Science.gov

Sample records for inspiratory threshold loading

  1. Delayed Onset Muscle Soreness After Inspiratory Threshold Loading in Healthy Adults

    PubMed Central

    Mathur, Sunita; Sheel, A. William; Road, Jeremy D.; Reid, W. Darlene

    2010-01-01

    Purpose: Skeletal muscle damage occurs following high-intensity or unaccustomed exercise; however, it is difficult to monitor damage to the respiratory muscles, particularly in humans. The aim of this study was to use clinical measures to investigate the presence of skeletal muscle damage in the inspiratory muscles. Methods: Ten healthy subjects underwent 60 minutes of voluntary inspiratory threshold loading (ITL) at 70% of maximal inspiratory pressure. Maximal inspiratory and expiratory mouth pressures, delayed onset muscle soreness on a visual analogue scale and plasma creatine kinase were measured prior to ITL, and at repeated time points after ITL (4, 24 and 48 hours post-ITL). Results: Delayed onset muscle soreness was present in all subjects 24 hours following ITL (intensity = 22 ± 6 mm; significantly higher than baseline p = 0.02). Muscle soreness was reported primarily in the anterior neck region, and was correlated to the amount of work done by the inspiratory muscles during ITL (r = 0.72, p = 0.02). However, no significant change was observed in maximal inspiratory or expiratory pressures or creatine kinase. Conclusions: These findings suggest that an intense bout of ITL results in muscle soreness primarily in the accessory muscles of inspiration, however, may be insufficient to cause significant muscle damage in healthy adults. PMID:20467514

  2. Molecular and physiological events in respiratory muscles and blood of rats exposed to inspiratory threshold loading.

    PubMed

    Domínguez-Álvarez, Marisol; Sabaté-Brescó, Marina; Vilà-Ubach, Mònica; Gáldiz, Juan B; Alvarez, Francisco J; Casadevall, Carme; Gea, Joaquim; Barreiro, Esther

    2014-05-01

    High-intensity exercise induces oxidative stress and inflammatory events in muscles. Tumor necrosis factor (TNF)-α may alter muscle protein metabolism or promote muscle regeneration. We hypothesized that a program of noninvasive chronic inspiratory loading of different intensities induces a differential pattern of physiological, molecular, and cellular events within rat diaphragms. Antioxidants and TNF-α blockade may influence those events. In the diaphragm, gastrocnemius, and blood of rats exposed to high-intensity inspiratory threshold loads (2 hour every 24 hours for 14 days), with and without treatment with N-acetyl cysteine or infliximab (anti-TNF-α antibody), inflammatory cells and cytokines, superoxide anion production, myogenesis markers, and muscle structure were explored. In all animals, maximum inspiratory pressure (MIP) and body weight were determined. High-intensity inspiratory loading for 2 weeks caused a decline in MIP and body weight, and in the diaphragm induced a reduction in fast-twitch fiber proportions and sizes, whereas inflammatory cells and cytokine levels, including TNF-α immunohistochemical expression, superoxide anion, internal nuclei counts, and markers of myogenesis were increased. Blockade of TNF-α improved respiratory muscle function and structure, and animal weight, and, in the diaphragm, reduced inflammatory cell numbers and superoxide anion production drastically while inducing larger increases in protein and messenger RNA levels and immunohistochemical expression of TNF-α, internal nuclei, and markers of muscle regeneration. Blunting of TNF-α also induced a reduction in blood inflammatory cytokines and superoxide anion production. We conclude that TNF-α synthesized by inflammatory cells or myofibers could have differential effects on muscle structure and function in response to chronic, noninvasive, high-intensity inspiratory threshold loading.

  3. Reduced Phrenic Motoneuron Recruitment during Sustained Inspiratory Threshold Loading Compared to Single-Breath Loading: A Twitch Interpolation Study.

    PubMed

    Raux, Mathieu; Demoule, Alexandre; Redolfi, Stefania; Morelot-Panzini, Capucine; Similowski, Thomas

    2016-01-01

    In humans, inspiratory constraints engage cortical networks involving the supplementary motor area. Functional magnetic resonance imaging (fMRI) shows that the spread and intensity of the corresponding respiratory-related cortical activation dramatically decrease when a discrete load becomes sustained. This has been interpreted as reflecting motor cortical reorganization and automatisation, but could proceed from sensory and/or affective habituation. To corroborate the existence of motor reorganization between single-breath and sustained inspiratory loading (namely changes in motor neurones recruitment), we conducted a diaphragm twitch interpolation study based on the hypothesis that motor reorganization should result in changes in the twitch interpolation slope. Fourteen healthy subjects (age: 21-40 years) were studied. Bilateral phrenic stimulation was delivered at rest, upon prepared and targeted voluntary inspiratory efforts ("vol"), upon unprepared inspiratory efforts against a single-breath inspiratory threshold load ("single-breath"), and upon sustained inspiratory efforts against the same type of load ("continuous"). The slope of the relationship between diaphragm twitch transdiaphragmatic pressure and the underlying transdiaphragmatic pressure was -1.1 ± 0.2 during "vol," -1.5 ± 0.7 during "single-breath," and -0.6 ± 0.4 during "continuous" (all slopes expressed in percent of baseline.percent of baseline(-1)) all comparisons significant at the 5% level. The contribution of the diaphragm to inspiration, as assessed by the gastric pressure to transdiaphragmatic pressure ratio, was 31 ± 17% during "vol," 22 ± 16% during "single-breath" (p = 0.13), and 19 ± 9% during "continuous" (p = 0.0015 vs. "vol"). This study shows that the relationship between the amplitude of the transdiaphragmatic pressure produced by a diaphragm twitch and its counterpart produced by the underlying diaphragm contraction is not unequivocal. If twitch interpolation is interpreted

  4. Dyspnea as a noxious sensation: inspiratory threshold loading may trigger diffuse noxious inhibitory controls in humans.

    PubMed

    Morélot-Panzini, Capucine; Demoule, Alexandre; Straus, Christian; Zelter, Marc; Derenne, Jean-Philippe; Willer, Jean-Claude; Similowski, Thomas

    2007-02-01

    Dyspnea, a leading respiratory symptom, shares many clinical, physiological, and psychological features with pain. Both activate similar brain areas. The neural mechanisms of dyspnea are less well described than those of pain. The present research tested the hypothesis of common pathways between the two sensations. Six healthy men (age 30-40 yr) were studied. The spinal nociceptive flexion reflex (RIII) was first established in response to electrical sural stimulation. Dyspnea was then induced through inspiratory threshold loading, forcing the subjects to develop 70% of their maximal inspiratory pressure to inhale. This led to progressive inhibition of the RIII reflex that reached 50 +/- 12% during the fifth minute of loading (P < 0.001), was correlated to the intensity of the self-evaluated respiratory discomfort, and had recovered 5 min after removal of the load. The myotatic H-reflex was not inhibited by inspiratory loading, arguing against postsynaptic alpha motoneuron inhibition. Dyspnea, like pain, thus induced counterirritation, possibly indicating a C-fiber stimulation and activation of diffuse noxious inhibitory descending controls known to project onto spinal dorsal horn wide dynamic range neurons. This confirms the noxious nature of certain types of breathlessness, thus opening new physiological and perhaps therapeutic perspectives.

  5. Reduced Phrenic Motoneuron Recruitment during Sustained Inspiratory Threshold Loading Compared to Single-Breath Loading: A Twitch Interpolation Study

    PubMed Central

    Raux, Mathieu; Demoule, Alexandre; Redolfi, Stefania; Morelot-Panzini, Capucine; Similowski, Thomas

    2016-01-01

    In humans, inspiratory constraints engage cortical networks involving the supplementary motor area. Functional magnetic resonance imaging (fMRI) shows that the spread and intensity of the corresponding respiratory-related cortical activation dramatically decrease when a discrete load becomes sustained. This has been interpreted as reflecting motor cortical reorganization and automatisation, but could proceed from sensory and/or affective habituation. To corroborate the existence of motor reorganization between single-breath and sustained inspiratory loading (namely changes in motor neurones recruitment), we conducted a diaphragm twitch interpolation study based on the hypothesis that motor reorganization should result in changes in the twitch interpolation slope. Fourteen healthy subjects (age: 21–40 years) were studied. Bilateral phrenic stimulation was delivered at rest, upon prepared and targeted voluntary inspiratory efforts (“vol”), upon unprepared inspiratory efforts against a single-breath inspiratory threshold load (“single-breath”), and upon sustained inspiratory efforts against the same type of load (“continuous”). The slope of the relationship between diaphragm twitch transdiaphragmatic pressure and the underlying transdiaphragmatic pressure was −1.1 ± 0.2 during “vol,” −1.5 ± 0.7 during “single-breath,” and −0.6 ± 0.4 during “continuous” (all slopes expressed in percent of baseline.percent of baseline−1) all comparisons significant at the 5% level. The contribution of the diaphragm to inspiration, as assessed by the gastric pressure to transdiaphragmatic pressure ratio, was 31 ± 17% during “vol,” 22 ± 16% during “single-breath” (p = 0.13), and 19 ± 9% during “continuous” (p = 0.0015 vs. “vol”). This study shows that the relationship between the amplitude of the transdiaphragmatic pressure produced by a diaphragm twitch and its counterpart produced by the underlying diaphragm contraction is not

  6. Applicability of a threshold loading device for inspiratory muscle testing and training in patients with COPD.

    PubMed

    Goldstein, R; De Rosie, J; Long, S; Dolmage, T; Avendano, M A

    1989-09-01

    We evaluated application of a Pth device for testing inspiratory muscle endurance among patients with severe but stable COPD. Endurance time in five patients was reproducible. Magnitude of variability was +/- 1.26 minutes with a range of +/- 0.19 to +/- 2.28 minutes. Eleven inpatients completed inspiratory muscle training twice daily for four weeks in addition to their usual program of respiratory rehabilitation. The mean age of our experimental cohort was 65 years; FEV1, 33 +/- 12 percent predicted; and Dsb, 42 +/- 7 percent predicted. Baseline measurements showed no significant differences in pulmonary function, exercise tolerance, inspiratory muscle strength or inspiratory muscle endurance between control and study groups. Following training, the study group significantly improved inspiratory muscle endurance as evidenced by an increase in endurance time while breathing against the same absolute external Pth load used during baseline assessments. There were no associated changes in lung mechanics, muscle strength or exercise tolerance.

  7. Inspiratory muscle performance relative to the ventilatory threshold in healthy subjects.

    PubMed

    Formanek, D; Wanke, T; Lahrmann, H; Rauscher, H; Popp, W; Zwick, H

    1993-10-01

    Inspiratory muscle performance, ventilation, and gas exchange were studied during exercise in healthy subjects to look for typical changes of pattern of contraction at the ventilatory threshold (VT). The steepening of the slope of carbon dioxide output (VCO2) vs oxygen uptake (VO2) at the VT was accompanied by a nonlinear increase of the mean rate of esophageal pressure development (Pes/TI) vs the esophageal pressure time index (PTIes) reflecting both the relative force (Pbreath/Pesmax) and duration (TI/TTOT) required for inspiration. The esophageal pressure time integral within one breath (Pbreath.dTI) was one of the best single predictors of the ventilatory equivalent for oxygen (VE/VO2) at the VT. Moreover, we presented inspiratory muscle load indices as a mirror image of breathing pattern, with the obvious advantage that the ventilation component can be compared with better established methods of presenting ventilatory output. Inspiratory muscle performance during exercise should link the increased metabolic rate to ventilatory output. We conclude that 1) there exists an inspiratory muscle threshold that is well correlated to commonly used gas exchange thresholds, and 2) the efficiency of ventilation and gas exchange during exercise could be linked to pressure and timing of inspiratory muscle contraction.

  8. Mechanisms of genioglossus responses to inspiratory resistive load in rabbits.

    PubMed

    Aleksandrova, N P; Goloubeva, E V; Isaev, G G

    2002-07-01

    The purpose of the present study has been to determine whether pharyngeal dilator muscles participate in inspiratory load compensatory responses and if so, to elucidate role of upper airway mechanoreceptors in these responses. The experiments were performed on anaesthetized rabbits. Each animal was tested in three ways by the imposition of inspiratory resistive load: (1) at upper airways via face mask, (2) at the tracheostomic cannula placed below larynx (all upper airway receptors were 'bypassed') and (3) at the mouth after the section of the hypoglossus nerves (motor denervation of genioglossus muscle). The inspiratory load applied to the upper airways evoked significant increases in integrated genioglossus activity (to 129 +/- 14.7% of control) and its inspiratory duration (to 113 +/- 5% of control) already within the first loaded breath (P < 0.05). The increases in the inspiratory activity of musculius genioglossus were relatively greater than the simultaneous increases in the activity of the diaphragm. Motor denervation of the pharynx dilator muscles (including m. genioglossus) increased airway resistance to 184 +/- 19% of control (P < 0.05) and induced obstructive alterations in the breathing pattern during unloaded breathing: decrease in maximal inspiratory flow (-13%) and increase in the level of negative oesophageal pressure (+14%) and the peak diaphragm activity (+6%). After nervi hypoglossus sections additional increases in motor and pressure outputs were required in order to maintain unaltered ventilation at the same degree of loading as before denervation. The results indicate that the pharyngeal dilator muscles have a role in compensation of added inspiratory load. Activation of these muscles facilitate the load compensating function of 'pump' muscles by decreasing airway resistance. Tracheostomy did not reduce the genioglossus response to inspiratory loading, ruling out any role for upper airways receptors in the genioglossus response to inspiratory

  9. Inspiratory muscular activation during threshold therapy in elderly healthy and patients with COPD.

    PubMed

    de Andrade, A Dornelas; Silva, T N S; Vasconcelos, H; Marcelino, M; Rodrigues-Machado, M G; Filho, V C Galindo; Moraes, N H; Marinho, P E M; Amorim, C F

    2005-12-01

    Inspiratory muscles training in COPD is controversial not only in relation to the load level required to produce muscular conditioning effects but also in relation to the group of patients benefiting from the training. Consequently, inspiratory muscular response assessment during Threshold therapy may help optimizing training strategy. The objective of this study was to evaluate the participation of the diaphragm and the sternocleidomastoid (SMM) muscle to overcome with a 30% Threshold load using surface electromyography (sEMG) and to analyze the correlation between SMM activation, maximum strength level of inspiratory muscles (MIP) and obstruction degree in COPD patients (FEV1). We studied seven healthy elderly subjects, mean age of 68+/-4 years and seven COPD patients, FEV1 45+/-17% of the predicted value, with mean age 66+/-8 years. sEMG analysis of SMM muscles and diaphragm were obtained through RMS (root-mean-square) during three stages: pre-loading, loading and post-loading. In the COPD group, the RMS of the SMM increased 28% during load (p<0.05) while the RMS of the diaphragm remained constant. In the elderly there was a trend of a 11% increase in diaphragm activity and of 7% in SMM activity but, without reaching significance levels. SMM activity demonstrated good correlation with the obstruction level (r=-0.537). To overcome the load required by Threshold therapy, COPD patients demonstrated an increase of accessory muscles activity, represented by SMM. For the same relative load this increase seems to be proportional to the degree of pulmonary obstruction.

  10. Diaphragmatic fatigue during inspiratory muscle loading in normoxia and hypoxia.

    PubMed

    Walker, David Johannes; Farquharson, Franziska; Klenze, Hannes; Walterspacher, Stephan; Storz, Lucia; Duerschmied, Daniel; Roecker, Kai; Kabitz, Hans-Joachim

    2016-06-15

    Diaphragmatic fatigue (DF) occurs during strenuous loading of respiratory muscles (e.g., heavy-intensity whole-body exercise, normocapnic hyperpnea, inspiratory resistive breathing). DF develops early on during normoxia, without further decline toward task failure; however, its progression during inspiratory muscle loading in during hypoxia remains unclear. Therefore, the present study used volume-corrected transdiaphragmatic pressures during supramaximal magnetic phrenic nerve stimulation (Pdi,twc) to investigate the effect of hypoxia on the progression of diaphragmatic fatigue during inspiratory muscle loading. Seventeen subjects completed two standardized rounds of inspiratory muscle loading (blinded, randomized) under the following conditions: (i) normoxia, and (ii) normobaric hypoxia (SpO2 80%), with Pdi,twc assessment every 45 s. In fatiguers (i.e., Pdi,twc reduction >10%, n=10), biometric approximation during normoxia is best represented by Pdi,twc=4.06+0.83 exp(-0.19 × x), in contrast to Pdi,twc=4.38-(0.05 × x) during hypoxia. Progression of diaphragmatic fatigue during inspiratory muscle loading assessed by Pdi,tw differs between normoxia and normobaric hypoxia: in the former, Pdi,tw follows an exponential decay, whereas during hypoxia, Pdi,tw follows a linear decline. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Hemodynamics Associated with Breathing Through an Inspiratory Impedance Threshold Device in Human Volunteers

    DTIC Science & Technology

    2004-01-01

    Hemodynamics associated with breathing through an inspiratory impedance threshold device in human volunteers Victor A. Convertino, PhD; Duane A...and animals (6–13). Building on this concept, an inspiratory impedance threshold de- vice (ITD) was designed to create a vac- uum within the chest each...associ- ated with the elevated blood pressure during inspiratory resistance (16). How- ever, stroke volume during resistance breathing with an ITD set at

  12. Comparison of incremental and constant load tests of inspiratory muscle endurance in COPD.

    PubMed

    Hill, K; Jenkins, S C; Philippe, D L; Shepherd, K L; Hillman, D R; Eastwood, P R

    2007-09-01

    The aim of the present study was to determine the relative value of incremental and constant load tests in detecting changes in inspiratory muscle endurance following high-intensity inspiratory muscle training (H-IMT) in chronic obstructive pulmonary disease. In total, 16 subjects (11 males; forced expiratory volume in one second (FEV(1)) 37.4+/-12.5%) underwent H-IMT. In addition, 17 subjects (11 males; FEV(1) 36.5+/-11.5%) underwent sham inspiratory muscle training (S-IMT). Training took place three times a week for 8 weeks. Baseline and post-training measurements were obtained of maximum threshold pressure sustained during an incremental load test (P(th,max)) and time breathing against a constant load (t(lim)). Breathing pattern was unconstrained. H-IMT increased P(th,max) and t(lim) relative to baseline and to any change seen following S-IMT. The effect size for P(th,max) was greater than for t(lim). Post-training tests were accompanied by changes in breathing pattern, including decreased duty cycle, which may have served to decrease inspiratory work and thereby contribute to the increase in P(th,max) and t(lim) in both groups. When assessing inspiratory muscle function in chronic obstructive pulmonary disease via tests in which the pattern of breathing is unconstrained, the current authors recommend incremental load tests be used in preference to constant load tests. However, to attribute changes in these tests to improvements in inspiratory muscle endurance, breathing pattern should be controlled.

  13. The Effect of Inspiratory Muscle Training on Respiratory and Limb Locomotor Muscle Deoxygenation During Exercise with Resistive Inspiratory Loading.

    PubMed

    Turner, L A; Tecklenburg-Lund, S L; Chapman, R; Shei, R-J; Wilhite, D P; Mickleborough, T

    2016-07-01

    We investigated how inspiratory muscle training impacted respiratory and locomotor muscle deoxygenation during submaximal exercise with resistive inspiratory loading. 16 male cyclists completed 6 weeks of either true (n=8) or sham (n=8) inspiratory muscle training. Pre- and post-training, subjects completed 3, 6-min experimental trials performed at ~80%  ˙VO2peak with interventions of either moderate inspiratory loading, heavy inspiratory loading, or maximal exercise imposed in the final 3 min. Locomotor and respiratory muscle oxy-, deoxy-, and total-haemoglobin and myoglobin concentration was continuously monitored using near-infrared spectroscopy. Locomotor muscle deoxygenation changes from 80%  ˙VO2peak to heavy inspiratory loading were significantly reduced pre- to post-training from 4.3±5.6 µM to 2.7±4.7 µM. Respiratory muscle deoxygenation was also significantly reduced during the heavy inspiratory loading trial (4.6±3.5 µM to 1.9±1.5 µM) post-training. There was no significant difference in oxy-, deoxy-, or total-haemoglobin and myoglobin during any of the other loading trials, from pre- to post-training, in either group. After inspiratory muscle training, highly-trained cyclists exhibited decreased locomotor and respiratory muscle deoxygenation during exercise with heavy inspiratory loading. These data suggest that inspiratory muscle training reduces oxygen extraction by the active respiratory and limb muscles, which may reflect changes in respiratory and locomotor muscle oxygen delivery.

  14. Inspiratory muscle performance relative to the anaerobic threshold in patients with COPD.

    PubMed

    Wanke, T; Formanek, D; Lahrmann, H; Merkle, M; Rauscher, H; Zwick, H

    1993-09-01

    Rehabilitation programmes in chronic obstructive pulmonary disease (COPD) require exercise training above the anaerobic threshold. However, not all COPD patients develop metabolic acidosis during exercise. The hypothesis of this study was that non-exercise variables, characterizing the mechanical load on the inspiratory muscles during breathing at rest, can be used to reliably predict which patients with COPD are not able to develop metabolic acidosis during exercise. Thirty participants with COPD performed a symptom-limited cycle ergometer test. The oesophageal pressure/time index (PTIoes: the product of pressure magnitude and duration), the mean rate of pressure development during inspiration (Poes/TI), and the mean airway resistance (Raw)/maximal oesophageal pressure (Poesmax) ratio served as indices for the mechanical load on the inspiratory muscles. The oxygen uptake (VO2) at which plasma standard bicarbonate was seen to decrease from its baseline value was taken as the anaerboic threshold (AT). Mean Raw was significantly higher in those patients in whom the AT could not be detected. No other lung function parameters measured at rest allowed the accurate selection of those patients who did or did not develop exercise metabolic acidosis. On the other hand, Raw/Poesmax, PTIoes and Poes/TI were significantly different in the two patient groups. Additionally, whereas in the patient group with identifiable AT exercise hyperpnoea produced a non-linear increase of Poes/TI with respect to PTIoes above the AT, in the patient group without identifiable AT there was a linear relationship between Poes/TI and PTIoes throughout exercise. We conclude that the determination of inspiratory muscle load indices at rest may be useful in pulmonary rehabilitation programmes, for identifying those patients with COPD who do not develop exercise induced metabolic acidosis.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Chest wall volumes during inspiratory loaded breathing in COPD patients.

    PubMed

    Coutinho Myrrha, Mariana Alves; Vieira, Danielle Soares Rocha; Moraes, Karoline Simões; Lage, Susan Martins; Parreira, Verônica Franco; Britto, Raquel Rodrigues

    2013-08-01

    Chest wall volumes and breathing patterns of 13 male COPD patients were evaluated at rest and during inspiratory loaded breathing (ILB). The sternocleidomastoid (SMM) and abdominal muscle activity was also evaluated. The main compartment responsible for the tidal volume at rest and during ILB was the abdomen. During ILB patients exhibited, in addition to increases in the ratio of inspiratory time to total time of the respiratory cycle and minute ventilation, increases (p<0.05) in the chest wall tidal volume by an increase in abdomen tidal volume as a result of improvement of end chest wall inspiratory volume without changing on end chest wall expiratory volume. The SMM and abdominal muscle activity increased 63.84% and 1.94% during ILB. Overall, to overcome the load imposed by ILB, COPD patients improve the tidal volume by changing the inspiratory chest wall volume without modifying the predominant mobility of the abdomen at rest and without affecting the end chest wall expiratory volume. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Systemic inflammation after inspiratory loading in chronic obstructive pulmonary disease

    PubMed Central

    Fuster, Antonia; Sauleda, Jaume; Sala, Ernest; Barceló, Bernardí; Pons, Jaume; Carrera, Miguel; Noguera, Aina; Togores, Bernat; Agustí, Alvar GN

    2008-01-01

    Objective Patients with chronic obstructive pulmonary disease (COPD) present systemic inflammation. Strenuous resistive breathing induces systemic inflammation in healthy subjects. We hypothesized that the increased respiratory load that characterizes COPD can contribute to systemic inflammation in these patients. Patients and methods To test this hypothesis, we compared leukocyte numbers and levels of circulating cytokines (tumor necrosis factor alpha [TNFα], interleukin-1β [IL-1β], IL-6, IL-8, and IL-10), before and 1 hour after maximal incremental inspiratory loading in 13 patients with stable COPD (forced expiratory volume in one second [FEV1] 29 ± 2.5% ref) and in 8 healthy sedentary subjects (FEV1 98 ± 5% ref). Results We found that: (1) at baseline, patients with COPD showed higher leukocyte counts and IL-8 levels than controls (p < 0.01); and, (2) one hour after maximal inspiratory loading these values were unchanged, except for IL-10, which increased in controls (p < 0.05) but not in patients with COPD. Conclusions This study confirms the presence of systemic inflammation in COPD, shows that maximal inspiratory loading does not increase the levels of pro-inflammatory cytokines (IL-1β, IL-8) in COPD patients or controls, but suggests that the former may be unable to mount an appropriate systemic anti-inflammatory response to exercise. PMID:18488438

  17. Functional assessment of the diaphragm by speckle tracking ultrasound during inspiratory loading.

    PubMed

    Oppersma, Eline; Hatam, Nima; Doorduin, Jonne; van der Hoeven, Johannes G; Marx, Gernot; Goetzenich, Andreas; Fritsch, Sebastian; Heunks, Leo M A; Bruells, Christian S

    2017-05-18

    Assessment of diaphragmatic effort is challenging especially in critically ill patients in the phase of weaning. Fractional thickening during inspiration assessed by ultrasound has been used to estimate diaphragm effort. It is unknown whether more sophisticated ultrasound techniques such as speckle tracking are superior in the quantification of inspiratory effort. This study evaluates the validity of speckle tracking ultrasound to quantify diaphragm contractility. Thirteen healthy volunteers underwent a randomized stepwise threshold loading protocol of 0 to 50% of the maximal inspiratory pressure. Electric activity of the diaphragm and transdiaphragmatic pressures were recorded. Speckle tracking ultrasound was used to assess strain and strain rate as measures of diaphragm tissue deformation and deformation velocity, respectively. Fractional thickening was assessed by measurement of diaphragm thickness at end-inspiration and end-expiration. Strain and strain rate increased with progressive loading of the diaphragm. Both strain and strain rate were highly correlated to transdiaphragmatic pressure (strain R(2)=0.72; strain rate R(2)=0.80) and diaphragm electric activity (strain R(2)=0.60; strain rate R(2)=0.66). No correlation between fractional thickening and strain and strain rate was found. Speckle tracking ultrasound is superior to conventional ultrasound techniques to estimate diaphragm contractility under inspiratory threshold loading. Copyright © 2017, Journal of Applied Physiology.

  18. Diaphragmatic neuromechanical coupling and mechanisms of hypercapnia during inspiratory loading.

    PubMed

    Laghi, Franco; Shaikh, Hameeda S; Morales, Daniel; Sinderby, Christer; Jubran, Amal; Tobin, Martin J

    2014-07-01

    We hypothesized that improved diaphragmatic neuromechanical coupling during inspiratory loading is not sufficient to prevent alveolar hypoventilation and task failure, and that the latter results primarily from central-output inhibition of the diaphragm and air hunger rather than contractile fatigue. Eighteen subjects underwent progressive inspiratory loading. By task failure all developed hypercapnia. Tidal transdiaphragmatic pressure (ΔPdi) and diaphragmatic electrical activity (ΔEAdi) increased during loading - the former more than the latter; thus, neuromechanical coupling (ΔPdi/ΔEAdi) increased during loading. Progressive increase in extra-diaphragmatic muscle contribution to tidal breathing, expiratory muscle recruitment, and decreased end-expiratory lung volume contributed to improved neuromechanical coupling. At task failure, subjects experienced intolerable breathing discomfort, at which point mean ΔEAdi was 74.9±4.9% of maximum, indicating that the primary mechanism of hypercapnia was submaximal diaphragmatic recruitment. Contractile fatigue was an inconsistent finding. In conclusion, hypercapnia during acute loading primarily resulted from central-output inhibition of the diaphragm suggesting that acute loading responses are controlled by the cortex rather than bulbopontine centers. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Inspiratory resistive loading improves cycling capacity: a placebo controlled trial

    PubMed Central

    Gething, A; Williams, M; Davies, B

    2004-01-01

    Background: Respiratory muscle training has been shown to improve both its strength and endurance. The effect of these improvements on whole-body exercise performance remains controversial. Objective: To assess the effect of a 10 week inspiratory resistive loading (IRL) intervention on respiratory muscle performance and whole-body exercise endurance. Methods: Fifteen apparently healthy subjects (10 men, 5 women) were randomly allocated to one of three groups. One group underwent IRL set at 80% of maximum inspiratory pressure with ever decreasing work/rest ratios until task failure, for three days a week for 10 weeks (IRL group). A second placebo group performed the same training procedure but with a minimal resistance (PLA group). IRL and placebo training were performed at rest. The remaining five control subjects performed no IRL during the 10 week study period (CON group). Cycling endurance capacity at 75% V·O2peak was measured before and after the intervention. Results: After the 10 week IRL intervention, respiratory muscle strength (maximum inspiratory pressure) and endurance (sum of sustained maximum inspiratory pressure) had significantly improved (by 34% and 38% respectively). An increase in diaphragm thickness was also observed. These improvements translated into a 36% increase in cycling time to exhaustion at 75% V·O2peak. During cycling trials, heart rate, ventilation, and rating of perceived exertion were attenuated in the IRL group. No changes were observed for the PLA or CON group either in the time to exhaustion or cardiorespiratory response to the same intensity of exercise. Conclusion: Ten weeks of IRL attenuated the heart rate, ventilatory, and perceptual response to constant workload exercise, and improved the cycling time to exhaustion. Familiarisation was not a factor and the placebo effect was minimal. PMID:15562168

  20. The effect of exercise training with an additional inspiratory load on inspiratory muscle fatigue and time-trial performance.

    PubMed

    McEntire, Serina J; Smith, Joshua R; Ferguson, Christine S; Brown, Kelly R; Kurti, Stephanie P; Harms, Craig A

    2016-08-01

    The purpose was to determine the effect of moderate-intensity exercise training (ET) on inspiratory muscle fatigue (IMF) and if an additional inspiratory load during ET (ET+IL) would further improve inspiratory muscle strength, IMF, and time-trial performance. 15 subjects were randomly divided to ET (n=8) and ET+IL groups (n=7). All subjects completed six weeks of exercise training three days/week at ∼70%V̇O2peak for 30min. The ET+IL group breathed through an inspiratory muscle trainer (15% PImax) during exercise. 5-mile, and 30-min time-trials were performed pre-training, weeks three and six. Inspiratory muscle strength increased (p<0.05) for both groups to a similar (p>0.05) extent. ET and ET+IL groups improved (p<0.05) 5-mile time-trial performance (∼10% and ∼18%) and the ET+IL group was significantly faster than ET at week 6. ET and ET+IL groups experienced less (p<0.05) IMF compared to pre-training following the 5-mile time-trial. In conclusion, these data suggest ET leads to less IMF, ET+IL improves inspiratory muscle strength and IMF, but not different than ET alone.

  1. When Breathing Interferes with Cognition: Experimental Inspiratory Loading Alters Timed Up-and-Go Test in Normal Humans

    PubMed Central

    Nierat, Marie-Cécile; Demiri, Suela; Dupuis-Lozeron, Elise; Allali, Gilles; Morélot-Panzini, Capucine; Similowski, Thomas; Adler, Dan

    2016-01-01

    Human breathing stems from automatic brainstem neural processes. It can also be operated by cortico-subcortical networks, especially when breathing becomes uncomfortable because of external or internal inspiratory loads. How the “irruption of breathing into consciousness” interacts with cognition remains unclear, but a case report in a patient with defective automatic breathing (Ondine's curse syndrome) has shown that there was a cognitive cost of breathing when the respiratory cortical networks were engaged. In a pilot study of putative breathing-cognition interactions, the present study relied on a randomized design to test the hypothesis that experimentally loaded breathing in 28 young healthy subjects would have a negative impact on cognition as tested by “timed up-and-go” test (TUG) and its imagery version (iTUG). Progressive inspiratory threshold loading resulted in slower TUG and iTUG performance. Participants consistently imagined themselves faster than they actually were. However, progressive inspiratory loading slowed iTUG more than TUG, a finding that is unexpected with regard to the known effects of dual tasking on TUG and iTUG (slower TUG but stable iTUG). Insofar as the cortical networks engaged in response to inspiratory loading are also activated during complex locomotor tasks requiring cognitive inputs, we infer that competition for cortical resources may account for the breathing-cognition interference that is evidenced here. PMID:26978782

  2. When Breathing Interferes with Cognition: Experimental Inspiratory Loading Alters Timed Up-and-Go Test in Normal Humans.

    PubMed

    Nierat, Marie-Cécile; Demiri, Suela; Dupuis-Lozeron, Elise; Allali, Gilles; Morélot-Panzini, Capucine; Similowski, Thomas; Adler, Dan

    2016-01-01

    Human breathing stems from automatic brainstem neural processes. It can also be operated by cortico-subcortical networks, especially when breathing becomes uncomfortable because of external or internal inspiratory loads. How the "irruption of breathing into consciousness" interacts with cognition remains unclear, but a case report in a patient with defective automatic breathing (Ondine's curse syndrome) has shown that there was a cognitive cost of breathing when the respiratory cortical networks were engaged. In a pilot study of putative breathing-cognition interactions, the present study relied on a randomized design to test the hypothesis that experimentally loaded breathing in 28 young healthy subjects would have a negative impact on cognition as tested by "timed up-and-go" test (TUG) and its imagery version (iTUG). Progressive inspiratory threshold loading resulted in slower TUG and iTUG performance. Participants consistently imagined themselves faster than they actually were. However, progressive inspiratory loading slowed iTUG more than TUG, a finding that is unexpected with regard to the known effects of dual tasking on TUG and iTUG (slower TUG but stable iTUG). Insofar as the cortical networks engaged in response to inspiratory loading are also activated during complex locomotor tasks requiring cognitive inputs, we infer that competition for cortical resources may account for the breathing-cognition interference that is evidenced here.

  3. Repetitive transcranial magnetic stimulation over the supplementary motor area modifies breathing pattern in response to inspiratory loading in normal humans

    PubMed Central

    Nierat, Marie-Cécile; Hudson, Anna L.; Chaskalovic, Joël; Similowski, Thomas; Laviolette, Louis

    2015-01-01

    In awake humans, breathing depends on automatic brainstem pattern generators. It is also heavily influenced by cortical networks. For example, functional magnetic resonance imaging and electroencephalographic data show that the supplementary motor area becomes active when breathing is made difficult by inspiratory mechanical loads like resistances or threshold valves, which is associated with perceived respiratory discomfort. We hypothesized that manipulating the excitability of the supplementary motor area with repetitive transcranial magnetic stimulation would modify the breathing pattern response to an experimental inspiratory load and possibly respiratory discomfort. Seven subjects (three men, age 25 ± 4) were studied. Breathing pattern and respiratory discomfort during inspiratory loading were described before and after conditioning the supplementary motor area with repetitive stimulation, using an excitatory paradigm (5 Hz stimulation), an inhibitory paradigm, or sham stimulation. No significant change in breathing pattern during loading was observed after sham conditioning. Excitatory conditioning shortened inspiratory time (p = 0.001), decreased tidal volume (p = 0.016), and decreased ventilation (p = 0.003), as corroborated by an increased end-tidal expired carbon dioxide (p = 0.013). Inhibitory conditioning did not affect ventilation, but lengthened expiratory time (p = 0.031). Respiratory discomfort was mild under baseline conditions, and unchanged after conditioning of the supplementary motor area. This is the first study to show that repetitive transcranial magnetic stimulation conditioning of the cerebral cortex can alter breathing pattern. A 5 Hz conditioning protocol, known to enhance corticophrenic excitability, can reduce the amount of hyperventilation induced by inspiratory threshold loading. Further studies are needed to determine whether and under what circumstances rTMS can have an effect on dyspnoea. PMID:26483701

  4. Common drive to the upper airway muscle genioglossus during inspiratory loading.

    PubMed

    Woods, Michael J; Nicholas, Christian L; Semmler, John G; Chan, Julia K M; Jordan, Amy S; Trinder, John

    2015-11-01

    Common drive is thought to constitute a central mechanism by which the efficiency of a motor neuron pool is increased. This study tested the hypothesis that common drive to the upper airway muscle genioglossus (GG) would increase with increased respiratory drive in response to an inspiratory load. Respiration, GG electromyographic (EMG) activity, single-motor unit activity, and coherence in the 0-5 Hz range between pairs of GG motor units were assessed for the 30 s before an inspiratory load, the first and second 30 s of the load, and the 30 s after the load. Twelve of twenty young, healthy male subjects provided usable data, yielding 77 pairs of motor units: 2 Inspiratory Phasic, 39 Inspiratory Tonic, 15 Expiratory Tonic, and 21 Tonic. Respiratory and GG inspiratory activity significantly increased during the loads and returned to preload levels during the postload periods (all showed significant quadratic functions over load trials, P < 0.05). As hypothesized, common drive increased during the load in inspiratory modulated motor units to a greater extent than in expiratory/tonic motor units (significant load × discharge pattern interaction, P < 0.05). Furthermore, this effect persisted during the postload period. In conclusion, common drive to inspiratory modulated motor units was elevated in response to increased respiratory drive. The postload elevation in common drive was suggestive of a poststimulus activation effect.

  5. A comparison of the Acapella and a threshold inspiratory muscle trainer for sputum clearance in bronchiectasis-A pilot study.

    PubMed

    Naraparaju, Sushmitha; Vaishali, K; Venkatesan, Prem; Acharya, Vishak

    2010-08-01

    Inspiratory muscle training is used to specifically strengthen the respiratory muscles. Controversy exists regarding the use of inspiratory muscle training as a method of facilitating airways clearance. Acapella is already known to be effective in airway clearance. The objective of the study was to compare the effects of the Acapella and a threshold inspiratory muscle trainer as a method of airway clearance in subjects with bronchiectasis and to determine patient preference between the two techniques. Thirty patients (10 males, 20 females) mean age of 50.67+/-6.37 (mean+/-SD) with a history of expectoration of more than 30 ml sputum per day were recruited. The sequence of therapy was allocated by block randomization. Assessment and familiarization session was performed on day 1. Treatments employing the Acapella and inspiratory muscle trainer were done on days 2 and 3. Treatment order and allocation was determined by block randomization. Sputum volume was measured during and 2 hours after the treatment and patient treatment preference was recorded. A statistically significant difference was found in the sputum volume expectorated after treatment with the Acapella (7.16+/-1.12 ml) compared with the threshold inspiratory muscle trainer (6.46+/-1.08 ml). Patients preferred Acapella in terms of usefulness of clearing secretions. The present study demonstrated increased sputum clearance following the use of the Acapella when compared to the threshold inspiratory muscle trainer. In addition, the Acapella was preferred by patients who judged that it was more useful in clearing secretions.

  6. Panic attacks and perception of inspiratory resistive loads in chronic obstructive pulmonary disease.

    PubMed

    Livermore, Nicole; Butler, Jane E; Sharpe, Louise; McBain, Rachel A; Gandevia, Simon C; McKenzie, David K

    2008-07-01

    Panic attacks are common in chronic obstructive pulmonary disease (COPD), and the prevalence of panic disorder is at least 10 times higher than in the general population. In the current study, we examined resistive load perception in patients with COPD with and without panic attacks. We tested competing hypotheses, based on conflicting results of earlier studies, that those patients with COPD with panic attacks or panic disorder would show either heightened or blunted perception of dyspnea as the magnitude of inspiratory resistive loads increased. We compared 20 patients with COPD with panic attacks or panic disorder, 20 patients without panic, and 20 healthy, age-matched subjects using an inspiratory resistive load-testing protocol. We administered a diagnostic interview for panic attacks and panic disorder. We measured perceived dyspnea in response to increasing inspiratory resistive loads (modified Borg scale) and several respiratory variables. Dyspnea ratings increased linearly for all groups as the size of resistive loads increased. No significant differences were found between groups on the respiratory variables. Patients with COPD with panic attacks or panic disorder rated their level of dyspnea significantly higher than did other subjects. Patients with COPD with panic attacks showed heightened sensitivity to inspiratory loads. The result reinforces the influence of psychological factors on symptom perception in this disease.

  7. Identification of human brain regions underlying responses to resistive inspiratory loading with functional magnetic resonance imaging.

    PubMed Central

    Gozal, D; Omidvar, O; Kirlew, K A; Hathout, G M; Hamilton, R; Lufkin, R B; Harper, R M

    1995-01-01

    Compensatory ventilatory responses to increased inspiratory loading are essential for adequate breathing regulation in a number of pulmonary diseases; however, the human brain sites mediating such responses are unknown. Midsagittal and axial images were acquired in 11 healthy volunteers during unloaded and loaded (30 cmH2O; 1 cmH2O = 98 Pa) inspiratory breathing, by using functional magnetic resonance imaging (fMRI) strategies (1.5-tesla MR; repetition time, 72 msec; echo time, 45 msec; flip angle, 30 degrees; field of view, 26 cm; slice thickness, 5 mm; number of excitations, 1; matrix, 128 x 256). Digital image subtractions and region of interest analyses revealed significantly increased fMRI signal intensity in discrete areas of the ventral and dorsal pons, interpeduncular nucleus, basal forebrain, putamen, and cerebellar regions. Upon load withdrawal, certain regions displayed a rapid fMRI signal off-transient, while in others, a slower fMRI signal decay emerged. Sustained loading elicited slow decreases in fMRI signal across activated regions, while second application of an identical load resulted in smaller signal increases compared to initial signal responses (P < 0.001). A moderate inspiratory load is associated with consistent regional activation of discrete brain locations; certain of these regions have been implicated in mediation of loaded breathing in animal models. We speculate that temporal changes in fMRI signal may indicate respiratory after-discharge and/or habituation phenomena. Images Fig. 1 Fig. 3 PMID:7604040

  8. Training the inspiratory muscles improves running performance when carrying a 25 kg thoracic load in a backpack.

    PubMed

    Faghy, Mark A; Brown, Peter I

    2016-08-01

    Load carriage (LC) exercise in physically demanding occupations is typically characterised by periods of low-intensity steady-state exercise and short duration, high-intensity exercise while carrying an external mass in a backpack; this form of exercise is also known as LC exercise. This induces inspiratory muscle fatigue and reduces whole-body performance. Accordingly we investigated the effect of inspiratory muscle training (IMT, 50% maximal inspiratory muscle pressure (PImax) twice daily for six week) upon running time-trial performance with thoracic LC. Nineteen healthy males formed a pressure threshold IMT (n = 10) or placebo control group (PLA; n = 9) and performed 60 min LC exercise (6.5 km h(-1)) followed by a 2.4 km running time trial (LCTT) either side of a double-blind six week intervention. Prior to the intervention, PImax was reduced relative to baseline, post-LC and post-LCTT in both groups (pooled data: 13 ± 7% and 16 ± 8%, respectively, p < .05) and similar changes were observed post-PLA. Post-IMT only, resting PImax increased +31% (p < .05) and relative to pre-IMT was greater post-LC (+19%) and post-LCTT (+18%, p < .05), however, the relative reduction in PImax at each time point was unchanged (13 ± 11% and 17 ± 9%, respectively, p > .05). In IMT only, heart rate and perceptual responses were reduced post-LC (p < .05). Time-trial performance was unchanged post-PLA and improved 8 ± 4% after IMT (p < .05). In summary, when wearing a 25 kg backpack, IMT attenuated the cardiovascular and perceptual responses to steady-state exercise and improved high-intensity time-trial performance which we attribute in part to reduced relative work intensity of the inspiratory muscles due to improved inspiratory muscle strength. These findings have real-world implications for occupational contexts.

  9. Use of an inspiratory impedance threshold valve during cardiopulmonary resuscitation: a progress report.

    PubMed

    Lurie, K; Voelckel, W; Plaisance, P; Zielinski, T; McKnite, S; Kor, D; Sugiyama, A; Sukhum, P

    2000-05-01

    Building upon studies on the mechanism of active compression-decompression (ACD) cardiopulmonary resuscitation, a new inspiratory impedance threshold valve has been developed to enhance the return of blood to the thorax during the decompression phase of CPR. Use of this device results in a greater negative intrathoracic pressure during chest wall decompression. This leads to improved vital organ perfusion during both standard and ACD CPR. Animal and human studies suggest that this simple device increases cardiopulmonary circulation by harnessing more efficiently the kinetic energy of the outward movement of the chest wall during standard CPR or active chest wall decompression. When used in conjunction with ACD CPR during clinical evaluation, addition of the impedance valve resulted in sustained systolic pressures of greater than 100 mmHg and diastolic pressures of greater than 55 mmHg. The new valve may be beneficial in patients in asystole or shock refractory ventricular fibrillation, when enhanced return of blood flow to the chest is needed to 'prime the pump'. The potential long-term benefits of this new valve remain under investigation.

  10. Cardiopulmonary effects of a new inspiratory impedance threshold device in acute hemorrhagic shock in dogs.

    PubMed

    Vigani, Alessio; Shih, Andre C; Buckley, Gareth J; Londoño, Leonel; Bandt, Carsten

    2011-12-01

    To compare cardiovascular and respiratory effects of an inspiratory impedance threshold device (ITD) in dogs before and after induction of acute hemorrhagic shock. Prospective experimental randomized study. Eight healthy adult dogs. Dogs were anesthetized and maintained on spontaneous ventilation. Tidal volume (V(T)), systolic, mean and diastolic arterial blood pressure (SAP, MAP, DAP), central venous pressure (CVP), gastric P(CO2) (GBF) as an indicator of gastric perfusion, cardiac index (CI), systemic vascular resistance (SVR), oxygen delivery (DO(2)), and plasma lactate were monitored. To monitor respiratory compliance (RC) and respiratory resistance (ResR), animals were briefly placed on mechanical ventilation. Dogs were studied under 4 different conditions: (1) baseline (euvolemic state) (MAP > 60 mm Hg) with and without the ITD and (2) acute hemorrhagic shock (hypovolemic state) (target MAP of 40 mm Hg) with and without ITD. These 4 conditions were performed during one anesthetic period, allowing time for stabilization of parameters for each condition. Data were analyzed by ANOVA for repeated measure mixed models. No cardiovascular changes were detected between groups with and without use of ITD during euvolemic states. During acute hemorrhagic hypovolemic state, CI and DO(2) were higher with the ITD (2.9 ± 0.6 L/min/m(2)) and (326.5 ± 86.8 mL/min) compared with no ITD (1.8 ± 0.6 L/min/m(2)) and (191.3 ± 58.1 mL/min), respectively. The use of ITD during hypovolemia also increased SAP and MAP. There was an increase in ResR and decreased RC with the ITD in both euvolemic and hypovolemic states. The use of an ITD in dogs during acute hemorrhagic hypovolemic shock improved cardiovascular parameters but had negative effects on RC and ResR. © Veterinary Emergency and Critical Care Society 2011.

  11. Reliability of a commercially available threshold loading device in healthy subjects and in patients with chronic obstructive pulmonary disease.

    PubMed Central

    Gosselink, R; Wagenaar, R C; Decramer, M

    1996-01-01

    BACKGROUND: Threshold loading with the Nickerson and Keens' device is frequently applied in the training and assessment of inspiratory muscles. However, this equipment is not easily applied in clinical practice and training. A study was therefore designed to investigate the accuracy and reliability of the Threshold, a commercially available threshold loading device. METHODS: The resolution (accuracy) of the system was determined by measuring variation of pressure and flow during one minute in an experimental setup. The reproducibility and flow independence were then determined during threshold loading at six different inspiratory loads between 25% and 50% maximal inspiratory pressure (PImax) in 10 patients with chronic obstructive pulmonary disease (COPD) and eight healthy subjects. RESULTS: In the first experiment the mean variation of the sustained pressure for all loads was 1.7%. The mean coefficients of variation for pressure and flow measurements were 0.2% and 3%, respectively. In the second experiment the healthy subjects showed mean coefficients of variation for pressure and flow of 0.8% and 20.5%, respectively, and the patients showed mean coefficients of variation of 0.6% and 14.5%, respectively. CONCLUSIONS: During the in vitro experiment as well as during the experiments in patients with COPD and in healthy subjects only small variations in pressure were observed despite large variations in flow. The Threshold is a reliable and reproducible device for loading inspiratory muscles in patients with COPD as well as in healthy subjects. PMID:8693441

  12. Variability of the perception of dyspnea in healthy subjects assessed through inspiratory resistive loading*

    PubMed Central

    Ziegler, Bruna; Fernandes, Andréia Kist; Sanches, Paulo Roberto Stefani; Konzen, Glauco Luís; Dalcin, Paulo de Tarso Roth

    2015-01-01

    Objective: Few studies have evaluated the variability of the perception of dyspnea in healthy subjects. The objective of this study was to evaluate the variability of the perception of dyspnea in healthy subjects during breathing against increasing inspiratory resistive loads, as well as to assess the association between the level of perception of dyspnea and the level of physical activity. Methods: This was a cross-sectional study involving healthy individuals 16 years of age or older. Subjects underwent inspiratory resistive loading testing, in which the level of perception of dyspnea was quantified with the modified Borg scale. We also determined body mass indices (BMIs), assessed maximal respiratory pressures, performed pulmonary function tests, applied the international physical activity questionnaire (IPAQ)-long form, and conducted six-minute walk tests (6MWTs). The level of perception of dyspnea was classified as low (Borg score < 2), intermediate (Borg score, 2-5), or high (Borg score > 5). Results: We included 48 healthy subjects in the study. Forty-two subjects completed the test up to a load of 46.7 cmH2O/L/s. The level of perception of dyspnea was classified as low, intermediate, and high in 13, 19, and 10 subjects, respectively. The level of perception of dyspnea was not significantly associated with age, gender, BMI, IPAQ-long form score, maximal respiratory pressures, or pulmonary function test results. Conclusions: The scores for perceived dyspnea induced by inspiratory resistive loading in healthy subjects presented wide variability. The perception of dyspnea was classified as low in 31% of the subjects, intermediate in 45%, and high in 24%. There was no association between the level of perception of dyspnea and the level of physical activity (IPAQ or six-minute walk distance). PMID:25830380

  13. Breathing Through an Inspiratory Threshold Device Improves Stroke Volume During Central Hypovolemia in Humans

    DTIC Science & Technology

    2008-02-28

    oscillations of the R-to-R interval) were not altered. ITD breathing did not alter the transfer function between systolic arterial pressure and R-to-R...resistance increases tolerance to progressive central hypovolemia by better maintaining SV, cardiac output, and arterial blood pressures via primarily...increase in tolerance to progressive central hypovolemia using inspiratory resistance was associated with maintenance of blood pressure (13) and

  14. [Tolerance test to an inspiratory resistive load and resistive training of respiratory muscles. Preliminary critical study in kyphoscoliotic patients].

    PubMed

    Vandevenne, A; Ducolone, A

    1988-01-01

    Is increased tolerance to an additional inspiratory load after resistive training always due to respiratory muscle endurance? To answer this question, 5 kyphoscoliotic subjects were subjected to ventilation through a Y-shaped tube 3.2 cm in diameter during 10 minutes three times a day for 3 months. The subjects were divided into 3 groups. Group 1 (n = 3) trained with a non-linear resistance placed in the inspiratory branch of the tube during the first and third months and without additional load during the second month. Group 2 (n = 2) trained without inspiratory resistance during the first and third months and with an additional load during the second month. The load selected for the initial tolerance test (R1) was an inspiratory orifice with a diameter 0.5 mm wider than that of the orifice not tolerated during 3 min (R2). In each subject, ventilatory mode and time of tolerance on R1 were determined. This time was 10.8 +/- 6.8 min for the whole group. The tolerance test was repeated after each month of resistive or placebo training on R1 and R2. By grouping together the results of tolerance tests at 2 months after placebo training (4 measurements) and after resistive training (5 measurements), we found that the gain in endurance was similar without concomitant changes in volumes, air flows, VO2 max and time of endurance at 70% of VO2 max.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Inspiratory high frequency airway oscillation attenuates resistive loaded dyspnea and modulates respiratory function in young healthy individuals.

    PubMed

    Morris, Theresa; Sumners, David Paul; Green, David Andrew

    2014-01-01

    Direct chest-wall percussion can reduce breathlessness in Chronic Obstructive Pulmonary Disease and respiratory function may be improved, in health and disease, by respiratory muscle training (RMT). We tested whether high-frequency airway oscillation (HFAO), a novel form of airflow oscillation generation can modulate induced dyspnoea and respiratory strength and/or patterns following 5 weeks of HFAO training (n = 20) compared to a SHAM-RMT (conventional flow-resistive RMT) device (n = 15) in healthy volunteers (13 males; aged 20-36 yrs). HFAO causes oscillations with peak-to-peak amplitude of 1 cm H2O, whereas the SHAM-RMT device was identical but created no pressure oscillation. Respiratory function, dyspnoea and ventilation during 3 minutes of spontaneous resting ventilation, 1 minute of maximal voluntary hyperventilation and 1 minute breathing against a moderate inspiratory resistance, were compared PRE and POST 5-weeks of training (2 × 30 breaths at 70% peak flow, 5 days a week). Training significantly reduced NRS dyspnoea scores during resistive loaded ventilation, both in the HFAO (p = 0.003) and SHAM-RMT (p = 0.005) groups. Maximum inspiratory static pressure (cm H2O) was significantly increased by HFAO training (vs. PRE; p<0.001). Maximum inspiratory dynamic pressure was increased by training in both the HFAO (vs. PRE; p<0.001) and SHAM-RMT (vs. PRE; p = 0.021) groups. Peak inspiratory flow rate (L.s(-1)) achieved during the maximum inspiratory dynamic pressure manoeuvre increased significantly POST (vs. PRE; p = 0.001) in the HFAO group only. HFAO reduced inspiratory resistive loading-induced dyspnoea and augments static and dynamic maximal respiratory manoeuvre performance in excess of flow-resistive IMT (SHAM-RMT) in healthy individuals without the respiratory discomfort associated with RMT.

  16. Inspiratory resistive loading after all-out exercise improves subsequent performance.

    PubMed

    Chiappa, Gaspar R; Ribeiro, Jorge P; Alves, Cristiano N; Vieira, Paulo J C; Dubas, João; Queiroga, Fernando; Batista, Laura D; Silva, Antonio C; Neder, J Alberto

    2009-05-01

    We have previously shown that post-exercise inspiratory resistive loading (IRL) reduces blood lactate ([Lac(b)(-)]). In this study, we tested the hypothesis that IRL during recovery could improve subsequent exercise performance. Eight healthy men underwent, on different days, two sequential 30-s, cycle ergometer Wingate tests. During the 10-min recovery period from test 1, subjects breathed freely or through an inspiratory resistance (15 cm H(2)O) with passive leg recovery. Arterialized [Lac(b)(-)] values, perceptual scores (Borg), cardiac output by impedance cardiography (QT), and changes in the deoxygenation status of the M. vastus lateralis by near-infrared spectroscopy (DeltaHHb), were recorded. [Lac(b)(-)] was significantly reduced after 4 min of recovery with IRL (peak [Lac(b)(-)] 12.5 +/- 2.3 mmol l(-1) with free-breathing vs. 9.8 +/- 1.5 mmol l(-1) with IRL). Effort perception was reduced during late recovery with IRL compared with free-breathing. Cardiac work was increased with IRL, since heart rate and QT were elevated during late recovery. Peripheral muscle reoxygenation, however, was significantly impaired with IRL, suggesting that post-exercise convective O(2) delivery to the lower limbs was reduced. Importantly, IRL had a dual effect on subsequent performance, i.e., improvement in peak and mean power, but increased fatigue index (P < 0.05). Our data demonstrate that IRL after a Wingate test reduces post-exercise effort perception and improves peak power on subsequent all-out maximal-intensity exercise.

  17. INSPIRATIonAL--INSPIRAtory muscle training in amyotrophic lateral sclerosis.

    PubMed

    Cheah, Benjamin C; Boland, Robert A; Brodaty, Nina E; Zoing, Margie C; Jeffery, Sandra E; McKenzie, David K; Kiernan, Matthew C

    2009-01-01

    Respiratory impairment, due to respiratory muscle weakness, is a major cause of morbidity and mortality in patients with amyotrophic lateral sclerosis/motor neuron disease (ALS/MND). Threshold loading may strengthen the inspiratory muscles and thereby improve patient prognosis. A phase II, double-blind, randomized-controlled trial was undertaken to determine whether a 12-week inspiratory muscle training programme attenuated the decline in respiratory function and inspiratory muscle strength in patients with ALS/MND. Nine patients were randomized to inspiratory muscle training and 10 to sham training. Primary endpoints were respiratory function (forced vital capacity, vital capacity), lung volumes and inspiratory muscle strength. Patients were assessed before, during and immediately after a 12-week training period, and at eight weeks follow-up. While improvements in inspiratory muscle strength were observed in both treatment arms, there was a non-significant increase in maximum inspiratory pressure of 6.1% in the experimental group compared to controls (standard error of mean, 6.93%; 95% confidence interval -8.58 -20.79; p=0.39). The gains in inspiratory muscle strength were partially reversed during a period of training cessation. In conclusion, inspiratory muscle training may potentially strengthen the inspiratory muscles and slow the decline in respiratory function in patients with ALS/MND.

  18. Chest wall regional volume in heart failure patients during inspiratory loaded breathing.

    PubMed

    Brandão, Daniella Cunha; Lage, Susan Martins; Britto, Raquel Rodrigues; Parreira, Verônica Franco; de Oliveira, Wilson Alves; Martins, Sílvia Marinho; Aliverti, Andrea; de Andrade Carvalho, Larissa; do Nascimento Junior, Jasiel Frutuoso; Alcoforado, Luciana; Remígio, Inês; de Andrade, Armele Dornelas

    2012-03-15

    Were evaluated individuals divided into two groups: we studied chronic heart failure (CHF) (19 patients with CHF plus cardiomegaly) and control (12 healthy volunteers) during performance of inspiratory loaded breathing (ILB). We evaluated: spirometry, functional capacity through the six-minute walk test (6MWT), and distribution of thoracoabdominal volumes via optoelectronic plethysmography (OEP), namely volume variations of pulmonary rib cage (Vrc,p), abdominal rib cage (Vrc,a), and abdomen (Vab). In each compartment, the percentage contributions of right and left sides were also calculated. During ILB, patients with heart failure were characterized by a significant reduction of the Vrc,a volume variations compared to the control group. Correlations were found between left %Vrc,a on the left side measured during ILB and left ventricular ejection fraction (r=0.468; p=0.049), and dyspnea after the 6MWT (r=-0.878; p<0.01).Then, patients with CHF and cardiomegaly are characterized by a reduced mobility in left part of the lower part of the rib cage, that contributes leading to increased perception of dyspnea during submaximal exercise.

  19. Short-latency inhibitory reflex responses to inspiratory loading of the scalene muscles are impaired in spinal cord injury.

    PubMed

    McBain, Rachel A; Hudson, Anna L; Gandevia, Simon C; Butler, Jane E

    2015-02-01

    What is the central question of this study? The aim was to determine whether the reflex inhibition in the electromyographic activity of scalene muscles in response to inspiratory muscle loading is present in individuals with cervical spinal cord injury and to examine whether the intercostal muscle afferents are critical for genesis of the reflex. What is the main finding and its importance? The lack of reflex inhibition in response to inspiratory loading in individuals with complete cervical spinal cord injury suggests that the reflex critically requires input from intercostal afferents and/or an intact intersegmental neural network. In healthy individuals, transient loading of inspiratory muscles with a brief inspiratory occlusion produces a short-latency inhibitory response (IR) in the electromyographic activity of scalene muscles at ∼40 ms, followed by an excitatory response (ER). It has been argued that this reflex plays a protective role in neuromuscular control of the inspiratory muscles and that it is co-ordinated by spinal segmental or supraspinal circuits. In this study, the reflex response to airway occlusion was recorded bilaterally from scalene muscles in 14 subjects and from the right costal diaphragm in seven subjects with spinal cord injury [SCI, C4-C6; American Spinal Injury Association (ASIA) Impairment Scale (AIS) A]. The incidence, latency and size of the reflex were compared with previously published data from able-bodied subjects. Only two subjects with SCI showed an IR, and six subjects had an ER. Latencies to the onset and peak of the IR and ER were 5-50 ms longer than in able-bodied subjects. However, when reflexes were identified, their size in individuals with SCI was similar to that of control subjects. We conclude that afferents from the scalene muscles and diaphragm are insufficient in most subjects with SCI to evoke the usual inhibition to airway occlusion and that input from chest wall afferents below the spinal cord lesion may be

  20. Medicinal clays improve the endurance of loaded inspiratory muscles in COPD: a randomized clinical trial of nonpharmacological treatment

    PubMed Central

    Baldi, Simonetta; Pinna, Gian Domenico; Bruschi, Claudio; Caldara, Fabrizio; Maestri, Roberto; Dacosto, Elena; Rezzani, Antonella; Popovich, Ermanno; Bellinzona, Ezio; Crotti, Paola; Montemartini, Silvia; Fracchia, Claudio

    2015-01-01

    Background Inspiratory resistive breathing (IRB) challenges affect respiratory muscle endurance in healthy individuals, which is considered to be an interleukin 6 (IL-6)–dependent mechanism. Whether nonpharmacological thermal therapies promote the endurance of loaded inspiratory muscles in chronic obstructive pulmonary disease (COPD) is unclear. The objectives of this study were to compare the effects of two thermal interventions on endurance time (ET) and plasma IL-6 concentration following an IRB challenge. Methods This study was a randomized, parallel-group, unblinded clinical trial in a single-center setting. Forty-two patients (aged 42–76 years) suffering from mild to severe COPD participated in this study. Both groups completed 12 sessions of the mud bath therapy (MBT) (n=22) or leisure thermal activity (LTA) (n=19) in a thermal spa center in Italy. Pre- and postintervention spirometry, maximum inspiratory pressure, and plasma mediators were obtained and ET and endurance oxygen expenditure (VO2Endur) were measured following IRB challenge at 40% of maximum inspiratory pressure. Results There was no difference in ΔIL-6 between the intervention groups. But, IRB challenge increased cytokine IL-6 plasma levels systematically. The effect size was small. A statistically significant treatment by IRB challenge effect existed in ET, which significantly increased in the MBT group (P=0.003). In analysis of covariance treatment by IRB challenge analysis with LnVO2Endur as the dependent variable, ΔIL-6 after intervention predicted LnVO2Endur in the MBT group, but not in the LTA group. Adverse events occurred in two individuals in the MBT group, but they were mainly transient. One patient in the LTA group dropped out. Conclusion MBT model improves ET upon a moderate IRB challenge, indicating the occurrence of a training effect. The LnVO2Endur/ΔIL-6 suggests a physiologic adaptive mechanism in respiratory muscles of COPD patients allocated to treatment. Both thermal

  1. Medicinal clays improve the endurance of loaded inspiratory muscles in COPD: a randomized clinical trial of nonpharmacological treatment.

    PubMed

    Baldi, Simonetta; Pinna, Gian Domenico; Bruschi, Claudio; Caldara, Fabrizio; Maestri, Roberto; Dacosto, Elena; Rezzani, Antonella; Popovich, Ermanno; Bellinzona, Ezio; Crotti, Paola; Montemartini, Silvia; Fracchia, Claudio

    2015-01-01

    Inspiratory resistive breathing (IRB) challenges affect respiratory muscle endurance in healthy individuals, which is considered to be an interleukin 6 (IL-6)-dependent mechanism. Whether nonpharmacological thermal therapies promote the endurance of loaded inspiratory muscles in chronic obstructive pulmonary disease (COPD) is unclear. The objectives of this study were to compare the effects of two thermal interventions on endurance time (ET) and plasma IL-6 concentration following an IRB challenge. This study was a randomized, parallel-group, unblinded clinical trial in a single-center setting. Forty-two patients (aged 42-76 years) suffering from mild to severe COPD participated in this study. Both groups completed 12 sessions of the mud bath therapy (MBT) (n=22) or leisure thermal activity (LTA) (n=19) in a thermal spa center in Italy. Pre- and postintervention spirometry, maximum inspiratory pressure, and plasma mediators were obtained and ET and endurance oxygen expenditure (VO2Endur) were measured following IRB challenge at 40% of maximum inspiratory pressure. There was no difference in ΔIL-6 between the intervention groups. But, IRB challenge increased cytokine IL-6 plasma levels systematically. The effect size was small. A statistically significant treatment by IRB challenge effect existed in ET, which significantly increased in the MBT group (P=0.003). In analysis of covariance treatment by IRB challenge analysis with LnVO2Endur as the dependent variable, ΔIL-6 after intervention predicted LnVO2Endur in the MBT group, but not in the LTA group. Adverse events occurred in two individuals in the MBT group, but they were mainly transient. One patient in the LTA group dropped out. MBT model improves ET upon a moderate IRB challenge, indicating the occurrence of a training effect. The LnVO2Endur/ΔIL-6 suggests a physiologic adaptive mechanism in respiratory muscles of COPD patients allocated to treatment. Both thermal interventions are safe.

  2. Effect of flow-resistive inspiratory loading on pulmonary and respiratory muscle function in sub-elite swimmers.

    PubMed

    Shei, Ren J; Lindley, Martin; Chatham, Ken; Mickleborough, Timothy D

    2016-04-01

    The aim of this study was to evaluate the effects of a 12-week swim training and inspiratory muscle training program on respiratory muscle and pulmonary function in competitively trained sub-elite swimmers. A double-blind, parallel-group experimental design was employed to compare the effects of swim training alone, swim training with sham-inspiratory muscle training, and swim training with true inspiratory muscle training. Twenty-four competitively trained sub-elite swimmers combined swim training with either flow-resistive inspiratory muscle training set at 80% sustained maximal inspiratory pressure with progressively increased work-rest ratios until task failure for 3 days/week (swim training with inspiratory muscle training, N.=8), or swim training with sham-inspiratory muscle training (N.=8), or acted as controls (swim training only, N.=8). Measures of pulmonary and respiratory muscle function were assessed at the beginning and end of the 12-week study period. At baseline, there were no significant differences (P>0.05) in respiratory muscle and pulmonary function between groups. Following the 12-week training period, the swim training with inspiratory muscle training group demonstrated improvements in maximal inspiratory pressure, sustained maximal inspiratory pressure, maximal inspiratory muscle power output, inspiratory muscle work capacity, inspiratory time of contraction, time to fatigue, maximal voluntary ventilation in 12 seconds, and forced inspiratory volume in 1-second (P<0.05). No improvements in pulmonary or respiratory muscle function were observed in the swim training only or swim training with sham-inspiratory muscle training groups (P>0.05). Inspiratory muscle training in conjunction with swim training improves respiratory muscle function in sub-elite swimmers when compared to swim training only.

  3. Transdiaphragmatic pressure and neural respiratory drive measured during inspiratory muscle training in stable patients with chronic obstructive pulmonary disease.

    PubMed

    Wu, Weiliang; Zhang, Xianming; Lin, Lin; Ou, Yonger; Li, Xiaoying; Guan, Lili; Guo, Bingpeng; Zhou, Luqian; Chen, Rongchang

    2017-01-01

    Inspiratory muscle training (IMT) is a rehabilitation therapy for stable patients with COPD. However, its therapeutic effect remains undefined due to the unclear nature of diaphragmatic mobilization during IMT. Diaphragmatic mobilization, represented by transdiaphragmatic pressure (Pdi), and neural respiratory drive, expressed as the corrected root mean square (RMS) of the diaphragmatic electromyogram (EMGdi), both provide vital information to select the proper IMT device and loads in COPD, therefore contributing to the curative effect of IMT. Pdi and RMS of EMGdi (RMSdi%) were measured and compared during inspiratory resistive training and threshold load training in stable patients with COPD. Pdi and neural respiratory drive were measured continuously during inspiratory resistive training and threshold load training in 12 stable patients with COPD (forced expiratory volume in 1 s ± SD was 26.1%±10.2% predicted). Pdi was significantly higher during high-intensity threshold load training (91.46±17.24 cmH2O) than during inspiratory resistive training (27.24±6.13 cmH2O) in stable patients with COPD, with P<0.01 for each. Significant difference was also found in RMSdi% between high-intensity threshold load training and inspiratory resistive training (69.98%±16.78% vs 17.26%±14.65%, P<0.01). We concluded that threshold load training shows greater mobilization of Pdi and neural respiratory drive than inspiratory resistive training in stable patients with COPD.

  4. Chronic and acute inspiratory muscle loading augment the effect of a 6-week interval program on tolerance of high-intensity intermittent bouts of running.

    PubMed

    Tong, Tom K; Fu, Frank H; Eston, Roger; Chung, Pak-Kwong; Quach, Binh; Lu, Kui

    2010-11-01

    This study examined the hypothesis that chronic (training) and acute (warm-up) loaded ventilatory activities applied to the inspiratory muscles (IM) in an integrated manner would augment the training volume of an interval running program. This in turn would result in additional improvement in the maximum performance of the Yo-Yo intermittent recovery test in comparison with interval training alone. Eighteen male nonprofessional athletes were allocated to either an inspiratory muscle loading (IML) group or control group. Both groups participated in a 6-week interval running program consisting of 3-4 workouts (1-3 sets of various repetitions of selected distance [100-2,400 m] per workout) per week. For the IML group, 4-week IM training (30 inspiratory efforts at 50% maximal static inspiratory pressure [P0] per set, 2 sets·d-1, 6 d·wk-1) was applied before the interval program. Specific IM warm-up (2 sets of 30 inspiratory efforts at 40% P0) was performed before each workout of the program. For the control group, neither IML was applied. In comparison with the control group, the interval training volume as indicated by the repeatability of running bouts at high intensity was approximately 27% greater in the IML group. Greater increase in the maximum performance of the Yo-Yo test (control: 16.9 ± 5.5%; IML: 30.7 ± 4.7% baseline value) was also observed after training. The enhanced exercise performance was partly attributable to the greater reductions in the sensation of breathlessness and whole-body metabolic stress during the Yo-Yo test. These findings show that the combination of chronic and acute IML into a high-intensity interval running program is a beneficial training strategy for enhancing the tolerance to high-intensity intermittent bouts of running.

  5. Effects of hypercapnia and inspiratory flow-resistive loading on respiratory activity in chronic airways obstruction.

    PubMed Central

    Altose, M D; McCauley, W C; Kelsen, S G; Cherniack, N S

    1977-01-01

    The respiratory responses to hypercapnia alone and to hypercapnia and flow-resistive loading during inspiration were studied in normal individuals and in eucapnic and hypercapnic patients with chronic airways obstruction. Responses were assessed in terms of minute ventilation and occlusion pressure (mouth pressure during airway occlusion 100 ms after the onset of inspiration). Ventilatory responses to CO2 (deltaV/deltaPCO2) were distinctly subnormal in both groups of patients with airways obstruction. The two groups of patients, however, showed different occlusion pressure responses to CO2 (deltaP100/deltaPCO2): deltaP100/deltaPCO2 was normal in the eucapnic patients but subnormal in the hypercapnic patients. Flow-resistive loading during inspiration reduced deltaV/deltaPCO2 both in normal subjects and in patients with airways obstruction. The occlusion pressure response to CO2 increased in normal subjects during flow-resistive loading but remained unchanged in both groups of patients with chronic airways obstruction. These results indicate that while chemosensitivity as determined by deltaP100/deltaPCO2 is impaired only in hypercapnic patients with chronic airways obstruction, an acute increase in flow resistance elicits a subnormal increase in respiratory efferent activity in both eucapnic and hypercapnic patients. PMID:838862

  6. Inspiratory muscle performance in endurance athletes and sedentary subjects.

    PubMed

    Eastwood, P R; Hillman, D R; Finucane, K E

    2001-06-01

    The aim of this study was to determine whether whole-body endurance training is associated with increased respiratory muscle strength and endurance. Respiratory muscle strength (maximum inspiratory pressure (PImax)) and endurance (progressive threshold loading of the inspiratory muscles) were measured in six marathon runners and six sedentary subjects. PImax was similar between the two groups of subjects but the maximum threshold pressure achieved was greater in marathon runners (90 +/- 8 vs 78 +/- 10% of PImax, respectively, mean +/- SD, P < 0.05). During progressive threshold loading, marathon runners breathed with lower frequency, higher tidal volume, and longer inspiratory and expiratory time. At maximum threshold pressure, marathon runners had lower arterial O2 saturation, but perceived effort (Borg scale) was maximal in both groups. Efficiency of the respiratory muscles was similar in both groups being 2.0 +/- 1.7% and 2.3 +/- 1.8% for marathon runners and sedentary subjects, respectively. The apparent increase in respiratory muscle endurance of athletes was a consequence of a difference in the breathing pattern adopted during loaded breathing rather than respiratory muscle strength or efficiency. This implies that sensory rather than respiratory muscle conditioning may be an important mechanism by which whole-body endurance is increased.

  7. Sensory detection of threshold intensity resistive loads in severe obstructive sleep apnoea.

    PubMed

    Ruehland, Warren R; Rochford, Peter D; Pierce, Robert J; Webster, Kate E; Trinder, John A; Jordan, Amy S; O'Donoghue, Fergal J

    2017-02-01

    Respiratory related evoked potentials (RREPs) were used to investigate whether sensory detection of small mid-inspiratory resistive loads (≈1.2-6.2 cmH2OL(-1)s), delivered during wakefulness, was impaired in obstructive sleep apnoea (OSA). It was reasoned that impaired detection of minor airway patency challenge may lead to difficult-to-remedy further collapse. There was a significant reduction in OSA (n=16) vs. control (n=17) participants in the slope of the relationship between the P1 RREP component amplitude, which reflects arrival of somatosensory information at the cortex, and stimulus intensity, expressed as change in epiglottic pressure (mean [95% confidence intervals]: -0.50 [-0.97, -0.03] vs. -1.78 [-2.54, -1.02]; P=0.004), suggesting a reduction in sensitivity to small respiratory loads. However there was no significant difference in sensitivity after background Pepi was taken into account (P=0.268). Additionally, there were no significant group differences in the threshold of the P1 amplitude/stimulus intensity relationship, or in the P1 latency. These results indicate a reduced sensitivity to detection of small upper airway negative pressure stimuli in OSA related to a reduction in mechanoreceptor activation (likely related to increased airway resistance in OSA vs. controls; P=0.002) rather than defective mechanosensory function. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Regulation of frequency and depth of breathing during expiratory threshold loading in cats.

    PubMed

    Grunstein, M M; Wyszogrodski, I; Milic-Emili, J

    1975-05-01

    In six spontaneously breathing anesthetized cats, intermittently subjected to inspiratory elastic loads, we have studied the relationships between tidal volume (VT) and the durations of inspiration (Ti) and breath duration (Ttot) obtained during spontaneous ventilation from resting lung volume (FRCc) and from elevated end-expiratory levels. The latter was elevated by submerging the expiratory breathing line into a column of water, representing the addition of an expiratory threshold load (ETL). The VT vs. Ti relationships obtained at different end-expiratory levels were similar, indicating that during ETL the vagal mechanism regulating Ti responds only to lung volume changes above the new end-expiratory level and is independent of the absolute end-expiratory lung volume. Single vagal fiber recordings suggest that this effect on Ti control may be explained on the basis of adaptation occurring at the level of the pulmonary stretch receptors. The control of Ttot, on the other hand, was found to depend both on the Ti of the preceding breath (phasic component) and on a separate vagal mechanism specifically affecting the duration of expiration (Te) in response to changes in the absolute end-expiratory lung volume. The latter mechanism is functionally inoperative at FRCc.

  9. Effects of inspiratory muscle training on resistance to fatigue of respiratory muscles during exhaustive exercise.

    PubMed

    Segizbaeva, M O; Timofeev, N N; Donina, Zh A; Kur'yanovich, E N; Aleksandrova, N P

    2015-01-01

    The aim of this study was to assess the effect of inspiratory muscle training (IMT) on resistance to fatigue of the diaphragm (D), parasternal (PS), sternocleidomastoid (SCM) and scalene (SC) muscles in healthy humans during exhaustive exercise. Daily inspiratory muscle strength training was performed for 3 weeks in 10 male subjects (at a pressure threshold load of 60% of maximal inspiratory pressure (MIP) for the first week, 70% of MIP for the second week, and 80% of MIP for the third week). Before and after training, subjects performed an incremental cycle test to exhaustion. Maximal inspiratory pressure and EMG-analysis served as indices of inspiratory muscle fatigue assessment. The before-to-after exercise decreases in MIP and centroid frequency (fc) of the EMG (D, PS, SCM, and SC) power spectrum (P<0.05) were observed in all subjects before the IMT intervention. Such changes were absent after the IMT. The study found that in healthy subjects, IMT results in significant increase in MIP (+18%), a delay of inspiratory muscle fatigue during exhaustive exercise, and a significant improvement in maximal work performance. We conclude that the IMT elicits resistance to the development of inspiratory muscles fatigue during high-intensity exercise.

  10. Transdiaphragmatic pressure and neural respiratory drive measured during inspiratory muscle training in stable patients with chronic obstructive pulmonary disease

    PubMed Central

    Wu, Weiliang; Zhang, Xianming; Lin, Lin; Ou, Yonger; Li, Xiaoying; Guan, Lili; Guo, Bingpeng; Zhou, Luqian; Chen, Rongchang

    2017-01-01

    Purpose Inspiratory muscle training (IMT) is a rehabilitation therapy for stable patients with COPD. However, its therapeutic effect remains undefined due to the unclear nature of diaphragmatic mobilization during IMT. Diaphragmatic mobilization, represented by transdiaphragmatic pressure (Pdi), and neural respiratory drive, expressed as the corrected root mean square (RMS) of the diaphragmatic electromyogram (EMGdi), both provide vital information to select the proper IMT device and loads in COPD, therefore contributing to the curative effect of IMT. Pdi and RMS of EMGdi (RMSdi%) were measured and compared during inspiratory resistive training and threshold load training in stable patients with COPD. Patients and methods Pdi and neural respiratory drive were measured continuously during inspiratory resistive training and threshold load training in 12 stable patients with COPD (forced expiratory volume in 1 s ± SD was 26.1%±10.2% predicted). Results Pdi was significantly higher during high-intensity threshold load training (91.46±17.24 cmH2O) than during inspiratory resistive training (27.24±6.13 cmH2O) in stable patients with COPD, with P<0.01 for each. Significant difference was also found in RMSdi% between high-intensity threshold load training and inspiratory resistive training (69.98%±16.78% vs 17.26%±14.65%, P<0.01). Conclusion We concluded that threshold load training shows greater mobilization of Pdi and neural respiratory drive than inspiratory resistive training in stable patients with COPD. PMID:28280321

  11. Inspiratory-resistive loading increases the ventilatory response to arousal but does not reduce genioglossus muscle activity on the return to sleep.

    PubMed

    Cori, Jennifer M; Nicholas, Christian L; Baptista, Shaira; Huynh, Ivan; Rochford, Peter D; O'Donoghue, Fergal J; Trinder, John A; Jordan, Amy S

    2012-09-01

    Arousals from sleep are thought to predispose to obstructive sleep apnea by causing hyperventilation and hypocapnia, which reduce airway dilator muscle activity on the return to sleep. However, prior studies of auditory arousals have not resulted in reduced genioglossus muscle activity [GG-electromyogram (EMG)], potentially because airway resistance prior to arousal was low, leading to a small ventilatory response to arousal and minimal hypocapnia. Thus we aimed to increase the ventilatory response to arousal by resistive loading prior to auditory arousal and determine whether reduced GG-EMG occurred on the return to sleep. Eighteen healthy young men and women were recruited. Subjects were instrumented with a nasal mask with a pneumotachograph, an epiglottic pressure catheter, and intramuscular GG-EMG electrodes. Mask CO(2) levels were monitored. Three- to 15-s arousals from sleep were induced with auditory tones after resting breathing (No-Load) or inspiratory-resistive loading (Load; average 8.4 cmH(2)O·l(-1)·s(-1)). Peak minute ventilation following arousal was greater after Load than No-Load (mean ± SE; 8.0 ± 0.6 vs. 7.4 ± 0.6 l/min, respectively). However, the nadir end tidal partial pressure of CO(2) did not differ between Load conditions (43.1 ± 0.6 and 42.8 ± 0.5 mmHg, respectively), and no period of reduced GG activity occurred following the return to sleep (GG-EMG baseline, minimum after Load and No-Load = 2.9 ± 1.2%, 3.1 ± 1.3%, and 3.0 ± 1.3% max, respectively). These findings indicate that the hyperventilation, which occurs following tone-induced arousal, is appropriate for the prevailing level of respiratory drive, because loading did not induce marked hypocapnia or lower GG muscle activity on the return to sleep. Whether similar findings occur following obstructive events in patients remains to be determined.

