured in the sea, where the density of erect seedlings was 3 19 seedlings/cm2, growth rate was 3.84% day. The frond arising from seedlings directly was up to 10 cm per year. The ecological conditions for regenerated seedlings are similar to the natural ones. The regenerated seedlings are suitable for raft culture in various sea areas.

  4. Synthesis and metabolism of vertebrate-type steroids by tissues of insects: a critical evaluation.

    PubMed

    Swevers, L; Lambert, J G; De Loof, A

    1991-07-15

    This review covers the synthesis and the metabolism of vertebrate-type steroids (progesterone, testosterone, estradiol, corticosteroids) by insect tissues and discusses the significance of the reactions for insect physiology. Biosynthesis of vertebrate-type steroids from cholesterol hitherto has been demonstrated in only two insect species, i.e. the water beetle Acilius sulcatus (Coleoptera) and the tobacco hornworm Manduca sexta (Lepidoptera). In Acilius, steroid synthesis is associated with exosecretion (chemical defense). Nothing, however, is known about a physiological role of the C21 steroid conjugate present in ovaries and eggs of Manduca. No synthesis of vertebrate-type steroids was observed in any other insect investigated to date. Most metabolic conversions of steroids by insects concerned oxidoreduction of oxygen groups (hydroxysteroid dehydrogenase activity) and (polar and apolar) conjugate formation. All important enzymatic steps involved in synthesis and catabolism, as known from studies with tissues of vertebrates, were not, or hardly observed. The conclusion is drawn that typical vertebrate-type (C21, C19 and C18) steroids probably do not act as physiologically active substances in insects.

  5. Isolating phagosomes from tissue culture cells.

    PubMed

    Pryor, Paul R; Rofe, Adam P

    2014-12-01

    Phagocytosis is the process by which receptors at the plasma membrane are used to engulf a particle such as a bacterium, parasite, or dead cell. Phagosomes can be isolated from tissue culture cells by various centrifugation methods, including the use of differential density gradients or sucrose step gradients, but these methods are time-consuming or otherwise difficult. We describe here a protocol that avoids centrifugation and relies instead on the uptake of magnetic beads to rapidly isolate the phagosomal compartment from tissue culture cells.

  6. 21 CFR 876.5885 - Tissue culture media for human ex vivo tissue and cell culture processing applications.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... cell culture processing applications. 876.5885 Section 876.5885 Food and Drugs FOOD AND DRUG... DEVICES Therapeutic Devices § 876.5885 Tissue culture media for human ex vivo tissue and cell culture processing applications. (a) Identification. Tissue culture media for human ex vivo tissue and cell...

  7. 21 CFR 876.5885 - Tissue culture media for human ex vivo tissue and cell culture processing applications.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... cell culture processing applications. 876.5885 Section 876.5885 Food and Drugs FOOD AND DRUG... DEVICES Therapeutic Devices § 876.5885 Tissue culture media for human ex vivo tissue and cell culture processing applications. (a) Identification. Tissue culture media for human ex vivo tissue and cell...

  8. 21 CFR 876.5885 - Tissue culture media for human ex vivo tissue and cell culture processing applications.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... cell culture processing applications. 876.5885 Section 876.5885 Food and Drugs FOOD AND DRUG... DEVICES Therapeutic Devices § 876.5885 Tissue culture media for human ex vivo tissue and cell culture processing applications. (a) Identification. Tissue culture media for human ex vivo tissue and cell...

  9. 21 CFR 876.5885 - Tissue culture media for human ex vivo tissue and cell culture processing applications.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... cell culture processing applications. 876.5885 Section 876.5885 Food and Drugs FOOD AND DRUG... DEVICES Therapeutic Devices § 876.5885 Tissue culture media for human ex vivo tissue and cell culture processing applications. (a) Identification. Tissue culture media for human ex vivo tissue and cell...

  10. 21 CFR 876.5885 - Tissue culture media for human ex vivo tissue and cell culture processing applications.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... cell culture processing applications. 876.5885 Section 876.5885 Food and Drugs FOOD AND DRUG... DEVICES Therapeutic Devices § 876.5885 Tissue culture media for human ex vivo tissue and cell culture processing applications. (a) Identification. Tissue culture media for human ex vivo tissue and cell...

  11. Insecticidal properties of Sclerotinia sclerotiorum agglutinin and its interaction with insect tissues and cells.

    PubMed

    Hamshou, Mohamad; Smagghe, Guy; Shahidi-Noghabi, Shahnaz; De Geyter, Ellen; Lannoo, Nausicaä; Van Damme, Els J M

    2010-12-01

    This project studied in detail the insecticidal activity of a fungal lectin from the sclerotes of Sclerotinia sclerotiorum, referred to as S. sclerotiorum agglutinin or SSA. Feeding assays with the pea aphid (Acyrthosiphon pisum) on an artificial diet containing different concentrations of SSA demonstrated a high mortality caused by this fungal lectin with a median insect toxicity value (LC50) of 66 (49-88) μg/ml. In an attempt to unravel the mode of action of SSA the binding and interaction of the lectin with insect tissues and cells were investigated. Histofluorescence studies on sections from aphids fed on an artificial liquid diet containing FITC-labeled SSA, indicated the insect midgut with its brush border zone as the primary target for SSA. In addition, exposure of insect midgut CF-203 cells to 25 μg/ml SSA resulted in a total loss of cell viability, the median cell toxicity value (EC50) being 4.0 (2.4-6.7) μg/ml. Interestingly, cell death was accompanied with DNA fragmentation, but the effect was caspase-3 independent. Analyses using fluorescence confocal microscopy demonstrated that FITC-labeled SSA was not internalized in the insect midgut cells, but bound to the cell surface. Prior incubation of the cells with saponin to achieve a higher cell membrane permeation resulted in an increased internalization of SSA in the insect midgut cells, but no increase in cell toxicity. Furthermore, since the toxicity of SSA for CF-203 cells was significantly reduced when SSA was incubated with GalNAc and asialomucin prior to treatment of the cells, the data of this project provide strong evidence that SSA binds with specific carbohydrate moieties on the cell membrane proteins to start a signaling transduction cascade leading to death of the midgut epithelial cells, which in turn results in insect mortality. The potential use of SSA in insect control is discussed.

  12. Pathogen propagation in cultured three-dimensional tissue mass

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J. (Inventor); Spaulding, Glenn F. (Inventor); Wolf, David A. (Inventor)

    2000-01-01

    A process for propagating a pathogen in a three-dimensional tissue mass cultured at microgravity conditions in a culture vessel containing culture media and a culture matrix is provided. The three-dimensional tissue mass is inoculated with a pathogen and pathogen replication in the cells of the tissue mass achieved.

  13. Plant tissue culture and molecular markers.

    PubMed

    Tamayo-Ordoñez, María; Huijara-Vasconselos, Javier; Quiroz-Moreno, Adriana; Ortíz-García, Matilde; Sánchez-Teyer, Lorenzo Felipe

    2012-01-01

    Tissue culture can be used to propagate elite material or to generate new variability by employing somaclonal variation. Genetic stability of the process must be evaluated analyzing DNA profiles by the use of molecular markers. Several techniques have been reported for the screening of genetic variation on tissue culture derived material; however, a highly informative and good relation among the time-cost-information is obtained using Amplified Fragment Length Polymorphism (AFLP) in automatic sequencer. This technique involves a double-digestion of DNA with restriction enzymes, ligation of adapters at both extremities of the restriction fragments, and finally, selective polymerase chain reaction (PCR) amplification of the fragments. A semiautomatic process for the analysis could be used, but several considerations must be taken into account before such a use. PMID:22610640

  14. Transferring isolated mitochondria into tissue culture cells

    PubMed Central

    Yang, Yi-Wei; Koob, Michael D.

    2012-01-01

    We have developed a new method for introducing large numbers of isolated mitochondria into tissue culture cells. Direct microinjection of mitochondria into typical mammalian cells has been found to be impractical due to the large size of mitochondria relative to microinjection needles. To circumvent this problem, we inject isolated mitochondria through appropriately sized microinjection needles into rodent oocytes or single-cell embryos, which are much larger than tissue culture cells, and then withdraw a ‘mitocytoplast’ cell fragment containing the injected mitochondria using a modified holding needle. These mitocytoplasts are then fused to recipient cells through viral-mediated membrane fusion and the injected mitochondria are transferred into the cytoplasm of the tissue culture cell. Since mouse oocytes contain large numbers of mouse mitochondria that repopulate recipient mouse cells along with the injected mitochondria, we used either gerbil single-cell embryos or rat oocytes to package injected mouse mitochondria. We found that the gerbil mitochondrial DNA (mtDNA) is not maintained in recipient rho0 mouse cells and that rat mtDNA initially replicated but was soon completely replaced by the injected mouse mtDNA, and so with both procedures mouse cells homoplasmic for the mouse mtDNA in the injected mitochondria were obtained. PMID:22753025

  15. HIV-1 infection kinetics in tissue cultures.

    PubMed

    Spouge, J I; Shrager, R I; Dimitrov, D S

    1996-11-01

    Despite intensive experimental work on HIV-1, very little theoretical work has focused on HIV-1 spread in tissue culture. This article uses two systems of ordinary differential equations to model two modes of viral spread, cell-free virus and cell-to-cell contact. The two models produce remarkably similar qualitative results. Simulations using realistic parameter regimes showed that starting with a small fraction of cells infected, both cell-free viral spread and direct cell-to-cell transmission give an initial exponential phase of viral growth, followed by either a crash or a gradual decline, extinguishing the culture. Under some conditions, an oscillatory phase may precede the extinction. Some previous models of in vivo HIV-1 infection oscillate, but only in unrealistic parameter regimes. Experimental tissue infections sometimes display several sequential cycles of oscillation, however, so our models can at least mimic them qualitatively. Significantly, the models show that infective oscillations can be explained by infection dynamics; biological heterogeneity is not required. The models also display proportionality between infected cells and cell-free virus, which is reassuringly consistent with assumptions about the equivalence of several measures of viral load, except that the proportionality requires a relatively constant total cell concentration. Tissue culture parameter values can be determined from accurate, controlled experiments. Therefore, if verified, our models should make interpreting experimental data and extrapolating it to in vivo conditions sharper and more reliable.

  16. Sequestration, tissue distribution and developmental transmission of cyanogenic glucosides in a specialist insect herbivore.

    PubMed

    Zagrobelny, Mika; Olsen, Carl Erik; Pentzold, Stefan; Fürstenberg-Hägg, Joel; Jørgensen, Kirsten; Bak, Søren; Møller, Birger Lindberg; Motawia, Mohammed Saddik

    2014-01-01

    Considering the staggering diversity of bioactive natural products present in plants, insects are only able to sequester a small number of phytochemicals from their food plants. The mechanisms of how only some phytochemicals are sequestered and how the sequestration process takes place remains largely unknown. In this study the model system of Zygaena filipendulae (Lepidoptera) and their food plant Lotus corniculatus is used to advance the knowledge of insect sequestration. Z. filipendulae larvae are dependent on sequestration of the cyanogenic glucosides linamarin and lotaustralin from their food plant, and have a much lower fitness if reared on plants without these compounds. This study investigates the fate of the cyanogenic glucosides during ingestion, sequestration in the larvae, and in the course of insect ontogeny. To this purpose, double-labeled linamarin and lotaustralin were chemically synthesized carrying two stable isotopes, a (2)H labeled aglucone and a (13)C labeled glucose moiety. In addition, a small amount of (14)C was incorporated into the glucose residue. The isotope-labeled compounds were applied onto cyanogenic L. corniculatus leaves that were subsequently presented to the Z. filipendulae larvae. Following ingestion by the larvae, the destiny of the isotope labeled cyanogenic glucosides was monitored in different tissues of larvae and adults at selected time points, using radio-TLC and LC-MS analyses. It was shown that sequestered compounds are taken up intact, contrary to earlier hypotheses where it was suggested that the compounds would have to be hydrolyzed before transport across the gut. The uptake from the larval gut was highly stereo selective as the β-glucosides were retained while the α-glucosides were excreted and recovered in the frass. Sequestered compounds were rapidly distributed into all analyzed tissues of the larval body, partly retained throughout metamorphosis and transferred into the adult insect where they were

  17. Ecosystem engineering and manipulation of host plant tissues by the insect borer Oncideres albomarginata chamela.

    PubMed

    Calderón-Cortés, Nancy; Uribe-Mú, Claudia A; Martínez-Méndez, A Karen; Escalera-Vázquez, Luis H; Cristobal-Pérez, E Jacob; García-Oliva, Felipe; Quesada, Mauricio

    2016-01-01

    Ecosystem engineering by insect herbivores occurs as the result of structural modification of plants manipulated by insects. However, only few studies have evaluated the effect of these modifications on the plant responses induced by stem-borers that act as ecosystem engineers. In this study, we evaluated the responses induced by the herbivory of the twig-girdler beetle Oncideres albomarginata chamela (Cerambycidae: Lamiinae) on its host plant Spondias purpurea (Anacardiaceae), and its relationship with the ecosystem engineering process carried out by this stem-borer. Our results demonstrated that O. albomarginata chamela branch removal induced the development of lateral branches increasing the resources needed for the development of future insect generations, of its own offspring and of many other insect species. Detached branches represent habitats with high content of nitrogen and phosphorous, which eventually can be incorporated into the ecosystem, increasing nutrient cycling efficiency. Consequently, branch removal and the subsequent plant tissue regeneration induced by O. albomarginata chamela represent key mechanisms underlying the ecosystem engineering process carried out by this stem-borer, which enhances arthropod diversity in the ecosystem.

  18. Cell and tissue culture of Miscanthus Sacchariflorus

    SciTech Connect

    Godovikova, V.A.; Moiseyeva, E.A.; Shumny, V.K.

    1995-11-01

    Since recent time search and introduction of new species of plants have paid attention. More perspective are perennial low maintenance landscape plants from genera Phragmites L. and Miscanthus Anderss. known as high speed growing and great amount of cellulose`s containing. Absence of seeds production and limited distribution area prevent from immediately introduction the plants of this species. The main goal of our investigation is the scientific development of the cell and tissue culture methods to get changing clones, salt and cold tolerant plants and their micropogation. At present there are collection of biovariety represented by subspecies, ecotypes and plant regenerants of two species - Miscanthus purpurascens (Anders.) and Miscanthus sacchariflorus (Maxim.). Successful results have been achieved in screening of culture media, prepared on MS base medium and contained a row of tropic components to protect the explant and callus tissue from oxidation and necrosis. Initially the callus was induced from stem segments, apical and nodular meristem of vegetative shoots of elulalia, growing in hydroponic greenhouse. Morphological and cytologic analysis of plant-regenerants have been done.

  19. Graft versus host reaction in tissue culture

    PubMed Central

    Ginsburg, H.

    1968-01-01

    Rat lymphocytes cultured on mouse embryo cell monolayers produced large pyroninophilic cells (LPC) which lysed the mouse cells. The LPC that developed on monolayers of any particular strain of mouse (originator monolayers) were tested, by transfer, for their ability to lyse monolayers of other mouse strains. The distribution of lysis among the various strains of mouse revealed a definite pattern of specificity. Analysis of the H-2 allelic complement of the mouse strains tested suggests that the lymphocytes were sensitized upon exposure to the mouse embryo monolayers against one or more of the antigens determined by the H-2 locus. The presence or absence of one or all of the antigens in other strains determined whether monolayers of these strains were lysed completely, partially, or not at all. It was concluded that the cultures obtained are an in vitro reflection of the graft versus host immune reaction. It was produced in the tissue culture as a primary response by normal lymphocytes. ImagesFIG. 1FIG. 2FIG. 3-4FIG. 5-6FIG. 7-8 PMID:5656875

  20. Comparison of cytotoxic extracts from fruiting bodies, infected insects and cultured mycelia of Cordyceps formosana.

    PubMed

    Lu, Rui-Li; Bao, Guan-Hu; Hu, Feng-Lin; Huang, Bo; Li, Chun-Ru; Li, Zeng-Zhi

    2014-02-15

    A resazurin method was employed to test and compare cytotoxicity of extracts from fruiting bodies, insects and cultured mycelia of Cordyceps formosana against Chinese hamster ovary (CHO) cells. Results showed that the cultured mycelia had much stronger cytotoxicity than that of the fruiting bodies and infected insects. This suggests that using cultured mycelia to substitute a natural Cordyceps may result in poisoning. A combined method of HPLC-PAD-HRMS and cytotoxic analysis revealed that the most toxic compound (Compound 1) was found mainly in the cultured mycelia and also a small amount in the infected insect body of the Cordyceps, but not in the fruiting body. The second toxic compound (Compound 2) was found in all structures of Cordyceps and in cultured mycelia. Different contents of the toxic compounds resulted in the different cytotoxicity of the extracts. Compound 1 and Compound 2 were prepared with preparative HPLC as yellow and orange powders, respectively. Cytotoxic tests showed that the median lethal dose (LD₅₀) against CHO cells of Compound 1 was 18.3 ± 0.2 and 103.7 ± 5.9 μg/mL for Compound 2. Compound 1 and Compound 2 were identified as rugulosin and skyrin by HRMS, UV and NMR data. The two compounds were never previously isolated from the genera Cordyceps and Hirsutella and their cytotoxicity against CHO cells was also reported for the first time.

  1. Comparison of cytotoxic extracts from fruiting bodies, infected insects and cultured mycelia of Cordyceps formosana.

    PubMed

    Lu, Rui-Li; Bao, Guan-Hu; Hu, Feng-Lin; Huang, Bo; Li, Chun-Ru; Li, Zeng-Zhi

    2014-02-15

    A resazurin method was employed to test and compare cytotoxicity of extracts from fruiting bodies, insects and cultured mycelia of Cordyceps formosana against Chinese hamster ovary (CHO) cells. Results showed that the cultured mycelia had much stronger cytotoxicity than that of the fruiting bodies and infected insects. This suggests that using cultured mycelia to substitute a natural Cordyceps may result in poisoning. A combined method of HPLC-PAD-HRMS and cytotoxic analysis revealed that the most toxic compound (Compound 1) was found mainly in the cultured mycelia and also a small amount in the infected insect body of the Cordyceps, but not in the fruiting body. The second toxic compound (Compound 2) was found in all structures of Cordyceps and in cultured mycelia. Different contents of the toxic compounds resulted in the different cytotoxicity of the extracts. Compound 1 and Compound 2 were prepared with preparative HPLC as yellow and orange powders, respectively. Cytotoxic tests showed that the median lethal dose (LD₅₀) against CHO cells of Compound 1 was 18.3 ± 0.2 and 103.7 ± 5.9 μg/mL for Compound 2. Compound 1 and Compound 2 were identified as rugulosin and skyrin by HRMS, UV and NMR data. The two compounds were never previously isolated from the genera Cordyceps and Hirsutella and their cytotoxicity against CHO cells was also reported for the first time. PMID:24128585

  2. Tissue-Specific Transcriptomics of the Exotic Invasive Insect Pest Emerald Ash Borer (Agrilus planipennis)

    PubMed Central

    Mittapalli, Omprakash; Bai, Xiaodong; Bonello, Pierluigi; Herms, Daniel A.

    2010-01-01

    Background The insect midgut and fat body represent major tissue interfaces that deal with several important physiological functions including digestion, detoxification and immune response. The emerald ash borer (Agrilus planipennis), is an exotic invasive insect pest that has killed millions of ash trees (Fraxinus spp.) primarily in the Midwestern United States and Ontario, Canada. However, despite its high impact status little knowledge exists for A. planipennis at the molecular level. Methodology and Principal Findings Newer-generation Roche-454 pyrosequencing was used to obtain 126,185 reads for the midgut and 240,848 reads for the fat body, which were assembled into 25,173 and 37,661 high quality expressed sequence tags (ESTs) for the midgut and the fat body of A. planipennis larvae, respectively. Among these ESTs, 36% of the midgut and 38% of the fat body sequences showed similarity to proteins in the GenBank nr database. A high number of the midgut sequences contained chitin-binding peritrophin (248)and trypsin (98) domains; while the fat body sequences showed high occurrence of cytochrome P450s (85) and protein kinase (123) domains. Further, the midgut transcriptome of A. planipennis revealed putative microbial transcripts encoding for cell-wall degrading enzymes such as polygalacturonases and endoglucanases. A significant number of SNPs (137 in midgut and 347 in fat body) and microsatellite loci (317 in midgut and 571 in fat body) were predicted in the A. planipennis transcripts. An initial assessment of cytochrome P450s belonging to various CYP clades revealed distinct expression patterns at the tissue level. Conclusions and Significance To our knowledge this study is one of the first to illuminate tissue-specific gene expression in an invasive insect of high ecological and economic consequence. These findings will lay the foundation for future gene expression and functional studies in A. planipennis. PMID:21060843

  3. Manipulation of host plant cells and tissues by gall-inducing insects and adaptive strategies used by different feeding guilds.

    PubMed

    Oliveira, D C; Isaias, R M S; Fernandes, G W; Ferreira, B G; Carneiro, R G S; Fuzaro, L

    2016-01-01

    Biologists who study insect-induced plant galls are faced with the overwhelming diversity of plant forms and insect species. A challenge is to find common themes amidst this diversity. We discuss common themes that have emerged from our cytological and histochemical studies of diverse neotropical insect-induced galls. Gall initiation begins with recognition of reactive plant tissues by gall inducers, with subsequent feeding and/or oviposition triggering a cascade of events. Besides, to induce the gall structure insects have to synchronize their life cycle with plant host phenology. We predict that reactive oxygen species (ROS) play a role in gall induction, development and histochemical gradient formation. Controlled levels of ROS mediate the accumulation of (poly)phenols, and phytohormones (such as auxin) at gall sites, which contributes to the new cell developmental pathways and biochemical alterations that lead to gall formation. The classical idea of an insect-induced gall is a chamber lined with a nutritive tissue that is occupied by an insect that directly harvests nutrients from nutritive cells via its mouthparts, which function mechanically and/or as a delivery system for salivary secretions. By studying diverse gall-inducing insects we have discovered that insects with needle-like sucking mouthparts may also induce a nutritive tissue, whose nutrients are indirectly harvested as the gall-inducing insects feeds on adjacent vascular tissues. Activity of carbohydrate-related enzymes across diverse galls corroborates this hypothesis. Our research points to the importance of cytological and histochemical studies for elucidating mechanisms of induced susceptibility and induced resistance. PMID:26620152

  4. Manipulation of host plant cells and tissues by gall-inducing insects and adaptive strategies used by different feeding guilds.

    PubMed

    Oliveira, D C; Isaias, R M S; Fernandes, G W; Ferreira, B G; Carneiro, R G S; Fuzaro, L

    2016-01-01

    Biologists who study insect-induced plant galls are faced with the overwhelming diversity of plant forms and insect species. A challenge is to find common themes amidst this diversity. We discuss common themes that have emerged from our cytological and histochemical studies of diverse neotropical insect-induced galls. Gall initiation begins with recognition of reactive plant tissues by gall inducers, with subsequent feeding and/or oviposition triggering a cascade of events. Besides, to induce the gall structure insects have to synchronize their life cycle with plant host phenology. We predict that reactive oxygen species (ROS) play a role in gall induction, development and histochemical gradient formation. Controlled levels of ROS mediate the accumulation of (poly)phenols, and phytohormones (such as auxin) at gall sites, which contributes to the new cell developmental pathways and biochemical alterations that lead to gall formation. The classical idea of an insect-induced gall is a chamber lined with a nutritive tissue that is occupied by an insect that directly harvests nutrients from nutritive cells via its mouthparts, which function mechanically and/or as a delivery system for salivary secretions. By studying diverse gall-inducing insects we have discovered that insects with needle-like sucking mouthparts may also induce a nutritive tissue, whose nutrients are indirectly harvested as the gall-inducing insects feeds on adjacent vascular tissues. Activity of carbohydrate-related enzymes across diverse galls corroborates this hypothesis. Our research points to the importance of cytological and histochemical studies for elucidating mechanisms of induced susceptibility and induced resistance.

  5. Aeroponics for the culture of organisms, tissues and cells.

    PubMed

    Weathers, P J; Zobel, R W

    1992-01-01

    Characteristics of aeroponics are discussed. Contrast is made, where appropriate, with hydroponics and aero-hydroponics as applies to research and commercial applications of nutrient mist technology. Topics include whole plants, plant tissue cultures, cell and microbial cultures, and animal tissue cultures with regard to operational considerations (moisture, temperature, minerals, gaseous atmosphere) and design of apparati. PMID:14540802

  6. Development of germ-free plants and tissue culture

    NASA Technical Reports Server (NTRS)

    Venketeswaran, S.

    1973-01-01

    The botanical program is reported for experiments performed at the Lunar Receiving Laboratory. Papers prepared during this program are listed. The studies reported include: tissues cultured on various mediums, nutritional studies, preparation of plant cultures for Apollo 15, and pine tissue cultures.

  7. Potential for forest tree improvement via tissue culture

    SciTech Connect

    Karnosky, D.F.

    1981-02-01

    The culture of cells, tissues, and organs in vitro offers unparalleled opportunity for forest tree improvement. Vegetative propagation of selected superior genotypes and hybrids, production and culture of haploids, asexual hybridization via protoplast fusion, freeze preservation of valuable genotypes, and the selection of cell lines tolerant to stresses such as diseases, drought, heavy metals, or salts through tissue culture may someday provide forest geneticists efficient and economical methods to supplement tree improvement programs. Heat treatments and meristem culture currently provide a pratical means of eliminating harmful virus and mycoplasma diseases from vegatively propagated trees. For the most part, however, the forest tree tissue culture research is only in its infancy. Research must be expanded to realize the full potential available from tissue culture. Considerable effort will be necessary to solve the many problems now deterring practical use of tissue culture in forest tree improvement and reforestation programs. (Refs. 93).

  8. [Determination of nutrient elements in transgenic insect-resistant cotton tissues by three different spectroscopical methods].

    PubMed

    Sun, Cai-Xia; Zhang, Yu-Lan; Sun, Yu-Quan; Yang, Lei; Wang, Jie; Cui, Zhen-Bo

    2009-11-01

    In order to find out the effects of exogenous genes, such as Bt and Bt coupled with CpTI, on nutrition metabolism in transgenic plants, totally eleven types of nutrient elements in transgenic Bt (Z30) and Bt-CpTI (CCRI41 and SGK321) cotton were determined using methods of flame atomic absorption spectroscopy, flame atomic emission spectroscopy and spectrophotometry at flowering stage and boll-opening stage. The results showed that the chemical composition of plant nutrition in transgenic insect-resistant cotton differed in comparison with non-transgenic cotton counterparts related to varieties, tissues and stages. The content of total N in transgenic cotton changed most significantly. Especially, it increased by 21% for transgenic Bt cotton Z30 compared to non-transgenic cotton Z16. These changes in total N content were probably caused by both transgenes expression in transgenic cotton and other processes not studied in this experiment. The content of Mg, Na and Cu in transgenic cotton varied significantly only in some certain varieties or tissues. It was unobvious how the incorporation of transgenes impacted on the content of organic C, total P, total S, K, Ca, Fe and Zn in transgenic cotton. The authors speculated that there were no significant changes in utilization and accumulation of these nutrient elements between transgenic insect-resistant cotton and their non-transgenic cotton counterparts (Z16, CCRI23 and SY321, respectively).

  9. Trends in the use of tissue culture in forest improvement

    SciTech Connect

    Haissig, B.E.; Nelson, N.D.; Kidd, G.H.

    1987-01-01

    We have analyzed and described the problems and potentials of using tissue culture in micropropagation and biotechnologies related to forest improvement. Trends in forest management concepts, commerical micropropagation, and tissue culture biotechnologies are discussed. Our analysis suggests that tissue culture will contribute significantly to the improvement of forests through exploitation of existing genotypes and production of new, commercially valuble genotypes. Such changes may significantly influence worldwide management decisions in forestry. 97 references.

  10. Study Progress on Tissue Culture of Maize Mature Embryo

    NASA Astrophysics Data System (ADS)

    Wang, Hongzhen; Cheng, Jun; Cheng, Yanping; Zhou, Xioafu

    It has been paid more and more attention on maize tissue culture as it is a basic work in maize genetic transformation, especially huge breakthrough has been made in maize tissue culture utilizing mature embryos as explants in the recent years. This paper reviewed the study progress on maize tissue culture and plant regeneration utilizing mature embryos as explants from callus induction, subculture, plant regeneration and browning reduction and so on.

  11. Citrus tissue culture employing vegetative explants.

    PubMed

    Chaturvedi, H C; Singh, S K; Sharma, A K; Agnihotri, S

    2001-11-01

    Citrus being a number one fruit of the world due to its high nutritional value, huge production of fruits and fruit products, the citrus industry may be considered a major fruit industry. Though citrus orchard area in India is comparable to USA, the produce is far less, while its export is nil. Biotechnology has played an outstanding role in boosting the citrus industry, e.g., in Spain, which is now the biggest exporter of citrus fruit with the application of micrografting. Amongst the fruit trees, perhaps the maximum tissue culture research has been done in citrus during the past four decades, however, the results of practical value are meagre. The shortfalls in citrus tissue culture research and some advancements made in this direction along with bright prospects are highlighted, restricting the review to vegetative explants only. Whilst utilization of nucellar embryogenesis is limited to rootstocks, the other aspects, like, regeneration and proliferation of shoot meristems measuring 200 microm in length--a global breakthrough--of two commercially important scion species, Citrus aurantifolia and C. sinensis and an important rootstock, C. limonia, improvement of micrografting technique, cloning of the same two scion species as well as some Indian rootstock species, employing nodal stem segments of mature trees, of immense practical value have been elaborated. A rare phenomenon of shift in the morphogenetic pattern of differentiation from shoot bud differentiation to embryoid formation occurred during the long-term culture of stem callus of C. grandis. Stem callus-regenerated plants of C. aurantifolia, C. sinensis and C. grandis showed variation in their ploidy levels and a somaclonal variant of C. sinensis, which produced seedless fruits was isolated. Tailoring of rooting in microshoots to a tap root-like system by changing the inorganic salt composition of the rooting medium, resulting in 100% transplant success, and germplasm preservation through normal growth

  12. [Chromosome variability in the tissue culture of rare Gentiana species].

    PubMed

    Tvardovs'ka, M O; Strashniuk, N M; Mel'nyk, V M; Adonin, V I; Kunakh, V A

    2008-01-01

    Cytogenetic analysis of plants and tissue culture of Gentiana lutea, G. punctata, G. acaulis has been carried out. Culturing in vitro was found to result in the changes of chromosome number in the calluses of the species involved. Species specificity for variation of the cultured cell genomes was shown. Contribution of the original plant genotypes to the cytogenetic structure of the tissue culture was established. Gentiana callus tissues (except for in vitro culture of G. punctata, derived from plant of Breskul'ska population) were found to exhibit modal class with the cells of diploid and nearly diploid chromosome sets.

  13. Bioelectrical enhancement in tissue-electrode coupling with metamorphic-stage insertions for insect machine interfaces.

    PubMed

    Bozkurt, Alper; Gilmour, Robert; Lal, Amit

    2011-01-01

    Implanting microtechnologies into insects with an aim of domesticating its locomotion poses certain challenges, however, performing surgical implantation during the early stages of metamorphic growth was shown to mitigate some of the related detriments. This study reports the bioelectrical enhancement at the tissue-electrode interface allowed with these metamorphic stage insertions, where the electrodes implanted in the insect during the early pupal stages and right after emergence were compared. An average 1 kHz impedance of 8.9 kΩ was obtained with pupal stage inserted electrodes, ten days after the emergence, as compared to 12.1 kΩ observed when electrodes were implanted in the adult state. Charge storage capacity also increased to 52 mC/cm(2) from 38 mC/cm(2) with the early metamorphic insertions. The performed voltage excursion studies also confirmed the enhancement demonstrating an increase from 3.5 mC/cm(2) to 5.1 mC/cm(2) in the injectable amount of charge in the water window.

  14. Effect of lunar materials on plant tissue culture.

    NASA Technical Reports Server (NTRS)

    Walkinshaw, C. H.; Venketeswaran, S.; Baur, P. S.; Croley, T. E.; Scholes, V. E.; Weete, J. D.; Halliwell, R. S.; Hall, R. H.

    1973-01-01

    Lunar material collected during the Apollo 11, 12, 14, and 15 missions has been used to treat 12 species of higher plant tissue cultures. Biochemical and morphological studies have been conducted on several of these species. Tobacco tissue cultures treated with 0.22 g of lunar material exhibited increased greening more complex chloroplasts, less cytoplasmic vacuolation and greater vesiculation. Pine tissue cultures reacted to treatment by an increased deposition of tannin-like materials. The percentage of dry weight and soluble protein was increased in cultures treated with either lunar or terrestrial rock materials.

  15. Techniques for mammalian cell tissue culture.

    PubMed

    Phelan, Mary C

    2006-11-01

    This appendix opens with detailed discussions on the latest principles of sterile technique and preparation of culture media. Step-by-step protocols describe trypsinizing and subculturing monolayer cultures, passaging suspension cultures, freezing and thawing cells, counting cells using a hemacytometer, and preparing cells for transport. PMID:18428384

  16. Techniques for mammalian cell tissue culture.

    PubMed

    Phelan, Mary C

    2006-05-01

    This appendix opens with detailed discussions on the latest principles of sterile technique and preparation of culture media. Step-by-step protocols describe trypsinizing and subculturing monolayer cultures, passaging suspension cultures, freezing and thawing cells, counting cells using a hemacytometer, and preparing cells for transport. PMID:18265370

  17. Techniques for mammalian cell tissue culture.

    PubMed

    Phelan, Mary C

    2006-05-01

    This unit opens with detailed discussions on the latest principles of sterile technique and preparation of culture media. Step-by-step protocols describe trypsinizing and subculturing monolayer cultures, passaging suspension cultures, freezing and thawing cells, counting cells using a hemacytometer, and preparing cells for transport. PMID:18770828

  18. Techniques for mammalian cell tissue culture.

    PubMed

    Phelan, Mary C

    2006-12-01

    This appendix opens with detailed discussions on the latest principles of sterile technique and preparation of culture media. Step-by-step protocols describe trypsinizing and subculturing monolayer cultures, passaging suspension cultures, freezing and thawing cells, counting cells using a hemacytometer, and preparing cells for transport. PMID:18429293

  19. An insect TEP in a crustacean is specific for cuticular tissues and involved in intestinal defense.

    PubMed

    Wu, Chenglin; Noonin, Chadanat; Jiravanichpaisal, Pikul; Söderhäll, Irene; Söderhäll, Kenneth

    2012-02-01

    In an attempt to identify genes encoding thioester-containing proteins in the freshwater crayfish, Pacifastacus leniusculus, three different cDNAs were found. A phylogenetic analysis of these proteins indicates that they can be classified into two subfamilies: two alpha-2-macroglobulins (Pl-A2M1, Pl-A2M2) showing a close similarity to shrimp A2M, and one insect TEP-like protein (Pl-TEP). This is the first report of an insect TEP-like protein in a crustacean. Crayfish Pl-A2M1, Pl-A2M2 and Pl-TEP cDNAs encode proteins with 1480, 1586 or 1507 amino acids, respectively. Pl-A2M1, Pl-A2M2 and Pl-TEP have the basic domain structure and functionally important residues for each molecule, and their mRNA was detected in different parts of the body, suggesting that they may have different functions. Pl-A2M1 was mainly expressed in hemocytes and Pl-A2M2 was highly expressed in heart and nerve, while Pl-TEP was exclusively expressed in cuticular tissues such as gill and intestine. RNA interference of Pl-TEP in vivo resulted in that these animals were slightly less resistant when fed with the bacterium, Pseudomonas libanensis/gessardii. Furthermore, when TEP activity was blocked using methylamine followed by bacterial feeding, the animals were killed to a higher extent compared to a control group. Taken together, this indicates that Pl-TEP and/or Pl-A2M1, Pl-A2M2 may be important for the immune defense in crayfish intestine and function as a pattern recognition protein in crayfish cuticular tissues.

  20. An insect TEP in a crustacean is specific for cuticular tissues and involved in intestinal defense.

    PubMed

    Wu, Chenglin; Noonin, Chadanat; Jiravanichpaisal, Pikul; Söderhäll, Irene; Söderhäll, Kenneth

    2012-02-01

    In an attempt to identify genes encoding thioester-containing proteins in the freshwater crayfish, Pacifastacus leniusculus, three different cDNAs were found. A phylogenetic analysis of these proteins indicates that they can be classified into two subfamilies: two alpha-2-macroglobulins (Pl-A2M1, Pl-A2M2) showing a close similarity to shrimp A2M, and one insect TEP-like protein (Pl-TEP). This is the first report of an insect TEP-like protein in a crustacean. Crayfish Pl-A2M1, Pl-A2M2 and Pl-TEP cDNAs encode proteins with 1480, 1586 or 1507 amino acids, respectively. Pl-A2M1, Pl-A2M2 and Pl-TEP have the basic domain structure and functionally important residues for each molecule, and their mRNA was detected in different parts of the body, suggesting that they may have different functions. Pl-A2M1 was mainly expressed in hemocytes and Pl-A2M2 was highly expressed in heart and nerve, while Pl-TEP was exclusively expressed in cuticular tissues such as gill and intestine. RNA interference of Pl-TEP in vivo resulted in that these animals were slightly less resistant when fed with the bacterium, Pseudomonas libanensis/gessardii. Furthermore, when TEP activity was blocked using methylamine followed by bacterial feeding, the animals were killed to a higher extent compared to a control group. Taken together, this indicates that Pl-TEP and/or Pl-A2M1, Pl-A2M2 may be important for the immune defense in crayfish intestine and function as a pattern recognition protein in crayfish cuticular tissues. PMID:22193393

  1. Explant culture of sarcoma patients' tissue.

    PubMed

    Muff, Roman; Botter, Sander M; Husmann, Knut; Tchinda, Joelle; Selvam, Philomina; Seeli-Maduz, Franziska; Fuchs, Bruno

    2016-07-01

    Human sarcomas comprise a heterogeneous group of rare tumors that affect soft tissues and bone. Due to the scarcity and heterogeneity of these diseases, patient-derived cells that can be used for preclinical research are limited. In this study, we investigated whether the tissue explant technique can be used to obtain sarcoma cell lines from fresh as well as viable frozen tissue obtained from 8 out of 12 soft tissue and 9 out of 13 bone tumor entities as defined by the World Health Organization. The success rate, defined as the percent of samples that yielded sufficient numbers of outgrowing cells to be frozen, and the time to freeze were determined for a total of 734 sarcoma tissue specimens. In 552 cases (75%) enough cells were obtained to be frozen at early passage. Success rates were higher in bone tumors (82%) compared with soft tissue tumors (68%), and the mean time to freezing was lower in bone tumors (65 days) compared with soft tissue tumors (84 days). Overall, from 40% of the tissues cells could be frozen at early passage within <2 month after tissue removal. Comparable results as with fresh tissue were obtained after explant of viable frozen patient-derived material. In a selected number of bone and soft tissue sarcoma entities, conventional karyotyping and/or FISH (fluorescence in situ hybridization) analysis revealed a high amount (>60%) of abnormal cells in 41% of analyzed samples, especially in bone sarcomas (osteosarcoma and Ewing sarcoma). In conclusion, the explant technique is well suited to establish patient-derived cell lines for a large majority of bone and soft tissue sarcoma entities with adequate speed. This procedure thus opens the possibility for molecular analysis and drug testing for therapeutic decision making even during patient treatment. PMID:27111283

  2. Basic techniques in mammalian cell tissue culture.

    PubMed

    Phelan, Katy; May, Kristin M

    2015-03-02

    Cultured mammalian cells are used extensively in cell biology studies. It requires a number of special skills in order to be able to preserve the structure, function, behavior, and biology of the cells in culture. This unit describes the basic skills required to maintain and preserve cell cultures: maintaining aseptic technique, preparing media with the appropriate characteristics, passaging, freezing and storage, recovering frozen stocks, and counting viable cells.

  3. Plant Tissue Cultures of Juniperus virginiana.

    PubMed

    Kašparová, Marie; Spilková, Jirina; Cvak, Ladislav; Siatka, Tomáš; Martin, Jan

    2016-05-01

    Callus cultures of Juniperus virginiana L. (varieties 'Hetzii', 'Glauca', 'Grey Owl') were derived from fresh leaves of garden-grown trees on Schenk and Hildebrandt medium supplemented with 3.0 mg/L of α-naphthaleneacetic acid, 0.2 mg/L of kinetin and 15 mg/L of ascorbic acid. The growth characteristics of one-year-old and two-years-old cultures were determined. The maximum biomass in all varieties was achieved on the 35th day of the cultivation period. The increase in fresh weights of two-years-old callus cultures, when compared with one-year-old callus cultures, was as follows: variety 'Hetzii' by 25%, variety 'Glauca' by 29% and variety 'Grey Owl' by 49%. J. virginiana suspension cultures (varieties 'Hetzii', 'Glauca', 'Grey Owl') were derived from two-years-old callus cultures on Schenk and Hildebrandt medium supplemented with 3.0 mg/L of α-naphthaleneacetic acid, 0.2 mg/L of kinetin and 15 mg/L of ascorbic acid. The maximum biomass of all varieties was found on the 21st day of the cultivation period. These results indicate that a sub-cultivation interval of 35 days for callus cultures and of 21st days for suspension cultures can be recommended. The callus and suspension cultures of J. virginiana of the variety 'Glauca' have the best survivability and thus provide the most biomass.

  4. Plant Tissue Cultures of Juniperus virginiana.

    PubMed

    Kašparová, Marie; Spilková, Jirina; Cvak, Ladislav; Siatka, Tomáš; Martin, Jan

    2016-05-01

    Callus cultures of Juniperus virginiana L. (varieties 'Hetzii', 'Glauca', 'Grey Owl') were derived from fresh leaves of garden-grown trees on Schenk and Hildebrandt medium supplemented with 3.0 mg/L of α-naphthaleneacetic acid, 0.2 mg/L of kinetin and 15 mg/L of ascorbic acid. The growth characteristics of one-year-old and two-years-old cultures were determined. The maximum biomass in all varieties was achieved on the 35th day of the cultivation period. The increase in fresh weights of two-years-old callus cultures, when compared with one-year-old callus cultures, was as follows: variety 'Hetzii' by 25%, variety 'Glauca' by 29% and variety 'Grey Owl' by 49%. J. virginiana suspension cultures (varieties 'Hetzii', 'Glauca', 'Grey Owl') were derived from two-years-old callus cultures on Schenk and Hildebrandt medium supplemented with 3.0 mg/L of α-naphthaleneacetic acid, 0.2 mg/L of kinetin and 15 mg/L of ascorbic acid. The maximum biomass of all varieties was found on the 21st day of the cultivation period. These results indicate that a sub-cultivation interval of 35 days for callus cultures and of 21st days for suspension cultures can be recommended. The callus and suspension cultures of J. virginiana of the variety 'Glauca' have the best survivability and thus provide the most biomass. PMID:27319150

  5. In situ immune infrared fluorescent staining for detection and quantitation of bluetongue virus in Culicoides insect cell culture.

    PubMed

    Mecham, James O; Brown, Philip L; McHolland, Linda E

    2009-06-01

    Bluetongue virus (BTV) is transmitted to sheep, cattle and other ruminants by Culicoides spp. of biting midges. Cell lines have been developed from Culicoides sonorensis; however, techniques to detect and quantitate viable virus directly in these insect cells are lacking. In situ immune infrared fluorescent staining techniques were developed to visualize and quantitate BTV infection in Culicoides cell culture by both an endpoint titration and an agarose overlay fluorescent focus assay. Insect cell cultures infected with BTV were fixed, permeabilized and reacted with virus-specific monoclonal antibody and fluorescent-labeled secondary antibody. Virus replication in the infected cells was visualized and quantitated by measuring fluorescence with an infrared imager. The sensitivity of virus detection in insect cell culture using these techniques was comparable to or better than detection by standard techniques in vertebrate cell culture.

  6. Cytological studies of lunar treated tissue cultures

    NASA Technical Reports Server (NTRS)

    Halliwell, R. S.

    1972-01-01

    An electron microscopic study was made of botanical materials, particularly pine tissues, treated with lunar materials collected by Apollo 12 quarantine mission. Results show unusual structural changes within several of the treated tissues. The bodies, as yet unidentified, resemble virus particles observed within infected plant cells. Although the size and shape of the structures are comparable to rod shaped virus particles such as Tobacco mosaic, the numerical distribution, affinity for stains, and intercellular location are different.

  7. Using Tissue Culture To Investigate Plant Cell Differentiation and Dedifferentiation.

    ERIC Educational Resources Information Center

    Bozzone, Donna M.

    1997-01-01

    Describes an experimental project that uses plant tissue culture techniques to examine cell differentiation in the carrot. Allows students to gain experience in some important techniques and to explore fundamental questions about cell differentiation. (DDR)

  8. Mesenchymal Progenitor Cells: Tissue Origin, Isolation and Culture.

    PubMed

    Bourin, Philippe; Gadelorge, Mélanie; Peyrafitte, Julie-Anne; Fleury-Cappellesso, Sandrine; Gomez, Marilyn; Rage, Christine; Sensebé, Luc

    2008-01-01

    SUMMARY: Since the pioneering work of Alexander Friedenstein on multipotent mesenchymal stromal cells (MSCs), a tremendous amount of work has been done to isolate, characterize and culture such cells. Assay of colony forming unit-fibroblasts (CFU-Fs), the hallmark of MSCs, is used to estimate their frequency in tissue. MSCs are adherent cells, so they are easy to isolate, and they show contact inhibition. Thus, several parameters must be taken into account for culture: cell density, number of passages, culture medium, and growth factors used. The purity of the initial material is not a limiting parameter. Similar but not identical cell populations are found in almost all mammal or human tissues. MSCs seem to be very abundant in adipose tissue but at low frequency in blood from umbilical cord or in adult tissue. The culture conditions are very similar, whatever the source of cells. Because of their favorable properties, MSCs are very promising tools for regenerative medicine.

  9. Optimisation of protein expression and establishment of the Wave Bioreactor for Baculovirus/insect cell culture.

    PubMed

    Weber, Wilfried; Weber, Eric; Geisse, Sabine; Memmert, Klaus

    2002-01-01

    As the interest of research is beginning to shift from genomicsto proteomics the number of proteins to be expressed is rapidlyincreasing. To do so, well-established, high-level expressionsystems and rapid, cost-effective production means are needed. For addressing the latter, a novel cultivation system for recombinant cells, the Wave Bioreactortrade mark has recently becomeavailable. We describe the set-up and the optimisation of parameters essential for successful operation and growth of insect cells to high cell densities in the Wave Bioreactor. According to our experience, the Cellbagtrade mark system comparesvery favorably to conventional cultivation vessels such as bioreactors and roller cultures with respect to simplicity ofoperation and cost. Additionally, we developed a rapid and simple protocol for assessing expression and production conditions for the Baculovirus/insect cell system applicable to many different genes/proteins. Important parameters like MOI,TOI, peak cell density (PCD) and expression levels are determinedin pre-experiments on small scale to achieve optimal expressionof a given protein. These conditions are subsequently transformedand applied to large scale cultures grown in nutrient-supplemented medium in the Wave Bioreactor. PMID:19003089

  10. Three-dimensional tissue culture based on magnetic cell levitation.

    PubMed

    Souza, Glauco R; Molina, Jennifer R; Raphael, Robert M; Ozawa, Michael G; Stark, Daniel J; Levin, Carly S; Bronk, Lawrence F; Ananta, Jeyarama S; Mandelin, Jami; Georgescu, Maria-Magdalena; Bankson, James A; Gelovani, Juri G; Killian, T C; Arap, Wadih; Pasqualini, Renata

    2010-04-01

    Cell culture is an essential tool in drug discovery, tissue engineering and stem cell research. Conventional tissue culture produces two-dimensional cell growth with gene expression, signalling and morphology that can be different from those found in vivo, and this compromises its clinical relevance. Here, we report a three-dimensional tissue culture based on magnetic levitation of cells in the presence of a hydrogel consisting of gold, magnetic iron oxide nanoparticles and filamentous bacteriophage. By spatially controlling the magnetic field, the geometry of the cell mass can be manipulated, and multicellular clustering of different cell types in co-culture can be achieved. Magnetically levitated human glioblastoma cells showed similar protein expression profiles to those observed in human tumour xenografts. Taken together, these results indicate that levitated three-dimensional culture with magnetized phage-based hydrogels more closely recapitulates in vivo protein expression and may be more feasible for long-term multicellular studies. PMID:20228788

  11. Explant exenisation for tissue culture in marine macroalgae

    NASA Astrophysics Data System (ADS)

    Liu, Xuewu; Kloareg, Bernard

    1992-09-01

    Unialgal explants from Laminaria digitata, and from a variety of red algae, were obtained by hand removing the visible epiphytes, and stirring the tissue in the presence of glass beads. Two antibiotic mixtures were found to be efficient in removing the contaminating fungi and bacteria from the algae. The procedure proved suitable as a primary step in the tissue culture of the investigated species.

  12. Tissue-Culture Method of Cloning Rubber Plants

    NASA Technical Reports Server (NTRS)

    Ball, E. A.

    1983-01-01

    Guayule plant, a high-yield rubber plant cloned by tissue-culture method to produce multiple new plants that mature quickly. By adjusting culture medium, excised shoot tip produces up to 50 identical guayule plants. Varying concentration of cytokinin, single excised tip produces either 1 or several (up to 50) new plants.

  13. Influence of simulated microgravity on the longevity of insect-cell culture

    NASA Technical Reports Server (NTRS)

    Cowger, N. L.; O'Connor, K. C.; Bivins, J. E.

    1997-01-01

    Simulated microgravity within the NASA High Aspect Rotating-Wall Vessel (HARV) provides a quiescent environment to culture fragile insect cells. In this vessel, the duration of stationary and death phase for cultures of Spodoptera frugiperda cells was greatly extended over that achieved in shaker-flask controls. For both HARV and control cultures, S. frugiperda cells grew to concentrations in excess of 1 x 10(7) viable cells ml-1 with viabilities greater than 90%. In the HARV, stationary phase was maintained 9-15 days in contrast to 4-5 days in the shaker flask. Furthermore, the rate of cell death was reduced in the HARV by a factor of 20-90 relative to the control culture and was characterized with a death rate constant of 0.01-0.02 day-1. Beginning in the stationary phase and continuing in the death phase, there was a significant decrease in population size in the HARV versus an increase in the shaker flask. This phenomenon could represent cell adaptation to simulated microgravity and/or a change in the ratio of apoptotic to necrotic cells. Differences observed in this research between the HARV and its control were attributed to a reduction in hydrodynamic forces in the microgravity vessel.

  14. Extraction and assembly of tissue-derived gels for cell culture and tissue engineering.

    PubMed

    Uriel, Shiri; Labay, Edwardine; Francis-Sedlak, Megan; Moya, Monica L; Weichselbaum, Ralph R; Ervin, Natalia; Cankova, Zdravka; Brey, Eric M

    2009-09-01

    Interactions with the extracellular matrix (ECM) play an important role in regulating cell function. Cells cultured in, or on, three-dimensional ECM recapitulate similar features to those found in vivo that are not present in traditional two-dimensional culture. In addition, both natural and synthetic materials containing ECM components have shown promise in a number of tissue engineering applications. Current materials available for cell culture and tissue engineering do not adequately reflect the diversity of ECM composition between tissues. In this paper, a method is presented for extracting solutions of proteins and glycoproteins from soft tissues and inducing assembly of these proteins into gels. The extracts contain ECM proteins specific to the tissue source with low levels of intracellular molecules. Gels formed from the tissue-derived extracts have nanostructure similar to ECM in vivo and can be used to culture cells as both a thin substrate coating and a thick gel. This technique could be used to assemble hydrogels with varying composition depending upon the tissue source, hydrogels for three-dimensional culture, as scaffolds for tissue engineering therapies, and to study cell-matrix interactions.

  15. Tissue culture apparatus for flight experimentation

    NASA Technical Reports Server (NTRS)

    Scheld, H. W.; Magnuson, J. W.; Krikorian, A. D.

    1985-01-01

    The development of an apparatus for in-flight treatment of cells, tissues, or small organisms for microscopic and chemical analyses is discussed. The hardware for the apparatus is to have: (1) automated functions, (2) the capability to interface with ground-based facilities, (3) independently controlled chambers, (4) variable chamber configurations and volumes, and (4) the capabilities for processing the materials. The components of the equipment used on Skylab 3 for the study of animal cells are described. The design of an apparatus which incorporates all the required capabilities is proposed.

  16. Stability of Propofol in Polystyrene-Based Tissue Culture Plates

    PubMed Central

    Sall, Jeffrey W.; Leong, Jason

    2013-01-01

    Propofol has been reported to have high stability in glass and relatively high stability up to 24 hours in polyvinyl chloride-based medical plastics. Recent publications have observed the effects of propofol on cells and tissues grown in culture. Many cell culture plastics are formulated from polystyrene but we could find little information on the stability of propofol exposed to these products. We observed very little change in the concentration of propofol diluted in cell culture medium over 24 hours when exposed to glass, but substantial loss of the drug when exposed to 96-well polystyrene cell culture plates. This decrease was most rapid in the first hour but continued until 24 hours. The type of plastic used in cell and tissue culture experiments with propofol may influence the results by increasing the apparent dose required to see an effect. PMID:23632056

  17. Three-dimensional Tissue Culture Based on Magnetic Cell Levitation

    PubMed Central

    Souza, Glauco R.; Molina, Jennifer R.; Raphael, Robert M.; Ozawa, Michael G.; Stark, Daniel J.; Levin, Carly S.; Bronk, Lawrence F.; Ananta, Jeyarama S.; Mandelin, Jami; Georgescu, Maria-Magdalena; Bankson, James A.; Gelovani, Juri G.

    2015-01-01

    Cell culture is an essential tool for drug discovery, tissue engineering, and stem cell research. Conventional tissue culture produces two-dimensional (2D) cell growth with gene expression, signaling, and morphology that can differ from those in vivo and thus compromise clinical relevancy1–5. Here we report a three-dimensional (3D) culture of cells based on magnetic levitation in the presence of hydrogels containing gold and magnetic iron oxide (MIO) nanoparticles plus filamentous bacteriophage. This methodology allows for control of cell mass geometry and guided, multicellular clustering of different cell types in co-culture through spatial variance of the magnetic field. Moreover, magnetic levitation of human glioblastoma cells demonstrates similar protein expression profiles to those observed in human tumor xenografts. Taken together, these results suggest levitated 3D culture with magnetized phage-based hydrogels more closely recapitulates in vivo protein expression and allows for long-term multi-cellular studies. PMID:20228788

  18. Differential metabolic responses of Beauveria bassiana cultured in pupae extracts, root exudates and its interactions with insect and plant.

    PubMed

    Luo, Feifei; Wang, Qian; Yin, Chunlin; Ge, Yinglu; Hu, Fenglin; Huang, Bo; Zhou, Hong; Bao, Guanhu; Wang, Bin; Lu, Ruili; Li, Zengzhi

    2015-09-01

    Beauveria bassiana is a kind of world-wide entomopathogenic fungus and can also colonize plant rhizosphere. Previous researches showed differential expression of genes when entomopathogenic fungi are cultured in insect or plant materials. However, so far there is no report on metabolic alterations of B. bassiana in the environments of insect or plant. The purpose of this paper is to address this problem. Herein, we first provide the metabolomic analysis of B. bassiana cultured in insect pupae extracts (derived from Euproctis pseudoconspersa and Bombyx mori, EPP and BMP), plant root exudates (derived from asparagus and carrot, ARE and CRE), distilled water and minimal media (MM), respectively. Principal components analysis (PCA) shows that mycelia cultured in pupae extracts and root exudates are evidently separated and individually separated from MM, which indicates that fungus accommodates to insect and plant environments by different metabolic regulation mechanisms. Subsequently, orthogonal projection on latent structure-discriminant analysis (OPLS-DA) identifies differential metabolites in fungus under three environments relative to MM. Hierarchical clustering analysis (HCA) is performed to cluster compounds based on biochemical relationships, showing that sphingolipids are increased in BMP but are decreased in EPP. This observation further implies that sphingolipid metabolism may be involved in the adaptation of fungus to different hosts. In the meantime, sphingolipids are significantly decreased in root exudates but they are not decreased in distilled water, suggesting that some components of the root exudates can suppress sphingolipid to down-regulate sphingolipid metabolism. Pathway analysis finds that fatty acid metabolism is maintained at high level but non-ribosomal peptides (NRP) synthesis is unaffected in mycelia cultured in pupae extracts. In contrast, fatty acid metabolism is not changed but NRP synthesis is high in mycelia cultured in root exudates

  19. Yield improvement strategies for the production of secondary metabolites in plant tissue culture: silymarin from Silybum marianum tissue culture.

    PubMed

    AbouZid, S

    2014-01-01

    Plant cell culture can be a potential source for the production of important secondary metabolites. This technology bears many advantages over conventional agricultural methods. The main problem to arrive at a cost-effective process is the low productivity. This is mainly due to lack of differentiation in the cultured cells. Many approaches have been used to maximise the yield of secondary metabolites produced by cultured plant cells. Among these approaches: choosing a plant with a high biosynthetic capacity, obtaining efficient cell line for growth and production of metabolite of interest, manipulating culture conditions, elicitation, metabolic engineering and organ culture. This article gives an overview of the various approaches used to maximise the production of pharmaceutically important secondary metabolites in plant cell cultures. Examples of using these different approaches are shown for the production of silymarin from Silybum marianum tissue culture.

  20. Specimen Sample Preservation for Cell and Tissue Cultures

    NASA Technical Reports Server (NTRS)

    Meeker, Gabrielle; Ronzana, Karolyn; Schibner, Karen; Evans, Robert

    1996-01-01

    The era of the International Space Station with its longer duration missions will pose unique challenges to microgravity life sciences research. The Space Station Biological Research Project (SSBRP) is responsible for addressing these challenges and defining the science requirements necessary to conduct life science research on-board the International Space Station. Space Station will support a wide range of cell and tissue culture experiments for durations of 1 to 30 days. Space Shuttle flights to bring experimental samples back to Earth for analyses will only occur every 90 days. Therefore, samples may have to be retained for periods up to 60 days. This presents a new challenge in fresh specimen sample storage for cell biology. Fresh specimen samples are defined as samples that are preserved by means other than fixation and cryopreservation. The challenge of long-term storage of fresh specimen samples includes the need to suspend or inhibit proliferation and metabolism pending return to Earth-based laboratories. With this challenge being unique to space research, there have not been any ground based studies performed to address this issue. It was decided hy SSBRP that experiment support studies to address the following issues were needed: Fixative Solution Management; Media Storage Conditions; Fresh Specimen Sample Storage of Mammalian Cell/Tissue Cultures; Fresh Specimen Sample Storage of Plant Cell/Tissue Cultures; Fresh Specimen Sample Storage of Aquatic Cell/Tissue Cultures; and Fresh Specimen Sample Storage of Microbial Cell/Tissue Cultures. The objective of these studies was to derive a set of conditions and recommendations that can be used in a long duration microgravity environment such as Space Station that will permit extended storage of cell and tissue culture specimens in a state consistent with zero or minimal growth, while at the same time maintaining their stability and viability.

  1. Bioreactors for tissue mass culture: design, characterization, and recent advances.

    PubMed

    Martin, Yves; Vermette, Patrick

    2005-12-01

    This paper reviews reports on three-dimensional mammalian tissue growth in bioreactors and the corresponding mammalian tissue growth requirements. The needs for nutrient and waste removal of several mammalian tissues are reviewed and compared with the environment of many reactors currently in use such as the continuous stirred tank, the hollow fiber, the Couette-Taylor, the airlift, and the rotating-wall reactors developed by NASA. Many studies conclude that oxygen supply appears to be one of the most important factors limiting tissue growth. Various correlations to describe oxygen mass transfer are presented and discussed with the aim to provide some guidance to design, construct, and test reactors for tissue mass culture. To obtain tissue thickness clinically valuable, dimensionless and other types of analysis tend to point out that diffusive transport will have to be matched with an important convection to bring sufficient oxygen molecular flux to the growing cells located within a tissue mass. As learned from solid-state fermentation and hairy root culture, during the growth of large biomass, heterogeneity (i.e., channeling, temperature gradients, non-uniform cell growth, transfer gradients, etc.) can cause some important problems and these should be addressed in tissue engineering as well. Reactors (along with the scaffolds) should be designed to minimize these issues. The role of the uterus, the reactor built by Nature, is examined, and the environment provided to a growing embryo is reported, yielding possible paths for further reactor developments. Finally, the importance of cell seeding methods is also addressed.

  2. Tissue culture-based rabies vaccines: vaccine production technology transfer.

    PubMed

    Halstead, S B

    1988-01-01

    Overcoming stagnation in rabies prevention programs in the developing world requires national strategies that include plans to adopt existing facilities for production of low-cost efficacious tissue culture-based vaccine. Transfer of tissue culture technology for the production of rabies vaccine has been supported by the World Health Organization and The Rockefeller Foundation, and in the fall of 1986 the location of the optimal site for the initial technology transfer program was agreed upon. Funds were provided to assemble training staff and to purchase the supplies and equipment to furnish a production facility at the Veterinary Products Company of Colombia (VECOL) located in Bogota, Colombia.

  3. Micromolded Gelatin Hydrogels for Extended Culture of Engineered Cardiac Tissues

    PubMed Central

    McCain, Megan L.; Agarwal, Ashutosh; Nesmith, Haley W.; Nesmith, Alexander P.; Parker, Kevin Kit

    2014-01-01

    Defining the chronic cardiotoxic effects of drugs during preclinical screening is hindered by the relatively short lifetime of functional cardiac tissues in vitro, which are traditionally cultured on synthetic materials that do not recapitulate the cardiac microenvironment. Because collagen is the primary extracellular matrix protein in the heart, we hypothesized that micromolded gelatin hydrogel substrates tuned to mimic the elastic modulus of the heart would extend the lifetime of engineered cardiac tissues by better matching the native chemical and mechanical microenvironment. To measure tissue stress, we used tape casting, micromolding, and laser engraving to fabricate gelatin hydrogel muscular thin film cantilevers. Neonatal rat cardiac myocytes adhered to gelatin hydrogels and formed aligned tissues as defined by the microgrooves. Cardiac tissues could be cultured for over three weeks without declines in contractile stress. Myocytes on gelatin had higher spare respiratory capacity compared to those on fibronectin-coated PDMS, suggesting that improved metabolic function could be contributing to extended culture lifetime. Lastly, human induced pluripotent stem cell-derived cardiac myocytes adhered to micromolded gelatin surfaces and formed aligned tissues that remained functional for four weeks, highlighting their potential for human-relevant chronic studies. PMID:24731714

  4. The use of animal tissues alongside human tissue: Cultural and ethical considerations.

    PubMed

    Kaw, Anu; Jones, D Gareth; Zhang, Ming

    2016-01-01

    Teaching and research facilities often use cadaveric material alongside animal tissues, although there appear to be differences in the way we handle, treat, and dispose of human cadaveric material compared to animal tissue. This study sought to analyze cultural and ethical considerations and provides policy recommendations on the use of animal tissues alongside human tissue. The status of human and animal remains and the respect because of human and animal tissues were compared and analyzed from ethical, legal, and cultural perspectives. The use of animal organs and tissues is carried out within the context of understanding human anatomy and function. Consequently, the interests of human donors are to be pre-eminent in any policies that are enunciated, so that if any donors find the presence of animal remains unacceptable, the latter should not be employed. The major differences appear to lie in differences in our perceptions of their respective intrinsic and instrumental values. Animals are considered to have lesser intrinsic value and greater instrumental value than humans. These differences stem from the role played by culture and ethical considerations, and are manifested in the resulting legal frameworks. In light of this discussion, six policy recommendations are proposed, encompassing the nature of consent, respect for animal tissues as well as human remains, and appropriate separation of both sets of tissues in preparation and display.

  5. Practical Instruction in Tissue Culture and Cytogenetics for Sandwich Students.

    ERIC Educational Resources Information Center

    Williams, D. C.; Bishun, N. P.

    1973-01-01

    Describes the training and practical techniques taught to students involved in a sandwich course at the Tissue Culture and Cytogenetics Unit of the Marie Curie Memorial Foundation, Surrey, England. Students spend a minimum of six months involved in the sandwich course before returning to university for a final academic year. (JR)

  6. Absorption of toxic beta-glucosides produced by plants and their effect on tissue trehalases from insects.

    PubMed

    Silva, Maria C P; Terra, Walter R; Ferreira, Clélia

    2006-03-01

    Trehalases present in body wall, Malpighian tubules, fat body, midgut and haemolymph from Tenebrio molitor (Coleoptera), Musca domestica (Diptera), Spodoptera frugiperda and Diatraea saccharalis (Lepidoptera) were assayed in the presence and absence of toxic beta-glucosides produced by plants or their aglycones. The glucosides used were phlorizin, amygdalin, prunasin and the aglycone mandelonitrile. In addition, T. molitor and S. frugiperda trehalases were assayed with and without esculin. More than 60% of total trehalase activity was found in the midgut of these insects. As a rule, trehalases present in each insect were inhibited by at least two of the glucosides. Prunasin was the best inhibitor in tissues with highest trehalase activity. S. frugiperda beta-glucosidases were not able to hydrolyze esculin. Nevertheless, their larval midguts absorb the intact glucoside that is recovered from the fat body, Malpighian tubules and mainly from haemolymph. Mature larvae fed on a diet containing 3 mM (0.1%) esculin have 0.2 mM esculin in their haemolymph, and weigh 60% of control larvae. In vitro, haemolymph trehalase activity is abolished by 0.5 mM esculin. This inhibition may play a role in the decrease of body weight and in animal survival. S. frugiperda larvae reared in 0.1% amygdalin-containing diet present higher trehalase activity in tissues than the larvae reared in 0.1% esculin-containing diet. Higher trehalase activity should be the reason why the S. frugiperda development is not impaired by 1% dietary amygdalin, in contrast to what is observed when insects are reared in 0.1% esculin. The data suggest that many plant beta-glucosides are toxic because they inhibit trehalase, a key enzyme controlling glucose availability in insects.

  7. Associative Mechanisms Allow for Social Learning and Cultural Transmission of String Pulling in an Insect

    PubMed Central

    Zhu, Xingfu; Ingraham, Thomas; Søvik, Eirik

    2016-01-01

    Social insects make elaborate use of simple mechanisms to achieve seemingly complex behavior and may thus provide a unique resource to discover the basic cognitive elements required for culture, i.e., group-specific behaviors that spread from “innovators” to others in the group via social learning. We first explored whether bumblebees can learn a nonnatural object manipulation task by using string pulling to access a reward that was presented out of reach. Only a small minority “innovated” and solved the task spontaneously, but most bees were able to learn to pull a string when trained in a stepwise manner. In addition, naïve bees learnt the task by observing a trained demonstrator from a distance. Learning the behavior relied on a combination of simple associative mechanisms and trial-and-error learning and did not require “insight”: naïve bees failed a “coiled-string experiment,” in which they did not receive instant visual feedback of the target moving closer when tugging on the string. In cultural diffusion experiments, the skill spread rapidly from a single knowledgeable individual to the majority of a colony’s foragers. We observed that there were several sequential sets (“generations”) of learners, so that previously naïve observers could first acquire the technique by interacting with skilled individuals and, subsequently, themselves become demonstrators for the next “generation” of learners, so that the longevity of the skill in the population could outlast the lives of informed foragers. This suggests that, so long as animals have a basic toolkit of associative and motor learning processes, the key ingredients for the cultural spread of unusual skills are already in place and do not require sophisticated cognition. PMID:27701411

  8. STUDIES ON THE PHYSIOLOGICAL CONDITIONS PREVAILING IN TISSUE CULTURES

    PubMed Central

    Zinsser, Hans; Schoenbach, Emanuel B.

    1937-01-01

    An analysis of some of the physiological factors active in Maitland tissue cultures has been presented in the hope that it may be of some value in clarifying the principles underlying tissue cultures in general. It has been found that the empirically determined necessity of using relatively small amounts of tissue in such cultures is dependent upon the fact that excessive tissue leads to a rapid change of reaction toward the acid side. Whereas tissue may remain viable in an environment as alkaline as pH 9 and over, viability is rapidly destroyed when the reaction approaches pH 6. Evidence is presented to indicate that the changes in electrode potentials which take place in Maitland cultures are not, as has been suggested, the determining factors upon which virus multiplication depends, although they may, of course, be incidentally important. It has been shown that there are fundamental differences between those conditions in Maitland cultures which favor the multiplication of a typical virus and those upon which the growth of the Rickettsiae of typhus fever depends. The virus which we have studied (equine encephalitis virus, western type) multiplies during the period of active tissue metabolism. The maximum virus titrations are obtained at about the time at which metabolism has come to a standstill. Thereafter the virus not only ceases to increase but rapidly deteriorates. The period of viability of the tissue cells themselves is shortened by several days in the presence of virus multiplication. There is some evidence that a temporary acceleration of oxygen uptake takes place during the time of active virus multiplication. Technical difficulties in controlling such experiments prevent certainty in regard to this point. In contrast with the conditions determining the growth of a virus agent in the Maitland cultures the multiplication of Rickettsiae does not begin to any determinable extent until after active cell metabolism has either become stabilized or has ceased

  9. Immunomodulatory potential of shatavarins produced from Asparagus racemosus tissue cultures.

    PubMed

    Pise, Mashitha Vinod; Rudra, Jaishree Amal; Upadhyay, Avinash

    2015-01-01

    Medicinal properties of Asparagus racemosus (vernacular name: Shatavari) are attributed to its steroidal saponins called shatavarins. This plant is facing the threat of being endangered due to several developmental, seasonal constrains and malpractices involved in its collection and storage. To support its conservation, a tissue culture protocol is standardized which produces 20 fold higher levels of shatavarin. Here we evaluate the bioactivity and immunomodulatory potential of in vitro produced shatavarins from cell cultures of AR using human peripheral blood lymphocytes. In vitro produced shatavarin stimulated immune cell proliferation and IgG secretion in a dose dependent manner. It stimulated interleukin (IL)-12 production and inhibited production of IL-6. It also had strong modulatory effects on Th1/Th2 cytokine profile, indicating its potential application for immunotherapies where Th1/Th2 balance is envisaged. Our study demonstrating the bioactivity of tissue cultured AR extracts supports further in vivo evaluation of its immunomodulatory efficacy. PMID:26283842

  10. Silkworm (Bombyx mori) hemolymph unable to substitute fetal bovine serum in insect cell culture

    NASA Astrophysics Data System (ADS)

    Suparto, Irma H.; Khalam, Chandra Nur; Praira, Willy; Sajuthi, Dondin

    2014-03-01

    Fetal Bovine Serum (FBS) in animal cell culture media is an important source of nutrients for cell growth. However, the harvest and collection of FBS cause bioethical concerns. Efforts to reduce and preferably replace FBS with synthetic or other natural alternatives are continually being explored. Hemolymph silkworm (Bombyx mori) contains many nutrients needed for the process of metamorphosis. Therefore, there is possibility as an alternative nutritional supplement for cell culture to reduce the use of FBS. The objective of this study was to evaluate the macrocomponent of hemolymph and the possibility as medium supplement for Spodoptera fugiperda (Sf9) cell culture. Proximate analyses showed that hemolymph contains 89.76% of water, 2.52 mg/mL carbohydrate, 2.35% fat and 55.61 mg/mL protein. Further protein analysis, it consists of 15 fractions containing molecular weight of 22 - 152 kDa. The use of hemolymph as FBS substitution in Sf9 cell culture with various concentrations was unable to maintain and support cell growth. Further research still needed by prior adaptation of the tissue culture to minimal nutrition media before introduction of the hemolymph as supplement.

  11. The role of activated charcoal in plant tissue culture.

    PubMed

    Thomas, T Dennis

    2008-01-01

    Activated charcoal has a very fine network of pores with large inner surface area on which many substances can be adsorbed. Activated charcoal is often used in tissue culture to improve cell growth and development. It plays a critical role in micropropagation, orchid seed germination, somatic embryogenesis, anther culture, synthetic seed production, protoplast culture, rooting, stem elongation, bulb formation etc. The promotary effects of AC on morphogenesis may be mainly due to its irreversible adsorption of inhibitory compounds in the culture medium and substancially decreasing the toxic metabolites, phenolic exudation and brown exudate accumulation. In addition to this activated charcoal is involved in a number of stimulatory and inhibitory activities including the release of substances naturally present in AC which promote growth, alteration and darkening of culture media, and adsorption of vitamins, metal ions and plant growth regulators, including abscisic acid and gaseous ethylene. The effect of AC on growth regulator uptake is still unclear but some workers believe that AC may gradually release certain adsorbed products, such as nutrients and growth regulators which become available to plants. This review focuses on the various roles of activated charcoal in plant tissue culture and the recent developments in this area.

