Crack Instability Predictions Using a Multi-Term Approach
NASA Technical Reports Server (NTRS)
Zanganeh, Mohammad; Forman, Royce G.
2015-01-01
Present crack instability analysis for fracture critical flight hardware is normally performed using a single parameter, K(sub C), fracture toughness value obtained from standard ASTM 2D geometry test specimens made from the appropriate material. These specimens do not sufficiently match the boundary conditions and the elastic-plastic constraint characteristics of the hardware component, and also, the crack instability of most commonly used aircraft and aerospace structural materials have some amount of stable crack growth before fracture which makes the normal use of a K(sub C) single parameter toughness value highly approximate. In the past, extensive studies have been conducted to improve the single parameter (K or J controlled) approaches by introducing parameters accounting for the geometry or in-plane constraint effects. Using 'J-integral' and 'A' parameter as a measure of constraint is one of the most accurate elastic-plastic crack solutions currently available. In this work the feasibility of the J-A approach for prediction of the crack instability was investigated first by ignoring the effects of stable crack growth i.e. using a critical J and A and second by considering the effects of stable crack growth using the corrected J-delta a using the 'A' parameter. A broad range of initial crack lengths and a wide range of specimen geometries including C(T), M(T), ESE(T), SE(T), Double Edge Crack (DEC), Three-Hole-Tension (THT) and NC (crack from a notch) manufactured from Al7075 were studied. Improvements in crack instability predictions were observed compared to the other methods available in the literature.
Study of cavitating inducer instabilities
NASA Technical Reports Server (NTRS)
Young, W. E.; Murphy, R.; Reddecliff, J. M.
1972-01-01
An analytic and experimental investigation into the causes and mechanisms of cavitating inducer instabilities was conducted. Hydrofoil cascade tests were performed, during which cavity sizes were measured. The measured data were used, along with inducer data and potential flow predictions, to refine an analysis for the prediction of inducer blade suction surface cavitation cavity volume. Cavity volume predictions were incorporated into a linearized system model, and instability predictions for an inducer water test loop were generated. Inducer tests were conducted and instability predictions correlated favorably with measured instability data.
DSMC Studies of the Richtmyer-Meshkov Instability
NASA Astrophysics Data System (ADS)
Gallis, M. A.; Koehler, T. P.; Torczynski, J. R.
2014-11-01
A new exascale-capable Direct Simulation Monte Carlo (DSMC) code, SPARTA, developed to be highly efficient on massively parallel computers, has extended the applicability of DSMC to challenging, transient three-dimensional problems in the continuum regime. Because DSMC inherently accounts for compressibility, viscosity, and diffusivity, it has the potential to improve the understanding of the mechanisms responsible for hydrodynamic instabilities. Here, the Richtmyer-Meshkov instability at the interface between two gases was studied parametrically using SPARTA. Simulations performed on Sequoia, an IBM Blue Gene/Q supercomputer at Lawrence Livermore National Laboratory, are used to investigate various Atwood numbers (0.33-0.94) and Mach numbers (1.2-12.0) for two-dimensional and three-dimensional perturbations. Comparisons with theoretical predictions demonstrate that DSMC accurately predicts the early-time growth of the instability. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Predicting Transition from Laminar to Turbulent Flow over a Surface
NASA Technical Reports Server (NTRS)
Rajnarayan, Dev (Inventor); Sturdza, Peter (Inventor)
2016-01-01
A prediction of whether a point on a computer-generated surface is adjacent to laminar or turbulent flow is made using a transition prediction technique. A plurality of instability modes are obtained, each defined by one or more mode parameters. A vector of regressor weights is obtained for the known instability growth rates in a training dataset. For an instability mode in the plurality of instability modes, a covariance vector is determined. A predicted local instability growth rate at the point is determined using the covariance vector and the vector of regressor weights. Based on the predicted local instability growth rate, an n-factor envelope at the point is determined.
NASA Astrophysics Data System (ADS)
Liang, X. San; Robinson, Allan R.
2013-10-01
Frontal meanderings are generally difficult to predict. In this study, we demonstrate through an exercise with the Iceland-Faeroe Front (IFF) that satisfactory predictions may be achieved with the aid of hydrodynamic instability analysis. As discovered earlier on, underlying the IFF meandering is a convective instability in the western boundary region followed by an absolute instability in the interior; correspondingly the disturbance growth reveals a switch of pattern from spatial amplification to temporal amplification. To successfully forecast the meandering, the two instability processes must be faithfully reproduced. This sets stringent constraints for the tunable model parameters, e.g., boundary relaxation, temporal relaxation, eddy diffusivity, etc. By analyzing the instability dispersion properties, these parameters can be rather accurately set and their respective ranges of sensitivity estimated. It is shown that too much relaxation inhibits the front from varying; on the other hand, too little relaxation may have the model completely skip the spatial growth phase, leading to a meandering way more upstream along the front. Generally speaking, dissipation/diffusion tends to stabilize the simulation, but unrealistically large dissipation/diffusion could trigger a spurious absolute instability, and hence a premature meandering intrusion. The belief that taking in more data will improve the forecast does not need to be true; it depends on whether the model setup admits the two instabilities. This study may help relieve modelers from the laborious and tedious work of parameter tuning; it also provides us criteria to distinguish a physically relevant forecast from numerical artifacts.
Claims-based proxies of patient instability among commercially insured adults with schizophrenia
Ruetsch, Charles; Un, Hyong; Waters, Heidi C
2018-01-01
Objective Schizophrenia (Sz) patients are among the highest utilizers of hospital-based services. Prevention of relapse is in part a treatment goal in order to reduce hospital admissions. However, predicting relapse is a challenge, particularly for payers and disease management firms with only access to claims data. Understandably, such organizations have had little success predicting relapse. A tool that allows payers to identify patients at elevated risk of relapse could facilitate targeted interventions prior to relapse and avoid rehospitalization. In this study, a series of proxy measures of patient instability, calculated from claims data were examined for their utility in identifying Sz patients at elevated risk of relapse. Methods Aetna claims were used to assess the relationship between instability of Sz patients and valence and magnitude of antipsychotic (AP) medication change during a 2-year period. Six proxies of instability including hospital admissions, emergency department visits, medication utilization patterns, and use of outpatient services were identified. Results were replicated using claims data from Truven MarketScan®. Results Patients who switched AP ingredient had the highest overall instability at the point of switch and the second steepest decline in instability following switch. Those who changed to a long-acting injectable AP showed the second highest level of instability and the steepest decrease in instability following the change. Patients augmented with a second AP showed the smallest increase in instability, up to the switch. Results were directionally consistent between the two data sets. Conclusion Using claims-based proxy measures to estimate instability may provide a viable method to better understand Sz patient markers of change in disease severity. Also, such proxies could be used to identify those individuals with the greatest need for treatment modification preventing relapse, improving patient outcomes, and reducing the burden of illness. PMID:29765242
Wikstrom, Erik A; McKeon, Patrick O
2017-04-01
Sensory Targeted Ankle Rehabilitation Strategies that stimulate sensory receptors improve postural control in chronic ankle instability participants. However, not all participants have equal responses. Therefore, identifying predictors of treatment success is needed to improve clinician efficiency when treating chronic ankle instability. Therefore, the purpose was to identify predictors of successfully improving postural control in chronic ankle instability participants. Secondary data analysis. Fifty-nine participants with self-reported chronic ankle instability participated. The condition was defined as a history of at least two episodes of "giving way" within the past 6 months; and limitations in self-reported function as measured by the Foot and Ankle Ability Measure. Participants were randomized into three treatment groups (plantar massage, ankle joint mobilization, calf stretching) that received 6, 5-min treatment sessions over a 2-week period. The main outcome measure was treatment success, defined as a participant exceeding the minimal detectable change score for a clinician-oriented single limb balance test. Participants with ≥3 balance test errors had a 73% probability of treatment success following ankle joint mobilizations. Participants with a self-reported function between limb difference <16.07% and who made >2.5 errors had a 99% probability of treatment success following plantar massage. Those who sustained ≥11 ankle sprains had a 94% treatment success probability following calf stretching. Self-reported functional deficits, worse single limb balance, and number of previous ankle sprains are important characteristics when determining if chronic ankle instability participants will have an increased probability of treatment success. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Ahmed, Issaq; Ashton, Fiona; Robinson, Christopher Michael
2012-07-18
Arthroscopic Bankart repair and capsular shift is a well-established technique for the treatment of anterior shoulder instability. The purpose of this study was to evaluate the outcomes following arthroscopic Bankart repair and capsular shift and to identify risk factors that are predictive of recurrence of glenohumeral instability. We performed a retrospective review of a prospectively collected database consisting of 302 patients who had undergone arthroscopic Bankart repair and capsular shift for the treatment of recurrent anterior glenohumeral instability. The prevalence of patient and injury-related risk factors for recurrence was assessed. Cox proportional hazards models were used to estimate the predicted probability of recurrence within two years. The chief outcome measures were the risk of recurrence and the two-year functional outcomes assessed with the Western Ontario shoulder instability index (WOSI) and disabilities of the arm, shoulder and hand (DASH) scores. The rate of recurrent glenohumeral instability after arthroscopic Bankart repair and capsular shift was 13.2%. The median time to recurrence was twelve months, and this complication developed within one year in 55% of these patients. The risk of recurrence was independently predicted by the patient's age at surgery, the severity of glenoid bone loss, and the presence of an engaging Hill-Sachs lesion (all p < 0.001). These variables were incorporated into a model to provide an estimate of the risk of recurrence after surgery. Varying the cutoff level for the predicted probability of recurrence in the model from 50% to lower values increased the sensitivity of the model to detect recurrences but decreased the positive predictive value of the model to correctly predict failed repairs. There was a significant improvement in the mean WOSI and DASH scores at two years postoperatively (both p < 0.001), but the mean scores in the group with recurrence were significantly lower than those in the group without recurrence (both p < 0.001). Our study identified factors that are independently associated with a higher risk of recurrence following arthroscopic Bankart repair and capsular shift. These data can be useful for counseling patients undergoing this procedure for the treatment of recurrent glenohumeral instability and individualizing treatment options for particular groups of patients. Prognostic level I. See Instructions for authors for a complete description of levels of evidence.
Avalanching glacier instabilities: Review on processes and early warning perspectives
NASA Astrophysics Data System (ADS)
Faillettaz, Jérome; Funk, Martin; Vincent, Christian
2015-06-01
Avalanching glacier instabilities are gravity-driven rupture phenomena that might cause major disasters, especially when they are at the origin of a chain of processes. Reliably forecasting such events combined with a timely evacuation of endangered inhabited areas often constitute the most efficient action. Recently, considerable efforts in monitoring, analyzing, and modeling such phenomena have led to significant advances in destabilization process understanding, improving early warning perspectives. The purpose of this paper is to review the recent progress in this domain. Three different types of instabilities can be identified depending on the thermal properties of the ice/bed interface. If cold (1), the maturation of the rupture is associated with a typical time evolution of surface velocities and passive seismic activity. A prediction of the final break off is possible using these precursory signs. For the two other types, water plays a key role in the development of the instability. If the ice/bed interface is partly temperate (2), the presence of meltwater may reduce the basal resistance, which promotes the instability. No clear and easily detectable precursory signs are known in this case, and the only way to infer any potential instability is to monitor the temporal evolution of the thermal regime. The last type of instability (3) concerns steep temperate glacier tongues switching for several days/weeks during the melting season into a so-called "active phase" followed in rare cases by a major break-off event. Although the prediction of such events is still far from being achievable, critical conditions promoting the final instability can be identified.
Hofmeister, Eric P.; Moran, Steven L.
2006-01-01
The purpose of this study was to determine the results of combined anterior and posterior interosseous neurectomy (AIN/PIN) in patients with chronic wrist pain secondary to dynamic instability, and to determine the predictability of selective AIN/PIN blocks with respect to pain relief, grip strength, and outcome of the neurectomy. A prospectively accrued chronic wrist pain registry was undertaken. Inclusion criteria were patients with arthroscopically confirmed dynamic wrist instability who had undergone a diagnostic AIN/PIN injection, followed by a single dorsal incision neurectomy. All patients completed Disabilities of the Arm, Shoulder and Hand outcome questionnaires preoperatively and at intervals postoperatively. Pre- and postoperative range of motion, grip strength, and percentage pain relief were recorded. Over a 3-year period, 50 wrists (48 patients) were enrolled: average follow-up was 28 months (range: 24–42 months). The average improvement in grip strength after denervation was 16% (p = 0.076), the average improvement in subjective pain rating was 51% (p < 0.0001), and the average improvement in Disabilities of the Arm, Shoulder, and Hand scores was 15 points (p = 0.0039). Improvement of pain from diagnostic injections was not predictive of final improvement of pain; however, improvement in grip strength after diagnostic injections did correlate with improved grip strength after surgery. Lack of improvement in subjective pain rating or grip strength after diagnostic injection approached statistical significance. There was no decrease in range of motion postoperatively. Fourteen patients (16 wrists) failed as defined by need for subsequent surgery. The results of AIN/PIN neurectomy demonstrate that it may be an effective alternative to wrist salvage or reconstructive procedures within the first few years of follow-up. PMID:18780027
Family Instability and Child Maladjustment Trajectories During Elementary School
Milan, Stephanie; Pinderhughes, Ellen E.
2009-01-01
This study examines the relation between family instability and child maladjustment over a 6-year period in 369 children from four communities. Measures were collected annually from kindergarten through fifth grade. In associative growth curve models, family instability trajectories predicted children's externalizing and internalizing behavior trajectories during this time period. High levels of family instability also incrementally predicted the likelihood of meeting criteria for a DSMIV diagnosis during elementary school, above and beyond prediction from earlier measures of maladjustment. However, the timing of family instability had a different effect on externalizing versus internalizing disorders. In general, stronger relations were found between family instability and externalizing behaviors relative to internalizing behaviors, although children with comorbid disorders experienced the highest levels of family instability. PMID:16557358
Mood instability and impulsivity as trait predictors of suicidal thoughts.
Peters, Evyn M; Balbuena, Lloyd; Marwaha, Steven; Baetz, Marilyn; Bowen, Rudy
2016-12-01
Impulsivity, the tendency to act quickly without adequate planning or concern for consequences, is a commonly cited risk factor for suicidal thoughts and behaviour. There are many definitions of impulsivity and how it relates to suicidality is not well understood. Mood instability, which describes frequent fluctuations of mood over time, is a concept related to impulsivity that may help explain this relationship. The purpose of this study was to determine whether impulsivity could predict suicidal thoughts after controlling for mood instability. This study utilized longitudinal data from the 2000 Adult Psychiatric Morbidity Survey (N = 2,406). There was a time interval of 18 months between the two waves of the study. Trait impulsivity and mood instability were measured with the Structured Clinical Interview for DSM-IV Axis II Personality Disorders. Logistic regression analyses were used to evaluate baseline impulsivity and mood instability as predictors of future suicidal thoughts. Impulsivity significantly predicted the presence of suicidal thoughts, but this effect became non-significant with mood instability included in the same model. Impulsivity may be a redundant concept when predicting future suicidal thoughts if mood instability is considered. The significance is that research and therapy focusing on mood instability along with impulsivity may be useful in treating the suicidal patient. Mood instability and impulsivity both predict future suicidal thoughts. Impulsivity does not predict suicidal thoughts after controlling for mood instability. Assessing and treating mood instability could be important aspects of suicide prevention and risk management. © 2015 The British Psychological Society.
Nonnekes, Jorik; de Kam, Digna; Geurts, Alexander C H; Weerdesteyn, Vivian; Bloem, Bastiaan R
2013-12-01
Postural instability, one of the cardinal symptoms of Parkinson's disease (PD), has devastating consequences for affected patients. Better strategies to prevent falls are needed, but this calls for an improved understanding of the complex mechanisms underlying postural instability. We must also improve our ability to timely identify patients at risk of falling. Dynamic posturography is a promising avenue to achieve these goals. The latest moveable platforms can deliver 'real-life' balance perturbations, permitting study of everyday fall circumstances. Dynamic posturography studies have shown that PD patients have fundamental problems in scaling their postural responses in accordance with the need of the actual balance task at hand. On-going studies evaluate the predictive ability of impaired posturography performance for daily life falls. We also review recent work aimed at exploring balance correcting steps in PD, and the presumed interaction between startle pathways and postural responses.
Predicting Transition from Laminar to Turbulent Flow over a Surface
NASA Technical Reports Server (NTRS)
Sturdza, Peter (Inventor); Rajnarayan, Dev (Inventor)
2013-01-01
A prediction of whether a point on a computer-generated surface is adjacent to laminar or turbulent flow is made using a transition prediction technique. A plurality of boundary-layer properties at the point are obtained from a steady-state solution of a fluid flow in a region adjacent to the point. A plurality of instability modes are obtained, each defined by one or more mode parameters. A vector of regressor weights is obtained for the known instability growth rates in a training dataset. For each instability mode in the plurality of instability modes, a covariance vector is determined, which is the covariance of a predicted local growth rate with the known instability growth rates. Each covariance vector is used with the vector of regressor weights to determine a predicted local growth rate at the point. Based on the predicted local growth rates, an n-factor envelope at the point is determined.
NASA Astrophysics Data System (ADS)
Li, H; Yang, H; Zhan, M
2009-04-01
Thin-walled tube bending is an advanced technology for producing precision bent tube parts in aerospace, aviation and automobiles, etc. With increasing demands of bending tubes with a larger tube diameter and a smaller bending radius, wrinkling instability is a critical issue to be solved urgently for improving the bending limit and forming quality in this process. In this study, by using the energy principle, combined with analytical and finite element (FE) numerical methods, an energy-based wrinkling prediction model for thin-walled tube bending is developed. A segment shell model is proposed to consider the critical wrinkling region, which captures the deformation features of the tube bending process. The dissipation energy created by the reaction forces at the tube-dies interface for restraining the compressive instability is also included in the prediction model, which can be numerically calculated via FE simulation. The validation of the model is performed and its physical significance is evaluated from various aspects. Then the plastic wrinkling behaviors in thin-walled tube bending are addressed. From the energy viewpoint, the effect of the basic parameters including the geometrical and material parameters on the onset of wrinkling is identified. In particular, the influence of multi-tools constraints such as clearance and friction at various interfaces on the wrinkling instability is obtained. The study provides instructive understanding of the plastic wrinkling instability and the model may be suitable for the wrinkling prediction of a doubly-curved shell in the complex forming process with contact conditions.
Mannering, Anne M.; Harold, Gordon T.; Leve, Leslie D.; Shelton, Katherine H.; Shaw, Daniel S.; Conger, Rand D.; Neiderhiser, Jenae M.; Scaramella, Laura V.; Reiss, David
2009-01-01
This study examined the longitudinal association between marital instability and child sleep problems at ages 9 and 18 months in 357 families with a genetically unrelated infant adopted at birth. This design eliminates shared genes as an explanation for similarities between parent and child. Structural equation modeling indicated that T1 marital instability predicted T2 child sleep problems, but T1 child sleep problems did not predict T2 marital instability. This pattern of results was replicated when models were estimated separately for mothers and children and for fathers and children. Thus, even after controlling for stability in sleep problems and marital instability and eliminating shared genetic influences on associations using a longitudinal adoption design, marital instability prospectively predicts early childhood sleep patterns. PMID:21557740
Transport barriers in bootstrap-driven tokamaks
NASA Astrophysics Data System (ADS)
Staebler, G. M.; Garofalo, A. M.; Pan, C.; McClenaghan, J.; Van Zeeland, M. A.; Lao, L. L.
2018-05-01
Experiments have demonstrated improved energy confinement due to the spontaneous formation of an internal transport barrier in high bootstrap fraction discharges. Gyrokinetic analysis, and quasilinear predictive modeling, demonstrates that the observed transport barrier is caused by the suppression of turbulence primarily from the large Shafranov shift. It is shown that the Shafranov shift can produce a bifurcation to improved confinement in regions of positive magnetic shear or a continuous reduction in transport for weak or negative magnetic shear. Operation at high safety factor lowers the pressure gradient threshold for the Shafranov shift-driven barrier formation. Two self-organized states of the internal and edge transport barrier are observed. It is shown that these two states are controlled by the interaction of the bootstrap current with magnetic shear, and the kinetic ballooning mode instability boundary. Election scale energy transport is predicted to be dominant in the inner 60% of the profile. Evidence is presented that energetic particle-driven instabilities could be playing a role in the thermal energy transport in this region.
Mannering, Anne M; Harold, Gordon T; Leve, Leslie D; Shelton, Katherine H; Shaw, Daniel S; Conger, Rand D; Neiderhiser, Jenae M; Scaramella, Laura V; Reiss, David
2011-01-01
This study examined the longitudinal association between marital instability and child sleep problems at ages 9 and 18 months in 357 families with a genetically unrelated infant adopted at birth. This design eliminates shared genes as an explanation for similarities between parent and child. Structural equation modeling indicated that T1 marital instability predicted T2 child sleep problems, but T1 child sleep problems did not predict T2 marital instability. This result was replicated when models were estimated separately for mothers and fathers. Thus, even after controlling for stability in sleep problems and marital instability and eliminating shared genetic influences on associations using a longitudinal adoption design, marital instability prospectively predicts early childhood sleep patterns. © 2011 The Authors. Child Development © 2011 Society for Research in Child Development, Inc.
Mood instability as a precursor to depressive illness: A prospective and mediational analysis.
Marwaha, Steven; Balbuena, Lloyd; Winsper, Catherine; Bowen, Rudy
2015-06-01
Mood instability levels are high in depression, but temporal precedence and potential mechanisms are unknown. Hypotheses tested were as follows: (1) mood instability is associated with depression cross-sectionally, (2) mood instability predicts new onset and maintenance of depression prospectively and (3) the mood instability and depression link are mediated by sleep problems, alcohol abuse and life events. Data from the National Psychiatric Morbidity Survey 2000 at baseline (N = 8580) and 18-month follow-up (N = 2413) were used. Regression modeling controlling for socio-demographic factors, anxiety and hypomanic mood was conducted. Multiple mediational analyses were used to test our conceptual path model. Mood instability was associated with depression cross-sectionally (odds ratio: 5.28; 95% confidence interval: [3.67, 7.59]; p < 0.001) and predicted depression inception (odds ratio: 2.43; 95% confidence interval: [1.03-5.76]; p = 0.042) after controlling for important confounders. Mood instability did not predict maintenance of depression. Sleep difficulties and severe problems with close friends and family significantly mediated the link between mood instability and new onset depression (23.05% and 6.19% of the link, respectively). Alcohol abuse and divorce were not important mediators in the model. Mood instability is a precursor of a depressive episode, predicting its onset. Difficulties in sleep are a significant part of the pathway. Interventions targeting mood instability and sleep problems have the potential to reduce the risk of depression. © The Royal Australian and New Zealand College of Psychiatrists 2015.
Predicting Great Lakes fish yields: tools and constraints
Lewis, C.A.; Schupp, D.H.; Taylor, W.W.; Collins, J.J.; Hatch, Richard W.
1987-01-01
Prediction of yield is a critical component of fisheries management. The development of sound yield prediction methodology and the application of the results of yield prediction are central to the evolution of strategies to achieve stated goals for Great Lakes fisheries and to the measurement of progress toward those goals. Despite general availability of species yield models, yield prediction for many Great Lakes fisheries has been poor due to the instability of the fish communities and the inadequacy of available data. A host of biological, institutional, and societal factors constrain both the development of sound predictions and their application to management. Improved predictive capability requires increased stability of Great Lakes fisheries through rehabilitation of well-integrated communities, improvement of data collection, data standardization and information-sharing mechanisms, and further development of the methodology for yield prediction. Most important is the creation of a better-informed public that will in turn establish the political will to do what is required.
Association between split selection instability and predictive error in survival trees.
Radespiel-Tröger, M; Gefeller, O; Rabenstein, T; Hothorn, T
2006-01-01
To evaluate split selection instability in six survival tree algorithms and its relationship with predictive error by means of a bootstrap study. We study the following algorithms: logrank statistic with multivariate p-value adjustment without pruning (LR), Kaplan-Meier distance of survival curves (KM), martingale residuals (MR), Poisson regression for censored data (PR), within-node impurity (WI), and exponential log-likelihood loss (XL). With the exception of LR, initial trees are pruned by using split-complexity, and final trees are selected by means of cross-validation. We employ a real dataset from a clinical study of patients with gallbladder stones. The predictive error is evaluated using the integrated Brier score for censored data. The relationship between split selection instability and predictive error is evaluated by means of box-percentile plots, covariate and cutpoint selection entropy, and cutpoint selection coefficients of variation, respectively, in the root node. We found a positive association between covariate selection instability and predictive error in the root node. LR yields the lowest predictive error, while KM and MR yield the highest predictive error. The predictive error of survival trees is related to split selection instability. Based on the low predictive error of LR, we recommend the use of this algorithm for the construction of survival trees. Unpruned survival trees with multivariate p-value adjustment can perform equally well compared to pruned trees. The analysis of split selection instability can be used to communicate the results of tree-based analyses to clinicians and to support the application of survival trees.
Prediction of high frequency combustion instability in liquid propellant rocket engines
NASA Technical Reports Server (NTRS)
Kim, Y. M.; Chen, C. P.; Ziebarth, J. P.; Chen, Y. S.
1992-01-01
The present use of a numerical model developed for the prediction of high-frequency combustion stabilities in liquid propellant rocket engines focuses on (1) the overall behavior of nonlinear combustion instabilities (2) the effects of acoustic oscillations on the fuel-droplet vaporization and combustion process in stable and unstable engine operating conditions, oscillating flowfields, and liquid-fuel trajectories during combustion instability, and (3) the effects of such design parameters as inlet boundary conditions, initial spray conditions, and baffle length. The numerical model has yielded predictions of the tangential-mode combustion instability; baffle length and droplet size variations are noted to have significant effects on engine stability.
Cruise, Denise R; Chagdes, James R; Liddy, Joshua J; Rietdyk, Shirley; Haddad, Jeffrey M; Zelaznik, Howard N; Raman, Arvind
2017-07-26
Increased time-delay in the neuromuscular system caused by neurological disorders, concussions, or advancing age is an important factor contributing to balance loss (Chagdes et al., 2013, 2016a,b). We present the design and fabrication of an active balance board system that allows for a systematic study of stiffness and time-delay induced instabilities in standing posture. Although current commercial balance boards allow for variable stiffness, they do not allow for manipulation of time-delay. Having two controllable parameters can more accurately determine the cause of balance deficiencies, and allows us to induce instabilities even in healthy populations. An inverted pendulum model of human posture on such an active balance board predicts that reduced board rotational stiffness destabilizes upright posture through board tipping, and limit cycle oscillations about the upright position emerge as feedback time-delay is increased. We validate these two mechanisms of instability on the designed balance board, showing that rotational stiffness and board time-delay induced the predicted postural instabilities in healthy, young adults. Although current commercial balance boards utilize control of rotational stiffness, real-time control of both stiffness and time-delay on an active balance board is a novel and innovative manipulation to reveal balance deficiencies and potentially improve individualized balance training by targeting multiple dimensions contributing to standing balance. Copyright © 2017 Elsevier Ltd. All rights reserved.
Nonlinear Development and Secondary Instability of Traveling Crossflow Vortices
NASA Technical Reports Server (NTRS)
Li, Fei; Choudhari, Meelan M.; Duan, Lian; Chang, Chau-Lyan
2014-01-01
Transition research under NASA's Aeronautical Sciences Project seeks to develop a validated set of variable fidelity prediction tools with known strengths and limitations, so as to enable "sufficiently" accurate transition prediction and practical transition control for future vehicle concepts. This paper builds upon prior effort targeting the laminar breakdown mechanisms associated with stationary crossflow instability over a swept-wing configuration relevant to subsonic aircraft with laminar flow technology. Specifically, transition via secondary instability of traveling crossflow modes is investigated as an alternate scenario for transition. Results show that, for the parameter range investigated herein, secondary instability of traveling crossflow modes becomes insignificant in relation to the secondary instability of the stationary modes when the relative initial amplitudes of the traveling crossflow instability are lower than those of the stationary modes by approximately two orders of magnitudes or more. Linear growth predictions based on the secondary instability theory are found to agree well with those based on PSE and DNS, with the most significant discrepancies being limited to spatial regions of relatively weak secondary growth, i.e., regions where the primary disturbance amplitudes are smaller in comparison to its peak amplitude. Nonlinear effects on secondary instability evolution is also investigated and found to be initially stabilizing, prior to breakdown.
Instabilities of mixed convection flows adjacent to inclined plates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abu-Mulaweh, H.I.; Armaly, B.F.; Chen, T.S.
1987-11-01
The measurements by Sparrow and Husar and by Lloyd and Sparrow established that the onset of instability (transition from laminar to turbulent) in free convection boundary layer flow above an inclined heated plate is predominated by the wave mode of instability for inclination angles less than 14 deg, as measured from the vertical, and by the vortex mode of instability for angles greater than 17 deg. The transition Grashof number deceased as the angle of inclination increased. The predictions of Chen and Tzuoo for this flow provide trends that are similar to measured values, but the predicted critical Grashof numbersmore » deviate significantly (three orders of magnitude smaller) from measured values. The instability of mixed convection boundary layer flow adjacent to inclined heated plates have also been treated numerically by Chen and Mucoglu for wave instability and by Chen et al. for vortex instability. Comparisons with measurements of instability in mixed convection flow adjacent to inclined plates were not available in the literature. It is anticipated, however, that these predictions will underestimate the actual onset of instability, as in the free convection case. The lack of measurements in this flow domain for this geometry has motivated the present study. The onset of instability in mixed convection flow adjacent to an isothermally heated inclined plate was determined in this study through flow visualization. The buoyancy-assisting and buoyancy-opposing flow cases were examined for the flow both above and below the heated plate. The critical Grashof-Reynolds number relationships for the onset of instability in this flow domain are reported in this paper.« less
Unsteady Aerodynamic Modeling in Roll for the NASA Generic Transport Model
NASA Technical Reports Server (NTRS)
Murphy, Patrick C.; Klein, Vladislav; Frink, Neal T.
2012-01-01
Reducing the impact of loss-of-control conditions on commercial transport aircraft is a primary goal of the NASA Aviation Safety Program. One aspect in developing the supporting technologies is to improve the aerodynamic models that represent these adverse conditions. Aerodynamic models appropriate for loss of control conditions require a more general mathematical representation to predict nonlinear unsteady behaviors. In this paper, a more general mathematical model is proposed for the subscale NASA Generic Transport Model (GTM) that covers both low and high angles of attack. Particular attention is devoted to the stall region where full-scale transports have demonstrated a tendency for roll instability. The complete aerodynamic model was estimated from dynamic wind-tunnel data. Advanced computational methods are used to improve understanding and visualize the flow physics within the region where roll instability is a factor.
Long-Wavelength Instability in Marangoni Convection
NASA Technical Reports Server (NTRS)
VanHook, Stephen J.; Schatz, Michael F.; Swift, Jack B.; McCormick, W. D.; Swinney, Harry L.
1996-01-01
Our experiments in thin liquid layers (approximately 0.1 mm thick) heated from below reveal a well-defined long-wavelength instability: at a critical temperature difference across the layer, the depth of the layer in the center of the cell spontaneously decreases until the liquid-air interface ruptures and a dry spot forms. The onset of this critical instability occurs at a temperature difference across the liquid layer that is 35% smaller than that predicted in earlier theoretical studies of a single layer model. Our analysis of a two-layer model yields predictions in accord with the observations for liquid layer depths greater than or equal to 0.15 mm, but for smaller depths there is an increasing difference between our predictions and observations (the difference is 25% for a layer 0.06 mm thick). In microgravity environments the long-wavelength instability observed in our terrestrial experiments is expected to replace cellular convection as the primary instability in thick as well as thin liquid layers heated quasistatically from below.
Propeller flow visualization techniques
NASA Technical Reports Server (NTRS)
Stefko, G. L.; Paulovich, F. J.; Greissing, J. P.; Walker, E. D.
1982-01-01
Propeller flow visualization techniques were tested. The actual operating blade shape as it determines the actual propeller performance and noise was established. The ability to photographically determine the advanced propeller blade tip deflections, local flow field conditions, and gain insight into aeroelastic instability is demonstrated. The analytical prediction methods which are being developed can be compared with experimental data. These comparisons contribute to the verification of these improved methods and give improved capability for designing future advanced propellers with enhanced performance and noise characteristics.
NASA Technical Reports Server (NTRS)
Howard, Anna K. T.
1999-01-01
The tiltrotor offers the best mix of hovering and cruise flight of any of the current V/STOL configurations. One possible improvement on the tiltrotors of today designs would be using a soft-inplane hingeless hub. The advantages to a soft-inplane hingeless hub range from reduced weight and maintenance to reduced vibration and loads. However, soft-inplane rotor systems are inherently in danger of the aeromechanical instabilities of ground and air resonance. Furthermore tiltrotors can be subject to whirl flutter. At least in part because of the potential for air and ground resonance in a soft-inplane rotor, the Bell XV-15, the Bell-Boeing V-22 Osprey, and the new Bell Augusta 609 have stiff-inplane, gimballed rotors which do not experience these instabilities. In order to design soft-inplane V/STOL aircraft that do not experience ground or air resonance, it is important to be able to predict these instabilities accurately. Much of the research studying the stability of tiltrotors has been focused on the understanding and prediction of whirl flutter. As this instability is increasingly well understood, air and ground resonance for a tiltrotor need to be investigated. Once we understand the problems of air and ground resonance in a tiltrotor, we must look for solutions to these instabilities. Other researchers have found composite or kinematic couplings in the blades of a helicopter helpful for ground and air resonance stability. Tiltrotor research has shown composite couplings in the wing to be helpful for whirl flutter. Therefore, this project will undertake to model ground and air resonance of a soft-inplane hingeless tiltrotor to understand the mechanisms involved and to evaluate whether aeroelastic couplings in the wing or kinematic couplings in the blades would aid in stabilizing these instabilities in a tiltrotor.
Synchrophasor-Assisted Prediction of Stability/Instability of a Power System
NASA Astrophysics Data System (ADS)
Saha Roy, Biman Kumar; Sinha, Avinash Kumar; Pradhan, Ashok Kumar
2013-05-01
This paper presents a technique for real-time prediction of stability/instability of a power system based on synchrophasor measurements obtained from phasor measurement units (PMUs) at generator buses. For stability assessment the technique makes use of system severity indices developed using bus voltage magnitude obtained from PMUs and generator electrical power. Generator power is computed using system information and PMU information like voltage and current phasors obtained from PMU. System stability/instability is predicted when the indices exceeds a threshold value. A case study is carried out on New England 10-generator, 39-bus system to validate the performance of the technique.
NASA Technical Reports Server (NTRS)
Anderson, William E.; Lucht, Robert P.; Mongia, Hukam
2015-01-01
Concurrent simulation and experiment was undertaken to assess the ability of a hybrid RANS-LES model to predict combustion dynamics in a single-element lean direct-inject (LDI) combustor showing self-excited instabilities. High frequency pressure modes produced by Fourier and modal decomposition analysis were compared quantitatively, and trends with equivalence ratio and inlet temperature were compared qualitatively. High frequency OH PLIF and PIV measurements were also taken. Submodels for chemical kinetics and primary and secondary atomization were also tested against the measured behavior. For a point-wise comparison, the amplitudes matched within a factor of two. The dependence on equivalence ratio was matched. Preliminary results from simulation using an 18-reaction kinetics model indicated instability amplitudes closer to measurement. Analysis of the simulations suggested a band of modes around 1400 Hz were due to a vortex bubble breakdown and a band of modes around 6 kHz were due to a precessing vortex core hydrodynamic instability. The primary needs are directly coupled and validated ab initio models of the atomizer free surface flow and the primary atomization processes, and more detailed study of the coupling between the 3D swirling flow and the local thermoacoustics in the diverging venturi section.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishii, Mamoru
The NEUP funded project, NEUP-3496, aims to experimentally investigate two-phase natural circulation flow instability that could occur in Small Modular Reactors (SMRs), especially for natural circulation SMRs. The objective has been achieved by systematically performing tests to study the general natural circulation instability characteristics and the natural circulation behavior under start-up or design basis accident conditions. Experimental data sets highlighting the effect of void reactivity feedback as well as the effect of power ramp-up rate and system pressure have been used to develop a comprehensive stability map. The safety analysis code, RELAP5, has been used to evaluate experimental results andmore » models. Improvements to the constitutive relations for flashing have been made in order to develop a reliable analysis tool. This research has been focusing on two generic SMR designs, i.e. a small modular Simplified Boiling Water Reactor (SBWR) like design and a small integral Pressurized Water Reactor (PWR) like design. A BWR-type natural circulation test facility was firstly built based on the three-level scaling analysis of the Purdue Novel Modular Reactor (NMR) with an electric output of 50 MWe, namely NMR-50, which represents a BWR-type SMR with a significantly reduced reactor pressure vessel (RPV) height. The experimental facility was installed with various equipment to measure thermalhydraulic parameters such as pressure, temperature, mass flow rate and void fraction. Characterization tests were performed before the startup transient tests and quasi-steady tests to determine the loop flow resistance. The control system and data acquisition system were programmed with LabVIEW to realize the realtime control and data storage. The thermal-hydraulic and nuclear coupled startup transients were performed to investigate the flow instabilities at low pressure and low power conditions for NMR-50. Two different power ramps were chosen to study the effect of startup power density on the flow instability. The experimental startup transient results showed the existence of three different flow instability mechanisms, i.e., flashing instability, condensation induced flow instability, and density wave oscillations. In addition, the void-reactivity feedback did not have significant effects on the flow instability during the startup transients for NMR-50. ii Several initial startup procedures with different power ramp rates were experimentally investigated to eliminate the flow instabilities observed from the startup transients. Particularly, the very slow startup transient and pressurized startup transient tests were performed and compared. It was found that the very slow startup transients by applying very small power density can eliminate the flashing oscillations in the single-phase natural circulation and stabilize the flow oscillations in the phase of net vapor generation. The initially pressurized startup procedure was tested to eliminate the flashing instability during the startup transients as well. The pressurized startup procedure included the initial pressurization, heat-up, and venting process. The startup transient tests showed that the pressurized startup procedure could eliminate the flow instability during the transition from single-phase flow to two-phase flow at low pressure conditions. The experimental results indicated that both startup procedures were applicable to the initial startup of NMR. However, the pressurized startup procedures might be preferred due to short operating hours required. In order to have a deeper understanding of natural circulation flow instability, the quasi-steady tests were performed using the test facility installed with preheater and subcooler. The effect of system pressure, core inlet subcooling, core power density, inlet flow resistance coefficient, and void reactivity feedback were investigated in the quasi-steady state tests. The experimental stability boundaries were determined between unstable and stable flow conditions in the dimensionless stability plane of inlet subcooling number and Zuber number. To predict the stability boundary theoretically, linear stability analysis in the frequency domain was performed at four sections of the natural circulation test loop. The flashing phenomena in the chimney section was considered as an axially uniform heat source. And the dimensionless characteristic equation of the pressure drop perturbation was obtained by considering the void fraction effect and outlet flow resistance in the core section. The theoretical flashing boundary showed some discrepancies with previous experimental data from the quasi-steady state tests. In the future, thermal non-equilibrium was recommended to improve the accuracy of flashing instability boundary. As another part of the funded research, flow instabilities of a PWR-type SMR under low pressure and low power conditions were investigated experimentally as well. The NuScale reactor design was selected as the prototype for the PWR-type SMR. In order to experimentally study the natural circulation behavior of NuScale iii reactor during accidental scenarios, detailed scaling analyses are necessary to ensure that the scaled phenomena could be obtained in a laboratory test facility. The three-level scaling method is used as well to obtain the scaling ratios derived from various non-dimensional numbers. The design of the ideally scaled facility (ISF) was initially accomplished based on these scaling ratios. Then the engineering scaled facility (ESF) was designed and constructed based on the ISF by considering engineering limitations including laboratory space, pipe size, and pipe connections etc. PWR-type SMR experiments were performed in this well-scaled test facility to investigate the potential thermal hydraulic flow instability during the blowdown events, which might occur during the loss of coolant accident (LOCA) and loss of heat sink accident (LOHS) of the prototype PWR-type SMR. Two kinds of experiments, normal blowdown event and cold blowdown event, were experimentally investigated and compared with code predictions. The normal blowdown event was experimentally simulated since an initial condition where the pressure was lower than the designed pressure of the experiment facility, while the code prediction of blowdown started from the normal operation condition. Important thermal hydraulic parameters including reactor pressure vessel (RPV) pressure, containment pressure, local void fraction and temperature, pressure drop and natural circulation flow rate were measured and analyzed during the blowdown event. The pressure and water level transients are similar to the experimental results published by NuScale [51], which proves the capability of current loop in simulating the thermal hydraulic transient of real PWR-type SMR. During the 20000s blowdown experiment, water level in the core was always above the active fuel assemble during the experiment and proved the safety of natural circulation cooling and water recycling design of PWR-type SMR. Besides, pressure, temperature, and water level transient can be accurately predicted by RELAP5 code. However, the oscillations of natural circulation flow rate, water level and pressure drops were observed during the blowdown transients. This kind of flow oscillations are related to the water level and the location upper plenum, which is a path for coolant flow from chimney to steam generator and down comer. In order to investigate the transients start from the opening of ADS valve in both experimental and numerical way, the cold blow-down experiment is conducted. For the cold blowdown event, different from setting both reactor iv pressure vessel (RPV) and containment at high temperature and pressure, only RPV was heated close to the highest designed pressure and then open the ADS valve, same process was predicted using RELAP5 code. By doing cold blowdown experiment, the entire transients from the opening of ADS can be investigated by code and benchmarked with experimental data. Similar flow instability observed in the cold blowdown experiment. The comparison between code prediction and experiment data showed that the RELAP5 code can successfully predict the pressure void fraction and temperature transient during the cold blowdown event with limited error, but numerical instability exists in predicting natural circulation flow rate. Besides, the code is lack of capability in predicting the water level related flow instability observed in experiments.« less
NASA Technical Reports Server (NTRS)
Lim, Kair Chuan
1986-01-01
Low frequency combustion instability, known as chugging, is consistently experienced during shutdown in the fuel and oxidizer preburners of the Space Shuttle Main Engines. Such problems always occur during the helium purge of the residual oxidizer from the preburner manifolds during the shutdown sequence. Possible causes and triggering mechanisms are analyzed and details in modeling the fuel preburner chug are presented. A linearized chugging model, based on the foundation of previous models, capable of predicting the chug occurrence is discussed and the predicted results are presented and compared to experimental work performed by NASA. Sensitivity parameters such as chamber pressure, fuel and oxidizer temperatures, and the effective bulk modulus of the liquid oxidizer are considered in analyzing the fuel preburner chug. The computer program CHUGTEST is utilized to generate the stability boundary for each sensitivity study and the region for stable operation is identified.
Temporality of couple conflict and relationship perceptions.
Johnson, Matthew D; Horne, Rebecca M; Hardy, Nathan R; Anderson, Jared R
2018-05-03
Using 5 waves of longitudinal survey data gathered from 3,405 couples, the present study investigates the temporal associations between self-reported couple conflict (frequency and each partner's constructive and withdrawing behaviors) and relationship perceptions (satisfaction and perceived instability). Autoregressive cross-lagged model results revealed couple conflict consistently predicted future relationship perceptions: More frequent conflict and withdrawing behaviors and fewer constructive behaviors foretold reduced satisfaction and conflict frequency and withdrawal heightened perceived instability. Relationship perceptions also shaped future conflict, but in surprising ways: Perceptions of instability were linked with less frequent conflict, and male partner instability predicted fewer withdrawing behaviors for female partners. Higher satisfaction from male partners also predicted more frequent and less constructive conflict behavior in the future. These findings illustrate complex bidirectional linkages between relationship perceptions and couple conflict behaviors in the development of couple relations. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
A new method for the prediction of combustion instability
NASA Astrophysics Data System (ADS)
Flanagan, Steven Meville
This dissertation presents a new approach to the prediction of combustion instability in solid rocket motors. Previous attempts at developing computational tools to solve this problem have been largely unsuccessful, showing very poor agreement with experimental results and having little or no predictive capability. This is due primarily to deficiencies in the linear stability theory upon which these efforts have been based. Recent advances in linear instability theory by Flandro have demonstrated the importance of including unsteady rotational effects, previously considered negligible. Previous versions of the theory also neglected corrections to the unsteady flow field of the first order in the mean flow Mach number. This research explores the stability implications of extending the solution to include these corrections. Also, the corrected linear stability theory based upon a rotational unsteady flow field extended to first order in mean flow Mach number has been implemented in two computer programs developed for the Macintosh platform. A quasi one-dimensional version of the program has been developed which is based upon an approximate solution to the cavity acoustics problem. The three-dimensional program applies Greens's Function Discretization (GFD) to the solution for the acoustic mode shapes and frequency. GFD is a recently developed numerical method for finding fully three dimensional solutions for this class of problems. The analysis of complex motor geometries, previously a tedious and time consuming task, has also been greatly simplified through the development of a drawing package designed specifically to facilitate the specification of typical motor geometries. The combination of the drawing package, improved acoustic solutions, and new analysis, results in a tool which is capable of producing more accurate and meaningful predictions than have been possible in the past.
Viscous Rayleigh-Taylor instability in spherical geometry
NASA Astrophysics Data System (ADS)
Mikaelian, Karnig O.
2016-02-01
We consider viscous fluids in spherical geometry, a lighter fluid supporting a heavier one. Chandrasekhar [Q. J. Mech. Appl. Math. 8, 1 (1955), 10.1093/qjmam/8.1.1] analyzed this unstable configuration providing the equations needed to find, numerically, the exact growth rates for the ensuing Rayleigh-Taylor instability. He also derived an analytic but approximate solution. We point out a weakness in his approximate dispersion relation (DR) and offer a somewhat improved one. A third DR, based on transforming a planar DR into a spherical one, suffers no unphysical predictions and compares reasonably well with the exact work of Chandrasekhar and a more recent numerical analysis of the problem [Terrones and Carrara, Phys. Fluids 27, 054105 (2015), 10.1063/1.4921648].
Vertical Structure of Heat and Momentum Transport in the Urban Surface Layer
NASA Astrophysics Data System (ADS)
Hrisko, J.; Ramamurthy, P.
2017-12-01
Vertical transport of heat and momentum during convective periods is investigated in the urban surface layer using eddy covariance measurements at 5 levels. The Obukhov length is used to divide the dataset into distinct stability regimes: weakly unstable, unstable and very unstable. Our preliminary analysis indicates critical differences in the transport of heat and momentum as the instability increases. Particularly, during periods of increased instability the vertical heat flux deviates from surface layer similarity theory. Further analysis of primary quadrant sweeps and ejections also indicate deviations from the theory, alluding that ejections dominate during convective periods for heat transport, but equally contribute with sweeps for momentum transport. The transport efficiencies of momentum at all 5 levels uniformly decreases as the instability increases, in stark contrast the heat transport efficiencies increase non-linearly as the instability increases. Collectively, these results demonstrate the breakdown of similarity theory during convective periods, and reaffirm that revised and improved methods for characterizing heat and momentum transport in urban areas is needed. These implications could ultimately advance weather prediction and estimation of scalar transport for urban areas susceptible to weather hazards and large amounts of pollution.
Fingering instabilities in bacterial community phototaxis
NASA Astrophysics Data System (ADS)
Vps, Ritwika; Man Wah Chau, Rosanna; Casey Huang, Kerwyn; Gopinathan, Ajay
Synechocystis sp PCC 6803 is a phototactic cyanobacterium that moves directionally in response to a light source. During phototaxis, these bacterial communities show emergent spatial organisation resulting in the formation of finger-like projections at the propagating front. In this study, we propose an analytical model that elucidates the underlying physical mechanisms which give rise to these spatial patterns. We describe the migrating front during phototaxis as a one-dimensional curve by considering the effects of phototactic bias, diffusion and surface tension. By considering the propagating front as composed of perturbations to a flat solution and using linear stability analysis, we predict a critical bias above which the finger-like projections appear as instabilities. We also predict the wavelengths of the fastest growing mode and the critical mode above which the instabilities disappear. We validate our predictions through comparisons to experimental data obtained by analysing images of phototaxis in Synechocystis communities. Our model also predicts the observed loss of instabilities in taxd1 mutants (cells with inactive TaxD1, an important photoreceptor in finger formation), by considering diffusion in mutually perpendicular directions and a lower, negative bias.
History and Physical Examination for Shoulder Instability.
Haley, Col Chad A
2017-09-01
Glenohumeral instability frequently occurs in young active individuals especially those engaged in athletic and military activities. With advanced imaging and arthroscopic evaluation, our understanding of the injury patterns associated with instability has significantly improved. The majority of instability results from a traumatic anterior event which presents with common findings in the history, examination, and imaging studies. As such, a comprehensive evaluation of the patient is important to correctly diagnose the instability patterns and thus provide appropriate treatment intervention. With the correct diagnosis and improved surgical techniques, the majority of patients with instability can return to preinjury levels.
Rayleigh instability at small length scales.
Gopan, Nandu; Sathian, Sarith P
2014-09-01
The Rayleigh instability (also called the Plateau-Rayleigh instability) of a nanosized liquid propane thread is investigated using molecular dynamics (MD). The validity of classical predictions at small length scales is verified by comparing the temporal evolution of liquid thread simulated by MD against classical predictions. Previous works have shown that thermal fluctuations become dominant at small length scales. The role and influence of the stochastic nature of thermal fluctuations in determining the instability at small length scale is also investigated. Thermal fluctuations are seen to dominate and accelerate the breakup process only during the last stages of breakup. The simulations also reveal that the breakup profile of nanoscale threads undergo modification due to reorganization of molecules by the evaporation-condensation process.
Using Laboratory Experiments to Improve Ice-Ocean Parameterizations
NASA Astrophysics Data System (ADS)
McConnochie, C. D.; Kerr, R. C.