  12. [Effect of inspiratory muscle training on muscle strength and quality of life in patients with chronic airflow limitation: a randomized controlled trial].

    PubMed

    Serón, P; Riedemann, P; Muñoz, S; Doussoulin, A; Villarroel, P; Cea, X

    2005-11-01

    Chronic airflow limitation (CAL) is a significant cause of illness and death. Inspiratory muscle training has been described as a technique for managing CAL. The aim of the present study was to evaluate the effectiveness of inspiratory muscle training on improving physiological and functional variables. Randomized controlled trial in which 35 patients with CAL were assigned to receive either an experimental (n=17) or control (n=18) intervention. The experimental intervention consisted of 2 months of inspiratory muscle training using a device that administered a resistive load of 40% of maximal static inspiratory mouth pressure (PImax). Inspiratory muscle strength, exercise tolerance, respiratory function, and quality of life were assessed. Significant improvement in inspiratory muscle strength was observed in the experimental training group (P=.02). All patients improved over time in both groups (P<.001). PImax increased by 8.9 cm H2O per month of training. Likewise, the health-related quality of life scores improved by 0.56 points. Use of a threshold loading device is effective for strengthening inspiratory muscles as measured by PImax after the first month of training in patients with CAL. The long-term effectiveness of such training and its impact on quality of life should be studied in a larger number of patients.

  13. Inspiratory muscle endurance in patients with chronic heart failure.

    PubMed Central

    Walsh, J. T.; Andrews, R.; Johnson, P.; Phillips, L.; Cowley, A. J.; Kinnear, W. J.

    1996-01-01

    OBJECTIVE: To assess the significance of changes in respiratory muscle endurance in relation to respiratory and limb muscle strength in patients with mild to moderate chronic heart failure using a threshold loading technique. SUBJECTS: 20 patients with chronic heart failure (17 male) aged 63.8 (SD 7.4) years and 10 healthy men aged 63.1 (5.6) years. Heart failure severity was New York Heart Association (NYHA) grade II (n = 11) and NYHA grade III/IV (n = 9). METHODS: Respiratory muscle strength was measured from mouth pressures during maximum inspiratory effort (MIP) at functional residual capacity (FRC) and limb muscle strength was measured using a hand grip dynamometer. Inspiratory muscle endurance was measured using a threshold loading technique. The total endurance duration, the maximum threshold pressure achieved (P-Max), and the inspiratory load (% ratio of P-Max/MIP) were recorded in all subjects. RESULTS: Inspiratory muscles were weaker in patients with heart failure than in the controls [MIP 53.6 (16.5) v 70.9 (20.2) cm H2O, P < 0.05]. Hand grip strength was similar in both subject groups [31.6 (SD) v 36.1 (15.9) dynes]. Total endurance duration was significantly reduced in the patient group [494 (223) v 996 (267) s, P < 0.01], as was the maximal threshold pressure achieved [P-Max 18.5 (6.4) v 30.7 (6.6) cm H2O, P < 0.01]. When expressed as a percentage of MIP, P-Max was also lower in the patients [35.2 (11.8) v 44.8 (11.4)%, P < 0.05]. There was no significant correlation between any measure of endurance and limb muscle strength. CONCLUSIONS: Respiratory muscle endurance is reduced in patients with chronic heart failure. These changes probably reflect a generalised skeletal myopathy and provide further evidence of respiratory muscle dysfunction in patients with this disease. Respiratory muscle endurance needs now to be related to symptoms and the effects of treatment and respiratory muscle training should also be explored. PMID:8983680

  14. Use of a two-way non-rebreathing valve to simplify the measurement of twitch mouth pressure using an inspiratory pressure trigger and the establishment of an optimal trigger threshold for healthy subjects and COPD patients.

    PubMed

    Hua, D M; Lin, Z M; Ou, Y E; Xie, Y K; Yang, Z; Liu, Q; Zheng, Z G; Chen, R C; Zhong, N S

    2014-09-15

    Controlled twitch mouth pressure (Tw Pmo) via the use of a two-way non-rebreathing valve is a new method to assess diaphragm contractility. The optimal trigger threshold was confirmed. We sought to determine the optimal trigger threshold for 17 healthy subjects (29±4 years) and 17 COPD patients (64±10 years). The Tw Pmo, twitch oesophageal pressure (Tw Pes) and twitch transdiaphragmatic pressure (Tw Pdi) in response to phrenic nerve stimulation were measured using an inspiratory pressure trigger at -1, -2, -3, -4, -5 and -6 cmH2O. The lung volume did not change during triggering at different trigger thresholds using a two-way non-rebreathing valve. The highest correlation between Tw Pmo and Tw Pes in healthy subjects and COPD patients occurred for a -2 cmH2O trigger threshold (r=0.939 and r=0.869, P<0.0001). The narrowest limits of agreement for Tw Pmo and Tw Pes both occurred at -2 cmH2O in healthy subjects, with a bias (range) of -0.4 cmH2O (-1.85 to 1.41), and in COPD patients, with a bias (range) of 0.1 6cmH2O (-1.36-1.67). We conclude that the measurement of Tw Pmo using a two-way non-rebreathing valve is of clinical value to investigate the suspected diaphragm contractility. The highest trigger threshold for clinical applications was -2 cmH2O. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Influence of noninvasive positive pressure ventilation on inspiratory muscles.

    PubMed

    Goldstein, R S; De Rosie, J A; Avendano, M A; Dolmage, T E

    1991-02-01

    Intermittent positive pressure ventilation reduces inspiratory muscle electromyographic activity among patients with restrictive ventilatory failure. It has therefore been suggested that the reduction of energy expenditure at night could result in improved inspiratory muscle function during the day. Reported successes with nocturnal ventilation have not included measurements of inspiratory muscle endurance. We therefore electively ventilated six (five female, one male) patients (mean +/- SD) aged 36 +/- 13 years in whom respiratory failure (room air PaCO2, 60 +/- 13 mm Hg; PaO2, 44 +/- 11 mm Hg; SaO2, 75 +/- 12 percent) was consequent on restrictive ventilatory disease (vital capacity, 25 +/- 7 percent predicted; FEV1/FVC, 81 +/- 12 percent; total lung capacity, 40 +/- 5 percent predicted; MIPRV -42 +/- 10 cm H2O; MEP, 81 +/- 28 cm H2O). Positive pressure ventilation was administered with a customized closely fitting nasal mask attached to a volume-cycled pressure-limited ventilator. Full respiratory polysomnographic measurements as well as arterial blood gases, pulmonary function, distance walked in six minutes, and inspiratory muscle endurance were measured at baseline and after 3 and 14 months of ventilation. Ventilation improved saturation (baseline on O2; SWS 87 +/- 10, REM 79 +/- 14, ventilator on R/A; SWS 90 +/- 6, REM 89 +/- 5 percent) and transcutaneous Pco2 (baseline on O2; SWS 85 +/- 26, REM 94 +/- 39, ventilator on R/A; SWS 53 +/- 9, REM 58 +/- 9 mm Hg). During ventilation, the quantity and distribution of sleep was similar to that observed prior to ventilation. Daytime gas exchange improved as did the six-minute walking test (initial test = 429 +/- 120 m, three months after ventilation = 567 +/- 121 m), both of these improvements being sustained at 14 months. Inspiratory muscle endurance measured using a pressure threshold load (mean mouth pressure = 45 percent MIPRV) improved from 7.1 +/- 3.4 minutes at baseline to 14.8 +/- 7.6 minutes at 3 months, an

  16. Reference Values for Inspiratory Muscle Endurance in Healthy Children and Adolescents

    PubMed Central

    Woszezenki, Cristhiele Taís; Heinzmann-Filho, João Paulo; Vendrusculo, Fernanda Maria; Piva, Taila Cristina; Levices, Isadora; Donadio, Márcio Vinícius Fagundes

    2017-01-01

    Aims To generate reference values for two inspiratory muscle endurance (IME) protocols in healthy children and adolescents. Materials and methods This is an observational, cross-sectional study, in healthy children and adolescents from 4 to 18 years of age. Weight, height, maximal inspiratory pressure (MIP) and IME were measured using two protocols. A fixed load of 30% of MIP with a 10% increment every 2 minutes was used in the incremental threshold loading protocol. As for the maximal loading protocol, a fixed load of 70% of MIP was used and the time limit (Tlim) achieved until fatigue was measured. Results A total of 462 participants were included, 281 corresponding to the incremental loading protocol and 181 to maximal loading. There were moderate and positive correlations between IME and age, MIP, weight and height in the incremental threshold loading. However, the regression model demonstrated that MIP and age were the best variables to predict the IME. Otherwise, weak and positive correlations with age, weight and height were found in the maximal loading. Only age and height influenced endurance in the regression model. The predictive power (r2) of the incremental threshold loading protocol was 0.65, while the maximal loading was 0.15. The reproducibility measured by the intraclass correlation coefficient (ICC) was higher in the incremental loading (0.96) compared to the maximal loading test (0.69). Conclusion IME in healthy children and adolescents can be explained by age, height and MIP. The incremental threshold loading protocol showed more reliable results and should be the model of choice to evaluate IME in the pediatric age group. PMID:28122012

  17. Identification and Measurement of Intellictive Load Carrying Thresholds. Final Report.

    ERIC Educational Resources Information Center

    Siegel, Arthur I.; Williams, Allan R., Jr.

    The conjecture was investigated that the intellective load carrying capability for selected intellective functions is identifiable and measurable. Intellective load carrying failure was defined as the point at which a change in transfer function components occurs as a tracking and a scaled intellective function were concomitantly performed. The…

  18. Specific inspiratory muscle warm-up enhances badminton footwork performance.

    PubMed

    Lin, Hua; Tong, Tom Kwokkeung; Huang, Chuanye; Nie, Jinlei; Lu, Kui; Quach, Binh

    2007-12-01

    The effects of inspiratory muscle (IM) warm-up on IM function and on the maximum distance covered in a subsequent incremental badminton-footwork test (FWmax) were examined. Ten male badminton players were recruited to perform identical tests in three different trials in a random order. The control trial did not involve an IM warm-up, whereas the placebo and experimental trials did involve an IM warm-up consisting of two sets of 30-breath manoeuvres with an inspiratory pressure-threshold load equivalent to 15% (PLA) and 40% (IMW) maximum inspiratory mouth pressure, respectively. In the IMW trial, IM function was improved with 7.8%+/-4.0% and 6.9%+/-3.5% increases from control found in maximal inspiratory pressure at zero flow (P0) and maximal rate of P0 development (MRPD), respectively (p<0.05). FWmax was enhanced 6.8%+/-3.7%, whereas the slope of the linear relationship of the increase in the rating of perceived breathlessness for every minute (RPB/min) was reduced (p<0.05). Reduction in blood lactate ([La-]b) accumulation was observed when the test duration was identical to that of the control trial (P<0.05). In the PLA trial, no parameter was changed from control. For the changes (Delta) in parameters in IMW (n=10), negative correlations were found between DeltaP0 and DeltaRPB/min (r2=0.58), DeltaMRPD and DeltaRPB/min (r2=0.48), DeltaRPB/min, and DeltaFWmax (r2=0.55), but not between Delta[La-]b accumulation and DeltaFWmax. Such findings suggest that the IM-specific warm-up improved footwork performance in the subsequent maximum incremental badminton-footwork test. The improved footwork was partly attributable to the reduced breathless sensation resulting from the enhanced IM function, whereas the contribution of the concomitant reduction in [La-]b accumulation was relatively minor.

  19. The effect of inspiratory muscle training on high-intensity, intermittent running performance to exhaustion.

    PubMed

    Tong, Tom Kwokkeung; Fu, Frank Hokin; Chung, Pak Kwong; Eston, Roger; Lu, Kui; Quach, Binh; Nie, Jinlei; So, Raymond

    2008-08-01

    The effects of inspiratory muscle (IM) training on maximal 20 m shuttle run performance (Ex) during Yo-Yo intermittent recovery test and on the physiological and perceptual responses to the running test were examined. Thirty men were randomly allocated to 1 of 3 groups. The experimental group underwent a 6 week pressure threshold IM training program by performing 30 inspiratory efforts twice daily, 6 d/week, against a load equivalent to 50% maximal static inspiratory pressure. The placebo group performed the same training procedure but with a minimal inspiratory load. The control group received no training. In post-intervention assessments, IM function was enhanced by >30% in the experimental group. The Ex was improved by 16.3% +/- 3.9%, while the rate of increase in intensity of breathlessness (RPB/4i) was reduced by 11.0% +/- 6.2%. Further, the whole-body metabolic stress reflected by the accumulations of plasma ammonia, uric acid, and blood lactate during the Yo-Yo test at the same absolute intensity was attenuated. For the control and placebo groups, no significant change in these variables was observed. In comparison with previous observations that the reduced RPB/4i resulting from IM warm-up was the major reason for improved Ex, the reduced RPB/4i resulting from the IM training program was lower despite the greater enhancement of IM function, whereas improvement in Ex was similar. Such findings suggest that although both IM training and warm-up improve the tolerance of intense intermittent exercise, the underlying mechanisms may be different.

  20. Inspiratory duty cycle responses to flow limitation predict nocturnal hypoventilation.

    PubMed

    Schneider, H; Krishnan, V; Pichard, L E; Patil, S P; Smith, P L; Schwartz, A R

    2009-05-01

    Upper airway obstruction (UAO) can elicit neuromuscular responses that mitigate and/or compensate for the obstruction. It was hypothesised that flow-limited breathing elicits specific timing responses that can preserve ventilation due to increases in inspiratory duty cycle rather than respiratory rate. By altering nasal pressure during non-rapid eye movement (non-REM) sleep, similar degrees of UAO were induced in healthy males and females (n = 10 each). Inspiratory duty cycle, respiratory rate and minute ventilation were determined for each degree of UAO during non-REM sleep and compared with the baseline nonflow-limited condition. A dose-dependent increase in the inspiratory duty cycle and respiratory rate was observed in response to increasing severity of UAO. Increases in the inspiratory duty cycle, but not respiratory rate, helped to acutely maintain ventilation. Heterogeneity in these responses was associated with variable degrees of ventilatory compensation, allowing for the segregation of individuals at risk for hypoventilation during periods of inspiratory airflow limitation. Upper airway obstruction constitutes a unique load on the respiratory system. The inspiratory duty cycle, but not the respiratory rate, determine the individual's ability to compensate for inspiratory airflow limitation during sleep, and may represent a quantitative phenotype for obstructive sleep apnoea susceptibility.

  1. Crack Growth Behavior in the Threshold Region for High Cyclic Loading

    NASA Technical Reports Server (NTRS)

    Forman, R.; Figert, J.; Beek, J.; Ventura, J.; Martinez, J.; Samonski, F.

    2011-01-01

    The present studies show that fanning in the threshold regime is likely caused by other factors than a plastic wake developed during load shedding. The cause of fanning at low R-values is a result of localized roughness, mainly formation of a faceted crack surface morphology , plus crack bifurcations which alters the crack closure at low R-values. The crack growth behavior in the threshold regime involves both crack closure theory and the dislocation theory of metals. Research will continue in studying numerous other metal alloys and performing more extensive analysis, such as the variation in dislocation properties (e.g., stacking fault energy) and its effects in different materials.

  2. Imposed power of breathing associated with use of an impedance threshold device.

    PubMed

    Idris, Ahamed H; Convertino, Victor A; Ratliff, Duane A; Doerr, Donald F; Lurie, Keith G; Gabrielli, Andrea; Banner, Michael J

    2007-02-01

    To measure the imposed power of breathing (imposed work of breathing per minute) associated with spontaneous breathing through an active impedance threshold device and a sham impedance threshold device. Prospective randomized blinded protocol. University medical center. Nineteen healthy, normotensive volunteers (10 males, 9 females, age range 20-56 y, mean +/- SD weight 54.8 +/- 7.7 kg for females, 84 +/- 8 kg for males). The volunteers completed 2 trials of breathing through a face mask fitted with an active impedance threshold device set to open at -7 cm H(2)O pressure, or with a sham impedance threshold device, which was identical to the active device except that it did not contain an inspiratory threshold pressure valve diaphragm. Spontaneous breathing frequency (f), tidal volume (V(T)), exhaled minute ventilation, inspiratory pressure, and inspiratory time were measured with a respiratory monitor, and the data were directed to a laptop computer for real-time calculation of the imposed power of breathing. There were no significant differences in heart rate, respiratory rate, tidal volume, and minute ventilation, with and without inspiratory impedance. For the sham and active impedance threshold device groups, respectively, the mean +/- SD imposed power of breathing values were 0.92 +/- 0.63 J/min and 8.18 +/- 4.52 J/min (p < 0.001), the mean +/- SD inspiratory times were 1.98 +/- 0.86 s and 2.97 +/- 1.1 s (p = 0.001), and the mean +/- SD inspiratory airway/mouth pressures were -1.1 +/- 0.6 cm H(2)O and -11.7 +/- 2.4 cm H(2)O (p < 0.001). Breathing through an active impedance threshold device requires significantly more power than breathing through a sham device. All subjects tolerated the respiratory work load and were able to complete the study protocol.

  3. The effect of progressive high-intensity inspiratory muscle training and fixed high-intensity inspiratory muscle training on the asymmetry of diaphragm thickness in stroke patients.

    PubMed

    Jung, Ju-Hyeon; Kim, Nan-Soo

    2015-10-01

    [Purpose] This study investigated the effects of progressive load and fixed load high-intensity inspiratory muscle training on the asymmetry of diaphragm thickness in stroke patients. [Subjects] Twenty-one stroke patients were assigned to one of three groups: progressive load high-intensity inspiratory muscle training (n = 8), fixed load high-intensity inspiratory muscle training (n = 6), and controls (n = 7). [Methods] The progressive load and fixed load high-intensity inspiratory muscle training participants undertook an exercise program for 20 minutes, three times weekly, for 6 weeks. After each session, diaphragm thickness was measured using ultrasonography. The diaphragm asymmetry ratio and diaphragm thickening ratio were standardized using a formula. [Results] After intervention, the diaphragm asymmetry ratio significantly differed among the three groups, and the diaphragm asymmetry ratio significantly increased in the control group. A significant increase was identified in the diaphragm thickening ratio within the progressive load and fixed load high-intensity inspiratory muscle training groups. [Conclusion] Progressive load and fixed load high-intensity inspiratory muscle training decreased the asymmetry of diaphragm thickness in stroke patients; this effect, in turn, increased the diaphragm thickening ratio in stroke patients. The two interventions examined here should be selectively applied to individuals in the clinical field.

  4. The generation of loads in excess of the osteogenic threshold by physical movement.

    PubMed

    Shippen, James M

    2013-06-01

    This study investigates the use of physical movement to cause joint and bone loads that stimulate bone growth in order to reduce the adverse effects of osteoporosis. It has been established that stresses in bones in excess of the osteogenic threshold will stimulate bone growth; however, protocols for the generation of these stresses had not been established. Two trial movements were examined in the study: the plié and a movement requiring the subject to move a leg sequentially to 45° displaced positions - the star excursion balance test. Using inverse dynamics and an optimisation approach, the loads in the muscles crossing the hip and knee joints and the corresponding joint contact forces were calculated. It was found that the osteogenic threshold was exceeded in both these trials identifying them as suitable exercises in the maintenance of bone health. In the order of increasing bone load at the hip, and hence increasing bone growth stimulation, are the following demi plié, star excursion balance test with maximum reach criterion, grande plié and star excursion balance test with maximum speed criterion. In the order of increasing bone load at the knee are demi plié, grande plié, star excursion balance test with maximum reach criterion and star excursion balance test with maximum speed criterion. However, due to the high loads encountered, these exercises are not recommended for subjects with advanced osteoporosis although the boundary between therapeutic bone loading leading to increase in bone mineral density and loads capable of causing fracture is unclear.

  5. Crack Growth Behavior in the Threshold Region for High Cycle Fatigue Loading

    NASA Technical Reports Server (NTRS)

    Forman, R. G.; Zanganeh, M.

    2014-01-01

    This paper describes the results of a research program conducted to improve the understanding of fatigue crack growth rate behavior in the threshold growth rate region and to answer a question on the validity of threshold region test data. The validity question relates to the view held by some experimentalists that using the ASTM load shedding test method does not produce valid threshold test results and material properties. The question involves the fanning behavior observed in threshold region of da/dN plots for some materials in which the low R-ratio data fans out from the high R-ratio data. This fanning behavior or elevation of threshold values in the low R-ratio tests is generally assumed to be caused by an increase in crack closure in the low R-ratio tests. Also, the increase in crack closure is assumed by some experimentalists to result from using the ASTM load shedding test procedure. The belief is that this procedure induces load history effects which cause remote closure from plasticity and/or roughness changes in the surface morphology. However, experimental studies performed by the authors have shown that the increase in crack closure is a result of extensive crack tip bifurcations that can occur in some materials, particularly in aluminum alloys, when the crack tip cyclic yield zone size becomes less than the grain size of the alloy. This behavior is related to the high stacking fault energy (SFE) property of aluminum alloys which results in easier slip characteristics. Therefore, the fanning behavior which occurs in aluminum alloys is a function of intrinsic dislocation property of the alloy, and therefore, the fanned data does represent the true threshold properties of the material. However, for the corrosion sensitive steel alloys tested in laboratory air, the occurrence of fanning results from fretting corrosion at the crack tips, and these results should not be considered to be representative of valid threshold properties because the fanning is

  6. Inspiratory muscle strength training improves weaning outcome in failure to wean patients: a randomized trial

    PubMed Central

    2011-01-01

    Introduction Most patients are readily liberated from mechanical ventilation (MV) support, however, 10% - 15% of patients experience failure to wean (FTW). FTW patients account for approximately 40% of all MV days and have significantly worse clinical outcomes. MV induced inspiratory muscle weakness has been implicated as a contributor to FTW and recent work has documented inspiratory muscle weakness in humans supported with MV. Methods We conducted a single center, single-blind, randomized controlled trial to test whether inspiratory muscle strength training (IMST) would improve weaning outcome in FTW patients. Of 129 patients evaluated for participation, 69 were enrolled and studied. 35 subjects were randomly assigned to the IMST condition and 34 to the SHAM treatment. IMST was performed with a threshold inspiratory device, set at the highest pressure tolerated and progressed daily. SHAM training provided a constant, low inspiratory pressure load. Subjects completed 4 sets of 6-10 training breaths, 5 days per week. Subjects also performed progressively longer breathing trials daily per protocol. The weaning criterion was 72 consecutive hours without MV support. Subjects were blinded to group assignment, and were treated until weaned or 28 days. Results Groups were comparable on demographic and clinical variables at baseline. The IMST and SHAM groups respectively received 41.9 ± 25.5 vs. 47.3 ± 33.0 days of MV support prior to starting intervention, P = 0.36. The IMST and SHAM groups participated in 9.7 ± 4.0 and 11.0 ± 4.8 training sessions, respectively, P = 0.09. The SHAM group's pre to post-training maximal inspiratory pressure (MIP) change was not significant (-43.5 ± 17.8 vs. -45.1 ± 19.5 cm H2O, P = 0.39), while the IMST group's MIP increased (-44.4 ± 18.4 vs. -54.1 ± 17.8 cm H2O, P < 0.0001). There were no adverse events observed during IMST or SHAM treatments. Twenty-five of 35 IMST subjects weaned (71%, 95% confidence interval (CI) = 55% to 84

  7. Effect of specific inspiratory muscle warm-up on intense intermittent run to exhaustion.

    PubMed

    Tong, Tom K; Fu, Frank H

    2006-08-01

    The effects of inspiratory muscle (IM) warm-up on the maximum dynamic IM function and the maximum repetitions of 20-m shuttle run (Ex) in the Yo-Yo intermittent recovery test were examined. Ten men were recruited to perform identical IM function test and exercise test in three different trials randomly. The control trial was without IM warm-up while the placebo and experimental trials were with IM warm-up by performing two sets of 30 breaths with inspiratory pressure-threshold load equivalent to 15% (IMW(P)) and 40% (IMW) maximum inspiratory mouth pressure, respectively. In IMW, maximum dynamic IM functions including the maximal inspiratory pressure at zero flow (P0) and maximal rate of P0 development (MRPD) were increased compared with control values (P < 0.05). The Ex was also augmented [mean (SD)] [19.5% (12.6)] while the slope of the linear relationship of the increase in rating of perceived breathlessness for every 4th exercise interval (RPB/4i) was reduced (P < 0.05). In IMW(P), although increase in Ex and reduction in RPB/4i were occurred concomitantly in some subjects, the differences in Ex, RPB/4i and dynamic IM functions between control and IMW(P) trials were not statistically significant. For the changes (Delta) in parameters in IMW and IMW(P) (n = 20), negative correlations were found between Delta RPB/4i and Delta Ex (r = -0.92), DeltaP0 and Delta RPB/4i (r = -0.48), and Delta MRPD and Delta RPB/4i (r = -0.54). Such findings suggested that the specific IM warm-up in IMW may entail reduction in breathlessness sensation, partly attributable to the enhancement of dynamic IM functions, in subsequent exhaustive intermittent run and, in turn, improve the exercise tolerance.

  8. Recruitment and Deoxygenation of Selected Respiratory and Skeletal Muscles During Incremental Loading in Stable COPD Patients.

    PubMed

    Reid, W Darlene; Sheel, A William; Shadgan, Babak; Garland, S Jayne; Road, Jeremy D

    2016-01-01

    To evaluate changes in oxygenated (O2Hb), deoxygenated (HHb), and total hemoglobin (tHb) of the sternocleidomastoid (SCM), parasternal (PS), biceps (BC), and tibialis anterior (TA) using near-infrared spectroscopy during incremental loading of the inspiratory muscles and the elbow flexors in people with stable chronic obstructive pulmonary disease. Fifteen participants with obstructive pulmonary disease were recruited in a repeated-measures crossover design. Near-infrared spectroscopy optodes were applied over the SCM, PS, BC, and TA to measure O2Hb, HHb, and tHb. Participants were randomly assigned to perform incremental inspiratory threshold loading or elbow flexor loading that imposed higher loads every 2 minutes until task failure. At least 1 week later, participants performed the other test. Arterial oxygen saturation (SpO2) was monitored continuously. O2Hb of the main agonist muscles, SCM and BC, decreased compared with the other muscles during inspiratory threshold loading and elbow flexor loading, respectively. SCM O2Hb and BC O2Hb decreased at higher loads compared with baseline. SCM tHb and HHb increased, whereas TA tHb decreased during inspiratory threshold loading. tHb did not change among any muscles during elbow flexor loading. SpO2 did not change from baseline to task failure. Our data suggest that the SCM was recruited progressively during incremental inspiratory threshold loading; however, O2Hb was not maintained in this muscle. Similarly, O2Hb was not maintained in the biceps during elbow flexor loading. This regional deoxygenation in SCM and BC during incremental loading protocols was not reflected by a decrease in SpO2.

  9. Crack Growth Behavior in the Threshold Region for High Cycle Fatigue Loading

    NASA Technical Reports Server (NTRS)

    Forman, Royce G.; Figert, J.; Beek, J.; Ventura, J.; Martinez, J.; Samonski, F.

    2011-01-01

    This presentation describes results obtained from a research project conducted at the NASA Johnson Space Center (JSC) that was jointly supported by the FAA Technical Center and JSC. The JSC effort was part of a multi-task FAA program involving several U.S. laboratories and initiated for the purpose of developing enhanced analysis tools to assess damage tolerance of rotorcraft and aircraft propeller systems. The research results to be covered in this presentation include a new understanding of the behavior of fatigue crack growth in the threshold region. This behavior is important for structural life analysis of aircraft propeller systems and certain rotorcraft structural components (e.g., the mast). These components are often designed to not allow fatigue crack propagation to exceed an experimentally determined fatigue crack growth threshold value. During the FAA review meetings for the program, disagreements occurred between the researchers regarding the observed fanning (spread between the da/dN curves of constant R) in the threshold region at low stress ratios, R. Some participants believed that the fanning was a result of the ASTM load shedding test method for threshold testing, and thus did not represent the true characteristics of the material. If the fanning portion of the threshold value is deleted or not included in a life analysis, a significant penalty in the calculated life and design of the component would occur. The crack growth threshold behavior was previously studied and reported by several research investigators in the time period: 1970-1980. Those investigators used electron microscopes to view the crack morphology of the fatigue fracture surfaces. Their results showed that just before reaching threshold, the crack morphology often changed from a striated to a faceted or cleavage-like morphology. This change was reported to have been caused by particular dislocation properties of the material. Based on the results of these early investigations, a

  10. The effect of inspiratory muscle fatigue on breathing pattern and ventilatory response to CO2.

    PubMed Central

    Mador, M J; Tobin, M J

    1992-01-01

    1. The effects of inducing inspiratory muscle fatigue on the subsequent breathing pattern were examined during resting unstimulated breathing and during CO2 rebreathing. In addition, we examined whether induction of inspiratory muscle fatigue alters CO2 responsiveness. 2. Global inspiratory muscle fatigue and diaphragmatic fatigue were achieved by having subjects breathe against an inspiratory resistive load while generating a predetermined fraction of either their maximal mouth pressure or maximal transdiaphragmatic pressure until they were unable to generate the target pressure. 3. Induction of inspiratory muscle fatigue had no effect on the subsequent breathing pattern during either unstimulated breathing or during CO2 rebreathing. 4. Following induction of inspiratory muscle fatigue, the slope of the ventilatory response to CO2 was significantly decreased from 18.8 +/- 3.3 during control to 13.8 +/- 2.1 l min-1 (% end-tidal CO2 concentration)-1 with fatigue (P < 0.02). PMID:1484352

  11. Crack Growth Behavior in the Threshold Region for High Cycle Fatigue Loading

    NASA Technical Reports Server (NTRS)

    Forman, Royce G.; Zanganehgheshlaghi, Mohannad

    2014-01-01

    The research results described in this paper presents a new understanding of the behavior of fatigue crack growth in the threshold region. It is believed by some crack growth experts that the ASTM load shedding test method does not produce true or valid threshold properties. The concern involves the observed fanning of threshold region da/dN data plots for some materials in which the low R-ratio data fans out or away from the high R-ratio data. This data fanning or elevation of threshold values is obviously caused by an increase in crack closure in the low R-ratio tested specimens. This increase in crack closure is assumed by some investigators to be caused by a plastic wake on the crack surfaces that was created during the load shedding test phase. This study shows that the increase in crack closure is the result of an extensive occurrence of crack bifurcation behavior in some materials, particularly in aluminum alloys, when the crack tip cyclic yield zone size becomes less than the grain size of the alloy. This behavior is related to the high stacking fault energy (SFE) property of aluminum alloys which results in easier slip characteristics. Therefore, the particular fanning behavior in aluminum alloys is a function of intrinsic dislocation property of the materials and that the fanned data represents valid material properties. However, for corrosion sensitive steel alloys used in this study the fanning was caused by a build-up of iron oxide at the crack tip from fretting corrosion.

  12. Simulated mussel mortality thresholds as a function of mussel biomass and nutrient loading

    USGS Publications Warehouse

    Bril, Jeremy S.; Langenfeld, Kathryn; Just, Craig L.; Spak, Scott N.; Newton, Teresa

    2017-01-01

    A freshwater “mussel mortality threshold” was explored as a function of porewater ammonium (NH4+) concentration, mussel biomass, and total nitrogen (N) utilizing a numerical model calibrated with data from mesocosms with and without mussels. A mortality threshold of 2 mg-N L−1 porewater NH4+ was selected based on a study that estimated 100% mortality of juvenile Lampsilis mussels exposed to 1.9 mg-N L−1NH4+ in equilibrium with 0.18 mg-N L−1 NH3. At the highest simulated mussel biomass (560 g m−2) and the lowest simulated influent water “food” concentration (0.1 mg-N L−1), the porewater NH4+ concentration after a 2,160 h timespan without mussels was 0.5 mg-N L−1 compared to 2.25 mg-N L−1 with mussels. Continuing these simulations while varying mussel biomass and N content yielded a mortality threshold contour that was essentially linear which contradicted the non-linear and non-monotonic relationship suggested by Strayer (2014). Our model suggests that mussels spatially focus nutrients from the overlying water to the sediments as evidenced by elevated porewater NH4+ in mesocosms with mussels. However, our previous work and the model utilized here show elevated concentrations of nitrite and nitrate in overlying waters as an indirect consequence of mussel activity. Even when the simulated overlying water food availability was quite low, the mortality threshold was reached at a mussel biomass of about 480 g m−2. At a food concentration of 10 mg-N L−1, the mortality threshold was reached at a biomass of about 250 g m−2. Our model suggests the mortality threshold for juvenile Lampsilis species could be exceeded at low mussel biomass if exposed for even a short time to the highly elevated total N loadings endemic to the agricultural Midwest.

  13. Simulated mussel mortality thresholds as a function of mussel biomass and nutrient loading

    PubMed Central

    Bril, Jeremy S.; Langenfeld, Kathryn; Spak, Scott N.; Newton, Teresa J.

    2017-01-01

    A freshwater “mussel mortality threshold” was explored as a function of porewater ammonium (NH4+) concentration, mussel biomass, and total nitrogen (N) utilizing a numerical model calibrated with data from mesocosms with and without mussels. A mortality threshold of 2 mg-N L−1 porewater NH4+ was selected based on a study that estimated 100% mortality of juvenile Lampsilis mussels exposed to 1.9 mg-N L−1 NH4+ in equilibrium with 0.18 mg-N L−1 NH3. At the highest simulated mussel biomass (560 g m−2) and the lowest simulated influent water “food” concentration (0.1 mg-N L−1), the porewater NH4+ concentration after a 2,160 h timespan without mussels was 0.5 mg-N L−1 compared to 2.25 mg-N L−1 with mussels. Continuing these simulations while varying mussel biomass and N content yielded a mortality threshold contour that was essentially linear which contradicted the non-linear and non-monotonic relationship suggested by Strayer (2014). Our model suggests that mussels spatially focus nutrients from the overlying water to the sediments as evidenced by elevated porewater NH4+ in mesocosms with mussels. However, our previous work and the model utilized here show elevated concentrations of nitrite and nitrate in overlying waters as an indirect consequence of mussel activity. Even when the simulated overlying water food availability was quite low, the mortality threshold was reached at a mussel biomass of about 480 g m−2. At a food concentration of 10 mg-N L−1, the mortality threshold was reached at a biomass of about 250 g m−2. Our model suggests the mortality threshold for juvenile Lampsilis species could be exceeded at low mussel biomass if exposed for even a short time to the highly elevated total N loadings endemic to the agricultural Midwest. PMID:28070462

  14. Load redistribution rules for progressive failure in shallow landslides: Threshold mechanical models

    NASA Astrophysics Data System (ADS)

    Fan, Linfeng; Lehmann, Peter; Or, Dani

    2017-01-01

    Rainfall-induced landslides are often preceded by progressive failures that culminate in abrupt mass release. Local failure progression is captured by a landslide hydro-mechanical triggering model that represents the soil mantle as interacting columns linked by tensile and compressive mechanical "bonds." Mechanical bonds may fail at a prescribed threshold leaving a modeling challenge of how to redistribute their load to neighboring intact soil columns. We employed an elastic spring-block model to analytically derive redistribution rules defined by the stiffness ratio of compressive to tensile bonds. These linear-elastic rules were generalized to real soil using measurable Young's modulus and Poisson's ratio. Results indicate that "local" failure characteristics of ductile-like soils (e.g., clay) are reproduced by low stiffness ratios, whereas "global" failure of brittle sandy soils corresponds to large stiffness ratios. Systematic analyses yield guidelines for selecting load redistribution rules for failure of geological materials and mass-movement phenomena represented by discrete threshold-mechanics.

  15. Inspiratory muscle conditioning exercise and diaphragm gene therapy in Pompe disease: Clinical evidence of respiratory plasticity.

    PubMed

    Smith, Barbara K; Martin, A Daniel; Lawson, Lee Ann; Vernot, Valerie; Marcus, Jordan; Islam, Saleem; Shafi, Nadeem; Corti, Manuela; Collins, Shelley W; Byrne, Barry J

    2017-01-01

    Pompe disease is an inherited disorder due to a mutation in the gene that encodes acid α-glucosidase (GAA). Children with infantile-onset Pompe disease develop progressive hypotonic weakness and cardiopulmonary insufficiency that may eventually require mechanical ventilation (MV). Our team conducted a first in human trial of diaphragmatic gene therapy (AAV1-CMV-GAA) to treat respiratory neural dysfunction in infantile-onset Pompe. Subjects (aged 2-15years, full-time MV: n=5, partial/no MV: n=4) underwent a period of preoperative inspiratory muscle conditioning exercise. The change in respiratory function after exercise alone was compared to the change in function after intramuscular delivery of AAV1-CMV-GAA to the diaphragm with continued exercise. Since AAV-mediated gene therapy can reach phrenic motoneurons via retrograde transduction, we hypothesized that AAV1-CMV-GAA would improve dynamic respiratory motor function to a greater degree than exercise alone. Dependent measures were maximal inspiratory pressure (MIP), respiratory responses to inspiratory threshold loads (load compensation: LC), and physical evidence of diaphragm activity (descent on MRI, EMG activity). Exercise alone did not change function. After AAV1-CMV-GAA, MIP was unchanged. Flow and volume LC responses increased after dosing (p<0.05 to p<0.005), but only in the subjects with partial/no MV use. Changes in LC tended to occur on or after 180days. At Day 180, the four subjects with MRI evidence of diaphragm descent had greater maximal voluntary ventilation (p<0.05) and tended to be younger, stronger, and use fewer hours of daily MV. In conclusion, combined AAV1-CMV-GAA and exercise training conferred benefits to dynamic motor function of the diaphragm. Children with a higher baseline neuromuscular function may have greater potential for functional gains. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Effect of transient occlusal loading on the threshold of tooth tactile sensation perception for tapping like the impulsive stimulation.

    PubMed

    Morimoto, Yuta; Oki, Kazuhiro; Iida, Sachiyo; Shirahige, Chieko; Maeda, Naoto; Kawakami, Shigehisa; Matsunaga, Tadashi; Minagi, Shogo

    2013-07-01

    The objectives of this study were (1) to establish a reliable method for detecting the force threshold of the tooth tactile sensation while avoiding experimenter bias and (2) to examine the effect of occlusal force loading on the threshold for impulsive force stimulation in subjects with normal dentition. Twenty volunteers participated in this study (10 males and 10 females; mean age, 26.6 ± 2.9 years). To simulate the bite force during occlusal tapping, a force-loading device was designed to exert impulsive force to the occlusal surface in the direction parallel to the tooth axis. The impulsive force detection threshold of the periodontal sensation was measured before and after loading 98 N of occlusal force on the left upper first molar for 1 min. Transient mechanical loading of the upper first molar caused an increase in the absolute threshold for impulsive force. This increase did not vanish immediately, and the increment of the threshold was maintained during the remainder of the experiment. A computer-controlled method for the evaluation of tooth tactile sensation using impulsive stimulation was established. Transient occlusal force loading parallel to the tooth axis increases the threshold of periodontal sensation for mechanical impulsive stimulation.

  17. A Universal Threshold for the Assessment of Load and Output Residuals of Strain-Gage Balance Data

    NASA Technical Reports Server (NTRS)

    Ulbrich, N.; Volden, T.

    2017-01-01

    A new universal residual threshold for the detection of load and gage output residual outliers of wind tunnel strain{gage balance data was developed. The threshold works with both the Iterative and Non{Iterative Methods that are used in the aerospace testing community to analyze and process balance data. It also supports all known load and gage output formats that are traditionally used to describe balance data. The threshold's definition is based on an empirical electrical constant. First, the constant is used to construct a threshold for the assessment of gage output residuals. Then, the related threshold for the assessment of load residuals is obtained by multiplying the empirical electrical constant with the sum of the absolute values of all first partial derivatives of a given load component. The empirical constant equals 2.5 microV/V for the assessment of balance calibration or check load data residuals. A value of 0.5 microV/V is recommended for the evaluation of repeat point residuals because, by design, the calculation of these residuals removes errors that are associated with the regression analysis of the data itself. Data from a calibration of a six-component force balance is used to illustrate the application of the new threshold definitions to real{world balance calibration data.

  18. Inspiratory flow pattern in humans.

    PubMed

    Lafortuna, C L; Minetti, A E; Mognoni, P

    1984-10-01

    The theoretical estimation of the mechanical work of breathing during inspiration at rest is based on the common assumption that the inspiratory airflow wave is a sine function of time. Different analytical studies have pointed out that from an energetic point of view a rectangular wave is more economical than a sine wave. Visual inspection of inspiratory flow waves recorded during exercise in humans and various animals suggests that a trend toward a rectangular flow wave may be a possible systematic response of the respiratory system. To test this hypothesis, the harmonic content of inspiratory flow waves that were recorded in six healthy subjects at rest, during exercise hyperventilation, and during a maximum voluntary ventilation (MVV) maneuver were evaluated by a Fourier analysis, and the results were compared with those obtained on sinusoidal and rectangular models. The dynamic work inherent in the experimental waves and in the sine-wave model was practically the same at rest; during exercise hyperventilation and MVV, the experimental wave was approximately 16-20% more economical than the sinusoidal one. It was concluded that even though at rest the sinusoidal model is a reasonably good approximation of inspiratory flow, during exercise and MVV, a physiological controller is probably operating in humans that can select a more economical inspiratory pattern. Other peculiarities of airflow wave during hyperventilation and some optimization criteria are also discussed.

  19. Inspiratory Resistance Maintains Arterial Pressure During Central Hypovolemia: Implications For Treatment Of Combat Casualties With Severe Hemorrhage

    DTIC Science & Technology

    2006-11-01

    INSPIRATORY RESISTANCE MAINTAINS ARTERIAL PRESSURE DURING CENTRAL HYPOVOLEMIA: IMPLICATIONS FOR TREATMENT OF COMBAT CASUALTIES WITH SEVERE...threshold device” (ITD) has recently been developed that acutely increases central blood volume by forcing the thoracic muscles to develop increased...supports further consideration of using inspiratory resistance as a countermeasure against circulatory collapse associated with orthostatic instability

  20. Learning to breathe? Feedforward regulation of the inspiratory motor drive.

    PubMed

    Zaman, Jonas; Van den Bergh, Omer; Fannes, Stien; Van Diest, Ilse

    2014-09-15

    Claims have been made that breathing is in part controlled by feedforward regulation. In a classical conditioning paradigm, we investigated anticipatory increases in the inspiratory motor drive as measured by inspiratory occlusion pressure (P100). In an acquisition phase, an experimental group (N=13) received a low-intensity resistive load (5 cmH2O/l/s) for three consecutive inspirations as Conditioned Stimulus (CS), preceding a load of a stronger intensity (20 cmH2O/l/s) for three subsequent inspirations as unconditioned stimulus (US). The control group (N=11) received the low-intensity load for six consecutive inspirations. In a post-acquisition phase both groups received the low-intensity load for six consecutive inspirations. Responses to the CS-load only differed between groups during the first acquisition trials and a strong increase in P100 during the US-loads was observed, which habituated across the experiment. Our results suggest that the disruption caused by adding low to moderate resistive loads to three consecutive inspirations results in a short-lasting anticipatory increase in inspiratory motor drive. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Inspiratory muscle warm-up does not improve cycling time-trial performance.

    PubMed

    Johnson, M A; Gregson, I R; Mills, D E; Gonzalez, J T; Sharpe, G R

    2014-09-01

    This study examined the effects of an active cycling warm-up, with and without the addition of an inspiratory muscle warm-up (IMW), on 10-km cycling time-trial performance. Ten cyclists (VO₂ = 65 ± 9 mL kg(-1) min(-1)) performed a habituation 10-km cycling time-trial and three further time-trials preceded by either no warm-up (CONT), a cycling-specific warm-up (CYC) comprising three consecutive 5-min bouts at powers corresponding to 70, 80, and 90% of the gas exchange threshold, or a cycling-specific warm-up preceded by an IMW (CYC + IMW) comprising two sets of 30 inspiratory efforts against a pressure-threshold load of 40% maximal inspiratory pressure (MIP). The cycling warm-up was followed by 2-min rest before the start of the time-trial. Time-trial performance times during CYC (14.75 ± 0.79 min) and CYC + IMW (14.70 ± 0.75 min) were not different, although both were faster than CONT (14.99 ± 0.90 min) (P < 0.05). Throughout the time-trial, physiological (minute ventilation, breathing pattern, pulmonary gas exchange, heart rate, blood lactate concentration and pH) and perceptual (limb discomfort and dyspnoea) responses were not different between CYC and CYC + IMW. Baseline MIP during CONT and CYC was 151 ± 31 and 156 ± 39 cmH₂O, respectively, and was unchanged following the time-trial. MIP increased by 8% after IMW (152 ± 27 vs. 164 ± 27 cmH2O, P < 0.05) and returned to baseline after the time-trial. Improvements in 10-km cycling time-trial performance following an active cycling warm-up were not magnified by the addition of an IMW. Therefore, an appropriately designed active whole-body warm-up does adequately prepare the inspiratory muscles for cycling time-trials lasting approximately 15 min.

  2. End-inspiratory airway occlusion: a method to assess the pressure developed by inspiratory muscles in patients with acute lung injury undergoing pressure support.

    PubMed

    Foti, G; Cereda, M; Banfi, G; Pelosi, P; Fumagalli, R; Pesenti, A

    1997-10-01

    We evaluated the end-inspiratory occlusion maneuver as a means to estimate the inspiratory effort during pressure support ventilation (PS). In nine nonobstructed acute lung injury (ALI) patients, we applied four levels of PS (0, 5, 10, 15 cm H2O) to modify the inspiratory effort. End inspiratory occlusions (2 to 3 s) were performed at the end of each experimental period by pushing the inspiratory hold button of the ventilator (Servo 900 C; Siemens, Berlin, Germany). We took the difference between the end-inspiratory occlusion plateau pressure and the airway pressure before the occlusion (PEEP + PS) as an estimate of the inspiratory effort and called it PMI (Pmusc,index). From the esophageal pressure tracing we obtained a reference measurement of the pressure developed by the inspiratory muscles at end inspiration (Pmusc,ei) and of the pressure-time product per breath (PTP/b) and per minute (PTP/min). In each patient, PMI was correlated with Pmusc,ei (p < 0.01) and PTP/b (p < 0.01). A PMI threshold of 6 cm H2O detected PTP/min < 125 cm H2O s/min with a sensitivity of 0.89 and a specificity of 0.89. We conclude that PMI is a good estimate of the pressure developed by the inspiratory muscles in ALI patients and may be used to titrate PS level. The major advantage of PMI is that it can be obtained from the ventilator display without any additional equipment.

  3. Effect of CPAP on intrinsic PEEP, inspiratory effort, and lung volume in severe stable COPD

    PubMed Central

    O'Donoghue, F; Catcheside, P; Jordan, A; Bersten, A; McEvoy, R

    2002-01-01

    Background: Intrinsic positive end expiratory pressure (PEEPi) constitutes an inspiratory threshold load on the respiratory muscles, increasing work of breathing. The role of continuous positive airway pressure (CPAP) in alleviating PEEPi in patients with severe stable chronic obstructive pulmonary disease is uncertain. This study examined the effect of CPAP on the inspiratory threshold load, muscle effort, and lung volume in this patient group. Methods: Nine patients were studied at baseline and with CPAP increasing in increments of 1 cm H2O to a maximum of 10 cm H2O. Breathing pattern and minute ventilation (I), dynamic PEEPi, expiratory muscle activity, diaphragmatic (PTPdi/min) and oesophageal (PTPoes/min) pressure-time product per minute, integrated diaphragmatic (EMGdi) and intercostal EMG (EMGic) and end expiratory lung volume (EELV) were measured. Results: Expiratory muscle activity was present at baseline in one subject. In the remaining eight, PEEPi was reduced from a mean (SE) of 2.9 (0.6) cm H2O to 0.9 (0.1) cm H2O (p<0.05). In two subjects expiratory muscle activity contributed to PEEPi at higher pressures. There were no changes in respiratory pattern but I increased from 9.2 (0.6) l/min to 10.7 (1.1) l/min (p<0.05). EMGdi remained stable while EMGic increased significantly. PTPoes/min decreased, although this did not reach statistical significance. PTPdi/min decreased significantly from 242.1 (32.1) cm H2O.s/min to 112.9 (21.7) cm H2O.s/min). EELV increased by 1.1 (0.3) l (p<0.01). Conclusion: High levels of CPAP reduce PEEPi and indices of muscle effort in patients with severe stable COPD, but only at the expense of substantial increases in lung volume. PMID:12037230

  4. A New Load Residual Threshold Definition for the Evaluation of Wind Tunnel Strain-Gage Balance Data

    NASA Technical Reports Server (NTRS)

    Ulbrich, N.; Volden, T.

    2016-01-01

    A new definition of a threshold for the detection of load residual outliers of wind tunnel strain-gage balance data was developed. The new threshold is defined as the product between the inverse of the absolute value of the primary gage sensitivity and an empirical limit of the electrical outputs of a strain{gage. The empirical limit of the outputs is either 2.5 microV/V for balance calibration or check load residuals. A reduced limit of 0.5 microV/V is recommended for the evaluation of differences between repeat load points because, by design, the calculation of these differences removes errors in the residuals that are associated with the regression analysis of the data itself. The definition of the new threshold and different methods for the determination of the primary gage sensitivity are discussed. In addition, calibration data of a six-component force balance and a five-component semi-span balance are used to illustrate the application of the proposed new threshold definition to different types of strain{gage balances. During the discussion of the force balance example it is also explained how the estimated maximum expected output of a balance gage can be used to better understand results of the application of the new threshold definition.

  5. High-Intensity Inspiratory Protocol Increases Heart Rate Variability in Myocardial Revascularization Patients

    PubMed Central

    Caruso, Flavia Cristina Rossi; Simões, Rodrigo Polaquini; Reis, Michel Silva; Guizilini, Solange; Alves, Vera Lucia dos Santos; Papa, Valeria; Arena, Ross; Borghi-Silva, Audrey

    2016-01-01

    Objective: To evaluate heart rate variability during an inspiratory muscle endurance protocol at three different load levels [30%, 60% and 80% of maximal inspiratory pressure], in patients who had previously undergone coronary artery bypass grafting. Methods: Nineteen late postoperative myocardial revascularization patients participating in a cardiovascular rehabilitation program were studied. Maximal inspiratory pressure maneuvers were performed. An inspiratory muscle endurance protocol at 30%, 60% and 80% of maximal inspiratory pressure was applied for four minutes each, in random order. Heart rate and RR intervals were recorded and heart rate variability was analyzed by time (RMSSD-the mean of the standard deviations for all R-R intervals, and RMSM-root-mean square differences of successive R-R intervals) and frequency domains indices (high and low frequency) in normalized units. ANOVA for repeated measurements was used to compare heart rate variability indices and Student t-test was used to compare the maximal inspiratory pressure and maximal expiratory pressure values. Results: Heart rate increased during performance of maximal respiratory pressures maneuvers, and the maximal inspiratory pressure and maximal expiratory pressure mean values were significantly lower than predicted values (P<0.05). RMSSD increased significantly at 80% in relation to rest and 30% of maximal inspiratory pressure and RMSM decreased at 30% and 60% of maximal inspiratory pressure in relation to rest (P<0.05). Additionally, there was significant and progressive decrease in low frequency and increase in high frequency at 30%, 60% and 80% of maximal inspiratory pressure in relation to the resting condition. Conclusion: These results suggest that respiratory muscle training at high intensities can promote greater parasympathetic activity and it may confer important benefits during a rehabilitation program in post-coronary artery bypass grafting. PMID:27074273

  6. A threshold of mechanical strain intensity for the direct activation of osteoblast function exists in a murine maxilla loading model.

    PubMed

    Suzuki, Natsuki; Aoki, Kazuhiro; Marcián, Petr; Borák, Libor; Wakabayashi, Noriyuki

    2016-10-01

    The response to the mechanical loading of bone tissue has been extensively investigated; however, precisely how much strain intensity is necessary to promote bone formation remains unclear. Combination studies utilizing histomorphometric and numerical analyses were performed using the established murine maxilla loading model to clarify the threshold of mechanical strain needed to accelerate bone formation activity. For 7 days, 191 kPa loading stimulation for 30 min/day was applied to C57BL/6J mice. Two regions of interest, the AWAY region (away from the loading site) and the NEAR region (near the loading site), were determined. The inflammatory score increased in the NEAR region, but not in the AWAY region. A strain intensity map obtained from [Formula: see text] images was superimposed onto the images of the bone formation inhibitor, sclerostin-positive cell localization. The number of sclerostin-positive cells significantly decreased after mechanical loading of more than [Formula: see text] in the AWAY region, but not in the NEAR region. The mineral apposition rate, which shows the bone formation ability of osteoblasts, was accelerated at the site of surface strain intensity, namely around [Formula: see text], but not at the site of lower surface strain intensity, which was around [Formula: see text] in the AWAY region, thus suggesting the existence of a strain intensity threshold for promoting bone formation. Taken together, our data suggest that a threshold of mechanical strain intensity for the direct activation of osteoblast function and the reduction of sclerostin exists in a murine maxilla loading model in the non-inflammatory region.

  7. Factors contributing to thixotropy of inspiratory muscles.

    PubMed

    Izumizaki, Masahiko; Shibata, Masahiko; Homma, Ikuo

    2004-06-25

    Thixotropy is a passive property of the skeletal muscle dependent on the muscle's immediate history of contraction and length change. Thixotropic properties of inspiratory muscles, introduced by forceful muscle contraction at an inflated lung volume, cause an increased end-expiratory position (EEP) of the rib cage. We searched for factors contributing to the development of inspiratory muscle thixotropy in nine healthy subjects. Using induction plethysmography, we examined aftereffects on EEP of the duration of inspiratory muscle contraction and subsequent muscle relaxation. We also studied effects of inspiratory effort intensity measured by mouth pressure at different lung volumes. EEP elevation was noted subsequent to 5-s contraction followed by 2-s relaxation and was enhanced when conditioned at higher lung volumes with a strong inspiratory effort. Our results suggest four factors that influence inspiratory muscle thixotropy: (1) intensity of muscle contraction, (2) lung volume when contraction occurs, (3) duration of contraction, and (4) muscle relaxation.

  8. Increases in inspiratory neural drive in response to rapid oscillating airflow braking forces (vibration).

    PubMed

    Sumners, David Paul; Green, David A; Mileva, Katya N; Bowtell, Joanna L

    2008-02-29

    To investigate whether 10 breaths against a vibration stimulus elicits increments of spontaneous and maximal inspiratory mouth pressure (maxMP) and tidal mean inspiratory flow (iV(T)/T(I)) upon stimulus removal. Twelve healthy subjects (8 female, 4 male; 22-50 years old), recruited from the University student body, completed 3 maximal inspirations before (pre) and after (post) 10 inspirations against resistive loading with a vibration-type stimulus (VIB; youbreathe, Exoscience Ltd., London, UK), pressure-matched resistive loading (RES) or resting breathing (CON; no load). The trials were presented in a random order. maxMP and involuntary tidal breathing were compared pre and post conditioning. Inspiratory neural drive increased only after VIB as evidenced by increased tidal and maxMP and mean inspiratory flow (iV(T)/T(I); p < 0.05). There was no effect of either resistance or control breathing on maximal maxMP or tidal responses. Ten conditioning breaths of VIB lead to increased maximal inspiratory mouth pressure and spontaneous mouth pressure and mean inspiratory flow possibly through a common mechanism of increased descending respiratory drive.

  9. Fatigue crack growth threshold as a design criterion - statistical scatter and load ratio in the Kitagawa-Takahashi diagram

    NASA Astrophysics Data System (ADS)

    Kolitsch, S.; Gänser, H.-P.; Maierhofer, J.; Pippan, R.

    2016-03-01

    Cracks in components reduce the endurable stress so that the endurance limit obtained from common smooth fatigue specimens cannot be used anymore as a design criterion. In such cases, the Kitagawa-Takahashi diagram can be used to predict the admissible stress range for infinite life, at a given crack length and stress range. This diagram is constructed for a single load ratio R. However, in typical mechanical engineering applications, the load ratio R varies widely due to the applied load spectra and residual stresses. In the present work an extended Kitagawa-Takahashi diagram accounting for crack length, crack extension and load ratio is constructed. To describe the threshold behaviour of short cracks, a master resistance curve valid for a wide range of steels is developed using a statistical approach.

  10. The Role of Flipped Learning in Managing the Cognitive Load of a Threshold Concept in Physiology

    ERIC Educational Resources Information Center

    Akkaraju, Shylaja

    2016-01-01

    To help students master challenging, threshold concepts in physiology, I used the flipped learning model in a human anatomy and physiology course with very encouraging results in terms of student motivation, preparedness, engagement, and performance. The flipped learning model was enhanced by pre-training and formative assessments that provided…

  11. Determination of dual parameter auto-sampling trigger thresholds for pollutant load monitoring in various land uses.

    PubMed

    Nnadi, Fidelia; Gurr, Eric

    2015-05-01

    Environmental pollutants are health hazards and are typically transported during runoff events. Monitoring the loadings of these pollutants with auto-samplers require precise trigger thresholds to effectively account for total maximum daily loads (TMDLs) entering natural water bodies. Traditionally, auto-samplers are triggered by delaying the start of sampling until pollutant wave is present during rainfall event. The rainfall-related triggers are typically limited to small watersheds, where lag and travel times are consistent and predictable. However, in large and more complex watersheds, flow or stage is typically used either by a set threshold on change in instantaneous flow rate or water level. Generally, trigger thresholds are difficult to establish due to seasonal fluctuations in stream flow and variations in rainfall. This study investigated dual parameter trigger based on instantaneous change and variance from a moving average for flow and stage. Nineteen auto-samplers, installed within six watersheds of varying land uses in City of Kissimmee, FL, were evaluated over 3-year period. The results suggested that using 20- to 30-min moving average of 5-min sampling interval for both parameters was sufficient to detect pollutant waves with minimal false triggers. Also, change from average flow rate (∆Qave) and a percent change from average stage (∆Have%) were found to the preferred parameters. The ∆Have% values ranging from -0.012 to 0.20% and ∆Qave ranging from 0.014 to 0.850 m(3)/s were found to give effective results for all stations in the study area. It was also observed that these trigger thresholds varied with land use, stream flow condition, and auto-sampler locations within the watershed.

  12. Development of an epiphyte indicator of nutrient enrichment: Threshold values for seagrass epiphyte load

    EPA Science Inventory

    Metrics of epiphyte load on macrophytes were evaluated for use as quantitative biological indicators for nutrient impacts in estuarine waters, based on review and analysis of the literature on epiphytes and macrophytes, primarily seagrasses, but including some brackish and freshw...

  13. Development of an epiphyte indicator of nutrient enrichment: Threshold values for seagrass epiphyte load

    EPA Science Inventory

    Metrics of epiphyte load on macrophytes were evaluated for use as quantitative biological indicators for nutrient impacts in estuarine waters, based on review and analysis of the literature on epiphytes and macrophytes, primarily seagrasses, but including some brackish and freshw...

  14. Continuous positive airway pressure increases inspiratory capacity of COPD patients.

    PubMed

    Soares, Silvia M T P; Oliveira, Rosmari A R A; Franca, Suelene A; Rezende, Silvio M; Dragosavac, Desanka; Kacmarek, Robert M; Carvalho, Carlos R R

    2008-05-01

    Hyperinflation with a decrease in inspiratory capacity (IC) is a common presentation for both unstable and stable COPD patients. As CPAP can reduce inspiratory load, possibly secondary to a reduction in hyperinflation, this study examined whether CPAP would increase IC in stable COPD patients. Twenty-one stable COPD patients (nine emphysema, 12 chronic bronchitis) received a trial of CPAP for 5 min at 4, 7 and 11 cmH(2)O. Fast and slow VC (SVC) were measured before and after each CPAP trial. In patients in whom all three CPAP levels resulted in a decreased IC, an additional trial of CPAP at 2 cmH(2)O was conducted. For each patient, a 'best CPAP' level was defined as the one associated with the greatest IC. This pressure was then applied for an additional 10 min followed by spirometry. Following application of the 'best CPAP', the IC and SVC increased in 15 patients (nine emphysema, six chronic bronchitis). The mean change in IC was 159 mL (95% CI: 80-237 mL) and the mean change in SVC was 240 mL (95% CI: 97-386 mL). Among these patients, those with emphysema demonstrated a mean increase in IC of 216 mL (95% CI: 94-337 mL). Six patients (all with chronic bronchitis) did not demonstrate any improvement in IC. The best individualized CPAP can increase inspiratory capacity in patients with stable COPD, especially in those with emphysema.

  15. Groundwater and stream threshold values for targeted and differentiated output based regulation of nutrient loadings to ecosystems

    NASA Astrophysics Data System (ADS)

    Hinsby, Klaus; Refsgaard, Jens Christian

    2015-04-01

    Currently more than 50 % of the European surface water bodies do not meet the objective of good ecological status primarily due to excessive nutrient loadings (mainly N and P) according to recent assessments, and there is a strong need to reduce nutrient loadings to freshwater as well as marine ecosystems. This has been recognized for decades and measures and regulations in many EU member states have been able to reduce the nutrient loadings to e.g. lakes and coastal waters significantly. However, recent assessments also demonstrate that the nutrient loadings to many aquatic ecosystems are still too high. A well known example is the Baltic Sea where the BONUS program has invested significant funds in understanding and reducing nutrient loadings to the Baltic Sea, which is currently considered one of the most polluted seas, globally, and which as a consequence has the largest dead sea-floor area presently known because of eutrophication and oxygen depletion partly due to high nutrient loadings. Hence, further reduction of nutrient loadings to the Baltic Sea is required to improve the ecological status of the Baltic Sea. The new "Soils2Sea" project ("Reducing nutrient loadings from agricultural soils to the Baltic Sea via groundwater and streams") in the BONUS program for the Baltic Sea, seeks to develop new measures and management techniques that can reduce nutrient loadings to the coastal waters of the Baltic Sea to levels ensuring a future good ecological status of this ecosystem. The Soils2Sea project investigates and assesses nutrient loadings from hillslope/field and sub-catchment scale to the scale of the whole Baltic Sea catchment and focus on development on differentiated regulations and land use that take into account reduction and retention of nitrate in groundwater and surface water systems. We suggest that an important management and governance tool would be to derive groundwater and stream threshold values at both river basin, sub-catchment and perhaps

  16. Specific inspiratory muscle training is safe in selected patients who are ventilator-dependent: a case series.

    PubMed

    Bissett, Bernie; Leditschke, I Anne; Green, Margot

    2012-04-01

    Mechanical ventilation of intensive care patients results in inspiratory muscle weakness. Inspiratory muscle training may be useful, but no studies have specifically described the physiological response to training. Is inspiratory muscle training with a threshold device safe in selected ventilator-dependent patients? Does inspiratory muscle strength increase with high-intensity inspiratory muscle training in ventilator-dependent patients? Prospective cohort study of 10 medically stable ventilator-dependent adult patients. Tertiary adult intensive care unit. Inspiratory muscle training 5-6 days per week with a threshold device attached to the tracheostomy without supplemental oxygen. Physiological response to training (heart rate, mean arterial pressure, oxygen saturation and respiratory rate), adverse events, training pressures. No adverse events were recorded in 195 sessions studied. For each patient's second training session, no significant changes in heart rate (Mean Difference 1.3 bpm, 95% CI -2.7 to 5.3), mean arterial pressure (Mean Difference -0.9 mmHg, 95% CI -6.4 to 4.6), respiratory rate (Mean Difference 1.2 bpm, 95% CI -1.1 to 3.5 bpm) or oxygen saturation (Mean Difference 1.2%, 95% CI -0.6 to 3.0) were detected Training pressures increased significantly (Mean Difference 18.6 cmH(2)O, 95% CI 11.8-25.3). Threshold-based inspiratory muscle training can be delivered safely in selected ventilator-dependent patients without supplemental oxygen. Inspiratory muscle training is associated with increased muscle strength, which may assist ventilatory weaning. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Critical Threshold for Spontaneous Failure: Macro- and Micro- Behavior of Granite Loaded to Failure

    NASA Astrophysics Data System (ADS)

    Katz, O.; Reches, Z.

    2003-12-01

    The ultimate strength, time-dependence creep and associated microstructure of granite samples are examined as an attempt to characterize the critical parameters of brittle rock failure. We loaded triaxially 27 cylinders of the medium grain-size Mount Scott granite (western Oklahoma) under dry, room temperature conditions. Thirteen of the samples were loaded under confining pressure ranging from 0 to 50 MPa, and the group of 14 samples was loaded under confining pressure of 41MPa, for which the ultimate strength is Us = 586+-16 MPa. The 14 samples were loaded up to pre-selected differential stress (NDS) that ranges from 0.54 Us to 1.05 Us, and were then held under constant stroke for periods as long as six hours. The failure could be reasonably well predicted by two macroscopic parameters. One is the maximum differential stress: the eleven samples loaded under NSD <= 0.95 did not fail during the six hours of hold period, whereas the three samples loaded by NDS>0.95 failed spontaneously after a few seconds to an hour of hold time. The high Weibull parameter (m=13-22) of strength distribution of a heterogeneous rock is in agreement with this observation. The second parameter is the ``crack volumetric strain'' (CVS) that increases monotonously for NDS<=0.95, but at NDS>0.95 it reaches a critical value of ~0.001 beyond which it is poorly constrained (with CVS approaching 0.005). We mapped the microfractures in thin-sections prepared from 5 deformed samples that cover the full loading range: 0.00, 0.57, 0.88, 0.96 of the rock strength and failure. The microstructural thin-section maps provided quantitative damage intensity (approaching 0.2) and fractal dimensions of the microfractures length distribution (1.5 for unloaded sample and 2.2-2.4 for loaded samples); these maps however, provide no critical failure indicator. Which of the examined parameters could be used to determine a critical failure state in an active fault-zone? We believe that the "crack volumetric strain

  18. Ammonia threshold for inhibition of anaerobic digestion of thin stillage and the importance of organic loading rate.

    PubMed

    Moestedt, Jan; Müller, Bettina; Westerholm, Maria; Schnürer, Anna

    2016-03-01

    Biogas production from nitrogen-rich feedstock results in release of ammonia (NH3), causing inhibition of the microbial process. The reported threshold ammonia value for stable biogas production varies greatly between studies, probably because of differences in operating conditions. Moreover, it is often difficult to separate the effect of ammonia inhibition from that of organic loading rate (OLR), as these two factors are often interrelated. This study attempted to distinguish the effects of ammonia and OLR by analysis of two laboratory-scale biogas reactors operating with thin stillage and subjected to an increase in free ammonia (from 0.30 to 1.1 g L(-1)) either by addition of an external nitrogen source (urea) or by increasing the OLR (3.2-6.0 g volatile solids L(-1) d(-1)). The results showed that ammonia concentration was detrimental for process performance, with the threshold for stability in both processes identified as being about 1 g NH3-N L(-1), irrespective of OLR. Analysis of the methanogenic community showed limited differences between the two reactors on order level and a clear increase in the abundance of Methanomicrobiales, particularly Methanoculleus sp., in response to increasing ammonia concentration. Further comprehensive molecular analysis revealed that diverse Methanoculleus species dominated in the reactors at a given ammonia level at different OLR. The acetogenic community was clearly affected by both ammonia concentration and OLR, suggesting that the volatile fatty acid load in relation to the higher OLR was important for the dynamics of this community.

  19. Inspiratory muscle training improves 100 and 200 m swimming performance.

    PubMed

    Kilding, Andrew E; Brown, Sarah; McConnell, Alison K

    2010-02-01

    Inspiratory muscle training (IMT) has been shown to improve time trial performance in competitive athletes across a range of sports. Surprisingly, however, the effect of specific IMT on surface swimming performance remains un-investigated. Similarly, it is not known whether any ergogenic influence of IMT upon swimming performance is confined to specific race distances. To determine the influence of IMT upon swimming performance over 3 competitive distances, 16 competitive club-level swimmers were assigned at random to either an experimental (pressure threshold IMT) or sham IMT placebo control group. Participants performed a series of physiological and performance tests, before and following 6 weeks of IMT, including (1) an incremental swim test to the limit of tolerance to determine lactate, heart rate and perceived exertion responses; (2) standard measures of lung function (forced vital capacity, forced expiratory volume in 1 s, peak expiratory flow) and maximal inspiratory pressure (MIP); and (3) 100, 200 and 400 m swim time trials. Training utilised a hand-held pressure threshold device and consisted of 30 repetitions, twice per day. Relative to control, the IMT group showed the following percentage changes in swim times: 100 m, -1.70% (90% confidence limits, +/-1.4%), 200 m, -1.5% (+/-1.0), and 400 m, 0.6% (+/-1.2). Large effects were observed for MIP and rates of perceived exertion. In conclusion, 6 weeks of IMT has a small positive effect on swimming performance in club-level trained swimmers in events shorter than 400 m.

  20. Relationship between upper airway and inspiratory pump muscle force in obstructive sleep apnea.

    PubMed

    Shepherd, Kelly L; Jensen, Cathryn M; Maddison, Kathleen J; Hillman, David R; Eastwood, Peter R

    2006-12-01

    Upper airway (UA) patency during inspiration is determined by the balance between dilating forces generated by UA dilator muscle activity and collapsing forces related to the decreased intraluminal pressure that accompanies flow generated by inspiratory muscle activity. It is possible that the relative strengths of UA dilator and inspiratory pump muscles could be an important determinant of the susceptibility to UA collapse during sleep (ie, obstructive sleep apnea [OSA]). Measurements of tongue protrusion (TP) force and maximum inspiratory pressure (Pimax) were obtained in 94 patients admitted for overnight polysomnography for suspected OSA, quantified by apnea-hypopnea index (AHI). There was a direct linear relationship between TP force and Pimax (r(2) = 0.37, p < 0.001). A high ratio of TP force to Pimax (greater than group 90th percentile, 0.027 kg/cm H(2)O) appeared to protect against OSA, as moderate-to-severe OSA (AHI > 20/h) was not observed in any individual with a ratio above this threshold. AHI was not linearly related to TP force, Pimax, or the ratio of TP force to Pimax. UA muscle strength is linearly related to inspiratory pump muscle strength. The ratio of UA muscle strength (TP force) and inspiratory pump muscle strength (Pimax) was not different between individuals with and without OSA; however, a high wakeful ratio of TP force to Pimax appears to be associated with a reduced propensity to moderate-to-severe OSA.

  1. Threshold for dynamic re-crystallization in shock loaded aluminum alloy

    NASA Astrophysics Data System (ADS)

    Meshcheryakov, Yury; Divakov, A. K.; Zhigacheva, N. I.; Makarevich, I. P.; Barakhtin, B. K.

    2011-06-01

    Shock loading of D16 aluminum alloy within impact velocity range of 30-450 m/s reveals two regimes of dynamic deformation. Three dynamic variables -- particle velocity Up, particle velocity dispersion D2 and velocity deficit at the plateau of compressive pulse ΔU are registered in real time at every shock. At the impact velocities lower 380 m/s, velocity deficit (which quantitatively characterizes an intensity of meso-macro energy exchange) is very small or absent at all. In this region of impact velocities the structure of material remains invariable. At 380 m/s a catastrophical growth of velocity deficit occurs, which corresponds to start of dynamic re-crystallization process as adaptation mechanism to loss of structural stability of dynamically deformed material. The size of grains decreases from 30 μm to 1,5 -2 μm. The catastrophical growth of velocity deficit happens when rate of change of velocity dispersion becomes higher than rate of change of mean particle velocity, i.e. a criterion (D/u \\Ddot/\\udot ) >= 1 is fulfilled.

  2. Influence of drug load on dissolution behavior of tablets containing a poorly water-soluble drug: estimation of the percolation threshold.

    PubMed

    Wenzel, Tim; Stillhart, Cordula; Kleinebudde, Peter; Szepes, Anikó

    2017-08-01

    Drug load plays an important role in the development of solid dosage forms, since it can significantly influence both processability and final product properties. The percolation threshold of the active pharmaceutical ingredient (API) corresponds to a critical concentration, above which an abrupt change in drug product characteristics can occur. The objective of this study was to identify the percolation threshold of a poorly water-soluble drug with regard to the dissolution behavior from immediate release tablets. The influence of the API particle size on the percolation threshold was also studied. Formulations with increasing drug loads were manufactured via roll compaction using constant process parameters and subsequent tableting. Drug dissolution was investigated in biorelevant medium. The percolation threshold was estimated via a model dependent and a model independent method based on the dissolution data. The intragranular concentration of mefenamic acid had a significant effect on granules and tablet characteristics, such as particle size distribution, compactibility and tablet disintegration. Increasing the intragranular drug concentration of the tablets resulted in lower dissolution rates. A percolation threshold of approximately 20% v/v could be determined for both particle sizes of the API above which an abrupt decrease of the dissolution rate occurred. However, the increasing drug load had a more pronounced effect on dissolution rate of tablets containing the micronized API, which can be attributed to the high agglomeration tendency of micronized substances during manufacturing steps, such as roll compaction and tableting. Both methods that were applied for the estimation of percolation threshold provided comparable values.

  3. "Functional" Inspiratory and Core Muscle Training Enhances Running Performance and Economy.

    PubMed

    Tong, Tomas K; McConnell, Alison K; Lin, Hua; Nie, Jinlei; Zhang, Haifeng; Wang, Jiayuan

    2016-10-01

    Tong, TK, McConnell, AK, Lin, H, Nie, J, Zhang, H, and Wang, J. "Functional" inspiratory and core muscle training enhances running performance and economy. J Strength Cond Res 30(10): 2942-2951, 2016-We compared the effects of two 6-week high-intensity interval training interventions. Under the control condition (CON), only interval training was undertaken, whereas under the intervention condition (ICT), interval training sessions were followed immediately by core training, which was combined with simultaneous inspiratory muscle training (IMT)-"functional" IMT. Sixteen recreational runners were allocated to either ICT or CON groups. Before the intervention phase, both groups undertook a 4-week program of "foundation" IMT to control for the known ergogenic effect of IMT (30 inspiratory efforts at 50% maximal static inspiratory pressure [P0] per set, 2 sets per day, 6 days per week). The subsequent 6-week interval running training phase consisted of 3-4 sessions per week. In addition, the ICT group undertook 4 inspiratory-loaded core exercises (10 repetitions per set, 2 sets per day, inspiratory load set at 50% post-IMT P0) immediately after each interval training session. The CON group received neither core training nor functional IMT. After the intervention phase, global inspiratory and core muscle functions increased in both groups (p ≤ 0.05), as evidenced by P0 and a sport-specific endurance plank test (SEPT) performance, respectively. Compared with CON, the ICT group showed larger improvements in SEPT, running economy at the speed of the onset of blood lactate accumulation, and 1-hour running performance (3.04% vs. 1.57%, p ≤ 0.05). The changes in these variables were interindividually correlated (r ≥ 0.57, n = 16, p ≤ 0.05). Such findings suggest that the addition of inspiratory-loaded core conditioning into a high-intensity interval training program augments the influence of the interval program on endurance running performance and that this may be

  4. Reprint of "Learning to breathe? Feedforward regulation of the inspiratory motor drive".

    PubMed

    Zaman, Jonas; Van den Bergh, Omer; Fannes, Stien; Van Diest, Ilse

    2014-12-01

    Claims have been made that breathing is in part controlled by feedforward regulation. In a classical conditioning paradigm, we investigated anticipatory increases in the inspiratory motor drive as measured by inspiratory occlusion pressure (P100). In an acquisition phase, an experimental group (N = 13) received a low-intensity resistive load (5 cmH2O/l/s) for three consecutive inspirations as Conditioned Stimulus (CS), preceding a load of a stronger intensity (20 cmH2O/l/s) for three subsequent inspirations as unconditioned stimulus (US). The control group (N = 11) received the low-intensity load for six consecutive inspirations. In a post-acquisition phase both groups received the low-intensity load for six consecutive inspirations. Responses to the CS-load only differed between groups during the first acquisition trials and a strong increase in P100 during the US-loads was observed, which habituated across the experiment. Our results suggest that the disruption caused by adding low to moderate resistive loads to three consecutive inspirations results in a short-lasting anticipatory increase in inspiratory motor drive. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Inspiratory muscle training lowers the oxygen cost of voluntary hyperpnea.

    PubMed

    Turner, Louise A; Tecklenburg-Lund, Sandra L; Chapman, Robert F; Stager, Joel M; Wilhite, Daniel P; Mickleborough, Timothy D

    2012-01-01

    The purpose of this study was to determine if inspiratory muscle training (IMT) alters the oxygen cost of breathing (Vo(2RM)) during voluntary hyperpnea. Sixteen male cyclists completed 6 wk of IMT using an inspiratory load of 50% (IMT) or 15% placebo (CON) of maximal inspiratory pressure (Pi(max)). Prior to training, a maximal incremental cycle ergometer test was performed to determine Vo(2) and ventilation (V(E)) at multiple workloads. Pre- and post-training, subjects performed three separate 4-min bouts of voluntary eucapnic hyperpnea (mimic), matching V(E) that occurred at 50, 75, and 100% of Vo(2 max). Pi(max) was significantly increased (P < 0.05) by 22.5 ± 8.7% from pre- to post-IMT and remained unchanged in the CON group. The Vo(2RM) required during the mimic trial corresponded to 5.1 ± 2.5, 5.7 ± 1.4, and 11.7% ± 2.5% of the total Vo(2) (Vo(2T)) at ventilatory workloads equivalent to 50, 75, and 100% of Vo(2 max), respectively. Following IMT, the Vo(2RM) requirement significantly decreased (P < 0.05) by 1.5% (4.2 ± 1.4% of Vo(2T)) at 75% Vo(2 max) and 3.4% (8.1 ± 3.5% of Vo(2T)) at 100% Vo(2 max). No significant changes were shown in the CON group. IMT significantly reduced the O(2) cost of voluntary hyperpnea, which suggests that a reduction in the O(2) requirement of the respiratory muscles following a period of IMT may facilitate increased O(2) availability to the active muscles during exercise. These data suggest that IMT may reduce the O(2) cost of ventilation during exercise, providing an insight into mechanism(s) underpinning the reported improvements in whole body endurance performance; however, this awaits further investigation.

  6. Effects of inspiratory muscle training on respiratory muscle electromyography and dyspnea during exercise in healthy men.