  12. [Asepsis sowing and tissue culture of Bletilla striata].

    PubMed

    Zeng, Songjun; Huang, Xiangli; Chen, Zhilin; Chen, Jiantong; Duan, Jun

    2004-09-01

    The asepsis sowing and tissue culture of Bletilla striata were studied. The results indicated that the embyro culture had highest sprouting percent and plantlets percent when their embryos were mature. The optimal medium for the embryo culture was 1/2 MS. Adding 10% coconut juice can promote embyros sprouting and plantlets formation, 1% active carbon can improve plantlets growing. The best medium for the top of plantlet on culture and multiplication was 1/2 MS + 6-BA 0.5 mg/L + NAA 0.2 mg/L. The best medium of rooting was 1/2 MS + NAA 0.5 mg/L, and 10% banana juice can improve rooting of plantlets.

  13. 21 CFR 864.2240 - Cell and tissue culture supplies and equipment.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Cell and tissue culture supplies and equipment... SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Cell And Tissue Culture Products § 864.2240 Cell and tissue culture supplies and equipment. (a) Identification. Cell and tissue...

  14. 21 CFR 864.2240 - Cell and tissue culture supplies and equipment.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cell and tissue culture supplies and equipment... SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Cell And Tissue Culture Products § 864.2240 Cell and tissue culture supplies and equipment. (a) Identification. Cell and tissue...

  15. 21 CFR 864.2240 - Cell and tissue culture supplies and equipment.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Cell and tissue culture supplies and equipment... SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Cell And Tissue Culture Products § 864.2240 Cell and tissue culture supplies and equipment. (a) Identification. Cell and tissue...

  16. 21 CFR 864.2240 - Cell and tissue culture supplies and equipment.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Cell and tissue culture supplies and equipment... SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Cell And Tissue Culture Products § 864.2240 Cell and tissue culture supplies and equipment. (a) Identification. Cell and tissue...

  17. 21 CFR 864.2240 - Cell and tissue culture supplies and equipment.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Cell and tissue culture supplies and equipment... SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Cell And Tissue Culture Products § 864.2240 Cell and tissue culture supplies and equipment. (a) Identification. Cell and tissue...

  18. Mineralization and growth of cultured embryonic skeletal tissue in microgravity

    NASA Technical Reports Server (NTRS)

    Klement, B. J.; Spooner, B. S.

    1999-01-01

    Microgravity provides a unique environment in which to study normal and pathological phenomenon. Very few studies have been done to examine the effects of microgravity on developing skeletal tissue such as growth plate formation and maintenance, elongation of bone primordia, or the mineralization of growth plate cartilage. Embryonic mouse premetatarsal triads were cultured on three space shuttle flights to study cartilage growth, differentiation, and mineralization, in a microgravity environment. The premetatarsal triads that were cultured in microgravity all formed cartilage rods and grew in length. However, the premetatarsal cartilage rods cultured in microgravity grew less in length than the ground control cartilage rods. Terminal chondrocyte differentiation also occurred during culture in microgravity, as well as in the ground controls, and the matrix around the hypertrophied chondrocytes was capable of mineralizing in both groups. The same percentage of premetatarsals mineralized in the microgravity cultures as mineralized in the ground control cultures. In addition, the sizes of the mineralized areas between the two groups were very similar. However, the amount of 45Ca incorporated into the mineralized areas was significantly lower in the microgravity cultures, suggesting that the composition or density of the mineralized regions was compromised in microgravity. There was no significant difference in the amount of 45Ca liberated from prelabeled explants in microgravity or in the ground controls.

  19. Dissection, culture, and analysis of Xenopus laevis embryonic retinal tissue.

    PubMed

    McDonough, Molly J; Allen, Chelsea E; Ng-Sui-Hing, Ng-Kwet-Leok A; Rabe, Brian A; Lewis, Brittany B; Saha, Margaret S

    2012-01-01

    The process by which the anterior region of the neural plate gives rise to the vertebrate retina continues to be a major focus of both clinical and basic research. In addition to the obvious medical relevance for understanding and treating retinal disease, the development of the vertebrate retina continues to serve as an important and elegant model system for understanding neuronal cell type determination and differentiation(1-16). The neural retina consists of six discrete cell types (ganglion, amacrine, horizontal, photoreceptors, bipolar cells, and Müller glial cells) arranged in stereotypical layers, a pattern that is largely conserved among all vertebrates (12,14-18). While studying the retina in the intact developing embryo is clearly required for understanding how this complex organ develops from a protrusion of the forebrain into a layered structure, there are many questions that benefit from employing approaches using primary cell culture of presumptive retinal cells (7,19-23). For example, analyzing cells from tissues removed and dissociated at different stages allows one to discern the state of specification of individual cells at different developmental stages, that is, the fate of the cells in the absence of interactions with neighboring tissues (8,19-22,24-33). Primary cell culture also allows the investigator to treat the culture with specific reagents and analyze the results on a single cell level (5,8,21,24,27-30,33-39). Xenopus laevis, a classic model system for the study of early neural development (19,27,29,31-32,40-42), serves as a particularly suitable system for retinal primary cell culture (10,38,43-45). Presumptive retinal tissue is accessible from the earliest stages of development, immediately following neural induction (25,38,43). In addition, given that each cell in the embryo contains a supply of yolk, retinal cells can be cultured in a very simple defined media consisting of a buffered salt solution, thus removing the confounding

  20. Ultrastructure of psammoma bodies of meningioma in tissue culture.

    PubMed

    Lipper, S; Dalzell, J C; Watkins, P J

    1979-12-01

    An 8-day-old tissue culture of a human meningioma was studied by electron microscopy. Psammoma bodies were detected in all stages of evolution, affording a unique opportunity for observing the genesis of these structures. Matrix vesicles appeared instrumental in the calcification of a granular extracellular material. Although matrix vesicles are described in both physiologic and pathologic calcification, they have not been previously reported in the very few ultrastructural studies of psammoma bodies in meningiomas.

  1. Fluorescence in situ hybridizations (FISH) for the localization of viruses and endosymbiotic bacteria in plant and insect tissues.

    PubMed

    Kliot, Adi; Kontsedalov, Svetlana; Lebedev, Galina; Brumin, Marina; Cathrin, Pakkianathan Britto; Marubayashi, Julio Massaharu; Skaljac, Marisa; Belausov, Eduard; Czosnek, Henryk; Ghanim, Murad

    2014-02-24

    Fluorescence in situ hybridization (FISH) is a name given to a variety of techniques commonly used for visualizing gene transcripts in eukaryotic cells and can be further modified to visualize other components in the cell such as infection with viruses and bacteria. Spatial localization and visualization of viruses and bacteria during the infection process is an essential step that complements expression profiling experiments such as microarrays and RNAseq in response to different stimuli. Understanding the spatiotemporal infections with these agents complements biological experiments aimed at understanding their interaction with cellular components. Several techniques for visualizing viruses and bacteria such as reporter gene systems or immunohistochemical methods are time-consuming, and some are limited to work with model organisms and involve complex methodologies. FISH that targets RNA or DNA species in the cell is a relatively easy and fast method for studying spatiotemporal localization of genes and for diagnostic purposes. This method can be robust and relatively easy to implement when the protocols employ short hybridizing, commercially-purchased probes, which are not expensive. This is particularly robust when sample preparation, fixation, hybridization, and microscopic visualization do not involve complex steps. Here we describe a protocol for localization of bacteria and viruses in insect and plant tissues. The method is based on simple preparation, fixation, and hybridization of insect whole mounts and dissected organs or hand-made plant sections, with 20 base pairs short DNA probes conjugated to fluorescent dyes on their 5' or 3' ends. This protocol has been successfully applied to a number of insect and plant tissues, and can be used to analyze expression of mRNAs or other RNA or DNA species in the cell.

  2. Effects of cold atmospheric plasma on mucosal tissue culture

    NASA Astrophysics Data System (ADS)

    Welz, Christian; Becker, Sven; Li, Yang-Fang; Shimizu, Tetsuji; Jeon, Jin; Schwenk-Zieger, Sabina; Thomas, Hubertus M.; Isbary, Georg; Morfill, Gregor E.; Harréus, Ulrich; Zimmermann, Julia L.

    2013-01-01

    Thermal plasmas have been commonly used in medical applications such as plasma ablation and blood coagulation. Newer developments show that plasmas can be generated with ion temperatures close to room temperature: these non-thermal or so-called cold atmospheric plasmas (CAPs) therefore open up a wide range of further biomedical applications. Based on the understanding of the bactericidal, virucidal and fungicidal properties of CAPs, information about the effects of CAP on mucosal cells and tissue is still lacking. Therefore this study focuses on the interaction of CAP with healthy head and neck mucosal cells on a molecular level. To analyse this interaction in detail, fresh tissue samples from healthy nasal and pharyngeal mucosa were harvested during surgery, assembled to a three-dimensional tissue culture model (mini organ cultures) and treated with CAP for different treatment times. Effects on the viability, necrosis induction and mutagenic activity were evaluated with the trypan blue exclusion test, Annexin-V/PI staining and alkaline microgel electrophoresis (comet assay). Trypan blue exclusion test revealed that the CAP treatment significantly decreases the cell viability for all tested treatment times (5, 10, 30, 60 and 120 s p < 0.05), but only a treatment time of 120 s showed a cytotoxic effect as the viability dropped below 90%. Annexin-V/PI staining revealed a significant increase in necrosis in CAP treated pharyngeal tissue cultures for treatment times of 60 and 120 s (p < 0.05). For nasal tissue this effect was already detected for a 30 s treatment (p < 0.05). Comet assay analysis showed no mutagenic effects after exposure to CAP.

  3. Hydrodynamic effects on cells in agitated tissue culture reactors

    NASA Technical Reports Server (NTRS)

    Cherry, R. S.; Papoutsakis, E. T.

    1986-01-01

    The mechanisms by which hydrodynamic forces can affect cells grown on microcarrier beads in agitated cell culture reactors were investigated by analyzing the motion of microcarriers relative to the surrounding fluid, to each other, and to moving or stationary solid surfaces. It was found that harmful effects on cell cultures that have been previously attributed to shear can be better explained as the effects of turbulence (of a size scale comparable to the microcarriers or the spacing between them) or collisions. The primary mechanisms of cell damage involve direct interaction between microcarriers and turbulent eddies, collisions between microcarriers in turbulent flow, and collisions against the impeller or other solid surfaces. The implications of these analytical results for the design of tissue culture reactors are discussed.

  4. Lemongrass-Incorporated Tissue Conditioner Against Candida albicans Culture

    PubMed Central

    Amornvit, Pokpong; Srithavaj, Theerathavaj

    2014-01-01

    Background: Tissue conditioner is applied popularly with dental prosthesis during wound healing process but it becomes a reservoir of oral microbiota, especially Candida species after long-term usage. Several antifungal drugs have been mixed with this material to control fungal level. In this study, lemongrass essential oil was added into COE-COMFORT tissue conditioner before being determined for anti-Candida efficacy. Materials and Methods: Lemongrass (Cymbopogon citratus) essential oil was primarily determined for antifungal activity against C. albicans American type culture collection (ATCC) 10231 and MIC (minimum inhibitory concentration) value by agar disk diffusion and broth microdilution methods, respectively. COE-COMFORT tissue conditioner was prepared as recommended by the manufacturer after a fixed volume of the oil at its MIC or higher concentrations were mixed thoroughly in its liquid part. Antifungal efficacy of the tissue conditioner with/without herb was finally analyzed. Results: Lemongrass essential oil displayed potent antifungal activity against C. albicans ATCC 10231and its MIC value was 0.06% (v/v). Dissimilarly, the tissue conditioner containing the oil at MIC level did not cease the growth of the tested fungus. Both reference and clinical isolates of C. albicans were completely inhibited after exposed to the tissue conditioner containing at least 0.25% (v/v) of the oil (approximately 4-time MIC). The tissue conditioner without herb or with nystatin was employed as negative or positive control, respectively. Conclusion: COE-COMFORT tissue conditioner supplemented with lemongrass essential oil obviously demonstrated another desirable property as in vitro anti-Candida efficacy to minimize the risk of getting Candidal infection. PMID:25177638

  5. Coordinate regulation of proteins associated with radiation resistance in cultured insect cells

    SciTech Connect

    Rand, A.; Koval, T.M.

    1994-04-01

    Cultured TN-368 lepidopteran insect cells exhibit a pronounced resistance to the lethal effects of a variety of physical agents, including X rays and 254 nm UV light, as well as a large number of chemicals. The resistance to ionizing radiation has previously been associated with an inducible process which is not expressed in unirradiated cells or cells receiving less than some minimal amount of radiation necessary for activating the process. The studies in this paper were initiated in an attempt to identify and characterize the inducible proteins associated with the marked radiation resistance of the TN-368 cells. Cells were exposed to doses of 0, 25, 64 or 350 Gy of {sup 137}Cs {gamma} rays and incubated either for 3 h in medium containing [{sup 35}S]methionine or for 2 h without labeling. Labeled cells were separated into nuclear and cytoplasmic fractions and proteins were analyzed on two-dimensional polyacrylamide gels. Unlabeled cells were used to isolate total RNA which was translated in vitro in a rabbit reticulocyte lysate system with {sup 35}S label. These translation products were also analyzed by two-dimensional electrophoresis. Gamma irradiation of the TN-368 cells resulted in the de novo synthesis of several proteins as well as the complete inhibition of others. The number of such proteins identified was 19. These proteins ranged in size from 18-73 kDa, with a pI distribution of 4.7 to 6.1. In addition to the unique proteins, a large number of other proteins were also either up- or down-regulated. These observations were made in both nuclear and cytoplasmic fractions as well as in the translation products of RNA produced after irradiation. These studies indicate that RNA and protein synthesis in lepidopteran cells are coordinately regulated in response to ionizing radiation and may participate in the pronounced radioresistance of the TN-368 cells. 15 refs., 3 figs., 1 tab.

  6. Tissue culture of three species of Laurencia complex

    NASA Astrophysics Data System (ADS)

    Shen, Songdong; Wu, Xunjian; Yan, Binlun; He, Lihong

    2010-05-01

    To establish a micropropagation system of three Laurencia complex species ( Laurencia okamurai, Laurencia tristicha, and Chondrophycus undulatus) by tissue culture techniques, we studied the regeneration characteristics and optimal culture conditions of axenic algal fragments cultured on solid medium and in liquid medium. Regeneration structures were observed and counted regularly under a reverse microscope to investigate the regeneration process, polarity and optimal illumination, and temperature and salinity levels. The results show that in most cultures of the three species, we obtained bud regeneration on solidified medium with 0.5% agar and in liquid medium. Rhizoid-like regeneration was filamentous and developed from the lower cut surface of fragments in L. okamurai, but was discoid and developed from the apical back side of bud regeneration in L. tristicha and C. undulatus. Regeneration polarity was localized to the apical part of algal fronds in all three species, and on fragments cut from the basal part of algae buds could develop from both the upper and the lower cut surfaces. Buds could develop from both the medullary and the cortical portions in L. okamurai and C. undulatus, while in L. tristicha, buds only emerged from the cortex. The optimal culture conditions for L. okamurai were 4 500 lx, 20°C and 35 (salinity); for C. undulatus, 4 500 lx, 20°C and 30; and for L. tristicha, 4 500 lx, 25°C and 30.

  7. Chitinases and Imaginal disc growth factors organize the extracellular matrix formation at barrier tissues in insects

    PubMed Central

    Pesch, Yanina-Yasmin; Riedel, Dietmar; Patil, Kapil R; Loch, Gerrit; Behr, Matthias

    2016-01-01

    The cuticle forms an apical extracellular-matrix (ECM) that covers exposed organs, such as epidermis, trachea and gut, for organizing morphogenesis and protection of insects. Recently, we reported that cuticle proteins and chitin are involved in ECM formation. However, molecular mechanisms that control assembly, maturation and replacement of the ECM and its components are not well known. Here we investigated the poorly described glyco-18-domain hydrolase family in Drosophila and identified the Chitinases (Chts) and imaginal-disc-growth-factors (Idgfs) that are essential for larval and adult molting. We demonstrate that Cht and idgf depletion results in deformed cuticles, larval and adult molting defects, and insufficient protection against wounding and bacterial infection, which altogether leads to early lethality. We show that Cht2/Cht5/Cht7/Cht9/Cht12 and idgf1/idgf3/idgf4/idgf5/idgf6 are needed for organizing proteins and chitin-matrix at the apical cell surface. Our data indicate that normal ECM formation requires Chts, which potentially hydrolyze chitin-polymers. We further suggest that the non-enzymatic idgfs act as structural proteins to maintain the ECM scaffold against chitinolytic degradation. Conservation of Chts and Idgfs proposes analogous roles in ECM dynamics across the insect taxa, indicating that Chts/Idgfs are new targets for species specific pest control. PMID:26838602

  8. Addressing the Instability of DNA Nanostructures in Tissue Culture

    PubMed Central

    2015-01-01

    DNA nanotechnology is an advanced technique that could contribute diagnostic, therapeutic, and biomedical research devices to nanomedicine. Although such devices are often developed and demonstrated using in vitro tissue culture models, these conditions may not be compatible with DNA nanostructure integrity and function. The purpose of this study was to characterize the sensitivity of 3D DNA nanostructures produced via the origami method to the in vitro tissue culture environment and identify solutions to prevent loss of nanostructure integrity. We examined whether the physiological cation concentrations of cell culture medium and the nucleases present in fetal bovine serum (FBS) used as a medium supplement result in denaturation and digestion, respectively. DNA nanostructure denaturation due to cation depletion was design- and time-dependent, with one of four tested designs remaining intact after 24 h at 37 °C. Adjustment of medium by addition of MgSO4 prevented denaturation. Digestion of nanostructures by FBS nucleases in Mg2+-adjusted medium did not appear design-dependent and became significant within 24 h and when medium was supplemented with greater than 5% FBS. We estimated that medium supplemented with 10% FBS contains greater than 256 U/L equivalent of DNase I activity in digestion of DNA nanostructures. Heat inactivation at 75 °C and inclusion of actin protein in medium inactivated and inhibited nuclease activity, respectively. We examined the impact of medium adjustments on cell growth, viability, and phenotype. Adjustment of Mg2+ to 6 mM did not appear to have a detrimental impact on cells. Heat inactivation was found to be incompatible with in vitro tissue culture, whereas inclusion of actin had no observable effect on growth and viability. In two in vitro assays, immune cell activation and nanoparticle endocytosis, we show that using conditions compatible with cell phenotype and nanostructure integrity is critical for obtaining reliable experimental

  9. Noninvasive Oxygen Monitoring in Three-Dimensional Tissue Cultures Under Static and Dynamic Culture Conditions.

    PubMed

    Weyand, Birgit; Nöhre, Mariel; Schmälzlin, Elmar; Stolz, Marvin; Israelowitz, Meir; Gille, Christoph; von Schroeder, Herb P; Reimers, Kerstin; Vogt, Peter M

    2015-01-01

    We present a new method for noninvasive real-time oxygen measurement inside three-dimensional tissue-engineered cell constructs in static and dynamic culture settings in a laminar flow bioreactor. The OPAL system (optical oxygen measurement system) determines the oxygen-dependent phosphorescence lifetime of spherical microprobes and uses a two-frequency phase-modulation technique, which fades out the interference of background fluorescence from the cell carrier and culture medium. Higher cell densities in the centrum of the scaffolds correlated with lower values of oxygen concentration obtained with the OPAL system. When scaffolds were placed in the bioreactor, higher oxygen values were measured compared to statically cultured scaffolds in a Petri dish, which were significantly different at day 1-3 of culture. This technique allows the use of signal-weak microprobes in biological environments and monitors the culture process inside a bioreactor.

  10. Noninvasive Oxygen Monitoring in Three-Dimensional Tissue Cultures Under Static and Dynamic Culture Conditions

    PubMed Central

    Weyand, Birgit; Nöhre, Mariel; Schmälzlin, Elmar; Stolz, Marvin; Israelowitz, Meir; Gille, Christoph; von Schroeder, Herb P.; Reimers, Kerstin; Vogt, Peter M.

    2015-01-01

    Abstract We present a new method for noninvasive real-time oxygen measurement inside three-dimensional tissue-engineered cell constructs in static and dynamic culture settings in a laminar flow bioreactor. The OPAL system (optical oxygen measurement system) determines the oxygen-dependent phosphorescence lifetime of spherical microprobes and uses a two-frequency phase-modulation technique, which fades out the interference of background fluorescence from the cell carrier and culture medium. Higher cell densities in the centrum of the scaffolds correlated with lower values of oxygen concentration obtained with the OPAL system. When scaffolds were placed in the bioreactor, higher oxygen values were measured compared to statically cultured scaffolds in a Petri dish, which were significantly different at day 1–3 of culture. This technique allows the use of signal-weak microprobes in biological environments and monitors the culture process inside a bioreactor. PMID:26309802

  11. Organoid culture systems for prostate epithelial and cancer tissue.

    PubMed

    Drost, Jarno; Karthaus, Wouter R; Gao, Dong; Driehuis, Else; Sawyers, Charles L; Chen, Yu; Clevers, Hans

    2016-02-01

    This protocol describes a strategy for the generation of 3D prostate organoid cultures from healthy mouse and human prostate cells (either bulk or FACS-sorted single luminal and basal cells), metastatic prostate cancer lesions and circulating tumor cells. Organoids derived from healthy material contain the differentiated luminal and basal cell types, whereas organoids derived from prostate cancer tissue mimic the histology of the tumor. We explain how to establish these cultures in the fully defined serum-free conditioned medium that is required to sustain organoid growth. Starting with the plating of digested tissue material, full-grown organoids can usually be obtained in ∼2 weeks. The culture protocol we describe here is currently the only one that allows the growth of both the luminal and basal prostatic epithelial lineages, as well as the growth of advanced prostate cancers. Organoids established using this protocol can be used to study many different aspects of prostate biology, including homeostasis, tumorigenesis and drug discovery.

  12. Gradients of metabolite accumulation and redifferentiation of nutritive cells associated with vascular tissues in galls induced by sucking insects

    PubMed Central

    Carneiro, Renê Gonçalves da Silva; Isaias, Rosy Mary dos Santos

    2015-01-01

    Plant cells respond to abiotic and biotic stimuli, which generate adaptive phenotypes in plant organs. In the case of plant galls, cell phenotypes are adaptive for the gall inducer and assume characteristics mainly linked to its protection and nutrition. Herein, the cytological development and histochemical profile of Nothotrioza cattleiani galls, a sucking insect, on the leaves of Psidium cattleianum are compared with those of other galls, especially N. myrtoidis galls, searching for conserved and divergent alterations in cell fates and cycles. Leaf cell fates are completely changed within galls, except for epidermal cells, but the comparison between Nothotrioza spp. galls shows conserved fates. Nevertheless, cytological development of N. cattleiani galls is different from the standby-redifferentiation of N. myrtoidis galls. Starch and lignins, and reducing sugars form centrifugal and centripetal gradients of accumulation, respectively. Proteins, total phenolics, terpenoids, proanthocyanidins and reactive oxygen species are detected in bidirectional gradients, i.e. weak or undetectable reaction in the median cortical cells that is gradually more intense in the cell layers towards the inner and outer surfaces of the gall. True nutritive cells associated with vascular tissues, together with the bidirectional gradients of metabolite accumulation, are herein reported for the first time in insect galls. The globoid galls of N. cattleiani, though macro-morphologically similar to the galls of N. myrtoidis, are distinct and unique among insect galls, as far as the cellular, subcellular and histochemical traits are concerned. Thus, the traits of the galls on P. cattleianum studied herein represent the extended phenotypes of their inducers. PMID:26209687

  13. Gradients of metabolite accumulation and redifferentiation of nutritive cells associated with vascular tissues in galls induced by sucking insects.

    PubMed

    Carneiro, Renê Gonçalves da Silva; Isaias, Rosy Mary Dos Santos

    2015-01-01

    Plant cells respond to abiotic and biotic stimuli, which generate adaptive phenotypes in plant organs. In the case of plant galls, cell phenotypes are adaptive for the gall inducer and assume characteristics mainly linked to its protection and nutrition. Herein, the cytological development and histochemical profile of Nothotrioza cattleiani galls, a sucking insect, on the leaves of Psidium cattleianum are compared with those of other galls, especially N. myrtoidis galls, searching for conserved and divergent alterations in cell fates and cycles. Leaf cell fates are completely changed within galls, except for epidermal cells, but the comparison between Nothotrioza spp. galls shows conserved fates. Nevertheless, cytological development of N. cattleiani galls is different from the standby-redifferentiation of N. myrtoidis galls. Starch and lignins, and reducing sugars form centrifugal and centripetal gradients of accumulation, respectively. Proteins, total phenolics, terpenoids, proanthocyanidins and reactive oxygen species are detected in bidirectional gradients, i.e. weak or undetectable reaction in the median cortical cells that is gradually more intense in the cell layers towards the inner and outer surfaces of the gall. True nutritive cells associated with vascular tissues, together with the bidirectional gradients of metabolite accumulation, are herein reported for the first time in insect galls. The globoid galls of N. cattleiani, though macro-morphologically similar to the galls of N. myrtoidis, are distinct and unique among insect galls, as far as the cellular, subcellular and histochemical traits are concerned. Thus, the traits of the galls on P. cattleianum studied herein represent the extended phenotypes of their inducers. PMID:26209687

  14. 21 CFR 864.2220 - Synthetic cell and tissue culture media and components.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Synthetic cell and tissue culture media and... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Cell And Tissue Culture Products § 864.2220 Synthetic cell and tissue culture media and components. (a) Identification....

  15. 21 CFR 864.2220 - Synthetic cell and tissue culture media and components.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Synthetic cell and tissue culture media and... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Cell And Tissue Culture Products § 864.2220 Synthetic cell and tissue culture media and components. (a) Identification....

  16. 21 CFR 864.2220 - Synthetic cell and tissue culture media and components.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Synthetic cell and tissue culture media and... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Cell And Tissue Culture Products § 864.2220 Synthetic cell and tissue culture media and components. (a) Identification....

  17. 21 CFR 864.2220 - Synthetic cell and tissue culture media and components.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Synthetic cell and tissue culture media and... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Cell And Tissue Culture Products § 864.2220 Synthetic cell and tissue culture media and components. (a) Identification....

  18. 21 CFR 864.2220 - Synthetic cell and tissue culture media and components.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Synthetic cell and tissue culture media and... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Cell And Tissue Culture Products § 864.2220 Synthetic cell and tissue culture media and components. (a) Identification....

  19. Defined media for plant tissue culture: Final report

    SciTech Connect

    Good, N.E.

    1986-01-01

    This grant was for the purpose of developing improved plant tissue culture media. The rationale was to introduce the use of low pKa hydrogen ion buffers to stabilize pH and to introduce the use of slow release forms of the plant hormones, auxin and cytokinin, to provide the tissues with a constant supply of these essential factors. The zwittionic buffer, MES, proved useful for pH stabilization, while a wide range of indoleacetylamino acids provided a wide range of levels of available amino acids with consequent different levels of development of shoots, roots or callus. In general, some free indoleacetic acid in addition to the conjugate seemed necessary for organogenesis, but this phenomenon depended very much on the level of cytokinin. Time did not permit us to make any significant progress in the development of slow-release forms of cytokinins. 2 figs.

  20. Organotypic tissue culture investigation of homocysteine thiolactone cardiotoxic effect.

    PubMed

    Lopatina, Ekaterina V; Kipenko, A V; Penniyaynen, V A; Pasatetskaya, N A; Djuric, D; Krylov, B V

    2015-06-01

    Homocysteine thiolactone was demonstrated to inhibit the growth of 10-12-day-old chicken embryo cardiac tissue explants at 7 × 10⁻⁹ -1 × 10⁻³ M concentrations in a dose-dependent manner. The maximal cardiotoxic effect of homocysteine thiolactone was detected at 1 × 10⁻³ M, which corresponds to severe hyperhomocysteinemia. The results of experiments on culturing of cardiac tissue explants in the medium containing homocysteine thiolactone (1 × 10⁻³ M) and ouabain at concentrations regulating the signal-transducing (1 × 10⁻¹⁰ M) and pumping (1 × 10⁻⁸ M) functions of Na⁺,K⁺ -ATPase indicate that the cardiotoxic effect of homocysteine thiolactone is supposed to result from inhibition of the Na⁺,K⁺ -ATPase pumping function.

  1. Plant cell tissue culture: A potential source of chemicals

    SciTech Connect

    Scott, C.D.; Dougall, D.K.

    1987-08-01

    Higher plants produce many industrially important products. Among these are drugs and medicinal chemicals, essential oils and flavors, vegetable oils and fats, fine and specialty chemicals, and even some commodity chemicals. Although, currently, whole-plant extraction is the primary means of harvesting these materials, the advent of plant cell tissue culture could be a much more effective method of producing many types of phytochemicals. The use of immobilized plant cells in an advanced bioreactor configuration with excretion of the product into the reactor medium may represent the most straightforward way of commercializing such techniques for lower-value chemicals. Important research and development opportunities in this area include screening for plant cultures for nonmedical, lower-value chemicals; understanding and controlling plant cell physiology and biochemistry; optimizing effective immobilization methods; developing more efficient bioreactor concepts; and perfecting product extraction and purification techniques. 62 refs., 2 figs.

  2. Anaerobic cultures from preserved tissues of baby mammoth

    NASA Astrophysics Data System (ADS)

    Pikuta, Elena V.; Fisher, Daniel; Hoover, Richard B.

    2011-10-01

    Microbiological analysis of several cold-preserved tissue samples from the Siberian baby mammoth known as Lyuba revealed a number of culturable bacterial strains that were grown on anaerobic media at 3 oC. Lactic acid produced by LAB (lactic acid bacteria) group, usually by members of the genera Carnobacterium and Lactosphera, appears to be a wonderful preservative that keeps other bacteria from colonizing a system. Permafrost and lactic acid preserved the body of this one month-old baby mammoth and kept it in exceptionally good condition, resulting in this mammoth being the most complete sample of the species ever recovered. The diversity of novel psychrophilic anaerobic isolates was expressed on morphological, physiological and phylogenetic levels. Here, we discuss the specifics of the isolation of new psychrophilic strains, differentiation from trivial contamination, and preliminary results for characterization of the cultures.

  3. Anaerobic Cultures from Preserved Tissues of Baby Mammoth

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena V.; Hoover, Richard B.; Fisher, Daniel

    2011-01-01

    Microbiological analysis of several cold-preserved tissue samples from the Siberian baby mammoth known as Lyuba revealed a number of culturable bacterial strains that were grown on anaerobic media at 4 C. Lactic acid produced by LAB (lactic acid bacteria) group, usually by members of the genera Carnobacterium and Lactosphera, appears to be a wonderful preservative that prevents other bacteria from over-dominating a system. Permafrost and lactic acid preserved the body of this one-month old baby mammoth and kept it in exceptionally good condition, resulting in this mammoth being the most complete such specimen ever recovered. The diversity of novel anaerobic isolates was expressed on morphological, physiological and phylogenetic levels. Here we discuss the specifics of the isolation of new strains, differentiation from trivial contamination, and preliminary results for the characterization of cultures.

  4. Isolation of Lysosomes from Mammalian Tissues and Cultured Cells.

    PubMed

    Aguado, Carmen; Pérez-Jiménez, Eva; Lahuerta, Marcos; Knecht, Erwin

    2016-01-01

    Lysosomes participate within the cells in the degradation of organelles, macromolecules, and a wide variety of substrates. In any study on specific roles of lysosomes, both under physiological and pathological conditions, it is advisable to include methods that allow their reproducible and reliable isolation. However, purification of lysosomes is a difficult task, particularly in the case of cultured cells. This is mainly because of the heterogeneity of these organelles, along with their low number and high fragility. Also, isolation methods, while disrupting plasma membranes, have to preserve the integrity of lysosomes, as the breakdown of their membranes releases enzymes that could damage all cell organelles, including themselves. The protocols described below have been routinely used in our laboratory for the specific isolation of lysosomes from rat liver, NIH/3T3, and other cultured cells, but can be adapted to other mammalian tissues or cell lines. PMID:27613045

  5. Functional Interpretation of a Non-Gut Hemocoelic Tissue Aminopeptidase N (APN) in a Lepidopteran Insect Pest Achaea janata

    PubMed Central

    Ningshen, Thuirei Jacob; Aparoy, Polamarasetty; Ventaku, Venkat Rao; Dutta-Gupta, Aparna

    2013-01-01

    Insect midgut membrane-anchored aminopeptidases N (APNs) are Zn++ dependent metalloproteases. Their primary role in dietary protein digestion and also as receptors in Cry toxin-induced pathogenesis is well documented. APN expression in few non-gut hemocoelic tissues of lepidopteran insects has also been reported but their functions are widely unknown. In the present study, we observed specific in vitro interaction of Cry1Aa toxin with a 113 kDa AjAPN1 membrane protein of larval fat body, Malpighian tubule and salivary gland of Achaea janata. Analyses of 3D molecular structure of AjAPN1, the predominantly expressed APN isoform in these non-gut hemocoelic tissues of A. janata showed high structural similarity to the Cry1Aa toxin binding midgut APN of Bombyx mori, especially in the toxin binding region. Structural similarity was further substantiated by in vitro binding of Cry1Aa toxin. RNA interference (RNAi) resulted in significant down-regulation of AjAPN1 transcript and protein expression in fat body and Malpighian tubule but not in salivary gland. Consequently, reduced AjAPN1 expression resulted in larval mortality, larval growth arrest, development of lethal larval-pupal intermediates, development of smaller pupae and emergence of viable defective adults. In vitro Cry1Aa toxin binding analysis of non-gut hemocoelic tissues of AjAPN1 knockdown larvae showed reduced interaction of Cry1Aa toxin with the 113 kDa AjAPN1 protein, correlating well with the significant silencing of AjAPN1 expression. Thus, our observations suggest AjAPN1 expression in non-gut hemocoelic tissues to play important physiological role(s) during post-embryonic development of A. janata. Though specific interaction of Cry1Aa toxin with AjAPN1 of non-gut hemocoelic tissues of A. janata was demonstrated, evidences to prove its functional role as a Cry1Aa toxin receptor will require more in-depth investigation. PMID:24244508

  6. Media Compositions for Three Dimensional Mammalian Tissue Growth Under Microgravity Culture Conditions

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J. (Inventor)

    1998-01-01

    Normal mammalian tissue and the culturing process has been developed for the three groups of organ, structural and blood tissue. The cells are grown in vitro under microgravity culture conditions and form three dimensional cells aggregates with normal cell function. The microgravity culture conditions may be microgravity or simulated microgravity created in a horizontal rotating wall culture vessel.

  7. Media Compositions for Three-Dimensional Mammalian Tissue Growth under Microgravity Culture Conditions

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J. (Inventor)

    1998-01-01

    Normal mammalian tissue and the culturing process has been developed for the three groups of organ, structural and blood tissue.The cells are grown in vitro under microgravity culture conditions and form three dimensional cells aggregates with normal cell function. The microgravity culture conditions may be microgravity or simulated microgravity created in a horizontal rotating wall culture vessel.

  8. Two isoforms of trimming glucosidase II exist in mammalian tissues and cell lines but not in yeast and insect cells.

    PubMed

    Ziak, M; Meier, M; Etter, K S; Roth, J

    2001-01-12

    We previously cloned glucosidase II and provided in vivo evidence for its involvement in protein folding quality control. DNA-sequencing of different clones demonstrated the existence of two isoforms of glucosidase II which differed by 66 nucleotides due to alternative splicing. The existence of two enzyme isoforms in various organs of pig and rat as well as human, bovine, rat, and mouse cell lines could be demonstrated by RT-PCR and Western blotting. Furthermore, the two isoforms of glucosidase II could be detected in embryonic and postnatal rat kidney and liver. In yeast, Saccharomyces cerevisiae, and in insects, Drosophila S2 cells, only one isoforms of the enzyme was detectable. The ubiquitous occurrence of the two glucosidase II isoforms in mammalian tissues and cell lines might be indicative of a special function of each isoform.

  9. Critical tissue residue approach linking accumulated metals in aquatic insects to population and community-level effects

    USGS Publications Warehouse

    Schmidt, Travis S.; Clements, William H.; Zuellig, Robert E.; Mitchell, Katharine A.; Church, Stanley E.; Wanty, Richard B.; San Juan, Carma A.; Adams, Monique; Lamothe, Paul J.

    2011-01-01

    Whole body Zn concentrations in individuals (n = 825) from three aquatic insect taxa (mayflies Rhithrogena spp. and Drunella spp. and the caddisfly Arctopsyche grandis) were used to predict effects on populations and communities (n = 149 samples). Both mayflies accumulated significantly more Zn than the caddisfly. The presence/absence of Drunella spp. most reliably distinguished sites with low and high Zn concentrations; however, population densities of mayflies were more sensitive to increases in accumulated Zn. Critical tissue residues (634 (mu or u)g/g Zn for Drunella spp. and 267 (mu or u)g/g Zn for Rhithrogena spp.) caused a 20% reduction in maximum (90th quantile) mayfly densities. These critical tissue residues were associated with exposure to 7.0 and 3.9 (mu or u)g/L dissolved Zn for Drunella spp. and Rhithrogena spp., respectively. A threshold in a measure of taxonomic completeness (observed/expected) was observed at 5.4 (mu or u)g/L dissolved Zn. Dissolved Zn concentrations associated with critical tissue residues in mayflies were also associated with adverse effects in the aquatic community as a whole. These effects on populations and communities occurred at Zn concentrations below the U.S. EPA hardness-adjusted continuous chronic criterion.

  10. Organotypic culture of human bone marrow adipose tissue.

    PubMed

    Uchihashi, Kazuyoshi; Aoki, Shigehisa; Shigematsu, Masamori; Kamochi, Noriyuki; Sonoda, Emiko; Soejima, Hidenobu; Fukudome, Kenji; Sugihara, Hajime; Hotokebuchi, Takao; Toda, Shuji

    2010-04-01

    The precise role of bone marrow adipose tissue (BMAT) in the marrow remains unknown. The purpose of the present study was therefore to describe a novel method for studying BMAT using 3-D collagen gel culture of BMAT fragments, immunohistochemistry, ELISA and real-time reverse transcription-polymerase chain reaction. Mature adipocytes and CD45+ leukocytes were retained for >3 weeks. Bone marrow stromal cells (BMSC) including a small number of lipid-laden preadipocytes and CD44+/CD105+ mesenchymal stem cell (MSC)-like cells, developed from BMAT. Dexamethasone (10 micromol/L), but not insulin (20 mU/mL), significantly increased the number of preadipocytes. Dexamethasone and insulin also promoted leptin production and gene expression in BMAT. Adiponectin production by BMAT was <0.8 ng/mL under all culture conditions. Dexamethasone promoted adiponectin gene expression, while insulin inhibited it. This finding suggests that dexamethasone, but not insulin, may serve as a powerful adipogenic factor for BMAT, in which adiponectin protein secretion is normally very low, and that BMAT may exhibit a different phenotype from that of the visceral and subcutaneous adipose tissues. BMAT-osteoblast interactions were also examined, and it was found that osteoblasts inhibited the development of BMSC and reduced leptin production, while BMAT inhibited the growth and differentiation of osteoblasts. The present novel method proved to be useful for the study of BMAT biology.

  11. Curvature-dependent excitation propagation in cultured cardiac tissue

    NASA Astrophysics Data System (ADS)

    Kadota, S.; Kay, M. W.; Magome, N.; Agladze, K.

    2012-02-01

    The geometry of excitation wave front may play an important role on the propagation block and spiral wave formation. The wave front which is bent over the critical value due to interaction with the obstacles may partially cease to propagate and appearing wave breaks evolve into rotating waves or reentry. This scenario may explain how reentry spontaneously originates in a heart. We studied highly curved excitation wave fronts in the cardiac tissue culture and found that in the conditions of normal, non-inhibited excitability the curvature effects do not play essential role in the propagation. Neither narrow isthmuses nor sharp corners of the obstacles, being classical objects for production of extremely curved wave front, affect non-inhibited wave propagation. The curvature-related phenomena of the propagation block and wave detachment from the obstacle boundary were observed only after partial suppression of the sodium channels with Lidocaine. Computer simulations confirmed the experimental observations. The explanation of the observed phenomena refers to the fact that the heart tissue is made of finite size cells so that curvature radii smaller than the cardiomyocyte size loses sense, and in non-inhibited tissue the single cell is capable to transmit excitation to its neighbors.

  12. Oncogenic transformation of diverse gastrointestinal tissues in primary organoid culture

    PubMed Central

    Li, Xingnan; Nadauld, Lincoln; Ootani, Akifumi; Corney, David C.; Pai, Reetesh K.; Gevaert, Olivier; Cantrell, Michael A.; Rack, Paul G.; Neal, James T.; Chan, Carol W-M.; Yeung, Trevor; Gong, Xue; Yuan, Jenny; Wilhelmy, Julie; Robine, Sylvie; Attardi, Laura D.; Plevritis, Sylvia K.; Hung, Kenneth E.; Chen, Chang-Zheng; Ji, Hanlee P.; Kuo, Calvin J.

    2014-01-01

    The application of primary organoid cultures containing epithelial and mesenchymal elements to cancer modeling holds promise for combining the accurate multilineage differentiation and physiology of in vivo systems with the facile in vitro manipulation of transformed cell lines. Here, a single air-liquid interface culture method was used without modification to engineer oncogenic mutations into primary epithelial/mesenchymal organoids from mouse colon, stomach and pancreas. Pancreatic and gastric organoids exhibited dysplasia upon KrasG12D expression and/or p53 loss, and readily generated adenocarcinoma upon in vivo transplantation. In contrast, primary colon organoids required combinatorial Apc, p53, KrasG12D and Smad4 mutations for progressive transformation to invasive adenocarcinoma-like histology in vitro and tumorigenicity in vivo, recapitulating multi-hit models of colorectal cancer (CRC), and versus more promiscuous transformation of small intestinal organoids. Colon organoid culture functionally validated the microRNA miR-483 as a dominant driver oncogene at the Insulin-like growth factor-2 (IGF2) 11p15.5 CRC amplicon, inducing dysplasia in vitro and tumorigenicity in vivo. These studies demonstrate the general utility of a highly tractable primary organoid system for cancer modeling and driver oncogene validation in diverse gastrointestinal tissues. PMID:24859528

  13. Oncogenic transformation of diverse gastrointestinal tissues in primary organoid culture.

    PubMed

    Li, Xingnan; Nadauld, Lincoln; Ootani, Akifumi; Corney, David C; Pai, Reetesh K; Gevaert, Olivier; Cantrell, Michael A; Rack, Paul G; Neal, James T; Chan, Carol W-M; Yeung, Trevor; Gong, Xue; Yuan, Jenny; Wilhelmy, Julie; Robine, Sylvie; Attardi, Laura D; Plevritis, Sylvia K; Hung, Kenneth E; Chen, Chang-Zheng; Ji, Hanlee P; Kuo, Calvin J

    2014-07-01

    The application of primary organoid cultures containing epithelial and mesenchymal elements to cancer modeling holds promise for combining the accurate multilineage differentiation and physiology of in vivo systems with the facile in vitro manipulation of transformed cell lines. Here we used a single air-liquid interface culture method without modification to engineer oncogenic mutations into primary epithelial and mesenchymal organoids from mouse colon, stomach and pancreas. Pancreatic and gastric organoids exhibited dysplasia as a result of expression of Kras carrying the G12D mutation (Kras(G12D)), p53 loss or both and readily generated adenocarcinoma after in vivo transplantation. In contrast, primary colon organoids required combinatorial Apc, p53, Kras(G12D) and Smad4 mutations for progressive transformation to invasive adenocarcinoma-like histology in vitro and tumorigenicity in vivo, recapitulating multi-hit models of colorectal cancer (CRC), as compared to the more promiscuous transformation of small intestinal organoids. Colon organoid culture functionally validated the microRNA miR-483 as a dominant driver oncogene at the IGF2 (insulin-like growth factor-2) 11p15.5 CRC amplicon, inducing dysplasia in vitro and tumorigenicity in vivo. These studies demonstrate the general utility of a highly tractable primary organoid system for cancer modeling and driver oncogene validation in diverse gastrointestinal tissues.

  14. Metabolic measurements in cell culture and tissue constructs

    NASA Astrophysics Data System (ADS)

    Rolfe, P.

    2008-10-01

    This paper concerns the study and use of biological cells in which there is a need for sensors and assemblies for the measurement of a diverse range of physical and chemical variables. In this field cell culture is used for basic research and for applications such as protein and drug synthesis, and in cell, tissue and organ engineering. Metabolic processes are fundamental to cell behaviour and must therefore be monitored reliably. Basic metabolic studies measure the transport of oxygen, glucose, carbon dioxide, lactic acid to, from, or within cells, whilst more advanced research requires examination of energy storage and utilisation. Assemblies are designed to incorporate bioreactor functions for cell culture together with appropriate sensing devices. Oxygen consumption by populations of cells is achieved in a flowthrough assembly that incorporates O2 micro-sensors based on either amperometry or fluorescence. Measurements in single cell are possible with intra-cellular fluorophores acting as biosensors together with optical stimulation and detection. Near infra-red spectroscopy (NIRS) is used for analysis within culture fluid, for example for estimation of glucose levels, as well as within cell populations, for example to study the respiratory enzymes.Â#

  15. Increased Plasminogen Activator (Urokinase) in Tissue Culture After Fibrin Deposition

    PubMed Central

    Bernik, Maria B.

    1973-01-01

    Lysis of fibrin in tissue culture has been shown to be due to plasminogen activator identified immunologically as urokinase. The present study examines fibrinolytic events in culture, particularly mechanisms leading to increased urokinase levels and accelerated fibrinolysis. Deposition of fibrin on cells in culture was followed by a two- to six-fold increase in urokinase in the supernates and rapid disappearance of the fibrin. Investigation of factors that might be responsible for these events (including fibrin, fibrinogen, vasoactive stimuli, and the enzymes thrombin and plasmin) indicated that the enhanced urokinase yields were mediated through plasmin and thrombin. Study of the possible modes of action of thrombin and plasmin indicated that these enzymes are capable of acting on the cells themselves as well as on cell-produced material. The effect on cells was manifested by mitotic activity or, occasionally, cell injury and death. Although these effects influenced urokinase levels, enhanced yields were explained best by the action of enzymes on cellproduced material. Studies with plasmin and thrombin, and also trypsin, indicated that proteolytic enzymes may act in various ways—affect the stability of urokinase, interfere with inhibition of urokinase by naturally occurring inhibitor(s), and induce urokinase activity from inactive material. Plasma and thrombin appeared to act primarily through the latter mechanism. Inactive material, which gave rise to urokinase upon exposure to proteolytic enzymes and which may represent urokinase precursor, was found in cultures of kidney, lung, spleen, and thyroid. Urokinase in such inactive state appears to be readily accessible to activation by enzymes, particularly plasmin and thrombin, thus facilitating removal of fibrin and possibly also providing pathways to excessive fibrinolysis. PMID:4266421

  16. A helium burst biolistic device adapted to penetrate fragile insect tissues

    PubMed Central

    Thomas, Jean-Luc; Bardou, Jérôme; L'hoste, Sebastien; Mauchamp, Bernard; Chavancy, Gérard

    2001-01-01

    To compensate for the extremely low penetration efficiency of the original PDS/1000-He Bio Rad biolistic® device and the deleterious blast effect, design modifications have been made to the launching module. These modifications were evaluated on Bombyx mori embryos and fragile tissues, such as oocytes and imaginal wing disks. The original floppy macrocarrier was replaced by a rigid macrocarrier to avoid the effects of the helium blast. The efficiency of the gene gun bombardment was reinforced by the addition of a focusing nozzle. The reduced blast effect allowed us to carry out high-pressure shootings to small organs with improved penetration. This system allowed potentially all the internal embryonic tissues to be transfected with optimal survival rates. The new module was effective on tissues that are difficult to transfect, such as the epithelial wing disk that is covered by a peripodial membrane, and the ovarian follicle cells that lie under the ovariole cell membrane. The new macrocarrier allowed both an aqueous delivery of particles and an ethanolic dry delivery. No significant differences were noted between these two modes of delivery. The major improvement is the possibility of high pressure shooting correlated with appreciable penetration and a weak blast effect. PMID:15455069

  17. Organoid culture systems for prostate epithelial tissue and prostate cancer tissue

    PubMed Central

    Drost, Jarno; Karthaus, Wouter R.; Gao, Dong; Driehuis, Else; Sawyers, Charles L.; Chen, Yu; Clevers, Hans

    2016-01-01

    Summary This protocol describes a recently developed strategy to generate 3D prostate organoid cultures from healthy mouse and human prostate (either bulk or FAC-sorted single luminal and basal cells), metastatic prostate cancer lesions and circulating tumour cells. Organoids derived from healthy material contain the differentiated luminal and basal cell types, whereas organoids derived from prostate cancer tissue mimic the histology of the tumour. The stepwise establishment of these cultures and the fully defined serum-free conditioned medium that is required to sustain organoid growth are outlined. Organoids established using this protocol can be used to study many different aspects of prostate biology, including homeostasis, tumorigenesis and drug discovery. PMID:26797458

  18. Lipid composition of slash pine tissue cultures grown with lunar and earth soils

    NASA Technical Reports Server (NTRS)

    Laseter, J. L.; Weete, J. D.; Baur, P. S.; Walkinshaw, C. H.

    1973-01-01

    Lipid analyses were conducted on slash pine tissues grown in culture in the presence of lunar (Apollo 15) and earth soils. Significant reductions in the total lipids, fatty acids, and sterol components were found in the tissues grown in contact with each of the soils employed when compared to the control. Tissues grown with lunar soil showed the greatest reductions. These results are discussed with respect to previous ultrastructural studies on similarly treated slash pine tissues and lipid analyses on tobacco tissue cultures.

  19. Dynamics of Necrophagous Insect and Tissue Bacteria for Postmortem Interval Estimation During the Warm Season in Romania.

    PubMed

    Iancu, Lavinia; Sahlean, Tiberiu; Purcarea, Cristina

    2016-01-01

    The estimation of postmortem interval (PMI) is affected by several factors including the cause of death, the place where the body lay after death, and the weather conditions during decomposition. Given the climatic differences among biogeographic locations, the understanding of necrophagous insect species biology and ecology is required when estimating PMI. The current experimental model was developed in Romania during the warm season in an outdoor location. The aim of the study was to identify the necrophagous insect species diversity and dynamics, and to detect the bacterial species present during decomposition in order to determine if their presence or incidence timing could be useful to estimate PMI. The decomposition process of domestic swine carcasses was monitored throughout a 14-wk period (10 July-10 October 2013), along with a daily record of meteorological parameters. The chronological succession of necrophagous entomofauna comprised nine Diptera species, with the dominant presence of Chrysomya albiceps (Wiedemann 1819) (Calliphoridae), while only two Coleoptera species were identified, Dermestes undulatus (L. 1758) and Creophilus maxillosus Brahm 1970. The bacterial diversity and dynamics from the mouth and rectum tissues, and third-instar dipteran larvae were identified using denaturing gradient gel electrophoresis analysis and sequencing of bacterial 16S rRNA gene fragments. Throughout the decomposition process, two main bacterial chronological groups were differentiated, represented by Firmicutes and Gammaproteobacteria. Twenty-six taxa from the rectal cavity and 22 from the mouth cavity were identified, with the dominant phylum in both these cavities corresponding to Firmicutes. The present data strengthen the postmortem entomological and microbial information for the warm season in this temperate-continental area, as well as the role of microbes in carcass decomposition. PMID:26487246

  20. Dynamics of Necrophagous Insect and Tissue Bacteria for Postmortem Interval Estimation During the Warm Season in Romania.

    PubMed

    Iancu, Lavinia; Sahlean, Tiberiu; Purcarea, Cristina

    2016-01-01

    The estimation of postmortem interval (PMI) is affected by several factors including the cause of death, the place where the body lay after death, and the weather conditions during decomposition. Given the climatic differences among biogeographic locations, the understanding of necrophagous insect species biology and ecology is required when estimating PMI. The current experimental model was developed in Romania during the warm season in an outdoor location. The aim of the study was to identify the necrophagous insect species diversity and dynamics, and to detect the bacterial species present during decomposition in order to determine if their presence or incidence timing could be useful to estimate PMI. The decomposition process of domestic swine carcasses was monitored throughout a 14-wk period (10 July-10 October 2013), along with a daily record of meteorological parameters. The chronological succession of necrophagous entomofauna comprised nine Diptera species, with the dominant presence of Chrysomya albiceps (Wiedemann 1819) (Calliphoridae), while only two Coleoptera species were identified, Dermestes undulatus (L. 1758) and Creophilus maxillosus Brahm 1970. The bacterial diversity and dynamics from the mouth and rectum tissues, and third-instar dipteran larvae were identified using denaturing gradient gel electrophoresis analysis and sequencing of bacterial 16S rRNA gene fragments. Throughout the decomposition process, two main bacterial chronological groups were differentiated, represented by Firmicutes and Gammaproteobacteria. Twenty-six taxa from the rectal cavity and 22 from the mouth cavity were identified, with the dominant phylum in both these cavities corresponding to Firmicutes. The present data strengthen the postmortem entomological and microbial information for the warm season in this temperate-continental area, as well as the role of microbes in carcass decomposition.

  1. Negeviruses found in multiple species of mosquitoes from southern Portugal: Isolation, genetic diversity, and replication in insect cell culture.

    PubMed

    Carapeta, Sara; do Bem, Beatriz; McGuinness, James; Esteves, Aida; Abecasis, Ana; Lopes, Ângela; de Matos, António P; Piedade, João; de Almeida, António P G; Parreira, Ricardo

    2015-09-01

    In this report, an RT-PCR approach based on the use of degenerate primers allowed the identification of negeviruses in four different species of mosquitoes (Ochlerotatus caspius, Culex pipiens, Cx. theileri and Cx. univittatus) collected in southern Portugal. The genomes of two of these viruses, sequenced to full completion, were shown to encode all the proteins encoded by previously described negeviruses. One of these viruses induces exuberant cytopathic effect in insect cell culture, with no obvious signs of apoptosis induction, replicating very rapidly and allowing for the detection of viral genomes in the infected culture supernatant as soon as 4h post-infection. This virus was also shown to use a dsRNA intermediate, which was found to be fully formed and active 3h after infection. Phylogenetic analysis of two products encoded by the viral ORF1 placed both viruses among Negev virus cluster, in the recently proposed Nelorpivirus taxon.

  2. Use of an insect cell culture growth medium to isolate bacteria from horses with effusive, fibrinous pericarditis: a preliminary study.

    PubMed

    Jones, Samuel L; Valenzisi, Amy; Sontakke, Sushama; Sprayberry, Kimberly A; Maggi, Ricardo; Hegarty, Barbara; Breitschwerdt, Edward

    2007-03-31

    Effusive, fibrinous pericarditis is an uncommon disease entity in horses. In 2001, pericarditis occurred in conjunction with an epizootic in central Kentucky that was associated with exposure to eastern tent caterpillars (ETCs). Bacterial isolation from equine pericardial fluid samples was attempted using an insect cell culture growth medium (ICCGM). Using previously cultured, stored frozen samples from four horses with fibrinous pericarditis, inoculation of 10% blood agar plates yielded no growth, whereas simultaneous inoculation of ICCGM resulted in the isolation of Proprionibacterium acnes, Staphylococcus equorum, a Streptococcus sp. and Pseudomonas rhodesiae from pericardial fluid samples. A similar or novel caterpillar-associated bacteria was not identified; however, use of an ICCGM might enhance isolation of bacteria from equine pericardial fluid.

  3. Micropropagation and maintenance of phytoplasmas in tissue culture.

    PubMed

    Bertaccini, Assunta; Paltrinieri, Samanta; Martini, Marta; Tedeschi, Mara; Contaldo, Nicoletta

    2013-01-01

    Maintenance of phytoplasma strains in tissue culture is achievable for all strains transmitted to periwinkle (Catharanthus roseus), and also for other naturally infected plant host species. Shoots of 1-3 cm length are grown in a solid medium containing Murashige and Skoog (MS) micro- and macroelements and 0.12 mg/L benzylaminopurine. The continued presence of phytoplasmas in infected shoots of periwinkle that have been maintained in micropropagation for up to 20 years can be shown by diagnostic methods such as nested PCR tests using the 16S rDNA gene (see Chapters 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,and 26 for phytoplasma diagnostic methods).

  4. Flexible automation of cell culture and tissue engineering tasks.

    PubMed

    Knoll, Alois; Scherer, Torsten; Poggendorf, Iris; Lütkemeyer, Dirk; Lehmann, Jürgen

    2004-01-01

    Until now, the predominant use cases of industrial robots have been routine handling tasks in the automotive industry. In biotechnology and tissue engineering, in contrast, only very few tasks have been automated with robots. New developments in robot platform and robot sensor technology, however, make it possible to automate plants that largely depend on human interaction with the production process, e.g., for material and cell culture fluid handling, transportation, operation of equipment, and maintenance. In this paper we present a robot system that lends itself to automating routine tasks in biotechnology but also has the potential to automate other production facilities that are similar in process structure. After motivating the design goals, we describe the system and its operation, illustrate sample runs, and give an assessment of the advantages. We conclude this paper by giving an outlook on possible further developments.

  5. Flexible automation of cell culture and tissue engineering tasks.

    PubMed

    Knoll, Alois; Scherer, Torsten; Poggendorf, Iris; Lütkemeyer, Dirk; Lehmann, Jürgen

    2004-01-01

    Until now, the predominant use cases of industrial robots have been routine handling tasks in the automotive industry. In biotechnology and tissue engineering, in contrast, only very few tasks have been automated with robots. New developments in robot platform and robot sensor technology, however, make it possible to automate plants that largely depend on human interaction with the production process, e.g., for material and cell culture fluid handling, transportation, operation of equipment, and maintenance. In this paper we present a robot system that lends itself to automating routine tasks in biotechnology but also has the potential to automate other production facilities that are similar in process structure. After motivating the design goals, we describe the system and its operation, illustrate sample runs, and give an assessment of the advantages. We conclude this paper by giving an outlook on possible further developments. PMID:15575718

  6. Methods for the Organogenesis of Skeletal Muscle in Tissue Culture

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman; Shansky, Janet; DelTatto, Michael; Chromiak, Joseph

    1997-01-01

    Skeletal muscle structure is regulated by many factors, including nutrition, hormones, electrical activity, and tension. The muscle cells are subjected to both passive and active mechanical forces at all stages of development and these forces play important but poorly understood roles in regulating muscle organogenesis and growth. For example, during embryogenesis, the rapidly growing skeleton places large passive mechanical forces on the attached muscle tissue. These forces not only help to organize the proliferating mononucleated myoblasts into the oriented, multinucleated myofibers of a functional muscle but also tightly couple the growth rate of muscle to that of bone. Postnatally, the actively contracting, innervated muscle fibers are subjected to different patterns of active and passive tensions which regulate longitudinal and cross sectional myofiber growth. These mechanically-induced organogenic processes have been difficult to study under normal tissue culture conditions, resulting in the development of numerous methods and specialized equipment to simulate the in vivo mechanical environment.These techniques have led to the "engineering" of bioartificial muscles (organoids) which display many of the characteristics of in vivo muscle including parallel arrays of postmitotic fibers organized into fascicle-like structures with tendon-like ends. They are contractile, express adult isoforms of contractile proteins, perform directed work, and can be maintained in culture for long periods. The in vivo-like characteristics and durability of these muscle organoids make them useful for long term in vitro studies on mechanotransduction mechanisms and on muscle atrophy induced by decreased tension. In this report, we described a simple method for generating muscle organoids from either primary embrionic avain or neonatal rodent myoblasts.

  7. Adipose tissue engineering in three-dimensional levitation tissue culture system based on magnetic nanoparticles.

    PubMed

    Daquinag, Alexes C; Souza, Glauco R; Kolonin, Mikhail G

    2013-05-01

    White adipose tissue (WAT) is becoming widely used in regenerative medicine/cell therapy applications, and its physiological and pathological importance is increasingly appreciated. WAT is a complex organ composed of differentiated adipocytes, stromal mesenchymal progenitors known as adipose stromal cells (ASC), as well as endothelial vascular cells and infiltrating leukocytes. Two-dimensional (2D) culture that has been typically used for studying adipose cells does not adequately recapitulate WAT complexity. Improved methods for reconstruction of functional WAT ex vivo are instrumental for understanding of physiological interactions between the composing cell populations. Here, we used a three-dimensional (3D) levitation tissue culture system based on magnetic nanoparticle assembly to model WAT development and growth in organoids termed adipospheres. We show that 3T3-L1 preadipocytes remain viable in spheroids for a long period of time, while in 2D culture, they lose adherence and die after reaching confluence. Upon adipogenesis induction in 3T3-L1 adipospheres, cells efficiently formed large lipid droplets typical of white adipocytes in vivo, while only smaller lipid droplet formation is achievable in 2D. Adiposphere-based coculture of 3T3-L1 preadipocytes with murine endothelial bEND.3 cells led to a vascular-like network assembly concomitantly with lipogenesis in perivascular cells. Adipocyte-depleted stromal vascular fraction (SVF) of mouse WAT cultured in 3D underwent assembly into organoids with vascular-like structures containing luminal endothelial and perivascular stromal cell layers. Adipospheres made from primary WAT cells displayed robust proliferation and complex hierarchical organization reflected by a matricellular gradient incorporating ASC, endothelial cells, and leukocytes, while ASC quickly outgrew other cell types in adherent culture. Upon adipogenesis induction, adipospheres derived from the SVF displayed more efficient lipid droplet

  8. Adipose tissue engineering in three-dimensional levitation tissue culture system based on magnetic nanoparticles.

    PubMed

    Daquinag, Alexes C; Souza, Glauco R; Kolonin, Mikhail G

    2013-05-01

    White adipose tissue (WAT) is becoming widely used in regenerative medicine/cell therapy applications, and its physiological and pathological importance is increasingly appreciated. WAT is a complex organ composed of differentiated adipocytes, stromal mesenchymal progenitors known as adipose stromal cells (ASC), as well as endothelial vascular cells and infiltrating leukocytes. Two-dimensional (2D) culture that has been typically used for studying adipose cells does not adequately recapitulate WAT complexity. Improved methods for reconstruction of functional WAT ex vivo are instrumental for understanding of physiological interactions between the composing cell populations. Here, we used a three-dimensional (3D) levitation tissue culture system based on magnetic nanoparticle assembly to model WAT development and growth in organoids termed adipospheres. We show that 3T3-L1 preadipocytes remain viable in spheroids for a long period of time, while in 2D culture, they lose adherence and die after reaching confluence. Upon adipogenesis induction in 3T3-L1 adipospheres, cells efficiently formed large lipid droplets typical of white adipocytes in vivo, while only smaller lipid droplet formation is achievable in 2D. Adiposphere-based coculture of 3T3-L1 preadipocytes with murine endothelial bEND.3 cells led to a vascular-like network assembly concomitantly with lipogenesis in perivascular cells. Adipocyte-depleted stromal vascular fraction (SVF) of mouse WAT cultured in 3D underwent assembly into organoids with vascular-like structures containing luminal endothelial and perivascular stromal cell layers. Adipospheres made from primary WAT cells displayed robust proliferation and complex hierarchical organization reflected by a matricellular gradient incorporating ASC, endothelial cells, and leukocytes, while ASC quickly outgrew other cell types in adherent culture. Upon adipogenesis induction, adipospheres derived from the SVF displayed more efficient lipid droplet

  9. Tissue culture and animal models for hepatitis C virus.

    PubMed

    Pietschmann, Thomas; Bartenschlager, Ralf

    2003-02-01

    In recent years, significant advances have been achieved both in the development of animal- and tissue-culture models for HCV. Among all the new systems, the small animal model based on transgenic mice with chimeric mouse-human livers and the replicon system will presumably have the most profound impact on future HCV research. Yet, in spite of this progress, much more work will be required to optimizse both systems. In case of the mouse model, breeding homozygous Alb-uPa animals is difficult because of the toxicity of the transgene, and the transplantation of primary human hepatocytes into mice a few days after birth is technically challenging. These are immunodeficient, and, therefore, it will be desirable to furnish them with components of the human immune system in order to expand the applicability of this in vivo model to questions related to pathogenesis. Advances in cryopreservation techniques are urgently needed, moreover, as this would improve the availability of primary hepatocytes and in turn also the accessibility of this small animal model. As regards the replicon system, a number of open questions remain that will hopefully be answered by future research. Why, for instance, has replication in cell culture so far been achieved only with genotype 1b isolates, whereas an isolate with proven infectivity derived from genotype 1a failed to replicate in Huh-7 cells? And why can replicons so far be propagated only in this particular cell line? Is this attributable to the lack of certain inhibitory factors, or the presence of specific activators? What are the mechanisms underlying cell-culture adaptation. and what determines whether a certain Huh-7 cell replicates HCV RNA more efficiently? Finally, the replicon system may also lead the way to the development of systems for efficient virus production in cell culture, and ultimately also a permissive cell line. These developments would at last allow us to model the complete viral life cycle, something researchers

  10. Matrix metalloproteinases (MMPs) in fresh human prostate tumour tissue and organ-cultured prostate tissue: Levels of collagenolytic and gelatinolytic MMPs are low, variable and different in fresh tissue versus organ-cultured tissue

    PubMed Central

    Varani, J; Hattori, Y; Dame, M K; Schmidt, T; Murphy, H S; Johnson, K J; Wojno, K J

    2001-01-01

    Prostate tissue was obtained from 22 radical prostatectomies (performed for clinical management of prostate carcinoma) immediately after surgery. A small piece of tissue was fixed immediately in formalin and used for routine histology while a second piece was frozen in OCT and used for immuno-histochemistry. Another small piece was used for isolation of epithelial and stromal cells. The remainder of the tissue was cut into 2 × 2 mm pieces and incubated in organ culture for 8 days. In organ culture, non-malignant, basal epithelial cells underwent a proliferative response. This was accompanied by de-differentiation of glandular structures and by migration of epithelial cells across the surface of the tissue. Erosion of the basement membrane could also be seen in places, but was not widespread. Invasion of epithelial cells into the adjacent stroma was not evident. Production of matrix metalloproteinases (MMPs) with gelatinolytic activity or collagenolytic activity was assessed in organ culture and compared to expression patterns in fresh tissue. MMP-1 (interstitial collagenase) and MMP-9 (92-kDa gelatinase B) were undetectable or low in fresh tissue specimens. Both enzymes were detected in organ culture and both increased over time. Even after 6 days, however, there was only a low level of gelatin-hydrolytic activity and no measurable collagen-hydrolytic activity. In past studies we used organ cultures of normal skin and malignant skin tumours (basal cell carcinomas) to help elucidate the role of collagenolytic and gelatinolytic MMPs in epithelial cell invasion (Varani et al, 2000). Compared to MMP levels observed in skin, levels of these enzymes in prostate are low. The low level of collagenolytic and gelatinolytic MMPs in fresh prostate tissue and in organ-cultured prostate tissue may help explain why there is little tissue destruction in many primary prostate tumours and why the majority of such tumours remain confined to the prostate for extended periods.

  11. Effects of Apollo 12 lunar material on lipid levels of tobacco tissue and slash pine cultures

    NASA Technical Reports Server (NTRS)

    Weete, J. D.

    1972-01-01

    Investigations of the lipid components of pine tissues (Pinus elloitii) are discussed, emphasizing fatty acids and steroids. The response by slash pine tissue cultures to growth in contact with Apollo lunar soil, earth basalt, and Iowa soil is studied. Tissue cultures of tobacco grown for 12 weeks in contact with lunar material from Apollo 12 flight contained 21 to 35 percent more total pigment than control tissues. No differences were noted in the fresh or dry weight of the experimental and control samples.

  12. Ethylenimine-inactivated rabies vaccine of tissue culture origin.

    PubMed Central

    Larghi, O P; Savy, V L; Nebel, A E; Rodriguez, A

    1976-01-01

    The replication of seven rabies virus strains (CVS, HEP, PV, ERA, WIRAB, CPZ and BOLIVAR) in BHK cells and the inactivation dynamics of these strains by beta-propiolactone, acetylethylenimine, and ethylenimine were studied to find the most immunogenic strain and the most economic and stable inactivating agent for the production of an inactivated tissue culture rabies vaccine for animal use. The seven strains reached the peak of virus production 3 to 5 days after inoculation of the cell culture; PV yielded the highest virus titer (10(9) plaque-forming units/ml). The infectivity of virus suspensions containing 10(7) to 10(8) plaque-forming units/0.1 ml was inactivated by beta-propiolactone in 0.5 h, acetylethylenimine in 3.0 h, and ethylenimine in 1.0 h. Most of the vaccine lots prepared with the different strains and inactivating agents passed a modified National Institutes of Health potency test. The vaccines prepared with the PV strain had consistently higher antigenic values (equal or better than four) than the other six strains. This difference was highly significant (F6,12=59.8), whereas there were no statistically significant differences among the antigenic values of the vaccine lots prepared with the three inactivating agents. Batches of lyophilized and liquid vaccine stored at 4 C maintained potency for over 1 year. Ten dogs vaccinated with a vaccine prepared with the PV strain and inactivated with ethylenimine developed a good antibody response and resisted challenge 60 days after vaccination, while seven of eight nonvaccinated controls died of rabies. This information indicates that an inactivated, stable, economic, and easy-to-prepare rabies vaccine can be produced in BHK cells by using the PV strain and ethylenimine as an inactivating agent. PMID:1254701

  13. Transmembrane chloride flux in tissue-cultured chick heart cells

    SciTech Connect

    Piwnica-Worms, D.; Jacob, R.; Horres, C.R.; Lieberman, M.

    1983-05-01

    To evaluate the transmembrane movement of chloride in a preparation of cardiac muscle lacking the extracellular diffusion limitations of natural specimens, intracellular chloride concentration ( (Cl) i) and transmembrane /sup 36/Cl efflux have been determined in growth-oriented embryonic chick heart cells in tissue culture. Using the method of isotopic equilibrium, (Cl)i was 25.1 +/- 7.3 mmol x (liter cell water)-1, comparable to the value of 24.9 +/- 5.4 mmol x (liter cell water)-1 determined by coulometric titration. Two cellular /sup 36/Cl compartments were found; one exchanged with a rate constant of 0.67 +/- 0.12 min-1 and was associated with the cardiac muscle cells; the other, attributed to the fibroblasts, exchanged with a rate constant of 0.18 +/- 0.05 min-1. At 37 degrees C, transmembrane Cl flux of cardiac muscle under steady-state conditions was 30 pmol x cm-2 x s-1. In K-free, normal, or high-Ko solutions, the responses of the membrane potential to changes in external Cl concentration suggested that chloride conductance was low. These results indicate that Cl transport across the myocardial cell membrane is more rapid than K transport and is largely electrically silent.