2017-12-01
Numerical models of ice-ocean interactions are typically unable to resolve the transport of heat and salt to the ice face. Instead, models rely upon parameterizations that have not been sufficiently validated by observations. Recent laboratory experiments of ice-saltwater interactions allow us to test the standard parameterization of heat and salt transport to ice faces - the three-equation model. The three-equation model predicts that the melt rate is proportional to the fluid velocity while the experimental results typically show that the melt rate is independent of the fluid velocity. By considering an analysis of the boundary layer that forms next to a melting ice face, we suggest a resolution to this disagreement. We show that the three-equation model makes the implicit assumption that the thickness of the diffusive sublayer next to the ice is set by a shear instability. However, at low flow velocities, the sublayer is instead set by a convective instability. This distinction leads to a threshold velocity of approximately 4 cm/s at geophysically relevant conditions, above which the form of the parameterization should be valid. In contrast, at flow speeds below 4 cm/s, the three-equation model will underestimate the melt rate. By incorporating such a minimum velocity into the three-equation model, predictions made by numerical simulations could be easily improved.
The Relationship between ADHD Symptoms, Mood Instability, and Self-Reported Offending
ERIC Educational Resources Information Center
Gudjonsson, Gisli H.; Sigurdsson, Jon Fridrik; Adalsteinsson, Tomas F.; Young, Susan
2013-01-01
Objective: To investigate the relative importance of ADHD symptoms, mood instability, and antisocial personality disorder traits in predicting self-reported offending. Method: A total of 295 Icelandic students completed two scales of offending behavior and measures of ADHD symptoms, mood instability, and antisocial personality traits. Results:…
NASA Technical Reports Server (NTRS)
Powell, E. A.; Zinn, B. T.
1973-01-01
An analytical technique is developed to solve nonlinear three-dimensional, transverse and axial combustion instability problems associated with liquid-propellant rocket motors. The Method of Weighted Residuals is used to determine the nonlinear stability characteristics of a cylindrical combustor with uniform injection of propellants at one end and a conventional DeLaval nozzle at the other end. Crocco's pressure sensitive time-lag model is used to describe the unsteady combustion process. The developed model predicts the transient behavior and nonlinear wave shapes as well as limit-cycle amplitudes and frequencies typical of unstable motor operation. The limit-cycle amplitude increases with increasing sensitivity of the combustion process to pressure oscillations. For transverse instabilities, calculated pressure waveforms exhibit sharp peaks and shallow minima, and the frequency of oscillation is within a few percent of the pure acoustic mode frequency. For axial instabilities, the theory predicts a steep-fronted wave moving back and forth along the combustor.
A combined field/remote sensing approach for characterizing landslide risk in coastal areas
NASA Astrophysics Data System (ADS)
Francioni, Mirko; Coggan, John; Eyre, Matthew; Stead, Doug
2018-05-01
Understanding the key factors controlling slope failure mechanisms in coastal areas is the first and most important step for analyzing, reconstructing and predicting the scale, location and extent of future instability in rocky coastlines. Different failure mechanisms may be possible depending on the influence of the engineering properties of the rock mass (including the fracture network), the persistence and type of discontinuity and the relative aspect or orientation of the coastline. Using a section of the North Coast of Cornwall, UK, as an example we present a multi-disciplinary approach for characterizing landslide risk associated with coastal instabilities in a blocky rock mass. Remotely captured terrestrial and aerial LiDAR and photogrammetric data were interrogated using Geographic Information System (GIS) techniques to provide a framework for subsequent analysis, interpretation and validation. The remote sensing mapping data was used to define the rock mass discontinuity network of the area and to differentiate between major and minor geological structures controlling the evolution of the North Coast of Cornwall. Kinematic instability maps generated from aerial LiDAR data using GIS techniques and results from structural and engineering geological surveys are presented. With this method, it was possible to highlight the types of kinematic failure mechanism that may generate coastal landslides and highlight areas that are more susceptible to instability or increased risk of future instability. Multi-temporal aerial LiDAR data and orthophotos were also studied using GIS techniques to locate recent landslide failures, validate the results obtained from the kinematic instability maps through site observations and provide improved understanding of the factors controlling the coastal geomorphology. The approach adopted is not only useful for academic research, but also for local authorities and consultancy's when assessing the likely risks of coastal instability.
Kluczynski, Melissa A; Marzo, John M; Rauh, Michael A; Bernas, Geoffrey A; Bisson, Leslie J
2015-02-01
Male patients tend to have more meniscal and chondral injuries at the time of anterior cruciate ligament (ACL) reconstruction than females. No studies have examined sex-specific predictors of meniscal and chondral lesions in ACL-injured patients. To identify sex-specific predictors of meniscal and chondral lesions, as well as meniscal tear management, in patients undergoing ACL reconstruction. Cohort study; Level of evidence, 3. Data were collected prospectively from 689 patients (56.2% males) undergoing ACL reconstruction between 2005 and 2014. Predictors of meniscal tears, meniscal tear management, and chondral injuries were determined using multivariate logistic regression models stratified by sex. Predictors were age, body mass index (BMI; 25-29.99 and ≥30 vs ≤24.99 kg/m(2)), mechanism (contact vs noncontact) and type (high-impact sports [basketball, football, soccer, and skiing] and other sports vs not sports-related) of injury, interval from injury to surgery (≤6 vs >6 weeks), and instability episodes (vs none). Odds ratios and 95% CIs were reported. Males had more lateral (46% vs 27.8%; P < .0001) and medial (40.2% vs 31.5%; P = .01) meniscal tears, as well as more lateral (72.1% vs 27.9%; P < .0001) and medial (61.4% vs 38.6%; P = .01) meniscectomies than females. For males, age predicted chondral injuries and medial meniscectomy; BMI ≥30 kg/m(2) predicted medial meniscal tears; high-impact and other sports predicted medial meniscal tears, medial meniscectomies, and medial meniscal repairs; injuries ≤6 weeks from surgery predicted lateral meniscal repairs; and instability episodes predicted medial meniscal tears, medial tears left in situ, medial meniscectomies, and medial meniscal repairs. For females, age predicted chondral injuries, BMI ≥30 kg/m(2) predicted lateral meniscectomies and repairs, and instability episodes predicted medial meniscectomies. Sex differences were observed. For males, predictors included age, BMI, sports-related injuries, injuries ≤6 weeks from surgery, and instability episodes. For females, predictors included age, BMI, and instability episodes.
Observations on instabilities of cavitating inducers
NASA Technical Reports Server (NTRS)
Braisted, D.; Brennen, C.
1978-01-01
Experimental observations of instability of cavitating inducers were made for two different inducers operating at different flow coefficients. In general, instability occurred just before head breakdown. Auto-oscillation and rotating cavitation were observed. Analysis of small-amplitude behavior of the inducer and hydraulic system is carried out, and analytical predictions of stability limits were compared with experiment.
On the nonlinear stability of a high-speed, axisymmetric boundary layer
NASA Technical Reports Server (NTRS)
Pruett, C. David; Ng, Lian L.; Erlebacher, Gordon
1991-01-01
The stability of a high-speed, axisymmetric boundary layer is investigated using secondary instability theory and direct numerical simulation. Parametric studies based on the temporal secondary instability theory identify subharmonic secondary instability as a likely path to transition on a cylinder at Mach 4.5. The theoretical predictions are validated by direct numerical simulation at temporally-evolving primary and secondary disturbances in an axisymmetric boundary-layer flow. At small amplitudes of the secondary disturbance, predicted growth rates agree to several significant digits with values obtained from the spectrally-accurate solution of the compressible Navier-Stokes equations. Qualitative agreement persists to large amplitudes of the secondary disturbance. Moderate transverse curvature is shown to significantly affect the growth rate of axisymmetric second mode disturbances, the likely candidates of primary instability. The influence of curvature on secondary instability is largely indirect but most probably significant, through modulation of the primary disturbance amplitude. Subharmonic secondary instability is shown to be predominantly inviscid in nature, and to account for spikes in the Reynolds stress components at or near the critical layer.
Long-wave instabilities of two interlaced helical vortices
NASA Astrophysics Data System (ADS)
Quaranta, H. U.; Brynjell-Rahkola, M.; Leweke, T.; Henningson, D. S.
2016-09-01
We present a comparison between experimental observations and theoretical predictions concerning long-wave displacement instabilities of the helical vortices in the wake of a two-bladed rotor. Experiments are performed with a small-scale rotor in a water channel, using a set-up that allows the individual triggering of various instability modes at different azimuthal wave numbers, leading to local or global pairing of successive vortex loops. The initial development of the instability and the measured growth rates are in good agreement with the predictions from linear stability theory, based on an approach where the helical vortex system is represented by filaments. At later times, local pairing develops into large-scale distortions of the vortices, whereas for global pairing the non-linear evolution returns the system almost to its initial geometry.
Supersonic, shockwave-driven hydrodynamic instability experiments at OMEGA-EP
NASA Astrophysics Data System (ADS)
Wan, Willow
2016-10-01
Hydrodynamic instabilities play a dominant role in the transport of mass, momentum, and energy in nearly every plasma environment, governing the dynamics of natural and engineering systems such as solar convective zones, magnetospheric boundaries, and fusion experiments. In past decades, limitations in our understanding of hydrodynamic instabilities have led to discrepancies between observations and predictions. Since then, significant improvements have been made to our available experimental techniques, diagnostics, and simulation capabilities. Here, we present a novel experimental platform that can sustain a steady, supersonic flow across a precision-machined, well-characterized material interface for unprecedented durations We applied this platform to a series of Kelvin-Helmholtz instability experiments. The Kelvin-Helmholtz instability generates vortical structures and turbulence at an interface with shear flow. In a supersonic flow, the growth rate is inhibited and the instability structure is altered. The data were obtained at the OMEGA-EP facility by firing three laser beams in sequence to produce a 12 kJ, 28 ns stitched laser pulse. The ablation pressure sustained a steady shockwave for 70 ns over a foam-plastic, single-mode or dual-mode interface. A spherical crystal imager was used to measure the evolution of these modulations with high-resolution x-ray radiography using Cu Kα radiation at 8.0 keV. The observed structure was reproduced with 2D hydrodynamic simulations. Supported by the U.S. DOE, through NNSA Grants DE-NA0002956 (SSAA) and DE-NA0002719 (NLUF), by the LLE under DE-NA0001944, and by the LLNL under subcontract B614207 to DE-AC52-07NA27344.
Prediction of plastic instabilities under thermo-mechanical loadings in tension and simple shear
NASA Astrophysics Data System (ADS)
Manach, P. Y.; Mansouri, L. F.; Thuillier, S.
2016-08-01
Plastic instabilities like Portevin-Le Châtelier were quite thoroughly investigated experimentally in tension, under a large range of strain rates and temperatures. Such instabilities are characterized both by a jerky flow and a localization of the strain in bands. Similar phenomena were also recorded for example in simple shear [1]. Modelling of this phenomenon is mainly performed at room temperature, taking into account the strain rate sensitivity, though an extension of the classical Estrin-Kubin-McCormick was proposed in the literature, by making some of the material parameters dependent on temperature. A similar approach is considered in this study, furthermore extended for anisotropic plasticity with Hill's 1948 yield criterion. Material parameters are identified at 4 different temperatures, ranging from room temperature up to 250°C. The identification procedure is split in 3 steps, related to the elasticity, the average stress level and the magnitude of the stress drops. The anisotropy is considered constant in this temperature range, as evidenced by experimental results [2]. The model is then used to investigate the temperature dependence of the critical strain, as well as its capability to represent the propagation of the bands. Numerical predictions of the instabilities in tension and simple shear at room temperature and up to 250°C are compared with experimental results [3]. In the case of simple shear, a monotonic loading followed by unloading and reloading in the reverse direction (“Bauschinger-type” test) is also considered, showing that (i) kinematic hardening should be taken into account to fully describe the transition at re-yielding (ii) the modelling of the critical strain has to be improved.
Combustion Stability Assessments of the Black Brant Solid Rocket Motor
NASA Technical Reports Server (NTRS)
Fischbach, Sean
2014-01-01
The Black Brant variation of the Standard Brant developed in the 1960's has been a workhorse motor of the NASA Sounding Rocket Project Office (SRPO) since the 1970's. In March 2012, the Black Brant Mk1 used on mission 36.277 experienced combustion instability during a flight at White Sands Missile Range, the third event in the last four years, the first occurring in November, 2009, the second in April 2010. After the 2010 event the program has been increasing the motor's throat diameter post-delivery with the goal of lowering the chamber pressure and increasing the margin against combustion instability. During the most recent combustion instability event, the vibrations exceeded the qualification levels for the Flight Termination System. The present study utilizes data generated from T-burner testing of multiple Black Brant propellants at the Naval Air Warfare Center at China Lake, to improve the combustion stability predictions for the Black Brant Mk1 and to generate new predictions for the Mk2. Three unique one dimensional (1-D) stability models were generated, representing distinct Black Brant flights, two of which experienced instabilities. The individual models allowed for comparison of stability characteristics between various nozzle configurations. A long standing "rule of thumb" states that increased stability margin is gained by increasing the throat diameter. In contradiction to this experience based rule, the analysis shows that little or no margin is gained from a larger throat diameter. The present analysis demonstrates competing effects resulting from an increased throat diameter accompanying a large response function. As is expected, more acoustic energy was expelled through the nozzle, but conversely more acoustic energy was generated due to larger gas velocities near the propellant surfaces.
Transonic small disturbances equation applied to the solution of two-dimensional nonsteady flows
NASA Technical Reports Server (NTRS)
Couston, M.; Angelini, J. J.; Mulak, P.
1980-01-01
Transonic nonsteady flows are of large practical interest. Aeroelastic instability prediction, control figured vehicle techniques or rotary wings in forward flight are some examples justifying the effort undertaken to improve knowledge of these problems is described. The numerical solution of these problems under the potential flow hypothesis is described. The use of an alternating direction implicit scheme allows the efficient resolution of the two dimensional transonic small perturbations equation.
NASA Technical Reports Server (NTRS)
Burcham, F. W., Jr.; Zeller, J. R.
1984-01-01
An instability in the nozzle of the F100 engine, equipped with a digital electronic engine control (DEEC), was observed during a flight evaluation on an F-15 aircraft. The instability occurred in the upper left hand corner (ULMC) of the flight envelope during augmentation. The instability was not predicted by stability analysis, closed-loop simulations of the the engine, or altitude testing of the engine. The instability caused stalls and augmentor blowouts. The nozzle instability and the altitude testing are described. Linear analysis and nonlinear digital simulation test results are presented. Software modifications on further flight test are discussed.
NASA Technical Reports Server (NTRS)
Melcher, J. C.; Morehead, Robert L.
2014-01-01
The Project Morpheus liquid oxygen (LOX) / liquid methane rocket engines demonstrated acousticcoupled combustion instabilities during sea-level ground-based testing at the NASA Johnson Space Center (JSC) and Stennis Space Center (SSC). High-amplitude, 1T, 1R, 1T1R (and higher order) modes appear to be triggered by injector conditions. The instability occurred during the Morpheus-specific engine ignition/start sequence, and did demonstrate the capability to propagate into mainstage. However, the instability was never observed to initiate during mainstage, even at low power levels. The Morpheus main engine is a JSC-designed 5,000 lbf-thrust, 4:1 throttling, pressure-fed cryogenic engine using an impinging element injector design. Two different engine designs, named HD4 and HD5, and two different builds of the HD4 engine all demonstrated similar instability characteristics. Through the analysis of more than 200 hot fire tests on the Morpheus vehicle and SSC test stand, a relationship between ignition stability and injector/chamber pressure was developed. The instability has the distinct characteristic of initiating at high relative injection pressure drop (dP) at low chamber pressure (Pc); i.e., instabilities initiated at high dP/Pc at low Pc during the start sequence. The high dP/Pc during start results during the injector /chamber chill-in, and is enhanced by hydraulic flip in the injector orifice elements. Because of the fixed mixture ratio of the existing engine design (the main valves share a common actuator), it is not currently possible to determine if LOX or methane injector dP/Pc were individual contributors (i.e., LOX and methane dP/Pc typically trend in the same direction within a given test). The instability demonstrated initiation characteristic of starting at or shortly after methane injector chillin. Colder methane (e.g., sub-cooled) at the injector inlet prior to engine start was much more likely to result in an instability. A secondary effect of LOX sub-cooling was also possibly observed; greater LOX sub- cooling improved stability. Some tests demonstrated a low-amplitude 1L-1T instability prior to LOX injector chill-in. The Morpheus main engine also demonstrated chug instabilities during some engine shutdown sequences on the flight vehicle and SSC test stand. The chug instability was also infrequently observed during the startup sequence. The chug instabilities predictably initiated at low dP/Pc at low Pc. The chug instabilities were always self-limiting; startup chug instabilities terminated during throttle-up and shutdown chug instabilities decayed by shutdown termination.
Psychological determinants of job retention in multiple sclerosis.
Ford, Helen L; Wicks, Charlotte R; Stroud, Amanda; Tennant, Alan
2018-01-01
Maintaining paid work is a key issue for people with multiple sclerosis (PwMS). Different factors, including psychological attributes, can influence job retention. Understanding their role should inform potential interventions to help PwMS retain employment. The aim of this study was to identify the key factors which improve job retention in an employed cohort of PwMS. This three-year longitudinal study used validated self-completed measures of physical and psychological factors at four time points over 28 months. Of 208 employed PwMS, just over 1 in 10 was no longer working at the end of the study. Three variables were predictive of continuing employment; low 'work instability' at baseline increased the odds of job retention by a factor of 12.76; high levels of self-efficacy by a factor of 4.66 and being less than 50 years of age increased the odds of job retention by a factor of 3.90. Path analysis demonstrated the mediating role of self-efficacy between the physical impact of MS and the level of work instability at exit. Screening for work instability and self-efficacy in a clinical setting followed by appropriate interventions to increase self-efficacy and reduce work instability could aid job retention in MS.
Dispersion Modeling Using Ensemble Forecasts Compared to ETEX Measurements.
NASA Astrophysics Data System (ADS)
Straume, Anne Grete; N'dri Koffi, Ernest; Nodop, Katrin
1998-11-01
Numerous numerical models are developed to predict long-range transport of hazardous air pollution in connection with accidental releases. When evaluating and improving such a model, it is important to detect uncertainties connected to the meteorological input data. A Lagrangian dispersion model, the Severe Nuclear Accident Program, is used here to investigate the effect of errors in the meteorological input data due to analysis error. An ensemble forecast, produced at the European Centre for Medium-Range Weather Forecasts, is then used as model input. The ensemble forecast members are generated by perturbing the initial meteorological fields of the weather forecast. The perturbations are calculated from singular vectors meant to represent possible forecast developments generated by instabilities in the atmospheric flow during the early part of the forecast. The instabilities are generated by errors in the analyzed fields. Puff predictions from the dispersion model, using ensemble forecast input, are compared, and a large spread in the predicted puff evolutions is found. This shows that the quality of the meteorological input data is important for the success of the dispersion model. In order to evaluate the dispersion model, the calculations are compared with measurements from the European Tracer Experiment. The model manages to predict the measured puff evolution concerning shape and time of arrival to a fairly high extent, up to 60 h after the start of the release. The modeled puff is still too narrow in the advection direction.
Hadadi, Mohammad; Ebrahimi, Ismaeil; Mousavi, Mohammad Ebrahim; Aminian, Gholamreza; Esteki, Ali; Rahgozar, Mehdi
2017-02-01
Chronic ankle instability is associated with neuromechanical changes and poor postural stability. Despite variety of mechanisms of foot and ankle orthoses, almost none apply comprehensive mechanisms to improve postural control in all subgroups of chronic ankle instability patients. The purpose of this study was to investigate the effect of an ankle support implementing combined mechanisms to improve postural control in chronic ankle instability patients. Cross-sectional study. An ankle support with combined mechanism was designed based on most effective action mechanisms of foot and ankle orthoses. The effect of this orthosis on postural control was evaluated in 20 participants with chronic ankle instability and 20 matched healthy participants. The single-limb stance balance test was measured in both groups with and without the new orthosis using a force platform. The results showed that application of combined mechanism ankle support significantly improved all postural sway parameters in chronic ankle instability patients. There were no differences in means of investigated parameters with and without the orthosis in the healthy group. No statistically significant differences were found in postural sway between chronic ankle instability patients and healthy participants after applying the combined mechanism ankle support. The combined mechanism ankle support is effective in improving static postural control of chronic ankle instability patients to close to the postural sway of healthy individual. the orthosis had no adverse effects on balance performance of healthy individuals. Clinical relevance Application of the combined mechanism ankle support for patients with chronic ankle instability is effective in improving static balance. This may be helpful in reduction of recurrence of ankle sprain although further research about dynamic conditions is needed.
Transverse Instabilities in the Fermilab Recycler
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prost, L.R.; Burov, A.; Shemyakin, A.
2011-07-01
Transverse instabilities of the antiproton beam have been observed in the Recycler ring soon after its commissioning. After installation of transverse dampers, the threshold for the instability limit increased significantly but the instability is still found to limit the brightness of the antiprotons extracted from the Recycler for Tevatron shots. In this paper, we describe observations of the instabilities during the extraction process as well as during dedicated studies. The measured instability threshold phase density agrees with the prediction of the rigid beam model within a factor of 2. Also, we conclude that the instability threshold can be significantly loweredmore » for a bunch contained in a narrow and shallow potential well due to effective exclusion of the longitudinal tails from Landau damping.« less
NASA Astrophysics Data System (ADS)
Imamura, James N.; Durisen, Richard H.; Pickett, Brian K.
2000-01-01
Dynamic nonaxisymmetric instabilities in rapidly rotating stars and protostars have a range of potential applications in astrophysics, including implications for binary formation during protostellar cloud collapse and for the possibility of aborted collapse to neutron star densities at late stages of stellar evolution (``fizzlers''). We have recently presented detailed linear analyses for polytropes of the most dynamically unstable global modes, the barlike modes. These produce bar distortions in the regions near the rotation axis but have trailing spiral arms toward the equator. In this paper, we use our linear eigenfunctions to predict the early nonlinear behavior of the dynamic instability and compare these ``quasi-linear'' predictions with several fully nonlinear hydrodynamics simulations. The comparisons demonstrate that the nonlinear saturation of the barlike instability is due to the self-interaction gravitational torques between the growing central bar and the spiral arms, where angular momentum is transferred outward from bar to arms. We also find a previously unsuspected resonance condition that accurately predicts the mass of the bar regions in our own simulations and in those published by other researchers. The quasi-linear theory makes other accurate predictions about consequences of instability, including properties of possible end-state bars and increases in central density, which can be large under some conditions. We discuss in some detail the application of our results to binary formation during protostellar collapse and to the formation of massive rotating black holes.
Multiple sclerosis and employment: Associations of psychological factors and work instability.
Wicks, Charlotte Rose; Ward, Karl; Stroud, Amanda; Tennant, Alan; Ford, Helen L
2016-10-12
People with multiple sclerosis often stop working earlier than expected. Psychological factors may have an impact on job retention. Investigation may inform interventions to help people stay in work. To investigate the associations between psychological factors and work instability in people with multiple sclerosis. A multi-method, 2-phased study. Focus groups were held to identify key themes. Questionnaire packs using validated scales of the key themes were completed at baseline and at 8-month follow-up. Four key psychological themes emerged. Out of 208 study subjects 57.2% reported medium/high risk of job loss, with marginal changes at 8 months. Some psychological variables fluctuated significantly, e.g. depression fell from 24.6% to 14.5%. Work instability and anxiety and depression were strongly correlated (χ2 p < 0.001). Those with probable depression at baseline had 7.1 times increased odds of medium/high work instability, and baseline depression levels also predicted later work instability (Hosmer-Lemeshow test 0.899; Nagelkerke R Square 0.579). Psychological factors fluctuated over the 8-month follow-up period. Some psychological variables, including anxiety and depression, were significantly associated with, and predictive of, work instability. Longitudinal analysis should further identify how these psychological attributes impact on work instability and potential job loss in the longer term.
Makhni, Eric C; Lamba, Nayan; Swart, Eric; Steinhaus, Michael E; Ahmad, Christopher S; Romeo, Anthony A; Verma, Nikhil N
2016-09-01
To compare the cost-effectiveness of arthroscopic revision instability repair and Latarjet procedure in treating patients with recurrent instability after initial arthroscopic instability repair. An expected-value decision analysis of revision arthroscopic instability repair compared with Latarjet procedure for recurrent instability followed by failed repair attempt was modeled. Inputs regarding procedure cost, clinical outcomes, and health utilities were derived from the literature. Compared with revision arthroscopic repair, Latarjet was less expensive ($13,672 v $15,287) with improved clinical outcomes (43.78 v 36.76 quality-adjusted life-years). Both arthroscopic repair and Latarjet were cost-effective compared with nonoperative treatment (incremental cost-effectiveness ratios of 3,082 and 1,141, respectively). Results from sensitivity analyses indicate that under scenarios of high rates of stability postoperatively, along with improved clinical outcome scores, revision arthroscopic repair becomes increasingly cost-effective. Latarjet procedure for failed instability repair is a cost-effective treatment option, with lower costs and improved clinical outcomes compared with revision arthroscopic instability repair. However, surgeons must still incorporate clinical judgment into treatment algorithm formation. Level IV, expected value decision analysis. Copyright © 2016. Published by Elsevier Inc.
Jonkers, Ilse; De Schutter, Joris; De Groote, Friedl
2016-01-01
Experimental studies have shown that a continuum of ankle and hip strategies is used to restore posture following an external perturbation. Postural responses can be modeled by feedback control with feedback gains that optimize a specific objective. On the one hand, feedback gains that minimize effort have been used to predict muscle activity during perturbed standing. On the other hand, hip and ankle strategies have been predicted by minimizing postural instability and deviation from upright posture. It remains unclear, however, whether and how effort minimization influences the selection of a specific postural response. We hypothesize that the relative importance of minimizing mechanical work vs. postural instability influences the strategy used to restore upright posture. This hypothesis was investigated based on experiments and predictive simulations of the postural response following a backward support surface translation. Peak hip flexion angle was significantly correlated with three experimentally determined measures of effort, i.e., mechanical work, mean muscle activity and metabolic energy. Furthermore, a continuum of ankle and hip strategies was predicted in simulation when changing the relative importance of minimizing mechanical work and postural instability, with increased weighting of mechanical work resulting in an ankle strategy. In conclusion, the combination of experimental measurements and predictive simulations of the postural response to a backward support surface translation showed that the trade-off between effort and postural instability minimization can explain the selection of a specific postural response in the continuum of potential ankle and hip strategies. PMID:27489362
Numerical prediction of turbulent flame stability in premixed/prevaporized (HSCT) combustors
NASA Technical Reports Server (NTRS)
Winowich, Nicholas S.
1990-01-01
A numerical analysis of combustion instabilities that induce flashback in a lean, premixed, prevaporized dump combustor is performed. KIVA-II, a finite volume CFD code for the modeling of transient, multidimensional, chemically reactive flows, serves as the principal analytical tool. The experiment of Proctor and T'ien is used as a reference for developing the computational model. An experimentally derived combustion instability mechanism is presented on the basis of the observations of Proctor and T'ien and other investigators of instabilities in low speed (M less than 0.1) dump combustors. The analysis comprises two independent procedures that begin from a calculated stable flame: The first is a linear increase of the equivalence ratio and the second is the linear decrease of the inflow velocity. The objective is to observe changes in the aerothermochemical features of the flow field prior to flashback. It was found that only the linear increase of the equivalence ratio elicits a calculated flashback result. Though this result did not exhibit large scale coherent vortices in the turbulent shear layer coincident with a flame flickering mode as was observed experimentally, there were interesting acoustic effects which were resolved quite well in the calculation. A discussion of the k-e turbulence model used by KIVA-II is prompted by the absence of combustion instabilities in the model as the inflow velocity is linearly decreased. Finally, recommendations are made for further numerical analysis that may improve correlation with experimentally observed combustion instabilities.
Microsatellite instability and the clinicopathological features of sporadic colorectal cancer
Ward, R; Meagher, A; Tomlinson, I; O'Connor, T; Norrie, M; Wu, R; Hawkins, N
2001-01-01
BACKGROUND AND AIMS—In this study, we prospectively examined the clinical significance of the microsatellite instability (MSI) phenotype in sporadic colorectal cancer, and investigated methods for effective identification of these tumours in routine pathology practice. METHODS—DNA was extracted from 310 tumours collected from 302 consecutive individuals undergoing curative surgery for sporadic colorectal cancer. Microsatellite status was determined by polymerase chain reaction amplification using standard markers, while immunostaining was used to examine expression of MLH1, MSH2, and p53. RESULTS—Eleven per cent of tumours showed high level instability (MSI-H), 6.8% had low level instability (MSI-L), and the remainder were stable. MSI-H tumours were significantly more likely to be of high histopathological grade, have a mucinous phenotype, and to harbour increased numbers of intraepithelial lymphocytes. They were also more likely to be right sided, occur in women, and be associated with improved overall survival. In total, 25 (8%) tumours showed loss of staining for MLH1 and a further three tumours showed absence of staining for MSH2. The positive and negative predictive value of immunohistochemistry in the detection of MSI-H tumours was greater than 95%. CONCLUSIONS—We conclude that the MSI-H phenotype constitutes a pathologically and clinically distinct subtype of sporadic colorectal cancer. Immunohistochemical staining for MLH1 and MSH2 represents an inexpensive and accurate means of identifying such tumours. Keywords: colorectal carcinoma; microsatellite instability; survival; MLH1; MSH2; immunohistochemistry PMID:11358903
Pfeil-McCullough, Erin; Bain, Daniel J; Bergman, Jeffery; Crumrine, Danielle
2015-12-01
Emerald ash borer is expected to kill thousands of ash trees in the eastern U.S. This research develops tools to predict the effect of ash tree loss from the urban canopy on landslide susceptibility in Pittsburgh, PA. A spatial model was built using the SINMAP (Stability INdex MAPping) model coupled with spatially explicit scenarios of tree loss (0%, 25%, 50%, and 75% loss of ash trees from the canopy). Ash spatial distributions were estimated via Monte Carlo methods and available vegetation plot data. Ash trees are most prevalent on steeper slopes, likely due to urban development patterns. Therefore, ash loss disproportionately increases hillslope instability. A 75% loss of ash resulted in roughly 800 new potential landslide initiation locations. Sensitivity testing reveals that variations in rainfall rates, and friction angles produce minor changes to model results relative to the magnitude of parameter variation, but reveal high model sensitivity to soil density and root cohesion values. The model predictions demonstrate the importance of large canopy species to urban hillslope stability, particularly on steep slopes and in areas where soils tend to retain water. To improve instability predictions, better characterization of urban soils, particularly spatial patterns of compaction and species specific root cohesion is necessary. The modeling framework developed in this research will enhance assessment of changes in landslide risk due to tree mortality, improving our ability to design economically and ecologically sustainable urban systems. Copyright © 2015 Elsevier B.V. All rights reserved.
Winayak, Amar; Gossat, Alyza; Cooper, Jenny; Ritchie, Peter; Lim, Wei; Klim, Sharon; Kelly, Anne-Maree
2018-02-01
Research suggests that the presence of instability markers in patients with displaced distal radial fractures is associated with poorer outcome. Our aims were to determine whether the presence of previously defined instability markers could predict the likelihood of successful ED reduction and requirement for a secondary procedure after ED reduction. Retrospective cohort study performed by medical record review. Adult ED patients coded as having an isolated wrist fracture and having fracture reduction in ED were eligible for inclusion. Data collected included demographics, history of osteoporosis, mechanism of injury, radiological features on X-rays and performance of a secondary procedure. Outcomes of interest were the rate of successful fracture reduction in ED (against defined radiological criteria), the rate of secondary procedures and the association between the number of defined instability risk factors and successful reduction and performance of a secondary surgical procedure. Analysis was by χ 2 test, receiver operating characteristic curve, logistic regression analyses. Three hundred and nineteen patients were studied; median age 62 years, 77% female. Sixty-five per cent of patients had satisfactory fracture reduction in ED (95% CI 59%-70%). Eighty-six patients underwent a secondary procedure to reduce/stabilise their fracture (28%, 95% CI 23%-33%). Younger age, lack of satisfactory ED reduction and increased number of instability factors were independently predictive of the performance of a secondary procedure. Instability risk factors are common in patients with wrist fractures requiring reduction in ED. The number of instability factors is not a strong predictor of the performance of secondary procedures. © 2017 Australasian College for Emergency Medicine and Australasian Society for Emergency Medicine.
NASA Astrophysics Data System (ADS)
Ortiz, Sabine; Chomaz, Jean-Marc; Loiseleux, Thomas
2002-08-01
In mixing-layers between two parallel streams of different densities, shear and gravity effects interplay; buoyancy acts as a restoring force and the Kelvin-Helmholtz mode is known to be stabilized by the stratification. If the density interface is sharp enough, two new instability modes, known as Holmboe modes, appear, propagating in opposite directions. This mechanism has been studied in the temporal instability framework. The present paper analyzes the associated spatial instability problem. It considers, in the Boussinesq approximation, two immiscible inviscid fluids with a piecewise linear broken-line velocity profile. We show how the classical scenario for transition between absolute and convective instability should be modified due to the presence of propagating waves. In the convective region, the spatial theory is relevant and the slowest propagating wave is shown to be the most spatially amplified, as suggested by intuition. Predictions of spatial linear theory are compared with mixing-layer [C. G. Koop and F. K. Browand, J. Fluid Mech. 93, 135 (1979)] and exchange flow [G. Pawlak and L. Armi, J. Fluid Mech. 376, 1 (1999)] experiments. The physical mechanism for Holmboe mode destabilization is analyzed via an asymptotic expansion that predicts the absolute instability domain at large Richardson number.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milovich, J. L., E-mail: milovich1@llnl.gov; Robey, H. F.; Clark, D. S.
Experimental results from indirectly driven ignition implosions during the National Ignition Campaign (NIC) [M. J. Edwards et al., Phys. Plasmas 20, 070501 (2013)] achieved a record compression of the central deuterium-tritium fuel layer with measured areal densities up to 1.2 g/cm{sup 2}, but with significantly lower total neutron yields (between 1.5 × 10{sup 14} and 5.5 × 10{sup 14}) than predicted, approximately 10% of the 2D simulated yield. An order of magnitude improvement in the neutron yield was subsequently obtained in the “high-foot” experiments [O. A. Hurricane et al., Nature 506, 343 (2014)]. However, this yield was obtained at the expensemore » of fuel compression due to deliberately higher fuel adiabat. In this paper, the design of an adiabat-shaped implosion is presented, in which the laser pulse is tailored to achieve similar resistance to ablation-front instability growth, but with a low fuel adiabat to achieve high compression. Comparison with measured performance shows a factor of 3–10× improvement in the neutron yield (>40% of predicted simulated yield) over similar NIC implosions, while maintaining a reasonable fuel compression of >1 g/cm{sup 2}. Extension of these designs to higher laser power and energy is discussed to further explore the trade-off between increased implosion velocity and the deleterious effects of hydrodynamic instabilities.« less
NASA Technical Reports Server (NTRS)
Golubev, Vladimir; Mankbadi, Reda R.; Dahl, Milo D.; Kiraly, L. James (Technical Monitor)
2002-01-01
This paper provides preliminary results of the study of the acoustic radiation from the source model representing spatially-growing instability waves in a round jet at high speeds. The source model is briefly discussed first followed by the analysis of the produced acoustic directivity pattern. Two integral surface techniques are discussed and compared for prediction of the jet acoustic radiation field.
Predicting Catastrophic BGP Routing Instabilities
2004-03-01
predict a BGP routing instability confine their focus to either macro- or micro -level metrics, but not to both. The inherent limitations of each of...Level and Micro -Level Metrics Correlation; Worm Attack Studies; 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT Unclassified 18. SECURITY... micro -level metrics, but not to both. The inherent limitations of each of these forms of metric gives rise to an excessive rate of spurious alerts
Nonlinear Dynamic Analysis of Disordered Bladed-Disk Assemblies
NASA Technical Reports Server (NTRS)
McGee, Oliver G., III
1997-01-01
In a effort to address current needs for efficient, air propulsion systems, we have developed some new analytical predictive tools for understanding and alleviating aircraft engine instabilities which have led to accelerated high cycle fatigue and catastrophic failures of these machines during flight. A frequent cause of failure in Jets engines is excessive resonant vibrations and stall flutter instabilities. The likelihood of these phenomena is reduced when designers employ the analytical models we have developed. These prediction models will ultimately increase the nation's competitiveness in producing high performance Jets engines with enhanced operability, energy economy, and safety. The objectives of our current threads of research in the final year are directed along two lines. First, we want to improve the current state of blade stress and aeromechanical reduced-ordered modeling of high bypass engine fans, Specifically, a new reduced-order iterative redesign tool for passively controlling the mechanical authority of shroudless, wide chord, laminated composite transonic bypass engine fans has been developed. Second, we aim to advance current understanding of aeromechanical feedback control of dynamic flow instabilities in axial flow compressors. A systematic theoretical evaluation of several approaches to aeromechanical feedback control of rotating stall in axial compressors has been conducted. Attached are abstracts of two .papers under preparation for the 1998 ASME Turbo Expo in Stockholm, Sweden sponsored under Grant No. NAG3-1571. Our goals during the final year under Grant No. NAG3-1571 is to enhance NASA's capabilities of forced response of turbomachines (such as NASA FREPS). We with continue our development of the reduced-ordered, three-dimensional component synthesis models for aeromechanical evaluation of integrated bladeddisk assemblies (i.e., the disk, non-identical bladeing etc.). We will complete our development of component systems design optimization strategies for specified vibratory stresses and increased fatigue life prediction of assembly components, and for specified frequency margins on the Campbell diagrams of turbomachines. Finally, we will integrate the developed codes with NASA's turbomachinery aeromechanics prediction capability (such as NASA FREPS).
Kluczynski, Melissa A.; Marzo, John M.; Rauh, Michael A.; Bernas, Geoffrey A.; Bisson, Leslie J.
2015-01-01
Background: Male patients tend to have more meniscal and chondral injuries at the time of anterior cruciate ligament (ACL) reconstruction than females. No studies have examined sex-specific predictors of meniscal and chondral lesions in ACL-injured patients. Purpose: To identify sex-specific predictors of meniscal and chondral lesions, as well as meniscal tear management, in patients undergoing ACL reconstruction. Study Design: Cohort study; Level of evidence, 3. Methods: Data were collected prospectively from 689 patients (56.2% males) undergoing ACL reconstruction between 2005 and 2014. Predictors of meniscal tears, meniscal tear management, and chondral injuries were determined using multivariate logistic regression models stratified by sex. Predictors were age, body mass index (BMI; 25-29.99 and ≥30 vs ≤24.99 kg/m2), mechanism (contact vs noncontact) and type (high-impact sports [basketball, football, soccer, and skiing] and other sports vs not sports-related) of injury, interval from injury to surgery (≤6 vs >6 weeks), and instability episodes (vs none). Odds ratios and 95% CIs were reported. Results: Males had more lateral (46% vs 27.8%; P < .0001) and medial (40.2% vs 31.5%; P = .01) meniscal tears, as well as more lateral (72.1% vs 27.9%; P < .0001) and medial (61.4% vs 38.6%; P = .01) meniscectomies than females. For males, age predicted chondral injuries and medial meniscectomy; BMI ≥30 kg/m2 predicted medial meniscal tears; high-impact and other sports predicted medial meniscal tears, medial meniscectomies, and medial meniscal repairs; injuries ≤6 weeks from surgery predicted lateral meniscal repairs; and instability episodes predicted medial meniscal tears, medial tears left in situ, medial meniscectomies, and medial meniscal repairs. For females, age predicted chondral injuries, BMI ≥30 kg/m2 predicted lateral meniscectomies and repairs, and instability episodes predicted medial meniscectomies. Conclusion: Sex differences were observed. For males, predictors included age, BMI, sports-related injuries, injuries ≤6 weeks from surgery, and instability episodes. For females, predictors included age, BMI, and instability episodes. PMID:26535384
Noninvasive prediction of shunt operation outcome in idiopathic normal pressure hydrocephalus
Aoki, Yasunori; Kazui, Hiroaki; Tanaka, Toshihisa; Ishii, Ryouhei; Wada, Tamiki; Ikeda, Shunichiro; Hata, Masahiro; Canuet, Leonides; Katsimichas, Themistoklis; Musha, Toshimitsu; Matsuzaki, Haruyasu; Imajo, Kaoru; Kanemoto, Hideki; Yoshida, Tetsuhiko; Nomura, Keiko; Yoshiyama, Kenji; Iwase, Masao; Takeda, Masatoshi
2015-01-01
Idiopathic normal pressure hydrocephalus (iNPH) is a syndrome characterized by gait disturbance, cognitive deterioration and urinary incontinence in elderly individuals. These symptoms can be improved by shunt operation in some but not all patients. Therefore, discovering predictive factors for the surgical outcome is of great clinical importance. We used normalized power variance (NPV) of electroencephalography (EEG) waves, a sensitive measure of the instability of cortical electrical activity, and found significantly higher NPV in beta frequency band at the right fronto-temporo-occipital electrodes (Fp2, T4 and O2) in shunt responders compared to non-responders. By utilizing these differences, we were able to correctly identify responders and non-responders to shunt operation with a positive predictive value of 80% and a negative predictive value of 88%. Our findings indicate that NPV can be useful in noninvasively predicting the clinical outcome of shunt operation in patients with iNPH. PMID:25585705
Active damping of the e-p instability at the Los Alamos Proton Storage Ring
NASA Astrophysics Data System (ADS)
Macek, R. J.; Assadi, S.; Byrd, J. M.; Deibele, C. E.; Henderson, S. D.; Lee, S. Y.; McCrady, R. C.; Pivi, M. F. T.; Plum, M. A.; Walbridge, S. B.; Zaugg, T. J.
2007-12-01
A prototype of an analog, transverse (vertical) feedback system for active damping of the two-stream (e-p) instability has been developed and successfully tested at the Los Alamos Proton Storage Ring (PSR). This system was able to improve the instability threshold by approximately 30% (as measured by the change in RF buncher voltage at instability threshold). The feedback system configuration, setup procedures, and optimization of performance are described. Results of several experimental tests of system performance are presented including observations of instability threshold improvement and grow-damp experiments, which yield estimates of instability growth and damping rates. A major effort was undertaken to identify and study several factors limiting system performance. Evidence obtained from these tests suggests that performance of the prototype was limited by higher instability growth rates arising from beam leakage into the gap at lower RF buncher voltage and the onset of instability in the horizontal plane, which had no feedback.
Particle drift model for Z-pinch-driven magneto-Rayleigh-Taylor instability
NASA Astrophysics Data System (ADS)
Dan, Jia Kun; Xu, Qiang; Wang, Kun Lun; Ren, Xiao Dong; Huang, Xian Bin
2016-09-01
A theoretical model of Z-pinch driven magneto-Rayleigh-Taylor instability is proposed based on the particle drift point of view, which can explain the helical instability structure observed in premagnetized imploding liner experiments. It is demonstrated that all possible drift motions, including polarization drift, gradient drift, and curvature drift, which can lead to charge separations, each will attribute to an effective gravity acceleration. Theoretical predictions given by this model are dramatically different from those given by previous theories which have been readily recovered in the theory presented here as a limiting case. The theory shows qualitative agreement with available experimental data of the pitch angle and provides certain predictions to be verified.
NASA Astrophysics Data System (ADS)
Aizin, G. R.; Mikalopas, J.; Shur, M.
2016-05-01
An alternative approach of using a distributed transmission line analogy for solving transport equations for ballistic nanostructures is applied for solving the three-dimensional problem of electron transport in gated ballistic nanostructures with periodically changing width. The structures with varying width allow for modulation of the electron drift velocity while keeping the plasma velocity constant. We predict that in such structures biased by a constant current, a periodic modulation of the electron drift velocity due to the varying width results in the instability of the plasma waves if the electron drift velocity to plasma wave velocity ratio changes from below to above unity. The physics of such instability is similar to that of the sonic boom, but, in the periodically modulated structures, this analog of the sonic boom is repeated many times leading to a larger increment of the instability. The constant plasma velocity in the sections of different width leads to resonant excitation of the unstable plasma modes with varying bias current. This effect (that we refer to as the superplasmonic boom condition) results in a strong enhancement of the instability. The predicted instability involves the oscillating dipole charge carried by the plasma waves. The plasmons can be efficiently coupled to the terahertz electromagnetic radiation due to the periodic geometry of the gated structure. Our estimates show that the analyzed instability should enable powerful tunable terahertz electronic sources.
NASA Astrophysics Data System (ADS)
Kelly, F. A.; Stacey, W. M.; Rapp, J.
2001-11-01
The observed dependence of the TEXTOR [Tokamak Experiment for Technology Oriented Research: E. Hintz, P. Bogen, H. A. Claassen et al., Contributions to High Temperature Plasma Physics, edited by K. H. Spatschek and J. Uhlenbusch (Akademie Verlag, Berlin, 1994), p. 373] density limit on global parameters (I, B, P, etc.) and wall conditioning is compared with the predicted density limit parametric scaling of thermal instability theory. It is necessary first to relate the edge parameters of the thermal instability theory to n¯ and the other global parameters. The observed parametric dependence of the density limit in TEXTOR is generally consistent with the predicted density limit scaling of thermal instability theory. The observed wall conditioning dependence of the density limit can be reconciled with the theory in terms of the radiative emissivity temperature dependence of different impurities in the plasma edge. The thermal instability theory also provides an explanation of why symmetric detachment precedes radiative collapse for most low power shots, while a multifaceted asymmetric radiation from the edge MARFE precedes detachment for most high power shots.
Boisgontier, Matthieu P; Cheval, Boris; van Ruitenbeek, Peter; Levin, Oron; Renaud, Olivier; Chanal, Julien; Swinnen, Stephan P
2016-03-01
Functional and structural imaging studies have demonstrated the involvement of the brain in balance control. Nevertheless, how decisive grey matter density and white matter microstructural organisation are in predicting balance stability, and especially when linked to the effects of ageing, remains unclear. Standing balance was tested on a platform moving at different frequencies and amplitudes in 30 young and 30 older adults, with eyes open and with eyes closed. Centre of pressure variance was used as an indicator of balance instability. The mean density of grey matter and mean white matter microstructural organisation were measured using voxel-based morphometry and diffusion tensor imaging, respectively. Mixed-effects models were built to analyse the extent to which age, grey matter density, and white matter microstructural organisation predicted balance instability. Results showed that both grey matter density and age independently predicted balance instability. These predictions were reinforced when the level of difficulty of the conditions increased. Furthermore, grey matter predicted balance instability beyond age and at least as consistently as age across conditions. In other words, for balance stability, the level of whole-brain grey matter density is at least as decisive as being young or old. Finally, brain grey matter appeared to be protective against falls in older adults as age increased the probability of losing balance in older adults with low, but not moderate or high grey matter density. No such results were observed for white matter microstructural organisation, thereby reinforcing the specificity of our grey matter findings. Copyright © 2016 Elsevier B.V. All rights reserved.
Prediction of severe thunderstorms over Sriharikota Island by using the WRF-ARW operational model
NASA Astrophysics Data System (ADS)
Papa Rao, G.; Rajasekhar, M.; Pushpa Saroja, R.; Sreeshna, T.; Rajeevan, M.; Ramakrishna, S. S. V. S.
2016-05-01
Operational short range prediction of Meso-scale thunderstorms for Sriharikota(13.7°N ,80.18°E) has been performed using two nested domains 27 & 9Km configuration of Weather Research & Forecasting-Advanced Research Weather Model (WRF- ARW V3.4).Thunderstorm is a Mesoscale system with spatial scale of few kilometers to a couple of 100 kilometers and time scale of less than an one hour to several hours, which produces heavy rain, lightning, thunder, surface wind squalls and down-bursts. Numerical study of Thunderstorms at Sriharikota and its neighborhood have been discussed with its antecedent thermodynamic stability indices and Parameters that are usually favorable for the development of convective instability based on WRF ARW model predictions. Instability is a prerequisite for the occurrence of severe weather, the greater the instability, the greater will be the potential of thunderstorm. In the present study, K Index, Total totals Index (TTI), Convective Available Potential Energy (CAPE), Convective Inhibition Energy (CINE), Lifted Index (LI), Precipitable Water (PW), etc. are the instability indices used for the short range prediction of thunderstorms. In this study we have made an attempt to estimate the skill of WRF ARW predictability and diagnosed three thunderstorms that occurred during the late evening to late night of 31st July, 20th September and 2nd October of 2015 over Sriharikota Island which are validated with Local Electric Field Mill (EFM), rainfall observations and Chennai Doppler Weather Radar products. The model predicted thermodynamic indices (CAPE, CINE, K Index, LI, TTI and PW) over Sriharikota which act as good indicators for severe thunderstorm activity.
Monsoons: Processes, predictability, and the prospects for prediction
NASA Astrophysics Data System (ADS)
Webster, P. J.; Magaña, V. O.; Palmer, T. N.; Shukla, J.; Thomas, R. A.; Yanai, M.; Yasunari, T.
1998-06-01
The Tropical Ocean-Global Atmosphere (TOGA) program sought to determine the predictability of the coupled ocean-atmosphere system. The World Climate Research Programme's (WCRP) Global Ocean-Atmosphere-Land System (GOALS) program seeks to explore predictability of the global climate system through investigation of the major planetary heat sources and sinks, and interactions between them. The Asian-Australian monsoon system, which undergoes aperiodic and high amplitude variations on intraseasonal, annual, biennial and interannual timescales is a major focus of GOALS. Empirical seasonal forecasts of the monsoon have been made with moderate success for over 100 years. More recent modeling efforts have not been successful. Even simulation of the mean structure of the Asian monsoon has proven elusive and the observed ENSO-monsoon relationships has been difficult to replicate. Divergence in simulation skill occurs between integrations by different models or between members of ensembles of the same model. This degree of spread is surprising given the relative success of empirical forecast techniques. Two possible explanations are presented: difficulty in modeling the monsoon regions and nonlinear error growth due to regional hydrodynamical instabilities. It is argued that the reconciliation of these explanations is imperative for prediction of the monsoon to be improved. To this end, a thorough description of observed monsoon variability and the physical processes that are thought to be important is presented. Prospects of improving prediction and some strategies that may help achieve improvement are discussed.