    PubMed

    Ramsook, Andrew H; Molgat-Seon, Yannick; Schaeffer, Michele R; Wilkie, Sabrina S; Camp, Pat G; Reid, W Darlene; Romer, Lee M; Guenette, Jordan A

    2017-03-02

    Inspiratory muscle training (IMT) has consistently been shown to reduce exertional dyspnea in health and disease; however, the physiological mechanisms remain poorly understood. A growing body of literature suggests that dyspnea intensity can largely be explained by an awareness of increased neural respiratory drive, as indirectly measured using diaphragmatic electromyography (EMGdi). Accordingly, we sought to determine if improvements in dyspnea following IMT can be explained by decreases in inspiratory muscle EMG activity. Twenty-five healthy recreationally-active men completed a detailed familiarization visit followed by two maximal incremental cycle exercise tests separated by 5 weeks of randomly assigned pressure threshold IMT or sham control training (SC). The IMT group (n=12) performed 30 inspiratory efforts twice daily against a 30 repetition maximum intensity. The SC group (n=13) performed a daily bout of 60 inspiratory efforts against 10% maximal inspiratory pressure (MIP), with no weekly adjustments. Dyspnea intensity was measured throughout exercise using the modified 0-10 Borg scale. Sternocleidomastoid and scalene EMG were measured using surface electrodes whereas EMGdi was measured using a multi-pair esophageal electrode catheter. IMT significantly improved MIP (pre:-138±45 vs. post:-160±43cmH2O, p<0.01) whereas the SC intervention did not. Dyspnea was significantly reduced at the highest equivalent work rate (pre:7.6±2.5 vs. post:6.8±2.9Borg units, p<0.05), but not in the SC group, with no between-group interaction effects. There were no significant differences in respiratory muscle EMG during exercise in either group. Improvements in dyspnea intensity ratings following IMT in healthy humans cannot be explained by changes in the electrical activity of the inspiratory muscles.

  7. 21 CFR 868.1780 - Inspiratory airway pressure meter.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Inspiratory airway pressure meter. 868.1780... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1780 Inspiratory airway pressure meter. (a) Identification. An inspiratory airway pressure meter is a device used to measure the...

  8. 21 CFR 868.1780 - Inspiratory airway pressure meter.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Inspiratory airway pressure meter. 868.1780... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1780 Inspiratory airway pressure meter. (a) Identification. An inspiratory airway pressure meter is a device used to measure the...

  9. 21 CFR 868.1780 - Inspiratory airway pressure meter.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Inspiratory airway pressure meter. 868.1780... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1780 Inspiratory airway pressure meter. (a) Identification. An inspiratory airway pressure meter is a device used to measure the...

  10. Inspiratory Resistance Delays the Reporting of Symptoms with Central Hypovolemia: Association with Cerebral Blood Flow

    DTIC Science & Technology

    2007-01-01

    were exposed to lower-body negative pressure (LBNP) until the presence of symptoms while breathing through either an active ITD (7 cmH2O impedance ) or...from several investigations have demonstrated the benefits of an inspiratory impedance threshold device (ITD) in elevating cerebral perfusion pressure... plethysmography with a Finometer blood pressure monitor (TNO- TPD; Biomedical Instrumentation, Amsterdam, The Netherlands). An appropriately sized

  11. Inspiratory Resistance Delays the Reporting of Symptoms with Central Hypovolemia: Association with Cerebral Blood Flow

    DTIC Science & Technology

    2007-07-01

    were exposed to lower-body negative pressure (LBNP) until the presence of symptoms while breathing through either an active ITD (7 cmH2O impedance ) or...from several investigations have demonstrated the benefits of an inspiratory impedance threshold device (ITD) in elevating cerebral perfusion pressure...standard ECG, and beat-to-beat arterial systolic (SBP) and diastolic (DBP) blood pressures via infrared finger plethysmography with a Finometer blood

  12. Comparison of Standardized Cytomegalovirus (CMV) Viral Load Thresholds in Whole Blood and Plasma of Solid Organ and Hematopoietic Stem Cell Transplant Recipients with CMV Infection and Disease.

    PubMed

    Dioverti, M Veronica; Lahr, Brian D; Germer, Jeffrey J; Yao, Joseph D; Gartner, Michelle L; Razonable, Raymund R

    2017-01-01

    Quantification of cytomegalovirus (CMV) deoxyribonucleic acid (DNA) has important diagnostic, prognostic, and therapeutic implications in the management of transplant recipients. We aimed to assess a viral load in plasma and whole blood that distinguishes CMV disease from asymptomatic infection in a cohort of solid organ and hematopoietic stem cell transplantation. We prospectively measured and compared CMV viral load in paired plasma and whole blood samples collected from transplant recipients with CMV infection and disease. Cytomegalovirus viral loads were determined by a commercially available US Food and Drug Administration-approved quantitative assay (COBAS AmpliPrep/COBAS TaqMan CMV Test [CAP/CTM CMV]) calibrated to the first World Health Organization International Standard for CMV DNA quantification. Moderate agreement of CMV viral load was observed between plasma and whole blood, with 31% of samples having discordant findings, particularly among samples with low DNA levels. Among the subset of samples where both paired samples had quantifiable levels, we observed a systematic bias that reflected higher viral load in whole blood compared with plasma. Based on receiver operating curve analysis, an initial plasma CMV viral load threshold of 1700 IU/mL in solid organ transplant recipients (sensitivity 80%, specificity 74%) and 1350 IU/mL in allogeneic hematopoietic stem cell transplant recipients (sensitivity 87%, specificity 87%) distinguished CMV disease and asymptomatic infection. This study identifies standardized viral load thresholds that distinguish CMV disease from asymptomatic infection using CAP/CTM CMV assay. We propose these thresholds as potential triggers to be evaluated in prospective studies of preemptive therapy. Plasma was better than whole blood for measuring viral load using the CAP/CTM CMV assay.

  13. Comparison of Standardized Cytomegalovirus (CMV) Viral Load Thresholds in Whole Blood and Plasma of Solid Organ and Hematopoietic Stem Cell Transplant Recipients with CMV Infection and Disease

    PubMed Central

    Dioverti, M Veronica; Lahr, Brian D; Germer, Jeffrey J; Yao, Joseph D; Gartner, Michelle L

    2017-01-01

    Abstract Background Quantification of cytomegalovirus (CMV) deoxyribonucleic acid (DNA) has important diagnostic, prognostic, and therapeutic implications in the management of transplant recipients. We aimed to assess a viral load in plasma and whole blood that distinguishes CMV disease from asymptomatic infection in a cohort of solid organ and hematopoietic stem cell transplantation. Methods We prospectively measured and compared CMV viral load in paired plasma and whole blood samples collected from transplant recipients with CMV infection and disease. Cytomegalovirus viral loads were determined by a commercially available US Food and Drug Administration-approved quantitative assay (COBAS AmpliPrep/COBAS TaqMan CMV Test [CAP/CTM CMV]) calibrated to the first World Health Organization International Standard for CMV DNA quantification. Results Moderate agreement of CMV viral load was observed between plasma and whole blood, with 31% of samples having discordant findings, particularly among samples with low DNA levels. Among the subset of samples where both paired samples had quantifiable levels, we observed a systematic bias that reflected higher viral load in whole blood compared with plasma. Based on receiver operating curve analysis, an initial plasma CMV viral load threshold of 1700 IU/mL in solid organ transplant recipients (sensitivity 80%, specificity 74%) and 1350 IU/mL in allogeneic hematopoietic stem cell transplant recipients (sensitivity 87%, specificity 87%) distinguished CMV disease and asymptomatic infection. Conclusions This study identifies standardized viral load thresholds that distinguish CMV disease from asymptomatic infection using CAP/CTM CMV assay. We propose these thresholds as potential triggers to be evaluated in prospective studies of preemptive therapy. Plasma was better than whole blood for measuring viral load using the CAP/CTM CMV assay. PMID:28852681

  14. Oxygen consumption and heart rate responses during and after constant load and alternating intensity exercise at 105% of lactate threshold.

    PubMed

    Spanoudaki, S; Karatzanos, E; Baltopoulos, P; Maridaki, M

    2015-12-01

    The purpose of this study was a secondary-analysis of previously published data, in order to compare the acute VO2 responses, the time spent at high percentage of VO2max and total VO2 consumed (TVO2) between constant and alternating intensity exercise of the same intensity and duration. This study also aimed to examine VO2 and heart rate (HR) responses one hour after both exercises. Ten recreationally trained men (24.7±4.7 years) completed the following two exercise tests lasting an hour each and having the same mean intensity at 105% of lactate threshold (70% VO2max): 1) constant load cycling (CON), and 2) alternating intensity exercise (ALT), during which 40 seconds of light exercise (47% VO2max) were alternated with 20 seconds of supramaximal intensity at 120% of VO2max. TVO2 (69.89±7.02 vs. 58.22±9.13 mL/kg/min, P=0.03) and HR (142±16, 128±12, P=0.04) was higher in CON exercise compared to ALT. All participants reached 70% and 80% of VO2max irrespective of the exercise protocol. In ALT exercise the time spent at 90% was higher compared to CON exercise (70.81±21.37 vs. 36.88±11.88 seconds). Also, TVO2 recovery values after ALT exercise was higher compared to CON (11.1 ±2.93 vs. 9.94±3.54 mL/kg/min). ALT exercise allowed participants to spend longer time at 90% of VO2max, even if TVO2 in CON exercise was higher, suggesting that in ALT exercise greater aerobic stress (as based on exercise intensity) is imposed on the athletes. While VO2 recovery values were higher in ALT compared to CON, indicating different substrate utilization during and after exercise.

  15. Controlled Frequency Breathing Reduces Inspiratory Muscle Fatigue.

    PubMed

    Burtch, Alex R; Ogle, Ben T; Sims, Patrick A; Harms, Craig A; Symons, T Brock; Folz, Rodney J; Zavorsky, Gerald S

    2017-05-01

    Burtch, AR, Ogle, BT, Sims, PA, Harms, CA, Symons, TB, Folz, RJ, and Zavorsky, GS. Controlled frequency breathing reduces inspiratory muscle fatigue. J Strength Cond Res 31(5): 1273-1281, 2017-Controlled frequency breathing (CFB) is a common swim training modality involving holding one's breath for approximately 7-10 strokes before taking another breath. We sought to examine the effects of CFB training on reducing respiratory muscle fatigue. Competitive college swimmers were randomly divided into either the CFB group that breathed every 7-10 strokes or a control group that breathed every 3-4 strokes. Twenty swimmers completed the study. The training intervention included 5-6 weeks (16 sessions) of 12 × 50-m repetitions with breathing 8-10 breaths per 50-m (control group) or 2-3 breaths per 50-m (CFB group). Inspiratory muscle fatigue was defined as the decrease in maximal inspiratory pressure (MIP) between rest and 46 seconds after a 200-yard freestyle swimming race (115 seconds [SD 7]). Aerobic capacity, pulmonary diffusing capacity, and running economy were also measured pre- and posttraining. Pooled results demonstrated a 12% decrease in MIP at 46 seconds post-race (-15 [SD 14] cm H2O, effect size = -0.48, p < 0.01). After 4 weeks of training, only the CFB group prevented a decline in MIP values before to 46 seconds after race (-2 [13] cm H2O, p > 0.05). However, swimming performance, aerobic capacity, pulmonary diffusing capacity, and running economy did not improve (p > 0.05) posttraining in either group. In conclusion, CFB training appears to prevent inspiratory muscle fatigue; yet, no difference was found in performance outcomes.

  16. Influences of gender and anthropometric features on inspiratory inhaler acoustics and peak inspiratory flow rate.

    PubMed

    Taylor, Terence E; Holmes, Martin S; Sulaiman, Imran; Costello, Richard W; Reilly, Richard B

    2015-01-01

    Inhalers are hand-held devices used to treat chronic respiratory diseases such as asthma and chronic obstructive pulmonary disease (COPD). Medication is delivered from an inhaler to the user through an inhalation maneuver. It is unclear whether gender and anthropometric features such as age, height, weight and body mass index (BMI) influence the acoustic properties of inspiratory inhaler sounds and peak inspiratory flow rate (PIFR) in inhalers. In this study, healthy male (n=9) and female (n=7) participants were asked to inhale at an inspiratory flow rate (IFR) of 60 L/min in four commonly used inhalers (Turbuhaler(™), Diskus(™), Ellipta(™) and Evohaler(™)). Ambient inspiratory sounds were recorded from the mouthpiece of each inhaler and over the trachea of each participant. Each participant's PIFR was also recorded for each of the four inhalers. Results showed that gender and anthropometric features have the potential to influence the spectral properties of ambient and tracheal inspiratory inhaler sounds. It was also observed that males achieved statistically significantly higher PIFRs in each inhaler in comparison to females (p<;0.05). Acoustic features were found to be significantly different across inhalers suggesting that acoustic features are modulated by the inhaler design and its internal resistance to airflow.

  17. Tonic Neuromodulation of the Inspiratory Rhythm Generator

    PubMed Central

    Peña-Ortega, Fernando

    2012-01-01

    The generation of neural network dynamics relies on the interactions between the intrinsic and synaptic properties of their neural components. Moreover, neuromodulators allow networks to change these properties and adjust their activity to specific challenges. Endogenous continuous (“tonic”) neuromodulation can regulate and sometimes be indispensible for networks to produce basal activity. This seems to be the case for the inspiratory rhythm generator located in the pre-Bötzinger complex (preBötC). This neural network is necessary and sufficient for generating inspiratory rhythms. The preBötC produces normal respiratory activity (eupnea) as well as sighs under normoxic conditions, and it generates gasping under hypoxic conditions after a reconfiguration process. The reconfiguration leading to gasping generation involves changes of synaptic and intrinsic properties that can be mediated by several neuromodulators. Over the past years, it has been shown that endogenous continuous neuromodulation of the preBötC may involve the continuous action of amines and peptides on extrasynaptic receptors. I will summarize the findings supporting the role of endogenous continuous neuromodulation in the generation and regulation of different inspiratory rhythms, exploring the possibility that these neuromodulatory actions involve extrasynaptic receptors along with evidence of glial modulation of preBötC activity. PMID:22934010

  18. Effects of high-intensity inspiratory muscle training following a near-fatal gunshot wound.

    PubMed

    Hill, Kylie; Gain, Kevin R; McKay, Sean W; Nathan, Christine; Gabbay, Eli

    2011-09-01

    Severe injuries sustained during combat may classify individuals as undeployable for active service. It is imperative that every effort is made to optimize physical function following such injuries. A 38-year-old man sustained a gunshot wound during armed combat. The bullet entered via the left axilla and exited from the right side of the abdomen, resulting in severe thoracic and abdominal injuries. Five months later, he continued to describe severe dyspnea on exertion. During a cardiopulmonary exercise test on a cycle ergometer, he achieved a maximum rate of oxygen uptake of 2,898 mL·min(-1) (114% predicted) and maximum power of 230 W (114% predicted). His maximum forced inspiratory flow was 5.95 L·s(-1), and inspiratory reserve volume at test end was ∼80 mL. The test was terminated by the patient due to dyspnea that was too severe to tolerate. Video fluoroscopy demonstrated impaired right hemidiaphragm function. The main goals of therapy were to reduce dyspnea on exertion and to enable return to full work duties. A program of high-intensity, interval-based threshold inspiratory muscle training (IMT) was undertaken. An average of 5 sessions of IMT were completed each week for 10 weeks. During a repeat cardiopulmonary exercise test, the patient achieved a similar power and maximum rate of oxygen uptake. His maximum forced inspiratory flow increased by 48% to 8.83 L·s(-1), and he was limited by leg fatigue. High-intensity IMT was safe and well tolerated. It was associated with improvements in maximum forced inspiratory flow and changed the locus of symptom limitation during high-intensity exercise from dyspnea to leg fatigue.

  19. Inspiratory muscle strength in chronic obstructive pulmonary disease.

    PubMed

    Larson, Janet L; Covey, Margaret K; Corbridge, Susan

    2002-05-01

    Chronic obstructive pulmonary disease is associated with a functional weakness of the inspiratory muscles. Multiple factors contribute to the decline in functional strength including hyperinflation of the chest, deterioration in nutritional status, and the indirect effects of an exacerbation. The decreased inspiratory muscle strength contributes to sensations of dyspnea and places individuals at risk for respiratory muscle fatigue. The worsening dyspnea causes individuals to reduce their physical activities and ultimately become physically deconditioned. Maximal inspiratory pressure is commonly used to measure functional strength of the inspiratory muscles, and interventions to minimize the extent of decline include inspiratory muscle training, aerobic exercise training, nutritional supplementation, and methods to prevent exacerbations. In the critical care unit, multiple comorbid conditions contribute to further decline in inspiratory muscle strength, making it important to assess respiratory muscle function regularly.

  20. Maximal inspiratory mouth pressure in Japanese elite male athletes.

    PubMed

    Ohya, Toshiyuki; Hagiwara, Masahiro; Chino, Kentaro; Suzuki, Yasuhiro

    2016-08-01

    Maximal inspiratory mouth pressure (MIP) is a common measurement of inspiratory muscle strength, which is often used in a variety of exercises to evaluate the effects of inspiratory muscle training. An understanding of elite athletes' MIP characteristics is needed to guide sport-specific inspiratory muscle training programs. The purpose of this study was to investigate and better understand the MIP characteristics of elite athletes from a variety of sports. A total of 301 Japanese elite male athletes participated in this study. MIP was assessed using a portable autospirometer with a handheld mouth pressure meter. Athletes with higher body mass tended to have stronger MIP values, in absolute terms. In relative terms, however, athletes who regularly experienced exercise-induced inspiratory muscle fatigue tended to have stronger MIP values. Our findings suggest that athletes could benefit from prescribed, sport-specific, inspiratory muscle training or warm-ups. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. The grading effect of abnormal glucose status on arterial stiffness and a new threshold of 2-hour post-load glucose based on a Chinese community study.

    PubMed

    Liu, Zhi-Ke; Wu, Ke-Ye; Dai, Xiao-Tong; Che, Qian-Zi; Chen, Si; Jia, Jia; Li, Jian-Ping; Huo, Yong; Zhang, Yan; Chen, Da-Fang

    2017-09-01

    To investigate the relation between various glucose metabolic status and arterial stiffness, and further explore the threshold of blood glucose indices for the risk of arterial stiffness. The cross-sectional study included 4851 individuals from a Chinese community. Overnight fasting blood glucose and 2-hour post-load glucose sampled. Arterial stiffness measured as brachial-ankle pulse wave velocity. The association examined using generalized linear regression models. The threshold effect explored using two piecewise linear regression model by the smoothing plot. After adjustment for covariates, isolated impaired fasting glucose, isolated impaired glucose tolerance, combined glucose intolerance, newly diabetes mellitus associated with greater risk of arterial stiffness compared with normal glucose tolerance (B = 18.09, 95%CI: 0.42 ~ 35.76, P = 0.045; B = 28.51, 95%CI: 3.40 ~ 53.62, P = 0.026; B =60.70, 95%CI: 38.37 ~ 83.04, P < 0.001; B = 95.06, 95%CI: 71.88 ~ 118.25, P < 0.001; respectively). Moreover, there was a nonlinear relation between 2-hour post-load glucose and arterial stiffness. A threshold for 2-hour post-load glucose of 6.14 mmol/L observed for risk of arterial stiffness. Impaired fasting glucose, impaired glucose tolerance, combined glucose intolerance, and newly diabetes mellitus related to greater risk of arterial stiffness compared with normal glucose levels. A threshold for 2-hour post-load glucose of 6.14 mmol/L probably exists for risk of arterial stiffness. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  2. Normal values for inspiratory muscle function in children.

    PubMed

    Mellies, Uwe; Stehling, Florian; Dohna-Schwake, Christian

    2014-10-01

    Assessment of inspiratory muscle function (IMF) is limited in children with neuromuscular disorders, because respiratory muscle tests are poorly standardized and valid normative data are unavailable. We investigated maximum inspiratory pressure after exhalation to residual volume (MIP), mouth occlusion pressure (P0.1) and time of inspiration during quiet breathing and derived inspiratory muscle load (P0.1/MIP), and tension time index (TTI) in 301 healthy schoolchildren 6-16 years old. Gender-specific and age-dependent percentile curves for MIP were drawn with the median, 5%, 10%, 25%, 75% and 95% percentile. P0.1 was equal in boys and girls (0.23  ±  0.11 kPa), while MIP was significantly higher in boys (6.8  ±  2.2 versus 5.8  ±  2.4 kPa). Consequently, P0.1/MIP (4.8% ± 3.2% versus 4.0% ± 3.1%) and TTI (0.2  ±  0.14 versus 0.16  ±  0.14) were significantly higher in girls. MIP was 2.90 + 0.36 × age (kPa) and 3.19 + 0.24 × age (kPa) in boys and girls, respectively. The 95% confidence intervals for boys and girls, respectively, were MIP, 6.3-7.3 kPA and 5.4-6.2 kPa; P0.1/MIP, 3.5%-4.5% and 4.3%-5.3%; TTI, 0.14-0.18 and 0.18-0.22; and P0.1, 0.20-0.24 kPa for both. IMF in children has a wide interindividual variability; however percentile curves facilitate a longitudinal assessment of individual patients. Furthermore, narrow confidence intervals allow for comparisons of study populations, making IMF an appropriate endpoint for clinical trials.

  3. Effects of inspiratory muscle training on dynamic hyperinflation in patients with COPD.

    PubMed

    Petrovic, Milos; Reiter, Michael; Zipko, Harald; Pohl, Wolfgang; Wanke, Theodor

    2012-01-01

    Dynamic hyperinflation has important clinical consequences in patients with chronic obstructive pulmonary disease (COPD). Given that most of these patients have respiratory and peripheral muscle weakness, dyspnea and functional exercise capacity may improve as a result of inspiratory muscle training (IMT). The aim of the study was to analyze the effects of IMT on exercise capacity, dyspnea, and inspiratory fraction (IF) during exercise in patients with COPD. Daily inspiratory muscle strength and endurance training was performed for 8 weeks in 10 patients with COPD GOLD II and III. Ten patients with COPD II and III served as a control group. Maximal inspiratory pressure (Pimax) and endurance time during resistive breathing maneuvers (tlim) served as parameter for inspiratory muscle capacity. Before and after training, the patients performed an incremental symptom limited exercise test to maximum and a constant load test on a cycle ergometer at 75% of the peak work rate obtained in the pretraining incremental test. ET was defined as the duration of loaded pedaling. Following IMT, there was a statistically significant increase in inspiratory muscle performance of the Pimax from 7.75 ± 0.47 to 9.15 ± 0.73 kPa (P < 0.01) and of tlim from 348 ± 54 to 467 ± 58 seconds (P < 0.01). A significant increase in IF, indicating decreased dynamic hyperinflation, was observed during both exercise tests. Further, the ratio of breathing frequency to minute ventilation (bf/V'(E)) decreased significantly, indicating an improved breathing pattern. A significant decrease in perception of dyspnea was also measured. Peak work rate during the incremental cycle ergometer test remained constant, while ET during the constant load test increased significantly from 597.1 ± 80.8 seconds at baseline to 733.6 ± 74.3 seconds (P < 0.01). No significant changes during either exercise tests were measured in the control group. The present study found that in patients with COPD, IMT results in

  4. Effects of inspiratory muscle training on dynamic hyperinflation in patients with COPD

    PubMed Central

    Petrovic, Milos; Reiter, Michael; Zipko, Harald; Pohl, Wolfgang; Wanke, Theodor

    2012-01-01

    Dynamic hyperinflation has important clinical consequences in patients with chronic obstructive pulmonary disease (COPD). Given that most of these patients have respiratory and peripheral muscle weakness, dyspnea and functional exercise capacity may improve as a result of inspiratory muscle training (IMT). The aim of the study was to analyze the effects of IMT on exercise capacity, dyspnea, and inspiratory fraction (IF) during exercise in patients with COPD. Daily inspiratory muscle strength and endurance training was performed for 8 weeks in 10 patients with COPD GOLD II and III. Ten patients with COPD II and III served as a control group. Maximal inspiratory pressure (Pimax) and endurance time during resistive breathing maneuvers (tlim) served as parameter for inspiratory muscle capacity. Before and after training, the patients performed an incremental symptom limited exercise test to maximum and a constant load test on a cycle ergometer at 75% of the peak work rate obtained in the pretraining incremental test. ET was defined as the duration of loaded pedaling. Following IMT, there was a statistically significant increase in inspiratory muscle performance of the Pimax from 7.75 ± 0.47 to 9.15 ± 0.73 kPa (P < 0.01) and of tlim from 348 ± 54 to 467 ± 58 seconds (P < 0.01). A significant increase in IF, indicating decreased dynamic hyperinflation, was observed during both exercise tests. Further, the ratio of breathing frequency to minute ventilation (bf/V′E) decreased significantly, indicating an improved breathing pattern. A significant decrease in perception of dyspnea was also measured. Peak work rate during the incremental cycle ergometer test remained constant, while ET during the constant load test increased significantly from 597.1 ± 80.8 seconds at baseline to 733.6 ± 74.3 seconds (P < 0.01). No significant changes during either exercise tests were measured in the control group. The present study found that in patients with COPD, IMT results in

  5. Inspiratory muscle training for cystic fibrosis.

    PubMed

    Houston, Brian W; Mills, Nicola; Solis-Moya, Arturo

    2008-10-08

    Cystic fibrosis is the most common life-limiting genetic condition in Caucasians and the life-expectancy of those newly diagnosed is increasing. Inspiratory muscle training may be a way of improving the lung function and quality of life of people with cystic fibrosis. Hence there is a need to establish whether this intervention is beneficial. To determine the effect of inspiratory muscle training on health-related quality of life, pulmonary function and exercise tolerance. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Trials register comprising of references identified from comprehensive electronic database searches and handsearches of relevant journals and abstract books of conference proceedings.Date of most recent search: April 2008. Randomised or quasi-randomised clinical controlled trials comparing different inspiratory muscle training regimens with each other or a control in people with cystic fibrosis. Three review authors independently applied the inclusion and exclusion criteria to publications and assessed the quality of the included studies. Seven studies were identified. Of these six studies with 140 participants met the review inclusion criteria. There was wide variation in the quality of the included studies. Data were not published in sufficient detail or with sufficiently similar outcome measures in these studies to perform meta-analyses. We have not found any evidence to suggest that this treatment is either beneficial or not. We would advise that practitioners evaluate on a case-by-case basis whether or not to employ this therapy. We recommend that future studies make more use of health-related quality of life and exercise tolerance measures; and that there is an agreement upon a single standard measure of classifying the clinical status of the participants.

  6. The clinical value of peak nasal inspiratory flow, peak oral inspiratory flow, and the nasal patency index.

    PubMed

    Tsounis, Michael; Swart, Karin M A; Georgalas, Christos; Markou, Konstantinos; Menger, Dirk J

    2014-12-01

    The aim of this study was to ascertain the most reliable objective measurement for the assessment of nasal patency by investigating the relationship between peak nasal inspiratory flow, peak oral inspiratory flow, and the nasal patency index in relation to the patient's subjective perception regarding nasal obstruction. Prospective cohort study. This study included 131 volunteers of both genders, aged 18 years or older, with or without nasal symptoms, who were able to give informed consent, completed the study protocol, and could speak and write Dutch fluently. Peak nasal inspiratory flow and peak oral inspiratory flow were performed and nasal patency index was computed. The results were evaluated and compared with the subjective perception of nasal passage, using the validated Nasal Obstruction Symptom Evaluation scale and visual analog scale for nasal passage. Our study showed that peak nasal inspiratory flow, nasal patency index and nasal patency visual analog scale correlate with the Nasal Obstruction Symptom Evaluation scale in contrast to peak oral inspiratory flow. Peak nasal inspiratory flow and nasal patency index also showed significant association with the Nasal Obstruction Symptom Evaluation scale after adjustment for confounders. Peak nasal inspiratory flow is the most reliable method for the assessment of nasal patency. It is quick, inexpensive, and easy to perform, and correlates significantly with the subjective feeling of nasal obstruction. There is no clinical need to measure peak oral inspiratory flow or to calculate the nasal patency index in the evaluation of nasal patency. 4 © 2014 The American Laryngological, Rhinological and Otological Society, Inc.

  7. Rib motion modulates inspiratory intercostal activity in dogs.

    PubMed Central

    De Troyer, A

    1996-01-01

    1. A test was performed of the hypothesis that the motion of the ribs during inspiration modulates, via changes in spindle afferent activity, the activation of the inspiratory intercostal muscles. The electrical activity of the parasternal intercostal, external intercostal, and levator costae muscles in anaesthetized spontaneously breathing dogs was thus recorded during manipulation of the inspiratory displacement of the ribs over a wide range of rib motion. 2. In agreement with the hypothesis, the external intercostal and levator costae muscles lengthened and showed increased inspiratory activities when the normal inspiratory cranial motion of the lower rib was reduced or reversed into an inspiratory caudal motion. Conversely, the inspiratory activities decreased when the inspiratory cranial motion of the rib and the inspiratory shortening of the muscles was augmented. The inspiratory activity of the parasternal intercostal remained unchanged throughout. 3. However, when the two ribs making up the interspace were linked together so that the external intercostal muscle was constant in length, the relationship of muscle activity to rib motion was maintained. 4. In addition, when the upper rather than the lower rib of the interspace was manipulated, the relationship between the change in muscle length and inspiratory activity was reversed, so that activity decreased when the muscle was lengthened and increased when the muscle was shortened. The relationship of muscle activity to lower rib motion, however, was still maintained. 5. These observations thus indicate that rib motion triggers proprioceptive reflexes which, regardless of the changes in length of the individual muscles, make the external intercostal inspiratory activity exquisitely sensitive to the direction of rib displacement. PMID:8730601

  8. Cross-modal attention influences auditory contrast sensitivity: Decreasing visual load improves auditory thresholds for amplitude- and frequency-modulated sounds.

    PubMed

    Ciaramitaro, Vivian M; Chow, Hiu Mei; Eglington, Luke G

    2017-03-01

    We used a cross-modal dual task to examine how changing visual-task demands influenced auditory processing, namely auditory thresholds for amplitude- and frequency-modulated sounds. Observers had to attend to two consecutive intervals of sounds and report which interval contained the auditory stimulus that was modulated in amplitude (Experiment 1) or frequency (Experiment 2). During auditory-stimulus presentation, observers simultaneously attended to a rapid sequential visual presentation-two consecutive intervals of streams of visual letters-and had to report which interval contained a particular color (low load, demanding less attentional resources) or, in separate blocks of trials, which interval contained more of a target letter (high load, demanding more attentional resources). We hypothesized that if attention is a shared resource across vision and audition, an easier visual task should free up more attentional resources for auditory processing on an unrelated task, hence improving auditory thresholds. Auditory detection thresholds were lower-that is, auditory sensitivity was improved-for both amplitude- and frequency-modulated sounds when observers engaged in a less demanding (compared to a more demanding) visual task. In accord with previous work, our findings suggest that visual-task demands can influence the processing of auditory information on an unrelated concurrent task, providing support for shared attentional resources. More importantly, our results suggest that attending to information in a different modality, cross-modal attention, can influence basic auditory contrast sensitivity functions, highlighting potential similarities between basic mechanisms for visual and auditory attention.

  9. Inspiratory flow and intrapulmonary gas distribution

    SciTech Connect

    Rehder, K.; Knopp, T.J.; Brusasco, V.; Didier, E.P.

    1981-01-01

    The effect of flow of inspired gas on intrapulmonary gas distribution was examined by analysis of regional pulmonary /sup 133/Xe clearances and of total pulmonary /sup 133/Xe clearance measured at the mouth after equilibration of the lungs with /sup 133/Xe. Five awake healthy volunteers (24 to 40 yr of age) and another 5 healthy, anesthetized-paralyzed volunteers (26 to 28 yr of age) were studied while they were in the right lateral decubitus position. The awake subjects were studied at 3 inspiratory flows (0.4, 0.7, and 1.0 L/s) and the anesthetized-paralyzed subjects at 4 inspiratory flows (0.2, 0.5, 1.1, and 1.6 L/s). Interregional differences in /sup 133/Xe clearances along the vertical axis were significantly less during anesthesia-paralysis and mechanical ventilation than during spontaneous breathing in the awake state. No differences in the regional or total pulmonary /sup 133/Xe clearances were detected at these different flows in either of the two states, i.e., the difference between the awake and anesthetized-paralyzed states persisted.

  10. 21 CFR 868.1780 - Inspiratory airway pressure meter.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Inspiratory airway pressure meter. 868.1780 Section 868.1780 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... meter. (a) Identification. An inspiratory airway pressure meter is a device used to measure the amount...

  11. 21 CFR 868.1780 - Inspiratory airway pressure meter.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Inspiratory airway pressure meter. 868.1780 Section 868.1780 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... meter. (a) Identification. An inspiratory airway pressure meter is a device used to measure the amount...

  12. Correlation between Clostridium difficile bacterial load, commercial real-time PCR cycle thresholds, and results of diagnostic tests based on enzyme immunoassay and cell culture cytotoxicity assay.

    PubMed

    Dionne, Léa-Laurence; Raymond, Frédéric; Corbeil, Jacques; Longtin, Jean; Gervais, Philippe; Longtin, Yves

    2013-11-01

    The impact of Clostridium difficile fecal loads on diagnostic test results is poorly understood, but it may have clinical importance. In this study, we investigated the relationship between C. difficile fecal load and the results of four assays: a glutamate dehydrogenase (GDH) enzyme immunoassay (EIA), a toxin A/B antigen EIA (ToxAB), a cell culture cytotoxicity assay (CCA), and PCR targeting the tcdB gene. We also compared the PCR cycle threshold (CT) with the results of quantitative culture using Spearman's rank correlation coefficient. Finally, we sequenced the genomes of 24 strains with different detection profiles. A total of 203 clinical samples harboring toxigenic C. difficile were analyzed and sorted into one of four groups: 17 PCR(+) (group 1), 37 PCR(+) GDH(+) (group 2), 24 PCR(+) GDH(+) CCA(+) (group 3), and 125 PCR(+) GDH(+) ToxAB(+) (group 4). The overall median fecal load in log10 CFU/g was 6.67 (interquartile range [IQR], 5.57 to 7.54). The median fecal bacterial load of groups 1, 2, 3, and 4 were 4.15 (IQR, 3.00 to 4.98), 5.74 (IQR, 4.75 to 6.16), 6.20 (IQR, 5.23 to 6.80), and 7.08 (IQR, 6.35 to 7.83), respectively. Group 1 samples had lower fecal loads than those from each of the other groups (P < 0.001). Group 2 samples had lower fecal loads than those from groups 3 and 4 (P < 0.001). There was a significant correlation between PCR CT and fecal loads (ρ = -0.697; P < 0.001). NAP1 strains were associated with the detection of toxins by EIA or CCA (P = 0.041). This study demonstrates an association between C. difficile fecal load and the results of routinely used diagnostic tests.

  13. Accuracy of perceptual and acoustic methods for the detection of inspiratory loci in spontaneous speech.

    PubMed

    Wang, Yu-Tsai; Nip, Ignatius S B; Green, Jordan R; Kent, Ray D; Kent, Jane Finley; Ullman, Cara

    2012-12-01

    The present study investigates the accuracy of perceptually and acoustically determined inspiratory loci in spontaneous speech for the purpose of identifying breath groups. Sixteen participants were asked to talk about simple topics in daily life at a comfortable speaking rate and loudness while connected to a pneumotach and audio microphone. The locations of inspiratory loci were determined on the basis of the aerodynamic signal, which served as a reference for loci identified perceptually and acoustically. Signal detection theory was used to evaluate the accuracy of the methods. The results showed that the greatest accuracy in pause detection was achieved (1) perceptually, on the basis of agreement between at least two of three judges, and (2) acoustically, using a pause duration threshold of 300 ms. In general, the perceptually based method was more accurate than was the acoustically based method. Inconsistencies among perceptually determined, acoustically determined, and aerodynamically determined inspiratory loci for spontaneous speech should be weighed in selecting a method of breath group determination.

  14. Accuracy of Perceptual and Acoustic Methods for the Detection of Inspiratory Loci in Spontaneous Speech

    PubMed Central

    Wang, Yu-Tsai; Nip, Ignatius S. B.; Green, Jordan R.; Kent, Ray D.; Kent, Jane Finley; Ullman, Cara

    2012-01-01

    The current study investigates the accuracy of perceptually and acoustically determined inspiratory loci in spontaneous speech for the purpose of identifying breath groups. Sixteen participants were asked to talk about simple topics in daily life at a comfortable speaking rate and loudness while connected to a pneumotach and audio microphone. The locations of inspiratory loci were determined based on the aerodynamic signal, which served as a reference for loci identified perceptually and acoustically. Signal detection theory was used to evaluate the accuracy of the methods. The results showed that the greatest accuracy in pause detection was achieved (1) perceptually based on the agreement between at least 2 of the 3 judges; (2) acoustically using a pause duration threshold of 300 ms. In general, the perceptually-based method was more accurate than was the acoustically-based method. Inconsistencies among perceptually-determined, acoustically-determined, and aerodynamically-determined inspiratory loci for spontaneous speech should be weighed in selecting a method of breath-group determination. PMID:22362007

  15. Effects of inspiratory muscle training on exercise responses in Paralympic athletes with cervical spinal cord injury.

    PubMed

    West, C R; Taylor, B J; Campbell, I G; Romer, L M

    2014-10-01

    We asked whether specific inspiratory muscle training (IMT) improves respiratory structure and function and peak exercise responses in highly trained athletes with cervical spinal cord injury (SCI). Ten Paralympic wheelchair rugby players with motor-complete SCI (C5-C7) were paired by functional classification then randomly assigned to an IMT or placebo group. Diaphragm thickness (B-mode ultrasonography), respiratory function [spirometry and maximum static inspiratory (PI ,max ) and expiratory (PE ,max ) pressures], chronic activity-related dyspnea (Baseline and Transition Dyspnea Indices), and physiological responses to incremental arm-crank exercise were assessed before and after 6 weeks of pressure threshold IMT or sham bronchodilator treatment. Compared to placebo, the IMT group showed significant increases in diaphragm thickness (P = 0.001) and PI ,max (P = 0.016). There was a significant increase in tidal volume at peak exercise in IMT vs placebo (P = 0.048) and a strong trend toward an increase in peak work rate (P = 0.081, partial eta-squared = 0.33) and peak oxygen uptake (P = 0.077, partial eta-squared = 0.34). No other indices changed post-intervention. In conclusion, IMT resulted in significant diaphragmatic hypertrophy and increased inspiratory muscle strength in highly trained athletes with cervical SCI. The strong trend, with large observed effect, toward an increase in peak aerobic performance suggests IMT may provide a useful adjunct to training in this population.

  16. Computational prediction of probabilistic ignition threshold of pressed granular Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) under shock loading

    NASA Astrophysics Data System (ADS)

    Kim, Seokpum; Miller, Christopher; Horie, Yasuyuki; Molek, Christopher; Welle, Eric; Zhou, Min

    2016-09-01

    The probabilistic ignition thresholds of pressed granular Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine explosives with average grain sizes between 70 μm and 220 μm are computationally predicted. The prediction uses material microstructure and basic constituent properties and does not involve curve fitting with respect to or prior knowledge of the attributes being predicted. The specific thresholds predicted are James-type relations between the energy flux and energy fluence for given probabilities of ignition. Statistically similar microstructure sample sets are computationally generated and used based on the features of micrographs of materials used in actual experiments. The predicted thresholds are in general agreement with measurements from shock experiments in terms of trends. In particular, it is found that grain size significantly affects the ignition sensitivity of the materials, with smaller sizes leading to lower energy thresholds required for ignition. For example, 50% ignition threshold of the material with an average grain size of 220 μm is approximately 1.4-1.6 times that of the material with an average grain size of 70 μm in terms of energy fluence. The simulations account for the controlled loading of thin-flyer shock experiments with flyer velocities between 1.5 and 4.0 km/s, constituent elasto-viscoplasticity, fracture, post-fracture contact and friction along interfaces, bulk inelastic heating, interfacial frictional heating, and heat conduction. The constitutive behavior of the materials is described using a finite deformation elasto-viscoplastic formulation and the Birch-Murnaghan equation of state. The ignition thresholds are determined via an explicit analysis of the size and temperature states of hotspots in the materials and a hotspot-based ignition criterion. The overall ignition threshold analysis and the microstructure-level hotspot analysis also lead to the definition of a macroscopic ignition parameter (J) and a microscopic

  17. Physiology and Acoustics of Inspiratory Phonation.

    PubMed

    Vanhecke, Françoise; Lebacq, Jean; Moerman, Mieke; Manfredi, Claudia; Raes, Godfried-Willem; DeJonckere, Philippe H

    2016-11-01

    Inspiratory phonation (IP) means phonating with inspiratory airflow. Some vocalists remarkably master this technique, to such an extent that it offers new dramatic, aesthetic, and functional possibilities in singing specific contemporary music. The present study aims to a better understanding of the physiological backgrounds of IP. A total of 51 inhaling utterances were compared with 61 exhaling utterances in a professional soprano highly skilled in inhaling singing, by means of high-speed single-line scanning and advanced acoustic analysis. Ranges of intensity and Fo were kept similar. The main differences are: (1) an inversion of the mucosal wave, (2) a smaller closed quotient in IP, (3) a larger opening/closing quotient in IP with the additional difference that in IP, the quotient is larger than 1 (opening slower than closing), whereas it is less than 1 in expiratory mode (opening faster than closing), (4) a larger vocal-fold excursion in IP, (5) higher values of adaptive normalized noise energy in IP, and (6) a steeper slope of harmonic peaks in IP. However, jitter values are similar (within normal range), as well as damping ratios and central formant frequencies. The two voicing modes cannot be differentiated by blind listening. The basic physiological mechanisms are comparable in both voicing modes, although with specific differences. IP is actually to be considered as an "extended vocal technique," a term applied to vocalization in art music, which falls outside of traditional classical singing styles, but with remarkable possibilities in skilled vocalists. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  18. Genioglossus muscle activity and inspiratory timing in obstructive sleep apnea.

    PubMed

    Adachi, S; Lowe, A A; Tsuchiya, M; Ryan, C F; Fleetham, J A

    1993-08-01

    Atypical tongue muscle activity during sleep may contribute to the development of obstructive sleep apnea (OSA). Inspiratory genioglossus (GG) muscle activity was investigated in 10 OSA adults and 4 symptom-free controls. On the basis of overnight monitoring during nonREM sleep, the duration of the inspiratory GG activity and the total GG activity cycle is shorter in patients with OSA. The duration of inspiration and the duration of one total respiratory cycle is also shorter in patients with OSA. The commencement time lag between inspiratory GG activity and the onset of inspiration is shorter in patients with OSA during nonapneic breathing which indicates that inspiratory GG activity is activated relatively later in these patients. Furthermore, the inspiratory GG activity occurs after inspiration during an apnea, but the timing of GG activity onset progressively advances during the apnea. Earlier GG reactivation occurs before inspiration during the first nonoccluded breath at the end of an apnea. During subsequent tidal breathing, the timing of the GG onset progressively decreases after the onset of inspiration until the next obstructive apnea occurs. This observation suggests that the timing relationship between GG inspiratory activity and inspiratory effort is of physiologic importance in the pathogenesis of OSA. Furthermore, it may explain why dental appliances, such as the tongue retaining device, are highly effective in the resolution of OSA in selected patients.

  19. Strain and load thresholds for cervical muscle recruitment in response to quasi-static tensile stretch of the caprine C5-C6 facet joint capsule.

    PubMed

    Azar, Nadia R; Kallakuri, Srinivasu; Chen, Chaoyang; Lu, Ying; Cavanaugh, John M

    2009-12-01

    The aim of this study was to investigate the response of cervical muscles to physiologic tensile stretch of cervical facet joint capsule (FJC) at a quasi-static displacement rate of 0.5mm/s. In vivo caprine left C5-C6 FJC preparations were subjected to an incremental tensile displacement paradigm. EMG activity was recorded during FJC stretch from the right trapezius (TR) and multifidus (MF) muscle groups at the C5 and C6 levels and bilaterally from the sternomastoid (SM) and longus colli (LC) muscle groups at the C5-C6 level. Onset of muscular activity was later analyzed using visual and computer-based methods. Capsule load and strain at the time of onset were recorded and compared between the muscle groups. Results indicated capsule load was a better indicator of the tensile stretch thresholds for muscular recruitment than capsule strain. MF responded at significantly smaller capsule loads than TR and LC, while TR and LC activation loads were not significantly different. SM did not respond to physiologic FJC stretch. Muscle group recruitment order reflected the muscles' fiber type compositions and functional roles in the spine. This study provides the first evidence that the cervical ligamento-muscular reflex pathways are activated via tensile FJC stretch and extend to superficial and deep musculature on the anterior and posterior aspects of the neck, ipsilateral and contralateral to the side of FJC stretch.

  20. D-methionine pre-loading reduces both noise-induced permanent threshold shift and outer hair cell loss in the chinchilla.

    PubMed

    Claussen, Alexander D; Fox, Daniel J; Yu, Xin C; Meech, Robert P; Verhulst, Steven J; Hargrove, Tim L; Campbell, Kathleen C M

    2013-12-01

    This study tested multiple dosing epochs of pre-loaded D-methionine (D-met) for otoprotection from noise-induced hearing loss (NIHL). Auditory brainstem response (ABR) thresholds were measured at baseline, 1 day, and 21 days following a 6-hour 105 dB sound pressure level (SPL) octave band noise (OBN) exposure. Outer hair cell (OHC) counts were measured after day 21 sacrifice. Three groups of five Chinchillas laniger each were given a 2-day regimen comprising five doses of D-met (200 mg/kg/dose) intraperitoneally (IP) starting 2, 2.5, or 3 days prior to noise exposure. A control group (n = 5) received five doses of equivalent volume saline IP starting 2.5 days prior to noise exposure. ABR threshold shifts from baseline to day-21 post-noise exposure were reduced in all D-met groups versus controls, reaching significance (p < 0.05) in the 3-day group. D-met groups showed reduced OHC loss relative to controls at day-21 post-noise exposure, reaching significance (p < 0.05) at all frequency regions in the 3-day group and at the 2, 4, and 8 kHz frequency regions in the 2.5-day group. D-met administration in advance of noise-exposure, without further administration, significantly protects from noise-induced ABR threshold shift and OHC loss.

  1. Role of joint receptors in modulation of inspiratory intercostal activity by rib motion in dogs.

    PubMed Central

    De Troyer, A

    1997-01-01

    1. Inspiratory activity in the canine external intercostal muscles is exquisitely sensitive to the direction and amplitude of the inspiratory displacement of the ribs. This study was designed to investigate the role of muscle receptors, in particular the muscle spindles, in mediating this phenomenon. 2. External intercostal inspiratory activity showed a reflex increase when the normal cranial motion of the ribs and the normal shortening of the muscles was reduced, and showed a reflex decrease when the cranial motion of the ribs and the shortening of the muscles was augmented. However, clamping the two ribs making up the interspace and maintaining muscle length constant only moderately attenuated these responses. 3. These persistent responses remained unchanged after section of the levator costae muscles. 4. The responses were attenuated but still present after section of the external intercostals in the contiguous segments and denervation of the internal intercostals. 5. These reflex responses are therefore mediated in part by non-muscular receptors, which most likely lie within the costovertebral joints. These joint receptors might be a primary determinant of the load-compensating reflex. PMID:9306285

  2. Role of joint receptors in modulation of inspiratory intercostal activity by rib motion in dogs.

    PubMed

    De Troyer, A

    1997-09-01

    1. Inspiratory activity in the canine external intercostal muscles is exquisitely sensitive to the direction and amplitude of the inspiratory displacement of the ribs. This study was designed to investigate the role of muscle receptors, in particular the muscle spindles, in mediating this phenomenon. 2. External intercostal inspiratory activity showed a reflex increase when the normal cranial motion of the ribs and the normal shortening of the muscles was reduced, and showed a reflex decrease when the cranial motion of the ribs and the shortening of the muscles was augmented. However, clamping the two ribs making up the interspace and maintaining muscle length constant only moderately attenuated these responses. 3. These persistent responses remained unchanged after section of the levator costae muscles. 4. The responses were attenuated but still present after section of the external intercostals in the contiguous segments and denervation of the internal intercostals. 5. These reflex responses are therefore mediated in part by non-muscular receptors, which most likely lie within the costovertebral joints. These joint receptors might be a primary determinant of the load-compensating reflex.

  3. Effects of inspiratory muscle training upon recovery time during high intensity, repetitive sprint activity.

    PubMed

    Romer, L M; McConnell, A K; Jones, D A

    2002-07-01

    The present study examined the influence of specific inspiratory muscle training (IMT) upon recovery time during repetitive sprint activity, as well as the physiological and perceptual responses to fixed intensity shuttle running. Using a double-blind placebo-controlled design, 24 male repetitive sprint athletes were assigned randomly to either an IMT (n = 12) or placebo (n = 12) group. The self-selected recovery time during a repetitive sprint test and the physiological response to submaximal endurance exercise were determined. Following completion of baseline and pre-intervention measures, the IMT group performed 30 inspiratory efforts twice daily against a resistance equivalent to 50 % maximum inspiratory mouth pressure (MIP) for 6 wk. The placebo group performed 60 breaths once daily, for 6 wk, at a resistance equivalent to 15 % MIP, a load known to elicit negligible changes in respiratory muscle function. The IMT group improved total recovery time during the repetitive sprint test by 6.2 +/- 1.1 % (mean +/- SEM) above the changes noted for the placebo group (p = 0.006). Blood lactate and perceptual responses to submaximal exercise were also significantly attenuated following IMT (p

  4. Inspiratory neurons that are activated when inspiration is inhibited behaviorally.

    PubMed

    Orem, J

    1987-12-29

    Respiration can be automatic or controlled behaviorally. Behavioral control in the cat occurs, at least in part, through control of the brainstem respiratory neurons that constitute the automatic system. Thus, when inspiration is inhibited behaviorally, inspiratory neurons in the medulla are inactivated. Reported herein are data on inspiratory cells, located in both the dorsal and ventral respiratory groups, that were activated when other inspiratory cells there were inhibited behaviorally. During spontaneous breathing, their activity showed much variability unattributable to the respiratory cycle--indicating that they receive a considerable non-respiratory input. These cells might act as the interface through which behavioral inhibition of inspiration occurs.

  5. Applicability of Hepatitis C Virus RNA Viral Load Thresholds for 8-Week Treatments in Patients With Chronic Hepatitis C Virus Genotype 1 Infection.

    PubMed

    Vermehren, Johannes; Maasoumy, Benjamin; Maan, Raoel; Cloherty, Gavin; Berkowski, Caterina; Feld, Jordan J; Cornberg, Markus; Pawlotsky, Jean-Michel; Zeuzem, Stefan; Manns, Michael P; Sarrazin, Christoph; Wedemeyer, Heiner

    2016-05-15

    Interferon-free treatment of chronic hepatitis C virus (HCV) genotype 1 infection may be shortened to 8 weeks in treatment-naive, noncirrhotic patients with baseline HCV RNA levels of <4 or <6 million (M) IU/mL based on post-hoc analyses of phase 3 trial data. The applicability of these viral load thresholds in clinical practice is unknown. Pretreatment and on-treatment serum samples (n = 740) from patients with HCV genotype 1 infection were included for HCV RNA analysis with 2 widely used assays, Cobas AmpliPrep/CobasTaqMan (CAP/CTM) and Abbott RealTime HCV (ART) assays. HCV RNA levels were significantly higher with CAP/CTM than with ART (overall difference, +0.11 log10 IU/mL; P < .001). In treatment-naive, noncirrhotic patients, discordance rates around the clinical cutoffs at 4M and 6M IU/mL were 23% and 18%, respectively. The mean differences between assays in discordant samples were 0.38 (4M) and 0.41 (6M) log10 IU/mL, respectively. Overall, 87% and 95% of treatment-naive, noncirrhotic patients, respectively, had baseline HCV RNA levels below 4M and 6M IU/mL with ART. These rates were significantly higher than those measured with CAP/CTM (64% and 78%, respectively; P < .001). Finally, discordance rates around the proposed thresholds in 2 consecutive samples of the same patient were in the range of 1%-2% for ART and 13%-17% for CAP/CTM. Selection of patients for 8-week regimens on the basis of a single HCV RNA determination may not be reliable because viral load levels around the proposed clinical thresholds show significant interassay and intrapatient variability. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  6. Diaphragmatic blood flow and energy expenditure in the dog. Effects of inspiratory airflow resistance and hypercapnia.

    PubMed

    Rochester, D F; Bettini, G

    1976-03-01

    To investigate the mechanisms which enable the diaphragm to preserve ventilation when the work of breathing is elevated, we measured diaphragmatic blood flow (Q di) and oxygen consumption (VO2 di) in lightly anesthetized dogs. The animals were studied when they breathed quietly, when they inhaled 5% CO2 in 21% or 14% O2, or when they inhaled these gas mixtures through moderate to severe inspiratory resistances. Q di was determined from the integrated diaphragmatic arteriovenous difference of krypton-85, by the Kety-Schmidt technique. VO2 di was calculated as the product of Q di and the diaphragmatic arteriovenous oxygen difference ([A-V]O2 di). Alteration in these parameters consequent to augmentation of ventilatory effort were compared with concomitant alterations in diaphragmatic electrical activity (EMG di) and an inspiratory pleural pressure-time index (PPTI). Addition of inspiratory resistances combined with inhalation of CO2 usually increased Q di and consistently increased VO2 di, EMG di, and PPTI, the maximum increases being approximately 400-1,600% above control levels. In individual animals, as inspiratory resistance was increased, VO2 di, EMG di, and PPTI rose in direct proportion to each other. In the group as a whole, during resistance breathing the oxygen requirements of the diaphragm were met by a combination of increased [A-V]O2 di and Q di. Unlike other skeletal muscles, oxygen extraction tended to plateau at peak loads, whereas blood flow continued to rise as PPTI and VO2 di increased. We conclude that augmentation of perfusion permits the diaphragm to sustain high levels of contractile effort when the work of breathing is increased.

  7. Brain MRI lesion load quantification in multiple sclerosis: a comparison between automated multispectral and semi-automated thresholding computer-assisted techniques.

    PubMed

    Achiron, Anat; Gicquel, Sebastien; Miron, Shmuel; Faibel, Meir

    2002-12-01

    Brain magnetic resonance imaging (MRI) lesion volume measurement is an advantageous tool for assessing disease burden in multiple sclerosis (MS). We have evaluated two computer-assisted techniques: MSA multispectral automatic technique that is based on bayesian classification of brain tissue and NIH image analysis technique that is based on local (lesion by lesion) thresholding, to establish reliability and repeatability values for each technique. Brain MRIs were obtained for 30 clinically definite relapsing-remitting MS patients using a 2.0 Tesla MR scanner with contiguous, 3 mm thick axial, T1, T2 and PD weighted modalities. Digital (Dicom 3) images were analyzed independently by three observers; each analyzed the images twice, using the two different techniques (Total 360 analyses). Accuracy of lesion load measurements using phantom images of known volumes showed significantly better results for the MSA multispectral technique (p < 0.001). The mean intra-and inter-observer variances were, respectively, 0.04 +/- 0.4 (range 0.04-0.13), and 0.09 +/- 0.6 (range 0.01-0.26) for the multispectral MSA analysis technique, 0.24 +/- 2.27 (range 0.23-0.72) and 0.33 +/- 3.8 (range 0.47-1.36) for the NIH threshold technique. These data show that the MSA multispectral technique is significantly more accurate in lesion volume measurements, with better results of within and between observers' assessments, and the lesion load measurements are not influenced by increased disease burden. Measurements by the MSA multispectral technique were also faster and decreased analysis time by 43%. The MSA multispectral technique is a promising tool for evaluating MS patients. Non-biased recognition and delineation algorithms enable high accuracy, low intra-and inter-observer variances and fast assessment of MS related lesion load.

  8. Diagnostic methods to assess inspiratory and expiratory muscle strength*

    PubMed Central

    Caruso, Pedro; de Albuquerque, André Luis Pereira; Santana, Pauliane Vieira; Cardenas, Leticia Zumpano; Ferreira, Jeferson George; Prina, Elena; Trevizan, Patrícia Fernandes; Pereira, Mayra Caleffi; Iamonti, Vinicius; Pletsch, Renata; Macchione, Marcelo Ceneviva; Carvalho, Carlos Roberto Ribeiro

    2015-01-01

    Impairment of (inspiratory and expiratory) respiratory muscles is a common clinical finding, not only in patients with neuromuscular disease but also in patients with primary disease of the lung parenchyma or airways. Although such impairment is common, its recognition is usually delayed because its signs and symptoms are nonspecific and late. This delayed recognition, or even the lack thereof, occurs because the diagnostic tests used in the assessment of respiratory muscle strength are not widely known and available. There are various methods of assessing respiratory muscle strength during the inspiratory and expiratory phases. These methods are divided into two categories: volitional tests (which require patient understanding and cooperation); and non-volitional tests. Volitional tests, such as those that measure maximal inspiratory and expiratory pressures, are the most commonly used because they are readily available. Non-volitional tests depend on magnetic stimulation of the phrenic nerve accompanied by the measurement of inspiratory mouth pressure, inspiratory esophageal pressure, or inspiratory transdiaphragmatic pressure. Another method that has come to be widely used is ultrasound imaging of the diaphragm. We believe that pulmonologists involved in the care of patients with respiratory diseases should be familiar with the tests used in order to assess respiratory muscle function.Therefore, the aim of the present article is to describe the advantages, disadvantages, procedures, and clinical applicability of the main tests used in the assessment of respiratory muscle strength. PMID:25972965

  9. Diagnostic methods to assess inspiratory and expiratory muscle strength.

    PubMed

    Caruso, Pedro; Albuquerque, André Luis Pereira de; Santana, Pauliane Vieira; Cardenas, Leticia Zumpano; Ferreira, Jeferson George; Prina, Elena; Trevizan, Patrícia Fernandes; Pereira, Mayra Caleffi; Iamonti, Vinicius; Pletsch, Renata; Macchione, Marcelo Ceneviva; Carvalho, Carlos Roberto Ribeiro

    2015-01-01

    Impairment of (inspiratory and expiratory) respiratory muscles is a common clinical finding, not only in patients with neuromuscular disease but also in patients with primary disease of the lung parenchyma or airways. Although such impairment is common, its recognition is usually delayed because its signs and symptoms are nonspecific and late. This delayed recognition, or even the lack thereof, occurs because the diagnostic tests used in the assessment of respiratory muscle strength are not widely known and available. There are various methods of assessing respiratory muscle strength during the inspiratory and expiratory phases. These methods are divided into two categories: volitional tests (which require patient understanding and cooperation); and non-volitional tests. Volitional tests, such as those that measure maximal inspiratory and expiratory pressures, are the most commonly used because they are readily available. Non-volitional tests depend on magnetic stimulation of the phrenic nerve accompanied by the measurement of inspiratory mouth pressure, inspiratory esophageal pressure, or inspiratory transdiaphragmatic pressure. Another method that has come to be widely used is ultrasound imaging of the diaphragm. We believe that pulmonologists involved in the care of patients with respiratory diseases should be familiar with the tests used in order to assess respiratory muscle function.Therefore, the aim of the present article is to describe the advantages, disadvantages, procedures, and clinical applicability of the main tests used in the assessment of respiratory muscle strength.

  10. Inspiratory oscillatory flow with a portable ventilator: a bench study

    PubMed Central

    Frank, Guenther E; Trimmel, Helmut; Fitzgerald, Robert D

    2005-01-01

    Introduction We observed an oscillatory flow while ventilating critically ill patients with the Dräger Oxylog 3000™ transport ventilator during interhospital transfer. The phenomenon occurred in paediatric patients or in adult patients with severe airway obstruction ventilated in the pressure-regulated or pressure-controlled mode. As this had not been described previously, we conducted a bench study to investigate the phenomenon. Methods An Oxylog 3000™ intensive care unit ventilator and a Dräger Medical Evita-4 NeoFlow™ intensive care unit ventilator were connected to a Dräger Medical LS800™ lung simulator. Data were registered by a Datex-S5™ Monitor with a D-fend™ flow and pressure sensor, and were analysed with a laptop using S5-Collect™ software. Clinical conditions were simulated using various ventilatory modes, using various ventilator settings, using different filters and endotracheal tubes, and by changing the resistance and compliance. Data were recorded for 258 combinations of patient factors and respirator settings to detect thresholds for the occurrence of the phenomenon and methods to overcome it. Results Under conditions with high resistance in pressure-regulated ventilation with the Oxylog 3000™, an oscillatory flow during inspiration produced rapid changes of the airway pressure. The phenomenon resulted in a jerky inspiration with high peak airway pressures, higher than those set on the ventilator. Reducing the inspiratory flow velocity was effective to terminate the phenomenon, but resulted in reduced tidal volumes. Conclusion Oscillatory flow with potentially harmful effects may occur during ventilation with the Dräger Oxylog 3000™, especially in conditions with high resistance such as small airways in children (endotracheal tube internal diameter <6 mm) or severe obstructive lung diseases or airway diseases in adult patients. PMID:16137343

  11. The influence of inspiratory muscle work history and specific inspiratory muscle training upon human limb muscle fatigue.

    PubMed

    McConnell, Alison K; Lomax, Michelle

    2006-11-15

    The purpose of this study was to assess the influence of the work history of the inspiratory muscles upon the fatigue characteristics of the plantar flexors (PF). We hypothesized that under conditions where the inspiratory muscle metaboreflex has been elicited, PF fatigue would be hastened due to peripheral vasoconstriction. Eight volunteers undertook seven test conditions, two of which followed 4 week of inspiratory muscle training (IMT). The inspiratory metaboreflex was induced by inspiring against a calibrated flow resistor. We measured torque and EMG during isometric PF exercise at 85% of maximal voluntary contraction (MVC) torque. Supramaximal twitches were superimposed upon MVC efforts at 1 min intervals (MVC(TI)); twitch interpolation assessed the level of central activation. PF was terminated (T(lim)) when MVC(TI) was <50% of baseline MVC. PF T(lim) was significantly shorter than control (9.93 +/- 1.95 min) in the presence of a leg cuff inflated to 140 mmHg (4.89 +/- 1.78 min; P = 0.006), as well as when PF was preceded immediately by fatiguing inspiratory muscle work (6.28 +/- 2.24 min; P = 0.009). Resting the inspiratory muscles for 30 min restored the PF T(lim) to control. After 4 weeks, IMT, inspiratory muscle work at the same absolute intensity did not influence PF T(lim), but T(lim) was significantly shorter at the same relative intensity. The data are the first to provide evidence that the inspiratory muscle metaboreflex accelerates the rate of calf fatigue during PF, and that IMT attenuates this effect.

  12. Substitution of extracellular Ca2+ by Sr2+ prolongs inspiratory burst in pre-Bötzinger complex inspiratory neurons.

    PubMed

    Morgado-Valle, Consuelo; Fernandez-Ruiz, Juan; Lopez-Meraz, Leonor; Beltran-Parrazal, Luis

    2015-02-15

    The pre-Bötzinger complex (preBötC) underlies inspiratory rhythm generation. As a result of network interactions, preBötC neurons burst synchronously to produce rhythmic premotor inspiratory activity. Each inspiratory burst consists of action potentials (APs) on top of a 10- to 20-mV synchronous depolarization lasting 0.3-0.8 s known as inspiratory drive potential. The mechanisms underlying the initiation and termination of the inspiratory burst are unclear, and the role of Ca(2+) is a matter of intense debate. To investigate the role of extracellular Ca(2+) in inspiratory burst initiation and termination, we substituted extracellular Ca(2+) with Sr(2+). We found for the first time an ionic manipulation that significantly interferes with burst termination. In a rhythmically active slice, we current-clamped preBötC neurons (Vm ≅ -60 mV) while recording integrated hypoglossal nerve (∫XIIn) activity as motor output. Substitution of extracellular Ca(2+) with either 1.5 or 2.5 mM Sr(2+) significantly prolonged the duration of inspiratory bursts from 653.4 ± 30.7 ms in control conditions to 981.6 ± 78.5 ms in 1.5 mM Sr(2+) and 2,048.2 ± 448.5 ms in 2.5 mM Sr(2+), with a concomitant increase in decay time and area. Substitution of extracellular Ca(2+) by Sr(2+) is a well-established method to desynchronize neurotransmitter release. Our findings suggest that the increase in inspiratory burst duration is determined by a presynaptic mechanism involving desynchronization of glutamate release within the network. Copyright © 2015 the American Physiological Society.

  13. Evaluation of viral load thresholds for predicting new WHO Stage 3 and 4 events in HIV-infected children receiving highly active antiretroviral therapy

    PubMed Central

    Siberry, George K; Harris, D. Robert; Oliveira, Ricardo Hugo; Krauss, Margot R.; Hofer, Cristina B.; Tiraboschi, Adriana Aparecida; Marques, Heloisa; Succi, Regina C.; Abreu, Thalita; Negra, Marinella Della; Mofenson, Lynne M.; Hazra, Rohan

    2012-01-01

    Background This study evaluated a wide range of viral load (VL) thresholds to identify a cut-point that best predicts new clinical events in children on stable highly-active antiretroviral therapy (HAART). Methods Cox proportional hazards modeling was used to assess the adjusted risk of World Health Organization stage 3 or 4 clinical events (WHO events) as a function of time-varying CD4, VL, and hemoglobin values in a cohort study of Latin American children on HAART ≥ 6 months. Models were fit using different VL cut-points between 400 and 50,000 copies/mL, with model fit evaluated on the basis of the minimum Akaike Information Criterion (AIC) value, a standard model fit statistic. Results Models were based on 67 subjects with WHO events out of 550 subjects on study. The VL cutpoints of > 2600 copies/mL and > 32,000 copies/mL corresponded to the lowest AIC values and were associated with the highest hazard ratios [2.0 (p = 0.015) and 2.1 (p = 0.0058), respectively] for WHO events. Conclusions In HIV-infected Latin American children on stable HAART, two distinct VL thresholds (> 2,600 copies/mL and > 32,000 copies/mL) were identified for predicting children at significantly increased risk of HIV-related clinical illness, after accounting for CD4 level, hemoglobin level, and other significant factors. PMID:22343177

  14. Evaluation of viral load thresholds for predicting new World Health Organization stage 3 and 4 events in HIV-infected children receiving highly active antiretroviral therapy.

    PubMed

    Siberry, George K; Harris, D Robert; Oliveira, Ricardo Hugo; Krauss, Margot R; Hofer, Cristina B; Tiraboschi, Adriana Aparecida; Marques, Heloisa; Succi, Regina C; Abreu, Thalita; Della Negra, Marinella; Mofenson, Lynne M; Hazra, Rohan

    2012-06-01

    This study evaluated a wide range of viral load (VL) thresholds to identify a cut-point that best predicts new clinical events in children on stable highly active antiretroviral therapy (HAART). Cox proportional hazards modeling was used to assess the adjusted risk for World Health Organization stage 3 or 4 clinical events (WHO events) as a function of time-varying CD4, VL, and hemoglobin values in a cohort study of Latin American children on HAART ≥6 months. Models were fit using different VL cut-points between 400 and 50,000 copies per milliliter, with model fit evaluated on the basis of the minimum Akaike information criterion value, a standard model fit statistic. Models were based on 67 subjects with WHO events out of 550 subjects on study. The VL cut-points of >2600 and >32,000 copies per milliliter corresponded to the lowest Akaike information criterion values and were associated with the highest hazard ratios (2.0, P = 0.015; and 2.1, P = 0.0058, respectively) for WHO events. In HIV-infected Latin American children on stable HAART, 2 distinct VL thresholds (>2600 and >32,000 copies/mL) were identified for predicting children at significantly increased risk for HIV-related clinical illness, after accounting for CD4 level, hemoglobin level, and other significant factors.

  15. Diaphragm Thickness and Inspiratory Muscle Functions in Chronic Stroke Patients

    PubMed Central

    Kim, Minkyu; Lee, Kyeongbong; Cho, Jieun; Lee, Wanhee

    2017-01-01

    Background The aims of this study are to investigate the difference between the diaphragm thickness at end expiration and the thickness at total lung capacity (TLC), and to examine differences in inspiratory muscle function between stroke patients and healthy individuals. Material/Methods Forty-five stroke patients and 49 healthy volunteers were included in this study. Diaphragm thickness was measured at end expiration and at TLC by ultrasonography. The maximal inspiratory pressure (MIP), peak inspiratory flow (PIF), vital capacity (VC), and inspiratory muscle endurance (IME) were assess to evaluate inspiratory muscle function. Results In stroke patients, the diaphragm was significantly thinner on the affected side than the less affected side at end expiration and at TLC. The change between the thickness at end expiration and at TLC were also significant on both sides. Between groups, the difference in diaphragm thickness at end expiration was not significant, but at TLC, the diaphragms were significantly thicker in healthy individuals than on either side in stroke patients, and the change in diaphragm thickness was significantly greater for healthy individuals. Inspiratory muscle functions were also significantly greater in healthy individuals. MIP, PIF, and VC were positively correlated with the change in thickness in healthy individuals, and MIP was positively correlated with the change in thickness and IME in stroke patients. Conclusions Stroke patients showed decreases in the thickening ability of the diaphragm at TLC and in inspiratory muscle function. The change between the diaphragm thickness at end expiration and at TLC was positively correlated with MIP, PIF, and VC. PMID:28284044

  16. Effect of acute inspiratory muscle exercise on blood flow of resting and exercising limbs and glucose levels in type 2 diabetes.

    PubMed

    Corrêa, Ana Paula dos Santos; Antunes, Cristiano Fetter; Figueira, Franciele Ramos; de Castro, Marina Axmann; Ribeiro, Jorge Pinto; Schaan, Beatriz D'Agord

    2015-01-01

    To evaluate the effects of inspiratory loading on blood flow of resting and exercising limbs in patients with diabetic autonomic neuropathy. Ten diabetic patients without cardiovascular autonomic neuropathy (DM), 10 patients with cardiovascular autonomic neuropathy (DM-CAN) and 10 healthy controls (C) were randomly assigned to inspiratory muscle load of 60% or 2% of maximal inspiratory pressure (PImax) for approximately 5 min, while resting calf blood flow (CBF) and exercising forearm blood flow (FBF) were measured. Reactive hyperemia was also evaluated. From the 20 diabetic patients initially allocated, 6 wore a continuous glucose monitoring system to evaluate the glucose levels during these two sessions (2%, placebo or 60%, inspiratory muscle metaboreflex). Mean age was 58 ± 8 years, and mean HbA1c, 7.8% (62 mmol/mol) (DM and DM-CAN). A PImax of 60% caused reduction of CBF in DM-CAN and DM (P<0.001), but not in C, whereas calf vascular resistance (CVR) increased in DM-CAN and DM (P<0.001), but not in C. The increase in FBF during forearm exercise was blunted during 60% of PImax in DM-CAN and DM, and augmented in C (P<0.001). Glucose levels decreased by 40 ± 18.8% (P<0.001) at 60%, but not at 2%, of PImax. A negative correlation was observed between reactive hyperemia and changes in CVR (Beta coefficient = -0.44, P = 0.034). Inspiratory muscle loading caused an exacerbation of the inspiratory muscle metaboreflex in patients with diabetes, regardless of the presence of neuropathy, but influenced by endothelial dysfunction. High-intensity exercise that recruits the diaphragm can abruptly reduce glucose levels.

  17. Trend of tunnel magnetoresistance and variation in threshold voltage for keeping data load robustness of metal–oxide–semiconductor/magnetic tunnel junction hybrid latches

    SciTech Connect

    Ohsawa, T.; Ikeda, S.; Hanyu, T.; Ohno, H.; Endoh, T.

    2014-05-07

    The robustness of data load of metal–oxide–semiconductor/magnetic tunnel junction (MOS/MTJ) hybrid latches at power-on is examined by using Monte Carlo simulation with the variations in magnetoresistances for MTJs and in threshold voltages for MOSFETs involved in 90 nm technology node. Three differential pair type spin-transfer-torque-magnetic random access memory cells (4T2MTJ, 6T2MTJ, and 8T2MTJ) are compared for their successful data load at power-on. It is found that the 4T2MTJ cell has the largest pass area in the shmoo plot in TMR ratio (tunnel magnetoresistance ratio) and V{sub dd} in which a whole 256 kb cell array can be powered-on successfully. The minimum TMR ratio for the 4T2MTJ in 0.9 V < V{sub dd} < 1.9 V is 140%, while the 6T2MTJ and the 8T2MTJ cells require TMR ratio larger than 170%.

  18. Behavioral inspiratory inhibition: inactivated and activated respiratory cells.

    PubMed

    Orem, J

    1989-11-01

    1. Eleven adult cats were trained to stop inspiration in response to a conditioning stimulus. The conditioning stimuli were presented at the onset of inspiration at intervals of approximately 20-30 s. Intratracheal pressures, diaphragmatic activity, and the extracellular activity of single medullary respiratory neurons were recorded while the animals performed this response. 2. Inactivation of the diaphragm to the conditioning stimuli occurred at latencies that varied from 40 to 110 ms and averaged 74 +/- 32 (SD) ms. 3. The subjects of this report are 38 inspiratory neurons that were inactivated and 19 cells that were activated when inspiration was stopped behaviorally. These cells were located in the region of n. ambiguus and the ventrolateral n. of tractus solitarius. 4. The inspiratory cells that were inactivated behaviorally had the following characteristics: 1) Most had an augmenting inspiratory profile with (n = 14) or without (n = 9) postinspiratory activity. Other types were inspiratory throughout (n = 5), decrementing inspiratory (n = 3), tonic inspiratory (n = 4), early inspiratory (n = 2), and expiratory-inspiratory (n = 1). 2) Their mean discharge rate was 39 +/- 2.7 (SE) Hz. 3) The latency of their inactivation in response to the task averaged 81 +/- 4.9 (SE) ms, and 4) Their activity corresponded closely to breathing not only during the behavioral response but also during eupnea (eta 2 = 0.62 +/- 0.04, mean +/- SE) and respiratory acts such as sneezing, sniffing, meowing, and purring. 5. The cells that were activated when inspiration was stopped behaviorally had the following characteristics. 1) As a group, they had discharge profiles related to every phase of the respiratory cycle. 2) They were recorded in the same region as, and often simultaneously with, respiratory cells that were inactivated. 3) Their activity patterns were highly variable such that the signal strength and consistency of the respiratory component of that activity were weak (eta 2

  19. Reflex inhibition of canine inspiratory intercostals by diaphragmatic tension receptors

    PubMed Central

    De Troyer, André; Brunko, Eric; Leduc, Dimitri; Jammes, Yves

    1999-01-01

    Electrical stimulation of phrenic afferent fibres in the dog elicits a reflex inhibition of efferent activity to the inspiratory intercostal muscles. However, electrical stimulation has a poor selectivity, so the sensory receptors responsible for this inhibition were not identified.In the present studies, cranial forces were applied during spontaneous inspiration to the abdominal surface of the central, tendinous portion of the canine diaphragm to activate tension mechanoreceptors in the muscle. Vagal afferent inputs were eliminated by vagotomy.The application of force to the central tendon caused a graded, reflex reduction in inspiratory intercostal activity, especially in external intercostal activity. This reduction was commonly associated with a decrease in inspiratory duration and was invariably attenuated after section of the cervical dorsal roots.In contrast, no change in inspiratory intercostal activity was seen when high frequency mechanical vibration was applied to the central tendon to stimulate diaphragmatic muscle spindles.These observations provide strong evidence that tension receptors in the diaphragm, but not muscle spindles, induce reflex inhibition of inspiratory intercostal activity. The expression of this reflex probably involves supraspinal structures. PMID:9831731

  20. Determinants of inspiratory muscle strength in healthy humans.

    PubMed

    Brown, Peter I; Johnson, Michael A; Sharpe, Graham R

    2014-06-01

    We investigated (1) the relationship between the baseline and inspiratory muscle training (IMT) induced increase in maximal inspiratory pressure (P(I,max)) and (2) the relative contributions of the inspiratory chest wall muscles and the diaphragm (P(oes)/P(di)) to P(I,max) prior to and following-IMT. Experiment 1: P(I,max) was assessed during a Müeller manoeuvre before and after 4-wk IMT (n=30). Experiment 2: P(I,max) and the relative contribution of the inspiratory chest wall muscles to the diaphragm (P(oes)/P(di)) were assessed during a Müeller manoeuvre before and after 4-wk IMT (n=20). Experiment 1: P(I,max) increased 19% (P<0.01) post-IMT and was correlated with baseline P(I,max) (r=-0.373, P<0.05). Experiment 2: baseline P(I,max) was correlated with P(oe)/P(di) (r=0.582, P<0.05) and after IMT PI,max increased 22% and Poe/Pdi increased 5% (P<0.05). In conclusion, baseline P(I,max) and the contribution of the chest wall inspiratory muscles relative to the diaphragm affect, in part, baseline and IMT-induced P(I,max). Great care should be taken when designing future IMT studies to ensure parity in the between-subject baseline P(I,max).

  1. Maximal inspiratory mouth pressure in Japanese elite female athletes.

    PubMed

    Ohya, Toshiyuki; Hagiwara, Masahiro; Chino, Kentaro; Suzuki, Yasuhiro

    2017-04-01

    Maximal inspiratory mouth pressure (MIP) is a common measurement of inspiratory muscle strength, which is often used in a variety of exercises to evaluate the effects of inspiratory muscle training. The characteristics of MIP in elite female athletes remain unclear. This study aimed to determine the characteristics of MIP at rest in a variety of sport-specific elite female athletes. We also aimed to clarify if there is a sex difference of MIP in elite athletes. We studied 169 Japanese elite female athletes and 301 Japanese elite male athletes. MIP was assessed using a portable autospirometer with a handheld mouth pressure meter. Female athletes who regularly experienced exercise-induced inspiratory muscle fatigue tended to have higher MIP values. The mean absolute MIP value in females was significantly lower than that in males. However, when this value was expressed relative to body mass, this difference disappeared. Our findings provide essential information for prescribed, sport-specific, inspiratory muscle training in elite female athletes. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Inspiratory muscle warm-up and inspiratory muscle training: separate and combined effects on intermittent running to exhaustion.

    PubMed

    Lomax, Mitch; Grant, Ian; Corbett, Jo

    2011-03-01

    In the present study, we examined the independent and combined effects of an inspiratory muscle warm-up and inspiratory muscle training on intermittent running to exhaustion. Twelve males were recruited to undertake four experimental trials. Two trials (Trials 1 and 2) preceded either a 4-week training period of 1 × 30 breaths twice daily at 50% (experimental group) or 15% (control group) maximal inspiratory mouth pressure (PImax). A further two trials (Trials 3 and 4) were performed after the 4 weeks. Trials 2 and 4 were preceded by a warm-up: 2 × 30 breaths at 40% PImax. Pre-training PImax and distance covered increased (P < 0.05) similarly between groups after the warm-up (~11% and ~5-7% PImax and distance covered, respectively). After training, PImax increased by 20 ± 6.1% (P < 0.01; d = 3.6) and 26.7 ± 6.3% (P < 0.01; d = 3.1) when training and warm-up were combined in the experimental group. Distance covered increased after training in the experimental group by 12 ± 4.9% (P < 0.01; d = 3.6) and 14.9 ± 4.5% (P < 0.01; d = 2.3) when training and warm-up interventions were combined. In conclusion, inspiratory muscle training and inspiratory muscle warm-up can both increase running distance independently, but the greatest increase is observed when they are combined.

  3. Effects of concurrent inspiratory and expiratory muscle training on respiratory and exercise performance in competitive swimmers.

    PubMed

    Wells, Gregory D; Plyley, Michael; Thomas, Scott; Goodman, Len; Duffin, James

    2005-08-01

    The efficiency of the respiratory system presents significant limitations on the body's ability to perform exercise due to the effects of the increased work of breathing, respiratory muscle fatigue, and dyspnoea. Respiratory muscle training is an intervention that may be able to address these limitations, but the impact of respiratory muscle training on exercise performance remains controversial. Therefore, in this study we evaluated the effects of a 12-week (10 sessions week(-1)) concurrent inspiratory and expiratory muscle training (CRMT) program in 34 adolescent competitive swimmers. The CRMT program consisted of 6 weeks during which the experimental group (E, n = 17) performed CRMT and the sham group (S, n = 17) performed sham CRMT, followed by 6 weeks when the E and S groups performed CRMT of differing intensities. CRMT training resulted in a significant improvement in forced inspiratory volume in 1 s (FIV1.0) (P = 0.050) and forced expiratory volume in 1 s (FEV1.0) (P = 0.045) in the E group, which exceeded the S group's results. Significant improvements in pulmonary function, breathing power, and chemoreflex ventilation threshold were observed in both groups, and there was a trend toward an improvement in swimming critical speed after 12 weeks of training (P = 0.08). We concluded that although swim training results in attenuation of the ventilatory response to hypercapnia and in improvements in pulmonary function and sustainable breathing power, supplemental respiratory muscle training has no additional effect except on dynamic pulmonary function variables.