  14. Binding of tissue plasminogen activator to cultured human endothelial cells.

    PubMed Central

    Hajjar, K A; Hamel, N M; Harpel, P C; Nachman, R L

    1987-01-01

    Tissue plasminogen activator (t-PA) and urokinase (u-PA), the major activators of plasminogen, are synthesized and released from endothelial cells. We previously demonstrated specific and functional binding of plasminogen to cultured human umbilical vein endothelial cells (HUVEC). In the present study we found that t-PA could bind to HUVEC. Binding of t-PA to HUVEC was specific, saturable, plasminogen-independent, and did not require lysine binding sites. The t-PA bound in a rapid and reversible manner, involving binding sites of both high (Kd, 28.7 +/- 10.8 pM; Bmax, 3,700 +/- 300) and low (Kd, 18.1 +/- 3.8 nM; Bmax 815,000 +/- 146,000) affinity. t-PA binding was 70% inhibited by a 100-fold molar excess of u-PA. When t-PA was bound to HUVEC, its apparent catalytic efficiency increased by three- or fourfold as measured by plasminogen activation. HUVEC-bound t-PA was active site-protected from its rapidly acting inhibitor: plasminogen activator inhibitor. These results demonstrate that t-PA specifically binds to HUVEC and that such binding preserves catalytic efficiency with respect to plasminogen activation. Therefore, endothelial cells can modulate hemostatic and thrombotic events at the cell surface by providing specific binding sites for activation of plasminogen. PMID:3119664

  15. Advances in tissue engineering through stem cell-based co-culture.

    PubMed

    Paschos, Nikolaos K; Brown, Wendy E; Eswaramoorthy, Rajalakshmanan; Hu, Jerry C; Athanasiou, Kyriacos A

    2015-05-01

    Stem cells are the future in tissue engineering and regeneration. In a co-culture, stem cells not only provide a target cell source with multipotent differentiation capacity, but can also act as assisting cells that promote tissue homeostasis, metabolism, growth and repair. Their incorporation into co-culture systems seems to be important in the creation of complex tissues or organs. In this review, critical aspects of stem cell use in co-culture systems are discussed. Direct and indirect co-culture methodologies used in tissue engineering are described, along with various characteristics of cellular interactions in these systems. Direct cell-cell contact, cell-extracellular matrix interaction and signalling via soluble factors are presented. The advantages of stem cell co-culture strategies and their applications in tissue engineering and regenerative medicine are portrayed through specific examples for several tissues, including orthopaedic soft tissues, bone, heart, vasculature, lung, kidney, liver and nerve. A concise review of the progress and the lessons learned are provided, with a focus on recent developments and their implications. It is hoped that knowledge developed from one tissue can be translated to other tissues. Finally, we address challenges in tissue engineering and regenerative medicine that can potentially be overcome via employing strategies for stem cell co-culture use.

  16. Pre-metatarsal skeletal development in tissue culture at unit- and microgravity

    NASA Technical Reports Server (NTRS)

    Klement, B. J.; Spooner, B. S.

    1994-01-01

    Explant organ culture was used to demonstrate that isolated embryonic mouse pre-metatarsal mesenchyme is capable of undergoing a series of differentiative and morphogenetic developmental events. Mesenchyme differentiation into chondrocytes, and concurrent morphogenetic patterning of the cartilage tissue, and terminal chondrocyte differentiation with subsequent matrix mineralization show that cultured tissue closely parallels in vivo development. Whole mount alizarin red staining of the cultured tissue demonstrates that the extracellular matrix around the hypertrophied chondrocytes is competent to support mineralization. Intensely stained mineralized bands are similar to those formed in pre-metatarsals developing in vivo. We have adapted the culture strategy for experimentation in a reduced gravity environment on the Space Shuttle. Spaceflight culture of pre-metatarsals, which have already initiated chondrogenesis and morphogenetic patterning, results in an increase in cartilage rod size and maintenance of rod shape, compared to controls. Older pre-metatarsal tissue, already terminally differentiated to hypertrophied cartilage, maintained rod structure and cartilage phenotype during spaceflight culture.

  17. Baculovirus Coinfection Strategy for Improved Galactosylation of Recombinant Glycoprotein Produced by Insect Cell Culture

    NASA Astrophysics Data System (ADS)

    Ney, Yap Wei; Rahman, Badarulhisam Abdul; Aziz, Azila Abdul

    Baculovirus Expression Vector System (BEVS) is widely used for the production of recombinant glycoproteins, but it is not ideal for pharmaceutical glycoprotein production due to incomplete glycosylation. The factors that ensure successful glycosylation are the presence of sufficient amount of glycosyltransferases, sugar nucleotides as the substrate donor and the recombinant protein as the substrate acceptor. In this study, we analyzed the galactosylation process by the introduction of ß-1,4galactosyltransferase (ß-1,4GalT) as the glycosyltransferase of interest and uridine-5`-diphosphogalactose (UDP-Gal) as the substrate donor. Recombinant human transferrin (rhTf) as a model protein was used as the substrate acceptor. Insect cell lines have been reported to produce a small amount of ß-1,4GalT and thus insufficient for effective galactosylation. In this study, we developed a method to produce galactosylated rhTf and optimized the expression of rhTf with better N-glycan quality. Recombinant ß-1,4GalT was introduced during protein expression by the coinfection of the BEVS with baculovirus carrying bovine ß-1,4GalT. To evaluate the extent of galactosylation by the coinfection strategy, a binding assay was established. In this binding assay, glycoprotein acceptor was absorbed onto ELISA plate surface. A lectin known as Ricinus communis agglutinin-I (RCA-I) labeled with peroxidase, was added and allowed to recognize Gal ß1>4GlcNAc group on the N-glycan of the glycoprotein, followed by appropriate color reaction measurements. Coexpression between rhTf and ß-1,4GalT did not show encouraging results due to the reduction of UDP-Gal upon baculovirus infection. This interesting finding suggested that the introduction of ß-1,4GalT alone was not sufficient for successful galactosylation. Alternatively, post harvest glycosylation method strategy seems to be a promising technique in the improvement of glycoprotein quality.

  18. Detection and titration of bluetongue virus in Culicoides insect cell culture by an antigen-capture enzyme-linked immunosorbent assay.

    PubMed

    Mecham, James O

    2006-08-01

    Bluetongue virus (BTV) infects sheep, cattle and other ruminants and is transmitted by Culicoides spp. of biting midges. Virus is typically isolated and characterized by infection of susceptible vertebrate cells that undergo detectable and measurable cytopathic effects. Cell lines derived from C. sonorensis may be useful for virus isolation and studies to better understand BTV replication in the insect vector. However, their use is hampered because BTV infection does not produce significant cytopathic effects in these insect cell cultures. Detection of virus replication in these cells typically requires co-cultivation with susceptible vertebrate cell culture. This report describes the use of an antigen-capture enzyme-linked immunosorbent assay (Ag-Cap ELISA) for direct detection and titration of BTV in cultures of a Culicoides cell line. This assay should facilitate use of this cell line for virus isolation, titration and studies of BTV replication.

  19. In vitro pre-vascularisation of tissue-engineered constructs A co-culture perspective

    PubMed Central

    2014-01-01

    In vitro pre-vascularization is one of the main vascularization strategies in the tissue engineering field. Culturing cells within a tissue-engineered construct (TEC) prior to implantation provides researchers with a greater degree of control over the fate of the cells. However, balancing the diverse range of different cell culture parameters in vitro is seldom easy and in most cases, especially in highly vascularized tissues, more than one cell type will reside within the cell culture system. Culturing multiple cell types in the same construct presents its own unique challenges and pitfalls. The following review examines endothelial-driven vascularization and evaluates the direct and indirect role other cell types have in vessel and capillary formation. The article then analyses the different parameters researchers can modulate in a co-culture system in order to design optimal tissue-engineered constructs to match desired clinical applications. PMID:25071932

  20. Demonstration of the economic feasibility of plant tissue culture for jojoba (Simmondsia chinensis) and Euphorbia spp

    SciTech Connect

    Sluis, C.

    1980-09-01

    The economic feasibility of plant tissue culture was demonstrated as applied to two plants: jojoba (Simmondsia chinensis) and Euphorbia spp. The gopher weed (Euphorbia lathyris) was selected as the species of Euphorbia to research due to the interest in this plant as a potential source of hydrocarbon-like compounds. High yield female selections of jojoba were chosen from native stands and were researched to determine the economic feasibility of mass producing these plants via a tissue culture micropropagation program. The female jojoba selection was successfully mass produced through tissue culture. Modifications in initiation techniques, as well as in multiplication media and rooting parameters, were necessary to apply the tissue culture system, which had been developed for juvenile seedling tissue, to mature jojobas. Since prior attempts at transfer of tissue cultured plantlets were unsuccessful, transfer research was a major part of the project and has resulted in a system for transfer of rooted jojoba plantlets to soil. Euphorbia lathyris was successfully cultured using shoot tip cultures. Media and procedures were established for culture initiation, multiplication of shoots, callus induction and growth, and root initiation. Well-developed root systems were not attained and root initiation percentages should be increased if the system is to become commercially feasible.

  1. ORGAN CULTURE OF MID-FACIAL TISSUE AND SECONDARY PALATE

    EPA Science Inventory

    Abstract: Palatal organ culture provides an in vitro model for the study of the formation of the secondary palate, which forms the roof of the mouth in the developing fetus. The protocol describes the steps for culture of the mid-facial region of the fetal mouse or rat. In cult...

  2. Transcriptional profiles of valvular interstitial cells cultured on tissue culture polystyrene, on 2D hydrogels, or within 3D hydrogels

    PubMed Central

    Mabry, Kelly M.; Payne, Samuel Z.; Anseth, Kristi S.

    2015-01-01

    Valvular interstitial cells (VICs) actively maintain and repair heart valve tissue; however, persistent activation of VICs to a myofibroblast phenotype can lead to aortic stenosis (Chen and Simmons, 2011) [1]. To better understand and quantify how microenvironmental cues influence VIC phenotype, we compared expression profiles of VICs cultured on/in poly(ethylene glycol) (PEG) gels to those cultured on tissue culture polystyrene (TCPS), as well as fresh isolates. Here, we present both the raw and processed microarray data from these culture conditions. Interpretation of this data can be found in a research article entitled “Microarray analyses to quantify advantages of 2D and 3D hydrogel culture systems in maintaining the native valvular interstitial cell phenotype” (Mabry et al., 2015) [2]. PMID:26702427

  3. [18S-25S rDNA variation in tissue culture of some Gentiana L. species].

    PubMed

    Mel'nyk, V M; Andrieiev, I O; Spiridonova, K V; Strashniuk, N M; Kunakh, V A

    2007-01-01

    18S-25S rDNA of intact plants and tissue cultures of G. acaulis, G. punctata and G. lutea have been investigated by using blot-hybridization. The decrease of rDNA amount was found in the callus cultures as compared with the plants. In contrast to other species, G. lutea showed intragenome heterogeneity of rRNA genes as well as qualitative rDNA changes in tissue culture, in particular appearance of altered repeats. The relationship between the peculiarities of rRNA gene structure and their rearrangements in in vitro culture was suggested.

  4. Long term organ culture of human prostate tissue in a NASA-designed rotating wall bioreactor

    NASA Technical Reports Server (NTRS)

    Margolis, L.; Hatfill, S.; Chuaqui, R.; Vocke, C.; Emmert-Buck, M.; Linehan, W. M.; Duray, P. H.

    1999-01-01

    PURPOSE: To maintain ex vivo integral prostatic tissue including intact stromal and ductal elements using the NASA-designed Rotating Wall Vessel (RWV) which maintains colocalized cells in an environment that promotes both three-dimensional cellular interactions together with the uniform mass transfer of nutrients and metabolic wastes. MATERIALS AND METHODS: Samples of normal prostate were obtained as a byproduct of transurethral prostatectomy or needle biopsy. Prostatic tissue dissected into small 1 x 1 mm. blocks was cultured in the Rotating Wall Vessel (RWV) Bioreactor for various time periods and analyzed using histological, immunochemical, and total cell RNA assays. RESULTS: We report the long term maintenance of benign explanted human prostate tissue grown in simple culture medium, under the simulated microgravity conditions afforded by the RWV bioreactor. Mesenchymal stromal elements including blood vessels and architecturally preserved tubuloglandular acini were maintained for a minimum of 28 days. Cytokeratins, vimentin and TGF-beta2 receptor and ligand were preserved through the entire culture period as revealed by immunocytochemistry. Prostatic acid phosphatase (PAP) was continuously expressed during the culture period, although somewhat decreased. Prostatic specific antigen (PSA) and its transcript were down regulated over time of culture. Prostatic carcinoma cells from the TSU cell line were able to invade RWV-cultured benign prostate tissue explants. CONCLUSIONS: The RWV bioreactor represents an additional new technology for culturing prostate tissue for further investigations concerning the basic physiology and pathobiology of this clinically important tissue.

  5. Assessment of DNA methylation changes in tissue culture of Brassica napus.

    PubMed

    Gao, Y; Ran, L; Kong, Y; Jiang, J; Sokolov, V; Wang, Y

    2014-11-01

    Plant tissue culture, as a fundamental technique for genetic engineering, has great potential of epigenetic variation, of which DNA methylation is well known of importance to genome activity. We assessed DNA methylation level of explants during tissue culture of Brassica napus (cv. Yangyou 9), using high-performance liquid chromatography (HPLC) assisted quantification. By detecting methylation levels in hypocotyls cultured in mediums with different concentrations of hormones, we found dissected tissue:cultured with 0.1 mg/L 2,4-D and 1.0 mg/L 6-BA, presented the lowest methylation level and highest induction rate of callus (91.0%). Different time point of cultured explants also showed obvious methylation variations, explants cultured after 6 and 21 days exhibited methylation ratios of 4.33 and 8.07%, respectively. Whereas, the methylation ratio raised to 38.7% after 30 days cultivation, indicating that methylation level of hypocotyls ranged during tissue culture. Moreover, we observed that the methylation level in callus is the highest during regeneration of rape-seed, following the regenerated plantlets and hypocotyls. This paper indicated the function of hormones and differentiation of callus is relevant to the methylation levels during tissue culture. PMID:25739287

  6. Broth versus solid agar culture of swab samples of cadaveric allograft musculoskeletal tissue.

    PubMed

    Varettas, Kerry

    2013-12-01

    As part of the donor assessment protocol, bioburden assessment must be performed on allograft musculoskeletal tissue samples collected at the time of tissue retrieval. Swab samples of musculoskeletal tissue allografts from cadaveric donors are received at the microbiology department of the South Eastern Area Laboratory Services (Australia) to determine the presence of bacteria and fungi. This study will review the isolation rate of organisms from solid agar and broth culture of swab samples of cadaveric allograft musculoskeletal tissue over a 6-year period, 2006-2011. Swabs were inoculated onto horse blood agar (anaerobic, 35 °C) and chocolate agar (CO2, 35 °C) and then placed into a cooked meat broth (aerobic, 35 °C). A total of 1,912 swabs from 389 donors were received during the study period. 557 (29.1 %) swabs were culture positive with the isolation of 713 organisms, 249 (34.9 %) from solid agar culture and an additional 464 (65.1 %) from broth culture only. This study has shown that the broth culture of cadaveric allograft musculoskeletal swab samples recovered a greater amount of organisms than solid agar culture. Isolates such as Clostridium species and Staphylococcus aureus would not have been isolated from solid agar culture alone. Broth culture is an essential part of the bioburden assessment protocol of swab samples of cadaveric allograft musculoskeletal tissue in this laboratory.

  7. Therapeutically important proteins from in vitro plant tissue culture systems.

    PubMed

    Doran, Pauline M

    2013-01-01

    Plant cells cultured in liquid medium in bioreactors are now being used commercially to produce biopharmaceutical proteins. The emergence of in vitro plant cell culture as a production vehicle reflects the importance of key biosafety and biocontainment concerns affecting the competitiveness of alternative systems such as mammalian cell culture and agriculture. Food plant species are particularly attractive as hosts for in vitro protein production: the risk of transgene escape and food chain contamination is eliminated using containment facilities, while regulatory approval for oral delivery of drugs may be easier than if non-edible species were used. As in whole plants, proteolysis in cultured plant cells can lead to significant degradation of foreign proteins after synthesis; however, substantial progress has been made to counter the destructive effects of proteases in plant systems. Although protein secretion into the culture medium is advantageous for product recovery and purification, measures are often required to minimise extracellular protease activity and product losses due to irreversible surface adsorption. Disposable plastic bioreactors, which are being used increasingly in mammalian cell bioprocessing, are also being adopted for plant cell culture to allow rapid scale-up and generation of saleable product. This review examines a range of technical and regulatory issues affecting the choice of industrial production platform for foreign proteins, and assesses progress in the development of in vitro plant systems for biopharmaceutical production. PMID:23210789

  8. Stem tissue mass density is linked to growth and resistance to a stem-boring insect in Alternanthera philoxeroides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To investigate how stem anatomical structure is linked to growth and resistance to stem-boring insects in a herbaceous species, six populations of alligatorweed (Alternanthera philoxeroides) were grown in a common garden. Stem growth rate (GR) of A. philoxeroides and pupation rate as an estimate of ...

  9. Observing Insects.

    ERIC Educational Resources Information Center

    Arbel, Ilil

    1991-01-01

    Describes how to observe and study the fascinating world of insects in public parks, backyards, and gardens. Discusses the activities and habits of several common insects. Includes addresses for sources of beneficial insects, seeds, and plants. (nine references) (JJK)

  10. How-To-Do-It: Using Cauliflower to Demonstrate Plant Tissue Culture.

    ERIC Educational Resources Information Center

    Haldeman, Janice H.; Ellis, Jane P.

    1988-01-01

    Presents techniques used for disinfestation of plant material, preparation of equipment and media, and laboratory procedures for tissue culture using cauliflower. Details methods for preparing solutions and plant propagation by cloning. (CW)

  11. An antigen trapping ELISA for the detection of capripoxvirus in tissue culture supernatant and biopsy samples.

    PubMed

    Carn, V M

    1995-01-01

    A trapping ELISA for the detection of capripoxvirus antigen in tissue culture supernatant and biopsy material was developed, using a guinea-pig polyclonal detector antiserum raised against a recombinant capripoxvirus specific antigen, expressed in Escherichia coli using the plasmid vector pGEX-2T. The ELISA detected antigen in tissue culture samples that on virus titration contained equal to or in excess of 10(2.8) TCID50/ml. Virus isolation and ELISA were compared for the detection of capripoxvirus in skin biopsy samples from sheep, goats and cattle. The ELISA compared well with virus isolation, and has applications as a diagnostic test. This assay reduces the reliance of diagnostic laboratories on tissue culture facilities, and can be used to confirm the presence of capripoxvirus in tissue culture.

  12. Variation in bioactive principles of Artemisia amygdalina Decne. in wild and tissue culture regenerants.

    PubMed

    Rasool, Rafia; Ganai, Bashir Ahmad; Akbar, Seema; Kamili, Azra Nahaid; Dar, Muhammad Younus; Masood, Akbar

    2013-05-01

    Wild and tissue culture raised regenerants of Artemisia amygdalina, a critically endangered and endemic plant of Kashmir and North West Frontier Provinces of Pakistan were screened for the amount of bioactive principles and in particular antimalarial compound artemesinin. Phytochemical screening of extracts revealed the presence of terpenes, alkaloids, phenolics, tannins (polyphenolics), cardiac glycosides and steroids in wild (aerial, inflorescence) and tissue culture regenerants (in vitro grown plant, callus and green house acclimatized plants). HPLC of Artemisia amygdalina revealed the presence of artemesinin in petroleum ether extracts of wild aerial part, tissue culture raised plant and green house acclimatized plants. Acetonitrile and water in 70:30 ratios at flow rate of 1ml/min was standardised as mobile phase. Retention time for standard chromatogram was 6.7. Wild inflorescences and callus does not produce artemesinin. This is the first report of phytochemical screening and artemesinin estimation of wild and tissue culture raised regenerants of Artemisia amygdalina.

  13. Dynamic quantitative phase images of pond life, insect wings, and in vitro cell cultures.

    PubMed

    Creath, Katherine

    2010-08-01

    This paper presents images and data of live biological samples taken with a novel Linnik interference microscope. The specially designed optical system enables instantaneous and 3D video measurements of dynamic motions within and among live cells without the need for contrast agents. This "label-free", vibration insensitive imaging system enables measurement of biological objects in reflection using harmless light levels with current magnifications of 10X (NA 0.3) and 20X (NA 0.5) and wavelengths of 660 nm and 785 nm over fields of view from several hundred microns up to a millimeter. At the core of the instrument is a phase-measurement camera (PMC) enabling simultaneous measurement of multiple interference patterns utilizing a pixelated phase mask taking advantage of the polarization properties of light. Utilizing this technology enables the creation of phase image movies in real time at video rates so that dynamic motions and volumetric changes can be tracked. Objects are placed on a reflective surface in liquid under a coverslip. Phase values are converted to optical thickness data enabling volumetric, motion and morphological studies. Data from a number of different mud puddle organisms such as paramecium, flagellates and rotifers will be presented, as will measurements of flying ant wings and cultures of human breast cancer cells. These data highlight examples of monitoring different biological processes and motions. The live presentation features 4D phase movies of these examples. PMID:24357900

  14. Dynamic quantitative phase images of pond life, insect wings, and in vitro cell cultures

    NASA Astrophysics Data System (ADS)

    Creath, Katherine

    2010-08-01

    This paper presents images and data of live biological samples taken with a novel Linnik interference microscope. The specially designed optical system enables instantaneous and 3D video measurements of dynamic motions within and among live cells without the need for contrast agents. This "label-free", vibration insensitive imaging system enables measurement of biological objects in reflection using harmless light levels with current magnifications of 10X (NA 0.3) and 20X (NA 0.5) and wavelengths of 660 nm and 785 nm over fields of view from several hundred microns up to a millimeter. At the core of the instrument is a phasemeasurement camera (PMC) enabling simultaneous measurement of multiple interference patterns utilizing a pixelated phase mask taking advantage of the polarization properties of light. Utilizing this technology enables the creation of phase image movies in real time at video rates so that dynamic motions and volumetric changes can be tracked. Objects are placed on a reflective surface in liquid under a coverslip. Phase values are converted to optical thickness data enabling volumetric, motion and morphological studies. Data from a number of different mud puddle organisms such as paramecium, flagellates and rotifers will be presented, as will measurements of flying ant wings and cultures of human breast cancer cells. These data highlight examples of monitoring different biological processes and motions. The live presentation features 4D phase movies of these examples.

  15. Influence of postmortem time on the outcome of blood cultures among cadaveric tissue donors.

    PubMed

    Saegeman, V; Verhaegen, J; Lismont, D; Verduyckt, B; De Rijdt, T; Ectors, N

    2009-02-01

    Tissue banks provide tissues of human cadaver donors for transplantation. The maximal time limit for tissue retrieval has been set at 24 h postmortem. This study aimed at evaluating the evidence for this limit from a microbiological point of view. The delay of growth in postmortem blood cultures, the identification of the species isolated and clinical/environmental factors were investigated among 100 potential tissue donors. No significant difference was found in the rate of donors with grown blood cultures within (25/65=38%) compared with after (24/65=37%) 24 h of death. Coagulase-negative staphylococci and gastro-intestinal microorganisms were isolated within and after 24 h of death. Two factors--antimicrobial therapy and "delay before body cooling"--were significantly inversely related with donors' blood culture results. From a microbiological point of view, there is no evidence for avoiding tissue retrieval among donors after 24 h of death.

  16. Cloning higher plants from aseptically cultured tissues and cells

    NASA Technical Reports Server (NTRS)

    Krikorian, A. D.

    1982-01-01

    A review of aseptic culture methods for higher plants is presented, which focuses on the existing problems that limit or prevent the full realization of cloning plants from free cells. It is shown that substantial progress in clonal multiplication has been made with explanted stem tips or lateral buds which can be stimulated to produce numerous precocious axillary branches. These branches can then be separated or subdivided and induced to root in order to yield populations of genetically and phenotypically uniorm plantlets. Similarly, undifferentiated calluses can sometimes be induced to form shoots and/or roots adventitiously. Although the cell culture techniques required to produce somatic embryos are presently rudimentary, steady advances are being made in learning how to stimulate formation of somatic or adventive embryos from totipotent cells grown in suspension cultures. It is concluded that many problems exist in the producing and growing of totipotent or morphogenetically competent cell suspensions, but the potential benefits are great.

  17. Apollo 12 lunar material - Effects on lipid levels of tobacco tissue cultures.

    NASA Technical Reports Server (NTRS)

    Weete, J. D.; Walkinshaw, C. H.; Laseter, J. L.

    1972-01-01

    Tobacco tissue cultures grown in contact with lunar material from Apollo 12, for a 12-week period, resulted in fluctuations of both the relative and absolute concentrations of endogenous sterols and fatty acids. The experimental tissues contained higher concentrations of sterols than the controls did. The ratio of campesterol to stigmasterol was greater than 1 in control tissues, but less than 1 in the experimental tissues after 3 weeks. High relative concentrations (17.1 to 22.2 per cent) of an unidentified compound or compounds were found only in control tissues that were 3 to 9 weeks of age.

  18. Ex vivo Co-culture of Lymphoid Tissue Stromal Cells and T Cells

    PubMed Central

    Zeng, Ming; Haase, Ashley T.

    2016-01-01

    Stromal cells within lymphoid tissues produce IL-7, which is critical for the survival and function of T cells. This protocol is to be used to isolate primary human lymphoid tissue stromal cells to study their impact on the survival of T cells in an ex vivo co-culture system.

  19. Spontaneous aneuploidy and clone formation in adipose tissue stem cells during different periods of culturing.

    PubMed

    Buyanovskaya, O A; Kuleshov, N P; Nikitina, V A; Voronina, E S; Katosova, L D; Bochkov, N P

    2009-07-01

    Cytogenetic analysis of 13 mesenchymal stem cell cultures isolated from normal human adipose tissue was carried out at different stages of culturing. The incidence of chromosomes 6, 8, 11, and X aneuploidy and polyploidy was studied by fluorescent in situ hybridization. During the early passages, monosomal cells were more often detected than trisomal ones. A clone with chromosome 6 monosomy was detected in three cultures during late passages.

  20. [The effect of the amino acid combinations on cell proliferation in tissue cultures in old rats].

    PubMed

    Chalisova, N I; Kontsevaia, E A; Zhekalov, A N; Siniachkin, D A

    2012-01-01

    In organotypic tissue culture, the effect of the 20 coded amino acids combinations, in the effective concentration of 0.05 ng/ml, on the cell proliferation development in the spleen, myocardium, pancreas and brain cortex explants in 24 months rats was investigated. The combinations of two amino acids (stimulating and inhibiting proliferation) produced in the tissue culture the stimulating effect, exceeding by 8-10% as compared to the isolating effect of the stimulating amino acid. The results obtained form the base for the further synthesis of new effective dipeptides to be used to increase the regeneration of tissues when aging. PMID:23130534

  1. Polyphosphoinositides are present in plant tissue culture cells

    SciTech Connect

    Boss, W.F.; Massel, M.O.

    1985-11-15

    Polyphosphoinositides have been isolated from wild carrot cells grown in suspension culture. This is the first report of polyphosphoinositides in plant cells. The phospholipids were identified by comigration with known standards on thin-layer plates. After overnight labeling of the cells with myo-(2-/sup 3/H) inositol, the phosphoinositides as percent recovered inositol were 93% phosphatidylinositol., 3.7% lysophosphatidylinositol, 1.7% phosphatidylinositol monophosphate, 0.8% phosphatidylinositol bisphosphate.

  2. Tissue culture system for infection with human hepatitis delta virus.

    PubMed Central

    Sureau, C; Jacob, J R; Eichberg, J W; Lanford, R E

    1991-01-01

    An in vitro culture system was developed for assaying the infectivity of the human hepatitis delta virus (HDV). Hepatocytes were isolated from chimpanzee liver and grown in a serum-free medium. Cells were shown to be infectible by HDV and to remain susceptible to infection for at least 3 weeks in culture, as evidenced by the appearance of RNA species characteristic of HDV replication as early as 6 days postinfection. When repeated experiments were carried out on cells derived from an animal free of hepatitis B virus (HBV), HDV infection occurred in a consistent fashion but there was no indication of infection with the HBV that was present in the inoculum. Despite numerous attempts with different sources of HBV inocula free of HDV, there was no evidence that indicated susceptibility of these cells to HBV infection. This observation may indicate that HBV and HDV use different modes of entry into hepatocytes. When cells derived from an HBV-infected animal were exposed to HDV, synthesis and release of progeny HDV particles were obtained in addition to HBV replication and production of Dane particles. Although not infectible with HBV, primary cultures of chimpanzee hepatocytes are capable of supporting part of the life cycle of HBV and the entire life cycle of HDV. Images PMID:2041075

  3. Tissue, developmental, and caste-specific expression of odorant binding proteins in a eusocial insect, the red imported fire ant, Solenopsis invicta

    PubMed Central

    Zhang, Wei; Wanchoo, Arun; Ortiz-Urquiza, Almudena; Xia, Yuxian; Keyhani, Nemat O.

    2016-01-01

    Insects interact with the surrounding environment via chemoreception, and in social insects such as ants, chemoreception functions to mediate diverse behaviors including food acquisition, self/non-self recognition, and intraspecific communication. The invasive red imported fire ant, Solenopsis invicta, has spread worldwide, displaying a remarkable environmental adaptability. Odorant binding proteins (OBPs) are chemical compound carriers, involved in diverse physiological processes including odor detection and chemical transport. S. invicta contains a highly divergent 17-member OBP gene family, that includes an ant-specific expansion and the social organization implicated Gp-9 (OBP3) gene. A systematic gene expression analysis of the SiOBP repertoire was performed across social caste (workers, male and female alates), tissues (antennae, head, thorax, and abdomen), and developmental stages (egg, larvae, and pupae), revealing that although SiOBPs were expressed in the antennae, the major regions of expression were in the head and thorax across all castes, and the abdomen in male and female alates. SiOBPs were very highly expressed in female alates and at somewhat lower levels in male alates and workers. SiOBPs were differentially expressed, with unique signatures in various castes and tissues, suggesting functionality of SiOBPs beyond olfaction Expression patterns of SiOBP subgroups also showed relationships with their evolutionary relatedness. PMID:27765943

  4. Culture methods of allograft musculoskeletal tissue samples in Australian bacteriology laboratories.

    PubMed

    Varettas, Kerry

    2013-12-01

    Samples of allograft musculoskeletal tissue are cultured by bacteriology laboratories to determine the presence of bacteria and fungi. In Australia, this testing is performed by 6 TGA-licensed clinical bacteriology laboratories with samples received from 10 tissue banks. Culture methods of swab and tissue samples employ a combination of solid agar and/or broth media to enhance micro-organism growth and maximise recovery. All six Australian laboratories receive Amies transport swabs and, except for one laboratory, a corresponding biopsy sample for testing. Three of the 6 laboratories culture at least one allograft sample directly onto solid agar. Only one laboratory did not use a broth culture for any sample received. An international literature review found that a similar combination of musculoskeletal tissue samples were cultured onto solid agar and/or broth media. Although variations of allograft musculoskeletal tissue samples, culture media and methods are used in Australian and international bacteriology laboratories, validation studies and method evaluations have challenged and supported their use in recovering fungi and aerobic and anaerobic bacteria.

  5. [The effect of colored light on growth and composition of plant tissue cultures].

    PubMed

    Bergmann, L; Bälz, A

    1966-09-01

    The growth of green cultures of callus tissue from Nicotiana tabacum var. "Samsun" is stimulated by light. To determine whether the increase in growth is caused by photosynthesis or by a blue light dependent increase of protein synthesis, a comparative study was made of the effect which blue and red light have on the growth and the composition of tobacco tissue. It is shown that the growth stimulation by light depends on the chlorophyll content of the tissues. Starting with chlorophyll-free tissue the cultures begin to grow faster in blue light only after they become visibly green. On the other hand, the growth of green tissue in red light decreases as soon as the chlorophyll content under this condition becomes less. There are no differences in the rate of growth of green tissues cultivated in blue and in red light of approximately the same flow of quanta; in both cases the cultures grow better than the controls in the dark. Furthermore there are no differences between the protein and carbohydrate content of tissues grown in blue or red light and in the dark. There is, however, a small but significant difference between the total nitrogen of green tissue and that of chlorophyll-free tissue which is due to a higher amount of soluble nitrogen in the green tissue. From these results it is concluded that the light dependent growth stimulation is caused by photosynthesis. As shown by a light dependent (14)CO2 incorporation in which sucrose is the main product, the green cells are able to fix CO2 photosynthetically. However, the rate of photosynthesis in the tissue cultures is small and does not balance the respiration. It seems very unlikely, therefore, that the formation of carbohydrates by photosynthesis is responsible for the observed growth increase.

  6. The appropriateness of swab cultures for the release of human allograft tissue.

    PubMed

    Ronholdt, Chad J; Bogdansky, Simon

    2005-08-01

    Surgeries utilizing human allograft tissues have increased dramatically in recent years. With this increase has come a greater reliance on the use of swab culturing to assess allograft tissues for microbial contamination prior to distribution. In contrast to the typical industrial microbiological uses for swabs, the tissue banking industry has relied on swab cultures as a sterility release method for allograft tissues. It has been reported in the literature that swabs have limitations, both in sensitivity and reproducibility, so their suitability as a final sterility release method was evaluated in this study. Two different swab-culturing systems were evaluated (COPAN, EZ Culturette) using human allograft tissues spiked with low levels of multiple bacterial and fungal microorganisms. The average microbial recoveries for all challenge microorganisms for each tissue type and each swab system were calculated. Percent recoveries for each challenge microorganism were also calculated and reported. The results indicated that both swab systems exhibited low and highly variable recoveries from the seeded allograft tissues. Further analysis indicated there was no statistical difference ( proportional, variant=0.05) between the two swab systems. It is the recommendation of the authors that swab culturing not be used to assess relatively low levels of microbial contamination on allografts. Instead, alternative validated microbial detection methods with improved sensitivity and reproducibility should be employed and validated for this critical task. PMID:15973533

  7. Electron microscopy, tissue culture,and immunology of ovarian carcinoma.

    PubMed

    Ioachim, H L; Dorsett, B H; Sabbath, M; Barber, H R

    1975-10-01

    The ultrastructure of the major histologic types of ovarian carcinoma was investigated as part of a multilateral study of this tumor. The nuclear and nucleolar changes in size, shape, and structure correlated well with the degree of malignancy and tumor grading. Cytoplasmic organelles and intercellular junctions were abundant and fairly well differentiated even in ovarian carcinomas of higher grade and stage. Active processes of synthesis and secretion taking place in most of these tumors were suggested by the presence of a richly granulated endoplasmic reticulum, dilated cisternae, and numerous secretory granules. Seventy-eight different ovarian carcinomas of all histologic types were cultured in vitro for periods of up to 300 days, and their morphology in light and electron microscopy was compared to that of the original tumors. The cultures displayed a consistent pattern of growth which led to the conclusion that ovarian cancer cells in vitro preserve their salient features and are representative of the tumors of origin. Heterologous antisera raised with pooled extracts of various types of ovarian carcinomas reacted specifically in immunodiffusion and immunofluorescence tests only with ovarian carcinomas and not with normal ovaries, benigh ovarian tumors, and nonovarian malignant neoplasms, indicating the presence of a cross-reacting specific antigen for ovarian carcinomas. In other studies, autologous antibodies were isolated from antigen-antibody complexes recovered from peritoneal effusions of patients with ovarian carcinomas. These antibodies displayed a high degree of specificity against ovarian carcinoma cells when tested in immunofluorescence assays.

  8. Oil palm (Elaeis guineensis Jacq.) tissue culture ESTs: Identifying genes associated with callogenesis and embryogenesis

    PubMed Central

    Low, Eng-Ti L; Alias, Halimah; Boon, Soo-Heong; Shariff, Elyana M; Tan, Chi-Yee A; Ooi, Leslie CL; Cheah, Suan-Choo; Raha, Abdul-Rahim; Wan, Kiew-Lian; Singh, Rajinder

    2008-01-01

    Background Oil palm (Elaeis guineensis Jacq.) is one of the most important oil bearing crops in the world. However, genetic improvement of oil palm through conventional breeding is extremely slow and costly, as the breeding cycle can take up to 10 years. This has brought about interest in vegetative propagation of oil palm. Since the introduction of oil palm tissue culture in the 1970s, clonal propagation has proven to be useful, not only in producing uniform planting materials, but also in the development of the genetic engineering programme. Despite considerable progress in improving the tissue culture techniques, the callusing and embryogenesis rates from proliferating callus cultures remain very low. Thus, understanding the gene diversity and expression profiles in oil palm tissue culture is critical in increasing the efficiency of these processes. Results A total of 12 standard cDNA libraries, representing three main developmental stages in oil palm tissue culture, were generated in this study. Random sequencing of clones from these cDNA libraries generated 17,599 expressed sequence tags (ESTs). The ESTs were analysed, annotated and assembled to generate 9,584 putative unigenes distributed in 3,268 consensi and 6,316 singletons. These unigenes were assigned putative functions based on similarity and gene ontology annotations. Cluster analysis, which surveyed the relatedness of each library based on the abundance of ESTs in each consensus, revealed that lipid transfer proteins were highly expressed in embryogenic tissues. A glutathione S-transferase was found to be highly expressed in non-embryogenic callus. Further analysis of the unigenes identified 648 non-redundant simple sequence repeats and 211 putative full-length open reading frames. Conclusion This study has provided an overview of genes expressed during oil palm tissue culture. Candidate genes with expression that are modulated during tissue culture were identified. However, in order to confirm

  9. Assessment of three types of spaceflight hardware for tissue culture studies: Comparison of skeletal tissue growth and differentiation

    NASA Astrophysics Data System (ADS)

    Klement, Brenda J.; Spooner, Brian S.

    1997-01-01

    Three different types of spaceflight hardware, the BioProcessing Module (BPM), the Materials Dispersion Apparatus (MDA), and the Fluid Processing Apparatus (FPA), were assessed for their ability to support pre-metatarsal growth and differentiation in experiments conducted on five space shuttle flights. BPM-cultured pre-metatarsal tissue showed no difference in flight and ground control lengths. Flight and ground controls cultured in the MDA grew 135 μm and 141 μm, respectively, in an 11 day experiment. Only five control rods and three flight rods mineralized. In another MDA experiment, pre-metatarsals were cultured at 4 °C (277K) or 20 °C (293K) for the 16 day mission, then cultured an additional 16 days in laboratory dishes at 37 °C (310K). The 20 °C (293K) cultures died post-flight. The 4 °C (277K) flight pre-metatarsals grew 417 μm more than the 4 °C (277K) ground controls post-flight. In 5 and 6 day experiments done in FPAs, flight rods grew longer than ground control rods. In a 14 day experiment, ground control and flight rods also expanded in length, but there was no difference between them. The pre-metatarsals cultured in the FPAs did not mineralize, or terminally differentiate. These experiments demonstrate, that while supporting pre-metatarsal growth in length, the three types of hardware are not suitable to support routine differentiation.

  10. Xanthan gum: an economical substitute for agar in plant tissue culture media.

    PubMed

    Jain, R; Babbar, S B

    2006-03-01

    Xanthan gum, a microbial desiccation-resistant polysaccharide prepared commercially by aerobic submerged fermentation from Xanthomonas campestris, has been successfully used as a solidifying agent for plant tissue culture media. Its suitability as a substitute to agar was demonstrated for in vitro seed germination, caulogenesis and rhizogenesis of Albizzia lebbeck, androgenesis in anther cultures of Datura innoxia, and somatic embryogenesis in callus cultures of Calliandra tweedii. Culture media used for eliciting these morphogenic responses were gelled with either 1% xanthan gum or 0.9% agar. Xanthan gum, like agar, supported all these responses.

  11. Robust circadian rhythms of gene expression in Brassica rapa tissue culture.

    PubMed

    Xu, Xiaodong; Xie, Qiguang; McClung, C Robertson

    2010-06-01

    Circadian clocks provide temporal coordination by synchronizing internal biological processes with daily environmental cycles. To date, study of the plant circadian clock has emphasized Arabidopsis (Arabidopsis thaliana) as a model, but it is important to determine the extent to which this model applies in other species. Accordingly, we have investigated circadian clock function in Brassica rapa. In Arabidopsis, analysis of gene expression in transgenic plants in which luciferase activity is expressed from clock-regulated promoters has proven a useful tool, although technical challenges associated with the regeneration of transgenic plants has hindered the implementation of this powerful tool in B. rapa. The circadian clock is cell autonomous, and rhythmicity has been shown to persist in tissue culture from a number of species. We have established a transgenic B. rapa tissue culture system to allow the facile measurement and manipulation of clock function. We demonstrate circadian rhythms in the expression of several promoter:LUC reporters in explant-induced tissue culture of B. rapa. These rhythms are temperature compensated and are reset by light and temperature pulses. We observe a strong positive correlation in period length between the tissue culture rhythm in gene expression and the seedling rhythm in cotyledon movement, indicating that the circadian clock in B. rapa tissue culture provides a good model for the clock in planta.

  12. Robust Circadian Rhythms of Gene Expression in Brassica rapa Tissue Culture1[W][OA

    PubMed Central

    Xu, Xiaodong; Xie, Qiguang; McClung, C. Robertson

    2010-01-01

    Circadian clocks provide temporal coordination by synchronizing internal biological processes with daily environmental cycles. To date, study of the plant circadian clock has emphasized Arabidopsis (Arabidopsis thaliana) as a model, but it is important to determine the extent to which this model applies in other species. Accordingly, we have investigated circadian clock function in Brassica rapa. In Arabidopsis, analysis of gene expression in transgenic plants in which luciferase activity is expressed from clock-regulated promoters has proven a useful tool, although technical challenges associated with the regeneration of transgenic plants has hindered the implementation of this powerful tool in B. rapa. The circadian clock is cell autonomous, and rhythmicity has been shown to persist in tissue culture from a number of species. We have established a transgenic B. rapa tissue culture system to allow the facile measurement and manipulation of clock function. We demonstrate circadian rhythms in the expression of several promoter:LUC reporters in explant-induced tissue culture of B. rapa. These rhythms are temperature compensated and are reset by light and temperature pulses. We observe a strong positive correlation in period length between the tissue culture rhythm in gene expression and the seedling rhythm in cotyledon movement, indicating that the circadian clock in B. rapa tissue culture provides a good model for the clock in planta. PMID:20406912

  13. Imaging the division process in living tissue culture cells

    PubMed Central

    Khodjakov, Alexey; Rieder, Conly L.

    2008-01-01

    We detail some of the pitfalls encountered when following live cultured somatic cells by light microscopy during mitosis. Principle difficulties in this methodology arise from the necessity to compromise between maintaining the health of the cell while achieving the appropriate temporal and spatial resolutions required for the study. Although the quality of the data collected from fixed cells is restricted only by the quality of the imaging system and the optical properties of the specimen, the major limiting factor when viewing live cells is radiation damage induced during illumination. We discuss practical considerations for minimizing this damage, and for maintaining the general health of the cell, while it is being followed by multi-mode or multi-dimensional light microscopy. PMID:16343936

  14. Micropropagation of Dalbergia sissoo Roxb. through tissue culture technique.

    PubMed

    Sahu, Jyoti; Khan, Shagufta; Sahu, Ram Kumar; Roy, Amit

    2014-04-01

    Multiple shoots of Dalbergia sissoo Roxb. (Sissoo) were incited from seeds through indirect somatic embryogenesis method. Seeds were inoculated in Murashige and Skoog's medium without any growth hormone. Than cotyledonary leaves were struck and used for callus induction on MS medium amplified with 2, 4-dichlorophenoxyacetic acid (0.5 to 4 mg mL(-1)). After 3 to 4 weeks the embryogenic callus clumps was transferred to medium supplemented with cytokinin (BAP 1 to 5 mg L(-1), kinetin 1-5.0 mg L(-1)) for embryo maturation and germination. The high-frequency shoot proliferation (82%) and maximum number of shoots per explants were recorded in MS medium containing NAA (0.5)+BAP (0.5). The findings of recent investigations have shown that, it is possible to induce indirect somatic embryogenesis in Dalbergia sissoo and plant regeneration from callus cultures derived from cotyledonary leaves as explants.

  15. A Troubled Past? Reassessing Ethics in the History of Tissue Culture.

    PubMed

    Wilson, Duncan

    2016-09-01

    Recent books, articles and plays about the 'immortal' HeLa cell line have prompted renewed interest in the history of tissue culture methods that were first employed in 1907 and became common experimental tools during the twentieth century. Many of these sources claim tissue cultures like HeLa had a "troubled past" because medical researchers did not seek informed consent before using tissues in research, contravening a long held desire for self-determination on the part of patients and the public. In this article, I argue these claims are unfair and misleading. No professional guidelines required informed consent for tissue culture during the early and mid twentieth century, and popular sources expressed no concern at the widespread use of human tissues in research. When calls for informed consent did emerge in the 1970s and 1980s, moreover, they reflected specific political changes and often emanated from medical researchers themselves. I conclude by arguing that more balanced histories of tissue culture can make a decisive contribution to public debates today: by refuting a false dichotomy between science and its publics, and showing how ethical concepts such as informed consent arise from a historically specific engagement between professional and social groups.

  16. Hollow Fiber Bioreactors for In Vivo-like Mammalian Tissue Culture

    PubMed Central

    Storm, Michael P.; Sorrell, Ian; Shipley, Rebecca; Regan, Sophie; Luetchford, Kim A.; Sathish, Jean; Webb, Steven; Ellis, Marianne J.

    2016-01-01

    Tissue culture has been used for over 100 years to study cells and responses ex vivo. The convention of this technique is the growth of anchorage dependent cells on the 2-dimensional surface of tissue culture plastic. More recently, there is a growing body of data demonstrating more in vivo-like behaviors of cells grown in 3-dimensional culture systems. This manuscript describes in detail the set-up and operation of a hollow fiber bioreactor system for the in vivo-like culture of mammalian cells. The hollow fiber bioreactor system delivers media to the cells in a manner akin to the delivery of blood through the capillary networks in vivo. The system is designed to fit onto the shelf of a standard CO2 incubator and is simple enough to be set-up by any competent cell biologist with a good understanding of aseptic technique. The systems utility is demonstrated by culturing the hepatocarcinoma cell line HepG2/C3A for 7 days. Further to this and in line with other published reports on the functionality of cells grown in 3-dimensional culture systems the cells are shown to possess increased albumin production (an important hepatic function) when compared to standard 2-dimensional tissue culture. PMID:27285826

  17. Hollow Fiber Bioreactors for In Vivo-like Mammalian Tissue Culture.

    PubMed

    Storm, Michael P; Sorrell, Ian; Shipley, Rebecca; Regan, Sophie; Luetchford, Kim A; Sathish, Jean; Webb, Steven; Ellis, Marianne J

    2016-01-01

    Tissue culture has been used for over 100 years to study cells and responses ex vivo. The convention of this technique is the growth of anchorage dependent cells on the 2-dimensional surface of tissue culture plastic. More recently, there is a growing body of data demonstrating more in vivo-like behaviors of cells grown in 3-dimensional culture systems. This manuscript describes in detail the set-up and operation of a hollow fiber bioreactor system for the in vivo-like culture of mammalian cells. The hollow fiber bioreactor system delivers media to the cells in a manner akin to the delivery of blood through the capillary networks in vivo. The system is designed to fit onto the shelf of a standard CO2 incubator and is simple enough to be set-up by any competent cell biologist with a good understanding of aseptic technique. The systems utility is demonstrated by culturing the hepatocarcinoma cell line HepG2/C3A for 7 days. Further to this and in line with other published reports on the functionality of cells grown in 3-dimensional culture systems the cells are shown to possess increased albumin production (an important hepatic function) when compared to standard 2-dimensional tissue culture. PMID:27285826

  18. Analysis of expressed sequence tags from Maize mosaic rhabdovirus-infected gut tissues of Peregrinus maidis reveals the presence of key components of insect innate immunity.

    PubMed

    Whitfield, A E; Rotenberg, D; Aritua, V; Hogenhout, S A

    2011-04-01

    The corn planthopper, Peregrinus maidis, causes direct feeding damage to plants and transmits Maize mosaic rhabdovirus (MMV) in a persistent-propagative manner. MMV must cross several insect tissue layers for successful transmission to occur, and the gut serves as an important barrier for rhabdovirus transmission. In order to facilitate the identification of proteins that may interact with MMV either by facilitating acquisition or responding to virus infection, we generated and analysed the gut transcriptome of P. maidis. From two normalized cDNA libraries, we generated a P. maidis gut transcriptome composed of 20,771 expressed sequence tags (ESTs). Assembly of the sequences yielded 1860 contigs and 14,032 singletons, and biological roles were assigned to 5793 (36%). Comparison of P. maidis ESTs with other insect amino acid sequences revealed that P. maidis shares greatest sequence similarity with another hemipteran, the brown planthopper Nilaparvata lugens. We identified 202 P. maidis transcripts with putative homology to proteins associated with insect innate immunity, including those implicated in the Toll, Imd, JAK/STAT, Jnk and the small-interfering RNA-mediated pathways. Sequence comparisons between our P. maidis gut EST collection and the currently available National Center for Biotechnology Information EST database collection for Ni. lugens revealed that a pathogen recognition receptor in the Imd pathway, peptidoglycan recognition protein-long class (PGRP-LC), is present in these two members of the family Delphacidae; however, these recognition receptors are lacking in the model hemipteran Acyrthosiphon pisum. In addition, we identified sequences in the P. maidis gut transcriptome that share significant amino acid sequence similarities with the rhabdovirus receptor molecule, acetylcholine receptor (AChR), found in other hosts. This EST analysis sheds new light on immune response pathways in hemipteran guts that will be useful for further dissecting innate

  19. The response of human nasal and bronchial organotypic tissue cultures to repeated whole cigarette smoke exposure.

    PubMed

    Talikka, Marja; Kostadinova, Radina; Xiang, Yang; Mathis, Carole; Sewer, Alain; Majeed, Shoaib; Kuehn, Diana; Frentzel, Stefan; Merg, Celine; Geertz, Marcel; Martin, Florian; Ivanov, Nikolai V; Peitsch, Manuel C; Hoeng, Julia

    2014-01-01

    Exposure to cigarette smoke (CS) is linked to the development of respiratory diseases, and there is a need to understand the mechanisms whereby CS causes damage. Although animal models have provided valuable insights into smoking-related respiratory tract damage, modern toxicity testing calls for reliable in vitro models as alternatives for animal experimentation. We report on a repeated whole mainstream CS exposure of nasal and bronchial organotypic tissue cultures that mimic the morphological, physiological, and molecular attributes of the human respiratory tract. Despite the similar cellular staining and cytokine secretion in both tissue types, the transcriptomic analyses in the context of biological network models identified similar and diverse biological processes that were impacted by CS-exposed nasal and bronchial cultures. Our results demonstrate that nasal and bronchial tissue cultures are appropriate in vitro models for the assessment of CS-induced adverse effects in the respiratory system and promising alternative to animal experimentation. PMID:25297719

  20. Radiosensitivity of different tissues from carrot root at different phases of growth in culture

    SciTech Connect

    Degani, N.; Pickholtz, D.

    1980-09-01

    The present work compares the effect of ..gamma..-radiation dose and time in culture on the growth of cambium and phloem carrot (Daucus carota) root explants. It was found that the phloem is more radiosensitive than the cambium and that both tissues were more radiosensitive when irradiated on excision at the G/sub 1/ phase rather than at the end of the lag phase on the ninth day of growth in culture when cells were predominantly at the G/sub 2/ phase. The nuclear volumes of cells from both tissues were similar but were larger at the end of the more radioresistant lag phase than those of the G/sub 1/ phase on excision. However, nuclear volume could not account for the differences in radiosensitivity between either the tissues or irradiation times in culture.

  1. Microfluidic devices for studying heterotypic cell-cell interactions and tissue specimen cultures under controlled microenvironments

    PubMed Central

    Zervantonakis, Ioannis K.; Kothapalli, Chandrasekhar R.; Chung, Seok; Sudo, Ryo; Kamm, Roger D.

    2011-01-01

    Microfluidic devices allow for precise control of the cellular and noncellular microenvironment at physiologically relevant length- and time-scales. These devices have been shown to mimic the complex in vivo microenvironment better than conventional in vitro assays, and allow real-time monitoring of homotypic or heterotypic cellular interactions. Microfluidic culture platforms enable new assay designs for culturing multiple different cell populations and∕or tissue specimens under controlled user-defined conditions. Applications include fundamental studies of cell population behaviors, high-throughput drug screening, and tissue engineering. In this review, we summarize recent developments in this field along with studies of heterotypic cell-cell interactions and tissue specimen culture in microfluidic devices from our own laboratory. PMID:21522496

  2. Tissue culture system using a PANDA ring resonator and wavelength router for hydroponic plant.

    PubMed

    Kamoldilok, Surachart; Suwanpayak, Nathaporn; Suttirak, Saisudawan; Yupapin, Preecha P

    2012-06-01

    A novel system of nanofluidics trapping and delivery, which is known as a tissue culture system is proposed. By using the intense optical pulse(i.e., a soliton pulse) and a system constructed by a liquid core waveguide, the optical vortices (gradient optical fields/wells) can be generated, where the trapping tools in the same way as the optical tweezers in the PANDA ring resonator can be formed. By controlling the suitable parameters, the intense optical vortices can be generated within the PANDA ring resonator, in which the nanofluidics can be trapped and moved (transported) dynamically within the Tissue culture system(a wavelength router), which can be used for tissue culture and delivery in the hydroponic plant system.

  3. Spheroid culture as a tool for creating 3D complex tissues.

    PubMed

    Fennema, Eelco; Rivron, Nicolas; Rouwkema, Jeroen; van Blitterswijk, Clemens; de Boer, Jan

    2013-02-01

    3D cell culture methods confer a high degree of clinical and biological relevance to in vitro models. This is specifically the case with the spheroid culture, where a small aggregate of cells grows free of foreign materials. In spheroid cultures, cells secrete the extracellular matrix (ECM) in which they reside, and they can interact with cells from their original microenvironment. The value of spheroid cultures is increasing quickly due to novel microfabricated platforms amenable to high-throughput screening (HTS) and advances in cell culture. Here, we review new possibilities that combine the strengths of spheroid culture with new microenvironment fabrication methods that allow for the creation of large numbers of highly reproducible, complex tissues.

  4. A Three-dimensional Tissue Culture Model to Study Primary Human Bone Marrow and its Malignancies

    PubMed Central

    Parikh, Mukti R.; Belch, Andrew R.; Pilarski, Linda M; Kirshner, Julia

    2014-01-01

    Tissue culture has been an invaluable tool to study many aspects of cell function, from normal development to disease. Conventional cell culture methods rely on the ability of cells either to attach to a solid substratum of a tissue culture dish or to grow in suspension in liquid medium. Multiple immortal cell lines have been created and grown using such approaches, however, these methods frequently fail when primary cells need to be grown ex vivo. Such failure has been attributed to the absence of the appropriate extracellular matrix components of the tissue microenvironment from the standard systems where tissue culture plastic is used as a surface for cell growth. Extracellular matrix is an integral component of the tissue microenvironment and its presence is crucial for the maintenance of physiological functions such as cell polarization, survival, and proliferation. Here we present a 3-dimensional tissue culture method where primary bone marrow cells are grown in extracellular matrix formulated to recapitulate the microenvironment of the human bone (rBM system). Embedded in the extracellular matrix, cells are supplied with nutrients through the medium supplemented with human plasma, thus providing a comprehensive system where cell survival and proliferation can be sustained for up to 30 days while maintaining the cellular composition of the primary tissue. Using the rBM system we have successfully grown primary bone marrow cells from normal donors and patients with amyloidosis, and various hematological malignancies. The rBM system allows for direct, in-matrix real time visualization of the cell behavior and evaluation of preclinical efficacy of novel therapeutics. Moreover, cells can be isolated from the rBM and subsequently used for in vivo transplantation, cell sorting, flow cytometry, and nucleic acid and protein analysis. Taken together, the rBM method provides a reliable system for the growth of primary bone marrow cells under physiological conditions

  5. Effects of nanoimprinted patterns in tissue-culture polystyrene on cell behavior

    PubMed Central

    Hu, W.; Yim, E. K. F.; Reano, R. M.; Leong, K. W.; Pang, S. W.

    2008-01-01

    Tissue engineering seeks to develop functional tissues in a biomimetic environment in vitro. As the extracellular environment in vivo is composed of numerous nanostructures, fabrication of nanostructured substrates will be valuable for tissue engineering applications. In this article, we report a simple nanoimprint lithography (NIL) process to pattern nanostructures directly on tissue-culture polystyrene plates. By repeating this NIL process, three-dimensional scaffolds consisting of multiple-layer nanostructures were also fabricated. Bovine pulmonary artery smooth muscle cells were cultured on imprinted gratings ranging from 350 nm to 10 μm. The smooth muscle cells attached and proliferated well on these imprinted substrates without additional surface treatment. Cell elongation and alignment were observed on the micro- and nanopatterns, with the effect significantly more pronounced on the nanostructures. PMID:19079551

  6. Fractals in tissue engineering: toward biomimetic cell-culture matrices, microsystems and microstructured implants.

    PubMed

    Díaz Lantada, Andrés; Pareja Sánchez, Beatriz; Gómez Murillo, Cristina; Urbieta Sotillo, Javier

    2013-09-01

    Tissue engineering is a rapidly evolving field in which the complexity of biomaterials and biostructures, with typically non-Euclidean or fractal-like geometries, has to be adequately taken into account for the promotion of enhanced and even personalized diagnostic and therapeutic solutions. This study covers the main applications of fractals in the field of tissue engineering, including their advantages for modeling biological processes and cell-culture procedures, but specially focusing on their benefits for describing the complex geometries and structures of biomaterials (both natural and synthetic), many of which have potential uses for the development of cell culture microsystems, scaffolds for tissue repair and implants for tissue repair in general. We also explore the main supporting design, simulation and manufacturing technologies, as well as the most remarkable difficulties and limitations linked to the generalized use of fractals in engineering design, and also detail some current solution proposals and future directions.

  7. [POLYPEPTIDES INFLUENCE ON TISSUE CELL CULTURES REGENERATION OF VARIOUS AGE RATS].

    PubMed

    Ryzhak, A P; Chalisova, N I; Lin'kova, N S; Khalimov, R I; Ryzhak, G A; Zhekalov, A N

    2015-01-01

    A comparative study of polypeptides extracted from the tissues of calves: Cortexin (from brain cortex), Epinorm (from pineal gland), Ventvil (from liver), Prostatilen (from prostate), Thymalin (from thymus), Chelohart (from heart), Chondrolux (from cartilage) on the relevant organotypic tissue cultures of young and old rats, in concentration 0,01-100 ng/ml was performed. Polypeptides specifically stimulated "young" and "old" cell cultures growth in concentration 20-50 ng/ml. This effect correlates with increasing of PCNA and decreasing of p53 expression in brain cortex, pineal gland, liver, prostate, heart, cartilage. Moreover, Thymalin activated CD5, CD20 expression--markers of B-cells differentiation. These data show that polypeptides isolated from different tissues have selective molecular activity on the regeneration of suitable tissues in aging.

  8. Studies on Japanese B Encephalitis Virus Vaccines from Tissue Culture

    PubMed Central

    Singh, Balwant; Hammon, W. McD.

    1971-01-01

    A study was carried out to evaluate the reliability of and to determine the mechanism involved in an antigen extinction mouse intraperitoneal (ip) challenge test for potency of a cell culture vaccine for Japanese B encephalitis, a modification of a test originated by Sabin for a mouse brain vaccine. Some comparisons were made with the official Japanese test using an intracerebral (ic) challenge after a more prolonged immunization procedure. The Japanese method of using a lyophilized reference vaccine with each test was also employed. It was found that the ip and the ic test appeared to show similar relative differences between lots. The ip test was more quickly and readily performed, gave reasonably consistent results on repetition, and, when used with a suitable reference vaccine, gave promise of being an entirely suitable and reliable test. Immunization by the intramuscular route rather than by the regular ip route appeared to offer no advantage and was less consistent in responses shown. Neutralizing antibody responses of the mice in the standard procedure were very quick to appear, about 4 days after the first dose of vaccine and had a peak titer about the seventh day, the time of challenge. This titer fell quickly unless challenge occurred. The antibody was heat stable, but it was readily inactivated by 2-mercaptoethanol (2-ME). Not until the 11th or 15th day did a small amount of immunoglobulin G appear. Challenge on day 7 significantly increased titers, but this antibody was also mostly inactivated by 2-ME. Interferon did not appear to play any significant role in the protection shown by the mice. PMID:4325023

  9. Production of immunoglobulins in gingival tissue explant cultures from juvenile periodontitis patients

    SciTech Connect

    Hall, E.R.; Falkler, W.A. Jr.; Suzuki, J.B. )

    1990-10-01

    B lymphocytes and plasma cells are histologically observed in granulomatous periodontal tissues of juvenile periodontitis (JP) patients. Local immune processes may participate in protective or immunopathologic roles in the pathogenesis of this disease. An in vitro explant culture system was utilized to demonstrate the production of immunoglobulins by diseased JP tissues. Immunodiffusion studies using goat anti-human gamma, alpha, or mu chain serum revealed IgG to be the major immunoglobulin present in 92% of the day 1 supernatant fluids (SF) of the 47 JP gingival tissue explant cultures. IgA was present in 15% of the SF; however, no IgM was detected. Staph Protein A isolated 14C-labeled IgG from the SF, when allowed to react with goat anti-human gamma chain serum, formed lines of precipitation. Positive autoradiographs confirmed the biosynthesis of IgG by the explant cultures. The in vitro gingival tissue explant culture system described provides a useful model for the study of localized immunoglobulins produced by diseased tissues of JP patients.

  10. Investigating the establishment of primary cell culture from different abalone (Haliotis midae) tissues.

    PubMed

    van der Merwe, Mathilde; Auzoux-Bordenave, Stéphanie; Niesler, Carola; Roodt-Wilding, Rouvay

    2010-07-01

    The abalone, Haliotis midae, is the most valuable commodity in South African aquaculture. The increasing demand for marine shellfish has stimulated research on the biology and physiology of target species in order to improve knowledge on growth, nutritional requirements and pathogen identification. The slow growth rate and long generation time of abalone restrict efficient design of in vivo experiments. Therefore, in vitro systems present an attractive alternative for short term experimentation. The use of marine invertebrate cell cultures as a standardised and controlled system to study growth, endocrinology and disease contributes to the understanding of the biology of economically important molluscs. This paper investigates the suitability of two different H. midae tissues, larval and haemocyte, for establishing primary cell cultures. Cell cultures are assessed in terms of culture initiation, cell yield, longevity and susceptibility to contamination. Haliotis midae haemocytes are shown to be a more feasible tissue for primary cell culture as it could be maintained without contamination more readily than larval cell cultures. The usefulness of short term primary haemocyte cultures is demonstrated here with a growth factor trial. Haemocyte cultures can furthermore be used to relate phenotypic changes at the cellular level to changes in gene expression at the molecular level.

  11. Investigating the establishment of primary cell culture from different abalone (Haliotis midae) tissues

    PubMed Central

    Auzoux-Bordenave, Stéphanie; Niesler, Carola; Roodt-Wilding, Rouvay

    2010-01-01

    The abalone, Haliotis midae, is the most valuable commodity in South African aquaculture. The increasing demand for marine shellfish has stimulated research on the biology and physiology of target species in order to improve knowledge on growth, nutritional requirements and pathogen identification. The slow growth rate and long generation time of abalone restrict efficient design of in vivo experiments. Therefore, in vitro systems present an attractive alternative for short term experimentation. The use of marine invertebrate cell cultures as a standardised and controlled system to study growth, endocrinology and disease contributes to the understanding of the biology of economically important molluscs. This paper investigates the suitability of two different H. midae tissues, larval and haemocyte, for establishing primary cell cultures. Cell cultures are assessed in terms of culture initiation, cell yield, longevity and susceptibility to contamination. Haliotis midae haemocytes are shown to be a more feasible tissue for primary cell culture as it could be maintained without contamination more readily than larval cell cultures. The usefulness of short term primary haemocyte cultures is demonstrated here with a growth factor trial. Haemocyte cultures can furthermore be used to relate phenotypic changes at the cellular level to changes in gene expression at the molecular level. PMID:20680682

  12. Plasminogen activator activity in cultures from human tissues. An immunological and histochemical study

    PubMed Central

    Bernik, Maria B.; Kwaan, Hau C.

    1969-01-01

    Human tissues and cells from pre- and postnatal life were cultivated and studied for plasminogen activator activity. Cultures were obtained from kidney, renal blood vessels, ureter, bladder, lung, and heart. Local activator activity of cells was demonstrated by histochemical techniques. Activator released by cells into the supernatant culture media was assayed by fibrin plate techniques and was investigated for immunological identity using specific antisera to an activator of human origin, urokinase (UK). Plasminogen activator was produced in primary cultures where cells retain specific functions and generally reflect the enzyme pattern of the tissues of origin. Cells from fetal and adult sources were found to yield activator antigenically identical to UK, as well as activator activity which differed from that of UK in immunoassays and which may represent tissue type activator. Such activity was released after injury or death of cells while UK was produced in cultures containing live, metabolizing cells. Primary cultures of kidney confirmed that this organ is a rich source of UK and demonstrated, in addition, that UK is produced from the early stages of gestation and in increasing amounts thereafter. However, primary cultures also demonstrated that the ability to produce UK is not limited to the kidney but is a function of cells which are distributed widely in body tissues. Thus, activator antigenically identical to UK accumulated progressively after many refeedings in culture supernates of fetal lung and ureter, as well as in supernates of renal blood vessels of adults. These findings indicate continuous formation of UK by the cultured cells and, furthermore, provide evidence of UK production in blood vessels. In cultures from other tissues, particularly those from fetal heart and adult lung and bladder, investigation of activator was hindered by inhibitory activity which accumulated in the supernates. Such activity was derived from cells in culture and was

  13. Production of Limonoids with Insect Antifeedant Activity in a Two-Stage Bioreactor Process with Cell Suspension Culture of Azadirachta indica.

    PubMed

    Vásquez-Rivera, Andrés; Chicaiza-Finley, Diego; Hoyos, Rodrigo A; Orozco-Sánchez, Fernando

    2015-09-01

    Neem tree (Azadirachta indica) cell suspension culture is an alternative for the production of limonoids for insect control that overcomes limitations related to the supply of neem seeds. To establish conditions for cell growth and azadiracthin-related limonoid production, the effect of different sucrose concentrations, nitrate and phosphate in Murashige and Skoog (MS) medium, and the addition of one precursor and three elicitors was evaluated in shake flasks. The process was scaled up to a 3-l stirred tank bioreactor in one- and two-stage batch cultivation. In shake flasks, more than fivefold increase in the production of limonoids with the modified MS medium was observed (increase from 0.77 to 4.52 mg limonoids/g dry cell weight, DCW), while an increase of more than fourfold was achieved by adding the elicitors chitosan, salicylic acid, and jasmonic acid together (increase from 1.03 to 4.32 mg limonoids/g DCW). In the bioreactor, the volumetric production of limonoids was increased more than threefold with a two-stage culture in day 18 (13.82 mg limonoids/l in control single-stage process and 41.44 mg/l in two-stage process). The cultivation and operating mode of the bioreactor reported in this study may be adapted and used in optimization and process plant development for production of insect antifeedant limonoids with A. indica cell suspension cultures.

  14. An Assessment of Cell Culture Plate Surface Chemistry for in Vitro Studies of Tissue Engineering Scaffolds.

    PubMed

    Röder, Alexander; García-Gareta, Elena; Theodoropoulos, Christina; Ristovski, Nikola; Blackwood, Keith A; Woodruff, Maria A

    2015-01-01

    The use of biopolymers as a three dimensional (3D) support structure for cell growth is a leading tissue engineering approach in regenerative medicine. Achieving consistent cell seeding and uniform cell distribution throughout 3D scaffold culture in vitro is an ongoing challenge. Traditionally, 3D scaffolds are cultured within tissue culture plates to enable reproducible cell seeding and ease of culture media change. In this study, we compared two different well-plates with different surface properties to assess whether seeding efficiencies and cell growth on 3D scaffolds were affected. Cell attachment and growth of murine calvarial osteoblast (MC3T3-E1) cells within a melt-electrospun poly-ε-caprolactone scaffold were assessed when cultured in either "low-adhesive" non-treated or corona discharged-treated well-plates. Increased cell adhesion was observed on the scaffold placed in the surface treated culture plates compared to the scaffold in the non-treated plates 24 h after seeding, although it was not significant. However, higher cell metabolic activity was observed on the bases of all well-plates than on the scaffold, except for day 21, well metabolic activity was higher in the scaffold contained in non-treated plate than the base. These results indicate that there is no advantage in using non-treated plates to improve initial cell seeding in 3D polymeric tissue engineering scaffolds, however non-treated plates may provide an improved metabolic environment for long-term studies. PMID:26703748

  15. Tissue-culture investigations into mechanisms of biomass enhancement. Annual report, June 1984-July 1985

    SciTech Connect

    Nabors, M.W.

    1985-07-01

    The cost effectiveness of biogas production can be considerably improved by producing cultivars of sorghum and Napier grass with increased biomass and tolerance to common soil stresses such as salinity and drought. In addition, increased fertilizer efficiency of plants used for biomass is also desired. Tissue-culture methodologies provide a means for generating improved sorghum and Napier grass cultivars and for selecting cells and plants with tolerance to salinity, drought, and low levels of applied nitrogen fertilizer. To this end, tissue cultures of sorghum and Napier grass were established. Media were devised to enhance high-frequency, long-term plant production from these cultures. Existing methods were considerably improved and the first plant regeneration techniques from callus cultures of sweet sorghum were devised. Over 1000 plants were regenerated from callus cultures during the first year. These are being used in biomass production assays. Tissue culture selection for salt tolerance has been initiated using high levels of NaCl or hydroxyproline in the medium. Sodium chloride stress represents direct selection; hydroxyproline stress selects cells with increased levels of proline, an amino acid known to be associated with salt tolerance. Selection for cell variants efficient in reducing nitrate are planned; cells will be grown in the presence of chlorate, a nitrate analogue. Selections are carried out on either solid or liquid media. Cell suspension systems, allowing more efficient selection, are being developed for all cultivars under study.

  16. Enterococci in Insects

    PubMed Central

    Martin, Jonathan D.; Mundt, J. Orvin

    1972-01-01

    Enterococci were obtained from 213 of 403 insects cultured during a 14-month period, in numbers from 103 to 3 × 107/g of insect. Insects were taken only from nonurban, wild, and cultivated fields and woods. In species of insects carrying them, enterococci were not always present in every individual cultured, and often more than one species of enterococcus occurred within a species. Enterococci were obtained from certain insects taken in the field during the dormant season, suggesting their role as overwintering agents. They were generally present in species feeding on nectar, succulent plant parts, and on and ir forest litter, but not from insects feeding on less succulent leaves and stems. Streptococcus faecalis was recovered from 32%, Streptococcus faecium from 22.4%, and Streptococcus faecium var. casseliflavus from 43.5% of members of the 37 taxa of insects. S. faecalis and S. faecium var. casseliflavus exhibit a high percent of conformity to the properties published for them. The heterogeneity in properties of S. faecium is similar to that found for the species taken from plants. Many fail to grow in broth at 45 C or in broth containing 6.5% NaCl; 50% of the cultures ferment both melezitose and melibiose, and a few ferment neither sugar. The remainder ferment melibiose only. Failure to reduce methylene blue in milk by S. faecalis and S. faecium is correlated with the inability to ferment lactose. More than 93% of the cultures of S. faecalis digest casein in milk from the top downward, following the production of a soft, flowing curd. Because this property is not characteristic of S. faecalis taken from humans, the reaction in litmus milk is suggested as a means of differentiation between cultures of remote and innocent origin in nature and recent, human pollution. PMID:4628796

  17. Biomimetic injectable HUVEC-adipocytes/collagen/alginate microsphere co-cultures for adipose tissue engineering.

    PubMed

    Yao, Rui; Zhang, Renji; Lin, Feng; Luan, Jie

    2013-05-01

    Engineering adipose tissue that has the ability to engraft and establish a vascular supply is a laudable goal that has broad clinical relevance, particularly for tissue reconstruction. In this article, we developed novel microtissues from surface-coated adipocyte/collagen/alginate microspheres and human umbilical vein endothelial cells (HUVECs) co-cultures that resembled the components and structure of natural adipose tissue. Firstly, collagen/alginate hydrogel microspheres embedded with viable adipocytes were obtained to mimic fat lobules. Secondly, collagen fibrils were allowed to self-assemble on the surface of the microspheres to mimic collagen fibrils surrounding the fat lobules in the natural adipose tissue and facilitate HUVEC attachment and co-cultures formation. Thirdly, the channels formed by the gap among the microspheres served as the room for in vitro prevascularization and in vivo blood vessel development. The endothelial cell layer outside the microspheres was a starting point of rapid vascular ingrowth. Adipose tissue formation was analyzed for 12 weeks at 4-week intervals by subcutaneous injection into the head of node mice. The vasculature in the regenerated tissue showed functional anastomosis with host blood vessels. Long-term stability of volume and weight of the injection was observed, indicating that the vasculature formed within the constructs benefited the formation, maturity, and maintenance of adipose tissue. This study provides a microsurgical method for adipose regeneration and construction of biomimetic model for drug screening studies.