Gotoda, Hiroshi; Amano, Masahito; Miyano, Takaya; Ikawa, Takuya; Maki, Koshiro; Tachibana, Shigeru
2012-12-01
We characterize complexities in combustion instability in a lean premixed gas-turbine model combustor by nonlinear time series analysis to evaluate permutation entropy, fractal dimensions, and short-term predictability. The dynamic behavior in combustion instability near lean blowout exhibits a self-affine structure and is ascribed to fractional Brownian motion. It undergoes chaos by the onset of combustion oscillations with slow amplitude modulation. Our results indicate that nonlinear time series analysis is capable of characterizing complexities in combustion instability close to lean blowout.
Mitigation of Hot Electrons from Laser-Plasma Instabilities in Laser-Generated X-Ray Sources
NASA Astrophysics Data System (ADS)
Fein, Jeffrey R.
This thesis describes experiments to understand and mitigate energetic or "hot" electrons from laser-plasma instabilities (LPIs) in an effort to improve radiographic techniques using laser-generated x-ray sources. Initial experiments on the OMEGA-60 laser show evidence of an underlying background generated by x-rays with energies over 10 keV on radiographs using backlit pinhole radiography, whose source is consistent with hard x-rays from LPI-generated hot electrons. Mitigating this background can dramatically reduce uncertainties in measured object densities from radiographs and may be achieved by eliminating the target components in which LPIs are most likely to grow. Experiments were performed on the OMEGA-EP laser to study hot electron production from laser-plasma instabilities in high-Z plasmas relevant to laser-generated x-ray sources. Measurements of hard x-rays show a dramatic reduction in hot-electron energy going from low-Z CH to high-Z Au targets, in a manner that is consistent with steepening electron density profiles that were also measured. The profile-steepening, we infer, increased thresholds of LPIs and contributed to the reduced hot-electron production at higher Z. Possible mechanisms for generating hot electrons include the two-plasmon decay and stimulated Raman scattering instabilities driven by multiple laser beams. Radiation hydrodynamic simulations using the CRASH code predict that both of these instabilities were above threshold with linear threshold parameters that decreased with increasing Z due to steepening length-scales, as well as enhanced laser absorption and increased collisional and Landau damping of electron plasma waves. Another set of experiments were performed on the OMEGA-60 laser to test whether hard x-ray background could be mitigated in backlit pinhole imagers by controlling laser-plasma instabilities. Based on the results above, we hypothesized that LPIs and hot electrons that lead to hard x-ray background would be reduced by increasing the atomic number of the irradiated components in the pinhole imagers. Using higher-Z materials we demonstrate significant reduction in x-rays between 30-70 keV and 70% increase in the signal-to-background ratio. Based on this, a proposed backlighter and detector setup predicts a signal-to-background ratio of up to 4.5:1.
Housing Mobility and Cognitive Development: Change in Verbal and Nonverbal Abilities
Fowler, Patrick J.; McGrath, Lauren M.; Henry, David B.; Schoeny, Michael; Chavira, Dina; Taylor, Jeremy J.; Day, Orin
2015-01-01
This study investigates the influence of housing instability on verbal and nonverbal cognitive development among at-risk children and adolescents involved in the child welfare system. Frequent residential changes threaten child mental health, especially among low-income families. Little is known regarding disruptions to cognitive growth, specifically the impact on verbal and nonverbal abilities. The study tests whether developmental timing of housing mobility affects cognitive development beyond individual and family risks. A nationally representative study of families (n = 2,442) susceptible to housing and family instability tracked children and adolescents aged four to 14 years (M = 8.95 years) over 36 months following investigation by the child welfare system. Youth completed standardized cognitive assessments while caregivers reported on behavior problems and family risk at three time points. Latent growth models examined change in cognitive abilities over time. Housing mobility in the 12 months prior to baseline predicts lower verbal cognitive abilities that improve marginally. Similar effects emerge for all age groups; however, frequent moves in infancy diminish the influence of subsequent housing mobility on verbal tasks. Housing instability threatened cognitive development beyond child maltreatment, family changes, poverty, and other risks. Findings inform emerging research on environmental influences on neurocognitive development, as well as identify targets for early intervention. Systematic assessment of family housing problems, including through the child welfare system, provides opportunities for coordinated responses to prevent instability and cognitive threats. PMID:26184055
Spiral-arm instability: giant clump formation via fragmentation of a galactic spiral arm
NASA Astrophysics Data System (ADS)
Inoue, Shigeki; Yoshida, Naoki
2018-03-01
Fragmentation of a spiral arm is thought to drive the formation of giant clumps in galaxies. Using linear perturbation analysis for self-gravitating spiral arms, we derive an instability parameter and define the conditions for clump formation. We extend our analysis to multicomponent systems that consist of gas and stars in an external potential. We then perform numerical simulations of isolated disc galaxies with isothermal gas, and compare the results with the prediction of our analytic model. Our model describes accurately the evolution of the spiral arms in our simulations, even when spiral arms dynamically interact with one another. We show that most of the giant clumps formed in the simulated disc galaxies satisfy the instability condition. The clump masses predicted by our model are in agreement with the simulation results, but the growth time-scale of unstable perturbations is overestimated by a factor of a few. We also apply our instability analysis to derive scaling relations of clump properties. The expected scaling relation between the clump size, velocity dispersion, and circular velocity is slightly different from that given by the Toomre instability analyses, but neither is inconsistent with currently available observations. We argue that the spiral-arm instability is a viable formation mechanism of giant clumps in gas-rich disc galaxies.
NASA Astrophysics Data System (ADS)
Nick, F.; Hubbard, A.; Vieli, A.; van der Veen, C. J.; Box, J. E.; Bates, R.; Luckman, A. J.
2009-12-01
Calving of icebergs and bottom melting from ice shelves accounts for roughly half the ice transferred from the Greenland Ice Sheet into the surrounding ocean, and virtually all of the ice loss from the Antarctic Ice Sheet. Petermann Glacier (north Greenland) with its 16 km wide and 80 km long floating tongue, experiences massive bottom melting. We apply a numerical ice flow model using a physically-based calving criterion based on crevasse depth to investigate the contribution of processes such as bottom melting, sea ice or sikkusak disintegration, surface run off and iceberg calving to the mass balance and instability of Petermann Glacier and its ice shelf. Our modeling study provides insights into the role of ice-ocean interaction, and on how to incorporate calving in ice sheet models, improving our ability to predict future ice sheet change.
NASA Astrophysics Data System (ADS)
Nick, Faezeh M.; Hubbard, Alun; van der Veen, Kees; Vieli, Andreas
2010-05-01
Calving of icebergs and bottom melting from ice shelves accounts for roughly half the ice transferred from the Greenland Ice Sheet into the surrounding ocean, and virtually all of the ice loss from the Antarctic Ice Sheet. Petermann Glacier (north Greenland) with its 16 km wide and 80 km long floating tongue, experiences massive bottom melting. We apply a numerical ice flow model using a physically-based calving criterion based on crevasse depth to investigate the contribution of processes such as bottom melting, sea ice or sikkusak disintegration, surface run off and iceberg calving to the mass balance and instability of Petermann Glacier and its ice shelf. Our modelling study provides insights into the role of ice-ocean interaction, and on how to incorporate calving in ice sheet models, improving our ability to predict future ice sheet change.
Mechanistic insights into chemical and photochemical transformations of bismuth vanadate photoanodes
Toma, Francesca M.; Cooper, Jason K.; Kunzelmann, Viktoria; McDowell, Matthew T.; Yu, Jie; Larson, David M.; Borys, Nicholas J.; Abelyan, Christine; Beeman, Jeffrey W.; Yu, Kin Man; Yang, Jinhui; Chen, Le; Shaner, Matthew R.; Spurgeon, Joshua; Houle, Frances A.; Persson, Kristin A.; Sharp, Ian D.
2016-01-01
Artificial photosynthesis relies on the availability of semiconductors that are chemically stable and can efficiently capture solar energy. Although metal oxide semiconductors have been investigated for their promise to resist oxidative attack, materials in this class can suffer from chemical and photochemical instability. Here we present a methodology for evaluating corrosion mechanisms and apply it to bismuth vanadate, a state-of-the-art photoanode. Analysis of changing morphology and composition under solar water splitting conditions reveals chemical instabilities that are not predicted from thermodynamic considerations of stable solid oxide phases, as represented by the Pourbaix diagram for the system. Computational modelling indicates that photoexcited charge carriers accumulated at the surface destabilize the lattice, and that self-passivation by formation of a chemically stable surface phase is kinetically hindered. Although chemical stability of metal oxides cannot be assumed, insight into corrosion mechanisms aids development of protection strategies and discovery of semiconductors with improved stability. PMID:27377305
Diagnosing and controlling mix in National Ignition Facility implosion experiments a)
NASA Astrophysics Data System (ADS)
Hammel, B. A.; Scott, H. A.; Regan, S. P.; Cerjan, C.; Clark, D. S.; Edwards, M. J.; Epstein, R.; Glenzer, S. H.; Haan, S. W.; Izumi, N.; Koch, J. A.; Kyrala, G. A.; Landen, O. L.; Langer, S. H.; Peterson, K.; Smalyuk, V. A.; Suter, L. J.; Wilson, D. C.
2011-05-01
High mode number instability growth of "isolated defects" on the surfaces of National Ignition Facility [Moses et al., Phys. Plasmas 16, 041006 (2009)] capsules can be large enough for the perturbation to penetrate the imploding shell, and produce a jet of ablator material that enters the hot-spot. Since internal regions of the CH ablator are doped with Ge, mixing of this material into the hot-spot results in a clear signature of Ge K-shell emission. Evidence of jets entering the hot-spot has been recorded in x-ray images and spectra, consistent with simulation predictions [Hammel et al., High Energy Density Phys. 6, 171 (2010)]. Ignition targets have been designed to minimize instability growth, and capsule fabrication improvements are underway to reduce "isolated defects." An experimental strategy has been developed where the final requirements for ignition targets can be adjusted through direct measurements of mix and experimental tuning.
Nonlinear Combustion Instability Prediction
NASA Technical Reports Server (NTRS)
Flandro, Gary
2010-01-01
The liquid rocket engine stability prediction software (LCI) predicts combustion stability of systems using LOX-LH2 propellants. Both longitudinal and transverse mode stability characteristics are calculated. This software has the unique feature of being able to predict system limit amplitude.
Liu, Zhihong; Zheng, Minghao; Yan, Xin; Gu, Qiong; Gasteiger, Johann; Tijhuis, Johan; Maas, Peter; Li, Jiabo; Xu, Jun
2014-09-01
Predicting compound chemical stability is important because unstable compounds can lead to either false positive or to false negative conclusions in bioassays. Experimental data (COMDECOM) measured from DMSO/H2O solutions stored at 50 °C for 105 days were used to predicted stability by applying rule-embedded naïve Bayesian learning, based upon atom center fragment (ACF) features. To build the naïve Bayesian classifier, we derived ACF features from 9,746 compounds in the COMDECOM dataset. By recursively applying naïve Bayesian learning from the data set, each ACF is assigned with an expected stable probability (p(s)) and an unstable probability (p(uns)). 13,340 ACFs, together with their p(s) and p(uns) data, were stored in a knowledge base for use by the Bayesian classifier. For a given compound, its ACFs were derived from its structure connection table with the same protocol used to drive ACFs from the training data. Then, the Bayesian classifier assigned p(s) and p(uns) values to the compound ACFs by a structural pattern recognition algorithm, which was implemented in-house. Compound instability is calculated, with Bayes' theorem, based upon the p(s) and p(uns) values of the compound ACFs. We were able to achieve performance with an AUC value of 84% and a tenfold cross validation accuracy of 76.5%. To reduce false negatives, a rule-based approach has been embedded in the classifier. The rule-based module allows the program to improve its predictivity by expanding its compound instability knowledge base, thus further reducing the possibility of false negatives. To our knowledge, this is the first in silico prediction service for the prediction of the stabilities of organic compounds.
A machine learns to predict the stability of circumbinary planets
NASA Astrophysics Data System (ADS)
Lam, Christopher; Kipping, David
2018-06-01
Long-period circumbinary planets appear to be as common as those orbiting single stars and have been found to frequently have orbital radii just beyond the critical distance for dynamical stability. Assessing the stability is typically done either through N-body simulations or using the classic stability criterion first considered by Dvorak and later developed by Holman and Wiegert: a second-order polynomial calibrated to broadly match numerical simulations. However, the polynomial is unable to capture islands of instability introduced by mean motion resonances, causing the accuracy of the criterion to approach that of a random coin-toss when close to the boundary. We show how a deep neural network (DNN) trained on N-body simulations generated with REBOUND is able to significantly improve stability predictions for circumbinary planets on initially coplanar, circular orbits. Specifically, we find that the accuracy of our DNN never drops below 86 per cent, even when tightly surrounding the boundary of instability, and is fast enough to be practical for on-the-fly calls during likelihood evaluations typical of modern Bayesian inference. Our binary classifier DNN is made publicly available at https://github.com/CoolWorlds/orbital-stability.
Franck, Erik; Vanderhasselt, Marie-Anne; Goubert, Liesbet; Loeys, Tom; Temmerman, Marleen; De Raedt, Rudi
2016-03-01
Understanding vulnerability factors involved in the development of postnatal depression has important implications for theory and practice. In this prospective study, we investigated whether self-esteem instability during pregnancy would better predict postnatal depressive symptomatology than level of self-esteem. In addition, going beyond former studies, we tested the possible origin of this instability, examining whether day-to-day fluctuations in self-esteem could be explained by fluctuations in mood state, and whether this day-to-day self-esteem reactivity would predict postnatal depressive symptoms. 114 healthy never-depressed women were tested during the late second or third trimester of their gestation (Time 1) and at 12 weeks after delivery (Time 2). Day-to-day levels of self-esteem and depressed mood state were assessed at Time 1. At Time 2, postnatal depressive symptoms were assessed. The results show that, after controlling for initial depressive symptomatology, age and socio-economic status, postnatal depressive symptomatology at 12 weeks after childbirth could be predicted by self-esteem instability and not level of self-esteem. In addition, multi-level analyses demonstrated that these changes in day-to-day levels of self-esteem are associated with changes in day-to-day levels of depressed mood state and that those subjects with greater prenatal self-esteem reactivity upon depressed mood report higher levels of depressive symptoms post-partum. We used paper and pencil day-to-day measures of state self-esteem, which can be subject to bias. These results provide evidence for a diathesis-stress account of postnatal depression, highlighting the importance of a multi-dimensional view of self-esteem and the predictive role of self-esteem instability. Copyright © 2015 Elsevier Ltd. All rights reserved.
Understanding and predicting the dynamics of tokamak discharges during startup and rampdown
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, G. L.; Politzer, P. A.; Humphreys, D. A.
Understanding the dynamics of plasma startup and termination is important for present tokamaks and for predictive modeling of future burning plasma devices such as ITER. We report on experiments in the DIII-D tokamak that explore the plasma startup and rampdown phases and on the benchmarking of transport models. Key issues have been examined such as plasma initiation and burnthrough with limited inductive voltage and achieving flattop and maximum burn within the technical limits of coil systems and their actuators while maintaining the desired q profile. Successful rampdown requires scenarios consistent with technical limits, including controlled H-L transitions, while avoiding verticalmore » instabilities, additional Ohmic transformer flux consumption, and density limit disruptions. Discharges were typically initiated with an inductive electric field typical of ITER, 0.3 V/m, most with second harmonic electron cyclotron assist. A fast framing camera was used during breakdown and burnthrough of low Z impurity charge states to study the formation physics. An improved 'large aperture' ITER startup scenario was developed, and aperture reduction in rampdown was found to be essential to avoid instabilities. Current evolution using neoclassical conductivity in the CORSICA code agrees with rampup experiments, but the prediction of the temperature and internal inductance evolution using the Coppi-Tang model for electron energy transport is not yet accurate enough to allow extrapolation to future devices.« less
Postglacial rebound and fault instability in Fennoscandia
NASA Astrophysics Data System (ADS)
Wu, Patrick; Johnston, Paul; Lambeck, Kurt
1999-12-01
The best available rebound model is used to investigate the role that postglacial rebound plays in triggering seismicity in Fennoscandia. The salient features of the model include tectonic stress due to spreading at the North Atlantic Ridge, overburden pressure, gravitationally self-consistent ocean loading, and the realistic deglaciation history and compressible earth model which best fits the sea-level and ice data in Fennoscandia. The model predicts the spatio-temporal evolution of the state of stress, the magnitude of fault instability, the timing of the onset of this instability, and the mode of failure of lateglacial and postglacial seismicity. The consistency of the predictions with the observations suggests that postglacial rebound is probably the cause of the large postglacial thrust faults observed in Fennoscandia. The model also predicts a uniform stress field and instability in central Fennoscandia for the present, with thrust faulting as the predicted mode of failure. However, the lack of spatial correlation of the present seismicity with the region of uplift, and the existence of strike-slip and normal modes of current seismicity are inconsistent with this model. Further unmodelled factors such as the presence of high-angle faults in the central region of uplift along the Baltic coast would be required in order to explain the pattern of seismicity today in terms of postglacial rebound stress. The sensitivity of the model predictions to the effects of compressibility, tectonic stress, viscosity and ice model is also investigated. For sites outside the ice margin, it is found that the mode of failure is sensitive to the presence of tectonic stress and that the onset timing is also dependent on compressibility. For sites within the ice margin, the effect of Earth rheology is shown to be small. However, ice load history is shown to have larger effects on the onset time of earthquakes and the magnitude of fault instability.
Magnetically-Driven Convergent Instability Growth platform on Z.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knapp, Patrick; Mattsson, Thomas; Martin, Matthew
Hydrodynamic instability growth is a fundamentally limiting process in many applications. In High Energy Density Physics (HEDP) systems such as inertial confinement fusion implosions and stellar explosions, hydro instabilities can dominate the evolution of the object and largely determine the final state achievable. Of particular interest is the process by which instabilities cause perturbations at a density or material interface to grow nonlinearly, introducing vorticity and eventually causing the two species to mix across the interface. Although quantifying instabilities has been the subject of many investigations in planar geometry, few have been done in converging geometry. During FY17, the teammore » executed six convergent geometry instability experiments. Based on earlier results, the platform was redesigned and improved with respect to load centering at installation making the installation reproducible and development of a new 7.2 keV, Co He-a backlighter system to better penetrate the liner. Together, the improvements yielded significantly improved experimental results. The results in FY17 demonstrate the viability of using experiments on Z to quantify instability growth in cylindrically convergent geometry. Going forward, we will continue the partnership with staff and management at LANL to analyze the past experiments, compare to hydrodynamics growth models, and design future experiments.« less
Drying paint: from micro-scale dynamics to mechanical instabilities
NASA Astrophysics Data System (ADS)
Goehring, Lucas; Li, Joaquim; Kiatkirakajorn, Pree-Cha
2017-04-01
Charged colloidal dispersions make up the basis of a broad range of industrial and commercial products, from paints to coatings and additives in cosmetics. During drying, an initially liquid dispersion of such particles is slowly concentrated into a solid, displaying a range of mechanical instabilities in response to highly variable internal pressures. Here we summarize the current appreciation of this process by pairing an advection-diffusion model of particle motion with a Poisson-Boltzmann cell model of inter-particle interactions, to predict the concentration gradients in a drying colloidal film. We then test these predictions with osmotic compression experiments on colloidal silica, and small-angle X-ray scattering experiments on silica dispersions drying in Hele-Shaw cells. Finally, we use the details of the microscopic physics at play in these dispersions to explore how two macroscopic mechanical instabilities-shear-banding and fracture-can be controlled. This article is part of the themed issue 'Patterning through instabilities in complex media: theory and applications.'
Thangarajah, Tanujan; Higgs, Deborah; Bayley, J I L; Lambert, Simon M
2016-01-01
AIM: To report the results of fixed-fulcrum fully constrained reverse shoulder arthroplasty for the treatment of recurrent shoulder instability in patients with epilepsy. METHODS: A retrospective review was conducted at a single facility. Cases were identified using a computerized database and all clinic notes and operative reports were reviewed. All patients with epilepsy and recurrent shoulder instability were included for study. Between July 2003 and August 2011 five shoulders in five consecutive patients with epilepsy underwent fixed-fulcrum fully constrained reverse shoulder arthroplasty for recurrent anterior shoulder instability. The mean duration of epilepsy in the cohort was 21 years (range, 5-51) and all patients suffered from grand mal seizures. RESULTS: Mean age at the time of surgery was 47 years (range, 32-64). The cohort consisted of four males and one female. Mean follow-up was 4.7 years (range, 4.3-5 years). There were no further episodes of instability, and no further stabilisation or revision procedures were performed. The mean Oxford shoulder instability score improved from 8 preoperatively (range, 5-15) to 30 postoperatively (range, 16-37) (P = 0.015) and the mean subjective shoulder value improved from 20 (range, 0-50) preoperatively to 60 (range, 50-70) postoperatively (P = 0.016). Mean active forward elevation improved from 71° preoperatively (range, 45°-130°) to 100° postoperatively (range, 80°-90°) and mean active external rotation improved from 15° preoperatively (range, 0°-30°) to 40° (20°-70°) postoperatively. No cases of scapular notching or loosening were noted. CONCLUSION: Fixed-fulcrum fully constrained reverse shoulder arthroplasty should be considered for the treatment of recurrent shoulder instability in patients with epilepsy. PMID:27458554
ENSO Bred Vectors in Coupled Ocean-Atmosphere General Circulation Models
NASA Technical Reports Server (NTRS)
Yang, S. C.; Cai, Ming; Kalnay, E.; Rienecker, M.; Yuan, G.; Toth, ZA.
2004-01-01
The breeding method has been implemented in the NASA Seasonal-to-Interannual Prediction Project (NSIPP) Coupled General Circulation Model (CGCM) with the goal of improving operational seasonal to interannual climate predictions through ensemble forecasting and data assimilation. The coupled instability as cap'tured by the breeding method is the first attempt to isolate the evolving ENSO instability and its corresponding global atmospheric response in a fully coupled ocean-atmosphere GCM. Our results show that the growth rate of the coupled bred vectors (BV) peaks at about 3 months before a background ENSO event. The dominant growing BV modes are reminiscent of the background ENSO anomalies and show a strong tropical response with wind/SST/thermocline interrelated in a manner similar to the background ENSO mode. They exhibit larger amplitudes in the eastern tropical Pacific, reflecting the natural dynamical sensitivity associated with the presence of the shallow thermocline. Moreover, the extratropical perturbations associated with these coupled BV modes reveal the variations related to the atmospheric teleconnection patterns associated with background ENSO variability, e.g. over the North Pacific and North America. A similar experiment was carried out with the NCEP/CFS03 CGCM. Comparisons between bred vectors from the NSIPP CGCM and NCEP/CFS03 CGCM demonstrate the robustness of the results. Our results strongly suggest that the breeding method can serve as a natural filter to identify the slowly varying, coupled instabilities in a coupled GCM, which can be used to construct ensemble perturbations for ensemble forecasts and to estimate the coupled background error covariance for coupled data assimilation.
Calibration of PCB-132 Sensors in a Shock Tube
NASA Technical Reports Server (NTRS)
Berridge, Dennis C.; Schneider, Steven P.
2012-01-01
While PCB-132 sensors have proven useful for measuring second-mode instability waves in many hypersonic wind tunnels, they are currently limited by their calibration. Until now, the factory calibration has been all that was available, which is a single-point calibration at an amplitude three orders of magnitude higher than a second-mode wave. In addition, little information has been available about the frequency response or spatial resolution of the sensors, which is important for measuring high-frequency instability waves. These shortcomings make it difficult to compare measurements at different conditions and between different sensors. If accurate quantitative measurements could be performed, comparisons of the growth and breakdown of instability waves could be made in different facilities, possibly leading to a method of predicting the amplitude at which the waves break down into turbulence, improving transition prediction. A method for calibrating the sensors is proposed using a newly-built shock tube at Purdue University. This shock tube, essentially a half-scale version of the 6-Inch shock tube at the Graduate Aerospace Laboratories at Caltech, has been designed to attain a moderate vacuum in the driven section. Low driven pressures should allow the creation of very weak, yet still relatively thin shock waves. It is expected that static pressure rises within the range of second-mode amplitudes should be possible. The shock tube has been designed to create clean, planar shock waves with a laminar boundary layer to allow for accurate calibrations. Stronger shock waves can be used to identify the frequency response of the sensors out to hundreds of kilohertz.
Effect of Compliant Walls on Secondary Instabilities in Boundary-Layer Transition
NASA Technical Reports Server (NTRS)
Joslin, Ronald D.; Morris, Philip J.
1991-01-01
For aerodynamic and hydrodynamic vehicles, it is highly desirable to reduce drag and noise levels. A reduction in drag leads to fuel savings. In particular for submersible vehicles, a decrease in noise levels inhibits detection. A suggested means to obtain these reduction goals is by delaying the transition from laminar to turbulent flow in external boundary layers. For hydrodynamic applications, a passive device which shows promise for transition delays is the compliant coating. In previous studies with a simple mechanical model representing the compliant wall, coatings were found that provided transition delays as predicted from the semi-empirical e(sup n) method. Those studies were concerned with the linear stage of transition where the instability of concern is referred to as the primary instability. For the flat-plate boundary layer, the Tollmien-Schlichting (TS) wave is the primary instability. In one of those studies, it was shown that three-dimensional (3-D) primary instabilities, or oblique waves, could dominate transition over the coatings considered. From the primary instability, the stretching and tilting of vorticity in the shear flow leads to a secondary instability mechanism. This has been theoretical described by Herbert based on Floquet theory. In the present study, Herbert's theory is used to predict the development of secondary instabilities over isotropic and non-isotropic compliant walls. Since oblique waves may be dominant over compliant walls, a secondary theory extention is made to allow for these 3-D primary instabilities. The effect of variations in primary amplitude, spanwise wavenumber, and Reynolds number on the secondary instabilities are examined. As in the rigid wall case, over compliant walls the subharmonic mode of secondary instability dominates for low-amplitude primary disturbances. Both isotropic and non-isotropic compliant walls lead to reduced secondary growth rates compared to the rigid wall results. For high frequencies, the non-isotropic wall suppresses the amplification of the secondary instabilities, while instabilities over the isotropic wall may grow with an explosive rate similar to the rigid wall results. For the more important lower frequencies, both isotropic and non-isotropic compliant walls suppress the amplification of secondary instabilities compared to the rigid wall results. The twofold major discovery and demonstration of the present investigation are: (1) the use of passive devices, such as compliant walls, can lead to significant reductions in the secondary instability growth rates and amplification; (2) suppressing the primary growth rates and subsequent amplification enable delays in the growth of the explosive secondary instability mechanism.
Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Ye
Rayleigh–Taylor (RT) and Richtmyer–Meshkov (RM) instabilities play an important role in a wide range of engineering, geophysical, and astrophysical flows. They represent a triggering event that, in many cases, leads to large-scale turbulent mixing. Much effort has been expended over the past 140 years, beginning with the seminal work of Lord Rayleigh, to predict the evolution of the instabilities and of the instability-induced mixing layers. Furthermore, the objective of Part I of this review is to provide the basic properties of the flow, turbulence, and mixing induced by RT, RM, and Kelvin–Helmholtz (KH) instabilities. Historical efforts to study these instabilitiesmore » are briefly reviewed, and the significance of these instabilities is discussed for a variety of flows, particularly for astrophysical flows and for the case of inertial confinement fusion.« less
Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. I
Zhou, Ye
2017-09-06
Rayleigh–Taylor (RT) and Richtmyer–Meshkov (RM) instabilities play an important role in a wide range of engineering, geophysical, and astrophysical flows. They represent a triggering event that, in many cases, leads to large-scale turbulent mixing. Much effort has been expended over the past 140 years, beginning with the seminal work of Lord Rayleigh, to predict the evolution of the instabilities and of the instability-induced mixing layers. Furthermore, the objective of Part I of this review is to provide the basic properties of the flow, turbulence, and mixing induced by RT, RM, and Kelvin–Helmholtz (KH) instabilities. Historical efforts to study these instabilitiesmore » are briefly reviewed, and the significance of these instabilities is discussed for a variety of flows, particularly for astrophysical flows and for the case of inertial confinement fusion.« less
Barotropic instability with divergence - Theory and applications to Venus
NASA Technical Reports Server (NTRS)
Dobrovolskis, Anthony R.; Diner, David J.
1990-01-01
IR images of Venus reveal a curious double-lobed hot spot in the polar region. Elson (1982) has suggested that this dipole represents a barotropic instability associated with a high-latitude jet. Unfortunately, the classical theory of barotropic instability cannot predict temperature variations. This paper generalizes the theory to include horizontal divergence, vertical motions, and temperature variations, and applies it to the stratosphere of Venus. The fastest-growing barotropic instability in the nominal model matches the observed dipole in period and horizontal temperature pattern. The accompanying wind variations are comparable to the speed of the mean jet, indicating strong nonlinear effects. It is concluded that the Venus dipole may represent the self-limited stage of a barotropic instability with divergence.
Thangarajah, Tanujan; Falworth, Mark; Lambert, Simon M
2017-01-01
Epileptic seizures can cause shoulder dislocation, recurrent instability and eventually arthritis. The purpose of this study was to report the results, complications and rate of revision surgery following anatomical shoulder arthroplasty in epileptic patients with instability arthropathy. A consecutive series of eight patients with epilepsy underwent anatomical shoulder arthroplasty for recurrent shoulder instability and were retrospectively reviewed after a mean of 4.7 years (range, 2-7.5 years). These included three total shoulder replacements and five humeral resurfacing hemiarthroplasty procedures. Mean age of the cohort was 33 years (range, 17-44). All patients experienced post-operative grand mal seizures. Two patients with hemiarthroplasty required further surgery due to painful glenoid erosion. No residual cases of instability were noted. Mean active forward elevation and external rotation improved following surgery. The Oxford Shoulder Score improved from 15 pre-operatively (range, 7-22) to 26 post-operatively (range, 12-45) ( p = 0.031). This was accompanied by an increase in the mean Subjective Shoulder Value, which improved from 29 (range, 10-80) pre-operatively to 53 (range, 15-90) post-operatively ( p=0.042). Anatomical shoulder arthroplasty may offer a solution for the treatment of instability arthropathy in patients with epilepsy and persistent seizures.
Saturation of the Hosing Instability in Quasilinear Plasma Accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lehe, R.; Schroeder, C. B.; Vay, J. -L.
The beam hosing instability is analyzed theoretically for a witness beam in the quasilinear regime of plasma accelerators. In this regime, the hosing instability saturates, even for a monoenergetic bunch, at a level much less than standard scalings predict. Analytic expressions are derived for the saturation distance and amplitude and are in agreement with numerical results. Saturation is due to the natural head-to-tail variations in the focusing force, including the self-consistent transverse beam loading.
Saturation of the Hosing Instability in Quasilinear Plasma Accelerators
Lehe, R.; Schroeder, C. B.; Vay, J. -L.; ...
2017-12-13
The beam hosing instability is analyzed theoretically for a witness beam in the quasilinear regime of plasma accelerators. In this regime, the hosing instability saturates, even for a monoenergetic bunch, at a level much less than standard scalings predict. Analytic expressions are derived for the saturation distance and amplitude and are in agreement with numerical results. Saturation is due to the natural head-to-tail variations in the focusing force, including the self-consistent transverse beam loading.
NASA Astrophysics Data System (ADS)
Hutchinson, Ian H.; Malaspina, David M.
2018-05-01
Recent theory and numerical simulation predicts that the wake of the solar wind flow past the Moon should be the site of electrostatic instabilities that give rise to electron holes. These play an important role in the eventual merging of the wake with the background solar wind. Analysis of measurements from the ARTEMIS satellites, orbiting the Moon at distances from 1.2 to 11 RM, detects holes highly concentrated in the wake, in agreement with prediction. The theory also predicts that the hole flux density observed should be hollow, peaking away from the wake axis. Observation statistics qualitatively confirm this hollowness, lending extra supporting evidence for the identification of their generation mechanism.
FOKKER-PLANCK ANALYSIS OF TRANSVERSE COLLECTIVE INSTABILITIES IN ELECTRON STORAGE RINGS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindberg, R. R.
We analyze single bunch transverse instabilities due to wakefields using a Fokker-Planck model. We expand on the work of Suzuki [1], writing out the linear matrix equation including chromaticity, both dipolar and quadrupolar transverse wakefields, and the effects of damping and diffusion due to the synchrotron radiation. The eigenvalues and eigenvectors determine the collective stability of the beam, and we show that the predicted threshold current for transverse instability and the profile of the unstable agree well with tracking simulations. In particular, we find that predicting collective stability for high energy electron beams at moderate to large values of chromaticitymore » requires the full Fokker-Planck analysis to properly account for the effects of damping and diffusion due to synchrotron radiation.« less
The Zig-zag Instability of Streamlined Bodies
NASA Astrophysics Data System (ADS)
Guillet, Thibault; Coux, Martin; Quere, David; Clanet, Christophe
2017-11-01
When a floating bluff body, like a sphere, impacts water with a vertical velocity, its trajectory is straight and the depth of its dive increases with its initial velocity. Even though we observe the same phenomenon at low impact speed for axisymmetric streamlined bodies, the trajectory is found to deviate from the vertical when the velocity overcomes a critical value. This instability results from a competition between the destabilizing torque of the lift and the stabilizing torque of the Archimede's force. Balancing these torques yields a prediction on the critical velocity above which the instability appears. This theoretical value is found to depend on the position of the gravity center of the projectile and predicts with a full agreement the behaviour observed in our different experiments. Project funded by DGA.
Nonlinear rocket motor stability prediction: Limit amplitude, triggering, and mean pressure shifta)
NASA Astrophysics Data System (ADS)
Flandro, Gary A.; Fischbach, Sean R.; Majdalani, Joseph
2007-09-01
High-amplitude pressure oscillations in solid propellant rocket motor combustion chambers display nonlinear effects including: (1) limit cycle behavior in which the fluctuations may dwell for a considerable period of time near their peak amplitude, (2) elevated mean chamber pressure (DC shift), and (3) a triggering amplitude above which pulsing will cause an apparently stable system to transition to violent oscillations. Along with the obvious undesirable vibrations, these features constitute the most damaging impact of combustion instability on system reliability and structural integrity. The physical mechanisms behind these phenomena and their relationship to motor geometry and physical parameters must, therefore, be fully understood if instability is to be avoided in the design process, or if effective corrective measures must be devised during system development. Predictive algorithms now in use have limited ability to characterize the actual time evolution of the oscillations, and they do not supply the motor designer with information regarding peak amplitudes or the associated critical triggering amplitudes. A pivotal missing element is the ability to predict the mean pressure shift; clearly, the designer requires information regarding the maximum chamber pressure that might be experienced during motor operation. In this paper, a comprehensive nonlinear combustion instability model is described that supplies vital information. The central role played by steep-fronted waves is emphasized. The resulting algorithm provides both detailed physical models of nonlinear instability phenomena and the critically needed predictive capability. In particular, the origin of the DC shift is revealed.
On Nonlinear Combustion Instability in Liquid Propellant Rocket Motors
NASA Technical Reports Server (NTRS)
Sims, J. D. (Technical Monitor); Flandro, Gary A.; Majdalani, Joseph; Sims, Joseph D.
2004-01-01
All liquid propellant rocket instability calculations in current use have limited value in the predictive sense and serve mainly as a correlating framework for the available data sets. The well-known n-t model first introduced by Crocco and Cheng in 1956 is still used as the primary analytical tool of this type. A multitude of attempts to establish practical analytical methods have achieved only limited success. These methods usually produce only stability boundary maps that are of little use in making critical design decisions in new motor development programs. Recent progress in understanding the mechanisms of combustion instability in solid propellant rockets"' provides a firm foundation for a new approach to prediction, diagnosis, and correction of the closely related problems in liquid motor instability. For predictive tools to be useful in the motor design process, they must have the capability to accurately determine: 1) time evolution of the pressure oscillations and limit amplitude, 2) critical triggering pulse amplitude, and 3) unsteady heat transfer rates at injector surfaces and chamber walls. The method described in this paper relates these critical motor characteristics directly to system design parameters. Inclusion of mechanisms such as wave steepening, vorticity production and transport, and unsteady detonation wave phenomena greatly enhance the representation of key features of motor chamber oscillatory behavior. The basic theoretical model is described and preliminary computations are compared to experimental data. A plan to develop the new predictive method into a comprehensive analysis tool is also described.
Simulation of wave interactions with MHD
NASA Astrophysics Data System (ADS)
Batchelor, D.; Alba, C.; Bateman, G.; Bernholdt, D.; Berry, L.; Bonoli, P.; Bramley, R.; Breslau, J.; Chance, M.; Chen, J.; Choi, M.; Elwasif, W.; Fu, G.; Harvey, R.; Jaeger, E.; Jardin, S.; Jenkins, T.; Keyes, D.; Klasky, S.; Kruger, S.; Ku, L.; Lynch, V.; McCune, D.; Ramos, J.; Schissel, D.; Schnack, D.; Wright, J.
2008-07-01
The broad scientific objectives of the SWIM (Simulation 01 Wave Interaction with MHD) project are twofold: (1) improve our understanding of interactions that both radio frequency (RF) wave and particle sources have on extended-MHD phenomena, and to substantially improve our capability for predicting and optimizing the performance of burning plasmas in devices such as ITER: and (2) develop an integrated computational system for treating multiphysics phenomena with the required flexibility and extensibility to serve as a prototype for the Fusion Simulation Project. The Integrated Plasma Simulator (IPS) has been implemented. Presented here are initial physics results on RP effects on MHD instabilities in tokamaks as well as simulation results for tokamak discharge evolution using the IPS.
NASA Astrophysics Data System (ADS)
Rouhnia, Mohamad; Strom, Kyle
2015-09-01
We experimentally examine sedimentation from a freshwater suspension of clay flocs overlying saltwater in the presence of gravitational instabilities. The study seeks to determine: (1) if flocculation hampers or alters interface instability formation; (2) how the removal rates of sediment from the buoyant layer compare to those predicted by individual floc settling; and (3) whether or not it is possible to develop a model for effective settling velocity. The experiments were conducted in a tank at isothermal conditions. All experiments were initially stably stratified but later developed instabilities near the interface that grew into downward convecting plumes of fluid and sediment. Throughout, we measured sediment concentration in the upper and lower layers, floc size, and plume descent rates. The data showed that flocculation modifies the mixture settling velocity, and therefore shifts the mode of interface instability from double-diffusive (what one would expect from unflocculated clay) to settling-driven leaking and Rayleigh-Taylor instability formation. Removal rates of sediment from the upper layer in the presence of these instabilities were on the same order of magnitude as those predicted by individual floc settling. However, removal rates were found to better correlate with the speed of the interface plumes. A simple force-balance model was found to be capable of reasonably describing plume velocity based on concentration in the buoyant layer. This relation, coupled with a critical Grashof number and geometry relations, allowed us to develop a model for the effective settling velocity of the mixture based solely on integral values of the upper layer.
Housing mobility and cognitive development: Change in verbal and nonverbal abilities.
Fowler, Patrick J; McGrath, Lauren M; Henry, David B; Schoeny, Michael; Chavira, Dina; Taylor, Jeremy J; Day, Orin
2015-10-01
This study investigates the influence of housing instability on verbal and nonverbal cognitive development among at-risk children and adolescents involved in the child welfare system. Frequent residential changes threaten child mental health, especially among low-income families. Little is known regarding disruptions to cognitive growth, specifically the impact on verbal and nonverbal abilities. The study tests whether developmental timing of housing mobility affects cognitive development beyond individual and family risks. A nationally representative study of families (n=2,442) susceptible to housing and family instability tracked children and adolescents aged 4-14 years (M=8.95 years) over 36 months following investigation by the child welfare system. Youth completed standardized cognitive assessments while caregivers reported on behavior problems and family risk at three time points. Latent growth models examined change in cognitive abilities over time. Housing mobility in the 12 months prior to baseline predicts lower verbal cognitive abilities that improve marginally. Similar effects emerge for all age groups; however, frequent moves in infancy diminish the influence of subsequent housing mobility on verbal tasks. Housing instability threatened cognitive development beyond child maltreatment, family changes, poverty, and other risks. Findings inform emerging research on environmental influences on neurocognitive development, as well as identify targets for early intervention. Systematic assessment of family housing problems, including through the child welfare system, provides opportunities for coordinated responses to prevent instability and cognitive threats. Copyright © 2015 Elsevier Ltd. All rights reserved.
Dynamic properties of combustion instability in a lean premixed gas-turbine combustor.
Gotoda, Hiroshi; Nikimoto, Hiroyuki; Miyano, Takaya; Tachibana, Shigeru
2011-03-01
We experimentally investigate the dynamic behavior of the combustion instability in a lean premixed gas-turbine combustor from the viewpoint of nonlinear dynamics. A nonlinear time series analysis in combination with a surrogate data method clearly reveals that as the equivalence ratio increases, the dynamic behavior of the combustion instability undergoes a significant transition from stochastic fluctuation to periodic oscillation through low-dimensional chaotic oscillation. We also show that a nonlinear forecasting method is useful for predicting the short-term dynamic behavior of the combustion instability in a lean premixed gas-turbine combustor, which has not been addressed in the fields of combustion science and physics.
Spatially explicit shallow landslide susceptibility mapping over large areas
Bellugi, Dino; Dietrich, William E.; Stock, Jonathan D.; McKean, Jim; Kazian, Brian; Hargrove, Paul
2011-01-01
Recent advances in downscaling climate model precipitation predictions now yield spatially explicit patterns of rainfall that could be used to estimate shallow landslide susceptibility over large areas. In California, the United States Geological Survey is exploring community emergency response to the possible effects of a very large simulated storm event and to do so it has generated downscaled precipitation maps for the storm. To predict the corresponding pattern of shallow landslide susceptibility across the state, we have used the model Shalstab (a coupled steady state runoff and infinite slope stability model) which susceptibility spatially explicit estimates of relative potential instability. Such slope stability models that include the effects of subsurface runoff on potentially destabilizing pore pressure evolution require water routing and hence the definition of upslope drainage area to each potential cell. To calculate drainage area efficiently over a large area we developed a parallel framework to scale-up Shalstab and specifically introduce a new efficient parallel drainage area algorithm which produces seamless results. The single seamless shallow landslide susceptibility map for all of California was accomplished in a short run time, and indicates that much larger areas can be efficiently modelled. As landslide maps generally over predict the extent of instability for any given storm. Local empirical data on the fraction of predicted unstable cells that failed for observed rainfall intensity can be used to specify the likely extent of hazard for a given storm. This suggests that campaigns to collect local precipitation data and detailed shallow landslide location maps after major storms could be used to calibrate models and improve their use in hazard assessment for individual storms.
Kelvin-Helmholtz instability of counter-rotating discs
NASA Astrophysics Data System (ADS)
Quach, Dan; Dyda, Sergei; Lovelace, Richard V. E.
2015-01-01
Observations of galaxies and models of accreting systems point to the occurrence of counter-rotating discs where the inner part of the disc (r < r0) is corotating and the outer part is counter-rotating. This work analyses the linear stability of radially separated co- and counter-rotating thin discs. The strong instability found is the supersonic Kelvin-Helmholtz instability. The growth rates are of the order of or larger than the angular rotation rate at the interface. The instability is absent if there is no vertical dependence of the perturbation. That is, the instability is essentially three dimensional. The non-linear evolution of the instability is predicted to lead to a mixing of the two components, strong heating of the mixed gas, and vertical expansion of the gas, and annihilation of the angular momenta of the two components. As a result, the heated gas will free-fall towards the disc's centre over the surface of the inner disc.
The relationship between ADHD symptoms, mood instability, and self-reported offending.
Gudjonsson, Gisli H; Sigurdsson, Jon Fridrik; Adalsteinsson, Tomas F; Young, Susan
2013-05-01
To investigate the relative importance of ADHD symptoms, mood instability, and antisocial personality disorder traits in predicting self-reported offending. A total of 295 Icelandic students completed two scales of offending behavior and measures of ADHD symptoms, mood instability, and antisocial personality traits. Self-reported offending from the two independent scales correlated significantly with ADHD symptoms, mood instability, and antisocial personality traits with medium to large effect size. Multiple regressions showed that ADHD symptoms contributed to the two outcome measures beyond that of age and gender with a medium effect size. The ADHD effects were only partly mediated by mood instability and antisocial personality traits for general offending but were almost completely mediated by the more reactive measure of antisocial behavior. ADHD appears to be a potential risk factor for general offending in its own right irrespective of the presence of comorbidity, whereas mood instability is more important with regard to reactive behavior.
Self-Induced Faraday Instability Laser
NASA Astrophysics Data System (ADS)
Perego, A. M.; Smirnov, S. V.; Staliunas, K.; Churkin, D. V.; Wabnitz, S.
2018-05-01
We predict the onset of self-induced parametric or Faraday instabilities in a laser, spontaneously caused by the presence of pump depletion, which leads to a periodic gain landscape for light propagating in the cavity. As a result of the instability, continuous wave oscillation becomes unstable even in the normal dispersion regime of the cavity, and a periodic train of pulses with ultrahigh repetition rate is generated. Application to the case of Raman fiber lasers is described, in good quantitative agreement between our conceptual analysis and numerical modeling.
Self-Induced Faraday Instability Laser.
Perego, A M; Smirnov, S V; Staliunas, K; Churkin, D V; Wabnitz, S
2018-05-25
We predict the onset of self-induced parametric or Faraday instabilities in a laser, spontaneously caused by the presence of pump depletion, which leads to a periodic gain landscape for light propagating in the cavity. As a result of the instability, continuous wave oscillation becomes unstable even in the normal dispersion regime of the cavity, and a periodic train of pulses with ultrahigh repetition rate is generated. Application to the case of Raman fiber lasers is described, in good quantitative agreement between our conceptual analysis and numerical modeling.
NASA Astrophysics Data System (ADS)
Zhou, Ming; Wu, Jianyang; Xu, Xiaoyi; Mu, Xin; Dou, Yunping
2018-02-01
In order to obtain improved electrical discharge machining (EDM) performance, we have dedicated more than a decade to correcting one essential EDM defect, the weak stability of the machining, by developing adaptive control systems. The instabilities of machining are mainly caused by complicated disturbances in discharging. To counteract the effects from the disturbances on machining, we theoretically developed three control laws from minimum variance (MV) control law to minimum variance and pole placements coupled (MVPPC) control law and then to a two-step-ahead prediction (TP) control law. Based on real-time estimation of EDM process model parameters and measured ratio of arcing pulses which is also called gap state, electrode discharging cycle was directly and adaptively tuned so that a stable machining could be achieved. To this end, we not only theoretically provide three proved control laws for a developed EDM adaptive control system, but also practically proved the TP control law to be the best in dealing with machining instability and machining efficiency though the MVPPC control law provided much better EDM performance than the MV control law. It was also shown that the TP control law also provided a burn free machining.
Numerical methods for large eddy simulation of acoustic combustion instabilities
NASA Astrophysics Data System (ADS)
Wall, Clifton T.
Acoustic combustion instabilities occur when interaction between the combustion process and acoustic modes in a combustor results in periodic oscillations in pressure, velocity, and heat release. If sufficiently large in amplitude, these instabilities can cause operational difficulties or the failure of combustor hardware. In many situations, the dominant instability is the result of the interaction between a low frequency acoustic mode of the combustor and the large scale hydrodynamics. Large eddy simulation (LES), therefore, is a promising tool for the prediction of these instabilities, since both the low frequency acoustic modes and the large scale hydrodynamics are well resolved in LES. Problems with the tractability of such simulations arise, however, due to the difficulty of solving the compressible Navier-Stokes equations efficiently at low Mach number and due to the large number of acoustic periods that are often required for such instabilities to reach limit cycles. An implicit numerical method for the solution of the compressible Navier-Stokes equations has been developed which avoids the acoustic CFL restriction, allowing for significant efficiency gains at low Mach number, while still resolving the low frequency acoustic modes of interest. In the limit of a uniform grid the numerical method causes no artificial damping of acoustic waves. New, non-reflecting boundary conditions have also been developed for use with the characteristic-based approach of Poinsot and Lele (1992). The new boundary conditions are implemented in a manner which allows for significant reduction of the computational domain of an LES by eliminating the need to perform LES in regions where one-dimensional acoustics significantly affect the instability but details of the hydrodynamics do not. These new numerical techniques have been demonstrated in an LES of an experimental combustor. The new techniques are shown to be an efficient means of performing LES of acoustic combustion instabilities and are shown to accurately predict the occurrence and frequency of the dominant mode of the instability observed in the experiment.
Closure models for transitional blunt-body flows
NASA Astrophysics Data System (ADS)
Nance, Robert Paul
1998-12-01
A mean-flow modeling approach is proposed for the prediction of high-speed blunt-body wake flows undergoing transition to turbulence. This method couples the k- /zeta (Enstrophy) compressible turbulence model with a procedure for characterizing non-turbulent fluctuations upstream of transition. Two different instability mechanisms are examined in this study. In the first model, transition is brought about by streamwise disturbance modes, whereas the second mechanism considers instabilities in the free shear layer associated with the wake flow. An important feature of this combined approach is the ability to specify or predict the location of transition onset. Solutions obtained using the new approach are presented for a variety of perfect-gas hypersonic flows over blunt- cone configurations. These results are shown to provide better agreement with experimental heating data than earlier laminar predictions by other researchers. In addition, it is demonstrated that the free-shear-layer instability mechanism is superior to the streamwise mechanism in terms of comparisons with heating measurements. The favorable comparisons are a strong indication that transition to turbulence is indeed present in the flowfields considered. They also show that the present method is a useful predictive tool for transitional blunt-body wake flows.
Prediction of fingering in porous media
NASA Astrophysics Data System (ADS)
Wang, Zhi; Feyen, Jan; Elrick, David E.