  4. Should viral load thresholds be lowered?: Revisiting the WHO definition for virologic failure in patients on antiretroviral therapy in resource-limited settings.

    PubMed

    Labhardt, Niklaus D; Bader, Joëlle; Lejone, Thabo Ishmael; Ringera, Isaac; Hobbins, Michael A; Fritz, Christiane; Ehmer, Jochen; Cerutti, Bernard; Puga, Daniel; Klimkait, Thomas

    2016-07-01

    The World Health Organization (WHO) guidelines on antiretroviral therapy (ART) define treatment failure as 2 consecutive viral loads (VLs) ≥1000 copies/mL. There is, however, little evidence supporting 1000 copies as an optimal threshold to define treatment failure. Objective of this study was to assess the correlation of the WHO definition with the presence of drug-resistance mutations in patients who present with 2 consecutive unsuppressed VL in a resource-limited setting.In 10 nurse-led clinics in rural Lesotho children and adults on first-line ART for ≥6 months received a first routine VL. Those with plasma VL ≥80 copies/mL were enrolled in a prospective study, receiving enhanced adherence counseling (EAC) and a follow-up VL after 3 months. After a second unsuppressed VL genotypic resistance testing was performed. Viruses with major mutations against ≥2 drugs of the current regimen were classified as "resistant".A total of 1563 adults and 191 children received a first routine VL. Of the 138 adults and 53 children with unsuppressed VL (≥80 copies/mL), 165 (116 adults; 49 children) had a follow-up VL after EAC; 108 (74 adults; 34 children) remained unsuppressed and resistance testing was successful. Ninety of them fulfilled the WHO definition of treatment failure (both VL ≥1000 copies/mL); for another 18 both VL were unsuppressed but with <1000 copies/mL. The positive predictive value (PPV) for the WHO failure definition was 81.1% (73/90) for the presence of resistant virus. Among the 18 with VL levels between 80 and 1000 copies/mL, thereby classified as "non-failures", 17 (94.4%) harbored resistant viruses. Lowering the VL threshold from 1000 copies/mL to 80 copies/mL at both determinations had no negative influence on the PPV (83.3%; 90/108).The current WHO-definition misclassifies patients who harbor resistant virus at VL below 1000 c/mL as "nonfailing." Lowering the threshold to VL ≥80 copies/mL identifies a significantly

  5. Pulmonary adaptations to swim and inspiratory muscle training.

    PubMed

    Mickleborough, Timothy D; Stager, Joel M; Chatham, Ken; Lindley, Martin R; Ionescu, Alina A

    2008-08-01

    Because the anomalous respiratory characteristics of competitive swimmers have been suggested to be due to inspiratory muscle work, the respiratory muscle and pulmonary function of 30 competitively trained swimmers was assessed at the beginning and end of an intensive 12-week swim training (ST) program. Swimmers (n = 10) combined ST with either inspiratory muscle training (IMT) set at 80% sustained maximal inspiratory pressure (SMIP) with progressively increased work-rest ratios until task failure for 3-days per week (ST + IMT) or ST with sham-IMT (ST + SHAM-IMT, n = 10), or acted as controls (ST only, ST, n = 10). Measures of respiratory and pulmonary function were assessed at the beginning and end of the 12 week study period. There were no significant differences (P > 0.05) in respiratory and pulmonary function between groups (ST + IMT, ST + SHAM-IMT and ST) at baseline and at the end of the 12 week study period. However, within all groups significant increases (P < 0.05) were observed in a number of respiratory and pulmonary function variables at the end of the 12 week study, such as maximal inspiratory and expiratory pressure, inspiratory power output, forced vital capacity, forced expiratory and inspiratory volume in 1-s, total lung capacity and diffusion capacity of the lung. This study has demonstrated that there are no appreciable differences in terms of respiratory changes between elite swimmers undergoing a competitive ST program and those undergoing respiratory muscle training using the flow-resistive IMT device employed in the present study; as yet, the causal mechanisms involved are undefined.

  6. Inspiratory flow reserve in boys with Duchenne muscular dystrophy.

    PubMed

    De Bruin, P F; Ueki, J; Bush, A; Y Manzur, A; Watson, A; Pride, N B

    2001-06-01

    Patients with advanced muscular dystrophy frequently develop ventilatory failure. Currently respiratory impairment usually is assessed by measuring vital capacity and the mouth pressure generated during a maximal inspiratory maneuver (PI,max), neither of which directly measures ventilatory capacity. We assessed inspiratory flow reserve in 26 boys [mean (SD) age 12.8 (3.8) years] with Duchenne muscular dystrophy (DMD) without ventilatory failure and in 28 normal boys [mean (SD) age 12.6 (1.9) years] by analyzing the ratio between the largest inspiratory flow during tidal breathing (V'I,max(t)) and during a forced vital capacity maneuver (V'I,max(FVC), (V'I,max(t)/V'I,maxFVC). We have compared this ratio with the forced vital capacity FVC and PI,max measured at functional residual capacity. Mean PI,max was -90(30)cmH2O, average 112% (range 57-179%) of predicted values in control boys and -31(11)cmH2O, average 40% predicted values in DMD boys (control vs DMD, P < 0.001). FVC was reduced in DMD boys [59(20)% predicted values vs 86(10)% predicted values in controls, P < 0.01]. Absolute V'I,max(FVC) was strongly related to FVC in both control and DMD boys; V'I,max(FVC) (expressed as FVC. s(-1)) was not related to PI,max in either group. The mean V'I,max(t)/V'I,max(FVC); ratio was higher in DMD 0.22 (0.08) than in controls 0.12 (0.03) (P < 0.001) indicating a reduction in inspiratory flow reserve in DMD. Inspiratory flow reserve was within the normal range in 8 of 19 DMD patients with PI,max less than 50% of predicted values. We conclude that measurement of inspiratory flow reserve (V'I,max(t)/V'I,maxFVC ratio) provides a simple and direct assessment of dynamic inspiratory muscle function which is not replicated by static measurement of PI,max or vital capacity and might be useful in assessment of respiratory impairment in boys with Duchenne muscular dystrophy. Follow-up studies are required to establish whether measures of inspiratory flow reserve are of clinical value

  7. Inspiratory muscle training is ineffective in mechanically ventilated critically ill patients.

    PubMed

    Caruso, Pedro; Denari, Silvia D C; Ruiz, Soraia A L; Bernal, Karla G; Manfrin, Gabriela M; Friedrich, Celena; Deheinzelin, Daniel

    2005-12-01

    Invasive mechanical ventilation is associated with complications, and its abbreviation is desirable. The imbalance between increased workload, decreased inspiratory muscle strength and endurance is an important determinant of ventilator dependence. Low endurance may be present due to respiratory muscle atrophy, critical illness, or steroid use. Specific inspiratory muscle training may increase or preserve endurance. The objective of the study was to test the hypothesis that inspiratory muscle training from the beginning of mechanical ventilation would abbreviate the weaning duration and decrease reintubation rate. As a secondary objective, we described the evolution of inspiratory muscle strength with and without inspiratory muscle training. Prospective, randomized clinical trial in an adult clinical-surgical intensive care unit. Twelve patients trained the inspiratory muscles twice a day, and 13 patients did not (control). Training was performed adjusting the sensitivity of the ventilator based on the maximal inspiratory pressure. Patients underwent daily surveillance of the maximal inspiratory pressure. The weaning duration (31 +/- 22 hr, control and 23 +/- 11 hr, training group; P = .24) and reintubation rate (5 control and 3 training group; P = .39) were not statistically different. The maximal inspiratory pressure of the control group showed a trend toward a modest increase. In contrast, the training group showed a small decrease (P = .34). In acute critically ill patients, inspiratory muscle training from the beginning of mechanical ventilation neither abbreviated the weaning duration, nor decreased the reintubation rate. Inspiratory muscle strength tended to stay constant, along the mechanical ventilation, with or without this specific inspiratory muscle training.

  8. Effects of a 10-Week Inspiratory Muscle Training Program on Lower-Extremity Mobility in People with Multiple Sclerosis

    PubMed Central

    Fry, Donna

    2011-01-01

    Pulmonary muscle weakness is common in ambulatory people with multiple sclerosis (MS) and may lead to deficits in mobility function. The purpose of this study was to examine the effect of a 10-week home-based exercise program using an inspiratory muscle threshold trainer (IMT) on the results of four lower-extremity physical performance tests in people with MS. The study design was a two-group (experimental-control), pretest-posttest study. Outcome measures consisted of pulmonary function measures including maximal inspiratory pressure (MIP), maximal expiratory pressure (MEP), and maximal voluntary ventilation (MVV), and the following lower-extremity physical performance measures: the 6-Minute Walk (6MW) distance, gait velocity (GV), the Sit-to-Stand Test (SST), the Functional Stair Test (FST), and a balance test (BAL). A total of 46 ambulatory participants (Expanded Disability Status Scale [EDSS] score, 2.0–6.5) with MS were randomly assigned to an intervention group (mean EDSS score, 4.1) that received 10 weeks of home-based inspiratory muscle training or a nontreatment control group (mean EDSS score, 3.2). Of the original 46 participants, 20 intervention group participants and 19 control group participants completed the study. Compared with the control group, the intervention group made significantly greater gains in inspiratory muscle strength (P = .003) and timed balance scores (P = .008). A nonsignificant improvement in 6MW distance (P = .086) was also noted in the IMT-trained group as compared with the control group. This is the first study directly linking improvement in respiratory function to improvement in physical performance function in people with mild-to-moderate disability due to MS. PMID:24453703

  9. Sniff Nasal Inspiratory Pressure Does Not Decrease in Elderly Subjects

    PubMed Central

    Huang, Chien-Hui; Yang, Gee-Gwo; Chen, Tung-Wei

    2014-01-01

    [Purpose] Measurements of inspiratory strength are critical for detecting inspiratory muscle weakness. Sniff nasal inspiratory pressure (SNIP) is a quick, noninvasive measurement of global inspiratory strength; however, it is not clear how many trials are needed for reliable measurements. [Subjects and Methods] One hundred and nineteen subjects (age 39.9±16.5, range 18–69 yrs) completed the study. They were divided into subgroups of different ages and gender. Subjects were asked to take 20 maximal sniffs after normal expiration, with 30 seconds rest in-between. The highest values among the first 10 and last 10 SNIP maneuvers were recorded as SNIP1-10, and SNIP11-20, respectively. The paired t-test was used to compare the differences. Two-way measures ANOVA was used to compare the effects of age and gender on SNIP. [Results] SNIP 11–20 was significantly greater than SNIP1–10, suggesting that 10 trials is not enough to eliminate learning effects. Age did not affect SNIP in either gender, suggesting SNIP is preserved. In stepwise multiple linear regression analysis, the SNIP values were positively related with body mass index in women and positively related with weight in men. [Conclusion] The results suggest that twenty trials are needed for reliable SNIP measurements. The mean value and lower limits of normal SNIP are provided for clinical comparison. PMID:25276047

  10. Respiratory dysfunction in ventilated patients: can inspiratory muscle training help?

    PubMed

    Bissett, B; Leditschke, I A; Paratz, J D; Boots, R J

    2012-03-01

    Respiratory muscle dysfunction is associated with prolonged and difficult weaning from mechanical ventilation. This dysfunction in ventilator-dependent patients is multifactorial: there is evidence that inspiratory muscle weakness is partially explained by disuse atrophy secondary to ventilation, and positive end-expiratory pressure can further reduce muscle strength by negatively shifting the length-tension curve of the diaphragm. Polyneuropathy is also likely to contribute to apparent muscle weakness in critically ill patients, and nutritional and pharmaceutical effects may further compound muscle weakness. Moreover, psychological influences, including anxiety, may contribute to difficulty in weaning. There is recent evidence that inspiratory muscle training is safe and feasible in selected ventilator-dependent patients, and that this training can reduce the weaning period and improve overall weaning success rates. Extrapolating from evidence in sports medicine, as well as the known effects of inspiratory muscle training in chronic lung disease, a theoretical model is proposed to describe how inspiratory muscle training enhances weaning and recovery from mechanical ventilation. Possible mechanisms include increased protein synthesis (both Type 1 and Type 2 muscle fibres), enhanced limb perfusion via dampening of a sympathetically-mediated metaboreflex, reduced lactate levels and modulation of the perception of exertion, resulting in less dyspnoea and enhanced exercise capacity.

  11. Inspiratory augmentation during asphyxic hyperpnoea and gasping: proprioceptive influences.

    PubMed

    Macefield, G; Nail, B

    1986-04-01

    The relative inspiratory augmentations of sternomastoid, scalene, external intercostal, interchondral and diaphragmatic electromyographic activities were examined during the progressive asphyxia induced by rebreathing in pentobarbitone/urethane anaesthetized rabbits. Diaphragmatic activity augmented significantly less than that of the scalene, intercostal and interchondral muscles in response to the asphyxic increase in inspiratory drive (hyperpnoea). Cervical vagotomy significantly increased the levels of inspiratory activity during the asphyxic hyperpnoea but did not abolish these relations. Dorsal rhizotomy at levels appropriate for the respective recording sites significantly limited the intercostal and interchondral augmentations, and depressed diaphragmatic activity to a less pronounced extent, but did not affect scalene activity. The asphyxic apnoea succeeding the hyperpnoea was terminated by gasping respiration. Excepting the interchondrals each muscle exhibited significantly greater electromyographic amplitudes during gasping than during the terminal hyperpnoeic efforts. Only during gasping were the sternomastoid muscles recruited. The intercostal and scalene gasps were significantly greater than those exhibited by either the interchondrals or the diaphragm. Such disproportionate responses were not affected by vagotomy or dorsal rhizotomy. The disparate inspiratory contributions during progressive asphyxia can therefore only be partially accounted for by differences in proprioceptive control.

  12. Effect of acute inflation on the mechanics of the inspiratory muscles.

    PubMed

    De Troyer, André; Wilson, Theodore A

    2009-07-01

    When the lung is inflated acutely, the capacity of the diaphragm to generate pressure, in particular pleural pressure (Ppl), is impaired because the muscle during contraction is shorter and generates less force. At very high lung volumes, the pressure-generating capacity of the diaphragm may be further reduced by an increase in the muscle radius of curvature. Lung inflation similarly impairs the pressure-generating capacity of the inspiratory intercostal muscles, both the parasternal intercostals and the external intercostals. In contrast to the diaphragm, however, this adverse effect is largely related to the orientation and motion of the ribs, rather than the ability of the muscles to generate force. During combined activation of the two sets of muscles, the change in Ppl is larger than during isolated diaphragm activation, and this added load on the diaphragm reduces the shortening of the muscle and increases muscle force. In addition, activation of the diaphragm suppresses the cranial displacement of the passive diaphragm that occurs during isolated intercostal contraction and increases the respiratory effect of the intercostals. As a result, the change in Ppl generated during combined diaphragm-intercostal activation is greater than the sum of the pressures generated during separate muscle activation. Although this synergistic interaction becomes particularly prominent at high lung volumes, lung inflation, either bilateral or unilateral, places a substantial stress on the inspiratory muscle pump.

  13. Sniff nasal inspiratory pressure. Reference values in Caucasian children.

    PubMed

    Stefanutti, D; Fitting, J W

    1999-01-01

    Like in adults, normal values of maximal inspiratory pressure (PImax) and maximal expiratory pressure (PEmax) span a large range in children, making interpretation of low values difficult. Recently, sniff nasal inspiratory pressure (Pnsn) was developed as a new noninvasive test of inspiratory muscle strength. In healthy adults, Pnsn is most often higher than PImax. The aim of this study was to establish reference values of Pnsn in children and to compare them with PImax. A group of 180 unselected healthy children age 6 to 17 yr was studied in a school setting. All had a forced vital capacity (FVC) > 80% of predicted and a ratio of forced expiratory volume in one second/forced vital capacity (FEV1/ FVC) > 85% of predicted. All maneuvers were performed in the sitting position. The Pnsn was measured using a catheter occluding one nostril during maximal sniffs performed through the contralateral nostril from FRC. The PImax was measured from FRC and residual volume, and PEmax from FRC and total lung capacity. All children were able to perform the Pnsn maneuver easily. Pnsn was 104 +/- 26 cm H2O in boys and 93 +/- 23 cm H2O in girls (p < 0.005). These values were similar to those previously measured in healthy adults. Pnsn correlated with age, weight, and height in boys, but not in girls. In both sexes, Pnsn was higher than PImax measured at the same lung volume (FRC) (p < 0. 0001). Pnsn was >= PImaxFRC in 73 of 93 boys and 79 of 87 girls. We conclude that Pnsn can be easily used to assess inspiratory muscle strength in children age 6 yr or more, providing values higher than PImax. Normal values are independent of age in girls, and can be predicted from age by a first-degree equation in boys. Being easy and noninvasive, Pnsn may prove useful to assess inspiratory muscle strength in children with neuromuscular disorders.

  14. Inspiratory muscle training attenuates the human respiratory muscle metaboreflex

    PubMed Central

    Witt, Jonathan D; Guenette, Jordan A; Rupert, Jim L; McKenzie, Donald C; Sheel, A William

    2007-01-01

    We hypothesized that inspiratory muscle training (IMT) would attenuate the sympathetically mediated heart rate (HR) and mean arterial pressure (MAP) increases normally observed during fatiguing inspiratory muscle work. An experimental group (Exp, n = 8) performed IMT 6 days per week for 5 weeks at 50% of maximal inspiratory pressure (MIP), while a control group (Sham, n = 8) performed IMT at 10% MIP. Pre- and post-training, subjects underwent a eucapnic resistive breathing task (RBT) (breathing frequency = 15 breaths min−1, duty cycle = 0.70) while HR and MAP were continuously monitored. Following IMT, MIP increased significantly (P < 0.05) in the Exp group (−125 ± 10 to −146 ± 12 cmH2O; mean ±s.e.m.) but not in the Sham group (−141 ± 11 to −148 ± 11 cmH2O). Prior to IMT, the RBT resulted in significant increases in HR (Sham: 59 ± 2 to 83 ± 4 beats min−1; Exp: 62 ± 3 to 83 ± 4 beats min−1) and MAP (Sham: 88 ± 2 to 106 ± 3 mmHg; Exp: 84 ± 1 to 99 ± 3 mmHg) in both groups relative to rest. Following IMT, the Sham group observed similar HR and MAP responses to the RBT while the Exp group failed to increase HR and MAP to the same extent as before (HR: 59 ± 3 to 74 ± 2 beats min−1; MAP: 84 ± 1 to 89 ± 2 mmHg). This attenuated cardiovascular response suggests a blunted sympatho-excitation to resistive inspiratory work. We attribute our findings to a reduced activity of chemosensitive afferents within the inspiratory muscles and may provide a mechanism for some of the whole-body exercise endurance improvements associated with IMT. PMID:17855758

  15. Expanding Access to HIV Viral Load Testing: A Systematic Review of RNA Stability in EDTA Tubes and PPT beyond Current Time and Temperature Thresholds

    PubMed Central

    Bonner, Kimberly; Siemieniuk, Reed A.; Boozary, Andrew; Roberts, Teri; Fajardo, Emmanuel; Cohn, Jennifer

    2014-01-01

    Background HIV viral load (VL) testing is the gold standard for antiretroviral treatment monitoring, but many barriers exist to VL testing in resource-limited settings, including storage and transport limitations for whole blood and plasma. Data from various studies indicate that HIV RNA is stable beyond current recommendations. We conducted a systematic review to assess stability data of HIV RNA in whole blood and plasma across times and temperatures. Methods and Findings Using a pre-defined protocol, five databases were searched for studies where blood samples from HIV patients were stored at time and temperature points that exceeded manufacturer recommendations. RNA stability, the primary outcome, was measured by the difference in means compared to samples stored within established thresholds. RNA stability was defined as ≤0.5 log degradation. The search identified 10,716 titles, of which nine full-text articles were included for review. HIV RNA maintained stability in EDTA whole blood and plasma at all measured time points up to 168 hours when stored at 4°C, while stability was detected at 72 hours (95% confidence) in whole blood at 25°C, with data points before and beyond 72 hours suggesting stability but not reaching statistical significance. For EDTA plasma stored at 30°C, stability was maintained up to 48 hours (95% confidence), with OLS linear regression estimates up to 127 hours, suggesting stability. Overall, quality of studies was moderate. Limitations included small sample sizes, few studies meeting inclusion criteria, and no studies examining RNA stability in low viremia (<3,000 copies/mL) environments. Conclusions Whole blood and plasma samples in EDTA may remain stable under conditions exceeding current manufacturer recommendations for HIV VL testing. However, given the limited number of studies addressing this question, especially at low levels of viremia, additional evaluations on HIV RNA stability in EDTA tubes and PPT in field conditions

  16. Expanding access to HIV viral load testing: a systematic review of RNA stability in EDTA tubes and PPT beyond current time and temperature thresholds.

    PubMed

    Bonner, Kimberly; Siemieniuk, Reed A; Boozary, Andrew; Roberts, Teri; Fajardo, Emmanuel; Cohn, Jennifer

    2014-01-01

    HIV viral load (VL) testing is the gold standard for antiretroviral treatment monitoring, but many barriers exist to VL testing in resource-limited settings, including storage and transport limitations for whole blood and plasma. Data from various studies indicate that HIV RNA is stable beyond current recommendations. We conducted a systematic review to assess stability data of HIV RNA in whole blood and plasma across times and temperatures. Using a pre-defined protocol, five databases were searched for studies where blood samples from HIV patients were stored at time and temperature points that exceeded manufacturer recommendations. RNA stability, the primary outcome, was measured by the difference in means compared to samples stored within established thresholds. RNA stability was defined as ≤0.5 log degradation. The search identified 10,716 titles, of which nine full-text articles were included for review. HIV RNA maintained stability in EDTA whole blood and plasma at all measured time points up to 168 hours when stored at 4°C, while stability was detected at 72 hours (95% confidence) in whole blood at 25°C, with data points before and beyond 72 hours suggesting stability but not reaching statistical significance. For EDTA plasma stored at 30°C, stability was maintained up to 48 hours (95% confidence), with OLS linear regression estimates up to 127 hours, suggesting stability. Overall, quality of studies was moderate. Limitations included small sample sizes, few studies meeting inclusion criteria, and no studies examining RNA stability in low viremia (<3,000 copies/mL) environments. Whole blood and plasma samples in EDTA may remain stable under conditions exceeding current manufacturer recommendations for HIV VL testing. However, given the limited number of studies addressing this question, especially at low levels of viremia, additional evaluations on HIV RNA stability in EDTA tubes and PPT in field conditions are needed.

  17. Relative activity of respiratory muscles during prescribed inspiratory muscle training in healthy people

    PubMed Central

    Jung, Ju-hyeon; Kim, Nan-soo

    2016-01-01

    [Purpose] This study aimed to determine the effects of different intensities of inspiratory muscle training on the relative respiratory muscle activity in healthy adults. [Subjects and Methods] Thirteen healthy male volunteers were instructed to perform inspiratory muscle training (0%, 40%, 60%, and 80% maximal inspiratory pressure) on the basis of their individual intensities. The inspiratory muscle training was performed in random order of intensities. Surface electromyography data were collected from the right-side diaphragm, external intercostal, and sternocleidomastoid, and pulmonary functions (forced expiratory volume in 1 s, forced vital capacity, and their ratio; peak expiratory flow; and maximal inspiratory pressure) were measured. [Results] Comparison of the relative activity of the diaphragm showed significant differences between the 60% and 80% maximal inspiratory pressure intensities and baseline during inspiratory muscle training. Furthermore, significant differences were found in sternocleidomastoid relative activity between the 60% and 80% maximal inspiratory pressure intensities and baseline during inspiratory muscle training. [Conclusion] During inspiratory muscle training in the clinic, the patients were assisted (verbally or through feedback) by therapists to avoid overactivation of their accessory muscles (sternocleidomastoid). This study recommends that inspiratory muscle training be performed at an accurate and appropriate intensity through the practice of proper deep breathing. PMID:27134409

  18. Relative activity of respiratory muscles during prescribed inspiratory muscle training in healthy people.

    PubMed

    Jung, Ju-Hyeon; Kim, Nan-Soo

    2016-03-01

    [Purpose] This study aimed to determine the effects of different intensities of inspiratory muscle training on the relative respiratory muscle activity in healthy adults. [Subjects and Methods] Thirteen healthy male volunteers were instructed to perform inspiratory muscle training (0%, 40%, 60%, and 80% maximal inspiratory pressure) on the basis of their individual intensities. The inspiratory muscle training was performed in random order of intensities. Surface electromyography data were collected from the right-side diaphragm, external intercostal, and sternocleidomastoid, and pulmonary functions (forced expiratory volume in 1 s, forced vital capacity, and their ratio; peak expiratory flow; and maximal inspiratory pressure) were measured. [Results] Comparison of the relative activity of the diaphragm showed significant differences between the 60% and 80% maximal inspiratory pressure intensities and baseline during inspiratory muscle training. Furthermore, significant differences were found in sternocleidomastoid relative activity between the 60% and 80% maximal inspiratory pressure intensities and baseline during inspiratory muscle training. [Conclusion] During inspiratory muscle training in the clinic, the patients were assisted (verbally or through feedback) by therapists to avoid overactivation of their accessory muscles (sternocleidomastoid). This study recommends that inspiratory muscle training be performed at an accurate and appropriate intensity through the practice of proper deep breathing.

  19. Adaptive Thresholds

    SciTech Connect

    Bremer, P. -T.

    2014-08-26

    ADAPT is a topological analysis code that allow to compute local threshold, in particular relevance based thresholds for features defined in scalar fields. The initial target application is vortex detection but the software is more generally applicable to all threshold based feature definitions.

  20. Inspiratory muscle training enhances pulmonary O(2) uptake kinetics and high-intensity exercise tolerance in humans.

    PubMed

    Bailey, Stephen J; Romer, Lee M; Kelly, James; Wilkerson, Daryl P; DiMenna, Fred J; Jones, Andrew M

    2010-08-01

    Fatigue of the respiratory muscles during intense exercise might compromise leg blood flow, thereby constraining oxygen uptake (Vo(2)) and limiting exercise tolerance. We tested the hypothesis that inspiratory muscle training (IMT) would reduce inspiratory muscle fatigue, speed Vo(2) kinetics and enhance exercise tolerance. Sixteen recreationally active subjects (mean + or - SD, age 22 + or - 4 yr) were randomly assigned to receive 4 wk of either pressure threshold IMT [30 breaths twice daily at approximately 50% of maximum inspiratory pressure (MIP)] or sham treatment (60 breaths once daily at approximately 15% of MIP). The subjects completed moderate-, severe- and maximal-intensity "step" exercise transitions on a cycle ergometer before (Pre) and after (Post) the 4-wk intervention period for determination of Vo(2) kinetics and exercise tolerance. There were no significant changes in the physiological variables of interest after Sham. After IMT, baseline MIP was significantly increased (Pre vs. Post: 155 + or - 22 vs. 181 + or - 21 cmH(2)O; P < 0.001), and the degree of inspiratory muscle fatigue was reduced after severe- and maximal-intensity exercise. During severe exercise, the Vo(2) slow component was reduced (Pre vs. Post: 0.60 + or - 0.20 vs. 0.53 + or - 0.24 l/min; P < 0.05) and exercise tolerance was enhanced (Pre vs. Post: 765 + or - 249 vs. 1,061 + or - 304 s; P < 0.01). Similarly, during maximal exercise, the Vo(2) slow component was reduced (Pre vs. Post: 0.28 + or - 0.14 vs. 0.18 + or - 0.07 l/min; P < 0.05) and exercise tolerance was enhanced (Pre vs. Post: 177 + or - 24 vs. 208 + or - 37 s; P < 0.01). Four weeks of IMT, which reduced inspiratory muscle fatigue, resulted in a reduced Vo(2) slow-component amplitude and an improved exercise tolerance during severe- and maximal-intensity exercise. The results indicate that the enhanced exercise tolerance observed after IMT might be related, at least in part, to improved Vo(2) dynamics, presumably as a

  1. Estimation of Pharyngeal Collapsibility During Sleep by Peak Inspiratory Airflow.

    PubMed

    Azarbarzin, Ali; Sands, Scott A; Taranto-Montemurro, Luigi; Oliveira Marques, Melania D; Genta, Pedro R; Edwards, Bradley A; Butler, James; White, David P; Wellman, Andrew

    2017-01-01

    Pharyngeal critical closing pressure (Pcrit) or collapsibility is a major determinant of obstructive sleep apnea (OSA) and may be used to predict the success/failure of non-continuous positive airway pressure (CPAP) therapies. Since its assessment involves overnight manipulation of CPAP, we sought to validate the peak inspiratory flow during natural sleep (without CPAP) as a simple surrogate measurement of collapsibility. Fourteen patients with OSA attended overnight polysomnography with pneumotachograph airflow. The middle third of the night (non-rapid eye movement sleep [NREM]) was dedicated to assessing Pcrit in passive and active states via abrupt and gradual CPAP pressure drops, respectively. Pcrit is the extrapolated CPAP pressure at which flow is zero. Peak and mid-inspiratory flow off CPAP was obtained from all breaths during sleep (excluding arousal) and compared with Pcrit. Active Pcrit, measured during NREM sleep, was strongly correlated with both peak and mid-inspiratory flow during NREM sleep (r = -0.71, p < .005 and r = -0.64, p < .05, respectively), indicating that active pharyngeal collapsibility can be reliably estimated from simple airflow measurements during polysomnography. However, there was no significant relationship between passive Pcrit, measured during NREM sleep, and peak or mid-inspiratory flow obtained from NREM sleep. Flow measurements during REM sleep were not significantly associated with active or passive Pcrit. Our study demonstrates the feasibility of estimating active Pcrit using flow measurements in patients with OSA. This method may enable clinicians to estimate pharyngeal collapsibility without sophisticated equipment and potentially aid in the selection of patients for non- positive airway pressure therapies.

  2. Impact of heat stress on conception rate of dairy cows in the moderate climate considering different temperature-humidity index thresholds, periods relative to breeding, and heat load indices.

    PubMed

    Schüller, L K; Burfeind, O; Heuwieser, W

    2014-05-01

    The objectives of this retrospective study were to investigate the relationship between temperature-humidity index (THI) and conception rate (CR) of lactating dairy cows, to estimate a threshold for this relationship, and to identify periods of exposure to heat stress relative to breeding in an area of moderate climate. In addition, we compared three different heat load indices related to CR: mean THI, maximum THI, and number of hours above the mean THI threshold. The THI threshold for the influence of heat stress on CR was 73. It was statistically chosen based on the observed relationship between the mean THI at the day of breeding and the resulting CR. Negative effects of heat stress, however, were already apparent at lower levels of THI, and 1 hour of mean THI of 73 or more decreased the CR significantly. The CR of lactating dairy cows was negatively affected by heat stress both before and after the day of breeding. The greatest negative impact of heat stress on CR was observed 21 to 1 day before breeding. When the mean THI was 73 or more in this period, CR decreased from 31% to 12%. Compared with the average maximum THI and the total number of hours above a threshold of more than or 9 hours, the mean THI was the most sensitive heat load index relating to CR. These results indicate that the CR of dairy cows raised in the moderate climates is highly affected by heat stress. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Weighted Polynomial Approximation for Automated Detection of Inspiratory Flow Limitation.

    PubMed

    Huang, Sheng-Cheng; Jan, Hao-Yu; Fu, Tieh-Cheng; Lin, Wen-Chen; Lin, Geng-Hong; Lin, Wen-Chi; Tsai, Cheng-Lun; Lin, Kang-Ping

    2017-01-01

    Inspiratory flow limitation (IFL) is a critical symptom of sleep breathing disorders. A characteristic flattened flow-time curve indicates the presence of highest resistance flow limitation. This study involved investigating a real-time algorithm for detecting IFL during sleep. Three categories of inspiratory flow shape were collected from previous studies for use as a development set. Of these, 16 cases were labeled as non-IFL and 78 as IFL which were further categorized into minor level (20 cases) and severe level (58 cases) of obstruction. In this study, algorithms using polynomial functions were proposed for extracting the features of IFL. Methods using first- to third-order polynomial approximations were applied to calculate the fitting curve to obtain the mean absolute error. The proposed algorithm is described by the weighted third-order (w.3rd-order) polynomial function. For validation, a total of 1,093 inspiratory breaths were acquired as a test set. The accuracy levels of the classifications produced by the presented feature detection methods were analyzed, and the performance levels were compared using a misclassification cobweb. According to the results, the algorithm using the w.3rd-order polynomial approximation achieved an accuracy of 94.14% for IFL classification. We concluded that this algorithm achieved effective automatic IFL detection during sleep.

  4. Weighted Polynomial Approximation for Automated Detection of Inspiratory Flow Limitation

    PubMed Central

    Huang, Sheng-Cheng; Jan, Hao-Yu; Fu, Tieh-Cheng; Lin, Geng-Hong; Lin, Wen-Chi; Lin, Kang-Ping

    2017-01-01

    Inspiratory flow limitation (IFL) is a critical symptom of sleep breathing disorders. A characteristic flattened flow-time curve indicates the presence of highest resistance flow limitation. This study involved investigating a real-time algorithm for detecting IFL during sleep. Three categories of inspiratory flow shape were collected from previous studies for use as a development set. Of these, 16 cases were labeled as non-IFL and 78 as IFL which were further categorized into minor level (20 cases) and severe level (58 cases) of obstruction. In this study, algorithms using polynomial functions were proposed for extracting the features of IFL. Methods using first- to third-order polynomial approximations were applied to calculate the fitting curve to obtain the mean absolute error. The proposed algorithm is described by the weighted third-order (w.3rd-order) polynomial function. For validation, a total of 1,093 inspiratory breaths were acquired as a test set. The accuracy levels of the classifications produced by the presented feature detection methods were analyzed, and the performance levels were compared using a misclassification cobweb. According to the results, the algorithm using the w.3rd-order polynomial approximation achieved an accuracy of 94.14% for IFL classification. We concluded that this algorithm achieved effective automatic IFL detection during sleep. PMID:28634497

  5. Systematic Review of Inspiratory Muscle Training After Cerebrovascular Accident.

    PubMed

    Martín-Valero, Rocío; De La Casa Almeida, Maria; Casuso-Holgado, Maria Jesus; Heredia-Madrazo, Alfonso

    2015-11-01

    This systematic review examines levels of evidence and recommendation grades of various therapeutic interventions of inspiratory muscle training in people who have had a stroke. Benefits from different levels of force and resistance in respiratory muscles are shown in this population. This review was conducted following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) directives and was completed in November 2014. The search limits were studies published in English between 2004 and 2014. Relevant studies were searched for in MEDLINE, PEDro, OAIster, Scopus, PsycINFO, Web of Knowledge, CINAHL, SPORTDiscus, DOAJ, Cochrane, Embase, Academic Search Complete, Fuente Académica, and MedicLatina. Initially, 20 articles were identified. After analyzing all primary documents, 14 studies were excluded. Only 6 studies were relevant to this review. Three different types of interventions were found (maximum inspiratory training, controlled training, and nonintervention) in 3 different groups. One specific study compared 3 inspiratory muscle training groups with a group of breathing exercises (diaphragmatic exercises with pursed lips) and a control group. Future long-term studies with larger sample sizes are needed. It is necessary to apply respiratory muscle training as a service of the national health system and to consider its inclusion in the conventional neurological program. Copyright © 2015 by Daedalus Enterprises.

  6. Recovery of inspiratory intercostal muscle activity following high cervical hemisection.

    PubMed

    Dougherty, B J; Lee, K Z; Gonzalez-Rothi, E J; Lane, M A; Reier, P J; Fuller, D D

    2012-09-30

    Anatomical and neurophysiological evidence indicates that thoracic interneurons can serve a commissural function and activate contralateral motoneurons. Accordingly, we hypothesized that respiratory-related intercostal (IC) muscle electromyogram (EMG) activity would be only modestly impaired by a unilateral cervical spinal cord injury. Inspiratory tidal volume (VT) was recorded using pneumotachography and EMG activity was recorded bilaterally from the 1st to 2nd intercostal space in anesthetized, spontaneously breathing rats. Studies were conducted at 1-3 days, 2 wks or 8 wks following C2 spinal cord hemisection (C2HS). Data were collected during baseline breathing and a brief respiratory challenge (7% CO(2)). A substantial reduction in inspiratory intercostal EMG bursting ipsilateral to the lesion was observed at 1-3 days post-C2HS. However, a time-dependent return of activity occurred such that by 2 wks post-injury inspiratory intercostal EMG bursts ipsilateral to the lesion were similar to age-matched, uninjured controls. The increases in ipsilateral intercostal EMG activity occurred in parallel with increases in VT following the injury (R=0.55; P<0.001). We conclude that plasticity occurring within a "crossed-intercostal" circuitry enables a robust, spontaneous recovery of ipsilateral intercostal activity following C2HS in rats. Copyright © 2012. Published by Elsevier B.V.

  7. Recovery of inspiratory intercostal muscle activity following high cervical hemisection

    PubMed Central

    Dougherty, B.J.; Lee, K.Z.; Gonzalez-Rothi, E.J.; Lane, M.A.; Reier, P.J.; Fuller, D.D.

    2014-01-01

    Anatomical and neurophysiological evidence indicates that thoracic interneurons can serve a commissural function and activate contralateral motoneurons. Accordingly, we hypothesized that respiratory-related intercostal (IC) muscle electromyogram (EMG) activity would be only modestly impaired by a unilateral cervical spinal cord injury. Inspiratory tidal volume (VT) was recorded using pneumotachography and EMG activity was recorded bilaterally from the 1st to 2nd intercostal space in anesthetized, spontaneously breathing rats. Studies were conducted at 1–3 days, 2 wks or 8 wks following C2 spinal cord hemisection (C2HS). Data were collected during baseline breathing and a brief respiratory challenge (7% CO2). A substantial reduction in inspiratory intercostal EMG bursting ipsilateral to the lesion was observed at 1–3 days post-C2HS. However, a time-dependent return of activity occurred such that by 2 wks post-injury inspiratory intercostal EMG bursts ipsilateral to the lesion were similar to age-matched, uninjured controls. The increases in ipsilateral intercostal EMG activity occurred in parallel with increases in VT following the injury (R = 0.55; P < 0.001). We conclude that plasticity occurring within a “crossed-intercostal” circuitry enables a robust, spontaneous recovery of ipsilateral intercostal activity following C2HS in rats. PMID:22705013

  8. Peak or plateau maximal inspiratory mouth pressure: which is best?

    PubMed

    Windisch, W; Hennings, E; Sorichter, S; Hamm, H; Criée, C P

    2004-05-01

    There is no clear evidence as to how maximal inspiratory mouth pressure (PI,max) should be measured, although plateau pressures sustained for 1 s and measured at residual volume (RV) are usually recommended. Peak and plateau PI,max were measured at RV and at functional residual capacity (FRC) in 533 healthy subjects (aged 10-90 yrs) in order to comparably test all PI,max measurements for their predictors, reproducibility and normal values. Plateau pressures accounted for 82.0-86.3%, of peak pressures. Peak and plateau pressures measured at FRC accounted for 84.3-90.5% of pressures at RV, and were highly correlated. Age was negatively predictive and weight and body mass index positively predictive of PI,max, but regression parameters were low. All PI,max measurements were comparable when calculating regression parameters, between-subject variability and reproducibility. In conclusion, peak and plateau maximal inspiratory mouth pressure are comparably useful for the assessment of inspiratory muscle strength and can be reliably measured at functional residual capacity and at residual volume. Regression equations are of low impact in predicting normal values due to the weak influence of demographic and anthropometric factors and to the high unexplained between-subject-variability. Age-related 5th percentiles can indicate the lower limit of the normal range.

  9. Trapping volumetric measurement by multidetector CT in chronic obstructive pulmonary disease: Effect of CT threshold

    SciTech Connect

    Wang, Xiaohua; Yuan, Huishu; Duan, Jianghui; Du, Yipeng; Shen, Ning; He, Bei

    2013-08-15

    Purpose: The purpose of this study was to evaluate the effect of various computed tomography (CT) thresholds on trapping volumetric measurements by multidetector CT in chronic obstructive pulmonary disease (COPD).Methods: Twenty-three COPD patients were scanned with a 64-slice CT scanner in both the inspiratory and expiratory phase. CT thresholds of −950 Hu in inspiration and −950 to −890 Hu in expiration were used, after which trapping volumetric measurements were made using computer software. Trapping volume percentage (Vtrap%) under the different CT thresholds in the expiratory phase and below −950 Hu in the inspiratory phase was compared and correlated with lung function.Results: Mean Vtrap% was similar under −930 Hu in the expiratory phase and below −950 Hu in the inspiratory phase, being 13.18 ± 9.66 and 13.95 ± 6.72 (both lungs), respectively; this difference was not significant (P= 0.240). Vtrap% under −950 Hu in the inspiratory phase and below the −950 to −890 Hu threshold in the expiratory phase was moderately negatively correlated with the ratio of forced expiratory volume in one second to forced vital capacity and the measured value of forced expiratory volume in one second as a percentage of the predicted value.Conclusions: Trapping volumetric measurement with multidetector CT is a promising method for the quantification of COPD. It is important to know the effect of various CT thresholds on trapping volumetric measurements.

  10. Inspiratory Muscle Performance of Former Smokers and Nonsmokers Using the Test of Incremental Respiratory Endurance.

    PubMed

    Formiga, Magno F; Campos, Michael A; Cahalin, Lawrence P

    2017-09-26

    Smoking has potential deleterious effects on respiratory muscle function. Smokers may present with reduced inspiratory muscle strength and endurance. We compared inspiratory muscle performance of nonsmokers with that of former smokers without overt respiratory problems via the Test of Incremental Respiratory Endurance. This study was performed on 42 healthy subjects between the ages of 30 and 79 y (mean ± SD of 56.5 ± 14.4 y). Fourteen male and 7 female former smokers were matched to nonsmokers based on sex, age, height, and weight. Subjects completed a questionnaire about their health and current smoking status. Testing included the best of 3 or more consistent trials. The Test of Incremental Respiratory Endurance measurements included maximal inspiratory pressure measured from residual volume as well as sustained maximal inspiratory pressure and inspiratory duration measured from residual volume to total lung capacity during a maximal sustained inhalation. No significant difference in inspiratory performance of the entire group of former smokers compared with nonsmokers was found. However, separate sex analyses found a significant difference in sustained maximal inspiratory pressure between male former smokers and nonsmokers (518.7 ± 205.0 pressure time units vs 676.5 ± 255.2 pressure time units, P = .041). We found similar maximal inspiratory pressure between former smokers and nonsmokers via the Test of Incremental Respiratory Endurance, but the significant difference in sustained maximal inspiratory pressure between male former smokers and nonsmokers suggests that the sustained maximal inspiratory pressure may have greater discriminatory ability in assessing the effects of smoking on inspiratory muscle performance. Further investigation of the effects of smoking on inspiratory performance via the Test of Incremental Respiratory Endurance is warranted. Copyright © 2017 by Daedalus Enterprises.

  11. Relation of lung function, maximal inspiratory pressure, dyspnoea, and quality of life with exercise capacity in patients with chronic obstructive pulmonary disease.

    PubMed

    Wijkstra, P J; TenVergert, E M; van der Mark, T W; Postma, D S; Van Altena, R; Kraan, J; Koëter, G H

    1994-05-01

    Several studies have shown that both objective and subjective measurements are related to exercise capacity in patients with chronic obstructive pulmonary disease (COPD). In this study the relative contribution of lung function, maximal inspiratory pressure, dyspnoea, and quality of life to the performance in a walking distance test and a bicycle ergometer test was investigated. Static lung volumes, forced expiratory volume in one second (FEV1), inspiratory slow vital capacity (IVC), transfer factor for carbon monoxide (TLCO) divided by the alveolar volume (TLCO/VA), static compliance (Cst), and maximal inspiratory peak pressure (PImaxPOES) were measured in 40 patients with COPD with severe airways obstruction (mean FEV1 44% predicted, mean FEV1/IVC 37% predicted). Quality of life was assessed by the Chronic Respiratory Questionnaire (CRQ) and dyspnoea by the Borg category scale. Exercise capacity was measured by both a six minute walking distance (test) and a maximal work load of the bicycle ergometer test (Wmax). Spirometric values and maximal inspiratory pressure were modestly correlated with both the six minute walking test and Wmax, r values ranging from 0.50 to 0.58. The TLCO was strongly correlated with the six minute walking test (r = 0.62) and with Wmax (r = 0.78). Quality of life showed no correlation with exercise capacity, while there was a correlation between dyspnoea and the six minute walking test (r = -0.41). Backward linear regression analysis selected TLCO and PImaxPOES as the most significant determinants for exercise performance. They explained 54% and 69% of the variance in the six minute walking test and Wmax, respectively. The results show that exercise capacity in patients with COPD with severe airways obstruction is more strongly related to inspiratory muscle strength and lung function than to dyspnoea and quality of life. The significant correlation between dyspnoea and the six minute walking test suggests that subjective variables are

  12. Threshold Digraphs

    PubMed Central

    Cloteaux, Brian; LaMar, M. Drew; Moseman, Elizabeth; Shook, James

    2014-01-01

    A digraph whose degree sequence has a unique vertex labeled realization is called threshold. In this paper we present several characterizations of threshold digraphs and their degree sequences, and show these characterizations to be equivalent. Using this result, we obtain a new, short proof of the Fulkerson-Chen theorem on degree sequences of general digraphs. PMID:26601029

  13. Effects of inspiratory muscle training on exercise capacity and spontaneous physical activity in elderly subjects: a randomized controlled pilot trial.

    PubMed

    Aznar-Lain, S; Webster, A L; Cañete, S; San Juan, A F; López Mojares, L M; Pérez, M; Lucia, A; Chicharro, J L

    2007-12-01

    Inspiratory muscle training (IMT) has been shown to improve exercise capacity in diseased populations. We chose to examine the effects of eight weeks of IMT on exercise capacity and spontaneous physical activity in elderly individuals. Eighteen moderately active elderly subjects (68.1 +/- 6.8 years [mean +/- SD]; range 58 - 78 years) were randomly assigned to either an experimental group (n = 9) or a control group (n = 9) in a double-blind manner. All subjects underwent inspiratory muscle testing, treadmill exercise testing and a four-day measurement period of spontaneous physical activity (using accelerometry) both pre- and post-intervention. The experimental group underwent eight weeks of incremental IMT using a pressure threshold device, while the control group underwent sham training using identical devices. After IMT training, inspiratory muscle strength (mean + 21.5 cm H (2)O; 95 % CI: 9.3, 33.7; p = 0.002), V.O (2peak) (+ 2.8 ml x min (-1) x kg (-1); 95 % CI: 0.5, 5.2; p = 0.022), time to exhaustion during a fixed workload treadmill test (+ 7.1 min; 95 % CI: 1.8, 2.4; p = 0.013) and time engaged in moderate-to-vigorous physical activity (+ 59 min; 95 % CI: 15, 78; p = 0.008) improved. Except for a decline in moderate-to-vigorous physical activity, no significant changes were seen in the control group. Therefore, IMT may be a useful technique for positively influencing exercise capacity and physical activity in elderly individuals.

  14. The role of inspiratory muscle training in the management of asthma and exercise-induced bronchoconstriction.

    PubMed

    Shei, Ren-Jay; Paris, Hunter L R; Wilhite, Daniel P; Chapman, Robert F; Mickleborough, Timothy D

    2016-11-01

    Asthma is a pathological condition comprising of a variety of symptoms which affect the ability to function in daily life. Due to the high prevalence of asthma and associated healthcare costs, it is important to identify low-cost alternatives to traditional pharmacotherapy. One of these low cost alternatives is the use of inspiratory muscle training (IMT), which is a technique aimed at increasing the strength and endurance of the diaphragm and accessory muscles of respiration. IMT typically consists of taking voluntary inspirations against a resistive load across the entire range of vital capacity while at rest. In healthy individuals, the most notable benefits of IMT are an increase in diaphragm thickness and strength, a decrease in exertional dyspnea, and a decrease in the oxygen cost of breathing. Due to the presence of expiratory flow limitation in asthma and exercise-induced bronchoconstriction, dynamic lung hyperinflation is common. As a result of varying operational lung volumes, due in part to hyperinflation, the respiratory muscles may operate far from the optimal portion of the length-tension curve, and thus may be forced to operate against a low pulmonary compliance. Therefore, the ability of these muscles to generate tension is reduced, and for any given level of ventilation, the work of breathing is increased as compared to non-asthmatics. Evidence that IMT is an effective treatment for asthma is inconclusive, due to limited data and a wide variation in study methodologies. However, IMT has been shown to decrease dyspnea, increase inspiratory muscle strength, and improve exercise capacity in asthmatic individuals. In order to develop more concrete recommendations regarding IMT as an effective low-cost adjunct in addition to traditional asthma treatments, we recommend that a standard treatment protocol be developed and tested in a placebo-controlled clinical trial with a large representative sample.

  15. Characterization of Peak Inspiratory Flow and Alveolar Ventilation during Maximal Arm Crank Exercise With and Without Inspiratory Airflow Resistance

    DTIC Science & Technology

    1991-10-21

    equation 14: VO2max = 3.45 * Height(m) - 0.028 * Age(yr) + 0.022 ’ Weight(kg) - 3.76 These calculated values were then multiplied by a correction factor of...0.73, because arm crank VO2max has been shown to approximate 73% of treadmill VO2maxs . Soldiers’ mean value for measured maximal VO2Ckg was 100% of...the predicted arm crank VO2max , with values ranging from 75-132% (Table 4). 4.2 EXERCISE TESTING AGAINST INSPIRATORY RESISTANCE To determine whether

  16. Somatostatin modulates generation of inspiratory rhythms and determines asphyxia survival.

    PubMed

    Ramírez-Jarquín, Josué O; Lara-Hernández, Sergio; López-Guerrero, Juan J; Aguileta, Miguel A; Rivera-Angulo, Ana J; Sampieri, Alicia; Vaca, Luis; Ordaz, Benito; Peña-Ortega, Fernando

    2012-04-01

    Breathing and the activity of its generator (the pre-Bötzinger complex; pre-BötC) are highly regulated functions. Among neuromodulators of breathing, somatostatin (SST) is unique: it is synthesized by a subset of glutamatergic pre-BötC neurons, but acts as an inhibitory neuromodulator. Moreover, SST regulates breathing both in normoxic and in hypoxic conditions. Although it has been implicated in the neuromodulation of breathing, neither the locus of SST modulation, nor the receptor subtypes involved have been identified. In this study, we aimed to fill in these blanks by characterizing the SST-induced regulation of inspiratory rhythm generation in vitro and in vivo. We found that both endogenous and exogenous SST depress all preBötC-generated rhythms. While SST abolishes sighs, it also decreases the frequency and increases the regularity of eupnea and gasping. Pharmacological experiments showed that SST modulates inspiratory rhythm generation by activating SST receptor type-2, whose mRNA is abundantly expressed in the pre-Bötzinger complex. In vivo, blockade of SST receptor type-2 reduces gasping amplitude and consequently, it precludes auto-resuscitation after asphyxia. Based on our findings, we suggest that SST functions as an inhibitory neuromodulator released by excitatory respiratory neurons when they become overactivated in order to stabilize breathing rhythmicity in normoxic and hypoxic conditions.

  17. Effect of hyperinflation on inspiratory function of the diaphragm.

    PubMed

    Minh, V D; Dolan, G F; Konopka, R F; Moser, K M

    1976-01-01

    The inspiratory efficiency of the diaphragm during unilateral and bilateral phrenic stimulation (UEPS and BEPS) with constant stimulus was studied in seven dogs from FRC to 120% TLC. Alveolar pressures (PAl) were recorded during relaxation, BEPS and UEPS at each lung volume in the closed respiratory system. From the PAl-lung volume curves, tidal volume (VT), and pressure developed by the diaphragm (Pmus) were derived. Results are summarized below. a) Hyperinflation impaired the inspiratory efficiency of the diaphragm which behaved as an expiratory muscle beyond the lung volume of 103.7% TLC (Vinef). b) The diaphragm during UEPS became expiratory at the same Vinef as during (BEPS. C) The VT-lung volume relationship was linear during BEPS, allowing simple quantitation of VT loss with hyperinflation and prediction of Vinef. d) With only one phrenic nerve stimulated, the functional loss is less pronounced in VT than in Pmus, as compared to BEPS, indicating that the respiratory system was more compliant during UEPS than BEPS. This compliance difference from UEPS to BEPS diminished with severe hyperinflation.

  18. Pontine respiratory activity involved in inspiratory/expiratory phase transition

    PubMed Central

    Mörschel, Michael; Dutschmann, Mathias

    2009-01-01

    Control of the timing of the inspiratory/expiratory (IE) phase transition is a hallmark of respiratory pattern formation. In principle, sensory feedback from pulmonary stretch receptors (Breuer–Hering reflex, BHR) is seen as the major controller for the IE phase transition, while pontine-based control of IE phase transition by both the pontine Kölliker–Fuse nucleus (KF) and parabrachial complex is seen as a secondary or backup mechanism. However, previous studies have shown that the BHR can habituate in vivo. Thus, habituation reduces sensory feedback, so the role of the pons, and specifically the KF, for IE phase transition may increase dramatically. Pontine-mediated control of the IE phase transition is not completely understood. In the present review, we discuss existing models for ponto-medullary interaction that may be involved in the control of inspiratory duration and IE transition. We also present intracellular recordings of pontine respiratory units derived from an in situ intra-arterially perfused brainstem preparation of rats. With the absence of lung inflation, this preparation generates a normal respiratory pattern and many of the recorded pontine units demonstrated phasic respiratory-related activity. The analysis of changes in membrane potentials of pontine respiratory neurons has allowed us to propose a number of pontine-medullary interactions not considered before. The involvement of these putative interactions in pontine-mediated control of IE phase transitions is discussed. PMID:19651653

  19. The use of the inspiratory pause 'hold' in increasing oxygenation in postsurgical patients.

    PubMed Central

    Tate, J. S.; Ho, C. H.

    1993-01-01

    Seventeen ventilator patients were studied using the half-second inspiratory "hold." Each patient served as his or her own control. In each case, the half-second inspiratory hold increased mechanical ventilatory efficiency, as measured by the arterial PO2 and PCO2. No adverse consequences were noted. PMID:8371281

  20. Inspiratory Muscle Training and Functional Capacity in Patients Undergoing Cardiac Surgery

    PubMed Central

    Cordeiro, André Luiz Lisboa; de Melo, Thiago Araújo; Neves, Daniela; Luna, Julianne; Esquivel, Mateus Souza; Guimarães, André Raimundo França; Borges, Daniel Lago; Petto, Jefferson

    2016-01-01

    Introduction Cardiac surgery is a highly complex procedure which generates worsening of lung function and decreased inspiratory muscle strength. The inspiratory muscle training becomes effective for muscle strengthening and can improve functional capacity. Objective To investigate the effect of inspiratory muscle training on functional capacity submaximal and inspiratory muscle strength in patients undergoing cardiac surgery. Methods This is a clinical randomized controlled trial with patients undergoing cardiac surgery at Instituto Nobre de Cardiologia. Patients were divided into two groups: control group and training. Preoperatively, were assessed the maximum inspiratory pressure and the distance covered in a 6-minute walk test. From the third postoperative day, the control group was managed according to the routine of the unit while the training group underwent daily protocol of respiratory muscle training until the day of discharge. Results 50 patients, 27 (54%) males were included, with a mean age of 56.7±13.9 years. After the analysis, the training group had significant increase in maximum inspiratory pressure (69.5±14.9 vs. 83.1±19.1 cmH2O, P=0.0073) and 6-minute walk test (422.4±102.8 vs. 502.4±112.8 m, P=0.0031). Conclusion We conclude that inspiratory muscle training was effective in improving functional capacity submaximal and inspiratory muscle strength in this sample of patients undergoing cardiac surgery. PMID:27556313

  1. Inspiratory muscle training improves exercise tolerance in recreational soccer players without concomitant gain in soccer-specific fitness.

    PubMed

    Guy, Joshua H; Edwards, Andrew M; Deakin, Glen B

    2014-02-01

    This study investigated whether the addition of inspiratory muscle training (IMT) to an existing program of preseason soccer training would augment performance indices such as exercise tolerance and sports-specific performance beyond the use of preseason training alone. Thirty-one men were randomized across 3 groups: experimental (EXP: n = 12), placebo (PLA: n = 9), and control (CON: n = 10). The EXP and PLA completed a 6-week preseason program (2× weekly sessions) in addition to concurrent IMT with either an IMT load (EXP) or negligible (PLA) inspiratory resistance. Control group did not use an IMT device or undertake soccer training. All participants performed the following tests before and after the 6-week period: standard spirometry; maximal inspiratory mouth pressure (MIP); multistage fitness test (MSFT); and a soccer-specific fitness test (SSFT). After 6-weeks training, EXP significantly improved: MIP (p = 0.002); MSFT distance covered (p = 0.02); and post-SSFT blood lactate (BLa) (p = 0.04). No other outcomes from the SSFT were changed. Pre- to posttraining performance outcomes for PLA and CON were unchanged. These findings suggest the addition of IMT to preseason soccer training improved exercise tolerance (MSFT distance covered) but had little effect on soccer-specific fitness indices beyond a slightly reduced posttraining SSFT BLa. In conclusion, there may be benefit for soccer players to incorporate IMT to their preseason training but the effect is not conclusive. It is likely that a greater preseason training stimulus would be particularly meaningful for this population if fitness gains are a priority and evoke a stronger IMT response.

  2. Spatial distribution of inspiratory drive to the parasternal intercostal muscles in humans

    PubMed Central

    Gandevia, Simon C; Hudson, Anna L; Gorman, Robert B; Butler, Jane E; De Troyer, André

    2006-01-01

    The human parasternal intercostal muscles are obligatory inspiratory muscles with a diminishing mechanical advantage from cranial to caudal interspaces. This study determined whether inspiratory neural drive to these muscles is graded, and whether this distribution matches regional differences in inspiratory mechanical advantage. To determine the neural drive, intramuscular EMG was recorded from the first to the fifth parasternal intercostals during resting breathing in six subjects. All interspaces showed phasic inspiratory activity but the onset of activity relative to inspiratory flow in the fourth and fifth spaces was delayed compared with that in cranial interspaces. Activity in the first, second and third interspaces commenced, on average, within the first 10% of inspiratory time, and sometimes preceded inspiratory airflow. In contrast, activity in the fourth and fifth interspaces began after an average 33% of inspiratory time. The peak inspiratory discharge frequency of motor units in the first interspace averaged 13.4 ± 1.0 Hz (mean ± s.e.m.) and was significantly greater than in all other interspaces, in particular in the fifth space (8.0 ± 1.0 Hz). Phasic inspiratory activity was sometimes superimposed on tonic activity. In the first interspace, only 3% of units had tonic firing, but this proportion increased to 34% in the fifth space. In five subjects, recordings were also made from the medial and lateral extent of the second parasternal intercostal. Both portions showed phasic inspiratory activity which began within the first 6% of inspiratory time. Motor units from the lateral and medial portions fired at the same peak discharge rate (10.4 ± 0.7 versus 10.7 ± 0.6 Hz). These observations indicate that the distribution of neural drive to the parasternal intercostals in humans has a rostrocaudal gradient, but that the drive is uniform along the mediolateral extent of the second interspace. The distribution of inspiratory neural drive to the

  3. A STUDY OF INSPIRATORY RESISTANCE OF DRY POWDER INHALER OF AGENTS FOR ASTHMA CONTROL.

    PubMed

    Suda, Shigeaki; Konno, Rio; Kurosawa, Hajime; Tamura, Gen

    2016-07-01

    Because dry powder inhalers (DPI) aerosolize agents by means of inspiration of patients themselves, inspiratory resistance of DPI is an important factor for increasing inhalation efficiency. Therefore, we measured inspiratory resistance of DPI of agents for asthma control. Using Flow/Volume Simulator, when setting flow rates at 6, 30, 60, 90, and 120L/min, we read off suction pressures and find inspiratory resistances by calculation (=suction pressure/flow rate) at each flow rate. In all DPI, inspiratory resistance increases with the increasing flow rate. To maintain flow rate of 60L/min, suction pressure of around 20-cmH2O for Diskus(®) and Ellipta(®), between 35- and 45-cmH2O for Turbuhaler (®), and about 60-cmH2O for Twisthaler(®) were needed. It is suggested that we should instruct patients to inhaler DPI based on inspiratory resistance of the DPI.

  4. Intraoperative Autotriggered Pressure Support Ventilation Resistant to Increased Flow Trigger Threshold.

    PubMed

    Benitez Lopez, Julio; Rao, Sripad P; McNeer, Richard R; Dudaryk, Roman

    2016-07-01

    Oscillations from cardiac pulsations are normally transmitted to mediastinal structures without any consequence. Autotriggering (AT) of mechanical ventilation occurs when an inspiratory trigger, typically negative inspiratory flow in anesthesia ventilators, is met in the absence of patient effort. AT can lead to respiratory alkalosis, opioid overdose, prolonged mechanical ventilation, and lung hyperinflation. This entity has been reported in both critical care and operating room environments. Increasing the flow trigger usually resolves AT in all cases. We report a case of AT that failed to respond to increasing the flow trigger threshold to its maximal value on the GE Datex-Ohmeda Avance S5® anesthesia station.

  5. Inspiratory stridor secondary to palatolingual myokymia in a Maltese dog.

    PubMed

    Vanhaesebrouck, A E; Bhatti, S F; Bavegems, V; Gielen, I M; Van Soens, I; Vercauteren, G; Polis, I; Van Ham, L M

    2010-03-01

    A nine-year-old male Maltese dog was presented with an eight-month history of inspiratory stridor leading to exertional dyspnoea and cyanosis. Myokymic contractions in the palatolingual muscles were noticed and confirmed by electromyography. Brain computer tomography-scan showed ventricular dilatation. Cerebrospinal fluid analysis revealed a slightly elevated protein level. Treatment with slow-release phenytoin was unsuccessful and symptoms gradually worsened over the next nine months. At post-mortem examination a small pituitary adenoma was found. Apart from a single canine report of facial myokymia, this is the only other description of spontaneous focal myokymia in animals. Palatolingual myokymia has only been reported in one human being. Although the co-occurrence with a pituitary adenoma might be incidental, a paraneoplastic pathogenetic mechanism is proposed. Its unique clinical presentation adds a new, albeit uncommon, syndrome to the differential diagnosis of upper airway complaints in dogs.

  6. Effects of Ramadan Fasting on Inspiratory Muscle Function

    PubMed Central

    Soori, Mohsen; Mohaghegh, Shahram; Hajain, Maryam; Moraadi, Behrooz

    2016-01-01

    Background Ramadan fasting is a major challenge for exercising Muslims especially in warm seasons. There is some evidence to indicate that Ramadan fasting causes higher subjective ratings of perceived exertion (RPE) in fasting Muslims. The mechanisms of this phenomenon are not known exactly. The role of respiratory muscle strength in this regard has not been studied yet. Objectives The aim of this study was investigation of the effects of Ramadan fasting on respiratory muscle strength. Patients and Methods In a before-after study, from 35 fasting, apparently healthy, male adults who had fasted from the beginning of Ramadan, maximal inspiratory muscle pressure (MIP) and peak inspiratory flow (PIF) were measured in the last week of Ramadan month in summer. At the time of test, there was not any sleep problem in participants and all of them had good cooperation. Three months later, after exclusion of incompatible persons mainly because of change in their physical activity level, smoking behavior or drug consumption, the measurements were repeated in 12 individuals. Results Weight, MIP and PIF data had normal distribution (Kolmogorov-Smirnov Test). There was a significant increase in MIP (mean 8.3 cm H2O with 95% confidence interval of 2.2 - 14.3) and PIF (mean 0.55 lit/s with 95% confidence interval of 0.02 - 1.07) and weight (mean 3.4 Kg with 95% confidence interval of 2.2 - 4.5) after Ramadan (Paired t test with P < 0.05). When weight difference was used as a covariate in repeated measure ANOVA test, there was no further significant difference between MIP and PIF measurements. Conclusions Ramadan fasting may cause reduction of respiratory muscle strength through reduction of body weight. PMID:27826401

  7. Reference values for maximal inspiratory pressure: a systematic review.

    PubMed

    Sclauser Pessoa, Isabela M B; Franco Parreira, Verônica; Fregonezi, Guilherme A F; Sheel, A William; Chung, Frank; Reid, W Darlene

    2014-01-01

    Maximal inspiratory pressure (MIP) is the most commonly used measure to evaluate inspiratory muscle strength. Normative values for MIP vary significantly among studies, which may reflect differences in participant demographics and technique of MIP measurement. To perform a systematic review with meta-analyses to synthesize MIP values that represent healthy adults. A systematic literature search was conducted using Medline, EMBASE, Cochrane, Cumulative Index to Nursing and Allied Health (CINAHL) and Sport Discus databases. Two reviewers identified and selected articles, and abstracted data. Methodological quality was assessed using the Quality Assessment of Diagnostic Accuracy Studies (QUADAS) tool. A random-effects model was used to calculate overall means and 95% CIs. Of 22 included articles, MIP data were synthesized according to age group and sex from six reports (n=840) in the meta-analyses. The mean QUADAS score was 3.5 of 7. The age range was between 18 and 83 years (426 men, 414 women). MIP began to decrease with age in the 40 to 60 years age range and continued to fall progressively with age. For the same age group, men tended to have higher MIPs than women. Sensitivity analysis of withdrawing studies from the meta-analysis identified one study that contributed more to heterogeneity in some age groups. MIP was higher in men and decreased with age, which was initially apparent in middle age. Several characteristics of participants and MIP technique influence values in healthy individuals. The present meta-analysis provides normative MIP values that are reflective of a large sample (n=840) and likely represents the broadest representation of participant characteristics compared with previous reports of normative data.

  8. Acute effects of inspiratory muscle warm-up on pulmonary function in healthy subjects.

    PubMed

    Özdal, Mustafa

    2016-06-15

    The acute effects of inspiratory muscle warm-up on pulmonary functions were examined in 26 healthy male subjects using the pulmonary function test (PFT) in three different trials. The control trial (CON) did not involve inspiratory muscle warm-up, while the placebo (IMWp) and experimental (IMW) trials involved inspiratory muscle warm-up. There were no significant changes between the IMWp and CON trials (p>0.05). All the PFT measurements, including slow vital capacity, inspiratory vital capacity, forced vital capacity, forced expiratory volume in one second, maximal voluntary ventilation, and maximal inspiratory pressure were significantly increased by 3.55%, 12.52%, 5.00%, 2.75%, 2.66%, and 7.03% respectively, in the subjects in the IMW trial than those in the CON trial (p<0.05). These results show that inspiratory muscle warm-up improved the pulmonary functions. The mechanisms responsible for these improvements are probably associated with the concomitant increase in the inspiratory muscle strength, and the cooperation of the upper thorax, neck, and respiratory muscles, and increased level of reactive O2 species in muscle tissue, and potentially improvement of muscle O2 delivery-to-utilization. However, further investigation is required to determine the precise mechanisms responsible from among these candidates.

  9. Dead space and CO2 elimination related to pattern of inspiratory gas delivery in ARDS patients

    PubMed Central

    2012-01-01

    Introduction The inspiratory flow pattern influences CO2 elimination by affecting the time the tidal volume remains resident in alveoli. This time is expressed in terms of mean distribution time (MDT), which is the time available for distribution and diffusion of inspired tidal gas within resident alveolar gas. In healthy and sick pigs, abrupt cessation of inspiratory flow (that is, high end-inspiratory flow (EIF)), enhances CO2 elimination. The objective was to test the hypothesis that effects of inspiratory gas delivery pattern on CO2 exchange can be comprehensively described from the effects of MDT and EIF in patients with acute respiratory distress syndrome (ARDS). Methods In a medical intensive care unit of a university hospital, ARDS patients were studied during sequences of breaths with varying inspiratory flow patterns. Patients were ventilated with a computer-controlled ventilator allowing single breaths to be modified with respect to durations of inspiratory flow and postinspiratory pause (TP), as well as the shape of the inspiratory flow wave. From the single-breath test for CO2, the volume of CO2 eliminated by each tidal breath was derived. Results A long MDT, caused primarily by a long TP, led to importantly enhanced CO2 elimination. So did a high EIF. Effects of MDT and EIF were comprehensively described with a simple equation. Typically, an efficient and a less-efficient pattern of inspiration could result in ± 10% variation of CO2 elimination, and in individuals, up to 35%. Conclusions In ARDS, CO2 elimination is importantly enhanced by an inspiratory flow pattern with long MDT and high EIF. An optimal inspiratory pattern allows a reduction of tidal volume and may be part of lung-protective ventilation. PMID:22390777

  10. Factors determining maximum inspiratory flow and maximum expiratory flow of the lung

    PubMed Central

    Jordanoglou, J.; Pride, N. B.

    1968-01-01

    The factors determining maximum expiratory flow and maximum inspiratory flow of the lung are reviewed with particular reference to a model which compares the lung on forced expiration to a Starling resistor. The theoretical significance of the slope of the expiratory maximum flow-volume curve is discussed. A method of comparing maximum expiratory flow with maximum inspiratory flow at similar lung volumes is suggested; this may be applied either to a maximum flow-volume curve or to a forced expiratory and inspiratory spirogram. PMID:5637496

  11. Brief Report: Appraising Viral Load Thresholds and Adherence Support Recommendations in the World Health Organization Guidelines for Detection and Management of Virologic Failure.

    PubMed

    McCluskey, Suzanne M; Boum, Yap; Musinguzi, Nicholas; Haberer, Jessica E; Martin, Jeffrey N; Hunt, Peter W; Marconi, Vincent C; Bangsberg, David R; Siedner, Mark J

    2017-10-01

    The World Health Organization defines HIV virologic failure as 2 consecutive viral loads >1000 copies/mL, measured 3-6 months apart, with interval adherence support. We sought to empirically evaluate these guidelines using data from an observational cohort. The Uganda AIDS Rural Treatment Outcomes study observed adults with HIV in southwestern Uganda from the time of antiretroviral therapy (ART) initiation and monitored adherence with electronic pill bottles. We included participants on ART with a detectable HIV RNA viral load and who remained on the same regimen until the subsequent measurement. We fit logistic regression models with viral resuppression as the outcome of interest and both initial viral load level and average adherence as predictors of interest. We analyzed 139 events. Median ART duration was 0.92 years, and 100% were on a nonnucleoside reverse-transcriptase inhibitor-based regimen. Viral resuppression occurred in 88% of those with initial HIV RNA <1000 copies/mL and 42% if HIV RNA was >1000 copies/mL (P <0.001). Adherence after detectable viremia predicted viral resuppression for those with HIV RNA <1000 copies/mL (P = 0.011) but was not associated with resuppression for those with HIV RNA >1000 copies/mL (P = 0.894; interaction term P = 0.077). Among patients on ART with detectable HIV RNA >1000 copies/mL who remain on the same regimen, only 42% resuppressed at next measurement, and there was no association between interval adherence and viral resuppression. These data support consideration of resistance testing to help guide management of virologic failure in resource-limited settings.

  12. REDUCTION IN INSPIRATORY FLOW ATTENUATES IL-8 RELEASE AND MAPK ACTIVATION OF LUNG OVERSTRETCH

    EPA Science Inventory

    Lung overstretch involves mechanical factors, including large tidal volumes (VT), which induce inflammatory responses. The current authors hypothesised that inspiratory flow contributes to ventilator-induced inflammation. Buffer-perfused rabbit lungs were ventilated for 2 h with ...

  13. Inspiratory Muscle Training in a Child with Nemaline Myopathy and Organ Transplantation

    PubMed Central

    Smith, Barbara K.; Bleiweis, Mark S.; Zauhar, Joni; Martin, A. Daniel

    2013-01-01

    Objective To report the use of inspiratory muscle strength training (IMST) to treat repeated ventilatory insufficiency in a child with nemaline myopathy (NM) who underwent cardiac and renal transplantation. Design Case report. Setting Pediatric intensive care unit of a tertiary care university teaching hospital. Intervention IMST was provided five days weekly for two weeks, accompanied by progressive weaning from non-invasive ventilation. Measurements and Main Results Maximal inspiratory pressure (MIP) increased from −36.7 cm H2O to −77.8 cm H2O, accompanied by improved inspiratory flow, volume, pressure activation and power. During the training period, the patient weaned from continuous non-invasive ventilatory assist to her pre-operative level of ventilatory function. Conclusions Inspiratory muscle training may be a beneficial component of care for children with NM who experience acute ventilatory insufficiency. PMID:20407395

  14. REDUCTION IN INSPIRATORY FLOW ATTENUATES IL-8 RELEASE AND MAPK ACTIVATION OF LUNG OVERSTRETCH

    EPA Science Inventory

    Lung overstretch involves mechanical factors, including large tidal volumes (VT), which induce inflammatory responses. The current authors hypothesised that inspiratory flow contributes to ventilator-induced inflammation. Buffer-perfused rabbit lungs were ventilated for 2 h with ...

  15. Preoperative Ambulatory Inspiratory Muscle Training in Patients Undergoing Esophagectomy. A Pilot Study

    PubMed Central

    Agrelli, Taciana Freitas; de Carvalho Ramos, Marisa; Guglielminetti, Rachel; Silva, Alex Augusto; Crema, Eduardo

    2012-01-01

    A major decline in pulmonary function is observed on the first day after upper abdominal surgery. This decline can reduce vital and inspiratory capacity and can culminate in restrictive lung diseases that cause atelectasis, reduced diaphragm movement, and respiratory insufficiency. The objective of this study was to evaluate the efficacy of preoperative ambulatory respiratory muscle training in patients undergoing esophagectomy. The sample consisted of 20 adult patients (14 men [70%] and 6 women [30%]) with a diagnosis of advanced chagasic megaesophagus. A significant increase in maximum inspiratory pressure was observed after inspiratory muscle training when compared with baseline values (from −55.059 ± 18.359 to −76.286 ± 16.786). Preoperative ambulatory inspiratory muscle training was effective in increasing respiratory muscle strength in patients undergoing esophagectomy and contributed to the prevention of postoperative complications. PMID:23113846

  16. Exercise training and inspiratory muscle training in patients with bronchiectasis.

    PubMed

    Newall, C; Stockley, R A; Hill, S L

    2005-11-01

    Bronchiectasis is a chronic suppurative lung disease often characterised by airflow obstruction and hyperinflation, and leading to decreased exercise tolerance and reduced health status. The role of pulmonary rehabilitation (PR) and inspiratory muscle training (IMT) has not been investigated in this group of patients. Thirty two patients with idiopathic bronchiectasis were randomly allocated to one of three groups: PR plus sham IMT (PR-SHAM), PR plus targeted IMT (PR-IMT), or control. All patients (except the control group) underwent an 8 week training programme of either PR or PR plus targeted IMT. Exercise training during PR was performed three times weekly at 80% of the peak heart rate. IMT was performed at home for 15 minutes twice daily over the 8 week period. PR-SHAM and PR-IMT resulted in significant increases in the incremental shuttle walking test of 96.7 metres (95% confidence interval (CI) 59.6 to 133.7) and 124.5 metres (95% CI 63.2 to 185.9), respectively, and in endurance exercise capacity of 174.9% (95% CI 34.7 to 426.1) and 205.7% (95% CI 31.6 to 310.6). There were no statistically significant differences in the improvements in exercise between the two groups. Significant improvements in inspiratory muscle strength were also observed both in the PR-IMT group (21.4 cm H2O increase, 95% CI 9.3 to 33.4; p = 0.008) and the PR-SHAM group (12.0 cm H2O increase, 95% CI 1.1 to 22.9; p = 0.04), the magnitude of which were also similar (p = 0.220). Improvements in exercise capacity were maintained in the PR-IMT group 3 months after training, but not in the PR-SHAM group. PR is effective in improving exercise tolerance in bronchiectasis but there is no additional advantage of simultaneous IMT. IMT may, however, be important in the longevity of the training effects.

  17. Inspiratory muscle training to enhance recovery from mechanical ventilation: a randomised trial

    PubMed Central

    Bissett, Bernie M; Leditschke, I Anne; Neeman, Teresa; Boots, Robert; Paratz, Jennifer

    2016-01-01

    Background In patients who have been mechanically ventilated, inspiratory muscles remain weak and fatigable following ventilatory weaning, which may contribute to dyspnoea and limited functional recovery. Inspiratory muscle training may improve inspiratory muscle strength and endurance following weaning, potentially improving dyspnoea and quality of life in this patient group. Methods We conducted a randomised trial with assessor-blinding and intention-to-treat analysis. Following 48 hours of successful weaning, 70 participants (mechanically ventilated ≥7 days) were randomised to receive inspiratory muscle training once daily 5 days/week for 2 weeks in addition to usual care, or usual care (control). Primary endpoints were inspiratory muscle strength and fatigue resistance index (FRI) 2 weeks following enrolment. Secondary endpoints included dyspnoea, physical function and quality of life, post-intensive care length of stay and in-hospital mortality. Results 34 participants were randomly allocated to the training group and 36 to control. The training group demonstrated greater improvements in inspiratory strength (training: 17%, control: 6%, mean difference: 11%, p=0.02). There were no statistically significant differences in FRI (0.03 vs 0.02, p=0.81), physical function (0.25 vs 0.25, p=0.97) or dyspnoea (−0.5 vs 0.2, p=0.22). Improvement in quality of life was greater in the training group (14% vs 2%, mean difference 12%, p=0.03). In-hospital mortality was higher in the training group (4 vs 0, 12% vs 0%, p=0.051). Conclusions Inspiratory muscle training following successful weaning increases inspiratory muscle strength and quality of life, but we cannot confidently rule out an associated increased risk of in-hospital mortality. Trial registration number ACTRN12610001089022, results. PMID:27257003

  18. Paired inspiratory-expiratory chest CT scans to assess for small airways disease in COPD

    PubMed Central

    2013-01-01

    Background Gas trapping quantified on chest CT scans has been proposed as a surrogate for small airway disease in COPD. We sought to determine if measurements using paired inspiratory and expiratory CT scans may be better able to separate gas trapping due to emphysema from gas trapping due to small airway disease. Methods Smokers with and without COPD from the COPDGene Study underwent inspiratory and expiratory chest CT scans. Emphysema was quantified by the percent of lung with attenuation < −950HU on inspiratory CT. Four gas trapping measures were defined: (1) Exp−856, the percent of lung < −856HU on expiratory imaging; (2) E/I MLA, the ratio of expiratory to inspiratory mean lung attenuation; (3) RVC856-950, the difference between expiratory and inspiratory lung volumes with attenuation between −856 and −950 HU; and (4) Residuals from the regression of Exp−856 on percent emphysema. Results In 8517 subjects with complete data, Exp−856 was highly correlated with emphysema. The measures based on paired inspiratory and expiratory CT scans were less strongly correlated with emphysema. Exp−856, E/I MLA and RVC856-950 were predictive of spirometry, exercise capacity and quality of life in all subjects and in subjects without emphysema. In subjects with severe emphysema, E/I MLA and RVC856-950 showed the highest correlations with clinical variables. Conclusions Quantitative measures based on paired inspiratory and expiratory chest CT scans can be used as markers of small airway disease in smokers with and without COPD, but this will require that future studies acquire both inspiratory and expiratory CT scans. PMID:23566024

  19. Paired inspiratory-expiratory chest CT scans to assess for small airways disease in COPD.

    PubMed

    Hersh, Craig P; Washko, George R; Estépar, Raúl San José; Lutz, Sharon; Friedman, Paul J; Han, MeiLan K; Hokanson, John E; Judy, Philip F; Lynch, David A; Make, Barry J; Marchetti, Nathaniel; Newell, John D; Sciurba, Frank C; Crapo, James D; Silverman, Edwin K

    2013-04-08

    Gas trapping quantified on chest CT scans has been proposed as a surrogate for small airway disease in COPD. We sought to determine if measurements using paired inspiratory and expiratory CT scans may be better able to separate gas trapping due to emphysema from gas trapping due to small airway disease. Smokers with and without COPD from the COPDGene Study underwent inspiratory and expiratory chest CT scans. Emphysema was quantified by the percent of lung with attenuation < -950HU on inspiratory CT. Four gas trapping measures were defined: (1) Exp(-856), the percent of lung < -856HU on expiratory imaging; (2) E/I MLA, the ratio of expiratory to inspiratory mean lung attenuation; (3) RVC(856-950), the difference between expiratory and inspiratory lung volumes with attenuation between -856 and -950 HU; and (4) Residuals from the regression of Exp(-856) on percent emphysema. In 8517 subjects with complete data, Exp(-856) was highly correlated with emphysema. The measures based on paired inspiratory and expiratory CT scans were less strongly correlated with emphysema. Exp(-856), E/I MLA and RVC(856-950) were predictive of spirometry, exercise capacity and quality of life in all subjects and in subjects without emphysema. In subjects with severe emphysema, E/I MLA and RVC(856-950) showed the highest correlations with clinical variables. Quantitative measures based on paired inspiratory and expiratory chest CT scans can be used as markers of small airway disease in smokers with and without COPD, but this will require that future studies acquire both inspiratory and expiratory CT scans.