  18. Development of human nervous tissue upon differentiation of embryonic stem cells in three-dimensional culture.

    PubMed

    Preynat-Seauve, Olivier; Suter, David M; Tirefort, Diderik; Turchi, Laurent; Virolle, Thierry; Chneiweiss, Herve; Foti, Michelangelo; Lobrinus, Johannes-Alexander; Stoppini, Luc; Feki, Anis; Dubois-Dauphin, Michel; Krause, Karl Heinz

    2009-03-01

    Researches on neural differentiation using embryonic stem cells (ESC) require analysis of neurogenesis in conditions mimicking physiological cellular interactions as closely as possible. In this study, we report an air-liquid interface-based culture of human ESC. This culture system allows three-dimensional cell expansion and neural differentiation in the absence of added growth factors. Over a 3-month period, a macroscopically visible, compact tissue developed. Histological coloration revealed a dense neural-like neural tissue including immature tubular structures. Electron microscopy, immunochemistry, and electrophysiological recordings demonstrated a dense network of neurons, astrocytes, and oligodendrocytes able to propagate signals. Within this tissue, tubular structures were niches of cells resembling germinal layers of human fetal brain. Indeed, the tissue contained abundant proliferating cells expressing markers of neural progenitors. Finally, the capacity to generate neural tissues on air-liquid interface differed for different ESC lines, confirming variations of their neurogenic potential. In conclusion, this study demonstrates in vitro engineering of a human neural-like tissue with an organization that bears resemblance to early developing brain. As opposed to previously described methods, this differentiation (a) allows three-dimensional organization, (b) yields dense interconnected neural tissue with structurally and functionally distinct areas, and (c) is spontaneously guided by endogenous developmental cues.

  19. Participation of cob tissue in the transport of medium components into maize kernels cultured in vitro

    SciTech Connect

    Felker, F.C. )

    1990-05-01

    Maize (Zea mays L.) kernels cultured in vitro while still attached to cob pieces have been used as a model system to study the physiology of kernel development. In this study, the role of the cob tissue in uptake of medium components into kernels was examined. Cob tissue was essential for in vitro kernel growth, and better growth occurred with larger cob/kernel ratios. A symplastically transported fluorescent dye readily permeated the endosperm when supplied in the medium, while an apoplastic dye did not. Slicing the cob tissue to disrupt vascular connections, but not apoplastic continuity, greatly reduced ({sup 14}C)sucrose uptake into kernels. ({sup 14}C)Sucrose uptake by cob and kernel tissue was reduced 31% and 68%, respectively, by 5 mM PCMBS. L-({sup 14}C)glucose was absorbed much more slowly than D-({sup 14}C)glucose. These and other results indicate that phloem loading of sugars occurs in the cob tissue. Passage of medium components through the symplast cob tissue may be a prerequisite for uptake into the kernel. Simple diffusion from the medium to the kernels is unlikely. Therefore, the ability of substances to be transported into cob tissue cells should be considered in formulating culture medium.

  20. The in vitro immunoregulatory properties of cultured murine trophoblast are not unique to this tissue.

    PubMed Central

    Drake, B L; Rodger, J C

    1985-01-01

    Primary cultures of murine trophoblast (ectoplacental cone and mid-term placenta) and their supernatants were found to inhibit in vitro lymphocyte proliferative responses to concanavalin A (77-87%) and allo-antigen (52-84%). However, cultures and cell-conditioned media from non-trophoblastic tissues (embryonic sac, adult lung and liver, and B16 melanoma line) produced similar results. In all cases, the inhibitory effects were not due to reduced cell viability. Addition of anti-progesterone serum to the ectoplacental cone-lymphocyte co-cultures, at a concentration known to bind the available trophoblast-derived progesterone, did not overcome the observed suppression. The results clearly demonstrate that a range of cultured cell types, and their conditioned media, will suppress immune responses in vitro. We conclude that cultured trophoblast is not an appropriate model for studies of placental immunoregulation. PMID:3159651

  1. Amending Storage Vessel and Media Improves Subculture Interval of Musa sp. Tissue Culture Plantlets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bananas and plantains (Musa sp.) are some of the most important food crops in the world. The USDA-ARS, Tropical Agriculture Research Station Musa spp. collection consists of 140 accessions maintained as clonally propagated plants in field plots as well as in tissue culture. Accessions maintained i...

  2. Cell culture in autologous fibrin scaffolds for applications in tissue engineering.

    PubMed

    de la Puente, Pilar; Ludeña, Dolores

    2014-03-10

    In tissue engineering techniques, three-dimensional scaffolds are needed to adjust and guide cell growth and to allow tissue regeneration. The scaffold must be biocompatible, biodegradable and must benefit the interactions between cells and biomaterial. Some natural biomaterials such as fibrin provide a structure similar to the native extracellular matrix containing the cells. Fibrin was first used as a sealant based on pools of commercial fibrinogen. However, the high risk of viral transmission of these pools led to the development of techniques of viral inactivation and elimination and the use of autologous fibrins. In recent decades, fibrin has been used as a release system and three-dimensional scaffold for cell culture. Fibrin scaffolds have been widely used for the culture of different types of cells, and have found several applications in tissue engineering. The structure and development of scaffolds is a key point for cell culture because scaffolds of autologous fibrin offer an important alternative due to their low fibrinogen concentrations, which are more suitable for cell growth. With this review our aim is to follow methods of development, analyze the commercial and autologous fibrins available and assess the possible applications of cell culture in tissue engineering in these three-dimensional structures.

  3. Extended metAFLP approach in studies of tissue culture induced variation (TCIV) in triticale.

    PubMed

    Machczyńska, Joanna; Orłowska, Renata; Zimny, Janusz; Bednarek, Piotr Tomasz

    2014-01-01

    We present the development of the theoretical background of the metAFLP approach which allows for partition of complex variation into sequence changes, de novo methylation and demethylation of the regenerants derived via in vitro tissue culture methods in the case of triticale. It was demonstrated that, independent of whether andro- or embryogenesis was used for plant regeneration, the level of sequence changes identified between regenerants is about 10 %. Moreover, DNA demethylation prevails over de novo methylation of the regenerants compared to the donor plant. The metAFLP approach allows for the evaluation of numerous quantitative characteristics. For instance, one may quantify the number of sites unaffected by tissue culture approaches, global site DNA methylation etc. It is suggested that the approach could be useful for breeders in order to control plant material uniformity or for the evaluation of modified in vitro tissue culture approaches allowing for control of the (epi)mutation level. The extended metAFLP approach presented here delivers sufficient background for the evaluation of software that could facilitate analyses of the tissue culture induced variation. PMID:25242884

  4. Potato transformation and potato cyst nematode infection on potato plantlets in tissue culture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    These two protocols describe the methods for generating transgenic potato plants and for evaluating potato cyst nematode (Globodera rostochiensis and G. pallida) infection on potato plantlets in tissue culture. These methods are useful tools that can be used in the study of the interactions between ...

  5. Soil water requirements of tissue-cultured Dwarf Cavendish banana ( Musa spp. L)

    NASA Astrophysics Data System (ADS)

    Shongwe, V. D.; Tumber, R.; Masarirambi, M. T.; Mutukumira, A. N.

    The banana is one of the most important fruit crops in the world. In terms of consumption, the banana fruit is ranked high yet there has not been much research particularly in relation to water requirements for propagules produced by tissue culture. In recent years, tissue culture banana planting material has become increasingly important due to its vigorous growth and high yields. The objective of this study was to investigate optimum soil water requirements of tissue-cultured banana. Dwarf Cavendish tissue-cultured plantlets grown in pots in a greenhouse were subjected to four irrigation regimes at 100% ETm, 85% ETm, 65% ETm, and 40% ETm. Plant parameters measured were leaf number, plant height, pseudo-stem girth, leaf length, leaf width, leaf area, leaf area index, leaf index, leaf colour, and plant vigour. Soil water potential measurements were also made over a three-month period. Differences between irrigating at 100% ETm and 85% ETm were not significantly ( P < 0.05) different. Both irrigation regimes resulted in significant ( P < 0.05) increases in leaf number, leaf length, leaf area, leaf area index, green leaf colour intensity, plant height, and plant height, compared to 65% and 40% ETm treatments. Pseudo-stem girth was highest from the 100% ETm compared to the other treatments. Economic yields of banana may be obtained with irrigation regimes ranging between 100% ETm and 85% ETm.

  6. Smooth muscle myosin regulation by serum and cell density in cultured rat lung connective tissue cells.

    PubMed

    Babij, P; Zhao, J; White, S; Woodcock-Mitchell, J; Mitchell, J; Absher, M; Baldor, L; Periasamy, M; Low, R B

    1993-08-01

    RNA and protein analyses were used to detect expression of SM1 and SM2 smooth muscle myosin heavy chain (MHC) in cultured adult rat lung connective tissue cells (RL-90). Smooth muscle MHC mRNA expression in confluent cells grown in 10% serum was approximately 50% of the level in adult stomach. Similar results were obtained in cells cultured at low density (25% confluency) in 1% serum. However, in low-density cultures transferred to 10% serum for 24 h, the level of MHC mRNA decreased to approximately 20% of that in adult stomach. Smooth muscle alpha-actin showed a pattern of expression similar to that for smooth muscle MHC. Expression of nonmuscle MHC-A mRNA was higher in all culture conditions compared to stomach. MHC-A mRNA expression was less in low-density cultures in low serum and increased when low-density cultures were transferred to 10% serum for 24 h. MHC-B mRNA expression was less in low- vs. high-density cultures. In contrast to MHC-A, however, MHC-B mRNA expression in low-density cultures was higher in low serum. Immunofluorescence and immunoblotting with SM1-specific antibody demonstrated the presence of the SM1 protein isoform as well as reactivity to a protein band migrating slightly faster than SM2. These results demonstrate that cultured rat lung connective tissue cells express smooth muscle MHC and that expression is modulated by culture conditions.

  7. Culture of domestic cat ovarian tissue in vitro and in the chick embryo chorioallantoic membrane.

    PubMed

    Vilela, J M V; Leonel, E C R; D'Oliveira, L; Paiva, R E G; Miranda-Vilela, A L; Amorim, C A; Pic-Taylor, A; Lucci, C M

    2016-10-15

    In vitro culture and transplantation procedures are essential protocols employed in the evaluation of ovarian follicle survival and development. Culture in the chorioallantoic membrane (CAM) of chick embryos is an intermediate method that provides important follicle development information and has not been tested for cat ovaries to date. The aim of this study was to investigate if in vitro and CAM culture could be used as short-term systems to study cat ovarian tissue development. The ovaries of eight cats were dissected into 3-mm(3) cubes, cultured in vitro and in CAM for up to 5 days, and stained with hematoxylin-eosin and Gomori trichrome. Cell proliferation was analyzed using anti-Ki67. Possible differences among groups were investigated by analysis of variance or the Kruskal-Wallis test followed by Bonferroni correction. The T-test or Wilcoxon test was used to verify differences between the CAM and IVC. Results revealed that 87.5% of all follicles were primordial during culture. The percentage of primordial follicles in the morphologically normal follicles (MNF) pool was always higher than 80%, with the exception of Day 3 of CAM culture, but the number of MNF reduced significantly from Day 0 (600 out of 777 follicles) to Day 5 in the CAM (91 out of 171) and IVC (296 out of 686). The number of primordial follicles in 1 mm(3) in Days 2, 3, and 5 in the CAM was significantly lower than that in the control (Day 0). No cellular proliferation was observed in culture. Vascularization occurred in the CAM culture, but with no association to follicular viability. In addition, both methods showed an increase in connective tissue during culture. Although no significant differences were observed in the percentage of MNF, there was a reduction in the total number of follicles, both for IVC and CAM-cultured ovarian tissue. Furthermore, anti-Ki67 did not stain any follicle after Day 0 in IVC or in CAM culture. Neither system was capable of promoting follicle growth and

  8. Hydrophobic metabolites of 2,4-dichlorophenoxyacetic acid (2,4-D) in cultured coconut tissue.

    PubMed

    López-Villalobos, Arturo; Hornung, Roland; Dodds, Peter F

    2004-10-01

    Cultures of inflorescence and plumular tissues of coconut palm (Cocos nucifera L.) were maintained in the presence of the auxin, [14C]2,4-dichlorophenoxyacetic acid (2,4-D), so that its metabolic fate could be studied. Thin layer chromatography of methanol extracts of the plumular tissue showed that four classes of metabolites, as well as the unchanged acid, were recovered in the extract. In inflorescence tissue, only the unchanged acid and the most polar class of metabolites (metabolite I) were recovered. Metabolite I was shown to consist mostly of a mixture of sugar conjugates and metabolite II (the next most polar) was an unidentified basic metabolite. Metabolites III and IV were both novel triacylglycerol analogues in which one of the natural fatty acids was replaced with a chain-elongated form of 2,4-D. Reversed-phase thin layer chromatography was used to identify the 2,4-D-derived acids and it was found that metabolite III contained the 2,4-dichlorophenoxy-moiety attached to a chain-length of between 2 and 12 carbons, whereas metabolite IV contained 12, 14 and 16 carbon chain lengths. In inflorescence tissue, and in plumular tissue at low sucrose or 2,4-D concentrations and after short periods in culture, metabolite I predominated. The other metabolites increased as a percentage when plumular culture was prolonged or when sucrose or 2,4-D concentrations were raised. These changes correlated with better development of the explant.

  9. Hydrophobic metabolites of 2,4-dichlorophenoxyacetic acid (2,4-D) in cultured coconut tissue.

    PubMed

    López-Villalobos, Arturo; Hornung, Roland; Dodds, Peter F

    2004-10-01

    Cultures of inflorescence and plumular tissues of coconut palm (Cocos nucifera L.) were maintained in the presence of the auxin, [14C]2,4-dichlorophenoxyacetic acid (2,4-D), so that its metabolic fate could be studied. Thin layer chromatography of methanol extracts of the plumular tissue showed that four classes of metabolites, as well as the unchanged acid, were recovered in the extract. In inflorescence tissue, only the unchanged acid and the most polar class of metabolites (metabolite I) were recovered. Metabolite I was shown to consist mostly of a mixture of sugar conjugates and metabolite II (the next most polar) was an unidentified basic metabolite. Metabolites III and IV were both novel triacylglycerol analogues in which one of the natural fatty acids was replaced with a chain-elongated form of 2,4-D. Reversed-phase thin layer chromatography was used to identify the 2,4-D-derived acids and it was found that metabolite III contained the 2,4-dichlorophenoxy-moiety attached to a chain-length of between 2 and 12 carbons, whereas metabolite IV contained 12, 14 and 16 carbon chain lengths. In inflorescence tissue, and in plumular tissue at low sucrose or 2,4-D concentrations and after short periods in culture, metabolite I predominated. The other metabolites increased as a percentage when plumular culture was prolonged or when sucrose or 2,4-D concentrations were raised. These changes correlated with better development of the explant. PMID:15474562

  10. Quantification of the tissue-culture induced variation in barley (Hordeum vulgare L.)

    PubMed Central

    Bednarek, Piotr T; Orłowska, Renata; Koebner, Robert MD; Zimny, Janusz

    2007-01-01

    Background When plant tissue is passaged through in vitro culture, many regenerated plants appear to be no longer clonal copies of their donor genotype. Among the factors that affect this so-called tissue culture induced variation are explant genotype, explant tissue origin, medium composition, and the length of time in culture. Variation is understood to be generated via a combination of genetic and/or epigenetic changes. A lack of any phenotypic variation between regenerants does not necessarily imply a concomitant lack of genetic (or epigenetic) change, and it is therefore of interest to assay the outcomes of tissue culture at the genotypic level. Results A variant of methylation sensitive AFLP, based on the isoschizomeric combinations Acc65I/MseI and KpnI/MseI was applied to analyze, at both the sequence and methylation levels, the outcomes of regeneration from tissue culture in barley. Both sequence mutation and alteration in methylation pattern were detected. Two sets of regenerants from each of five DH donor lines were compared. One set was derived via androgenesis, and the other via somatic embryogenesis, developed from immature embryos. These comparisons delivered a quantitative assessment of the various types of somaclonal variation induced. The average level of variation was 6%, of which almost 1.7% could be accounted for by nucleotide mutation, and the remainder by changes in methylation state. The nucleotide mutation rates and the rate of epimutations were substantially similar between the andro- and embryo-derived sets of regenerants across all the donors. Conclusion We have developed an AFLP based approach that is capable of describing the qualitative and quantitative characteristics of the tissue culture-induced variation. We believe that this approach will find particular value in the study of patterns of inheritance of somaclonal variation, since non-heritable variation is of little interest for the improvement of plant species which are sexually

  11. Optimizing culture medium for meristem tissue culture of several Saccharum species and commercial hybrids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The optimal range of medium nutrients and plant growth regulators (PGR) was investigated for in vitro culture of diverse sugarcane species and cultivars. Macro-nutrients, nitrogen (N), phosphorous (P) and potassium (K), were essential for growth of leaf primordia. Although the best concentration of ...

  12. Distribution of phospholipase C isozymes in various rat tissues and cultured cells

    SciTech Connect

    Suh, P.G.; Ryu, S.H.; Choi, W.C.; Lee, K.Y.; Rhee, S.G.

    1987-05-01

    Monoclonal antibodies prepared against PLC-I or PLC-II enzyme did not cross-react with the other. Using a pair of antibodies which recognizes 2 different antigenic sites on the same molecule, radioimmunoassays were developed for the quantitation of PLC-I and PLC-II in homogenates of various tissues and cultured cells, prepared by homogenization in a 2 M KCl buffer. The contents of PLC enzymes were measured in 19 rat tissues, in human platelets and in 17 cultured cells. Results indicate that the concentration of PLC-I and PLC-II is very high in brain, PLC-I is localized mainly in brain and partly in seminal vesicles, PLC-II is found in most tissues and cells. PLC-I is highly localized even in brain: 5 different neuroblastoma did not contain PLC-I while 2 glioma and 1 astrocytoma contained significant amounts.

  13. An Alternative Gelling Agent for Culture and Studies of Nematodes, Bacteria, Fungi, and Plant Tissues

    PubMed Central

    Ko, M. P.; Van Gundy, S. D.

    1988-01-01

    Pluronic F127 polyol, a block copolymer of propylene oxide and ethylene oxide, was studied as an alternative to agar in culture media for nematodes, bacteria, fungi, actinomycetes, and plant tissues or seedlings, At a polyol concentration of 20% w/v, the culture media, semi-solid at room temperature (22 C) but liquid at lower temperatures, had minimal effects on the test organisms. Most of the fungi and bacteria grew as well in 20% polyol as in 1.5% agar media; however, various species of nematodes and plant seedlings or tissues exhibited differential sensitivities to different concentrations of the polyol. In cases where the organisms were unaffected, the polyol media had certain advantages over agar, including greater transparency and less contamination under nonaseptic conditions. Polyol media have potentially greater ease for recovery of embedded organisms or tissues inside the media by merely shifting to lower temperatures. PMID:19290241

  14. [The three-dimensional culture of adult mesenchymal stem cells for intervertebral disc tissue engineering].

    PubMed

    Feng, Ganjun; Liu, Hao; Deng, Li; Chen, Xiaohe; Zhao, Xianfeng; Liang, Tao; Li, Xiuqiong

    2009-12-01

    Intervertebral disc (IVD) degeneration is one of the major causes of low back pain. As current clinical treatments are aimed at restoring biomechanical function and providing symptomatic relief, the methods focused on biological repair have aroused interest and several tissue engineering approaches using different cell types have been proposed. Owing to the unsuitable nature of degenerate cells for tissue engineering, attention has been given to the use of mesenchymal stem cells (MSCs). In this connection, we have made a study on the characteristics of MSCs derived from adult bone marrow and on the feasibility of constructing IVD tissue-engineering cell under a Three-Dimensional Pellet Culture System. The human bone marrow MSCs were isolated and purified with density gradient solution and attachment-independent culture system. MSCs isolated using this method are a homogeneous population as indicated by morphology and other criteria. They have the capacity for self-renewal and proliferation, and the multilineage potential to differentiate.

  15. Quantitative study of contrast enhancement in soft X-ray micrographs of insect eyes by tissue selective mass loss.

    PubMed

    Späth, Andreas; Watts, Benjamin; Wasserthal, Lutz Thilo; Fink, Rainer H

    2014-09-01

    Quantitative studies of soft X-ray induced radiation damage in zone-plate-based X-ray microspectroscopy have so far concentrated on investigations of homogeneous specimens. However, more complex materials can show unexpected radiation-induced behaviour. Here a quantitative radiochemical analysis of biological tissue from Xantophan morganii praedicta eyes is presented. Contrast enhancement due to tissue selective mass loss leading to a significant improvement of imaging quality is reported. Since conventional quantitative analysis of the absorbed dose cannot conclusively explain the experimental observations on photon-energy-dependent radiation damage, a significant contribution of photo- and secondary electrons to soft matter damage for photon energies above the investigated absorption edge is proposed.

  16. CULTURE IN VITRO OF TISSUE FROM THE SILKWORM, BOMBYX MORI L

    PubMed Central

    Wyatt, S. Silver

    1956-01-01

    1. Ovarian tissue from Bombyx mori L. larvae about to pupate was cultured in Trager's (1935) salt solution and 10 per cent hemolymph, with indifferent results. Improvement of cultures was sought by modifying the culture medium. 2. To reduce the activity of the tyrosinase, hemolymph for culture medium was heated for 5 minutes at 60°C., and the coagulated protein removed. 3. A physiological solution was formulated containing cations and amino acids as they occur normally in silkworm hemolymph. In both hanging-drop and small tube cultures use of this medium brought about increased cell number, improved cell appearance, more rapid mitoses, and longer life of cultures. 4. To the solution formulated from analyses, tryptophan, cystine, cysteine, malate, fumarate, succinate, and α-ketoglutarate were added after testing individually, resulting in improved growth in cultures. 5. Use of a silkworm egg extract prepared 4 to 5 days after acid treatment produced an increase in cell number. 6. In small roller tube cultures, when the new medium was changed twice a week, the cells spread over the walls of the tube in 4 or 5 days (Figs. 8 and 9), rapid mitoses were observed after 2 weeks, and transparent active cells were present at 3 weeks. Subculturing was not attempted. PMID:13346039

  17. Oxidative phosphorylation and mitochondrial function differ between human prostate tissue and cultured cells.

    PubMed

    Schöpf, Bernd; Schäfer, Georg; Weber, Anja; Talasz, Heribert; Eder, Iris E; Klocker, Helmut; Gnaiger, Erich

    2016-06-01

    Altered mitochondrial metabolism plays a pivotal role in the development and progression of various diseases, including cancer. Cell lines are frequently used as models to study mitochondrial (dys)function, but little is known about their mitochondrial respiration and metabolic properties in comparison to the primary tissue of origin. We have developed a method for assessment of oxidative phosphorylation in prostate tissue samples of only 2 mg wet weight using high-resolution respirometry. Reliable protocols were established to investigate the respiratory activity of different segments of the mitochondrial electron transfer system (ETS) in mechanically permeabilized tissue biopsies. Additionally, the widely used immortalized prostate epithelial and fibroblast cell lines, RWPE1 and NAF, representing the major cell types in prostate tissue, were analyzed and compared to the tissue of origin. Our results show that mechanical treatment without chemical permeabilization agents or sample processing constitutes a reliable preparation method for OXPHOS analysis in small amounts of prostatic tissue typically obtained by prostate biopsy. The cell lines represented the bioenergetic properties of fresh tissue to a limited extent only. Particularly, tissue showed a higher oxidative capacity with succinate and glutamate, whereas pyruvate was a substrate supporting significantly higher respiratory activities in cell lines. Several fold higher zinc levels measured in tissue compared to cells confirmed the role of aconitase for prostate-specific metabolism in agreement with observed respiratory properties. In conclusion, combining the flexibility of cell culture models and tissue samples for respirometric analysis are powerful tools for investigation of mitochondrial function and tissue-specific metabolism. PMID:27060259

  18. A Protocol for Rapid, Measurable Plant Tissue Culture Using Stem Disc Meristem Micropropagation of Garlic ("Allium Sativum L.")

    ERIC Educational Resources Information Center

    Peat, Gerry; Jones, Meriel

    2012-01-01

    Plant tissue culture is becoming an important technique for the mass propagation of plants. Problems with existing techniques, such as slow growth and contamination, have restricted the practical work in plant tissue culture carried out in schools. The new protocol using garlic meristematic stem discs explained in this article addresses many of…

  19. Review of vascularised bone tissue-engineering strategies with a focus on co-culture systems.

    PubMed

    Liu, Yuchun; Chan, Jerry K Y; Teoh, Swee-Hin

    2015-02-01

    Poor angiogenesis within tissue-engineered grafts has been identified as a main challenge limiting the clinical introduction of bone tissue-engineering (BTE) approaches for the repair of large bone defects. Thick BTE grafts often exhibit poor cellular viability particularly at the core, leading to graft failure and lack of integration with host tissues. Various BTE approaches have been explored for improving vascularisation in tissue-engineered constructs and are briefly discussed in this review. Recent investigations relating to co-culture systems of endothelial and osteoblast-like cells have shown evidence of BTE efficacy in increasing vascularization in thick constructs. This review provides an overview of key concepts related to bone formation and then focuses on the current state of engineered vascularized co-culture systems using bone repair as a model. It will also address key questions regarding the generation of clinically relevant vascularized bone constructs as well as potential directions and considerations for research with the objective of pursuing engineered co-culture systems in other disciplines of vascularized regenerative medicine. The final objective is to generate serious and functional long-lasting vessels for sustainable angiogenesis that will enable enhanced cellular survival within thick voluminous bone grafts, thereby aiding in bone formation and remodelling in the long term. However, more evidence about the quality of blood vessels formed and its associated functional improvement in bone formation as well as a mechanistic understanding of their interactions are necessary for designing better therapeutic strategies for translation to clinical settings.

  20. Antigenic properties of pleuropneumonia-like organisms from tissue cell cultures and the human genital area.

    PubMed

    BAILEY, J S; CLARK, H W; FELTS, W R; FOWLER, R C; BROWN, T M

    1961-10-01

    Bailey, Jack S. (George Washington University, Washington, D. C.), Harold W. Clark, William R. Felts, Richard C. Fowler, and Thomas McP. Brown. Antigenic properties of pleuropneumonia-like organisms from tissue cell cultures and the human genital area. J. Bacteriol. 82:542-547. 1961.-Antigens were prepared from several tissue culture and human genital strains of pleuropneumonia-like organisms (PPLO) by a method utilizing continuous agitation of the incubating cultures. Antisera were produced in rabbits by intravenous injection of suspensions of these organisms standardized turbidimetrically. The antigenic properties of the selected strains were compared by agglutination techniques supplemented by a test based upon the inhibition of growth of PPLO by specific antisera.The majority of tissue culture strains of PPLO studied, including contaminants from several HeLa cell lines, appeared to be antigenically similar to the human type 1 strains. However, one strain (Sp-1) from a HeLa cell line was found to be related to the human type 2 PPLO.

  1. Organ and tissue donation in migrants: advanced course for cross-cultural mediators.

    PubMed

    Potenza, R; Guermani, A; Grosso, M; Fossarello, L; Fontaneto, C; Casciola, A; Donadio, P P

    2013-09-01

    Between 2004 and 2010 in Piedmont (Italy Northern Region) 1556 brain-death situations were reported, including 113 (7.3%) in migrants as potential organ and tissue donors. The health staff often has to face migrants, who show great cultural differences and language difficulties. The Molinette Hospital Customer Care Service, the Piedmont Regional Tissue and Organ Procurement Coordination Agency (RPC), and the Cross-Cultural Mediators Association (CMA) organized a special course for intercultural mediators, to decrease misunderstandings between the health staff and the migrants' families and to improve professional communication. In 2011, 28 cultural-linguistic mediators representing different groups of migrants in Piemonte took part in a specific course. Over a 5 month period they were informed about emotional and communicative aspects, proper to the moment of death, as well as organ donation as an intercultural field, the professional role of the mediator, the clinical and forensic aspects of brain death and donation, and the psychological aspects of organ donation. The course was organized by cultural-linguistic mediators of the CMA, the staff of the RPC and the teachers at Turin University. The list of the 21 mediators who passed the final exam was given to organ and tissue donation hospital co-ordinators in Piedmont, so that if necessary, they could obtain the cooperation of these qualified people. PMID:24033996

  2. Co-cultured tissue-specific scaffolds for tendon/bone interface engineering

    PubMed Central

    Bumgardner, Joel D; Cole, Judith A; Smith, Richard A; Haggard, Warren O

    2014-01-01

    The tendon/ligament-to-bone interface has a complex organization to enable transfer of forces through the tendon/ligament to the bone. The purpose of this study is to create a co-culture environment enabling a tissue-specific tendon region and tissue-specific bone region on a degradable scaffold, using NIH 3T3 fibroblast–deposited extracellular matrix and MC 3T3 osteoblast–deposited extracellular matrix, respectively. Before full characterization of the deposited extracellular matrix coating can be analyzed, co-culture parameters including culture medium and seeding technique should be addressed. An appropriate medium formulation was developed to reduce fibroblast to osteoblast mineralization by adjusting beta-glycerophosphate concentrations. Standard growth medium with fetal bovine serum + 3 mM beta-glycerophosphate + 25 µg/mL ascorbic acid was found to be the most suitable formulation evaluated in these study conditions. Seeding and cell migration studies of co-cultured fibroblast- and osteoblast-specific scaffolds were performed to identify whether tissue regions could be created on the scaffold. Fibroblast and osteoblast regions were successfully seeded and little to no cell migration was observed up to 42 h after seeding. Finally, a preliminary analysis of basic extracellular matrix components was measured in the fibroblast, osteoblast, and transition regions. Tissue-specific DNA, glycosaminoglycan, and collagen were found in uniform amounts on the scaffolds and were not different significantly between scaffold regions. In conclusion, initial steps to create tissue-specific fibroblast and osteoblast regions on a degradable scaffold were successful in preparation for further characterization investigations as a tendon-to-bone interface scaffold. PMID:25383167

  3. Co-cultured tissue-specific scaffolds for tendon/bone interface engineering.

    PubMed

    Cooper, Jared O; Bumgardner, Joel D; Cole, Judith A; Smith, Richard A; Haggard, Warren O

    2014-01-01

    The tendon/ligament-to-bone interface has a complex organization to enable transfer of forces through the tendon/ligament to the bone. The purpose of this study is to create a co-culture environment enabling a tissue-specific tendon region and tissue-specific bone region on a degradable scaffold, using NIH 3T3 fibroblast-deposited extracellular matrix and MC 3T3 osteoblast-deposited extracellular matrix, respectively. Before full characterization of the deposited extracellular matrix coating can be analyzed, co-culture parameters including culture medium and seeding technique should be addressed. An appropriate medium formulation was developed to reduce fibroblast to osteoblast mineralization by adjusting beta-glycerophosphate concentrations. Standard growth medium with fetal bovine serum + 3 mM beta-glycerophosphate + 25 µg/mL ascorbic acid was found to be the most suitable formulation evaluated in these study conditions. Seeding and cell migration studies of co-cultured fibroblast- and osteoblast-specific scaffolds were performed to identify whether tissue regions could be created on the scaffold. Fibroblast and osteoblast regions were successfully seeded and little to no cell migration was observed up to 42 h after seeding. Finally, a preliminary analysis of basic extracellular matrix components was measured in the fibroblast, osteoblast, and transition regions. Tissue-specific DNA, glycosaminoglycan, and collagen were found in uniform amounts on the scaffolds and were not different significantly between scaffold regions. In conclusion, initial steps to create tissue-specific fibroblast and osteoblast regions on a degradable scaffold were successful in preparation for further characterization investigations as a tendon-to-bone interface scaffold.

  4. Evaluation of Biocompatibility of Alloplastic Materials: Development of a Tissue Culture In Vitro Test System.

    PubMed

    Gerullis, Holger; Georgas, Evangelos; Eimer, Christoph; Goretzki, Peter E; Lammers, Bernhard J; Klosterhalfen, Bernd; Boros, Mihaly; Wishahi, Mohamed; Heusch, Gerd; Otto, Thomas

    2011-12-01

    Optimized biocompatibility is a major requirement for alloplastic materials currently applied in surgical approaches for hernia, incontinence, and prolapse situations. Tissue ingrowth/adherence and formation of connective tissue seem to have important influence in mesh incorporation at the implant site. In an in vitro approach we randomly investigated 7 different mesh types currently used in surgeries with various indications with regard to their adherence performance. Using a tissue culture approach, meshes were incubated with tissue representative of fibroblasts, muscle cells, and endothelial cells originating from 10 different patients. After 6 weeks, the meshes were assessed microscopically and a ranking of their adherence performance was established. Tissue culture was successful in 100% of the probes. We did not remark on interindividual differences concerning the growth and adherence performance after incubation with the different meshes in the investigated 10 patients. The ranking was consistent in all patients. In this test system, PVDF Dynamesh® (FEG Textiltechnik, Aachen, Germany) was the mesh with the best growth-in score. The test system was feasible and reproducible. Pore size seems to be a predictor of adherence performance. The test system may be a helpful tool for further investigations, and the predictive value should be assessed in further in vitro and in vivo experiments. PMID:22504966

  5. Microfluidic transwell inserts for generation of tissue culture-friendly gradients in well plates

    PubMed Central

    Sip, Christopher G.; Bhattacharjee, Nirveek; Folch, Albert

    2015-01-01

    Gradients of biochemical molecules play a key role in many physiological processes such as axon growth, tissue morphogenesis, and trans-epithelium nutrient transport, as well as in pathophysiological phenomena such as wound healing, immune response, bacterial invasion, and cancer metastasis. In this paper, we report a microfluidic transwell insert for generating quantifiable concentration gradients in a user-friendly and modular format that is compatible with conventional cell cultures and with tissue explant cultures. The device is simply inserted into a standard 6-well plate, where it hangs self-supported at a distance of ~250 μm above the cell culture surface. The gradient is created by small microflows from the device, through an integrated track-etched porous membrane, into the cell culture well. The microfluidic transwell can deliver stable, quantifiable gradients over a large area with extremely low fluid shear stress to dissociated cells or tissue explants cultured independently on the surface of a 6-well plate. We used finite-element modeling to describe the porous membrane flow and molecular transport and to predict gradients generated by the device. Using the device, we applied a gradient of the chemotactic peptide N-Formyl-Met-Leu-Phe (fMLP) to a large population of HL-60 cells (a neutrophil cell line) and directly observed the migration with time-lapse microscopy. On quantification of the chemotactic response with an automated tracking algorithm, we found 74% of the cells moving towards the gradient. Additionally, the modular design and low fluid shear stress made it possible to apply gradients of growth factors and second messengers to mouse retinal explant cultures. With a simplified interface and well-defined gradients, the microfluidic transwell device has potential for broad applications to gradient-sensing biology. PMID:24225908

  6. Functional enhancement of chitosan and nanoparticles in cell culture, tissue engineering, and pharmaceutical applications

    PubMed Central

    Gao, Wenjuan; Lai, James C. K.; Leung, Solomon W.

    2012-01-01

    As a biomaterial, chitosan has been widely used in tissue engineering, wound healing, drug delivery, and other biomedical applications. It can be formulated in a variety of forms, such as powder, film, sphere, gel, and fiber. These features make chitosan an almost ideal biomaterial in cell culture applications, and cell cultures arguably constitute the most practical way to evaluate biocompatibility and biotoxicity. The advantages of cell cultures are that they can be performed under totally controlled environments, allow high throughput functional screening, and are less costly, as compared to other assessment methods. Chitosan can also be modified into multilayer composite by combining with other polymers and moieties to alter the properties of chitosan for particular biomedical applications. This review briefly depicts and discusses applications of chitosan and nanoparticles in cell culture, in particular, the effects of chitosan and nanoparticles on cell adhesion, cell survival, and the underlying molecular mechanisms: both stimulatory and inhibitory influences are discussed. Our aim is to update the current status of how nanoparticles can be utilized to modify the properties of chitosan to advance the art of tissue engineering by using cell cultures. PMID:22934070

  7. Cell culture density affects the proliferation activity of human adipose tissue stem cells.

    PubMed

    Kim, Dae Seong; Lee, Myoung Woo; Ko, Young Jong; Chun, Yong Hoon; Kim, Hyung Joon; Sung, Ki Woong; Koo, Hong Hoe; Yoo, Keon Hee

    2016-01-01

    In this study, we investigated the effect of cell density on the proliferation activity of human mesenchymal stem cells (MSCs) derived from adipose tissue (AT-MSCs) over time in culture. Passage #4 (P4) and #12 (P12) AT-MSCs from two donors were plated at a density of 200 (culture condition 1, CC1) or 5000 (culture condition 2, CC2) cells cm(-2) . After 7 days of incubation, P4 and P12 AT-MSCs cultured in CC1 were thin and spindle-shaped, whereas those cultured in CC2 had extensive cell-to-cell contacts and an expanded cell volume. In addition, P4 and P12 AT-MSCs in CC1 divided more than three times, while those in CC2 divided less than once on average. Flow cytometric analysis using 5(6)-carboxyfluorescein diacetate N-succinimidyl ester dye showed that the fluorescence intensity of AT-MSCs was lower in CC1 than in CC2. Furthermore, expression of proliferation-associated genes, such as CDC45L, CDC20A and KIF20A, in P4 AT-MSCs was higher in CC1 than in CC2, and this difference was also observed in P12 AT-MSCs. These data demonstrated that cell culture density affects the proliferation activity of MSCs, suggesting that it is feasible to design a strategy to prepare suitable MSCs using specific culture conditions.

  8. Insect Allergy.

    PubMed

    Lee, Hobart; Halverson, Sara; Mackey, Regina

    2016-09-01

    Insect bites and stings are common. Risk factors are mostly associated with environmental exposure. Most insect bites and stings result in mild, local, allergic reactions. Large local reactions and systemic reactions like anaphylaxis are possible. Common insects that bite or sting include mosquitoes, ticks, flies, fleas, biting midges, bees, and wasps. The diagnosis is made clinically. Identification of the insect should occur when possible. Management is usually supportive. For anaphylaxis, patients should be given epinephrine and transported to the emergency department for further evaluation. Venom immunotherapy (VIT) has several different protocols. VIT is highly effective in reducing systemic reactions and anaphylaxis.

  9. Insect Allergy.

    PubMed

    Lee, Hobart; Halverson, Sara; Mackey, Regina

    2016-09-01

    Insect bites and stings are common. Risk factors are mostly associated with environmental exposure. Most insect bites and stings result in mild, local, allergic reactions. Large local reactions and systemic reactions like anaphylaxis are possible. Common insects that bite or sting include mosquitoes, ticks, flies, fleas, biting midges, bees, and wasps. The diagnosis is made clinically. Identification of the insect should occur when possible. Management is usually supportive. For anaphylaxis, patients should be given epinephrine and transported to the emergency department for further evaluation. Venom immunotherapy (VIT) has several different protocols. VIT is highly effective in reducing systemic reactions and anaphylaxis. PMID:27545732

  10. Enhanced anthocyanins and resveratrol production in Vitis vinifera cell suspension culture by indanoyl-isoleucine, N-linolenoyl-L-glutamine and insect saliva.

    PubMed

    Cai, Zhenzhen; Knorr, Dietrich; Smetanska, Iryna

    2012-01-01

    The effects of two synthetic elicitor indanoyl-isoleucine (In-Ile), N-linolenoyl-L-glutamine (Lin-Gln) and one biotic elicitor insect saliva (from Manduca sexta larvae) on plant cell cultures with respect to the induction of secondary metabolite production were investigated. Stimulated production of secondary metabolites, particularly anthocyanins in plant cells and phenolic acids in culture medium, was studied by using suspension culture of Vitis vinifera L. cv. Gamay Fréaux as a model system. In the treatments with In-Ile, the production of anthocyanins was enhanced 2.6-fold. In-Ile, Lin-Gln and saliva significantly elevated the accumulation of phenolic acids, particularly 3-O-glucosyl-resveratrol. The used elicitors did not suppress cell growth. Secondary metabolites were differently responsive to elicitation. 3-O-glucosyl-resveratrol was the predominant phenolic acid in V. vinifera cell culture, and its production was significantly stimulated by saliva, with 7.0-fold of the control level 24 h after treatment. The production of 4-(3,5-dihydroxy-phenyl)-phenol was significantly stimulated by In-Ile with 6.4-fold of the control level 24 h after treatment. PMID:22133437

  11. Three-dimensional hydrogel cell culture systems for modeling neural tissue

    NASA Astrophysics Data System (ADS)

    Frampton, John

    Two-dimensional (2-D) neural cell culture systems have served as physiological models for understanding the cellular and molecular events that underlie responses to physical and chemical stimuli, control sensory and motor function, and lead to the development of neurological diseases. However, the development of three-dimensional (3-D) cell culture systems will be essential for the advancement of experimental research in a variety of fields including tissue engineering, chemical transport and delivery, cell growth, and cell-cell communication. In 3-D cell culture, cells are provided with an environment similar to tissue, in which they are surrounded on all sides by other cells, structural molecules and adhesion ligands. Cells grown in 3-D culture systems display morphologies and functions more similar to those observed in vivo, and can be cultured in such a way as to recapitulate the structural organization and biological properties of tissue. This thesis describes a hydrogel-based culture system, capable of supporting the growth and function of several neural cell types in 3-D. Alginate hydrogels were characterized in terms of their biomechanical and biochemical properties and were functionalized by covalent attachment of whole proteins and peptide epitopes. Methods were developed for rapid cross-linking of alginate hydrogels, thus permitting the incorporation of cells into 3-D scaffolds without adversely affecting cell viability or function. A variety of neural cell types were tested including astrocytes, microglia, and neurons. Cells remained viable and functional for longer than two weeks in culture and displayed process outgrowth in 3-D. Cell constructs were created that varied in cell density, type and organization, providing experimental flexibility for studying cell interactions and behavior. In one set of experiments, 3-D glial-endothelial cell co-cultures were used to model blood-brain barrier (BBB) structure and function. This co-culture system was

  12. Development of tissue culture techniques and hardware to study mineralization under microgravity conditions

    NASA Astrophysics Data System (ADS)

    van Loon, J. J. W. A.; Veldhuijzen, J. P.; Windgassen, E. J.; Brouwer, T.; Wattel, K.; van Vilsteren, M.; Maas, P.

    1994-08-01

    To study the effects of weightlessness on mouse fetal long bone rudiment growth and mineralization we have developed a tissue culture system for the Biorack facility of Spacelab. The technique uses standard liquid tissue culture medium, supplemented with Na-β-glycerophosphate, confined in gas permeable polyethylene bags mounted inside ESA Biorack Type I experiment containers. The containers can be flushed with an air/5% CO2 gas mixture necessary for the physiological bicarbonate buffer used. Small amounts of fluid can be introduced at the beginning (e.g. radioactive labels for incorporation studies) or at the end of the experiment (fixatives). A certain form of mechanical stimulation (continuous compression) can be used to counteract the, possibly, adverse effect of μ-gravity. Using 16 day old metatarsals the in vitro calcification process under μ-gravity conditions can be studied for a 4 day period.

  13. A high-throughput, homogeneous microplate assay for agents that kill mammalian tissue culture cells.

    PubMed

    Pierce, Michael; Wang, Chunwei; Rebentisch, Matt; Endo, Mark; Stump, Mark; Kamb, Alexander

    2003-06-01

    Screens for cytostasis/cytoxicity have considerable value for the discovery of therapeutic agents and the investigation of the biology of apoptosis. For instance, genetic screens for proteins, protein fragments, peptides, RNAs, or chemicals that kill tissue culture cells may aid in identifying new cancer therapeutic targets. A microplate assay for cell death is needed to achieve throughputs sufficient to sift through thousands of agents from expression or chemical libraries. The authors describe a homogeneous assay for cell death in tissue culture cells compatible with 96- or 384-well plates. In combination with a previously described system for retroviral packaging and transduction, nearly 6000 expression library clones could be screened per week in a 96-well plate format. The screening system may also prove useful for chemical screens.

  14. Effects of dehydroepiandrosterone and its sulfate on brain tissue in culture and on memory in mice.

    PubMed

    Roberts, E; Bologa, L; Flood, J F; Smith, G E

    1987-03-17

    Low concentrations of dehydroepiandrosterone (DHEA) and dehydroepiandrosterone sulfate (DHEAS) enhanced neuronal and glial survival and/or differentiation in dissociated cultures of 14-day mouse embryo brain. Posttrial intracisternal injection into the brains of mice undergoing active avoidance training alleviated amnesia and enhanced long-term memory. By minimizing degenerative changes in injured nerve tissue and facilitating plastic changes, DHEA and DHEAS may be of use in treatment of neurodegenerative and memory disorders in man.

  15. Multidimensional Monitoring of Keratin Intermediate Filaments in Cultured Cells and Tissues.

    PubMed

    Schwarz, Nicole; Moch, Marcin; Windoffer, Reinhard; Leube, Rudolf E

    2016-01-01

    Keratin filaments are a hallmark of epithelial differentiation. Their cell type-specific spatial organization and dynamic properties reflect and support epithelial function. To study this interdependency, imaging of fluorescently tagged keratins is a widely used method by which the temporospatial organization and behavior of the keratin intermediate filament network can be analyzed in living cells. Here, we describe methods that have been adapted and optimized to dissect and quantify keratin intermediate filament network dynamics in vital cultured cells and functional tissues.

  16. Analysis of laser-induced fluorescence spectra of in vitro plant tissue cultures

    NASA Astrophysics Data System (ADS)

    Muñoz-Muñoz, Ana Celia; Gutiérrez-Pulido, Humberto; Rodríguez-Domínguez, José Manuel; Gutiérrez-Mora, Antonia; Rodríguez-Garay, Benjamín; Cervantes-Martínez, Jesús

    2007-04-01

    We demonstrate the effectiveness of laser-induced fluorescence (LIF) for monitoring the development and stress detection of in vitro tissue cultures in a nondestructive and noninvasive way. The changes in LIF spectra caused by the induction of organogenesis, the increase of the F690/F740 ratio as a result of the stress originated in the organogenic explants due to shoot emergence, and the relationship between fluorescence spectra and shoot development were detected by LIF through closed containers of Saintpaulia ionantha.

  17. A Transcriptome-Based Characterization of Habituation in Plant Tissue Culture1[W

    PubMed Central

    Pischke, Melissa S.; Huttlin, Edward L.; Hegeman, Adrian D.; Sussman, Michael R.

    2006-01-01

    For the last 50 years, scientists have recognized that varying ratios of the plant hormones cytokinin and auxin induce plant cells to form particular tissues: undifferentiated calli, shoot structures, root structures, or a whole plant. Proliferation of undifferentiated callus tissue, greening, and the formation of shoot structures are all cytokinin-dependent processes. Habituation refers to a naturally occurring phenomenon whereby callus cultures, upon continued passage, lose their requirement for cytokinin. Earlier studies of calli with a higher-than-normal cytokinin content indicate that overproduction of cytokinin by the culture tissues is a possible explanation for this acquired cytokinin independence. A transcriptome-based analysis of a well established habituated Arabidopsis (Arabidopsis thaliana) cell culture line was undertaken, to explore genome-wide expression changes underlying the phenomenon of habituation. Increased levels of expression of the cytokinin receptor CRE1, as well as altered levels of expression of several other genes involved in cytokinin signaling, indicated that naturally acquired deregulation of cytokinin-signaling components could play a previously unrecognized role in habituation. Up-regulation of several cytokinin oxidases, down-regulation of several known cytokinin-inducible genes, and a lack of regulation of the cytokinin synthases indicated that increases in hormone concentration may not be required for habituation. In addition, up-regulation of the homeodomain transcription factor FWA, transposon-related elements, and several DNA- and chromatin-modifying enzymes indicated that epigenetic changes contribute to the acquisition of cytokinin habituation. PMID:16489130

  18. Cryopreservation, Culture, and Transplantation of Human Fetal Mesencephalic Tissue into Monkeys

    NASA Astrophysics Data System (ADS)

    Redmond, D. E.; Naftolin, F.; Collier, T. J.; Leranth, C.; Robbins, R. J.; Sladek, C. D.; Roth, R. H.; Sladek, J. R.

    1988-11-01

    Studies in animals suggest that fetal neural grafts might restore lost neurological function in Parkinson's disease. In monkeys, such grafts survive for many months and reverse signs of parkinsonism, without attendant graft rejection. The successful and reliable application of a similar transplantation procedure to human patients, however, will require neural tissue obtained from human fetal cadavers, with demonstrated cellular identity, viability, and biological safety. In this report, human fetal neural tissue was successfully grafted into the brains of monkeys. Neural tissue was collected from human fetal cadavers after 9 to 12 weeks of gestation and cryopreserved in liquid nitrogen. Viability after up to 2 months of storage was demonstrated by cell culture and by transplantation into monkeys. Cryopreservation and storage of human fetal neural tissue would allow formation of a tissue bank. The stored cells could then be specifically tested to assure their cellular identity, viability, and bacteriological and virological safety before clinical use. The capacity to collect and maintain viable human fetal neural tissue would also facilitate research efforts to understand the development and function of the human brain and provide opportunities to study neurological diseases.

  19. Biodynamic Doppler imaging of subcellular motion inside 3D living tissue culture and biopsies (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Nolte, David D.

    2016-03-01

    Biodynamic imaging is an emerging 3D optical imaging technology that probes up to 1 mm deep inside three-dimensional living tissue using short-coherence dynamic light scattering to measure the intracellular motions of cells inside their natural microenvironments. Biodynamic imaging is label-free and non-invasive. The information content of biodynamic imaging is captured through tissue dynamics spectroscopy that displays the changes in the Doppler signatures from intracellular constituents in response to applied compounds. The affected dynamic intracellular mechanisms include organelle transport, membrane undulations, cytoskeletal restructuring, strain at cellular adhesions, cytokinesis, mitosis, exo- and endo-cytosis among others. The development of 3D high-content assays such as biodynamic profiling can become a critical new tool for assessing efficacy of drugs and the suitability of specific types of tissue growth for drug discovery and development. The use of biodynamic profiling to predict clinical outcome of living biopsies to cancer therapeutics can be developed into a phenotypic companion diagnostic, as well as a new tool for therapy selection in personalized medicine. This invited talk will present an overview of the optical, physical and physiological processes involved in biodynamic imaging. Several different biodynamic imaging modalities include motility contrast imaging (MCI), tissue-dynamics spectroscopy (TDS) and tissue-dynamics imaging (TDI). A wide range of potential applications will be described that include process monitoring for 3D tissue culture, drug discovery and development, cancer therapy selection, embryo assessment for in-vitro fertilization and artificial reproductive technologies, among others.

  20. Insect Keepers

    ERIC Educational Resources Information Center

    Moore, Virginia J.; Chessin, Debby A.; Theobald, Becky

    2010-01-01

    Insects are fascinating creatures--especially when you and your students get up close and personal with them! To that end, the authors facilitated an inquiry-based investigation with an emphasis on identification of the different types of insects found in the school yard, their characteristics, their habitat, and what they eat, while engaging the…

  1. Incredible Insects.

    ERIC Educational Resources Information Center

    Braus, Judy, Ed.

    1989-01-01

    Ranger Rick's NatureScope is a creative education series dedicated to inspiring in children an understanding and appreciation of the natural world while developing the skills they will need to make responsible decisions about the environment. Contents are organized into the following sections: (1) "What Makes an Insect an Insect?," including…

  2. Organotypical tissue cultures from adult murine colon as an in vitro model of intestinal mucosa

    PubMed Central

    Bareiss, Petra M.; Metzger, Marco; Sohn, Kai; Rupp, Steffen; Frick, Julia S.; Autenrieth, Ingo B.; Lang, Florian; Schwarz, Heinz; Skutella, Thomas

    2008-01-01

    Together with animal experiments, organotypical cell cultures are important models for analyzing cellular interactions of the mucosal epithelium and pathogenic mechanisms in the gastrointestinal tract. Here, we introduce a three-dimensional culture model from the adult mouse colon for cell biological investigations in an in vivo-like environment. These explant cultures were cultured for up to 2 weeks and maintained typical characteristics of the intestinal mucosa, including a high-prismatic epithelium with specific epithelial cell-to-cell connections, a basal lamina and various connective tissue cell types, as analyzed with immunohistological and electron microscopic methods. The function of the epithelium was tested by treating the cultures with dexamethasone, which resulted in a strong upregulation of the serum- and glucocorticoid-inducible kinase 1 similar to that found in vivo. The culture system was investigated in infection experiments with the fungal pathogen Candida albicans. Wildtype but not Δcph1/Δefg1-knockout Candida adhered to, penetrated and infiltrated the epithelial barrier. The results demonstrate the potential usefulness of this intestinal in vitro model for studying epithelial cell-cell interactions, cellular signaling and microbiological infections in a three-dimensional cell arrangement. PMID:18320204

  3. Impact Assessment of Repeated Exposure of Organotypic 3D Bronchial and Nasal Tissue Culture Models to Whole Cigarette Smoke

    PubMed Central

    Kuehn, Diana; Majeed, Shoaib; Guedj, Emmanuel; Dulize, Remi; Baumer, Karine; Iskandar, Anita; Boue, Stephanie; Martin, Florian; Kostadinova, Radina; Mathis, Carole; Ivanov, Nikolai V.; Frentzel, Stefan; Hoeng, Julia; Peitsch, Manuel C.

    2015-01-01

    Cigarette smoke (CS) has a major impact on lung biology and may result in the development of lung diseases such as chronic obstructive pulmonary disease or lung cancer. To understand the underlying mechanisms of disease development, it would be important to examine the impact of CS exposure directly on lung tissues. However, this approach is difficult to implement in epidemiological studies because lung tissue sampling is complex and invasive. Alternatively, tissue culture models can facilitate the assessment of exposure impacts on the lung tissue. Submerged 2D cell cultures, such as normal human bronchial epithelial (NHBE) cell cultures, have traditionally been used for this purpose. However, they cannot be exposed directly to smoke in a similar manner to the in vivo exposure situation. Recently developed 3D tissue culture models better reflect the in vivo situation because they can be cultured at the air-liquid interface (ALI). Their basal sides are immersed in the culture medium; whereas, their apical sides are exposed to air. Moreover, organotypic tissue cultures that contain different type of cells, better represent the physiology of the tissue in vivo. In this work, the utilization of an in vitro exposure system to expose human organotypic bronchial and nasal tissue models to mainstream CS is demonstrated. Ciliary beating frequency and the activity of cytochrome P450s (CYP) 1A1/1B1 were measured to assess functional impacts of CS on the tissues. Furthermore, to examine CS-induced alterations at the molecular level, gene expression profiles were generated from the tissues following exposure. A slight increase in CYP1A1/1B1 activity was observed in CS-exposed tissues compared with air-exposed tissues. A network-and transcriptomics-based systems biology approach was sufficiently robust to demonstrate CS-induced alterations of xenobiotic metabolism that were similar to those observed in the bronchial and nasal epithelial cells obtained from smokers. PMID:25741927

  4. Impact assessment of repeated exposure of organotypic 3D bronchial and nasal tissue culture models to whole cigarette smoke.

    PubMed

    Kuehn, Diana; Majeed, Shoaib; Guedj, Emmanuel; Dulize, Remi; Baumer, Karine; Iskandar, Anita; Boue, Stephanie; Martin, Florian; Kostadinova, Radina; Mathis, Carole; Ivanov, Nikolai V; Frentzel, Stefan; Hoeng, Julia; Peitsch, Manuel C

    2015-01-01

    Cigarette smoke (CS) has a major impact on lung biology and may result in the development of lung diseases such as chronic obstructive pulmonary disease or lung cancer. To understand the underlying mechanisms of disease development, it would be important to examine the impact of CS exposure directly on lung tissues. However, this approach is difficult to implement in epidemiological studies because lung tissue sampling is complex and invasive. Alternatively, tissue culture models can facilitate the assessment of exposure impacts on the lung tissue. Submerged 2D cell cultures, such as normal human bronchial epithelial (NHBE) cell cultures, have traditionally been used for this purpose. However, they cannot be exposed directly to smoke in a similar manner to the in vivo exposure situation. Recently developed 3D tissue culture models better reflect the in vivo situation because they can be cultured at the air-liquid interface (ALI). Their basal sides are immersed in the culture medium; whereas, their apical sides are exposed to air. Moreover, organotypic tissue cultures that contain different type of cells, better represent the physiology of the tissue in vivo. In this work, the utilization of an in vitro exposure system to expose human organotypic bronchial and nasal tissue models to mainstream CS is demonstrated. Ciliary beating frequency and the activity of cytochrome P450s (CYP) 1A1/1B1 were measured to assess functional impacts of CS on the tissues. Furthermore, to examine CS-induced alterations at the molecular level, gene expression profiles were generated from the tissues following exposure. A slight increase in CYP1A1/1B1 activity was observed in CS-exposed tissues compared with air-exposed tissues. A network-and transcriptomics-based systems biology approach was sufficiently robust to demonstrate CS-induced alterations of xenobiotic metabolism that were similar to those observed in the bronchial and nasal epithelial cells obtained from smokers. PMID:25741927

  5. Fibroblast alignment under interstitial fluid flow using a novel 3-D tissue culture model.

    PubMed

    Ng, Chee Ping; Swartz, Melody A

    2003-05-01

    Interstitial flow is an important component of the microcirculation and interstitial environment, yet its effects on cell organization and tissue architecture are poorly understood, in part due to the lack of in vitro models. To examine the effects of interstitial flow on cell morphology and matrix remodeling, we developed a tissue culture model that physically supports soft tissue cultures and allows microscopic visualization of cells within the three-dimensional matrix. In addition, pressure-flow relationships can be continuously monitored to evaluate the bulk hydraulic resistance as an indicator of changes in the overall matrix integrity. We observed that cells such as human dermal fibroblasts aligned perpendicular to the direction of interstitial flow. In contrast, fibroblasts in static three-dimensional controls remained randomly oriented, whereas cells subjected to fluid shear as a two-dimensional monolayer regressed. Also, the dynamic measurements of hydraulic conductivity suggest reorganization toward a steady state. These primary findings help establish the importance of interstitial flow on the biology of tissue organization and interstitial fluid balance. PMID:12531726

  6. Free amino Acid contents of stem and phylloxera gall tissue cultures of grape.

    PubMed

    Warick, R P; Hildebrandt, A C

    1966-04-01

    Free amino acid constituents were determined of grape stem and Phylloxera leaf gall callus in tissue culture. Fast, medium and slow growing single cell clones of, respectively, stem and gall origins were grown on a mineral salt-sucrose medium supplemented with coconut milk and alpha-naphthaleneacetic acid. Stem and gall clones showed qualitative similarities and quantitative variations in the amino acids and nitrogenous constituents. Nineteen amino acids, glucosamine, ethanolamine, sarcosine, methionine sulfoxides and ammonia were identified. Two free polypeptides accounted for over 30% of the amino compounds in the stem and gall callus tissues which were not found in the intact plant parts. Stem clones of different growth rates grown on agar showed generally an excess of amino acid constituents over gall tissues of similar growth rates, except for the free polypeptides. Fast growing stem clones grown on agar medium contained lower amounts of certain amino acids than the fast growing gall clones, but when grown in liquid medium they contained higher amounts of these acids than the gall clones. The total and nonsoluble nitrogen of stem clones were higher than in the gall clones. Tissue cultures differed from the original plant parts with respect to their free polypeptides and high amino acid contents. PMID:16656290

  7. Insect phylogenomics.

    PubMed

    Behura, S K

    2015-08-01

    Phylogenomics, the integration of phylogenetics with genome data, has emerged as a powerful approach to study the evolution and systematics of species. Recently, several studies employing phylogenomic tools have provided better insights into insect evolution. Next-generation sequencing methods are now increasingly used by entomologists to generate genomic and transcript sequences of various insect species and strains. These data provide opportunities for comparative genomics and large-scale multigene phylogenies of diverse lineages of insects. Phy-logenomic investigations help us to better understand systematic and evolutionary relationships of insect species that play important roles as herbivores, predators, detritivores, pollinators and disease vectors. It is important that we critically assess the prospects and limitations of phylogenomic methods. In this review, I describe the current status, outline the major challenges and remark on potential future applications of phylogenomic tools in studying insect systematics and evolution.

  8. Cell Wall Regeneration around Protoplasts Isolated from Convolvulus Tissue Culture 1

    PubMed Central

    Horine, Randall K.; Ruesink, Albert W.

    1972-01-01

    Protoplasts of Convolvulus arvensis L. tissue culture regenerated a wall-like structure within 3 days in culture. Although unusually electron dense and atypically amorphous in the electron microscope, this structure could be digested with Myrothecium cellulase but was resistant to protease, a Rohm and Haas pectinase, and a β-1, 3-exoglucanase just like the original wall. A cytochemical test for callose was negative. Wall regeneration required a readily metabolized external carbon source and was not inhibited by a high concentration of cycloheximide, puromycin, or actinomycin D. Protoplast budding was correlated with the wall regeneration, and the latter was related quantitatively to the sucrose concentration in the medium. Although a concentration of 1 μm 2,4-dichlorophenoxy acetic acid is used normally for both general culture of the tissue and for wall regeneration, concentrations of 0 and 0.1 mm, which are highly deleterious to growth, have no appreciable effect on the incidence of the wall-like structure regenerated around protoplasts. The ability of protoplasts to undergo cell wall regeneration was decreased when they were cultured in the presence of proteolytic enzymes. Images PMID:16658192

  9. The structure of tissue on cell culture-extracted thyroglobulin is independent of its iodine content.

    PubMed

    Delain, E; Aouani, A; Vignal, A; Couture-Tosi, E; Hovsépian, S; Fayet, G

    1987-02-01

    The major protein synthesized in vitro by the ovine thyroid cell line OVNIS 6H is the prothyroid hormone thyroglobulin. Purified from serum-free cell culture media using sucrose gradient centrifugation, the thyroglobulin dimer was analysed for iodine content and observed by electron microscopy. In their usual medium, the OVNIS 6H cells produce a very poorly iodinated thyroglobulin containing 0.05 I atom per molecule. When cultured with methimazole or propylthiouracil, two inhibitors of iodide organification, less than 0.007 I atom/molecules was found. These molecules purified from cell cultures were compared to those purified from ovine thyroid tissue containing 26 I atoms/mol. Despite large differences in iodine content, the three preparations all consist of 19 S thyroglobulin dimers with the classical ovoidal shape. The variability in size measurements remains in a 2% range for all thyroglobulin types. Consequently, no real significant variation can be found between the highly iodinated thyroglobulin isolated from tissue, and the poorly or non-iodinated thyroglobulins isolated from cells cultured with or without methimazole or propylthiouracil. PMID:3556752

  10. Culture of outer epithelial cells from mantle tissue to study shell matrix protein secretion for biomineralization.

    PubMed

    Gong, Ningping; Li, Qi; Huang, Jing; Fang, Zi; Zhang, Guiyou; Xie, Liping; Zhang, Rongqing

    2008-09-01

    Mantle tissue plays an important role in shell biomineralization by secreting matrix proteins for shell formation. However, the mechanism by which it regulates matrix protein secretion is poorly understood, largely because of the lack of cellular tools for in vitro study and techniques to evaluate matrix protein secretion. We have isolated the outer epithelial cells of the mantle of the pearl oyster, Pinctada fucata, and evaluated cellular metabolism by measuring the secretion of the matrix protein, nacrein. A novel sensitive sandwich enzyme-linked immunosorbent assay (ELISA) was established to quantify nacrein. Mantle explant culture was demonstrated to provide dissociated tissue cells with high viability. Single dissociated cell types from explant culture were separated by density in a discontinuous Percoll gradient. The outer epithelial cells were isolated from other cell types by their higher density and identified by immunolabeling and ultrastructure analysis. ELISA assays revealed that the outer epithelial cells retained the ability to secrete nacrein in vitro. Moreover, increased nacrein secretion resulted from an increased Ca(2+) concentration in the culture media of the outer epithelial cells, in a concentration-dependent manner. These results confirm that outer epithelial cell culture and the ELISA method are useful tools for studying the regulatory mechanisms of shell biomineralization.

  11. Culture and recovery of macrophages and cell lines from tissue culture-treated and -untreated plastic dishes.

    PubMed

    Fleit, S A; Fleit, H B; Zolla-Pazner, S

    1984-03-30

    Macrophages can be separated from other cell types by their ability to readily attach and spread on glass or on plastic surfaces which are treated for optimal growth of cultured cells (tissue culture-treated plastic). To detach macrophages from these surfaces, techniques must be used which require prior preparation of special flasks or vessels, utilize expensive equipment, are time-consuming and almost uniformly require that the macrophages be exposed to various chemicals. We now report that macrophages can be enriched and recovered efficiently after attachment to disposable polystyrene bacteriologic petri dishes simply by gentle scraping with a rubber policeman. In this paper we compare this method to others currently in use in which resident peritoneal cells, peritoneal exudate cells or cells from bone marrow-derived cultures are detached from treated dishes using cold shock, chelating agents and lidocaine. In all studies, advantages were noted when cells were incubated in untreated dishes and detached by gentle scraping. In addition, untreated dishes supported the growth of adherent cell lines IC-21 and L929B and yielded large numbers of cells, with high viability, which were easily harvested. PMID:6423730

  12. Immunolocalization of nitric oxide synthase isoforms in human archival and rat tissues, and cultured cells.

    PubMed

    Martins, Antonio R; Zanella, Cesar A B; Zucchi, Fabiola C R; Dombroski, Thaís C D; Costa, Edmar T; Guethe, Liliane M; Oliveira, Alina O; Donatti, Ana L F; Neder, Luciano; Chimelli, Leila; De Nucci, Gilberto; Lee-Ho, Paulo; Murad, Ferid

    2011-05-15

    Nitric oxide (NO) exerts important physiological and pathological roles in humans. The study of NO requires the immunolocalization of its synthesizing enzymes, neuronal, endothelial and inducible NO synthases (NOS). NOS are labile to formalin-fixation and paraffin-embedding, which are used to prepare human archival tissues. This lability has made NOS immunohistochemical studies difficult, and a detailed protocol is not yet available. We describe here a protocol for the immunolocalization of NOS isoforms in human archival cerebellum and non-nervous tissues, and in rat tissues and cultured cells. Neuronal NOS antigenicity in human archival and rat nervous tissue sections was microwave-retrieved in 50 mM Tris-HCl buffer, pH 9.5, for 20 min at 900 W. Neuronal NOS was expressed in stellate, basket, Purkinje and granule cells in human and rat cerebellum. Archival and frozen human cerebellar sections showed the same neuronal NOS staining pattern. Archival cerebellar sections not subjected to antigen retrieval stained weakly. Antigenicity of inducible NOS in human lung was best retrieved in 10 mM sodium citrate buffer, pH 6.0, for 15 min at 900 W. Inflammatory cells in a human lung tuberculoma were strongly stained by anti-inducible NOS antibody. Anti-endothelial NOS strongly stained kidney glomeruli. Cultured PC12 cells were strongly stained by anti-neuronal NOS without antigen retrieving. The present immunohistochemistry protocol is easy to perform, timeless, and suitable for the localization of NOS isoforms in nervous and non-nervous tissues, in human archival and rat tissues. It has been extensively used in our laboratory, and is also appropriate for other antigens.

  13. Colorectal cancer derived organotypic spheroids maintain essential tissue characteristics but adapt their metabolism in culture

    PubMed Central

    2014-01-01

    Background Organotypic tumor spheroids, a 3D in vitro model derived from patient tumor material, preserve tissue heterogeneity and retain structural tissue elements, thus replicating the in vivo tumor more closely than commonly used 2D and 3D cell line models. Such structures harbour tumorigenic cells, as revealed by xenograft implantation studies in animal models and maintain the genetic makeup of the original tumor material. The aim of our work was a morphological and proteomic characterization of organotypic spheroids derived from colorectal cancer tissue in order to get insight into their composition and associated biology. Results Morphological analysis showed that spheroids were of about 250 μm in size and varied in structure, while the spheroid cells differed in shape and size and were tightly packed together by desmosomes and tight junctions. Our proteomic data revealed significant alterations in protein expression in organotypic tumor spheroids cultured as primary explants compared to primary colorectal cancer tissue. Components underlying cellular and tissue architecture were changed; nuclear DNA/ chromatin maintenance systems were up-regulated, whereas various mitochondrial components were down-regulated in spheroids. Most interestingly, the mesenchymal cells appear to be substantial component in such cellular assemblies. Thus the observed changes may partly occur in this cellular compartment. Finally, in the proteomics analysis stem cell-like characteristics were observed within the spheroid cellular assembly, reflected by accumulation of Alcam, Ctnnb1, Aldh1, Gpx2, and CD166. These findings were underlined by IHC analysis of Ctnnb1, CD24 and CD44, therefore warranting closer investigation of the tumorigenic compartment in this 3D culture model for tumor tissue. Conclusions Our analysis of organotypic CRC tumor spheroids has identified biological processes associated with a mixture of cell types and states, including protein markers for mesenchymal

  14. Increased NIH 3T3 fibroblast functions on cell culture dishes which mimic the nanometer fibers of natural tissues

    PubMed Central

    Bhardwaj, Garima; Webster, Thomas J

    2015-01-01

    Traditional flat tissue cell culture dishes have consisted of polystyrene treated with plasma gases for growing, subculturing, and studying cell behavior in vitro. However, increasingly it has been observed that mimicking natural tissue properties (such as chemistry, three-dimensional structure, mechanical properties, etc) in vitro can lead to a better correlation of in vitro to in vivo cellular functions. The following studies compared traditional NIH 3T3 fibroblasts’ functions on XanoMatrix scaffolds to standard tissue culture polystyrene. Results found significantly greater fibroblast adhesion and proliferation on XanoMatrix cell culture dishes which mimic the nanoscale geometry of natural tissue fibers with true, tortuous fiber beds creating a robust, consistent, and versatile growth platform. In this manner, this study supports that cell culture dishes which mimic features of natural tissues should be continually studied for a wide range of applications in which mimicking natural cellular functions are important. PMID:26345155

  15. Well Plate-Based Perfusion Culture Device for Tissue and Tumor Microenvironment Replication

    PubMed Central

    Zhang, W.; Gu, Y.; Hao, Y.; Sun, Q.; Konior, K.; Wang, H.

    2015-01-01

    There are significant challenges in developing in vitro human tissue and tumor models that can be used to support new drug development and evaluate personalized therapeutics. The challenges include: (1) working with primary cells which are often difficult to maintain ex vivo, (2) mimicking native microenvironments from which primary cells are harvested, and (3) lack of culture devices that can support these microenvironments to evaluate drug responses in a high-throughput manner. Here we report a versatile well plate-based perfusion culture device that was designed, fabricated and used to: (1) ascertain the role of perfusion in facilitating the expansion of human multiple myeloma cells and evaluate drug response of the cells, (2) preserve the physiological phenotype of primary murine osteocytes by reconstructing the 3D cellular network of osteocytes, and (3) circulate primary murine T cells through a layer of primary murine intestine epithelial cells to recapitulate the interaction of the immune cells with the epithelial cells. Through these diverse case studies, we demonstrate the device’s design features to support: (1) the convenient and spatiotemporal placement of cells and biomaterials into the culture wells of the device; (2) the replication of tissues and tumor microenvironments using perfusion, stromal cells, and/or biomaterials; (3) the circulation of non-adherent cells through the culture chambers; and (4) conventional tissue and cell characterization by plate reading, histology, and flow cytometry. Future challenges are identified and discussed from the perspective of manufacturing the device and making its operation for routine and wide use. PMID:26021852

  16. The Curious Connection Between Insects and Dreams

    PubMed Central

    Klein, Barrett A.

    2011-01-01

    A majority of humans spend their waking hours surrounded by insects, so it should be no surprise that insects also appear in humans’ dreams as we sleep. Dreaming about insects has a peculiar history, marked by our desire to explain a dream’s significance and by the tactic of evoking emotions by injecting insects in dream-related works of art, film, music, and literature. I surveyed a scattered literature for examples of insects in dreams, first from the practices of dream interpretation, psychiatry, and scientific study, then from fictional writings and popular culture, and finally in the etymology of entomology by highlighting insects with dream-inspired Latinate names. A wealth of insects in dreams, as documented clinically and culturally, attests to the perceived relevance of dreams and to the ubiquity of insects in our lives. PMID:26467945

  17. The Curious Connection Between Insects and Dreams.

    PubMed

    Klein, Barrett A

    2011-12-21

    A majority of humans spend their waking hours surrounded by insects, so it should be no surprise that insects also appear in humans' dreams as we sleep. Dreaming about insects has a peculiar history, marked by our desire to explain a dream's significance and by the tactic of evoking emotions by injecting insects in dream-related works of art, film, music, and literature. I surveyed a scattered literature for examples of insects in dreams, first from the practices of dream interpretation, psychiatry, and scientific study, then from fictional writings and popular culture, and finally in the etymology of entomology by highlighting insects with dream-inspired Latinate names. A wealth of insects in dreams, as documented clinically and culturally, attests to the perceived relevance of dreams and to the ubiquity of insects in our lives.