1998-09-01
Immiscible displacement, involving two fluids in a porous medium, can be unstable and fingered under certain conditions. In this paper, the original linear instability criterion of Chuoke et al. [1959] is generalized, considering wettability of two immiscible fluids to the porous medium. This is then used to predict 24 specific flow and porous medium conditions for the onset of wetting front instability in the subsurface. Wetting front instability is shown to be a function of the driving fluid wettability to the medium, differences in density and viscosity of the fluids, the magnitude of the interfacial tension, and the direction of flow with respect to gravity. Scenarios of water and nonaqueous-phase liquid infiltration into the vadose zone are examined to predict preferential flow and contamination of groundwater. The mechanisms of finger formation, propagation, and persistence in the vadose zone are reviewed, and the existing equations for calculating the size, the number and velocity of fingers are simplified for field applications. The analyses indicate that fingers initiate and propagate according to spatial and temporal distribution of the dynamic breakthrough (water- or air-entry) pressures in the porous medium. The predicted finger size and velocity are in close agreement with the experimental results.
Determination Of Slope Instability Using Spatially Integrated Mapping Framework
NASA Astrophysics Data System (ADS)
Baharuddin, I. N. Z.; Omar, R. C.; Roslan, R.; Khalid, N. H. N.; Hanifah, M. I. M.
2016-11-01
The determination and identification of slope instability are often rely on data obtained from in-situ soil investigation work where it involves the logistic of machineries and manpower, thus these aspects may increase the cost especially for remote locations. Therefore a method, which is able to identify possible slope instability without frequent ground walkabout survey, is needed. This paper presents the method used in prediction of slope instability using spatial integrated mapping framework which applicable for remote areas such as tropical forest and natural hilly terrain. Spatial data such as geology, topography, land use map, slope angle and elevation were used in regional analysis during desktop study. Through this framework, the occurrence of slope instability was able to be identified and was validate using a confirmatory site- specific analysis.
Genomic instability--an evolving hallmark of cancer.
Negrini, Simona; Gorgoulis, Vassilis G; Halazonetis, Thanos D
2010-03-01
Genomic instability is a characteristic of most cancers. In hereditary cancers, genomic instability results from mutations in DNA repair genes and drives cancer development, as predicted by the mutator hypothesis. In sporadic (non-hereditary) cancers the molecular basis of genomic instability remains unclear, but recent high-throughput sequencing studies suggest that mutations in DNA repair genes are infrequent before therapy, arguing against the mutator hypothesis for these cancers. Instead, the mutation patterns of the tumour suppressor TP53 (which encodes p53), ataxia telangiectasia mutated (ATM) and cyclin-dependent kinase inhibitor 2A (CDKN2A; which encodes p16INK4A and p14ARF) support the oncogene-induced DNA replication stress model, which attributes genomic instability and TP53 and ATM mutations to oncogene-induced DNA damage.
Microsegregation during directional solidification
NASA Technical Reports Server (NTRS)
Coriell, S. R.; Mcfadden, G. B.
1984-01-01
During the directional solidification of alloys, solute inhomogeneities transverse to the growth direction arise due to morphological instabilities (leading to cellular or dendritic growth) and/or due to convection in the melt. In the absence of convection, the conditions for the onset of morphological instability are given by the linear stability analysis of Mullins and Sekerka. For ordinary solidification rates, the predictions of linear stability analysis are similar to the constitutional supercooling criterion. However, at very rapid solidification rates, linear stability analysis predicts a vast increase in stabilization in comparison to constitutional supercooling.
Instability of liquid crystal elastomers
NASA Astrophysics Data System (ADS)
An, Ning; Li, Meie; Zhou, Jinxiong
2016-01-01
Nematic liquid crystal elastomers (LCEs) contract in the director direction but expand in other directions, perpendicular to the director, when heated. If the expansion of an LCE is constrained, compressive stress builds up in the LCE, and it wrinkles or buckles to release the stored elastic energy. Although the instability of soft materials is ubiquitous, the mechanism and programmable modulation of LCE instability has not yet been fully explored. We describe a finite element method (FEM) scheme to model the inhomogeneous deformation and instability of LCEs. A constrained LCE beam working as a valve for microfluidic flow, and a piece of LCE laminated with a nanoscale poly(styrene) (PS) film are analyzed in detail. The former uses the buckling of the LCE beam to occlude the microfluidic channel, while the latter utilizes wrinkling or buckling to measure the mechanical properties of hard film or to realize self-folding. Through rigorous instability analysis, we predict the critical conditions for the onset of instability, the wavelength and amplitude evolution of instability, and the instability patterns. The FEM results are found to correlate well with analytical results and reported experiments. These efforts shed light on the understanding and exploitation of the instabilities of LCEs.
Mook, William R; Petri, Maximilian; Greenspoon, Joshua A; Horan, Marilee P; Dornan, Grant J; Millett, Peter J
2016-06-01
The Latarjet procedure for the treatment of recurrent anterior shoulder instability is highly successful, but reasons for failure are often unclear. Measurements of the "glenoid track" have not previously been evaluated as potential predictors of postoperative stability. There are clinical and anatomic characteristics, including the glenoid track, that are predictive of outcomes after the Latarjet procedure. Case series; Level of evidence, 4. Patients who underwent the Latarjet procedure for anterior shoulder instability with glenoid bone loss before October 2012 were assessed for eligibility. Patient-reported subjective data that were prospectively collected and retrospectively reviewed included demographic information, patient satisfaction, pain measured on a visual analog scale (VAS), questions regarding instability, Single Assessment Numeric Evaluation (SANE) scores, American Shoulder and Elbow Surgeons (ASES) scores, Quick Disabilities of the Arm, Shoulder and Hand (QuickDASH) scores, and Short Form-12 Physical Component Summary (SF-12 PCS) scores. Anatomic measurements were performed of the coracoid size (surface area and width), width of the conjoined tendon and subscapularis tendon, estimated glenoid defect surface area, Hill-Sachs interval (HSI), and projected postoperative glenoid track engagement. Failure was defined as the necessity for revision stabilization or continued instability (dislocation or subjective subluxation) at a minimum of 2 years postoperatively. A total of 38 shoulders in 38 patients (33 men, 5 women) with a mean age of 26 years (range, 16-43 years) were included. The mean follow-up for 35 of 38 patients (92%) was 3.2 years (range, 2.0-7.9 years); 25 of 38 had undergone prior stabilization surgery, and 6 had workers' compensation claims. All mean subjective outcome scores significantly improved (P < .05), with a high median satisfaction score of 9 of 10. Eight patients had failures because of continued instability. Patients with moderate or higher preoperative pain scores (VAS ≥3) had a negative correlation with postoperative SF-12 PCS scores (ρ = 0.474, P = .022). Patients with outside-and-engaged (Out-E) or "off-track" lesions were 4.0 times more likely to experience postoperative instability (relative risk, 4.0; 95% CI, 1.32-12.2; P = .33). The width of patients' coracoid processes was also directly associated with postoperative stability (P = .014). Moreover, 50% (4/8) of failures demonstrated Out-E glenoid tracks (off-track lesions) versus 16% (4/25) of those without recurrent instability (P = .033). Five of 8 failures were considered as such because of subjective subluxation events, not frank dislocations. Four of the 6 patients with workers' compensation claims had failed results (P = .016). Workers' compensation claims were associated with continued instability, and patients with higher preoperative pain levels demonstrated lower SF-12 PCS scores postoperatively. The concept of the glenoid track may be predictive of stability after the Latarjet procedure and may be helpful in surgical decision making regarding the treatment of Hill-Sachs lesions at risk for persistent engagement. Although stability and patient satisfaction are high after the Latarjet procedure, subjective complaints of subluxation may be more common than previously estimated. © 2016 The Author(s).
NASA Astrophysics Data System (ADS)
Wilhelm, S.; Balarac, G.; Métais, O.; Ségoufin, C.
2016-11-01
Flow prediction in a bulb turbine draft tube is conducted for two operating points using Unsteady RANS (URANS) simulations and Large Eddy Simulations (LES). The inlet boundary condition of the draft tube calculation is a rotating two dimensional velocity profile exported from a RANS guide vane- runner calculation. Numerical results are compared with experimental data in order to validate the flow field and head losses prediction. Velocity profiles prediction is improved with LES in the center of the draft tube compared to URANS results. Moreover, more complex flow structures are obtained with LES. A local analysis of the predicted flow field using the energy balance in the draft tube is then introduced in order to detect the hydrodynamic instabilities responsible for head losses in the draft tube. In particular, the production of turbulent kinetic energy next to the draft tube wall and in the central vortex structure is found to be responsible for a large part of the mean kinetic energy dissipation in the draft tube and thus for head losses. This analysis is used in order to understand the differences in head losses for different operating points. The numerical methodology could then be improved thanks to an in-depth understanding of the local flow topology.
DOT National Transportation Integrated Search
1974-04-01
A unifying wake vortex transport model is developed and applied to a wake vortex predictive system concept. The fundamentals of vortex motion underlying the predictive model are discussed including vortex decay, bursting and instability phenomena. A ...
Current driven instabilities of an electromagnetically accelerated plasma
NASA Technical Reports Server (NTRS)
Chouetri, E. Y.; Kelly, A. J.; Jahn, R. G.
1988-01-01
A plasma instability that strongly influences the efficiency and lifetime of electromagnetic plasma accelerators was quantitatively measured. Experimental measurements of dispersion relations (wave phase velocities), spatial growth rates, and stability boundaries are reported. The measured critical wave parameters are in excellent agreement with theoretical instability boundary predictions. The instability is current driven and affects a wide spectrum of longitudinal (electrostatic) oscillations. Current driven instabilities, which are intrinsic to the high-current-carrying magnetized plasma of the magnetoplasmadynmic (MPD) accelerator, were investigated with a kinetic theoretical model based on first principles. Analytical limits of the appropriate dispersion relation yield unstable ion acoustic waves for T(i)/T(e) much less than 1 and electron acoustic waves for T(i)/T(e) much greater than 1. The resulting set of nonlinear equations for the case of T(i)/T(e) = 1, of most interest to the MPD thruster Plasma Wave Experiment, was numerically solved to yield a multiparameter set of stability boundaries. Under certain conditions, marginally stable waves traveling almost perpendicular to the magnetic field would travel at a velocity equal to that of the electron current. Such waves were termed current waves. Unstable current waves near the upper stability boundary were observed experimentally and are in accordance with theoretical predictions. This provides unambiguous proof of the existence of such instabilites in electromagnetic plasma accelerators.
Instability of Taylor-Sedov blast waves propagating through a uniform gas
NASA Astrophysics Data System (ADS)
Grun, J.; Stamper, J.; Manka, C.; Resnick, J.; Burris, R.; Crawford, J.; Ripin, B. H.
1991-05-01
An instability in Taylor-Sedov blast waves was measured as the waves propagated through a uniform gas with a low adiabatic index. The first measurements of the instability are given and compared to theoretical predictions. The classical Taylor-Sedov blast waves resulted from the expansion of ablation plasma into an ambient gas from laser-irradiated foils, and photographs were taken using the dark-field imaging method. Visible emission from the blasts were recorded with a four-frame microchannel-plate intensifier camera. Blast waves formed in nitrogen gas are shown to be stable and smooth, whereas the waves propagating through xenon gas are found to be unstable and wrinkled. A power law is fitted to the experimental data, and the adiabatic indices are theorized to cause the different responses in the two gases. The results generally agree with theoretical predictions in spite of some minor discrepancies, and an explanation of the instability mechanism is developed. When the adiabatic index is sufficiently low, the Taylor-Sedov blast waves in a uniform gas will be unstable, and the perturbed amplitudes will grow as a power of time.
Aeroservoelastic Stability Analysis of the X-43A Stack
NASA Technical Reports Server (NTRS)
Pak, Chan-gi
2008-01-01
The first air launch attempt of an X-43A stack, consisting of the booster, adapter and Hyper-X research vehicle, ended in failure shortly after the successful drop from the National Aeronautics and Space Administration Dryden Flight Research Center (Edwards, California) B-52B airplane and ignition of the booster. The stack was observed to begin rolling and yawing violently upon reaching transonic speeds, and the grossly oscillating fins of the booster separated shortly thereafter. The flight then had to be terminated with the stack out of control. Very careful linear flutter and aeroservoelastic analyses were subsequently performed as reported herein to numerically duplicate the observed instability. These analyses properly identified the instability mechanism and demonstrated the importance of including the flight control laws, rigid-body modes, structural flexible modes and control surface flexible modes. In spite of these efforts, however, the predicted instability speed remained more than 25 percent higher than that observed in flight. It is concluded that transonic shock phenomena, which linear analyses cannot take into account, are also important for accurate prediction of this mishap instability.
Plasma Irregularities on the Leading and Trailing Edges of Polar Cap Patches
NASA Astrophysics Data System (ADS)
Lamarche, L. J.; Varney, R. H.; Gillies, R.; Chartier, A.; Mitchell, C. N.
2017-12-01
Plasma irregularities in the polar cap have often been attributed to the gradient drift instability (GDI). Traditional fluid theories of GDI predicts irregularity growth only on the trailing edge of polar patches, where the plasma density gradient is parallel to the plasma drift velocity, however many observations show irregularities also form on the leading edge of patches. We consider decameter-scale irregularities detected by polar-latitude SuperDARN (Super Dual Auroral Radar Network) radars with any relationship between the background density gradients and drift velocity. Global electron density from the Multi-Instrument Data Analysis System (MIDAS), a GPS tomography routine, is used to provide context for where irregularities are observed relative to polar patches and finer-scale background density gradients are found from 3D imaging from both the North and Canada faces of the Resolute Bay Incoherent Scatter Radars (RISR-N and RISR-C) jointly. Shear-based instabilities are considered as mechanisms by which plasma irregularities could form on the leading edge of patches. Theoretical predictions of instability growth from both GDI and shear instabilities are compared with irregularity observations for the October 13, 2016 storm.
Effect of thermal diffusion on the stability of strongly tilted mantle plume tails
NASA Astrophysics Data System (ADS)
Kerr, R. C.; MéRiaux, C.; Lister, J. R.
2008-09-01
The effect of thermal diffusion on the stability of strongly tilted mantle plume tails is explored by investigating experimentally and numerically the gravitational instability of a rising horizontal cylindrical region of buoyant viscous fluid. At large viscosity ratios, we find that the instability is unaffected by diffusion when the Rayleigh number Ra is greater than about 300. When Ra is less than 300, diffusion significantly increases the time for instability, as the rising fluid region needs to grow substantially by entrainment before it becomes unstable. When Ra is less than about 140 and the rise height available H is less than about 40 times the cylinder radius, the rising region of fluid is unable to grow sufficiently and instability is prevented. When our results are applied to the Earth, we predict that thermal diffusion will stabilize plume tails in both the upper and lower mantle. We also predict that some of the buoyancy flux in mantle plumes is lost during ascent to form downstream thermal wakes in any larger-scale mantle flow.
Supersonic Coaxial Jets: Noise Predictions and Measurements
NASA Technical Reports Server (NTRS)
Dahl, Milo D.; Papamoschou, Dimitri; Hixon, Ray
1998-01-01
The noise from perfectly expanded coaxial jets was measured in an anechoic chamber for different operating conditions with the same total thrust, mass flow, and exit area. The shape of the measured noise spectrum at different angles to the jet axis was found to agree with spectral shapes for single, axisymmetric jets. Based on these spectra, the sound was characterized as being generated by large turbulent structures or fine-scale turbulence. Modeling the large scale structures as instability waves, a stability analysis was conducted for the coaxial jets to identify the growing and decaying instability waves in each shear layer and predict their noise radiation pattern outside the jet. When compared to measured directivity, the analysis identified the region downstream of the outer potential core, where the two shear layers were merging, as the source of the peak radiated noise where instability waves, with their origin in the inner shear layer, reach their maximum amplitude. Numerical computations were also performed using a linearized Euler equation solver. Those results were compared to both the results from the instability wave analysis and to measured data.
Tehran Air Pollutants Prediction Based on Random Forest Feature Selection Method
NASA Astrophysics Data System (ADS)
Shamsoddini, A.; Aboodi, M. R.; Karami, J.
2017-09-01
Air pollution as one of the most serious forms of environmental pollutions poses huge threat to human life. Air pollution leads to environmental instability, and has harmful and undesirable effects on the environment. Modern prediction methods of the pollutant concentration are able to improve decision making and provide appropriate solutions. This study examines the performance of the Random Forest feature selection in combination with multiple-linear regression and Multilayer Perceptron Artificial Neural Networks methods, in order to achieve an efficient model to estimate carbon monoxide and nitrogen dioxide, sulfur dioxide and PM2.5 contents in the air. The results indicated that Artificial Neural Networks fed by the attributes selected by Random Forest feature selection method performed more accurate than other models for the modeling of all pollutants. The estimation accuracy of sulfur dioxide emissions was lower than the other air contaminants whereas the nitrogen dioxide was predicted more accurate than the other pollutants.
Resolving the mystery of transport within internal transport barriersa)
NASA Astrophysics Data System (ADS)
Staebler, G. M.; Kinsey, J. E.; Belli, E. A.; Candy, J.; Waltz, R. E.; Greenfield, C. M.; Lao, L. L.; Smith, S. P.; Grierson, B. A.; Chrystal, C.
2014-05-01
The Trapped Gyro-Landau Fluid (TGLF) quasi-linear model [G. M. Staebler, et al., Phys. Plasmas 12, 102508 (2005)], which is calibrated to nonlinear gyrokinetic turbulence simulations, is now able to predict the electron density, electron and ion temperatures, and ion toroidal rotation simultaneously for internal transport barrier (ITB) discharges. This is a strong validation of gyrokinetic theory of ITBs, requiring multiple instabilities responsible for transport in different channels at different scales. The mystery of transport inside the ITB is that momentum and particle transport is far above the predicted neoclassical levels in apparent contradiction with the expectation from the theory of suppression of turbulence by E ×B velocity shear. The success of TGLF in predicting ITB transport is due to the inclusion of ion gyro-radius scale modes that become dominant at high E ×B velocity shear and to improvements to TGLF that allow momentum transport from gyrokinetic turbulence to be faithfully modeled.
Resolving the mystery of transport within internal transport barriers
Staebler, Gary M.; Kinsey, Jon E.; Belli, Emily A.; ...
2014-05-02
Here, the Trapped Gyro-Landau Fluid (TGLF) quasi-linear model, which is calibrated to nonlinear gyrokinetic turbulence simulations, is now able to predict the electron density, electron and ion temperatures and ion toroidal rotation simultaneously for internal transport barrier (ITB) discharges. This is a strong validation of gyrokinetic theory of ITBs, requiring multiple instabilities responsible for transport in different channels at different scales. The mystery of transport inside the ITB is that momentum and particle transport is far above the predicted neoclassical levels in apparent contradiction with the expectation from the theory of suppression of turbulence by E × B velocity shear.more » The success of TGLF in predicting ITB transport is due to the inclusion of ion gyro-radius scale modes that become dominant at high E × B velocity shear and to improvements to TGLF that allow momentum transport from gyrokinetic turbulence to be faithfully modeled.« less
Iwao, Kamizato; Masataka, Deie; Kohei, Fukuhara
2014-01-01
Introduction. Chronic functional instability—characterized by repeated ankle inversion sprains and a subjective sensation of instability—is one of the most common residual disabilities after an inversion sprain. However, whether surgical reconstruction improves sensorimotor control has not been reported to date. The purpose of this study was to assess functional improvement of chronic ankle instability after surgical reconstruction using the remnant ligament. Materials and Methods. We performed 10 cases in the intervention group and 20 healthy individuals as the control group. Before and after surgical reconstruction, we evaluated joint position sense and functional ankle instability by means of a questionnaire. Results and Discussion. There was a statistically significant difference between the control and intervention groups before surgical reconstruction. Three months after surgery in the intervention group, the joint position sense was significantly different from those found preoperatively. Before surgery, the mean score of functional ankle instability in the intervention group was almost twice as low. Three months after surgery, however, the score significantly increased. The results showed that surgical reconstruction using the remnant ligament was effective not only for improving mechanical retensioning but also for ameliorating joint position sense and functional ankle instability. PMID:25401146
Glendening, Zachary S; McCauley, Erin; Shinn, Marybeth; Brown, Scott R
2018-04-01
Though disability and housing instability are discussed separately in public health literature, few studies address families at their intersection. As a result, little is known about families who experience both homelessness and disability, how many receive disability benefits like SSI and SSDI, or the influence of those benefits on health-promoting outcomes like housing stability and self-sufficiency. Moreover, no previous research compares the ability of different housing and service interventions to increase disability benefit access. We examine relationships between disabilities and SSI/SSDI income reported when families enter emergency shelters and later health-promoting outcomes (housing stability and self-sufficiency) and how housing interventions affect SSI/SSDI receipt. Families in the (name removed) Study (N = 1857) were interviewed in emergency shelters, randomly offered of one of three housing interventions or usual care (i.e., no immediate referral to any intervention beyond shelter), and re-interviewed 20 months later. A third of families reported a disability at shelter entry. SSI/SSDI coverage of these families increased nearly 10% points over 20 months but never exceeded 40%. Disabilities predicted greater housing instability, food insecurity, and economic stress and less work and income. Among families reporting disabilities, SSI/SSDI receipt predicted fewer returns to emergency shelter, and more income despite less work. Offers of long-term housing subsidies increased SSI/SSDI receipt. Many families experiencing homelessness have disabilities; those receiving SSI/SSDI benefits have better housing and income outcomes. Providing families experiencing homelessness with long-term housing subsidies and SSI/SSDI could improve public health. Copyright © 2017 Elsevier Inc. All rights reserved.
Origin of Vibrational Instabilities in Molecular Wires with Separated Electronic States.
Foti, Giuseppe; Vázquez, Héctor
2018-06-07
Current-induced heating in molecular junctions stems from the interaction between tunneling electrons and localized molecular vibrations. If the electronic excitation of a given vibrational mode exceeds heat dissipation, a situation known as vibrational instability is established, which can seriously compromise the integrity of the junction. Using out of equilibrium first-principles calculations, we demonstrate that vibrational instabilities can take place in the general case of molecular wires with separated unoccupied electronic states. From the ab initio results, we derive a model to characterize unstable vibrational modes and construct a diagram that maps mode stability. These results generalize previous theoretical work and predict vibrational instabilities in a new regime.
NASA Astrophysics Data System (ADS)
Alsharif, Abdullah M.; Althubaiti, Shadiah A.
2018-03-01
The thermal modulation of Newtonian liquid jets at the orifice causes a variation in surface tension, which propagates downstream inducing Marangoni instability. Therefore, the linear temporal and spatial instability should be investigated to predict the same size of producing small spherical pellets. In this paper, we consider a viscous liquid jet emerging from a nozzle subject to thermo-capillary effects falling under gravity. Moreover, we use the asymptotic approach to reduce the governing equation into one-dimensional (1-D). The steady state solutions have been found using a modified Newton's method, and then the linear instability analysis has been investigated of the resulting set of equations.
Mean Flow Augmented Acoustics in Rocket Systems
NASA Technical Reports Server (NTRS)
Fischbach, Sean R.
2015-01-01
Combustion instability in solid rocket motors and liquid engines is a complication that continues to plague designers and engineers. Many rocket systems experience violent fluctuations in pressure, velocity, and temperature originating from the complex interactions between the combustion process and gas dynamics. During sever cases of combustion instability fluctuation amplitudes can reach values equal to or greater than the average chamber pressure. Large amplitude oscillations lead to damaged injectors, loss of rocket performance, damaged payloads, and in some cases breach of case/loss of mission. Historic difficulties in modeling and predicting combustion instability has reduced most rocket systems experiencing instability into a costly fix through testing paradigm or to scrap the system entirely.
Predicting carotid artery disease and plaque instability from cell-derived microparticles.
Wekesa, A L; Cross, K S; O'Donovan, O; Dowdall, J F; O'Brien, O; Doyle, M; Byrne, L; Phelan, J P; Ross, M D; Landers, R; Harrison, M
2014-11-01
Cell-derived microparticles (MPs) are small plasma membrane-derived vesicles shed from circulating blood cells and may act as novel biomarkers of vascular disease. We investigated the potential of circulating MPs to predict (a) carotid plaque instability and (b) the presence of advanced carotid disease. This pilot study recruited carotid disease patients (aged 69.3 ± 1.2 years [mean ± SD], 69% male, 90% symptomatic) undergoing endarterectomy (n = 42) and age- and sex-matched controls (n = 73). Plaques were classified as stable (n = 25) or unstable (n = 16) post surgery using immunohistochemistry. Blood samples were analysed for MP subsets and molecular biomarkers. Odds ratios (OR) are expressed per standard deviation biomarker increase. Endothelial MP (EMP) subsets, but not any vascular, inflammatory, or proteolytic molecular biomarker, were higher (p < .05) in the unstable than the stable plaque patients. The area under the receiver operator characteristic curve for CD31(+)41(-) EMP in discriminating an unstable plaque was 0.73 (0.56-0.90, p < .05). CD31(+)41(-) EMP predicted plaque instability (OR = 2.19, 1.08-4.46, p < .05) and remained significant in a multivariable model that included transient ischaemic attack symptom status. Annexin V(+) MP, platelet MP (PMP) subsets, and C-reactive protein were higher (p < .05) in cases than controls. Annexin V(+) MP (OR = 3.15, 1.49-6.68), soluble vascular cell adhesion molecule-1 (OR = 1.64, 1.03-2.59), and previous smoking history (OR = 3.82, 1.38-10.60) independently (p < .05) predicted the presence of carotid disease in a multivariable model. EMP may have utility in predicting plaque instability in carotid patients and annexin V(+) MPs may predict the presence of advanced carotid disease in aging populations, independent of established biomarkers. Copyright © 2014 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.
Delage Royle, Audrey; Balg, Frédéric; Bouliane, Martin J; Canet-Silvestri, Fanny; Garant-Saine, Laurianne; Sheps, David M; Lapner, Peter; Rouleau, Dominique M
2017-10-01
Quantifying glenohumeral bone loss is key in preoperative surgical planning for a successful Bankart repair. Simple radiographs can accurately measure bone defects in cases of recurrent shoulder instability. Cohort study (diagnosis); Level of evidence, 2. A true anteroposterior (AP) view, alone and in combination with an axillary view, was used to evaluate the diagnostic properties of radiographs compared with computed tomography (CT) scan, the current gold standard, to predict significant bone defects in 70 patients. Sensitivity, specificity, and positive and negative predictive values were evaluated and compared. Detection of glenoid bone loss on plain film radiographs, with and without axillary view, had a sensitivity of 86% for both views and a specificity of 73% and 64% with and without the axillary view, respectively. For detection of humeral bone loss, the sensitivity was 8% and 17% and the specificity was 98% and 91% with and without the axillary view, respectively. Regular radiographs would have missed 1 instance of significant bone loss on the glenoid side and 20 on the humeral side. Interobserver reliabilities were moderate for glenoid detection (κ = 0.473-0.503) and poor for the humeral side (κ = 0.278-0.336). Regular radiographs showed suboptimal sensitivity, specificity, and reliability. Therefore, CT scan should be considered in the treatment algorithm for accurate quantification of bone loss to prevent high rates of recurrent instability.
Designing solid-liquid interphases for sodium batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choudhury, Snehashis; Wei, Shuya; Ozhabes, Yalcin
Secondary batteries based on earth-abundant sodium metal anodes are desirable for both stationary and portable electrical energy storage. Room-temperature sodium metal batteries are impractical today because morphological instability during recharge drives rough, dendritic electrodeposition. Chemical instability of liquid electrolytes also leads to premature cell failure as a result of parasitic reactions with the anode. Here we use joint density-functional theoretical analysis to show that the surface diffusion barrier for sodium ion transport is a sensitive function of the chemistry of solid–electrolyte interphase. In particular, we find that a sodium bromide interphase presents an exceptionally low energy barrier to ion transport,more » comparable to that of metallic magnesium. We evaluate this prediction by means of electrochemical measurements and direct visualization studies. These experiments reveal an approximately three-fold reduction in activation energy for ion transport at a sodium bromide interphase. Direct visualization of sodium electrodeposition confirms large improvements in stability of sodium deposition at sodium bromide-rich interphases.« less
Mechanistic insights into chemical and photochemical transformations of bismuth vanadate photoanodes
Toma, Francesca M.; Cooper, Jason K.; Kunzelmann, Viktoria; ...
2016-07-05
Artificial photosynthesis relies on the availability of semiconductors that are chemically stable and can efficiently capture solar energy. Although metal oxide semiconductors have been investigated for their promise to resist oxidative attack, materials in this class can suffer from chemical and photochemical instability. Here we present a methodology for evaluating corrosion mechanisms and apply it to bismuth vanadate, a state-of-the-art photoanode. Analysis of changing morphology and composition under solar water splitting conditions reveals chemical instabilities that are not predicted from thermodynamic considerations of stable solid oxide phases, as represented by the Pourbaix diagram for the system. Computational modelling indicates thatmore » photoexcited charge carriers accumulated at the surface destabilize the lattice, and that self-passivation by formation of a chemically stable surface phase is kinetically hindered. Although chemical stability of metal oxides cannot be assumed, insight into corrosion mechanisms aids development of protection strategies and discovery of semiconductors with improved stability.« less
Designing solid-liquid interphases for sodium batteries
Choudhury, Snehashis; Wei, Shuya; Ozhabes, Yalcin; ...
2017-10-12
Secondary batteries based on earth-abundant sodium metal anodes are desirable for both stationary and portable electrical energy storage. Room-temperature sodium metal batteries are impractical today because morphological instability during recharge drives rough, dendritic electrodeposition. Chemical instability of liquid electrolytes also leads to premature cell failure as a result of parasitic reactions with the anode. Here we use joint density-functional theoretical analysis to show that the surface diffusion barrier for sodium ion transport is a sensitive function of the chemistry of solid–electrolyte interphase. In particular, we find that a sodium bromide interphase presents an exceptionally low energy barrier to ion transport,more » comparable to that of metallic magnesium. We evaluate this prediction by means of electrochemical measurements and direct visualization studies. These experiments reveal an approximately three-fold reduction in activation energy for ion transport at a sodium bromide interphase. Direct visualization of sodium electrodeposition confirms large improvements in stability of sodium deposition at sodium bromide-rich interphases.« less
Heaphy, Christopher M.; Yoon, Ghil Suk; Peskoe, Sarah B.; Joshu, Corinne E.; Lee, Thomas K.; Giovannucci, Edward; Mucci, Lorelei A.; Kenfield, Stacey A.; Stampfer, Meir J.; Hicks, Jessica L.; De Marzo, Angelo M.; Platz, Elizabeth A.; Meeker, Alan K.
2013-01-01
Current prognostic indicators are imperfect predictors of outcome in men with clinicallylocalized prostate cancer. Thus, tissue-based markers are urgently needed to improve treatment and surveillance decision-making. Given that shortened telomeres enhance chromosomal instability and such instability is a hallmark of metastatic lesions, we hypothesized that alterations in telomere length in the primary cancer would predict risk of progression to metastasis and prostate cancer death. To test this hypothesis, we conducted a prospective cohort study of 596 surgically treated men who participated in the ongoing Health Professionals Follow-up Study. Men who had the combination of more variable telomere length among prostate cancer cells (cell-to-cell) and shorter telomere length in prostate cancer-associated stromal cells were substantially more likely to progress to metastasis or die of their prostate cancer. These findings point to the translational potential of this telomere biomarker for prognostication and risk stratification for individualized therapeutic and surveillance strategies. PMID:23779129
DOT National Transportation Integrated Search
1974-04-01
A unifying wake vortex transport model is developed and applied to a wake vortex predictive system concept. The fundamentals of vortex motion underlying the predictive model are discussed including vortex decay, bursting and instability phenomena. A ...
Transient Modeling of Hybrid Rocket Low Frequency Instabilities
NASA Technical Reports Server (NTRS)
Karabeyoglu, M. Arif; DeZilwa, Shane; Cantwell, Brian; Zilliac, Greg
2003-01-01
A comprehensive dynamic model of a hybrid rocket has been developed in order to understand and predict the transient behavior including instabilities. A linearized version of the transient model predicted the low-frequency chamber pressure oscillations that are commonly observed in hybrids. The source of the instabilities is based on a complex coupling of thermal transients in the solid fuel, wall heat transfer blocking due to fuel regression rate and the transients in the boundary layer that forms on the fuel surface. The oscillation frequencies predicted by the linearized theory are in very good agreement with 43 motor test results obtained from the hybrid propulsion literature. The motor test results used in the comparison cover a very wide spectrum of parameters including: 1) four separate research and development programs, 2) three different oxidizers (LOX, GOX, N2O), 3) a wide range of motor dimensions (i.e. from 5 inch diameter to 72 inch diameter) and operating conditions and 4) several fuel formulations. A simple universal scaling formula for the frequency of the primary oscillation mode is suggested.
Absolute & Convective Instabilities in the Boundary Layer on a Rotating Sphere
NASA Astrophysics Data System (ADS)
Garrett, Stephen; Peake, Nigel
2001-11-01
We are concerned with absolute (AI) and convective instabilities (CI) in the boundary-layer on a sphere rotating in an otherwise still fluid. Both AI and CI are found at every latitude within specific parameter spaces. The local Reynolds number at the predicted onset of AI matches experimental data well for the onset of turbulence at ψ =30^o from the axis of rotation, beyond this latitude the discrepancy increases but remains relatively small below ψ =70^o. We suggest that this AI may cause the onset of transition. The results of the CI analysis show that a crossflow instability mode is the most dangerous below ψ =66^o. Above this latitude a streamline-curvature mode is found to be the most dangerous, which coincides with the appearance of reverse flow in the radial component of the mean flow. Our predictions of the Reynolds number and vortex angle at the onset of CI are consistent with existing experimental measurements. Close to the pole the predictions of each stability analysis are seen to approach those of existing rotating disk investigations.
Filamentation instability of magnetosonic waves in the solar wind environment
NASA Technical Reports Server (NTRS)
Kuo, S. P.; Lee, M. C.
1989-01-01
Intense magnetosonic waves, originally propagating at the right angle with the interplanetary magnetic field, can excite a purely growing mode along the interplanetary magnetic field together with two symmetric magnetosonic sidebands propagating obliquely across the magnetic field. This instability process leads to the filamentation of the magnetosonic pump waves. These two excited magnetosonic sideband modes propagate together perpendicularly across the magnetic field and, meanwhile, form a standing wave pattern along the magnetic field. The thresholds of this filamentation instability can be exceeded in the solar wind environment. It is predicted that the density fluctuations produced by the filamentation instability along the interplanetary magnetic field have wavelengths greater than, at least, a few earth radii. The polarization of the obliquely propagating magnetosonic waves excited by the filamentation instability is determined by the characteristics of the magnetosonic pump waves and the environmental plasmas.
D'Hernoncourt, J; Merkin, J H; De Wit, A
2007-09-01
Traveling fronts can become transversally unstable either because of a diffusive instability arising when the key variables diffuse at sufficiently different rates or because of a buoyancy-driven Rayleigh-Taylor mechanism when the density jump across the front is statically unfavorable. The interaction between such diffusive and buoyancy instabilities of fronts is analyzed theoretically for a simple model system. Linear stability analysis and nonlinear simulations show that their interplay changes considerably the stability properties with regard to the pure Rayleigh-Taylor or diffusive instabilities of fronts. In particular, an instability scenario can arise which triggers convection around statically stable fronts as a result of differential diffusion. Moreover, spatiotemporal chaos can be observed when both buoyancy and diffusive effects cooperate to destabilize the front. Experimental conditions to test our predictions are suggested.
Oscillational instabilities in single-mode acoustic levitators
NASA Technical Reports Server (NTRS)
Rudnick, Joseph; Barmatz, M.
1990-01-01
An extension of standard results for the acoustic force on an object in a single-mode resonant chamber yields predictions for the onset of oscillational instabilities when objects are levitated or positioned in these chambers. The results are consistent with experimental investigations. The present approach accounts for the effect of time delays on the response of a cavity to the motion of an object inside it. Quantitative features of the instabilities are investigated. The experimental conditions required for sample stability, saturation of sample oscillations, hysteretic effects, and the loss of the ability to levitate are discussed.
Research on combustion instability and application to solid propellant rocket motors. II.
NASA Technical Reports Server (NTRS)
Culick, F. E. C.
1972-01-01
Review of the current state of analyses of combustion instability in solid-propellant rocket motors, citing appropriate measurements and observations. The work discussed has become increasingly important, both for the interpretation of laboratory data and for predicting the transient behavior of disturbances in full-scale motors. Two central questions are considered - namely, linear stability and nonlinear behavior. Several classes of problems are discussed as special cases of a general approach to the analysis of combustion instability. Application to motors, and particularly the limitations presently understood, are stressed.
Guillo, S; Bauer, T; Lee, J W; Takao, M; Kong, S W; Stone, J W; Mangone, P G; Molloy, A; Perera, A; Pearce, C J; Michels, F; Tourné, Y; Ghorbani, A; Calder, J
2013-12-01
Ankle sprains are the most common injuries sustained during sports activities. Most ankle sprains recover fully with non-operative treatment but 20-30% develop chronic ankle instability. Predicting which patients who sustain an ankle sprain will develop instability is difficult. This paper summarises a consensus on identifying which patients may require surgery, the optimal surgical intervention along with treatment of concomitant pathology given the evidence available today. It also discusses the role of arthroscopic treatment and the anatomical basis for individual procedures. Copyright © 2013. Published by Elsevier Masson SAS.
Density Driven Removal of Sediment from a Buoyant Muddy Plume
NASA Astrophysics Data System (ADS)
Rouhnia, M.; Strom, K.
2014-12-01
Experiments were conducted to study the effect of settling driven instabilities on sediment removal from hypopycnal plumes. Traditional approaches scale removal rates with particle settling velocity however, it has been suggested that the removal from buoyant suspensions happens at higher rates. The enhancement of removal is likely due to gravitational instabilities, such as fingering, at two-fluid interface. Previous studies have all sought to suppress flocculation, and no simple model exists to predict the removal rates under the effect of such instabilities. This study examines whether or not flocculation hampers instability formation and presents a simple removal rate model accounting for gravitational instabilities. A buoyant suspension of flocculated Kaolinite overlying a base of clear saltwater was investigated in a laboratory tank. Concentration was continuously measured in both layers with a pair of OBS sensors, and interface was monitored with digital cameras. Snapshots from the video were used to measure finger velocity. Samples of flocculated particles at the interface were extracted to retrieve floc size data using a floc camera. Flocculation did not stop creation of settling-driven fingers. A simple cylinder-based force balance model was capable of predicting finger velocity. Analogy of fingering process of fine grained suspensions to thermal plume formation and the concept of Grashof number enabled us to model finger spacing as a function of initial concentration. Finally, from geometry, the effective cross-sectional area was correlated to finger spacing. Reformulating the outward flux expression was done by substitution of finger velocity, rather than particle settling velocity, and finger area instead of total area. A box model along with the proposed outward flux was used to predict the SSC in buoyant layer. The model quantifies removal flux based on the initial SSC and is in good agreement with the experimental data.
Convective Electrokinetic Instability With Conductivity Gradients
NASA Astrophysics Data System (ADS)
Chen, Chuan-Hua; Lin, Hao; Lele, Sanjiva; Santiago, Juan
2003-11-01
Electrokinetic flow instability has been experimentally identified and quantified in a glass T-junction microchannel system with a cross section of 11 um x 155 um. In this system, buffers of different conductivities were electrokinetically driven into a common mixing channel by a DC electric field. A convective instability was observed with a threshold electric field of 0.45 kV/cm for a 10:1 conductivity ratio. A physical model has been developed which consists of a modified Ohmic model formulation for electrolyte solutions and the Navier-Stokes equations with an electric body force term. The model and experiments show that bulk charge accumulation in regions of conductivity gradients is the key mechanism of such instabilities. A linear stability analysis was performed in a convective framework, and Briggs-Bers criteria were applied to determine the nature of instability. The analysis shows the instability is governed by two key parameters: the ratio of molecular diffusion to electroviscous time scale which governs the onset of instability, and the ratio of electroviscous to electroosmotic velocity which governs whether the instability is convective or absolute. The model predicted critical electric field, growth rate, wavelength, and phase speed which were comparable to experimental data.
On the shear instability in relativistic neutron stars
NASA Astrophysics Data System (ADS)
Corvino, Giovanni; Rezzolla, Luciano; Bernuzzi, Sebastiano; De Pietri, Roberto; Giacomazzo, Bruno
2010-06-01
We present new results on instabilities in rapidly and differentially rotating neutron stars. We model the stars in full general relativity and describe the stellar matter adopting a cold realistic equation of state based on the unified SLy prescription (Douchin and Haensel 2001 Astron. Astrophys. 380 151-67). We provide evidence that rapidly and differentially rotating stars that are below the expected threshold for the dynamical bar-mode instability, βc ≡ T/|W| ~= 0.25, do nevertheless develop a shear instability on a dynamical timescale and for a wide range of values of β. This class of instability, which has so far been found only for small values of β and with very small growth rates, is therefore more generic than previously found and potentially more effective in producing strong sources of gravitational waves. Overall, our findings support the phenomenological predictions made by Watts et al (2005 Astrophys. J. 618 L37) on the nature of the low-T/|W| instability as the manifestation of a shear instability in a region where the latter is possible only for small values of β. Furthermore, our results provide additional insight on shear instabilities and on the necessary conditions for their development.
Kinetic-MHD simulations of gyroresonance instability driven by CR pressure anisotropy
NASA Astrophysics Data System (ADS)
Lebiga, O.; Santos-Lima, R.; Yan, H.
2018-05-01
The transport of cosmic rays (CRs) is crucial for the understanding of almost all high-energy phenomena. Both pre-existing large-scale magnetohydrodynamic (MHD) turbulence and locally generated turbulence through plasma instabilities are important for the CR propagation in astrophysical media. The potential role of the resonant instability triggered by CR pressure anisotropy to regulate the parallel spatial diffusion of low-energy CRs (≲100 GeV) in the interstellar and intracluster medium of galaxies has been shown in previous theoretical works. This work aims to study the gyroresonance instability via direct numerical simulations, in order to access quantitatively the wave-particle scattering rates. For this, we employ a 1D PIC-MHD code to follow the growth and saturation of the gyroresonance instability. We extract from the simulations the pitch-angle diffusion coefficient Dμμ produced by the instability during the linear and saturation phases, and a very good agreement (within a factor of 3) is found with the values predicted by the quasi-linear theory (QLT). Our results support the applicability of the QLT for modelling the scattering of low-energy CRs by the gyroresonance instability in the complex interplay between this instability and the large-scale MHD turbulence.
Saturated internal instabilities in advanced-tokamak plasmas
NASA Astrophysics Data System (ADS)
Hua, M.-D.; Chapman, I. T.; Pinches, S. D.; Hastie, R. J.; MAST Team
2010-06-01
"Advanced tokamak" (AT) scenarios were developed with the aim of reaching steady-state operation in future potential tokamak fusion power plants. AT scenarios exhibit non-monotonic to flat safety factor profiles (q, a measure of the magnetic field line pitch), with the minimum q (qmin) slightly above an integer value (qs). However, it has been predicted that these q profiles are unstable to ideal magnetohydrodynamic instabilities as qmin approaches qs. These ideal instabilities, observed and diagnosed as such for the first time in MAST plasmas with AT-like q profiles, have far-reaching consequences like confinement degradation, flattening of the toroidal core rotation or enhanced fast ion losses. These observations motivate the stability analysis of advanced-tokamak plasmas, with a view to provide guidance for stability thresholds in AT scenarios. Additionally, the measured rotation damping is compared to the self-consistently calculated predictions from neoclassical toroidal viscosity theory.
Active and passive stabilization of body pitch in insect flight
Ristroph, Leif; Ristroph, Gunnar; Morozova, Svetlana; Bergou, Attila J.; Chang, Song; Guckenheimer, John; Wang, Z. Jane; Cohen, Itai
2013-01-01
Flying insects have evolved sophisticated sensory–motor systems, and here we argue that such systems are used to keep upright against intrinsic flight instabilities. We describe a theory that predicts the instability growth rate in body pitch from flapping-wing aerodynamics and reveals two ways of achieving balanced flight: active control with sufficiently rapid reactions and passive stabilization with high body drag. By glueing magnets to fruit flies and perturbing their flight using magnetic impulses, we show that these insects employ active control that is indeed fast relative to the instability. Moreover, we find that fruit flies with their control sensors disabled can keep upright if high-drag fibres are also attached to their bodies, an observation consistent with our prediction for the passive stability condition. Finally, we extend this framework to unify the control strategies used by hovering animals and also furnish criteria for achieving pitch stability in flapping-wing robots. PMID:23697713
Fokker-Planck analysis of transverse collective instabilities in electron storage rings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindberg, Ryan R.
We analyze single bunch transverse instabilities due to wakefields using a Fokker-Planck model. We first expand on the work of T. Suzuki, Part. Accel. 12, 237 (1982) to derive the theoretical model including chromaticity, both dipolar and quadrupolar transverse wakefields, and the effects of damping and diffusion due to the synchrotron radiation. We reduce the problem to a linear matrix equation, whose eigenvalues and eigenvectors determine the collective stability of the beam. We then show that various predictions of the theory agree quite well with results from particle tracking simulations, including the threshold current for transverse instability and the profilemore » of the unstable mode. In particular, we find that predicting collective stability for high energy electron beams at moderate to large values of chromaticity requires the full Fokker-Planck analysis to properly account for the effects of damping and diffusion due to synchrotron radiation.« less
Heidari, Mohammad; Heidari, Ali; Homaei, Hadi
2014-01-01
The static pull-in instability of beam-type microelectromechanical systems (MEMS) is theoretically investigated. Two engineering cases including cantilever and double cantilever microbeam are considered. Considering the midplane stretching as the source of the nonlinearity in the beam behavior, a nonlinear size-dependent Euler-Bernoulli beam model is used based on a modified couple stress theory, capable of capturing the size effect. By selecting a range of geometric parameters such as beam lengths, width, thickness, gaps, and size effect, we identify the static pull-in instability voltage. A MAPLE package is employed to solve the nonlinear differential governing equations to obtain the static pull-in instability voltage of microbeams. Radial basis function artificial neural network with two functions has been used for modeling the static pull-in instability of microcantilever beam. The network has four inputs of length, width, gap, and the ratio of height to scale parameter of beam as the independent process variables, and the output is static pull-in voltage of microbeam. Numerical data, employed for training the network, and capabilities of the model have been verified in predicting the pull-in instability behavior. The output obtained from neural network model is compared with numerical results, and the amount of relative error has been calculated. Based on this verification error, it is shown that the radial basis function of neural network has the average error of 4.55% in predicting pull-in voltage of cantilever microbeam. Further analysis of pull-in instability of beam under different input conditions has been investigated and comparison results of modeling with numerical considerations shows a good agreement, which also proves the feasibility and effectiveness of the adopted approach. The results reveal significant influences of size effect and geometric parameters on the static pull-in instability voltage of MEMS. PMID:24860602
Diffusive instabilities in a hyperbolic activator-inhibitor system with superdiffusion
NASA Astrophysics Data System (ADS)
Mvogo, Alain; Macías-Díaz, Jorge E.; Kofané, Timoléon Crépin
2018-03-01
We investigate analytically and numerically the conditions for wave instabilities in a hyperbolic activator-inhibitor system with species undergoing anomalous superdiffusion. In the present work, anomalous superdiffusion is modeled using the two-dimensional Weyl fractional operator, with derivative orders α ∈
Improved mechanical stability of HKUST-1 in confined nanospace.
Casco, M E; Fernández-Catalá, J; Martínez-Escandell, M; Rodríguez-Reinoso, F; Ramos-Fernández, E V; Silvestre-Albero, J
2015-09-28
One of the main concerns in the technological application of several metal-organic frameworks (MOFs) relates to their structural instability under pressure (after a conforming step). Here we report for the first time that mechanical instability can be highly improved via nucleation and growth of MOF nanocrystals in the confined nanospace of activated carbons.
Prediction of nonlinear evolution character of energetic-particle-driven instabilities
Duarte, Vinicius N.; Berk, H. L.; Gorelenkov, N. N.; ...
2017-03-17
A general criterion is proposed and found to successfully predict the emergence of chirping oscillations of unstable Alfvénic eigenmodes in tokamak plasma experiments. The model includes realistic eigenfunction structure, detailed phase-space dependences of the instability drive, stochastic scattering and the Coulomb drag. The stochastic scattering combines the effects of collisional pitch angle scattering and micro-turbulence spatial diffusion. Furthermore, the latter mechanism is essential to accurately identify the transition between the fixed-frequency mode behavior and rapid chirping in tokamaks and to resolve the disparity with respect to chirping observation in spherical and conventional tokamaks.
Prediction of nonlinear evolution character of energetic-particle-driven instabilities
NASA Astrophysics Data System (ADS)
Duarte, V. N.; Berk, H. L.; Gorelenkov, N. N.; Heidbrink, W. W.; Kramer, G. J.; Nazikian, R.; Pace, D. C.; Podestà, M.; Tobias, B. J.; Van Zeeland, M. A.
2017-05-01
A general criterion is proposed and found to successfully predict the emergence of chirping oscillations of unstable Alfvénic eigenmodes in tokamak plasma experiments. The model includes realistic eigenfunction structure, detailed phase-space dependences of the instability drive, stochastic scattering and the Coulomb drag. The stochastic scattering combines the effects of collisional pitch angle scattering and micro-turbulence spatial diffusion. The latter mechanism is essential to accurately identify the transition between the fixed-frequency mode behavior and rapid chirping in tokamaks and to resolve the disparity with respect to chirping observation in spherical and conventional tokamaks.
Secondary Instability of Stationary Crossflow Vortices in Mach 6 Boundary Layer Over a Circular Cone
NASA Technical Reports Server (NTRS)
Li, Fei; Choudhari, Meelan M.; Paredes-Gonzalez, Pedro; Duan, Lian
2015-01-01
Hypersonic boundary layer flows over a circular cone at moderate incidence can support strong crossflow instability. Due to more efficient excitation of stationary crossflow vortices by surface roughness, such boundary layer flows may transition to turbulence via rapid amplification of the high-frequency secondary instabilities of finite amplitude stationary crossflow vortices. The amplification characteristics of these secondary instabilities are investigated for crossflow vortices generated by an azimuthally periodic array of roughness elements over a 7-degree half-angle circular cone in a Mach 6 free stream. Depending on the local amplitude of the stationary crossflow mode, the most unstable secondary disturbances either originate from the second (i.e., Mack) mode instabilities of the unperturbed boundary layer or correspond to genuine secondary instabilities that reduce to stable disturbances at sufficiently small amplitudes of the stationary crossflow vortex. The predicted frequencies of dominant secondary disturbances are similar to those measured during wind tunnel experiments at Purdue University and the Technical University of Braunschweig, Germany.