  20. Onset and Offset Estimation of the Neural Inspiratory Time in Surface Diaphragm Electromyography: A Pilot Study in Healthy Subjects.

    PubMed

    Estrada, Luis; Torres-Cebrian, Abel; Sarlabous, Leonardo; Jane, Raimon

    2017-02-22

    This study evaluates the onset and offset of neural inspiratory time estimated from surface diaphragm electromyographic (EMGdi) recordings. EMGdi and airflow signals were recorded in ten healthy subjects according to two respiratory protocols based on respiratory rate (RR) increments, from 15 to 40 breaths per minute (bpm), and fractional inspiratory time (Ti/Ttot) decrements, from 0.54 to 0.18. The analysis of diaphragm electromyographic (EMGdi) signal amplitude is an alternative approach for the quantification of neural respiratory drive (NRD). The EMGdi amplitude was estimated using the fixed sample entropy computed over a 250 ms moving window of the EMGdi signal (EMGdifse). The neural onset was detected through a dynamic threshold over the EMGdifse using the kernel density estimation method, while neural offset was detected by finding when the EMGdifse had decreased to 70 % of the peak value reached during inspiration. The Bland-Altman analysis between airflow and neural onsets showed a global bias of 46 ms in the RR protocol and 22 ms in the Ti/Ttot protocol. The Bland-Altman analysis between airflow and neural offsets reveals a global bias of 11 ms in the RR protocol and -2 ms in the Ti/Ttot protocol. The relationship between pairs of RR values (Pearson's correlation coefficient of 0.99, Bland- Altman limits of -2.39 to 2.41 bpm, and mean bias of 0.01 bpm) and between pairs of Ti/Ttot values (Pearson's correlation coefficient of 0.86, Bland-Altman limits of -0.11 to 0.10, and mean bias of -0.01) showed a good agreement. In conclusion, we propose a method for determining neural onset and neural offset based on non-invasive recordings of the electrical activity of the diaphragm that requires no filtering of cardiac muscle interference.

  1. Expiratory and Inspiratory Cries Detection Using Different Signals' Decomposition Techniques.

    PubMed

    Abou-Abbas, Lina; Tadj, Chakib; Gargour, Christian; Montazeri, Leila

    2017-03-01

    This paper addresses the problem of automatic cry signal segmentation for the purposes of infant cry analysis. The main goal is to automatically detect expiratory and inspiratory phases from recorded cry signals. The approach used in this paper is made up of three stages: signal decomposition, features extraction, and classification. In the first stage, short-time Fourier transform, empirical mode decomposition (EMD), and wavelet packet transform have been considered. In the second stage, various set of features have been extracted, and in the third stage, two supervised learning methods, Gaussian mixture models and hidden Markov models, with four and five states, have been discussed as well. The main goal of this work is to investigate the EMD performance and to compare it with the other standard decomposition techniques. A combination of two and three intrinsic mode functions (IMFs) that resulted from EMD has been used to represent cry signal. The performance of nine different segmentation systems has been evaluated. The experiments for each system have been repeated several times with different training and testing datasets, randomly chosen using a 10-fold cross-validation procedure. The lowest global classification error rates of around 8.9% and 11.06% have been achieved using a Gaussian mixture models classifier and a hidden Markov models classifier, respectively. Among all IMF combinations, the winner combination is IMF3+IMF4+IMF5. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Extra inspiratory work of breathing imposed by cricothyrotomy devices.

    PubMed

    Ooi, R; Fawcett, W J; Soni, N; Riley, B

    1993-01-01

    Using a lung model for spontaneous ventilation, we have assessed the additional work of inspiration imposed by a variety of cannulae ranging from the 12- and 14-gauge intravascular cannulae to the 8.0-mm i.d. adult tracheostomy tube. Work (W) ranged between 9 and 2262 mJ litre-1 and power (W) between 0.2 and 37.7 mW litre-1 min; the smallest values were obtained with the 8.0-mm i.d. adult tracheostomy tube and the 12- and 14-gauge intravascular cannulae gave the largest values. With any given cannula, W and W were influenced by ventilation (tidal volume and frequency) and ventilatory wave pattern of the analogue lung. The results obtained from the 12- and 14-gauge cannulae represent what is probably an excessive inspiratory workload, whereas the other four devices (Portex MiniTrach, 4.0, 6.0 and 8.0 tracheostomy tubes) may be suitable in the short term for relieving airway obstruction and compatible with spontaneous ventilation.

  3. Inspiratory Capacity during Exercise: Measurement, Analysis, and Interpretation

    PubMed Central

    Guenette, Jordan A.; Chin, Roberto C.; Cory, Julia M.; Webb, Katherine A.; O'Donnell, Denis E.

    2013-01-01

    Cardiopulmonary exercise testing (CPET) is an established method for evaluating dyspnea and ventilatory abnormalities. Ventilatory reserve is typically assessed as the ratio of peak exercise ventilation to maximal voluntary ventilation. Unfortunately, this crude assessment provides limited data on the factors that limit the normal ventilatory response to exercise. Additional measurements can provide a more comprehensive evaluation of respiratory mechanical constraints during CPET (e.g., expiratory flow limitation and operating lung volumes). These measurements are directly dependent on an accurate assessment of inspiratory capacity (IC) throughout rest and exercise. Despite the valuable insight that the IC provides, there are no established recommendations on how to perform the maneuver during exercise and how to analyze and interpret the data. Accordingly, the purpose of this manuscript is to comprehensively examine a number of methodological issues related to the measurement, analysis, and interpretation of the IC. We will also briefly discuss IC responses to exercise in health and disease and will consider how various therapeutic interventions influence the IC, particularly in patients with chronic obstructive pulmonary disease. Our main conclusion is that IC measurements are both reproducible and responsive to therapy and provide important information on the mechanisms of dyspnea and exercise limitation during CPET. PMID:23476765

  4. Effects of Inspiratory Muscle Training and Calisthenics-and-Breathing Exercises in COPD With and Without Respiratory Muscle Weakness.

    PubMed

    Basso-Vanelli, Renata P; Di Lorenzo, Valéria A Pires; Labadessa, Ivana G; Regueiro, Eloisa M G; Jamami, Mauricio; Gomes, Evelim L F D; Costa, Dirceu

    2016-01-01

    Patients with COPD may experience respiratory muscle weakness. Two therapeutic approaches to the respiratory muscles are inspiratory muscle training and calisthenics-and-breathing exercises. The aims of the study are to compare the effects of inspiratory muscle training and calisthenics-and-breathing exercises associated with physical training in subjects with COPD as an additional benefit of strength and endurance of the inspiratory muscles, thoracoabdominal mobility, physical exercise capacity, and reduction in dyspnea on exertion. In addition, these gains were compared between subjects with and without respiratory muscle weakness. 25 subjects completed the study: 13 composed the inspiratory muscle training group, and 12 composed the calisthenics-and-breathing exercises group. Subjects were assessed before and after training by spirometry, measurements of respiratory muscle strength and test of inspiratory muscle endurance, thoracoabdominal excursion measurements, and the 6-min walk test. Moreover, scores for the Modified Medical Research Council dyspnea scale were reported. After intervention, there was a significant improvement in both groups of respiratory muscle strength and endurance, thoracoabdominal mobility, and walking distance in the 6-min walk test. Additionally, there was a decrease of dyspnea in the 6-min walk test peak. A difference was found between groups, with higher values of respiratory muscle strength and thoracoabdominal mobility and lower values of dyspnea in the 6-min walk test peak and the Modified Medical Research Council dyspnea scale in the inspiratory muscle training group. In the inspiratory muscle training group, subjects with respiratory muscle weakness had greater gains in inspiratory muscle strength and endurance. Both interventions increased exercise capacity and decreased dyspnea during physical effort. However, inspiratory muscle training was more effective in increasing inspiratory muscle strength and endurance, which could

  5. Effects of Inspiratory Muscle Training in Subjects With Sarcoidosis: A Randomized Controlled Clinical Trial.

    PubMed

    Karadallı, Müşerrefe Nur; Boşnak-Güçlü, Meral; Camcıoğlu, Burcu; Kokturk, Nurdan; Türktaş, Haluk

    2016-04-01

    Respiratory muscle weakness occurs in sarcoidosis and is related to decreased exercise capacity, greater fatigue, dyspnea, and lower quality of life in sarcoidosis patients. The effects of inspiratory muscle training in this population have not been comprehensively investigated so far. This study was planned to investigate the effects of inspiratory muscle training on exercise capacity, respiratory and peripheral muscle strength, pulmonary function and diffusing capacity, fatigue, dyspnea, depression, and quality of life in subjects with sarcoidosis. This was a prospective, randomized, controlled, and double blind study. Fifteen sarcoidosis subjects (treatment group) received inspiratory muscle training at 40% of maximal inspiratory pressure (P(Imax)), and 15 subjects (control group) received sham therapy (5% of P(Imax)) for 6 weeks. Functional and maximal exercise capacity, respiratory and peripheral muscle strength, pulmonary function and diffusing capacity, fatigue, dyspnea, depression, and quality of life were evaluated. Functional (P < .001) and maximal exercise capacity (P = .038), respiratory muscle strength (P(Imax) [P < .001] and P(Emax) [P = .001]), severe fatigue (P = .002), and dyspnea perception (P = .02) were statistically significantly improved in the treatment group compared with controls; no significant improvements were observed in pulmonary function and diffusing capacity, peripheral muscle strength, fatigue, depression, and quality of life between groups after inspiratory muscle training. Inspiratory muscle training improves functional and maximal exercise capacity and respiratory muscle strength and decreases severe fatigue and dyspnea perception in subjects with early stages of sarcoidosis. Inspiratory muscle training can be safely and effectively included in rehabilitation programs. (ClinicalTrials.gov registration NCT02270333.). Copyright © 2016 by Daedalus Enterprises.

  6. Post-synaptic inhibition of bulbar inspiratory neurones in the cat.

    PubMed Central

    Ballantyne, D; Richter, D W

    1984-01-01

    Stable intracellular recordings from thirty-six bulbar inspiratory neurones revealed three centrally originating, rhythmic patterns of synaptic inhibition (i.p.s.p.s). (i) A declining pattern of i.p.s.p.s accompanying the early stages of inspiration (early inspiratory inhibition) was identified in a total of twenty neurones representing examples of each of the functional classes of bulbar neurones examined, i.e. six R alpha- and two R beta-neurones of the dorsal respiratory group and twelve R alpha-neurones of the ventral respiratory group. (ii) A transient pattern of i.p.s.p.s just preceding or coinciding with the cessation of inspiration (late inspiratory inhibition) was present in the remaining sixteen neurones which were tested, representing six R alpha-neurones and three R beta-neurones of the dorsal respiratory group and seven R alpha-neurones of the ventral respiratory group. (iii) An augmenting pattern of expiratory i.p.s.p.s was present in all thirty-six neurones. Late inspiratory and expiratory i.p.s.p.s in the same neurones showed a similar time course of reversal when chloride was injected or allowed to diffuse into the cells and were associated with similar increases in input conductance. Both patterns of i.p.s.p.s appear to arise at or close to the cell soma. Early inspiratory i.p.s.p.s required a relatively longer period of chloride injection for reversal to be accomplished. Input conductance changes were either absent or smaller than those associated with late inspiratory or expiratory inhibition. These i.p.s.p.s appear to arise at more distal dendritic sites. These patterns of i.p.s.p.s are discussed in relation to the mechanisms shaping the growth of central inspiratory activity, bringing this activity to an end, and suppressing its redevelopment during expiration. PMID:6716297

  7. Inspiratory Flow Limitation in a Normal Population of Adults in São Paulo, Brazil

    PubMed Central

    Palombini, Luciana O.; Tufik, Sergio; Rapoport, David M.; Ayappa, Indu A.; Guilleminault, Christian; de Godoy, Luciana B. M.; Castro, Laura S.; Bittencourt, Lia

    2013-01-01

    Study Objectives: Inspiratory flow limitation (IFL) during sleep occurs when airflow remains constant despite an increase in respiratory effort. This respiratory event has been recognized as an important parameter for identifying sleep breathing disorders. The purpose of this study was to investigate how much IFL normal individuals can present during sleep. Design: Cross-sectional study derived from a general population sample. Setting: A “normal” asymptomatic sample derived from the epidemiological cohort of São Paulo. Patients and Participants: This study was derived from a general population study involving questionnaires and nocturnal polysomnography of 1,042 individuals. A subgroup defined as a nonsymptomatic healthy group was used as the normal group. Interventions: N/A. Measurements and Results: All participants answered several questionnaires and underwent full nocturnal polysomnography. IFL was manually scored, and the percentage of IFL of total sleep time was considered for final analysis. The distribution of the percentage of IFL was analyzed, and associated factors (age, sex, and body mass index) were calculated. There were 95% of normal individuals who exhibited IFL during less than 30% of the total sleep time. Body mass index was positively associated with IFL. Conclusions: Inspiratory flow limitation can be observed in the polysomnography of normal individuals, with an influence of body weight on percentage of inspiratory flow limitation. However, only 5% of asymptomatic individuals will have more than 30% of total sleep time with inspiratory flow limitation. This suggests that only levels of inspiratory flow limitation > 30% be considered in the process of diagnosing obstructive sleep apnea in the absence of an apnea-hypopnea index > 5 and that < 30% of inspiratory flow limitation may be a normal finding in many patients. Citation: Palombini LO; Tufik S; Rapoport DM; Ayappa IA; Guilleminault C; de Godoy LBM; Castro LS; Bittencourt L

  8. A mathematical model to detect inspiratory flow limitation during sleep.

    PubMed

    Mansour, Khaled F; Rowley, James A; Meshenish, A A; Shkoukani, Mahdi A; Badr, M Safwan

    2002-09-01

    The physiological significance of inspiratory flow limitation (IFL) has recently been recognized, but methods of detecting IFL can be subjective. We sought to develop a mathematical model of the upper airway pressure-flow relationship that would objectively detect flow limitation. We present a theoretical discussion that predicts that a polynomial function [F(P) = AP(3) + BP(2) + CP + D, where F(P) is flow and P is supraglottic pressure] best characterizes the pressure-flow relationship and allows for the objective detection of IFL. In protocol 1, step 1, we performed curve-fitting of the pressure-flow relationship of 20 breaths to 5 mathematical functions and found that highest correlation coefficients (R(2)) for quadratic (0.88 +/- 0.10) and polynomial (0.91 +/- 0.05; P < 0.05 for both compared with the other functions) functions. In step 2, we performed error-fit calculations on 50 breaths by comparing the quadratic and polynomial functions and found that the error fit was lowest for the polynomial function (3.3 +/- 0.06 vs. 21.1 +/- 19.0%; P < 0.001). In protocol 2, we performed sensitivity/specificity analysis on two sets of breaths (50 and 544 breaths) by comparing the mathematical determination of IFL to manual determination. Mathematical determination of IFL had high sensitivity and specificity and a positive predictive value (>99% for each). We conclude that a polynomial function can be used to predict the relationship between pressure and flow in the upper airway and objectively determine the presence of IFL.

  9. Contribution of spindle reflexes to post-inspiratory activity in the canine external intercostal muscles

    PubMed Central

    Berdah, Stéphane V; De Troyer, André

    2001-01-01

    The external intercostal muscles have greater post-inspiratory activity than the parasternal intercostal muscles and are more abundantly supplied with muscle spindles. In the present study, the hypothesis was tested that spindle afferent inputs play a major role in determining this activity. The electrical activity of the external and parasternal intercostal muscles in the rostral interspaces was recorded in anaesthetized spontaneously breathing dogs, and the ribs were manipulated so as to alter their normal caudal displacement and the normal lengthening of the muscles in early expiration. Post-inspiratory activity in the external intercostal muscles showed a reflex decrease when the caudal motion of the ribs and the lengthening of the muscles was impeded, and it showed a reflex increase when the rate of caudal rib motion and muscle lengthening was increased. In contrast, the small post-inspiratory activity in the parasternal intercostal muscles remained unchanged. When the two ribs making up the interspace investigated were locked to keep muscle length constant, post-inspiratory activity in the external intercostal muscles was reduced and no longer responded to cranial rib manipulation. These observations confirm that afferent inputs from muscle receptors, presumably muscle spindles, are a primary determinant of post-inspiratory activity in the canine external intercostal muscles. In anaesthetized animals, the contribution of central control mechanisms to this activity is small. PMID:11483716

  10. Inspiratory muscle training to facilitate weaning from mechanical ventilation: protocol for a systematic review

    PubMed Central

    2011-01-01

    Background In intensive care, weaning is the term used for the process of withdrawal of mechanical ventilation to enable spontaneous breathing to be re-established. Inspiratory muscle weakness and deconditioning are common in patients receiving mechanical ventilation, especially that of prolonged duration. Inspiratory muscle training could limit or reverse these unhelpful sequelae and facilitate more rapid and successful weaning. Methods This review will involve systematic searching of five electronic databases to allow the identification of randomised trials of inspiratory muscle training in intubated and ventilated patients. From these trials, we will extract available data for a list of pre-defined outcomes, including maximal inspiratory pressure, the duration of the weaning period, and hospital length of stay. We will also meta-analyse comparable results where possible, and report a summary of the available pool of evidence. Discussion The data generated by this review will be the most comprehensive answer available to the question of whether inspiratory muscle training is clinically useful in intensive care. As well as informing clinicians in the intensive care setting, it will also inform healthcare managers deciding whether health professionals with skills in respiratory therapy should be made available to provide this sort of intervention. Through the publication of this protocol, readers will ultimately be able to assess whether the review was conducted according to a pre-defined plan. Researchers will be aware that the review is underway, thereby avoid duplication, and be able to use it as a basis for planning similar reviews. PMID:21835031

  11. Evaluation of inspiratory pressure in children with enlarged tonsils and adenoids.

    PubMed

    Pires, Melissa Guerato; Di Francesco, Renata Cantisani; Grumach, Anete Sevciovic; Mello, João Ferreira de

    2005-01-01

    Children with enlarged tonsils and adenoids usually present breathing abnormalities such as snoring, mouth breathing and sleep apnea. It is known that upper airway obstruction and consequent mouth breathing may result in pulmonary diseases. The goal of this preliminary study was to evaluate the inspiratory pressure in children with upper airway obstruction due to enlarged tonsils. Clinical with transversal cohort. We evaluated 37 children (4-3 years old, female/male) with enlarged tonsils who would be submitted to a T&A surgery in the Department of Otolaryngology, Medical School, University of Sao Paulo, from October 2002 to March 2003. The control group comprised 28 children without tonsillar disease submitted to the same tests. Inspiratory pressure was obtained using a manometer and vacuum meter. We could observe lower inspiratory pressures in children with upper airway obstruction. The mean of inspiratory pressure in the upper airway obstruction group was 14.607 cm/H2O and in the control group was of 27.580 cm/H2O. Enlarged tonsils and adenoids were associated with poor inspiratory pressure, resulting in increased breathing effort and work of the involved muscles.

  12. Patterns of expiratory and inspiratory activation for thoracic motoneurones in the anaesthetized and the decerebrate rat

    PubMed Central

    de Almeida, Anoushka T R; Al-Izki, Sarah; Denton, Manuel Enríquez; Kirkwood, Peter A

    2010-01-01

    The nervous control of expiratory muscles is less well understood than that of the inspiratory muscles, particularly in the rat. The patterns of respiratory discharges in adult rats were therefore investigated for the muscles of the caudal intercostal spaces, with hypercapnia and under either anaesthesia or decerebration. With neuromuscular blockade and artificial ventilation, efferent discharges were present for both inspiration and expiration in both external and internal intercostal nerves. This was also the case for proximal internal intercostal nerve branches that innervate only internal intercostal and subcostalis muscles. If active, this region of muscle in other species is always expiratory. Here, inspiratory bursts were almost always present. The expiratory activity appeared only gradually and intermittently, when the anaesthesia was allowed to lighten or as the pre-decerebration anaesthesia wore off. The intermittent appearance is interpreted as the coupling of a slow medullary expiratory oscillator with a faster inspiratory one. The patterns of nerve discharges, in particular the inspiratory or biphasic activation of the internal and subcostalis layers, were confirmed by observations of equivalent patterns of EMG discharges in spontaneously breathing preparations, using denervation procedures to identify which muscles generated the signals. Some motor units were recruited in both inspiratory and expiratory bursts. These patterns of activity have not previously been described and have implications both for the functional role of multiple respiratory oscillators in the adult and for the mechanical actions of the muscles of the caudal intercostal spaces, including subcostalis, which is a partly bisegmental muscle. PMID:20530111

  13. Thresholding in PET images of static and moving targets

    NASA Astrophysics Data System (ADS)

    Yaremko, Brian; Riauka, Terence; Robinson, Don; Murray, Brad; Alexander, Abraham; McEwan, Alexander; Roa, Wilson

    2005-12-01

    Continued therapeutic gain in the treatment of non-small-cell lung cancer (NSCLC) will depend upon our ability to escalate the dose to the primary tumour while minimizing normal tissue toxicity. Both these objectives are facilitated by the accurate definition of a target volume that is as small as possible. To this end, both tumour immobilizations via deep inspiratory breath-hold, along with positron emission tomography (PET), have emerged as two promising approaches. Though PET is an excellent means of defining the general location of a tumour focus, its ability to define exactly the geometric extent of such a focus strongly depends upon selection of an appropriate image threshold. However, in clinical practice, the image threshold is typically not chosen according to consistent, well-established criteria. This study explores the relationship between image threshold and the resultant PET-defined volume using a series of F-18 radiotracer-filled hollow spheres of known internal volumes, both static and under oscillatory motion. The effects of both image threshold and tumour motion on the resultant PET image are examined. Imaging data are further collected from a series of simulated gated PET acquisitions in order to test the feasibility of a patient-controlled gating mechanism during deep inspiratory breath-hold. This study illustrates quantitatively considerable variability in resultant PET-defined tumour volumes depending upon numerous factors, including image threshold, size of the lesion, the presence of tumour motion and the scanning protocol. In this regard, when using PET in treatment planning for NSCLC, the radiation oncologist must select the image threshold very carefully to avoid either under-dosing the tumour or overdosing normal tissues.

  14. Thyrotropin-releasing hormone causes a tonic excitatory postsynaptic current and inhibits the phasic inspiratory inhibitory inputs in inspiratory-inhibited airway vagal preganglionic neurons.

    PubMed

    Hou, L; Zhou, X; Chen, Y; Qiu, D; Zhu, L; Wang, J

    2012-01-27

    The airway vagal preganglionic neurons (AVPNs) in the external formation of the nucleus ambiguus (eNA), which include the inspiratory-activated AVPNs (IA-AVPNs) and inspiratory-inhibited AVPNs (II-AVPNs), predominate in the control of the trachea and bronchia. The AVPNs receive particularly dense inputs from terminals containing thyrotropin-releasing hormone (TRH). TRH microinjection into the nucleus ambiguus (NA) caused constriction of the tracheal smooth muscles. However, it is unknown whether TRH affects all subtypes of the AVPNs in the eNA, and as a result affects the control of all types of target tissues in the airway (smooth muscles, submucosal glands, and blood vessels). It is also unknown how TRH affects the AVPNs at neuronal and synaptic levels. In this study, the AVPNs in the eNA were retrogradely labeled from the extrathoracic trachea, the II-AVPNs were identified in rhythmically firing brainstem slices, and the effects of TRH were examined using patch-clamp. TRH (100 nmol L(-1)) enhanced both the rhythm and the intensity of the hypoglossal bursts, and caused a tonic excitatory inward current in the II-AVPNs at a holding voltage of -80 mV. The frequency of the spontaneous excitatory postsynaptic currents (EPSCs) in the II-AVPNs, which showed no respiratory-related change in a respiratory cycle, was not significantly changed by TRH. At a holding voltage of -50 mV, the II-AVPNs showed both spontaneous and phasic inspiratory (outward) inhibitory postsynaptic currents (IPSCs). TRH had no effect on the spontaneous IPSCs but significantly attenuated the phasic inspiratory outward currents, in both the amplitude and area. After focal application of strychnine, an antagonist of glycine receptors, to the II-AVPNs, the spontaneous IPSCs were extremely scarce and the phasic inspiratory inhibitory currents were abolished; and further application of TRH had no effect on these currents. Under current clamp configuration, TRH caused a depolarization and increased the

  15. Imposed Power of Breathing Associated With Use of an Impedance Threshold Device

    DTIC Science & Technology

    2007-02-01

    per min is the power of breathing ( POB ). The objectives of this study were to measure and compare the inspiratory imposed POB (POBI) and other...testing. During an orientation period that preceded each experiment, all subjects were made familiar with the lab - oratory, the protocol, and the...through the impedance threshold de- vice (–7 cm H2O), the total POB [physiologic POB plus POBI]) is expected to be approximately 12–16 J/min. All the

  16. Ipsilateral inspiratory intercostal muscle activity after C2 spinal cord hemisection in rats.

    PubMed

    Beth Zimmer, M; Grant, Joshua S; Ayar, Angelo E; Goshgarian, Harry G

    2015-03-01

    Upper cervical spinal cord hemisection causes paralysis of the ipsilateral hemidiaphragm; however, the effect of C2 hemisection on the function of the intercostal muscles is not clear. We hypothesized that C2 hemisection would eliminate inspiratory intercostal activity ipsilateral to the injury and that some activity would return in a time-dependent manner. Female Sprague Dawley rats were anesthetized with urethane and inspiratory intercostal electromyogram (EMG) activity was recorded in control rats, acutely injured C2 hemisected rats, and at 1 and 16 weeks post C2 hemisection. Bilateral recordings of intercostal EMG activity showed that inspiratory activity was reduced immediately after injury and increased over time. EMG activity was observed first in rostral spaces followed by recovery occurring in caudal spaces. Theophylline increased respiratory drive and increased intercostal activity, inducing activity that was previously absent. These results suggest that there are crossed, initially latent, respiratory connections to neurons innervating the intercostal muscles similar to those innervating phrenic motor neurons.

  17. Optogenetic excitation of preBötzinger complex neurons potently drives inspiratory activity in vivo

    PubMed Central

    Alsahafi, Zaki; Dickson, Clayton T; Pagliardini, Silvia

    2015-01-01

    Understanding the sites and mechanisms underlying respiratory rhythmogenesis is of fundamental interest in the field of respiratory neurophysiology. Previous studies demonstrated the necessary and sufficient role of preBötzinger complex (preBötC) in generating inspiratory rhythms in vitro and in vivo. However, the influence of timed activation of the preBötC network in vivo is as yet unknown given the experimental approaches previously used. By unilaterally infecting preBötC neurons using an adeno-associated virus expressing channelrhodopsin we photo-activated the network in order to assess how excitation delivered in a spatially and temporally precise manner to the inspiratory oscillator influences ongoing breathing rhythms and related muscular activity in urethane-anaesthetized rats. We hypothesized that if an excitatory drive is necessary for rhythmogenesis and burst initiation, photo-activation of preBötC not only will increase respiratory rate, but also entrain it over a wide range of frequencies with fast onset, and have little effect on ongoing respiratory rhythm if a stimulus is delivered during inspiration. Stimulation of preBötC neurons consistently increased respiratory rate and entrained respiration up to fourfold baseline conditions. Furthermore, brief pulses of photostimulation delivered at random phases between inspiratory events robustly and consistently induced phase-independent (Type 0) respiratory reset and recruited inspiratory muscle activity at very short delays (∼100 ms). A 200 ms refractory period following inspiration was also identified. These data provide strong evidence for a fine control of inspiratory activity in the preBötC and provide further evidence that the preBötC network constitutes the fundamental oscillator of inspiratory rhythms. PMID:26010654

  18. Deep breathing heart rate variability is associated with inspiratory muscle weakness in chronic heart failure.

    PubMed

    Reis, Michel Silva; Arena, Ross; Archiza, Bruno; de Toledo, Carlos Fischer; Catai, Aparecida Maria; Borghi-Silva, Audrey

    2014-03-01

    There is a synchronism between the respiratory and cardiac cycles. However, the relationship of inspiratory muscle weakness in chronic heart failure (CHF) on cardiac autonomic modulation is unknown. The purpose of the present investigation was to evaluate the impact of inspiratory muscle strength on the magnitude of respiratory sinus arrhythmia. Ten CHF (62 ± 7 years--left ventricle eject fraction of 40 ± 5% and New York Heart Association class I-III) and nine matched-age healthy volunteers (64 ± 5 years) participated in this study. Heart rate variability (HRV) was obtained at rest and during deep breathing manoeuvre (DB-M) by electrocardiograph. CHF patients demonstrated impaired cardiac autonomic modulation at rest and during DB-M when compared with healthy subjects (p < 0.05). Moreover, significant and positive correlations between maximal inspiratory pressure and inspiratory-expiratory differences (r = 0.79), expiratory/inspiratory ratio (r = 0.83), root mean square of the successive differences (r = 0.77), standard deviation of NN intervals (r = 0.77), low frequency (r = 0.77), and high frequency (r = 0.70) were found during DB-M. At rest, significant correlations were found also. Patients with CHF presented impaired cardiac autonomic modulation at rest. In addition, cardiac autonomic control of heart rate was associated with inspiratory muscle weakness in CHF. Based on this evidence, recommendations for future research applications of respiratory muscle training can bring to light a potentially valuable target for rehabilitation. Copyright © 2013 John Wiley & Sons, Ltd.

  19. Inspiratory Muscle Strength and Endurance in Children and Adolescents with Cystic Fibrosis.

    PubMed

    Vendrusculo, Fernanda M; Heinzmann-Filho, João P; Piva, Taila C; Marostica, Paulo J C; Donadio, Márcio V F

    2016-02-01

    Pulmonary changes that occur in cystic fibrosis may influence inspiratory muscle strength and endurance. We evaluated inspiratory muscle strength and endurance in children and adolescents with cystic fibrosis in comparison with healthy subjects. This is a cross-sectional observational study with subjects with cystic fibrosis and paired healthy individuals, age 6-18 y. Spirometry, impulse oscillometry, plethysmography, manovacuometry, and a protocol of inspiratory muscle endurance were performed. Subjects with cystic fibrosis (n = 34) had higher maximum percent-of-predicted inspiratory pressure (PImax) than healthy (n = 68) subjects (118.5 ± 25.8% vs 105.8 ± 18.0%) and no significant difference in endurance (60.9 ± 13.3% vs 65.3 ± 12.3%). When restricting the analysis to subjects without Pseudomonas aeruginosa colonization and with FEV1 > 80%, PImax values were significantly higher, and inspiratory muscle endurance was lower, in comparison with the control group. PImax correlated significantly with FVC (r = 0.44, P = .02) and FEV1 (r = 0.41, P = .02), whereas endurance correlated better with total airway resistance (r = 0.35, P = .045) and with central airway resistance (r = 0.48, P = .004). Children and adolescents with cystic fibrosis with no colonization by P. aeruginosa and normal lung function present increased inspiratory muscle strength and decreased endurance compared with healthy individuals, indicating that changes in the respiratory muscle function seem to be distinctly associated with pulmonary involvement. Strength was related to pulmonary function parameters, whereas endurance was associated with airway resistance. Copyright © 2016 by Daedalus Enterprises.

  20. Some reflex cardioinhibitory responses in the cat and their modulation by central inspiratory neuronal activity.

    PubMed

    Daly, M D

    1991-08-01

    1. Cats were anaesthetized with a mixture of chloralose and urethane, and were artifically ventilated. 2. An open pneumothorax was provided by two large-bore tubes which were sealed in the sixth intercostal space on each side. They were connected to a Fleisch pneumotachograph. Phasic changes in central inspiratory neuronal activity were measured quantitatively as changes in the volume of the pneumothorax during temporary interruption of artificial respiration, the volume of the lungs being held constant at their end-expiratory level. In this way the activity of slowly adapting pulmonary stretch receptors was maintained constant. 3. Reflex cardioinhibitory responses were elicited by stimulation of (a) the carotid body chemoreceptors by intracarotid injections of cyanide; (b) the arterial baroreflex by controlled elevations of the blood pressure; (c) cardiac receptors by left atrial injections of veratridine; and (d) pulmonary C fibres (including J receptors) by right atrial injections of phenylbiguanide. 4. The effects of central inspiratory neuronal activity on pulse interval were assessed by comparing the values observed during the inspiratory and expiratory phases of the respiratory cycle in the control state and during stimulation of each cardiovascular receptor group. 5. The carotid chemoreceptor-induced bradycardia measured during the expiratory phase of respiration was reduced during inspiration to a value of about 15% of control. The central inspiratory drive was less effective in altering the reflex responses from the arterial baroreceptors and cardiac receptors, the corresponding values being 42 and 51% respectively. 6. In contrast, the bradycardia evoked by pulmonary C fibre stimulation was not significantly affected by the central inspiratory drive. 7. The differential nature of the modulation by the central inspiratory drive occurred independently of the integrity of the sympathetic nerve supply to the heart indicating that the cardiac efferents

  1. Some reflex cardioinhibitory responses in the cat and their modulation by central inspiratory neuronal activity.

    PubMed Central

    Daly, M D

    1991-01-01

    1. Cats were anaesthetized with a mixture of chloralose and urethane, and were artifically ventilated. 2. An open pneumothorax was provided by two large-bore tubes which were sealed in the sixth intercostal space on each side. They were connected to a Fleisch pneumotachograph. Phasic changes in central inspiratory neuronal activity were measured quantitatively as changes in the volume of the pneumothorax during temporary interruption of artificial respiration, the volume of the lungs being held constant at their end-expiratory level. In this way the activity of slowly adapting pulmonary stretch receptors was maintained constant. 3. Reflex cardioinhibitory responses were elicited by stimulation of (a) the carotid body chemoreceptors by intracarotid injections of cyanide; (b) the arterial baroreflex by controlled elevations of the blood pressure; (c) cardiac receptors by left atrial injections of veratridine; and (d) pulmonary C fibres (including J receptors) by right atrial injections of phenylbiguanide. 4. The effects of central inspiratory neuronal activity on pulse interval were assessed by comparing the values observed during the inspiratory and expiratory phases of the respiratory cycle in the control state and during stimulation of each cardiovascular receptor group. 5. The carotid chemoreceptor-induced bradycardia measured during the expiratory phase of respiration was reduced during inspiration to a value of about 15% of control. The central inspiratory drive was less effective in altering the reflex responses from the arterial baroreceptors and cardiac receptors, the corresponding values being 42 and 51% respectively. 6. In contrast, the bradycardia evoked by pulmonary C fibre stimulation was not significantly affected by the central inspiratory drive. 7. The differential nature of the modulation by the central inspiratory drive occurred independently of the integrity of the sympathetic nerve supply to the heart indicating that the cardiac efferents

  2. [Exercise-induced inspiratory stridor. An important differential diagnosis of exercise-induced asthma].

    PubMed

    Christensen, Pernille; Thomsen, Simon Francis; Rasmussen, Niels; Backer, Vibeke

    2007-11-19

    Recent studies suggest that exercise-induced inspiratory stridor (EIIS) is an important and often overlooked differential diagnosis of exercise-induced asthma. EIIS is characterised by astma-like symptoms, but differs by inspiratory limitation, fast recovery, and a lack of effect of inhaled bronchodilators. The prevalence of EIIS is reported to be 5-27%, and affects both children and adults. The pathophysiology, the pathogenesis, and the treatment of the condition are not yet clarified. At present, a population-based study is being conducted in order to address these points.

  3. Prevention of pulmonary complications after upper abdominal surgery by preoperative intensive inspiratory muscle training: a randomized controlled pilot study.

    PubMed

    Dronkers, Jaap; Veldman, André; Hoberg, Ellen; van der Waal, Cees; van Meeteren, Nico

    2008-02-01

    To investigate the feasibility and effects of preoperative inspiratory muscle training on the incidence of atelectasis in patients at high risk of postoperative pulmonary complications scheduled for elective abdominal aortic aneurysm surgery. Single-blind randomized controlled pilot study. Gelderse Vallei Hospital Ede, the Netherlands. Twenty high-risk patients undergoing elective abdominal aortic aneurysm surgery were randomly assigned to receive preoperative inspiratory muscle training or usual care. Effectiveness outcome variables were atelectasis, inspiratory muscle strength and vital capacity, and feasibility outcome variables were adverse effects and patient satisfaction with inspiratory muscle training. Despite randomization, patients in the intervention group were significantly older than the patients in the control group (70 +/- 6 years versus 59 +/- 6 years, respectively; P = 0.001). Eight patients in the control group and three in the intervention group developed atelectasis (P = 0.07). The median duration of atelectasis was 0 days in the intervention group and 1.5 days in the control group (P = 0.07). No adverse effects of preoperative inspiratory muscle training were observed and patients considered that inspiratory muscle training was a good preparation for surgery. Mean postoperative inspiratory pressure was 10% higher in the intervention group. Preoperative inspiratory muscle training is well tolerated and appreciated and seems to reduce the incidence of atelectasis in patients scheduled for elective abdominal aortic aneurysm surgery.

  4. Threshold Graph Limits and Random Threshold Graphs

    PubMed Central

    Diaconis, Persi; Holmes, Susan; Janson, Svante

    2010-01-01

    We study the limit theory of large threshold graphs and apply this to a variety of models for random threshold graphs. The results give a nice set of examples for the emerging theory of graph limits. PMID:20811581

  5. Midline section of the medulla abolishes inspiratory activity and desynchronizes pre-inspiratory neuron rhythm on both sides of the medulla in newborn rats.

    PubMed

    Onimaru, Hiroshi; Tsuzawa, Kayo; Nakazono, Yoshimi; Janczewski, Wiktor A

    2015-04-01

    Each half of the medulla contains respiratory neurons that constitute two generators that control respiratory rhythm. One generator consists of the inspiratory neurons in the pre-Bötzinger complex (preBötC); the other, the pre-inspiratory (Pre-I) neurons in the parafacial respiratory group (pFRG), rostral to the preBötC. We investigated the contribution of the commissural fibers, connecting the respiratory rhythm generators located on the opposite side of the medulla to the generation of respiratory activity in brain stem-spinal cord preparation from 0- to 1-day-old rats. Pre-I neuron activity and the facial nerve and/or first lumbar (L1) root activity were recorded as indicators of the pFRG-driven rhythm. Fourth cervical ventral root (C4) root and/or hypoglossal (XII) nerve activity were recorded as indicators of preBötC-driven inspiratory activity. We found that a midline section that interrupted crossed fibers rostral to the obex irreversibly eliminated C4 and XII root activity, whereas the Pre-I neurons, facial nerve, and L1 roots remained rhythmically active. The facial and contralateral L1 nerve activities were synchronous, whereas right and left facial (and right and left L1) nerves lost synchrony. Optical recordings demonstrated that pFRG-driven burst activity was preserved after a midline section, whereas the preBötC neurons were no longer rhythmic. We conclude that in newborn rats, crossed excitatory interactions (via commissural fibers) are necessary for the generation of inspiratory bursts but not for the generation of rhythmic Pre-I neuron activity. Copyright © 2015 the American Physiological Society.

  6. Bench experiments comparing simulated inspiratory effort when breathing helium-oxygen mixtures to that during positive pressure support with air.

    PubMed

    Martin, Andrew R; Katz, Ira M; Jenöfi, Katharina; Caillibotte, Georges; Brochard, Laurent; Texereau, Joëlle

    2012-10-03

    Inhalation of helium-oxygen (He/O2) mixtures has been explored as a means to lower the work of breathing of patients with obstructive lung disease. Non-invasive ventilation (NIV) with positive pressure support is also used for this purpose. The bench experiments presented herein were conducted in order to compare simulated patient inspiratory effort breathing He/O2 with that breathing medical air, with or without pressure support, across a range of adult, obstructive disease patterns. Patient breathing was simulated using a dual-chamber mechanical test lung, with the breathing compartment connected to an ICU ventilator operated in NIV mode with medical air or He/O2 (78/22 or 65/35%). Parabolic or linear resistances were inserted at the inlet to the breathing chamber. Breathing chamber compliance was also varied. The inspiratory effort was assessed for the different gas mixtures, for three breathing patterns, with zero pressure support (simulating unassisted spontaneous breathing), and with varying levels of pressure support. Inspiratory effort increased with increasing resistance and decreasing compliance. At a fixed resistance and compliance, inspiratory effort increased with increasing minute ventilation, and decreased with increasing pressure support. For parabolic resistors, inspiratory effort was lower for He/O2 mixtures than for air, whereas little difference was measured for nominally linear resistance. Relatively small differences in inspiratory effort were measured between the two He/O2 mixtures. Used in combination, reductions in inspiratory effort provided by He/O2 and pressure support were additive. The reduction in inspiratory effort afforded by breathing He/O2 is strongly dependent on the severity and type of airway obstruction. Varying helium concentration between 78% and 65% has small impact on inspiratory effort, while combining He/O2 with pressure support provides an additive reduction in inspiratory effort. In addition, breathing He/O2 alone may

  7. Inspiratory muscle fatigue after race-paced swimming is not restricted to the front crawl stroke.

    PubMed

    Lomax, Mitch; Iggleden, Colin; Tourell, Alice; Castle, Sophie; Honey, Jo

    2012-10-01

    The occurrence of inspiratory muscle fatigue (IMF) has been documented after front crawl (FC) swimming of various distances. Whether IMF occurs after other competitive swimming strokes is not known. The aim of the present study was to assess the impact of all 4 competitive swimming strokes on the occurrence of IMF after race-paced swimming and to determine whether the magnitude of IMF was related to the breathing pattern adopted and hence breathing frequency (f(b)). Eleven, nationally ranked, youth swimmers completed four 200-m swims (one in each competitive stroke) on separate occasions. The order of the swims, which consisted of FC, backstroke (BK), breaststroke (BR), and butterfly (FLY), was randomized. Maximal inspiratory mouth pressure (MIP) was assessed before (after a swimming and inspiratory muscle warm-up) and after each swim with f(b) calculated post swim from recorded data. Inspiratory muscle fatigue was evident after each 200-m swim (p < 0.05) but did not differ between the 4 strokes (range 18-21%). No relationship (p > 0.05) was observed between f(b) and the change in MIP (FC: r = -0.456; BK: r = 0.218; BR: r = 0.218; and FLY: r = 0.312). These results demonstrate that IMF occurs in response to 200-m race-paced swimming in all strokes and that the magnitude of IMF is similar between strokes when breathing is ad libitum occurring no less than 1 breath (inhalation) every third stroke.

  8. Inspiratory resistance versus general physical training in patients with chronic obstructive pulmonary disease.

    PubMed

    Madsen, F; Secher, N H; Kay, L; Kok-Jensen, A; Rube, N

    1985-09-01

    The effect of inspiratory muscle training (IMT) three times daily for 6 weeks was compared with that of general physical training (PT) (stair climbing) in 10 out-patients with severe chronic obstructive pulmonary disease (COPD). PT improved 12 min walking distance (12MWD) by 19% (1-28), stair climbing ability (SCA) over four floors at maximum speed by 11% (3-50), maximum oxygen uptake by 10% (2-33), inspiratory flow by 85% (19-113) and improved an index of breathlessness by 44% (3-786). During IMT, 12MWD and SCA decreased by 8% (0-33) and 10% (0-161), respectively, and the other variables decreased by 6-10%. No changes were seen in ventilation during maximum exercise, in maximum inspiratory and expiratory pressures, or in variables measured during spirometry. Thus work capacity can be improved by training in COPD maybe because of an increase in inspiratory flow rate, but without a change in maximum exercise ventilation.

  9. [Measurement of the reserve function of inspiratory muscle and its clinical significance].

    PubMed

    Xiao, X; Luo, Y; Chen, W; Yuan, Y; He, T; Zeng, J

    1995-06-01

    The principles of measuring inspiratory muscle tension-time index (TTim) and the ratio of the works of inspiration over the maximal works of inspiration (Wi/Wi(max)) were investigated and their formulae were deduced, i.e. TTim = (Pi x Ti)/(MIP x Ttot) and Wi/Wi(max) = (Pi x VT)/(MIP x IC). The importance of the inspiratory pressure and the maximal inspiratory pressure (MIP) measured at function residual capacity (FRC) level was emphasized. Both TTim and Wi/Wi(max) were measured in 35 normal subjects and 89 patients with chronic obstructive pulmonary disease (COPD). The results showed that normal value of TTim was 0.0253 +/- 0.0055 which corresponds to the normal value of the diaphragm tension-time index (TTdi = 0.02-0.03) reported by Bellemare. Patients with COPD had a mean TTim much higher than that of normals (P < 0.01). The works of inspiration (Wi) in patients with COPD increased, while the maximal works of inspiration (Wi(max)) declined, so Wi/Wi(max) became significantly greater than that of normals (P < 0.01). The results also showed that there was a linear relationship between Pi/Pimax and TTim or Wi/Wimax (r = 0.7891, 0.9738, 0.6459, 0.9327, P < 0.01). Therefore, we suggest that both TTim and Wi/Wimax can be used as clinical indices to reflect the reserve function of inspiratory muscles.

  10. Pulse pressure variation to predict fluid responsiveness in spontaneously breathing patients: tidal vs. forced inspiratory breathing.

    PubMed

    Hong, D M; Lee, J M; Seo, J H; Min, J J; Jeon, Y; Bahk, J H

    2014-07-01

    We evaluated whether pulse pressure variation can predict fluid responsiveness in spontaneously breathing patients. Fifty-nine elective thoracic surgical patients were studied before induction of general anaesthesia. After volume expansion with hydroxyethyl starch 6 ml.kg(-1) , patients were defined as responders by a ≥ 15% increase in the cardiac index. Haemodynamic variables were measured before and after volume expansion and pulse pressure variations were calculated during tidal breathing and during forced inspiratory breathing. Median (IQR [range]) pulse pressure variation during forced inspiratory breathing was significantly higher in responders (n = 29) than in non-responders (n = 30) before volume expansion (18.2 (IQR 14.7-18.2 [9.3-31.3])% vs. 10.1 (IQR 8.3-12.6 [4.8-21.1])%, respectively, p < 0.001). The receiver-operating characteristic curve revealed that pulse pressure variation during forced inspiratory breathing could predict fluid responsiveness (area under the curve 0.910, p < 0.0001). Pulse pressure variation measured during forced inspiratory breathing can be used to guide fluid management in spontaneously breathing patients.

  11. Inspiratory muscles experience fatigue faster than the calf muscles during treadmill marching.

    PubMed

    Perlovitch, Renana; Gefen, Amit; Elad, David; Ratnovsky, Anat; Kramer, Mordechai R; Halpern, Pinchas

    2007-04-16

    The possibility that respiratory muscles may fatigue during extreme physical activity and thereby become a limiting factor leading to exhaustion is debated in the literature. The aim of this study was to determine whether treadmill marching exercise induces respiratory muscle fatigue, and to compare the extent and rate of respiratory muscle fatigue to those of the calf musculature. To identify muscle fatigue, surface electromyographic (EMG) signals of the inspiratory (sternomastoid, external intercostals), expiratory (rectus abdominis and external oblique) and calf (gastrocnemius lateralis) muscles were measured during a treadmill march of 2 km at a constant velocity of 8 km/h. The extent of fatigue was assessed by determining the increase in root-mean-square (RMS) of EMG over time, and the rate of fatigue was assessed from the slope of the EMG RMS versus time curve. Results indicated that (i) the inspiratory and calf muscles are the ones experiencing the most dominant fatigue during treadmill marching, (ii) the rate of fatigue of each muscle group was monotonic between the initial and terminal phases of exercise, and (iii) the inspiratory muscles fatigue significantly faster than the calf at the terminal phase of exercise, and are likely to fatigue faster during the initial exercise as well. Accordingly, this study supports the hypothesis that fatigue of the inspiratory muscles may be a limiting factor during exercise.

  12. Maximal inspiratory pressure is influenced by intensity of the warm-up protocol.

    PubMed

    Arend, Mati; Kivastik, Jana; Mäestu, Jarek

    2016-08-01

    The aim of the study was to compare the effect of inspiratory muscle warm-up protocols with different intensities and breathing repetitions on maximal inspiratory pressure (MIP). Ten healthy and recreationally active men (183.3±5.5cm, 83.7±7.8kg, 26.4±4.1years) completed four different inspiratory muscle (IM) warm-up protocols (2×30 inspirations at 40% MIP, 2×12 inspirations at 60% MIP, 2×6 inspirations at 80% MIP, 2×30 inspirations at 15% MIP) on separate, randomly assigned visits. Pre-post values of MIP using MicroRPM (Micro Medical, Kent, UK) showed a significant increase in the mean values after the IM warm-up (POWERbreathe(®) K1, Warwickshire, UK) with 40% MIP and 60% MIP warm-up protocols, when MIP increased by 7cm H2O (95% CI: 0.10…13.89) (p=0.047) and by 6.4cm H2O (95% CI: 2.98…13.83) (p=0.027), respectively. In conclusion, a higher intensity inspiratory muscle warm-up protocol (2×12 breaths at 60% of MIP) can increase IM strength.

  13. Impact of a Behavioral-Based Intervention on Inspiratory Muscle Training Prescription by a Multidisciplinary Team

    ERIC Educational Resources Information Center

    Simms, Alanna M.; Li, Linda C.; Geddes, E. Lynne; Brooks, Dina; Hoens, Alison M.; Reid, W. Darlene

    2012-01-01

    Introduction: Our goal was to compare behavioral- and information-based interventions aimed at increasing prescription of inspiratory muscle training (IMT) for people with chronic obstructive pulmonary disease (COPD) by interdisciplinary teams during pulmonary rehabilitation (PR). Methods: Six hospital PR programs were randomly assigned to a…

  14. Mouth breathing evaluation: use of Glatzel mirror and peak nasal inspiratory flow.

    PubMed

    Melo, Danielle de Lima e; Santos, Roberta Viviane Moreira; Perilo, Tatiana Vargas de Castro; Becker, Helena Maria Gonçalves; Motta, Andréa Rodrigues

    2013-01-01

    To compare the use of the Glatzel mirror and peak nasal inspiratory flow in the evaluation of mouth-breathing participants and to analyze the correlation between these instruments. Sixty-four children were evaluated--32 mouth breathers and 32 nasal breathers; the children were aged 4 to 12 years. The mouth breathers were subdivided according to the cause of obstruction by a multidisciplinary team. The Glatzel mirror and peak nasal inspiratory flow were used in both groups to evaluate patency and nasal airflow. Data were then subjected for statistical analysis. The Glatzel mirror allowed us to differentiate the breathing mode considering gender, age, weight, height, and body mass index, but it did not help in identifying the cause of mouth breathing. The peak nasal inspiratory flow did not allow differentiation of the breathing mode and identification of the cause of mouth breathing. In our sample, there was no correlation between the instruments used. The Glatzel mirror was reliable in identifying participants with and without nasal obstruction, although it was not possible to differentiate subgroups of mouth breathers using this instrument. The peak nasal inspiratory flow showed differences only between nasal breathers and surgical mouth breathers. Low correlation was found between these two instruments.

  15. Impact of a Behavioral-Based Intervention on Inspiratory Muscle Training Prescription by a Multidisciplinary Team

    ERIC Educational Resources Information Center

    Simms, Alanna M.; Li, Linda C.; Geddes, E. Lynne; Brooks, Dina; Hoens, Alison M.; Reid, W. Darlene

    2012-01-01

    Introduction: Our goal was to compare behavioral- and information-based interventions aimed at increasing prescription of inspiratory muscle training (IMT) for people with chronic obstructive pulmonary disease (COPD) by interdisciplinary teams during pulmonary rehabilitation (PR). Methods: Six hospital PR programs were randomly assigned to a…

  16. Effects of unilateral airway occlusion on rib motion and inspiratory intercostal activity in dogs.

    PubMed

    Leduc, Dimitri; Marechal, Sarah; Taton, Olivier; Blairon, Bernard; Legrand, Alexandre

    2017-04-01

    Unilateral bronchial occlusion, a complication of many lung diseases, causes dyspnea but the mechanism of this symptom is uncertain. In this study, electromyographic (EMG) activity in the parasternal and external intercostal muscles in the third intercostal space and inspiratory motion of the third rib on both sides of the thorax were assessed during occlusion of a main bronchus for a single breath in anesthetized dogs. Occlusion produced a 65% increase in external intercostal EMG activity in both hemithoraces without altering parasternal EMG activity. Concomitantly, the inspiratory cranial rib motion showed a 50% decrease on both sides of the thorax. These changes were unaffected by bilateral vagotomy. However, when an external, caudally oriented force was applied to the third rib on the right or left side so that its inspiratory cranial displacement was abolished, activity in the adjacent external intercostals showed a twofold increase, but rib motion and external activity in the contralateral hemithorax remained unchanged. It is concluded that during occlusion of a main bronchus, the increase in external intercostal activity is induced by the decrease in inspiratory cranial rib displacement in both hemithoraces, and that this decrease is determined by the increase in pleural pressure swings on both sides of the mediastinum. This mechanism, combined with the decrease in PaO2, induces similar alterations when unilateral bronchial occlusion is maintained for a series of consecutive breaths. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  17. Optimizing the Respiratory Pump: Harnessing Inspiratory Resistance to Treat Systemic Hypotension

    DTIC Science & Technology

    2011-06-01

    who gasp or have agonal respira - tions have a better outcome than those who do not.1-3 While some aspects of the “last gasp” have only recently been...gravitational force. Patient tolerance to inspiratory resistance and the respira - tory pump’s response to acute central hypovolemia in- duced by

  18. Inspiratory capacity at inflation hold in ventilated newborns: a surrogate measure for static compliance of the respiratory system.

    PubMed

    Hentschel, Roland; Semar, Nicole; Guttmann, Josef

    2012-09-01

    To study appropriateness of respiratory system compliance calculation using an inflation hold and compare it with ventilator readouts of pressure and tidal volume as well as with measurement of compliance of the respiratory system with the single-breath-single-occlusion technique gained with a standard lung function measurement. Prospective clinical trial. Level III neonatal unit of a university hospital. Sixty-seven newborns, born prematurely or at term, ventilated for a variety of pathologic conditions. A standardized sigh maneuver with a predefined peak inspiratory pressure of 30 cm H2O, termed inspiratory capacity at inflation hold, was applied. Using tidal volume, exhaled from inspiratory pause down to ambient pressure, as displayed by the ventilator, and predefined peak inspiratory pressure, compliance at inspiratory capacity at inflation hold conditions could be calculated as well as ratio of tidal volume and ventilator pressure using tidal volume and differential pressure at baseline ventilator settings: peak inspiratory pressure minus positive end-expiratory pressure. For the whole cohort, the equation for the regression between tidal volume at inspiratory capacity at inflation hold and compliance of the respiratory system was: compliance of the respiratory system = 0.052 * tidal volume at inspiratory capacity at inflation hold - 0.113, and compliance at inspiratory capacity at inflation hold conditions was closely related to the standard lung function measurement method of compliance of the respiratory system (R = 0.958). In contrast, ratio of tidal volume and ventilator pressure per kilogram calculated from the ventilator readouts and displayed against compliance of the respiratory system per kilogram yielded a broad scatter throughout the whole range of compliance; both were only weakly correlated (R = 0.309) and also the regression line was significantly different from the line of identity (p < .05). Peak inspiratory pressure at study entry did not

  19. The role of the inspiratory muscle weakness in functional capacity in hemodialysis patients

    PubMed Central

    Gomes, Rosalina Tossige; Neves, Camila Danielle Cunha; de Oliveira, Evandro Silveira; Alves, Frederico Lopes; Rodrigues, Vanessa Gomes Brandão; Maciel, Emílio Henrique Barroso

    2017-01-01

    Introduction Inspiratory muscle function may be affected in patients with End-Stage Renal Disease (ESRD), further worsening the functional loss in these individuals. However, the impact of inspiratory muscle weakness (IMW) on the functional capacity (FC) of hemodialysis patients remains unknown. Thus, the present study aimed to evaluate the impact of IMW on FC in ESRD patients undergoing hemodialysis. Materials and methods ESRD patients on hemodialysis treatment for more than six months were evaluated for inspiratory muscle strength and FC. Inspiratory muscle strength was evaluated based on maximal inspiratory pressure (MIP). IMW was defined as MIP values less than 70% of the predicted value. FC was evaluated using the Incremental Shuttle Walk test (ISWT). Patients whose predicted peak oxygen uptake (VO2peak) over the distance walked during the ISWT was less than 16mL/kg/min were considered to have FC impairment. Associations between variables were assessed by linear and logistic regression, with adjustment for age, sex, body mass index (BMI), presence of diabetes and hemoglobin level. Receiver-operating characteristic (ROC) analysis was used to determine different cutoff values of the MIP for normal inspiratory muscle strength and FC. Results Sixty-five ERSD patients (67.7% male), aged 48.2 (44.5–51.9) years were evaluated. MIP was an independent predictor of the distance walked during the ISWT (R2 = 0.44). IMW was an independent predictor of VO2peak < 16mL/kg/min. (OR = 5.7; p = 0.048) in adjusted logistic regression models. ROC curves showed that the MIP cutoff value of 82cmH2O had a sensitivity of 73.5% and specificity of 93.7% in predicting normal inspiratory strength and a sensitivity and specificity of 76.3% and 70.4%, respectively, in predicting VO2peak ≥ 16mL/kg/min. Conclusions IMW is associated with reduced FC in hemodialysis patients. Evaluation of the MIP may be important to functional monitoring in clinical practice and can help in the

  20. Effect of inspiratory muscle warm-up on submaximal rowing performance.

    PubMed

    Arend, Mati; Mäestu, Jarek; Kivastik, Jana; Rämson, Raul; Jürimäe, Jaak

    2015-01-01

    Performing inspiratory muscle warm-up might increase exercise performance. The aim of this study was to investigate the impact of inspiratory muscle warm-up to submaximal rowing performance and to find if there is an effect on lactic acid accumulation and breathing parameters. Ten competitive male rowers aged between 19 and 27 years (age, 23.1 ± 3.8 years; height, 188.1 ± 6.3 cm; body mass, 85.6 ± 6.6 kg) were tested 3 times. During the first visit, maximal inspiratory pressure (MIP) assessment and the incremental rowing test were performed to measure maximal oxygen consumption and maximal aerobic power (Pamax). A submaximal intensity (90% Pamax) rowing test was performed twice with the standard rowing warm-up as test 1 and with the standard rowing warm-up and specific inspiratory muscle warm-up as test 2. During the 2 experimental tests, distance, duration, heart rate, breathing frequency, ventilation, peak oxygen consumption, and blood lactate concentration were measured. The only value that showed a significant difference between the test 1 and test 2 was breathing frequency (52.2 ± 6.8 vs. 53.1 ± 6.8, respectively). Heart rate and ventilation showed a tendency to decrease and increase, respectively, after the inspiratory muscle warm-up (p < 0.1). Despite some changes in respiratory parameters, the use of 40% MIP intensity warm-up is not suggested if the mean intensity of the competition is at submaximal level (at approximately 90% maximal oxygen consumption). In conclusion, the warm-up protocol of the respiratory muscles used in this study does not have a significant influence on submaximal endurance performance in highly trained male rowers.

  1. Effects of an Inspiratory Impedance Threshold Device on Blood Pressure and Short Term Survival in Spontaneously Breathing Hypovolemic Pigs

    DTIC Science & Technology

    2006-01-01

    intubation, and ventilation during the preparatory phase have been described earlier.5 Propofol anesthesia (Propotol®, Abbott, North Chicago, IL) was... propofol to 50g/kg/min. This dose was adjusted to target respiratory rate of 25—35 breaths/min and oxygen saturation above 90%, breathing room air. Once...received 400ml of intravenous normal saline solution at the rate of 60ml/min. The arterial catheter was removed 15min later and propofol infusion was also

  2. CARA Risk Assessment Thresholds

    NASA Technical Reports Server (NTRS)

    Hejduk, M. D.

    2016-01-01

    Warning remediation threshold (Red threshold): Pc level at which warnings are issued, and active remediation considered and usually executed. Analysis threshold (Green to Yellow threshold): Pc level at which analysis of event is indicated, including seeking additional information if warranted. Post-remediation threshold: Pc level to which remediation maneuvers are sized in order to achieve event remediation and obviate any need for immediate follow-up maneuvers. Maneuver screening threshold: Pc compliance level for routine maneuver screenings (more demanding than regular Red threshold due to additional maneuver uncertainty).

  3. Effect of preceding inspiratory speed and end-inspiratory pause on forced expiratory manoeuvre in healthy subjects and chronic obstructive pulmonary disease patients.

    PubMed

    Boni, Enrico; Chiari, Stefania; Trigiani, Marco; Gatta, Diego; Pini, Laura; Tantucci, Claudio

    2009-01-01

    Lower peak expiratory flow (PEF) and forced expiratory volume in 1 s (FEV(1)) have been consistently found after slow inspiration with end-inspiratory pause (EIP). It was the aim of this study to establish the respective influence of the speed of preceding inspiration (SPI) and EIP on the parameters obtained from the following expiratory forced vital capacity (FVC) manoeuvre. In 8 healthy subjects and 12 patients with chronic obstructive pulmonary disease (COPD), a number of inspirations with different SPI and EIP were performed. In the subsequent FVC manoeuvre, maximal expiratory flows, including PEF, and maximal expired volumes at different times, including FEV(1), were measured. For each FVC manoeuvre, peak expiratory time, expired volume at PEF (as % of FVC), flow limitation by the negative expiratory pressure technique and FVC were checked to be sure of achieving a similar expiratory effort and starting inflation lung volume. The highest values of PEF and FEV(1) were found in normal subjects and COPD patients after fastest SPI without EIP (p < 0.001). In normal subjects, no significant PEF and FEV(1) changes during FVC manoeuvre were observed with different SPI, in the absence of EIP. In contrast, inspirations with slower SPI (inspiratory time >2 s) without EIP were followed by lower PEF in COPD patients (p < 0.05). As compared with inspirations without EIP, those with a presence of EIP were invariably followed by lower PEF and FEV(1), both in normal subjects and in COPD patients (p < 0.05). The effect of SPI on subsequent PEF and FEV(1) is irrelevant in healthy subjects as well as in COPD patients, unless SPI is too slow (inspiratory time >2 s), while any EIP decreases these indices in all individuals. (c) 2009 S. Karger AG, Basel.

  4. Reliability and acceptability of measuring sniff nasal inspiratory pressure (SNIP) and peak inspiratory flow (PIF) to assess respiratory muscle strength in older adults: a preliminary study.

    PubMed

    Barnes, Nicola; Agyapong-Badu, Sandra; Walsh, Bronagh; Stokes, Maria; Samuel, Dinesh

    2014-04-01

    Sniff nasal inspiratory pressure (SNIP) and peak oral inspiratory flow (PIF) are portable, relatively new methods for indirect measurement of respiratory muscle strength. The reliability and acceptability of these measures were investigated in older adults. The study included 21 self-reported healthy adults, aged 65-84 years (mean 73.5; SD 6.4 years). Participants were tested in a sitting position on two occasions, 1 week apart. The best of three attempts for PIF measured through the mouth, and five for each nostril for SNIP were recorded. Reliability was tested using intra-class correlation coefficient (ICC), standard error of measurement, minimal detectable change (MDC) and Bland and Altman analysis. Feedback on the measures in relation to ease of completion and preference was obtained using a semi-structured interview. Between-day reliability of SNIP and PIF were ICC3,1 0.76 (95 % CI 0.49-0.9) and 0.92 (0.81-0.97), respectively. Standard error of measurement for SNIP (11.94 cmH2O) and MDC (33.10 cmH2O) were at the least 61 % higher than for PIF. The participants reported difficulties in performing SNIP, rating it as being less easy and uncomfortable to perform than PIF, with a higher rate of missing data for SNIP due to participants' dislike of the test. The wide range of SNIP readings, lower ICC value and negative user feedback are suggestive of a less robust and unacceptable clinical measure. PIF showed excellent reliability and acceptability and is therefore recommended for assessing inspiratory muscle strength in older people without known obstructive lung disease.

  5. Effects of inspiratory muscle training on lung volumes, respiratory muscle strength, and quality of life in patients with ataxia telangiectasia.

    PubMed

    Félix, Erika; Gimenes, Ana Cristina; Costa-Carvalho, Beatriz Tavares

    2014-03-01

    Ataxia telangiectasia (AT) is a genetic syndrome caused by a mutation of chromosome 11. The clinical features are cerebellar ataxia, telangiectasia, and progressive loss of muscular coordination, including an inefficient cough secondary to progression of neurological disease. To evaluate the effects of inspiratory muscle training (IMT) on ventilation, lung volume, dyspnoea, respiratory muscle strength, and quality of life in patients with AT. A longitudinal study was conducted with 11 AT patients and nine healthy volunteers. Ventilometry, subjective sensation of dyspnoea, maximal inspiratory pressure (MIP), maximal expiratory pressure (MEP), and quality of life were assessed before and after a 24-week IMT program. The IMT load used was set at 60% of the MIP, and the training was performed for 20 min daily. Patients with AT had lower height and weight and also had lower respiratory muscle strength and lung volume compared with healthy volunteers. Furthermore, patients with AT showed a significant improvement when pre- and post-IMT were compared for ventilatory pattern: Vt (476.5 ± 135 ml vs. 583.3 ± 66 ml, P = 0.015) and f (23.3 ± 6 rpm vs. 20.4 ± 4 rpm, P = 0.018), and VC (1,664 ± 463 ml/kg vs. 2,145 ± 750 ml/kg, P = 0.002). IMT also significantly improved the sensation of dyspnoea (median 0.5; minimum 0; maximum 1.0; P = 0.022) and respiratory muscle strength: MIP (-22.2 ± 2 cmH2O vs. -38 ± 9 cmH2O, P < 0.001) and MEP (29 ± 7 cmH2O vs. 40 ± 8 cmH2O, P = 0.001). The health and vitality domains of the SF-36 also showed significant improvement (P = 0.009 and P = 0.014, respectively) post-IMT. IMT was effective in improving ventilatory pattern, lung volume, respiratory muscle strength, and the health and vitality domains for quality of life in patients with AT. IMT may be an effective adjunct therapy to drug treatment for patients with AT. © 2013 Wiley Periodicals, Inc.

  6. [Effect of methylphenidatum on inspiratory muscles function in patients with chronic obstructive pulmonary disease and its mechanism].

    PubMed

    Wang, Y; Luo, Y; Chen, W; Yuan, Y; He, T; Zeng, J

    1997-03-01

    To have a better understanding of the effect of methylphenidatum on inspiratory muscles function, we studied the respiratory force parameters of 70 patients with chronic obstructive pulmonary disease by intravenous infusion methylphenidatum in a randomized controlled clinical trial. The indices of respiratory force parameter included maximal inspiratory mouth pressure (MIP), maximal midinspiratory flow (MMIF), forced inspiratory capacity (FIC), maximal works of inspiration (Wimax) and airway occlusion pressure (P0.1), etc. Aminophylline and Nikethamidi were chosen as controls. The results showed that MIP, MMIF, FIC, Wimax, P0.1 and minute ventilation (Vr) were significantly increased after administration of methylphenidatum and aminophylline. There were no significant differences in MIP, MMIF, FIC and Wimax after administration of Nikethamidi, but P0.1 was significantly increased and the increase was higher than that after administration of methylphenidatum and aminophylline groups. We conclude that methylphenidatum can significantly improve the function of inspiratory muscles as aminophylline can do.

  7. Threshold quantum cryptography

    SciTech Connect

    Tokunaga, Yuuki; Okamoto, Tatsuaki; Imoto, Nobuyuki

    2005-01-01

    We present the concept of threshold collaborative unitary transformation or threshold quantum cryptography, which is a kind of quantum version of threshold cryptography. Threshold quantum cryptography states that classical shared secrets are distributed to several parties and a subset of them, whose number is greater than a threshold, collaborates to compute a quantum cryptographic function, while keeping each share secretly inside each party. The shared secrets are reusable if no cheating is detected. As a concrete example of this concept, we show a distributed protocol (with threshold) of conjugate coding.

  8. The effect of an adhesive external nasal dilator strip on the inspiratory nasal airflow.

    PubMed

    Seren, Erdal

    2010-01-01

    We studied the affect of an adhesive external nasal dilator strip (ENDS) on the inspiratory nasal airflow. A prospective study was performed. Twenty-two healthy volunteers were enrolled in the study. All volunteers analyzed the inspiratory nasal sound samples before and while wearing a commercially available ENDS. This nasal sound analysis includes the spectral analysis and average sound intensities in low frequency (Lf), medium frequency (Mf), and high frequency (Hf). In the sound analyses, an increase was found in sound intensity at Hf when the nasal strips were not worn whereas a decrease was found in sound intensity at Hf when the nasal strips were on. Changes in the nasal geometry of the anterior part of the nose by wearing nasal strips affects the pattern of nasal airflow and transforms it into a laminar pattern.

  9. The inspiratory "squawk" in extrinsic allergic alveolitis and other pulmonary fibroses.

    PubMed Central

    Earis, J E; Marsh, K; Pearson, M G; Ogilvie, C M

    1982-01-01

    An inspiratory musical sound ("squawk") was recorded in 14 patients with diffuse pulmonary fibrosis. These were divided into two groups: nine patients suffering from extrinsic allergic alveolitis (seven with bird fancier's lung and two with farmer's lung) and five patients with pulmonary fibrosis due to other causes, including rheumatoid disease, Wegener's granulomatosis, systemic sclerosis, and sarcoidosis. Clinical studies and phonopneumographic analysis of 10 consecutive squawks in each patient showed that the sound in the group with extrinsic allergic alveolitis was of shorter duration, occurred later in inspiration, and tended to be of higher frequency than the sound heard in the other group. Inspiratory crackles were present in all patients and in eight a single loud crackle preceded the squawk. We suggest that squawks, like crackles, result from the opening of airways and that the differences between the squawks in the two groups may reflect the size of the affected airways. PMID:7170682

  10. Increasing inspiratory time exacerbates ventilator-induced lung injury during high-pressure/high-volume mechanical ventilation.

    PubMed

    Casetti, Alfredo V; Bartlett, Robert H; Hirschl, Ronald B

    2002-10-01

    Ventilator-induced lung injury may be caused by overdistension of alveoli during high-pressure ventilation. In this study, we examined the effects of increasing inspiratory time on ventilator-induced lung injury. Sprague-Dawley rats were divided into four different groups with ten animals per group. Each group was then ventilated for 30 mins with one of four ventilator strategies. All groups were ventilated with an Fio2 of 1.0 and a positive end-expiratory pressure of 0 cm H2O. Group LoP was the negative control group and was ventilated with low pressures (peak inspiratory pressure = 12 cm H2O, rate = 30, and inspiratory time = 0.5 secs). Groups iT = 0.5, iT = 1.0, and iT = 1.5 were the experimental groups and were ventilated with high pressures (peak inspiratory pressure = 45 cm H2O, rate = 10, and inspiratory times = 0.5 secs, iT = 1.0 sec, and iT = 1.5 secs, respectively). Outcome measures included lung compliance, Pao /Fio ratio, wet/dry lung weight, and dry lung/body weight. Final static lung compliance (p =.0002) and Pao2/Fio2 (p =.001) decreased as inspiratory time increased. Wet/dry lung weights (p <.0001) and dry lung/body weights (p <.0001) increased as inspiratory time increased. Light microscopy revealed evidence of intra-alveolar edema and hemorrhage in the iT = 1.0 and iT = 1.5 animals but not the LoP and iT = 0.5 animals. Increasing inspiratory time during high-pressure/high-volume mechanical ventilation is associated with an increase in variables of lung injury.

  11. The Borg dyspnoea score: a relevant clinical marker of inspiratory muscle weakness in amyotrophic lateral sclerosis.

    PubMed

    Just, N; Bautin, N; Danel-Brunaud, V; Debroucker, V; Matran, R; Perez, T

    2010-02-01

    The aim of the study was to determine whether the Borg dyspnoea scale could be a useful and simple marker to predict respiratory muscle weakness in amyotrophic lateral sclerosis (ALS). From April 1997 to 2001, respiratory function was perfomed in 72 patients together with the Borg score in both the upright (uBorg) and supine (sBorg) positions. Mean upright vital capacity (VC) was 81+/-24% predicted, sniff nasal inspiratory pressure (SNIP) was 55+/-26% pred, maximal inspiratory pressure (P(I,max)) was 57+/-26% pred and arterial carbon dioxide tension (P(a,CO(2))) was 41+/-6 mmHg. The mean Borg scores in the upright and supine positions were 1.7+/-1.5 and 2.2+/-2, respectively. A significant relationship between SNIP and uBorg (r = 0.4; p = 0.0007) and SNIP and sBorg (r = 0.58; p<0.0001) was observed. Upright VC, DeltaVC (measured as the supine fall in VC as a percentage of seated VC), P(I,max) and P(a,CO(2)) were significantly correlated with SNIP. A cut-off value of 3 on the sBorg scale provided the best sensitivity (80%) and specificity (78%) (area under the curve 0.8) to predict a SNIP < or =40 cmH(2)O, indicating severe inspiratory muscle weakness. Patients with a sBorg score > or =3 also exhibited significantly lower VC, P(I,max) and twitch mouth pressure during cervical magnetic stimulation, and slightly higher P(a,CO(2)) (43.7+/-7 versus 39.2+/-5 mmHg; p = 0.05). The Borg dyspnoea scale is a valuable noninvasive test for the prediction of inspiratory muscle weakness in ALS patients.

  12. Tolerance to external breathing resistance with particular reference to high inspiratory resistance

    NASA Technical Reports Server (NTRS)

    Bentley, R. A.; Griffin, O. G.; Love, R. G.; Muir, D. C. F.; Sweetland, K. F.

    1972-01-01

    The ability of men to exercise while breathing through graded inspiratory resistances was studied in order to define acceptable respiratory mouthpiece assembly standards. Experimental results with subjects wearing breathing masks and walking for 30 min on treadmills were used to calculate expiratory work rates. It is concluded that the airflow must be appropriate to the upper limit of minute ventilation likely to be encountered in the men wearing the apparatus.

  13. Inspiratory muscle training during pulmonary rehabilitation in chronic obstructive pulmonary disease: A randomized trial.

    PubMed

    Beaumont, M; Mialon, P; Le Ber-Moy, C; Lochon, C; Péran, L; Pichon, R; Gut-Gobert, C; Leroyer, C; Morelot-Panzini, C; Couturaud, F

    2015-11-01

    Although recommended by international guidelines, the benefit of inspiratory muscle training (IMT) in addition to rehabilitation remains uncertain. The objective was to demonstrate the effectiveness of IMT on dyspnea using Borg scale and multidimensional dyspnea profile questionnaire at the end of a 6-minute walk test (6MWT) in patients with chronic obstructive pulmonary disease (COPD) with preserved average maximum inspiratory pressure (PImax) of 85 cm H2O (95% of predicted (pred.) value) and admitted for a rehabilitation program in a dedicated center. In a randomized trial, comparing IMT versus no IMT in 32 COPD patients without inspiratory muscle weakness (PImax >60 cm H2O) who were admitted for pulmonary rehabilitation (PR) for 3 weeks, we evaluated the effect of IMT on dyspnea, using both Borg scale and multidimensional dyspnea profile (MDP) at the end of the 6MWT, and on functional parameters included inspiratory muscle function (PImax) and 6MWT. All testings were performed at the start and the end of PR. In unadjusted analysis, IMT was not found to be associated with an improvement of either dyspnea or PImax. After adjustment on confounders (initial Borg score) and variables of interaction (forced expiratory volume in 1 second (FEV1)), we found a trend toward an improvement of "dyspnea sensory intensity", items from MDP and a significant improvement on the variation in the 2 items of MDP ("tight or constricted" and "breathing a lot"). In the subgroup of patients with FEV1 < 50% pred., 5 items of MDP were significantly improved, whereas no benefit was observed in patients with FEV1 > 50% pred. IMT did not significantly improve dyspnea or functional parameter in COPD patients with PImax > 60 cm H2O. However, in the subgroup of patients with FEV1 < 50% pred., MDP was significantly improved.

  14. Distribution of inspiratory drive to the external intercostal muscles in humans

    PubMed Central

    De Troyer, André; Gorman, Robert B; Gandevia, Simon C

    2003-01-01

    The external intercostal muscles in humans show marked regional differences in respiratory effect, and this implies that their action on the lung during breathing is primarily determined by the spatial distribution of neural drive among them. To assess this distribution, monopolar electrodes were implanted under ultrasound guidance in different muscle areas in six healthy individuals and electromyographic recordings were made during resting breathing. The muscles in the dorsal portion of the third and fifth interspace showed phasic inspiratory activity with each breath in every subject. However, the muscle in the ventral portion of the third interspace showed inspiratory activity in only three subjects, and the muscle in the dorsal portion of the seventh interspace was almost invariably silent. Also, activity in the ventral portion of the third interspace, when present, and activity in the dorsal portion of the fifth interspace were delayed relative to the onset of activity in the dorsal portion of the third interspace. In addition, the discharge frequency of the motor units identified in the dorsal portion of the third interspace averaged (mean ± s.e.m.) 11.9 ± 0.3 Hz and was significantly greater than the discharge frequency of the motor units in both the ventral portion of the third interspace (6.0 ± 0.5 Hz) and the dorsal portion of the fifth interspace (6.7 ± 0.4 Hz). The muscle in the dorsal portion of the third interspace started firing simultaneously with the parasternal intercostal in the same interspace, and the discharge frequency of its motor units was even significantly greater (11.4 ± 0.3 vs. 8.9 ± 0.2 Hz). These observations indicate that the distribution of neural inspiratory drive to the external intercostals in humans takes place along dorsoventral and rostrocaudal gradients and mirrors the spatial distribution of inspiratory mechanical advantage. PMID:12563017

  15. Inspiratory muscle performance in endurance-trained elderly males during incremental exercise.

    PubMed

    Chlif, Mehdi; Keochkerian, David; Temfemo, Abdou; Choquet, Dominique; Ahmaidi, Said

    2016-07-01

    The aim of this study was to compare the inspiratory muscle performance during an incremental exercise of twelve fit old endurance-trained athletes (OT) with that of fit young athletes (YT) and healthy age-matched controls (OC). The tension-time index (TT0.1) was determined according to the equation TT0.1=P0.1/PImax×ti/ttot, where P0.1 is the mouth occlusion pressure, PImax the maximal inspiratory pressure and ti/ttot the duty cycle. For a given VCO2, OT group displayed P0.1, P0.1/PImax ratio, TT0.1 and effective impedance of the respiratory muscle values which were lower than OC group and higher than YT group. At maximal exercise, P0.1/PImax ratio and TT0.1 was still lower in the OT group than OC group and higher than YT group. This study showed lower inspiratory muscle performance attested by a higher (TT0.1) during exercise in the OT group than YT group, but appeared to be less marked in elderly men having performed lifelong endurance training compared with sedentary elderly subjects. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Respiratory Muscle Activity During Simultaneous Stationary Cycling and Inspiratory Muscle Training.