  18. Resistin induces lipolysis and suppresses adiponectin secretion in cultured human visceral adipose tissue.

    PubMed

    Chen, Neng; Zhou, Lingmei; Zhang, Zixiang; Xu, Jiaying; Wan, Zhongxiao; Qin, Liqiang

    2014-11-01

    Resistin is an adipokine secreted from adipose tissue, which is likely involved in the development of obesity and insulin resistance via its interaction with other organs, as well as affecting adipose tissue function. The impact of resistin treatment on lipolysis and adiponectin secretion in human visceral adipose tissue is currently unknown. Mesenteric adipose tissue samples were obtained from 14 male subjects [age 54±6 yr, body mass index (BMI) 23.59±0.44 kg/m(2)] undergoing abdominal surgeries. Adipose tissues were cultured and treated with resistin (100 ng/mL, 24h) in the absence or presence of different signaling inhibitors: H89 (1 μM), PD98059 (25 μM) and SB201290 (20 μM) for glycerol and non-esterified fatty acid (NEFA) measurement. Adiponectin level from media at 24 h was also measured via ELISA. Adipose tissue minces after resistin incubation (100 ng/mL, 24 h) were also collected for further Western blotting analysis. Resistin resulted in significant induction of glycerol (3.62±0.57 vs. 5.30±1.11 mmol/L/g tissue, p<0.05) and NEFA (5.99±1.06 vs. 8.48±1.57 mmol/L/g tissue, p<0.05) release at 24 h. H89 and PD98059 partially inhibited resistin induced glycerol and NEFA release, while SB201290 has no such effect. Resistin induced the phosphorylation of p-HSL at serine 563, PKA at ~62 kDa and ERK1/2 as measured by Western blotting. Resistin led to significant reduction of the secretion of adiponectin (38.16±10.43 vs. 21.81±4.21 ng/mL/g tissue, p<0.05). Our current findings implicate that resistin might play a significant role in obesity related pathologies in various tissues via its effect on adipose tissue function.

  19. Surface functionalization of nanobiomaterials for application in stem cell culture, tissue engineering, and regenerative medicine.

    PubMed

    Rana, Deepti; Ramasamy, Keerthana; Leena, Maria; Jiménez, Constanza; Campos, Javier; Ibarra, Paula; Haidar, Ziyad S; Ramalingam, Murugan

    2016-05-01

    Stem cell-based approaches offer great application potential in tissue engineering and regenerative medicine owing to their ability of sensing the microenvironment and respond accordingly (dynamic behavior). Recently, the combination of nanobiomaterials with stem cells has paved a great way for further exploration. Nanobiomaterials with engineered surfaces could mimic the native microenvironment to which the seeded stem cells could adhere and migrate. Surface functionalized nanobiomaterial-based scaffolds could then be used to regulate or control the cellular functions to culture stem cells and regenerate damaged tissues or organs. Therefore, controlling the interactions between nanobiomaterials and stem cells is a critical factor. However, surface functionalization or modification techniques has provided an alternative approach for tailoring the nanobiomaterials surface in accordance to the physiological surrounding of a living cells; thereby, enhancing the structural and functional properties of the engineered tissues and organs. Currently, there are a variety of methods and technologies available to modify the surface of biomaterials according to the specific cell or tissue properties to be regenerated. This review highlights the trends in surface modification techniques for nanobiomaterials and the biological relevance in stem cell-based tissue engineering and regenerative medicine. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:554-567, 2016.

  20. Concise Review: Comparison of Culture Membranes Used for Tissue Engineered Conjunctival Epithelial Equivalents

    PubMed Central

    Eidet, Jon Roger; Dartt, Darlene A.; Utheim, Tor Paaske

    2015-01-01

    The conjunctival epithelium plays an important role in ensuring the optical clarity of the cornea by providing lubrication to maintain a smooth, refractive surface, by producing mucins critical for tear film stability and by protecting against mechanical stress and infectious agents. A large number of disorders can lead to scarring of the conjunctiva through chronic conjunctival inflammation. For controlling complications of conjunctival scarring, surgery can be considered. Surgical treatment of symblepharon includes removal of the scar tissue to reestablish the deep fornix. The surgical defect is then covered by the application of a tissue substitute. One obvious limiting factor when using autografts is the size of the defect to be covered, as the amount of healthy conjunctiva is scarce. These limitations have led scientists to develop tissue engineered conjunctival equivalents. A tissue engineered conjunctival epithelial equivalent needs to be easily manipulated surgically, not cause an inflammatory reaction and be biocompatible. This review summarizes the various substrates and membranes that have been used to culture conjunctival epithelial cells during the last three decades. Future avenues for developing tissue engineered conjunctiva are discussed. PMID:26690486

  1. Organogenic responses in tissue culture of srd mutants of Arabidopsis thaliana.

    PubMed

    Ozawa, S; Yasutani, I; Fukuda, H; Komamine, A; Sugiyama, M

    1998-01-01

    In Arabidopsis thaliana, shoot redifferentiation and root redifferentiation can be induced at high frequency from hypocotyl and root explants by a two-step culture method. Tissues are precultured on callus-inducing medium and then transferred onto shoot-inducing medium for shoot redifferentiation or onto root-inducing medium for root redifferentiation. In an attempt to dissect these organogenic processes genetically, we characterized the responses in tissue culture of srd1, srd2 and srd3 mutants that were originally isolated as temperature-sensitive strains with defects in shoot redifferentiation (Yasutani, I., Ozawa, S., Nishida, T., Sugiyama, M. and Komamine, A. (1994) Plant Physiol. 105, 815-822). These mutants exhibited temperature sensitivity at different steps of organogenesis, which allowed the identification of three states associated with organogenic competence: IC (incompetent); CR (competent with respect to root redifferentiation); and CSR (competent with respect to shoot and root redifferentiation). Hypocotyl explants were shown to be in the IC state at the initiation of culture and to enter the CSR state, via the CR state, during preculture on callus-inducing medium, whereas root explants seemed to be in the CR state at the initiation of culture. The transition from IC to CR and that from CR to CSR appeared to require the functions of SRD2 and SRD3, respectively. It appears that explants in the CSR state redifferentiate shoots with the aid of the products of SRD1 and SRD2 when transplanted onto shoot-inducing medium. Histological examination of the srd mutants revealed that the function of SRD2 is required not only for organogenesis but also for the reinitiation of cell proliferation in hypocotyl explants during culture on callus-inducing medium. Linkage analysis using RFLP markers indicated that SRD1, SRD2, and SRD3 are located at the lower region, the central region, and the upper region of chromosome 1, respectively.

  2. Targeted metabolomics in cultured cells and tissues by mass spectrometry: method development and validation.

    PubMed

    Abdel Rahman, Anas M; Pawling, Judy; Ryczko, Michael; Caudy, Amy A; Dennis, James W

    2014-10-01

    Metabolomics is the identification and quantitation of small bio-molecules (metabolites) in biological samples under various environmental and genetic conditions. Mass spectrometry provides the unique opportunity for targeted identification and quantification of known metabolites by selective reaction monitoring (SRM). However, reproducibility of this approach depends on careful consideration of sample preparation, chemical classes, and stability of metabolites to be evaluated. Herein, we introduce and validate a targeted metabolite profiling workflow for cultured cells and tissues by liquid chromatography-triple quadrupole tandem mass spectrometry. The method requires a one-step extraction of water-soluble metabolites and targeted analysis of central metabolites that include glycolysis, amino acids, nucleotides, citric acid cycle, and the hexosamine biosynthetic pathway. The sensitivity, reproducibility and molecular stability of each targeted metabolite were assessed under experimental conditions. Quantitation of metabolites by peak area ratio was linear with a dilution over a 4 fold dynamic range with minimal deviation R(2)=0.98. Inter- and intra-day precision with cells and tissues had an average coefficient of variation <15% for cultured cell lines, and somewhat higher for mouse liver tissues. The method applied in triplicate measurements readily distinguished immortalized cells from malignant cells, as well as mouse littermates based on their hepatic metabolic profiles.

  3. Enhancing plant regeneration in tissue culture: a molecular approach through manipulation of cytokinin sensitivity.

    PubMed

    Hill, Kristine; Schaller, G Eric

    2013-10-01

    Micropropagation is used for commercial purposes worldwide, but the capacity to undergo somatic organogenesis and plant regeneration varies greatly among species. The plant hormones auxin and cytokinin are critical for plant regeneration in tissue culture, with cytokinin playing an instrumental role in shoot organogenesis. Type-B response regulators govern the transcriptional output in response to cytokinin and are required for plant regeneration. In our paper published in Plant Physiology, we explored the functional redundancy among the 11 type-B Arabidopsis response regulators (ARRs). Interestingly, we discovered that the enhanced expression of one family member, ARR10, induced hypersensitivity to cytokinin in multiple assays, including callus greening and shoot induction of explants. Here we 1) discuss the hormone dependence for in vitro plant regeneration, 2) how manipulation of the cytokinin response has been used to enhance plant regeneration, and 3) the potential of the ARR10 transgene as a tool to increase the regeneration capacity of agriculturally important crop plants. The efficacy of ARR10 for enhancing plant regeneration likely arises from its ability to transcriptionally regulate key cytokinin responsive genes combined with an enhanced protein stability of ARR10 compared with other type-B ARRs. By increasing the capacity of key tissues and cell types to respond to cytokinin, ARR10, or other type-B response regulators with similar properties, could be used as a tool to combat the recalcitrance of some crop species to tissue culture techniques. PMID:23887495

  4. Ion Levels and Membrane Potential in Chick Heart Tissue and Cultured Cells

    PubMed Central

    McDonald, Terence F.; DeHaan, Robert L.

    1973-01-01

    Intracellular concentrations of sodium and potassium as well as resting potentials and overshoots have been determined in heart tissue from chick embryos aged 2–18 days. Intracellular potassium declined from 167 mM at day 2 to 117–119 mM at days 14–18. Intracellular sodium remained nearly constant at 30–35 mM during the same period. The mean resting potential increased from -61.8 mV at day 3 to about -80 mV at days 14–18. The mean overshoot during the same period increased from 12 to 30 mV. PNa/PK calculated from the ion data and resting potentials declined from 0.08 at day 3 to 0.01 at days 14–18. Thus, the development of embryonic chick heart during days 2–14 is characterized by a declining intracellular potassium concentration and an increasing resting potential and overshoot. Heart cells from 7- to 8-day embryos, cultured either in monolayer or reassociated into aggregates, were compared with intact tissue of the same age. The intracellular concentrations of sodium and potassium were similar in the three preparations and cultured cells responded to incubation in low potassium medium or treatment with ouabain in a manner similar to that of intact tissue. Resting potentials and overshoots were also similar in the three preparations. PMID:4683099

  5. Implementing oxygen control in chip-based cell and tissue culture systems.

    PubMed

    Oomen, Pieter E; Skolimowski, Maciej D; Verpoorte, Elisabeth

    2016-09-21

    Oxygen is essential in the energy metabolism of cells, as well as being an important regulatory parameter influencing cell differentiation and function. Interest in precise oxygen control for in vitro cultures of tissues and cells continues to grow, especially with the emergence of the organ-on-a-chip and the desire to emulate in vivo conditions. This was recently discussed in this journal in a Critical Review by Brennan et al. (Lab Chip (2014). DOI: ). Microfluidics can be used to introduce flow to facilitate nutrient supply to and waste removal from in vitro culture systems. Well-defined oxygen gradients can also be established. However, cells can quickly alter the oxygen balance in their vicinity. In this Tutorial Review, we expand on the Brennan paper to focus on the implementation of oxygen analysis in these systems to achieve continuous monitoring. Both electrochemical and optical approaches for the integration of oxygen monitoring in microfluidic tissue and cell culture systems will be discussed. Differences in oxygen requirements from one organ to the next are a challenging problem, as oxygen delivery is limited by its uptake into medium. Hence, we discuss the factors determining oxygen concentrations in solutions and consider the possible use of artificial oxygen carriers to increase dissolved oxygen concentrations. The selection of device material for applications requiring precise oxygen control is discussed in detail, focusing on oxygen permeability. Lastly, a variety of devices is presented, showing the diversity of approaches that can be employed to control and monitor oxygen concentrations in in vitro experiments.

  6. Thick-tissue bioreactor as a platform for long-term organotypic culture and drug delivery

    PubMed Central

    Markov, Dmitry A.; Lu, Jenny Q.; Samson, Philip C.; Wikswo, John P.; McCawley, Lisa J.

    2013-01-01

    We have developed a novel, portable, gravity-fed, microfluidics-based platform suitable for optical interrogation of long-term organotypic cell culture. This system is designed to provide convenient control of cell maintenance, nutrients, and experimental reagent delivery to tissue-like cell densities housed in a transparent, low-volume microenvironment. To demonstrate the ability of our Thick-Tissue Bioreactor (TTB) to provide stable, long-term maintenance of high-density cellular arrays, we observed the morphogenic growth of human mammary epithelial cell lines, MCF-10A and their invasive variants, cultured under three-dimensional (3D) conditions inside our system. Over the course of 21 days, these cells typically develop into hollow “mammospheres” if cultured in standard 3D Matrigel. This complex morphogenic process requires alterations in a variety of cellular functions, including degradation of extracellular matrix that is regulated by cell-produced matrix proteinases. For our “drug” delivery testing and validation experiments we have introduced proteinase inhibitors into the fluid supply system, and we observed both reduced proteinase activity and inhibited cellular morphogenesis. The size inhibition results correlated well with the overall proteinase activities of the tested cells. PMID:22964798

  7. In vitro differentiation of rat spermatogonia into round spermatids in tissue culture

    PubMed Central

    Reda, A.; Hou, M.; Winton, T.R.; Chapin, R.E.; Söder, O.; Stukenborg, J.-B.

    2016-01-01

    STUDY QUESTION Do the organ culture conditions, previously defined for in vitro murine male germ cell differentiation, also result in differentiation of rat spermatogonia into post-meiotic germ cells exhibiting specific markers for haploid germ cells? SUMMARY ANSWER We demonstrated the differentiation of rat spermatogonia into post-meiotic cells in vitro, with emphasis on exhibiting, protein markers described for round spermatids. WHAT IS KNOWN ALREADY Full spermatogenesis in vitro from immature germ cells using an organ culture technique in mice was first reported 5 years ago. However, no studies reporting the differentiation of rat spermatogonia into post-meiotic germ cells exhibiting the characteristic protein expression profile or into functional sperm have been reported. STUDY DESIGN, SAMPLES/MATERIALS, METHODS Organ culture of testicular fragments of 5 days postpartum (dpp) neonatal rats was performed for up to 52 days. Evaluation of microscopic morphology, testosterone levels, mRNA and protein expression as measured by RT-qPCR and immunostaining were conducted to monitor germ cell differentiation in vitro. Potential effects of melatonin, Glutamax® medium, retinoic acid and the presence of epidydimal fat tissue on the spermatogenic process were evaluated. A minimum of three biological replicates were performed for all experiments presented in this study. One-way ANOVA, ANOVA on ranks and student's t-test were applied to perform the statistical analysis. MAIN RESULTS AND THE ROLE OF CHANCE Male germ cells, present in testicular tissue pieces grown from 5 dpp rats, exhibited positive protein expression for Acrosin and Crem (cAMP (cyclic adenosine mono phosphate) response element modulator) after 52 days of culture in vitro. Intra-testicular testosterone production could be observed after 3 days of culture, while when epididymal fat tissue was added, spontaneous contractility of cultured seminiferous tubules could be observed after 21 days. However, no

  8. Non-enzymatic, serum-free tissue culture of pre-invasive breast lesions for spontaneous generation of mammospheres.

    PubMed

    Espina, Virginia; Edmiston, Kirsten H; Liotta, Lance A

    2014-11-08

    Breast ductal carcinoma in situ (DCIS), by definition, is proliferation of neoplastic epithelial cells within the confines of the breast duct, without breaching the collagenous basement membrane. While DCIS is a non-obligate precursor to invasive breast cancers, the molecular mechanisms and cell populations that permit progression to invasive cancer are not fully known. To determine if progenitor cells capable of invasion existed within the DCIS cell population, we developed a methodology for collecting and culturing sterile human breast tissue at the time of surgery, without enzymatic disruption of tissue. Sterile breast tissue containing ductal segments is harvested from surgically excised breast tissue following routine pathological examination. Tissue containing DCIS is placed in nutrient rich, antibiotic-containing, serum free medium, and transported to the tissue culture laboratory. The breast tissue is further dissected to isolate the calcified areas. Multiple breast tissue pieces (organoids) are placed in a minimal volume of serum free medium in a flask with a removable lid and cultured in a humidified CO₂ incubator. Epithelial and fibroblast cell populations emerge from the organoid after 10 - 14 days. Mammospheres spontaneously form on and around the epithelial cell monolayer. Specific cell populations can be harvested directly from the flask without disrupting neighboring cells. Our non-enzymatic tissue culture system reliably reveals cytogenetically abnormal, invasive progenitor cells from fresh human DCIS lesions.

  9. Transferability of Trypanosoma cruzi from mixed human host infection to Triatoma infestans and from insects to axenic culture.

    PubMed

    Ortiz, Sylvia; Zulantay, Inés; Apt, Werner; Saavedra, Miguel; Solari, Aldo

    2015-02-01

    The etiologic agent of Chagas disease is Trypanosoma cruzi, a protozoan whose life cycle involves obligatory passage through vertebrate and invertebrate hosts in a series of stages. The aim of this study was to explore the transferability of mixed discrete typing units (DTUs) of T. cruzi present in chronic chagasic patients when passed through an invertebrate host during xenodiagnosis (XD) and then when transferred to axenic cultures to obtain T. cruzi isolates. DTUs of T. cruzi present in these two hosts and axenic cultures were identified by kDNA PCR amplification and subsequent hybridization with DTU-specific probes. Mixtures of Tc I, Tc II, Tc V and Tc VI DTUs were detected in blood samples. However as a result of XD and axenic cultures it was possible to identify mostly Tc V. We conclude that the transferability of an isolate of T.cruzi derived from mixed DTUs present in human blood depends upon the starved invertebrate host used for xenodiagnosis.

  10. Plant Defense against Insect Herbivores

    PubMed Central

    Fürstenberg-Hägg, Joel; Zagrobelny, Mika; Bak, Søren

    2013-01-01

    Plants have been interacting with insects for several hundred million years, leading to complex defense approaches against various insect feeding strategies. Some defenses are constitutive while others are induced, although the insecticidal defense compound or protein classes are often similar. Insect herbivory induce several internal signals from the wounded tissues, including calcium ion fluxes, phosphorylation cascades and systemic- and jasmonate signaling. These are perceived in undamaged tissues, which thereafter reinforce their defense by producing different, mostly low molecular weight, defense compounds. These bioactive specialized plant defense compounds may repel or intoxicate insects, while defense proteins often interfere with their digestion. Volatiles are released upon herbivory to repel herbivores, attract predators or for communication between leaves or plants, and to induce defense responses. Plants also apply morphological features like waxes, trichomes and latices to make the feeding more difficult for the insects. Extrafloral nectar, food bodies and nesting or refuge sites are produced to accommodate and feed the predators of the herbivores. Meanwhile, herbivorous insects have adapted to resist plant defenses, and in some cases even sequester the compounds and reuse them in their own defense. Both plant defense and insect adaptation involve metabolic costs, so most plant-insect interactions reach a stand-off, where both host and herbivore survive although their development is suboptimal. PMID:23681010

  11. [THE REGULATING EFFECT OF DIPEPTIDES ON CELL PROLIFERATION IN NERVE TISSUE CULTURE IN MAMMALS AND ON ASSOCIATIVE LEARNING IN INSECTS].

    PubMed

    Chalisova, N I; Zachepilo, T G; Kamyshev, N G; Lopatina, N G

    2015-01-01

    The effect of dipeptides AspPro and AspSer and of their composing amino acids (asparagine acid--Asp, proline--Pro, serin--Ser) on the proliferative activity in the explants of cortex and subcortical structures of the rat brain and on the functional activity of CNS of the honeybee was studied. The square index defined as a proportion of the whole explant square to the square of its central zone was determined. The number of bees responded with the conditional reaction (proboscis extension in the direction to aromatized solution) after 1 min (short-term memory) and 180 min (long-term memory) was detected after single learning procedure. Both dipeptides, as well as the asparagine acid, stimulated an increase of the growth zone of the subcortical structure explants in rats and of the number of honeybees with retention of conditional reaction in the short-term/long-term memory independently of the effect of the second member of the dipeptide. The unidirectionality of the effect suggests the existence of common mechanisms of reception and signal transduction established during evolution that require the further study. PMID:26983279

  12. Fructan Synthesis in Tissue Cultures of Symphytum officinale; L. Initiation, Differentiation, and Metabolic Activity.

    PubMed

    Abou-Mandour, A A; Czygan, F C; Haaß, D; Franz, G

    1987-10-01

    Tissue cultures originating from different organs i.e. leaves, leaf-stalks, ovaries, anthers, and roots of SYMPHYTUM OFFICINALE were initiated under various growth conditions and subcultured several times to give the first callus generation. From all these calli, whole plants could be regenerated which again were used for the preparation of tissue cultures resulting in the formation of the second callus generation. The different calli and the regenerated plants were analyzed with respect to the fructan-synthesizing capacity. Only calli derived from the leaves of the original plant synthesized fructan whereas calli derived from ovaries, anthers, and roots, which are known to contain large amounts of fructan, were not capable of synthesizing fructan. The regenerated plants obtained from the first callus generation showed ability for fructan synthesis only if the originating callus synthesized fructan. The calli of the second generation, which were prepared from fructan-containing leaves and roots of regenerated plants, showed the capacity for fructan formation. The calli of the second generation obtained from leaves and roots of regenerated, fructan-free plants were not able to synthesize this specific reserve polysaccharide. From these data it can be concluded that the calli of the first generation prepared from roots, ovaries, and anthers have lost their ability for fructan synthesis. Calli initiated from leaves and leaf-stalks preserved the capacity for fructan formation even after many calli generations and regeneration to entire plants. Different phytohormones used in the tissue cultures had only a slight effect upon the fructan formation. An influence of light on fructan synthesis could not be detected. PMID:17269073

  13. Using organotypic (raft) epithelial tissue cultures for the biosynthesis and isolation of infectious human papillomaviruses

    PubMed Central

    Ozbun, Michelle A.; Patterson, Nicole A.

    2014-01-01

    Papillomaviruses have a strict tropism for epithelial cells and they are fully reliant on cellular differentiation for completion of their life cycles, resulting in the production of progeny virions. Thus, a permissive environment for full viral replication in vitro wherein virion morphogenesis occurs under cooperative viral and cellular cues requires the cultivation of epithelium. Presented in the first section of this unit is a protocol for growing differentiating epithelial tissues, whose structure and function mimics many important morphological and biochemical aspects of normal skin. The technique, pioneered by Asslineau and Pruniéras (Asselineau and Prunieras 1984) and modified by Kopan et al. (Kopan et al. 1987), involves growing epidermal cells atop a dermal equivalent consisting of live fibroblasts and a collagen lattice. Epithelial stratification and differentiation ensues when the keratinocyte-dermal equivalent is placed at the air-liquid interface. The apparent floating nature of the cell-matrix in this method led to the nickname “raft” cultures. The general technique can be applied to normal low passage keratinocytes, to cells stably transfected with papillomavirus genes or genomes, as well as keratinocytes established from neoplastic lesions. However, infectious papillomavirus particles have only been isolated from organotypic epithelial cultures initiated with cells that maintain oncogenic human papillomavirus genomes in an extrachomosomal replicative form. The second section of this unit is dedicated to a virion isolation method that minimizes aerosol and skin exposure to these human carcinogens. Although the focus of the protocols is on the growth of tissues that yields infectious papillomavirus progeny, this culture system facilitates the investigation of these fastidious viruses during their complex replicative cycles, and raft tissues can be manipulated and harvested at any point during the process. Importantly, a single step virus growth

  14. Using organotypic (raft) epithelial tissue cultures for the biosynthesis and isolation of infectious human papillomaviruses.

    PubMed

    Ozbun, Michelle A; Patterson, Nicole A

    2014-08-01

    Papillomaviruses have a strict tropism for epithelial cells, and they are fully reliant on cellular differentiation for completion of their life cycles, resulting in the production of progeny virions. Thus, a permissive environment for full viral replication in vitro-wherein virion morphogenesis occurs under cooperative viral and cellular cues-requires the cultivation of epithelium. Presented in the first section of this unit is a protocol to grow differentiating epithelial tissues that mimic many important morphological and biochemical aspects of normal skin. The technique involves growing epidermal cells atop a dermal equivalent consisting of live fibroblasts and a collagen lattice. Epithelial stratification and differentiation ensues when the keratinocyte-dermal equivalent is placed at the air-liquid interface. The apparent floating nature of the cell-matrix in this method led to the nickname "raft" cultures. The general technique can be applied to normal low passage keratinocytes, to cells stably transfected with papillomavirus genes or genomes, or keratinocytes established from neoplastic lesions. However, infectious papillomavirus particles have only been isolated from organotypic epithelial cultures initiated with cells that maintain oncogenic human papillomavirus genomes in an extrachomosomal replicative form. The second section of this unit is dedicated to a virion isolation method that minimizes aerosol and skin exposure to these human carcinogens. Although the focus of the protocols is on the growth of tissues that yields infectious papillomavirus progeny, this culture system facilitates the investigation of these fastidious viruses during their complex replicative cycles, and raft tissues can be manipulated and harvested at any point during the process. Importantly, a single-step virus growth cycle is achieved in this process, as it is unlikely that progeny virions are released to initiate subsequent rounds of infection.

  15. Direct Fluorescent Detection of a Polymethoxyflavone in Cell Culture and Mouse Tissue.

    PubMed

    Chen, Jingjing; Song, Mingyue; Wu, Xian; Zheng, Jinkai; He, Lili; McClements, David Julian; Decker, Eric; Xiao, Hang

    2015-12-16

    Convenient detection methods for bioactive food compounds and their metabolites in biological samples are needed to better understand their mechanism of actions. Herein, we developed a novel approach to directly monitor and visualize the distribution of 5,3',4'-tridemethylnobiletin (TDN), a unique polymethoxyflavone metabolite derived from citrus polymethoxyflavone, in biological samples such as cultured cells and mouse colonic tissues. Our results showed that a fluorescent conjugate could be formed between TDN and 2-aminoethyl diphenyl borate (DPBA) under simple reaction conditions, which was confirmed by both Raman spectroscopy and mass spectroscopy. We further demonstrated the application of DPBA-based conjugation reaction in the characterization of TDN in different biological samples including floating cells, adherent cells, and animal tissues. This is the first report demonstrating direct fluorescent detection of polymethoxyflavone in biological samples. PMID:26618604

  16. Response of tobacco tissue cultures growing in contact with lunar fines.

    NASA Technical Reports Server (NTRS)

    Weete, J. D.; Walkinshaw, C. H.; Laseter, J. L.

    1973-01-01

    During the quarantine periods following each Apollo mission to the moon, various biological systems were placed in the presence of lunar material to determine if pathogenic agents were present. Although no detrimental effects resulted, various responses by the several plant systems tested were noted. One such response was the increased pigmentation observed in the callus tissue cultures of tobacco. Further investigations revealed that these tissues grown in the presence of lunar material resulted in as much as a 35% increase in total pigments while differences in fatty acid and sterol concentrations were also noted when compared to the controls. It is believed that these changes brought about by the lunar material can be attributed to a change in the nutritional environment caused by its dissolution.

  17. Activity and Accumulation of Cell Division-Promoting Phenolics in Tobacco Tissue Cultures 1

    PubMed Central

    Teutonico, Rita A.; Dudley, Matthew W.; Orr, John D.; Lynn, David G.; Binns, Andrew N.

    1991-01-01

    Dehydrodiconiferyl alcohol glucosides (DCGs) are derivatives of the phenylpropanoid pathway that have been isolated from Catharansus roseus L. (Vinca rosea) crown gall tumors. Fractions containing purified DCGs have been shown previously to promote the growth of cytokinin-requiring tissues of tobacco in the absence of exogenous cytokinins. In this study, we utilized synthetic DCG isomers to confirm the cell division-promoting activity of DCG isomers A and B and show that they neither promote shoot meristem initiation on Nicotiana tabacum L., cv Havana 425, leaf explants nor induce betacyanin synthesis in amaranth seedlings. Analysis of cultured tobacco pith tissue demonstrated that DCG accumulation was stimulated by cytokinin treatment and correlated with cytokinin-induced cell division. Thus, the accumulation of metabolites that could replace cytokinin in cell division bioassays is stimulated by cytokinins. These data support the model that DCGs are a component of a cytokinin-mediated regulatory circuit controlling cell division. ImagesFigure 2 PMID:16668384

  18. Unusual 4-hydroxybenzaldehyde synthase activity from tissue cultures of the vanilla orchid Vanilla planifolia.

    PubMed

    Podstolski, Andrzej; Havkin-Frenkel, Daphna; Malinowski, Jacek; Blount, Jack W; Kourteva, Galina; Dixon, Richard A

    2002-11-01

    Tissue cultures of the vanilla orchid, Vanilla planifolia, produce the flavor compound vanillin (4-hydroxy-3-methoxybenzaldehyde) and vanillin precursors such as 4-hydroxybenzaldehyde. A constitutively expressed enzyme activity catalyzing chain shortening of a hydroxycinnamic acid, believed to be the first reaction specific for formation of vanilla flavor compounds, was identified in these cultures. The enzyme converts 4-coumaric acid non-oxidatively to 4-hydroxybenzaldehyde in the presence of a thiol reagent but with no co-factor requirement. Several forms of this 4-hydroxybenzaldehyde synthase (4HBS) were resolved and partially purified by a combination of hydrophobic interaction, ion exchange and gel filtration chromatography. These forms appear to be interconvertible. The unusual properties of the 4HBS, and its appearance in different protein fractions, raise questions as to its physiological role in vanillin biosynthesis in vivo.

  19. The safety assessment of food ingredients derived from plant cell, tissue and organ cultures: a review.

    PubMed

    Murthy, Hosakatte Niranjana; Georgiev, Milen I; Park, So-Young; Dandin, Vijayalaxmi S; Paek, Kee-Yoeup

    2015-06-01

    Plant cell, tissue and organ cultures (PCTOC) have become an increasingly attractive alternative for the production of various high molecular weight molecules which are used as flavourings, fragrances, colouring agents and food additives. Although PCTOC products are cultivated in vitro in a contamination free environment, the raw material produced from PCTOC may contain many components apart from the target compound. In some cases, PCTOC raw materials may also carry toxins, which may be naturally occurring or accumulated during the culture process. Assessment of the safety of PCTOC products is, therefore, a priority of the biotech industries involved in their production. The safety assessment involves the evaluation of starting material, production process and the end product. Before commercialisation, PCTOC products should be evaluated for their chemical and biological properties, as well as for their toxicity. In this review, measures and general criteria for biosafety evaluation of PCTOC products are addressed and thoroughly discussed.

  20. Induction of cytokinin autonomy by N,N′-diphenylurea in tissue cultures of Phaseolus lunatus L

    PubMed Central

    Mok, Machteld C.; Kim, Sang-Gu; Armstrong, Donald J.; Mok, David W. S.

    1979-01-01

    The ability of N,N′-diphenylurea (Ph2urea) to substitute for cytokinin-active adenine derivatives in promoting callus growth of Phaseolus lunatus has been examined. In general, Ph2urea stimulated callus growth at high concentrations, although the growth of most callus tissues was irregular. Variability in the sensitivity and uniformity of the growth response to Ph2urea was found among different genotypes of P. lunatus. Most importantly, tissues cultured on Ph2urea-containing medium for one passage had acquired the ability to proliferate in subsequent passages in the absence of either Ph2urea or cytokinin-active adenine derivatives. Corresponding tissues maintained on kinetin-containing medium remained cytokinin-dependent. It appears that the effect of Ph2urea in promoting the growth of P. lunatus callus tissue resides in its ability to induce cytokinin autonomy. This result suggests that the cytokinin activity of Ph2urea may be due to promotion of endogenous cytokinin biosynthesis in the bioassay systems in which it is active. Images PMID:16592694

  1. Fluid Flow Stimulates Tissue Plasminogen Activator Secretion by Cultured Human Endothelial Cells

    NASA Astrophysics Data System (ADS)

    Diamond, S. L.; Eskin, S. G.; McIntire, L. V.

    1989-03-01

    Wall shear stress generated by blood flow may regulate the expression of fibrinolytic proteins by endothelial cells. Tissue plasminogen activator (tPA) and plasminogen activator inhibitor, type 1 (PAI-1) secretion by cultured human endothelial cells were not affected by exposure to venous shear stress (4 dynes/cm2). However, at arterial shear stresses of 15 and 25 dynes/cm2, the tPA secretion rate was 2.1 and 3.0 times greater, respectively, than the basal tPA secretion rate. PAI-1 secretion was unaffected by shear stress over the entire physiological range.

  2. Analysis of laser-induced fluorescence spectra of in vitro plant tissue cultures.

    PubMed

    Muñoz-Muñoz, Ana Celia; Gutiérrez-Pulido, Humberto; Rodríguez-Domínguez, José Manuel; Gutiérrez-Mora, Antonia; Rodríguez-Garay, Benjamín; Cervantes-Martínez, Jesús

    2007-04-10

    We demonstrate the effectiveness of laser-induced fluorescence (LIF) for monitoring the development and stress detection of in vitro tissue cultures in a nondestructive and noninvasive way. The changes in LIF spectra caused by the induction of organogenesis, the increase of the F690/F740 ratio as a result of the stress originated in the organogenic explants due to shoot emergence, and the relationship between fluorescence spectra and shoot development were detected by LIF through closed containers of Saintpaulia ionantha. PMID:17384731

  3. Limiting amino acid for protein synthesis with mammary cells in tissue culture.

    PubMed

    Park, C S; Chandler, P T; Norman, A W

    1976-05-01

    To identify the limiting amino acid in the minimal essential medium as published by Eagle (Science 130:432, 1959) for milk protein synthesis in rat mammary cells in tissue culture, two different experimental approaches were used. The first study involved the reduction of amino acids singly from the total amino acid complement of the medium for milk protein synthesis. The second study was to investigate the effect on milk protein synthesis of single amino acid addition to the basic complement of amino acids. Order of limiting amino acids was lysine (first) and possible methionine, valine, or arginine (second).

  4. Biotransformation of tissue-specific hormone tibolone with fungal culture Trichothecium roseum

    NASA Astrophysics Data System (ADS)

    Shah, Syed Adnan Ali; Sultan, Sadia; Zaimi bin Mohd Noor, M.

    2013-06-01

    Whole cells based biotransformation is an important tool for bioconversion of steroids. It can be used to synthesize biologically potent compounds with diverse structures. Biotransformation of tissue-specific hormone tibolone (1) with Trichothecium roseum (ATCC 13411) has being carried out for the first time. Two new and three known metabolites 2-6 were isolated from fermentation of tibolone (1) with Trichothecium roseum and their structures were characterized by 2D NMR spectroscopy and mass spectrometry. The relative stereochemistry of new metabolites 5 and 6 was deduced by 2D NOESY experiments. The effect of cultures on tibolone structural modifications and time-course studies has also been conducted.

  5. New Fungus-Insect Symbiosis: Culturing, Molecular, and Histological Methods Determine Saprophytic Polyporales Mutualists of Ambrosiodmus Ambrosia Beetles.

    PubMed

    Li, You; You, Li; Simmons, David Rabern; Bateman, Craig C; Short, Dylan P G; Kasson, Matthew T; Rabaglia, Robert J; Hulcr, Jiri

    2015-01-01

    Ambrosia symbiosis is an obligate, farming-like mutualism between wood-boring beetles and fungi. It evolved at least 11 times and includes many notorious invasive pests. All ambrosia beetles studied to date cultivate ascomycotan fungi: early colonizers of recently killed trees with poor wood digestion. Beetles in the widespread genus Ambrosiodmus, however, colonize decayed wood. We characterized the mycosymbionts of three Ambrosiodmus species using quantitative culturing, high-throughput metabarcoding, and histology. We determined the fungi to be within the Polyporales, closely related to Flavodon flavus. Culture-independent sequencing of Ambrosiodmus minor mycangia revealed a single operational taxonomic unit identical to the sequences from the cultured Flavodon. Histological sectioning confirmed that Ambrosiodmus possessed preoral mycangia containing dimitic hyphae similar to cultured F. cf. flavus. The Ambrosiodmus-Flavodon symbiosis is unique in several aspects: it is the first reported association between an ambrosia beetle and a basidiomycotan fungus; the mycosymbiont grows as hyphae in the mycangia, not as budding pseudo-mycelium; and the mycosymbiont is a white-rot saprophyte rather than an early colonizer: a previously undocumented wood borer niche. Few fungi are capable of turning rotten wood into complete animal nutrition. Several thousand beetle-fungus symbioses remain unstudied and promise unknown and unexpected mycological diversity and enzymatic innovations. PMID:26367271

  6. New Fungus-Insect Symbiosis: Culturing, Molecular, and Histological Methods Determine Saprophytic Polyporales Mutualists of Ambrosiodmus Ambrosia Beetles

    PubMed Central

    Bateman, Craig C.; Short, Dylan P. G.; Kasson, Matthew T.; Rabaglia, Robert J.; Hulcr, Jiri

    2015-01-01

    Ambrosia symbiosis is an obligate, farming-like mutualism between wood-boring beetles and fungi. It evolved at least 11 times and includes many notorious invasive pests. All ambrosia beetles studied to date cultivate ascomycotan fungi: early colonizers of recently killed trees with poor wood digestion. Beetles in the widespread genus Ambrosiodmus, however, colonize decayed wood. We characterized the mycosymbionts of three Ambrosiodmus species using quantitative culturing, high-throughput metabarcoding, and histology. We determined the fungi to be within the Polyporales, closely related to Flavodon flavus. Culture-independent sequencing of Ambrosiodmus minor mycangia revealed a single operational taxonomic unit identical to the sequences from the cultured Flavodon. Histological sectioning confirmed that Ambrosiodmus possessed preoral mycangia containing dimitic hyphae similar to cultured F. cf. flavus. The Ambrosiodmus-Flavodon symbiosis is unique in several aspects: it is the first reported association between an ambrosia beetle and a basidiomycotan fungus; the mycosymbiont grows as hyphae in the mycangia, not as budding pseudo-mycelium; and the mycosymbiont is a white-rot saprophyte rather than an early colonizer: a previously undocumented wood borer niche. Few fungi are capable of turning rotten wood into complete animal nutrition. Several thousand beetle-fungus symbioses remain unstudied and promise unknown and unexpected mycological diversity and enzymatic innovations. PMID:26367271

  7. Tissue culture study of the medicinal plant leek (allium ampeloprasum L).

    PubMed

    Monemi, Mohammad Bagher; Kazemitabar, S Kamal; Bakhshee Khaniki, Gholamreza; Yasari, Esmaeil; Sohrevardi, Firouzeh; Pourbagher, Roghayeh

    2014-01-01

    Persian shallot, also called leek (Allium ampeloprasum), is a monocotyledon plant of the lily family (Liliaceae). It belongs to the genus Allium, has a characteristic taste and morphological features, making it to be considered as one of the popular herbal medicine. This research was conducted with the purpose of obtaining optimal conditions for tissue culture of Persian shallot and comparing its active ingredient production in vitro versus in vivo. In this study, the auxin 2, 4-D and benzyl aminopurine- 6 (BAP) hormones, each at two concentrations (0.5 and 0.1 mg/ L) and Kin at 0.5 mg/ L were used in the format of a randomized complete block design in three replications. Results showed that the best culture media for callus formation for leaf and seed explants were the MS cultures with the hormonal compositions (0.5 mg/ L of 2, 4- D, 0.1 mg/ L of BAP) and (0.5 mg/ L of Kin and 0.1 mg/ L of 2, 4- D). Identification of the chemical composition of the essential oils, extracted either from leek callus or leaf was carried out using GC mass analysis. Twenty one compounds were detected in the GC mass spectra, seven of which constitutv about 51.5% of the total amount of compounds present in the essential oils were identified. Our data demonstrate that the leek essential oil constituents as well as callus formation can be affected by culture medium condition.

  8. Tissue culture study of the medicinal plant leek (allium ampeloprasum L).

    PubMed

    Monemi, Mohammad Bagher; Kazemitabar, S Kamal; Bakhshee Khaniki, Gholamreza; Yasari, Esmaeil; Sohrevardi, Firouzeh; Pourbagher, Roghayeh

    2014-01-01

    Persian shallot, also called leek (Allium ampeloprasum), is a monocotyledon plant of the lily family (Liliaceae). It belongs to the genus Allium, has a characteristic taste and morphological features, making it to be considered as one of the popular herbal medicine. This research was conducted with the purpose of obtaining optimal conditions for tissue culture of Persian shallot and comparing its active ingredient production in vitro versus in vivo. In this study, the auxin 2, 4-D and benzyl aminopurine- 6 (BAP) hormones, each at two concentrations (0.5 and 0.1 mg/ L) and Kin at 0.5 mg/ L were used in the format of a randomized complete block design in three replications. Results showed that the best culture media for callus formation for leaf and seed explants were the MS cultures with the hormonal compositions (0.5 mg/ L of 2, 4- D, 0.1 mg/ L of BAP) and (0.5 mg/ L of Kin and 0.1 mg/ L of 2, 4- D). Identification of the chemical composition of the essential oils, extracted either from leek callus or leaf was carried out using GC mass analysis. Twenty one compounds were detected in the GC mass spectra, seven of which constitutv about 51.5% of the total amount of compounds present in the essential oils were identified. Our data demonstrate that the leek essential oil constituents as well as callus formation can be affected by culture medium condition. PMID:25035862

  9. Method for Producing Non-Neoplastic, Three Dimensional, Mammalian Tissue and Cell Aggregates Under Microgravity Culture Conditions and the Products Produced Therefrom

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J. (Inventor); Wolf, David A. (Inventor); Spaulding, Glenn F. (Inventor); Prewett, Tracey L. (Inventor)

    1996-01-01

    Normal mammalian tissue and the culturing process has been developed for the three groups of organ, structural, and blood tissue. The cells are grown in vitro under microgravity culture conditions and form three dimensional cells aggregates with normal cell function. The microgravity culture conditions may be microgravity or simulated microgravity created in a horizontal rotating wall culture vessel.

  10. Micropatterned, clickable culture substrates enable in situ spatiotemporal control of human PSC-derived neural tissue morphology.

    PubMed

    Knight, G T; Sha, J; Ashton, R S

    2015-03-28

    We describe a modular culture platform that enables spatiotemporal control of the morphology of 2D neural tissues derived from human pluripotent stem cells (hPSCs) by simply adding clickable peptides to the media. It should be widely applicable for elucidating how spatiotemporal changes in morphology and substrate biochemistry regulate tissue morphogenesis. PMID:25688384

  11. Culture of equine fibroblast-like synoviocytes on synthetic tissue scaffolds towards meniscal tissue engineering: a preliminary cell-seeding study

    PubMed Central

    Fox, Derek B.; Stoker, Aaron M.; Beatty, Mark; Cockrell, Mary; Janicek, John C.; Cook, James L.

    2014-01-01

    Introduction. Tissue engineering is a new methodology for addressing meniscal injury or loss. Synovium may be an ideal source of cells for in vitro meniscal fibrocartilage formation, however, favorable in vitro culture conditions for synovium must be established in order to achieve this goal. The objective of this study was to determine cellularity, cell distribution, and extracellular matrix (ECM) formation of equine fibroblast-like synoviocytes (FLS) cultured on synthetic scaffolds, for potential application in synovium-based meniscal tissue engineering. Scaffolds included open-cell poly-L-lactic acid (OPLA) sponges and polyglycolic acid (PGA) scaffolds cultured in static and dynamic culture conditions, and PGA scaffolds coated in poly-L-lactic (PLLA) in dynamic culture conditions. Materials and Methods. Equine FLS were seeded on OPLA and PGA scaffolds, and cultured in a static environment or in a rotating bioreactor for 12 days. Equine FLS were also seeded on PGA scaffolds coated in 2% or 4% PLLA and cultured in a rotating bioreactor for 14 and 21 days. Three scaffolds from each group were fixed, sectioned and stained with Masson’s Trichrome, Safranin-O, and Hematoxylin and Eosin, and cell numbers and distribution were analyzed using computer image analysis. Three PGA and OPLA scaffolds from each culture condition were also analyzed for extracellular matrix (ECM) production via dimethylmethylene blue (sulfated glycosaminoglycan) assay and hydroxyproline (collagen) assay. PLLA coated PGA scaffolds were analyzed using double stranded DNA quantification as areflection of cellularity and confocal laser microscopy in a fluorescent cell viability assay. Results. The highest cellularity occurred in PGA constructs cultured in a rotating bioreactor, which also had a mean sulfated glycosaminoglycan content of 22.3 µg per scaffold. PGA constructs cultured in static conditions had the lowest cellularity. Cells had difficulty adhering to OPLA and the PLLA coating of PGA

  12. A Tribolium castaneum whole-embryo culture protocol for studying the molecular mechanisms and morphogenetic movements involved in insect development.

    PubMed

    Macaya, Constanza C; Saavedra, Patricio E; Cepeda, Rodrigo E; Nuñez, Viviana A; Sarrazin, Andres F

    2016-01-01

    The development of the red flour beetle Tribolium castaneum is more representative of arthropods than the evolutionarily derived fly, Drosophila melanogaster. Thus, Tribolium is becoming an emerging organism model for studying the evolution of the mechanisms that control embryonic development in arthropods. In this regard, diverse genetic and molecular tools are currently available for Tribolium, as well as imaging and embryonic techniques. Recently, we developed a method for culturing embryos in order to study specific stages during Tribolium development. In this report, we present a detailed and "easy-to-follow" protocol for embryo handling and dissection, extending the use of whole-embryo culture to functional analysis by performing in vivo pharmacological manipulations. This experimental accessibility allowed us to study the relevance of microtubules in axis elongation, using nocodazole and taxol drugs to interfere with microtubule networks, followed by length measurement analysis. Additionally, we demonstrated that embryo handling had no effect on the development of Tribolium embryos, and we checked viability after dissection and bisection and during incubation using propidium iodide. The embryo culture protocol we describe here can be applied to study diverse developmental processes in Tribolium. We expect that this protocol can be adapted and applied to other arthropods.

  13. Insect Phylogenomics

    PubMed Central

    Behura, Susanta K.

    2015-01-01

    With the advent of next-generation sequencing methods, phylogenetics has taken a new turn in the recent years. Phylogenomics, the integration of phylogenetics with genome data, has emerged as a powerful approach to study systematics and evolution of species. Recently, breakthrough researches employing phylogenomic tools have provided better insights into the timing and pattern of insect evolution. The next-generation sequencing methods are now increasingly used by entomologists to generate genomic and transcript sequences of various insect species and strains. These data provide opportunities for comparative genomics and large-scale multigene phylogenies of diverse lineages of insects. Phylogenomic investigations help us better understand systematic and evolutionary relationships of insect species that play important roles as herbivores, predators, detritivores, pollinators, or disease vectors. It is important that we critically assess the prospects and limitations of phylogenomic methods. In this review, I describe the current status, outline the major challenges, and remark on potential future applications of phylogenomic tools in studying insect systematics and evolution. PMID:25963452

  14. Additively Manufactured Device for Dynamic Culture of Large Arrays of 3D Tissue Engineered Constructs.

    PubMed

    Costa, Pedro F; Hutmacher, Dietmar W; Theodoropoulos, Christina; Gomes, Manuela E; Reis, Rui L; Vaquette, Cédryck

    2015-04-22

    The ability to test large arrays of cell and biomaterial combinations in 3D environments is still rather limited in the context of tissue engineering and regenerative medicine. This limitation can be generally addressed by employing highly automated and reproducible methodologies. This study reports on the development of a highly versatile and upscalable method based on additive manufacturing for the fabrication of arrays of scaffolds, which are enclosed into individualized perfusion chambers. Devices containing eight scaffolds and their corresponding bioreactor chambers are simultaneously fabricated utilizing a dual extrusion additive manufacturing system. To demonstrate the versatility of the concept, the scaffolds, while enclosed into the device, are subsequently surface-coated with a biomimetic calcium phosphate layer by perfusion with simulated body fluid solution. 96 scaffolds are simultaneously seeded and cultured with human osteoblasts under highly controlled bidirectional perfusion dynamic conditions over 4 weeks. Both coated and noncoated resulting scaffolds show homogeneous cell distribution and high cell viability throughout the 4 weeks culture period and CaP-coated scaffolds result in a significantly increased cell number. The methodology developed in this work exemplifies the applicability of additive manufacturing as a tool for further automation of studies in the field of tissue engineering and regenerative medicine.

  15. Effect of tissue culture storage on the in vivo survival of canine osteochondral allografts.

    PubMed

    Oates, K M; Chen, A C; Young, E P; Kwan, M K; Amiel, D; Convery, F R

    1995-07-01

    In vitro studies in our laboratory have shown that the biomechanical and biochemical characteristics of osteochondral grafts can be preserved for as long as 28 days under tissue culture conditions. This study represents an attempt to extend these results to an in vivo model. In adult mongrel dogs, either an autograft, a fresh allograft, or a stored allograft was placed in a standardized defect on the weight-bearing surface of the medial femoral condyle. The stored grafts were kept at 4 degrees C in tissue culture medium for 14 days prior to implantation. The animals were killed at 12 weeks. Cartilage from the contralateral knee served as a control. The modulus and permeability of the cartilage were assessed with confined compression creep tests. The collagen and glycosaminoglycan contents were measured, and the cartilage was analyzed histologically with hematoxylin and eosin and safranin O stains. Grossly, the cartilage appeared viable at harvest. The histologic results were similar in the treatment groups, with the same spectrum of mild degenerative changes being noted in each group. The glycosaminoglycan content was significantly less in the autograft group than in its control group and than in the fresh allograft group. The glycosaminoglycan content did not differ significantly between fresh and stored allografts. The collagen content, modulus, and permeability did not differ either between experimental and control groups or between graft types. Our results support the conclusion that osteochondral allografts can be stored for as many as 14 days without significantly affecting the results of the procedure.

  16. Application of plant cell and tissue culture for the production of phytochemicals in medicinal plants.

    PubMed

    Pant, Bijaya

    2014-01-01

    Approximately 80% of the world inhabitants depend on the medicinal plants in the form of traditional formulations for their primary health care system well as in the treatment of a number of diseases since the ancient time. Many commercially used drugs have come from the information of indigenous knowledge of plants and their folk uses. Linking of the indigenous knowledge of medicinal plants to modern research activities provides a new reliable approach, for the discovery of novel drugs much more effectively than with random collection. Increase in population and increasing demand of plant products along with illegal trade are causing depletion of medicinal plants and many are threatened in natural habitat. Plant tissue culture technique has proved potential alternative for the production of desirable bioactive components from plants, to produce the enough amounts of plant material that is needed and for the conservation of threatened species. Different plant tissue culture systems have been extensively studied to improve and enhance the production of plant chemicals in various medicinal plants.

  17. Rapid freeze-substitution preserves membranes in high-pressure frozen tissue culture cells.

    PubMed

    Hawes, P; Netherton, C L; Mueller, M; Wileman, T; Monaghan, P

    2007-05-01

    We describe a method for high-pressure freezing and rapid freeze-substitution of cells in tissue culture which provides excellent preservation of membrane detail with negligible ice segregation artefacts. Cells grown on sapphire discs were placed 'face to face' without removal of tissue culture medium and frozen without the protection of aluminium planchettes. This reduction in thermal load of the sample/holder combination resulted in freezing of cells without visible ice-crystal artefact. Freeze-substitution at -90 degrees C for 60 min in acetone containing 2% uranyl acetate, followed by warming to -50 degrees C and embedding in Lowicryl HM20 gave consistent and clear membrane detail even when imaged without section contrasting. Preliminary data indicates that the high intrinsic contrast of samples prepared in this way will be valuable for tomographic studies. Immunolabelling sensitivity of sections of samples prepared by this rapid substitution technique was poor; however, reducing the uranyl acetate concentration in the substitution medium to 0.2% resulted in improved labelling. Samples substituted in this lower concentration of uranyl acetate also gave good membrane detail when imaged after section contrasting.

  18. Specific activity of tissue culture antirabic vaccine Rabivak-Vnukovo-32 with short intramuscular vaccination schedule.

    PubMed

    Selimov, M A; Toigombaeva, V S; Zgurskaya, G N; Kulikova, L G; Kodkind, G Kh

    1988-05-01

    Tissue culture rabies vaccine has been used for subcutaneous immunization of 158 subjects according to official instructions and also for intramuscular immunization of 128 subjects according to a short schedule with booster inoculations. All 286 subjects were either bitten or contaminated with saliva of rabid animals or animals suspected of having rabies. The 1168 serum samples were tested by neutralization test (NT) in mice, by radial haemolysis (RH) and by indirect haemagglutination (IHA). The highest, earliest and longest active post-vaccination immunity was registered after the most intensive subcutaneous vaccination course at a dose of 5 ml for 25 days with 3 booster inoculations. Subcutaneous inoculation of 3 ml vaccine for 12 days (36 ml) failed to produce a satisfactory elevation of antibody titre. After 2 to 4 booster inoculations, however, a satisfactory level of antibody was observed. The tissue culture vaccine was shown to have good prospects for clinical vaccination by intramuscular route. On intramuscular vaccination at 1.5 ml for 9 days with 6 booster inoculations on days 16, 23, 30, 37, 67 and 97 (initial vaccine volume 45 ml) the mean geometric antibody titres (MGT) reached 93, 160, 322 and 165 on days 30, 60, 90 and 112, respectively. The economically efficient and rapid IHA and RH tests were confirmed to be specific and suitable for titration of antirabies antibody.

  19. The Early History of Tissue Culture in Britain: The Interwar Years

    PubMed Central

    WILSON, DUNCAN

    2005-01-01

    SUMMARY The technique of tissue culture has, throughout the twentieth century, become a mainstay of biomedical research, and exists today as a celebrated scientific tool. However, an examination of its early history demonstrates that it was once contested, with professional opinion differing as to its value to science and medicine, and, crucially for the purposes of this article, considerable public awareness of its potential and perceived pitfalls. Here, the hitherto neglected situation in the early British history of tissue culture will be studied, with the focus being the work performed at the Strangeways Research Laboratory in Cambridge during the interwar years of the last century. Examination of the early life of this institution shows that scientists eager to stress the technique’s viability tapped into popular sentiment to overstress its potential, in a fashion reminiscent of earlier experimental biologists and their contemporary American counterparts. This ultimately backfired on British culturists as the press coverage of their work became incredibly sensationalist, and increasingly sinister in tone, and scientific fact and fantastical speculation became inseparable. PMID:16532064

  20. Screenhouse and field persistence of nonpathogenic endophytic Fusarium oxysporum in Musa tissue culture plants.

    PubMed

    Paparu, Pamela; Dubois, Thomas; Gold, Clifford S; Niere, Björn; Adipala, Ekwamu; Coyne, Daniel

    2008-04-01

    Two major biotic constraints to highland cooking banana (Musa spp., genome group AAA-EA) production in Uganda are the banana weevil Cosmopolites sordidus and the burrowing nematode Radopholus similis. Endophytic Fusarium oxysporum strains inoculated into tissue culture banana plantlets have shown control of the banana weevil and the nematode. We conducted screenhouse and field experiments to investigate persistence in the roots and rhizome of two endophytic Fusarium oxysporum strains, V2w2 and III4w1, inoculated into tissue-culture banana plantlets of highland cooking banana cultivars Kibuzi and Nabusa. Re-isolation of F. oxysporum showed that endophyte colonization decreased faster from the rhizomes than from the roots of inoculated plants, both in the screenhouse and in the field. Whereas rhizome colonization by F. oxysporum decreased in the screenhouse (4-16 weeks after inoculation), root colonization did not. However, in the field (17-33 weeks after inoculation), a decrease was observed in both rhizome and root colonization. The results show a better persistence in the roots than rhizomes of endophytic F. oxysporum strains V2w2 and III4w1.

  1. Identification of QTLs associated with tissue culture response of mature wheat embryos.

    PubMed

    Ma, Jian; Deng, Mei; Lv, Si-Yu; Yang, Qiang; Jiang, Qian-Tao; Qi, Peng-Fei; Li, Wei; Chen, Guo-Yue; Lan, Xiu-Jin; Wei, Yu-Ming

    2016-01-01

    Mature embryo is an excellent explant for tissue culture as it is convenient to be obtained without limitation of growing seasons and development stages. However, regeneration ability of the calli from wheat mature embryos is limited, thus hindering its application. To identify genes associated with the tissue culture response (TCR) of wheat, QTLs for callus induction from mature embryos and callus regeneration were detected using a recombinant inbred lines (RILs) population derived from the cross between a synthetic hexaploid wheat genotype, SHW-L1 and a commercial cultivar Chuanmai 32. Three QTLs for callus rate were identified and they were located on chromosomes 1D, 5A, and 6D, respectively, with explained phenotypic variation ranging from 10.16 to 11.82 %. One QTL for differentiation rate was detected only with 10.96 % of the phenotypic variation explained. Two QTLs for emergence rate were identified and they were located on 3B and 4A, respectively, with 9.88 and 10.30 % of phenotypic variation. The results presented in this study with those reported previously indicated that group 1, 3, and 5 chromosomes are likely to play important roles in TCR of wheat. PMID:27652125

  2. In vitro two-dimensional and three-dimensional tenocyte culture for tendon tissue engineering.

    PubMed

    Qiu, Yiwei; Wang, Xiao; Zhang, Yaonan; Carr, Andrew J; Zhu, Liwei; Xia, Zhidao; Sabokbar, Afsie

    2016-03-01

    In order to examine the differentiation potential of the tenocytes expanded in our defined culture medium (reported previously) and the effect of sequential combination of the two culture conditions on human tenocytes, a two-dimensional and three-dimensional experimental approach was used. Human tenocytes were sequentially exposed to 1% fetal bovine serum (FBS) + 50 ng/ml platelet-derived growth factor-BB (PDGFBB ) + 50 ng/ml basic fibroblast growth factor (bFGF) for the first 14 days (expansion phase) followed by a further 14-day culture in the presence of 10 ng/ml transforming growth factor β-3 plus 50 ng/ml insulin-like growth factor 1, but in the absence of serum (differentiation phase). The results showed that by sequential treatment of human tenocytes maintaining a long-term two-dimensional tenocyte culture in vitro for up to 28 days was possible. These findings were further verified using a three-dimensional scaffold (Bombyx silk) whereby the tendon-like constructs formed resembled macroscopically and microscopically the constructs formed in 10% FBS supplemented culture media and the human hamstring tendon. These findings were further substantiated using haematoxylin and eosin staining, scanning electron microscopy and by immunohistochemical detection of type I collagen. In addition, the mechanical properties of the three-dimensional constructs were determined to be significantly superior to that of the natural human hamstring tendon. This is the first report to demonstrate a possible approach in expanding and differentiating human tenocytes for tendon tissue engineering.

  3. Long-term three-dimensional neural tissue cultures in functionalized self-assembling peptide hydrogels, matrigel and collagen I.

    PubMed

    Koutsopoulos, Sotirios; Zhang, Shuguang

    2013-02-01

    Designer peptides with self-assembling properties form nanofibers which are further organized to form a hydrogel consisting of up to 99.5% water. We present here the encapsulation of neural stem cells into peptide nanofiber hydrogel scaffolds. This results in three-dimensional (3-D) neural tissue cultures in which neural stem cells differentiate into progenitor neural cells, neurons, astrocytes and oligodendrocytes when cultured in serum-free medium. Cell survival studies showed that neural cells in peptide hydrogels thrive for at least 5 months. In contrast, neural stem cells encapsulated in Collagen I were poorly differentiated and did not migrate significantly, thus forming clusters. We show that for culture periods of 1-2 weeks, neural stem cells proliferate and differentiate better in Matrigel. However, in long-term studies, the population of cells in Matrigel decreases whereas better cell survival rates are observed in neural tissue cultures in peptide hydrogels. Peptide functionalization with cell adhesion and cell differentiation motifs show superior cell survival and differentiation properties compared to those observed upon culturing neural cells in non-modified peptide hydrogels. These designed 3-D engineered tissue culturing systems have a potential use as tissue surrogates for tissue regeneration. The well-defined chemical and physical properties of the peptide nanofiber hydrogels and the use of serum-free medium allow for more realistic biological studies of neural cells in a biomimetic 3-D environment.

  4. Implementing oxygen control in chip-based cell and tissue culture systems.

    PubMed

    Oomen, Pieter E; Skolimowski, Maciej D; Verpoorte, Elisabeth

    2016-09-21

    Oxygen is essential in the energy metabolism of cells, as well as being an important regulatory parameter influencing cell differentiation and function. Interest in precise oxygen control for in vitro cultures of tissues and cells continues to grow, especially with the emergence of the organ-on-a-chip and the desire to emulate in vivo conditions. This was recently discussed in this journal in a Critical Review by Brennan et al. (Lab Chip (2014). DOI: ). Microfluidics can be used to introduce flow to facilitate nutrient supply to and waste removal from in vitro culture systems. Well-defined oxygen gradients can also be established. However, cells can quickly alter the oxygen balance in their vicinity. In this Tutorial Review, we expand on the Brennan paper to focus on the implementation of oxygen analysis in these systems to achieve continuous monitoring. Both electrochemical and optical approaches for the integration of oxygen monitoring in microfluidic tissue and cell culture systems will be discussed. Differences in oxygen requirements from one organ to the next are a challenging problem, as oxygen delivery is limited by its uptake into medium. Hence, we discuss the factors determining oxygen concentrations in solutions and consider the possible use of artificial oxygen carriers to increase dissolved oxygen concentrations. The selection of device material for applications requiring precise oxygen control is discussed in detail, focusing on oxygen permeability. Lastly, a variety of devices is presented, showing the diversity of approaches that can be employed to control and monitor oxygen concentrations in in vitro experiments. PMID:27492338

  5. Suppression of sheep and goat lymphocyte proliferation by sheep, goat, and sheep x goat hybrid trophoblast tissue cultures.

    PubMed

    Roth, T L; White, K L; Horohov, D W

    1991-11-01

    Immunosuppressive activity of conditioned medium from cultured ovine, caprine, and hybrid trophoblast tissue was examined. Conceptuses were obtained from naturally mated donor ewes and does at d 20 of gestation and trophoblast tissue was cultured for 24 h in medium supplemented with 15% calf serum and 1% antibiotic/antimycotic. Conditioned medium was added to pokeweed mitogen-stimulated sheep and goat lymphocyte cultures. Quantification of [3H]thymidine uptake by cells was used to measure lymphocyte proliferation. Ovine, caprine, and hybrid conditioned medium effectively suppressed sheep and goat lymphocyte proliferation (P less than .01). There were no differences (P greater than .05) between the immunosuppressive activity of the three tissue types on either sheep or goat lymphocytes. For all treatment groups, sheep lymphocytes were suppressed more than goat lymphocytes (P less than .05). These results indicate that, at d 20 of gestation, sheep x goat hybrid trophoblast tissue is capable of suppressing pokeweed mitogen-stimulated lymphocyte proliferation. PMID:1752830

  6. Isolation of a bacterium resembling Pirellula species from primary tissue culture of the giant tiger prawn (Penaeus monodon).

    PubMed Central

    Fuerst, J A; Sambhi, S K; Paynter, J L; Hawkins, J A; Atherton, J G

    1991-01-01

    During attempts to establish tissue cultures from hepatopancreas, heart, and hemolymph of the giant tiger prawn (Penaeus monodon), using a medium including penicillin, streptomycin, and amphotericin B, bacterial contamination in the form of a sheet of growth attached to the tissue culture vessel was a persistent problem. Contaminant bacteria were teardrop-shaped cells arranged in rosettes, and electron microscopy revealed buds, crateriform structures, and the absence of a peptidoglycan layer in the cell wall, features characteristic of bacteria in the Planctomyces-Pirellula group, a phylogenetically distinct group of eubacteria. Two strains of contaminant bacteria were isolated in pure culture. Both exhibited morphology and antibiotic resistance consistent with their membership in the Planctomyces-Pirellula group (order Planctomycetales) of eubacteria. Tissue culture media for marine invertebrates may select for such bacteria if high concentrations of cell wall synthesis-inhibiting antibiotics are included. Images PMID:1781677

  7. Organoid Culture of Isolated Cells from Patient-derived Tissues with Colorectal Cancer

    PubMed Central

    Xie, Bing-Ying; Wu, Ai-Wen

    2016-01-01

    Background: Colorectal cancer (CRC) is a heterogeneous disease; current research relies on cancer cell lines and animal cancer models, which may not precisely imitate inner human tumors and guide clinical medicine. The purpose of our study was to explore and further improve the process of producing three-dimensional (3D) organoid model and impel the development of personalized therapy. Methods: We subcutaneously injected surgically resected CRC tissues from a patient into BALB/c-nu mice to build patient-derived xenografts (PDXs). Isolated cells from PDXs at appropriate tumor size were mingled with Matrigel, and then seeded in ultra-low attachment 96-well plates at four cell densities (500, 1000, 2000, and 4000 single cells/well). Cells were cultured with advanced Dulbecco's Modified Eagle Medium/F12 medium additional with various factors added to maintain tumor's biological traits and growth activity. The growth curves of the four cell densities were measured after 24 h of culture until 25 days. We evaluated the effects of four chemotherapeutic agents on organoid model by the CellTiter-Glo® Luminescent Cell Viability Assay. Hematoxylin and eosin (H and E) staining of 3D organoids was performed and compared with patient and CRC PDX tissues. Furthermore, immunohistochemistry was performed, in which the organoids were stained with the proliferation marker, Ki-67. During the experimental process, a phase-contrast microscope was used. Results: Phenotype experimental results showed that 3D organoids were tightly packed together and grew robustly over time. All four densities of cells formed organoids while that composed of 2000 cells/well provided an adequate cultivation system and grew approximately 8-fold at the 25th day. The chemosensitivity of the four conventional drugs was [s]-10-hydroxycamptothecin > mitomycin C > adriamycin > paclitaxel, which can guide clinical treatment. Histological features of CRC patient's tumor tissues and mice tumor xenograft tissues were

  8. Replication of type 2 herpes simplex virus in human endocervical tissue in organ culture.

    PubMed Central

    Birch, J.; Fink, C. G.; Skinner, G. R.; Thomas, G. H.; Jordan, J. A.

    1976-01-01

    The replication of type 2 herpes simplex virus in human endocervical tissue in organ culture was investigated. The temporal profile of virus replication was related to the initial virus inoculum; high input inocula induced a rapid increase in virus titre while lower multiplicities induced a more slow-rising increase in virus titre. Our evidence suggested that explants were capable of initiating and supporting virus replication for at least 2 weeks following establishment of the culture. Virus yields were optimal when explants were cultured at 37 degrees and in serum-supplemented medium. Explants also supported the replication of type 1 herpes simplex virus and a "non-human" herpes simplex virus (pseudo-rabies virus). The optimal conditions for replication of type 2 herpes simplex virus in human endocervical explants have been established and will provide a model permitting precise investigation of lytic or other virus-cervical cell interactions and their possible relationship to herpes virus-induced pre-invasive carcinoma of this organ. Images Fig. 1 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 PMID:183806

  9. Nicotine and methyl methane sulfonate in mini organ cultures of human parotid gland tissue.

    PubMed

    Ginzkey, Christian; Friehs, Gudrun; Koehler, Christian; Hackenberg, Stephan; Voelker, Hans-Ullrich; Richter, Elmar; Kleinsasser, Norbert H

    2010-08-16

    The aim was to demonstrate the applicability of using mini organ cultures (MOC) of the human parotid gland for indicating DNA damage by nicotine. Macroscopically healthy specimens of human parotid glands (1 mm3) were cultured for 7 d. Morphology was examined after HE and immunohistochemical staining of alpha-amylase. MOC were exposed to 2.0 mM nicotine or 100 microM methyl methane sulfonate (MMS) for 1, 2 and 3 h, followed by a regeneration period of 24 h. DNA damage was assessed by the comet assay. Histological findings demonstrated healthy acinar cells up to 8 days of culture and a strong expression pattern of alpha-amylase. Cells in the centre of mini organs showed a granular cytoplasm starting at day 3. 1-3 h nicotine exposure significantly increased DNA damage as determined by DNA in the tail (DT), with no significant differences with increasing exposure time and only a trend towards decreased values of DT after regeneration. MMS demonstrated a time-dependent increase in DNA damage and distinctly reduced DT values after regeneration. MOC may be used to study DNA damage and repair after repetitive exposure to xenobiotics. They provide additional information for in vitro studies of cells growing in an intact tissue structure. PMID:20466043

  10. Cryopreservation and in vitro culture of primary cell types from lung tissue of a stranded pygmy sperm whale (Kogia breviceps).

    PubMed

    Annalaura Mancia; Spyropoulos, Demetri D; McFee, Wayne E; Newton, Danforth A; Baatz, John E

    2012-01-01

    Current models for in vitro studies of tissue function and physiology, including responses to hypoxia or environmental toxins, are limited and rely heavily on standard 2-dimensional (2-D) cultures with immortalized murine or human cell lines. To develop a new more powerful model system, we have pursued methods to establish and expand cultures of primary lung cell types and reconstituted tissues from marine mammals. What little is known about the physiology of the deep-sea diving pygmy sperm whale (PSW), Kogia breviceps, comes primarily from stranding events that occur along the coast of the southeastern United States. Thus, development of a method for preserving live tissues and retrieving live cells from deceased stranded individuals was initiated. This report documents successful cryopreservation of PSW lung tissue. We established in vitro cultures of primary lung cell types from tissue fragments that had been cryopreserved several months earlier at the stranding event. Dissociation of cryopreserved lung tissues readily provides a variety of primary cell types that, to varying degrees, can be expanded and further studied/manipulated in cell culture. In addition, PSW-specific molecular markers have been developed that permitted the monitoring of fibroblast, alveolar type II, and vascular endothelial cell types. Reconstitution of 3-D cultures of lung tissues with these cell types is now underway. This novel system may facilitate the development of rare or disease-specific lung tissue models (e.g., to test causes of PSW stranding events and lead to improved treatments for pulmonary hypertension or reperfusion injury in humans). Also, the establishment of a "living" tissue bank biorepository for rare/endangered species could serve multiple purposes as surrogates for freshly isolated samples.

  11. Environmental RNAi in herbivorous insects.

    PubMed

    Ivashuta, Sergey; Zhang, Yuanji; Wiggins, B Elizabeth; Ramaseshadri, Partha; Segers, Gerrit C; Johnson, Steven; Meyer, Steve E; Kerstetter, Randy A; McNulty, Brian C; Bolognesi, Renata; Heck, Gregory R

    2015-05-01

    Environmental RNAi (eRNAi) is a sequence-specific regulation of endogenous gene expression in a receptive organism by exogenous double-stranded RNA (dsRNA). Although demonstrated under artificial dietary conditions and via transgenic plant presentations in several herbivorous insects, the magnitude and consequence of exogenous dsRNA uptake and the role of eRNAi remains unknown under natural insect living conditions. Our analysis of coleopteran insects sensitive to eRNAi fed on wild-type plants revealed uptake of plant endogenous long dsRNAs, but not small RNAs. Subsequently, the dsRNAs were processed into 21 nt siRNAs by insects and accumulated in high quantities in insect cells. No accumulation of host plant-derived siRNAs was observed in lepidopteran larvae that are recalcitrant to eRNAi. Stability of ingested dsRNA in coleopteran larval gut followed by uptake and transport from the gut to distal tissues appeared to be enabling factors for eRNAi. Although a relatively large number of distinct coleopteran insect-processed plant-derived siRNAs had sequence complementarity to insect transcripts, the vast majority of the siRNAs were present in relatively low abundance, and RNA-seq analysis did not detect a significant effect of plant-derived siRNAs on insect transcriptome. In summary, we observed a broad genome-wide uptake of plant endogenous dsRNA and subsequent processing of ingested dsRNA into 21 nt siRNAs in eRNAi-sensitive insects under natural feeding conditions. In addition to dsRNA stability in gut lumen and uptake, dosage of siRNAs targeting a given insect transcript is likely an important factor in order to achieve measurable eRNAi-based regulation in eRNAi-competent insects that lack an apparent silencing amplification mechanism. PMID:25802407

  12. Environmental RNAi in herbivorous insects

    PubMed Central

    Ivashuta, Sergey; Zhang, Yuanji; Wiggins, B. Elizabeth; Ramaseshadri, Partha; Segers, Gerrit C.; Johnson, Steven; Meyer, Steve E.; Kerstetter, Randy A.; McNulty, Brian C.; Bolognesi, Renata; Heck, Gregory R.