Coe, Jesse L; Davies, Patrick T; Sturge-Apple, Melissa L
2017-02-01
This study examined the moderating role of family instability in relations involving destructive interparental conflict, children's internal representations of insecurity in the family system, and their early school maladjustment. Two hundred forty-three preschool children (M age = 4.60 years; 56 % girls) and their families participated in this multi-method (i.e., observations, structured interview, surveys) multi-informant (i.e., observer, parent, teacher), longitudinal study. Findings indicated that the mediational role of children's insecure family representations in the pathway between destructive interparental conflict and children's adjustment problems varied significantly depending on the level of family instability. Interparental conflict was specifically associated with insecure family representations only under conditions of low family instability. In supporting the role of family instability as a vulnerable-stable risk factor, follow up analyses revealed that children's concerns about security in the family were uniformly high under conditions of heightened instability regardless of their level of exposure to interparental conflict.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Qiang, E-mail: cq0405@126.com; Luoyang Electronic Equipment Testing Center, Luoyang 471000; Chen, Bin, E-mail: emcchen@163.com
The Rayleigh-Taylor (R-T) instabilities are important hydrodynamics and magnetohydrodynamics (MHD) phenomena that are found in systems in high energy density physics and normal fluids. The formation and evolution of the R-T instability at channel boundary during back-flow of the lightning return stroke are analyzed using the linear perturbation theory and normal mode analysis methods, and the linear growth rate of the R-T instability in typical condition for lightning return stroke channel is obtained. Then, the R-T instability phenomena of lightning return stroke are simulated using a two-dimensional Eulerian finite volumes resistive radiation MHD code. The numerical results show that themore » evolution characteristics of the R-T instability in the early stage of back-flow are consistent with theoretical predictions obtained by linear analysis. The simulation also yields more evolution characteristics for the R-T instability beyond the linear theory. The results of this work apply to some observed features of the return stroke channel and further advance previous theoretical and experimental work.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feldman, E.
When the University of Missouri Research Reactor (MURR) was designed in the 1960s the potential for fuel element burnout by a phenomenon referred to at that time as 'autocatalytic vapor binding' was of serious concern. This type of burnout was observed to occur at power levels considerably lower than those that were known to cause critical heat flux. The conversion of the MURR from HEU fuel to LEU fuel will probably require significant design changes, such as changes in coolant channel thicknesses, that could affect the thermal-hydraulic behavior of the reactor core. Therefore, the redesign of the MURR to accommodatemore » an LEU core must address the same issues of fuel element burnout that were of concern in the 1960s. The Advanced Test Reactor (ATR) was designed at about the same time as the MURR and had similar concerns with regard to fuel element burnout. These concerns were addressed in the ATR by two groups of thermal-hydraulic tests that employed electrically heated simulated fuel channels. The Croft (1964), Reference 1, tests were performed at ANL. The Waters (1966), Reference 2, tests were performed at Hanford Laboratories in Richland Washington. Since fuel element surface temperatures rise rapidly as burnout conditions are approached, channel surface temperatures were carefully monitored in these experiments. For self-protection, the experimental facilities were designed to cut off the electric power when rapidly increasing surface temperatures were detected. In both the ATR reactor and in the tests with electrically heated channels, the heated length of the fuel plate was 48 inches, which is about twice that of the MURR. Whittle and Forgan (1967) independently conducted tests with electrically heated rectangular channels that were similar to the tests by Croft and by Walters. In the Whittle and Forgan tests the heated length of the channel varied among the tests and was between 16 and 24 inches. Both Waters and Whittle and Forgan show that the cause of the fuel element burnout is due to a form of flow instability. Whittle and Forgan provide a formula that predicts when this flow instability will occur. This formula is included in the PLTEMP/ANL code.Error! Reference source not found. Olson has shown that the PLTEMP/ANL code accurately predicts the powers at which flow instability occurs in the Whittle and Forgan experiments. He also considered the electrically heated tests performed in the ANS Thermal-Hydraulic Test Loop at ORNL and report by M. Siman-Tov et al. The purpose of this memorandum is to demonstrate that the PLTEMP/ANL code accurately predicts the Croft and the Waters tests. This demonstration should provide sufficient confidence that the PLTEMP/ANL code can adequately predict the onset of flow instability for the converted MURR. The MURR core uses light water as a coolant, has a 24-inch active fuel length, downward flow in the core, and an average core velocity of about 7 m/s. The inlet temperature is about 50 C and the peak outlet is about 20 C higher than the inlet for reactor operation at 10 MW. The core pressures range from about 4 to about 5 bar. The peak heat flux is about 110 W/cm{sup 2}. Section 2 describes the mechanism that causes flow instability. Section 3 describes the Whittle and Forgan formula for flow instability. Section 4 briefly describes both the Croft and the Waters experiments. Section 5 describes the PLTEMP/ANL models. Section 6 compares the PLTEMP/ANL predictions based on the Whittle and Forgan formula with the Croft measurements. Section 7 does the same for the Waters measurements. Section 8 provides the range of parameters for the Whittle and Forgan tests. Section 9 discusses the results and provides conclusions. In conclusion, although there is no single test that by itself closely matches the limiting conditions in the MURR, the preponderance of measured data and the ability of the Whittle and Forgan correlation, as implemented in PLTEMP/ANL, to predict the onset of flow instability for these tests leads one to the conclusion that the same method should be able to predict the onset of flow instability in the MURR reasonably well.« less
Management of the failed posterior/multidirectional instability patient.
Forsythe, Brian; Ghodadra, Neil; Romeo, Anthony A; Provencher, Matthew T
2010-09-01
Although the results of operative treatment of posterior and multidirectional instability (P-MDI) of the shoulder have improved, they are not as reliable as those treated for anterior instability of the shoulder. This may be attributed to the complexities in the classification, etiology, and physical examination of a patient with suspected posterior and multidirectional instability. Failure to address the primary and concurrent lesion adequately and the development of pain and/or stiffness are contributing factors to the failure of P-MDI procedures. Other pitfalls include errors in history and physical examination, failure to recognize concomitant pathology, and problems with the surgical technique or implant failure. Patulous capsular tissues and glenoid version also play in role management of failed P-MDI patients. With an improved understanding of pertinent clinical complaints and physical examination findings and the advent of arthroscopic techniques and improved implants, successful strategies for the nonoperative and operative management of the patient after a failed posterior or multidirectional instability surgery may be elucidated. This article highlights the common presentation, physical findings, and radiographic workup in a patient that presents after a failed P-MDI repair and offers strategies for revision surgical repair.
A Study of Single Pass Ion Effects at the ALS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Byrd, J.M.; Thomson, J.; /LBL, Berkeley
2011-09-13
We report the results of experiments on a 'fast beam-ion instability' at the Advanced Light Source (ALS). This ion instability, which can arise even when the ions are not trapped over multiple beam passages, will likely be important for many future accelerators. In our experiments, we filled the ALS storage ring with helium gas, raising the pressure approximately two orders of magnitude above the nominal pressure. With gaps in the bunch train large enough to avoid conventional (multi-turn) ion trapping, we observed a factor of 2-3 increase in the vertical beam size along with coherent beam oscillations which increased alongmore » the bunch train. Ion trapping has long been recognized as a potential limitation in electron storage rings. The ions, generated by beam-gas collisions, become trapped in the negative potential of the beam and accumulate over multiple beam passages. The trapped ions are then observed to cause a number of deleterious effects such as an increasing beam phase space, a broadening and shifting of the beam transverse oscillation frequencies (tunes), collective beam instabilities, and beam lifetime reductions. All of these effects are of concern for the next generation of accelerators, such as the B-factories or damping rings for future linear colliders, which will store high beam currents with closely spaced bunches and ultra-low beam emittances. One of the standard solutions used to prevent ion trapping is to include a gap in the bunch train which is long compared to the bunch spacing. In this case, the ions are first strongly-focused by the passing electron bunches and then over-focused in the gap. With a sufficiently large gap, the ions can be driven to large amplitudes where they form a diffuse halo and do not affect the beam. In this paper, we describe experiments that study a new regime of transient ion instabilities predicted to arise in future electron storage rings, and linacs with bunch trains. These future rings and linacs, which will be operated with higher beam currents, small transverse beam emittances, and long bunch trains, will use ion clearing gaps to prevent conventional ion trapping. But, while the ion clearing gap may suppress the conventional ion instabilities, it will not suppress a transient beam-ion instability where ions generated and trapped during the passage of a single train lead to a fast instability. While both conventional and transient ion instabilities have the same origin, namely ions produced by the beam, they have different manifestations and, more importantly, the new transient instability can arise even after the conventional ion instability is cured. This new instability is called the 'Fast Beam-Ion Instability' (FBII). In many future rings, the FBII is predicted to have very fast growth rates, much faster than the damping rates of existing and proposed transverse feedback systems, and thus is a potential limitation. To study the FBII, we performed experiments at the ALS, a 1.5 GeV electron storage ring. At the nominal ALS pressure of about 0.24 nTorr, the FBII is not evident. To study the instability, we intentionally added helium gas to the storage-ring vacuum system until the residual gas pressure was increased about 80 nTorr. This brought the predicted growth rate of the instability at least an order of magnitude above the growth rate of conventional multibunch instabilities driven by the RF cavities and above the damping rate of the transverse feedback system (TFB) in the ALS and, thereby, established conditions very similar to those in a future storage ring. We then filled the ring with a relatively short train of bunches, suppressing conventional ion instabilities. In the following, we will first briefly describe This paper describes the experiment and results in more detail.« less
The multi-species Farley-Buneman instability in the solar chromosphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madsen, Chad A.; Dimant, Yakov S.; Oppenheim, Meers M.
2014-03-10
Empirical models of the solar chromosphere show intense electron heating immediately above its temperature minimum. Mechanisms such as resistive dissipation and shock waves appear insufficient to account for the persistence and uniformity of this heating as inferred from both UV lines and continuum measurements. This paper further develops the theory of the Farley-Buneman instability (FBI) which could contribute substantially to this heating. It expands upon the single-ion theory presented by Fontenla by developing a multiple-ion-species approach that better models the diverse, metal-dominated ion plasma of the solar chromosphere. This analysis generates a linear dispersion relationship that predicts the critical electronmore » drift velocity needed to trigger the instability. Using careful estimates of collision frequencies and a one-dimensional, semi-empirical model of the chromosphere, this new theory predicts that the instability may be triggered by velocities as low as 4 km s{sup -1}, well below the neutral acoustic speed. In the Earth's ionosphere, the FBI occurs frequently in situations where the instability trigger speed significantly exceeds the neutral acoustic speed. From this, we expect neutral flows rising from the photosphere to have enough energy to easily create electric fields and electron Hall drifts with sufficient amplitude to make the FBI common in the chromosphere. If so, this process will provide a mechanism to convert neutral flow and turbulence energy into electron thermal energy in the quiet Sun.« less
The Multi-species Farley-Buneman Instability in the Solar Chromosphere
NASA Astrophysics Data System (ADS)
Madsen, Chad A.; Dimant, Yakov S.; Oppenheim, Meers M.; Fontenla, Juan M.
2014-03-01
Empirical models of the solar chromosphere show intense electron heating immediately above its temperature minimum. Mechanisms such as resistive dissipation and shock waves appear insufficient to account for the persistence and uniformity of this heating as inferred from both UV lines and continuum measurements. This paper further develops the theory of the Farley-Buneman instability (FBI) which could contribute substantially to this heating. It expands upon the single-ion theory presented by Fontenla by developing a multiple-ion-species approach that better models the diverse, metal-dominated ion plasma of the solar chromosphere. This analysis generates a linear dispersion relationship that predicts the critical electron drift velocity needed to trigger the instability. Using careful estimates of collision frequencies and a one-dimensional, semi-empirical model of the chromosphere, this new theory predicts that the instability may be triggered by velocities as low as 4 km s-1, well below the neutral acoustic speed. In the Earth's ionosphere, the FBI occurs frequently in situations where the instability trigger speed significantly exceeds the neutral acoustic speed. From this, we expect neutral flows rising from the photosphere to have enough energy to easily create electric fields and electron Hall drifts with sufficient amplitude to make the FBI common in the chromosphere. If so, this process will provide a mechanism to convert neutral flow and turbulence energy into electron thermal energy in the quiet Sun.
Improving and Evaluating Nested Sampling Algorithm for Marginal Likelihood Estimation
NASA Astrophysics Data System (ADS)
Ye, M.; Zeng, X.; Wu, J.; Wang, D.; Liu, J.
2016-12-01
With the growing impacts of climate change and human activities on the cycle of water resources, an increasing number of researches focus on the quantification of modeling uncertainty. Bayesian model averaging (BMA) provides a popular framework for quantifying conceptual model and parameter uncertainty. The ensemble prediction is generated by combining each plausible model's prediction, and each model is attached with a model weight which is determined by model's prior weight and marginal likelihood. Thus, the estimation of model's marginal likelihood is crucial for reliable and accurate BMA prediction. Nested sampling estimator (NSE) is a new proposed method for marginal likelihood estimation. The process of NSE is accomplished by searching the parameters' space from low likelihood area to high likelihood area gradually, and this evolution is finished iteratively via local sampling procedure. Thus, the efficiency of NSE is dominated by the strength of local sampling procedure. Currently, Metropolis-Hasting (M-H) algorithm is often used for local sampling. However, M-H is not an efficient sampling algorithm for high-dimensional or complicated parameter space. For improving the efficiency of NSE, it could be ideal to incorporate the robust and efficient sampling algorithm - DREAMzs into the local sampling of NSE. The comparison results demonstrated that the improved NSE could improve the efficiency of marginal likelihood estimation significantly. However, both improved and original NSEs suffer from heavy instability. In addition, the heavy computation cost of huge number of model executions is overcome by using an adaptive sparse grid surrogates.
An investigation into inflection-point instability in the entrance region of a pulsating pipe flow
Wang, R. H.; Jian, T. W.; Hsu, Y. T.
2017-01-01
This paper investigates the inflection-point instability that governs the flow disturbance initiated in the entrance region of a pulsating pipe flow. Under such a flow condition, the flow instability grows within a certain phase region in a pulsating cycle, during which the inflection point in the unsteady mean flow lifts away from the viscous effect-dominated region known as the Stokes layer. The characteristic frequency of the instability is found to be in agreement with that predicted by the mixing-layer model. In comparison with those cases not falling in this category, it is further verified that the flow phenomenon will take place only if the inflection point lifts away sufficiently from the Stokes layer. PMID:28265188
NASA Astrophysics Data System (ADS)
Wu, Y.; Chen, G. L.; Hui, X. D.; Liu, C. T.; Lin, Y.; Shang, X. C.; Lu, Z. P.
2009-10-01
Based on mechanical instability of individual shear transformation zones (STZs), a quantitative link between the microplastic instability and macroscopic deformation behavior of metallic glasses was proposed. Our analysis confirms that macroscopic metallic glasses comprise a statistical distribution of STZ embryos with distributed values of activation energy, and the microplastic instability of all the individual STZs dictates the macroscopic deformation behavior of amorphous solids. The statistical model presented in this paper can successfully reproduce the macroscopic stress-strain curves determined experimentally and readily be used to predict strain-rate effects on the macroscopic responses with the availability of the material parameters at a certain strain rate, which offer new insights into understanding the actual deformation mechanism in amorphous solids.
NASA Astrophysics Data System (ADS)
Prime, M. B.; Vaughan, D. E.; Preston, D. L.; Buttler, W. T.; Chen, S. R.; Oró, D. M.; Pack, C.
2014-05-01
Experiments applying a supported shock through mating surfaces (Atwood number = 1) with geometrical perturbations have been proposed for studying strength at strain rates up to 107/s using Richtmyer-Meshkov (RM) instabilities. Buttler et al. recently reported experimental results for RM instability growth in copper but with an unsupported shock applied by high explosives and the geometrical perturbations on the opposite free surface (Atwood number = -1). This novel configuration allowed detailed experimental observation of the instability growth and arrest. We present results and interpretation from numerical simulations of the Buttler RM instability experiments. Highly-resolved, two-dimensional simulations were performed using a Lagrangian hydrocode and the Preston-Tonks-Wallace (PTW) strength model. The model predictions show good agreement with the data. The numerical simulations are used to examine various assumptions previously made in an analytical model and to estimate the sensitivity of such experiments to material strength.
Vukovic, N; Radovanovic, J; Milanovic, V; Boiko, D L
2016-11-14
We have obtained a closed-form expression for the threshold of Risken-Nummedal-Graham-Haken (RNGH) multimode instability in a Fabry-Pérot (FP) cavity quantum cascade laser (QCL). This simple analytical expression is a versatile tool that can easily be applied in practical situations which require analysis of QCL dynamic behavior and estimation of its RNGH multimode instability threshold. Our model for a FP cavity laser accounts for the carrier coherence grating and carrier population grating as well as their relaxation due to carrier diffusion. In the model, the RNGH instability threshold is analyzed using a second-order bi-orthogonal perturbation theory and we confirm our analytical solution by a comparison with the numerical simulations. In particular, the model predicts a low RNGH instability threshold in QCLs. This agrees very well with experimental data available in the literature.
Generation of Plasma Density Irregularities in the Midlatitude/Subauroral F Region
NASA Astrophysics Data System (ADS)
Mishin, E. V.
2017-12-01
A concise review is given of the current state of the theoretical understanding of the creation of small- and meso-scale plasma density irregularities in the midlatitude/subauroral F region during quiet and disturbed periods. The former are discussed in terms of the temperature gradient instability (TGI) in the vicinity of the ionospheric projection of the plasmapause and the Perkins instability. During active conditions some part of the midlatitude ionosphere becomes the subauroral region dominated by enhanced westward flows (SAPS and SAID) driven by poleward electric fields. Their irregular, often nonlinear wave structure leads to the formation of plasma density irregularities in the plasmasphere and conjugate ionosphere. Here, meso-scale irregularities are due to the positive feedback magnetosphere-ionosphere coupling instability, while small scales resulted from the gradient drift instability (GDI), temperature GDI, and the ion frictional heating instability. The theoretical predictions are compared with satellite observations in the perturbed subauroral geospace.
An Adaptive Instability Suppression Controls Method for Aircraft Gas Turbine Engine Combustors
NASA Technical Reports Server (NTRS)
Kopasakis, George; DeLaat, John C.; Chang, Clarence T.
2008-01-01
An adaptive controls method for instability suppression in gas turbine engine combustors has been developed and successfully tested with a realistic aircraft engine combustor rig. This testing was part of a program that demonstrated, for the first time, successful active combustor instability control in an aircraft gas turbine engine-like environment. The controls method is called Adaptive Sliding Phasor Averaged Control. Testing of the control method has been conducted in an experimental rig with different configurations designed to simulate combustors with instabilities of about 530 and 315 Hz. Results demonstrate the effectiveness of this method in suppressing combustor instabilities. In addition, a dramatic improvement in suppression of the instability was achieved by focusing control on the second harmonic of the instability. This is believed to be due to a phenomena discovered and reported earlier, the so called Intra-Harmonic Coupling. These results may have implications for future research in combustor instability control.
Experimental analysis of the flow pattern of a pump turbine model in pump mode
NASA Astrophysics Data System (ADS)
Guggenberger, Mark; Senn, Florian; Jaberg, Helmut; Gehrer, Arno; Sallaberger, Manfred; Widmer, Christian
2016-11-01
Reversible pump turbines are the only means to store primary energy in an highly efficient way. Within a short time their operation can be switched between the different operational regimes thus enhancing the stabilization of the electric grid. These qualities in combination with the operation even at off-design conditions offer a high flexibility to the energy market. However, pump turbines pass through operational regimes where their behaviour becomes unstable. One of these effects occurs when the flowrate is decreased continuously down to a minimum. This point is the physical limitation of the pump operation and is very difficult to predict properly by numerical design without a model test. The purpose of the present study is to identify the fluid mechanical phenomena leading to the occurrence of instabilities of pump turbines in pump mode. A reduced scale model of a ANDRITZ pump turbine was installed on a 4-quadrant test rig for the experimental investigation of unstable conditions in pump mode. The performed measurements are based on the IEC60193-standard. Characteristic measurements at a single guide vane opening were carried out to get a detailed insight into the instabilities in pump mode. The interaction between runner and guide vane was analysed by Particle Image Velocimetry. Furthermore, high-speed visualizations of the suction side part load flow and the suction recirculation were performed. Like never before the flow pattern in the draft tube cone became visible with the help of a high-speed camera by intentionally caused cavitation effects which allow a qualitative view on the flow pattern in the draft tube cone. Suction recirculation is observed in form of single vortices separating from each runner blade and stretching into the draft tube against the main flow direction. To find an explanation for the flow phenomena responsible for the appearance of the unstable head curve also characteristic velocity distributions on the pressure side were combined with high-speed visualizations on the suction side of the pump turbine model. The results enhance the comprehension of the physical background leading to the instability and improve the numerical predictability of the instability in pump mode.
NASA Technical Reports Server (NTRS)
Phillips, M. A.
1973-01-01
Results are presented of an analysis which compares the performance predictions of a thermal model of a multi-panel modular radiator system with thermal vacuum test data. Comparisons between measured and predicted individual panel outlet temperatures and pressure drops and system outlet temperatures have been made over the full range of heat loads, environments and plumbing arrangements expected for the shuttle radiators. Both two sided and one sided radiation have been included. The model predictions show excellent agreement with the test data for the maximum design conditions of high load and hot environment. Predictions under minimum design conditions of low load-cold environments indicate good agreement with the measured data, but evaluation of low load predictions should consider the possibility of parallel flow instabilities due to main system freezing. Performance predictions under intermediate conditions in which the majority of the flow is not in either the main or prime system are adequate although model improvements in this area may be desired. The primary modeling objective of providing an analytical technique for performance predictions of a multi-panel radiator system under the design conditions has been met.
Tumor Cell-Free DNA Copy Number Instability Predicts Therapeutic Response to Immunotherapy.
Weiss, Glen J; Beck, Julia; Braun, Donald P; Bornemann-Kolatzki, Kristen; Barilla, Heather; Cubello, Rhiannon; Quan, Walter; Sangal, Ashish; Khemka, Vivek; Waypa, Jordan; Mitchell, William M; Urnovitz, Howard; Schütz, Ekkehard
2017-09-01
Purpose: Chromosomal instability is a fundamental property of cancer, which can be quantified by next-generation sequencing (NGS) from plasma/serum-derived cell-free DNA (cfDNA). We hypothesized that cfDNA could be used as a real-time surrogate for imaging analysis of disease status as a function of response to immunotherapy and as a more reliable tool than tumor biomarkers. Experimental Design: Plasma cfDNA sequences from 56 patients with diverse advanced cancers were prospectively collected and analyzed in a single-blind study for copy number variations, expressed as a quantitative chromosomal number instability (CNI) score versus 126 noncancer controls in a training set of 23 and a blinded validation set of 33. Tumor biomarker concentrations and a surrogate marker for T regulatory cells (Tregs) were comparatively analyzed. Results: Elevated CNI scores were observed in 51 of 56 patients prior to therapy. The blinded validation cohort provided an overall prediction accuracy of 83% (25/30) and a positive predictive value of CNI score for progression of 92% (11/12). The combination of CNI score before cycle (Cy) 2 and 3 yielded a correct prediction for progression in all 13 patients. The CNI score also correctly identified cases of pseudo-tumor progression from hyperprogression. Before Cy2 and Cy3, there was no significant correlation for protein tumor markers, total cfDNA, or surrogate Tregs. Conclusions: Chromosomal instability quantification in plasma cfDNA can serve as an early indicator of response to immunotherapy. The method has the potential to reduce health care costs and disease burden for cancer patients following further validation. Clin Cancer Res; 23(17); 5074-81. ©2017 AACR . ©2017 American Association for Cancer Research.
Progress of plasma wakefield self-modulation experiments at FACET
NASA Astrophysics Data System (ADS)
Adli, E.; Berglyd Olsen, V. K.; Lindstrøm, C. A.; Muggli, P.; Reimann, O.; Vieira, J. M.; Amorim, L. D.; Clarke, C. I.; Gessner, S. J.; Green, S. Z.; Hogan, M. J.; Litos, M. D.; O`Shea, B. D.; Yakimenko, V.; Clayton, C.; Marsh, K. A.; Mori, W. B.; Joshi, C.; Vafaei-Najafabadi, N.; Williams, O.
2016-09-01
Simulations and theory predict that long electron and positron beams may under favorable conditions self-modulate in plasmas. We report on the progress of experiments studying the self-modulation instability in plasma wakefield experiments at FACET. The experimental results obtained so far, while not being fully conclusive, appear to be consistent with the presence of the self-modulation instability.
ERIC Educational Resources Information Center
Stupnisky, Robert H.; Perry, Raymond P.; Hall, Nathan C.; Guay, Frederic
2012-01-01
The aim of the present study was to examine the intraindividual level and instability of perceived academic control (PC) among first-year college students, and their predictive effects on academic achievement. Two studies were conducted measuring situational (state) PC on different schedules: Study 1 (N = 242) five times over a 6-month period and…
Normal pressure hydrocephalus: how often does the diagnosis hold water?
Klassen, Bryan T; Ahlskog, J Eric
2011-09-20
To determine our community's incidence of clinically suspected normal pressure hydrocephalus (NPH), the rate of shunting for NPH, and short- and long-term outcomes of shunting. A retrospective query of the Mayo Clinic medical records linkage system was conducted to identify residents of Olmsted County, Minnesota, undergoing an invasive diagnostic procedure for evaluation of suspected NPH from 1995 through 2003. Among patients with shunts, early- and long-term outcomes were determined via a review of available medical records. Forty-one patients underwent an invasive diagnostic procedure for evaluation of suspected NPH; 13 ultimately received shunts, representing an incidence of 1.19/100,000/year. The incidence of sustained definite improvements at 3 years after shunting was only 0.36/100,000/year. Definite gait improvement was documented in 75% at 3-6 months after shunt placement, although it dropped to 50% at 1 year and to 33% at 3 years. Only 1 of 8 patients with cognitive impairment and 1 of 6 patients with urinary incontinence had definite improvement in these symptoms at 3 years. No patient with moderate to severe postural instability experienced sustained definite improvement in any symptom. Complications occurred in 33% of patients including one perioperative death. Additional or alternative neurologic diagnoses later surfaced in 5 of 12 patients. In this community, NPH is relatively rare with an incidence approximating that of progressive supranuclear palsy in this population. Whereas early gait improvement was common, only one-third of patients enjoyed continued improvement by 3 years; cognition or urinary incontinence was even less responsive long term. Baseline postural instability predicted poor outcome. Clinicians should balance potential benefits of shunting against the known risks.
Ahlskog, J. Eric
2011-01-01
Objective: To determine our community's incidence of clinically suspected normal pressure hydrocephalus (NPH), the rate of shunting for NPH, and short- and long-term outcomes of shunting. Methods: A retrospective query of the Mayo Clinic medical records linkage system was conducted to identify residents of Olmsted County, Minnesota, undergoing an invasive diagnostic procedure for evaluation of suspected NPH from 1995 through 2003. Among patients with shunts, early- and long-term outcomes were determined via a review of available medical records. Results: Forty-one patients underwent an invasive diagnostic procedure for evaluation of suspected NPH; 13 ultimately received shunts, representing an incidence of 1.19/100,000/year. The incidence of sustained definite improvements at 3 years after shunting was only 0.36/100,000/year. Definite gait improvement was documented in 75% at 3–6 months after shunt placement, although it dropped to 50% at 1 year and to 33% at 3 years. Only 1 of 8 patients with cognitive impairment and 1 of 6 patients with urinary incontinence had definite improvement in these symptoms at 3 years. No patient with moderate to severe postural instability experienced sustained definite improvement in any symptom. Complications occurred in 33% of patients including one perioperative death. Additional or alternative neurologic diagnoses later surfaced in 5 of 12 patients. Conclusions: In this community, NPH is relatively rare with an incidence approximating that of progressive supranuclear palsy in this population. Whereas early gait improvement was common, only one-third of patients enjoyed continued improvement by 3 years; cognition or urinary incontinence was even less responsive long term. Baseline postural instability predicted poor outcome. Clinicians should balance potential benefits of shunting against the known risks. PMID:21849644
Jerosch, J; Castro, W H; Assheuer, J
1992-09-01
In 4 fresh specimens and in 14 healthy volunteers we studied normal anatomy of the glenoid labrum by MRI. In a total of 124 patients we examined the shoulder joints by MRI. 69 patients had any kind of subacromial pathology. 55 patients showed a glenohumeral instability. All MRI findings were compared with the surgical findings during arthroscopy and during open surgery. 44 patients showed a recurrent anterior instability, 7 patients showed a multidirectional instability, 2 patients showed a posterior instability, and 2 patients presented acute anterior dislocation. We found significant variability in the labral shape as well as significant variability of anterior capsular attachment. The pathologic changes of the glenoid labrum were classified in four different types. In 78% we found a concomitant Hill-Sachs lesion of various diameter. 5 patients suffered from an additional complete rotator cuff tear. Compared to the intraoperative findings MRI had a sensitivity of 95%, a specificity of 94%, an accuracy of 94%, a positive predictive value of 91%, and a negative predictive value of 96% in detecting labral pathology. Presenting a high diagnostic value for detecting Bankart lesions, MRI may replace other diagnostic modalities like CT-arthrography.
NASA Astrophysics Data System (ADS)
Bender, Jason; Raman, Kumar; Huntington, Channing; Nagel, Sabrina; Morgan, Brandon; Prisbrey, Shon; MacLaren, Stephan
2017-10-01
Experiments at the National Ignition Facility (NIF) are studying Richtmyer-Meshkov and Rayleigh-Taylor hydrodynamic instabilities in multiply-shocked plasmas. Targets feature two different-density fluids with a multimode initial perturbation at the interface, which is struck by two X-ray-driven shock waves. Here we discuss computational hydrodynamics simulations investigating the effect of second-shock (``reshock'') strength on instability growth, and how these simulations are informing target design for the ongoing experimental campaign. A Reynolds-Averaged Navier Stokes (RANS) model was used to predict motion of the spike and bubble fronts and the mixing-layer width. In addition to reshock strength, the reshock ablator thickness and the total length of the target were varied; all three parameters were found to be important for target design, particularly for ameliorating undesirable reflected shocks. The RANS data are compared to theoretical models that predict multimode instability growth proportional to the shock-induced change in interface velocity, and to currently-available data from the NIF experiments. Work performed under the auspices of the U.S. D.O.E. by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. LLNL-ABS-734611.
Development and Application of Predictive Tools for MHD Stability Limits in Tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brennan, Dylan; Miller, G. P.
This is a project to develop and apply analytic and computational tools to answer physics questions relevant to the onset of non-ideal magnetohydrodynamic (MHD) instabilities in toroidal magnetic confinement plasmas. The focused goal of the research is to develop predictive tools for these instabilities, including an inner layer solution algorithm, a resistive wall with control coils, and energetic particle effects. The production phase compares studies of instabilities in such systems using analytic techniques, PEST- III and NIMROD. Two important physics puzzles are targeted as guiding thrusts for the analyses. The first is to form an accurate description of the physicsmore » determining whether the resistive wall mode or a tearing mode will appear first as β is increased at low rotation and low error fields in DIII-D. The second is to understand the physical mechanism behind recent NIMROD results indicating strong damping and stabilization from energetic particle effects on linear resistive modes. The work seeks to develop a highly relevant predictive tool for ITER, advance the theoretical description of this physics in general, and analyze these instabilities in experiments such as ASDEX Upgrade, DIII-D, JET, JT-60U and NTSX. The awardee on this grant is the University of Tulsa. The research efforts are supervised principally by Dr. Brennan. Support is included for two graduate students, and a strong collaboration with Dr. John M. Finn of LANL. The work includes several ongoing collaborations with General Atomics, PPPL, and the NIMROD team, among others.« less
McKeon, Patrick O; Hertel, Jay
2008-01-01
To answer the following clinical questions: (1) Can prophylactic balance and coordination training reduce the risk of sustaining a lateral ankle sprain? (2) Can balance and coordination training improve treatment outcomes associated with acute ankle sprains? (3) Can balance and coordination training improve treatment outcomes in patients with chronic ankle instability? PubMed and CINAHL entries from 1966 through October 2006 were searched using the terms ankle sprain, ankle instability, balance, chronic ankle instability, functional ankle instability, postural control, and postural sway. Only studies assessing the influence of balance training on the primary outcomes of risk of ankle sprain or instrumented postural control measures derived from testing on a stable force plate using the modified Romberg test were included. Studies had to provide results for calculation of relative risk reduction and numbers needed to treat for the injury prevention outcomes or effect sizes for the postural control measures. We calculated the relative risk reduction and numbers needed to treat to assess the effect of balance training on the risk of incurring an ankle sprain. Effect sizes were estimated with the Cohen d for comparisons of postural control performance between trained and untrained groups. Prophylactic balance training substantially reduced the risk of sustaining ankle sprains, with a greater effect seen in those with a history of a previous sprain. Completing at least 6 weeks of balance training after an acute ankle sprain substantially reduced the risk of recurrent ankle sprains; however, consistent improvements in instrumented measures of postural control were not associated with training. Evidence is lacking to assess the reduction in the risk of recurrent sprains and inconclusive to demonstrate improved instrumented postural control measures in those with chronic ankle instability who complete balance training. Balance training can be used prophylactically or after an acute ankle sprain in an effort to reduce future ankle sprains, but current evidence is insufficient to assess this effect in patients with chronic ankle instability.
Simulations of Instabilities in Complex Valve and Feed Systems
NASA Technical Reports Server (NTRS)
Ahuja, Vineet; Hosangadi, Ashvin; Shipman, Jeremy; Cavallo, Peter A.
2006-01-01
CFD analyses are playing an increasingly important role in identifying and characterizing flow induced instabilities in rocket engine test facilities and flight systems. In this paper, we analyze instability mechanisms that range from turbulent pressure fluctuations due to vortex shedding in structurally complex valve systems to flow resonance in plug cavities to large scale pressure fluctuations due to collapse of cavitation induced vapor clouds. Furthermore, we discuss simulations of transient behavior related to valve motion that can serve as guidelines for valve scheduling. Such predictions of valve response to varying flow conditions is of crucial importance to engine operation and testing.
Oscillational instabilities in single mode acoustics levitators
NASA Technical Reports Server (NTRS)
Rudnick, J.; Barmatz, Martin
1990-01-01
An extention of standard results for the acoustic force on an object in a single-mode resonant chamber yields predictions for the onset of oscillational instabilities when objects are levitated or positioned in these chambers. The authors' results are consistent with those of experimental investigators. The present approach accounts for the effects of time delays in the response of a cavity to the motion of an object inside of it. Quantitative features of the instabilities are investigated. The experimental conditions required for sample stability, saturation of sample oscillations, hysteretic effects, and the loss of ability to levitate are discussed.
The Wardle Instability in Interstellar Shocks. 2; Gas Temperture and Line Emission
NASA Technical Reports Server (NTRS)
Neufeld, David A.; Stone, James M.
1997-01-01
We have modeled the gas temperature structure in unstable C-type shocks and obtained predictions for the resultant CO and H2 rotational line emissions, using numerical simulations of the Wardle instability. Our model for the thermal balance of the gas includes ion-neutral frictional heating; compressional heating; radiative cooling due to rotational and ro-vibrational transitions of the molecules CO, H2O, and H2; and gas-grain collisional cooling. We obtained results for the gas temperature distribution in-and H2 and CO line emission from-shocks of neutral Alfvenic Mach number 10 and velocity 20 or 40 km/ s in which the Wardle instability has saturated. Both two- and three-dimensional simulations were carried out for shocks in which the preshock magnetic field is perpendicular to the shock propagation direction, and a two-dimensional simulation was carried out for the case in which the magnetic field is obliquely oriented with respect to the shock propagation direction. Although the Wardle instability profoundly affects the density structure behind C-type shocks, most of the shock-excited molecular line emission is generated upstream of the region where the strongest effects of the instability are felt. Thus the Wardle instability has a relatively small effect on the overall gas temperature distribution in-and the emission-line spectrum from-C-type shocks, at least for the cases that we have considered. In none of the cases that we have considered thus far did any of the predicted emission-line luminosities change by more than a factor of 2.5, and in most cases the effects of instability were significantly smaller than that. Slightly larger changes in the line luminosities seem likely for three-dimensional simulations of oblique shocks, although such simulations have yet to be carried out and lie beyond the scope of this study. Given the typical uncertainties that are always present when model predictions are compared with real astronomical data, we conclude that Wardle instability does not imprint any clear observational signature on the shock-excited CO and H2 line strengths. This result justifies the use of one-dimensional steady shock models in the interpretation of observations of shock-excited line emission in regions of star formation. Our three-dimensional simulations of perpendicular shocks revealed the presence of warm filamentary structures that are aligned along the magnetic field, a result that is of possible relevance to models of water maser emission from C-type shocks.
NASA Astrophysics Data System (ADS)
Park, Jong-Yeon; Stock, Charles A.; Yang, Xiaosong; Dunne, John P.; Rosati, Anthony; John, Jasmin; Zhang, Shaoqing
2018-03-01
Reliable estimates of historical and current biogeochemistry are essential for understanding past ecosystem variability and predicting future changes. Efforts to translate improved physical ocean state estimates into improved biogeochemical estimates, however, are hindered by high biogeochemical sensitivity to transient momentum imbalances that arise during physical data assimilation. Most notably, the breakdown of geostrophic constraints on data assimilation in equatorial regions can lead to spurious upwelling, resulting in excessive equatorial productivity and biogeochemical fluxes. This hampers efforts to understand and predict the biogeochemical consequences of El Niño and La Niña. We develop a strategy to robustly integrate an ocean biogeochemical model with an ensemble coupled-climate data assimilation system used for seasonal to decadal global climate prediction. Addressing spurious vertical velocities requires two steps. First, we find that tightening constraints on atmospheric data assimilation maintains a better equatorial wind stress and pressure gradient balance. This reduces spurious vertical velocities, but those remaining still produce substantial biogeochemical biases. The remainder is addressed by imposing stricter fidelity to model dynamics over data constraints near the equator. We determine an optimal choice of model-data weights that removed spurious biogeochemical signals while benefitting from off-equatorial constraints that still substantially improve equatorial physical ocean simulations. Compared to the unconstrained control run, the optimally constrained model reduces equatorial biogeochemical biases and markedly improves the equatorial subsurface nitrate concentrations and hypoxic area. The pragmatic approach described herein offers a means of advancing earth system prediction in parallel with continued data assimilation advances aimed at fully considering equatorial data constraints.
Collective Beam Instabilities in the Taiwan Light Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chao, Alex W.
2002-08-12
The storage ring at Taiwan Light Source has experienced a strong collective instability since 1994. Various cures have been attempted to suppress this instability, including the use of damping antenna, tunable rf plungers, different filling patterns, and rf gap voltage modulation. So far these cures have improved the beam intensity, but the operation remains to be limited by the instability. The dominant phenomenon is the longitudinal coupled bunch instability. The major source of longitudinal impedance is from rf cavities of Doris type. The high-order modes of the cavity were numerically analyzed using a 3-D code GdfidL. The correlation of themore » observed phenomenon in user operation with high-order modes of rf cavities will be presented. Results of various attempts to suppress beam instabilities will be summarized. Proposed cures for beam instabilities will be discussed.« less
Elastic instabilities in planar elongational flow of monodisperse polymer solutions
Haward, Simon J.; McKinley, Gareth H.; Shen, Amy Q.
2016-01-01
We investigate purely elastic flow instabilities in the almost ideal planar stagnation point elongational flow field generated by a microfluidic optimized-shape cross-slot extensional rheometer (OSCER). We use time-resolved flow velocimetry and full-field birefringence microscopy to study the behavior of a series of well-characterized viscoelastic polymer solutions under conditions of low fluid inertia and over a wide range of imposed deformation rates. At low deformation rates the flow is steady and symmetric and appears Newtonian-like, while at high deformation rates we observe the onset of a flow asymmetry resembling the purely elastic instabilities reported in standard-shaped cross-slot devices. However, for intermediate rates, we observe a new type of elastic instability characterized by a lateral displacement and time-dependent motion of the stagnation point. At the onset of this new instability, we evaluate a well-known dimensionless criterion M that predicts the onset of elastic instabilities based on geometric and rheological scaling parameters. The criterion yields maximum values of M which compare well with critical values of M for the onset of elastic instabilities in viscometric torsional flows. We conclude that the same mechanism of tension acting along curved streamlines governs the onset of elastic instabilities in both extensional (irrotational) and torsional (rotational) viscoelastic flows. PMID:27616181
Radiation-induced instability and its relation to radiation carcinogenesis
NASA Technical Reports Server (NTRS)
Ullrich, R. L.; Ponnaiya, B.
1998-01-01
PURPOSE: A model that identifies radiation-induced genetic instability as the earliest cellular event in the multi-step sequence leading to radiation-induced cancer was previously proposed. In this paper ongoing experiments are discussed which are designed to test this model and its predictions in mouse mammary epithelial cells. RESULTS: Several lines of evidence are presented that appear to support this model: first, the development of delayed mutations in p53 following irradiation in altered growth variants; secondly, the high frequencies for the induction of both instability and transformation following irradiation in mammary epithelial cells; and finally, the demonstration that susceptibility to the induction of cytogenetic instability is a heritable trait that correlates with susceptibility to transformation and radiation-induced mammary cancer. Mice resistant to transformation and mammary cancer development are also resistant to the development of instability after irradiation. In contrast, mice sensitive to transformation and cancer are also sensitive to the development of cytogenetic instability. CONCLUSIONS: Data from this laboratory and from the studies cited above suggest a specific, and perhaps unique, role for radiation-induced instability as a critical early event associated with initiation of the carcinogenic process.
Parametric Instability Rates in Periodically Driven Band Systems
NASA Astrophysics Data System (ADS)
Lellouch, S.; Bukov, M.; Demler, E.; Goldman, N.
2017-04-01
In this work, we analyze the dynamical properties of periodically driven band models. Focusing on the case of Bose-Einstein condensates, and using a mean-field approach to treat interparticle collisions, we identify the origin of dynamical instabilities arising from the interplay between the external drive and interactions. We present a widely applicable generic numerical method to extract instability rates and link parametric instabilities to uncontrolled energy absorption at short times. Based on the existence of parametric resonances, we then develop an analytical approach within Bogoliubov theory, which quantitatively captures the instability rates of the system and provides an intuitive picture of the relevant physical processes, including an understanding of how transverse modes affect the formation of parametric instabilities. Importantly, our calculations demonstrate an agreement between the instability rates determined from numerical simulations and those predicted by theory. To determine the validity regime of the mean-field analysis, we compare the latter to the weakly coupled conserving approximation. The tools developed and the results obtained in this work are directly relevant to present-day ultracold-atom experiments based on shaken optical lattices and are expected to provide an insightful guidance in the quest for Floquet engineering.
NASA Astrophysics Data System (ADS)
Jing, Wenjun; Zhao, Yan
2018-02-01
Stability is an important part of geotechnical engineering research. The operating experiences of underground storage caverns in salt rock all around the world show that the stability of the caverns is the key problem of safe operation. Currently, the combination of theoretical analysis and numerical simulation are the mainly adopts method of reserve stability analysis. This paper introduces the concept of risk into the stability analysis of underground geotechnical structure, and studies the instability of underground storage cavern in salt rock from the perspective of risk analysis. Firstly, the definition and classification of cavern instability risk is proposed, and the damage mechanism is analyzed from the mechanical angle. Then the main stability evaluating indicators of cavern instability risk are proposed, and an evaluation method of cavern instability risk is put forward. Finally, the established cavern instability risk assessment system is applied to the analysis and prediction of cavern instability risk after 30 years of operation in a proposed storage cavern group in the Huai’an salt mine. This research can provide a useful theoretical base for the safe operation and management of underground storage caverns in salt rock.
FORECAST MODEL FOR MODERATE EARTHQUAKES NEAR PARKFIELD, CALIFORNIA.
Stuart, William D.; Archuleta, Ralph J.; Lindh, Allan G.
1985-01-01
The paper outlines a procedure for using an earthquake instability model and repeated geodetic measurements to attempt an earthquake forecast. The procedure differs from other prediction methods, such as recognizing trends in data or assuming failure at a critical stress level, by using a self-contained instability model that simulates both preseismic and coseismic faulting in a natural way. In short, physical theory supplies a family of curves, and the field data select the member curves whose continuation into the future constitutes a prediction. Model inaccuracy and resolving power of the data determine the uncertainty of the selected curves and hence the uncertainty of the earthquake time.
Arthroscopic Findings in Anterior Shoulder Instability
Hantes, Michael; Raoulis, Vasilios
2017-01-01
Background: In the last years, basic research and arthroscopic surgery, have improved our understanding of shoulder anatomy and pathology. It is a fact that arthroscopic treatment of shoulder instability has evolved considerably over the past decades. The aim of this paper is to present the variety of pathologies that should be identified and treated during shoulder arthroscopy when dealing with anterior shoulder instability cases. Methods: A review of the current literature regarding arthroscopic shoulder anatomy, anatomic variants, and arthroscopic findings in anterior shoulder instability, is presented. In addition, correlation of arthroscopic findings with physical examination and advanced imaging (CT and MRI) in order to improve our understanding in anterior shoulder instability pathology is discussed. Results: Shoulder instability represents a broad spectrum of disease and a thorough understanding of the pathoanatomy is the key for a successful treatment of the unstable shoulder. Patients can have a variety of pathologies concomitant with a traditional Bankart lesion, such as injuries of the glenoid (bony Bankart), injuries of the glenoid labrum, superiorly (SLAP) or anteroinferiorly (e.g. anterior labroligamentous periosteal sleeve avulsion, and Perthes), capsular lesions (humeral avulsion of the glenohumeral ligament), and accompanying osseous-cartilage lesions (Hill-Sachs, glenolabral articular disruption). Shoulder arthroscopy allows for a detailed visualization and a dynamic examination of all anatomic structures, identification of pathologic findings, and treatment of all concomitant lesions. Conclusion: Surgeons must be well prepared and understanding the normal anatomy of the glenohumeral joint, including its anatomic variants to seek for the possible pathologic lesions in anterior shoulder instability during shoulder arthroscopy. Patient selection criteria, improved surgical techniques, and implants available have contributed to the enhancement of clinical and functional outcomes to the point that arthroscopic treatment is considered nowadays the standard of care. PMID:28400880
Complex behaviour and predictability of the European dry spell regimes
NASA Astrophysics Data System (ADS)
Lana, X.; Martínez, M. D.; Serra, C.; Burgueño, A.
2010-09-01
The complex spatial and temporal characteristics of European dry spell lengths, DSL, (sequences of consecutive days with rainfall amount below a certain threshold) and their randomness and predictive instability are analysed from daily pluviometric series recorded at 267 rain gauges along the second half of the 20th century. DSL are obtained by considering four thresholds, R0, of 0.1, 1.0, 5.0 and 10.0 mm/day. A proper quantification of the complexity, randomness and predictive instability of the different DSL regimes in Europe is achieved on the basis of fractal analyses and dynamic system theory, including the reconstruction theorem. First, the concept of lacunarity is applied to the series of daily rainfall, and the lacunarity curves are well fitted to Cantor and random Cantor sets. Second, the rescaled analysis reveals that randomness, persistence and anti-persistence are present on the European DSL series. Third, the complexity of the physical process governing the DSL series is quantified by the minimum number of nonlinear equations determined by the correlation dimension. And fourth, the loss of memory of the physical process, which is one of the reasons for the complex predictability, is characterized by the values of the Kolmogorov entropy, and the predictive instability is directly associated with positive Lyapunov exponents. In this way, new bases for a better prediction of DSLs in Europe, sometimes leading to drought episodes, are established. Concretely, three predictive strategies are proposed in Sect. 5. It is worth mentioning that the spatial distribution of all fractal parameters does not solely depend on latitude and longitude but also reflects the effects of orography, continental climate or vicinity to the Atlantic and Arctic Oceans and Mediterranean Sea.
Golestanirad, Laleh; Elahi, Behzad; Graham, Simon J; Das, Sunit; Wald, Lawrence L
2016-01-01
Pedunculopontine nucleus (PPN) has complex reciprocal connections with basal ganglia, especially with internal globus pallidus and substantia nigra, and it has been postulated that PPN stimulation may improve gait instability and freezing of gait. In this meta-analysis, we will assess the evidence for PPN deep brain stimulation in treatment of gait and motor abnormalities especially focusing on Parkinson disease patients. PubMed and Scopus electronic databases were searched for related studies published before February 2014. Medline (1966-2014), Embase (1974-2010), CINAHL, Web of Science, Scopus bibliographic, and Google Scholar databases (1960-2014) were also searched for studies investigating effect of PPN deep brain stimulation in treatment of postural and postural instability and total of ten studies met the inclusion criteria for this analysis. Our findings showed a significant improvement in postural instability (p<0.001) and motor symptoms of Parkinson disease on and off medications (p<0.05), but failed to show improvement in freezing of gait. Despite significant improvement in postural instability observed in included studies, evidence from current literature is not sufficient to generalize these findings to the majority of patients.