    PubMed

    Hellyer, Nathan J; Folsom, Ian A; Gaz, Dan V; Kakuk, Alynn C; Mack, Jessica L; Ver Mulm, Jacyln A

    2015-12-01

    Inspiratory muscle training (IMT) strengthens the muscles of respiration, improves breathing efficiency, and increases fitness. The IMT is generally performed independently of aerobic exercise; however, it is not clear whether there is added benefit of performing the IMT while simultaneously performing aerobic exercise in terms of activating and strengthening inspiratory muscles. The purpose of our study was to determine the effect of IMT on respiratory muscle electromyography (EMG) activity during stationary cycling in the upright and drops postures as compared with that when the IMT was performed alone. Diaphragm and sternocleidomastoid EMG activity was measured under different resting and cycling postures, with and without the use of the IMT at 40% maximal inspiratory pressure (n = 10; mean age 37). Cycling in an upright posture while simultaneously performing the IMT resulted in a significantly greater diaphragm EMG activity than while performing the IMT at rest in upright or drops postures (p ≤ 0.05). Cycling in drops postures while performing the IMT had a significantly greater diaphragm EMG activity than when performing the IMT at rest in either upright or drops postures (p ≤ 0.05). Sternocleidomastoid muscle activity increased with both cycling and IMT, although posture had little effect. These results support our hypothesis in that the IMT while cycling increases respiratory EMG activity to a significantly greater extent than when performing the IMT solely at rest, suggesting that the combination of IMT and cycling may provide an additive training effect.

  17. Variations in peak nasal inspiratory flow among healthy students after using saline solutions.

    PubMed

    Olbrich Neto, Jaime; Olbrich, Sandra Regina Leite Rosa; Mori, Natália Leite Rosa; Oliveira, Ana Elisa de; Corrente, José Eduardo

    2016-01-01

    Nasal hygiene with saline solutions has been shown to relieve congestion, reduce the thickening of the mucus and keep nasal cavity clean and moist. Evaluating whether saline solutions improve nasal inspiratory flow among healthy children. Students between 8 and 11 years of age underwent 6 procedures with saline solutions at different concentrations. The peak nasal inspiratory flow was measured before and 30 min after each procedure. Statistical analysis was performed by means of t test, analysis of variance, and Tukey's test, considering p<0.05. We evaluated 124 children at all stages. There were differences on the way a same concentration was used. There was no difference between 0.9% saline solution and 3% saline solution by using a syringe. The 3% saline solution had higher averages of peak nasal inspiratory flow, but it was not significantly higher than the 0.9% saline solution. It is important to offer various options to patients. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  18. Ipsilateral inspiratory intercostal muscle activity after C2 spinal cord hemisection in rats

    PubMed Central

    Beth Zimmer, M.; Grant, Joshua S.; Ayar, Angelo E.; Goshgarian, Harry G.

    2015-01-01

    Background Upper cervical spinal cord hemisection causes paralysis of the ipsilateral hemidiaphragm; however, the effect of C2 hemisection on the function of the intercostal muscles is not clear. We hypothesized that C2 hemisection would eliminate inspiratory intercostal activity ipsilateral to the injury and that some activity would return in a time-dependent manner. Methods Female Sprague Dawley rats were anesthetized with urethane and inspiratory intercostal electromyogram (EMG) activity was recorded in control rats, acutely injured C2 hemisected rats, and at 1 and 16 weeks post C2 hemisection. Results Bilateral recordings of intercostal EMG activity showed that inspiratory activity was reduced immediately after injury and increased over time. EMG activity was observed first in rostral spaces followed by recovery occurring in caudal spaces. Theophylline increased respiratory drive and increased intercostal activity, inducing activity that was previously absent. Conclusion These results suggest that there are crossed, initially latent, respiratory connections to neurons innervating the intercostal muscles similar to those innervating phrenic motor neurons. PMID:24969369

  19. Using acoustics to estimate inspiratory flow rate and drug removed from a dry powder inhaler.

    PubMed

    Holmes, Martin S; Seheult, Jansen; Geraghty, Colm; D'Arcy, Shona; Costello, Richard W; Reilly, Richard B

    2013-01-01

    Morbidity and mortality rates of chronic respiratory diseases such as asthma and chronic obstructive pulmonary disease (COPD) are rising. There is a strong requirement for more effective management of these chronic diseases. Dry powder inhalers (DPIs) are one kind of devices currently employed to deliver medication aimed at controlling asthma and COPD symptoms. Despite their proven effectiveness when used correctly, some patients are unable to reach the inspiratory flow rate required to remove medication from the breath actuated devices and as a result, the medication does not reach the airways. This study employs an acoustic recording device, attached to a common DPI to record the audio signals of simulated inhalations. A rotameter was used to measure the flow rate through the inhaler while a milligram weighing scale was used to measure the amount of drug removed from each simulated inhalation. It was found that a strong correlation existed (R(2)>0.96) when average power, median amplitude, root mean square and mean absolute deviation were used to predict peak inspiratory flow rate. At a flow of 30 L/Min (mean absolute deviation=0.0049), it was found that 77% of the total emitted dose was removed from the inhaler. Results indicate that acoustic measurements may be used in the prediction of inspiratory flow rate and quantity of medication removed from an inhaler.

  20. Activation of human inspiratory muscles in an upside-down posture.

    PubMed

    Hudson, Anna L; Joulia, Fabrice; Butler, Annie A; Fitzpatrick, Richard C; Gandevia, Simon C; Butler, Jane E

    2016-06-01

    During quiet breathing, activation of obligatory inspiratory muscles differs in timing and magnitude. To test the hypothesis that this coordinated activation can be modified, we determined the effect of the upside-down posture compared with standing and lying supine. Subjects (n=14) breathed through a pneumotachometer with calibrated inductance bands around the chest wall and abdomen. Surface electromyographic activity (EMG) was recorded from the scalene muscles. Crural diaphragmatic EMG and oesophageal and gastric pressures were measured in a subset of six subjects. Quiet breathing and standard lung function manoeuvres were performed. The upside-down posture reduced end-expiratory lung volume. During quiet breathing, for the same inspiratory airflow and tidal volume, ribcage contribution decreased, abdominal contribution increased and transdiaphragmatic pressure swing doubled in the upside-down posture compared to standing (p<0.05). Despite this, crural diaphragm EMG was unchanged, whereas scalene muscle EMG was reduced by ∼half (p<0.05). Thus, the mechanical effect of an upside-down posture differentially affects inspiratory muscle activation. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Monitoring the HTLV-1 proviral load in the peripheral blood of asymptomatic carriers and patients with HTLV-associated myelopathy/tropical spastic paraparesis from a Brazilian cohort: ROC curve analysis to establish the threshold for risk disease.

    PubMed

    Furtado, Marina dos Santos Brito Silva; Andrade, Rafaela Gomes; Romanelli, Luiz Cláudio Ferreira; Ribeiro, Maisa Aparecida; Ribas, João Gabriel; Torres, Elídio Barbosa; Barbosa-Stancioli, Edel Figueiredo; Proietti, Anna Bárbara de Freitas Carneiro; Martins, Marina Lobato

    2012-04-01

    Human T-lymphotropic virus 1 (HTLV-1) infection is associated with HTLV-associated myelopathy/tropical spastic paraparesis (HAM/TSP), which affects approximately 5% of carriers. High proviral load is a risk marker for HAM/TSP, although there is an overlap of proviral load levels in peripheral blood between asymptomatic carriers and HAM/TSP patients. In this study, receiver operating characteristic curve analysis was used to define a set point of HTLV-1 proviral load that better indicates an increased risk for HAM/TSP. Proviral load was quantified in 75 asymptomatic carriers and 78 HAM/TSP patients in a Brazilian cohort. The cut-off of proviral load was defined as 114 copies/10(4)  cells, with 78.2% sensitivity to identify true HAM/TSP patients. The mean proviral load levels were not significantly different between males and females with the same clinical status, and there was no significant correlation between proviral load and age at blood sampling, age at the onset of illness, or duration of disease. In HAM/TSP patients, proviral load was significantly higher in wheelchair-bound patients than in individuals able to walk without support and in those with the worst spinal cord injuries. Follow-up of HTLV-1-infected individuals showed that proviral load was more stable in asymptomatic carriers than in HAM/TSP patients. In a cohort study, periodically quantifying proviral load in asymptomatic carriers is necessary to identify those at risk for developing neurological disease, and it is necessary for HAM/TSP patients to monitor spinal injury and progression to walking disability. The measure of proviral load in clinical practice implicates the definition of the cut-off of proviral load and its validation during follow-up. Copyright © 2012 Wiley Periodicals, Inc.

  2. Threshold Concepts in Biochemistry

    ERIC Educational Resources Information Center

    Loertscher, Jennifer

    2011-01-01

    Threshold concepts can be identified for any discipline and provide a framework for linking student learning to curricular design. Threshold concepts represent a transformed understanding of a discipline, without which the learner cannot progress and are therefore pivotal in learning in a discipline. Although threshold concepts have been…

  3. Threshold Concepts in Biochemistry

    ERIC Educational Resources Information Center

    Loertscher, Jennifer

    2011-01-01

    Threshold concepts can be identified for any discipline and provide a framework for linking student learning to curricular design. Threshold concepts represent a transformed understanding of a discipline, without which the learner cannot progress and are therefore pivotal in learning in a discipline. Although threshold concepts have been…

  4. Bench experiments comparing simulated inspiratory effort when breathing helium-oxygen mixtures to that during positive pressure support with air

    PubMed Central

    2012-01-01

    Background Inhalation of helium-oxygen (He/O2) mixtures has been explored as a means to lower the work of breathing of patients with obstructive lung disease. Non-invasive ventilation (NIV) with positive pressure support is also used for this purpose. The bench experiments presented herein were conducted in order to compare simulated patient inspiratory effort breathing He/O2 with that breathing medical air, with or without pressure support, across a range of adult, obstructive disease patterns. Methods Patient breathing was simulated using a dual-chamber mechanical test lung, with the breathing compartment connected to an ICU ventilator operated in NIV mode with medical air or He/O2 (78/22 or 65/35%). Parabolic or linear resistances were inserted at the inlet to the breathing chamber. Breathing chamber compliance was also varied. The inspiratory effort was assessed for the different gas mixtures, for three breathing patterns, with zero pressure support (simulating unassisted spontaneous breathing), and with varying levels of pressure support. Results Inspiratory effort increased with increasing resistance and decreasing compliance. At a fixed resistance and compliance, inspiratory effort increased with increasing minute ventilation, and decreased with increasing pressure support. For parabolic resistors, inspiratory effort was lower for He/O2 mixtures than for air, whereas little difference was measured for nominally linear resistance. Relatively small differences in inspiratory effort were measured between the two He/O2 mixtures. Used in combination, reductions in inspiratory effort provided by He/O2 and pressure support were additive. Conclusions The reduction in inspiratory effort afforded by breathing He/O2 is strongly dependent on the severity and type of airway obstruction. Varying helium concentration between 78% and 65% has small impact on inspiratory effort, while combining He/O2 with pressure support provides an additive reduction in inspiratory effort

  5. Inspiratory muscle training is used in some intensive care units, but many training methods have uncertain efficacy: a survey of French physiotherapists.

    PubMed

    Bonnevie, Tristan; Villiot-Danger, Jean-Christophe; Gravier, Francis-Edouard; Dupuis, Johan; Prieur, Guillame; Médrinal, Clément

    2015-10-01

    How common is inspiratory muscle training by physiotherapists in the intensive care unit (ICU)? Which patients receive the training? What methods are used to administer the training? Is maximal inspiratory pressure used to evaluate the need for the training and the patient's outcome after training? Cross-sectional survey of all ICUs in France. Two hundred and sixty-five senior physiotherapists. The response rate was 99% among eligible units. Therapist experience in ICU was significantly associated with the use of inspiratory muscle training (p=0.02). Therapists mainly used inspiratory muscle training either systematically or specifically in patients who failed to wean from mechanical ventilation. The training was used significantly more in non-sedated patients (p<0.0001). The most commonly nominated technique that respondents claimed to use to apply the training was controlled diaphragmatic breathing (83% of respondents), whereas 13% used evidence-based methods. Among those who applied some form of inspiratory muscle training, 16% assessed maximal inspiratory pressure. Six respondents (2%, 95% CI 1 to 5) used both an evidence-based method to administer inspiratory muscle training and the recommended technique for assessment of inspiratory muscle strength. Most physiotherapists in French ICUs who apply inspiratory muscle training use methods of uncertain efficacy without assessment of maximal inspiratory pressure. Further efforts need to be made in France to disseminate information regarding evidence-based assessment and techniques for inspiratory muscle training in the ICU. The alignment of inspiratory muscle training practice with evidence could be investigated in other regions. Copyright © 2015 Australian Physiotherapy Association. Published by Elsevier B.V. All rights reserved.

  6. HRS Threshold Adjustment Test

    NASA Astrophysics Data System (ADS)

    Skapik, Joe

    1991-07-01

    This test will determine the optimal, non-standard discriminator thresholds for the few anomalous channels on each HRS detector. A 15 second flat field observation followed by a 210 second dark count is performed at each of 10 discriminator threshold values for each detector. The result of the test will be the optimal threshold values to be entered into the PDB. Edited 4/30/91 to add comments to disable/re-enable cross-talk tables.

  7. Protocol: inspiratory muscle training for promoting recovery and outcomes in ventilated patients (IMPROVe): a randomised controlled trial

    PubMed Central

    Leditschke, I Anne; Paratz, Jennifer D; Boots, Robert J

    2012-01-01

    Introduction Inspiratory muscle weakness is a known consequence of mechanical ventilation and a potential contributor to difficulty in weaning from ventilatory support. Inspiratory muscle training (IMT) reduces the weaning period and increases the likelihood of successful weaning in some patients. However, it is not known how this training affects the residual inspiratory muscle fatigability following successful weaning nor patients' quality of life or functional outcomes. Methods and analysis This dual centre study includes two concurrent randomised controlled trials of IMT in adult patients who are either currently ventilator-dependent (>7 days) (n=70) or have been recently weaned from mechanical ventilation (>7 days) in the past week (n=70). Subjects will be stable, alert and able to actively participate and provide consent. There will be concealed allocation to either treatment (IMT) or usual physiotherapy (including deep breathing exercises without a resistance device). Primary outcomes are inspiratory muscle fatigue resistance and maximum inspiratory pressures. Secondary outcomes are quality of life (Short Form-36v2, EQ-5D), functional status (Acute Care Index of Function), rate of perceived exertion (Borg Scale), intensive care length of stay (days), post intensive care length of stay (days), rate of reintubation (%) and duration of ventilation (days). Ethics and dissemination Ethics approval has been obtained from relevant institutions, and results will be published with a view to influencing physiotherapy practice in the management of long-term ventilator-dependent patients to accelerate weaning and optimise rehabilitation outcomes. Trial registration number ACTRN12610001089022. PMID:22389363

  8. Topical Ice Slush Adversely Affects Sniff Nasal Inspiratory Force After Coronary Bypass Surgery.

    PubMed

    Nazer, Rakan I; Albarrati, Ali M

    2017-04-06

    Topical cooling with ice slush as an adjunct for myocardial protection during cardiac surgery has been shown to cause freezing injury of the phrenic nerves. This can cause diaphragmatic dysfunction and respiratory complications. Twenty (n=20) male patients between the ages of 40 and 60 years were equally randomised to undergo elective coronary artery bypass grafting (CABG) with either cold cardioplegic arrest with topical ice slush cooling or cold cardioplegic arrest without the use of ice slush. The sniff nasal inspiratory force (SNIF) was used to compare inspiratory muscle strength. There was no difference in the preoperative SNIF in the two randomised groups. In the immediate postoperative period, the ice slush group had worse SNIF (33.5±9.6cm H2O versus 47.8±12.2cm H2O; p=0.009). The pre-home discharge SNIF was still significantly lower for the ice slush group despite a noted improvement in SNIF recovery in both groups (38.3±10.6cm H2O versus 53.5±13.2cm H2O; p=0.011). Two patients in the ice slush group had left diaphragmatic dysfunction with none in the control group. The use of topical ice slush is associated with freezing injury of the phrenic nerves. This will adversely affect the inspiratory muscle force which may lead to respiratory complications after surgery. Copyright © 2017 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.

  9. Effects of diaphragmatic control on the assessment of sniff nasal inspiratory pressure and maximum relaxation rate

    PubMed Central

    Benício, Kadja; Dias, Fernando A. L.; Gualdi, Lucien P.; Aliverti, Andrea; Resqueti, Vanessa R.; Fregonezi, Guilherme A. F.

    2015-01-01

    OBJECTIVE: To assess the influence of diaphragmatic activation control (diaphC) on Sniff Nasal-Inspiratory Pressure (SNIP) and Maximum Relaxation Rate of inspiratory muscles (MRR) in healthy subjects. METHOD: Twenty subjects (9 male; age: 23 (SD=2.9) years; BMI: 23.8 (SD=3) kg/m2; FEV1/FVC: 0.9 (SD=0.1)] performed 5 sniff maneuvers in two different moments: with or without instruction on diaphC. Before the first maneuver, a brief explanation was given to the subjects on how to perform the sniff test. For sniff test with diaphC, subjects were instructed to perform intense diaphragm activation. The best SNIP and MRR values were used for analysis. MRR was calculated as the ratio of first derivative of pressure over time (dP/dtmax) and were normalized by dividing it by peak pressure (SNIP) from the same maneuver. RESULTS: SNIP values were significantly different in maneuvers with and without diaphC [without diaphC: -100 (SD=27.1) cmH2O/ with diaphC: -72.8 (SD=22.3) cmH2O; p<0.0001], normalized MRR values were not statistically different [without diaphC: -9.7 (SD=2.6); with diaphC: -8.9 (SD=1.5); p=0.19]. Without diaphC, 40% of the sample did not reach the appropriate sniff criteria found in the literature. CONCLUSION: Diaphragmatic control performed during SNIP test influences obtained inspiratory pressure, being lower when diaphC is performed. However, there was no influence on normalized MRR. PMID:26578254

  10. Pulse transit time for quantifying inspiratory effort in patients with obstructive sleep apnea.

    PubMed

    Huang, Hui; Ye, Jing-Ying; Li, Yan-Ru; Wang, Xiao-Yi; Zhang, Yu-Huan; Wang, Jiang-Yong; Ding, Xiu; Li, Hong-Guang; Han, De-Min

    2011-01-01

    To investigate the feasibility of pulse transit time (PTT) as a quantitative measure of inspiratory effort in patients with obstructive sleep apnea (OSA). Nineteen moderate to severe OSA patients were included to undergo overnight polysomnography simultaneously with esophageal pressure (P(es)) and PTT. The quantitative relationships between the size of P(es) variations (ΔP(es)) and PTT variations (ΔPTT) on a breath-by-breath basis in obstructive apneas were assessed. A total of 19,833 breaths from 6,087 obstructive apneas were analyzed. There were good correlations with r = 0.779 ± 0.095 (mean ± SD) between ΔP(es) and ΔPTT based on overnight sleep. The correlation coefficients for supine and lateral position were of the approximated magnitude (r = 0.783 ± 0.060 and 0.757 ± 0.106, respectively), whereas they were lower in rapid eye movement (REM) sleep (r = 0.564 ± 0.140) compared with non-rapid eye movement (NREM) sleep (r = 0.787 ± 0.071). In NREM sleep, the regression lines of ΔPTT against ΔP(es) were plotted with intercepts (5.1 ± 2.1 ms) and slopes (0.35 ± 0.08 ms·cm H(2)O(-1)). PTT showed good ability in detecting changes of inspiratory effort in overnight sleep and was proved to be a clinically useful method in quantifying increases in inspiratory effort in NREM sleep. Hence, PTT has prospects to become an alternative to P(es) in respiratory sleep studies. Copyright © 2011 S. Karger AG, Basel.

  11. Function of the canine inspiratory muscle pump in pleural effusion: influence of body position.

    PubMed

    Leduc, Dimitri; De Troyer, André

    2013-04-01

    Pleural effusion, a complicating feature of many diseases of the lung and pleura, adversely affects the pressure-generating capacity of the diaphragm in supine dogs. The objective of the present study was to assess the impact of body position on this effect and to evaluate the adaptation to effusion of the inspiratory muscle pump during breathing. Two experiments were performed. In the first, progressively increasing effusion was induced in anesthetized animals, and the changes in pleural (ΔPpl) and abdominal (ΔPab) pressure were measured during isolated phrenic nerve stimulation while the animals were placed in both the supine and the 45° head-up posture. In the second experiment, graded pleural effusion was also performed, and ΔPpl, ΔPab, and the electromyogram of the parasternal intercostal muscles were measured while the vagotomized animals were breathing spontaneously in the same two postures. The data showed that with effusion 1) ΔPpl during phrenic nerve stimulation was substantially lower with the animals in the head-up than in the supine posture; 2) this postural effect was primarily the result of the decrease in muscle length in the head-up posture; 3) during spontaneous breathing, however, parasternal intercostal inspiratory activity increased and ΔPpl remained unaltered while ΔPab decreased; and 4) the decrease in ΔPab and in the ΔPab/ΔPpl ratio was much larger in the head-up than in the supine posture. It is concluded that in the presence of pleural effusion, the pressure contribution of the inspiratory intercostal muscles during breathing increases and compensates for the shortening of the diaphragm, particularly in the upright posture.

  12. A comparison of inspiratory muscle fatigue following maximal exercise in moderately trained males and females.

    PubMed

    Ozkaplan, Atila; Rhodes, Edward C; Sheel, A William; Taunton, Jack E

    2005-09-01

    Exercise-induced inspiratory muscle fatigue (IMF) has been reported in males but there are few reports of IMF in females. It is not known if a gender difference exists for inspiratory muscle strength following heavy exercise, as is reported in locomotor muscles. Therefore, the relationship between fatigue and subsequent recovery of maximal inspiratory pressure (MIP) following exercise to maximal oxygen consumption (VO2max) was examined in a group of moderately trained males and females. Eighteen males (23+/-3 years; mean +/- SD) and 16 females (23+/-2 years) completed ten MIP and ten maximal handgrip (HG) strength maneuvers to establish baseline. Post-exercise MIP and HG were assessed successively immediately following a progressive intensity VO2max test on a cycle ergometer and at 1, 2, 3, 4, 5, 10, and 15 min. VO2max, relative to fat-free mass was not statistically different between males (62+/-7 ml kg(-1) min(-1)) and females (60+/-8 ml kg(-1) min(-1)). Males had higher absolute MIP values than females at all time intervals (P<0.05). Immediately following exercise, MIP was significantly reduced in both genders (M=83+/-16%; F=78+/-15% of baseline) but HG values were not different than resting values. MIP values remained depressed for both males and females throughout the 15 min (P<0.05). Differences for MIP between males and females were not statistically significant at any measurement time (P>0.05). The findings in this study conclude that IMF, observed immediately following maximal exercise, demonstrated the same pattern of recovery for both genders.

  13. Immediate effect of manual therapy on respiratory functions and inspiratory muscle strength in patients with COPD

    PubMed Central

    Yilmaz Yelvar, Gul Deniz; Çirak, Yasemin; Demir, Yasemin Parlak; Dalkilinç, Murat; Bozkurt, Bülent

    2016-01-01

    Objective The objective of this study was to investigate the immediate effect of manual therapy (MT) on respiratory functions and inspiratory muscle strength in patients with COPD. Participants and methods Thirty patients with severe COPD (eight females and 22 males; mean age 62.4±6.8 years) referred to pulmonary physiotherapy were included in this study. The patients participated in a single session of MT to measure the short-term effects. The lung function was measured using a portable spirometer. An electronic pressure transducer was used to measure respiratory muscle strength. Heart rate, breathing frequency, and oxygen saturation were measured with a pulse oximeter. For fatigue and dyspnea perception, the modified Borg rating of perceived exertion scale was used. All measurements were taken before and immediately after the first MT session. The ease-of-breathing visual analog scale was used for rating patients’ symptoms subjectively during the MT session. Results There was a significant improvement in the forced expiratory volume in the first second, forced vital capacity, and vital capacity values (P<0.05). The maximal inspiratory pressure and maximal expiratory pressure values increased significantly after MT, compared to the pre-MT session (P<0.05). There was a significant decrease in heart rate, respiratory rate (P<0.05), and dyspnea and fatigue perception (P<0.05). Conclusion A single MT session immediately improved pulmonary function, inspiratory muscle strength, and oxygen saturation and reduced dyspnea, fatigue, and heart and respiratory rates in patients with severe COPD. MT should be added to pulmonary rehabilitation treatment as a new alternative that is fast acting and motivating in patients with COPD. PMID:27382271

  14. Effects of diaphragmatic control on the assessment of sniff nasal inspiratory pressure and maximum relaxation rate.

    PubMed

    Benício, Kadja; Dias, Fernando A L; Gualdi, Lucien P; Aliverti, Andrea; Resqueti, Vanessa R; Fregonezi, Guilherme A F

    2016-01-01

    To assess the influence of diaphragmatic activation control (diaphC) on Sniff Nasal-Inspiratory Pressure (SNIP) and Maximum Relaxation Rate of inspiratory muscles (MRR) in healthy subjects. Twenty subjects (9 male; age: 23 (SD=2.9) years; BMI: 23.8 (SD=3) kg/m²; FEV1/FVC: 0.9 (SD=0.1)] performed 5 sniff maneuvers in two different moments: with or without instruction on diaphC. Before the first maneuver, a brief explanation was given to the subjects on how to perform the sniff test. For sniff test with diaphC, subjects were instructed to perform intense diaphragm activation. The best SNIP and MRR values were used for analysis. MRR was calculated as the ratio of first derivative of pressure over time (dP/dtmax) and were normalized by dividing it by peak pressure (SNIP) from the same maneuver. SNIP values were significantly different in maneuvers with and without diaphC [without diaphC: -100 (SD=27.1) cmH2O/ with diaphC: -72.8 (SD=22.3) cmH2O; p<0.0001], normalized MRR values were not statistically different [without diaphC: -9.7 (SD=2.6); with diaphC: -8.9 (SD=1.5); p=0.19]. Without diaphC, 40% of the sample did not reach the appropriate sniff criteria found in the literature. Diaphragmatic control performed during SNIP test influences obtained inspiratory pressure, being lower when diaphC is performed. However, there was no influence on normalized MRR.

  15. Inspiratory Muscle Training Improves Sleep and Mitigates Cardiovascular Dysfunction in Obstructive Sleep Apnea

    PubMed Central

    Vranish, Jennifer R.; Bailey, E. Fiona

    2016-01-01

    Study Objectives: New and effective strategies are needed to manage the autonomic and cardiovascular sequelae of obstructive sleep apnea (OSA). We assessed the effect of daily inspiratory muscle strength training (IMT) on sleep and cardiovascular function in adults unable to use continuous positive airway pressure (CPAP) therapy. Methods: This is a placebo-controlled, single-blind study conducted in twenty four adults with mild, moderate, and severe OSA. Subjects were randomly assigned to placebo or inspiratory muscle strength training. Subjects in each group performed 5 min of training each day for 6 w. All subjects underwent overnight polysomnography at intake and again at study close. Results: We evaluated the effects of placebo training or IMT on sleep, blood pressure, and plasma catecholamines. Relative to placebo-trained subjects with OSA, subjects with OSA who performed IMT manifested reductions in systolic and diastolic blood pressures (−12.3 ± 1.6 SBP and −5.0 ± 1.3 DBP mmHg; P < 0.01); plasma norepinephrine levels (536.3 ± 56.6 versus 380.6 ± 41.2 pg/mL; P = 0.01); and registered fewer nighttime arousals and reported improved sleep (Pittsburgh Sleep Quality Index scores: 9.1 ± 0.9 versus 5.1 ± 0.7; P = 0.001). These favorable outcomes were achieved without affecting apneahypopnea index. Conclusions: The results are consistent with our previously published findings in normotensive adults but further indicate that IMT can modulate blood pressure and plasma catecholamines in subjects with ongoing nighttime apnea and hypoxemia. Accordingly, we suggest IMT offers a low cost, nonpharmacologic means of improving sleep and blood pressure in patients who are intolerant of CPAP. Citation: Vranish JR, Bailey EF. Inspiratory muscle training improves sleep and mitigates cardiovascular dysfunction in obstructive sleep apnea. SLEEP 2016;39(6):1179–1185. PMID:27091540

  16. Influence of Inspiratory Muscle Training on Ventilatory Efficiency and Cycling Performance in Normoxia and Hypoxia

    PubMed Central

    Salazar-Martínez, Eduardo; Gatterer, Hannes; Burtscher, Martin; Naranjo Orellana, José; Santalla, Alfredo

    2017-01-01

    The aim of this study was to analyse the influence of inspiratory muscle training (IMT) on ventilatory efficiency, in normoxia and hypoxia, and to investigate the relationship between ventilatory efficiency and cycling performance. Sixteen sport students (23.05 ± 4.7 years; 175.11 ± 7.1 cm; 67.0 ± 19.4 kg; 46.4 ± 8.7 ml·kg−1·min−1) were randomly assigned to an inspiratory muscle training group (IMTG) and a control group (CG). The IMTG performed two training sessions/day [30 inspiratory breaths, 50% peak inspiratory pressure (Pimax), 5 days/week, 6-weeks]. Before and after the training period subjects carried out an incremental exercise test to exhaustion with gas analysis, lung function testing, and a cycling time trial test in hypoxia and normoxia. Simulated hypoxia (FiO2 = 16.45%), significantly altered the ventilatory efficiency response in all subjects (p < 0.05). Pimax increased significantly in the IMTG whereas no changes occurred in the CG (time × group, p < 0.05). Within group analyses showed that the IMTG improved ventilatory efficiency (VE/VCO2 slope; EqCO2VT2) in hypoxia (p < 0.05) and cycling time trial performance [WTTmax (W); WTTmean (W); PTF(W)] (p < 0.05) in hypoxia and normoxia. Significant correlations were not found in hypoxia nor normoxia found between ventilatory efficiency parameters (VE/VCO2 slope; LEqCO2; EqCO2VT2) and time trial performance. On the contrary the oxygen uptake efficiency slope (OUES) was highly correlated with cycling time trial performance (r = 0.89; r = 0.82; p < 0.001) under both conditions. Even though no interaction effect was found, the within group analysis may suggest that IMT reduces the negative effects of hypoxia on ventilatory efficiency. In addition, the data suggest that OUES plays an important role in submaximal cycling performance. PMID:28337149

  17. Inspiratory Muscle Function and Exercise Capacity in Patients With Heart Failure With Preserved Ejection Fraction.

    PubMed

    Palau, Patricia; Domínguez, Eloy; Núñez, Eduardo; Ramón, Jose María; López, Laura; Melero, Joana; Bellver, Alejandro; Chorro, Francisco J; Bodí, Vicent; Bayés-Genis, Antoni; Sanchis, Juan; Núñez, Julio

    2017-06-01

    Heart failure with preserved ejection fraction (HFpEF) is a clinical syndrome characterized by impaired exercise capacity resulting from dyspnea and fatigue. The pathophysiological mechanisms underlying the exercise intolerance in HFpEF are not well established. We sought to evaluate the effects of inspiratory muscle function on exercise tolerance in symptomatic patients with HFpEF. A total of 74 stable symptomatic patients with HFpEF and New York Heart Association class II-III underwent a cardiopulmonary exercise test between June 2012 and May 2016. Inspiratory muscle weakness was defined as maximum inspiratory pressure (MIP)  <70% of normal predicted values. Pearson correlation coefficient and multivariate linear regression analysis were used to assess the association between percent of predicted MIP (pp-MIP) and maximal exercise capacity [measured by peak oxygen uptake (peak VO2) and percent of predicted peak VO2 (pp-peak VO2)]. Thirty-one patients (42%) displayed inspiratory muscle weakness. Mean (standard deviation) age was 72.5 ± 9.1 years, 53% were women, and 35.1% displayed New York Heart Association class III. Mean peak VO2 and pp-peak VO2 were 10 ± 2.8 mL•min•kg and 57.3 ± 13.8%, respectively. The median (interquartile range) of pp-MIP was 72% (58%-90%). pp-MIP was not correlated with peak VO2 (r = -0.047, P = .689) nor pp-peak VO2 (r = -0.078, P = .509). Furthermore, in multivariable analysis, pp-MIP showed no association with peak VO2 (β coefficient = 0.01, 95% confidence interval -0.01 to 0.03, P = .241) and pp-peak VO2 (β coefficient = -0.00, 95% confidence interval -0.10 to 0.10, P = .975). In symptomatic elderly patients with HFpEF, we found that pp-MIP was not associated with either peak VO2 or pp-peak VO2. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Influence of Inspiratory Muscle Training on Ventilatory Efficiency and Cycling Performance in Normoxia and Hypoxia.

    PubMed

    Salazar-Martínez, Eduardo; Gatterer, Hannes; Burtscher, Martin; Naranjo Orellana, José; Santalla, Alfredo

    2017-01-01

    The aim of this study was to analyse the influence of inspiratory muscle training (IMT) on ventilatory efficiency, in normoxia and hypoxia, and to investigate the relationship between ventilatory efficiency and cycling performance. Sixteen sport students (23.05 ± 4.7 years; 175.11 ± 7.1 cm; 67.0 ± 19.4 kg; 46.4 ± 8.7 ml·kg(-1)·min(-1)) were randomly assigned to an inspiratory muscle training group (IMTG) and a control group (CG). The IMTG performed two training sessions/day [30 inspiratory breaths, 50% peak inspiratory pressure (Pimax), 5 days/week, 6-weeks]. Before and after the training period subjects carried out an incremental exercise test to exhaustion with gas analysis, lung function testing, and a cycling time trial test in hypoxia and normoxia. Simulated hypoxia (FiO2 = 16.45%), significantly altered the ventilatory efficiency response in all subjects (p < 0.05). Pimax increased significantly in the IMTG whereas no changes occurred in the CG (time × group, p < 0.05). Within group analyses showed that the IMTG improved ventilatory efficiency (VE/VCO2 slope; EqCO2VT2) in hypoxia (p < 0.05) and cycling time trial performance [WTTmax (W); WTTmean (W); PTF(W)] (p < 0.05) in hypoxia and normoxia. Significant correlations were not found in hypoxia nor normoxia found between ventilatory efficiency parameters (VE/VCO2 slope; LEqCO2; EqCO2VT2) and time trial performance. On the contrary the oxygen uptake efficiency slope (OUES) was highly correlated with cycling time trial performance (r = 0.89; r = 0.82; p < 0.001) under both conditions. Even though no interaction effect was found, the within group analysis may suggest that IMT reduces the negative effects of hypoxia on ventilatory efficiency. In addition, the data suggest that OUES plays an important role in submaximal cycling performance.

  19. Automated logging of inspiratory and expiratory non-synchronized breathing (ALIEN) for mechanical ventilation.

    PubMed

    Chiew, Yeong Shiong; Pretty, Christopher G; Beatson, Alex; Glassenbury, Daniel; Major, Vincent; Corbett, Simon; Redmond, Daniel; Szlavecz, Akos; Shaw, Geoffrey M; Chase, J Geoffrey

    2015-01-01

    Asynchronous Events (AEs) during mechanical ventilation (MV) result in increased work of breathing and potential poor patient outcomes. Thus, it is important to automate AE detection. In this study, an AE detection method, Automated Logging of Inspiratory and Expiratory Non-synchronized breathing (ALIEN) was developed and compared between standard manual detection in 11 MV patients. A total of 5701 breaths were analyzed (median [IQR]: 500 [469-573] per patient). The Asynchrony Index (AI) was 51% [28-78]%. The AE detection yielded sensitivity of 90.3% and specificity of 88.3%. Automated AE detection methods can potentially provide clinicians with real-time information on patient-ventilator interaction.

  20. Bayesian Threshold Estimation

    ERIC Educational Resources Information Center

    Gustafson, S. C.; Costello, C. S.; Like, E. C.; Pierce, S. J.; Shenoy, K. N.

    2009-01-01

    Bayesian estimation of a threshold time (hereafter simply threshold) for the receipt of impulse signals is accomplished given the following: 1) data, consisting of the number of impulses received in a time interval from zero to one and the time of the largest time impulse; 2) a model, consisting of a uniform probability density of impulse time…

  1. Bayesian Threshold Estimation

    ERIC Educational Resources Information Center

    Gustafson, S. C.; Costello, C. S.; Like, E. C.; Pierce, S. J.; Shenoy, K. N.

    2009-01-01

    Bayesian estimation of a threshold time (hereafter simply threshold) for the receipt of impulse signals is accomplished given the following: 1) data, consisting of the number of impulses received in a time interval from zero to one and the time of the largest time impulse; 2) a model, consisting of a uniform probability density of impulse time…

  2. Threshold Concepts in Economics

    ERIC Educational Resources Information Center

    Shanahan, Martin

    2016-01-01

    Purpose: The purpose of this paper is to examine threshold concepts in the context of teaching and learning first-year university economics. It outlines some of the arguments for using threshold concepts and provides examples using opportunity cost as an exemplar in economics. Design/ Methodology/Approach: The paper provides an overview of the…

  3. Pausing at the Threshold

    ERIC Educational Resources Information Center

    Morgan, Patrick K.

    2015-01-01

    Since about 2003, the notion of threshold concepts--the central ideas in any field that change how learners think about other ideas--have become difficult to escape at library conferences and in general information literacy discourse. Their visibility will likely only increase because threshold concepts figure prominently in the Framework for…

  4. Suppression of inspiratory fast rhythm, but not bilateral short-term synchronization, by morphine in anesthetized rabbit.

    PubMed

    Kato, F

    1998-12-18

    To better understand the involvement of opioid receptor systems in the respiratory control, effects of morphine on the high-frequency component of inspiratory nerve discharge were evaluated. The inspiratory fast rhythm in the bilateral phrenic nerve discharge of anesthetized and artificially ventilated rabbits was analyzed with power spectral and coherence functions. Morphine (0.625-10 mg/kg, i.v.) decreased the amplitude and frequency of the inspiratory fast rhythm in a dose-dependent manner via naloxone-sensitive mechanisms. In contrast, the bilateral short-time scale correlation of the phrenic fast rhythm was resistant to morphine even at a strong suppression of the respiratory activities. It is concluded that there is little influence of opioid receptor system to the neural connectivity underlying bilateral phrenic synchronization.

  5. Inspiratory Muscle Strength Training in Infants With Congenital Heart Disease and Prolonged Mechanical Ventilation: A Case Report

    PubMed Central

    Bleiweis, Mark S.; Neel, Cimaron R.; Martin, A. Daniel

    2013-01-01

    Background and Purpose Inspiratory muscle strength training (IMST) has been shown to improve maximal pressures and facilitate ventilator weaning in adults with prolonged mechanical ventilation (MV). The purposes of this case report are: (1) to describe the rationale for IMST in infants with MV dependence and (2) to summarize the device modifications used to administer training. Case Description Two infants with congenital heart disease underwent corrective surgery and were referred for inspiratory muscle strength evaluation after repeated weaning failures. It was determined that IMST was indicated due to inspiratory muscle weakness and a rapid, shallow breathing pattern. In order to accommodate small tidal volumes of infants, 2 alternative training modes were devised. For infant 1, IMST consisted of 15-second inspiratory occlusions. Infant 2 received 10-breath sets of IMST through a modified positive end-expiratory pressure valve. Four daily IMST sets separated by 3 to 5 minutes of rest were administered 5 to 6 days per week. The infants' IMST tolerance was evaluated by vital signs and daily clinical reviews. Outcomes Maximal inspiratory pressure (MIP) and rate of pressure development (dP/dt) were the primary outcome measures. Secondary outcome measures included the resting breathing pattern and MV weaning. There were no adverse events associated with IMST. Infants generated training pressures through the adapted devices, with improved MIP, dP/dt, and breathing pattern. Both infants weaned from MV to a high-flow nasal cannula, and neither required subsequent reintubation during their hospitalization. Discussion This case report describes pediatric adaptations of an IMST technique used to improve muscle performance and facilitate weaning in adults. Training was well tolerated in 2 infants with postoperative weaning difficulty and inspiratory muscle dysfunction. Further systematic examination will be needed to determine whether IMST provides a significant performance

  6. Role of tidal volume, FRC, and end-inspiratory volume in the development of pulmonary edema following mechanical ventilation.

    PubMed

    Dreyfuss, D; Saumon, G

    1993-11-01

    Mechanical ventilation with high peak inspiratory pressure and large tidal volume (VT) produces permeability pulmonary edema. Whether it is mean or peak inspiratory pressure (i.e., mean or end-inspiratory volume) that is the major determinant of ventilation-induced lung injury is unsettled. Rats were ventilated with increasing tidal volumes starting from different degrees of FRC that were set by increasing end-expiratory pressure during positive-pressure ventilation. Pulmonary edema was assessed by the measurement of extravascular lung water content. The importance of permeability alterations was evaluated by measurement of dry lung weight and determination of albumin distribution space. Pulmonary edema with permeability alterations occurred regardless of the value of positive end-expiratory pressure (PEEP), provided the increase in VT was large enough. Similarly, edema occurred even during normal VT ventilation provided the increase in PEEP was large enough. Furthermore, moderate increases in VT or PEEP that were innocuous when applied alone, produced edema when combined. The effect of PEEP was not the consequence of raised airway pressure but of the increase in FRC since similar observations were made in animals ventilated with negative inspiratory pressure. However, although permeability alterations were similar, edema was less marked in animals ventilated with PEEP than in those ventilated with zero end-expiratory pressure (ZEEP) with the same end-inspiratory pressure. This "beneficial" effect of PEEP was probably the consequence of hemodynamic alterations. Indeed, infusion of dopamine to correct the drop in systemic arterial pressure that occurred during PEEP ventilation resulted in a significant increase in pulmonary edema. In conclusion, rather than VT or FRC value, the end-inspiratory volume is probably the main determinant of ventilation-induced edema. Hemodynamic status plays an important role in modulating the amount of edema during lung overinflation

  7. Association between inspiratory muscle weakness and slowed oxygen uptake kinetics in patients with chronic obstructive pulmonary disease.

    PubMed

    Wolpat, Andiara; Lima, Francisco V; Silva, Fabiola M; Tochetto, Micheli; Freitas, Andressa; Grandi, Tatiane; Rodrigues, Leonardo; Paiva, Verônica; Cipriano, Gerson; Chiappa, Adriana M; Zago, Julio; Chiappa, Gaspar R

    2017-07-27

    Patients with chronic obstructive pulmonary disease (COPD) may have poor inspiratory muscle function, which reduces minute and alveolar ventilation, leading to increased hypoxemia and slow pulmonary oxygen uptake ( O2) kinetics. However, little is known about the effect of inspiratory muscle weakness (IMW) on oxygen uptake kinetics in patients with COPD. Thus, we tested the hypothesis that COPD patients with IMW have slowed O2 kinetics. An observational study was conducted including COPD patients with moderate to severe airflow limitation and a history of intolerance to exercise. Participants were divided into two groups: (IMW+; n = 22) (IMW-; n = 23) of muscle weakness. Maximal inspiratory (PImax), maximal expiratory (PEmax), maximal sustained inspiratory (PImaxsustained), and maximal endurance inspiratory muscle strength were lower in IMW+ patients (36 ± 9.5 cmH2O; 52 ± 14 cmH2O; 20 ± 6.5 cmH2O; 94 ± 84 s, respectively) than in IMW- patients (88 ± 12 cmH2O; 97 ± 28 cmH2O; 82.5 ± 54 cmH2O; 559 ± 92 s, respectively; p < 0.05). Moreover, the six-minute walk test and peak O2 were reduced in the IMW+ patients. During the constant work test, VO2 kinetics were slowed in the IMW+ compared to IMW- patients (88 ± 29 vs 61 ± 18 s, p < 0.05). Our findings demonstrate that inspiratory muscle weakness in COPD is associated with slowed VO2 kinetics, and thus, reduced functional capacity.

  8. Dbx1 precursor cells are a source of inspiratory XII premotoneurons

    PubMed Central

    Revill, Ann L; Vann, Nikolas C; Akins, Victoria T; Kottick, Andrew; Gray, Paul A; Del Negro, Christopher A; Funk, Gregory D

    2015-01-01

    All behaviors require coordinated activation of motoneurons from central command and premotor networks. The genetic identities of premotoneurons providing behaviorally relevant excitation to any pool of respiratory motoneurons remain unknown. Recently, we established in vitro that Dbx1-derived pre-Bötzinger complex neurons are critical for rhythm generation and that a subpopulation serves a premotor function (Wang et al., 2014). Here, we further show that a subpopulation of Dbx1-derived intermediate reticular (IRt) neurons are rhythmically active during inspiration and project to the hypoglossal (XII) nucleus that contains motoneurons important for maintaining airway patency. Laser ablation of Dbx1 IRt neurons, 57% of which are glutamatergic, decreased ipsilateral inspiratory motor output without affecting frequency. We conclude that a subset of Dbx1 IRt neurons is a source of premotor excitatory drive, contributing to the inspiratory behavior of XII motoneurons, as well as a key component of the airway control network whose dysfunction contributes to sleep apnea. DOI: http://dx.doi.org/10.7554/eLife.12301.001 PMID:26687006

  9. Inspiratory flow rate, not type of incentive spirometry device, influences chest wall motion in healthy individuals.

    PubMed

    Chang, Angela T; Palmer, Kerry R; McNaught, Jessie; Thomas, Peter J

    2010-08-01

    This study investigated the effect of flow rates and spirometer type on chest wall motion in healthy individuals. Twenty-one healthy volunteers completed breathing trials to either two times tidal volume (2xV(T)) or inspiratory capacity (IC) at high, low, or natural flow rates, using a volume- or flow-oriented spirometer. The proportions of rib cage movement to tidal volume (%RC/V(T)), chest wall diameters, and perceived level of exertion (RPE) were compared. Low and natural flow rates resulted in significantly lower %RC/V(T) compared to high flow rate trials (p=0.001) at 2xV(T). Low flow trials also resulted in significantly less chest wall motion in the upper anteroposterior direction than high and natural flow rates (p<0.001). At IC, significantly greater movement occurred in the abdominal lateral direction during low flow compared to high and natural flow trials (both p<0.003). RPE was lower for the low flow trials compared to high flow trials at IC and 2xV(T) (p<0.01). In healthy individuals, inspiratory flow (not device type) during incentive spirometry determines the resultant breathing pattern. High flow rates result in greater chest wall motion than low flow rates.

  10. Respiratory motor output during an inspiratory capacity maneuver is preserved despite submaximal exercise.

    PubMed

    Zhang, Dong; Gong, Haihong; Lu, Gan; Guo, Hongxi; Li, Ruifa; Zhong, Nanshan; Polkey, M I; Luo, Yuanming

    2013-10-01

    It is unknown whether respiratory motor output is constrained during exhaustive exercise in healthy adults. We hypothesised that neural inhibition did occur; to test this hypothesis we measured diaphragm EMG from a maximal inspiratory capacity maneuver (EMG(di)-IC) at rest and during exercise. EMG(di)-IC was measured before and after the amplitude of the diaphragm EMG entered a plateau phase in eleven healthy adults undertaking exercise at 60% and 80% of maximal workload achieved from incremental exercise. The mean EMG(di)-IC at rest was 65 ± 16% of the maximum that could be obtained from a battery of inspiratory tasks. Before and after the plateau phase of diaphragm EMG, EMG(di)-IC was 68 ± 13% and 72 ± 12% (p > 0.05) during 60% of the maximum workload, and was 70 ± 13% and 78 ± 13% (p > 0.05) during 80% of the maximum workload achieved on an incremental test. A further sub-study in which 5 participants exercised at 90% of the maximum workload also showed that EMG(di)-IC was not diminished during exercise. Our data show that exercise condition does not reduce the magnitude of EMG(di)-IC. This argues against neural inhibition as feature of submaximal exercise in healthy adults.

  11. Effectiveness of an inspiratory pressure-limited approach to mechanical ventilation in septic patients.

    PubMed

    Martin-Loeches, Ignacio; de Haro, Candelaria; Dellinger, R Phillip; Ferrer, Ricard; Phillips, Gary S; Levy, Mitchell M; Artigas, Antonio

    2013-01-01

    Severe sepsis is one of the most common causes of acute lung injury (ALI) and is associated with high mortality. The aim of the study was to see whether a protective strategy based approach with a plateau pressure <30 cmH(2)O was associated with lower mortality in septic patients with ALI in the Surviving Sepsis Campaign international database. A retrospective analysis of an international multicentric database of 15,022 septic patients from 165 intensive care units was used. Septic patients with ALI and mechanical ventilation (n=1,738) had more accompanying organ dysfunction and a higher mortality rate (48.3% versus 33.0%, p<0.001) than septic patients without ALI (n=13,284). In patients with ALI and mechanical ventilation, the use of inspiratory plateau pressures maintained at <30 cmH(2)O was associated with lower mortality by Chi-squared test (46.4% versus 55.1%, p<0.001) and by Kaplan-Meier and log-rank test (p<0.001). In a multivariable random-effects Cox regression, plateau pressure <30 cmH(2)O was significantly associated with lower mortality (hazard ratio 0.84, 95% CI 0.72-0.99; p=0.038). ALI in sepsis was associated with higher mortality, especially when an inspiratory pressure-limited mechanical ventilation approach was not implemented.

  12. Inspiratory muscle warm-up attenuates muscle deoxygenation during cycling exercise in women athletes.

    PubMed

    Cheng, Ching-Feng; Tong, Tomas K; Kuo, Yu-Chi; Chen, Pin-Hui; Huang, Hsin-Wei; Lee, Chia-Lun

    2013-05-01

    This study examines the effects of inspiratory muscle warm-up (IMW) on performance and muscle oxygenation during cycling exercise. In a randomized crossover study of 10 female soccer players, the IMW, placebo (IMWP) and control (CON) trials were conducted before two 6-min submaximal cycling exercises (100 and 150W) followed by intermittent high-intensity sprint (IHIS, 6×10s with 60s recovery). The reduction in tissue saturation index (TSI) in legs in the IMW were significantly less than those in IMWP and CON (P<0.01) during submaximal cycling exercises. The average reduction in TSI during the IHIS test with IMW was significantly less than those in the IMWP and CON (P=0.023). Nevertheless, the IHIS performance with IMW did not differ from that in other trials. In conclusion, the leg TSI during continuous submaximal cycling exercise followed by intermittent sprinting was likely improved by specific IMW (40% maximal inspiratory mouth pressure), which did not enhance IHIS performance. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Effects of swim training on lung volumes and inspiratory muscle conditioning.

    PubMed

    Clanton, T L; Dixon, G F; Drake, J; Gadek, J E

    1987-01-01

    Lung volumes and inspiratory muscle (IM) function tests were measured in 16 competitive female swimmers (age 19 +/- 1 yr) before and after 12 wk of swim training. Eight underwent additional IM training; the remaining eight were controls. Vital capacity (VC) increased 0.25 +/- 0.25 liters (P less than 0.01), functional residual capacity (FRC) increased 0.39 +/- 0.29 liters (P less than 0.001), and total lung capacity (TLC) increased 0.35 +/- 0.47 (P less than 0.025) in swimmers, irrespective of IM training. Residual volume (RV) did not change. Maximum inspiratory mouth pressure (PImax) measured at FRC changed -43 +/- 18 cmH2O (P less than 0.005) in swimmers undergoing IM conditioning and -29 +/- 25 (P less than 0.05) in controls. The time that 65% of prestudy PImax could be endured increased in IM trainers (P less than 0.001) and controls (P less than 0.05). All results were compared with similar IM training in normal females (age 21.1 +/- 0.8 yr) in which significant increases in PImax and endurance were observed in IM trainers only with no changes in VC, FRC, or TLC (Clanton et al., Chest 87: 62-66, 1985). We conclude that 1) swim training in mature females increases VC, TLC, and FRC with no effect on RV, and 2) swim training increases IM strength and endurance measured near FRC.

  14. Inspiratory muscle training facilitates weaning from mechanical ventilation among patients in the intensive care unit: a systematic review.

    PubMed

    Elkins, Mark; Dentice, Ruth

    2015-07-01

    Does inspiratory muscle training improve inspiratory muscle strength in adults receiving mechanical ventilation? Does it improve the duration or success of weaning? Does it affect length of stay, reintubation, tracheostomy, survival, or the need for post-extubation non-invasive ventilation? Is it tolerable and does it cause adverse events? Systematic review of randomised trials. Adults receiving mechanical ventilation. Inspiratory muscle training versus sham or no inspiratory muscle training. Data were extracted regarding: inspiratory muscle strength and endurance; the rapid shallow breathing index; weaning success and duration; duration of mechanical ventilation; reintubation; tracheostomy; length of stay; use of non-invasive ventilation after extubation; survival; readmission; tolerability and adverse events. Ten studies involving 394 participants were included. Heterogeneity within some meta-analyses was high. Random-effects meta-analyses showed that the training significantly improved maximal inspiratory pressure (MD 7 cmH2O, 95% CI 5 to 9), the rapid shallow breathing index (MD 15 breaths/min/l, 95% CI 8 to 23) and weaning success (RR 1.34, 95% CI 1.02 to 1.76). Although only assessed in individual studies, significant benefits were also reported for the time spent on non-invasive ventilation after weaning (MD 16 hours, 95% CI 13 to 18), length of stay in the intensive care unit (MD 4.5 days, 95% CI 3.6 to 5.4) and length of stay in hospital (MD 4.4 days, 95% CI 3.4 to 5.5). Weaning duration decreased in the subgroup of patients with known weaning difficulty. The other outcomes weren't significantly affected or weren't measured. Inspiratory muscle training for selected patients in the intensive care unit facilitates weaning, with potential reductions in length of stay and the duration of non-invasive ventilatory support after extubation. The heterogeneity among the results suggests that the effects of inspiratory muscle training may vary; this perhaps depends

  15. The perils of thresholding

    NASA Astrophysics Data System (ADS)

    Font-Clos, Francesc; Pruessner, Gunnar; Moloney, Nicholas R.; Deluca, Anna

    2015-04-01

    The thresholding of time series of activity or intensity is frequently used to define and differentiate events. This is either implicit, for example due to resolution limits, or explicit, in order to filter certain small scale physics from the supposed true asymptotic events. Thresholding the birth-death process, however, introduces a scaling region into the event size distribution, which is characterized by an exponent that is unrelated to the actual asymptote and is rather an artefact of thresholding. As a result, numerical fits of simulation data produce a range of exponents, with the true asymptote visible only in the tail of the distribution. This tail is increasingly difficult to sample as the threshold is increased. In the present case, the exponents and the spurious nature of the scaling region can be determined analytically, thus demonstrating the way in which thresholding conceals the true asymptote. The analysis also suggests a procedure for detecting the influence of the threshold by means of a data collapse involving the threshold-imposed scale.

  16. Threshold concepts in prosthetics.

    PubMed

    Hill, Sophie

    2016-11-24

    Curriculum documents identify key concepts within learning prosthetics. Threshold concepts provide an alternative way of viewing the curriculum, focussing on the ways of thinking and practicing within prosthetics. Threshold concepts can be described as an opening to a different way of viewing a concept. This article forms part of a larger study exploring what students and staff experience as difficult in learning about prosthetics. To explore possible threshold concepts within prosthetics. Qualitative, interpretative phenomenological analysis. Data from 18 students and 8 staff at two universities with undergraduate prosthetics and orthotics programmes were generated through interviews and questionnaires. The data were analysed using an interpretative phenomenological analysis approach. Three possible threshold concepts arose from the data: 'how we walk', 'learning to talk' and 'considering the person'. Three potential threshold concepts in prosthetics are suggested with possible implications for prosthetics education. These possible threshold concepts involve changes in both conceptual and ontological knowledge, integrating into the persona of the individual. This integration occurs through the development of memories associated with procedural concepts that combine with disciplinary concepts. Considering the prosthetics curriculum through the lens of threshold concepts enables a focus on how students learn to become prosthetists. This study provides new insights into how prosthetists learn. This has implications for curriculum design in prosthetics education. © The International Society for Prosthetics and Orthotics 2016.

  17. Double Photoionization Near Threshold

    NASA Technical Reports Server (NTRS)

    Wehlitz, Ralf

    2007-01-01

    The threshold region of the double-photoionization cross section is of particular interest because both ejected electrons move slowly in the Coulomb field of the residual ion. Near threshold both electrons have time to interact with each other and with the residual ion. Also, different theoretical models compete to describe the double-photoionization cross section in the threshold region. We have investigated that cross section for lithium and beryllium and have analyzed our data with respect to the latest results in the Coulomb-dipole theory. We find that our data support the idea of a Coulomb-dipole interaction.

  18. Efficient circular thresholding.

    PubMed

    Lai, Yu-Kun; Rosin, Paul L

    2014-03-01

    Otsu's algorithm for thresholding images is widely used, and the computational complexity of determining the threshold from the histogram is O(N) where N is the number of histogram bins. When the algorithm is adapted to circular rather than linear histograms then two thresholds are required for binary thresholding. We show that, surprisingly, it is still possible to determine the optimal threshold in O(N) time. The efficient optimal algorithm is over 300 times faster than traditional approaches for typical histograms and is thus particularly suitable for real-time applications. We further demonstrate the usefulness of circular thresholding using the adapted Otsu criterion for various applications, including analysis of optical flow data, indoor/outdoor image classification, and non-photorealistic rendering. In particular, by combining circular Otsu feature with other colour/texture features, a 96.9% correct rate is obtained for indoor/outdoor classification on the well known IITM-SCID2 data set, outperforming the state-of-the-art result by 4.3%.

  19. TU-CD-BRA-11: Application of Bone Suppression Technique to Inspiratory/expiratory Chest Radiography

    SciTech Connect

    Tanaka, R; Sanada, S; Sakuta, K; Kawashima, H; Kishitani, Y

    2015-06-15

    Purpose: The bone suppression technique based on advanced image processing can suppress the conspicuity of bones on chest radiographs, creating soft tissue images normally obtained by the dual-energy subtraction technique. This study was performed to investigate the usefulness of bone suppression technique in quantitative analysis of pulmonary function in inspiratory/expiratory chest radiography. Methods: Commercial bone suppression image processing software (ClearRead; Riverain Technologies) was applied to paired inspiratory/expiratory chest radiographs of 107 patients (normal, 33; abnormal, 74) to create corresponding bone suppression images. The abnormal subjects had been diagnosed with pulmonary diseases, such as pneumothorax, pneumonia, emphysema, asthma, and lung cancer. After recognition of the lung area, the vectors of respiratory displacement were measured in all local lung areas using a cross-correlation technique. The measured displacement in each area was visualized as displacement color maps. The distribution pattern of respiratory displacement was assessed by comparison with the findings of lung scintigraphy. Results: Respiratory displacement of pulmonary markings (soft tissues) was able to be quantified separately from the rib movements on bone suppression images. The resulting displacement map showed a left-right symmetric distribution increasing from the lung apex to the bottom region of the lung in many cases. However, patients with ventilatory impairments showed a nonuniform distribution caused by decreased displacement of pulmonary markings, which were confirmed to correspond to area with ventilatory impairments found on the lung scintigrams. Conclusion: The bone suppression technique was useful for quantitative analysis of respiratory displacement of pulmonary markings without any interruption of the rib shadows. Abnormal areas could be detected as decreased displacement of pulmonary markings. Inspiratory/expiratory chest radiography combined

  20. Increased inspiratory resistance affects the dynamic relationship between blood pressure changes and subarachnoid space width oscillations

    PubMed Central

    Wszedybyl-Winklewska, Magdalena; Wolf, Jacek; Swierblewska, Ewa; Kunicka, Katarzyna; Mazur, Kamila; Gruszecki, Marcin; Winklewski, Pawel J.; Frydrychowski, Andrzej F.; Bieniaszewski, Leszek; Narkiewicz, Krzysztof

    2017-01-01

    Background and objective Respiration is known to affect cerebrospinal fluid (CSF) movement. We hypothesised that increased inspiratory resistance would affect the dynamic relationship between blood pressure (BP) changes and subarachnoid space width (SAS) oscillations. Methods Experiments were performed in a group of 20 healthy volunteers undergoing controlled intermittent Mueller Manoeuvres (the key characteristic of the procedure is that a studied person is subjected to a controlled, increased inspiratory resistance which results in marked potentiation of the intrathoracic negative pressure). BP and heart rate (HR) were measured using continuous finger-pulse photoplethysmography; oxyhaemoglobin saturation with an ear-clip sensor; end-tidal CO2 with a gas analyser; cerebral blood flow velocity (CBFV), pulsatility and resistive indices with Doppler ultrasound. Changes in SAS were recorded with a new method i.e. near-infrared transillumination/backscattering sounding. Wavelet transform analysis was used to assess the BP and SAS oscillations coupling. Results Initiating Mueller manoeuvres evoked cardiac SAS component decline (-17.8%, P<0.001), systolic BP, diastolic BP and HR increase (+6.3%, P<0.001; 6.7%, P<0.001 and +2.3%, P<0.05, respectively). By the end of Mueller manoeuvres, cardiac SAS component and HR did not change (+2.3% and 0.0%, respectively; both not statistically significant), but systolic and diastolic BP was elevated (+12.6% and +8.9%, respectively; both P<0.001). With reference to baseline values there was an evident decrease in wavelet coherence between BP and SAS oscillations at cardiac frequency in the first half of the Mueller manoeuvres (-32.3%, P<0.05 for left hemisphere and -46.0%, P<0.01 for right hemisphere) which was followed by subsequent normalization at end of the procedure (+3.1% for left hemisphere and +23.1% for right hemisphere; both not statistically significant). Conclusions Increased inspiratory resistance is associated with

  1. Increased inspiratory resistance affects the dynamic relationship between blood pressure changes and subarachnoid space width oscillations.

    PubMed

    Wszedybyl-Winklewska, Magdalena; Wolf, Jacek; Swierblewska, Ewa; Kunicka, Katarzyna; Mazur, Kamila; Gruszecki, Marcin; Winklewski, Pawel J; Frydrychowski, Andrzej F; Bieniaszewski, Leszek; Narkiewicz, Krzysztof

    2017-01-01

    Respiration is known to affect cerebrospinal fluid (CSF) movement. We hypothesised that increased inspiratory resistance would affect the dynamic relationship between blood pressure (BP) changes and subarachnoid space width (SAS) oscillations. Experiments were performed in a group of 20 healthy volunteers undergoing controlled intermittent Mueller Manoeuvres (the key characteristic of the procedure is that a studied person is subjected to a controlled, increased inspiratory resistance which results in marked potentiation of the intrathoracic negative pressure). BP and heart rate (HR) were measured using continuous finger-pulse photoplethysmography; oxyhaemoglobin saturation with an ear-clip sensor; end-tidal CO2 with a gas analyser; cerebral blood flow velocity (CBFV), pulsatility and resistive indices with Doppler ultrasound. Changes in SAS were recorded with a new method i.e. near-infrared transillumination/backscattering sounding. Wavelet transform analysis was used to assess the BP and SAS oscillations coupling. Initiating Mueller manoeuvres evoked cardiac SAS component decline (-17.8%, P<0.001), systolic BP, diastolic BP and HR increase (+6.3%, P<0.001; 6.7%, P<0.001 and +2.3%, P<0.05, respectively). By the end of Mueller manoeuvres, cardiac SAS component and HR did not change (+2.3% and 0.0%, respectively; both not statistically significant), but systolic and diastolic BP was elevated (+12.6% and +8.9%, respectively; both P<0.001). With reference to baseline values there was an evident decrease in wavelet coherence between BP and SAS oscillations at cardiac frequency in the first half of the Mueller manoeuvres (-32.3%, P<0.05 for left hemisphere and -46.0%, P<0.01 for right hemisphere) which was followed by subsequent normalization at end of the procedure (+3.1% for left hemisphere and +23.1% for right hemisphere; both not statistically significant). Increased inspiratory resistance is associated with swings in the cardiac contribution to the dynamic

  2. CONTRIBUTION OF INSPIRATORY FLOW TO ACTIVATION OF EGFR, RAS, MAPK, ATF-2 AND C-JUN DURING LUNG STRETCH

    EPA Science Inventory

    Contribution of Inspiratory Flow to Activation of EGFR, Ras, MAPK, ATF-2 and c-Jun during Lung Stretch

    R. Silbajoris 1, Z. Li 2, J. M. Samet 1 and Y. C. Huang 1. 1 NHEERL, ORD, US EPA, RTP, NC and 2 CEMALB, UNC-CH, Chapel Hill, NC .

    Mechanical ventilation with larg...

  3. How many manoeuvres should be done to measure maximal inspiratory mouth pressure in patients with chronic airflow obstruction?

    PubMed Central

    Fiz, J A; Montserrat, J M; Picado, C; Plaza, V; Agusti-Vidal, A

    1989-01-01

    To determine the number of maximal mouth pressure manoeuvres needed to obtain a reproducible value of maximal inspiratory mouth pressure (MIP), we studied 44 patients with chronic airflow obstruction, with a mean (SD) % predicted FEV1 value of 53.9 (25), who were clinically stable. Maximal inspiratory mouth pressure was determined with an anaeroid manometer during maximal inspiratory efforts in a quasi static condition at residual volume. All patients performed 20 consecutive maximal inspiratory mouth manoeuvres, each one separated by 30-40 seconds. The mean (SD) values of MIP varied from 71.5 (25.5) cm H2O at the first measurement to 80.1 (27) cm H2O at the last measurement. Maximal values of MIP were usually achieved after nine determinations. It is concluded that to obtain a reproducible MIP value in patients with chronic airflow obstruction who are untrained and unexperienced in such manoeuvres a minimum of nine technically acceptable maximal mouth pressure manoeuvres should be performed. PMID:2763242

  4. CONTRIBUTION OF INSPIRATORY FLOW TO ACTIVATION OF EGFR, RAS, MAPK, ATF-2 AND C-JUN DURING LUNG STRETCH

    EPA Science Inventory

    Contribution of Inspiratory Flow to Activation of EGFR, Ras, MAPK, ATF-2 and c-Jun during Lung Stretch

    R. Silbajoris 1, Z. Li 2, J. M. Samet 1 and Y. C. Huang 1. 1 NHEERL, ORD, US EPA, RTP, NC and 2 CEMALB, UNC-CH, Chapel Hill, NC .

    Mechanical ventilation with larg...

  5. The Role of Inspiratory Muscle Training in the Process of Rehabilitation of Patients with Chronic Obstructive Pulmonary Disease.

    PubMed

    Majewska-Pulsakowska, M; Wytrychowski, K; Rożek-Piechura, K

    2016-01-01

    Chronic obstructive pulmonary disease (COPD) adversely affects the quality of life and life expectancy of patients. Shortness of breath, cough, and fatigue in lower limbs are the main reasons limiting physical activities of patients. The lack of physical activity results in poorer muscle strength. The latest guidelines regarding breathing rehabilitation in COPD patients emphasize a significant role of inspiratory muscle exercises. The objective of the present study was to evaluate the effects of an 8-week long inspiratory muscle training, interval training on a cycle ergometer, and training combining both kinds of rehabilitation, on pulmonary function, health-related quality of life, and the tolerance to exercise in patients with COPD. The study was conducted in a group of 43 patients with diagnosed COPD stage II and III according to GOLD. They were randomly divided into four training groups: inspiratory muscle training (Group 1), cycle ergometer training (Group 2), cycle ergometer and inspiratory muscle training (Group 3), control group - patients who did not participate in any rehabilitation programs (Group 4 - control). Before the rehabilitation process and after its completion the patients were medically examined, they completed a health-related quality of life questionnaire, performed a 6-min walk test, spirometry, and a treadmill exercise test according to the modified Bruce protocol. The results demonstrate a significant improvement in the quality of life measured for Group 3 in comparison with the control group.

  6. Influence of different breathing frequencies on the severity of inspiratory muscle fatigue induced by high-intensity front crawl swimming.

    PubMed

    Jakovljevic, Djordje G; McConnell, Alison K

    2009-07-01

    The aim of the present study was to assess the influence of 2 different breathing frequencies on the magnitude of inspiratory muscle fatigue after high-intensity front crawl swimming. The influence of different breathing frequencies on postexercise blood lactate ([La]) and heart rate (HR) was also examined. Ten collegiate swimmers performed 2 x 200-m front crawl swims at 90% of race pace with the following breathing frequencies: 1) 1 breath every second stroke (B2), and 2) 1 breath every fourth stroke (B4). Maximal inspiratory pressure (PImax) was measured at the mouth from residual volume before (baseline) and after swimming, in a standing position. The HR and [La] were assessed at rest and immediately at the cessation of swimming. The PImax decreased by 21% after B4 and by 11% after B2 compared with baseline (p < 0.05). The [La] was lower by 15% after B4 than after B2 (p < 0.05). The HR was not significantly different between B2 and B4. These data suggest that there is significant global inspiratory muscle fatigue after high-intensity swimming. Inspiratory muscle fatigue is, however, greater when breathing frequency is reduced during high-intensity front crawl swimming. Respiratory muscle training should be used to improve respiratory muscle strength and endurance in swimmers.

  7. Diaphragmatic amplitude and accessory inspiratory muscle activity in nasal and mouth-breathing adults: a cross-sectional study.

    PubMed

    Trevisan, Maria Elaine; Boufleur, Jalusa; Soares, Juliana Corrêa; Haygert, Carlos Jesus Pereira; Ries, Lilian Gerdi Kittel; Corrêa, Eliane Castilhos Rodrigues

    2015-06-01

    The purpose of this study was to evaluate the electromyographic activity of the accessory inspiratory muscles and the diaphragmatic amplitude (DA) in nasal and mouth-breathing adults. The study evaluated 38 mouth-breathing (MB group) and 38 nasal-breathing (NB group) adults, from 18 to 30years old and both sexes. Surface electromyography (sEMG) was used to evaluate the amplitude and symmetry (POC%) of the sternocleidomastoid (SCM) and upper trapezius (UT) muscles at rest, during nasal slow inspiration at Lung Total Capacity (LTC) and, during rapid and abrupt inspiration: Sniff, Peak Nasal Inspiratory Flow (PNIF) and Maximum Inspiratory Pressure (MIP). M-mode ultrasonography assessed the right diaphragm muscle amplitude in three different nasal inspirations: at tidal volume (TV), Sniff and inspiration at LTC. The SCM activity was significantly lower in the MB group during Sniff, PNIF (p<0.01, Mann-Whitney test) and MIP (p<0.01, t-test). The groups did not differ during rest and inspiration at LTC, regarding sEMG amplitude and POC%. DA was significantly lower in the MB group at TV (p<0.01, Mann-Whitney) and TLC (p=0.03, t-test). Mouth breathing reflected on lower recruitment of the accessory inspiratory muscles during fast inspiration and lower diaphragmatic amplitude, compared to nasal breathing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. The Hering-Breuer reflex in anesthetized infants: end-inspiratory vs. end-expiratory occlusion technique.

    PubMed

    Brown, K; Stocks, J; Aun, C; Rabbette, P S

    1998-04-01

    Both end-inspiratory (EIO) and end-expiratory (EEO) occlusions have been used to measure the strength of the Hering-Breuer inflation reflex (HBIR) in infants. The purpose of this study was to compare both techniques in anesthetized infants. In each infant, HBIR activity was calculated as the relative prolongation of expiratory and inspiratory time during EIO and EEO, respectively. Respiratory drive was assessed from the change in airway pressure during inspiratory effort against the occlusion, both at a fixed time interval of 100 ms (P0.1) and a fixed proportion (10%) of the occluded inspiratory time (P10%). Twenty-two infants [age 14.3 +/- 6. 4 (SD) mo] were studied. No HBIR activity was present during EIO [-11.8 +/- 15.9 (SD) %]. By contrast, there was significant, albeit weak, reflex activity during EEO [HBIR: 27.2 +/- 17.4%]. A strong HBIR (up to 310%) was elicited in six of seven infants in whom EIO was repeated after lung inflation. P0.1 was similar during both types of occlusions, whereas mean +/- SD P10% was lower during EEO than during EIO: 0.198 +/- 0.09 vs. 0.367 +/- 0.15 kPa, respectively (P < 0.01). These data suggest a difference in the central integration of stretch receptor activity in infants during anesthesia compared with during sleep.

  9. Minimal inspiratory flow from dry powder inhalers according to a biphasic model of pressure vs. flow relationship.

    PubMed

    Kanabuchi, Kazuo; Kondo, Tetsuri; Tanigaki, Toshimori; Tajiri, Sakurako; Hayama, Naoki; Takahari, Yoko; Iwao, Kayoko

    2011-04-20

    Inhalation therapy using the dry powder inhaler (DPI) is now the first choice for obstructive pulmonary diseases. We previously measured relationships between inspiratory pressure (PI) and flow rate of almost all of the DPIs available in Japan, and described an importance of inspiratory efforts. In the present study, we further analyzed the data obtained in the previous study. Although there were linear relationships between PI and flow2, the slope became steeper when PI was less than a certain value (critical PI, existed between 15-20 cmH2O). When PI was less than critical PI, linear rather than parabolic regression between PI and flow yielded better fits (r > 0.90, p < 0.001). Inspiratory flows at the critical PI were 53.9 (Diskus), 65.8 (Diskhaler), 45.9 (Turbuhaler for Pulmincort), 48.6 (Turbuhaler for Symbicort) and 38.0 l/min (Twisthaler). These findings suggested that flow through the DPI becomes laminar rather than turbulent flow in the range below critical PIs. We suggest that patients should inhale from the DPIs with inspiratory pressure higher than critical PI.

  10. Hydrodynamics of sediment threshold

    NASA Astrophysics Data System (ADS)

    Ali, Sk Zeeshan; Dey, Subhasish

    2016-07-01

    A novel hydrodynamic model for the threshold of cohesionless sediment particle motion under a steady unidirectional streamflow is presented. The hydrodynamic forces (drag and lift) acting on a solitary sediment particle resting over a closely packed bed formed by the identical sediment particles are the primary motivating forces. The drag force comprises of the form drag and form induced drag. The lift force includes the Saffman lift, Magnus lift, centrifugal lift, and turbulent lift. The points of action of the force system are appropriately obtained, for the first time, from the basics of micro-mechanics. The sediment threshold is envisioned as the rolling mode, which is the plausible mode to initiate a particle motion on the bed. The moment balance of the force system on the solitary particle about the pivoting point of rolling yields the governing equation. The conditions of sediment threshold under the hydraulically smooth, transitional, and rough flow regimes are examined. The effects of velocity fluctuations are addressed by applying the statistical theory of turbulence. This study shows that for a hindrance coefficient of 0.3, the threshold curve (threshold Shields parameter versus shear Reynolds number) has an excellent agreement with the experimental data of uniform sediments. However, most of the experimental data are bounded by the upper and lower limiting threshold curves, corresponding to the hindrance coefficients of 0.2 and 0.4, respectively. The threshold curve of this study is compared with those of previous researchers. The present model also agrees satisfactorily with the experimental data of nonuniform sediments.

  11. Postoperative Conversion Disorder Presenting as Inspiratory Stridor and Hemiparesis in a Pediatric Patient.

    PubMed

    Nelson, Erik J; Wu, Jennifer Y

    2017-01-17

    BACKGROUND Postoperative conversion disorder is rare and has been reported. The diagnosis is usually made after all major organic causes have been ruled out. CASE REPORT We describe a case of a 13-year-old female who presented in the post-anesthesia care unit with acute-onset inspiratory stridor and unresponsiveness to verbal or painful stimuli after receiving a general anesthetic for upper endoscopy. Later in the post-anesthesia care unit, she presented with acute-onset right hemiplegia and sensory loss. She was first evaluated for causes of her stridor and unresponsiveness. The evaluation revealed paradoxical vocal cord movement, and all laboratory test values were normal. For her hemiplegia and sensory loss, she was evaluated for stroke with head MRI and CT scans, which were normal. CONCLUSIONS After extensive workup and consideration of multiple etiologies for her presenting signs and symptoms, the most likely diagnosis was conversion disorder.

  12. The inspiratory maneuver: a simple method to assess the superficial lamina propria during endoscopy.

    PubMed

    Sulica, Lucian; Behrman, Alison; Roark, Rick

    2005-09-01

    We describe a simple means of assessing the condition of the superficial lamina propria during endoscopy, which we use in our practice as an adjunct to careful stroboscopic examination. An intake of breath against partially adducted vocal folds serves to draw the mucosa inferomedially into the glottis, which reveals areas of diminished mobility, the relationship of mucosal lesions to deeper tissues of the vocal folds, and subtle submucosal lesions. This is possible because of the unique geometry of the glottis that renders the vector forces of airflow different at inspiration and expiration. Because the integrity of the superficial lamina propria is essential to healthy phonation, we have found the inspiratory maneuver useful across a wide variety of mucosal pathologic conditions.

  13. Role of maximal inspiratory presure in the evaluetion of respiratory muscle strength in asthmatics - Systematic review.

    PubMed

    Cavalcante Marcelino, Alessandra M F; da Silva, Hilton Justino

    2010-01-01

    Asthma is a chronic illness of the airways that can reduce respiratory muscle strength due to the resulting hyperinflation or treatment with corticosteroids. One of the ways to evaluate this respiratory muscular weakness is the Maximal Inspiratory Pressure (PImax). A systematic review of the databases PUBMED/MEDLINE, LILACS and SCIELO was carried through, using the key words: Asthma, respiratory muscle and muscle strength. Fifty were found and six articles that evaluated the PImax in asthmatics, from these, thirty were excluded, making a total of twenty six articles. Through the present revision we show the effectiveness of PImax in evaluating respiratory muscle strength in asthmatics. More studies are needed, however, fot better understanding of the asthmatic individual. Rev Port Pneumol 2010; XVI (3): 463-470. © 2010 Sociedade Portuguesa de Pneumologia/SPP.

  14. Changes in capillary filling do not influence inspiratory-induced vasoconstrictive episodes

    NASA Astrophysics Data System (ADS)

    Rauh, Robert; Ochsmann, Elke; Kessler, Manfred; Mueck-Weymann, Michael

    2007-05-01

    Deep inspiration leads to sympathetically mediated vasoconstriction at the fingertip. This so-called inspiratory gasp response (IGR) is usually assessed by laser Doppler fluxmetry (LDF) and provides interesting information on the activity of the sympathetic nervous system. In this study we investigated if simple maneuvers which affect microcirculation have an effect on the IGR. For this we detected IGR with LDF in rest, after elevation of the arm to lower capillary filling, after venous congestion to increase capillary filling, and after heating up in warm water to induce vasodilation. Capillary filling was monitored with the Erlangen Microlightguide Spectrophotometer (EMPHO) by determination of the relative hemoglobin concentration. We found that IGR was not affected by microcirculatory starting conditions. Therefore, we conclude that diagnostic results of the IGR are not influenced by different capillary filling levels.