    2015-01-01

    Environmental RNAi (eRNAi) is a sequence-specific regulation of endogenous gene expression in a receptive organism by exogenous double-stranded RNA (dsRNA). Although demonstrated under artificial dietary conditions and via transgenic plant presentations in several herbivorous insects, the magnitude and consequence of exogenous dsRNA uptake and the role of eRNAi remains unknown under natural insect living conditions. Our analysis of coleopteran insects sensitive to eRNAi fed on wild-type plants revealed uptake of plant endogenous long dsRNAs, but not small RNAs. Subsequently, the dsRNAs were processed into 21 nt siRNAs by insects and accumulated in high quantities in insect cells. No accumulation of host plant-derived siRNAs was observed in lepidopteran larvae that are recalcitrant to eRNAi. Stability of ingested dsRNA in coleopteran larval gut followed by uptake and transport from the gut to distal tissues appeared to be enabling factors for eRNAi. Although a relatively large number of distinct coleopteran insect-processed plant-derived siRNAs had sequence complementarity to insect transcripts, the vast majority of the siRNAs were present in relatively low abundance, and RNA-seq analysis did not detect a significant effect of plant-derived siRNAs on insect transcriptome. In summary, we observed a broad genome-wide uptake of plant endogenous dsRNA and subsequent processing of ingested dsRNA into 21 nt siRNAs in eRNAi-sensitive insects under natural feeding conditions. In addition to dsRNA stability in gut lumen and uptake, dosage of siRNAs targeting a given insect transcript is likely an important factor in order to achieve measurable eRNAi-based regulation in eRNAi-competent insects that lack an apparent silencing amplification mechanism. PMID:25802407

  13. Environmental RNAi in herbivorous insects.

    PubMed

    Ivashuta, Sergey; Zhang, Yuanji; Wiggins, B Elizabeth; Ramaseshadri, Partha; Segers, Gerrit C; Johnson, Steven; Meyer, Steve E; Kerstetter, Randy A; McNulty, Brian C; Bolognesi, Renata; Heck, Gregory R

    2015-05-01

    Environmental RNAi (eRNAi) is a sequence-specific regulation of endogenous gene expression in a receptive organism by exogenous double-stranded RNA (dsRNA). Although demonstrated under artificial dietary conditions and via transgenic plant presentations in several herbivorous insects, the magnitude and consequence of exogenous dsRNA uptake and the role of eRNAi remains unknown under natural insect living conditions. Our analysis of coleopteran insects sensitive to eRNAi fed on wild-type plants revealed uptake of plant endogenous long dsRNAs, but not small RNAs. Subsequently, the dsRNAs were processed into 21 nt siRNAs by insects and accumulated in high quantities in insect cells. No accumulation of host plant-derived siRNAs was observed in lepidopteran larvae that are recalcitrant to eRNAi. Stability of ingested dsRNA in coleopteran larval gut followed by uptake and transport from the gut to distal tissues appeared to be enabling factors for eRNAi. Although a relatively large number of distinct coleopteran insect-processed plant-derived siRNAs had sequence complementarity to insect transcripts, the vast majority of the siRNAs were present in relatively low abundance, and RNA-seq analysis did not detect a significant effect of plant-derived siRNAs on insect transcriptome. In summary, we observed a broad genome-wide uptake of plant endogenous dsRNA and subsequent processing of ingested dsRNA into 21 nt siRNAs in eRNAi-sensitive insects under natural feeding conditions. In addition to dsRNA stability in gut lumen and uptake, dosage of siRNAs targeting a given insect transcript is likely an important factor in order to achieve measurable eRNAi-based regulation in eRNAi-competent insects that lack an apparent silencing amplification mechanism.

  14. Effects of long- and short-term passage of insect cells in different culture media on baculovirus replication.

    PubMed

    Lynn, D E

    2000-10-01

    Two insect cell lines that had been maintained in both serum-free (SFM) and serum-containing (SCM) media for over 5 years were each tested for their ability to replicate baculovirus. The gypsy moth cell line, IPLB-LdEIta (Ld), produced similar (not statistically different) amounts of gypsy moth nucleopolyhedrovirus (LdMNPV) occlusion bodies (OBs) in the two media (serum-free Ex-Cell 400 and TC-100 with 9% (v/v) fetal bovine serum, SCM(1)) but produced more of the Autographa californica nucleopolyhedrovirus (AcMNPV) OBs in SFM than in SCM(1). When Ld cells normally grown in SCM(1) were switched to SFM, production of OBs from both viruses improved and, after three passages, reached higher levels of AcMNPV production than in cells normally maintained in that medium. Alternatively, cells switched from SFM to SCM(1) initially produced as much (in the case of LdMNPV) or higher (in the case of AcMNPV) levels of virus OBs than cells normally maintained in SCM(1) but productivity dropped off over subsequent passages such that after five passages in SCM(1), cells produced substantially fewer OBs of both viruses. A fall armyworm cell line (IPLB-SF21AE; Sf) showed slightly different effects from long- and short-term passage in SFM (Ex-Cell 400) or SCM(2) (TMN-FH). Cells maintained in SFM produced about 20 times more AcMNPV OBs than cells maintained long-term in SCM. Sf cells switched from SFM to SCM maintained the level of production of that seen in SFM at the first passage, but quickly dropped off OB production levels to that normally seen in SCM. Alternatively, SCM-maintained Sf cells produced higher levels at the first passage in SFM and, within five passages in SFM, reached levels found in cells maintained for long term in this medium. Under the conditions in which these two cell lines were infected, the highest levels of AcMNPV OB production in Ld cells were about five times that of Sf cells. In a separate series of experiments, cells normally grown in SFM were passaged

  15. The primary culture of mirror carp snout and caudal fin tissues and the isolation of Koi herpesvirus.

    PubMed

    Zhou, Jingxiang; Wang, Hao; Zhu, Xia; Li, Xingwei; Lv, Wenliang; Zhang, Dongming

    2013-10-01

    The explosive Koi herpesvirus (KHV) epidemic has caused the deaths of a large number of carp and carp variants and has produced serious economic losses. The mirror carp (Cyprinus carpio var. specularis) exhibits strong environmental adaptability and its primary cells can be used to isolate KHV. This study utilized the tissue explant method to systematically investigate primary cell culture conditions for mirror carp snout and caudal fin tissues. We demonstrated that cells from these two tissue types had strong adaptability, and when cultured in Medium 199 (M199) containing 20% serum at 26 to 30°C, the cells from the snout and caudal fin tissues exhibited the fastest egress and proliferation. Inoculation of these two cell types with KHV-infected fish kidney tissues produced typical cytopathic effects; additionally, identification by electron microscopy, and PCR indicated that KHV could be isolated from both cell types. PMID:23893087

  16. Ectopic Osteogenesis of Macroscopic Tissue Constructs Assembled from Human Mesenchymal Stem Cell-Laden Microcarriers through In Vitro Perfusion Culture

    PubMed Central

    Chen, Maiqin; Zhou, Min; Ye, Zhaoyang; Zhou, Yan; Tan, Wen-Song

    2014-01-01

    We had previously demonstrated the feasibility of preparing a centimeter-sized bone tissue construct by following a modular approach. In the present study, the objectives were to evaluate osteogenesis and tissue formation of human amniotic mesenchymal stem cells-laden CultiSpher S microcarriers during in vitro perfusion culture and after subcutaneous implantation. Microtissues were prepared in dynamic culture using spinner flasks in 28 days. In comparison with 1-week perfusion culture, microtissues became more obviously fused, demonstrating significantly higher cellularity, metabolic activity, ALP activity and calcium content while maintaining cell viability after 2-week perfusion. After subcutaneous implantation in nude mice for 6 and 12 weeks, all explants showed tight contexture, suggesting profound tissue remodeling in vivo. In addition, 12-week implantation resulted in slightly better tissue properties. However, in vitro perfusion culture time exerted great influence on the properties of corresponding explants. Degradation of microcarriers was more pronounced in the explants of 2-week perfused macrotissues compared to those of 1-week perfusion and directly implanted microtissues. Moreover, more blood vessel infiltration and bone matrix deposition with homogeneous spatial distribution were found in the explants of 2-week perfused macrotissues. Taken together, in vitro perfusion culture time is critical in engineering bone tissue replacements using such a modular approach, which holds great promise for bone regeneration. PMID:25275528

  17. The effect of oxygen partial pressure on protein synthesis and collagen hydroxylation by mature periodontal tissues maintained in organ cultures

    PubMed Central

    Yen, Edwin H. K.; Sodek, Jaro; Melcher, Antony H.

    1979-01-01

    Mature periodontal tissues from adult-mouse first mandibular molars were cultured in a continuous-flow organ-culture system which allowed the regulation of both ascorbic acid concentration and pO2 (oxygen partial pressure). Protein synthesis was measured by analysing the incorporation of [3H]proline into collagenous and non-collagenous proteins during the last 24h of a 2-day culture. At low pO2 [16.0kPa (approx. 120mmHg)] approx. 60% of protein-incorporated [3H]proline was found in collagenous proteins. However, it was evident that this collagen was considerably underhydroxylated. At high pO2 [56.0kPa (approx. 420mmHg)], both the amount of collagen deposited in the tissues and the degree of hydroxylation were increased considerably. In contrast, no significant effect on non-collagenous protein was observed. Tissues cultured at low pO2 for the first 48h were unable to respond to a subsequent increase in pO2 during the last 24h. Analysis of pepsin-solubilized collagen α-chains labelled with [14C]glycine demonstrated the synthesis of both type-I and type-III collagens by explants cultured for 48h at high pO2. Type-III collagen comprised 20–30% of the radioactivity in α-chains in both the periodontal ligament and the tissues of the alveolar process. The pattern of protein synthesis in the alveolar tissues at high pO2 was similar to that observed in these tissues in vivo. However, in the cultured periodontal ligament the proportions of non-collagenous proteins and type-III collagens were increased in comparison with the tissue in vivo. PMID:454369

  18. Ionic osmolytes and intracellular calcium regulate tissue production in chondrocytes cultured in a 3D charged hydrogel.

    PubMed

    Farnsworth, Nikki L; Mead, Benjamin E; Antunez, Lorena R; Palmer, Amy E; Bryant, Stephanie J

    2014-11-01

    The goal of this study was to investigate the role of fixed negative charges in regulating cartilage-like tissue production by chondrocytes under static and dynamic three-dimensional culture, and to determine whether intracellular calcium ([Ca(2+)]i) is involved in mediating this response. Initial experiments using the 3D neutral hydrogel were conducted in static isotonic culture with ionic and non-ionic osmolytes added to the culture medium. Tissue production by bovine chondrocytes with non-ionic osmolytes was 1.9-fold greater than with ionic osmolytes, suggesting that the ionic nature of the osmolyte is an important regulator of tissue production. To investigate fixed negative charges, a 3D culture system containing encapsulated chondrocytes was employed based on a synthetic and neutral hydrogel platform within which negatively charged chondroitin sulfate was incorporated in a controlled manner. Incorporation of negative charges did not affect the mechanical properties of the hydrogel; however, intracellular ion concentration was elevated from the culture medium (330 mOsm) and estimated to be similar to that in ~400 mOsm culture medium. With dynamic loading, GAG synthesis decreased by 26% in neutral hydrogels cultured in 400mOsm medium, and increased by 26% in charged gels cultured in 330 mOsm. Treatment of chondrocyte-seeded hydrogels with the Ca(2+) chelator BAPTA-AM decreased GAG synthesis by 32-46% and was similar among all conditions, suggesting multiple roles for Ca(2+) mediated tissue production including with ionic osmolytes. In conclusion, findings from this study suggest that a dynamic ionic environment regulates tissue synthesis and points to [Ca(2+)]i signaling as a potential mediator. PMID:25128592

  19. Cloning crops in a CELSS via tissue culture: Prospects and problems

    NASA Technical Reports Server (NTRS)

    Carman, John G.; Hess, J. Richard

    1990-01-01

    Micropropagation is currently used to clone fruits, nuts, and vegetables and involves controlling the outgrowth in vitro of basal, axillary, or adventitious buds. Following clonal multiplication, shoots are divided and rooted. This process has greatly reduced space and energy requirements in greenhouses and field nurseries and has increased multiplication rates by greater than 20 fold for some vegetatively propagated crops and breeding lines. Cereal and legume crops can also be cloned by tissue culture through somatic embryogenesis. Somatic embryos can be used to produce 'synthetic seed', which can tolerate desiccation and germinate upon rehydration. Synthetic seed of hybrid wheat, rice, soybean and other crops could be produced in a controlled ecological life support system. Thus, yield advantages of hybreds over inbreds (10 to 20 percent) could be exploited without having to provide additional facilities and energy for parental-line and hybrid seed nurseries.

  20. Phosphopeptide mapping of proteins ectopically expressed in tissue culture cell lines.

    PubMed

    Firulli, Beth A.; Virshup, David M.; Firulli, Anthony B.

    2004-01-01

    Post-translational modifications such as phosphorylation play a vital role in the regulation of protein function. In our study of the basic Helix-loop-Helix (bHLH) transcription factor HAND1, it was suspected that HAND1 was being phosphorylated during trophoblast giant cell differentiation and that coexpression of a constitutively active kinase with HAND1 resulted in changes in the proteins dimerization profile. In order to accurately document HAND1 phosphorylation and identify the resides being modified, we employed metabolic cell labeling with (32)P of tissue culture cells coexpressing a Flag-epitope tagged HAND1 along with a number of active kinases and phosphatase subunits. We generated phosphopeptide maps of the phosphorylated HAND1 using the methods described below and linked these modifications to changes in HAND1 biological function.

  1. Rapid, specific detection of alphaviruses from tissue cultures using a replicon-defective reporter gene assay.

    PubMed

    Li, Jiangjiao; Zhu, Wuyang; Wang, Huanqin; Li, Jiandong; Zhang, Quanfu; He, Ying; Li, Jia; Fu, Juanjuan; Li, Dexin; Liang, Guodong

    2012-01-01

    We established a rapid, specific technique for detecting alphaviruses using a replicon-defective reporter gene assay derived from the Sindbis virus XJ-160. The pVaXJ expression vector containing the XJ-160 genome was engineered to form the expression vectors pVaXJ-EGFP expressing enhanced green fluorescence protein (EGFP) or pVaXJ-GLuc expressing Gaussia luciferase (GLuc). The replicon-defective reporter plasmids pVaXJ-EGFPΔnsp4 and pVaXJ-GLucΔnsp4 were constructed by deleting 1139 bp in the non-structural protein 4 (nsP4) gene. The deletion in the nsP4 gene prevented the defective replicons from replicating and expressing reporter genes in transfected BHK-21 cells. However, when these transfected cells were infected with an alphavirus, the non-structural proteins expressed by the alphavirus could act on the defective replicons in trans and induce the expression of the reporter genes. The replicon-defective plasmids were used to visualize the presence of alphavirus qualitatively or detect it quantitatively. Specificity tests showed that this assay could detect a variety of alphaviruses from tissue cultures, while other RNA viruses, such as Japanese encephalitis virus and Tahyna virus, gave negative results with this system. Sensitivity tests showed that the limit of detection (LOD) of this replicon-defective assay is between 1 and 10 PFU for Sindbis viruses. These results indicate that, with the help of the replicon-defective alphavirus detection technique, we can specifically, sensitively, and rapidly detect alphaviruses in tissue cultures. The detection technique constructed here may be well suited for use in clinical examination and epidemiological surveillance, as well as for rapid screening of potential viral biological warfare agents.

  2. 3D Tissue Culturing: Tissue in Cube: In Vitro 3D Culturing Platform with Hybrid Gel Cubes for Multidirectional Observations (Adv. Healthcare Mater. 13/2016).

    PubMed

    Hagiwara, Masaya; Kawahara, Tomohiro; Nobata, Rina

    2016-07-01

    An in vitro 3D culturing platform enabling multidirectional observations of 3D biosamples is presented by M. Hagiwara and co-workers on page 1566. 3D recognition of a sample structure can be achieved by facilitating multi-directional views using a standard microscope without a laser system. The cubic platform has the potential to promote 3D culture studies, offering easy handling and compatibility with commercial culture plates at a low price tag. PMID:27384934

  3. 3D Tissue Culturing: Tissue in Cube: In Vitro 3D Culturing Platform with Hybrid Gel Cubes for Multidirectional Observations (Adv. Healthcare Mater. 13/2016).

    PubMed

    Hagiwara, Masaya; Kawahara, Tomohiro; Nobata, Rina

    2016-07-01

    An in vitro 3D culturing platform enabling multidirectional observations of 3D biosamples is presented by M. Hagiwara and co-workers on page 1566. 3D recognition of a sample structure can be achieved by facilitating multi-directional views using a standard microscope without a laser system. The cubic platform has the potential to promote 3D culture studies, offering easy handling and compatibility with commercial culture plates at a low price tag.

  4. Insects: A nutritional alternative

    NASA Technical Reports Server (NTRS)

    Dufour, P. A.

    1981-01-01

    Insects are considered as potential food sources in space. Types of insects consumed are discussed. Hazards of insect ingestion are considered. Insect reproduction, requirements, and raw materials conversion are discussed. Nutrition properties and composition of insects are considered. Preparation of insects as human food is discussed.

  5. Shear and mixing effects on cells in agitated microcarrier tissue culture reactors

    NASA Technical Reports Server (NTRS)

    Cherry, Robert S.; Papoutsakis, E. Terry

    1987-01-01

    Tissue cells are known to be sensitive to mechanical stresses imposed on them by agitation in bioreactors. The amount of agitation provided in a microcarrier or suspension bioreactor should be only enough to provide effective homogeneity. Three distinct flow regions can be identified in the reactor: bulk turbulent flow, bulk laminar flow and boundary-layer flows. Possible mechanisms of cell damage are examined by analyzing the motion of microcarriers or free cells relative to the surrounding fluid, to each other and to moving or stationary solid surfaces. The primary mechanisms of cell damage appear to result from: (1) direct interaction between microcarriers and turbulent eddies; (2) collisions between microcarriers in turbulent flow; and (3) collisions against the impeller or other stationary surfaces. If the smallest eddies of turbulent flow are of the same size as the microcarrier beads, they may cause high shear stresses on the cells. Eddies the size of the average interbead spacing may cause bead-bead collisions which damage cells. The severity of the collisions increases when the eddies are also of the same size as the beads. Impeller collisions occur when beads cannot avoid the impeller leading edge as it advances through the liquid. The implications of the results of this analysis on the design and operation of tissue culture reactors are discussed.

  6. Tenascin variants: differential binding to fibronectin and distinct distribution in cell cultures and tissues.

    PubMed Central

    Chiquet-Ehrismann, R; Matsuoka, Y; Hofer, U; Spring, J; Bernasconi, C; Chiquet, M

    1991-01-01

    In the chicken, three tenascin variants have been characterized that are generated by alternative splicing of 3 of its 11 fibronectin type III repeats. Using monoclonal antibodies that react with common regions versus extra repeats of tenascin, we could distinguish and separate tenascin variants and investigate their interaction with fibronectin using multiple experimental procedures. Interestingly, in all assays used the smallest tenascin variant bound more strongly to fibronectin than the larger ones. These biochemical data were paralleled by the observation that in chick embryo fibroblast cultures only the smallest form of tenascin could be detected in the fibronectin-rich extracellular matrix network laid down by the cells. Furthermore, each tissue present in adult chicken gizzard contained a distinct set of tenascin variants. Those tissues particularly rich in extracellular matrix, such as the tendon, contained the smallest tenascin only. Intermediate-sized tenascin was present in smooth muscle, whereas the largest form was exclusively detectable underneath the epithelial lining of the villi. Thus it appears that cell type-specific forms of tenascin exist that are appropriate for the functional requirements of the respective extracellular matrices. Images PMID:1725601

  7. Rapid detection of bacterial contamination in cell or tissue cultures based on Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Bolwien, Carsten; Sulz, Gerd; Becker, Sebastian; Thielecke, Hagen; Mertsching, Heike; Koch, Steffen

    2008-02-01

    Monitoring the sterility of cell or tissue cultures is an essential task, particularly in the fields of regenerative medicine and tissue engineering when implanting cells into the human body. We present a system based on a commercially available microscope equipped with a microfluidic cell that prepares the particles found in the solution for analysis, a Raman-spectrometer attachment optimized for non-destructive, rapid recording of Raman spectra, and a data acquisition and analysis tool for identification of the particles. In contrast to conventional sterility testing in which samples are incubated over weeks, our system is able to analyze milliliters of supernatant or cell suspension within hours by filtering relevant particles and placing them on a Raman-friendly substrate in the microfluidic cell. Identification of critical particles via microscopic imaging and subsequent image analysis is carried out before micro-Raman analysis of those particles is then carried out with an excitation wavelength of 785 nm. The potential of this setup is demonstrated by results of artificial contamination of samples with a pool of bacteria, fungi, and spores: single-channel spectra of the critical particles are automatically baseline-corrected without using background data and classified via hierarchical cluster analysis, showing great promise for accurate and rapid detection and identification of contaminants.

  8. A comparison of bioreactors for culture of fetal mesenchymal stem cells for bone tissue engineering.

    PubMed

    Zhang, Zhi-Yong; Teoh, Swee Hin; Teo, Erin Yiling; Khoon Chong, Mark Seow; Shin, Chong Woon; Tien, Foo Toon; Choolani, Mahesh A; Chan, Jerry K Y

    2010-11-01

    Bioreactors provide a dynamic culture system for efficient exchange of nutrients and mechanical stimulus necessary for the generation of effective tissue engineered bone grafts (TEBG). We have shown that biaxial rotating (BXR) bioreactor-matured human fetal mesenchymal stem cell (hfMSC) mediated-TEBG can heal a rat critical sized femoral defect. However, it is not known whether optimal bioreactors exist for bone TE (BTE) applications. We systematically compared this BXR bioreactor with three most commonly used systems: Spinner Flask (SF), Perfusion and Rotating Wall Vessel (RWV) bioreactors, for their application in BTE. The BXR bioreactor achieved higher levels of cellularity and confluence (1.4-2.5x, p < 0.05) in large 785 mm(3) macroporous scaffolds not achieved in the other bioreactors operating in optimal settings. BXR bioreactor-treated scaffolds experienced earlier and more robust osteogenic differentiation on von Kossa staining, ALP induction (1.2-1.6×, p < 0.01) and calcium deposition (1.3-2.3×, p < 0.01). We developed a Micro CT quantification method which demonstrated homogenous distribution of hfMSC in BXR bioreactor-treated grafts, but not with the other three. BXR bioreactor enabled superior cellular proliferation, spatial distribution and osteogenic induction of hfMSC over other commonly used bioreactors. In addition, we developed and validated a non-invasive quantitative micro CT-based technique for analyzing neo-tissue formation and its spatial distribution within scaffolds.

  9. Constructing Failure: Leonard Hayflick, Biomedicine, and the Problems with Tissue Culture.

    PubMed

    Park, Hyung Wook

    2016-07-01

    By examining the use of tissue culture in post-war American biomedicine, this paper investigates how scientists experience and manage failure. I study how Leonard Hayflick forged his new definition of failure and ways of managing it by refuting Alexis Carrel's definition of failure alongside his theory of the immortality of cultured cells. Unlike Carrel, Hayflick claimed that every vertebrate somatic cell should eventually die, unless it transformed into a tumour cell. This claim defined cell death, which had been a problem leading to a laboratory failure, as a normal phenomenon. On the other hand, permanent life, which had been considered a normal cellular characteristic, became a major factor causing scientific failure, since it implied malignant transformation that scientists hoped to control. Hayflick then asserted that his cell strains and method would partly enable scientists to manage this factor-especially that occurred through viral infection-alongside other causes of failure in routine tasks, including bacterial contamination. I argue that the growing biomedical enterprise fostered this work of Hayflick's, which had repercussions in both his career and the uses of cells in diverse investigations. His redefinition of failure in the age of biomedicine resulted in the broad dissemination of his cells, medium, and method as well as his long struggle with the National Institutes of Health (NIH), which caused his temporarily failed career. PMID:26236962

  10. Comparison of rapid methods of detection of cytomegalovirus in saliva with virus isolation in tissue culture.

    PubMed

    Warren, W P; Balcarek, K; Smith, R; Pass, R F

    1992-04-01

    Two rapid methods for the detection of cytomegalovirus (CMV) in saliva from congenitally and perinatally infected children were assessed by comparison with traditional virus isolation in tissue culture (TC). The polymerase chain reaction (PCR) was used to amplify a 300-bp segment of the CMV gB gene which was detected in ethidium bromide-stained agarose gels. A centrifugation-enhanced microtiter culture method with a monoclonal antibody for the detection of early-antigen fluorescent foci (DEAFF) was also used. Saliva specimens were collected with mouth swabs from children who were between the ages of 1 month and 14 years and who had either prenatal or perinatal CMV infection. One hundred sixty samples were tested by PCR and TC; 65 (40.6%) were found positive by TC, and 58 (36.8%) were found positive by PCR. Although four samples were found positive by PCR and negative by TC, saliva from seronegative and seropositive TC-negative adults were never found positive by PCR. One hundred fifty-two samples were tested by DEAFF and TC; 64 (42.1%) were found positive by TC, and 58 (38.2%) were found positive by DEAFF. With TC results as a standard, the sensitivity and specificity of DEAFF were, respectively, 90.6 and 97.7%. Because of the greater ease of collecting saliva than urine from newborns, both of these rapid methods merit evaluation in screening for congenital infection.

  11. Tissue culture triggers chromosome alterations, amplification, and transposition of repeat sequences in Allium fistulosum.

    PubMed

    Gernand, Dorota; Golczyk, Hieronim; Rutten, Twan; Ilnicki, Tomasz; Houben, Andreas; Joachimiak, Andrzej J

    2007-05-01

    Structural alterations in nuclei and chromosomes of cells derived from callus culture of Allium fistulosum have been studied with fluorescent in situ hybridization (FISH) using 5S ribosomal DNA (rDNA), 45S rDNA, and 375-bp repeat probes. A high frequency of chromosome abnormalities was found to be caused by the loss of telomere-located 375-bp repeats, chromosome fusion, and subsequent breakage-fusion-bridge cycles. Products of chromosome fusions and monocentric and regularly shaped chromosomes showed additional 375-bp repeat and 45S rDNA clusters at unusual sites, suggesting dynamic copy-number changes and transposition of these repeats. Southern hybridization revealed no differences in the 375-bp repeat and 45S rDNA repeat array order or the degree of methylation between DNA isolated from leaves or tissue-culture cells. In addition, protruding, spike-like structures positive for 375-bp repeats were identified on the surface of different-sized nuclei. Transmission electron microscopy analysis revealed the accumulation of densely packed chromatin within spike-like structures. Because root calyptra cells showed similar structures, it is likely that heterochromatic spike-like structures are a feature of nondividing cells at the onset of programmed cell death. PMID:17612612

  12. Expanding the genetic variability of flatpea using tissues culture, mutagenesis, and intercrossing techniques

    SciTech Connect

    Coulombe, B.A.

    1988-01-01

    Flatpea (Lathyrus sylvestris L.) is a potentially valuable forage legume but contains high levels of 2,4-diaminobutyric acid (DABA), a compound that can have adverse effects on some animals, including rats and poultry. To increase genetic variability in foliar DABA content and other traits of interest, three approaches were utilized: (1) regeneration of flatpea plants from tissue culture to produce potential somaclonal variants, (2) seed irradiation and screening of potentially mutated progeny, and (3) intercrossing among flatpea accessions. Low-frequency whole plant regeneration of flatpea was obtained from hypocotyl-derived callus cultures. Initial tests established that the effective range of gamma-irradiation for seed treatment was between 10.0 and 17.5 kR. Within this range, reduction in percentage of both seedling height and plant survival was a linear function of dose. Individual M{sub 2} plants that contained reduced levels of DABA were identified. No significant trend in DABA concentration with increasing gamma irradiation was apparent. Flatpea pollination methods were evaluated prior to utilization of intercrossing for inducing genetic variability. Appropriate flower stages for emasculation were determined by in vitro germination of pollen. Lines that produced high numbers of seeds per pollination were identified by crossing in all possible combinations among seven flatpea accessions.

  13. Nutrient salts promote light-induced degradation of indole-3-acetic Acid in tissue culture media.

    PubMed

    Dunlap, J R; Robacker, K M

    1988-10-01

    The disappearance of indole-3-acetic acid (IAA) from cell-free liquid culture medium was followed in response to nutrient salts found in Murashige-Skoog salt base, light, and pH range of 4 to 7. The loss of IAA was accelerated by light or Murashige-Skoog salts. However, the combination of both light and Murashige-Skoog salts acted synergistically to catalyze the destruction of over 80% of the original IAA within 7 days of continuous incubation. Under these same conditions, the loss of IAA was decreased to approximately 50% by adjusting the initial pH of the medium to 7. Iron was identified as the single major contributor to light-catalyzed destruction of IAA. Removal of nitrates, which represented 87% of the molar salt composition, also reduced the light-catalyzed loss of IAA. Treatments that protected IAA from degradation, such as darkness or removal of iron from the medium, suppressed the growth of muskmelon (Cucumis melo. Naud., var. reticulatus) callus tissue cultured for 30 days. Treatments in the light that rapidly degraded IAA resulted in maximum growth. Consequently, the brief exposure to IAA prior to degradation was apparently sufficient to initiate physiological changes required for growth. Possible approaches to the preservation of IAA during incubation are discussed. PMID:16666312

  14. Constructing Failure: Leonard Hayflick, Biomedicine, and the Problems with Tissue Culture.

    PubMed

    Park, Hyung Wook

    2016-07-01

    By examining the use of tissue culture in post-war American biomedicine, this paper investigates how scientists experience and manage failure. I study how Leonard Hayflick forged his new definition of failure and ways of managing it by refuting Alexis Carrel's definition of failure alongside his theory of the immortality of cultured cells. Unlike Carrel, Hayflick claimed that every vertebrate somatic cell should eventually die, unless it transformed into a tumour cell. This claim defined cell death, which had been a problem leading to a laboratory failure, as a normal phenomenon. On the other hand, permanent life, which had been considered a normal cellular characteristic, became a major factor causing scientific failure, since it implied malignant transformation that scientists hoped to control. Hayflick then asserted that his cell strains and method would partly enable scientists to manage this factor-especially that occurred through viral infection-alongside other causes of failure in routine tasks, including bacterial contamination. I argue that the growing biomedical enterprise fostered this work of Hayflick's, which had repercussions in both his career and the uses of cells in diverse investigations. His redefinition of failure in the age of biomedicine resulted in the broad dissemination of his cells, medium, and method as well as his long struggle with the National Institutes of Health (NIH), which caused his temporarily failed career.

  15. Achondrogenesis type IB (Fraccaro): study of collagen in the tissue and in chondrocytes cultured in agarose.

    PubMed

    Freisinger, P; Stanescu, V; Jacob, B; Cohen-Solal, L; Maroteaux, P; Bonaventure, J

    1994-02-15

    A lethal chondrodysplasia characterized by extreme micromelia was diagnosed by ultrasound examination in two sibs whose nonconsanguineous parents were healthy. Radiographic and histopathologic data indicated that the two foetuses (18 and 21 weeks old) had achondrogenesis type IB (Fraccaro). Quantitation of total collagen extractable from dried cartilage samples demonstrated a 50% decrease when compared to an age-related control. This decrease was essentially related to type II collagen. Nevertheless, the alpha chains and the CB peptides of type II collagen had a normal electrophoretic mobility. A significant amount of collagen type I was also detected. The electrophoretic pattern of collagens type IX and XI did not differ significantly from control sample. The extracellular matrix elaborated by patient chondrocytes cultured in agarose for 10-12 days, contained less collagen type II than normal cells. Labelling with 14C-proline of cultured cells showed the presence of procollagen and type II collagen chains with a normal electrophoretic mobility, but an alpha 2(I) chain was detectable in the patient material, indicating the presence of collagen type I which supported the tissue findings. The significance of the type II collagen reduction in the patient's cartilage is unclear but it is unlikely to be the primary defect in achondrogenesis type I. PMID:8160740

  16. Using Organotypic Epithelial Tissue Culture to Study the Human Papillomavirus Life Cycle.

    PubMed

    Lee, Denis; Norby, Kathryn; Hayes, Mitchell; Chiu, Ya-Fang; Sugden, Bill; Lambert, Paul F

    2016-01-01

    Human papillomaviruses (HPVs) are small double-stranded DNA viruses that are associated with greater than 95% of cervical cancers and 20% of head and neck cancers. These cancers arise from persistent infections in which there is continued expression of the HPV E6 and E7 oncogenes, often as a consequence of integration of HPV DNA into the host genome. Such cancers represent "dead ends" for the virus as integration disrupts the viral genome and because the cancers are defective in normal epithelial differentiation, which is required for production of progeny papillomavirus. In order to study the full viral life cycle, from the establishment to maintenance to productive stages, our lab makes use of the organotypic epithelial tissue culture system. This system allows us to mimic the three-dimensional structure of epithelia whose differentiation is tightly linked to the completion of the HPV viral life cycle. In this chapter we describe how various aspects of the HPV life cycle are monitored in raft cultures making use of an immortalized keratinocyte cell line. © 2016 by John Wiley & Sons, Inc. PMID:27153383

  17. Tissue plasminogen activator inhibits NMDA-receptor-mediated increases in calcium levels in cultured hippocampal neurons

    PubMed Central

    Robinson, Samuel D.; Lee, Tet Woo; Christie, David L.; Birch, Nigel P.

    2015-01-01

    NMDA receptors (NMDARs) play a critical role in neurotransmission, acting as essential mediators of many forms of synaptic plasticity, and also modulating aspects of development, synaptic transmission and cell death. NMDAR-induced responses are dependent on a range of factors including subunit composition and receptor location. Tissue-type plasminogen activator (tPA) is a serine protease that has been reported to interact with NMDARs and modulate NMDAR activity. In this study we report that tPA inhibits NMDAR-mediated changes in intracellular calcium levels in cultures of primary hippocampal neurons stimulated by low (5 μM) but not high (50 μM) concentrations of NMDA. tPA also inhibited changes in calcium levels stimulated by presynaptic release of glutamate following treatment with bicucculine/4-aminopyridine (4-AP). Inhibition was dependent on the proteolytic activity of tPA but was unaffected by α2-antiplasmin, an inhibitor of the tPA substrate plasmin, and receptor-associated protein (RAP), a pan-ligand blocker of the low-density lipoprotein receptor, two proteins previously reported to modulate NMDAR activity. These findings suggest that tPA can modulate changes in intracellular calcium levels in a subset of NMDARs expressed in cultured embryonic hippocampal neurons through a mechanism that involves the proteolytic activity of tPA and synaptic NMDARs. PMID:26500501

  18. Insect-machine interface based neurocybernetics.

    PubMed

    Bozkurt, Alper; Gilmour, Robert F; Sinha, Ayesa; Stern, David; Lal, Amit

    2009-06-01

    We present details of a novel bioelectric interface formed by placing microfabricated probes into insect during metamorphic growth cycles. The inserted microprobes emerge with the insect where the development of tissue around the electronics during the pupal development allows mechanically stable and electrically reliable structures coupled to the insect. Remarkably, the insects do not react adversely or otherwise to the inserted electronics in the pupae stage, as is true when the electrodes are inserted in adult stages. We report on the electrical and mechanical characteristics of this novel bioelectronic interface, which we believe would be adopted by many investigators trying to investigate biological behavior in insects with negligible or minimal traumatic effect encountered when probes are inserted in adult stages. This novel insect-machine interface also allows for hybrid insect-machine platforms for further studies. As an application, we demonstrate our first results toward navigation of flight in moths. When instrumented with equipment to gather information for environmental sensing, such insects potentially can assist man to monitor the ecosystems that we share with them for sustainability. The simplicity of the optimized surgical procedure we invented allows for batch insertions to the insect for automatic and mass production of such hybrid insect-machine platforms. Therefore, our bioelectronic interface and hybrid insect-machine platform enables multidisciplinary scientific and engineering studies not only to investigate the details of insect behavioral physiology but also to control it.

  19. Dynamic culture induces a cell type-dependent response impacting on the thickness of engineered connective tissues.

    PubMed

    Fortier, Guillaume Marceau; Gauvin, Robert; Proulx, Maryse; Vallée, Maud; Fradette, Julie

    2013-04-01

    Mesenchymal cells are central to connective tissue homeostasis and are widely used for tissue-engineering applications. Dermal fibroblasts and adipose-derived stromal cells (ASCs) allow successful tissue reconstruction by the self-assembly approach of tissue engineering. This method leads to the production of multilayered tissues, devoid of exogenous biomaterials, that can be used as stromal compartments for skin or vesical reconstruction. These tissues are formed by combining cell sheets, generated through cell stimulation with ascorbic acid, which favours the cell-derived production/organization of matrix components. Since media motion can impact on cell behaviour, we investigated the effect of dynamic culture on mesenchymal cells during tissue reconstruction, using the self-assembly method. Tissues produced using ASCs in the presence of a wave-like movement were nearly twice thicker than under standard conditions, while no difference was observed for tissues produced from dermal fibroblasts. The increased matrix deposition was not correlated with an increased proliferation of ASCs, or by higher transcript levels of fibronectin or collagens I and III. A 30% increase of type V collagen mRNA was observed. Interestingly, tissues engineered from dermal fibroblasts featured a four-fold higher level of MMP-1 transcripts under dynamic conditions. Mechanical properties were similar for tissues reconstructed using dynamic or static conditions. Finally, cell sheets produced using ASCs under dynamic conditions could readily be manipulated, resulting in a 2 week reduction of the production time (from 5 to 3 weeks). Our results describe a distinctive property of ASCs' response to media motion, indicating that their culture under dynamic conditions leads to optimized tissue engineering.

  20. Insect evolution.

    PubMed

    Engel, Michael S

    2015-10-01

    It goes without saying that insects epitomize diversity, and with over a million documented species they stand out as one of the most remarkable lineages in the 3.5-billion-year history of life on earth (Figure 1). This reality is passé to even the layperson and is taken for granted in the same way none of us think much of our breathing as we go about our day, and yet insects are just as vital to our existence. Insects are simultaneously familiar and foreign to us, and while a small fraction are beloved or reviled, most are simply ignored. These inexorable evolutionary overachievers outnumber us all, their segmented body plan is remarkably labile, they combine a capacity for high rates of speciation with low levels of natural extinction, and their history of successes eclipses those of the more familiar ages of dinosaurs and mammals alike. It is their evolution - persisting over vast expanses of geological time and inextricably implicated in the diversification of other lineages - that stands as one of the most expansive subjects in biology. PMID:26439349

  1. Insect evolution.

    PubMed

    Engel, Michael S

    2015-10-01

    It goes without saying that insects epitomize diversity, and with over a million documented species they stand out as one of the most remarkable lineages in the 3.5-billion-year history of life on earth (Figure 1). This reality is passé to even the layperson and is taken for granted in the same way none of us think much of our breathing as we go about our day, and yet insects are just as vital to our existence. Insects are simultaneously familiar and foreign to us, and while a small fraction are beloved or reviled, most are simply ignored. These inexorable evolutionary overachievers outnumber us all, their segmented body plan is remarkably labile, they combine a capacity for high rates of speciation with low levels of natural extinction, and their history of successes eclipses those of the more familiar ages of dinosaurs and mammals alike. It is their evolution - persisting over vast expanses of geological time and inextricably implicated in the diversification of other lineages - that stands as one of the most expansive subjects in biology.

  2. Female fertility preservation strategies: cryopreservation and ovarian tissue in vitro culture, current state of the art and future perspectives.

    PubMed

    Filatov, M A; Khramova, Y V; Kiseleva, M V; Malinova, I V; Komarova, E V; Semenova, M L

    2016-10-01

    In the present review, the main strategies of female fertility preservation are covered. Procedures of fertility preservation are necessary for women who suffer from diseases whose treatment requires the use of aggressive therapies, such as chemotherapy and radiotherapy. These kinds of therapy negatively influence the health of gametes and their progenitors. The most commonly used method of female fertility preservation is ovarian tissue cryopreservation, followed by the retransplantation of thawed tissue. Another approach to female fertility preservation that has been actively developed lately is the ovarian tissue in vitro culture. The principal methods, advantages and drawbacks of these two strategies are discussed in this article.

  3. Insect abatement system

    NASA Technical Reports Server (NTRS)

    Spiro, Clifford Lawrence (Inventor); Burnell, Timothy Brydon (Inventor); Wengrovius, Jeffrey Hayward (Inventor)

    1997-01-01

    An insect abatement system prevents adhesion of insect debris to surfaces which must be kept substantially free of insect debris. An article is coated with an insect abatement coating comprising polyorganosiloxane with a Shore A hardness of less than 50 and a tensile strength of less than 4 MPa. A method for preventing the adhesion of insect debris to surfaces includes the step of applying an insect abatement coating to a surface which must be kept substantially free of insect debris.

  4. Oxygen Tension and Formation of Cervical-Like Tissue in Two-Dimensional and Three-Dimensional Culture

    PubMed Central

    Daniel, Jennifer; Elstad, Kirigin; Socrate, Simona; Kaplan, David L.

    2012-01-01

    Cervical dysfunction contributes to a significant number of preterm births and is a common cause of morbidity and mortality in newborn infants. Cervical dysfunction is related to weakened load bearing properties of the collagen-rich cervical stroma. However, the mechanisms responsible for cervical collagen changes during pregnancy are not well defined. It is known that blood flow and oxygen tension significantly increase in reproductive tissues during pregnancy. To examine the effect of oxygen tension, a key mediator of tissue homeostasis, on the formation of cervical-like tissue in vitro, we grew primary human cervical cells in both two-dimensional (2D) and three-dimensional (3D) culture systems at 5% and 20% oxygen. Immunofluorescence studies revealed a stable fibroblast phenotype across six passages in all subjects studied (n=5). In 2D culture for 2 weeks, 20% oxygen was associated with significantly increased collagen gene expression (p<0.01), increased tissue wet weight (p<0.01), and increased collagen concentration (p=0.046). 3D cultures could be followed for significantly longer time frames than 2D cultures (12 weeks vs. 2 weeks). In contrast to 2D cultures, 20% oxygen in 3D cultures was associated with decreased collagen concentration (p<0.01) and unchanged collagen gene expression, which is similar to cervical collagen changes seen during pregnancy. We infer that 3D culture is more relevant for studying cervical collagen changes in vitro. The data suggest that increased oxygen tension may be related to significant cervical collagen changes seen in pregnancy. PMID:21919792

  5. Specification of embryonic stem cell-derived tissues into eye fields by Wnt signaling using rostral diencephalic tissue-inducing culture.

    PubMed

    Sakakura, Eriko; Eiraku, Mototsugu; Takata, Nozomu

    2016-08-01

    The eyes are subdivided from the rostral diencephalon in early development. How the neuroectoderm regulates this subdivision, however, is largely unknown. Taking advantage of embryonic stem cell (ESC) culture using a Rax reporter line to monitor rostral diencephalon formation, we found that ESC-derived tissues at day 7 grown in Glasgow Minimum Expression Media (GMEM) containing knockout serum replacement (KSR) exhibited higher levels of expression of axin2, a Wnt target gene, than those grown in chemically defined medium (CDM). Surprisingly, Wnt agonist facilitated eye field-like tissue specification in CDM. In contrast, the addition of Wnt antagonist diminished eye field tissue formation in GMEM+KSR. Furthermore, the morphological formation of the eye tissue anlage, including the optic vesicle, was accompanied by Wnt signaling activation. Additionally, using CDM culture, we developed an efficient method for generating Rax+/Chx10+ retinal progenitors, which could become fully stratified retina. Here we provide a new avenue for exploring the mechanisms of eye field specification in vitro.

  6. FSH supplementation to culture medium is beneficial for activation and survival of preantral follicles enclosed in equine ovarian tissue.

    PubMed

    Aguiar, F L N; Lunardi, F O; Lima, L F; Rocha, R M P; Bruno, J B; Magalhães-Padilha, D M; Cibin, F W S; Nunes-Pinheiro, D C S; Gastal, M O; Rodrigues, A P R; Apgar, G A; Gastal, E L; Figueiredo, J R

    2016-04-01

    This study investigated the effect of adding different concentrations of bovine recombinant follicle-stimulating hormone on the IVC of equine preantral follicles enclosed in ovarian tissue fragments. Randomized ovarian fragments were fixed immediately (fresh noncultured control) or cultured for 1 or 7 days in α-MEM(+) supplemented with 0, 10, 50, and 100 ng/mL FSH and subsequently analyzed by classical histology. Culture media collected on Day 1 or Day 7 and were analyzed for steroids (estradiol and progesterone) and reactive oxygen species (ROS). After Day 1 and Day 7 of culture, 50-ng/mL FSH treatment had a greater (P < 0.05) percentage of morphologically normal follicles when compared to the other groups, except the 10-ng/mL FSH treatment at Day 1 of culture. The percentage of developing follicles (transition, primary, and secondary), and follicular and oocyte diameters were higher (P < 0.05) in the 50-ng/mL FSH treatment compared to the other groups after Day 7 of culture. Furthermore, estradiol secretion and ROS production were maintained (P > 0.05) throughout the culture in the 50-ng/mL FSH treatment. In conclusion, the addition of 50 ng/mL of FSH promoted activation of primordial follicles to developing follicles, improved survival of preantral follicles, and maintained estradiol and ROS production of equine ovarian tissue after 7 days of culture.

  7. Synergistic effect of scaffold composition and dynamic culturing environment in multilayered systems for bone tissue engineering.

    PubMed

    Rodrigues, Márcia T; Martins, Albino; Dias, Isabel R; Viegas, Carlos A; Neves, Nuno M; Gomes, Manuela E; Reis, Rui L

    2012-11-01

    Bone extracellular matrix (ECM) is composed of mineralized collagen fibrils which support biological apatite nucleation that participates in bone outstanding properties. Understanding and mimicking bone morphological and physiological parameters at a biological scale is a major challenge in tissue engineering scaffolding. Using emergent (nano)technologies scaffold designing may be critically improved, enabling highly functional tissue substitutes for bone applications. This study aims to develop novel biodegradable composite scaffolds of tricalcium phosphate (TCPs) and electrospun nanofibers of poly(ϵ-caprolactone) (PCL), combining TCPs osteoconductivity with PCL biocompatibility and elasticity, mimicking bone structure and composition. We hypothesized that scaffolds with such structure/composition would stimulate the proliferation and differentiation of bone marrow stromal cells (BMSCs) towards the osteogenic phenotype. Composite scaffolds, developed by electrospining using consecutive stacked layers of PCL and TCPs, were characterized by FTIR spectroscopy, X-Ray diffraction and scanning electronic microscopy. Cellular behavior was assessed in goat BMSCs seeded onto composite scaffolds and cultured in static or dynamic conditions, using basal or osteogenic media during 7, 14 or 21 days. Cellular proliferation was quantified and osteogenic differentiation confirmed by alkaline phosphatase activity, alizarin red staining and immunocytochemistry for osteocalcin and collagen I. Results suggest that PCL-TCP scaffolds provide a 3D support for gBMSCs proliferation and osteogenic differentiation with production of ECM. TCPs positively stimulate the osteogenic process, especially under dynamic conditions, where PCL-TCP scaffolds are sufficient to promote osteogenic differentiation even in basal medium conditions. The enhancement of the osteogenic potential in dynamic conditions evidences the synergistic effect of scaffold composition and dynamic stimulation in g

  8. Detection of histone H3 phosphorylation in cultured cells and tissue sections by immunostaining.

    PubMed

    Padmanabhan, Jaya

    2009-01-01

    Growth factor stimulation results in phosphorylation of histone H3 at ser 10 and this correlated with expression of immediate early genes suggesting that this phosphorylation is associated with transcriptional activation. Although Western immunoblot analysis allows the detection of protein modifications in histones, in order to determine the localization of histones during different phases of cell cycle or during treatment of cells with different drugs we have to use immunohistochemistry. The protocol described here allows the detection of phosphorylated histones in tissue-cultured cells and tissue sections by fluorescent or bright-field immunostaining analysis. Here we used a serine 10 specific P-histone H3 antibody to determine the localization of this phosphoprotein in an asynchronously growing H4 glioma cell line and brain sections. It has been shown that long-term potentiation (LTP) is associated with gene transcription, and histone acetylation plays a major role in LTP formation (Wood et al., Learn Mem 13:241-244, 2006; Wood et al., Hippocampus 15:610-621, 2005; Alarcon et al., Neuron 42:947-959, 2004; Korzus et al., Neuron 42:961-972, 2004). Stimulus-induced phosphorylation of histone H3 at serine 10 has also been implicated in hippocampal neurons and striatal neurons (Li et al., J Neurochem 90:1117-1131, 2004; Crosio et al., J Cell Sci 116:4905-4914, 2003). Co-staining with a cell-specific antibody will allow us to determine the type of cells that show activation of histone phosphorylation in the brain.

  9. Glucocorticoids Affect 24 h Clock Genes Expression in Human Adipose Tissue Explant Cultures

    PubMed Central

    Gómez-Abellán, Purificación; Díez-Noguera, Antoni; Madrid, Juan A.; Luján, Juan A.; Ordovás, José M.; Garaulet, Marta

    2012-01-01

    Aims to examine firstly whether CLOCK exhibits a circadian expression in human visceral (V) and subcutaneous (S) adipose tissue (AT) in vitro as compared with BMAL1 and PER2, and secondly to investigate the possible effect of the glucocorticoid analogue dexamethasone (DEX) on positive and negative clock genes expression. Subjects and Methods VAT and SAT biopsies were obtained from morbid obese women (body mass index≥40 kg/m2) (n = 6). In order to investigate rhythmic expression pattern of clock genes and the effect of DEX on CLOCK, PER2 and BMAL1 expression, control AT (without DEX) and AT explants treated with DEX (2 hours) were cultured during 24 h and gene expression was analyzed at the following times: 10:00 h, 14:00 h, 18:00 h, 22:00 h, 02:00 h and 06:00 h, using qRT-PCR. Results CLOCK, BMAL1 and PER2 expression exhibited circadian patterns in both VAT and SAT explants that were adjusted to a typical 24 h sinusoidal curve. PER2 expression (negative element) was in antiphase with respect to CLOCK and in phase with BMAL1 expression (both positive elements) in the SAT (situation not present in VAT). A marked effect of DEX exposure on both positive and negative clock genes expression patterns was observed. Indeed, DEX treatment modified the rhythmicity pattern towards altered patterns with a period lower than 24 hours in all genes and in both tissues. Conclusions 24 h patterns in CLOCK and BMAL1 (positive clock elements) and PER2 (negative element) mRNA levels were observed in human adipose explants. These patterns were altered by dexamethasone exposure. PMID:23251369

  10. RT-PCR testing of allograft musculoskeletal tissue: is it time for culture-based methods to move over?

    PubMed

    Varettas, Kerry

    2014-12-01

    Allograft musculoskeletal tissue samples are assessed for microbial bioburden to reduce the risk of post-transplant infection. Traditionally, solid agar and broth culture media have been used however, nucleic acid testing, such as real-time (RT) polymerase chain reaction (PCR), has been described as more sensitive. This study evaluated the recovery of low numbers of challenge organisms from inoculated swab and musculoskeletal biopsy samples using solid agar culture, cooked meat medium, blood culture bottles and a RT-PCR assay. It was found that broth culture methods were the most sensitive with RT-PCR unable to detect low numbers of bacteria from these samples. Investigation of other non-culture methods may be worthwhile.

  11. Inhibitory Effect of Progesterone on Cervical Tissue Formation in a Three-Dimensional Culture System with Human Cervical Fibroblasts1

    PubMed Central

    House, Michael; Tadesse-Telila, Serkalem; Norwitz, Errol R.; Socrate, Simona; Kaplan, David L.

    2013-01-01

    ABSTRACT Progesterone supplementation is recommended to prevent preterm birth in women with a short cervix, but the mechanism is unclear. We hypothesize that progesterone acts by altering the composition of the cervical extracellular matrix (ECM). We tested this hypothesis using human cervical fibroblasts in both two-dimensional (2D) and three-dimensional (3D) cultures. For 2D culture, cells were seeded in 6-well plates and cultured with media supplemented with estradiol (10−8 M), progesterone (10−7 or 10−6 M), and vehicle. For 3D culture, the cells were cultured on a porous silk protein scaffold system. Progesterone and estrogen receptors were documented by immunohistochemistry and Western blot analysis. In both 2D and 3D cultures, decreased collagen synthesis was seen with increased progesterone concentration. Three-dimensional cultures could be maintained significantly longer than 2D cultures, and the morphology of 3D cultures appeared similar to native cervical tissue. Thus, further studies were performed in 3D culture. To determine the effect of progesterone concentration, the 3D scaffolds were cultured with estradiol (10−8 M) and five conditions: vehicle; 10−9, 10−8, or 10−7 M progesterone; or 10−7 M progesterone plus 10−6 M mifepristone. The highest progesterone concentration correlated with the least amount of collagen synthesis. Collagen synthesis progressively increased as progesterone concentration decreased. This effect was partially antagonized by mifepristone, suggesting the mechanism is mediated by the progesterone receptor. This hormonally responsive 3D culture system supports the hypothesis that progesterone has a direct effect on remodeling cervical ECM during pregnancy. The 3D culture system could be useful for studying the mechanism of progesterone effects on the cervix. PMID:24285720

  12. Three dimensional neuronal cell cultures more accurately model voltage gated calcium channel functionality in freshly dissected nerve tissue.

    PubMed

    Lai, Yinzhi; Cheng, Ke; Kisaalita, William

    2012-01-01

    It has been demonstrated that neuronal cells cultured on traditional flat surfaces may exhibit exaggerated voltage gated calcium channel (VGCC) functionality. To gain a better understanding of this phenomenon, primary neuronal cells harvested from mice superior cervical ganglion (SCG) were cultured on two dimensional (2D) flat surfaces and in three dimensional (3D) synthetic poly-L-lactic acid (PLLA) and polystyrene (PS) polymer scaffolds. These 2D- and 3D-cultured cells were compared to cells in freshly dissected SCG tissues, with respect to intracellular calcium increase in response to high K(+) depolarization. The calcium increases were identical for 3D-cultured and freshly dissected, but significantly higher for 2D-cultured cells. This finding established the physiological relevance of 3D-cultured cells. To shed light on the mechanism behind the exaggerated 2D-cultured cells' functionality, transcriptase expression and related membrane protein distributions (caveolin-1) were obtained. Our results support the view that exaggerated VGCC functionality from 2D cultured SCG cells is possibly due to differences in membrane architecture, characterized by uniquely organized caveolar lipid rafts. The practical implication of use of 3D-cultured cells in preclinical drug discovery studies is that such platforms would be more effective in eliminating false positive hits and as such improve the overall yield from screening campaigns.

  13. Genomics of Insect-Soybean Interactions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The dissection of plant-insect interactions has lagged behind that of interactions between plants and other types of pests. Insect pests interact with plants in a variety of ways, ranging from piercing and sucking of phloem to consumption of leaves and other tissues. Hence, a wide range of genetic m...

  14. Evaluation of Reference Genes for Quantitative Real-Time PCR in Oil Palm Elite Planting Materials Propagated by Tissue Culture

    PubMed Central

    Chan, Pek-Lan; Rose, Ray J.; Abdul Murad, Abdul Munir; Zainal, Zamri; Leslie Low, Eng-Ti; Ooi, Leslie Cheng-Li; Ooi, Siew-Eng; Yahya, Suzaini; Singh, Rajinder

    2014-01-01

    Background The somatic embryogenesis tissue culture process has been utilized to propagate high yielding oil palm. Due to the low callogenesis and embryogenesis rates, molecular studies were initiated to identify genes regulating the process, and their expression levels are usually quantified using reverse transcription quantitative real-time PCR (RT-qPCR). With the recent release of oil palm genome sequences, it is crucial to establish a proper strategy for gene analysis using RT-qPCR. Selection of the most suitable reference genes should be performed for accurate quantification of gene expression levels. Results In this study, eight candidate reference genes selected from cDNA microarray study and literature review were evaluated comprehensively across 26 tissue culture samples using RT-qPCR. These samples were collected from two tissue culture lines and media treatments, which consisted of leaf explants cultures, callus and embryoids from consecutive developmental stages. Three statistical algorithms (geNorm, NormFinder and BestKeeper) confirmed that the expression stability of novel reference genes (pOP-EA01332, PD00380 and PD00569) outperformed classical housekeeping genes (GAPDH, NAD5, TUBULIN, UBIQUITIN and ACTIN). PD00380 and PD00569 were identified as the most stably expressed genes in total samples, MA2 and MA8 tissue culture lines. Their applicability to validate the expression profiles of a putative ethylene-responsive transcription factor 3-like gene demonstrated the importance of using the geometric mean of two genes for normalization. Conclusions Systematic selection of the most stably expressed reference genes for RT-qPCR was established in oil palm tissue culture samples. PD00380 and PD00569 were selected for accurate and reliable normalization of gene expression data from RT-qPCR. These data will be valuable to the research associated with the tissue culture process. Also, the method described here will facilitate the selection of appropriate

  15. Tissue culture-induced genetic and epigenetic variation in triticale (× Triticosecale spp. Wittmack ex A. Camus 1927) regenerants.

    PubMed

    Machczyńska, Joanna; Zimny, Janusz; Bednarek, Piotr Tomasz

    2015-10-01

    Plant regeneration via in vitro culture can induce genetic and epigenetic variation; however, the extent of such changes in triticale is not yet understood. In the present study, metAFLP, a variation of methylation-sensitive amplified fragment length polymorphism analysis, was used to investigate tissue culture-induced variation in triticale regenerants derived from four distinct genotypes using androgenesis and somatic embryogenesis. The metAFLP technique enabled identification of both sequence and DNA methylation pattern changes in a single experiment. Moreover, it was possible to quantify subtle effects such as sequence variation, demethylation, and de novo methylation, which affected 19, 5.5, 4.5% of sites, respectively. Comparison of variation in different genotypes and with different in vitro regeneration approaches demonstrated that both the culture technique and genetic background of donor plants affected tissue culture-induced variation. The results showed that the metAFLP approach could be used for quantification of tissue culture-induced variation and provided direct evidence that in vitro plant regeneration could cause genetic and epigenetic variation.

  16. Tissue culture-induced genetic and epigenetic variation in triticale (× Triticosecale spp. Wittmack ex A. Camus 1927) regenerants.

    PubMed

    Machczyńska, Joanna; Zimny, Janusz; Bednarek, Piotr Tomasz

    2015-10-01

    Plant regeneration via in vitro culture can induce genetic and epigenetic variation; however, the extent of such changes in triticale is not yet understood. In the present study, metAFLP, a variation of methylation-sensitive amplified fragment length polymorphism analysis, was used to investigate tissue culture-induced variation in triticale regenerants derived from four distinct genotypes using androgenesis and somatic embryogenesis. The metAFLP technique enabled identification of both sequence and DNA methylation pattern changes in a single experiment. Moreover, it was possible to quantify subtle effects such as sequence variation, demethylation, and de novo methylation, which affected 19, 5.5, 4.5% of sites, respectively. Comparison of variation in different genotypes and with different in vitro regeneration approaches demonstrated that both the culture technique and genetic background of donor plants affected tissue culture-induced variation. The results showed that the metAFLP approach could be used for quantification of tissue culture-induced variation and provided direct evidence that in vitro plant regeneration could cause genetic and epigenetic variation. PMID:26337939

  17. Chemically-defined medium for growth and differentiation of mixed epithelial and connective tissues in organ culture.

    PubMed

    Hodges, G M; Melcher, A H

    1976-06-01

    The effect on tissue differentiation and growth in vitro of certain of the factors implicated in collagen synthesis (ascorbic acid, alpha-ketoglutarate and oxygen) and the influence of hydrocortisone was studied using organ cultures of fetal mouse mandible as a mixed epithelial and connective tissue system. Using serum-free Waymouth's MB 752/1 chemically-defined medium, addition of high levels of ascorbic acid (300mug per ml), hydrocortisone (1mug per ml) and oxygen (95%) enhanced differentiation in a number of tissues, in particular skin and appendages, tooth germs and bone, while osteoid and dentine production were noticeable promoted. It is suggested that an essential aspect of media design for organ culture involves the incorporaation of collagen-promoting factors to the in vitro enviornment particularly with regard to the controlling role implicated for collagen in a variety of biological processess.

  18. Sequential fractionation and isolation of subcellular proteins from tissue or cultured cells.

    PubMed

    Baghirova, Sabina; Hughes, Bryan G; Hendzel, Michael J; Schulz, Richard

    2015-01-01

    Many types of studies require the localization of a protein to, or isolation of enriched protein from a specific cellular compartment. Many protocols in the literature and from commercially available kits claim to yield pure cellular fractions. However, in our hands, the former often do not work effectively and the latter may be prohibitively expensive if a large number of fractionations are required. Furthermore, the largely proprietary composition of reagents in commercial kits means that the user is not able to make adjustments if, for example, a particular component affects the activity of a protein of interest. The method described here allows the isolation of purified proteins from three cellular fractions: the cytosol, membrane-bound organelles, and the nucleus. It uses gentle buffers with increasing detergent strength that sequentially lyse the cell membrane, organelle membranes and finally the nuclear membrane.•Quick, simple to replicate or adjust; this method does not require expensive reagents or use of commercial kits•The protocol can be applied to tissue samples or cultured cells without changing buffer components•Yields purified fractions of cytosolic, membrane bound and nuclear proteins, with the proper distribution of the appropriate subcellular markers: GAPDH, VDAC, SERCA2 and lamin A/C. PMID:26740924

  19. Prevalence, site and tissue preference of myxozoan parasites infecting gills of cultured fish in Punjab (India).

    PubMed

    Kaur, Harpreet; Katoch, Anu

    2016-02-25

    Native carp species cultured in Indian farms in Punjab (catla Catla catla, rohu Labeo rohita, mrigal Cirrhinus mrigala, exotic carps such as silver carp Hypophthalmichthys molitrix, grass carp Ctenopharyngodon idella, common carp Cyprinus carpio and a catfish Sperata seenghala) were examined for the presence of myxozoan parasites infecting gills. Firstly, the gills were examined under a zoom-stereomicroscope for the presence of plasmodia. The number of plasmodia per gill was counted to determine the index for the intensity of infection. Infected tissues were processed for histology, and 3-4 µm sections of infected gills were stained with haematoxylin & eosin and Luna's method. A total of 19 species of myxosporean were found infecting various cell types in the gills. Of these, 14 species belonged to the genus Myxobolus, 3 species to the genus Thelohanellus and 2 species to the genus Henneguya. Species belonging to the genus Myxobolus formed the interlamellar and intralamellar vascular (LV) type plasmodia, and species belonging to the genus Thelohanellus and Henneguya formed intrafilamental vascular (FV) type plasmodia. Mixed infections comprising 2, 3 or 4 different myxozoan species were noted in individual fish. The most common type of parasitism was polyparasitism due to 4 myxobolids co-occuring in fish with an infection rate of 23.16%. All species caused mild to severe haemorrhagic gill disease with little clinical symptomatology.

  20. Three-dimensional Micro-culture System for Tooth Tissue Engineering.

    PubMed

    Kuchler-Bopp, S; Bécavin, T; Kökten, T; Weickert, J L; Keller, L; Lesot, H; Deveaux, E; Benkirane-Jessel, N

    2016-06-01

    The arrangement of cells within a tissue plays an essential role in organogenesis, including tooth development. Progress is being made to regenerate teeth by reassociating dissociated embryonic dental cells and implanting them in vivo. In the present study, we tested the hanging drop method to study mixed epithelial-mesenchymal cell reorganization in a liquid instead of semisolid medium to see whether it could lead to tooth histogenesis and organogenesis. This method allowed the control of the proportion and number of cells to be used, and the forming microtissues showed homogeneous size. The liquid environment favored cell migrations as compared with collagen gels. Three protocols were compared. The one that sequentially combined the hanging drop and semisolid medium cultures prior to in vivo implantation gave the best results. Indeed, after implantation, teeth developed, showing a well-formed crown, mineralization of dentin and enamel, and the initiation of root formation. Vascularization and the cellular heterogeneity in the mesenchyme were similar to what was observed in developing molars. Finally, after coimplantation with a trigeminal ganglion, the dental mesenchyme, including the odontoblast layer, became innervated. The real advantage of this technique is the small number of cells required to make a tooth. This experimental model can be employed to study the development, physiology, metabolism, or toxicology in forming teeth and test other cell sources. PMID:26965424

  1. Cell therapy, 3D culture systems and tissue engineering for cardiac regeneration.

    PubMed

    Emmert, Maximilian Y; Hitchcock, Robert W; Hoerstrup, Simon P

    2014-04-01

    Ischemic Heart Disease (IHD) still represents the "Number One Killer" worldwide accounting for the death of numerous patients. However the capacity for self-regeneration of the adult heart is very limited and the loss of cardiomyocytes in the infarcted heart leads to continuous adverse cardiac-remodeling which often leads to heart-failure (HF). The concept of regenerative medicine comprising cell-based therapies, bio-engineering technologies and hybrid solutions has been proposed as a promising next-generation approach to address IHD and HF. Numerous strategies are under investigation evaluating the potential of regenerative medicine on the failing myocardium including classical cell-therapy concepts, three-dimensional culture techniques and tissue-engineering approaches. While most of these regenerative strategies have shown great potential in experimental studies, the translation into a clinical setting has either been limited or too rapid leaving many key questions unanswered. This review summarizes the current state-of-the-art, important challenges and future research directions as to regenerative approaches addressing IHD and resulting HF.

  2. Prevalence, site and tissue preference of myxozoan parasites infecting gills of cultured fish in Punjab (India).

    PubMed

    Kaur, Harpreet; Katoch, Anu

    2016-02-25

    Native carp species cultured in Indian farms in Punjab (catla Catla catla, rohu Labeo rohita, mrigal Cirrhinus mrigala, exotic carps such as silver carp Hypophthalmichthys molitrix, grass carp Ctenopharyngodon idella, common carp Cyprinus carpio and a catfish Sperata seenghala) were examined for the presence of myxozoan parasites infecting gills. Firstly, the gills were examined under a zoom-stereomicroscope for the presence of plasmodia. The number of plasmodia per gill was counted to determine the index for the intensity of infection. Infected tissues were processed for histology, and 3-4 µm sections of infected gills were stained with haematoxylin & eosin and Luna's method. A total of 19 species of myxosporean were found infecting various cell types in the gills. Of these, 14 species belonged to the genus Myxobolus, 3 species to the genus Thelohanellus and 2 species to the genus Henneguya. Species belonging to the genus Myxobolus formed the interlamellar and intralamellar vascular (LV) type plasmodia, and species belonging to the genus Thelohanellus and Henneguya formed intrafilamental vascular (FV) type plasmodia. Mixed infections comprising 2, 3 or 4 different myxozoan species were noted in individual fish. The most common type of parasitism was polyparasitism due to 4 myxobolids co-occuring in fish with an infection rate of 23.16%. All species caused mild to severe haemorrhagic gill disease with little clinical symptomatology. PMID:26912043

  3. Effects of Nd:YAG laser radiation in cultured porcine vertebral disc tissue

    NASA Astrophysics Data System (ADS)

    Thal, Dietmar R.; Werkmann, Klaus; Leheta, Fouad; Schober, Ralf; Ulrich, Peter

    1996-01-01

    Nd:Yag laser radiation is used for the treatment of protrusion of intervertebral discs. It is known that laser radiation leads to coagulation, vaporization and carbonization of the disk. Little is known about the early changes in vertebral discs after laser radiation. Therefore, we exposed cadaveric porcine vertebral discs by Nd:YAG laser radiation immediately after death. The discs were quartered and either formalin fixed after laser radiation or kept in culture for 1, 4 and 7 days and then formalin fixed. Immunohistochemistry was performed with antibodies directed against vimentin and amyloid precursor protein (APP). Results showed a jerky leak of notochordial remnant cells and mucopolysaccharides at the distal end of the application needle during laser radiation, which was interpreted as a bursting extrusion of damaged but not vaporized tissue. Histology and immunohistochemistry revealed an incomplete loss of nucleus pulposus and a large, almost complete necrosis of the notochordial remnant cells. In surviving notochordial remnant cells after laser radiation a slight increase of vimentin and APP could be seen without any other cellular reactions. The annulus fibrosus showed no significant changes except a defect with a small necrosis zone at the site of the application needle. Therefore, it can be concluded that Nd:YAG laser radiation leads to an increased volume reduction by the leak of nucleus pulposus and to a slight cellular reaction of surviving notochordal remnant cells detectable by vimentin and APP increase.

  4. Plant cell, tissue and organ culture: the most flexible foundations for plant metabolic engineering applications.

    PubMed

    Ogita, Shinjiro

    2015-05-01

    Significant advances in plant cell, tissue and organ culture (PCTOC) have been made in the last five decades. PCTOC is now thought to be the underlying technique for understanding general or specific biological functions of the plant kingdom, and it is one of the most flexible foundations for morphological, physiological and molecular biological applications of plants. Furthermore, the recent advances in the field of information technology (IT) have enabled access to a large amount of information regarding all aspects of plant biology. For example, sequencing information is stored in mega repositories such as the National Center for Biotechnology Information (NCBI), which can be easily accessed by researchers worldwide. To date, the PCTOC and IT combination strategy for regulation of target plant metabolism and the utilization of bioactive plant metabolites for commercial purposes is essential. In this review, the advantages and the limitations of these methodologies, especially regarding the production of bioactive plant secondary metabolites and metabolic engineering in target plants are discussed mainly from the phenotypic view point.

  5. Discrimination and similarity evaluation of tissue-cultured and wild Dendrobium species using Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Nai-dong; Chen, Han; Li, Jun; Sang, Mang-mang; Ding, Shen; Yu, Hao

    2015-04-01

    The FTIR method was applied to evaluate the similarity of tissue-cultured and wild Dendrobium huoshanense C.Z. Tang et S.J. Cheng, Dendrobium officinale Kimura et Migo and Dendrobium moniliforme (Linn.) Sw and discriminate different Dendrobium species, especially D. huoshanense and its main goldbrick Dendrobium henanense J.L. Lu et L.X. Gao. Despite the general pattern of the IR spectra, different intensities, shapes and peak positions were found in the IR spectra of these samples, especially in the range of 1800-600 cm-1, which could be used to discriminate them. The methanol, aqueous extracting procedure and the second derivative transformation obviously enlarged the tiny spectral differences among these samples. The similarity evaluation based on the IR spectra and the second derivative IR spectrum revealed that the similarity of the methanol extracts between tissue-cultured and wild Dendrobiums might be lower than that between different Dendrobium species. The similarities of the powders and aqueous extracts between tissue-cultured and wild Dendrobiums were higher than those between different Dendrobium species. The further principal component analysis showed that the first three components explained 99.7%, 87.7% and 85.1% of data variance for powder, methanol extract and aqueous extract, respectively, demonstrating a good discrimination between samples. Our research suggested that the variations of secondary metabolites between different origins of the investigated Dendrobiums might be higher than what we had supposed. Tissue culture techniques were widely used in the conversation of rare and endangered medicinal amedica, however, our study suggested that the chemical constituents of tissue-cultured plants might be quite different from their wild correspondences.