Control Strategies for HCCI Mixed-Mode Combustion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, Robert M; Edwards, Kevin Dean
2010-03-01
Delphi Automotive Systems and ORNL established this CRADA to expand the operational range of Homogenous Charge Compression Ignition (HCCI) mixed-mode combustion for gasoline en-gines. ORNL has extensive experience in the analysis, interpretation, and control of dynamic engine phenomena, and Delphi has extensive knowledge and experience in powertrain compo-nents and subsystems. The partnership of these knowledge bases was important to address criti-cal barriers associated with the realistic implementation of HCCI and enabling clean, efficient operation for the next generation of transportation engines. The foundation of this CRADA was established through the analysis of spark-assisted HCCI data from a single-cylinder research engine.more » This data was used to (1) establish a conceptual kinetic model to better understand and predict the development of combustion instabilities, (2) develop a low-order model framework suitable for real-time controls, and (3) provide guidance in the initial definition of engine valve strategies for achieving HCCI operation. The next phase focused on the development of a new combustion metric for real-time characterization of the combustion process. Rapid feedback on the state of the combustion process is critical to high-speed decision making for predictive control. Simultaneous to the modeling/analysis studies, Delphi was focused on the development of engine hardware and the engine management system. This included custom Delphi hardware and control systems allowing for flexible control of the valvetrain sys-tem to enable HCCI operation. The final phase of this CRADA included the demonstration of conventional and spark assisted HCCI on the multi-cylinder engine as well as the characterization of combustion instabilities, which govern the operational boundaries of this mode of combustion. ORNL and Delphi maintained strong collaboration throughout this project. Meetings were held on a bi-weekly basis with additional reports, presentation, and meetings as necessary to maintain progress. Delphi provided substantial support through modeling, hardware, data exchange, and technical consultation. This CRADA was also successful at establishing important next steps to further expanding the use of an HCCI engine for improved fuel efficiency and emissions. These topics will be address in a follow-on CRADA. The objectives are: (1) Improve fundamental understanding of the development of combustion instabilities with HCCI operation through modeling and experiments; (2) Develop low-order model and feedback combustion metrics which are well suited to real-time predictive controls; and (3) Construct multi-cylinder engine system with advanced Delphi technologies and charac-terize HCCI behavior to better understand limitations and opportunities for expanded high-efficiency operation.« less
D’Souza, Fiona; Pudakalakatti, Shivanand M.; Uppangala, Shubhashree; Honguntikar, Sachin; Salian, Sujith Raj; Kalthur, Guruprasad; Pasricha, Renu; Appajigowda, Divya; Atreya, Hanudatta S.; Adiga, Satish Kumar
2016-01-01
Early development of certain mammalian embryos is protected by complex checkpoint systems to maintain the genomic integrity. Several metabolic pathways are modulated in response to genetic insults in mammalian cells. The present study investigated the relationship between the genetic integrity, embryo metabolites and developmental competence in preimplantation stage mouse embryos with the aim to identify early biomarkers which can predict embryonic genetic integrity using spent medium profiling by NMR spectroscopy. Embryos carrying induced DNA lesions (IDL) developed normally for the first 2.5 days, but began to exhibit a developmental delay at embryonic day 3.5(E3.5) though they were morphologically indistinguishable from control embryos. Analysis of metabolites in the spent medium on E3.5 revealed a significant association between pyruvate, lactate, glucose, proline, lysine, alanine, valine, isoleucine and thymine and the extent of genetic instability observed in the embryos on E4.5. Further analysis revealed an association of apoptosis and micronuclei frequency with P53 and Bax transcripts in IDL embryos on the E4.5 owing to delayed induction of chromosome instability. We conclude that estimation of metabolites on E3.5 in spent medium may serve as a biomarker to predict the genetic integrity in pre-implantation stage embryos which opens up new avenues to improve outcomes in clinical IVF programs. PMID:27853269
Finite amplitude instability of second-order fluids in plane Poiseuille flow.
NASA Technical Reports Server (NTRS)
Mcintire, L. V.; Lin, C. H.
1972-01-01
The hydrodynamic stability of plane Poiseuille flow of second-order fluids to finite amplitude disturbances is examined using the method of Stuart and Watson as extended by Reynolds and Potter. For slightly non-Newtonian fluids subcritical instabilities are predicted. No supercritical equilibrium states are expected if the entire spectrum of disturbance wavelengths is present. Possible implications with respect to the Toms phenomenon are discussed.
Coe, Jesse L.; Davies, Patrick T.; Sturge-Apple, Melissa L.
2016-01-01
This study examined the moderating role of family instability in relations involving destructive interparental conflict, children’s internal representations of insecurity in the family system, and their early school maladjustment. Two hundred forty-three preschool children (M age = 4.60 years; 56% girls) and their families participated in this multi-method (i.e., observations, structured interview, surveys) multi-informant (i.e., observer, parent, teacher), longitudinal study. Findings indicated that the mediational role of children’s insecure family representations in the pathway between destructive interparental conflict and children’s adjustment problems varied significantly depending on the level of family instability. Interparental conflict was specifically associated with insecure family representations only under conditions of low family instability. In supporting the role of family instability as a vulnerable-stable risk factor, follow up analyses revealed that children’s concerns about security in the family were uniformly high under conditions of heightened instability regardless of their level of exposure to interparental conflict. PMID:27146062
DNS of Laminar-Turbulent Transition in Swept-Wing Boundary Layers
NASA Technical Reports Server (NTRS)
Duan, L.; Choudhari, M.; Li, F.
2014-01-01
Direct numerical simulation (DNS) is performed to examine laminar to turbulent transition due to high-frequency secondary instability of stationary crossflow vortices in a subsonic swept-wing boundary layer for a realistic natural-laminar-flow airfoil configuration. The secondary instability is introduced via inflow forcing and the mode selected for forcing corresponds to the most amplified secondary instability mode that, in this case, derives a majority of its growth from energy production mechanisms associated with the wall-normal shear of the stationary basic state. An inlet boundary condition is carefully designed to allow for accurate injection of instability wave modes and minimize acoustic reflections at numerical boundaries. Nonlinear parabolized stability equation (PSE) predictions compare well with the DNS in terms of modal amplitudes and modal shape during the strongly nonlinear phase of the secondary instability mode. During the transition process, the skin friction coefficient rises rather rapidly and the wall-shear distribution shows a sawtooth pattern that is analogous to the previously documented surface flow visualizations of transition due to stationary crossflow instability. Fully turbulent features are observed in the downstream region of the flow.
NASA Technical Reports Server (NTRS)
Margolis, Stephen B.; Sacksteder, Kurt (Technical Monitor)
2000-01-01
A pulsating form of hydrodynamic instability has recently been shown to arise during liquid-propellant deflagration in those parameter regimes where the pressure-dependent burning rate is characterized by a negative pressure sensitivity. This type of instability can coexist with the classical cellular, or Landau form of hydrodynamic instability, with the occurrence of either dependent on whether the pressure sensitivity is sufficiently large or small in magnitude. For the inviscid problem, it has been shown that, when the burning rate is realistically allowed to depend on temperature as well as pressure, sufficiently large values of the temperature sensitivity relative to the pressure sensitivity causes like pulsating form of hydrodynamic instability to become dominant. In that regime, steady, planar burning becomes intrinsically unstable to pulsating disturbances whose wave numbers are sufficiently small. This analysis is extended to the fully viscous case, where it is shown that although viscosity is stabilizing for intermediate and larger wave number perturbations, the intrinsic pulsating instability for small wave numbers remains. Under these conditions, liquid-propellant combustion is predicted to be characterized by large unsteady cells along the liquid/gas interface.
Modulational instability and discrete breathers in a nonlinear helicoidal lattice model
NASA Astrophysics Data System (ADS)
Ding, Jinmin; Wu, Tianle; Chang, Xia; Tang, Bing
2018-06-01
We investigate the problem on the discrete modulation instability of plane waves and discrete breather modes in a nonlinear helicoidal lattice model, which is described by a discrete nonlinear Schrödinger equation with the first-, second-, and third-neighbor coupling. By means of the linear stability analysis, we present an analytical expression of the instability growth rate and identify the regions of modulational instability of plane waves. It is shown that the introduction of the third-neighbor coupling will affect the shape of the areas of modulational instability significantly. Based on the results obtained by the modulational instability analysis, we predict the existence conditions for the stationary breather modes. Otherwise, by making use of the semidiscrete multiple-scale method, we obtain analytical solutions of discrete breather modes and analyze their properties for different types of nonlinearities. Our results show that the discrete breathers obtained are stable for a long time only when the system exhibits the repulsive nonlinearity. In addition, it is found that the existence of the stable bright discrete breather closely relates to the presence of the third-neighbor coupling.
Mallery, Robert M; Poolman, Pieter; Thurtell, Matthew J; Wang, Jui-Kai; Garvin, Mona K; Ledolter, Johannes; Kardon, Randy H
2016-07-01
The purpose of this study was to assess whether clinically useful measures of fixation instability and eccentricity can be derived from retinal tracking data obtained during optical coherence tomography (OCT) in patients with optic neuropathy (ON) and to develop a method for relating fixation to the retinal ganglion cell complex (GCC) thickness. Twenty-nine patients with ON underwent macular volume OCT with 30 seconds of confocal scanning laser ophthalmoscope (cSLO)-based eye tracking during fixation. Kernel density estimation quantified fixation instability and fixation eccentricity from the distribution of fixation points on the retina. Preferred ganglion cell layer loci (PGCL) and their relationship to the GCC thickness map were derived, accounting for radial displacement of retinal ganglion cell soma from their corresponding cones. Fixation instability was increased in ON eyes (0.21 deg2) compared with normal eyes (0.06982 deg2; P < 0.001), and fixation eccentricity was increased in ON eyes (0.48°) compared with normal eyes (0.24°; P = 0.03). Fixation instability and eccentricity each correlated moderately with logMAR acuity and were highly predictive of central visual field loss. Twenty-six of 35 ON eyes had PGCL skewed toward local maxima of the GCC thickness map. Patients with bilateral dense central scotomas had PGCL in homonymous retinal locations with respect to the fovea. Fixation instability and eccentricity measures obtained during cSLO-OCT assess the function of perifoveal retinal elements and predict central visual field loss in patients with ON. A model relating fixation to the GCC thickness map offers a method to assess the structure-function relationship between fixation and areas of preserved GCC in patients with ON.
M. Mallery, Robert; Poolman, Pieter; J. Thurtell, Matthew; Wang, Jui-Kai; K. Garvin, Mona; Ledolter, Johannes; Kardon, Randy H.
2016-01-01
Purpose The purpose of this study was to assess whether clinically useful measures of fixation instability and eccentricity can be derived from retinal tracking data obtained during optical coherence tomography (OCT) in patients with optic neuropathy (ON) and to develop a method for relating fixation to the retinal ganglion cell complex (GCC) thickness. Methods Twenty-nine patients with ON underwent macular volume OCT with 30 seconds of confocal scanning laser ophthalmoscope (cSLO)-based eye tracking during fixation. Kernel density estimation quantified fixation instability and fixation eccentricity from the distribution of fixation points on the retina. Preferred ganglion cell layer loci (PGCL) and their relationship to the GCC thickness map were derived, accounting for radial displacement of retinal ganglion cell soma from their corresponding cones. Results Fixation instability was increased in ON eyes (0.21 deg2) compared with normal eyes (0.06982 deg2; P < 0.001), and fixation eccentricity was increased in ON eyes (0.48°) compared with normal eyes (0.24°; P = 0.03). Fixation instability and eccentricity each correlated moderately with logMAR acuity and were highly predictive of central visual field loss. Twenty-six of 35 ON eyes had PGCL skewed toward local maxima of the GCC thickness map. Patients with bilateral dense central scotomas had PGCL in homonymous retinal locations with respect to the fovea. Conclusions Fixation instability and eccentricity measures obtained during cSLO-OCT assess the function of perifoveal retinal elements and predict central visual field loss in patients with ON. A model relating fixation to the GCC thickness map offers a method to assess the structure–function relationship between fixation and areas of preserved GCC in patients with ON. PMID:27409502
Effects of energetic particle phase space modifications by instabilities on integrated modeling
NASA Astrophysics Data System (ADS)
Podestà, M.; Gorelenkova, M.; Fredrickson, E. D.; Gorelenkov, N. N.; White, R. B.
2016-11-01
Tokamak plasmas can feature a large population of energetic particles (EP) from neutral beam injection or fusion reactions. In turn, energetic particles can drive instabilities, which affect the driving EP population leading to a distortion of the original EP distribution function and of quantities that depend on it. The latter include, for example, neutral beam (NB) current drive and plasma heating through EP thermalization. Those effects must be taken into account to enable reliable and quantitative simulations of discharges for present devices as well as predictions for future burning plasmas. Reduced models for EP transport are emerging as an effective tool for long time-scale integrated simulations of tokamak plasmas, possibly including the effects of instabilities on EP dynamics. Available models differ in how EP distribution properties are modified by instabilities, e.g. in terms of gradients in real or phase space. It is therefore crucial to assess to what extent different assumptions in the transport models affect predicted quantities such as EP profile, energy distribution, NB driven current and energy/momentum transfer to the thermal populations. A newly developed kick model, which includes modifications of the EP distribution by instabilities in both real and velocity space, is used in this work to investigate these issues. Coupled to TRANSP simulations, the kick model is used to analyze NB-heated NSTX and DIII-D discharges featuring unstable Alfvén eigenmodes (AEs). Results show that instabilities can strongly affect the EP distribution function, and modifications propagate to macroscopic quantities such as NB-driven current profile and NB power transferred to the thermal plasma species. Those important aspects are only qualitatively captured by simpler fast ion transport models that are based on radial diffusion of energetic ions only.
Effects of energetic particle phase space modifications by instabilities on integrated modeling
Podesta, M.; Gorelenkova, M.; Fredrickson, E. D.; ...
2016-07-22
Tokamak plasmas can feature a large population of energetic particles (EP) from neutral beam injection or fusion reactions. In turn, energetic particles can drive instabilities, which affect the driving EP population leading to a distortion of the original EP distribution function and of quantities that depend on it. The latter include, for example, neutral beam (NB) current drive and plasma heating through EP thermalization. Those effects must be taken into account to enable reliable and quantitative simulations of discharges for present devices as well as predictions for future burning plasmas. Reduced models for EP transport are emerging as an effectivemore » tool for long time-scale integrated simulations of tokamak plasmas, possibly including the effects of instabilities on EP dynamics. Available models differ in how EP distribution properties are modified by instabilities, e.g. in terms of gradients in real or phase space. It is therefore crucial to assess to what extent different assumptions in the transport models affect predicted quantities such as EP profile, energy distribution, NB driven current and energy/momentum transfer to the thermal populations. A newly developed kick model, which includes modifications of the EP distribution by instabilities in both real and velocity space, is used in this work to investigate these issues. Coupled to TRANSP simulations, the kick model is used to analyze NB-heated NSTX and DIII-D discharges featuring unstable Alfvén eigenmodes (AEs). Results show that instabilities can strongly affect the EP distribution function, and modifications propagate to macroscopic quantities such as NB-driven current profile and NB power transferred to the thermal plasma species. Furthermore, those important aspects are only qualitatively captured by simpler fast ion transport models that are based on radial diffusion of energetic ions only.« less
Casey, D. T.; Milovich, J. L.; Smalyuk, V. A.; ...
2015-09-01
Hydrodynamic instabilities can cause capsule defects and other perturbations to grow and degrade implosion performance in ignition experiments at the National Ignition Facility (NIF). Here, we show the first experimental demonstration that a strong unsupported first shock in indirect drive implosions at the NIF reduces ablation front instability growth leading to a 3 to 10 times higher yield with fuel ρR > 1 g=cm 2. This work shows the importance of ablation front instability growth during the National Ignition Campaign and may provide a path to improved performance at the high compression necessary for ignition.
Gastric biomarkers: a global review.
Baniak, Nick; Senger, Jenna-Lynn; Ahmed, Shahid; Kanthan, S C; Kanthan, Rani
2016-08-11
Gastric cancer is an aggressive disease with a poor 5-year survival and large global burden of disease. The disease is biologically and genetically heterogeneous with a poorly understood carcinogenesis at the molecular level. Despite the many prognostic, predictive, and therapeutic biomarkers investigated to date, gastric cancer continues to be detected at an advanced stage with resultant poor clinical outcomes. This is a global review of gastric biomarkers with an emphasis on HER2, E-cadherin, fibroblast growth factor receptor, mammalian target of rapamycin, and hepatocyte growth factor receptor as well as sections on microRNAs, long noncoding RNAs, matrix metalloproteinases, PD-L1, TP53, and microsatellite instability. A deeper understanding of the pathogenesis and biological features of gastric cancer, including the identification and characterization of diagnostic, prognostic, predictive, and therapeutic biomarkers, hopefully will provide improved clinical outcomes.
Fox, Eric W; Hill, Ryan A; Leibowitz, Scott G; Olsen, Anthony R; Thornbrugh, Darren J; Weber, Marc H
2017-07-01
Random forest (RF) modeling has emerged as an important statistical learning method in ecology due to its exceptional predictive performance. However, for large and complex ecological data sets, there is limited guidance on variable selection methods for RF modeling. Typically, either a preselected set of predictor variables are used or stepwise procedures are employed which iteratively remove variables according to their importance measures. This paper investigates the application of variable selection methods to RF models for predicting probable biological stream condition. Our motivating data set consists of the good/poor condition of n = 1365 stream survey sites from the 2008/2009 National Rivers and Stream Assessment, and a large set (p = 212) of landscape features from the StreamCat data set as potential predictors. We compare two types of RF models: a full variable set model with all 212 predictors and a reduced variable set model selected using a backward elimination approach. We assess model accuracy using RF's internal out-of-bag estimate, and a cross-validation procedure with validation folds external to the variable selection process. We also assess the stability of the spatial predictions generated by the RF models to changes in the number of predictors and argue that model selection needs to consider both accuracy and stability. The results suggest that RF modeling is robust to the inclusion of many variables of moderate to low importance. We found no substantial improvement in cross-validated accuracy as a result of variable reduction. Moreover, the backward elimination procedure tended to select too few variables and exhibited numerous issues such as upwardly biased out-of-bag accuracy estimates and instabilities in the spatial predictions. We use simulations to further support and generalize results from the analysis of real data. A main purpose of this work is to elucidate issues of model selection bias and instability to ecologists interested in using RF to develop predictive models with large environmental data sets.
Neural basis of postural instability identified by VTC and EEG
Cao, Cheng; Jaiswal, Niharika; Newell, Karl M.
2010-01-01
In this study, we investigated the neural basis of virtual time to contact (VTC) and the hypothesis that VTC provides predictive information for future postural instability. A novel approach to differentiate stable pre-falling and transition-to-instability stages within a single postural trial while a subject was performing a challenging single leg stance with eyes closed was developed. Specifically, we utilized wavelet transform and stage segmentation algorithms using VTC time series data set as an input. The VTC time series was time-locked with multichannel (n = 64) EEG signals to examine its underlying neural substrates. To identify the focal sources of neural substrates of VTC, a two-step approach was designed combining the independent component analysis (ICA) and low-resolution tomography (LORETA) of multichannel EEG. There were two major findings: (1) a significant increase of VTC minimal values (along with enhanced variability of VTC) was observed during the transition-to-instability stage with progression to ultimate loss of balance and falling; and (2) this VTC dynamics was associated with pronounced modulation of EEG predominantly within theta, alpha and gamma frequency bands. The sources of this EEG modulation were identified at the cingulate cortex (ACC) and the junction of precuneus and parietal lobe, as well as at the occipital cortex. The findings support the hypothesis that the systematic increase of minimal values of VTC concomitant with modulation of EEG signals at the frontal-central and parietal–occipital areas serve collectively to predict the future instability in posture. PMID:19655130
NASA Astrophysics Data System (ADS)
Wang, Q.; Liu, Z. J.; Zheng, C. Y.; Xiao, C. Z.; Feng, Q. S.; Zhang, H. C.; He, X. T.
2018-01-01
The longitudinal relativistic effect on stimulated Raman backscattering (SRBS) is investigated by using one-dimensional (1D) Vlasov-Maxwell simulations. Using a short backscattered light seed pulse with a very small amplitude, the linear gain spectra of SRBS in the strongly convective regime is presented by combining the relativistic and non-relativistic 1D Vlasov-Maxwell simulations, which is in agreement with the steady-state linear theory. More interestingly, by considering transition from convective to absolute instability due to electron trapping, we successfully predict the critical duration of the seed which can just trigger the kinetic inflation of the excited SRBS after the seed leaves the simulation box. The critical duration in the relativistic case is much shorter than that in the nonrelativistic case, which indicates that the kinetic inflation more easily occurs in the relativistic case than in the nonrelativistic case. In the weakly convective regime, the transition from convective to absolute instability for SRBS can directly occur in the linear regime due to the longitudinal relativistic modification. For the same pump, our simulations first demonstrate that the SRBS excited by a short and small seed pulse is a convective instability in the nonrelativistic case but becomes an absolute instability due to the decrease of the linear Landau damping from the longitudinal relativistic modification in the relativistic case. In more detail, the growth rate of the backscattered light is also in excellent agreement with theoretical prediction.
NASA Astrophysics Data System (ADS)
Harvazinski, Matthew Evan
Self-excited combustion instabilities have been studied using a combination of two- and three-dimensional computational fluid dynamics (CFD) simulations. This work was undertaken to assess the ability of CFD simulations to generate the high-amplitude resonant combustion dynamics without external forcing or a combustion response function. Specifically, detached eddy simulations (DES), which allow for significantly coarser grid resolutions in wall bounded flows than traditional large eddy simulations (LES), were investigated for their capability of simulating the instability. A single-element laboratory rocket combustor which produces self-excited longitudinal instabilities is used for the configuration. The model rocket combustor uses an injector configuration based on practical oxidizer-rich staged-combustion devices; a sudden expansion combustion section; and uses decomposed hydrogen peroxide as the oxidizer and gaseous methane as the fuel. A better understanding of the physics has been achieved using a series of diagnostics. Standard CFD outputs like instantaneous and time averaged flowfield outputs are combined with other tools, like the Rayleigh index to provide additional insight. The Rayleigh index is used to identify local regions in the combustor which are responsible for driving and damping the instability. By comparing the Rayleigh index to flowfield parameters it is possible to connect damping and driving to specific flowfield conditions. A cost effective procedure to compute multidimensional local Rayleigh index was developed. This work shows that combustion instabilities can be qualitatively simulated using two-dimensional axisymmetric simulations for fuel rich operating conditions. A full three-dimensional simulation produces a higher level of instability which agrees quite well with the experimental results. In addition to matching the level of instability the three-dimensional simulation also predicts the harmonic nature of the instability that is observed in experiments. All fuel rich simulations used a single step global reaction for the chemical kinetic model. A fuel lean operating condition is also studied and has a lower level of instability. The two-dimensional results are unable to provide good agreement with experimental results unless a more expensive four-step chemical kinetic model is used. The three-dimensional simulation is able to predict the harmonic behavior but fails to capture the amplitude of the instability observed in the companion experiment, instead predicting lower amplitude oscillations. A detailed analysis of the three-dimensional results on a single cycle shows that the periodic heat release commonly associated with combustion instability can be interpreted to be a result of the time lag between the instant the fuel is injected and when it is burned. The time lag is due to two mechanisms. First, methane present near the backstep can become trapped and transported inside shed vortices to the point of combustion. The second aspect of the time lag arises due to the interaction of the fuel with upstream-running pressure waves. As the wave moves past the injection point the flow is temporarily disrupted, reducing the fuel flow into the combustor. A comparison between the fuel lean and fuel rich cases shows several differences. Whereas both cases can produce instability, the fuel-rich case is measurably more unstable. Using the tools developed differences in the location of the damping, and driving regions are evident. By moving the peak driving area upstream of the damping region the level of instability is lower in the fuel lean case. The location of the mean heat release is also important; locating the mean heat release adjacent to the vortex impingement point a higher level of instability is observed for the fuel rich case. This research shows that DES instability modeling has the ability to be a valuable tool in the study of combustion instability. The lower grid size requirement makes the use of DES based modeling a potential candidate in the modeling of full-scale rocket engines. Whereas three-dimensional simulations may be necessary for very good agreement, two-dimensional simulations allow efficient parametric investigation and tool development. The insights obtained from the simulations offer the possibility that their results can be used in the design of future engines to exploit damping and reduce driving.
Detecting, anticipating, and predicting critical transitions in spatially extended systems.
Kwasniok, Frank
2018-03-01
A data-driven linear framework for detecting, anticipating, and predicting incipient bifurcations in spatially extended systems based on principal oscillation pattern (POP) analysis is discussed. The dynamics are assumed to be governed by a system of linear stochastic differential equations which is estimated from the data. The principal modes of the system together with corresponding decay or growth rates and oscillation frequencies are extracted as the eigenvectors and eigenvalues of the system matrix. The method can be applied to stationary datasets to identify the least stable modes and assess the proximity to instability; it can also be applied to nonstationary datasets using a sliding window approach to track the changing eigenvalues and eigenvectors of the system. As a further step, a genuinely nonstationary POP analysis is introduced. Here, the system matrix of the linear stochastic model is time-dependent, allowing for extrapolation and prediction of instabilities beyond the learning data window. The methods are demonstrated and explored using the one-dimensional Swift-Hohenberg equation as an example, focusing on the dynamics of stochastic fluctuations around the homogeneous stable state prior to the first bifurcation. The POP-based techniques are able to extract and track the least stable eigenvalues and eigenvectors of the system; the nonstationary POP analysis successfully predicts the timing of the first instability and the unstable mode well beyond the learning data window.
Detecting, anticipating, and predicting critical transitions in spatially extended systems
NASA Astrophysics Data System (ADS)
Kwasniok, Frank
2018-03-01
A data-driven linear framework for detecting, anticipating, and predicting incipient bifurcations in spatially extended systems based on principal oscillation pattern (POP) analysis is discussed. The dynamics are assumed to be governed by a system of linear stochastic differential equations which is estimated from the data. The principal modes of the system together with corresponding decay or growth rates and oscillation frequencies are extracted as the eigenvectors and eigenvalues of the system matrix. The method can be applied to stationary datasets to identify the least stable modes and assess the proximity to instability; it can also be applied to nonstationary datasets using a sliding window approach to track the changing eigenvalues and eigenvectors of the system. As a further step, a genuinely nonstationary POP analysis is introduced. Here, the system matrix of the linear stochastic model is time-dependent, allowing for extrapolation and prediction of instabilities beyond the learning data window. The methods are demonstrated and explored using the one-dimensional Swift-Hohenberg equation as an example, focusing on the dynamics of stochastic fluctuations around the homogeneous stable state prior to the first bifurcation. The POP-based techniques are able to extract and track the least stable eigenvalues and eigenvectors of the system; the nonstationary POP analysis successfully predicts the timing of the first instability and the unstable mode well beyond the learning data window.
A TEST OF THE FORMATION MECHANISM OF THE BROAD LINE REGION IN ACTIVE GALACTIC NUCLEI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Czerny, Bozena; Du, Pu; Wang, Jian-Min
2016-11-20
The origin of the broad line region (BLR) in active galaxies remains unknown. It seems to be related to the underlying accretion disk, but an efficient mechanism is required to raise the material from the disk surface without giving signatures of the outflow that are too strong in the case of the low ionization lines. We discuss in detail two proposed mechanisms: (1) radiation pressure acting on dust in the disk atmosphere creating a failed wind and (2) the gravitational instability of the underlying disk. We compare the predicted location of the inner radius of the BLR in those two scenarios withmore » the observed position obtained from the reverberation studies of several active galaxies. The failed dusty outflow model well represents the observational data while the predictions of the self-gravitational instability are not consistent with observations. The issue that remains is why do we not see any imprints of the underlying disk instability in the BLR properties.« less
Prediction and control of coupled-mode flutter in future wind turbine blades
NASA Astrophysics Data System (ADS)
Modarres-Sadeghi, Yahya; Currier, Todd; Caracoglia, Luca; Lackner, Matthew; Hollot, Christopher
2017-11-01
Coupled-mode flutter can be observed in future offshore wind turbine blades. We have shown this fact by considering various candidate blade designs, in all of which the blade's first torsional mode couples with one of its flapwise modes, resulting in coupled-mode flutter. We have shown how the ratio of these two natural frequencies can result in blades with a critical flutter speed even lower than their rated speed, especially for blades with low torsional natural frequencies. We have also shown how the stochastic nature of the system parameters (as an example, due to uncertainties in the manufacturing process) can significantly influence the onset of instability. We have proposed techniques to predict the onset of these instabilities and the resulting limit-cycle response, and strategies to control them, by either postponing the onset of instability, or lowering the magnitude of the limit-cycle response. The work is supported by the National Science Foundation, Award CBET-1437988 and Collaborative Awards CMMI-1462646 and CMMI-1462774.
DYNAMICAL FRAGMENTATION OF THE T PYXIDIS NOVA SHELL DURING RECURRENT ERUPTIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toraskar, Jayashree; Mac Low, Mordecai-Mark; Shara, Michael M.
2013-05-01
Hubble Space Telescope images of the ejecta surrounding the nova T Pyxidis resolve the emission into more than 2000 bright knots. We simulate the dynamical evolution of the ejecta from T Pyxidis during its multiple eruptions over the last 150 years using the adaptive mesh refinement code Ramses. We demonstrate that the observed knots are the result of Richtmyer-Meshkov gas dynamical instabilities (the equivalent of Rayleigh-Taylor instabilities in an accelerated medium). These instabilities are caused by the overrunning of the ejecta from the classical nova of 1866 by fast-moving ejecta from the six subsequent recurrent nova outbursts. Magnetic fields maymore » play a role in determining knot scale and preventing their conductive evaporation. The model correctly predicts the observed expansion and dimming of the T Pyx ejecta as well as the knotty morphology. The model also predicts that deeper, high-resolution imagery will show filamentary structure connecting the knots. We show reprocessed Hubble Space Telescope imagery that shows the first hints of such a structure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toma, P.R.; Vargas, E.; Kuru, E.
Flow-pattern instabilities have frequently been observed in both conventional gas-lifting and unloading operations of water and oil in low-pressure gas and coalbed reservoirs. This paper identifies the slug-to-annular flow-pattern transition (STA) during upward gas/liquid transportation as a potential cause of flow instability in these operations. It is recommended that the slug-flow pattern be used mainly to minimize the pressure drop and gas compression work associated with gas-lifting large volumes of oil and water. Conversely, the annular flow pattern should be used during the unloading operation to produce gas with relatively small amounts of water and condensate. New and efficient artificialmore » lifting strategies are required to transport the liquid out of the depleted gas or coalbed reservoir level to the surface. This paper presents held data and laboratory measurements supporting the hypothesis that STA significantly contributes to flow instabilities and should therefore be avoided in upward gas/liquid transportation operations. Laboratory high-speed measurements of flow-pressure components under a broad range of gas-injection rates including STA have also been included to illustrate the onset of large STA-related flow-pressure oscillations. The latter body of data provides important insights into gas deliquification mechanisms and identifies potential solutions for improved gas-lifting and unloading procedures. A comparison of laboratory data with existing STA models was performed first. Selected models were then numerically tested in field situations. Effective field strategies for avoiding STA occurrence in marginal and new (offshore) field applications (i.e.. through the use of a slug or annular flow pattern regimen from the bottomhole to wellhead levels) are discussed.« less
Functional outcome from sacroiliac joint prolotherapy in patients with sacroiliac joint instability.
Hoffman, Martin D; Agnish, Vikram
2018-04-01
Examine the effectiveness of sacroiliac (SI) joint prolotherapy for SI joint instability, and characterize the patients most likely to benefit from this treatment. Retrospective cohort study. Department of Veterans Affairs outpatient physical medicine clinic. Patients referred for low back pain and diagnosed with SI joint instability received a series of three SI joint prolotherapy injections (15% dextrose in lidocaine) at approximately a one-month interval. The outcome of those completing treatment was retrospectively examined, and characteristics were compared between those with at least a minimum clinically important improvement and those without improvement. Patients completed the Oswestry Disability Index (ODI) before treatment was initiated, immediately preceding each prolotherapy injection, and at 3-4 month follow-up. Of 103 treated patients returning for post-treatment follow-up at a median of 117 days, 24 (23%) showed a minimum clinically important improvement despite a median of 2 years with low back pain and a mean (±SD) pre-intervention ODI of 54 ± 15 points. Much of the improvement was evident after the initial prolotherapy injection, and a 15-point improvement in ODI prior to the second prolotherapy injection had a sensitivity of 92% and specificity of 80% for determining which patients would improve. A satisfactory proportion of patients with symptomatic SI joint instability as an etiology of low back pain can have clinically meaningful functional gains with prolotherapy treatment. The patients who are not likely to improve with prolotherapy are generally evident by lack of improvement following the initial prolotherapy injection. Published by Elsevier Ltd.
Memory instability as a gateway to generalization
2018-01-01
Our present frequently resembles our past. Patterns of actions and events repeat throughout our lives like a motif. Identifying and exploiting these patterns are fundamental to many behaviours, from creating grammar to the application of skill across diverse situations. Such generalization may be dependent upon memory instability. Following their formation, memories are unstable and able to interact with one another, allowing, at least in principle, common features to be extracted. Exploiting these common features creates generalized knowledge that can be applied across varied circumstances. Memory instability explains many of the biological and behavioural conditions necessary for generalization and offers predictions for how generalization is produced. PMID:29554094
NASA Astrophysics Data System (ADS)
Stefani, Frank; Gundrum, Thomas; Gerbeth, Gunter; Rüdiger, Günther; Schultz, Manfred; Szklarski, Jacek; Hollerbach, Rainer
2006-11-01
A recent Letter [R. Hollerbach and G. Rüdiger, Phys. Rev. Lett. 95, 124501 (2005)PRLTAO0031-900710.1103/PhysRevLett.95.124501] has shown that the threshold for the onset of the magnetorotational instability in a Taylor-Couette flow is dramatically reduced if both axial and azimuthal magnetic fields are imposed. In agreement with this prediction, we present results of a Taylor-Couette experiment with the liquid metal alloy GaInSn, showing evidence for the existence of the magnetorotational instability at Reynolds numbers of order 1000 and Hartmann numbers of order 10.
Li, Weidong; Gao, Yanfei; Bei, Hongbin
2016-10-10
As a commonly used method to enhance the ductility in bulk metallic glasses (BMGs), the introduction of geometric constraints blocks and confines the propagation of the shear bands, reduces the degree of plastic strain on each shear band so that the catastrophic failure is prevented or delayed, and promotes the formation of multiple shear bands. The clustering of multiple shear bands near notches is often interpreted as the reason for improved ductility. Experimental works on the shear band arrangements in notched metallic glasses have been extensively carried out, but a systematic theoretical study is lacking. Using instability theory that predictsmore » the onset of strain localization and the free-volume- based nite element simulations that predict the evolution of shear bands, this work reveals various categories of shear band arrangements in double edge notched BMGs with respect to the mode mixity of the applied stress fields. In conclusion, a mechanistic explanation is thus provided to a number of related experiments and especially the correlation between various types of shear bands and the stress state.« less
NASA Astrophysics Data System (ADS)
Haines, Brian; Olson, Richard; Yi, Austin; Zylstra, Alex; Peterson, Robert; Bradley, Paul; Shah, Rahul; Wilson, Doug; Kline, John; Leeper, Ramon; Batha, Steve
2017-10-01
The high convergence ratio (CR) of layered Inertial Confinement Fusion capsule implosions contribute to high performance in 1D simulations yet make them more susceptible to hydrodynamic instabilities, contributing to the development of 3D flows. The wetted foam platform is an approach to hot spot ignition to achieve low-to-moderate convergence ratios in layered implosions on the NIF unobtainable using an ice layer. Detailed high-resolution modeling of these experiments in 2D and 3D, including all known asymmetries, demonstrates that 2D hydrodynamics explain capsule performance at CR 12 but become less suitable as the CR increases. Mechanisms for this behavior and detailed comparisons of simulations to experiments on NIF will be presented. To evaluate the tradeoff between increased instability and improved 1D performance, we present a full-scale wetted foam capsule design with 17
Direct Numerical Simulation of Transition Due to Traveling Crossflow Vortices
NASA Technical Reports Server (NTRS)
Li, Fei; Choudhari, Meelan M.; Duan, Lian
2016-01-01
Previous simulations of laminar breakdown mechanisms associated with stationary crossflow instability over a realistic swept-wing configuration are extended to investigate the alternate scenario of transition due to secondary instability of traveling crossflow modes. Earlier analyses based on secondary instability theory and parabolized stability equations have shown that this alternate scenario is viable when the initial amplitude of the most amplified mode of the traveling crossflow instability is greater than approximately 0.03 times the initial amplitude of the most amplified stationary mode. The linear growth predictions based on the secondary instability theory and parabolized stability equations agree well with the direct numerical simulation. Nonlinear effects are initially stabilizing but subsequently lead to a rapid growth followed by the onset of transition when the amplitude of the secondary disturbance exceeds a threshold value. Similar to the breakdown of stationary vortices, the transition zone is rather short and the boundary layer becomes completely turbulent across a distance of less than 15 times the boundary layer thickness at the completion of transition.
2011-02-01
humanitarian crises and regional instability sparked by the societal impact of rangeland failure in pastoral cultures. 1 Section 1: Introduction The...sparked by the societal impact of rangeland failure in pastoral cultures. The paper will begin by examining AFRICOM’s applicable mandates, the...migrations, and societal impacts originating from natural disasters. In the pastoral regions of Africa, rangeland failure stemming from drought, climate
Nonlinear growth of zonal flows by secondary instability in general magnetic geometry
Plunk, G. G.; Navarro, A. Banon
2017-02-23
Here we present a theory of the nonlinear growth of zonal flows in magnetized plasma turbulence, by the mechanism of secondary instability. The theory is derived for general magnetic geometry, and is thus applicable to both tokamaks and stellarators. The predicted growth rate is shown to compare favorably with nonlinear gyrokinetic simulations, with the error scaling as expected with the small parameter of the theory.
Gait adaptations in patients with chronic posterior instability of the knee.
Hooper, D M; Morrissey, M C; Crookenden, R; Ireland, J; Beacon, J P
2002-03-01
A retrospective analysis was performed to assess gait in individuals with a long history of posterior knee instability. Descriptive study. There are few studies in the literature concerning evaluation of the biomechanics of the knee in patients with knee posterior instability. Nine individuals with posterior knee instability and a matched control group of uninjured subjects were tested in regards to knee kinematics and kinetics while walking and ascending and descending stairs. The mean follow up time for the individuals with posterior instability was 11.1 years. Individual satisfaction with the knee was measured by having participants complete the Flandry (also known as Hughston Clinic) self-assessment questionnaire. It was found that patients with knee posterior instability who indicated a higher level of satisfaction on the Flandry score walked in a manner that demonstrated greater peak knee extensor torque during stance phase, while less satisfied patients with knee posterior instability demonstrated lower peak knee extensor torque. There was a significant correlation between the self-assessment score and the peak knee extensor torque during level walking (P=0.003). During stair ascent and descent, patients with posterior instability averaged lower knee extensor torque and power than the control subjects, but those differences were only statistically significant in power while descending stairs (P=0.048). Individuals with chronic knee posterior instability modify their gait, and the adaptation can be predicted based upon the individuals self-assessment of their knee using the Flandry questionnaire. These data suggest that gait retraining may be a valuable addition to the traditional muscle strengthening programs, which are commonly used during conservative management of knee posterior instability.
Potential Flow Model for Compressible Stratified Rayleigh-Taylor Instability
NASA Astrophysics Data System (ADS)
Rydquist, Grant; Reckinger, Scott; Owkes, Mark; Wieland, Scott
2017-11-01
The Rayleigh-Taylor Instability (RTI) is an instability that occurs when a heavy fluid lies on top of a lighter fluid in a gravitational field, or a gravity-like acceleration. It occurs in many fluid flows of a highly compressive nature. In this study potential flow analysis (PFA) is used to model the early stages of RTI growth for compressible fluids. In the localized region near the bubble tip, the effects of vorticity are negligible, so PFA is applicable, as opposed to later stages where the induced velocity due to vortices generated from the growth of the instability dominate the flow. The incompressible PFA is extended for compressibility effects by applying the growth rate and the associated perturbation spatial decay from compressible linear stability theory. The PFA model predicts theoretical values for a bubble terminal velocity for single-mode compressible RTI, dependent upon the Atwood (A) and Mach (M) numbers, which is a parameter that measures both the strength of the stratification and intrinsic compressibility. The theoretical bubble terminal velocities are compared against numerical simulations. The PFA model correctly predicts the M dependence at high A, but the model must be further extended to include additional physics to capture the behavior at low A. Undergraduate Scholars Program - Montana State University.
Sahmani, S; Fattahi, A M
2017-08-01
New ceramic materials containing nanoscaled crystalline phases create a main object of scientific interest due to their attractive advantages such as biocompatibility. Zirconia as a transparent glass ceramic is one of the most useful binary oxides in a wide range of applications. In the present study, a new size-dependent plate model is constructed to predict the nonlinear axial instability characteristics of zirconia nanosheets under axial compressive load. To accomplish this end, the nonlocal continuum elasticity of Eringen is incorporated to a refined exponential shear deformation plate theory. A perturbation-based solving process is put to use to derive explicit expressions for nonlocal equilibrium paths of axial-loaded nanosheets. After that, some molecular dynamics (MD) simulations are performed for axial instability response of square zirconia nanosheets with different side lengths, the results of which are matched with those of the developed nonlocal plate model to capture the proper value of nonlocal parameter. It is demonstrated that the calibrated nonlocal plate model with nonlocal parameter equal to 0.37nm has a very good capability to predict the axial instability characteristics of zirconia nanosheets, the accuracy of which is comparable with that of MD simulation. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ito, Kiyokazu; Matsuba, Masanori; Okamoto, Hiromi
2018-02-01
A systematic experimental study is performed to clarify the parameter dependence of the noise-induced beam instability previously demonstrated by a Princeton group [M. Chung et al., Phys. Rev. Lett. 102, 145003 (2009)]. Because of the weakness of the driving force, the instability develops very slowly, which substantially limits the application of conventional experimental and numerical techniques. In the present study, a novel tabletop apparatus called "S-POD" (Simulator of Particle Orbit Dynamics) is employed to explore the long-term collective behavior of intense hadron beams. S-POD provides a many-body Coulomb system physically equivalent to a relativistic charged-particle beam and thus enables us to conduct various beam-dynamics experiments without the use of large-scale machines. It is reconfirmed that random noise on the linear beam-focusing potential can be a source of slow beam quality degradation. Experimental observations are explained well by a simple perturbation theory that predicts the existence of a series of dangerous noise frequency bands overlooked in the previous study. Those additional instability bands newly identified with S-POD are more important practically because the driving noise frequencies can be very low. The dependence of the instability on the noise level, operating tune, and beam intensity is examined and found consistent with theoretical predictions.
NASA Astrophysics Data System (ADS)
Hartland, Tucker A.; Schilling, Oleg
2016-11-01
Analytical self-similar solutions corresponding to Rayleigh-Taylor, Richtmyer-Meshkov and Kelvin-Helmholtz instability are combined with observed values of the growth parameters in these instabilities to derive coefficient sets for K- ɛ and K- L- a Reynolds-averaged turbulence models. It is shown that full numerical solutions of the model equations give mixing layer widths, fields, and budgets in good agreement with the corresponding self-similar quantities for small Atwood number. Both models are then applied to Rayleigh-Taylor instability with increasing density contrasts to estimate the Atwood number above which the self-similar solutions become invalid. The models are also applied to a reshocked Richtmyer-Meshkov instability, and the predictions are compared with data. The expressions for the growth parameters obtained from the similarity analysis are used to develop estimates for the sensitivity of their values to changes in important model coefficients. Numerical simulations using these modified coefficient values are then performed to provide bounds on the model predictions associated with uncertainties in these coefficient values. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This work was supported by the 2016 LLNL High-Energy-Density Physics Summer Student Program.
ASIRI: Remote Sensing of Atmospheric Waves and Instabilities (RAWI)
2015-09-30
Dynamics, Academic, San Diego, Calif. Fujiwara, M., K. Kita, and T. Ogawa (1998), Stratosphere- troposphere exchange of ozone associated with the... Troposphere down to the Surface during ASIRI-RAWI Campaign, Fourth Symposium on Prediction of the Madden- Julian Oscillation: Processes, Prediction and
Modeling, measuring, and mitigating instability growth in liner implosions on Z
NASA Astrophysics Data System (ADS)
Peterson, Kyle
2015-11-01
Electro-thermal instabilities result from non-uniform heating due to temperature dependence in the conductivity of a material. In this talk, we will discuss the role of electro-thermal instabilities on the dynamics of magnetically accelerated implosion systems. We present simulations that show electro-thermal instabilities form immediately after the surface material of a conductor melts and can act as a significant seed to subsequent magneto-Rayleigh-Taylor (MRT) instability growth. We discuss measurement results from experiments performed on Sandia National Laboratories Z accelerator to investigate signatures of electro-thermal instability growth on well-characterized initially solid aluminum or beryllium rods driven with a 20 MA, 100 ns risetime current pulse. These measurements show good agreement with electro-thermal instability simulations and exhibit larger instability growth than can be explained by MRT theory alone. Recent experiments have confirmed simulation predictions of dramatically reduced instability growth in solid metallic rods when thick dielectric coatings are used to mitigate density perturbations arising from the electro-thermal instability. These results provide further evidence that the inherent surface roughness of the target is not the dominant seed for the MRT instability, in contrast with most inertial confinement fusion approaches. These results suggest a new technique for substantially reducing the integral MRT growth in magnetically driven implosions. Indeed, recent results on the Z facility with 100 km/s Al and Be liner implosions show substantially reduced growth. These new results include axially magnetized, CH-coated beryllium liner radiographs in which the inner liner surface is observed to be remarkably straight and uniform at a radius of about 120 microns (convergence ratio ~20). Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000.
Marinelli, A; Guerra, E; Rotini, R
2016-12-01
In the recent years, considerable improvements have come in biomechanical knowledge about the role of elbow stabilizers. In particular, the complex interactions among the different stabilizers when injured at the same time have been better understood. Anyway, uncertainties about both nomenclature and classification still exist in the definition of the different patterns of instability. The authors examine the literature of the last 130 years about elbow instability classification, analyzing the intuitions and the value of each of them. However, because of the lack of a satisfactory classification, in 2015 a working group has been created inside SICSeG (Italian Society of Shoulder and Elbow Surgery) with the aim of defining an exhaustive classification as simple, complete and reproducible as possible. A new all-inclusive elbow instability classification is proposed. This classification considers two main parameters: timing (acute and chronic forms) and involved stabilizers (simple and complex forms), and four secondary parameters: etiology (traumatic, rheumatic, congenital…), the involved joint (radius and ulna as a single unit articulating with the humerus or the proximal radio-ulnar joint), the degree of displacement (dislocation or subluxation) and the mechanism of instability or dislocation (PLRI, PMRI, direct axial loading, pure varus or valgus stress). This classification is at the same time complete enough to include all the instability patterns and practical enough to be effectively used in the clinical practice. This classification can help in defining a shared language, can improve our understanding of the disorder, reduce misunderstanding of diagnosis and improve comparison among different case series.
Subtalar instability. Etiology, diagnosis, and management.
Keefe, Daniel T; Haddad, Steven L
2002-09-01
Subtalar instability is an evolving disorder that seems to cause a portion of chronic hindfoot instability. It can be seen as an isolated problem, or more commonly, in combination with ankle instability. There seems to be many injury mechanisms, most of which seem to involve supination of the hindfoot, and all seem to attenuate the lateral ligaments of the ankle and subtalar joints. As the condition progresses, and additional sprains occur as a result of the alteration in subtalar joint mechanics, the remaining ligaments become attenuated. There are many methods described to diagnose subtalar instability, but no conclusive test has been devised. Thus, the diagnosis must be inferred from an accurate history, physical examination, conferring radiographic studies, and failure of nonoperative management (often, for ankle instability). As with other hindfoot injuries, many patients improve with conservative measures. These measures are early (ice and immobilization) and late (bracing and proprioceptive training). When patients do not improve or cannot tolerate bracing, recent studies have shown there is a role for ligamentous reconstruction. Most procedures attempt to recreate the lateral ligament structures, including the calcaneofibular, the cervical, and the interosseous talocalcaneal ligaments, which seem to have the best stabilizing effect on the hindfoot. With the advent of newer procedures and more aggressive surgical management, there may be a role for early anatomic repair and rehabilitation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pecover, J. D.; Chittenden, J. P.
A critical limitation of magnetically imploded systems such as magnetized liner inertial fusion (MagLIF) [Slutz et al., Phys. Plasmas 17, 056303 (2010)] is the magneto-Rayleigh-Taylor (MRT) instability which primarily disrupts the outer surface of the liner. MagLIF-relevant experiments have showed large amplitude multi-mode MRT instability growth growing from surface roughness [McBride et al., Phys. Rev. Lett. 109, 135004 (2012)], which is only reproduced by 3D simulations using our MHD code Gorgon when an artificially azimuthally correlated initialisation is added. We have shown that the missing azimuthal correlation could be provided by a combination of the electro-thermal instability (ETI) and anmore » “electro-choric” instability (ECI); describing, respectively, the tendency of current to correlate azimuthally early in time due to temperature dependent Ohmic heating; and an amplification of the ETI driven by density dependent resistivity around vapourisation. We developed and implemented a material strength model in Gorgon to improve simulation of the solid phase of liner implosions which, when applied to simulations exhibiting the ETI and ECI, gave a significant increase in wavelength and amplitude. Full circumference simulations of the MRT instability provided a significant improvement on previous randomly initialised results and approached agreement with experiment.« less
Mathematical model of Rayleigh-Taylor and Richtmyer-Meshkov instabilities for viscoelastic fluids
NASA Astrophysics Data System (ADS)
Rollin, Bertrand; Andrews, Malcolm J.
2011-04-01
We extended the Goncharov model [V. N. Goncharov, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.88.134502 88, 134502 (2002)] for nonlinear Rayleigh-Taylor instability of perfect fluids to the case of Rivlin-Ericksen viscoelastic fluids [R. S. Rivlin and J. L. Ericksen, Rat. Mech. Anal. 4, 323 (1955)], with surface tension. For Rayleigh-Taylor instability, viscosity, surface tension, and viscoelasticity decrease the exponential growth rate predicted by linear stability analysis. In particular, we find that viscosity and surface tension decrease the terminal bubble velocity, whereas viscoelasticity is found to have no effect. All three properties increase the saturation height of the bubble. In Richmyer-Meshkov instability, the decay of the asymptotic velocity depends on the balance between viscosity and surface tension, and viscoelasticity tends to slow the asymptotic velocity decay.