  15. The 400- and 800-m Track Running Induces Inspiratory Muscle Fatigue in Trained Female Middle-Distance Runners.

    PubMed

    Ohya, Toshiyuki; Yamanaka, Ryo; Hagiwara, Masahiro; Oriishi, Marie; Suzuki, Yasuhiro

    2016-05-01

    Inspiratory muscle fatigue (IMF) may limit exercise performance. A few studies have reported that IMF occurs after short-duration swimming exercise, but whether short-duration running can induce IMF remains unclear. Intra-abdominal pressure is increased during running through diaphragmatic activation to stabilize the spine during movements of the upper limbs. This occurs along with the increased inspiratory muscle effort associated with increased respirations during exercise; thus, we hypothesized that short-duration running exercise would induce IMF. To test this hypothesis, we measured maximal inspiratory pressure (MIP) before and after 400- and 800-m track running sessions. Eight female middle-distance (400, 800 m) runners performed a 400- and 800-m running test. Maximal inspiratory pressure was measured before and after each test using a portable autospirometer. The mean MIPs were significantly lower after running than before running; values obtained were 107 ± 25 vs. 97 ± 27 cmH2O (p = 0.01, effect size [ES] = 0.65) and 108 ± 26 vs. 92 ± 27 cmH2O (p = 0.01, ES = 0.74) before vs. after the 400- and 800-m tests, respectively. The mean MIP after the 800-m test was significantly lower than after the 400-m test (p = 0.04, ES = 0.48). There was no correlation between IMF value and running time (r = 0.53 and r = -0.28 for either the 400- and 800-m tests, respectively; p > 0.05). In conclusion, IMF occurs after short-duration running exercise. Coaches could consider prescribing inspiratory muscle training or warm-up in an effort to reduce the inevitable IMF associated with maximal effort running.

  16. Mitochondrial threshold effects.

    PubMed Central

    Rossignol, Rodrigue; Faustin, Benjamin; Rocher, Christophe; Malgat, Monique; Mazat, Jean-Pierre; Letellier, Thierry

    2003-01-01

    The study of mitochondrial diseases has revealed dramatic variability in the phenotypic presentation of mitochondrial genetic defects. To attempt to understand this variability, different authors have studied energy metabolism in transmitochondrial cell lines carrying different proportions of various pathogenic mutations in their mitochondrial DNA. The same kinds of experiments have been performed on isolated mitochondria and on tissue biopsies taken from patients with mitochondrial diseases. The results have shown that, in most cases, phenotypic manifestation of the genetic defect occurs only when a threshold level is exceeded, and this phenomenon has been named the 'phenotypic threshold effect'. Subsequently, several authors showed that it was possible to inhibit considerably the activity of a respiratory chain complex, up to a critical value, without affecting the rate of mitochondrial respiration or ATP synthesis. This phenomenon was called the 'biochemical threshold effect'. More recently, quantitative analysis of the effects of various mutations in mitochondrial DNA on the rate of mitochondrial protein synthesis has revealed the existence of a 'translational threshold effect'. In this review these different mitochondrial threshold effects are discussed, along with their molecular bases and the roles that they play in the presentation of mitochondrial diseases. PMID:12467494

  17. Sniff nasal inspiratory pressure versus IC/TLC ratio as predictors of mortality in COPD.

    PubMed

    Moore, Alastair J; Soler, Rosa Suades; Cetti, Edward J; Amanda Sathyapala, S; Hopkinson, Nicholas S; Roughton, Michael; Moxham, John; Polkey, Michael I

    2010-09-01

    Hyperinflation is a recognized adverse prognostic factor in COPD. As the sniff inspiratory nasal pressure (SnIP) principally reflects the severity of hyperinflation in COPD, we hypothesized that it might also be a predictor of mortality. We therefore compared the SnIP to the inspiratory capacity-to-total lung capacity (IC/TLC) ratio as predictors of mortality in advanced COPD. A retrospective mortality analysis of 110 patients with COPD (mean FEV(1) 1.01litres, 37% predicted; 66% male) was performed. All patients had SnIP and lung volume measurements performed. The power of each test to predict mortality was determined, and predicted survival curves were created for both the SnIP and IC/TLC ratio. 37 patients (34%) died during the study period (29 male, 8 female). Mortality rates were analysed with a Chi(2) test; there was a significant trend towards male death (mortality rate male vs. female; 39.7% vs. 21.6% respectively; chi(2)p=0.058, Chi 3.6). ROC curves demonstrated that both SnIP and IC/TLC ratio are predictors of mortality, but analysis by Cox proportional hazards suggested the SnIP has a stronger predictive power (SnIP vs. IC/TLC ratio; p=0.017 vs 0.525; HR 0.97 vs 0.99 respectively), and analysis of the area under ROC curves (AUC) suggest that SnIP is a better discriminator than IC/TLC ratio (AUC SnIP vs IC/TLC; 0.679 vs 0.618). The SnIP conveys at least as much predictive power for mortality in COPD as hyperinflation determined by IC/TLC ratio. This test is cheaper, quicker and easier than measuring lung volumes by plethysmography.

  18. Effectiveness of Inspiratory Termination Synchrony with Automatic Cycling During Noninvasive Pressure Support Ventilation.

    PubMed

    Chen, Yuqing; Cheng, Kewen; Zhou, Xin

    2016-05-20

    BACKGROUND Pressure support ventilation (PSV) is a standard method for non-invasive home ventilation. A bench study was designed to compare the effectiveness of patient-ventilator inspiratory termination synchronization with automated and conventional triggering in various respiratory mechanics models. MATERIAL AND METHODS Two ventilators, the Respironics V60 and Curative Flexo ST 30, connected to a Hans Rudolph Series 1101 lung simulator, were evaluated using settings that simulate lung mechanics in patients with chronic obstructive pulmonary disease (COPD), acute respiratory distress syndrome (ARDS), or normal lungs. Ventilators were operated with automated (Auto-Trak) or conventional high-, moderate-, and low-sensitivity flow-cycling software algorithms, 5 cmH2O or 15 cmH2O pressure support, 5 cmH2O positive end-expiratory pressure (PEEP), and an air leak of 25-28 L/min. RESULTS Both ventilators adapted to the system leak without requiring adjustment of triggering settings. In all simulated lung conditions, automated cycling resulted in shorter triggering delay times (<100 ms) and lower triggering pressure-time product (PTPt) values. Tidal volumes (VT) increased with lower conventional cycling sensitivity level. In the COPD model, automated cycling had higher leak volumes and shorter cycling delay times than in conventional cycling. Asynchronous events were rare. Inspiratory time (Tinsp), peak expiratory flow (PEF), and cycling off delay time (Cdelay) increased as a result of reduction in conventional cycling sensitivity level. In the ARDS and normal adult lung models, premature cycling was frequent at the high-sensitive cycling level. CONCLUSIONS Overall, the Auto-Trak protocol showed better patient-machine cycling synchronization than conventional triggering. This was evident by shorter triggering time delays and lower PTPt.

  19. Synchronized fast rhythms in inspiratory and expiratory nerve discharges during fictive vocalization.

    PubMed

    Nakazawa, K; Granata, A R; Cohen, M I

    2000-03-01

    In precollicular decerebrate and paralyzed cats, respiratory nerve activities were recorded during fictive vocalization (FV), which consisted of a distinctive pattern of 1) decreased inspiratory (I) and expiratory (E) phase durations, 2) marked increase of phrenic activity and moderate changes of recurrent laryngeal (RL) and superior laryngeal (SL) I activities, and 3) massive recruitment of laryngeal and abdominal (ABD; lumbar) E activities. FV was produced by electrical stimulation (100 Hz) in the midbrain periaqueductal gray (PAG) or its putative descending pathways in the ventrolateral pons (VLP). Spectral and correlation analyses revealed three types of effect on fast rhythms during FV. 1) I activities: the coherent high-frequency oscillations in I (I-HFO, 60-90 Hz) present in phrenic and RL discharges during the control state did not change qualitatively, but there was an increase of power and a moderate increase (4-10 Hz) of frequency. Sometimes a distinct relatively weak stimulus-locked rhythm appeared. 2) RL and SL activities during E: in recruited discharges, a prominent intrinsic rhythm (coherent E-HFOs at 50-70 Hz) appeared; sometimes a distinct relatively strong stimulus-locked rhythm appeared. 3) ABD activities during E: this recruited activity had no intrinsic rhythm but had an evoked oscillation locked to the stimulus frequency. Thus FV is characterized by 1) appearance of prominent coherent intrinsic rhythms in RL and SL E discharges, which presumably arise as a result of excitation and increased interactions in laryngeal networks; 2) modification of intrinsic rhythmic interactions in inspiratory networks; and 3) evoked rhythms in augmenting-E neuron networks without occurrence of intrinsic rhythms.

  20. Maximal expiratory and inspiratory flow-volume curves in Parkinson's disease.

    PubMed

    Bogaard, J M; Hovestadt, A; Meerwaldt, J; vd Meché, F G; Stigt, J

    1989-03-01

    In order to investigate the type and degree of upper airway obstruction (UAO) in a group of patients with Parkinson's disease in different stages of the disease, we obtained maximal expiratory and inspiratory flow-volume (MEFV and MIFV) curves and maximal static mouth pressures. The clinical disability was indicated by a Hoehn-Yahr (H-Y) scale, ranging from III to V, and a more continuous Northwestern University Disability Scale (NUDS), ranging from zero to 50. Twelve patients were in H-Y Group III, and eleven and eight were in Groups IV and V, respectively. The pattern of the flow-volume curves was classified as either normal, or with superimposed regular or irregular oscillations (A), or with rounded-off and delayed expiratory peak appearance (B). Mean MEFV curves in Groups III and IV were not appreciably different from reference. In Group V, the mean curve showed a lower peak expiratory flow (PEF) and a more convex tail. Only the effort-dependent variables PEF, peak inspiratory flow (PIF), and maximal mouth pressures at RV and TLC (PmTLC and PmRV) appeared to be significantly correlated with the NUDS index and decreased with increasing clinical disability. The mean values of those variables were also significantly different between the H-Y groups. The number of normal curves decreased from H-Y Group III to Group V. The contribution of A and B curves was relatively equal in the groups, with only a small number of A curves.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Inspiratory Muscle Training Improves Sleep and Mitigates Cardiovascular Dysfunction in Obstructive Sleep Apnea.

    PubMed

    Vranish, Jennifer R; Bailey, E Fiona

    2016-06-01

    New and effective strategies are needed to manage the autonomic and cardiovascular sequelae of obstructive sleep apnea (OSA). We assessed the effect of daily inspiratory muscle strength training (IMT) on sleep and cardiovascular function in adults unable to use continuous positive airway pressure (CPAP) therapy. This is a placebo-controlled, single-blind study conducted in twenty four adults with mild, moderate, and severe OSA. Subjects were randomly assigned to placebo or inspiratory muscle strength training. Subjects in each group performed 5 min of training each day for 6 w. All subjects underwent overnight polysomnography at intake and again at study close. We evaluated the effects of placebo training or IMT on sleep, blood pressure, and plasma catecholamines. Relative to placebo-trained subjects with OSA, subjects with OSA who performed IMT manifested reductions in systolic and diastolic blood pressures (-12.3 ± 1.6 SBP and -5.0 ± 1.3 DBP mmHg; P < 0.01); plasma norepinephrine levels (536.3 ± 56.6 versus 380.6 ± 41.2 pg/mL; P = 0.01); and registered fewer nighttime arousals and reported improved sleep (Pittsburgh Sleep Quality Index scores: 9.1 ± 0.9 versus 5.1 ± 0.7; P = 0.001). These favorable outcomes were achieved without affecting apneahypopnea index. The results are consistent with our previously published findings in normotensive adults but further indicate that IMT can modulate blood pressure and plasma catecholamines in subjects with ongoing nighttime apnea and hypoxemia. Accordingly, we suggest IMT offers a low cost, nonpharmacologic means of improving sleep and blood pressure in patients who are intolerant of CPAP. © 2016 Associated Professional Sleep Societies, LLC.

  2. Pressure support ventilation decreases inspiratory work of breathing during general anesthesia and spontaneous ventilation.

    PubMed

    Christie, J M; Smith, R A

    1992-08-01

    Spontaneous ventilation may offer advantages over controlled mechanical ventilation (CMV), but increase in work of breathing may diminish its usefulness. During general anesthesia, respiratory depression and increased work of breathing often preclude spontaneous ventilation, and patients then receive CMV. We compared the inspiratory work of breathing of anesthetized patients who breathed with pressure support ventilation (PSV) with that associated with a demand gas flow and a standard anesthesia circle system. We studied nine consenting patients who underwent general inhaled anesthesia with or without regional supplementation. An anesthesia/ventilator system (Siemens 900D, Solna, Sweden) provided PSV (5 cm H2O) or demand gas flow during spontaneous inspiration. Gas flow during demand breathing and PSV was initiated when inspiration produced a 2-cm H2O reduction in airway pressure. An anesthesia machine (Dräger Narkomed 3, Telford, Pa.) provided a gas flow rate of 6 L/min through a standard semiclosed circle system. Airway pressure, airway gas flow rate, and esophageal pressure were continuously transduced, and data or signals were conveyed to a computer. Tidal volume and respiratory rate were computed from the flow curve. The inspiratory work of breathing was calculated as the integral of the area subserved by a plot of esophageal pressure and tidal volume during inspiration. Heart rate and mean arterial blood pressure were recorded, and arterial blood was sampled for gas tension and pH analysis. No differences were found in pHa, Paco2, Pao2, tidal volume, respiratory rate, heart rate, or mean arterial blood pressure among the three modes of ventilation.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Inspiratory capacity, exercise limitation, markers of severity, and prognostic factors in chronic obstructive pulmonary disease.

    PubMed

    Freitas, Clarice Guimarães de; Pereira, Carlos Alberto de Castro; Viegas, Carlos Alberto de Assis

    2007-01-01

    To correlate the postbronchodilator (post-BD) inspiratory capacity (IC), % of predicted, with other markers of severity and prognostic factors in chronic obstructive pulmonary disease (COPD). Eighty stable patients with COPD performed forced vital capacity and slow vital capacity maneuvers, as well as the 6-min walk test, prior to and after receiving albuterol spray (400 microg). Patients were divided into four groups, based on post-BD forced expiratory volume in one second. Several variables were tested to establish correlations with the post-BD distance walked, using univariate and multivariate analysis. Post-BD IC was found to correlated with Global Initiative for Chronic Obstructive Lung Disease (GOLD) staging and with the Body mass index, airway Obstruction, Dyspnea, and Exercise capacity (BODE) index. Multivariate regression analysis revealed that the distance walked, % predicted, correlated significantly with the IC post-BD, % predicted (p = 0.001), long-term oxygen use (p = 0.014), and number of medications used in the treatment (p = 0.044). IC < 70% was observed in 56% patients in GOLD stages 3 or 4 vs. 20% in GOLD 1 or 2 (p < 0.001). IC < 70% was observed in (60%) patients with BODE score 3 or 4 vs. (33%) BODE score 1 or 2 (p = 0.02). Post-BD IC% predicted is the best functional predictor of distance walked and is significantly associated with GOLD staging and BODE index. Therefore, We propose that the inspiratory capacity should be added to the routine evaluation of the COPD patients.

  4. Inspiratory Tube Condensation During High-Flow Nasal Cannula Therapy: A Bench Study.

    PubMed

    Chikata, Yusuke; Unai, Kazuaki; Izawa, Masayo; Okuda, Nao; Oto, Jun; Nishimura, Masaji

    2016-03-01

    High-flow nasal cannula (HFNC) therapy provides better humidification than conventional oxygen therapy. To allay loss of vapor as condensation, a servo-controlled heating wire is incorporated in the inspiratory tube, but condensation is not completely avoidable. We investigated factors that might affect condensation: thermal characteristics of the inspiratory tube, HFNC flow, and ambient temperature. We evaluated 2 types of HFNC tubes, SLH Flex 22-mm single tube and RT202. Both tubes were connected to a heated humidifier with water reservoir. HFNC flow was set at 20, 40, and 60 L/min, and FIO2 was set at 0.21. Air conditioning was used maintain ambient temperature at close to either 20 or 25°C. We weighed the tubes on a digital scale before (0 h) and at 3, 6, and 24 h after, turning on the heated humidifier, and calculated the amount of condensation by simple subtraction. The amount of distilled water used during 24 h was also recorded. At 25°C, there was little condensation, but at 20°C and HFNC flow of 20, 40, and 60 L/min for 24 h, the amount of condensation with the SLH was 50.2 ± 10.7, 44.3 ± 17.7, and 56.6 ± 13.9 mg, and the amount with the RT202 was 96.0 ± 35.1, 72.8 ± 8.2, and 64.9 ± 0.8 mg. When ambient temperature was set to 20°C, condensation with the RT202 was statistically significantly greater than with the SLH at all flow settings (P < .001). Ambient temperature statistically significantly influenced the amount of condensation in the tubes. Copyright © 2016 by Daedalus Enterprises.

  5. Exercise-induced inspiratory muscle fatigue during swimming: the effect of race distance.

    PubMed

    Brown, Sarah; Kilding, Andrew E

    2011-05-01

    Exercise-induced inspiratory muscle fatigue (IMF) has been quantified for several sports. However, it is not yet known if, or to what extent, IMF is determined by the competition distance. The aim of the present study was to assess the influence of 3 different competitive front-crawl swimming race distances on the magnitude of IMF. Ten well-trained swimmers from a local swim team participated in the study and on separate days completed maximal 100-, 200-, and 400-m time trials (TTs). Before and after each trial, maximal inspiratory pressure (MIP) was measured and %IMF determined from pre- and post-time-trial differences in MIP. The heart rate (HR) and rate of perceived dyspnea (RPD) was also assessed. For all distances, posttrial MIP was lower than pretrial MIP, though this was only significant for 100 m (p < 0.05). There were no differences between distances for absolute posttrial MIP. The %IMF after the 100-m TT (8.2 ± 4.1%) was, however, significantly greater than the 400 m (4.9 ± 3.8%) TT (p < 0.05) but not 200-m TT. There were no differences between trials for HR or RPD (p > 0.05). There were no relationships between %IMF and mean pretrial MIP (r = -0.28, p > 0.05) or between %IMF and time for any TT (100 m, r = 0.25; 200 m, r = 0.34; 400 m r = 0.18; p > 0.05). The lack of difference between trials for posttrial absolute MIP suggests that race distance during swimming does not substantially influence the degree of IMF.

  6. Effects of inspiratory muscle training on respiratory function and repetitive sprint performance in wheelchair basketball players.

    PubMed

    Goosey-Tolfrey, V; Foden, E; Perret, C; Degens, H

    2010-07-01

    There is considerable evidence that respiratory muscle training improves pulmonary function, quality of life and exercise performance in healthy athletic populations. The benefits for wheelchair athletes are less well understood. Therefore, in the present study, influence of inspiratory muscle training (IMT) on respiratory function and repetitive propulsive sprint performance in wheelchair basketball players was examined. Using a placebo-controlled design, 16 wheelchair athletes were divided to an experimental (IMT; n=8) or placebo (sham-IMT; n=8) group based on selective grouping criteria. 30 dynamic breaths were performed by the IMT group twice daily at a resistance equivalent to 50% maximum inspiratory pressure (MIP), and 60 slow breaths were performed by the sham-IMT group once a day at 15% MIP for a period of 6 weeks. In the IMT group, both MIP and maximum expiratory pressure (17% and 23%, respectively; p< or =0.03) were improved. Similar improvements were noted for the sham-IMT group with 23% and 33% from baseline for MIP and maximum expiratory pressure, respectively (p< or =0.03). There were no significant changes in pulmonary function at rest and any of the performance parameters associated with the repetitive sprint test (sprint and recovery times, peak heart rate and peak blood lactate concentration). Reported experiences of using the IMT training device suggested "less breathlessness" and "less tightness in the chest during the training". Although there was no improvement in sprint performance, an improved respiratory muscle function and quality of life were reported by participants in both the IMT and sham-IMT groups.

  7. Inspiratory muscle training, altitude, and arterial oxygen desaturation: a preliminary investigation.

    PubMed

    Lomax, Mitch

    2010-05-01

    Specific inspiratory muscle training (IMT) has been shown to significantly attenuate the fall in arterial oxygen saturation (SpO2) during exhaustive exercise while breathing a hypoxic gas mixture of 14% oxygen. The aim of the current study was to assess the impact of IMT on resting SpO2 over a range of altitudes in healthy individuals. Resting SpO2 and the Borg Score were examined at altitudes of 0 or 400 m (0-400 m; 0-1312.3 ft), 1400 m, 4880 m, and 5550 m (4593 ft, 16,011 ft, and 18,209 ft) in 14 military personnel who were part of a climbing expedition to the Nepali Himalaya. Volunteer participants were randomly assigned to either a control (N = 7) or IMT (N = 7) group: IMT consisted of 1 set of 30 breaths twice daily at 50% maximal inspiratory mouth pressure (MIP) for 4 wk prior to departure. MIP was similar between groups pre-IMT but increased significantly by 15% post-IMT. Baseline maximal expiratory mouth pressure was not different between groups. The Borg Score increased significantly from 1400 m, but was not different between groups at any altitude. Resting SpO2 declined significantly at ascending altitudes in both groups and was similar between groups at altitudes of 0-400 m and 1400 m. However, at altitudes of 4880 m and 5550 m, SpO2 was significantly higher (6%) in the IMT group. IMT can attenuate the fall in resting SpO2, but only at altitudes of 4880 m and above. Conversely, IMT had no effect on resting levels of dyspnea as measured by the Borg Score.

  8. Unidirectional Expiratory Valve Method to Assess Maximal Inspiratory Pressure in Individuals without Artificial Airway

    PubMed Central

    Grams, Samantha Torres; Kimoto, Karen Yumi Mota; Azevedo, Elen Moda de Oliveira; Lança, Marina; de Albuquerque, André Luis Pereira; de Brito, Christina May Moran; Yamaguti, Wellington Pereira

    2015-01-01

    Introduction Maximal Inspiratory Pressure (MIP) is considered an effective method to estimate strength of inspiratory muscles, but still leads to false positive diagnosis. Although MIP assessment with unidirectional expiratory valve method has been used in patients undergoing mechanical ventilation, no previous studies investigated the application of this method in subjects without artificial airway. Objectives This study aimed to compare the MIP values assessed by standard method (MIPsta) and by unidirectional expiratory valve method (MIPuni) in subjects with spontaneous breathing without artificial airway. MIPuni reproducibility was also evaluated. Methods This was a crossover design study, and 31 subjects performed MIPsta and MIPuni in a random order. MIPsta measured MIP maintaining negative pressure for at least one second after forceful expiration. MIPuni evaluated MIP using a unidirectional expiratory valve attached to a face mask and was conducted by two evaluators (A and B) at two moments (Tests 1 and 2) to determine interobserver and intraobserver reproducibility of MIP values. Intraclass correlation coefficient (ICC[2,1]) was used to determine intraobserver and interobserver reproducibility. Results The mean values for MIPuni were 14.3% higher (-117.3 ± 24.8 cmH2O) than the mean values for MIPsta (-102.5 ± 23.9 cmH2O) (p<0.001). Interobserver reproducibility assessment showed very high correlation for Test 1 (ICC[2,1] = 0.91), and high correlation for Test 2 (ICC[2,1] = 0.88). The assessment of the intraobserver reproducibility showed high correlation for evaluator A (ICC[2,1] = 0.86) and evaluator B (ICC[2,1] = 0.77). Conclusions MIPuni presented higher values when compared with MIPsta and proved to be reproducible in subjects with spontaneous breathing without artificial airway. PMID:26360255

  9. Benefits of physical training on exercise capacity, inspiratory muscle function, and quality of life in patients with ventricular assist devices long-term postimplantation.

    PubMed

    Laoutaris, Ioannis D; Dritsas, Athanasios; Adamopoulos, Stamatis; Manginas, Athanassios; Gouziouta, Aggeliki; Kallistratos, Manolis S; Koulopoulou, Maria; Voudris, Vasilis; Cokkinos, Dennis V; Sfirakis, Petros

    2011-02-01

    Capacity to exercise may not be fully restored in patients with heart failure even in the long term after ventricular assist device (VAD) implantation. The benefits of exercise training in patients with VAD are unknown. Fifteen patients, aged 38.3 ± 15.9 years, bridged to heart transplantation with left ventricular assist device or biventricular assist device were randomized at a ratio of 2 : 1 to a training group (TG, n = 10) or a control group (n = 5), 6.3 ± 4 months after implantation. Both the groups were advised to walk 30–45 min/day. TG also underwent moderate-intensity aerobic exercise using a bike or treadmill for 45 min, three to five times a week, combined with high-intensity inspiratory muscle training using a computer-designed software to respiratory exhaustion, two to three times a week for 10 weeks. The patients were tested using cardiopulmonary exercise testing, 6-min walk test, spirometry and electronic pressure manometer for inspiratory muscle strength (Pimax) and endurance (sustained Pimax) measurement. Quality of life was assessed with the Minnesota Living with Heart Failure questionnaire. TG improved peak oxygen consumption (19.3 ± 4.5 vs. 16.8 ± 3.7 ml/kg per min, P = 0.008) and VO2 at ventilatory threshold (15.1 ± 4.2 vs. 12 ± 5.6 ml/kg per min, P = 0.01), whereas the ventilation/carbon dioxide slope decreased (35.9 ± 5.6 vs. 40 ± 6.5, P = 0.009). The 6-min walk test distance increased (527 ± 76 vs. 462 ± 88 m, P = 0.005) and quality of life was improved (38.2 ± 11.6 vs. 48.9 ± 12.8, P = 0.005), as well as Pimax (131.8 ± 33 vs. 95.5 ± 28cmH2O, P = 0.005), sustained Pimax (484 ± 195 vs. 340 ± 193cmH2O/s/103, P = 0.005), and inspiratory lung capacity (2.4 ± 0.9 vs. 1.7 ± 0.7 L, P = 0.008) were improved. No significant changes were noted in the control group. Our findings indicate that exercise

  10. Elaborating on Threshold Concepts

    ERIC Educational Resources Information Center

    Rountree, Janet; Robins, Anthony; Rountree, Nathan

    2013-01-01

    We propose an expanded definition of Threshold Concepts (TCs) that requires the successful acquisition and internalisation not only of knowledge, but also its practical elaboration in the domains of applied strategies and mental models. This richer definition allows us to clarify the relationship between TCs and Fundamental Ideas, and to account…

  11. Reading at the Threshold

    ERIC Educational Resources Information Center

    Gogan, Brian

    2013-01-01

    Recent considerations of threshold concepts in the rhetoric and writing studies discipline fail to consider the role that reading plays in the learning of student writers. This article reports results from a three-part, two-year, empirical study of seventy-five learners enrolled across four sections of a writing-intensive course. The course…

  12. Tutorial on maximum inspiratory and expiratory mouth pressures in individuals with idiopathic Parkinson disease (IPD) and the preliminary results of an expiratory muscle strength training program.

    PubMed

    Silverman, Erin P; Sapienza, Christine M; Saleem, Ahmad; Carmichael, Chris; Davenport, Paul W; Hoffman-Ruddy, Bari; Okun, Michael S

    2006-01-01

    Respiratory symptoms are recognized as sequelae of motor dysfunction in idiopathic Parkinson's disease (IPD) and these symptoms have the potential to cause problems with swallow, cough, voice and speech. Specifically, maneuvers that require rapid activation and coordination of upper airway and chest wall musculature become progressively impaired as motor dysfunction progresses during the natural course of the disease. This study reports on the maximum inspiratory and expiratory pressures produced by 28 participants (average age 64) diagnosed with moderate to severe IPD (average stage 2.5 with a range of 2.0-3.0). All measures were collected during the "medication on" state. Outcomes of a specific respiratory muscle strength training technique for improving maximum expiratory pressure are reported for three of the patients in this study. Techniques that focus on strengthening the respiratory muscles in patients with IPD (other than with low load breathing exercises), have not been previously reported. The results of this pilot study demonstrate that respiratory muscle weakness may be an important factor in the respiratory complications in IPD and that respiratory muscle strength training has the potential to improve expiratory muscle strength for this population. This improvement has the potential to positively impact high forced respiratory activities, such as forced breathing maneuvers, swallow, cough and speech functions that require greater magnitude and duration of expiration.

  13. The impact of emotion on the perception of graded magnitudes of respiratory resistive loads.

    PubMed

    Tsai, Hsiu-Wen; Chan, Pei-Ying; von Leupoldt, Andreas; Davenport, Paul W

    2013-04-01

    Emotional state can modulate the perception of respiratory loads but the range of respiratory load magnitudes affected by emotional state is unknown. We hypothesized that viewing pleasant, neutral and unpleasant affective pictures would modulate the perception of respiratory loads of different load magnitudes. Twenty-four healthy adults participated in the study. Five inspiratory resistive loads of increasing magnitude (5, 10, 15, 20, 45 cm H(2)O/L/s) were repeatedly presented for one inspiration while participants viewed pleasant, neutral and unpleasant affective picture series. Participants rated how difficult it was to breathe against the load immediately after each presentation. Only at the lowest load, magnitude estimation ratings were greater when subjects viewed the unpleasant series compared to the neutral and pleasant series. These results suggest that negative emotional state increases the sense of respiratory effort for single presentations of a low magnitude resistive load but high magnitude loads are not further modulated by emotional state.

  14. Patient-ventilator interaction and inspiratory effort during pressure support ventilation in patients with different pathologies.

    PubMed

    Nava, S; Bruschi, C; Fracchia, C; Braschi, A; Rubini, F

    1997-01-01

    The aim of this study was to evaluate whether pressure support ventilation (PSV) requires different diaphragmatic efforts and patient-ventilator matching, according to the underlying disease. Four groups of patients requiring PSV were studied: Group A, recovering from an episode of acute respiratory failure due to adult respiratory distress syndrome (ARDS); Group B, with postsurgical complications; and two subsets of chronic obstructive pulmonary disease (COPD) patients, with "normal" static compliance of the respiratory system (Cst,rs) (Group C) or elevated Cst,rs (Group D). Ventilatory pattern, transdiaphragmatic pressure (Pdi), the pressure-time product of the diaphragm (PTPdi), static (PEEPi,stat) and dynamic intrinsic positive end-expiratory pressure (PEEPi,dyn), Cst,rs and resistance of the total respiratory system (Rrs) were recorded. The matching between patient and ventilator was analysed, recording the number of "ineffective efforts" (inspiratory efforts not efficient enough to trigger a new ventilator cycle, despite a positive deflection in Pdi). A satisfactory blood gas equilibrium arterial oxygen saturation (Sa,O2 > 93%, with a pH > 7.32) was obtained in the various groups with different levels of PSV. Minute ventilation was found to be significantly higher in Groups A and B, due to the longer expiratory time (tE) in the COPD groups. Group A (2 out of 7), Group B (3 out of 7), Group C (3 out of 5) patients showed sporadic "ineffective efforts". All Group D patients manifested continuous mismatching with the ventilator, so that the pressure-time product of the diaphragm per minute (PTPdi/min), reflecting the metabolic work of the diaphragm, was not different in the four groups. Tidal volume and the spontaneous inspiratory efforts were similar in the four groups, but the number of breaths delivered by the ventilator was significantly higher in Groups A and B. The application of different levels of pressure support ventilation in patients with acute

  15. Is serial determination of inspiratory muscle strength a useful prognostic marker in chronic heart failure?

    PubMed

    Frankenstein, Lutz; Meyer, Franz Joachim; Sigg, Caroline; Nelles, Manfred; Schellberg, Dieter; Remppis, Andrew; Katus, Hugo A; Zugck, Christian

    2008-04-01

    Little data exists on the prognostic role of inspiratory muscle strength (PImax) in chronic heart failure (CHF). Training studies, however, frequently use it as a therapeutic target and surrogate marker for prognosis. The prognostic value of changes of PImax that allow this extrapolation is unknown. Patients with stable CHF were prospectively included and 1-year and all-time event rates recorded for endpoint analysis. In 158 patients (85% men; New York Heart Association functional class: 2.4+/-0.6), PImax was measured along with clinical evaluations at two visits, the initial visit and the second visit, 6.4+/-1.4 months apart. The mean follow-up was 59+/-34 months. Overall, 59 patients (37%) reached the primary endpoint of death or hospitalization (endpoint positive), and overall mortality rate (secondary endpoint) was 26% (42 patients). PImax did not differ between endpoint-negative and endpoint-positive patients, both at the initial and at the second visit (8.3+/-5.6 vs. 7.3+/-3.4 kPa and 8.8+/-6.0 vs. 7.9+/-3.6 kPa, respectively; P=NS), and both groups showed increased PImax (0.6+/-2.6 vs. 0.6+/-2.8 kPa; P=NS). Cox analyses found neither the absolute nor the relative change of PImax to be significant predictors for the primary and secondary endpoints (P=NS for both), both for the 1-year and for the all-time event rates. Endpoint rates did not differ between patients showing increasing or decreasing PImax (P=NS; relative risk (RR): 0.77; 95% confidence interval: 0.47-1.27). Trials focusing on inspiratory muscle function should use the actual levels of PImax as a surrogate marker to represent prognostic information, rather than relative or absolute changes. This is the first study to investigate the prognostic information of the changes of PImax over time, regarding both short-term and long-term morbidity and mortality in patients with stable CHF.

  16. Comparison of different inspiratory triggering settings in automated ventilators during cardiopulmonary resuscitation in a porcine model

    PubMed Central

    Fu, Yangyang; Sun, Feng; Zhang, Yazhi; Hu, Yingying; Walline, Joseph; Zhu, Huadong; Yu, Xuezhong

    2017-01-01

    Background Mechanical ventilation via automated in-hospital ventilators is quite common during cardiopulmonary resuscitation. It is not known whether different inspiratory triggering sensitivity settings of ordinary ventilators have different effects on actual ventilation, gas exchange and hemodynamics during resuscitation. Methods 18 pigs enrolled in this study were anaesthetized and intubated. Continuous chest compressions and mechanical ventilation (volume-controlled mode, 100% O2, respiratory rate 10/min, and tidal volumes 10ml/kg) were performed after 3 minutes of ventricular fibrillation. Group trig-4, trig-10 and trig-20 (six pigs each) were characterized by triggering sensitivities of 4, 10 and 20 (cmH2O for pressure-triggering and L/min for flow-triggering), respectively. Additionally, each pig in each group was mechanically ventilated using three types of inspiratory triggering (pressure-triggering, flow-triggering and turned-off triggering) of 5 minutes duration each, and each animal matched with one of six random assortments of the three different triggering settings. Blood gas samples, respiratory and hemodynamic parameters for each period were all collected and analyzed. Results In each group, significantly lower actual respiratory rate, minute ventilation volume, mean airway pressure, arterial pH, PaO2, and higher end-tidal carbon dioxide, aortic blood pressure, coronary perfusion pressure, PaCO2 and venous oxygen saturation were observed in the ventilation periods with a turned-off triggering setting compared to those with pressure- or flow- triggering (all P<0.05), except when compared with pressure-triggering of 20 cmH2O (respiratory rate 10.5[10/11.3]/min vs 12.5[10.8/13.3]/min, P = 0.07; coronary perfusion pressure 30.3[24.5/31.6] mmHg vs 27.4[23.7/29] mmHg, P = 0.173; venous oxygen saturation 46.5[32/56.8]% vs 41.5[33.5/48.5]%, P = 0.575). Conclusions Ventilation with pressure- or flow-triggering tends to induce hyperventilation and

  17. Correlation of maximal inspiratory pressure to transdiaphragmatic twitch pressure in intensive care unit patients.

    PubMed

    Supinski, Gerald S; Westgate, Phillip; Callahan, Leigh A

    2016-03-23

    Respiratory muscle weakness contributes to respiratory failure in ICU patients. Unfortunately, assessment of weakness is difficult since the most objective test, transdiaphragmatic pressure in response to phrenic nerve stimulation (PdiTw), is difficult to perform. While most clinicians utilize maximum inspiratory pressure (Pimax) to assess strength, the relationship of this index to PdiTw has not been evaluated in a large ICU population. The purpose of the present study was to assess both PdiTw and Pimax in ICU patients to determine how these indices correlate with each other, what factors influence these indices, and how well these indices predict outcomes. Studies were performed on adult mechanically ventilated patients in the University of Kentucky MICU (n = 60). We assessed PdiTw by measuring transdiaphragmatic pressure (Pdi) in response to bilateral twitch stimulation of the phrenic nerves using dual magnetic stimulators (Magstim 200). Pimax was determined by measuring airway pressure during a 30-second inspiratory occlusion. We also assessed the twitch and maximum force generation for diaphragms excised from control and septic mice. Both Pimax and PdiTw measurements were profoundly reduced for mechanically ventilated MICU patients when compared to normal reference values, e.g., Pimax averaged 56% of the predicted value for normal subjects. For the ICU population as a whole, PdiTw and Pimax values correlated with each other (r(2) = 0.373, p < 0.001), but there was wide scatter and, as a result, PdiTw could not be reliably calculated from Pimax levels for individual subjects. Infection selectively reduced low-frequency force generation more than high-frequency force generation for both our mouse experiments (comparing muscle twitch to 150 Hz tetanic force) and for MICU patients (comparing PdiTw to Pimax). This effect of infection may contribute to scatter in the PdiTw to Pimax relationship. We also found that both PdiTw and Pimax were significantly correlated

  18. The effects of prolonged inspiratory time during one-lung ventilation: a randomised controlled trial.

    PubMed

    Lee, S M; Kim, W H; Ahn, H J; Kim, J A; Yang, M K; Lee, C H; Lee, J H; Kim, Y R; Choi, J W

    2013-09-01

    We evaluated the effects of a prolonged inspiratory time on gas exchange in subjects undergoing one-lung ventilation for thoracic surgery. One hundred patients were randomly assigned to Group I:E = 1:2 or Group I:E = 1:1. Arterial blood gas analysis and respiratory mechanics measurements were performed 10 min after anaesthesia induction, 30 and 60 min after initiation of one-lung ventilation, and 15 min after restoration of conventional two-lung ventilation. The mean (SD) ratio of the partial pressure of arterial oxygen to fraction of inspired oxygen after 60 min of one-lung ventilation was significantly lower in Group I:E = 1:2 compared with Group I:E = 1:1 (27.7 (13.2) kPa vs 35.2 (22.1) kPa, respectively, p = 0.043). Mean (SD) physiological dead space-to-tidal volume ratio after 60 min of one-lung ventilation was significantly higher in Group I:E = 1:2 compared with Group I:E = 1:1 (0.46 (0.04) vs 0.43 (0.04), respectively, p = 0.008). Median (IQR [range]) peak inspiratory pressure was higher in Group I:E = 1:2 compared with Group I:E = 1:1 after 60 min of one-lung ventilation (23 (22-25 [18-29]) cmH2O vs 20 (18-21 [16-27]) cmH2O, respectively, p < 0.001) and median (IQR [range]) mean airway pressure was lower in Group I:E = 1:2 compared with Group I:E = 1:1 (10 (8-11 [5-15]) cmH2O vs 11 (10-13 [5-16]) cmH2O, respectively, p < 0.001). We conclude that, compared with an I:E ratio of 1:2, an I:E ratio of 1:1 resulted in a modest improvement in oxygenation and decreased shunt fraction during one-lung ventilation.

  19. Elaborating on threshold concepts

    NASA Astrophysics Data System (ADS)

    Rountree, Janet; Robins, Anthony; Rountree, Nathan

    2013-09-01

    We propose an expanded definition of Threshold Concepts (TCs) that requires the successful acquisition and internalisation not only of knowledge, but also its practical elaboration in the domains of applied strategies and mental models. This richer definition allows us to clarify the relationship between TCs and Fundamental Ideas, and to account for both the important and the problematic characteristics of TCs in terms of the Knowledge/Strategies/Mental Models Framework defined in previous work.

  20. Network problem threshold

    NASA Technical Reports Server (NTRS)

    Gejji, Raghvendra, R.

    1992-01-01

    Network transmission errors such as collisions, CRC errors, misalignment, etc. are statistical in nature. Although errors can vary randomly, a high level of errors does indicate specific network problems, e.g. equipment failure. In this project, we have studied the random nature of collisions theoretically as well as by gathering statistics, and established a numerical threshold above which a network problem is indicated with high probability.

  1. Vision thresholds revisited

    NASA Astrophysics Data System (ADS)

    Garstang, R. H.

    1999-05-01

    During and just after World War II there was intense interest in the threshold for seeing faint sources against illuminated backgrounds. Knoll, Tousey and Hulburt (1946, 1948) determined the threshold for (effectively) point sources seen against backgrounds ranging in brightness from darkness to subdued daylight. Blackwell (1946) gave contrast ratios for sources of various sizes ranging from point sources up to circular disks of 6 degrees diameter, all seen against the same range of brightnesses, and determined by a very large number of visual observations made by a team of observers. I have combined the two sets of results, and represented them by an improvement on the theoretical formula for threshold illuminance as a function of background brightness which was suggested by Hecht (1934). My formula agrees very well with the observations, and is very suitable for incorporation into computer programs. Applications have been made to problems where the background brightness is caused by light pollution, and the source size is determined by the seeing. These include the optimum magnification and limiting magnitude of telescopes, and the analysis of visual limiting magnitudes determined by Bowen (1947) to determine the night sky brightness at Mount Wilson in 1947.

  2. Influences of Duration of Inspiratory Effort, Respiratory Mechanics, and Ventilator Type on Asynchrony With Pressure Support and Proportional Assist Ventilation.

    PubMed

    Vasconcelos, Renata S; Sales, Raquel P; Melo, Luíz H de P; Marinho, Liégina S; Bastos, Vasco Pd; Nogueira, Andréa da Nc; Ferreira, Juliana C; Holanda, Marcelo A

    2017-05-01

    Pressure support ventilation (PSV) is often associated with patient-ventilator asynchrony. Proportional assist ventilation (PAV) offers inspiratory assistance proportional to patient effort, minimizing patient-ventilator asynchrony. The objective of this study was to evaluate the influence of respiratory mechanics and patient effort on patient-ventilator asynchrony during PSV and PAV plus (PAV+). We used a mechanical lung simulator and studied 3 respiratory mechanics profiles (normal, obstructive, and restrictive), with variations in the duration of inspiratory effort: 0.5, 1.0, 1.5, and 2.0 s. The Auto-Trak system was studied in ventilators when available. Outcome measures included inspiratory trigger delay, expiratory trigger asynchrony, and tidal volume (VT). Inspiratory trigger delay was greater in the obstructive respiratory mechanics profile and greatest with a effort of 2.0 s (160 ms); cycling asynchrony, particularly delayed cycling, was common in the obstructive profile, whereas the restrictive profile was associated with premature cycling. In comparison with PSV, PAV+ improved patient-ventilator synchrony, with a shorter triggering delay (28 ms vs 116 ms) and no cycling asynchrony in the restrictive profile. VT was lower with PAV+ than with PSV (630 mL vs 837 mL), as it was with the single-limb circuit ventilator (570 mL vs 837 mL). PAV+ mode was associated with longer cycling delays than were the other ventilation modes, especially for the obstructive profile and higher effort values. Auto-Trak eliminated automatic triggering. Mechanical ventilation asynchrony was influenced by effort, respiratory mechanics, ventilator type, and ventilation mode. In PSV mode, delayed cycling was associated with shorter effort in obstructive respiratory mechanics profiles, whereas premature cycling was more common with longer effort and a restrictive profile. PAV+ prevented premature cycling but not delayed cycling, especially in obstructive respiratory mechanics profiles

  3. Rib Fracture Fixation Restores Inspiratory Volume and Peak Flow in a Full Thorax Human Cadaveric Breathing Model

    PubMed Central

    Slobogean, Gerard P.; Kim, Hyunchul; Russell, Joseph P.; Stockton, David J.; Hsieh, Adam H.; O’Toole, Robert V.

    2015-01-01

    Background: Multiple rib fractures cause significant pain and potential for chest wall instability. Despite an emerging trend of surgical management of flail chest injuries, there are no studies examining the effect of rib fracture fixation on respiratory function. Objectives: Using a novel full thorax human cadaveric breathing model, we sought to explore the effect of flail chest injury and subsequent rib fracture fixation on respiratory outcomes. Patients and Methods: We used five fresh human cadavers to generate negative breathing models in the left thorax to mimic physiologic respiration. Inspiratory volumes and peak flows were measured using a flow meter for all three chest wall states: intact chest, left-sided flail chest (segmental fractures of ribs 3 - 7), and post-fracture open reduction and internal fixation (ORIF) of the chest wall with a pre-contoured rib specific plate fixation system. Results: A wide variation in the mean inspiratory volumes and peak flows were measured between specimens; however, the effect of a flail chest wall and the subsequent internal fixation of the unstable rib fractures was consistent across all samples. Compared to the intact chest wall, the inspiratory volume decreased by 40 ± 19% in the flail chest model (P = 0.04). Open reduction and internal fixation of the flail chest returned the inspiratory volume to 130 ± 71% of the intact chest volumes (P = 0.68). A similar 35 ± 19% decrease in peak flows was seen in the flail chest (P = 0.007) and this returned to 125 ± 71% of the intact chest following ORIF (P = 0.62). Conclusions: Negative pressure inspiration is significantly impaired by an unstable chest wall. Restoring mechanical stability of the fractured ribs improves respiratory outcomes similar to baseline values. PMID:26848471

  4. [Prognostic value of measuring the diameter and inspiratory collapse of the inferior vena cava in acute heart failure].

    PubMed

    Josa-Laorden, C; Giménez-López, I; Rubio-Gracia, J; Ruiz-Laiglesia, F; Garcés-Horna, V; Pérez-Calvo, J I

    2016-05-01

    To assess the utility of measuring the diameter and collapse of the inferior vena cava (IVC) in acute heart failure (AHF), its relationship with the prognosis and serum biomarkers of congestion. An observational prospective study was conducted that included 85 patients with AHF, classifying them into 4 groups according to IVC diameter (≤ or >20mm) and inspiratory collapse (< or ≥50%) at admission. The endpoints were mortality due to HF and the combined event of mortality and readmission for HF at 180 days. Some 24.7% of the patients had an undilated IVC and ≥50% collapse (group 1); 20% had an undilated IVC and <50% collapse (group 2), 5.9% had a dilated IVC and ≥50% collapse (group 3); and 49.4% had a dilated IVC and <50% collapse (group 4). The lack of inspiratory collapse but not IVC dilation was related to higher concentrations of urea (P=.007), creatinine (P=.004), uric acid (P=.008), NT-proBNP (P=.009) and CA125 (P=.005). Survival free of the combined event at 180 days was lower in those patients with no IVC collapse. Dilation and the absence of the inspiratory collapse of the IVC are common in the context of AHF. The lack of inspiratory collapse of the IVC during the decompensation phase identifies a subgroup of patients with poorer prognosis at 6 months. Copyright © 2015 Elsevier España, S.L.U. y Sociedad Española de Medicina Interna (SEMI). All rights reserved.

  5. An experimental study on the impacts of inspiratory and expiratory muscles activities during mechanical ventilation in ARDS animal model

    PubMed Central

    Zhang, Xianming; Du, Juan; Wu, Weiliang; Zhu, Yongcheng; Jiang, Ying; Chen, Rongchang

    2017-01-01

    In spite of intensive investigations, the role of spontaneous breathing (SB) activity in ARDS has not been well defined yet and little has been known about the different contribution of inspiratory or expiratory muscles activities during mechanical ventilation in patients with ARDS. In present study, oleic acid-induced beagle dogs’ ARDS models were employed and ventilated with the same level of mean airway pressure. Respiratory mechanics, lung volume, gas exchange and inflammatory cytokines were measured during mechanical ventilation, and lung injury was determined histologically. As a result, for the comparable ventilator setting, preserved inspiratory muscles activity groups resulted in higher end-expiratory lung volume (EELV) and oxygenation index. In addition, less lung damage scores and lower levels of system inflammatory cytokines were revealed after 8 h of ventilation. In comparison, preserved expiratory muscles activity groups resulted in lower EELV and oxygenation index. Moreover, higher lung injury scores and inflammatory cytokines levels were observed after 8 h of ventilation. Our findings suggest that the activity of inspiratory muscles has beneficial effects, whereas that of expiratory muscles exerts adverse effects during mechanical ventilation in ARDS animal model. Therefore, for mechanically ventilated patients with ARDS, the demands for deep sedation or paralysis might be replaced by the strategy of expiratory muscles paralysis through epidural anesthesia. PMID:28230150

  6. Effect of inspiratory muscle training on respiratory capacity and walking ability with subacute stroke patients: a randomized controlled pilot trial

    PubMed Central

    Jung, Kyeong-Man; Bang, Dae-Hyouk

    2017-01-01

    [Purpose] To investigate the effects of inspiratory muscle training on respiratory capacity and walking ability in subacute stroke patients. [Subjects and Methods] The subjects were randomly assigned to an experimental group (n=6) or a control group (n=6). Patients in the experimental group received inspiratory muscle training for 30 minutes (six sets of five-minutes) and traditional physical therapy once a day, five days a week, for four weeks. The control group received aerobic exercise for 30 minutes and traditional physical therapy for 30 minutes a day, five days a week, for four weeks. [Results] After the intervention, both groups showed significant improvements in the forced vital capacity, forced expiratory volume in one second, 10-meter walking test, and six-minute walking test over the baseline results. There were significant between-group differences for the forced vital capacity, forced expiratory volume in one second, and six-minute walking test. No statistically significant differences were observed for measures of saturation pulse oximetry oxygen and 10-meter walking test between the groups. [Conclusion] These findings gave some indications that inspiratory muscle training may benefit in patients with subacute stroke, and it is feasible to be included in rehabilitation program with this population. PMID:28265169

  7. Effect of inspiratory muscle training on respiratory capacity and walking ability with subacute stroke patients: a randomized controlled pilot trial.

    PubMed

    Jung, Kyeong-Man; Bang, Dae-Hyouk

    2017-02-01

    [Purpose] To investigate the effects of inspiratory muscle training on respiratory capacity and walking ability in subacute stroke patients. [Subjects and Methods] The subjects were randomly assigned to an experimental group (n=6) or a control group (n=6). Patients in the experimental group received inspiratory muscle training for 30 minutes (six sets of five-minutes) and traditional physical therapy once a day, five days a week, for four weeks. The control group received aerobic exercise for 30 minutes and traditional physical therapy for 30 minutes a day, five days a week, for four weeks. [Results] After the intervention, both groups showed significant improvements in the forced vital capacity, forced expiratory volume in one second, 10-meter walking test, and six-minute walking test over the baseline results. There were significant between-group differences for the forced vital capacity, forced expiratory volume in one second, and six-minute walking test. No statistically significant differences were observed for measures of saturation pulse oximetry oxygen and 10-meter walking test between the groups. [Conclusion] These findings gave some indications that inspiratory muscle training may benefit in patients with subacute stroke, and it is feasible to be included in rehabilitation program with this population.

  8. Short-term effects of inspiratory muscle training in coronary artery bypass graft surgery: a randomized controlled trial.

    PubMed

    Savci, Sema; Degirmenci, Betul; Saglam, Melda; Arikan, Hulya; Inal-Ince, Deniz; Turan, Hatice Nur; Demircin, Metin

    2011-10-01

    To investigate the efficiency of inspiratory muscle training (IMT) on postoperative respiratory muscle strength, functional capacity, quality of life, and psychosocial status in patients with coronary artery bypass graft (CABG) surgery. Forty-three patients undergoing CABG surgery were randomly assigned to the one of two groups. All subjects received usual care. In addition, subjects in the intervention group received IMT training pre- and postoperatively. Pulmonary function testing, six minute walk test (6MWT), quality of life and psychosocial parameters were assessed preoperatively and the fifth day after the surgery. The mean inspiratory muscle strength increased from 82.64 cmH(2)O at baseline to 95.45 cmH(2)O five days postoperatively in the intervention group. The intervention group (319.55 ± 72.17 m before and 387.91 ± 65.69 m after surgery) covered further distance during the 6MWT than usual care (355.43 ± 56.08 m before and 357.69 ± 43.42 m after surgery). The improvement in quality of life was greater in the intervention group for the dimension of sleep. The anxiety scores were significantly lower in the intervention group than the usual care group. The length of intensive care unit stay was significantly shorter in the intervention group than the usual care group (p < 0.05). IMT results in faster recovery of inspiratory muscle strength, functional capacity, intensive care unit stay, quality of life and psychosocial status after CABG.

  9. The effects of chest expansion resistance exercise on chest expansion and maximal respiratory pressure in elderly with inspiratory muscle weakness

    PubMed Central

    Kim, Chang-Beom; Yang, Jin-Mo; Choi, Jong-Duk

    2015-01-01

    [Purpose] The aim of this study was to examine the effect of chest expansion resistance exercises (CERE) on chest expansion, maximal inspiratory pressure (MIP), and maximal expiratory pressure (MEP) in elderly people with inspiratory muscle weakness. [Subjects] Thirty elderly people with inspiratory muscle weakness (MIP < 80% of the predicted value) were randomly and equally assigned to a chest expansion resistance exercise (CERE) group, core conditioning exercise (CCE) group, and control group. [Methods] The intervention was applied to the CERE group and CCE group five times per week, 30 minutes each time, for six weeks. A tapeline was used to measure upper and lower chest expansion. MIP and MEP before and after the intervention were measured and compared. [Results] There was significant improvement in upper and lower chest expansion and MIP after the intervention in both the CERE group and the CCE group, whereas the control group did not show any significant difference. MEP did not significantly change in any of the three groups after the intervention. [Conclusion] The CERE group underwent greater changes than the CCE group, which proves that the CERE is more effective for improving elderly people’s chest expansion capacity and MIP in elderly people. Therefore, application of the CERE by therapists is recommended if the environment and conditions are appropriate for enhancement of chest expansion capacity and MIP in elderly people. PMID:25995570

  10. Load cell

    DOEpatents

    Spletzer, Barry L.

    2001-01-01

    A load cell combines the outputs of a plurality of strain gauges to measure components of an applied load. Combination of strain gauge outputs allows measurement of any of six load components without requiring complex machining or mechanical linkages to isolate load components. An example six axis load cell produces six independent analog outputs which can be combined to determine any one of the six general load components.

  11. Load cell

    DOEpatents

    Spletzer, Barry L.

    1998-01-01

    A load cell combines the outputs of a plurality of strain gauges to measure components of an applied load. Combination of strain gauge outputs allows measurement of any of six load components without requiring complex machining or mechanical linkages to isolate load components. An example six axis load cell produces six independent analog outputs, each directly proportional to one of the six general load components.

  12. Effect of inspiratory flow rate on bronchomotor tone in normal and asthmatic subjects.

    PubMed Central

    Hida, W; Arai, M; Shindoh, C; Liu, Y N; Sasaki, H; Takishima, T

    1984-01-01

    The effect of the inspiratory flow rate during deep inspiration on the regulation of bronchomotor tone was studied in nine normal and 22 asthmatic subjects. Changes in bronchial tone were assessed by respiratory resistance measured by an oscillation method. In normal subjects with bronchoconstriction induced by methacholine a rapid deep inspiration reduced respiratory resistance more than a slow deep inspiration. Asthmatic subjects with spontaneous airway narrowing showed an increase in respiratory resistance after deep inspiration that was greater after rapid than after slow deep inspiration. On the other hand, in asthmatics with methacholine induced bronchoconstriction, bronchodilatation occurred after deep inspiration and this was also greater after rapid than after slow deep inspiration. Lignocaine inhalation attenuated both bronchoconstriction and bronchodilatation induced by both slow and rapid deep inspiration. These results suggest that the effects of deep inspiration are mediated at least in part via receptors in the airways. It is suggested that in asthmatic patients with spontaneous bronchoconstriction irritant receptor activity will be increased in proportion to the speed of inspiration. After methacholine induced bronchoconstriction stretch receptor activity is likely to behave in a similar fashion, leading to an opposite effect. PMID:6367130

  13. Effect of inspiratory resistance to prolonged exercise in a hot environment wearing protective clothing

    NASA Astrophysics Data System (ADS)

    Jetté, Maurice; Quenneville, Josée; Thoden, James; Livingstone, Sydney

    1992-09-01

    The effects of inspiratory resistance on prolonged work in a hot environment wearing a nuclear, bacteriological and chemical warfare (NBCW) mask and overgarment were assessed in 10 males. Subjects walked on a treadmill at 5 km/hr, 2% gradient, until their core temperature reached 39° C or for a duration of 90 min. Rectal temperature, heart rate, ventilation, oxygen consumption and rate of perceived breathing were measured. There were no differences between break-point time without the canister (62.2 ± 21 min) and with the canister (58.9 ± 17 min). Regression analysis indicated that the mean core temperature increased by 0.02° C for every minute of work performed and heart rate by 6 beats/min for every increase of 0.2° C in core temperature. Reduction in heat transfer brought about by wearing the protective overgarment and mask with or without the canister will significantly increase core temperature and limit the performance of moderate work to approximately 1 h in a moderately fit individual.

  14. [Inspiratory and expiratory resistance of 8 semi-closed circle systems].

    PubMed

    Feigenwinter, P; Zbinden, A M

    1991-08-01

    The resistance of a circle system is an important factor that determines the respiratory effort of the patient. The inspiratory and expiratory resistances were measured in eight semi-closed circle systems used in Europe: Dräger Cicero, Dräger 8 ISO, Dräger AV1, Ohmeda Modulus II Plus, Gambro Engström Elsa, Siemens Servo Ventilator 900 D with circle system 985, Siemens Ventilator 710, and Megamed 700A with circle system 219. The measurements were all performed in the position "spontaneous breathing" according to a new proposal of the CEN (Comité Européen de Normalisation). The following circle systems exceeded the proposed limit of 0.6 kPa at a gas flow of 60 l/min (with CO2-Absorber): Dräger AV1 in expiration and Siemens Servo Ventilator in both expiration and inspiration. The expiratory resistance was also determined by using intermittent flows. The results differed, as the expiratory gas flow can be influenced by the falling or rising ventilator bellows. The authors conclude that considerable differences exist between various breathing systems and that not all systems can be recommended for use in patients with limited breathing force, such as small children.

  15. Postoperative Conversion Disorder Presenting as Inspiratory Stridor and Hemiparesis in a Pediatric Patient

    PubMed Central

    Nelson, Erik J.; Wu, Jennifer Y.

    2017-01-01

    Patient: Female, 13 Final Diagnosis: Postoperative conversion disorder Symptoms: Right-sided weakness and right-sided sensory loss • difficulty speaking Medication: — Clinical Procedure: EUS/EGD Specialty: Anesthesiology Objective: Rare co-existance of disease or pathology Background: Postoperative conversion disorder is rare and has been reported. The diagnosis is usually made after all major organic causes have been ruled out. Case Report: We describe a case of a 13-year-old female who presented in the post-anesthesia care unit with acute-onset inspiratory stridor and unresponsiveness to verbal or painful stimuli after receiving a general anesthetic for upper endoscopy. Later in the post-anesthesia care unit, she presented with acute-onset right hemiplegia and sensory loss. She was first evaluated for causes of her stridor and unresponsiveness. The evaluation revealed paradoxical vocal cord movement, and all laboratory test values were normal. For her hemiplegia and sensory loss, she was evaluated for stroke with head MRI and CT scans, which were normal. Conclusions: After extensive workup and consideration of multiple etiologies for her presenting signs and symptoms, the most likely diagnosis was conversion disorder. PMID:28093564

  16. Temporal dynamics of lactate concentration in the human brain during acute inspiratory hypoxia

    PubMed Central

    Harris, Ashley D; Roberton, Victoria H; Huckle, Danielle L; Saxena, Neeraj; Evans, C John; Murphy, Kevin; Hall, Judith E; Bailey, Damian M; Mitsis, Georgios; Edden, Richard A E; Wise, Richard G

    2012-01-01

    Purpose To demonstrate the feasibility of measuring the temporal dynamics of cerebral lactate concentration and examine these dynamics in human subjects using MRS during hypoxia. Methods A respiratory protocol consisting of 10 min baseline normoxia, 20 min inspiratory hypoxia and ending with 10 min normoxic recovery was used, throughout which lactate-edited MRS was performed. This was repeated four times in three subjects. A separate session was performed to measure blood lactate. Impulse response functions using end-tidal oxygen and blood lactate as system inputs and cerebral lactate as the system output were examined to describe the dynamics of the cerebral lactate response to a hypoxic challenge. Results The average lactate increase was 20%±15% during the last half of the hypoxic challenge. Significant changes in cerebral lactate concentration were observed after 400s. The average relative increase in blood lactate was 188%±95%. The temporal dynamics of cerebral lactate concentration was reproducibly demonstrated with 200s time bins of MRS data (coefficient of variation 0.063±0.035 between time bins in normoxia). The across subject coefficient of variation was 0.333. Conclusions The methods for measuring the dynamics of the cerebral lactate response developed here would be useful to further investigate the brain’s response to hypoxia. PMID:23197421

  17. Usefulness of inspiratory capacity measurement in COPD patients in the primary care setting

    PubMed Central

    Madueño, Antonio; Martín, Antonio; Péculo, Juan-Antonio; Antón, Esther; Paravisini, Alejandra; León, Antonio

    2009-01-01

    Objective: To determine if inspiratory capacity (IC) assessment could be useful for chronic obstructive pulmonary disease (COPD) patient management in the primary care setting. Methods: A descriptive cross-sectional study was conducted in 93 patients diagnosed with COPD according to Spanish Thoracic Society (SEPAR) criteria. Patients were recruited in eight primary care centers in Andalusia, Spain. Anthropometric, sociodemographic, resting lung function (forced expiratory volume in one second [FEV1], forced vital capacity, synchronized vital capacity, IC), and quality of life data based on the Spanish version of Saint George’s Respiratory Questionnaire (SGRQ) were obtained. Results: Lung function results expressed as percentages of the predicted values were as follows: FEV1, 49.04 (standard deviation [SD]: 16.23); IC, 61.73 (SD: 15.42). The SGRQ mean total score was 47.5 (SD 17.98). The Spearman’s Rho correlation between FEV1 and SGRQ was r = −0.36 (95% confidence interval [CI]: −0.529 to −0.166), between IC and SGRQ was r = −0.329 (95% CI −0.502 to −0.131), and between FEV1 and IC was r = −0.561. Conclusions: Measurement of IC at rest could be used as a complementary functional exploration to forced spirometry in the monitorization of patients with COPD in the primary care setting. We found a poor correlation between IC and quality of life at the same level as in FEV1. PMID:20360907

  18. Inspiratory muscle strength is correlated with carnitine levels in type 2 diabetes.

    PubMed

    Kiliçli, Fatih; Dökmetaş, Sebila; Candan, Ferhan; Ozşahin, Sefa; Korkmaz, Serdal; Amasyali, Elvan; Fakioğlu, Koray; Dal, Kürşat; Acibucu, Fettah; Cakir, Ilkay

    2010-05-01

    Plasma carnitine insufficiency has been known to cause muscle weakness. Carnitine levels and pulmonary functions were lower in patients with diabetes. To determine whether pulmonary functions are correlated with carnitine levels in patients with type 2 diabetes. In this study, we evaluated pulmonary functions and carnitine concentrations in 49 patients with type 2 diabetes and 34 healthy controls. Carnitine levels were lower in type 2 diabetes group than control group (52.56 +/- 12.38 and 78.96 +/- 10.66 hmol/mL, respectively, p < 0.0001). Pulmonary functions were not significantly different between groups. Carnitine levels were not correlated with age, duration of diabetes, fasting blood glucose levels, and glycemic control (HbA1c%) in patients with type 2 diabetes. However, carnitine levels in patient group were correlated with % forced vital capacity (FVC%) (r = 0.35, p = 0.016), % forced expiratory volume in 1 s (FEV1%) (r = 0.318, p= 0.029), FEV1/FVC (r= 0.302, p= 0.039), inspiratory muscle strength (PImax) (r = 0.407, p = 0.023), and PImax% (r = 0.423, p= 0.018). This study suggests that low carnitine levels may be associated with lower PImax and PImax% in type 2 diabetes.

  19. Threshold Concepts in Research Education and Evidence of Threshold Crossing

    ERIC Educational Resources Information Center

    Kiley, Margaret; Wisker, Gina

    2009-01-01

    Most work on threshold concepts has hitherto related to discipline-specific undergraduate education, however, the idea of generic doctoral-level threshold concepts appeared to us to provide a strong and useful framework to support research learning and teaching at the graduate level. The early work regarding research-level threshold concepts is…

  20. Threshold Concepts in Research Education and Evidence of Threshold Crossing

    ERIC Educational Resources Information Center

    Kiley, Margaret; Wisker, Gina

    2009-01-01

    Most work on threshold concepts has hitherto related to discipline-specific undergraduate education, however, the idea of generic doctoral-level threshold concepts appeared to us to provide a strong and useful framework to support research learning and teaching at the graduate level. The early work regarding research-level threshold concepts is…

  1. The Leicester semi-automated olfactory threshold test--a psychophysical olfactory test for the 21st century.

    PubMed

    Philpott, Carl M; Gaskin, Julian A; McClelland, Lisha; Goodenough, Paul C; Clark, Allan; Robinson, Anne M; Murty, George E

    2009-09-01

    Develop a useful and cost-effective olfactometer for routine clinical use by providing a standardised threshold test for patients with olfactory disorders presenting in the ENT clinic. A prospective study of olfactory thresholds in 48 healthy volunteers on 2 consecutive occasions, undergoing quantitative testing with an olfactometer. Further studies of 10 subjects performing 20 tests and 100 subjects performing a single test were performed. An olfactometer was designed to deliver a semi-automated threshold test for an odour. It contains 8 logarithmic dilutions of an odour along with a control valve operated by software from a laptop computer. Common potential variables for olfactory threshold testing were considered including peak inspiratory flow rate. The odours used were phenethyl alcohol (PEA) and eucalyptol (EUC). Subjects were asked to perform 2 tests within 1 month of each other and the mean threshold score for each was calculated to derive a test-retest score. Consistent olfactory thresholds for PEA were achieved with a mean concentration of 10-4. Test-retest reliability score (r(x)) for the olfactometer was r(x) = 0.78 (95% CI 0.67 to 0.89). The Leicester Olfactometer provides a simple and cost-effective method of reliably assessing olfactory thresholds in the outpatient clinic.

  2. Inspiratory muscle training improves aerobic capacity and pulmonary function in patients with ankylosing spondylitis: a randomized controlled study.

    PubMed

    Drăgoi, Răzvan-Gabriel; Amaricai, Elena; Drăgoi, Mihai; Popoviciu, Horatiu; Avram, Claudiu

    2016-04-01

    To evaluate the impact of inspiratory muscle training on aerobic capacity and pulmonary function in patients with ankylosing spondylitis. Randomized controlled study. Rheumatic Rehabilitation Centre. A total of 54 ankylosing spondylitis patients, all males, were randomized to a conventional exercise training associated with an inspiratory muscle training group, or to a conventional exercise training group. Group 1 (27 patients) performed eight weeks of conventional exercise training (supervised weekly group sessions followed by a home-based exercise programme) associated with inspiratory muscle training sessions. Group 2 (27 patients) received eight weeks of conventional exercise training only. Resting pulmonary function (forced vital capacity - FVC, forced expiratory volume in one second - FEV1); effort ventilatory efficiency (lowest ventilatory equivalent ratio for oxygen and carbon dioxide - VE/VO2 and VE/VCO2) and aerobic capacity (peak oxygen uptake - VO2peak) were assessed at baseline and after eight weeks of exercise-based intervention. After eight weeks follow-up, patients in Group 1 had a significant increased chest expansion and VO2peak compared with Group 2 (3.6 ±0.8 cm vs. 3.2 ±0.5 cm, P = 0.032; 2.0 ±0.5 l/min vs. 1.8 ±0.3 l/min, P = 0.033). There were no significant differences of spirometric measurements, except FVC which significantly improved in patients who performed inspiratory muscle training (82.7 ±5.1% vs. 79.5 ±3.5%, P = 0.014). VE/VCO2 also improved significantly in Group 1 (26.6 ±3.6 vs. 29.2 ±4.7, P = 0.040). Ankylosing spondylitis patients who performed eight weeks of inspiratory muscle training associated to conventional exercise training had an increased chest expansion, a better aerobic capacity, resting pulmonary function and ventilatory efficiency than those who performed conventional exercise training only. © The Author(s) 2015.

  3. Optical thresholding and Max Operation

    DTIC Science & Technology

    Thresholding and Max operations are essential elements in the implementation of neural networks. Although there have been several optical...implementations of neural networks, the thresholding functions are performed electronically. Optical thresholding and Max operations have the advantages of...we propose and study the properties of self-oscillation in nonlinear optical (NLO) four-wave mixing (FWM) and NLO resonators for parallel optical thresholding and Max operation.

  4. Influence of inspiratory flow pattern and nebulizer position on aerosol delivery with a vibrating-mesh nebulizer during invasive mechanical ventilation: an in vitro analysis.

    PubMed

    Dugernier, Jonathan; Wittebole, Xavier; Roeseler, Jean; Michotte, Jean-Bernard; Sottiaux, Thierry; Dugernier, Thierry; Laterre, Pierre-François; Reychler, Gregory

    2015-06-01

    Aerosol delivery during invasive mechanical ventilation (IMV) depends on nebulizer type, placement of the nebulizer and ventilator settings. The purpose of this study was to determine the influence of two inspiratory flow patterns on amikacin delivery with a vibrating-mesh nebulizer placed at different positions on an adult lung model of IMV equipped with a proximal flow sensor (PFS). IMV was simulated using a ventilator connected to a lung model through an 8-mm inner-diameter endotracheal tube. The impact of a decelerating and a constant flow pattern on aerosol delivery was evaluated in volume-controlled mode (tidal volume 500 mL, 20 breaths/min, inspiratory time of 1 sec, bias flow of 10 L/min). An amikacin solution (250 mg/3 mL) was nebulized with Aeroneb Solo(®) placed at five positions on the ventilator circuit equipped with a PFS: connected to the endotracheal tube (A), to the Y-piece (B), placed at 15 cm (C) and 45 cm upstream of the Y-piece (D), and placed at 15 cm of the inspiratory outlet of the ventilator (E). The four last positions were also tested without PFS. Deposited doses of amikacin were measured using the gravimetric residual method. Amikacin delivery was significantly reduced with a decelerating inspiratory flow pattern compared to a constant flow (p<0.05). With a constant inspiratory flow pattern, connecting the nebulizer to the endotracheal tube enabled similar deposited doses than these obtained when connecting the nebulizer close to the ventilator. The PFS reduced deposited doses only when the nebulizer was connected to the Y-piece with both flow patterns or placed at 15 cm of the Y-piece with a constant inspiratory flow (p<0.01). Using similar tidal volume and inspiratory time, a constant flow pattern (30 L/min) delivers a higher amount of amikacin through an endotracheal tube compared to a decelerating inspiratory flow pattern (peak inspiratory flow around 60 L/min). The optimal nebulizer position depends on the

  5. [Variation in inspiratory gas flow in pressure support ventilation. The effect on respiratory mechanics and respiratory work].

    PubMed

    Sydow, M; Thies, K; Engel, J; Golisch, W; Buscher, H; Zinserling, J; Burchardi, H

    1996-11-01

    During pressure support ventilation (PSV), the timing of the breathing cycle is mainly controlled by the patient. Therefore, the delivered flow pattern during PSV might be better synchronised with the patient's demands than during volume-assisted ventilation. In several modern ventilators, inspiration is terminated when the inspiratory flow decreases to 25% of the initial peak value. However, this timing algorithm might cause premature inspiration termination if the initial peak flow is high. This could result not only in an increased risk of dyssynchronization between the patient and the ventilator, but also in reduced ventilatory support. On the other hand, a decreased peak flow might inappropriately increase the patient's inspiratory effort. The aim of our study was to evaluate the influence of the variation of the initial peak-flow rate during PSV on respiratory pattern and mechanical work of breathing. Six patients with chronic obstructive pulmonary disease (COPD) and six patients with no or minor nonobstructive lung pathology (control) were studied during PSV with different inspiratory flow rates by variations of the pressurisation time (Evita I, Drägerwerke, Lübeck, Germany). During the study period all patients were in stable circulatory conditions and in the weaning phase. Patients were studied in a 45 degrees semirecumbent position. Using the medium pressurization time (l s) during PSV the inspiratory pressure was individually adjusted to obtain a tidal volume of about 8 ml/kg body weight. Thereafter, measurements were performed during five pressurization times (< 0.1, 0.5, 1, 1.5, 2 s defined as T 0.1, T 0.5, T 1, T 1.5 and T 2) in random order, while maintaining the pressure support setting at the ventilator. Between each measurement steady-state was attained. Positive end-exspiratory pressure (PEEP) and FIO2 were maintained at prestudy levels and remained constant during the study period. Informed consent was obtained from each patient or his next of

  6. Laser threshold magnetometry

    NASA Astrophysics Data System (ADS)

    Jeske, Jan; Cole, Jared H.; Greentree, Andrew D.

    2016-01-01

    We propose a new type of sensor, which uses diamond containing the optically active nitrogen-vacancy (NV-) centres as a laser medium. The magnetometer can be operated at room-temperature and generates light that can be readily fibre coupled, thereby permitting use in industrial applications and remote sensing. By combining laser pumping with a radio-frequency Rabi-drive field, an external magnetic field changes the fluorescence of the NV- centres. We use this change in fluorescence level to push the laser above threshold, turning it on with an intensity controlled by the external magnetic field, which provides a coherent amplification of the readout signal with very high contrast. This mechanism is qualitatively different from conventional NV--based magnetometers which use fluorescence measurements, based on incoherent photon emission. We term our approach laser threshold magnetometer (LTM). We predict that an NV--based LTM with a volume of 1 mm3 can achieve shot-noise limited dc sensitivity of 1.86 fT /\\sqrt{{{Hz}}} and ac sensitivity of 3.97 fT /\\sqrt{{{Hz}}}.

  7. Coloring geographical threshold graphs

    SciTech Connect

    Bradonjic, Milan; Percus, Allon; Muller, Tobias

    2008-01-01

    We propose a coloring algorithm for sparse random graphs generated by the geographical threshold graph (GTG) model, a generalization of random geometric graphs (RGG). In a GTG, nodes are distributed in a Euclidean space, and edges are assigned according to a threshold function involving the distance between nodes as well as randomly chosen node weights. The motivation for analyzing this model is that many real networks (e.g., wireless networks, the Internet, etc.) need to be studied by using a 'richer' stochastic model (which in this case includes both a distance between nodes and weights on the nodes). Here, we analyze the GTG coloring algorithm together with the graph's clique number, showing formally that in spite of the differences in structure between GTG and RGG, the asymptotic behavior of the chromatic number is identical: {chi}1n 1n n / 1n n (1 + {omicron}(1)). Finally, we consider the leading corrections to this expression, again using the coloring algorithm and clique number to provide bounds on the chromatic number. We show that the gap between the lower and upper bound is within C 1n n / (1n 1n n){sup 2}, and specify the constant C.

  8. Effect of non-invasive ventilation on respiratory muscle loading and endurance in patients with Duchenne muscular dystrophy.

    PubMed

    Toussaint, M; Soudon, P; Kinnear, W

    2008-05-01

    Respiratory muscle weakness in patients with Duchenne muscular dystrophy (DMD) leads to respiratory failure for which non-invasive positive pressure ventilation (NIPPV) is an effective treatment. This is used initially at night (n-NIPPV) but, as the disease progresses, diurnal use (d-NIPPV) is often necessary. The connection between NIPPV and relief of respiratory muscle fatigue remains unclear. A study was undertaken to determine the extent to which n-NIPPV and d-NIPPV unload the respiratory muscles and improve respiratory endurance in patients with DMD. Fifty patients with DMD were assessed at 20.00 and 08.00 h. More severely affected patients with nocturnal hypoventilation received n-NIPPV; those with daytime dyspnoea also received d-NIPPV via a mouthpiece (14.00-16.00 h). Lung function, modified Borg dyspnoea score, spontaneous breathing pattern, tension-time index (TT(0.1) = occlusion pressure (P(0.1))/maximum inspiratory pressure (MIP) x duty cycle (Ti/Ttot)) and respiratory muscle endurance time (Tlim) against a threshold load of 35% MIP were measured. More severe respiratory muscle weakness was associated with a higher TT(0.1) and lower Tlim. In contrast to non-dyspnoeic patients, patients with dyspnoea (Borg score > 2.5/10) showed an increase in Tlim and decrease in TT(0.1) after n-NIPPV. At 16.00 h, immediately after d-NIPPV, patients with dyspnoea had lower TT(0.1) and Borg scores with unchanged Tlim. Compared with the control day without d-NIPPV, TT(0.1), Borg scores and Tlim were all improved at 20.00 h. In patients with dyspnoea with DMD, the load on respiratory muscles increases and endurance capacity decreases with increasing breathlessness during the day, and this is reversed by n-NIPPV. An additional 2 h of d-NIPPV unloads respiratory muscles and reverses breathlessness more effectively than n-NIPPV alone.

  9. The nature of psychological thresholds.

    PubMed

    Rouder, Jeffrey N; Morey, Richard D

    2009-07-01

    Following G. T. Fechner (1966), thresholds have been conceptualized as the amount of intensity needed to transition between mental states, such as between states of unconsciousness and consciousness. With the advent of the theory of signal detection, however, discrete-state theory and the corresponding notion of threshold have been discounted. Consequently, phenomena such as subliminal priming and perception have a reduced theoretical basis. The authors propose a process-neutral definition of threshold that allows for graded perception and activation throughout the system. Thresholds correspond to maximum stimulus intensities such that the distribution of mental states does not differ from that when an appropriate baseline stimulus is presented. In practice, thresholds are maximum intensities such that the probability distribution on behavioral events does not differ from that from baseline. These thresholds, which the authors call task thresholds, may be estimated with modified item response psychometric measurement models. Copyright (c) 2009 APA, all rights reserved.

  10. Impact of a behavioral-based intervention on inspiratory muscle training prescription by a multidisciplinary team.

    PubMed

    Simms, Alanna M; Li, Linda C; Geddes, E Lynne; Brooks, Dina; Hoens, Alison M; Reid, W Darlene

    2012-01-01

    Our goal was to compare behavioral- and information-based interventions aimed at increasing prescription of inspiratory muscle training (IMT) for people with chronic obstructive pulmonary disease (COPD) by interdisciplinary teams during pulmonary rehabilitation (PR). Six hospital PR programs were randomly assigned to a behavioral- or information-based intervention. Both interventions provided evidence supporting IMT and its prescription details. However, the behavioral-based intervention focused on barriers and challenges to IMT prescription informed by a nationwide survey and the theory of planned behavior (TPB). It included hands-on practice and content, in part, was driven by learners' questions. In contrast, the information-based intervention delivered information in a typical didactic education session followed by a demonstration and question period. It was supplemented with evidence-based research articles. The primary outcome was the change in prescription rate of IMT for COPD patients by determining the difference during the 6 months preceding compared to the 6 months during the interventions. Sixty-one health professionals and 488 COPD outpatients within 6 PR programs participated. No COPD patients were prescribed IMT at any of the sites during the 6-month preintervention phase. The behavioral-based intervention resulted in an IMT prescription rate of 10.2% to people with COPD, whereas the information-based intervention resulted in no IMT prescriptions. A behavioral-based intervention that is based on TPB and addresses challenges identified by health professionals is more effective than a traditional lecture approach to increase health professionals' prescription of IMT for patients with COPD. Copyright © 2012 The Alliance for Continuing Education in the Health Professions, the Society for Academic Continuing Medical Education, and the Council on CME, Association for Hospital Medical Education.