  6. Detection of tissue culture-adapted Theiler's virus RNA in spinal cord white matter cells throughout infection.

    PubMed

    Stroop, W G; Brahic, M; Baringer, J R

    1982-08-01

    The appearance of histological lesions and the localization of viral RNA in the central nervous system of mice infected with tissue culture-adapted Theiler's murine encephalomyelitis virus (WW strain) (TMEV-WW) was studied. Viral RNA was detected by autoradiography after in situ hybridization, using a (3)H-labeled DNA probe complementary to virion RNA, which was applied to deparaffinized sections of central nervous system tissues from infected mice. Subjacent histological sections of tissues were used to assess the location and extent of lesions. Lesions were first observed at 20 days post-inoculation and appeared to enlarge throughout infection. They consisted of infiltrates of mononuclear cells and lymphocytes in spinal cord white matter and leptomeninges; at 78 days post-inoculation severe necrotizing and demyelinative myelitis and gliosis were observed. In contrast to the pathogenesis of brain-derived TMEV-WW-infected mice, no lesions were found in the central nervous system gray matter of mice infected with tissue culture-adapted TMEV-WW at any time post-infection. Tissue culture-adapted viral RNA was found in the cells of spinal cord white matter throughout infection; only one neuron in close proximity to the injection site was found to contain viral RNA shortly after infection. At early times after infection, spinal cord white matter cells containing viral RNA were found before development of inflammatory lesions; at later days post-inoculation, positive cells were found within, at the periphery of, or at a distance from lesions. The number of infected cells and the amount of viral RNA per cell appeared to remain constant from 20 to 78 days post-inoculation despite the increasing intensity of the inflammatory response. The nearly exclusive spinal cord white matter tropism of tissue culture-adapted TMEV-WW appeared to directly correlate with the disease-inducing potential of this virus.

  7. Acute and long-term effects of tissue culture on contractile reactivity in renal arteries of the rat.

    PubMed

    De Mey, J G; Uitendaal, M P; Boonen, H C; Vrijdag, M J; Daemen, M J; Struyker-Boudier, H A

    1989-10-01

    To evaluate long-term effects of contractile and mitogenic stimuli on the contractile reactivity of arterial smooth muscle, we measured the incorporation of the thymidine analogue 5-bromo-2'-deoxyuridine (BrdUrd) and mechanical responses in arterial segments that had been maintained in tissue culture. The experiments were performed on renal arteries that had been isolated from adult rats, chemically sympathectomized, mechanically denuded from endothelium and mounted under distension. Exposure of arterial segments for up to 3 weeks to culture medium supplemented with fetal calf serum resulted in the following consecutive changes: a strong acute contraction, selective pharmacological changes that included decreased contractile responses to phenylephrine and vasopressin and increased relaxing responses to isoproterenol, increased incorporation of BrdUrd, a progressive fall in contractile responses to all vasoconstrictor stimuli, and an increase in excitability. Serum-free medium resulted in a much smaller acute arterial contraction, induced less incorporation of BrdUrd, accelerated the occurrence of hyperexcitability, but did not affect early pharmacological changes or the subsequent fall in overall arterial contractility with tissue culture. Dialysis of the serum or addition of ketanserin abolished the contractile effect of serum but did not affect the incorporation of BrdUrd or the loss of contractility with tissue culture. Addition of serotonin to serum-free culture medium mimicked the contractile response to serum but not the stimulation of BrdUrd incorporation. These data indicate that tissue culture alters the properties of the arterial wall, that contraction does not underlie the proliferative response of arterial smooth muscle to serum-derived mitogens in vitro, and that stimulation of DNA synthesis does in itself not lead to selective changes in arterial contractility.

  8. Insect Seminal Fluid Proteins: Identification and Function

    PubMed Central

    Avila, Frank W.; Sirot, Laura K.; LaFlamme, Brooke A.; Rubinstein, C. Dustin; Wolfner, Mariana F.

    2014-01-01

    Seminal fluid proteins (SFPs) produced in reproductive tract tissues of male insects and transferred to females during mating induce numerous physiological and behavioral post-mating changes in females. These changes include decreasing receptivity to re-mating, affecting sperm storage parameters, increasing egg production, modulating sperm competition, feeding behaviors, and mating plug formation. In addition, SFPs also have anti-microbial functions and induce expression of anti-microbial peptides in at least some insects. Here, we review recent identification of insect SFPs and discuss the multiple roles these proteins play in the post-mating processes of female insects. PMID:20868282

  9. Tooth Tissue Engineering: The Importance of Blood Products as a Supplement in Tissue Culture Medium for Human Pulp Dental Stem Cells.

    PubMed

    Pisciolaro, Ricardo Luiz; Duailibi, Monica Talarico; Novo, Neil Ferreira; Juliano, Yara; Pallos, Debora; Yelick, Pamela Crotty; Vacanti, Joseph Phillip; Ferreira, Lydia Masako; Duailibi, Silvio Eduardo

    2015-11-01

    One of the goals in using cells for tissue engineering (TE) and cell therapy consists of optimizing the medium for cell culture. The present study compares three different blood product supplements for improved cell proliferation and protection against DNA damage in cultured human dental pulp stem cells for tooth TE applications. Human cells from dental pulp were first characterized as adult stem cells (ectomesenchymal mixed origin) by flow cytometry. Next, four different cell culture conditions were tested: I, supplement-free; II, supplemented with fetal bovine serum; III, allogeneic human serum; and IV, autologous human serum. Cultured cells were then characterized for cell proliferation, mineralized nodule formation, and colony-forming units (CFU) capability. After 28 days in culture, the comet assay was performed to assess possible damage in cellular DNA. Our results revealed that Protocol IV achieved higher cell proliferation than Protocol I (p = 0.0112). Protocols II and III resulted in higher cell proliferation than Protocol I, but no statistical differences were found relative to Protocol IV. The comet assay revealed less cell damage in cells cultured using Protocol IV as compared to Protocols II and III. The damage percentage observed on Protocol II was significantly higher than all other protocols. CFUs capability was highest using Protocol IV (p = 0.0018) and III, respectively, and the highest degree of mineralization was observed using Protocol IV as compared to Protocols II and III. Protocol IV resulted in significantly improved cell proliferation, and no cell damage was observed. These results demonstrate that human blood product supplements can be used as feasible supplements for culturing adult human dental stem cells.

  10. Synthesis of biologically active influenza virus hemagglutinin in insect larvae.

    PubMed Central

    Kuroda, K; Gröner, A; Frese, K; Drenckhahn, D; Hauser, C; Rott, R; Doerfler, W; Klenk, H D

    1989-01-01

    The hemagglutinin of influenza (fowl plague) virus was expressed in larvae of Heliothis virescens by using recombinant Autographa californica nuclear polyhedrosis virus (AcNPV) as a vector. Animals were infected with the recombinant virus either by parenteral injection or by feeding. For oral uptake, recombinant virus occluded in polyhedra obtained from cultured Spodoptera frugiperda cells after coinfection with authentic AcNPV was used. Immunohistological analyses of infected animals revealed that the hemagglutinin was expressed only in those tissues that are also permissive for the replication of authentic AcNPV. These tissues included hypodermis, fat body, and tracheal matrix. After oral infection, hemagglutinin was also detected in individual gut cells. The amount of hemagglutinin synthesized in larvae after parenteral infection was 0.3% of the total protein, compared with 5% obtained in cultured insect cells. The hemagglutinin was transported to the cell surface and expressed in polarized cells only at the apical plasma membrane. It was processed by posttranslational proteolysis into the cleavage products HA1 and HA2. Oligosaccharides were attached by N-glycosidic linkages and were smaller than those found on hemagglutinin obtained from vertebrate cells. Hemagglutinin from larvae expressed receptor binding and cell fusion activities, but quantitation of the hemolytic capacity revealed that it was only about half as active as hemagglutinin from vertebrate or insect cell cultures. Chickens immunized with larval tissues containing hemagglutinin were protected from infection with fowl plague virus. These observations demonstrate that live insects are able to produce a recombinant membrane protein of vertebrate origin in biologically active form. Images PMID:2648023

  11. Allergies to Insect Venom

    MedlinePlus

    ... The smell of food attracts these insects.  Use insect repellents and keep insecticide available. Treatment tips:  Venom immunotherapy (allergy shots to insect venom(s) is highly effective in preventing subsequent sting ...

  12. A tissue culture technique for rapid clonal propagation and storage under minimal growth conditions of Musa (Banana and plantain).

    PubMed

    Banerjee, N; de Langhe, E

    1985-12-01

    A tissue culture technique for rapid clonal propagation and storage under minimal growth conditions is presented in this paper. Shoot-tip cultures of Musa cultivars (both banana and plantain) are induced by culturing small excised shoot apices on modified MS semisolid medium supplemented with various concentrations and combinations of auxins and cytokinins. The effects of cytokinin concentration in the medium as well as the genotypic configuration of the cultivars on the rate of shoot-bud proliferation have been tested. The established shoot-tip cultures grown on modified MS semisolid medium supplemented with IAA (0.18 mg/l) and BA (2.30 mg/l) have been successfully stored at 15°C with 1000 lux light intensity up to 13-17 months depending on the cultivar. The cultivars tested in the present investigation seem to vary in their ability to withstand minimal growth temperature.

  13. Immune suppression of human lymphoid tissues and cells in rotating suspension culture and onboard the International Space Station.

    PubMed

    Fitzgerald, Wendy; Chen, Silvia; Walz, Carl; Zimmerberg, Joshua; Margolis, Leonid; Grivel, Jean-Charles

    2009-12-01

    The immune responses of human lymphoid tissue explants or cells isolated from this tissue were studied quantitatively under normal gravity and microgravity. Microgravity was either modeled by solid body suspension in a rotating, oxygenated culture vessel or was actually achieved on the International Space Station (ISS). Our experiments demonstrate that tissues or cells challenged by recall antigen or by polyclonal activator in modeled microgravity lose all their ability to produce antibodies and cytokines and to increase their metabolic activity. In contrast, if the cells were challenged before being exposed to modeled microgravity suspension culture, they maintained their responses. Similarly, in microgravity in the ISS, lymphoid cells did not respond to antigenic or polyclonal challenge, whereas cells challenged prior to the space flight maintained their antibody and cytokine responses in space. Thus, immune activation of cells of lymphoid tissue is severely blunted both in modeled and true microgravity. This suggests that suspension culture via solid body rotation is sufficient to induce the changes in cellular physiology seen in true microgravity. This phenomenon may reflect immune dysfunction observed in astronauts during space flights. If so, the ex vivo system described above can be used to understand cellular and molecular mechanisms of this dysfunction.

  14. Single nanoparticle tracking of [Formula: see text]-methyl-d-aspartate receptors in cultured and intact brain tissue.

    PubMed

    Varela, Juan A; Ferreira, Joana S; Dupuis, Julien P; Durand, Pauline; Bouchet, Delphine; Groc, Laurent

    2016-10-01

    Recent developments in single-molecule imaging have revealed many biological mechanisms, providing high spatial and temporal resolution maps of molecular events. In neurobiology, these techniques unveiled that plasma membrane neurotransmitter receptors and transporters laterally diffuse at the surface of cultured brain cells. The photostability of bright nanoprobes, such as quantum dots (QDs), has given access to neurotransmitter receptor tracking over long periods of time with a high spatial resolution. However, our knowledge has been restricted to cultured systems, i.e., neurons and organotypic slices, therefore lacking several aspects of the intact brain rheology and connectivity. Here, we used QDs to track single glutamatergic [Formula: see text]-methyl-d-aspartate receptors (NMDAR) in acute brain slices. By delivering functionalized nanoparticles in vivo through intraventricular injections to rats expressing genetically engineered-tagged NMDAR, we successfully tracked the receptors in native brain tissue. Comparing NMDAR tracking to different classical brain preparations (acute brain slices, cultured organotypic brain slices, and cultured neurons) revealed that the surface diffusion properties shared several features and are also influenced by the nature of the extracellular environment. Together, we describe the experimental procedures to track plasma membrane NMDAR in dissociated and native brain tissue, paving the way for investigations aiming at characterizing receptor diffusion biophysics in intact tissue and exploring the physiopathological roles of receptor surface dynamics.

  15. Somaclonal Variation Is Induced De Novo via the Tissue Culture Process: A Study Quantifying Mutated Cells in Saintpaulia

    PubMed Central

    Sato, Mitsuru; Hosokawa, Munetaka; Doi, Motoaki

    2011-01-01

    Background The origin of somaclonal variation has not been questioned previously, i.e., “pre-existing mutations” in explants and “newly induced mutations” arising from the tissue culture process have not been distinguished. This is primarily because there has been no reliable molecular method for estimating or quantifying variation. Methodology/Principal Findings We adopted a petal-variegated cultivar of Saintpaulia ‘Thamires’ (Saintpaulia sp.) as the model plant. Based on the difference between the pre- and post-transposon excision sequence of the promoter region of flavonoid 3′, 5′-hydoroxylase (F3′5′H), we estimated mutated (transposon-excised) cell percentages using a quantitative real-time PCR. Mutated cell percentages in leaf laminae used as explants was 4.6 and 2.4% in highly or low variegation flower plants, respectively, although the occurrences of blue color mutants in their regenerants were more than 40%. Preexisting mutated cell percentages in cultured explants were considerably lower than the mutated plant percentage among total regenerants via tissue culture. Conclusions/Significance The estimation of mutated cell percentages became possible using the quantitative real-time PCR. The origins of mutations were successfully distinguished; it was confirmed that somaclonal variations are mainly caused by newly generated mutations arising from tissue culture process. PMID:21853148

  16. Tissue culture-induced genetic and epigenetic alterations in rice pure-lines, F1 hybrids and polyploids

    PubMed Central

    2013-01-01

    Background Genetic and epigenetic alterations can be invoked by plant tissue culture, which may result in heritable changes in phenotypes, a phenomenon collectively termed somaclonal variation. Although extensive studies have been conducted on the molecular nature and spectrum of tissue culture-induced genomic alterations, the issue of whether and to what extent distinct plant genotypes, e.g., pure-lines, hybrids and polyploids, may respond differentially to the tissue culture condition remains poorly understood. Results We investigated tissue culture-induced genetic and epigenetic alterations in a set of rice genotypes including two pure-lines (different subspecies), a pair of reciprocal F1 hybrids parented by the two pure-lines, and a pair of reciprocal tetraploids resulted from the hybrids. Using two molecular markers, amplified fragment length polymorphism (AFLP) and methylation-sensitive amplified polymorphism (MSAP), both genetic and DNA methylation alterations were detected in calli and regenerants from all six genotypes, but genetic alteration is more prominent than epigenetic alteration. While significant genotypic difference was observed in frequencies of both types of alterations, only genetic alteration showed distinctive features among the three types of genomes, with one hybrid (N/9) being exceptionally labile. Surprisingly, difference in genetic alteration frequencies between the pair of reciprocal F1 hybrids is much greater than that between the two pure-line subspecies. Difference also exists in the pair of reciprocal tetraploids, but is to a less extent than that between the hybrids. The steady-state transcript abundance of genes involved in DNA repair and DNA methylation was significantly altered in both calli and regenerants, and some of which were correlated with the genetic and/or epigenetic alterations. Conclusions Our results, based on molecular marker analysis of ca. 1,000 genomic loci, document that genetic alteration is the major cause of

  17. [Rabies Tissue Culture Infection Test as an Alternative for the Mouse Inoculation Test

    PubMed

    Zanoni, R.; Hörnlimann, B.; Wandeler, A. I.; Kappeler, A.; Kipfer, R.; Peterhans, E.

    1990-01-01

    Rabies has disappeared from large parts of Switzerland. Due to systematic oral fox-vaccination campaings that started in 1987, cases of rabies in wild and domestic animals have been confined to the western frontier with France in the last three years. Nevertheless, some cases of severe exposition of man by rabid or rabies-suspect animals still occur. Rabies can be diagnosed in brain smears of infected animals with high specificity and sensitivity by a direct immunofluorescence method. According to WHO recommendations, negative results are to be confirmed in cases of a human exposition by intracerebral inoculation of brain suspensions in three-weeks-old mice. This method has an excellent sensitivity and is able to detect false-negative results in immunofluorescence, which occur in a very small percentage (0.043%). The disadvantage of this confirmatory assay is the sacrification of relatively high numbers of mice (in the Swiss rabies center about 1,300 animals each year), and the long time required for a final diagnosis: 7-20 days in positive, 21 days in negative cases. The cultivation of virus from brain suspensions on a mouse neuroblastoma cell line is a tempting alternative to the mouse inoculation test. This method usually provides a conclusive diagnosis within a few days. However, in our hands it showed in preliminary experiments an unsatisfactory sensitivity (80.7%). The necessity to carry out strict reproducibility controls in this assay has to be emphasized. Further work must be invested in the improvement of the rabies tissue culture infection test and a careful long-term comparison with the mouse inoculation test will be necessary before the mouse inoculation test can be replaced.

  18. Longitudinal Claudin Gene Expression Analyses in Canine Mammary Tissues and Thereof Derived Primary Cultures and Cell Lines

    PubMed Central

    Hammer, Susanne C.; Becker, Annegret; Rateitschak, Katja; Mohr, Annika; Lüder Ripoli, Florenza; Hennecke, Silvia; Junginger, Johannes; Hewicker-Trautwein, Marion; Brenig, Bertram; Ngezahayo, Anaclet; Nolte, Ingo; Murua Escobar, Hugo

    2016-01-01

    Human and canine mammary tumours show partial claudin expression deregulations. Further, claudins have been used for directed therapeutic approaches. However, the development of claudin targeting approaches requires stable claudin expressing cell lines. This study reports the establishment and characterisation of canine mammary tissue derived cell lines, analysing longitudinally the claudin-1, -3, -4 and -7 expressions in original tissue samples, primary cultures and developed cell lines. Primary cultures were derived from 17 canine mammary tissues: healthy, lobular hyperplasia, simple adenoma, complex adenoma, simple tubular carcinoma, complex carcinoma, carcinoma arising in a benign mixed tumour and benign mixed tissue. Cultivation was performed, if possible, until passage 30. Claudin mRNA and protein expressions were analysed by PCR, QuantiGene Plex Assay, immunocytochemistry and immunofluorescence. Further, cytokeratin expression was analysed immunocytochemically. Cultivation resulted in 11 established cell lines, eight showing epithelial character. In five of the early passages the claudin expressions decreased compared to the original tissues. In general, claudin expressions were diminished during cultivation. Three cell lines kept longitudinally claudin, as well as epithelial marker expressions, representing valuable tools for the development of claudin targeted anti-tumour therapies. PMID:27690019

  19. An Inflammatory Nucleus Pulposus Tissue Culture Model to Test Molecular Regenerative Therapies: Validation with Epigallocatechin 3-Gallate

    PubMed Central

    Krupkova, Olga; Hlavna, Marian; Amir Tahmasseb, Julie; Zvick, Joel; Kunz, Dominik; Ito, Keita; Ferguson, Stephen J.; Wuertz-Kozak, Karin

    2016-01-01

    Organ cultures are practical tools to investigate regenerative strategies for the intervertebral disc. However, most existing organ culture systems induce severe tissue degradation with only limited representation of the in vivo processes. The objective of this study was to develop a space- and cost-efficient tissue culture model, which represents degenerative processes of the nucleus pulposus (NP). Intact bovine NPs were cultured in a previously developed system using Dyneema jackets. Degenerative changes in the NP tissue were induced either by the direct injection of chondroitinase ABC (1–20 U/mL) or by the diffusion of interleukin-1 beta (IL-1β) and tumor necrosis factor alpha (TNF-α) (both 100 ng/mL) from the culture media. Extracellular matrix composition (collagens, proteoglycans, water, and DNA) and the expression of inflammatory and catabolic genes were analyzed. The anti-inflammatory and anti-catabolic compound epigallocatechin 3-gallate (EGCG, 10 µM) was employed to assess the relevance of the degenerative NP model. Although a single injection of chondroitinase ABC reduced the proteoglycan content in the NPs, it did not activate cellular responses. On the other hand, IL-1β and TNF-α significantly increased the mRNA expression of inflammatory mediators IL-6, IL-8, inducible nitric oxide synthase (iNOS), prostaglandin-endoperoxide synthase 2 (PTGS2) and matrix metalloproteinases (MMP1, MMP3, and MMP13). The cytokine-induced gene expression in the NPs was ameliorated with EGCG. This study provides a proof of concept that inflammatory NP cultures, with appropriate containment, can be useful for the discovery and evaluation of molecular therapeutic strategies against early degenerative disc disease. PMID:27689996

  20. Organotypic slice cultures from rat brain tissue: a new approach for Naegleria fowleri CNS infection in vitro.

    PubMed

    Gianinazzi, C; Schild, M; Müller, N; Leib, S L; Simon, F; Nuñez, S; Joss, P; Gottstein, B

    2005-12-01

    The free-living amoeba Naegleria fowleri is the aetiological agent of primary amoebic meningoencephalitis (PAM), a disease leading to death in the vast majority of cases. In patients suffering from PAM, and in corresponding animal models, the brain undergoes a massive inflammatory response, followed by haemorrhage and severe tissue necrosis. Both, in vivo and in vitro models are currently being used to study PAM infection. However, animal models may pose ethical issues, are dependent upon availability of specific infrastructural facilities, and are time-consuming and costly. Conversely, cell cultures lack the complex organ-specific morphology found in vivo, and thus, findings obtained in vitro do not necessarily reflect the situation in vivo. The present study reports infection of organotypic slice cultures from rat brain with N. fowleri and compares the findings in this culture system with in vivo infection in a rat model of PAM, that proved complementary to that of mice. We found that brain morphology, as present in vivo, is well retained in organotypic slice cultures, and that infection time-course including tissue damage parallels the observations in vivo in the rat. Therefore, organotypic slice cultures from rat brain offer a new in vitro approach to study N. fowleri infection in the context of PAM. PMID:16336733

  1. Organotypic slice cultures from rat brain tissue: a new approach for Naegleria fowleri CNS infection in vitro.

    PubMed

    Gianinazzi, C; Schild, M; Müller, N; Leib, S L; Simon, F; Nuñez, S; Joss, P; Gottstein, B

    2005-12-01

    The free-living amoeba Naegleria fowleri is the aetiological agent of primary amoebic meningoencephalitis (PAM), a disease leading to death in the vast majority of cases. In patients suffering from PAM, and in corresponding animal models, the brain undergoes a massive inflammatory response, followed by haemorrhage and severe tissue necrosis. Both, in vivo and in vitro models are currently being used to study PAM infection. However, animal models may pose ethical issues, are dependent upon availability of specific infrastructural facilities, and are time-consuming and costly. Conversely, cell cultures lack the complex organ-specific morphology found in vivo, and thus, findings obtained in vitro do not necessarily reflect the situation in vivo. The present study reports infection of organotypic slice cultures from rat brain with N. fowleri and compares the findings in this culture system with in vivo infection in a rat model of PAM, that proved complementary to that of mice. We found that brain morphology, as present in vivo, is well retained in organotypic slice cultures, and that infection time-course including tissue damage parallels the observations in vivo in the rat. Therefore, organotypic slice cultures from rat brain offer a new in vitro approach to study N. fowleri infection in the context of PAM.

  2. Tissue in Cube: In Vitro 3D Culturing Platform with Hybrid Gel Cubes for Multidirectional Observations.

    PubMed

    Hagiwara, Masaya; Kawahara, Tomohiro; Nobata, Rina

    2016-07-01

    An in vitro 3D culturing platform enabling multidirectional observations of 3D biosamples is presented. The 3D structure of biosamples can be recognized without fluorescence. The cubic platform employs two types of hydrogels that are compatible with conventional culture dishes or well plates, facilitating growth in culture, ease of handling, and viewing at multiple angles. PMID:27128576

  3. Tissue in Cube: In Vitro 3D Culturing Platform with Hybrid Gel Cubes for Multidirectional Observations.

    PubMed

    Hagiwara, Masaya; Kawahara, Tomohiro; Nobata, Rina

    2016-07-01

    An in vitro 3D culturing platform enabling multidirectional observations of 3D biosamples is presented. The 3D structure of biosamples can be recognized without fluorescence. The cubic platform employs two types of hydrogels that are compatible with conventional culture dishes or well plates, facilitating growth in culture, ease of handling, and viewing at multiple angles.

  4. Insect transgenesis and the sterile insect technique

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The establishment of broadly applicable insect transgenesis systems will enable the analyses of gene function in diverse insect species. This will greatly increase our understanding of diverse aspects of biology so far not functionally addressable. Moreover, insect transgenesis will provide novel st...

  5. What Makes an Insect an Insect?

    ERIC Educational Resources Information Center

    NatureScope, 1985

    1985-01-01

    Provides background information on characteristics common to all insects, activities, and student materials (ready-to-copy games, puzzles, coloring pages, worksheets, and/or mazes) which describe: how insects are classified; how they are different from other animals; and the main insect characteristics. Activities include recommended age levels,…

  6. Growth of plant tissue cultures in simulated lunar soil: Implications for a lunar base Controlled Ecological Life Support System (CELSS)

    NASA Technical Reports Server (NTRS)

    Venketeswaran, S.

    1987-01-01

    Experiments to determine whether plant tissue cultures can be grown in the presence of simulated lunar soil (SLS) and the effect of simulated lunar soil on the growth and morphogenesis of such cultures, as well as the effect upon the germination of seeds and the development of seedlings were carried out . Preliminary results on seed germination and seedling growth of rice and calli growth of winged bean and soybean indicate that there is no toxicity or inhibition caused by SLS. SLS can be used as a support medium with supplements of certain major and micro elements.

  7. Two-photon imaging of collagen remodeling in RAFT tissue cultures

    NASA Astrophysics Data System (ADS)

    Wallace, Vincent P.; Coleno, Mariah L.; Yomo, Tatsuro; Sun, Chung-Ho; Tromberg, Bruce J.

    2001-04-01

    Tissue remodeling is associated with both normal and abnormal processes including wound healing, fibrosis and cancer. In skin, abnormal remodeling causes permanent structural changes that can lead to hypertropic scarring and keloid formation. Normal remodeling, although fast and efficient in skin, is still imperfect, and a connective tissue scar remains at the wound site1. As a result, methods are needed to optimize tissue remodeling in vivo in all cases of wound repair. Since fibroblast-mediated contraction of engineered 3-D collagen based tissues (RAFTs) represents an in vitro model of the tissue contraction and collagen remodeling that occurs in vivo, RAFT tissue contraction studies combined with two-photon microscopy (TPM) studies are used to provide information on ways to improve tissue remodeling in vivo. In the RAFT models discussed here, tissue contraction is modulated either by application of exogenous growth factors or photodynamic therapy. During tissue contraction, TPM is used to image changes in Collagen Type I fibers in the RAFT skin models. Tissues are imaged at depth at day 15 after modulation. TPM signal analysis shows that RAFT tissues having the highest collagen density have the fastest rate of decay of fluorescent signal with depth.

  8. Mesenchymal stem cells from adipose tissue which have been differentiated into chondrocytes in three-dimensional culture express lubricin.

    PubMed

    Musumeci, Giuseppe; Lo Furno, Debora; Loreto, Carla; Giuffrida, Rosario; Caggia, Silvia; Leonardi, Rosalia; Cardile, Venera

    2011-11-01

    The present study focused on the isolation, cultivation and characterization of human mesenchymal stem cells (MSCs) from adipose tissue and on their differentiation into chondrocytes through the NH ChondroDiff medium. The main aim was to investigate some markers of biomechanical quality of cartilage, such as lubricin, and collagen type I and II. Little is known, in fact, about the ability of chondrocytes from human MSCs of adipose tissue to generate lubricin in three-dimensional (3D) culture. Lubricin, a 227.5-kDa mucinous glycoprotein, is known to play an important role in articular joint physiology, and the loss of accumulation of lubricin is thought to play a role in the pathology of osteoarthritis. Adipose tissue is an alternative source for the isolation of multipotent MSCs, which allows them to be obtained by a less invasive method and in larger quantities than from other sources. These cells can be isolated from cosmetic liposuctions in large numbers and easily grown under standard tissue culture conditions. 3D chondrocytes were assessed by histology (hematoxylin and eosin) and histochemistry (Alcian blue and Safranin-O/fast green staining). Collagen type I, II and lubricin expression was determined through immunohistochemistry and Western blot. The results showed that, compared with control cartilage and monolayer chondrocytes showing just collagen type I, chondrocytes from MSCs (CD44-, CD90- and CD105- positive; CD45-, CD14- and CD34-negative) of adipose tissue grown in nodules were able to express lubricin, and collagen type I and II, indicative of hyaline cartilage formation. Based on the function of lubricin in the joint cavity and disease and as a potential therapeutic agent, our results suggest that MSCs from adipose tissue are a promising cell source for tissue engineering of cartilage. Our results suggest that chondrocyte nodules producing lubricin could be a novel biotherapeutic approach for the treatment of cartilage abnormalities.

  9. Co-culture of early cattle embryos to the blastocyst stage with oviducal tissue or in conditioned medium.

    PubMed

    Eyestone, W H; First, N L

    1989-03-01

    In Exp. 1, 5-8-cell embryos from superovulated cattle were co-cultured with oviducal tissue suspended in Ham's F10 + 10% fetal calf serum (F10FCS) or in F10FCS alone. After 4 days, the proportion of embryos developing into compact morulae or blastocysts was greater (P less than 0.005) in co-culture (38/82; 46%) than in F10FCS (1/27; 4%). In Exp. 2, a solution of collagenase, trypsin, DNAse and EDTA was used to disperse oviducal tissue, which was then cultured in TCM199 + 10% fetal calf serum (M199FCS) to obtain monolayers. Embryos (1-8 cells) were then co-cultured with monolayers or in M199FCS alone. The proportion of embryos developing into compact morulae and blastocysts after 4-5 days was higher (P less than 0.005) in co-culture (15/34; 43%) than in M199FCS (1/37; 3%); mean numbers of cells/embryo were also higher (P less than 0.001) (27.70; range 2-82 in co-culture; 8.83; range 2-18 in M199FCS). In Exp. 3, embryos obtained from in-vitro maturation and fertilization were used to compare development between co-culture and medium conditioned by oviducal tissue. Initial cleavage rate (no. embryos greater than 1 cell/total) was 76% (611/807) and did not differ among treatments. After 5 days, the proportion cleaving to greater than 16 cells was higher (P less than 0.005) in co-culture (71/203; 35%) and conditioned medium (48/205; 23%) compared to M199FCS (14/203; 7%). Similarly, the proportion developing into compact morulae and blastocysts was greater (P less than 0.005) in co-culture (44/203; 22%) and conditioned medium (46/205; 22%) than in M199FCS (7/203; 3%).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2704004

  10. Co-culture of early cattle embryos to the blastocyst stage with oviducal tissue or in conditioned medium.

    PubMed

    Eyestone, W H; First, N L

    1989-03-01

    In Exp. 1, 5-8-cell embryos from superovulated cattle were co-cultured with oviducal tissue suspended in Ham's F10 + 10% fetal calf serum (F10FCS) or in F10FCS alone. After 4 days, the proportion of embryos developing into compact morulae or blastocysts was greater (P less than 0.005) in co-culture (38/82; 46%) than in F10FCS (1/27; 4%). In Exp. 2, a solution of collagenase, trypsin, DNAse and EDTA was used to disperse oviducal tissue, which was then cultured in TCM199 + 10% fetal calf serum (M199FCS) to obtain monolayers. Embryos (1-8 cells) were then co-cultured with monolayers or in M199FCS alone. The proportion of embryos developing into compact morulae and blastocysts after 4-5 days was higher (P less than 0.005) in co-culture (15/34; 43%) than in M199FCS (1/37; 3%); mean numbers of cells/embryo were also higher (P less than 0.001) (27.70; range 2-82 in co-culture; 8.83; range 2-18 in M199FCS). In Exp. 3, embryos obtained from in-vitro maturation and fertilization were used to compare development between co-culture and medium conditioned by oviducal tissue. Initial cleavage rate (no. embryos greater than 1 cell/total) was 76% (611/807) and did not differ among treatments. After 5 days, the proportion cleaving to greater than 16 cells was higher (P less than 0.005) in co-culture (71/203; 35%) and conditioned medium (48/205; 23%) compared to M199FCS (14/203; 7%). Similarly, the proportion developing into compact morulae and blastocysts was greater (P less than 0.005) in co-culture (44/203; 22%) and conditioned medium (46/205; 22%) than in M199FCS (7/203; 3%).(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Tissue-culture light sheet fluorescence microscopy (TC-LSFM) allows long-term imaging of three-dimensional cell cultures under controlled conditions.

    PubMed

    Pampaloni, Francesco; Berge, Ulrich; Marmaras, Anastasios; Horvath, Peter; Kroschewski, Ruth; Stelzer, Ernst H K

    2014-10-01

    Fluorescence long-term imaging of cellular processes in three-dimensional cultures requires the control of media supply, temperature, and pH, as well as minimal photodamage. We describe a system based on a light sheet fluorescence microscope (LSFM), which is optimized for long-term, multi-position imaging of three-dimensional in-gel cell cultures. The system integrates a stable culture condition control system in the optical path of the light-sheet microscope. A further essential element is a biocompatible agarose container suitable for the LSFM, in which any cell type can be cultured in different gel matrices. The TC-LSFM allows studying any in vitro cultured cell type reacting to, dividing in, or migrating through a three-dimensional extracellular matrix (ECM) gel. For this reason we called it "tissue culture-LSFM" (TC-LSFM). The TC-LSFM system allows fast imaging at multiple locations within a millimeter-sized ECM gel. This increases the number of analyzed events and allows testing population effects. As an example, we show the maturation of a cyst of MDCK (canine kidney epithelial) cells over a period of three days. Moreover, we imaged, tracked, and analyzed MDCK cells during the first five days of cell aggregate formation and discovered a remarkable heterogeneity in cell cycle lengths and an interesting cell death pattern. Thus, TC-LSFM allows performing new long-term assays assessing cellular behavior in three-dimensional ECM-gel cultures. For example migration, invasion or differentiation in epithelial cell systems, stem cells, as well as cancer cells can be investigated.

  12. Studies of Human Adipose Tissue in Culture III INFLUENCE OF INSULIN AND MEDIUM GLUCOSE CONCENTRATION ON CELLULAR METABOLISM

    PubMed Central

    Smith, Ulf

    1974-01-01

    Explants of human adipose tissue were maintained in culture for 1 wk in different glucose concentrations with or without the addition of insulin. After this period of time the explants were carefully washed and then subjected to short-term incubations in the same glucose concentration and in the absence of insulin. With this experimental design the influence of long-term exposure to insulin and different glucose concentrations on adipose tissue metabolism could be studied. The results of these studies show that an increase in the glucose concentration of the culture medium enhanced the basal as well as the catecholamine-stimulated lipolysis in the short-term incubations. The presence of insulin in the culture medium enhanced the lipolytic process as well. Analogous results were obtained with the cellular rate of glucose conversion to triglycerides in the short-term incubations. The stimulating effects of insulin and glucose were most pronounced in the larger adipose cells possibly due to their enlarged surface areas. The data suggest that the metabolism of adipose tissue as revealed by short-term studies may be profoundly influenced by the antecedent biochemical environment. PMID:4808648

  13. Depletion of praziquantel in plasma and muscle tissue of cultured rockfish Sebastes schlegeli after oral and bath treatment.

    PubMed

    Kim, K H; Kim, C S; Kim, J W

    2001-08-01

    Depletion of praziquantel in plasma and muscle tissue after oral and bath treatments was studied in cultured rockfish Sebastes schlegeli. In the oral treatment, a single dose of 400 mg praziquantel kg(-1) body weight was administered by intubation of the stomach. A bath treatment at 100 ppm of praziquantel for 4 min was also carried out. Plasma and muscle tissue samples were collected at 3, 6, 12, 24, 48, 72, 96, 120, 144 and 168 h post-treatment, and analyzed for praziquantel by reversed-phase HPLC using diazepam as the internal standard. Following oral treatment, praziquantel was detected in plasma and muscle tissue until 96 h after treatment. In plasma the praziquantel concentration was highest at the 9 h sampling time and declined sharply at the 48 h sampling point. The concentrations of praziquantel in the muscle tissue were lower than those in the plasma, and the highest value was found at the 9 h sampling time. Following bath treatment, praziquantel was found in plasma and muscle tissue until 72 and 24 h after treatment, respectively. In plasma the praziquantel concentration was highest at the 12 h sampling time and declined sharply thereafter. The concentrations of praziquantel in the muscle tissue were significantly lower than those in the plasma, and the concentrations declined consistently with time. PMID:11558729

  14. Effects of serum, tissue extract, conditioned medium, and culture substrata on neurite appearance from spinal cord explants of chick embryo.

    PubMed

    Tanaka, H; Sakai, M; Obata, K

    1982-07-01

    The effects of serum, tissue extracts, conditioned medium, (CM), and culture substrata on neurite appearance from spinal cord explants of 6- to 8-day-old chick embryos were investigated. In Eagle's minimum essential medium (MEM) with no supplement neurites from explants did not appear on collagen coating but on polyornithine coating (PORN). It is concluded that cell-to-substratum interaction is important in neurite appearance. CM, serum and tissue extract potentiated neurite appearance, but their activities were highly dependent on the coating. The amount of collagen was also crucial. On collagen, neurite appearance was observed only when promoting substances were present. CM and serum contained at least two components; one affected neurite appearance after deposition on collagen and the other affected neurite appearance when present in the culture medium. The former was included also in tissue extracts. Both of adsorbable and non-adsorbable components from any origin were necessary for effective induction of neurite appearance. Heat treatment and dialysis differentiated these active components. On PORN, CM highly potentiated neurite appearance. The activity of the CM was reproduced by its low molecular weight fraction. Serum also promoted neurite appearance, but to a lesser extent than CM. The effect of tissue extract was not remarkable.

  15. Development of a Bioreactor to Culture Tissue Engineered Ureters Based on the Application of Tubular OPTIMAIX 3D Scaffolds.

    PubMed

    Seifarth, Volker; Gossmann, Matthias; Janke, Heinz Peter; Grosse, Joachim O; Becker, Christoph; Heschel, Ingo; Artmann, Gerhard M; Temiz Artmann, Aysegül

    2015-01-01

    Regenerative medicine, tissue engineering and biomedical research give hope to many patients who need bio-implants. Tissue engineering applications have already been developed based on bioreactors. Physiological ureter implants, however, do not still function sufficiently, as they represent tubular hollow structures with very specific cellular structures and alignments consisting of several cell types. The aim of this study was to a develop a new bioreactor system based on seamless, collagenous, tubular OPTIMAIX 3D prototype sponge as scaffold material for ex-vivo culturing of a tissue engineered ureter replacement for future urological applications. Particular emphasis was given to a great extent to mimic the physiological environment similar to the in vivo situation of a ureter. NIH-3T3 fibroblasts, C2C12, Urotsa and primary genitourinary tract cells were applied as co-cultures on the scaffold and the penetration of cells into the collagenous material was followed. By the end of this study, the bioreactor was functioning, physiological parameter as temperature and pH and the newly developed BIOREACTOR system is applicable to tubular scaffold materials with different lengths and diameters. The automatized incubation system worked reliably. The tubular OPTIMAIX 3D sponge was a suitable scaffold material for tissue engineering purposes and co-cultivation procedures.

  16. Evaluation of the effects of titanium dioxide nanoparticles on cultured Rana catesbeiana tailfin tissue.

    PubMed

    Hammond, S Austin; Carew, Amanda C; Helbing, Caren C

    2013-01-01

    Nanoparticles (NPs), materials that have one dimension less than 100 nm, are used in manufacturing, health, and food products, and consumer products including cosmetics, clothing, and household appliances. Their utility to industry is derived from their high surface-area-to-volume ratios and physico-chemical properties distinct from their bulk counterparts, but the near-certainty that NPs will be released into the environment raises the possibility that they could present health risks to humans and wildlife. The thyroid hormones (THs), thyroxine, and 3,3',5-triiodothyronine (T3), are involved in development and metabolism in vertebrates including humans and frogs. Many of the processes of anuran metamorphosis are analogous to human post-embryonic development and disruption of TH action can have drastic effects. These shared features make the metamorphosis of anurans an excellent model for screening for endocrine disrupting chemicals (EDCs). We used the cultured tailfin (C-fin) assay to examine the exposure effects of 0.1-10 nM (~8-800 ng/L) of three types of ~20 nm TiO2 NPs (P25, M212, M262) and micron-sized TiO2 (μ TiO2) ±10 nM T3. The actual Ti levels were 40.9-64.7% of the nominal value. Real-time quantitative polymerase chain reaction (QPCR) was used to measure the relative amounts of mRNA transcripts encoding TH-responsive THs receptors (thra and thrb) and Rana larval keratin type I (rlk1), as well as the cellular stress-responsive heat shock protein 30 kDa (hsp30), superoxide dismutase (sod), and catalase (cat). The levels of the TH-responsive transcripts were largely unaffected by any form of TiO2. Some significant effects on stress-related transcripts were observed upon exposure to micron-sized TiO2, P25, and M212 while no effect was observed with M262 exposure. Therefore, the risk of adversely affecting amphibian tissue by disrupting TH-signaling or inducing cellular stress is low for these compounds relative to other previously-tested NPs. PMID:24312126

  17. Evaluation of the effects of titanium dioxide nanoparticles on cultured Rana catesbeiana tailfin tissue

    PubMed Central

    Hammond, S. Austin; Carew, Amanda C.; Helbing, Caren C.

    2013-01-01

    Nanoparticles (NPs), materials that have one dimension less than 100 nm, are used in manufacturing, health, and food products, and consumer products including cosmetics, clothing, and household appliances. Their utility to industry is derived from their high surface-area-to-volume ratios and physico-chemical properties distinct from their bulk counterparts, but the near-certainty that NPs will be released into the environment raises the possibility that they could present health risks to humans and wildlife. The thyroid hormones (THs), thyroxine, and 3,3′,5-triiodothyronine (T3), are involved in development and metabolism in vertebrates including humans and frogs. Many of the processes of anuran metamorphosis are analogous to human post-embryonic development and disruption of TH action can have drastic effects. These shared features make the metamorphosis of anurans an excellent model for screening for endocrine disrupting chemicals (EDCs). We used the cultured tailfin (C-fin) assay to examine the exposure effects of 0.1–10 nM (~8–800 ng/L) of three types of ~20 nm TiO2 NPs (P25, M212, M262) and micron-sized TiO2 (μ TiO2) ±10 nM T3. The actual Ti levels were 40.9–64.7% of the nominal value. Real-time quantitative polymerase chain reaction (QPCR) was used to measure the relative amounts of mRNA transcripts encoding TH-responsive THs receptors (thra and thrb) and Rana larval keratin type I (rlk1), as well as the cellular stress-responsive heat shock protein 30 kDa (hsp30), superoxide dismutase (sod), and catalase (cat). The levels of the TH-responsive transcripts were largely unaffected by any form of TiO2. Some significant effects on stress-related transcripts were observed upon exposure to micron-sized TiO2, P25, and M212 while no effect was observed with M262 exposure. Therefore, the risk of adversely affecting amphibian tissue by disrupting TH-signaling or inducing cellular stress is low for these compounds relative to other previously-tested NPs. PMID

  18. Insect-ual Pursuits.

    ERIC Educational Resources Information Center

    Mallow, David

    1991-01-01

    Explains how insects can be used to stimulate student writing. Describes how students can create their own systems to classify and differentiate insects. Discusses insect morphology and includes three detailed diagrams. The author provides an extension activity where students hypothesize about the niche of an insect based on its anatomy. (PR)

  19. Book Review: Insect Virology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Viruses that infect insects have long been of interest both as a means for controlling insect pest populations in an environmentally safe manner, and also as significant threats to beneficial insects of great value, such as honey bees and silkworms. Insect viruses also have been of intrinsic intere...

  20. Effects of temperature generated from the Holmium: YAG laser on human osteoblasts in monolayer tissue culture.

    PubMed

    Hafez, Moustafa I; Sandison, Anne; Coombs, Richard R H; McCarthy, Ian D; Hafez, Al-Shymaa M

    2012-01-01

    With the use of lasers for ablation purposes in spinal surgery, the tissue temperature increases above the boiling point of water, leading to tissue ablation by vaporisation. Due to the thermal environment engendered by the use of lasers, there is concern about the safety of the surrounding important structures, such as dura mater, dorsal root ganglia, and nerve roots.

  1. Characterization and Clinical Implication of Th1/Th2/Th17 Cytokines Produced from Three-Dimensionally Cultured Tumor Tissues Resected from Breast Cancer Patients

    PubMed Central

    Kiyomi, Anna; Makita, Masujiro; Ozeki, Tomoko; Li, Na; Satomura, Aiko; Tanaka, Sachiko; Onda, Kenji; Sugiyama, Kentaro; Iwase, Takuji; Hirano, Toshihiko

    2015-01-01

    OBJECTIVES: Several cytokines secreted from breast cancer tissues are suggested to be related to disease prognosis. We examined Th1/Th2/Th17 cytokines produced from three-dimensionally cultured breast cancer tissues and related them with patient clinical profiles. METHODS: 21 tumor tissues and 9 normal tissues surgically resected from breast cancer patients were cultured in thermoreversible gelatin polymer–containing medium. Tissue growth and Th1/Th2/Th17 cytokine concentrations in the culture medium were analyzed and were related with hormone receptor expressions and patient clinical profiles. RESULTS: IL-6 and IL-10 were expressed highly in culture medium of both cancer and normal tissues. However, IFN-γ, TNF-α, IL-2, and IL-17A were not detected in the supernatant of the three-dimensionally cultured normal mammary gland and are seemed to be specific to breast cancer tissues. The growth abilities of hormone receptor–negative cancer tissues were significantly higher than those of receptor-positive tissues (P = 0.0383). Cancer tissues of stage ≥ IIB patients expressed significantly higher TNF-α levels as compared with those of patients with stage < IIB (P = 0.0096). CONCLUSIONS: The tumor tissues resected from breast cancer patients can grow in the three-dimensional thermoreversible gelatin polymer culture system and produce Th1/Th2/Th17 cytokines. Hormone receptor–positive cancer tissues showed less growth ability. TNF-α is suggested to be a biomarker for the cancer stage. PMID:26310378

  2. Influence of culture conditions and extracellular matrix alignment on human mesenchymal stem cells invasion into decellularized engineered tissues.

    PubMed

    Weidenhamer, Nathan K; Moore, Dusty L; Lobo, Fluvio L; Klair, Nathaniel T; Tranquillo, Robert T

    2015-05-01

    The variables that influence the in vitro recellularization potential of decellularized engineered tissues, such as cell culture conditions and scaffold alignment, have yet to be explored. The goal of this work was to explore the influence of insulin and ascorbic acid and extracellular matrix (ECM) alignment on the recellularization of decellularized engineered tissue by human mesenchymal stem cells (hMSCs). Aligned and non-aligned tissues were created by specifying the geometry and associated mechanical constraints to fibroblast-mediated fibrin gel contraction and remodelling using circular and C-shaped moulds. Decellularized tissues (matrices) of the same alignment were created by decellularization with detergents. Ascorbic acid promoted the invasion of hMSCs into the matrices due to a stimulated increase in motility and proliferation. Invasion correlated with hyaluronic acid secretion, α-smooth muscle actin expression and decreased matrix thickness. Furthermore, hMSCs invasion into aligned and non-aligned matrices was not different, although there was a difference in cell orientation. Finally, we show that hMSCs on the matrix surface appear to differentiate toward a smooth muscle cell or myofibroblast phenotype with ascorbic acid treatment. These results inform the strategy of recellularizing decellularized engineered tissue with hMSCs.

  3. A Novel Approach for Ovine Primary Alveolar Epithelial Type II Cell Isolation and Culture from Fresh and Cryopreserved Tissue Obtained from Premature and Juvenile Animals

    PubMed Central

    Marcinkiewicz, Mariola M.; Baker, Sandy T.; Wu, Jichuan; Hubert, Terrence L.; Wolfson, Marla R.

    2016-01-01

    The in vivo ovine model provides a clinically relevant platform to study cardiopulmonary mechanisms and treatments of disease; however, a robust ovine primary alveolar epithelial type II (ATII) cell culture model is lacking. The objective of this study was to develop and optimize ovine lung tissue cryopreservation and primary ATII cell culture methodologies for the purposes of dissecting mechanisms at the cellular level to elucidate responses observed in vivo. To address this, we established in vitro submerged and air-liquid interface cultures of primary ovine ATII cells isolated from fresh or cryopreserved lung tissues obtained from mechanically ventilated sheep (128 days gestation—6 months of age). Presence, abundance, and mRNA expression of surfactant proteins was assessed by immunocytochemistry, Western Blot, and quantitative PCR respectively on the day of isolation, and throughout the 7 day cell culture study period. All biomarkers were significantly greater from cells isolated from fresh than cryopreserved tissue, and those cultured in air-liquid interface as compared to submerged culture conditions at all time points. Surfactant protein expression remained in the air-liquid interface culture system while that of cells cultured in the submerged system dissipated over time. Despite differences in biomarker magnitude between cells isolated from fresh and cryopreserved tissue, cells isolated from cryopreserved tissue remained metabolically active and demonstrated a similar response as cells from fresh tissue through 72 hr period of hyperoxia. These data demonstrate a cell culture methodology using fresh or cryopreserved tissue to support study of ovine primary ATII cell function and responses, to support expanded use of biobanked tissues, and to further understanding of mechanisms that contribute to in vivo function of the lung. PMID:26999050

  4. Organotypic three-dimensional culture model of mesenchymal and epithelial cells to examine tissue fusion events.

    EPA Science Inventory

    Tissue fusion during early mammalian development requires coordination of multiple cell types, the extracellular matrix, and complex signaling pathways. Fusion events during processes including heart development, neural tube closure, and palatal fusion are dependent on signaling ...

  5. Processing of Reelin by embryonic neurons is important for function in tissue but not in dissociated cultured neurons.

    PubMed

    Jossin, Yves; Gui, Lanrun; Goffinet, André M

    2007-04-18

    Reelin, the protein defective in reeler mutant mice, plays a key role during brain development. Reelin is processed proteolytically at two sites, and the central fragment mimics function in vitro. Here, we show that processing is functionally important in vivo, a question that could not be addressed in our previous study. New monoclonal antibodies directed against central Reelin block its binding to lipoprotein receptors and perturb cortical development in vitro, confirming the importance of the central fragment that is detected in tissue and body fluids. Processing occurs when Reelin is incubated with embryonic neurons in culture or with their supernatant, but inhibition of processing by a metalloproteinase blocker does not prevent Reelin signaling in neurons. Furthermore, neurons internalize similarly full-length or central Reelin. In contrast, inhibition of processing prevents signaling and perturbs cortical development in cultured embryonic brain slices. Moreover, in vivo, the concentration of central Reelin is dramatically and selectively increased in receptor-deficient tissue, suggesting its specific downregulation after binding to receptors and internalization. We propose that processing by end-migration neurons is required in tissue (where Reelin is likely anchored to the extracellular matrix) to release the central fragment that diffuses locally and signals to target cells, whereas, in vitro, all Reelin forms have indiscriminate access to cells, so that cleavage is not necessary for signaling.

  6. Chitosan scaffolds for in vitro buffalo embryonic stem-like cell culture: an approach to tissue engineering.

    PubMed

    Thein-Han, Wah W; Kitiyanant, Yindee

    2007-01-01

    Three-dimensional (3D) porous chitosan scaffolds are attractive candidates for tissue engineering applications. Chitosan scaffolds of 70, 88, and 95% degree of deacetylation (% DD) with the same molecular weight were developed and their properties with buffalo embryonic stem-like (ES-like) cells were investigated in vitro. Scaffolds were fabricated by freezing and lyophilization. They showed open pore structure with interconnecting pores under scanning electron microscopy (SEM). Higher % DD chitosan scaffolds had greater mechanical strength, slower degradation rate, lower water uptake ability, but similar water retention ability, when compared to lower % DD chitosan. As a strategy to tissue engineering, buffalo ES-like cells were cultured on scaffolds for 28 days. It appeared that chitosan was cytocompatible and cells proliferated well on 88 and 95% DD scaffolds. In addition, the buffalo ES-like cells maintained their pluripotency during the culture period. Furthermore, the SEM and histological study showed that the polygonal buffalo ES-like cells proliferated well and attached to the pores. This study proved that 3D biodegradable highly deacetylated chitosan scaffolds are promising candidates for ES-like cell based tissue engineering and this chitosan scaffold and ES cell based system can be used as in vitro model for subsequent clinical applications.

  7. Characterization and in vitro culture of putative spermatogonial stem cells derived from feline testicular tissue.

    PubMed

    Tiptanavattana, Narong; Thongkittidilok, Chommanart; Techakumphu, Mongkol; Tharasanit, Theerawat

    2013-01-01

    Spermatogonial stem cells (SSCs) function to regulate the balance of self-renewal and differentiation of male gametes. SSCs have been successfully isolated and cultured in vitro in several species, but not in feline. Therefore, in this study, we aimed to culture and characterize feline SSCs. In experiment 1, testes (n=5) from different pubertal domestic cats were cryosectioned and fluorescently immunolabeled to examine the expression of SSC (GFRα-1), differentiated spermatogonium (c-kit) and germ cell (DDX-4) markers. In experiments 2 and 3, testicular cells were digested and subsequently cultured in vitro. The resultant presumptive SSC colonies were then collected for SSC identification (experiment 2), or further cultured in vitro on feeder cells (experiment 3). Morphology, gene expression and immunofluorescence were used to identify the SSCs. Experiment 1 demonstrated that varying types of spermatogenic cells existed and expressed different germ cell/SSC markers. A rare population of putative SSCs located at the basement membrane of the seminiferous tubules was specifically identified by co-expression of GFRα-1 and DDX-4. Following enzymatic digestion, grape-like colonies formed by 13-15 days of culture. These colonies expressed GFRA1 and ZBTB16, but did not express KIT. Although we successfully isolated and cultured feline SSCs in vitro, the SSCs could only be maintained for 57 days. In conclusion, this study demonstrates, for the first time, that putative SSCs from testes of pubertal domestic cats can be isolated and cultured in vitro. These cells exhibited SSC morphology and expressed SSC-specific genes. However, long-term culture of these putative SSCs was compromised.

  8. Understanding cross-communication between aboveground and belowground tissues via transcriptome analysis of a sucking insect whitefly-infested pepper plants.

    PubMed

    Park, Yong-Soon; Ryu, Choong-Min

    2014-01-01

    Plants have developed defensive machinery to protect themselves against herbivore and pathogen attacks. We previously reported that aboveground whitefly (Bemisia tabaci Genn.) infestation elicited induced resistance in leaves and roots and influenced the modification of the rhizosphere microflora. In this study, to obtain molecular evidence supporting these plant fitness strategies against whitefly infestation, we performed a 300 K pepper microarray analysis using leaf and root tissues of pepper (Capsicum annuum L.) applied with whitefly, benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH), and the combination of BTH+whitefly. We defined differentially expressed genes (DEGs) as genes exhibiting more than 2-fold change (1.0 based on log2 values) in expression in leaves and roots in response to each treatment compared to the control. We identified a total of 16,188 DEGs in leaves and roots. Of these, 6685, 6752, and 4045 DEGs from leaf tissue and 6768, 7705, and 7667 DEGs from root tissue were identified in the BTH, BTH+whitefly, and whitefly treatment groups, respectively. The total number of DEGs was approximately two-times higher in roots than in whitefly-infested leaves subjected to whitefly infestation. Among DEGs, whitefly feeding induced salicylic acid and jasmonic acid/ethylene-dependent signaling pathways in leaves and roots. Several transporters and auxin-responsive genes were upregulated in roots, which can explain why biomass increase is facilitated. Using transcriptome analysis, our study provides new insights into the molecular basis of whitefly-mediated intercommunication between aboveground and belowground plant tissues and provides molecular evidence that may explain the alteration of rhizosphere microflora and root biomass by whitefly infestation.

  9. Comparison of the Effects of the Selective Estrogen Receptor Modulators Ospemifene, Raloxifene, and Tamoxifen on Breast Tissue in Ex Vivo Culture.

    PubMed

    Eigeliene, Natalija; Erkkola, Risto; Härkönen, Pirkko

    2016-01-01

    Explant tissue culture provides a model for studying the direct effects of steroid hormones, their analogs, and novel hormonally active compounds on normal freshly isolated human breast tissues (HBTs). For this purpose, pre- and postmenopausal HBTs can be maintained in this culture system. The results demonstrate that the morphological integrity of HBT explants can be maintained in tissue culture up to 2 weeks and expression of differentiation markers, steroid hormone receptors, proliferation and apoptosis ratios can be evaluated as a response to hormonal stimulation. This chapter describes an ex vivo culture model that we have applied to study the effects of various hormonally active substances, including 17β-estradiol and selective estrogen receptor modulators (SERMs), on normal human breast tissues.

  10. Some but not All Tetrahymena Species Destroy Monolayer Cultures of Cells from a Wide Range of Tissues and Species.

    PubMed

    Pinheiro, Marcel D O; Bols, Niels C

    2015-01-01

    The activities of Tetrahymena corlissi, Tetrahymena thermophila, and Tetrahymena canadensis were studied in coculture with cell lines of insects, fish, amphibians, and mammals. These ciliates remained viable regardless of the animal cell line partner. All three species could engulf animal cells in suspension. However, if the animal cells were monolayer cultures, the monolayers were obliterated by T. corlissi and T. thermophila. Both fibroblast and epithelial monolayers were destroyed but the destruction of human cell monolayers was done more effectively by T. thermophila. By contrast, T. canadensis was unable to destroy any monolayer. At 4 °C T. thermophila and T. corlissi did not carryout phagocytosis and did not destroy monolayers, whereas T. canadensis was able to carryout phagocytosis but still could not destroy monolayers. Therefore, monolayer destruction appeared to require phagocytosis, but by itself this was insufficient. In addition, the ciliates expressed a unique swimming behavior. Tetrahymena corlissi and T. thermophila swam vigorously and repeatedly into the monolayer, which seemed to loosen or dislodge cells, whereas T. canadensis swam above the monolayer. Therefore, differences in swimming behavior might explain why T. corlissi has been reported to be a pathogen but T. canadensis has not.

  11. Growth of plant tissue cultures in simulated lunar soil: Implications for a lunar base CELSS (Controlled Ecological Life Support System)

    NASA Technical Reports Server (NTRS)

    Venketeswaran, S.

    1988-01-01

    Experiments were carried out on plant tissue cultures, seed germination, seedling development and plants grown on Simulated Lunar Soil to evaluate the potential of future development of lunar based agriculture. The studies done to determine the effect of the placement of SLS on tissue cultures showed no adverse effect of SLS on tissue cultures. Although statistically insignificant, SLS in suspension showed a comparatively higher growth rate. Observations indicate the SLS, itself cannot support calli growth but was able to show a positive effect on growth rate of calli when supplemented with MS salts. This positive effect related to nutritive value of the SLS was found to have improved at high pH levels, than at the recommended low pH levels for standard media. Results from seed germination indicated that there is neither inhibitory, toxicity nor stimulatory effect of SLS, even though SLS contains high amounts of aluminum compounds compared to earth soil. Analysis of seeding development and growth data showed significant reduction in growth rate indicating that, SLS was a poor growth medium for plant life. This was confirmed by the studies done with embryos and direct plant growth on SLS. Further observations attributed this poor quality of SLS is due to it's lack of essential mineral elements needed for plant growth. By changing the pH of the soil, to more basic conditions, the quality of SLS for plant growth could be improved up to a significant level. Also it was found that the quality of SLS could be improved by almost twice, by external supply of major mineral elements, directly to SLS.

  12. Differential Proteomic Analysis of Human Placenta-Derived Mesenchymal Stem Cells Cultured on Normal Tissue Culture Surface and Hyaluronan-Coated Surface

    PubMed Central

    Wong, Tzyy Yue; Chen, Ying-Hui; Liu, Szu-Heng; Solis, Mairim Alexandra; Yu, Chen-Hsiang; Chang, Chiung-Hsin; Huang, Lynn L. H.

    2016-01-01

    Our previous results showed that hyaluronan (HA) preserved human placenta-derived mesenchymal stem cells (PDMSC) in a slow cell cycling mode similar to quiescence, the pristine state of stem cells in vivo, and HA was found to prevent murine adipose-derived mesenchymal stem cells from senescence. Here, stable isotope labeling by amino acid in cell culture (SILAC) proteomic profiling was used to evaluate the effects of HA on aging phenomenon in stem cells, comparing (1) old and young passage PDMSC cultured on normal tissue culture surface (TCS); (2) old passage on HA-coated surface (CHA) compared to TCS; (3) old and young passage on CHA. The results indicated that senescence-associated protein transgelin (TAGLN) was upregulated in old TCS. Protein CYR61, reportedly senescence-related, was downregulated in old CHA compared to old TCS. The SIRT1-interacting Nicotinamide phosphoribosyltransferase (NAMPT) increased by 2.23-fold in old CHA compared to old TCS, and is 0.48-fold lower in old TCS compared to young TCS. Results also indicated that components of endoplasmic reticulum associated degradation (ERAD) pathway were upregulated in old CHA compared to old TCS cells, potentially for overcoming stress to maintain cell function and suppress senescence. Our data points to pathways that may be targeted by HA to maintain stem cells youth. PMID:27057169

  13. Differential Proteomic Analysis of Human Placenta-Derived Mesenchymal Stem Cells Cultured on Normal Tissue Culture Surface and Hyaluronan-Coated Surface.

    PubMed

    Wong, Tzyy Yue; Chen, Ying-Hui; Liu, Szu-Heng; Solis, Mairim Alexandra; Yu, Chen-Hsiang; Chang, Chiung-Hsin; Huang, Lynn L H

    2016-01-01

    Our previous results showed that hyaluronan (HA) preserved human placenta-derived mesenchymal stem cells (PDMSC) in a slow cell cycling mode similar to quiescence, the pristine state of stem cells in vivo, and HA was found to prevent murine adipose-derived mesenchymal stem cells from senescence. Here, stable isotope labeling by amino acid in cell culture (SILAC) proteomic profiling was used to evaluate the effects of HA on aging phenomenon in stem cells, comparing (1) old and young passage PDMSC cultured on normal tissue culture surface (TCS); (2) old passage on HA-coated surface (CHA) compared to TCS; (3) old and young passage on CHA. The results indicated that senescence-associated protein transgelin (TAGLN) was upregulated in old TCS. Protein CYR61, reportedly senescence-related, was downregulated in old CHA compared to old TCS. The SIRT1-interacting Nicotinamide phosphoribosyltransferase (NAMPT) increased by 2.23-fold in old CHA compared to old TCS, and is 0.48-fold lower in old TCS compared to young TCS. Results also indicated that components of endoplasmic reticulum associated degradation (ERAD) pathway were upregulated in old CHA compared to old TCS cells, potentially for overcoming stress to maintain cell function and suppress senescence. Our data points to pathways that may be targeted by HA to maintain stem cells youth. PMID:27057169

  14. Studies on the medicinal properties of Solanum chrysotrichum in tissue culture: I. Callus formation and plant induction from axillary buds.

    PubMed

    Villarreal, M L; Muñoz, J

    1991-01-01

    A tissue culture method is described for micropropagation and callus formation from Solanum chrysotricum axillary bud explants in Murashige and Skoog's (MS) medium, supplemented with various growth regulators. Induction of rooted plants were initiated only when indol-3 acetic acid (IAA) was present as an auxin in combination with either of two cytokinins: kinetin (KN) or benzyladenine (BA); however, the combination of IAA (0.1 mg.lt.-1) + BA (0.2 mg.lt.-1) was found to be best suited for morphogenesis purposes. Alternatively, callus tissue formation was influenced in presence of naphthalene acetic acid; which in combination with kinetin (NAA 0.1 mg.lt.-1 + KN 0.2 mg.lt.-1) exhibit the best response studied. The plant material obtained by this procedure is proposed for pharmacological and chemical studies of this important antimycotic plant remedy.

  15. Kit ligand promotes the transition from primordial to primary follicles after in vitro culture of ovine ovarian tissue.

    PubMed

    Cavalcante, A Y P; Gouveia, B B; Barberino, R S; Lins, T L B G; Santos, L P; Gonçalves, R J S; Celestino, J J H; Matos, M H T

    2016-08-01

    This study evaluated the effects of kit ligand (KL) on the morphology and development of ovine preantral follicles (fresh control) and after 7 days of in vitro culture in α-Minimal Essential Medium (α-MEM; control medium) or the presence of KL (1, 10, 50, 100 or 200 ng/ml). There was an increase in the percentage of primary follicles at the concentration of 100 ng/ml KL, compared with the fresh control, control medium (α-MEM) and the other KL concentrations. Follicle diameter was significantly higher than the control medium only at concentrations of 50 and 100 ng/ml KL. In conclusion, 100 ng/ml KL promoted the transition from primordial to primary follicles (follicular activation) after in vitro culture of ovine ovarian tissue.

  16. Regeneration of whole plants from protoplasts isolated from tissue-cultured shoot primordia of garlic (Allium sativum L.).

    PubMed

    Ayabe, M; Taniguchi, K; Sumi, S

    1995-01-01

    Protoplasts derived from tissue-cultured shoot primordia of garlic (Allium sativum L.) initiated successive cell divisions within 4 days and formed small individual calli (0.2mm in diameter) after 5 weeks of culture on Gamborg's B5 medium supplemented with 0.1% casein hydrolysate, 1mg/1 1-naphthaleneacetic acid and 1mg/1 6-benzylaminopurine. Plating efficiency was roughly 5% at the density of 1x10(4) protoplasts/ml of medium. Adventitious buds developed from the calli during subsequent subculture on Gamborg's B5 medium supplemented with 40mg/l adenine and 10% coconut milk. When transferred to the same medium without supplements, these buds grew into shoots and rooted. The regenerated garlic plantlets were successfully transferred to the greenhouse and grew into whole plants. PMID:24185646

  17. An Ex vivo culture model for placental cytomegalovirus infection using slices of Guinea pig placental tissue.

    PubMed

    Yamada, Souichi; Katano, Harutaka; Sato, Yuko; Fukuchi, Saki; Hashimoto, Kaede; Inoue, Naoki

    2016-01-01

    Congenital infection with human cytomegalovirus (CMV) through the placenta is one of the major causes of birth and developmental abnormalities. Guinea pig CMV (GPCMV) causes in utero infection, which makes its animal models useful for studies on congenital diseases. Here, we established an ex vivo culture method for tissue slices prepared from guinea pig placentas and demonstrated that viral spread in the model resembles those in the placenta of GPCMV-infected animals and that the infection is independent of the pentameric glycoprotein complex for endothelial/epithelial cell tropism. Thus, this model affords a useful tool for pathobiological studies on CMV placental infection.

  18. Quantification of cell surface receptor expression in live tissue culture media using a dual-tracer stain and rinse approach

    NASA Astrophysics Data System (ADS)

    Xu, Xiaochun; Sinha, Lagnojita; Singh, Aparna; Yang, Cynthia; Xiang, Jialing; Tichauer, Kenneth M.

    2015-03-01

    Immunofluorescence staining is a robust way to visualize the distribution of targeted biomolecules invasively in in fixed tissues and tissue culture. Despite the fact that these methods has been a well-established method in fixed tissue imaging for over 70 years, quantification of receptor concentration still simply assumes that the signal from the targeted fluorescent marker after incubation and sufficient rinsing is directly proportional to the concentration of targeted biomolecules, thus neglecting the experimental inconsistencies in incubation and rinsing procedures and assuming no, nonspecific binding of the fluorescent markers. This work presents the first imaging approach capable of quantifying the concentration of cell surface receptor on cancer cells grown in vitro based on compartment modeling in a nondestructive way. The approach utilizes a dual-tracer protocol where any non-specific retention or variability in incubation and rinsing of a receptor-targeted imaging agent is corrected by simultaneously imaging the retention of a chemically similar, "untargeted" imaging agent. Various different compartment models were used to analyze the data in order to find the optimal procedure for extracting estimates of epidermal growth factor receptor (EGFR) concentration (a receptor overexpressed in many cancers and a key target for emerging molecular therapies) in tissue cultures with varying concentrations of human glioma cells (U251). Preliminary results demonstrated a need to model nonspecific binding of both the targeted and untargeted imaging agents used. The approach could be used to carry out the first repeated measures of cell surface receptor dynamics during 3D tumor mass development, in addition to the receptor response to therapies.

  19. Restriction enzyme analysis of tissue culture-adapted velogenic Newcastle disease virus.

    PubMed

    Mohan, C Madhan; Dey, Sohini; Kumanan, K

    2006-05-01

    A velogenic Newcastle disease virus isolate typed to belong to group C1 by monoclonal antibody typing was adapted 50 times in chicken embryo fibroblast cell culture and 60 times in Vero cells. At every 10th passage the virus was characterized on the basis of mean death time, intracerebral pathogenicity indices and viral titration studies. A gradual reduction in the virulence of the virus was noted as the passage number increased. RT-PCR of a 254 bp region of the fusion gene encompassing the fusion protein cleavage site was carried out for the virulent as well as cell culture-adapted viruses at every 10th passage level. The amplicons were subsequently digested with three restriction enzymes, viz. AluI, HaeIII and PstI. It was found out that there was difference in banding patterns between the virulent and adapted viruses, indicating nucleotide substitutions in the virulent virus when it was sequentially passaged onto cell culture systems.

  20. Factors Influencing the Tissue Culture and the Agrobacterium tumefaciens-Mediated Transformation of Hybrid Aspen and Poplar Clones

    PubMed Central

    De Block, Marc

    1990-01-01

    Tissue culture conditions and transformation have been established for both aspen and poplar. The use of previously described culture conditions resulted in shoot tip necrosis in the shoot cultures and necrosis of stem and leaf explants. Shoot tip necrosis could be overcome by buffering the medium with 2-(N-morpholino)ethanesulfonic acid and Ca-gluconate and by growing the shoots below 25°C. Necrosis of the explants was probably due to an accumulation of ammonium in the explants and could be overcome by adapting the NO3−/NH4+ ratio of the media. Stem explants of established shoot cultures of the aspen hybrid Populus alba × P. tremula and of the poplar hybrid Populus trichocarpa × P. deltoides were cocultivated with Agrobacterium strains having chimeric bar and neo genes on their disarmed tDNAs. Transformed aspen shoots were obtained from 30 to 40% of the explants, while transformed poplar shoots were obtained from 10% of the explants. Extracts from the transformed trees contained high phosphinotricin acetyltransferase and neomycin phosphotransferase activities, and the trees contained one to three copies of the chimeric genes. The transformed trees were completely resistant to the commercial preparations of the herbicide phosphinotricin (glufosinate), while control trees were not. Images Figure 1 Figure 2 Figure 4 PMID:16667565

  1. Establishment of a primary hepatocyte culture from the small Indian mongoose (Herpestes auropunctatus) and distribution of mercury in liver tissue.

    PubMed

    Horai, Sawako; Yanagi, Kumiko; Kaname, Tadashi; Yamamoto, Masatatsu; Watanabe, Izumi; Ogura, Go; Abe, Shintaro; Tanabe, Shinsuke; Furukawa, Tatsuhiko

    2014-11-01

    The present study established a primary hepatocyte culture for the small Indian mongoose (Herpestes auropunctatus). To determine the suitable medium for growing the primary hepatic cells of this species, we compared the condition of cells cultured in three media that are frequently used for mammalian cell culture: Dulbecco's Modified Eagle's Medium, RPMI-1640, and William's E. Of these, William's E medium was best suited for culturing the hepatic cells of this species. Using periodic acid-Schiff staining and ultrastructural observations, we demonstrated the cells collected from mongoose livers were hepatocytes. To evaluate the distribution of mercury (Hg) in the liver tissue, we carried out autometallography staining. Most of the Hg compounds were found in the central region of hepatic lobules. Smooth endoplasmic reticulum, which plays a role inxenobiotic metabolism, lipid/cholesterol metabolism, and the digestion and detoxification of lipophilic substances is grown in this area. This suggested that Hg colocalized with smooth endoplasmic reticulum. The results of the present study could be useful to identify the detoxification systems of wildlife with high Hg content in the body, and to evaluate the susceptibility of wildlife to Hg toxicity. PMID:25142347

  2. [Effect of ascorbic acid, epidermal growth factor and follicle stimulating hormone on in vitro culture of sheep ovarian cortical tissue].