NASA Astrophysics Data System (ADS)
Chang, Xia; Xie, Jiayu; Wu, Tianle; Tang, Bing
2018-07-01
A theoretical study on modulational instability and quantum discrete breather states in a system of cold bosonic atoms in zig-zag optical lattices is presented in this work. The time-dependent Hartree approximation is employed to deal with the multiple body problem. By means of a linear stability analysis, we analytically study the modulational instability, and estimate existence conditions of the bright stationary localized solutions for different values of the second-neighbor hopping constant. On the other hand, we get analytical bright stationary localized solutions, and analyze the influence of the second-neighbor hopping on their existence conditions. The predictions of the modulational instability analysis are shown to be reliable. Using these stationary localized single-boson wave functions, the quantum breather states corresponding to the system with different types of nonlinearities are constructed.
A note on the coupling between flow instabilities and incident sound
NASA Astrophysics Data System (ADS)
Ahuja, K. K.; Tam, C. K. W.
1982-08-01
It is noted that the mechanisms by which instability waves are produced have received little attention because of the formidable theoretical and experimental difficulties. Little progress is expected in predicting flow behavior, for example, laminar-to-turbulent flow transition, until some way is found to deal with instability waves in terms of the disturbances that cause them. Before a detailed investigation is carried out to investigate receptivity, it is important to resolve the differences found in the literature on the theoretical notions about the receptivity itself. The objective here is to address these differences and to present some preliminary experimental results that are considered extremely relevant. Using a laser schlieren system and a process of photographic averaging, qualitative evidence is obtained that supports the contention that instability waves can be excited without the coupling of a solid trailing edge.
Rotordynamic Instability Problems in High-Performance Turbomachinery, 1986
NASA Technical Reports Server (NTRS)
1987-01-01
The first rotordynamics workshop proceedings (NASA CP-2133, 1980) emphasized a feeling of uncertainty in predicting the stability of characteristics of high-performance turbomachinery. In the second workshop proceedings (NASA CP-2250, 1982) these uncertainities were reduced through programs established to systematically resolve problems, with emphasis on experimental validiation of the forces that influence rotordynamics. In third proceedings (NASA CP-2338, 1984) many programs for predicting or measuring forces and force coefficients in high-performance turbomachinery produced results. Data became available for designing new machines with enhanced stability characteristics or for upgrading existing machines. The present workshop proceedings illustrates a continued trend toward a more unified view of rotordynamic instability problems and several encouraging new analytical developments.
Advanced stability analysis for laminar flow control
NASA Technical Reports Server (NTRS)
Orszag, S. A.
1981-01-01
Five classes of problems are addressed: (1) the extension of the SALLY stability analysis code to the full eighth order compressible stability equations for three dimensional boundary layer; (2) a comparison of methods for prediction of transition using SALLY for incompressible flows; (3) a study of instability and transition in rotating disk flows in which the effects of Coriolis forces and streamline curvature are included; (4) a new linear three dimensional instability mechanism that predicts Reynolds numbers for transition to turbulence in planar shear flows in good agreement with experiment; and (5) a study of the stability of finite amplitude disturbances in axisymmetric pipe flow showing the stability of this flow to all nonlinear axisymmetric disturbances.
ERIC Educational Resources Information Center
Danion, Frederic; Jirsa, Viktor K.
2010-01-01
Predicting the consequences of actions is fundamental for skilled motor behavior. We investigated whether motor prediction is influenced by the fact that some movements are easier to perform and stabilize than others. Twelve subjects performed a bimanual rhythmical task either symmetrically or asymmetrically (the latter being more difficult and…
Yurube, Takashi; Sumi, Masatoshi; Nishida, Kotaro; Miyamoto, Hiroshi; Kohyama, Kozo; Matsubara, Tsukasa; Miura, Yasushi; Hirata, Hiroaki; Sugiyama, Daisuke; Doita, Minoru
2014-01-01
Objective To clarify the incidence and predictive risk factors of cervical spine instabilities which may induce compression myelopathy in patients with rheumatoid arthritis (RA). Methods Three types of cervical spine instability were radiographically categorized into “moderate” and “severe” based on atlantoaxial subluxation (AAS: atlantodental interval >3 mm versus ≥10 mm), vertical subluxation (VS: Ranawat value <13 mm versus ≤10 mm), and subaxial subluxation (SAS: irreducible translation ≥2 mm versus ≥4 mm or at multiple). 228 “definite” or “classical” RA patients (140 without instability and 88 with “moderate” instability) were prospectively followed for >5 years. The endpoint incidence of “severe” instabilities and predictors for “severe” instability were determined. Results Patients with baseline “moderate” instability, including all sub-groups (AAS+ [VS− SAS−], VS+ [SAS− AAS±], and SAS+ [AAS± VS±]), developed “severe” instabilities more frequently (33.3% with AAS+, 75.0% with VS+, and 42.9% with SAS+) than those initially without instability (12.9%; p<0.003, p<0.003, and p = 0.061, respectively). The incidence of cervical canal stenosis and/or basilar invagination was also higher in patients with initial instability (17.5% with AAS+, 37.5% with VS+, and 14.3% with SAS+) than in those without instability (7.1%; p = 0.028, p<0.003, and p = 0.427, respectively). Multivariable logistic regression analysis identified corticosteroid administration, Steinbrocker stage III or IV at baseline, mutilating changes at baseline, and the development of mutilans during the follow-up period correlated with the progression to “severe” instability (p<0.05). Conclusions This prospective cohort study demonstrates accelerated development of cervical spine involvement in RA patients with pre-existing instability—especially VS. Advanced peripheral erosiveness and concomitant corticosteroid treatment are indicators for poor prognosis of the cervical spine in RA. PMID:24558457
NASA Astrophysics Data System (ADS)
Beltran, Chris
Future high intensity synchrotrons will have a large space charge effect. It has been demonstrated in the Proton Storage Ring (PSR) at the Los Alamos National Laboratory (LANL) that ferrite inductive inserts can be used to compensate for the longitudinal space charge effect. However, simply installing ferrite inductors in the PSR led to longitudinal instabilities that were not tolerable. It was proposed that heating the ferrite would change the material properties in such a way as to reduce the instability. This proposal was tested in the PSR, and found to be true. This dissertation investigates and describes the complex permeability of the ferrite at room temperature and at an elevated temperature. The derived complex permeability is then used to obtain an impedance at the two temperatures. The impedance is used to determine the amount of space charge compensation supplied by the inductors and predict the growth time and frequency range of the longitudinal instability. The impedance is verified by comparing the experimental growth time and frequency range of the longitudinal instability to theoretical and computer simulated growth times and frequency ranges of the longitudinal instability. Lastly, an approach to mitigating the longitudinal instability that does not involve heating the ferrite is explored.
Contact lines are unstable even under non-splashing droplets
NASA Astrophysics Data System (ADS)
Pack, Min; Kaneelil, Paul; Sun, Ying
2017-11-01
Drop impact is fundamental to natural and industrial processes such as rain-induced soil erosion and spray coating technologies. In this study, we elucidate the interfacial instabilities formed by air entrainment at the wetting front of impacting droplets on atomically smooth, viscous silicone oil films of constant thickness with varying droplet velocity, viscosity, surface tension, and ambient pressures. A high-speed total internal reflection microscopy technique accounting for the Fresnel relations at the droplet interface allowed for in-situ measurements of an entrained air rim at the wetting front. The growth of the air rim is a prerequisite to the instability which is formed when the gas pressure balances the capillary pressure near the wetting front. A critical capillary number, which inversely scales as the ambient pressure, is predicted and the result agrees well with the experiments. The wavenumber in the instability is shown to increase with viscosity and velocity but decrease with surface tension of the impacting drop. We thus conclude that the instability mechanism is in qualitative agreement with the Saffman-Taylor instability - where the low viscosity air is displacing the higher viscosity droplet. The low We contact line instabilities observed in this study provide a paradigm shift in the conventional understanding of hydrodynamic instabilities under drop impact which usually require We >>10.
Risk and Protective Processes Predicting Rural African American Young Men's Substance Abuse.
Cho, Junhan; Kogan, Steven M
2016-12-01
Informed by a life course perspective, this study tested a cascade model linking harsh, unresponsive parenting during childhood to young African American men's substance abuse via precocious transitions, economic instability, and future orientation. The moderating influence of community disadvantage and romantic partner support on the hypothesized pathways was also examined. At the baseline, the sample included 505 African American men between ages 19 and 22 years from high-poverty rural communities. Follow-up data were collected 18 months after baseline. Using structural equation modeling, we identified harsh, unresponsive parenting influenced precocious transitions in adolescence, which in turn increased economic instability during young adulthood. Economic instability was associated with a reduction in future orientation, a proximal influence on increases in substance abuse. Also, residence in a disadvantaged community amplified the influence of precocious transitions on economic instability and the influence of economic instability on future orientation. Involvement with supportive romantic partnership evinced a protective effect, attenuating the influence of precocious transitions on economic instability and the influence of economic instability on a future orientation. This study expands understanding of young adults' substance abuse by demonstrating the risk and protective processes linking substance abuse to developmental factors across childhood, adolescence, and young adulthood. © Society for Community Research and Action 2016.
NASA Astrophysics Data System (ADS)
Dan, Jia Kun; Huang, Xian Bin; Ren, Xiao Dong; Wei, Bing
2017-08-01
A theoretical model referring to mode selection of Z-pinch-driven magneto-Rayleigh-Taylor (MRT) instability, which explains the generation of fundamental instability mode and evolution of fundamental wavelength in experiments, is proposed on the basis of the Landau theory of phase transition. The basic idea of this phase transition model lies in that the appearance of MRT instability pattern can be considered as a consequence of the spontaneous generation of interfacial structure like the spontaneous magnetization in a ferromagnetic system. It is demonstrated that the amplitude of instability is responsible for the order parameter in the Landau theory of phase transition and the fundamental wavelength appears to play a role analogous to inverse temperature in thermodynamics. Further analysis indicates that the MRT instability is characterized by first order phase transition and the fundamental wavelength is proportional to the square root of energy entering into the system from the driving source. The theory predicts that the fundamental wavelength grows rapidly and saturates reaching a limiting wavelength of the order of the liner's final outer radius. The results given by this theory show qualitative agreement with the available experimental data of MRT instability of liner implosions conducted on the Sandia Z machine as well as Primary Test Stand facility at the Institute of Fluid Physics.
Thermal-Performance Instability in Piezoresistive Sensors: Inducement and Improvement
Liu, Yan; Wang, Hai; Zhao, Wei; Qin, Hongbo; Fang, Xuan
2016-01-01
The field of piezoresistive sensors has been undergoing a significant revolution in terms of design methodology, material technology and micromachining process. However, the temperature dependence of sensor characteristics remains a hurdle to cross. This review focuses on the issues in thermal-performance instability of piezoresistive sensors. Based on the operation fundamental, inducements to the instability are investigated in detail and correspondingly available ameliorative methods are presented. Pros and cons of each improvement approach are also summarized. Though several schemes have been proposed and put into reality with favorable achievements, the schemes featuring simple implementation and excellent compatibility with existing techniques are still emergently demanded to construct a piezoresistive sensor with excellent comprehensive performance. PMID:27886125
Parametres pour l'instabilite fluidelastique: Derivees de stabilite et amortissement diphasique
NASA Astrophysics Data System (ADS)
Charreton, Constant
Heat exchangers and steam generators are crucial components in nuclear power plants. Water heated by nuclear fission is flowing through thousands of tubes inside a steam generator. Heat is transmitted to a second water network, external to the tubes. Steam is generated from the water of the secondary to power the turbines that produce electrical power. In this process, two-phase cross flow across the tubes causes several excitation phenomena. Vibration induced on the tubes can compromise the structural integrity of the steam generator, and can lead to power plant shutdowns. Better understanding of parameters at stake would lead to improved power plant safety and reliability. Fluidelastic instability is without doubt one of the most destructive vibration phenomena. It causes the steam generator tubes to collide against one another. This can lead to premature wear on the tubes, cracks due to fatigue and eventually, leaks leading to radioactive water contamination. Therefore, predicting conditions leading to fluidelastic instability would allow to control the damage on the tubes. In this thesis, we aim at identifying the key parameters to predict fluidelastic instability. To do so, a theoretical approach is based on the quasi-steady model. It is shown that the equation used to predict fluidelastic instability comprises two parameters that are hard to characterize. There is, on one hand, the derivative of the lift coefficient on a cylinder, and damping on the other hand. The main objective of this project is to measure these parameters experimentally. Knowing that the sign of the lift coefficient derivative is a sufficient indicator of fluidelastic instability, this derivative was measured. The experiments were carried out on the center tube of an array. The flow is single-phase and values of Reynolds number are low to moderate, thus filling a gap in the literature. Indeed, the lift coefficient derivative is known for high values of the Reynolds number only. Meanwhile, numerical methods are developed. They are based on the direct resolution of Navier-Stokes equations with the finite-element method, and on potential flow theory. Results for the lift coefficient derivative are compared to the measurements. Furthermore, the influence of geometric parameters of the array are investigated. The trend in the results show that the derivative of the lift coefficient becomes Reynolds independent for high values. From the literature and the measurements, a relationship is proposed for the lift coefficient derivative with respect to the Reynolds number. Values are injected in the quasi-steady model to predict the critical velocity for the onset of instability of a single flexible tube. Stability maps for various Reynolds numbers are proposed, using typical values for the tube damping. However, the maps do not compare well with critical velocities found in the literature for high values of the Reynolds number. Stability tests would be necessary to confirm the validity of the maps for low Reynolds, as fluidelastic has never been investigated in this range of Reynolds number. Yet, for high values of the Reynolds number, it seems like the quasi-steady model fails to predict the behavior of the experiments. An accurate value for the total damping of a tube is required to locate instability results on a map. However, in steam generators subjected to two-phase flow, damping on a tube is much more important than for single-phase flow. Yet, its origin is unknown. Therefore, we measured two-phase damping for internal flow using a specific test section. Indeed, a few studies on two-phase flow suggest that the damping mechanism is the same for a tube in cross-flow and for a tube subjected to internal flow. The present study focuses on the physics underlying the two-phase damping mechanism. The test bench consists of a sliding rigid tube subjected to upward internal two-phase flow. It essentially is a mass-spring system subjected to a transverse sinusoidal force. The damping is extracted from the frequency response function of the tube. Meanwhile, gas phase motion is characterized through video processing of the oscillating tube. The relative amplitude of the gas phase is related to two-phase flow damping values via a model of the forces acting on the bubbles. Varying excitation parameters such as frequency and excitation force confirms that two-phase damping is a viscous (velocity dependent) dissipation mechanism. Its direct relation with flow pattern transitions was confirmed. Furthermore, the combination of the videos and the analytical model suggests that the power dissipated by the drag force on the bubbles is significant in the two-phase damping mechanism. However, the model over-predicts the amplitude of the gas phase. This suggests that pseudo-turbulence generated by the motion of the tube is to be considered. The results of this study form an experimental database that can be used as input for fluidelastic instability models. Particularly, two-phase flow experiments will eventually help validating numerical methods, regarding the damping as well as the behavior of the gas phase. This work contributes to modeling and understanding two-phase flow induced vibration.
Automated selection of stabilizing mutations in designed and natural proteins.
Borgo, Benjamin; Havranek, James J
2012-01-31
The ability to engineer novel protein folds, conformations, and enzymatic activities offers enormous potential for the development of new protein therapeutics and biocatalysts. However, many de novo and redesigned proteins exhibit poor hydrophobic packing in their predicted structures, leading to instability or insolubility. The general utility of rational, structure-based design would greatly benefit from an improved ability to generate well-packed conformations. Here we present an automated protocol within the RosettaDesign framework that can identify and improve poorly packed protein cores by selecting a series of stabilizing point mutations. We apply our method to previously characterized designed proteins that exhibited a decrease in stability after a full computational redesign. We further demonstrate the ability of our method to improve the thermostability of a well-behaved native protein. In each instance, biophysical characterization reveals that we were able to stabilize the original proteins against chemical and thermal denaturation. We believe our method will be a valuable tool for both improving upon designed proteins and conferring increased stability upon native proteins.
Automated selection of stabilizing mutations in designed and natural proteins
Borgo, Benjamin; Havranek, James J.
2012-01-01
The ability to engineer novel protein folds, conformations, and enzymatic activities offers enormous potential for the development of new protein therapeutics and biocatalysts. However, many de novo and redesigned proteins exhibit poor hydrophobic packing in their predicted structures, leading to instability or insolubility. The general utility of rational, structure-based design would greatly benefit from an improved ability to generate well-packed conformations. Here we present an automated protocol within the RosettaDesign framework that can identify and improve poorly packed protein cores by selecting a series of stabilizing point mutations. We apply our method to previously characterized designed proteins that exhibited a decrease in stability after a full computational redesign. We further demonstrate the ability of our method to improve the thermostability of a well-behaved native protein. In each instance, biophysical characterization reveals that we were able to stabilize the original proteins against chemical and thermal denaturation. We believe our method will be a valuable tool for both improving upon designed proteins and conferring increased stability upon native proteins. PMID:22307603
McKeon, Patrick O; Hertel, Jay
2008-01-01
Objective: To answer the following clinical questions: (1) Can prophylactic balance and coordination training reduce the risk of sustaining a lateral ankle sprain? (2) Can balance and coordination training improve treatment outcomes associated with acute ankle sprains? (3) Can balance and coordination training improve treatment outcomes in patients with chronic ankle instability? Data Sources: PubMed and CINAHL entries from 1966 through October 2006 were searched using the terms ankle sprain, ankle instability, balance, chronic ankle instability, functional ankle instability, postural control, and postural sway. Study Selection: Only studies assessing the influence of balance training on the primary outcomes of risk of ankle sprain or instrumented postural control measures derived from testing on a stable force plate using the modified Romberg test were included. Studies had to provide results for calculation of relative risk reduction and numbers needed to treat for the injury prevention outcomes or effect sizes for the postural control measures. Data Extraction: We calculated the relative risk reduction and numbers needed to treat to assess the effect of balance training on the risk of incurring an ankle sprain. Effect sizes were estimated with the Cohen d for comparisons of postural control performance between trained and untrained groups. Data Synthesis: Prophylactic balance training substantially reduced the risk of sustaining ankle sprains, with a greater effect seen in those with a history of a previous sprain. Completing at least 6 weeks of balance training after an acute ankle sprain substantially reduced the risk of recurrent ankle sprains; however, consistent improvements in instrumented measures of postural control were not associated with training. Evidence is lacking to assess the reduction in the risk of recurrent sprains and inconclusive to demonstrate improved instrumented postural control measures in those with chronic ankle instability who complete balance training. Conclusions: Balance training can be used prophylactically or after an acute ankle sprain in an effort to reduce future ankle sprains, but current evidence is insufficient to assess this effect in patients with chronic ankle instability. PMID:18523567
Tang, Kenneth; Beaton, Dorcas E; Gignac, Monique A M; Lacaille, Diane; Zhang, Wei; Bombardier, Claire
2010-11-01
Among people with arthritis, the need for work transitions may signal a risk for more adverse work outcomes in the future, such as permanent work loss. Our aim was to evaluate the ability of the Work Instability Scale for Rheumatoid Arthritis (RA-WIS) to predict arthritis-related work transitions within a 12-month period. Workers with osteoarthritis or rheumatoid arthritis (n = 250) from 3 clinical sites participated in self-administered surveys that assessed the impact of health on employment at multiple time points over 12 months. Multivariable logistic regressions were conducted to assess the ability of the RA-WIS (range 0-23, where 23 = highest work instability) to predict 4 types of work transition: reductions in work hours, disability leaves of absence, changes in job/occupation, or temporary unemployment, assembled as a composite outcome. Covariates assessed include age, sex, education, marital status, income, pain intensity, disease duration, and the Health Assessment Questionnaire. Areas under the receiver operating characteristic curves (AUROCCs) were also assessed to further examine the predictive ability of the RA-WIS and to determine optimal cut points for predicting specific work transitions. After 12 months, 21.7% (n = 50 of 230) of the participants had indicated at least one arthritis-related work transition. Higher baseline RA-WIS was predictive of such an outcome (relative risk [RR] 1.05 [95% confidence interval (95% CI) 1.00-1.11]), particularly at >17 (RR 2.30 [95% CI 1.11-4.77]). The RA-WIS cut point of >13 was found to be most accurate for prediction (AUROCC 0.68 [95% CI 0.58-0.78]). The RA-WIS demonstrated the ability to predict arthritis-related work transitions within a short timeframe, and could be a promising measurement candidate for risk prognostication where work disability outcomes are of concern. Copyright © 2010 by the American College of Rheumatology.
A two-layer model for buoyant inertial displacement flows in inclined pipes
NASA Astrophysics Data System (ADS)
Etrati, Ali; Frigaard, Ian A.
2018-02-01
We investigate the inertial flows found in buoyant miscible displacements using a two-layer model. From displacement flow experiments in inclined pipes, it has been observed that for significant ranges of Fr and Re cos β/Fr, a two-layer, stratified flow develops with the heavier fluid moving at the bottom of the pipe. Due to significant inertial effects, thin-film/lubrication models developed for laminar, viscous flows are not effective for predicting these flows. Here we develop a displacement model that addresses this shortcoming. The complete model for the displacement flow consists of mass and momentum equations for each fluid, resulting in a set of four non-linear equations. By integrating over each layer and eliminating the pressure gradient, we reduce the system to two equations for the area and mean velocity of the heavy fluid layer. The wall and interfacial stresses appear as source terms in the reduced system. The final system of equations is solved numerically using a robust, shock-capturing scheme. The equations are stabilized to remove non-physical instabilities. A linear stability analysis is able to predict the onset of instabilities at the interface and together with numerical solution, is used to study displacement effectiveness over different parametric regimes. Backflow and instability onset predictions are made for different viscosity ratios.
Viscous and Thermal Effects on Hydrodynamic Instability in Liquid-Propellant Combustion
NASA Technical Reports Server (NTRS)
Margolis, Stephen B.; Sacksteder, Kurt (Technical Monitor)
2000-01-01
A pulsating form of hydrodynamic instability has recently been shown to arise during the deflagration of liquid propellants in those parameter regimes where the pressure-dependent burning rate is characterized by a negative pressure sensitivity. This type of instability can coexist with the classical cellular, or Landau, form of hydrodynamic instability, with the occurrence of either dependent on whether the pressure sensitivity is sufficiently large or small in magnitude. For the inviscid problem, it has been shown that when the burning rate is realistically allowed to depend on temperature as well as pressure, that sufficiently large values of the temperature sensitivity relative to the pressure sensitivity causes the pulsating form of hydrodynamic instability to become dominant. In that regime, steady, planar burning becomes intrinsically unstable to pulsating disturbances whose wavenumbers are sufficiently small. In the present work, this analysis is extended to the fully viscous case, where it is shown that although viscosity is stabilizing for intermediate and larger wavenumber perturbations, the intrinsic pulsating instability for small wavenumbers remains. Under these conditions, liquid-propellant combustion is predicted to be characterized by large unsteady cells along the liquid/gas interface.
Lessons Learned from Numerical Simulations of Interfacial Instabilities
NASA Astrophysics Data System (ADS)
Cook, Andrew
2015-11-01
Rayleigh-Taylor (RT), Richtmyer-Meshkov (RM) and Kelvin-Helmholtz (KH) instabilities serve as efficient mixing mechanisms in a wide variety of flows, from supernovae to jet engines. Over the past decade, we have used the Miranda code to temporally integrate the multi-component Navier-Stokes equations at spatial resolutions up to 29 billion grid points. The code employs 10th-order compact schemes for spatial derivatives, combined with 4th-order Runge-Kutta time advancement. Some of our major findings are as follows: The rate of growth of a mixing layer is equivalent to the net mass flux through the equi-molar plane. RT growth rates can be significantly reduced by adding shear. RT instability can produce shock waves. The growth rate of RM instability can be predicted from known interfacial perturbations. RM vortex projectiles can far outrun the mixing region. Thermal fluctuations in molecular dynamics simulations can seed instabilities along the braids in KH instability. And finally, enthalpy diffusion is essential in preserving the second law of thermodynamics. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Electromagnetic Electron Cyclotron Instability in the Solar Wind
NASA Astrophysics Data System (ADS)
Lazar, M.; Yoon, P. H.; López, R. A.; Moya, P. S.
2018-01-01
The abundant reports on the existence of electromagnetic high-frequency fluctuations in space plasmas have increased the expectations that theoretical modeling may help understand their origins and implications (e.g., kinetic instabilities and dissipation). This paper presents an extended quasi-linear approach of the electromagnetic electron cyclotron instability in conditions typical for the solar wind, where the anisotropic electrons (T⊥>T∥) exhibit a dual distribution combining a bi-Maxwellian core and bi-Kappa halo. Involving both the core and halo populations, the instability is triggered by the cumulative effects of these components, mainly depending of their anisotropies. The instability is not very sensitive to the shape of halo distribution function conditioned in this case by the power index κ. This result seems to be a direct consequence of the low density of electron halo, which is assumed more dilute than the core component in conformity with the observations in the ecliptic. Quasi-linear time evolutions predicted by the theory are confirmed by the particle-in-cell simulations, which also suggest possible explanations for the inherent differences determined by theoretical constraints. These results provide premises for an advanced methodology to characterize, realistically, the electromagnetic electron cyclotron instability and its implication in the solar wind.
Nonlinear Longitudinal Mode Instability in Liquid Propellant Rocket Engine Preburners
NASA Technical Reports Server (NTRS)
Sims, J. D. (Technical Monitor); Flandro, Gary A.; Majdalani, Joseph; Sims, Joseph D.
2004-01-01
Nonlinear pressure oscillations have been observed in liquid propellant rocket instability preburner devices. Unlike the familiar transverse mode instabilities that characterize primary combustion chambers, these oscillations appear as longitudinal gas motions with frequencies that are typical of the chamber axial acoustic modes. In several respects, the phenomenon is similar to longitudinal mode combustion instability appearing in low-smoke solid propellant motors. An important feature is evidence of steep-fronted wave motions with very high amplitude. Clearly, gas motions of this type threaten the mechanical integrity of associated engine components and create unacceptably high vibration levels. This paper focuses on development of the analytical tools needed to predict, diagnose, and correct instabilities of this type. For this purpose, mechanisms that lead to steep-fronted, high-amplitude pressure waves are described in detail. It is shown that such gas motions are the outcome of the natural steepening process in which initially low amplitude standing acoustic waves grow into shock-like disturbances. The energy source that promotes this behavior is a combination of unsteady combustion energy release and interactions with the quasi-steady mean chamber flow. Since shock waves characterize the gas motions, detonation-like mechanisms may well control the unsteady combustion processes. When the energy gains exceed the losses (represented mainly by nozzle and viscous damping), the waves can rapidly grow to a finite amplitude limit cycle. Analytical tools are described that allow the prediction of the limit cycle amplitude and show the dependence of this wave amplitude on the system geometry and other design parameters. This information can be used to guide corrective procedures that mitigate or eliminate the oscillations.
Plaque echodensity and textural features are associated with histologic carotid plaque instability.
Doonan, Robert J; Gorgui, Jessica; Veinot, Jean P; Lai, Chi; Kyriacou, Efthyvoulos; Corriveau, Marc M; Steinmetz, Oren K; Daskalopoulou, Stella S
2016-09-01
Carotid plaque echodensity and texture features predict cerebrovascular symptomatology. Our purpose was to determine the association of echodensity and textural features obtained from a digital image analysis (DIA) program with histologic features of plaque instability as well as to identify the specific morphologic characteristics of unstable plaques. Patients scheduled to undergo carotid endarterectomy were recruited and underwent carotid ultrasound imaging. DIA was performed to extract echodensity and textural features using Plaque Texture Analysis software (LifeQ Medical Ltd, Nicosia, Cyprus). Carotid plaque surgical specimens were obtained and analyzed histologically. Principal component analysis (PCA) was performed to reduce imaging variables. Logistic regression models were used to determine if PCA variables and individual imaging variables predicted histologic features of plaque instability. Image analysis data from 160 patients were analyzed. Individual imaging features of plaque echolucency and homogeneity were associated with a more unstable plaque phenotype on histology. These results were independent of age, sex, and degree of carotid stenosis. PCA reduced 39 individual imaging variables to five PCA variables. PCA1 and PCA2 were significantly associated with overall plaque instability on histology (both P = .02), whereas PCA3 did not achieve statistical significance (P = .07). DIA features of carotid plaques are associated with histologic plaque instability as assessed by multiple histologic features. Importantly, unstable plaques on histology appear more echolucent and homogeneous on ultrasound imaging. These results are independent of stenosis, suggesting that image analysis may have a role in refining the selection of patients who undergo carotid endarterectomy. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.
Microsatellite instability as a predictive factor for immunotherapy in malignant melanoma.
Kubecek, Ondrej; Trojanova, Petronela; Molnarova, Veronika; Kopecky, Jindrich
2016-08-01
Immunotherapy has attracted attention as a novel treatment modality for malignant melanoma. Although the use of immunotherapy in metastatic melanoma has shown promising results, there remains a lack of predictive biomarkers indicating treatment benefit from immunotherapy. There is growing evidence suggesting that microsatellite instability (MSI) as a product of DNA mismatch repair deficiency, may be one of possible predictive markers in malignant melanoma. It has been proposed that the immunogenicity of some tumors might be determined by mutational heterogeneity and could be the key to the success of immune therapies. This is also supported by the fact that tumors with the highest amount of somatic mutations, such as malignant melanoma have showed positive results with immune checkpoint inhibitors. There are promising data regarding the association between MSI status and immunogenicity from studies with colorectal cancer, where MSI is linked to improved prognosis compared to microsatellite stable cancers. MSI in colon cancer is linked to a significant increase of immunocompetent cells responsible for the antitumor activity - CD3(+), CD8(+), CD45RO(+), and T-bet(+) lymphocytes and decrease of inhibition factors such as Foxp3, IL-6, IL-17, and TGF-β. On the other hand, taking into account the progression-dependent accumulation of somatic mutations in MSI tumors and consequent high levels of neo-antigens, the possible drug resistance of MSI tumors to traditional treatment, and the presence of inhibition checkpoints within the MSI tumors, there is a solid rationale for the use of novel therapeutic strategies such as immunotherapy in MSI melanomas. We presume that the MSI phenotype in malignant melanoma might be helpful to identify patients, who would be more likely to profit from immunotherapy than from conventional therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.
High-fidelity plasma codes for burn physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooley, James; Graziani, Frank; Marinak, Marty
Accurate predictions of equation of state (EOS), ionic and electronic transport properties are of critical importance for high-energy-density plasma science. Transport coefficients inform radiation-hydrodynamic codes and impact diagnostic interpretation, which in turn impacts our understanding of the development of instabilities, the overall energy balance of burning plasmas, and the efficacy of self-heating from charged-particle stopping. Important processes include thermal and electrical conduction, electron-ion coupling, inter-diffusion, ion viscosity, and charged particle stopping. However, uncertainties in these coefficients are not well established. Fundamental plasma science codes, also called high-fidelity plasma codes, are a relatively recent computational tool that augments both experimental datamore » and theoretical foundations of transport coefficients. This paper addresses the current status of HFPC codes and their future development, and the potential impact they play in improving the predictive capability of the multi-physics hydrodynamic codes used in HED design.« less
Active control: an investigation method for combustion instabilities
NASA Astrophysics Data System (ADS)
Poinsot, T.; Yip, B.; Veynante, D.; Trouvé, A.; Samaniego, J. M.; Candel, S.
1992-07-01
Closed-loop active control methods and their application to combustion instabilities are discussed. In these methods the instability development is impeded with a feedback control loop: the signal provided by a sensor monitoring the flame or pressure oscillations is processed and sent back to actuators mounted on the combustor or on the feeding system. Different active control systems tested on a non-premixed multiple-flame turbulent combustor are described. These systems can suppress all unstable plane modes of oscillation (i.e. low frequency modes). The active instability control (AIC) also constitutes an original and powerful technique for studies of mechanisms leading to instability or resulting from the instability. Two basic applications of this kind are described. In the first case the flame is initially controlled with AIC, the feedback loop is then switched off and the growth of the instability is analysed through high speed Schlieren cinematography and simultaneous sound pressure and reaction rate measurements. Three phases are identified during th growth of the oscillations: (1) a linear phase where acoustic waves induce a flapping motion of the flame sheets without interaction between sheets, (2) a modulation phase, where flame sheets interact randomly and (3) a nonlinear phase where the flame sheets are broken and a limit cycle is reached. In the second case we investigate different types of flame extinctions associated with combustion instability. It is shown that pressure oscillations may lead to partial or total extinctions. Extinctions occur in various forms but usually follow a rapid growth of pressure oscillations. The flame is extinguished during the modulation phase observed in the initiation experiments. In these studies devoted to transient instability phenomena, the control system constitutes a unique investigation tool because it is difficult to obtain the same information by other means. Implications for modelling and prediction of combustion instabilities are discussed.
Hypnotherapy for incontinence caused by the unstable detrusor.
Freeman, R M; Baxby, K
1982-01-01
Fifty incontinent women with proved detrusor instability completed 12 sessions of hypnosis (symptom removal by direct suggestion and "ego strengthening") over one month. This was continued at home with a prerecorded cassette, and all patients were followed up for at least six months. At the end of the 12 sessions 29 patients were entirely symptom free, 14 improved, and seven unchanged. Three months later cystometry in 44 of the patients showed conversion of the cystometrogram to stability in 22 and a significant improvement in a further 16; only six showed no objective improvement. Seven patients relapsed (three after bereavement). Further treatment was given and five out of six patients were rendered symptom free again. Patients with detrusor instability were not found to have a noticeably increased susceptibility to hypnosis. It is concluded that psychological factors are very important in "idiopathic" detrusor instability and that hypnotherapy is effective for incontinence due to this disorder. PMID:6805716
Metal nanoplates: Smaller is weaker due to failure by elastic instability
NASA Astrophysics Data System (ADS)
Ho, Duc Tam; Kwon, Soon-Yong; Park, Harold S.; Kim, Sung Youb
2017-11-01
Under mechanical loading, crystalline solids deform elastically, and subsequently yield and fail via plastic deformation. Thus crystalline materials experience two mechanical regimes: elasticity and plasticity. Here, we provide numerical and theoretical evidence to show that metal nanoplates exhibit an intermediate mechanical regime that occurs between elasticity and plasticity, which we call the elastic instability regime. The elastic instability regime begins with a decrease in stress, during which the nanoplates fail via global, and not local, deformation mechanisms that are distinctly different from traditional dislocation-mediated plasticity. Because the nanoplates fail via elastic instability, the governing strength criterion is the ideal strength, rather than the yield strength, and as a result, we observe a unique "smaller is weaker" trend. We develop a simple surface-stress-based analytic model to predict the ideal strength of the metal nanoplates, which accurately reproduces the smaller is weaker behavior observed in the atomistic simulations.
Dynamics and Instabilities of Vortex Pairs
NASA Astrophysics Data System (ADS)
Leweke, Thomas; Le Dizès, Stéphane; Williamson, Charles H. K.
2016-01-01
This article reviews the characteristics and behavior of counter-rotating and corotating vortex pairs, which are seemingly simple flow configurations yet immensely rich in phenomena. Since the reviews in this journal by Widnall (1975) and Spalart (1998) , who studied the fundamental structure and dynamics of vortices and airplane trailing vortices, respectively, there have been many analytical, computational, and experimental studies of vortex pair flows. We discuss two-dimensional dynamics, including the merging of same-sign vortices and the interaction with the mutually induced strain, as well as three-dimensional displacement and core instabilities resulting from this interaction. Flows subject to combined instabilities are also considered, in particular the impingement of opposite-sign vortices on a ground plane. We emphasize the physical mechanisms responsible for the flow phenomena and clearly present the key results that are useful to the reader for predicting the dynamics and instabilities of parallel vortices.
Study of parametric instability in gravitational wave detectors with silicon test masses
NASA Astrophysics Data System (ADS)
Zhang, Jue; Zhao, Chunnong; Ju, Li; Blair, David
2017-03-01
Parametric instability is an intrinsic risk in high power laser interferometer gravitational wave detectors, in which the optical cavity modes interact with the acoustic modes of the mirrors, leading to exponential growth of the acoustic vibration. In this paper, we investigate the potential parametric instability for a proposed next generation gravitational wave detector, the LIGO Voyager blue design, with cooled silicon test masses of size 45 cm in diameter and 55 cm in thickness. It is shown that there would be about two unstable modes per test mass at an arm cavity power of 3 MW, with the highest parametric gain of ∼76. While this is less than the predicted number of unstable modes for Advanced LIGO (∼40 modes with max gain of ∼32 at the designed operating power of 830 kW), the importance of developing suitable instability suppression schemes is emphasized.
Using particle tracking to measure flow instabilities in an undergraduate laboratory experiment
NASA Astrophysics Data System (ADS)
Kelley, Douglas H.; Ouellette, Nicholas T.
2011-03-01
Much of the drama and complexity of fluid flow occurs because its governing equations lack unique solutions. The observed behavior depends on the stability of the multitude of solutions, which can change with the experimental parameters. Instabilities cause sudden global shifts in behavior. We have developed a low-cost experiment to study a classical fluid instability. By using an electromagnetic technique, students drive Kolmogorov flow in a thin fluid layer and measure it quantitatively with a webcam. They extract positions and velocities from movies of the flow using Lagrangian particle tracking and compare their measurements to several theoretical predictions, including the effect of the drive current, the spatial structure of the flow, and the parameters at which instability occurs. The experiment can be tailored to undergraduates at any level or to graduate students by appropriate emphasis on the physical phenomena and the sophisticated mathematics that govern them.
Data-driven prognosis: a multi-physics approach verified via balloon burst experiment.
Chandra, Abhijit; Kar, Oliva
2015-04-08
A multi-physics formulation for data-driven prognosis (DDP) is developed. Unlike traditional predictive strategies that require controlled offline measurements or 'training' for determination of constitutive parameters to derive the transitional statistics, the proposed DDP algorithm relies solely on in situ measurements. It uses a deterministic mechanics framework, but the stochastic nature of the solution arises naturally from the underlying assumptions regarding the order of the conservation potential as well as the number of dimensions involved. The proposed DDP scheme is capable of predicting onset of instabilities. Because the need for offline testing (or training) is obviated, it can be easily implemented for systems where such a priori testing is difficult or even impossible to conduct. The prognosis capability is demonstrated here via a balloon burst experiment where the instability is predicted using only online visual observations. The DDP scheme never failed to predict the incipient failure, and no false-positives were issued. The DDP algorithm is applicable to other types of datasets. Time horizons of DDP predictions can be adjusted by using memory over different time windows. Thus, a big dataset can be parsed in time to make a range of predictions over varying time horizons.
Instability resistance training across the exercise continuum.
Behm, David G; Colado, Juan C; Colado, Juan C
2013-11-01
Instability resistance training (IRT; unstable surfaces and devices to strengthen the core or trunk muscles) is popular in fitness training facilities. To examine contradictory IRT recommendations for health enthusiasts and rehabilitation. A literature search was performed using MEDLINE, SPORT Discus, ScienceDirect, Web of Science, and Google Scholar databases from 1990 to 2012. Databases were searched using key terms, including "balance," "stability," "instability," "resistance training," "core," "trunk," and "functional performance." Additionally, relevant articles were extracted from reference lists. To be included, research questions addressed the effect of balance or IRT on performance, healthy and active participants, and physiologic or performance outcome measures and had to be published in English in a peer-reviewed journal. There is a dichotomy of opinions on the effectiveness and application of instability devices and conditions for health and performance training. Balance training without resistance has been shown to improve not only balance but functional performance as well. IRT studies document similar training adaptations as stable resistance training programs with recreationally active individuals. Similar progressions with lower resistance may improve balance and stability, increase core activation, and improve motor control. IRT is highly recommended for youth, elderly, recreationally active individuals, and highly trained enthusiasts.
Intimate partner violence and housing instability.
Pavao, Joanne; Alvarez, Jennifer; Baumrind, Nikki; Induni, Marta; Kimerling, Rachel
2007-02-01
The mental and physical health consequences of intimate partner violence (IPV) have been well established, yet little is known about the impact of violence on a woman's ability to obtain and maintain housing. This cross-sectional study examines the relationship between recent IPV and housing instability among a representative sample of California women. It is expected that women who have experienced IPV will be at increased risk for housing instability as evidenced by: (1) late rent or mortgage, (2) frequent moves because of difficulty obtaining affordable housing, and/or (3) without their own housing. Data were taken from the 2003 California Women's Health Survey, a population-based, random-digit-dial, annual probability survey of adult California women (N=3619). Logistic regressions were used to predict housing instability in the past 12 months, adjusting for the following covariates; age, race/ethnicity, education, poverty status, marital status, children in the household, and past year IPV. In the multivariate model, age, race/ethnicity, marital status, poverty, and IPV were significant predictors of housing instability. After adjusting for all covariates, women who experienced IPV in the last year had almost four times the odds of reporting housing instability than women who did not experience IPV (adjusted odds ratio=3.98, 95% confidence interval: 2.94-5.39). This study found that IPV was associated with housing instability among California women. Future prospective studies are needed to learn more about the nature and direction of the relationship between IPV and housing instability and the possible associated negative health consequences.
NASA Astrophysics Data System (ADS)
Divvela, Mounica Jyothi; Joo, Yong Lak
2017-04-01
In this paper, we provide a theoretical investigation of axisymmetric instabilities observed during electrospinning, which lead to beads-on-a-string morphology. We used a discretized method to model the instability phenomena observed in the jet. We considered the fluid to be analogous to a bead-spring model. The motion of these beads is governed by the electrical, viscoelastic, surface tension, aerodynamic drag, and gravitational forces. The bead is perturbed at the nozzle, and the growth of the instability is observed over time, and along the length of the jet. We considered both lower electrical conducting polyisobutylene (PIB)-based Boger fluids and highly electrical conducting, polyethylene oxide (PEO)/water systems. In PIB fluids, the onset of the axisymmetric instability is predominantly based on the capillary mode, and the growth rate of the instability is decreased with the viscoelasticity of the jet. However, in the PEO/water system, the instability is electrically driven, and a significant increase in the growth rate of the instability is observed with the increase in the voltage. Our predictions from the discretized model are in good agreement with the previous linear stability analysis and experimental results. Our results also revealed the non-stationary behavior of the disturbance, where the amplitude of the perturbation is observed to be oscillating. Furthermore, we showed that the discretized model is also used to observe the non-axisymmetric behavior of the jet, which can be further used to study the bending instability in electrospinning.
Mixing with applications to inertial-confinement-fusion implosions
NASA Astrophysics Data System (ADS)
Rana, V.; Lim, H.; Melvin, J.; Glimm, J.; Cheng, B.; Sharp, D. H.
2017-01-01
Approximate one-dimensional (1D) as well as 2D and 3D simulations are playing an important supporting role in the design and analysis of future experiments at National Ignition Facility. This paper is mainly concerned with 1D simulations, used extensively in design and optimization. We couple a 1D buoyancy-drag mix model for the mixing zone edges with a 1D inertial confinement fusion simulation code. This analysis predicts that National Ignition Campaign (NIC) designs are located close to a performance cliff, so modeling errors, design features (fill tube and tent) and additional, unmodeled instabilities could lead to significant levels of mix. The performance cliff we identify is associated with multimode plastic ablator (CH) mix into the hot-spot deuterium and tritium (DT). The buoyancy-drag mix model is mode number independent and selects implicitly a range of maximum growth modes. Our main conclusion is that single effect instabilities are predicted not to lead to hot-spot mix, while combined mode mixing effects are predicted to affect hot-spot thermodynamics and possibly hot-spot mix. Combined with the stagnation Rayleigh-Taylor instability, we find the potential for mix effects in combination with the ice-to-gas DT boundary, numerical effects of Eulerian species CH concentration diffusion, and ablation-driven instabilities. With the help of a convenient package of plasma transport parameters developed here, we give an approximate determination of these quantities in the regime relevant to the NIC experiments, while ruling out a variety of mix possibilities. Plasma transport parameters affect the 1D buoyancy-drag mix model primarily through its phenomenological drag coefficient as well as the 1D hydro model to which the buoyancy-drag equation is coupled.
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacDonald, M.J.; Muller, S.J.
1996-12-31
The use of highly elastic polymer solutions has been remarkably successful in elucidating the behavior of polymeric materials under flowing conditions. Here, we present the results of an extensive experimental study into the shear behavior of an athermal, dilute, binary polymer solution that is believed to be free of many of these effects. Under extended shearing, we observe the migration of polymer species: after shearing for several hundred hours, concentrations that are more than double the initial uniform value can be achieved. Although the solutions are well-described by dumbbell models in shear flows on short-time scales, theoretical predictions substantially underestimatemore » the rate of migration. Flow visualization and rheometric experiments suggest that the origin of this discrepancy could be the anomalous long-time rheology of these solutions. While these fluids display the well-known elastic instability in cone and plate flow above a critical Deborah number, extended shearing reveals that the toroidal secondary flow is eventually replaced by a purely azimuthal shearing flow. In addition, when sheared below the critical condition for the instability, the solutions exhibit a slow but reversible decay in normal stresses. The shear-induced migration of polymer species has been predicted by numerous theoretical studies. However, observations on the highly elastic polymer solutions that are most likely to show polymer migration, are complicated by a number of different physical processes that occur as a result of shearing. These phenomena, which include shear-induced phase separation, elastically-induced hydrodynamic instabilities, mixed solvent effects, shear-induced aggregation, and anomalous transient shear and normal stress behavior are often observed at times earlier than and at shear rates less than those where migration is predicted to occur; hence, the experimental detection of polymer migration has been thwarted by these other physical processes.« less
Sowislo, Julia Friederike; Orth, Ulrich; Meier, Laurenz L
2014-11-01
A growing body of longitudinal studies suggests that low self-esteem is a risk factor for depression. However, it is unclear whether other characteristics of self-esteem, besides its level, explain incremental or even greater variance in subsequent depression. We examined the prospective effects of self-esteem level, instability (i.e., the degree of variability in self-esteem across short periods), and contingency (i.e., the degree to which self-esteem fluctuates in response to self-relevant events) on depressive symptoms in 1 overarching model, using data from 2 longitudinal studies. In Study 1, 372 adults were assessed at 2 waves over 6 months, including 40 daily diary assessments at Wave 1. In Study 2, 235 young adults were assessed at 2 waves over 6 weeks, including about 6 daily diary assessments at each wave. Self-esteem contingency was measured by self-report and by a statistical index based on the diary data (capturing event-related fluctuations in self-esteem). In both studies self-esteem level, but not self-esteem contingency, predicted subsequent depressive symptoms. Self-esteem instability predicted subsequent depressive symptoms in Study 2 only, with a smaller effect size than self-esteem level. Also, level, instability, and contingency of self-esteem did not interact in the prediction of depressive symptoms. Moreover, the effect of self-esteem level held when controlling for neuroticism and for all other Big Five personality traits. Thus, the findings provide converging evidence for a vulnerability effect of self-esteem level, tentative evidence for a smaller vulnerability effect of self-esteem instability, and no evidence for a vulnerability effect of self-esteem contingency.
Mixing with applications to inertial-confinement-fusion implosions.
Rana, V; Lim, H; Melvin, J; Glimm, J; Cheng, B; Sharp, D H
2017-01-01
Approximate one-dimensional (1D) as well as 2D and 3D simulations are playing an important supporting role in the design and analysis of future experiments at National Ignition Facility. This paper is mainly concerned with 1D simulations, used extensively in design and optimization. We couple a 1D buoyancy-drag mix model for the mixing zone edges with a 1D inertial confinement fusion simulation code. This analysis predicts that National Ignition Campaign (NIC) designs are located close to a performance cliff, so modeling errors, design features (fill tube and tent) and additional, unmodeled instabilities could lead to significant levels of mix. The performance cliff we identify is associated with multimode plastic ablator (CH) mix into the hot-spot deuterium and tritium (DT). The buoyancy-drag mix model is mode number independent and selects implicitly a range of maximum growth modes. Our main conclusion is that single effect instabilities are predicted not to lead to hot-spot mix, while combined mode mixing effects are predicted to affect hot-spot thermodynamics and possibly hot-spot mix. Combined with the stagnation Rayleigh-Taylor instability, we find the potential for mix effects in combination with the ice-to-gas DT boundary, numerical effects of Eulerian species CH concentration diffusion, and ablation-driven instabilities. With the help of a convenient package of plasma transport parameters developed here, we give an approximate determination of these quantities in the regime relevant to the NIC experiments, while ruling out a variety of mix possibilities. Plasma transport parameters affect the 1D buoyancy-drag mix model primarily through its phenomenological drag coefficient as well as the 1D hydro model to which the buoyancy-drag equation is coupled.
Energetic particle instabilities in fusion plasmas
NASA Astrophysics Data System (ADS)
Sharapov, S. E.; Alper, B.; Berk, H. L.; Borba, D. N.; Breizman, B. N.; Challis, C. D.; Classen, I. G. J.; Edlund, E. M.; Eriksson, J.; Fasoli, A.; Fredrickson, E. D.; Fu, G. Y.; Garcia-Munoz, M.; Gassner, T.; Ghantous, K.; Goloborodko, V.; Gorelenkov, N. N.; Gryaznevich, M. P.; Hacquin, S.; Heidbrink, W. W.; Hellesen, C.; Kiptily, V. G.; Kramer, G. J.; Lauber, P.; Lilley, M. K.; Lisak, M.; Nabais, F.; Nazikian, R.; Nyqvist, R.; Osakabe, M.; Perez von Thun, C.; Pinches, S. D.; Podesta, M.; Porkolab, M.; Shinohara, K.; Schoepf, K.; Todo, Y.; Toi, K.; Van Zeeland, M. A.; Voitsekhovich, I.; White, R. B.; Yavorskij, V.; TG, ITPA EP; Contributors, JET-EFDA
2013-10-01
Remarkable progress has been made in diagnosing energetic particle instabilities on present-day machines and in establishing a theoretical framework for describing them. This overview describes the much improved diagnostics of Alfvén instabilities and modelling tools developed world-wide, and discusses progress in interpreting the observed phenomena. A multi-machine comparison is presented giving information on the performance of both diagnostics and modelling tools for different plasma conditions outlining expectations for ITER based on our present knowledge.