  11. Disability and breathlessness in asthmatic patients--a scoring method by repetitive inspiratory effort.

    PubMed

    Loh, Li-Cher; Puah, Ser-Hon; Ho, Chiak Vun; Chow, Chong Yeow; Chua, Chui Yin; Jayaram, Jacynta; Kavetha, Clarence; Wong, Sue Jiun

    2005-12-01

    Measurement of disability and breathlessness in asthma is important to guide treatment. Using an incentive spirometer, Triflo II (Tyco Healthcare, Mansfield, MA, USA), we developed a three-minute respiratory exercise test (3-MRET) to score the maximal breathing capacity (MBC) and perception of dyspnea (POD) index by means of repetitive inspiratory efforts achieved within 3 minutes. POD index was calculated based on the ratio of breathlessness on visual analogue scale over MBC score. In 175 normal healthy subjects and 158 asthmatic patients of mild (n = 26), moderate (n = 78), and severe (n = 54), severity, the mean (95% CI) MBC scores in mild, moderate, and severe asthma patients were 168 (145-192), 153 (136-169), and 125 (109-142) respectively, and 202 (191-214) in normal subjects (p < 0.001). The mean POD index in mild, moderate, and severe asthma patients was 16 (9-23), 25 (14-37), and 57 (14-100), respectively, and 6 (4-7) in normal subjects (p < 0.001). Intraclass correlation coefficients for MBC score and POD index in 17 asthmatic and 20 normal subjects were high. In 14 asthmatic patients randomized to receiving nebulized beta2-agonist or saline in a cross-over, double-blind study, % forced expiratory volume in one second (FEV1) change correlated with % change in MBC score [r(s) = 0.49, p < 0.01] and POD index [r(s)-0.46, p = 0.012]. In 21 asthmatic and 26 normal subjects, the MBC score and POD index correlated with the walking distance and walking POD index of the six-minute walking test (6MWT). We conclude that 3MRET is discriminative between asthmatic patients of varying severity and normal subjects, is reproducible, is responsive to bronchodilator effect, and is comparable with 6MWT. Taken together, it has the potential to score disability and POD in asthma simply and effectively.

  12. Mathematical determination of inspiratory upper airway resistance using a polynomial equation.

    PubMed

    Mansour, Khaled; Badr, M Safwan; Shkoukani, Mahdi A; Rowley, James A

    2003-12-01

    We have previously shown that the pressure-flow relationship of the upper airway during nonrapid eye movement sleep can be characterized by a polynomial equation: F(P) = AP(3) + BP(2) + CP + D. On the basis of fluid mechanic principles, we hypothesized that we could objectively calculate upper airway resistance (R(UA)) using the polynomial equation. We manually measured RUA (mR(UA)) from the first linear portion of a pressure-flow loop in 544 breaths from 20 subjects and compared the mRUA to the R(UA) calculated from the polynomial equation (cRUA). Bland-Altman analysis showed that the mean difference between mR(UA) and cRUA was 0.0 cm H2O/L/s (95% CI, 0.1 to 0.1 cm H2O/L/s) with an upper limit of agreement of 2.0 cm H (2)O/L/s (95% CI, 1.9 to 2.1 cm H2O/L/s) and a lower limit of agreement -2.0 cm H2O/L/s (95% CI, -2.1 to -1.9 cm H2O/L/s). Additional Bland-Altman analyses showed that the agreement between the two measures was excellent for both inspiratory flow-limited and non-flow-limited breaths. We conclude that R(UA) can be measured in a simple, objective, and reproducible fashion from a polynomial function that characterizes the upper airway pressure-flow relationship.

  13. Model-based setting of inspiratory pressure and respiratory rate in pressure-controlled ventilation.

    PubMed

    Schranz, C; Becher, T; Schädler, D; Weiler, N; Möller, K

    2014-03-01

    Mechanical ventilation carries the risk of ventilator-induced-lung-injury (VILI). To minimize the risk of VILI, ventilator settings should be adapted to the individual patient properties. Mathematical models of respiratory mechanics are able to capture the individual physiological condition and can be used to derive personalized ventilator settings. This paper presents model-based calculations of inspiration pressure (pI), inspiration and expiration time (tI, tE) in pressure-controlled ventilation (PCV) and a retrospective evaluation of its results in a group of mechanically ventilated patients. Incorporating the identified first order model of respiratory mechanics in the basic equation of alveolar ventilation yielded a nonlinear relation between ventilation parameters during PCV. Given this patient-specific relation, optimized settings in terms of minimal pI and adequate tE can be obtained. We then retrospectively analyzed data from 16 ICU patients with mixed pathologies, whose ventilation had been previously optimized by ICU physicians with the goal of minimization of inspiration pressure, and compared the algorithm's 'optimized' settings to the settings that had been chosen by the physicians. The presented algorithm visualizes the patient-specific relations between inspiration pressure and inspiration time. The algorithm's calculated results highly correlate to the physician's ventilation settings with r = 0.975 for the inspiration pressure, and r = 0.902 for the inspiration time. The nonlinear patient-specific relations of ventilation parameters become transparent and support the determination of individualized ventilator settings according to therapeutic goals. Thus, the algorithm is feasible for a variety of ventilated ICU patients and has the potential of improving lung-protective ventilation by minimizing inspiratory pressures and by helping to avoid the build-up of clinically significant intrinsic positive end-expiratory pressure.

  14. Synchronization of presynaptic input to motor units of tongue, inspiratory intercostal, and diaphragm muscles.

    PubMed

    Rice, Amber; Fuglevand, Andrew J; Laine, Christopher M; Fregosi, Ralph F

    2011-05-01

    The respiratory central pattern generator distributes rhythmic excitatory input to phrenic, intercostal, and hypoglossal premotor neurons. The degree to which this input shapes motor neuron activity can vary across respiratory muscles and motor neuron pools. We evaluated the extent to which respiratory drive synchronizes the activation of motor unit pairs in tongue (genioglossus, hyoglossus) and chest-wall (diaphragm, external intercostals) muscles using coherence analysis. This is a frequency domain technique, which characterizes the frequency and relative strength of neural inputs that are common to each of the recorded motor units. We also examined coherence across the two tongue muscles, as our previous work shows that, despite being antagonists, they are strongly coactivated during the inspiratory phase, suggesting that excitatory input from the premotor neurons is distributed broadly throughout the hypoglossal motoneuron pool. All motor unit pairs showed highly correlated activity in the low-frequency range (1-8 Hz), reflecting the fundamental respiratory frequency and its harmonics. Coherence of motor unit pairs recorded either within or across the tongue muscles was similar, consistent with broadly distributed premotor input to the hypoglossal motoneuron pool. Interestingly, motor units from diaphragm and external intercostal muscles showed significantly higher coherence across the 10-20-Hz bandwidth than tongue-muscle units. We propose that the lower coherence in tongue-muscle motor units over this range reflects a larger constellation of presynaptic inputs, which collectively lead to a reduction in the coherence between hypoglossal motoneurons in this frequency band. This, in turn, may reflect the relative simplicity of the respiratory drive to the diaphragm and intercostal muscles, compared with the greater diversity of functions fulfilled by muscles of the tongue.

  15. A comparison of maximum inspiratory and expiratory flow in health and in lung disease

    PubMed Central

    Jordanoglou, J.; Pride, N. B.

    1968-01-01

    Maximum flow-volume (M.F.-V.) curves for both inspiration and expiration have been obtained in healthy subjects and in patients with bullous emphysema, exacerbation of asthma, and with severe fibrosis of the lungs. The tracheobronchial collapse pattern on the conventional spirogram or the M.F.-V. curve appeared to be related to the severity of airways obstruction more than to the type of airways obstruction. The pattern was observed in exacerbation of asthma as well as in emphysema and occurred when forced expirations were started from low in the vital capacity in normal subjects. The expiratory M.F.-V. slope was normal or steeper than normal in fibrosis and was much lower than normal in asthma and emphysema. In patients with fibrosis maximum expiratory flow (M.E.F.) and maximum inspiratory flow (M.I.F.) at 50% of vital capacity were both reduced and the ratio between them was similar to that in healthy subjects. In both asthma and emphysema there was a low M.E.F.50%/M.I.F.50% ratio; the only patient with airways obstruction who had a normal M.E.F./M.I.F. ratio was a woman with tracheal stenosis. A theoretical analysis suggests that most forms of airways obstruction would be expected to lead to a greater impairment of M.E.F. than of M.I.F. The M.F.-V. curve did not help in distinguishing a patient with asthma from one with emphysema, but the changes in tracheal obstruction were distinctive. PMID:5637497

  16. Relationship between sniff nasal inspiratory pressure and BODE index in patients with COPD.

    PubMed

    Donária, Leila; Mesquita, Rafael; Martinez, Larissa; Sípoli, Luciana; Felcar, Josiane Marques; Probst, Vanessa Suziane; Hernandes, Nidia Aparecida; Pitta, Fabio

    2014-12-01

    The aims of this study were to investigate the relationship between sniff nasal inspiratory pressure (SNIP) and severity of chronic obstructive pulmonary disease (COPD) as defined by the BODE index, and to investigate the capacity of different SNIP cutoffs to predict a BODE index score ≥5 (i.e., worse disease severity). Thirty-eight subjects with COPD (21 men, 66 ± 8 years, forced expiratory volume in the first second (FEV(1)) 42 ± 16 % predicted) underwent assessments of SNIP, airflow limitation, body mass index (BMI), dyspnea (Medical Research Council scale), and exercise capacity (6-min walking test, 6MWT). The BODE index was calculated, and patients were separated into two groups according to the BODE quartiles (1 and 2, or 3 and 4). Patients from quartiles 3 and 4 presented lower values of SNIP than patients from quartiles 1 and 2 (73 ± 18 vs 56 ± 21 cmH(2)O, respectively; p = 0.01). There was significant and inverse correlation between SNIP and the BODE index (r = -0.62; p<0.001). A logistic regression model revealed that a SNIP value below 63 cmH(2)O presented higher sensitivity and specificity (70 and 67 %, respectively) for predicting a BODE score equivalent to quartiles 3 or 4. SNIP is moderately and significantly related to COPD severity as assessed by the BODE index. Moreover, the cutoff point of 63 cmH2O showed the best combination of sensitivity and specificity for predicting worse scores in the BODE index.

  17. Inspiratory aerodynamic valving in the avian lung: functional morphology of the extrapulmonary primary bronchus.

    PubMed

    Maina, J N; Africa, M

    2000-09-01

    The form, geometry and epithelial morphology of the extrapulmonary primary bronchi (EPPB) of the domestic fowl (Gallus gallus var. domesticus) and the rock dove (Columba livia) were studied microscopically and by three-dimensional computer reconstruction to determine the structural features that may be involved in the rectification of the inspired air past the openings of the medioventral secondary bronchi (MVSB), i.e. the inspiratory aerodynamic valving (IAV). In both species, the EPPB were intercalated between the clavicular and the cranial thoracic air-sacs. A notable difference between the morphology of the EPPB in G. g. domesticus and C. livia was that, in the former, the EPPB were constricted at the origin of the MVSB, while a dilatation occurred at the same site in the latter. In both species, a highly vascularized, dorsally located hemispherical epithelial swelling was observed cranial to the origin of the MVSB. The MVSB were narrow at their origin and variably angled relative to the longitudinal axis of the EPPB. Conspicuous epithelial tracts and folds were observed on the luminal aspect of the EPPB in both C. livia and G. g. domesticus. From their marked development and their orientation relative to the angled MVSB, these properties may influence the flow of the air in the EPPB. It was concluded that features such as syringeal constriction, an intimate topographic relationship between the EPPB and the cranial air-sacs, prominent epithelial tracts and folds, an epithelial swelling ahead of the origin of the first MVSB (corresponding to the 'segmentun accelerans'), and narrowing and angulation of the MVSB at their origin, may together contribute to IAV to a variable extent. In as much as the mechanism of pulmonary ventilation and mode of airflow in the parabronchial lung are basically similar in all birds, the morphological differences observed between G. g. domesticus and C. livia suggest that either the mechanism of production of IAV or its functional

  18. Guidelines for inspiratory flow setting when measuring the pressure-volume relationship.

    PubMed

    Bensenor, Fábio E; Vieira, Joaquim E; Auler, Jose Otávio C

    2003-07-01

    Acquisition of pressure-volume (PV) curves to improve ventilation strategy is time consuming when using static methods. Low-flow techniques use less time, but compliance values can be decreased by the resistance to flow in airways and tracheal tube (P-t). In this study, we determined the impact of three flows on the resistive component of airway pressure during anesthesia. We studied 10 ASA status P1/P2 patients with normal respiratory function. Airway and esophageal pressures were measured while volume-control ventilated with 6, 12, and 30 L/min continuous flows. PV curves, lower inflection point, respiratory system, and chest wall compliances at 250, 500, 750, and 1000 mL tidal volume were established before and after removing P-t. Data were submitted to analysis of variance. The inflection point was lower for the lower flow when comparing 6 and 12 with 30 L/min (P < 0.001). No difference was found between 6 and 12 L/min. Removal of P-t showed a difference only for 30 L/min (P = 0.004). Higher flows generated lower compliances. P-t subtraction reduced compliances only for 30 L/min. Chest wall compliances showed no difference between flows. We concluded that flows < or =12 L/min minimize P-t during intraoperative PV curves acquisition. Compliances suggest 6 L/min as the most adequate flow. We suggest guidelines for inspiratory flow setting when measuring the pressure-volume relationship during anesthesia based on the comparison among three different continuous flow values, aiming at better intraoperative respiratory settings in patients with normal respiratory function.

  19. An Official American Thoracic Society Workshop Report: Noninvasive Identification of Inspiratory Flow Limitation in Sleep Studies.

    PubMed

    Pamidi, Sushmita; Redline, Susan; Rapoport, David; Ayappa, Indu; Palombini, Luciana; Farre, Ramon; Kirkness, Jason; Pépin, Jean-Louis; Polo, Olli; Wellman, Andrew; Kimoff, R John

    2017-07-01

    This report summarizes the proceedings of the American Thoracic Society Workshop on the Noninvasive Identification of Inspiratory Flow Limitation in Sleep Studies held on May 16, 2015, in Denver, Colorado. The goal of the workshop was to discuss methods for standardizing the scoring of flow limitation from nasal cannula pressure tracings. The workshop began with presentations on the physiology underlying flow limitation, existing methods of scoring flow limitation, the effects of signal acquisition and filtering on flow shapes, and a review of the literature examining the adverse outcomes related to flow limitation. After these presentations, the results from online scoring exercises, which were crowdsourced to workshop participants in advance of the workshop, were reviewed and discussed. Break-out sessions were then held to discuss potential algorithms for scoring flow limitation. Based on these discussions, subsequent online scoring exercises, and webinars after the workshop, a consensus-based set of recommendations for a scoring algorithm for flow limitation was developed. Key conclusions from the workshop were: (1) a standardized and automated approach to scoring flow limitation is needed to provide a metric of nonepisodic elevated upper airway resistance, which can then be related to clinical outcomes in large cohorts and patient groups; (2) at this time, the most feasible method for standardization is by proposing a consensus-based framework, which includes scoring rules, developed by experts (3) hardware and software settings of acquisition devices, including filter settings, affect the shape of the flow curve, and should be clearly specified; and (4) a priority for future research is the generation of an open-source, expert-derived training set to encourage and support validation of automated flow limitation scoring algorithms.

  20. Performance of Maximal Inspiratory Pressure Tests and MIP Reference Equations for Four Ethnic Groups

    PubMed Central

    Sachs, Michael C.; Enright, Paul L.; Stukovsky, Karen Hinckley; Jiang, Rui; Barr, R. Graham

    2013-01-01

    Background Maximal inspiratory pressure (MIP) is an important and non-invasive index of diaphragm strength and an independent predictor of all-cause mortality. The ability of adults over a wide age range and multiple ethnicities to perform MIP tests has previously not been evaluated. Methods The Multi-Ethnic Study of Atherosclerosis (MESA) recruited white, African-American, Hispanic and Chinese-American participants ages 45–84 years and free of clinical cardiovascular disease in six US cities. MIP was measured using standard techniques among 3849 MESA participants. The MIP quality goal was 5 maneuvers, with the two largest values matching within 10 cmH2O. Correlates of MIP quality and values were assessed in logistic and linear regression models. Results The 3849 MESA-Lung participants with MIP measures were 51% female, 35% white, 26% African-American, 23% Hispanic, and 16% Chinese-American. Mean MIP±SD was 73±26 cmH2O for women and 97±29 cmH2O for men. The quality goal was achieved by 83% of the cohort and was associated with female gender, older age, race/ethnicity, study site, low FEV1/FVC ratio, and wheeze with dyspnea. The multivariate correlates of MIP were male gender, younger age, higher BMI, shorter height, higher FVC, higher systolic blood pressure (in women) and health status (in men). There were no clinically important race/ethnic differences in MIP values. Conclusion Race-specific reference equations for MIP are unnecessary in the United States. More than 80% of adults can be successfully coached for 5 maneuvers with repeatability within 10 cmH2O. PMID:19796411

  1. Synchronization of presynaptic input to motor units of tongue, inspiratory intercostal, and diaphragm muscles

    PubMed Central

    Rice, Amber; Fuglevand, Andrew J.; Laine, Christopher M.

    2011-01-01

    The respiratory central pattern generator distributes rhythmic excitatory input to phrenic, intercostal, and hypoglossal premotor neurons. The degree to which this input shapes motor neuron activity can vary across respiratory muscles and motor neuron pools. We evaluated the extent to which respiratory drive synchronizes the activation of motor unit pairs in tongue (genioglossus, hyoglossus) and chest-wall (diaphragm, external intercostals) muscles using coherence analysis. This is a frequency domain technique, which characterizes the frequency and relative strength of neural inputs that are common to each of the recorded motor units. We also examined coherence across the two tongue muscles, as our previous work shows that, despite being antagonists, they are strongly coactivated during the inspiratory phase, suggesting that excitatory input from the premotor neurons is distributed broadly throughout the hypoglossal motoneuron pool. All motor unit pairs showed highly correlated activity in the low-frequency range (1–8 Hz), reflecting the fundamental respiratory frequency and its harmonics. Coherence of motor unit pairs recorded either within or across the tongue muscles was similar, consistent with broadly distributed premotor input to the hypoglossal motoneuron pool. Interestingly, motor units from diaphragm and external intercostal muscles showed significantly higher coherence across the 10–20-Hz bandwidth than tongue-muscle units. We propose that the lower coherence in tongue-muscle motor units over this range reflects a larger constellation of presynaptic inputs, which collectively lead to a reduction in the coherence between hypoglossal motoneurons in this frequency band. This, in turn, may reflect the relative simplicity of the respiratory drive to the diaphragm and intercostal muscles, compared with the greater diversity of functions fulfilled by muscles of the tongue. PMID:21307319

  2. Body position influences the maximum inspiratory and expiratory mouth pressures of young healthy subjects.

    PubMed

    Costa, Rui; Almeida, Nádia; Ribeiro, Fernando

    2015-06-01

    The purpose of this study was to determine the effects of body position on respiratory muscle strength of young healthy subjects. Sixty-three (50 female, mean age 19.7±1.5 years) healthy subjects participated in the study. Participants were measured in the sitting position, semi-upright sitting position, and in the supine position. The order of the three conditions was randomly determined. Maximal inspiratory and expiratory mouth pressures (PImax, PEmax) and lung function. A significant effect of body position was observed on PEmax values, controlling for gender. PImax in the sitting position (92.8±20.05 cm H2O) was significantly higher than in the supine (84.1±15.1 cm H2O; mean difference: 8.70, 95% CI [5.95, 12.45], p<0.001) and semi-upright sitting positions (84.4±17.5 cm H2O; mean difference: 8.43, 95% CI [5.78, 11.07], p<0.001). PEmax was also significantly higher in the sitting position (125.4±34.2 cm H2O) than in the supine (115.8±29.0 cm H2O; mean difference: 9.59, 95% CI [4.86, 14.32], p<0.001) and semi-upright sitting positions (120.2±33.9 cm H2O; mean difference: 5.21, 95% CI [0.87, 9.54], p=0.013). Body position influences respiratory muscle strength of young healthy subjects. PImax and PEmax are higher in the sitting position than in the supine or semi-upright sitting positions. Copyright © 2014. Published by Elsevier Ltd.

  3. Relationship between inspiratory pressure and tidal volume in the anesthetized canine.

    PubMed

    Blumenthal, S R; Skoula, C M; Gordon, B E

    1998-02-01

    Hounds undergoing prolonged or complicated surgical procedures are often underventilated, as indicated by blood gas and end-tidal CO2 (CO2) values when using published ventilatory guidelines. We investigated the relationship between body weight, tidal volume, and inspiratory pressure delivered by the ventilator (lung inflation pressure) in 59 anesthetized hounds (19 to 33 kg). Animals were ventilated under positive pressure control and noninvasively instrumented to monitor blood pressure, ECG, oxygen saturation, CO2, and tidal volume. Weight, sex, and thorax measurements were recorded. All dogs were monitored at lung inflation pressures of 10, 14, and 18 cm H2O, with measurements recorded once CO2 stabilized. Veterinary guidelines recommend tidal volumes of 10 to 15 ml/kg of body weight and lung inflation pressures of 15 to 25 cm H2O. When inflation pressure was below guidelines (10), tidal volume was "normal" (10 to 15 ml/kg), but the animals were underventilated. When inflation pressure was "normal" (14 or 18 cm H2O), tidal volume was above guidelines. Physiologic variables were normal only when inflation pressure was 14 cm H2O. Weight and thorax depth accounted for 32 and 6%, respectively, of tidal volume variability, and tidal volume varied by +/- 250 ml at any given body weight and inflation pressure. None of the measured physical variables accurately predicted tidal volume. These data suggest that the inconsistency in tidal volume is due to a previously undescribed variability in respiratory compliance in the anesthetized hound and that the guidelines for ventilation during surgery need further investigation.

  4. Response of the canine inspiratory intercostal muscles to chest wall vibration.

    PubMed

    Leduc, D; Brunko, E; De Troyer, A

    2000-02-01

    High-frequency mechanical vibration of the rib cage reduces dyspnea, but the effect of this procedure on the respiratory muscles is largely unknown. In the present studies, we have initially assessed the electrical and mechanical response to vibration (40 Hz) of the canine parasternal and external intercostal muscles (third interspace) during hyperventilation-induced apnea. When the vibrator was applied to the segment investigated, prominent external intercostal activity was recorded in the seven animals studied, whereas low-amplitude parasternal intercostal activity was recorded in only four animals. Similarly, when the vibrator was applied to more rostral and more caudal interspaces, activity was recorded commonly from the external intercostal but only occasionally from the parasternal. The two muscles, however, showed similar changes in length. We next examined the response to vibration of the muscles in seven spontaneously breathing animals. Vibrating the rib cage during inspiration (in-phase) had no effect on parasternal intercostal inspiratory activity but induced a marked increase in neural drive to the external intercostals. For the animal group, peak external intercostal activity during the control, nonvibrated breaths averaged (mean +/- SE) 43.1 +/- 3.7% of the activity recorded during the vibrated breaths (p < 0.001). External intercostal activity during vibration also occurred earlier at the onset of inspiration and commonly carried on after the cessation of parasternal intercostal activity. Yet tidal volume was unchanged. Vibrating the rib cage during expiration (out-of-phase) did not elicit any parasternal or external intercostal activity in six animals. These observations thus indicate that the external intercostals, with their larger spindle density, are much more sensitive to chest wall vibration than the parasternal intercostals. They also suggest that the impact of this procedure on the mechanical behavior of the respiratory system is relatively

  5. Microbial load monitor

    NASA Technical Reports Server (NTRS)

    Caplin, R. S.; Royer, E. R.

    1978-01-01

    Attempts are made to provide a total design of a Microbial Load Monitor (MLM) system flight engineering model. Activities include assembly and testing of Sample Receiving and Card Loading Devices (SRCLDs), operator related software, and testing of biological samples in the MLM. Progress was made in assembling SRCLDs with minimal leaks and which operate reliably in the Sample Loading System. Seven operator commands are used to control various aspects of the MLM such as calibrating and reading the incubating reading head, setting the clock and reading time, and status of Card. Testing of the instrument, both in hardware and biologically, was performed. Hardware testing concentrated on SRCLDs. Biological testing covered 66 clinical and seeded samples. Tentative thresholds were set and media performance listed.

  6. Oscillatory threshold logic.

    PubMed

    Borresen, Jon; Lynch, Stephen

    2012-01-01

    In the 1940s, the first generation of modern computers used vacuum tube oscillators as their principle components, however, with the development of the transistor, such oscillator based computers quickly became obsolete. As the demand for faster and lower power computers continues, transistors are themselves approaching their theoretical limit and emerging technologies must eventually supersede them. With the development of optical oscillators and Josephson junction technology, we are again presented with the possibility of using oscillators as the basic components of computers, and it is possible that the next generation of computers will be composed almost entirely of oscillatory devices. Here, we demonstrate how coupled threshold oscillators may be used to perform binary logic in a manner entirely consistent with modern computer architectures. We describe a variety of computational circuitry and demonstrate working oscillator models of both computation and memory.

  7. Oscillatory Threshold Logic

    PubMed Central

    Borresen, Jon; Lynch, Stephen

    2012-01-01

    In the 1940s, the first generation of modern computers used vacuum tube oscillators as their principle components, however, with the development of the transistor, such oscillator based computers quickly became obsolete. As the demand for faster and lower power computers continues, transistors are themselves approaching their theoretical limit and emerging technologies must eventually supersede them. With the development of optical oscillators and Josephson junction technology, we are again presented with the possibility of using oscillators as the basic components of computers, and it is possible that the next generation of computers will be composed almost entirely of oscillatory devices. Here, we demonstrate how coupled threshold oscillators may be used to perform binary logic in a manner entirely consistent with modern computer architectures. We describe a variety of computational circuitry and demonstrate working oscillator models of both computation and memory. PMID:23173034

  8. Turbidity threshold sampling for suspended sediment load estimation

    Treesearch

    Jack Lewis; Rand Eads

    2001-01-01

    Abstract - The paper discusses an automated procedure for measuring turbidity and sampling suspended sediment. The basic equipment consists of a programmable data logger, an in situ turbidimeter, a pumping sampler, and a stage-measuring device. The data logger program employs turbidity to govern sample collection during each transport event. Mounting configurations and...

  9. Optimising threshold levels for information transmission in binary threshold networks: Independent multiplicative noise on each threshold

    NASA Astrophysics Data System (ADS)

    Zhou, Bingchang; McDonnell, Mark D.

    2015-02-01

    The problem of optimising the threshold levels in multilevel threshold system subject to multiplicative Gaussian and uniform noise is considered. Similar to previous results for additive noise, we find a bifurcation phenomenon in the optimal threshold values, as the noise intensity changes. This occurs when the number of threshold units is greater than one. We also study the optimal thresholds for combined additive and multiplicative Gaussian noise, and find that all threshold levels need to be identical to optimise the system when the additive noise intensity is a constant. However, this identical value is not equal to the signal mean, unlike the case of additive noise. When the multiplicative noise intensity is instead held constant, the optimal threshold levels are not all identical for small additive noise intensity but are all equal to zero for large additive noise intensity. The model and our results are potentially relevant for sensor network design and understanding neurobiological sensory neurons such as in the peripheral auditory system.

  10. Fitness Load and Exercise Time in Secondary Physical Education Classes.

    ERIC Educational Resources Information Center

    Li, Xiao Jun; Dunham, Paul, Jr.

    1993-01-01

    Investigates the effect of secondary school physical education on fitness load: the product of the mean heart rate above threshold (144 bpm) and the time duration of heart rate above that threshold. Highly and moderately skilled students achieved fitness load more frequently than their lower skilled colleagues. (GLR)

  11. Fitness Load and Exercise Time in Secondary Physical Education Classes.

    ERIC Educational Resources Information Center

    Li, Xiao Jun; Dunham, Paul, Jr.

    1993-01-01

    Investigates the effect of secondary school physical education on fitness load: the product of the mean heart rate above threshold (144 bpm) and the time duration of heart rate above that threshold. Highly and moderately skilled students achieved fitness load more frequently than their lower skilled colleagues. (GLR)

  12. Peripheral chemoreceptors tune inspiratory drive via tonic expiratory neuron hubs in the medullary ventral respiratory column network.

    PubMed

    Segers, L S; Nuding, S C; Ott, M M; Dean, J B; Bolser, D C; O'Connor, R; Morris, K F; Lindsey, B G

    2015-01-01

    Models of brain stem ventral respiratory column (VRC) circuits typically emphasize populations of neurons, each active during a particular phase of the respiratory cycle. We have proposed that "tonic" pericolumnar expiratory (t-E) neurons tune breathing during baroreceptor-evoked reductions and central chemoreceptor-evoked enhancements of inspiratory (I) drive. The aims of this study were to further characterize the coordinated activity of t-E neurons and test the hypothesis that peripheral chemoreceptors also modulate drive via inhibition of t-E neurons and disinhibition of their inspiratory neuron targets. Spike trains of 828 VRC neurons were acquired by multielectrode arrays along with phrenic nerve signals from 22 decerebrate, vagotomized, neuromuscularly blocked, artificially ventilated adult cats. Forty-eight of 191 t-E neurons fired synchronously with another t-E neuron as indicated by cross-correlogram central peaks; 32 of the 39 synchronous pairs were elements of groups with mutual pairwise correlations. Gravitational clustering identified fluctuations in t-E neuron synchrony. A network model supported the prediction that inhibitory populations with spike synchrony reduce target neuron firing probabilities, resulting in offset or central correlogram troughs. In five animals, stimulation of carotid chemoreceptors evoked changes in the firing rates of 179 of 240 neurons. Thirty-two neuron pairs had correlogram troughs consistent with convergent and divergent t-E inhibition of I cells and disinhibitory enhancement of drive. Four of 10 t-E neurons that responded to sequential stimulation of peripheral and central chemoreceptors triggered 25 cross-correlograms with offset features. The results support the hypothesis that multiple afferent systems dynamically tune inspiratory drive in part via coordinated t-E neurons.

  13. Determination of parameters related to nasal inspiratory pressures in children utilizing valved-holding chambers (valved spacers).

    PubMed

    Krumenauer, Rita; Amantéa, Sérgio Luis; Lubianca Neto, José Faibes; Brasil, Ana Paula; Reginato, Rosane; Padoin, Alexandre Vontobel

    2009-03-01

    The administration of medication by the nasal route using valved spacers, may be an alternative for the concomitant treatment of allergic rhinitis and asthma. The aim of this study was to determine if children are capable, in using a spacer and face mask, of opening the inspiratory valve using only nasal inhalation. Prospective cross-sectional. The study included 85 children aged 4-9 years. Four types of valved spacers connected to a digital vacuum manometer were evaluated. The patients were prompted to inhale through their nose and the pressure reached in the first curve, maximal peak and time between the start of the inspiratory action and the first effective inspiration (opening of the valve) were determined. The results were compared with factors such as age, weight, BMI, gender, and presence of rhinitis or asthma. In two of the spacers, the valve opened in 98.8% of the tests with nasal inspiration only. The spacer ACE holding chamber showed initial and maximal inspiratory pressures that were significantly greater than with the others (p<0.001). No correlation was observed between the parameters examined for each spacer and the patient variables considered. The results suggest that children 4-9 years old are able to open the spacer valve with only nasal inspiration. The spacer ACE holding chamber was shown to be significantly more effective than the others tested. Studies that demonstrate that air inspired nasally reaches the lungs effectively are necessary so that this airway can be utilized for the administration of therapeutic agents.

  14. Source of human ventilatory chaos: lessons from switching controlled mechanical ventilation to inspiratory pressure support in critically ill patients.

    PubMed

    Mangin, Laurence; Fiamma, Marie-Noëlle; Straus, Christian; Derenne, Jean-Philippe; Zelter, Marc; Clerici, Christine; Similowski, Thomas

    2008-04-30

    Ventilatory flow measured at the airway opening in humans exhibits a complex dynamics that has the features of chaos. Currently available data point to a neural origin of this feature, but the role of respiratory mechanics has not been specifically assessed. In this aim, we studied 17 critically ill mechanically ventilated patients during a switch form an entirely machine-controlled assistance mode (assist-controlled ventilation ACV) to a patient-driven mode (inspiratory pressure support IPS). Breath-by-breath respiratory variability was assessed with the coefficient of variation of tidal volume, total cycle time, inspiratory time, expiratory time, mean inspiratory flow, duty cycle. The detection of chaos was performed with the noise titration technique. When present, chaos was characterized with numerical indexes (correlation dimension, irregularity; largest Lyapunov exponent, sensitivity to initial conditions). Expectedly, the coefficients of variations of the respiratory variables were higher during IPS than during ACV. During ACV, noise titration failed to detect nonlinearities in 12 patients who did not exhibit signs of spontaneous respiratory activity. This indicates that the mechanical properties of the respiratory system were not sufficient to produce ventilatory chaos in the presence of a nonlinear command (ventilator clock). A positive noise limit was found in the remaining 5 cases, but these patients exhibited signs of active expiratory control (highly variable expiratory time, respiratory frequency higher than the set frequency). A positive noise limit was also observed in 16/17 patients during IPS (p<0.001). These observations suggest that ventilatory chaos predominantly has a neural origin (intrinsic to the respiratory central pattern generators, resulting from their perturbation by respiratory afferents, or both), with little contribution of respiratory mechanics, if any.

  15. Mechanical ventilation weaning in inclusion body myositis: feasibility of isokinetic inspiratory muscle training as an adjunct therapy.

    PubMed

    Cordeiro de Souza, Leonardo; Campos, Josué Felipe; Daher, Leandro Possidente; Furtado da Silva, Priscila; Ventura, Alex; do Prado, Pollyana Zamborlini; Brasil, Daniele; Mendonça, Debora; Lugon, Jocemir Ronaldo

    2014-01-01

    Inclusion body myositis is a rare myopathy associated with a high rate of respiratory complications. This condition usually requires prolonged mechanical ventilation and prolonged intensive care stay. The unsuccessful weaning is mainly related to respiratory muscle weakness that does not promptly respond to immunosuppressive therapy. We are reporting a case of a patient in whom the use of an inspiratory muscle-training program which started after a two-week period of mechanical ventilation was associated with a successful weaning in one week and hospital discharge after 2 subsequent weeks.

  16. Mechanical Ventilation Weaning in Inclusion Body Myositis: Feasibility of Isokinetic Inspiratory Muscle Training as an Adjunct Therapy

    PubMed Central

    Campos, Josué Felipe; Daher, Leandro Possidente; Ventura, Alex; do Prado, Pollyana Zamborlini; Brasil, Daniele; Mendonça, Debora; Lugon, Jocemir Ronaldo

    2014-01-01

    Inclusion body myositis is a rare myopathy associated with a high rate of respiratory complications. This condition usually requires prolonged mechanical ventilation and prolonged intensive care stay. The unsuccessful weaning is mainly related to respiratory muscle weakness that does not promptly respond to immunosuppressive therapy. We are reporting a case of a patient in whom the use of an inspiratory muscle-training program which started after a two-week period of mechanical ventilation was associated with a successful weaning in one week and hospital discharge after 2 subsequent weeks. PMID:25147743

  17. Pulmonary Drug Delivery Following Continuous Vibrating Mesh Nebulization and Inspiratory Synchronized Vibrating Mesh Nebulization During Noninvasive Ventilation in Healthy Volunteers.

    PubMed

    Michotte, Jean-Bernard; Staderini, Enrico; Aubriot, Anne-Sophie; Jossen, Emilie; Dugernier, Jonathan; Liistro, Giuseppe; Reychler, Gregory

    2017-07-06

    A breath-synchronized nebulization option that could potentially improve drug delivery during noninvasive positive pressure ventilation (NIPPV) is currently not available on single-limb circuit bilevel ventilators. The aim of this study was to compare urinary excretion of amikacin following aerosol delivery with a vibrating mesh nebulizer coupled to a single-limb circuit bilevel ventilator, using conventional continuous (Conti-Neb) and experimental inspiratory synchronized (Inspi-Neb) nebulization modes. A crossover clinical trial involving 6 noninvasive ventilated healthy volunteers (mean age of 32.3 ± 9.5 y) randomly assigned to both vibrating mesh nebulization modes was conducted: Inspi-Neb delivered aerosol during only the whole inspiratory phase, whereas Conti-Neb delivered aerosol continuously. All subjects inhaled amikacin solution (500 mg/4 mL) during NIPPV using a single-limb bilevel ventilator (inspiratory positive airway pressure: 12 cm H2O, and expiratory positive airway pressure: 5 cm H2O). Pulmonary drug delivery of amikacin following both nebulization modes was compared by urinary excretion of drug for 24 hours post-inhalation. The total daily amount of amikacin excreted in the urine was significantly higher with Inspi-Neb (median: 44.72 mg; interquartile range [IQR]: 40.50-65.13) than with Conti-Neb (median: 40.07 mg; IQR: 31.00-43.73), (p = 0.02). The elimination rate constant of amikacin (indirect measure of the depth of drug penetration into the lungs) was significantly higher with Inspi-Neb (median: 0.137; IQR: 0.113-0.146) than with Conti-Neb (median: 0.116; IQR: 0.105-0.130), (p = 0.02). However, the mean pulmonary drug delivery rate, expressed as the ratio between total daily urinary amount of amikacin and nebulization time, was significantly higher with Conti-Neb (2.03 mg/min) than with Inspi-Neb (1.09 mg/min) (p < 0.01). During NIPPV with a single-limb circuit bilevel ventilator, the use of inspiratory

  18. Probabilistic Threshold Criterion

    SciTech Connect

    Gresshoff, M; Hrousis, C A

    2010-03-09

    The Probabilistic Shock Threshold Criterion (PSTC) Project at LLNL develops phenomenological criteria for estimating safety or performance margin on high explosive (HE) initiation in the shock initiation regime, creating tools for safety assessment and design of initiation systems and HE trains in general. Until recently, there has been little foundation for probabilistic assessment of HE initiation scenarios. This work attempts to use probabilistic information that is available from both historic and ongoing tests to develop a basis for such assessment. Current PSTC approaches start with the functional form of the James Initiation Criterion as a backbone, and generalize to include varying areas of initiation and provide a probabilistic response based on test data for 1.8 g/cc (Ultrafine) 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) and LX-17 (92.5% TATB, 7.5% Kel-F 800 binder). Application of the PSTC methodology is presented investigating the safety and performance of a flying plate detonator and the margin of an Ultrafine TATB booster initiating LX-17.

  19. Implementation guide for turbidity threshold sampling: principles, procedures, and analysis

    Treesearch

    Jack Lewis; Rand Eads

    2009-01-01

    Turbidity Threshold Sampling uses real-time turbidity and river stage information to automatically collect water quality samples for estimating suspended sediment loads. The system uses a programmable data logger in conjunction with a stage measurement device, a turbidity sensor, and a pumping sampler. Specialized software enables the user to control the sampling...

  20. Learning foraging thresholds for lizards

    SciTech Connect

    Goldberg, L.A.; Hart, W.E.; Wilson, D.B.

    1996-01-12

    This work gives a proof of convergence for a randomized learning algorithm that describes how anoles (lizards found in the Carribean) learn a foraging threshold distance. This model assumes that an anole will pursue a prey if and only if it is within this threshold of the anole`s perch. This learning algorithm was proposed by the biologist Roughgarden and his colleagues. They experimentally confirmed that this algorithm quickly converges to the foraging threshold that is predicted by optimal foraging theory our analysis provides an analytic confirmation that the learning algorithm converses to this optimal foraging threshold with high probability.

  1. The relationship between early reversibility test and maximal inspiratory pressure in patients with airway obstruction.

    PubMed

    Ozkaya, Sevket; Dirican, Adem; Kaya, Sule Ozbay; Karanfil, Rabia C; Bayrak, Merve G; Bostancı, Ozgür; Ece, Ferah

    2014-01-01

    Maximal inspiratory pressure (MIP) is a marker for assessing the degree of respiratory muscle dysfunction. Muscle dysfunction represents a pathophysiological feature of chronic obstructive pulmonary disease. We aimed to determinate the MIP value in patients with airway obstruction, to evaluate the change in MIP with bronchodilator drug, and to show the relationship between the changes in MIP and disease characteristics. We evaluated 21 patients with airway obstruction at the Department of Pulmonary Medicine, Samsun Medicalpark Hospital, Samsun, Turkey. We performed pulmonary function tests, measurement of MIP values, and reversibility tests with salbutamol. The baseline spirometry results were: mean forced vital capacity (FVC), 3,017±1,020 mL and 75.8%±20.8%; mean forced expiratory volume in 1 second (FEV1), 1,892±701 mL and 59.2%±18.2%; FEV1/FVC, 62.9%±5.5%; peak expiratory flow, 53%±19%. The pre-bronchodilator MIP value was 62.1±36.9 cmH2O. The reversibility test was found to be positive in 61.9% of patients with salbutamol. The absolute change and percentage of change in FEV1 were 318±223 mL and 19.8%±16.7%, respectively. The MIP value was increased by 5.5 cmH2O (8.8%) and was 67.7±30.3 cmH2O after bronchodilation. There was no significant relationship between age, FEV1, reversibility, and change in MIP with bronchodilator. However, the increase in MIP with bronchodilator drug was higher in patients with low body mass index (<25 kg/m(2)). We noted a 13.1% increase in FVC, a 19.8% increase in FEV1, a 20.2% increase in peak expiratory flow, and an 8.8% increase in MIP with salbutamol. In conclusion; MIP increases with bronchodilator therapy, regardless of changes in lung function, in patients with airway obstruction. The reversibilty test can be used to evaluate change in MIP with salbutamol.

  2. Effects of Simulated Altitude on Maximal Oxygen Uptake and Inspiratory Fitness.

    PubMed

    Biggs, Nicole C; England, Benjamin S; Turcotte, Nicole J; Cook, Melissa R; Williams, Alyne L

    2017-01-01

    Aerobic exercise at altitude has shown an increase in maximal oxygen uptake. Similar effects have been replicated by way of simulated altitude training, which have influenced various advances in the field of exercise science. Elevation Training Masks© (ETM) claim to stimulate cardiorespiratory fitness improvements similar to training at altitude, however, there is little research to support this claim. The purpose of this study was to research the effect that a hypoxia-inducing mask would have on cardiorespiratory fitness and pulmonary function through the use of a high intensity interval training (HIIT) running program. Seventeen subjects were randomized into either the control group, without the mask, or experimental group, with the mask, and participated in a 6-week HIIT protocol of 4 sessions per week. Each session included a warm up, followed by intervals of running at 80% of their heart rate reserve (HRR) for 90 seconds and followed by 3 minutes of active rest at 50-60% of HRR. A total of 6 intervals were completed per session. Within subjects, there was a significant increase in predicted VO2max (F(1,17)=7.376, P<.05). However, there was no significant difference in predicted VO2max between the control and experimental groups (F(1, 17)=3.669, p= .075). Forced inspiratory vital capacity demonstrated no significant difference within subjects (F(1, 17)= .073, p > .05), or between the two groups (F(1, 17)= 3.724, p= .073). Similar to the VO2max results, forced vital capacity demonstrated a significant increase within subjects (F(1, 17)=6.201, p<.05), but there was no significant difference between the control and experimental groups (F(1,17)=3.562, p= .079). Although the between groups data was not significant, there was a greater increase in the experimental group wearing the ETM compared to the control group not wearing the mask for all 3 variables. Data suggest that HIIT training can be a viable method of improving VO2max and pulmonary function however

  3. Effects of Simulated Altitude on Maximal Oxygen Uptake and Inspiratory Fitness

    PubMed Central

    BIGGS, NICOLE C.; ENGLAND, BENJAMIN S.; TURCOTTE, NICOLE J.; COOK, MELISSA R.; WILLIAMS, ALYNE L.

    2017-01-01

    Aerobic exercise at altitude has shown an increase in maximal oxygen uptake. Similar effects have been replicated by way of simulated altitude training, which have influenced various advances in the field of exercise science. Elevation Training Masks© (ETM) claim to stimulate cardiorespiratory fitness improvements similar to training at altitude, however, there is little research to support this claim. The purpose of this study was to research the effect that a hypoxia-inducing mask would have on cardiorespiratory fitness and pulmonary function through the use of a high intensity interval training (HIIT) running program. Seventeen subjects were randomized into either the control group, without the mask, or experimental group, with the mask, and participated in a 6-week HIIT protocol of 4 sessions per week. Each session included a warm up, followed by intervals of running at 80% of their heart rate reserve (HRR) for 90 seconds and followed by 3 minutes of active rest at 50–60% of HRR. A total of 6 intervals were completed per session. Within subjects, there was a significant increase in predicted VO2max (F(1,17)=7.376, P<.05). However, there was no significant difference in predicted VO2max between the control and experimental groups (F(1, 17)=3.669, p= .075). Forced inspiratory vital capacity demonstrated no significant difference within subjects (F(1, 17)= .073, p > .05), or between the two groups (F(1, 17)= 3.724, p= .073). Similar to the VO2max results, forced vital capacity demonstrated a significant increase within subjects (F(1, 17)=6.201, p<.05), but there was no significant difference between the control and experimental groups (F(1,17)=3.562, p= .079). Although the between groups data was not significant, there was a greater increase in the experimental group wearing the ETM compared to the control group not wearing the mask for all 3 variables. Data suggest that HIIT training can be a viable method of improving VO2max and pulmonary function however

  4. Effect of the Prolonged Inspiratory to Expiratory Ratio on Oxygenation and Respiratory Mechanics During Surgical Procedures.

    PubMed

    Park, Jin Ha; Lee, Jong Seok; Lee, Jae Hoon; Shin, Seokyung; Min, Nar Hyun; Kim, Min-Soo

    2016-03-01

    Prolonged inspiratory to expiratory (I:E) ratio ventilation has been researched to reduce lung injury and improve oxygenation in surgical patients with one-lung ventilation (OLV) or carbon dioxide (CO2) pneumoperitoneum. We aimed to confirm the efficacy of the 1:1 equal ratio ventilation (ERV) compared with the 1:2 conventional ratio ventilation (CRV) during surgical procedures. Electronic databases, including PubMed, Embase, Cochrane Central Register of Controlled Trials, Web of Science, and Google Scholar were searched.Prospective interventional trials that assessed the effects of prolonged I:E ratio of 1:1 during surgical procedures. Adult patients undergoing OLV or CO2 pneumoperitoneum as specific interventions depending on surgical procedures. The included studies were examined with the Cochrane Collaboration's tool. The data regarding intraoperative oxygenation and respiratory mechanics were extracted, and then pooled with standardized mean difference (SMD) using the method of Hedges. Seven trials (498 total patients, 274 with ERV) were included. From overall analysis, ERV did not improve oxygenation at 20 or 30 minutes after specific interventions (SMD 0.193, 95% confidence interval (CI): -0.094 to 0.481, P = 0.188). From subgroup analyses, ERV provided significantly improved oxygenation only with laparoscopy (SMD 0.425, 95% CI: 0.167-0.682, P = 0.001). At 60 minutes after the specific interventions, ERV improved oxygenation significantly in the overall analysis (SMD 0.447, 95% CI: 0.209-0.685, P < 0.001) as well as in the subgroup analyses with OLV (SMD 0.328, 95% CI: 0.011-0.644, P = 0.042) and laparoscopy (SMD 0.668, 95% CI: 0.052-1.285, P = 0.034). ERV provided lower peak airway pressure (Ppeak) and plateau airway pressure (Pplat) than CRV, regardless of the type of intervention. The relatively small number of the included articles and their heterogeneity could be the main limitations. ERV improved oxygenation at all of the

  5. Ecohydrology on the Threshold?

    NASA Astrophysics Data System (ADS)

    Wainwright, John

    2013-04-01

    This presentation suggests that there are three major limitations to the development of ecohydrology as a coherent disciplinary area. One of the principal controls and feedbacks on patterns of plants and water in the environment is the form of the landscape and landscape-forming processes. Yet (eco)geomorphology is typically overlooked as a topic for ecohydrological investigation. Thus, the process domains used to explain patterns is typically overly restricted. As surface change controls the connectivity of other process, this restriction is significant. However, even when surface change is incorporated, there is often an emphasis on subdisciplinary areas, so that the investigation of patterns across process domains is not carried out in a holistic way. For example, studies of the feedbacks of vegetation on flow resistance are carried out significantly differently when considering wind and water flows (and indeed differently for water flows on hillslopes compared to in channels). Human action is the most important global control on ecohydrology, either from a top-down perspective through climate change, or from a bottom-up perspective through land use and land-use change. The actions of people on ecohydrological and ecogeomorphic processes, though, are typically considered in a static way. Techniques of agent-based modelling are being developed to overcome this limitation, but there need to be parallel developments in field techniques to address the data requirements and empirical underpinnings of such approaches. I argue that to cross the threshold into becoming a more mature discipline ecohydrology/ecogeomorphology needs to take on board the limitations of representations of process, pattern and people. Using examples from studies of land degradation in drylands, as well as from more temperate settings, I will suggest how progress may start to be made.

  6. Life below the threshold.

    PubMed

    Castro, C

    1991-01-01

    This article explains that malnutrition, poor health, and limited educational opportunities plague Philippine children -- especially female children -- from families living below the poverty threshold. Nearly 70% of households in the Philippines do not meet the required daily level of nutritional intake. Because it is often -- and incorrectly -- assumed that women's nutritional requirements are lower than men's, women suffer higher rates of malnutrition and poor health. A 1987 study revealed that 11.7% of all elementary students were underweight and 13.9% had stunted growths. Among elementary-school girls, 17% were malnourished and 40% suffered from anemia (among lactating mothers, more than 1/2 are anemic). A 1988 Program for Decentralized Educational Development study showed that grade VI students learn only about 1/2 of what they are supposed to learn. 30% of the children enrolled in grade school drop out before they reach their senior year. The Department of Education, Culture and Sports estimates that some 2.56 million students dropped out of school in l989. That same year, some 3.7 million children were counted as part of the labor force. In Manila alone, some 60,000 children work the streets, whether doing odd jobs or begging, or turning to crime or prostitution. the article tells the story of a 12 year-old girl named Ging, a 4th grader at a public school and the oldest child in a poor family of 6 children. The undernourished Ging dreams of a good future for her family and sees education as a way out of poverty; unfortunately, her time after school is spend working in the streets or looking after her family. She considers herself luckier than many of the other children working in the streets, since she at least has a family.

  7. Intra- and inter-rater reliability of maximum inspiratory pressure measured using a portable capsule-sensing pressure gauge device in healthy adults

    PubMed Central

    Jalan, Nikita S; Daftari, Sonam S; Retharekar, Seemi S; Rairikar, Savita A; Shyam, Ashok M; Sancheti, Parag K

    2015-01-01

    BACKGROUND: Measurement of maximum inspiratory pressure is the most prevalent method used in clinical practice to assess the strength of the inspiratory muscles. Although there are many devices available for the assessment of inspiratory muscle strength, there is a dearth of literature describing the reliability of devices that can be used in clinical patient assessment. The capsule-sensing pressure gauge (CSPG-V) is a new tool that measures the strength of inspiratory muscles; it is easy to use, noninvasive, inexpensive and lightweight. OBJECTIVE: To test the intra- and inter-rater reliability of a CSPG-V device in healthy adults. METHODS: A cross-sectional study involving 80 adult subjects with a mean (± SD) age of 22±3 years was performed. Using simple randomization, 40 individuals (20 male, 20 female) were used for intrarater and 40 (20 male, 20 female) were used for inter-rater reliability testing of the CSPG-V device. The subjects performed three inspiratory efforts, which were sustained for at least 3 s; the best of the three readings was used for intra- and inter-rater comparison. The intra- and inter-rater reliability were calculated using intraclass correlation coefficients (ICCs). RESULTS: The intrarater reliability ICC was 0.962 and the inter-rater reliability ICC was 0.922. CONCLUSION: Results of the present study suggest that maximum inspiratory pressure measured using a CSPG-V device has excellent intraand inter-rater reliability, and can be used as a diagnostic and prognostic tool in patients with respiratory muscle impairment. PMID:26089737

  8. Threshold Hypothesis: Fact or Artifact?

    ERIC Educational Resources Information Center

    Karwowski, Maciej; Gralewski, Jacek

    2013-01-01

    The threshold hypothesis (TH) assumes the existence of complex relations between creative abilities and intelligence: linear associations below 120 points of IQ and weaker or lack of associations above the threshold. However, diverse results have been obtained over the last six decades--some confirmed the hypothesis and some rejected it. In this…

  9. Threshold Hypothesis: Fact or Artifact?

    ERIC Educational Resources Information Center

    Karwowski, Maciej; Gralewski, Jacek

    2013-01-01

    The threshold hypothesis (TH) assumes the existence of complex relations between creative abilities and intelligence: linear associations below 120 points of IQ and weaker or lack of associations above the threshold. However, diverse results have been obtained over the last six decades--some confirmed the hypothesis and some rejected it. In this…

  10. Threshold Concepts and Information Literacy

    ERIC Educational Resources Information Center

    Townsend, Lori; Brunetti, Korey; Hofer, Amy R.

    2011-01-01

    What do we teach when we teach information literacy in higher education? This paper describes a pedagogical approach to information literacy that helps instructors focus content around transformative learning thresholds. The threshold concept framework holds promise for librarians because it grounds the instructor in the big ideas and underlying…

  11. The Nature of Psychological Thresholds

    ERIC Educational Resources Information Center

    Rouder, Jeffrey N.; Morey, Richard D.

    2009-01-01

    Following G. T. Fechner (1966), thresholds have been conceptualized as the amount of intensity needed to transition between mental states, such as between a states of unconsciousness and consciousness. With the advent of the theory of signal detection, however, discrete-state theory and the corresponding notion of threshold have been discounted.…

  12. The Nature of Psychological Thresholds

    ERIC Educational Resources Information Center

    Rouder, Jeffrey N.; Morey, Richard D.

    2009-01-01

    Following G. T. Fechner (1966), thresholds have been conceptualized as the amount of intensity needed to transition between mental states, such as between a states of unconsciousness and consciousness. With the advent of the theory of signal detection, however, discrete-state theory and the corresponding notion of threshold have been discounted.…

  13. Inspiratory phase-locked alpha oscillation in human olfaction: source generators estimated by a dipole tracing method

    PubMed Central

    Masaoka, Yuri; Koiwa, Nobuyoshi; Homma, Ikuo

    2005-01-01

    Olfactory perception and related emotions are largely dependent on inspiration. We acquired simultaneous respiration and electroencephalographic recordings during pleasant odour and unpleasant odour stimulation. We sought to identify changes in respiratory pattern, inspiratory-related potentials and location of dipoles estimated from the potentials. Electroencephalographic recording was triggered by inspiration onset. Respiratory frequency decreased at pleasant odour recognition, and it increased at unpleasant odour detection and recognition. O2 consumption records showed that these changes were not due to metabolic demand. During olfactory stimulation, inspiratory phase-locked alpha oscillation (I-α) was found in the averaged potential triggered by inspiration onset. I-α was observed at both pleasant odour and unpleasant odour detection and recognition, but it was not seen in the inspiration-triggered potentials of normal air breathing. Electroencephalographic dipole tracing identified the location of dipoles from the I-α in the limbic area and the cortex; the entorhinal cortex, hippocampus, amygdala, premotor area and centroposterior orbitofrontal cortex subserve odour detection, and the rostromedial orbitofrontal cortex subserves odour recognition. We suggest that the I-α in our study originated from the olfactory cortex in the forebrain and was phase-locked to inspiration. PMID:15890706

  14. Inspiratory muscle fatigue affects latissimus dorsi but not pectoralis major activity during arms only front crawl sprinting.

    PubMed

    Lomax, Mitch; Tasker, Louise; Bostanci, Ozgur

    2014-08-01

    The purpose of this study was to determine whether inspiratory muscle fatigue (IMF) affects the muscle activity of the latissimus dorsi and pectoralis major during maximal arms only front crawl swimming. Eight collegiate swimmers were recruited to perform 2 maximal 20-second arms only front crawl sprints in a swimming flume. Both sprints were performed on the same day, and IMF was induced 30 minutes after the first (control) sprint. Maximal inspiratory and expiratory mouth pressures (PImax and PEmax, respectively) were measured before and after each sprint. The median frequency (MDF) of the electromyographic signal burst was recorded from the latissimus dorsi and pectoralis major during each 20-second sprint along with stroke rate and breathing frequency. Median frequency was assessed in absolute units (Hz) and then referenced to the start of the control sprint for normalization. After IMF inducement, stroke rate increased from 56 ± 4 to 59 ± 5 cycles per minute, and latissimus dorsi MDF fell from 67 ± 11 Hz at the start of the sprint to 61 ± 9 Hz at the end. No change was observed in the MDF of the latissimus dorsi during the control sprint. Conversely, the MDF of the pectoralis major shifted to lower frequencies during both sprints but was unaffected by IMF. As the latter induced fatigue in the latissimus dorsi, which was not otherwise apparent during maximal arms only control sprinting, the presence of IMF affects the activity of the latissimus dorsi during front crawl sprinting.

  15. The Role of Inspiratory Muscle Training in Sickle Cell Anemia Related Pulmonary Damage due to Recurrent Acute Chest Syndrome Attacks

    PubMed Central

    Camcıoğlu, Burcu; Boşnak-Güçlü, Meral; Karadallı, Müşerrefe Nur; Akı, Şahika Zeynep; Türköz-Sucak, Gülsan

    2015-01-01

    Background. The sickling of red blood cells causes a constellation of musculoskeletal, cardiovascular, and pulmonary manifestations. A 32-year-old gentleman with sickle cell anemia (SCA) had been suffering from recurrent acute chest syndrome (ACS). Aim. To examine the effects of inspiratory muscle training (IMT) on pulmonary functions, respiratory and peripheral muscle strength, functional exercise capacity, and quality of life in this patient with SCA. Methods. Functional exercise capacity was evaluated using six-minute walk test, respiratory muscle strength using mouth pressure device, hand grip strength using hand-held dynamometer, pain using Visual Analogue Scale, fatigue using Fatigue Severity Scale, dyspnea using Modified Medical Research Council Scale, and health related quality of life using European Organization for Research and Treatment of Cancer QOL measurement. Results. A significant improvement has been demonstrated in respiratory muscle strength, functional exercise capacity, pain, fatigue, dyspnea, and quality of life. There was no admission to emergency department due to acute chest syndrome in the following 12 months after commencing regular erythrocytapheresis. Conclusion. This is the first report demonstrating the beneficial effects of inspiratory muscle training on functional exercise capacity, respiratory muscle strength, pain, fatigue, dyspnea, and quality of life in a patient with recurrent ACS. PMID:26060589

  16. Modeling the Interactions Between Multiple Crack Closure Mechanisms at Threshold

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Riddell, William T.; Piascik, Robert S.

    2003-01-01

    A fatigue crack closure model is developed that includes interactions between the three closure mechanisms most likely to occur at threshold; plasticity, roughness, and oxide. This model, herein referred to as the CROP model (for Closure, Roughness, Oxide, and Plasticity), also includes the effects of out-of plane cracking and multi-axial loading. These features make the CROP closure model uniquely suited for, but not limited to, threshold applications. Rough cracks are idealized here as two-dimensional sawtooths, whose geometry induces mixed-mode crack- tip stresses. Continuum mechanics and crack-tip dislocation concepts are combined to relate crack face displacements to crack-tip loads. Geometric criteria are used to determine closure loads from crack-face displacements. Finite element results, used to verify model predictions, provide critical information about the locations where crack closure occurs.

  17. Estimating ecological thresholds for phosphorus in the Everglades.

    PubMed

    Richardson, Curtis J; King, Ryan S; Qian, Song S; Vaithiyanathan, Panchabi; Qualls, Robert G; Stow, Craig A

    2007-12-01

    The Florida Everglades, a wetland of international importance, has been undergoing a significant shift in its native flora and fauna due to excessive total phosphorus (TP) loadings (an average of 147 t per annum from 1995to 2004) and an elevated mean TP concentration (69 microg L(-1) of TP in 2004) from agricultural runoff and Lake Okeechobee outflow despite the use of 16000 ha of stormwater treatment areas. Here, we present a Bayesian changepoint analysis of long-term experimental research and show that exceeding a surface water geometric mean TP threshold concentration of 15 microg L(-1) causes an ecological imbalance in algal, macrophyte, and macroinvertebrate assemblages as well as slough community structure. A phosphorus threshold for all trophic levels may be more realistic and protective when presented as a threshold zone (12-15 microg L(-1)) because estimates of uncertainty must be utilized to accurately define TP thresholds, which change with seasons and water depths. Most interior areas of the Everglades are currently at or below this threshold zone, but the exterior areas near inflow structures (except for the Everglades National Park) are presently receiving double or triple the proposed threshold. Our Bayesian approach, used hereto address ecological imbalance along nutrient gradients, is applicable to determining thresholds and stable states in other aquatic ecosystems.

  18. Bayesian estimation of dose thresholds

    NASA Technical Reports Server (NTRS)

    Groer, P. G.; Carnes, B. A.

    2003-01-01

    An example is described of Bayesian estimation of radiation absorbed dose thresholds (subsequently simply referred to as dose thresholds) using a specific parametric model applied to a data set on mice exposed to 60Co gamma rays and fission neutrons. A Weibull based relative risk model with a dose threshold parameter was used to analyse, as an example, lung cancer mortality and determine the posterior density for the threshold dose after single exposures to 60Co gamma rays or fission neutrons from the JANUS reactor at Argonne National Laboratory. The data consisted of survival, censoring times and cause of death information for male B6CF1 unexposed and exposed mice. The 60Co gamma whole-body doses for the two exposed groups were 0.86 and 1.37 Gy. The neutron whole-body doses were 0.19 and 0.38 Gy. Marginal posterior densities for the dose thresholds for neutron and gamma radiation were calculated with numerical integration and found to have quite different shapes. The density of the threshold for 60Co is unimodal with a mode at about 0.50 Gy. The threshold density for fission neutrons declines monotonically from a maximum value at zero with increasing doses. The posterior densities for all other parameters were similar for the two radiation types.

  19. Preoperative inspiratory muscle training for postoperative pulmonary complications in adults undergoing cardiac and major abdominal surgery.

    PubMed

    Katsura, Morihiro; Kuriyama, Akira; Takeshima, Taro; Fukuhara, Shunichi; Furukawa, Toshi A

    2015-10-05

    Postoperative pulmonary complications (PPCs) have an impact on the recovery of adults after surgery. It is therefore important to establish whether preoperative respiratory rehabilitation can decrease the risk of PPCs and to identify adults who might benefit from respiratory rehabilitation. Our primary objective was to assess the effectiveness of preoperative inspiratory muscle training (IMT) on PPCs in adults undergoing cardiac or major abdominal surgery. We looked at all-cause mortality and adverse events. We searched the Cochrane Central Register of Controlled Trials (CENTRAL; 2014, Issue 10), MEDLINE (1966 to October 2014), EMBASE (1980 to October 2014), CINAHL (1982 to October 2014), LILACS (1982 to October 2014), and ISI Web of Science (1985 to October 2014). We did not impose any language restrictions. We included randomized controlled trials that compared preoperative IMT and usual preoperative care for adults undergoing cardiac or major abdominal surgery. Two or more review authors independently identified studies, assessed trial quality, and extracted data. We extracted the following information: study characteristics, participant characteristics, intervention details, and outcome measures. We contacted study authors for additional information in order to identify any unpublished data. We included 12 trials with 695 participants; five trials included participants awaiting elective cardiac surgery and seven trials included participants awaiting elective major abdominal surgery. All trials contained at least one domain judged to be at high or unclear risk of bias. Of greatest concern was the risk of bias associated with inadequate blinding, as it was impossible to blind participants due to the nature of the study designs. We could pool postoperative atelectasis in seven trials (443 participants) and postoperative pneumonia in 11 trials (675 participants) in a meta-analysis. Preoperative IMT was associated with a reduction of postoperative atelectasis and

  20. The influence of crack closure on fatigue crack growth thresholds in 2024-T3 aluminum alloy

    NASA Technical Reports Server (NTRS)

    Phillips, Edward P.

    1988-01-01

    Crack opening loads were determined in load-shedding fatigue crack growth threshold tests on 2024-T3 aluminum alloy at stress ratios R of -2, -1, 0, 0.33, 0.5, and 0.7. The effects of load-shedding procedure and rate were investigated. Values of threshold Delta-K were found to vary significantly with R, whereas values of threshold effective Delta-K did not. That is, the variation of threshold Delta-K with R was almost completely explained by accounting for the measured variation in crack opening load behavior with R. The load-shedding guidelines of ASTM Test Method for Measurement of Fatigue Crack Growth (E 647) produced a threshold Delta-K value for R = 0.7 that was in agreement with the value determined using a procedure that should minimize closure effects. At both R = 0 and R = 0.7, high load-shedding rates produced high values of threshold Delta-K caused by large closure effects.

  1. Effects of loading on upper airway and respiratory pump muscle motoneurons.

    PubMed

    Hill, Kylie; Eastwood, Peter

    2011-10-15

    The functional outcomes of respiratory muscle loading by chemical (e.g. hypercapnia), mechanical (i.e. external mechanical loading) or ventilatory (e.g. exercise) factors can be either positive, such as through an increase in pressure-generating capacity of the inspiratory muscles or detrimental, such as by fatigue. Neurophysiological responses to respiratory muscle loading can occur at one or more points along the pathway from motor cortex to muscle. This paper describes the respiratory pump and upper airway motoneuron responses to the imposition of acute loads including processes of pre-activation, respiratory reflexes, potentiation and fatigue. It also considers changes suggestive of adaptation to chronic loading either from specific respiratory muscle training programs or as part of disease processes such as chronic obstructive pulmonary disease or obstructive sleep apnoea. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Effect of inspiratory muscle fatigue on exercise performance taking into account the fatigue-induced excess respiratory drive.

    PubMed

    Wüthrich, Thomas U; Notter, Dominic A; Spengler, Christina M

    2013-12-01

    Inspiratory muscle fatigue (IMF) is suggested to compromise exercise performance, possibly via a respiratory muscle metaboreflex that impairs blood flow to working muscles, thereby accelerating the development of fatigue in these muscles. Cycling with IMF has also been associated with an excess ventilatory response, which could per se impair performance. Therefore, the present study investigated whether prior-induced IMF would affect subsequent cycling performance via increased quadriceps muscle fatigue alone and whether fatigue-induced excess ventilation would contribute to this impairment. Fourteen healthy male subjects (peak oxygen uptake, 57.0 ± 5.5 ml min(-1) kg(-1)) cycled to exhaustion at 85% of their maximal work output with prior-induced IMF (PF-EX) and without prior-induced IMF (C-EX). Subjects then cycled twice for the duration of PF-EX but without prior IMF, once with spontaneous breathing (C-ISO) and once with breathing coached to match PF-EX ventilation (MATCH-ISO). Inspiratory muscle (P(tw)) and quadriceps muscle contractility (Q(tw)) was assessed via magnetic nerve stimulation before and after exercise. The time to exhaustion in the PF-EX conditions was significantly reduced by 14% compared with C-EX. The reduction in P(tw) and Q(tw) was greater after PF-EX (P(tw), 17.3 ± 9.7%; Q(tw), 32.0 ± 10.8%) than after MATCH-ISO (P(tw), 10.8 ± 10.3%; Q(tw), 23.3 ± 15.2%; P < 0.05), which may explain the increased perception of exertion and earlier task failure with prior-induced IMF. The augmented ventilatory drive had no effect on reductions in P(tw) and Q(tw) after MATCH-ISO compared with C-ISO. Thus, prior-induced IMF reduces exercise performance, probably as a result of the increased quadriceps muscle fatigue and thus greater perception of exertion independent of the excess respiratory drive when cycling with fatigued inspiratory muscles.

  3. A Cycle Ergometer Exercise Program Improves Exercise Capacity and Inspiratory Muscle Function in Hospitalized Patients Awaiting Heart Transplantation: a Pilot Study

    PubMed Central

    Forestieri, Patrícia; Guizilini, Solange; Peres, Monique; Bublitz, Caroline; Bolzan, Douglas W.; Rocco, Isadora S.; Santos, Vinícius B.; Moreira, Rita Simone L.; Breda, João R.; de Almeida, Dirceu R.; Carvalho, Antonio Carlos de C.; Arena, Ross; Gomes, Walter J.

    2016-01-01

    Objective The purpose of this study was to evaluate the effect of a cycle ergometer exercise program on exercise capacity and inspiratory muscle function in hospitalized patients with heart failure awaiting heart transplantation with intravenous inotropic support. Methods Patients awaiting heart transplantation were randomized and allocated prospectively into two groups: 1) Control Group (n=11) - conventional protocol; and 2) Intervention Group (n=7) - stationary cycle ergometer exercise training. Functional capacity was measured by the six-minute walk test and inspiratory muscle strength assessed by manovacuometry before and after the exercise protocols. Results Both groups demonstrated an increase in six-minute walk test distance after the experimental procedure compared to baseline; however, only the intervention group had a significant increase (P=0.08 and P=0.001 for the control and intervention groups, respectively). Intergroup comparison revealed a greater increase in the intervention group compared to the control (P<0.001). Regarding the inspiratory muscle strength evaluation, the intragroup analysis demonstrated increased strength after the protocols compared to baseline for both groups; statistical significance was only demonstrated for the intervention group, though (P=0.22 and P<0.01, respectively). Intergroup comparison showed a significant increase in the intervention group compared to the control (P<0.01). Conclusion Stationary cycle ergometer exercise training shows positive results on exercise capacity and inspiratory muscle strength in patients with heart failure awaiting cardiac transplantation while on intravenous inotropic support. PMID:27982348

  4. Toward a new methodology for measuring the threshold Shields number

    NASA Astrophysics Data System (ADS)

    Rousseau, Gauthier; Dhont, Blaise; Ancey, Christophe

    2016-04-01

    A number of bedload transport equations involve the threshold Shields number (corresponding to the threshold of incipient motion for particles resting on the streambed). Different methods have been developed for determining this threshold Shields number; they usually assume that the initial streambed is plane prior to sediment transport. Yet, there are many instances in real-world scenarios, in which the initial streambed is not free of bed forms. We are interested in developing a new methodology for determining the threshold of incipient motion in gravel-bed streams in which smooth bed forms (e.g., anti-dunes) develop. Experiments were conducted in a 10-cm wide, 2.5-m long flume, whose initial inclination was 3%. Flows were supercritical and fully turbulent. The flume was supplied with water and sediment at fixed rates. As bed forms developed and migrated, and sediment transport rates exhibited wide fluctuations, measurements had to be taken over long times (typically 10 hr). Using a high-speed camera, we recorded the instantaneous bed load transport rate at the outlet of the flume by taking top-view images. In parallel, we measured the evolution of the bed slope, water depth, and shear stress by filming through a lateral window of the flume. These measurements allowed for the estimation of the space and time-averaged slope, from which we deduced the space and time-averaged Shields number under incipient bed load transport conditions. In our experiments, the threshold Shields number was strongly dependent on streambed morphology. Experiments are under way to determine whether taking the space and time average of incipient motion experiments leads to a more robust definition of the threshold Shields number. If so, this new methodology will perform better than existing approaches at measuring the threshold Shields number.

  5. Threshold photodissociation of Cr+2

    NASA Astrophysics Data System (ADS)

    Lessen, D. E.; Asher, R. L.; Brucat, P. J.

    1991-08-01

    A one-photon photodissociation threshold for supersonically cooled Cr+2 is determined to be 2.13 eV. This threshold provides a strict upper limit to the adiabatic binding energy of the ground state of chromium dimer cation if the initial internal energy of the parent ion may be neglected. From the difference in the IPs of chromium atom and dimer, an upper limit to the dissociation of Cr2 is placed at 1.77 eV.

  6. Anatomical and functional pathways of rhythmogenic inspiratory premotor information flow originating in the pre-Bötzinger complex in the rat medulla.

    PubMed

    Koshiya, N; Oku, Y; Yokota, S; Oyamada, Y; Yasui, Y; Okada, Y

    2014-05-30

    The pre-Bötzinger complex (preBötC) of the ventrolateral medulla is the kernel for inspiratory rhythm generation. However, it is not fully understood how inspiratory neural activity is generated in the preBötC and propagates to other medullary regions. We analyzed the detailed anatomical connectivity to and from the preBötC and functional aspects of the inspiratory information propagation from the preBötC on the transverse plane of the medulla oblongata. Tract-tracing with immunohistochemistry in young adult rats demonstrated that neurokinin-1 receptor- and somatostatin-immunoreactive neurons in the preBötC, which could be involved in respiratory rhythmogenesis, are embedded in the plexus of axons originating in the contralateral preBötC. By voltage-imaging in rhythmically active slices of neonatal rats, we analyzed origination and propagation of inspiratory neural activity as depolarizing wave dynamics on the entire transverse plane as well as within the preBötC. Novel combination of pharmacological blockade of glutamatergic transmission and mathematical subtraction of the video images under blockade from the control images enabled to extract glutamatergic signal propagations. By ultra-high-speed voltage-imaging we first demonstrated the inter-preBötC conduction process of inspiratory action potentials. Intra-preBötC imaging with high spatiotemporal resolution during a single spontaneous inspiratory cycle unveiled deterministic nonlinearities, i.e., chaos, in the population recruitment. Collectively, we comprehensively elucidated the anatomical pathways to and from the preBötC and dynamics of inspiratory neural information propagation: (1) From the preBötC in one side to the contralateral preBötC, which would synchronize the bilateral rhythmogenic kernels, (2) from the preBötC directly to the bilateral hypoglossal premotor and motor areas as well as to the nuclei tractus solitarius, and (3) from the hypoglossal premotor areas toward the hypoglossal

  7. Threshold models in radiation carcinogenesis

    SciTech Connect

    Hoel, D.G.; Li, P.

    1998-09-01

    Cancer incidence and mortality data from the atomic bomb survivors cohort has been analyzed to allow for the possibility of a threshold dose response. The same dose-response models as used in the original papers were fit to the data. The estimated cancer incidence from the fitted models over-predicted the observed cancer incidence in the lowest exposure group. This is consistent with a threshold or nonlinear dose-response at low-doses. Thresholds were added to the dose-response models and the range of possible thresholds is shown for both solid tumor cancers as well as the different leukemia types. This analysis suggests that the A-bomb cancer incidence data agree more with a threshold or nonlinear dose-response model than a purely linear model although the linear model is statistically equivalent. This observation is not found with the mortality data. For both the incidence data and the mortality data the addition of a threshold term significantly improves the fit to the linear or linear-quadratic dose response for both total leukemias and also for the leukemia subtypes of ALL, AML, and CML.

  8. Stenting the nasal airway for maximizing inspiratory airflow: internal Max-Air Nose Cones versus external Breathe Right strip.

    PubMed

    Raudenbush, Bryan

    2011-01-01

    Several nasal dilator devices designed to stent the anterior nasal airway to increase peak nasal inspiratory flow (PNIF) currently exist; however, comparisons of such devices are limited. This study was designed to compare the efficacy of two different nasal dilator devices, an internal device (Max-Air Nose Cones; Sanostec Corp., Beverly Farms, MA) and an external device (Breathe Right nasal strip; GlaxoSmithKline, Brentford, Middlesex, U.K.) on stenting of the anterior nasal airway to maximize PNIF. Repeated measurements of PNIF were obtained in 30 individuals noting complaints of sleep-disordered breathing due to nasal breathing discomfort and nasal airway obstruction, both with and without the two different nasal dilator devices. A one-within analysis of variance (ANOVA) was performed among the three conditions (control, Max-Air Nose Cones, and Breathe Right nasal strip), and a statistically significant effect was found (F[2,58] = 298.13; p< 0.00001). Tukey post hoc contrasts revealed that the control condition PNIF (66.07 L/min) was significantly lower than both the Max-Air Nose Cones (138.73 L/min) and the Breathe Right nasal strip (102.17 L/min) conditions. The Max-Air Nose Cone increased inspiratory airflow by 73 L/min, or a 110% improvement over baseline. In addition, the Max-Air Nose Cone condition PNIF was significantly higher than both the control condition and the nasal strip condition. Although both the Max-Air Nose Cones and the Breathe Right nasal strips increased PNIF from baseline, the Max-Air Nose Cones showed significantly greater efficacy at stenting the anterior nasal airway, providing twice the improvement in PNIF over baseline than did the Breathe Right nasal strips.

  9. Benefits of combining inspiratory muscle with 'whole muscle' training in children with cystic fibrosis: a randomised controlled trial.

    PubMed

    Santana-Sosa, Elena; Gonzalez-Saiz, Laura; Groeneveld, Iris F; Villa-Asensi, José R; Barrio Gómez de Aguero, María I; Fleck, Steven J; López-Mojares, Luis M; Pérez, Margarita; Lucia, Alejandro

    2014-10-01

    The purpose of this study (randomised controlled trial) was to assess the effects of an 8-week combined 'whole muscle' (resistance+aerobic) and inspiratory muscle training (IMT) on lung volume, inspiratory muscle strength (PImax) and cardiorespiratory fitness (VO2 peak) (primary outcomes), and dynamic muscle strength, body composition and quality of life in paediatric outpatients with CF (cystic fibrosis, secondary outcomes). We also determined the effects of a detraining period. Participants were randomly allocated with a block on gender to a control (standard therapy) or intervention group (initial n=10 (6 boys) in each group; age 10±1 and 11±1 years). The latter group performed a combined programme (IMT (2 sessions/day) and aerobic+strength exercises (3 days/week, in-hospital)) that was followed by a 4-week detraining period. All participants were evaluated at baseline, post-training and detraining. Adherence to the training programme averaged 97.5%±1.7%. There was a significant interaction (group×time) effect for PImax, VO2peak and five-repetition maximum strength (leg-press, bench-press, seated-row) (all (p<0.001), and also for %fat (p<0.023) and %fat-free mass (p=0.001), with training exerting a significant beneficial effect only in the intervention group, which was maintained after detraining for PImax and leg-press. The relatively short-term (8-week) training programme used here induced significant benefits in important health phenotypes of paediatric patients with CF. IMT is an easily applicable intervention that could be included, together with supervised exercise training in the standard care of these patients. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  10. Excess VO2 during ramp exercise is positively correlated to intercostal muscles deoxyhemoglobin levels above the gas exchange threshold in young trained cyclists.

    PubMed

    Oueslati, Ferid; Girard, Olivier; Tabka, Zouhair; Ahmaidi, Said

    2016-07-01

    We assessed respiratory muscles oxygenation responses during a ramp exercise to exhaustion and further explored their relationship with the non-linear increase of VO2 (VO2 excess) observed above the gas-exchange threshold. Ten male cyclists completed a ramp exercise to exhaustion on an electromagnetically braked cycle-ergometer with a rate of increment of 30Wmin(-1) with continuous monitoring of expired gases (breath-by-breath) and oxygenation status of intercostal muscles. Maximal inspiratory and expiratory pressure measurements were taken at rest and at exhaustion. The VO2 excess represents the difference between VO2max observed and VO2max expected using linear equation between the VO2 and the intensity before gas-exchange threshold. The deoxyhemoglobin remained unchanged until 60% of maximal aerobic power (MAP) and thereafter increased significantly by 37±18% and 40±22% at 80% and 100% of MAP, respectively. Additionally, the amplitude of deoxyhemoglobin increase between 60 and 100% of MAP positively correlated with the VO2 excess (r=0.69, p<0.05). Compared to exercise start, the oxygen tissue saturation index decreased from 80% of MAP (-4.8±3.2%, p<0.05) onwards. At exhaustion, maximal inspiratory and expiratory pressures declined by 7.8±16% and 12.6±10% (both p<0.05), respectively. In summary, our results suggest a significant contribution of respiratory muscles to the VO2 excess phenomenon.

  11. Crane-Load Contact Sensor

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert; Mata, Carlos; Cox, Robert

    2005-01-01

    impedance between the pins and the load. The instrument includes a signal generator and voltage-measuring circuitry, and is connected to the load and the base as shown in Figure 2. The output of the signal generator (typically having amplitude of the order of a volt) is applied to the load via a 50-resistor, and the voltage between the load and the pins is measured. When the load and the pins are not in contact, the impedance between them is relatively high, causing the measured voltage to exceed a threshold value. When the load and the pins are in contact, the impedance between them falls to a much lower value, causing the voltage to fall below the threshold value. The voltage-measuring circuitry turns on a red light-emitting diode (LED) to indicate the lower-voltage/ contact condition. Whenever the contact has been broken and the non-contact/higher-voltage condition has lasted for m