    PubMed

    Peng, Xiayu; Wang, Liqin; Yang, Mei; Chen, Tong; Guo, Zhiqin

    2010-06-01

    In this study, we evaluated the effects of ascorbic acid (VC), epidermal growth factor (EGF) and follicle stimulating hormone (FSH) on in vitro culture of sheep ovarian cortical tissue. Using 2 x 2 x 2 factor experimental design, we cultured sheep ovarian cortex fragments in 8 media with MEM (control), MEM+VC (50 microg/mL), MEM +EGF (100 ng/mL), MEM+FSH (50 ng/mL), MEM+VC+EGF, MEM+VC+FSH, MEM+EGF+FSH, MEM+VC+EGF+FSH. After 0 (non-cultured control), 2, 6, 12 days of culture, the pieces of ovarian cortex were proceed to histological and proliferating cell nuclear antigen (PCNA) examination, or observed by transmission electron microscopy (TEM). The percentages of developing follicles were increased (P < 0.05) and the percentages of healthy follicles were reduced (P < 0.05). When compared to the MEM group, the addition of FSH with VC or EGF promoted a significant increase of follicles diameter and follicles survival rate (P < 0.05), and stimulated the proliferation of granulosa cells. After 12 days of culture, medium supplemented with MEM+VC+EGF resulted the lowest proportion of developing follicles (49.3% +/- 3.2%), follicles diameter((32.3 +/- 2.3) microm), follicles survival rate (41.6% +/- 3.1%) and the proportion of PCNA stained follicles (26.4% +/- 1.2%, P < 0.05). In contrast, MEM+VC+EGF+FSH resulted the highest follicles diameter ((42.5 +/- 5.1) microm), follicles survival rate (59.7% +/- 6.1%) and proportion of PCNA stained follicles (43.5% +/- 4.1%, P < 0.05). Ultrastructural analysis confirmed the integrity of follicles cultured in VC+EGF+FSH group, while follicles cultured in MEM+VC+EGF groups showed more degeneration characters. In conclusion, the addition of VC and EGF to culture medium inhibited follicular development, VC+EGF+FSH was the most effective treatment to maintain follicular integrity and promote sheep primordial follicular activation and growth during in vitro culture.

  3. Towards the elements of successful insect RNAi

    PubMed Central

    Scott, Jeffrey G.; Michel, Kristin; Bartholomay, Lyric; Siegfried, Blair D.; Hunter, Wayne B.; Smagghe, Guy; Zhu, Kun Yan; Douglas, Angela E.

    2013-01-01

    RNA interference (RNAi), the sequence-specific suppression of gene expression, offers great opportunities for insect science, especially to analyze gene function, manage pest populations, and reduce disease pathogens. The accumulating body of literature on insect RNAi has revealed that the efficiency of RNAi varies between different species, the mode of RNAi delivery, and the genes being targeted. There is also variation in the duration of transcript suppression. At present, we have a limited capacity to predict the ideal experimental strategy for RNAi of a particular gene/insect because of our incomplete understanding of whether and how the RNAi signal is amplified and spread among insect cells. Consequently, development of the optimal RNAi protocols is a highly empirical process. This limitation can be relieved by systematic analysis of the molecular physiological basis of RNAi mechanisms in insects. An enhanced conceptual understanding of RNAi function in insects will facilitate the application of RNAi for dissection of gene function, and to fast-track the application of RNAi to both control pests and develop effective methods to protect beneficial insects and non-insect arthropods, particularly the honey bee (Apis mellifera) and cultured Pacific white shrimp (Litopenaeus vannamei) from viral and parasitic diseases. PMID:24041495

  4. Insects and Scorpions

    MedlinePlus

    ... gov . Workplace Safety and Health Topics Insects & Scorpions Bees, Wasps, and Hornets Fire Ants Scorpions Additional Resources ... to outdoor workers. Stinging or biting insects include bees, wasps, hornets, and fire ants. The health effects ...

  5. Insects: An Interdisciplinary Unit

    ERIC Educational Resources Information Center

    Leger, Heather

    2007-01-01

    The author talks about an interdisciplinary unit on insects, and presents activities that can help students practice communication skills (interpersonal, interpretive, and presentational) and learn about insects with hands-on activities.

  6. Ecophysiology and insect herbivory

    SciTech Connect

    Clancy, K.M.; Wagner, M.R.; Reich, P.B.

    1995-07-01

    The relationship of insect herbivory to conifer physiology is examined. Aspects of nutrient assimilation, nutrient distribution, water stress, and climatic change are correlated to defoliation by insects. Other factors examined include plant age, density, structure, soils, and plant genotype.

  7. Respiration in Aquatic Insects.

    ERIC Educational Resources Information Center

    MacFarland, John

    1985-01-01

    This article: (1) explains the respiratory patterns of several freshwater insects; (2) describes the differences and mechanisms of spiracular cutaneous, and gill respiration; and (3) discusses behavioral aspects of selected aquatic insects. (ML)

  8. Plant Tissue Culture Development and Biotechnology, Chapter 10: Molecular Tools for Studying Plant Genetic Diversity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ubiquitous nature of DNA is a central theme for all biology. The nucleus of each cell that makes up an organism contains genomic DNA, which is the blueprint for life. The differential expression of genes within each cell gives rise to different tissues, organs and, ultimately, different organism...

  9. Amending storage vessel and media improves transfer interval of Musa spp. tissue culture plantlets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Musa spp. are some of the most important fruit food crops in the world. The USDA-ARS TARS maintains a Musa spp. germplasm collection of ~150 accessions in field plots and in medium-term storage in vitro. Accessions maintained in vitro require routine sub-culturing as nutrient medium is lost due to ...

  10. Norway spruce (Picea abies) laccases: characterization of a laccase in a lignin-forming tissue culture.

    PubMed

    Koutaniemi, Sanna; Malmberg, Heli A; Simola, Liisa K; Teeri, Teemu H; Kärkönen, Anna

    2015-04-01

    Secondarily thickened cell walls of water-conducting vessels and tracheids and support-giving sclerenchyma cells contain lignin that makes the cell walls water impermeable and strong. To what extent laccases and peroxidases contribute to lignin biosynthesis in muro is under active evaluation. We performed an in silico study of Norway spruce (Picea abies (L.) Karst.) laccases utilizing available genomic data. As many as 292 laccase encoding sequences (genes, gene fragments, and pseudogenes) were detected in the spruce genome. Out of the 112 genes annotated as laccases, 79 are expressed at some level. We isolated five full-length laccase cDNAs from developing xylem and an extracellular lignin-forming cell culture of spruce. In addition, we purified and biochemically characterized one culture medium laccase from the lignin-forming cell culture. This laccase has an acidic pH optimum (pH 3.8-4.2) for coniferyl alcohol oxidation. It has a high affinity to coniferyl alcohol with an apparent Km value of 3.5 μM; however, the laccase has a lower catalytic efficiency (V(max)/K(m)) for coniferyl alcohol oxidation compared with some purified culture medium peroxidases. The properties are discussed in the context of the information already known about laccases/coniferyl alcohol oxidases of coniferous plants.

  11. Use of HyperCard to Simulate a Tissue Culture Laboratory.

    ERIC Educational Resources Information Center

    Nester, Bradley S.; Turney, Tully H.

    1992-01-01

    Describes the use of a Macintosh computer and HyperCard software to create an introduction to cell culture techniques that closely approximates a hands-on laboratory experiment. Highlights include data acquisition, data analysis, the generation of growth curves, and electronic modeling. (LRW)

  12. COMPARISON OF TISSUE CULTURE AND ANIMAL MODELS FOR ASSESSMENT OF CRYPTOSPRIDIUM PARVUM INFECTION

    EPA Science Inventory

    Data from three different disinfection studies using both cell culture and mouse infectivity to assess Cryptosporidium parvum inactivation were evaluated in a total of 35 comparison including process controls and treated samples. C. parvum infectivity in the in vitro FDM-MPN assa...

  13. Preclinical Assessment of the Anticancer Drug Response of Plexiform Neurofibroma Tissue Using Primary Cultures

    PubMed Central

    Mautner, Victor-F.; Friedrich, Reinhard E.; Kluwe, Lan

    2015-01-01

    Background and Purpose Individualized drug testing for tumors using a strategy analogous to antibiotic tests for infectious diseases would be highly desirable for personalized and individualized cancer care. Methods Primary cultures containing tumor and nontumor stromal cells were utilized in a novel strategy to test drug responses with respect to both efficacy and specificity. The strategy tested in this pilot study was implemented using four primary cultures derived from plexiform neurofibromas. Responses to two cytotoxic drugs (nilotinib and imatinib) were measured by following dose-dependent changes in the proportions of tumor and nontumor cells, determined by staining them with cell-type-specific antibodies. The viability of the cultured cells and the cytotoxic effect of the drugs were also measured using proliferation and cytotoxicity assays. Results The total number of cells decreased after the drug treatment, in accordance with the observed reduction in proliferation and increased cytotoxic effect upon incubation with the two anticancer drugs. The proportions of Schwann cells and fibroblasts changed dose-dependently, although the patterns of change varied between the tumor samples (from different sources) and between the two drugs. The highly variable in vitro drug responses probably reflect the large variations in the responses of tumors to therapies between individual patients in vivo. Conclusions These preliminary results suggest that the concept of assessing in vitro drug responses using primary cultures is feasible, but demands the extensive further development of an application for preclinical drug selection and drug discovery. PMID:25851896

  14. Analysis of soybean tissue culture protein dynamics using difference gel electrophoresis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Excised hypocotyls from developing soybean (Glycine max (L.) merr. cv. Jack) were cultivated on agar-solidified medium until callus formed. The calli were then propagated in liquid medium until stable, relatively uniform, finely-divided suspension cultures were obtained. Cells were typically transfe...

  15. Insects and Spiders.

    ERIC Educational Resources Information Center

    National Audubon Society, New York, NY.

    This set of teaching aids consists of nine Audubon Nature Bulletins, providing teachers and students with informational reading on insects and spiders. The bulletins have these titles: What Good Are Insects, How Insects Benefit Man, Life of the Honey Bee, Ants and Their Fascinating Ways, Mosquitoes and Other Flies, Caterpillars, Spiders and Silk,…

  16. Sunflower insect pests

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Like other annual crops, sunflowers are fed upon by a variety of insect pests capable of reducing yields. Though there are a few insects which are considered consistent or severe (e.g., sunflower moth, banded sunflower moth, red sunflower seed weevil), many more insects are capable of causing proble...

  17. Exploring Sound with Insects

    ERIC Educational Resources Information Center

    Robertson, Laura; Meyer, John R.

    2010-01-01

    Differences in insect morphology and movement during singing provide a fascinating opportunity for students to investigate insects while learning about the characteristics of sound. In the activities described here, students use a free online computer software program to explore the songs of the major singing insects and experiment with making…

  18. Insects and Others.

    ERIC Educational Resources Information Center

    Mills, Richard

    1984-01-01

    Several ideas for observing insects and soil animals in the classroom are provided. Also provided are: (1) procedures for making insect cages with milk cartons; (2) suggestions for collecting and feeding insects; and (3) techniques for collecting and identifying soil animals. (BC)

  19. Osteogenic potential of human adipose-tissue-derived mesenchymal stromal cells cultured on 3D-printed porous structured titanium.

    PubMed

    Lewallen, Eric A; Jones, Dakota L; Dudakovic, Amel; Thaler, Roman; Paradise, Christopher R; Kremers, Hilal M; Abdel, Matthew P; Kakar, Sanjeev; Dietz, Allan B; Cohen, Robert C; Lewallen, David G; van Wijnen, Andre J

    2016-05-01

    Integration of porous metal prosthetics, which restore form and function of irreversibly damaged joints, into remaining healthy bone is critical for implant success. We investigated the biological properties of adipose-tissue-derived mesenchymal stromal/stem cells (AMSCs) and addressed their potential to alter the in vitro microenvironment of implants. We employed human AMSCs as a practical source for musculoskeletal applications because these cells can be obtained in large quantities, are multipotent, and have trophic paracrine functions. AMSCs were cultured on surgical-grade porous titanium disks as a model for orthopedic implants. We monitored cell/substrate attachment, cell proliferation, multipotency, and differentiation phenotypes of AMSCs upon osteogenic induction. High-resolution scanning electron microscopy and histology revealed that AMSCs adhere to the porous metallic surface. Compared to standard tissue culture plastic, AMSCs grown in the porous titanium microenvironment showed differences in temporal expression for genes involved in cell cycle progression (CCNB2, HIST2H4), extracellular matrix production (COL1A1, COL3A1), mesenchymal lineage identity (ACTA2, CD248, CD44), osteoblastic transcription factors (DLX3, DLX5, ID3), and epigenetic regulators (EZH1, EZH2). We conclude that metal orthopedic implants can be effectively seeded with clinical-grade stem/stromal cells to create a pre-conditioned implant. PMID:26774799

  20. Three-Dimensional Culture of Cells and Matrix Biomolecules for Engineered Tissue Development and Biokinetics Model Validation

    PubMed Central

    Mason, Shelley S.; Kohles, Sean S.; Zelick, Randy D.; Winn, Shelley R.; Saha, Asit K.

    2011-01-01

    There has been considerable progress in cellular and molecular engineering due to recent advances in multiscale technology. Such technologies allow controlled manipulation of physiochemical interactions among cells in tissue culture. In particular, a novel chemomechanical bioreactor has recently been designed for the study of bone and cartilage tissue development, with particular focus on extracellular matrix formation. The bioreactor is equally significant as a tool for validation of mathematical models that explore biokinetic regulatory thresholds (Saha, A. K., and Kohles, S. S., 2010, “A Distinct Catabolic to Anabolic Threshold Due to Single-Cell Nanomechanical Stimulation in a Cartilage Biokinetics Model,” J. Nanotechnol. Eng. Med., 1(3), p. 031005; 2010, “Periodic Nanomechanical Stimulation in a Biokinetics Model Identifying Anabolic and Catabolic Pathways Associated With Cartilage Matrix Homeostasis,” J. Nanotechnol. Eng. Med., 1(4), p. 041001). In the current study, three-dimensional culture protocols are described for maintaining the cellular and biomolecular constituents within defined parameters. Preliminary validation of the bioreactor’s form and function, expected bioassays of the resulting matrix components, and application to biokinetic models are described. This approach provides a framework for future detailed explorations combining multiscale experimental and mathematical analyses, at nanoscale sensitivity, to describe cell and biomolecule dynamics in different environmental regimes. PMID:21709743

  1. [Determination of exogenous hormones in plant tissue culture media by reversed-phase high performance liquid chromatography].

    PubMed

    Chen, Yongbo; Zhao, Qinghua; Jiang, Qiaolong; Teng, Jianxun

    2008-01-01

    A method of high performance liquid chromatography coupled with photodiode array detector (PAD) was established for the determination of the content ratio and type of 6 exogenous hormones in plant tissue culture media. The column was a microBondaPak C18 (3.9 mm x 300 mm, 10 microm, Waters), the mobile phase was 140 mmol/L sodium acetate in triethyl amine buffer (pH 4.95)-acetonitrile (75:25, v/v), and the flow rate was 1.0 mL/min. The column temperature was 37 degrees C, and the detection wavelength was 285 nm. The six hormones reached the baseline separation in 9 minutes. The linear relationship was very good in the range of 4-200 ng (r2 > 0.9995). The exogenous hormones in the medium were extracted by methanol after vacuum dried. The average recoveries of the exogenous hormones were more than 85%. The method can be used for the analysis of exogenous hormones of plant tissue culture media, or of unknown hormone ratio and the type of media.

  2. Functionalization, preparation and use of cell-laden gelatin methacryloyl-based hydrogels as modular tissue culture platforms.

    PubMed

    Loessner, Daniela; Meinert, Christoph; Kaemmerer, Elke; Martine, Laure C; Yue, Kan; Levett, Peter A; Klein, Travis J; Melchels, Ferry P W; Khademhosseini, Ali; Hutmacher, Dietmar W

    2016-04-01

    Progress in advancing a system-level understanding of the complexity of human tissue development and regeneration is hampered by a lack of biological model systems that recapitulate key aspects of these processes in a physiological context. Hence, growing demand by cell biologists for organ-specific extracellular mimics has led to the development of a plethora of 3D cell culture assays based on natural and synthetic matrices. We developed a physiological microenvironment of semisynthetic origin, called gelatin methacryloyl (GelMA)-based hydrogels, which combine the biocompatibility of natural matrices with the reproducibility, stability and modularity of synthetic biomaterials. We describe here a step-by-step protocol for the preparation of the GelMA polymer, which takes 1-2 weeks to complete, and which can be used to prepare hydrogel-based 3D cell culture models for cancer and stem cell research, as well as for tissue engineering applications. We also describe quality control and validation procedures, including how to assess the degree of GelMA functionalization and mechanical properties, to ensure reproducibility in experimental and animal studies.

  3. Insulin and insulin-like growth factor-1 induce pronounced hypertrophy of skeletal myofibers in tissue culture

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman H.; Karlisch, Patricia; Shansky, Janet

    1990-01-01

    Skeletal myofibers differentiated from primary avian myoblasts in tissue culture can be maintained in positive nitrogen balance in a serum-free medium for at least 6 to 7 days when embedded in a three dimensional collagen gel matrix. The myofibers are metabolically sensitive to physiological concentrations of insulin but these concentrations do not stimulate cell growth. Higher insulin concentrations stimulate both cell hyperplasia and myofiber hypertrophy. Cell growth results from a long term 42 percent increase in total protein synthesis and a 38 percent increase in protein degradation. Myofiber diameters increase by 71 to 98 percent after 6 to 7 days in insulin-containing medium. Insulin-like growth factor-1 but not insulin-like growth factor-2, at 250 ng/ml, is as effective as insulin in stimulating cell hyperplasia and myofiber hypertrophy. This model system provides a new method for studying the long-term anabolic effects of insulin and insulin-like growth factors on myofiber hypertrophy under defined tissue culture conditions.

  4. Osteogenic potential of human adipose-tissue-derived mesenchymal stromal cells cultured on 3D-printed porous structured titanium.

    PubMed

    Lewallen, Eric A; Jones, Dakota L; Dudakovic, Amel; Thaler, Roman; Paradise, Christopher R; Kremers, Hilal M; Abdel, Matthew P; Kakar, Sanjeev; Dietz, Allan B; Cohen, Robert C; Lewallen, David G; van Wijnen, Andre J

    2016-05-01

    Integration of porous metal prosthetics, which restore form and function of irreversibly damaged joints, into remaining healthy bone is critical for implant success. We investigated the biological properties of adipose-tissue-derived mesenchymal stromal/stem cells (AMSCs) and addressed their potential to alter the in vitro microenvironment of implants. We employed human AMSCs as a practical source for musculoskeletal applications because these cells can be obtained in large quantities, are multipotent, and have trophic paracrine functions. AMSCs were cultured on surgical-grade porous titanium disks as a model for orthopedic implants. We monitored cell/substrate attachment, cell proliferation, multipotency, and differentiation phenotypes of AMSCs upon osteogenic induction. High-resolution scanning electron microscopy and histology revealed that AMSCs adhere to the porous metallic surface. Compared to standard tissue culture plastic, AMSCs grown in the porous titanium microenvironment showed differences in temporal expression for genes involved in cell cycle progression (CCNB2, HIST2H4), extracellular matrix production (COL1A1, COL3A1), mesenchymal lineage identity (ACTA2, CD248, CD44), osteoblastic transcription factors (DLX3, DLX5, ID3), and epigenetic regulators (EZH1, EZH2). We conclude that metal orthopedic implants can be effectively seeded with clinical-grade stem/stromal cells to create a pre-conditioned implant.

  5. InsectBase: a resource for insect genomes and transcriptomes

    PubMed Central

    Yin, Chuanlin; Shen, Gengyu; Guo, Dianhao; Wang, Shuping; Ma, Xingzhou; Xiao, Huamei; Liu, Jinding; Zhang, Zan; Liu, Ying; Zhang, Yiqun; Yu, Kaixiang; Huang, Shuiqing; Li, Fei

    2016-01-01

    The genomes and transcriptomes of hundreds of insects have been sequenced. However, insect community lacks an integrated, up-to-date collection of insect gene data. Here, we introduce the first release of InsectBase, available online at http://www.insect-genome.com. The database encompasses 138 insect genomes, 116 insect transcriptomes, 61 insect gene sets, 36 gene families of 60 insects, 7544 miRNAs of 69 insects, 96 925 piRNAs of Drosophila melanogaster and Chilo suppressalis, 2439 lncRNA of Nilaparvata lugens, 22 536 pathways of 78 insects, 678 881 untranslated regions (UTR) of 84 insects and 160 905 coding sequences (CDS) of 70 insects. This release contains over 12 million sequences and provides search functionality, a BLAST server, GBrowse, insect pathway construction, a Facebook-like network for the insect community (iFacebook), and phylogenetic analysis of selected genes. PMID:26578584

  6. Improving normal tissue complication probability models: the need to adopt a "data-pooling" culture.

    PubMed

    Deasy, Joseph O; Bentzen, Søren M; Jackson, Andrew; Ten Haken, Randall K; Yorke, Ellen D; Constine, Louis S; Sharma, Ashish; Marks, Lawrence B

    2010-03-01

    Clinical studies of the dependence of normal tissue response on dose-volume factors are often confusingly inconsistent, as the QUANTEC reviews demonstrate. A key opportunity to accelerate progress is to begin storing high-quality datasets in repositories. Using available technology, multiple repositories could be conveniently queried, without divulging protected health information, to identify relevant sources of data for further analysis. After obtaining institutional approvals, data could then be pooled, greatly enhancing the capability to construct predictive models that are more widely applicable and better powered to accurately identify key predictive factors (whether dosimetric, image-based, clinical, socioeconomic, or biological). Data pooling has already been carried out effectively in a few normal tissue complication probability studies and should become a common strategy.

  7. IMPROVING NORMAL TISSUE COMPLICATION PROBABILITY MODELS: THE NEED TO ADOPT A “DATA-POOLING” CULTURE

    PubMed Central

    Deasy, Joseph O.; Bentzen, Søren M.; Jackson, Andrew; Ten Haken, Randall K.; Yorke, Ellen D.; Constine, Louis S.; Sharma, Ashish; Marks, Lawrence B.

    2010-01-01

    Clinical studies of the dependence of normal tissue response on dose-volume factors are often confusingly inconsistent, as the QUANTEC reviews demonstrate. A key opportunity to accelerate progress is to begin storing high-quality datasets in repositories. Using available technology, multiple repositories could be conveniently queried, without divulging protected health information, to identify relevant sources of data for further analysis. After obtaining institutional approvals, data could then be pooled, greatly enhancing the capability to construct predictive models that are more widely applicable and better powered to accurately identify key predictive factors (whether dosimetric, image-based, clinical, socioeconomic, or biological). Data pooling has already been carried out effectively in a few normal tissue complication probability studies and should become a common strategy. PMID:20171511

  8. Microenvironment of alginate-based microcapsules for cell culture and tissue engineering.

    PubMed

    Huang, Xiaobo; Zhang, Xiangyu; Wang, Xiaoguang; Wang, Chan; Tang, Bin

    2012-07-01

    As a type of 3D model, the technology of microencapsulation holds significant promise for tissue engineering and cell therapy due to its unique performance. The microenvironmental factors within microcapsules play an important role in influencing the behaviors of encapsulated cells. The aim of this review article is to give an overview on the construction of the microenvironmental factors, which include 3D space, physicochemical properties of alginate matrix, cell spheroids, nutritional status, and so on. Furthermore, we clarified the effect of microenvironmental factors on the behaviors of encapsulated cells and the methods about improving the microenvironment of microcapsules. This review will help to understand the interaction of the microenvironment and the encapsulated cells and lay a solid foundation for microcapsule-based cell therapy and tissue engineering.

  9. Cyclic Strain Anisotropy Regulates Valvular Interstitial Cell Phenotype and Tissue Remodeling in 3D Culture

    PubMed Central

    Gould, Russell A.; Chin, Karen; Santisakultarm, Thom P.; Dropkin, Amanda; Richards, Jennifer M.; Schaffer, Chris B.; Butcher, Jonathan T.

    2013-01-01

    Many planar connective tissues exhibit complex anisotropic matrix fiber arrangements that are critical to their biomechanical function. This organized structure is created and modified by resident fibroblasts in response to mechanical forces in their environment. The directionality of applied strain fields change dramatically during development, aging, and disease, but the specific effect of strain direction on matrix remodeling is less clear. Current mechanobiological inquiry of planar tissues is limited to equibiaxial or uniaxial stretch, which inadequately simulate many in vivo environments. In this study, we implement a novel bioreactor system to demonstrate the unique effect of controlled anisotropic strain on fibroblast behavior in 3D engineered tissue environments, using aortic valve interstitial fibroblast cells (VIC) as a model system. Cell seeded 3D collagen hydrogels were subjected to cyclic anisotropic strain profiles maintained at constant areal strain magnitude for up to 96 hours at 1Hz. Increasing anisotropy of biaxial strain resulted in increased cellular orientation and collagen fiber alignment along the principal directions of strain and cell orientation was found to precede fiber reorganization. Cellular proliferation and apoptosis were both significantly enhanced under increasing biaxial strain anisotropy (P < 0.05). While cyclic strain reduced both vimentin and alpha-smooth muscle actin compared to unstrained controls, vimentin and alpha-smooth muscle actin expression increased with strain anisotropy and correlated with direction (P < 0.05). Collectively, these results suggest that strain field anisotropy is an independent regulator of fibroblast cell phenotype, turnover, and matrix reorganization, which may inform normal and pathological remodeling in soft tissues. PMID:22281945

  10. Skeletal muscle regeneration via engineered tissue culture over electrospun nanofibrous chitosan/PVA scaffold.

    PubMed

    Kheradmandi, Mahsa; Vasheghani-Farahani, Ebrahim; Ghiaseddin, Ali; Ganji, Fariba

    2016-07-01

    Skeletal muscle tissue shows a remarkable potential in regeneration of injured tissue. However, in some of chronic and volumetric muscle damages, the native tissue is incapable to repair and remodeling the trauma. In the same condition, stem-cell therapy increased regeneration in situations of deficient muscle repair, but the major problem seems to be the lack of ability to attachment and survive of injected cells on the exact location. In this study, chitosan/poly(vinyl alcohol) nanofibrous scaffold was studied to promote cell attachment and provide mechanical support during regeneration. Scaffold was characterized using scanning electron microscope, X-ray diffraction, and tensile test. Degradation and swelling behavior of scaffold were studied for 20 days. The cell-scaffold interaction was characterized by MTT assay for 10 days and in vivo biocompatibility of scaffold in a rabbit model was evaluated. Results showed that cells had a good viability, adhesion, growth, and spread on the scaffold, which make this mat a desirable engineered muscular graft. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1720-1727, 2016.

  11. A hydrophobic perfluoropolyether elastomer as a patternable biomaterial for cell culture and tissue engineering.

    PubMed

    Schulte, Vera A; Hu, Yibing; Diez, Mar; Bünger, Daniel; Möller, Martin; Lensen, Marga C

    2010-11-01

    We present a systematic study of a perfluoropolyether (PFPE)-based elastomer as a new biomaterial. Besides its excellent long-term stability and inertness, PFPE can be decorated with topographical surface structures by replica molding. Micrometer-sized pillar structures led to considerably different cell morphology of fibroblasts. Although PFPE is a very hydrophobic material we could show that PFPE substrates allow cell adhesion and spreading of primary human fibroblasts (HDF) very similar to that observed on standard cell culture substrates. Less advanced cell spreading was observed for L929 (murine fibroblast cell line) cells during the first 5 h in culture which was accompanied by retarded recruitment of α(v)β(3)-integrin into focal adhesions (FAs). After 24 h distinct FAs were evident also in L929 cells on PFPE. Furthermore, organization of soluble FN into a fibrillar ECM network was shown for hdF and L929 cells. Based on these results PFPE is believed to be a suitable substrate for several biological applications. On the one hand it is an ideal cell culture substrate for fundamental research of substrate-independent adhesion signaling due to its different characteristics (e.g. wettability, elasticity) compared to glass or TCPS. On the other hand it could be a promising implant material, especially due to its straightforward patternability, which is a tool to direct cell growth and differentiation. PMID:20708794

  12. Identification of intracellular bacteria in adenoid and tonsil tissue specimens: the efficiency of culture versus fluorescent in situ hybridization (FISH).

    PubMed

    Stępińska, M; Olszewska-Sosińska, O; Lau-Dworak, M; Zielnik-Jurkiewicz, B; Trafny, E A

    2014-01-01

    Monocyte/macrophage cells from human nasopharyngeal lymphoid tissue can be a source of bacteria responsible for human chronic and recurrent upper respiratory tract infection. Detection and characterization of pathogens surviving intracellularly could be a key element in bacteriological diagnosis of the infections as well as in the study on interactions between bacteria and their host. The present study was undertaken to assess the possibility of isolation of viable bacteria from the cells expressing monocyte/macrophage marker CD14 in nasopharyngeal lymphoid tissue. Overall, 74 adenotonsillectomy specimens (adenoids and tonsils) from 37 children with adenoid hypertrophy and recurrent infections as well as 15 specimens from nine children with adenoid hypertrophy, which do not suffer from upper respiratory tract infections (the control group), were studied. The suitability of immunomagnetic separation for extraction of CD14(+) cells from lymphoid tissue and for further isolation of the intracellular pathogens has been shown. The coexistence of living pathogens including Haemophilus influenzae, Staphylococcus aureus, and Streptococcus pyogenes with the bacteria representing normal nasopharyngeal microbiota inside CD14(+) cells was demonstrated. Twenty-four strains of these pathogens from 32.4 % of the lysates of CD14(+) cells were isolated. Concurrently, the fluorescent in situ hybridization (FISH) with a universal EUB388, and the species-specific probes demonstrated twice more often the persistence of these bacterial species in the lysates of CD14(+) cells than conventional culture. Although the FISH technique appears to be more sensitive than traditional culture in the intracellular bacteria identification, the doubts on whether the bacteria are alive, and therefore, pathogenic would still exist without the strain cultivation.

  13. Gene expression profiles of human adipose tissue-derived mesenchymal stem cells are modified by cell culture density.

    PubMed

    Kim, Dae Seong; Lee, Myoung Woo; Yoo, Keon Hee; Lee, Tae-Hee; Kim, Hye Jin; Jang, In Keun; Chun, Yong Hoon; Kim, Hyung Joon; Park, Seung Jo; Lee, Soo Hyun; Son, Meong Hi; Jung, Hye Lim; Sung, Ki Woong; Koo, Hong Hoe

    2014-01-01

    Previous studies conducted cell expansion ex vivo using low initial plating densities for optimal expansion and subsequent differentiation of mesenchymal stem cells (MSCs). However, MSC populations are heterogeneous and culture conditions can affect the characteristics of MSCs. In this study, differences in gene expression profiles of adipose tissue (AT)-derived MSCs were examined after harvesting cells cultured at different densities. AT-MSCs from three different donors were plated at a density of 200 or 5,000 cells/cm(2). After 7 days in culture, detailed gene expression profiles were investigated using a DNA chip microarray, and subsequently validated using a reverse transcription polymerase chain reaction (RT-PCR) analysis. Gene expression profiles were influenced primarily by the level of cell confluence at harvest. In MSCs harvested at ∼90% confluence, 177 genes were up-regulated and 102 genes down-regulated relative to cells harvested at ∼50% confluence (P<0.05, FC>2). Proliferation-related genes were highly expressed in MSCs harvested at low density, while genes that were highly expressed in MSCs harvested at high density (∼90% confluent) were linked to immunity and defense, cell communication, signal transduction and cell motility. Several cytokine, chemokine and growth factor genes involved in immunosuppression, migration, and reconstitution of damaged tissues were up-regulated in MSCs harvested at high density compared with MSCs harvested at low density. These results imply that cell density at harvest is a critical factor for modulating the specific gene-expression patterns of heterogeneous MSCs.

  14. What Do We Learn from Spheroid Culture Systems? Insights from Tumorspheres Derived from Primary Colon Cancer Tissue

    PubMed Central

    Qureshi-Baig, Komal; Ullmann, Pit; Rodriguez, Fabien; Frasquilho, Sónia; Nazarov, Petr V.; Haan, Serge; Letellier, Elisabeth

    2016-01-01

    Due to their self-renewal and tumorigenic properties, tumor-initiating cells (TICs) have been hypothesized to be important targets for colorectal cancer (CRC). However the study of TICs is hampered by the fact that the identification and culturing of TICs is still a subject of extensive debate. Floating three-dimensional spheroid cultures (SC) that grow in serum-free medium supplemented with growth factors are supposed to be enriched in TICs. We generated SC from fresh clinical tumor specimens and compared them to SC isolated from CRC cell-lines as well as to adherent differentiated counterparts. Patient-derived SC display self-renewal capacity and can induce serial transplantable tumors in immuno-deficient mice, which phenotypically resemble the tumor of origin. In addition, the original tumor tissue and established SC retain several similar CRC-relevant mutations. Primary SC express key stemness proteins such as SOX2, OCT4, NANOG and LGR5 and importantly show increased chemoresistance ability compared to their adherent differentiated counterparts and to cell line-derived SC. Strikingly, cells derived from spheroid or adherent differentiating culture conditions displayed similar self-renewal capacity and equally formed tumors in immune-deficient mice, suggesting that self-renewal and tumor-initiation capacity of TICs is not restricted to phenotypically immature spheroid cells, which we describe to be highly plastic and able to reacquire stem-cell traits even after long differentiation processes. Finally, we identified two genes among a sphere gene expression signature that predict disease relapse in CRC patients. Here we propose that SC derived from fresh patient tumor tissue present interesting phenotypic features that may have clinical relevance for chemoresistance and disease relapse and therefore represent a valuable tool to test for new CRC-therapies that overcome drug resistance. PMID:26745821

  15. Effects of FGF-2 on human adipose tissue derived adult stem cells morphology and chondrogenesis enhancement in Transwell culture

    SciTech Connect

    Kabiri, Azadeh; Esfandiari, Ebrahim; Hashemibeni, Batool; Kazemi, Mohammad; Mardani, Mohammad; Esmaeili, Abolghasem

    2012-07-27

    Highlights: Black-Right-Pointing-Pointer We investigated effects of FGF-2 on hADSCs. Black-Right-Pointing-Pointer We examine changes in the level of gene expressions of SOX-9, aggrecan and collagen type II and type X. Black-Right-Pointing-Pointer FGF-2 induces chondrogenesis in hADSCs, which Bullet Increasing information will decrease quality if hospital costs are very different. Black-Right-Pointing-Pointer The result of this study may be beneficial in cartilage tissue engineering. -- Abstract: Injured cartilage is difficult to repair due to its poor vascularisation. Cell based therapies may serve as tools to more effectively regenerate defective cartilage. Both adult mesenchymal stem cells (MSCs) and human adipose derived stem cells (hADSCs) are regarded as potential stem cell sources able to generate functional cartilage for cell transplantation. Growth factors, in particular the TGF-b superfamily, influence many processes during cartilage formation, including cell proliferation, extracellular matrix synthesis, maintenance of the differentiated phenotype, and induction of MSCs towards chondrogenesis. In the current study, we investigated the effects of FGF-2 on hADSC morphology and chondrogenesis in Transwell culture. hADSCs were obtained from patients undergoing elective surgery, and then cultured in expansion medium alone or in the presence of FGF-2 (10 ng/ml). mRNA expression levels of SOX-9, aggrecan and collagen type II and type X were quantified by real-time polymerase chain reaction. The morphology, doubling time, trypsinization time and chondrogenesis of hADSCs were also studied. Expression levels of SOX-9, collagen type II, and aggrecan were all significantly increased in hADSCs expanded in presence of FGF-2. Furthermore FGF-2 induced a slender morphology, whereas doubling time and trypsinization time decreased. Our results suggest that FGF-2 induces hADSCs chondrogenesis in Transwell culture, which may be beneficial in cartilage tissue engineering.

  16. What Do We Learn from Spheroid Culture Systems? Insights from Tumorspheres Derived from Primary Colon Cancer Tissue.

    PubMed

    Qureshi-Baig, Komal; Ullmann, Pit; Rodriguez, Fabien; Frasquilho, Sónia; Nazarov, Petr V; Haan, Serge; Letellier, Elisabeth

    2016-01-01

    Due to their self-renewal and tumorigenic properties, tumor-initiating cells (TICs) have been hypothesized to be important targets for colorectal cancer (CRC). However the study of TICs is hampered by the fact that the identification and culturing of TICs is still a subject of extensive debate. Floating three-dimensional spheroid cultures (SC) that grow in serum-free medium supplemented with growth factors are supposed to be enriched in TICs. We generated SC from fresh clinical tumor specimens and compared them to SC isolated from CRC cell-lines as well as to adherent differentiated counterparts. Patient-derived SC display self-renewal capacity and can induce serial transplantable tumors in immuno-deficient mice, which phenotypically resemble the tumor of origin. In addition, the original tumor tissue and established SC retain several similar CRC-relevant mutations. Primary SC express key stemness proteins such as SOX2, OCT4, NANOG and LGR5 and importantly show increased chemoresistance ability compared to their adherent differentiated counterparts and to cell line-derived SC. Strikingly, cells derived from spheroid or adherent differentiating culture conditions displayed similar self-renewal capacity and equally formed tumors in immune-deficient mice, suggesting that self-renewal and tumor-initiation capacity of TICs is not restricted to phenotypically immature spheroid cells, which we describe to be highly plastic and able to reacquire stem-cell traits even after long differentiation processes. Finally, we identified two genes among a sphere gene expression signature that predict disease relapse in CRC patients. Here we propose that SC derived from fresh patient tumor tissue present interesting phenotypic features that may have clinical relevance for chemoresistance and disease relapse and therefore represent a valuable tool to test for new CRC-therapies that overcome drug resistance. PMID:26745821

  17. Gene Expression Profiles of Human Adipose Tissue-Derived Mesenchymal Stem Cells Are Modified by Cell Culture Density

    PubMed Central

    Yoo, Keon Hee; Lee, Tae-Hee; Kim, Hye Jin; Jang, In Keun; Chun, Yong Hoon; Kim, Hyung Joon; Park, Seung Jo; Lee, Soo Hyun; Son, Meong Hi; Jung, Hye Lim; Sung, Ki Woong; Koo, Hong Hoe

    2014-01-01

    Previous studies conducted cell expansion ex vivo using low initial plating densities for optimal expansion and subsequent differentiation of mesenchymal stem cells (MSCs). However, MSC populations are heterogeneous and culture conditions can affect the characteristics of MSCs. In this study, differences in gene expression profiles of adipose tissue (AT)-derived MSCs were examined after harvesting cells cultured at different densities. AT-MSCs from three different donors were plated at a density of 200 or 5,000 cells/cm2. After 7 days in culture, detailed gene expression profiles were investigated using a DNA chip microarray, and subsequently validated using a reverse transcription polymerase chain reaction (RT-PCR) analysis. Gene expression profiles were influenced primarily by the level of cell confluence at harvest. In MSCs harvested at ∼90% confluence, 177 genes were up-regulated and 102 genes down-regulated relative to cells harvested at ∼50% confluence (P<0.05, FC>2). Proliferation-related genes were highly expressed in MSCs harvested at low density, while genes that were highly expressed in MSCs harvested at high density (∼90% confluent) were linked to immunity and defense, cell communication, signal transduction and cell motility. Several cytokine, chemokine and growth factor genes involved in immunosuppression, migration, and reconstitution of damaged tissues were up-regulated in MSCs harvested at high density compared with MSCs harvested at low density. These results imply that cell density at harvest is a critical factor for modulating the specific gene-expression patterns of heterogeneous MSCs. PMID:24400072

  18. Six Month Report on Tissue Cultured Avian Skeletal Myofibers in the STL/A Module Aboard STS-77

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman H.

    1997-01-01

    Space travel is know to effect skeletal muscle, causing rapid and pronounced atrophy in humans and animals, even when strenuous exercise is used as a countermeasure. The cellular and molecular bases of this atrophy are unknown. Space travel may cause muscle atrophy by a direct effect on the muscle fibers and/or indirectly by reducing circulating levels of growth factors such as growth hormone. The recent development of a tissue culture incubator system for Shuttle Middeck basic science experiments [Space Tissue Loss (STL) Module] by the Walter Reed Army Institute of Research (WRAIR) allows the study of the effects of space travel directly on isolated skeletal myofibers. Avian bioartificial skeletal muscle 'organoids' containing differentiated skeletal myofibers and connective tissue fibroblasts were flown aboard the Space Shuttle (Space Transportation System, STS) on Flight STS-77, a repeat of a similar experiment flown on STS-66. The results from these two flight experiments show for the first time that space travel has a direct effect on skeletal muscle cells separate from any systemic effects resulting from altered circulating growth factors.

  19. Impact Assessment of Cigarette Smoke Exposure on Organotypic Bronchial Epithelial Tissue Cultures: A Comparison of Mono-Culture and Coculture Model Containing Fibroblasts.

    PubMed

    Iskandar, Anita R; Xiang, Yang; Frentzel, Stefan; Talikka, Marja; Leroy, Patrice; Kuehn, Diana; Guedj, Emmanuel; Martin, Florian; Mathis, Carole; Ivanov, Nikolai V; Peitsch, Manuel C; Hoeng, Julia

    2015-09-01

    Organotypic 3D cultures of epithelial cells are grown at the air-liquid interface (ALI) and resemble the in vivo counterparts. Although the complexity of in vivo cellular responses could be better manifested in coculture models in which additional cell types such as fibroblasts were incorporated, the presence of another cell type could mask the response of the other. This study reports the impact of whole cigarette smoke (CS) exposure on organotypic mono- and coculture models to evaluate the relevancy of organotypic models for toxicological assessment of aerosols. Two organotypic bronchial models were directly exposed to low and high concentrations of CS of the reference research cigarette 3R4F: monoculture of bronchial epithelial cells without fibroblasts (BR) and coculture with fibroblasts (BRF) models. Adenylate kinase (AK)-based cytotoxicity, cytochrome P450 (CYP) 1A1/1B1 activity, tissue histology, and concentrations of secreted mediators into the basolateral media, as well as transcriptomes were evaluated following the CS exposure. The results demonstrated similar impact of CS on the AK-based cytotoxicity, CYP1A1/1B1 activity, and tissue histology in both models. However, a greater number of secreted mediators was identified in the basolateral media of the monoculture than in the coculture models. Furthermore, annotation analysis and network-based systems biology analysis of the transcriptomic profiles indicated a more prominent cellular stress and tissue damage following CS in the monoculture epithelium model without fibroblasts. Finally, our results indicated that an in vivo smoking-induced xenobiotic metabolism response of bronchial epithelial cells was better reflected from the in vitro CS-exposed coculture model.

  20. Impact Assessment of Cigarette Smoke Exposure on Organotypic Bronchial Epithelial Tissue Cultures: A Comparison of Mono-Culture and Coculture Model Containing Fibroblasts.

    PubMed

    Iskandar, Anita R; Xiang, Yang; Frentzel, Stefan; Talikka, Marja; Leroy, Patrice; Kuehn, Diana; Guedj, Emmanuel; Martin, Florian; Mathis, Carole; Ivanov, Nikolai V; Peitsch, Manuel C; Hoeng, Julia

    2015-09-01

    Organotypic 3D cultures of epithelial cells are grown at the air-liquid interface (ALI) and resemble the in vivo counterparts. Although the complexity of in vivo cellular responses could be better manifested in coculture models in which additional cell types such as fibroblasts were incorporated, the presence of another cell type could mask the response of the other. This study reports the impact of whole cigarette smoke (CS) exposure on organotypic mono- and coculture models to evaluate the relevancy of organotypic models for toxicological assessment of aerosols. Two organotypic bronchial models were directly exposed to low and high concentrations of CS of the reference research cigarette 3R4F: monoculture of bronchial epithelial cells without fibroblasts (BR) and coculture with fibroblasts (BRF) models. Adenylate kinase (AK)-based cytotoxicity, cytochrome P450 (CYP) 1A1/1B1 activity, tissue histology, and concentrations of secreted mediators into the basolateral media, as well as transcriptomes were evaluated following the CS exposure. The results demonstrated similar impact of CS on the AK-based cytotoxicity, CYP1A1/1B1 activity, and tissue histology in both models. However, a greater number of secreted mediators was identified in the basolateral media of the monoculture than in the coculture models. Furthermore, annotation analysis and network-based systems biology analysis of the transcriptomic profiles indicated a more prominent cellular stress and tissue damage following CS in the monoculture epithelium model without fibroblasts. Finally, our results indicated that an in vivo smoking-induced xenobiotic metabolism response of bronchial epithelial cells was better reflected from the in vitro CS-exposed coculture model. PMID:26085348

  1. Effects of epidermal growth factor on neural crest cells in tissue culture

    SciTech Connect

    Erickson, C.A.; Turley, E.A.

    1987-04-01

    Epidermal growth factor (EGF) stimulates the release of hyaluronic acid (HA) and chondroitin sulfate proteoglycan (CSPG) from quail trunk neural crest cultures in a dose-dependent fashion. It also promotes the expression of cell-associated heparan sulfate proteoglycan (HSPG) as detected by immunofluorescence and immunoprecipitation of the /sup 3/H-labeled proteoglycan. Furthermore, EGF stimulates (/sup 3/H)thymidine incorporation into total cell DNA. These results raise the possibility that EGF or an analogous growth factor is involved in regulation of neural crest cell morphogenesis.

  2. Viability of human ovarian tissue confirmed 5 years after freezing with spontaneous ice-formation by autografting and chorio-allantoic membrane culture.

    PubMed

    Isachenko, Vladimir; Orth, Ingrid; Isachenko, Evgenia; Mallmann, Peter; Peters, Doris; Schmidt, Torsten; Morgenstern, Bernd; Foth, Dolores; Hanstein, Bettina; Rahimi, Gohar

    2013-06-01

    To achieve optimal and uniform outcomes, slow cooling protocols for human ovarian tissues generally initiate ice formation at high sub-zero temperatures (-6 to -9 °C). The aim of the study was to investigate the function of ovarian tissue that had unintentionally self seeded at -20 °C during the freezing step, by examining its development following chicken embryonic chorioallantoic membrane (CAM) grafting and after transplantation back to the patient. Ovarian tissue was frozen in 6% (v/v) dimethyl sulfoxide, 6% (v/v) ethylene glycol and 0.15M sucrose which had self-seeded at -20 °C. Five years after cryopreservation, 8 pieces were thawed and transplanted back to the patient. Two small (1 × 2 × 1 mm) pieces of this thawed tissue were cultured in a CAM-system for 5 days to assess the tissue viability. The autografted ovarian tissue re-established spontaneous menstrual bleeding within five months and raised serum 17-β Estradiol from 19 to 330 pg/ml. Ultrasound revealed a dominant follicle at the site of the transplanted tissue in the follicular phase after the menstrual bleed. Analysis of the CAM cultured tissue established that 88% of the primordial follicles are degenerated and there was limited in growth of blood vessels. In conclusion, in spite of the damage caused by the cryopreservation with spontaneous ice-formation the viability could be confirmed by CAM culture and the restoration of ovarian function after auto-transplantation.

  3. Characterization of eight terpenoids from tissue cultures of the Chinese herbal plant, Tripterygium wilfordii, by high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry.

    PubMed

    Su, Ping; Cheng, Qiqing; Wang, Xiujuan; Cheng, Xiaoqing; Zhang, Meng; Tong, Yuru; Li, Fei; Gao, Wei; Huang, Luqi

    2014-09-01

    In this study, a reliable method for analysis and identification of eight terpenoids in tissue cultures of Tripterygium wilfordii has been established using high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry (HPLC-ESI-MS). Our study indicated that sterile seedlings, callus cultures and cell-suspension cultures can rapidly increase the amount of biological materials. HPLC-ESI-MS was used to identify terpenoids from the extracts of these tissue cultures. Triptolide, triptophenolide, celastrol and wilforlide A were unambiguously determined by comparing the retention times, UV spectral data, and mass fragmentation behaviors with those of the reference compounds. Another four compounds were tentatively identified as triptonoterpenol, triptonoterpene, 22β-hydroxy-3-oxoolean-12-en-29-oic acid and wilforlide B, based on their UV and mass spectrometry spectra. The quantitative analysis showed that all three materials contain triptolide, triptophenolide, celastrol, wilforlide A, and the contents of the four compounds in the cell-suspension cultures were 53.1, 240, 129 and 964 µg/g, respectively, which were at least 2.0-fold higher than these in the sterile seedlings and callus cultures. Considering the known pharmacological activity of triptolide and celastrol, we recommend the cell-suspension cultures as biological materials for future studies, such as clinical and toxicological studies. The developed method was validated by the evaluation of its precision, linearity, detection limits and recovery, and it was successfully used to identify and quantify the terpenoids in the tissue cultures.

  4. Autologous fibrin scaffolds cultured dermal fibroblasts and enriched with encapsulated bFGF for tissue engineering.

    PubMed

    de la Puente, Pilar; Ludeña, Dolores; Fernández, Ana; Aranda, Jose L; Varela, Gonzalo; Iglesias, Javier

    2011-12-15

    Autologous fibrin scaffolds (AFSs) enriched with cells and specific growth factors represent a promising biocompatible scaffold for tissue engineering. Here, we analyzed the in vitro behavior of dermal fibroblasts (DFs) (cellular attachment, distribution, viability and proliferation, histological and immunohistochemical changes), comparing AFS with and without alginate microcapsules loaded with basic fibroblast growth factor (bFGF), to validate our scaffold in a future animal model in vivo. In all cases, DFs showed good adhesion and normal distribution, while in scaffolds with bFGF at 14 days, the cell counts detected in proliferation and viability assays were greatly improved, as was the proliferative state, and there was a decrease in muscle specific actin expression and collagen synthesis in comparison with the scaffolds without bFGF. In addition, the use of plasma without fibrinogen concentration methods, together with the maximum controlled release of bFGF at 14 days, favored cell proliferation. To conclude, we have been able to create an AFS enriched with fully functional DFs and release-controlled bFGF that could be used in multiple applications for tissue engineering.

  5. Role of O-methyltransferase in the lignification of Douglas-fir cultured tissue

    SciTech Connect

    Monroe, S.H.

    1983-01-01

    O-methyltransferase (OMT) is a key enzyme in the biosynthesis of lignin. This enzyme was isolated and characterized in an effort to understand why Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) callus tissue does not form appreciable amounts of lignin yet does form large amounts of the related flavonoids and tannins. It was shown that the OMT in the callus tissue is a cell wall associated, membrane-bound enzyme, in contrast to that of all reported plant species and to Douglas-fir seedlings, which have either a microsomal or soluble OMT. The effect this had on the OMT kinetic constants was studied. It was found that the callus OMT had much higher K/sub m/ constants for caffeic acid in both the membrane-bound and free forms compared with seedlings. The callus membrane-bound K/sub m/ for caffeic acid is 333 ..mu..M. The callus membrane-free K/sub m/ for caffeic acid is 250 ..mu..M. The seedling K/sub m/ for caffeic acid is 90 ..mu..M.

  6. Studies of mineralization in tissue culture: optimal conditions for cartilage calcification

    NASA Technical Reports Server (NTRS)

    Boskey, A. L.; Stiner, D.; Doty, S. B.; Binderman, I.; Leboy, P.

    1992-01-01

    The optimal conditions for obtaining a calcified cartilage matrix approximating that which exists in situ were established in a differentiating chick limb bud mesenchymal cell culture system. Using cells from stage 21-24 embryos in a micro-mass culture, at an optimal density of 0.5 million cells/20 microliters spot, the deposition of small crystals of hydroxyapatite on a collagenous matrix and matrix vesicles was detected by day 21 using X-ray diffraction, FT-IR microscopy, and electron microscopy. Optimal media, containing 1.1 mM Ca, 4 mM P, 25 micrograms/ml vitamin C, 0.3 mg/ml glutamine, no Hepes buffer, and 10% fetal bovine serum, produced matrix resembling the calcifying cartilage matrix of fetal chick long bones. Interestingly, higher concentrations of fetal bovine serum had an inhibitory effect on calcification. The cartilage phenotype was confirmed based on the cellular expression of cartilage collagen and proteoglycan mRNAs, the presence of type II and type X collagen, and cartilage type proteoglycan at the light microscopic level, and the presence of chondrocytes and matrix vesicles at the EM level. The system is proposed as a model for evaluating the events in cell mediated cartilage calcification.

  7. Discovery of extracellular multiple form of Chlamydia trachomatis in the tissue culture.

    PubMed

    Li, Z H; Ju, L W; Li, L J

    1994-09-01

    A strain of Chlamydia trachomatis was isolated from a patient with nongonococcal urethritis (NGU). Alternate passages between chick embryo and McCoy cell culture were examined. From the Giemsa stained coverslips taken from the cell culture 96 hours after inoculation, we found, to our surprise, that elementary bodies (EBs) distributed over a large area, and several intact cells embedded in them. These pure EB particles are round, fairly uniform in size and often appeared in pair. According to their morphology, distribution, arrangement and relationship with host cells, they are not the remains after cell lysis or directly released from host cells. We considered that they consisted of EBs which continued to divide by binary fission after their release. The name "Extracellular Multiply Form" was designated and their formation mechanism was proposed. This discovery gives a great challenge to primary theory, i.e. Chlamydias are obligate intracellular prokaryotic parasites. If we can further reveal the law of their formation, it will be of great significance both theoretically and practically. PMID:7805456

  8. Insulin improves in vitro survival of equine preantral follicles enclosed in ovarian tissue and reduces reactive oxygen species production after culture.

    PubMed

    Aguiar, F L N; Lunardi, F O; Lima, L F; Rocha, R M P; Bruno, J B; Magalhães-Padilha, D M; Cibin, F W S; Rodrigues, A P R; Gastal, M O; Gastal, E L; Figueiredo, J R

    2016-04-01

    This study investigated the effect of insulin concentration on the in vitro culture of equine preantral follicles enclosed in ovarian tissue. Ovarian tissue samples were immediately fixed (noncultured control) or cultured for 1 or 7 days in α-MEM(+) supplemented with 0 ng/mL, 10 ng/mL, or 10 μg/mL insulin. Ovarian tissues were processed and analyzed by classical histology. Culture medium samples were collected after 1 and 7 days of culture for steroid and reactive oxygen species (ROS) analyses. The percentage of morphologically normal follicles was greater (P < 0.001) in insulin-treated groups after 1 day of culture; likewise, more (P < 0.02) normal follicles were observed after 7 days of culture in medium supplemented with 10-ng/mL insulin. Furthermore, an increase (P < 0.01) in developing (transition, primary, and secondary) follicles between Days 1 and 7 of culture was observed only with the 10-ng/mL insulin treatment. ROS production after 1 or 7 days of culture was lower (P < 0.0001) in medium with 10-ng/mL insulin than the other treatments. Ovarian tissues containing preantral follicles were able to produce estradiol and progesterone after 1 and 7 days of culture; however, treatments did not differ in steroid production. In conclusion, the use of a physiological concentration (10 ng/mL) of insulin rather than the previously reported concentration (10 μg/mL) for in vitro culture of equine preantral follicles improved follicular survival and growth and lowered oxidative stress. Results from this study shed light on new perspectives for producing an appropriate medium to improve equine preantral follicle in vitro survival and growth.

  9. Umbilical cord Wharton's jelly repeated culture system: a new device and method for obtaining abundant mesenchymal stem cells for bone tissue engineering.

    PubMed

    Chang, Zhengqi; Hou, Tianyong; Xing, Junchao; Wu, Xuehui; Jin, Huiyong; Li, Zhiqiang; Deng, Moyuan; Xie, Zhao; Xu, Jianzhong

    2014-01-01

    To date, various types of cells for seeding regenerative scaffolds have been used for bone tissue engineering. Among seed cells, the mesenchymal stem cells derived from human umbilical cord Wharton's jelly (hUCMSCs) represent a promising candidate and hold potential for bone tissue engineering due to the the lack of ethical controversies, accessibility, sourced by non-invasive procedures for donors, a reduced risk of contamination, osteogenic differentiation capacities, and higher immunomodulatory capacity. However, the current culture methods are somewhat complicated and inefficient and often fail to make the best use of the umbilical cord (UC) tissues. Moreover, these culture processes cannot be performed on a large scale and under strict quality control. As a result, only a small quantity of cells can be harvested using the current culture methods. To solve these problems, we designed and evaluated an UC Wharton's jelly repeated culture device. Using this device, hUCMSCs were obtained from the repeated cultures and their quantities and biological characteristics were compared. We found that using our culture device, which retained all tissue blocks on the bottom of the dish, the total number of obtained cells increased 15-20 times, and the time required for the primary passage was reduced. Moreover, cells harvested from the repeated cultures exhibited no significant difference in their immunophenotype, potential for multilineage differentiation, or proliferative, osteoinductive capacities, and final osteogenesis. The application of the repeated culture frame (RCF) not only made full use of the Wharton's jelly but also simplified and specified the culture process, and thus, the culture efficiency was significantly improved. In summary, abundant hUCMSCs of dependable quality can be acquired using the RCF.

  10. Umbilical cord Wharton's jelly repeated culture system: a new device and method for obtaining abundant mesenchymal stem cells for bone tissue engineering.

    PubMed

    Chang, Zhengqi; Hou, Tianyong; Xing, Junchao; Wu, Xuehui; Jin, Huiyong; Li, Zhiqiang; Deng, Moyuan; Xie, Zhao; Xu, Jianzhong

    2014-01-01

    To date, various types of cells for seeding regenerative scaffolds have been used for bone tissue engineering. Among seed cells, the mesenchymal stem cells derived from human umbilical cord Wharton's jelly (hUCMSCs) represent a promising candidate and hold potential for bone tissue engineering due to the the lack of ethical controversies, accessibility, sourced by non-invasive procedures for donors, a reduced risk of contamination, osteogenic differentiation capacities, and higher immunomodulatory capacity. However, the current culture methods are somewhat complicated and inefficient and often fail to make the best use of the umbilical cord (UC) tissues. Moreover, these culture processes cannot be performed on a large scale and under strict quality control. As a result, only a small quantity of cells can be harvested using the current culture methods. To solve these problems, we designed and evaluated an UC Wharton's jelly repeated culture device. Using this device, hUCMSCs were obtained from the repeated cultures and their quantities and biological characteristics were compared. We found that using our culture device, which retained all tissue blocks on the bottom of the dish, the total number of obtained cells increased 15-20 times, and the time required for the primary passage was reduced. Moreover, cells harvested from the repeated cultures exhibited no significant difference in their immunophenotype, potential for multilineage differentiation, or proliferative, osteoinductive capacities, and final osteogenesis. The application of the repeated culture frame (RCF) not only made full use of the Wharton's jelly but also simplified and specified the culture process, and thus, the culture efficiency was significantly improved. In summary, abundant hUCMSCs of dependable quality can be acquired using the RCF. PMID:25329501

  11. Umbilical Cord Wharton’s Jelly Repeated Culture System: A New Device and Method for Obtaining Abundant Mesenchymal Stem Cells for Bone Tissue Engineering

    PubMed Central

    Xing, Junchao; Wu, Xuehui; Jin, Huiyong; Li, Zhiqiang; Deng, Moyuan; Xie, Zhao; Xu, Jianzhong

    2014-01-01

    To date, various types of cells for seeding regenerative scaffolds have been used for bone tissue engineering. Among seed cells, the mesenchymal stem cells derived from human umbilical cord Wharton’s jelly (hUCMSCs) represent a promising candidate and hold potential for bone tissue engineering due to the the lack of ethical controversies, accessibility, sourced by non-invasive procedures for donors, a reduced risk of contamination, osteogenic differentiation capacities, and higher immunomodulatory capacity. However, the current culture methods are somewhat complicated and inefficient and often fail to make the best use of the umbilical cord (UC) tissues. Moreover, these culture processes cannot be performed on a large scale and under strict quality control. As a result, only a small quantity of cells can be harvested using the current culture methods. To solve these problems, we designed and evaluated an UC Wharton’s jelly repeated culture device. Using this device, hUCMSCs were obtained from the repeated cultures and their quantities and biological characteristics were compared. We found that using our culture device, which retained all tissue blocks on the bottom of the dish, the total number of obtained cells increased 15–20 times, and the time required for the primary passage was reduced. Moreover, cells harvested from the repeated cultures exhibited no significant difference in their immunophenotype, potential for multilineage differentiation, or proliferative, osteoinductive capacities, and final osteogenesis. The application of the repeated culture frame (RCF) not only made full use of the Wharton’s jelly but also simplified and specified the culture process, and thus, the culture efficiency was significantly improved. In summary, abundant hUCMSCs of dependable quality can be acquired using the RCF. PMID:25329501

  12. Cathepsins of lepidopteran insects: Aspects and prospects.

    PubMed

    Saikhedkar, Nidhi; Summanwar, Aarohi; Joshi, Rakesh; Giri, Ashok

    2015-09-01

    Molecular understanding of lepidopteran physiology has revealed that proteases consist of one of the central regulatory/reacting system for insect growth and survival. Among the various proteases, cathepsins are the most crucial cellular proteases, which play vital roles during insect development. In the present review, we have discussed various aspects of the lepidopteran insect cathepsins, emphasizing their roles in processes like development, growth, metamorphosis, apoptosis and immunity. Cathepsins are categorized into different types on the basis of their sequence diversification, leading to variation in structure and catalytic function. Cathepsins exhibit tissue and stage specific expression pattern which is fine-tuned by a delicate balance of expression, compartmentalization, zymogen activation, inhibition by protein inhibitors and degradation. The indispensability of cathepsins as cellular proteases in the above mentioned processes proposes them as novel targets for designing effective and specific insect controlling strategies.

  13. Distributed Pore Chemistry in Porous Organic Polymers in Tissue Culture Flasks

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L. (Inventor)

    1999-01-01

    A method for making a biocompatible polymer article using a uniform atomic oxygen treatment is disclose. The substrate may be subsequently optionally grated with a compatibilizing compound. Compatibilizing compounds may include proteins, phosphorylcholine groups, platelet adhesion preventing polymers, albumin adhesion promoters, and the like. The compatibilized substrate may also have a living cell layer adhered thereto. The atomic oxygen is preferably produced by a flowing afterglow microwave discharge, wherein the substrate resides in a sidearm out of the plasma. Also, methods for culturing cells for various purposes using the various membranes are disclosed as well. Also disclosed are porous organic polymers having a distributed pore chemistry (DPC) comprising hydrophilic and hydrophobic regions, and a method for making the DPC by exposing the polymer to atomic oxygen wherein the rate of hydrophilization is greater than the rate of mass loss.

  14. Optical spectral analysis of ultra-weak photon emission from tissue culture and yeast cells

    NASA Astrophysics Data System (ADS)

    Nerudová, Michaela; Červinková, Kateřina; Hašek, Jiří; Cifra, Michal

    2015-01-01

    Optical spectral analysis of the ultra-weak photon emission (UPE) could be utilized for non-invasive diagnostic of state of biological systems and for elucidation of underlying mechanisms of UPE generation. Optical spectra of UPE from differentiated HL-60 cells and yeast cells (Saccharomyces cerevisiae) were investigated. Induced photon emission of neutrophil-like cells and spontaneous photon emission of yeast cells were measured using highly sensitive photomultiplier module Hamamatsu H7360-01 in a thermally regulated light-tight chamber. The respiratory burst of neutrophil-like HL-60 cells was induced with the PMA (phorbol 12-myristate, 13-acetate). PMA activates an assembly of NADPH oxidase, which induces a rapid formation of reactive oxygen species (ROS). Long-pass edge filters (wavelength 350, from 400 to 600 with 25 nm resolution and 650 nm) were used for optical spectral analysis. Propagation of error of indirect measurements and standard deviation were used to assess reliability of the measured spectra. Results indicate that the photon emission from both cell cultures is detectable in the six from eight examined wavelength ranges with different percentage distribution of cell suspensions, particularly 450-475, 475-500, 500-525, 525-550, 550-575 and 575-600 nm. The wavelength range of spectra from 450 to 550 nm coincides with the range of photon emission from triplet excited carbonyls (350-550 nm). The both cells cultures emitted photons in wavelength range from 550 to 600 nm but this range does not correspond with any known emitter. To summarize, we have demonstrated a clear difference in the UPE spectra between two organisms using rigorous methodology and error analysis.

  15. Smart tissue culture: in situ monitoring of the activity of protease enzymes secreted from live cells using nanostructured photonic crystals.

    PubMed

    Kilian, Kristopher A; Lai, Leo M H; Magenau, Astrid; Cartland, Siân; Böcking, Till; Di Girolamo, Nick; Gal, Michael; Gaus, Katharina; Gooding, J Justin

    2009-05-01

    Monitoring enzyme secretion in tissue culture has proved challenging because to date the activity cannot be continuously measured in situ. In this Letter, we present a solution using biopolymer loaded photonic crystals of anodized silicon. Shifts in the optical response by proteolytic degradation of the biopolymer provide label-free sensing with unprecedented low detection limits (1 pg) and calculation of kinetic parameters. The enhancement in sensitivity relative to previous photonic crystal sensors constitutes a change in the sensing paradigm because here the entire pore space is responsive to the secreted enzyme rather than just the pore walls. In situ monitoring is demonstrated by detecting secretion of matrix metalloprotease 9 from stimulated human macrophages.

  16. Enzyme-linked immunosorbent assay-format tissue culture infectious dose-50 test for titrating dengue virus.

    PubMed

    Li, Jie; Hu, Dong-mei; Ding, Xi-xia; Chen, Yue; Pan, Yu-xian; Qiu, Li-wen; Che, Xiao-yan

    2011-01-01

    A dengue nonstructural protein 1 (NS1) antigen capture enzyme-linked immunosorbent assay (ELISA)-based tissue culture infectious dose-50 (TCID(50)) test (TCID(50)-ELISA) was developed as an alternative to the standard plaque assay for titrating dengue virus. Virus titers obtained by TCID(50)-ELISA were comparable to those obtained by the plaque assay and by the traditional TCID(50)-cytopathic effect (CPE) test (TCID(50)-CPE), with a better reproducibility and a lower coefficient of variation. Quantitative comparison of TCID(50)-ELISA and TCID(50)-CPE resulted in a correlation coefficient of 0.976. Moreover, this new method showed a wider application to C6/36, Vero E6, BHK-21, and Vero cells compared with other titration methods. In summary, the novel TCID(50)-ELISA method described here provides a more reliable and more accurate alternative compared to the plaque assay and TCID(50)-CPE for titration of dengue virus.

  17. Culturing Borrelia burgdorferi from spleen and kidney tissues of wild-caught white-footed mice, Peromyscus leucopus.

    PubMed

    Anderson, J F; Johnson, R C; Magnarelli, L A; Hyde, F W

    1986-12-01

    Borrelia burgdorferi was isolated most frequently from tissue of spleen (n = 13) and kidney (n = 10) and less often from blood (n = 5) of wild-caught Peromyscus leucopus. Prevalence of infection tended to be highest at sites where Lyme disease was most common (e.g., 5 of 6 mice were positive in East Haddam, Connecticut). Spirochetes were not isolated in Danbury or New Hartford, areas where this malady is rare. However, in Fairfield, where the disease is also uncommon, 4 of 9 mice were infected. Larval and nymphal I. dammini, containing borreliae, parasitized P. leucopus at all sites where B. burgdorferi was cultured from mice. Borreliae were also detected in D. variabilis feeding on hosts at two of the sites. P. leucopus appears to be an excellent animal to identify focal areas of B. burgdorferi.

  18. Insects in relation to black locust culture on surface-mine spoil in Kentucky, with emphasis on the locust twig borer, Ecdytolopha insiticiana Zell. (Lepidoptera: Tortricidae)

    SciTech Connect

    Thoeny, W.T.

    1986-01-01

    This research evaluated the impacts of herbivorous insects, emphasizing the locust twig borer, Ecdytolopha insiticiana Zeller, on black locust, Robinia pseudoacacia L., coppice production on a coal surface-mine spoil site in southeastern Kentucky. The natural history of E. insiticiana was also studied. The locust twig borer was a persistent and damaging pest in first-year coppice, which provided suitable larval habitat throughout the growing season. The locust leafminer, Odontota dorsalis (Thunberg), fed minimally on first-year coppice foliage except during 1983, when trees were severely drought-stressed. Soil-applied granular carbofuran significantly reduced infestations. Lindane stem treatments were not effective, but entire-tree applications did reduce herbivory. Stump sprouts with reduced levels of herbivory grew significantly taller than controls at both spacings in 1983, but only at the more dense spacing in 1984. Blacklight trap collections revealed two generations/year, and adults were present from early May until late August. Four species of hymenopterous and two species of dipterous parasitoids were recovered from E. insiticiana larvae.

  19. Evaluation of microorganisms cultured from injured and repressed tissue regeneration sites in endangered giant aquatic Ozark Hellbender salamanders.

    PubMed

    Nickerson, Cheryl A; Ott, C Mark; Castro, Sarah L; Garcia, Veronica M; Molina, Thomas C; Briggler, Jeffrey T; Pitt, Amber L; Tavano, Joseph J; Byram, J Kelly; Barrila, Jennifer; Nickerson, Max A

    2011-01-01

    Investigation into the causes underlying the rapid, global amphibian decline provides critical insight into the effects of changing ecosystems. Hypothesized and confirmed links between amphibian declines, disease, and environmental changes are increasingly represented in published literature. However, there are few long-term amphibian studies that include data on population size, abnormality/injury rates, disease, and habitat variables to adequately assess changes through time. We cultured and identified microorganisms isolated from abnormal/injured and repressed tissue regeneration sites of the endangered Ozark Hellbender, Cryptobranchus alleganiensis bishopi, to discover potential causative agents responsible for their significant decline in health and population. This organism and our study site were chosen because the population and habitat of C. a. bishopi have been intensively studied from 1969-2009, and the abnormality/injury rate and apparent lack of regeneration were established. Although many bacterial and fungal isolates recovered were common environmental organisms, several opportunistic pathogens were identified in association with only the injured tissues of C.a. bishopi. Bacterial isolates included Aeromonas hydrophila, a known amphibian pathogen, Granulicetella adiacens, Gordonai terrae, Stenotrophomonas maltophilia, Aerococcus viridans, Streptococcus pneumoniae and a variety of Pseudomonads, including Pseudomonas aeruginosa, P. stutzeri, and P. alcaligenes. Fungal isolates included species in the genera Penicillium, Acremonium, Cladosporium, Curvularia, Fusarium, Streptomycetes, and the Class Hyphomycetes. Many of the opportunistic pathogens identified are known to form biofilms. Lack of isolation of the same organism from all wounds suggests that the etiological agent responsible for the damage to C. a. bishopi may not be a single organism. To our knowledge, this is the first study to profile the external microbial consortia cultured from a

  20. Evaluation of microorganisms cultured from injured and repressed tissue regeneration sites in endangered giant aquatic Ozark Hellbender salamanders.

    PubMed

    Nickerson, Cheryl A; Ott, C Mark; Castro, Sarah L; Garcia, Veronica M; Molina, Thomas C; Briggler, Jeffrey T; Pitt, Amber L; Tavano, Joseph J; Byram, J Kelly; Barrila, Jennifer; Nickerson, Max A

    2011-01-01

    Investigation into the causes underlying the rapid, global amphibian decline provides critical insight into the effects of changing ecosystems. Hypothesized and confirmed links between amphibian declines, disease, and environmental changes are increasingly represented in published literature. However, there are few long-term amphibian studies that include data on population size, abnormality/injury rates, disease, and habitat variables to adequately assess changes through time. We cultured and identified microorganisms isolated from abnormal/injured and repressed tissue regeneration sites of the endangered Ozark Hellbender, Cryptobranchus alleganiensis bishopi, to discover potential causative agents responsible for their significant decline in health and population. This organism and our study site were chosen because the population and habitat of C. a. bishopi have been intensively studied from 1969-2009, and the abnormality/injury rate and apparent lack of regeneration were established. Although many bacterial and fungal isolates recovered were common environmental organisms, several opportunistic pathogens were identified in association with only the injured tissues of C.a. bishopi. Bacterial isolates included Aeromonas hydrophila, a known amphibian pathogen, Granulicetella adiacens, Gordonai terrae, Stenotrophomonas maltophilia, Aerococcus viridans, Streptococcus pneumoniae and a variety of Pseudomonads, including Pseudomonas aeruginosa, P. stutzeri, and P. alcaligenes. Fungal isolates included species in the genera Penicillium, Acremonium, Cladosporium, Curvularia, Fusarium, Streptomycetes, and the Class Hyphomycetes. Many of the opportunistic pathogens identified are known to form biofilms. Lack of isolation of the same organism from all wounds suggests that the etiological agent responsible for the damage to C. a. bishopi may not be a single organism. To our knowledge, this is the first study to profile the external microbial consortia cultured from a