Impact of porosity on Jeans instability in viscous quantum magnetoplasma
NASA Astrophysics Data System (ADS)
Prajapat, V.; Sutar, D. L.; Pensia, R. K.
2018-05-01
This paper treats the Jeans instability improved at the theoretical investigation of the presence of viscosity and resistivity in the porous medium. Following the normal mode analysis using the QMHD model, the dispersion relation is discussed for wave propagation in longitudinal and transverse direction. The Jeans criteria of instability are affected by the presence of porosity. The graphical presentation shows that porosity has a stabilizing effect while resistivity has destabilizing effect in the system.
Ultrastable Silicon Cavity in a Continuously Operating Closed-Cycle Cryostat at 4 K
NASA Astrophysics Data System (ADS)
Zhang, W.; Robinson, J. M.; Sonderhouse, L.; Oelker, E.; Benko, C.; Hall, J. L.; Legero, T.; Matei, D. G.; Riehle, F.; Sterr, U.; Ye, J.
2017-12-01
We report on a laser locked to a silicon cavity operating continuously at 4 K with 1 ×10-16 instability and a median linewidth of 17 mHz at 1542 nm. This is a tenfold improvement in short-term instability, and a 1 04 improvement in linewidth, over previous sub-10-K systems. Operating at low temperatures reduces the thermal noise floor and, thus, is advantageous toward reaching an instability of 10-18, a long-sought goal of the optical clock community. The performance of this system demonstrates the technical readiness for the development of the next generation of ultrastable lasers that operate with an ultranarrow linewidth and long-term stability without user intervention.
Assessing Spontaneous Combustion Instability with Recurrence Quantification Analysis
NASA Technical Reports Server (NTRS)
Eberhart, Chad J.; Casiano, Matthew J.
2016-01-01
Spontaneous instabilities can pose a significant challenge to verification of combustion stability, and characterizing its onset is an important avenue of improvement for stability assessments of liquid propellant rocket engines. Recurrence Quantification Analysis (RQA) is used here to explore nonlinear combustion dynamics that might give insight into instability. Multiple types of patterns representative of different dynamical states are identified within fluctuating chamber pressure data, and markers for impending instability are found. A class of metrics which describe these patterns is also calculated. RQA metrics are compared with and interpreted against another metric from nonlinear time series analysis, the Hurst exponent, to help better distinguish between stable and unstable operation.
Xiao, Zewen; Du, Ke-Zhao; Meng, Weiwei; Wang, Jianbo; Mitzi, David B; Yan, Yanfa
2017-05-03
Recently, there has been substantial interest in developing double-B-cation halide perovskites, which hold the potential to overcome the toxicity and instability issues inherent within emerging lead halide-based solar absorber materials. Among all double perovskites investigated, In(I)-based Cs 2 InBiCl 6 and Cs 2 InSbCl 6 have been proposed as promising thin-film photovoltaic absorber candidates, with computational examination predicting suitable materials properties, including direct bandgap and small effective masses for both electrons and holes. In this study, we report the intrinsic instability of Cs 2 In(I)M(III)X 6 (M = Bi, Sb; X = halogen) double perovskites by a combination of density functional theory and experimental study. Our results suggest that the In(I)-based double perovskites are unstable against oxidation into In(III)-based compounds. Further, the results show the need to consider reduction-oxidation (redox) chemistry when predicting stability of new prospective electronic materials, especially when less common oxidation states are involved.
Excitation of Alfvén modes by energetic particles in magnetic fusion
NASA Astrophysics Data System (ADS)
Gorelenkov, N. N.
2012-09-01
Ions with energies above the plasma ion temperature (also called super thermal, hot or energetic particles - EP) are utilized in laboratory experiments as a plasma heat source to compensate for energy loss. Sources for super thermal ions are direct injection via neutral beams, RF heating and fusion reactions. Being super thermal, ions have the potential to induce instabilities of a certain class of magnetohydrodynamics (MHD) cavity modes, in particular, various Alfvén and Alfvénacoustic Eigenmodes. It is an area where ideal MHD and kinetic theories can be tested with great accuracy. This paper touches upon key motivations to study the energetic ion interactions with MHD modes. One is the possibility of controlling the heating channel of present and future tokamak reactors via EP transport. In some extreme circumstances, uncontrolled instabilities led to vessel wall damages. This paper reviews some experimental and theoretical advances and the developments of the predictive tools in the area of EP wave interactions. Some recent important results and challenges are discussed. Many predicted instabilities pose a challenge for ITER, where the alpha-particle population is likely to excite various modes.
Reynolds number effects on the single-mode Richtmyer-Meshkov instability
NASA Astrophysics Data System (ADS)
Walchli, B.; Thornber, B.
2017-01-01
The Reynolds number effects on the nonlinear growth rates of the Richtmyer-Meshkov instability are investigated using two-dimensional numerical simulations. A decrease in Reynolds number gives an increased time to reach nonlinear saturation, with Reynolds number effects only significant in the range Re<256 . Within this range there is a sharp change in instability properties. The bubble and spike amplitudes move towards equal size at lower Reynolds numbers and the bubble velocities decay faster than predicted by Sohn's model [S.-I. Sohn, Phys. Rev. E 80, 055302 (2009), 10.1103/PhysRevE.80.055302]. Predicted amplitudes show reasonable agreement with the existing theory of Carles and Popinet [P. Carles and S. Popinet, Phys. Fluids Lett. 13, 1833 (2001), 10.1063/1.1377863; Eur. J. Mech. B 21, 511 (2002), 10.1016/S0997-7546(02)01199-8] and Mikaelian [K. O. Mikaelian, Phys. Rev. E 47, 375 (1993), 10.1103/PhysRevE.47.375; K. O. Mikaelian, Phys. Rev. E 87, 031003 (2013), 10.1103/PhysRevE.87.031003], with the former being the closest match to the current computations.
Control of Thermo-Acoustics Instabilities: The Multi-Scale Extended Kalman Approach
NASA Technical Reports Server (NTRS)
Le, Dzu K.; DeLaat, John C.; Chang, Clarence T.
2003-01-01
"Multi-Scale Extended Kalman" (MSEK) is a novel model-based control approach recently found to be effective for suppressing combustion instabilities in gas turbines. A control law formulated in this approach for fuel modulation demonstrated steady suppression of a high-frequency combustion instability (less than 500Hz) in a liquid-fuel combustion test rig under engine-realistic conditions. To make-up for severe transport-delays on control effect, the MSEK controller combines a wavelet -like Multi-Scale analysis and an Extended Kalman Observer to predict the thermo-acoustic states of combustion pressure perturbations. The commanded fuel modulation is composed of a damper action based on the predicted states, and a tones suppression action based on the Multi-Scale estimation of thermal excitations and other transient disturbances. The controller performs automatic adjustments of the gain and phase of these actions to minimize the Time-Scale Averaged Variances of the pressures inside the combustion zone and upstream of the injector. The successful demonstration of Active Combustion Control with this MSEK controller completed an important NASA milestone for the current research in advanced combustion technologies.
NASA Astrophysics Data System (ADS)
Myers, C. E.; Yamada, M.; Belova, E.; Ji, H.; Yoo, J.; Fox, W. R., II; Jara-Almonte, J.
2014-12-01
Loss-of-equilibrium mechanisms such as the ideal torus instability [Kliem & Török, Phys. Rev. Lett. 96, 255002 (2006)] are predicted to drive arched flux ropes in the solar corona to erupt. In recent line-tied flux rope experiments conducted in the Magnetic Reconnection Experiment (MRX), however, we find that quasi-statically driven flux ropes remain confined well beyond the predicted torus instability threshold. In order to understand this behavior, in situ measurements from a 300 channel 2D magnetic probe array are used to comprehensively analyze the force balance between the external (potential) and internal (plasma-generated) magnetic fields. We find that forces due to the line-tied toroidal magnetic field, which are not included in the basic torus instability theory, can play a major role in preventing eruptions. The dependence of these toroidal magnetic forces on various potential field and flux rope parameters will be discussed. This research is supported by DoE Contract Number DE-AC02-09CH11466 and by the NSF/DoE Center for Magnetic Self-Organization (CMSO).
NASA Astrophysics Data System (ADS)
Myers, C. E.; Yamada, M.; Belova, E.; Ji, H.; Yoo, J.; Fox, W.; Jara-Almonte, J.; Gao, L.
2014-10-01
Loss-of-equilibrium mechanisms such as the ideal torus instability [Kliem & Török, Phys. Rev. Lett. 96, 255002 (2006)] are predicted to drive arched flux ropes in the solar corona to erupt. In recent line-tied flux rope experiments conducted in the Magnetic Reconnection Experiment (MRX), however, we find that quasi-statically driven flux ropes remain confined well beyond the predicted torus instability threshold. In order to understand this behavior, in situ measurements from a 300 channel 2D magnetic probe array are used to comprehensively analyze the force balance between the external (vacuum) and internal (plasma-generated) magnetic fields. We find that the line-tied tension force--a force that is not included in the basic torus instability theory--plays a major role in preventing eruptions. The dependence of this tension force on various vacuum field and flux rope parameters will be discussed. This research is supported by DoE Contract Number DE-AC02-09CH11466 and by the NSF/DoE Center for Magnetic Self-Organization (CMSO).
A Quantitative Model of Keyhole Instability Induced Porosity in Laser Welding of Titanium Alloy
NASA Astrophysics Data System (ADS)
Pang, Shengyong; Chen, Weidong; Wang, Wen
2014-06-01
Quantitative prediction of the porosity defects in deep penetration laser welding has generally been considered as a very challenging task. In this study, a quantitative model of porosity defects induced by keyhole instability in partial penetration CO2 laser welding of a titanium alloy is proposed. The three-dimensional keyhole instability, weld pool dynamics, and pore formation are determined by direct numerical simulation, and the results are compared to prior experimental results. It is shown that the simulated keyhole depth fluctuations could represent the variation trends in the number and average size of pores for the studied process conditions. Moreover, it is found that it is possible to use the predicted keyhole depth fluctuations as a quantitative measure of the average size of porosity. The results also suggest that due to the shadowing effect of keyhole wall humps, the rapid cooling of the surface of the keyhole tip before keyhole collapse could lead to a substantial decrease in vapor pressure inside the keyhole tip, which is suggested to be the mechanism by which shielding gas enters into the porosity.
The Spinal Instability Neoplastic Score: Impact on Oncologic Decision-Making.
Versteeg, Anne L; Verlaan, Jorrit-Jan; Sahgal, Arjun; Mendel, Ehud; Quraishi, Nasir A; Fourney, Daryl R; Fisher, Charles G
2016-10-15
Systematic literature review. To address the following questions in a systematic literature review: 1. How is spinal neoplastic instability defined or classified in the literature before and after the introduction of the Spinal Instability Neoplastic Score (SINS)? 2. How has SINS affected daily clinical practice? 3. Can SINS be used as a prognostic tool? Spinal neoplastic-related instability was defined in 2010 and simultaneously SINS was introduced as a novel tool with criteria agreed upon by expert consensus to assess the degree of spinal stability. PubMed, Embase, and clinical trial databases were searched with the key words "spinal neoplasm," "spinal instability," "spinal instability neoplastic score," and synonyms. Studies describing spinal neoplastic-related instability were eligible for inclusion. Primary outcomes included studies describing and/or defining neoplastic-related instability, SINS, and studies using SINS as a prognostic factor. The search identified 1414 articles, of which 51 met the inclusion criteria. No precise definition or validated assessment tool was used specific to spinal neoplastic-related instability prior to the introduction of SINS. Since the publication of SINS in 2010, the vast majority of the literature regarding spinal instability has used SINS to assess or describe instability. Twelve studies specifically investigated the prognostic value of SINS in patients who underwent radiotherapy or surgery. No consensus could be determined regarding the definition, assessment, or reporting of neoplastic-related instability before introduction of SINS. Defining spinal neoplastic-related instability and the introduction of SINS have led to improved uniform reporting within the spinal neoplastic literature. Currently, the prognostic value of SINS is controversial. N/A.
Creation of high-energy electron tails by means of the modified two-stream instability
NASA Technical Reports Server (NTRS)
Tanaka, M.; Papadopoulos, K.
1983-01-01
Particle simulations of the modified two-stream instability demonstrate strong electron acceleration rather than bulk heating when the relative drift speed is below a critical speed Vc. A very interesting nonlinear mode transition and autoresonance acceleration process is observed which accelerates the electrons much above the phase speed of the linearly unstable modes. Simple criteria are presented that predict the value of Vc and the number density of the accelerated electrons.
2014-09-01
evaporation in the vicinity of the injector . Recently, Kim and Menon 9 applied the same approach to study the characteristics of longitudinal...phenomena that govern the occurrence of combustion instabilities. The experiments involve a single injector element in a longitudinal mode combustor with...well characterized inflow conditions and a choked nozzle exit condition. Varying parameters such as the length of the air plenum, the combustor length
Ripple rotation in epitaxial growth of MnAs(1100)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vidal, F.; Etgens, V. H.; Salles, B. Rache
Rippled states formation driven by kinetic instability is evidenced in the case of MnAs(1100) hetero- and homoepitaxial growth in a narrow multistable range of growth parameters. The evolution of the surface morphology in this range, comprising slope selection and ripple rotation, maps the kinetic phase diagram recently predicted [A. Levandovsky and L. Golubovic, Phys. Rev. E 76, 041605 (2007)] for growth on rectangular symmetry surfaces, including Ehrlich-Schwoebel instability and effects related to vertical asymmetry.
NASA Astrophysics Data System (ADS)
Xia, Ying; Wang, Shiyu; Sun, Wenjia; Xiu, Jie
2017-01-01
The electromagnetically induced parametric vibration of the symmetrical three-phase induction stator is examined. While it can be analyzed by an approximate analytical or numerical method, more accurate and simple analytical method is desirable. This work proposes a new method based on the field-synchronous coordinates. A mechanical-electromagnetic coupling model is developed under this frame such that a time-invariant governing equation with gyroscopic term can be developed. With the general vibration theory, the eigenvalue is formulated; the transition curves between the stable and unstable regions, and response are all determined as closed-form expressions of basic mechanical-electromagnetic parameters. The dependence of these parameters on the instability behaviors is demonstrated. The results imply that the divergence and flutter instabilities can occur even for symmetrical motors with balanced, constant amplitude and sinusoidal voltage. To verify the analytical predictions, this work also builds up a time-variant model of the same system under the conventional inertial frame. The Floquét theory is employed to predict the parametric instability and the numerical integration is used to obtain the parametric response. The parametric instability and response are both well compared against those under the field-synchronous coordinates. The proposed field-synchronous coordinates allows a quick estimation on the electromagnetically induced vibration. The convenience offered by the body-fixed coordinates is discussed across various fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raman, K. S.; Smalyuk, V. A.; Casey, D. T.
2014-07-15
A new in-flight radiography platform has been established at the National Ignition Facility (NIF) to measure Rayleigh–Taylor and Richtmyer–Meshkov instability growth in inertial confinement fusion capsules. The platform has been tested up to a convergence ratio of 4. An experimental campaign is underway to measure the growth of pre-imposed sinusoidal modulations of the capsule surface, as a function of wavelength, for a pair of ignition-relevant laser drives: a “low-foot” drive representative of what was fielded during the National Ignition Campaign (NIC) [Edwards et al., Phys. Plasmas 20, 070501 (2013)] and the new high-foot [Dittrich et al., Phys. Rev. Lett. 112,more » 055002 (2014); Park et al., Phys. Rev. Lett. 112, 055001 (2014)] pulse shape, for which the predicted instability growth is much lower. We present measurements of Legendre modes 30, 60, and 90 for the NIC-type, low-foot, drive, and modes 60 and 90 for the high-foot drive. The measured growth is consistent with model predictions, including much less growth for the high-foot drive, demonstrating the instability mitigation aspect of this new pulse shape. We present the design of the platform in detail and discuss the implications of the data it generates for the on-going ignition effort at NIF.« less
NASA Astrophysics Data System (ADS)
Ashton, Ryan; Viola, Francesco; Camarri, Simone; Gallaire, Francois; Iungo, Giacomo Valerio
2016-11-01
The near wake of wind turbines is characterized by the presence of the hub vortex, which is a coherent vorticity structure generated from the interaction between the root vortices and the boundary layer evolving over the turbine nacelle. By moving downstream, the hub vortex undergoes an instability with growth rate, azimuthal and axial wavenumbers determined by the characteristics of the incoming wind and turbine aerodynamics. Thus, a large variability of the hub vortex instability is expected for wind energy applications with consequent effects on wake downstream evolution, wake interactions within a wind farm, power production, and fatigue loads on turbines invested by wakes generated upstream. In order to predict characteristics of the hub vortex instability for different operating conditions, linear stability analysis is carried out by considering different statistics of the incoming wind turbulence, thrust coefficient, tip speed ratio, and blade lift distribution of a wind turbine. Axial and azimuthal wake velocity fields are modeled through Carton-McWilliams velocity profiles by mimicking the presence of the hub vortex, helicoidal tip vortices, and matching the wind turbine thrust coefficient predicted through the actuator disk model. The linear stability analysis shows that hub vortex instability is strongly affected by the wind turbine loading conditions, and specifically it is promoted by a larger thrust coefficient. A higher load of the wind turbines produces an enhanced axial velocity deficit and, in turn, higher shear in the radial direction of the streamwise velocity. The axial velocity shear within the turbine wake is also the main physical mechanism promoting the hub vortex instability when varying the lift distribution over the blade span for a specific loading condition. Cases with a larger velocity deficit in proximity of the wake center and less aerodynamic load towards the blade tip result to be more unstable. Moreover, wake swirl promotes hub vortex instability, and it can also affect the azimuthal wave number of the most unstable mode. Finally, higher Reynolds stresses and turbulent eddy viscosity decrease both growth rate and azimuthal wave number of the most unstable mode.
Wang, Jia-Wei; Zhang, Yu-Qing; Zhang, Xiao-Hua; Wang, Yun-Peng; Li, Ji-Ping; Li, Yong-Jie
2017-06-01
Postural instability and gait disorder (PIGD) in Parkinson disease (PD) has been a great challenge in clinical practice because PIGD is closely linked to major morbidity and mortality in PD. Pedunculopontine nucleus (PPN) has been considered as a potential promising target for deep brain stimulation (DBS) in the treatment of PIGD. A meta-analysis of individual patient data was performed to assess the effects of PPN DBS on PIGD in patients with PD and explore the factors predicting good outcome. According to the study strategy, we searched PubMed, Embase, and the Cochrane Central Register of Controlled Trials, and other sources. After searching the literature, 2 investigators independently screened the literature, assessed the quality of the included trials, and extracted the data. The outcome measures included PIGD, freezing of gait, and falling in PD. Then, individual patient data were incorporated into SPSS software for statistical analyses across series. Six studies reporting individual patient data were included for final analysis. PPN DBS significantly improved PIGD as well as freezing of gait and falling after PD, which was depending on the duration of follow-up and types of outcome measures. In addition, patient age, disease duration, levodopa-equivalent dosage, and the choice of unilateral or bilateral stimulation were similar in groups of patients with PD with or without improvement in PIGD after PPN DBS. Our study provides evidence that PPN DBS may improve PIGD, which should be interpreted with caution and needs further verification before making generalization of our results. Copyright © 2017 Elsevier Inc. All rights reserved.
Curvature-Induced Instabilities of Shells
NASA Astrophysics Data System (ADS)
Pezzulla, Matteo; Stoop, Norbert; Steranka, Mark P.; Bade, Abdikhalaq J.; Holmes, Douglas P.
2018-01-01
Induced by proteins within the cell membrane or by differential growth, heating, or swelling, spontaneous curvatures can drastically affect the morphology of thin bodies and induce mechanical instabilities. Yet, the interaction of spontaneous curvature and geometric frustration in curved shells remains poorly understood. Via a combination of precision experiments on elastomeric spherical shells, simulations, and theory, we show how a spontaneous curvature induces a rotational symmetry-breaking buckling as well as a snapping instability reminiscent of the Venus fly trap closure mechanism. The instabilities, and their dependence on geometry, are rationalized by reducing the spontaneous curvature to an effective mechanical load. This formulation reveals a combined pressurelike term in the bulk and a torquelike term in the boundary, allowing scaling predictions for the instabilities that are in excellent agreement with experiments and simulations. Moreover, the effective pressure analogy suggests a curvature-induced subcritical buckling in closed shells. We determine the critical buckling curvature via a linear stability analysis that accounts for the combination of residual membrane and bending stresses. The prominent role of geometry in our findings suggests the applicability of the results over a wide range of scales.
NASA Astrophysics Data System (ADS)
Li, Shi-Chen; Yu, Sen-Jiang; He, Linghui; Ni, Yong
2018-03-01
Complex surface patterns generated by nonlinear buckling originate from various symmetry-breaking instabilities. Identifying possible key factors that regulate the instability modes is critical to reveal the mechanism of the surface pattern selection. In this paper, how another two factors (ridge cracking and interface sliding) including Poisson's ratio influence the morphological symmetry breaking in straight-sided blisters are systematically studied. Morphology diagrams from stability analysis show that ridge cracking and low Poisson's ratio promote symmetric instability mode and favor bubble-like blisters while interface sliding and high Poisson's ratio facilitate antisymmetric instability mode and result in telephone cord buckles. The analytical predictions are evidenced by experimental observations on annealed silicon nitride films on glass substrates and confirmed by nonlinear numerical simulations. This study explains how and why the rarely observed bubble-like blisters in accompany with ridge crack can appear in brittle thin films in comparison with the ubiquitously observed telephone cord buckles that usually form as the development of an antisymmetric instability mode when straight-sided blisters undergo the super-critical isotropic compression.
Stange, Jonathan P.; Sylvia, Louisa G.; da Silva Magalhães, Pedro Vieira; Miklowitz, David J.; Otto, Michael W.; Frank, Ellen; Yim, Christine; Berk, Michael; Dougherty, Darin D.; Nierenberg, Andrew A.; Deckersbach, Thilo
2016-01-01
Background Little is known about predictors of recovery from bipolar depression. Aims We investigated affective instability (a pattern of frequent and large mood shifts over time) as a predictor of recovery from episodes of bipolar depression and as a moderator of response to psychosocial treatment for acute depression. Method A total of 252 out-patients with DSM-IV bipolar I or II disorder and who were depressed enrolled in the Systematic Treatment Enhancement Program for Bipolar Disorder (STEP-BD) and were randomised to one of three types of intensive psychotherapy for depression (n = 141) or a brief psychoeducational intervention (n = 111). All analyses were by intention-to-treat. Results Degree of instability of symptoms of depression and mania predicted a lower likelihood of recovery and longer time until recovery, independent of the concurrent effects of symptom severity. Affective instability did not moderate the effects of psychosocial treatment on recovery from depression. Conclusions Affective instability may be a clinically relevant characteristic that influences the course of bipolar depression. PMID:26795426
NASA Astrophysics Data System (ADS)
Zhang, Jinggui
2018-06-01
In this paper, we investigate the dynamical behaviors of the modulation instability (MI) of copropagating optical beams in fractional coupled nonlinear Schrödinger equations (NLSE) with the aim of revealing some novel properties different from those in the conventional coupled NLSE. By applying the standard linear stability method, we first derive an expression for the gain resulting from the instability induced by cross-phase modulation (CPM) in the presence of the Lévy indexes related to fractional effects. It is found that the modulation instability of copropagating optical beams still occurs even in the fractional NLSE with self-defocusing nonlinearity. Then, the analysis of our results further reveals that such Lévy indexes increase the fastest growth frequency and the bandwidth of conventional instability not only for the self-focusing case but also for the self-defocusing case, but do not influence the corresponding maximum gain. Numerical simulations are performed to confirm theoretical predictions. These findings suggest that the novel fractional physical settings may open up new possibilities for the manipulation of MI and nonlinear waves.
NASA Astrophysics Data System (ADS)
Shaaban, S. M.; Lazar, M.; Astfalk, P.; Poedts, S.
2018-03-01
Mirror instability driven by the temperature anisotropy of protons can offer a plausible explanation for the mirror-like fluctuations observed in planetary magnetosheaths. In the present paper we invoke a realistic kinetic approach which can reproduce nonthermal features of plasma particles reported by the observations, i.e., temperature anisotropies and suprathermal populations. Seeking accuracy, a numerical analysis is performed using an advanced code named DSHARK, recently proposed to resolve the linear dispersion and stability for an arbitrary propagation in bi-Kappa distributed electron-proton plasmas. The stimulating effect of the anisotropic bi-Maxwellian electrons reported in Remya et al. (2013, https://doi.org/10.1002/jgra.50091) is markedly enhanced in the presence of suprathermal electrons described by the bi-Kappa distribution functions. The influence of suprathermal protons is more temperate, but overall, present results demonstrate that these sources of free energy provide natural conditions for a stimulated mirror instability, more efficient than predicted before and capable to compete with other instabilities (e.g., the electromagnetic ion-cyclotron instability) and mechanisms of relaxation.
NASA Astrophysics Data System (ADS)
Bennewitz, John William
This research investigation encompasses experimental tests demonstrating the control of a high-frequency combustion instability by acoustically modulating the propellant flow. A model rocket combustor burned gaseous oxygen and methane using a single-element, pentad-style injector. Flow conditions were established that spontaneously excited a 2430 Hz first longitudinal combustion oscillation at an amplitude up to p'/pc ≈ 6%. An acoustic speaker was placed at the base of the oxidizer supply to modulate the flow and alter the oscillatory behavior of the combustor. Two speaker modulation approaches were investigated: (1) Bands of white noise and (2) Pure sinusoidal tones. The first approach adjusted 500 Hz bands of white noise ranging from 0-500 Hz to 2000-2500 Hz, while the second implemented single-frequency signals with arbitrary phase swept from 500-2500 Hz. The results showed that above a modulation signal amplitude threshold, both approaches suppressed 95+% of the spontaneous combustion oscillation. By increasing the applied signal amplitude, a wider frequency range of instability suppression became present for these two acoustic modulation approaches. Complimentary to these experiments, a linear modal analysis was undertaken to investigate the effects of acoustic modulation at the inlet boundary on the longitudinal instability modes of a dump combustor. The modal analysis employed acoustically consistent matching conditions with a specific impedance boundary condition at the inlet to represent the acoustic modulation. From the modal analysis, a naturally unstable first longitudinal mode was predicted in the absence of acoustic modulation, consistent with the spontaneously excited 2430 Hz instability observed experimentally. Subsequently, a detailed investigation involving variation of the modulation signal from 0-2500 Hz and mean combustor temperature from 1248-1685 K demonstrated the unstable to stable transition of a 2300-2500 Hz first longitudinal mode. The model-predicted mode stability transition was consistent with experimental observations, supporting the premise that inlet acoustic modulation is a means to control high-frequency combustion instabilities. From the modal analysis, it may be deduced that the inlet impedance provides a damping mechanism for instability suppression. Combined, this work demonstrates the strategic application of acoustic modulation within an injector as a potential method to control high-frequency combustion instabilities for liquid rocket engine applications.
Rivadeneira, Fernando; Zillikens, M Carola; De Laet, Chris Edh; Hofman, Albert; Uitterlinden, André G; Beck, Thomas J; Pols, Huibert Ap
2007-11-01
We studied HSA measurements in relation to hip fracture risk in 4,806 individuals (2,740 women). Hip fractures (n = 147) occurred at the same absolute levels of bone instability in both sexes. Cortical instability (propensity of thinner cortices in wide diameters to buckle) explains why hip fracture risk at different BMD levels is the same across sexes. Despite the sexual dimorphism of bone, hip fracture risk is very similar in men and women at the same absolute BMD. We aimed to elucidate the main structural properties of bone that underlie the measured BMD and that ultimately determines the risk of hip fracture in elderly men and women. This study is part of the Rotterdam Study (a large prospective population-based cohort) and included 147 incident hip fracture cases in 4,806 participants with DXA-derived hip structural analysis (mean follow-up, 8.6 yr). Indices compared in relation to fracture included neck width, cortical thickness, section modulus (an index of bending strength), and buckling ratio (an index of cortical bone instability). We used a mathematical model to calculate the hip fracture distribution by femoral neck BMD, BMC, bone area, and hip structure analysis (HSA) parameters (cortical thickness, section modulus narrow neck width, and buckling ratio) and compared it with prospective data from the Rotterdam Study. In the prospective data, hip fracture cases in both sexes had lower BMD, thinner cortices, greater bone width, lower strength, and higher instability at baseline. In fractured individuals, men had an average BMD that was 0.09 g/cm(2) higher than women (p < 0.00001), whereas no significant difference in buckling ratios was seen. Modeled fracture distribution by BMD and buckling ratio levels were in concordance to the prospective data and showed that hip fractures seem to occur at the same absolute levels of bone instability (buckling ratio) in both men and women. No significant differences were observed between the areas under the ROC curves of BMD (0.8146 in women and 0.8048 in men) and the buckling ratio (0.8161 in women and 0.7759 in men). The buckling ratio (an index of bone instability) portrays in both sexes the critical balance between cortical thickness and bone width. Our findings suggest that extreme thinning of cortices in expanded bones plays a key role on local susceptibility to fracture. Even though the buckling ratio does not offer additional predictive value, these findings improve our understanding of why low BMD is a good predictor of fragility fractures.
NASA Astrophysics Data System (ADS)
Shi, Shanbin
The Purdue Novel Modular Reactor (NMR) is a new type small modular reactor (SMR) that belongs to the design of boiling water reactor (BWR). Specifically, the NMR is one third the height and area of a conventional BWR reactor pressure vessel (RPV) with an electric output of 50 MWe. The fuel cycle length of the NMR-50 is extended up to 10 years due to optimized neutronics design. The NMR-50 is designed with double passive engineering safety system. However, natural circulation BWRs (NCBWR) could experience certain operational difficulties due to flow instabilities that occur at low pressure and low power conditions. Static instabilities (i.e. flow excursion (Ledinegg) instability and flow pattern transition instability) and dynamic instabilities (i.e. density wave instability and flashing/condensation instability) pose a significant challenge in two-phase natural circulation systems. In order to experimentally study the natural circulation flow instability, a proper scaling methodology is needed to build a reduced-size test facility. The scaling analysis of the NMR uses a three-level scaling method, which was developed and applied for the design of the Purdue Multi-dimensional Integral Test Assembly (PUMA). Scaling criteria is derived from dimensionless field equations and constitutive equations. The scaling process is validated by the RELAP5 analysis for both steady state and startup transients. A new well-scaled natural circulation test facility is designed and constructed based on the scaling analysis of the NMR-50. The experimental facility is installed with different equipment to measure various thermal-hydraulic parameters such as pressure, temperature, mass flow rate and void fraction. Characterization tests are performed before the startup transient tests and quasi-steady tests to determine the loop flow resistance. The controlling system and data acquisition system are programmed with LabVIEW to realize the real-time control and data storage. The thermal-hydraulic and nuclear coupled startup transients are performed to investigate the flow instabilities at low pressure and low power conditions. Two different power ramps are chosen to study the effect of power density on the flow instability. The experimental startup transient tests show the existence of three different flow instability mechanisms during the low pressure startup transients, i.e., flashing instability, condensation induced instability, and density wave oscillations. Flashing instability in the chimney section of the test loop and density wave oscillation are the main flow instabilities observed when the system pressure is below 0.5 MPa. They show completely different type of oscillations, i.e., intermittent oscillation and sinusoidal oscillation, in void fraction profile during the startup transients. In order to perform nuclear-coupled startup transients with void reactivity feedback, the Point Kinetics model is utilized to calculate the transient power during the startup transients. In addition, the differences between the electric resistance heaters and typical fuel element are taken into account. The reactor power calculated shows some oscillations due to flashing instability during the transients. However, the void reactivity feedback does not have significant influence on the flow instability during the startup procedure for the NMR-50. Further investigation of very small power ramp on the startup transients is carried out for the thermal-hydraulic startup transients. It is found that very small power density can eliminate the flashing oscillation in the single phase natural circulation and stabilize the flow oscillations in the phase of net vapor generation. Furthermore, initially pressurized startup procedure is investigated to eliminate the main flow instabilities. The results show that the pressurized startup procedure can suppress the flashing instability at low pressure and low power conditions. In order to have a deep understanding of natural circulation flow instability, the quasi-steady tests are performed using the test facility installed with preheater and subcooler. The effects of system pressure, core inlet subcooling, core power density, inlet flow resistance coefficient, and void reactivity feedback are investigated in the quasi-steady state tests. The stability boundaries are determined between unstable and stable flow conditions in the dimensionless stability plane of inlet subcooling number and Zuber number. In order to predict the stability boundary theoretically, linear stability analysis in the frequency domain is performed at four sections of the loop. The flashing in the chimney is considered as an axially uniform heat source. The dimensionless characteristic equation of the pressure drop perturbation is obtained by considering the void fraction effect and outlet flow resistance in the chimney section. The flashing boundary shows some discrepancies with previous experimental data from the quasi-steady state tests. In the future, thermal non-equilibrium is recommended to improve the accuracy of flashing instability boundary.
Measurements in a Transitioning Cone Boundary Layer at Freestream Mach 3.5
NASA Technical Reports Server (NTRS)
King, Rudolph A.; Chou, Amanda; Balakumar, Ponnampalam; Owens, Lewis R.; Kegerise, Michael A.
2016-01-01
An experimental study was conducted in the Supersonic Low-Disturbance Tunnel to investigate naturally-occurring instabilities in a supersonic boundary layer on a 7 deg half- angle cone. All tests were conducted with a nominal freestream Mach number of M(sub infinity) = 3:5, total temperature of T(sub 0) = 299:8 K, and unit Reynolds numbers of Re(sub infinity) x 10(exp -6) = 9:89, 13.85, 21.77, and 25.73 m(exp -1). Instability measurements were acquired under noisy- ow and quiet- ow conditions. Measurements were made to document the freestream and the boundary-layer edge environment, to document the cone baseline flow, and to establish the stability characteristics of the transitioning flow. Pitot pressure and hot-wire boundary- layer measurements were obtained using a model-integrated traverse system. All hot- wire results were single-point measurements and were acquired with a sensor calibrated to mass ux. For the noisy-flow conditions, excellent agreement for the growth rates and mode shapes was achieved between the measured results and linear stability theory (LST). The corresponding N factor at transition from LST is N 3:9. The stability measurements for the quiet-flow conditions were limited to the aft end of the cone. The most unstable first-mode instabilities as predicted by LST were successfully measured, but this unstable first mode was not the dominant instability measured in the boundary layer. Instead, the dominant instabilities were found to be the less-amplified, low-frequency disturbances predicted by linear stability theory, and these instabilities grew according to linear theory. These low-frequency unstable disturbances were initiated by freestream acoustic disturbances through a receptivity process that is believed to occur near the branch I locations of the cone. Under quiet-flow conditions, the boundary layer remained laminar up to the last measurement station for the largest Re1, implying a transition N factor of N greater than 8:5.
Fisher, Hadar; Atzil-Slonim, Dana; Bar-Kalifa, Eran; Rafaeli, Eshkol; Peri, Tuvia
2017-12-06
Emotional experience during psychotherapy is considered a core mechanism of change. Yet the sheer experience itself may not necessarily be beneficial; instead, the trajectories of emotional experience need to be explored as possible predictors of treatment outcomes. This study investigated whether clients' pre-treatment levels of emotion regulation and symptoms predicted patterns of session-to-session change in emotional experience. We also explored which patterns better predict clients' improvement in emotion regulation and symptoms from pre- to post treatment. One-hundred and seven clients undergoing psychodynamic psychotherapy completed questionnaires on their symptoms and emotion regulation at pre- and post- treatment. They also reported their level of emotional experience at the end of each session. Pre-treatment symptoms and difficulties in emotion regulation predicted greater instability in emotional experience. Higher mean levels of emotional experience during treatment were associated with an improvement in emotion regulation, and greater stability during treatment was associated with improvement in emotion regulation and symptoms. These findings lend weight to the idea that experiencing emotion in the therapeutic environment has significant implications for clients' ability to manage their emotions outside the session. However, emotions experienced in an unstable manner within therapy are associated with poorer outcomes. Clinical and methodological significance of this article: Therapists can benefit from observing the patterns and not only the level of their clients' emotional experiences. The identification of clients' difficulties early in treatment may help therapists guide clients through the delicate process of carefully attending to their emotions.
Gravitational Instabilities in Circumstellar Disks
NASA Astrophysics Data System (ADS)
Kratter, Kaitlin; Lodato, Giuseppe
2016-09-01
Star and planet formation are the complex outcomes of gravitational collapse and angular momentum transport mediated by protostellar and protoplanetary disks. In this review, we focus on the role of gravitational instability in this process. We begin with a brief overview of the observational evidence for massive disks that might be subject to gravitational instability and then highlight the diverse ways in which the instability manifests itself in protostellar and protoplanetary disks: the generation of spiral arms, small-scale turbulence-like density fluctuations, and fragmentation of the disk itself. We present the analytic theory that describes the linear growth phase of the instability supplemented with a survey of numerical simulations that aim to capture the nonlinear evolution. We emphasize the role of thermodynamics and large-scale infall in controlling the outcome of the instability. Despite apparent controversies in the literature, we show a remarkable level of agreement between analytic predictions and numerical results. In the next part of our review, we focus on the astrophysical consequences of the instability. We show that the disks most likely to be gravitationally unstable are young and relatively massive compared with their host star, Md/M*≥0.1. They will develop quasi-stable spiral arms that process infall from the background cloud. Although instability is less likely at later times, once infall becomes less important, the manifestations of the instability are more varied. In this regime, the disk thermodynamics, often regulated by stellar irradiation, dictates the development and evolution of the instability. In some cases the instability may lead to fragmentation into bound companions. These companions are more likely to be brown dwarfs or stars than planetary mass objects. Finally, we highlight open questions related to the development of a turbulent cascade in thin disks and the role of mode-mode coupling in setting the maximum angular momentum transport rate in thick disks.
Studies of the Speed Stability of a Tandem Helicopter in Forward Flight
NASA Technical Reports Server (NTRS)
Tapscott, Robert J; Amer, Kenneth B
1956-01-01
Flight-test measurements, related analytical studies, and corresponding pilots' opinions of the speed stability of tandem-rotor helicopter are presented. An undesirable instability, evidenced by rearward stick motion with increasing forward speed at constant power, is indicated to be caused by variations with speed of the front-rotor downwash at the rear rotor. An analytical expression for predicting changes in speed stability caused by changes in rotor geometry is derived and constants for use with the analytical expression are presented in chart form. Means for improving stability with speed are studied both analytically and experimentally. The test results also give some information as to the flow conditions at the rear rotor.
A new helium gas bearing turboexpander
NASA Astrophysics Data System (ADS)
Xiong, L. Y.; Chen, C. Z.; Liu, L. Q.; Hou, Y.; Wang, J.; Lin, M. F.
2002-05-01
A new helium gas bearing turboexpander of a helium refrigeration system used for space environment simulation experiments is described in this paper. The main design parameters and construction type of some key parts are presented. An improved calculation of thermodynamic efficiency and instability speed of this turboexpander has been obtained by a multiple objects optimization program. Experiments of examining mechanical and thermodynamic performance have been repeatedly conducted in the laboratory by using air at ambient and liquid nitrogen temperature, respectively. In order to predict the helium turboexpander performance, a similarity principles study has been developed. According to the laboratory and on-the-spot experiments, the mechanical and thermodynamic performances of this helium turboexpander are excellent.
Experimental Study of the Richtmyer-Meshkov Instability of Incompressible Fluids
NASA Technical Reports Server (NTRS)
Niederhaus, Charles; Jacobs, Jeffrey W.
2002-01-01
The Richtmyer-Meshkov instability of a low Atwood number, miscible, two-liquid system is investigated experimentally. The initially stratified fluids are contained within a rectangular tank mounted to a sled that rides on a vertical set of rails. The instability is generated by dropping the sled onto a coil spring, producing a nearly impulsive upward acceleration. The subsequent freefall that occurs as the container travels upward and then downward on the rails allows the instability to evolve in the absence of gravity. The interface separating the two liquids initially has a well-defined, sinusoidal perturbation that quickly inverts and then grows in amplitude after undergoing the impulsive acceleration. Disturbance amplitudes are measured and compared to theoretical predictions. Linear stability theory gives excellent agreement with the measured initial growth rate, a(sub 0), for single-mode perturbations with the predicted amplitudes differing by less than 10% from experimental measurements up to a nondimensional time ka(sub 0)t = 0.7, where k is the wavenumber. Linear stability theory also provides excellent agreement for the individual mode amplitudes of multi-mode initial perturbations up until the interface becomes multi-valued. Comparison with previously published weakly nonlinear single-mode models shows good agreement up to ka(sub 0)t = 3, while published nonlinear single-mode models provide good agreement up to ka(sub 0)t = 30. The effects of Reynolds number on the vortex core evolution and overall growth rate of the interface are also investigated. Measurements of the overall amplitude are found to be unaffected by the Reynolds number for the range of values studied here. However, experiments carried out at lower values of Reynolds numbers were found to have decreased vortex core rotation rates. In addition, an instability in the vortex cores is observed.
Pad-mode-induced instantaneous mode instability for simple models of brake systems
NASA Astrophysics Data System (ADS)
Oberst, S.; Lai, J. C. S.
2015-10-01
Automotive disc brake squeal is fugitive, transient and remains difficult to predict. In particular, instantaneous mode squeal observed experimentally does not seem to be associated with mode coupling and its mechanism is not clear. The effects of contact pressures, friction coefficients as well as material properties (pressure and temperature dependency and anisotropy) for brake squeal propensity have not been systematically explored. By analysing a finite element model of an isotropic pad sliding on a plate similar to that of a previously reported experimental study, pad modes have been identified and found to be stable using conventional complex eigenvalue analysis. However, by subjecting the model to contact pressure harmonic excitation for a range of pressures and friction coefficients, a forced response analysis reveals that the dissipated energy for pad modes is negative and becomes more negative with increasing contact pressures and friction coefficients, indicating the potential for instabilities. The frequency of the pad mode in the sliding direction is within the range of squeal frequencies observed experimentally. Nonlinear time series analysis of the vibration velocity also confirms the evolution of instabilities induced by pad modes as the friction coefficient increases. By extending this analysis to a more realistic but simple brake model in the form of a pad-on-disc system, in-plane pad-modes, which a complex eigenvalue analysis predicts to be stable, have also been identified by negative dissipated energy for both isotropic and anisotropic pad material properties. The influence of contact pressures on potential instabilities has been found to be more dominant than changes in material properties owing to changes in pressure or temperature. Results here suggest that instantaneous mode squeal is likely caused by in-plane pad-mode instabilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Falceta-Gonçalves, D.; Kowal, G.
2015-07-20
In this work we report on a numerical study of the cosmic magnetic field amplification due to collisionless plasma instabilities. The collisionless magnetohydrodynamic equations derived account for the pressure anisotropy that leads, in specific conditions, to the firehose and mirror instabilities. We study the time evolution of seed fields in turbulence under the influence of such instabilities. An approximate analytical time evolution of the magnetic field is provided. The numerical simulations and the analytical predictions are compared. We found that (i) amplification of the magnetic field was efficient in firehose-unstable turbulent regimes, but not in the mirror-unstable models; (ii) the growthmore » rate of the magnetic energy density is much faster than the turbulent dynamo; and (iii) the efficient amplification occurs at small scales. The analytical prediction for the correlation between the growth timescales and pressure anisotropy is confirmed by the numerical simulations. These results reinforce the idea that pressure anisotropies—driven naturally in a turbulent collisionless medium, e.g., the intergalactic medium, could efficiently amplify the magnetic field in the early universe (post-recombination era), previous to the collapse of the first large-scale gravitational structures. This mechanism, though fast for the small-scale fields (∼kpc scales), is unable to provide relatively strong magnetic fields at large scales. Other mechanisms that were not accounted for here (e.g., collisional turbulence once instabilities are quenched, velocity shear, or gravitationally induced inflows of gas into galaxies and clusters) could operate afterward to build up large-scale coherent field structures in the long time evolution.« less
NASA Astrophysics Data System (ADS)
Grzemba, B.; Popov, V. L.; Starcevic, J.; Popov, M.
2012-04-01
Shallow earthquakes can be considered as a result of tribological instabilities, so called stick-slip behaviour [1,2], meaning that sudden slip occurs at already existing rupture zones. From a contact mechanics point of view it is clear, that no motion can arise completely sudden, the material will always creep in an existing contact in the load direction before breaking loose. If there is a measureable creep before the instability, this could serve as a precursor. To examine this theory in detail, we built up an elementary laboratory model with pronounced stick-slip behaviour. Different material pairings, such as steel-steel, steel-glass and marble-granite, were analysed at different driving force rates. The displacement was measured with a resolution of 8 nm. We were able to show that a measureable accelerated creep precedes the instability. Near the instability, this creep is sufficiently regular to serve as a basis for a highly accurate prediction of the onset of macroscopic slip [3]. In our model a prediction is possible within the last few percents of the preceding stick time. We are hopeful to extend this period. Furthermore, we showed that the slow creep as well as the fast slip can be described very well by the Dieterich-Ruina-friction law, if we include the contribution of local contact rigidity. The simulation meets the experimental curves over five orders of magnitude. This friction law was originally formulated for rocks [4,5] and takes into account the dependency of the coefficient of friction on the sliding velocity and on the contact history. The simulations using the Dieterich-Ruina-friction law back up the observation of a universal behaviour of the creep's acceleration. We are working on several extensions of our model to more dimensions in order to move closer towards representing a full three-dimensional continuum. The first step will be an extension to two degrees of freedom to analyse the interdependencies of the instabilities. We also plan to install a larger system which is capable of performing events of different spatial extent and magnitude. [1] Stick-Slip as a Mechanism for Earthquakes. Brace, W.F. und Byerlee, J.D. 1966, Science, Bd. 153, S. 990-992. [2] Detailed Studies of Frictional Sliding of Granite and Implications for the Earthquake Mechanism. Scholz, C. H., Molnar, P. und Johnson, T. 32, 1972, Journal of Geophysical Research, Bd. 77, S. 6392-6409. [3] Accelerated Creep as a Precursor of Friction Instability and Earthquake Prediction. Popov, V. L., et al. 2010, Physical Mesomechanics, Bd. 13, S. 283-291. [4] Modeling of Rock Friction, Part 1: Experimental Results and Constitutive Equations. Dieterich, J.H. B5, 1979, Journal of Geophysical Research, Bd. 84, S. 2161-2168. [5] State Instability and State Variable Friction Law. Ruina, A. B12, 1983, Journal of Geophysical Research, Bd. 88, S. 10359-10370.
High Frequency Adaptive Instability Suppression Controls in a Liquid-Fueled Combustor
NASA Technical Reports Server (NTRS)
Kopasakis, George
2003-01-01
This effort extends into high frequency (>500 Hz), an earlier developed adaptive control algorithm for the suppression of thermo-acoustic instabilities in a liquidfueled combustor. The earlier work covered the development of a controls algorithm for the suppression of a low frequency (280 Hz) combustion instability based on simulations, with no hardware testing involved. The work described here includes changes to the simulation and controller design necessary to control the high frequency instability, augmentations to the control algorithm to improve its performance, and finally hardware testing and results with an experimental combustor rig developed for the high frequency case. The Adaptive Sliding Phasor Averaged Control (ASPAC) algorithm modulates the fuel flow in the combustor with a control phase that continuously slides back and forth within the phase region that reduces the amplitude of the instability. The results demonstrate the power of the method - that it can identify and suppress the instability even when the instability amplitude is buried in the noise of the combustor pressure. The successful testing of the ASPAC approach helped complete an important NASA milestone to demonstrate advanced technologies for low-emission combustors.
Simulations of vertical disruptions with VDE code: Hiro and Evans currents
NASA Astrophysics Data System (ADS)
Li, Xujing; Di Hu Team; Leonid Zakharov Team; Galkin Team
2014-10-01
The recently created numerical code VDE for simulations of vertical instability in tokamaks is presented. The numerical scheme uses the Tokamak MHD model, where the plasma inertia is replaced by the friction force, and an adaptive grid numerical scheme. The code reproduces well the surface currents generated at the plasma boundary by the instability. Five regimes of the vertical instability are presented: (1) Vertical instability in a given plasma shaping field without a wall; (2) The same with a wall and magnetic flux ΔΨ|plX< ΔΨ|Xwall(where X corresponds to the X-point of a separatrix); (3) The same with a wall and magnetic flux ΔΨ|plX> ΔΨ|Xwall; (4) Vertical instability without a wall with a tile surface at the plasma path; (5) The same in the presence of a wall and a tile surface. The generation of negative Hiro currents along the tile surface, predicted earlier by the theory and measured on EAST in 2012, is well-reproduced by simulations. In addition, the instability generates the force-free Evans currents at the free plasma surface. The new pattern of reconnection of the plasma with the vacuum magnetic field is discovered. This work is supported by US DoE Contract No. DE-AC02-09-CH11466.
NASA Astrophysics Data System (ADS)
Lafleur, T.; Martorelli, R.; Chabert, P.; Bourdon, A.
2018-06-01
Kinetic drift instabilities have been implicated as a possible mechanism leading to anomalous electron cross-field transport in E × B discharges, such as Hall-effect thrusters. Such instabilities, which are driven by the large disparity in electron and ion drift velocities, present a significant challenge to modelling efforts without resorting to time-consuming particle-in-cell (PIC) simulations. Here, we test aspects of quasi-linear kinetic theory with 2D PIC simulations with the aim of developing a self-consistent treatment of these instabilities. The specific quantities of interest are the instability growth rate (which determines the spatial and temporal evolution of the instability amplitude), and the instability-enhanced electron-ion friction force (which leads to "anomalous" electron transport). By using the self-consistently obtained electron distribution functions from the PIC simulations (which are in general non-Maxwellian), we find that the predictions of the quasi-linear kinetic theory are in good agreement with the simulation results. By contrast, the use of Maxwellian distributions leads to a growth rate and electron-ion friction force that is around 2-4 times higher, and consequently significantly overestimates the electron transport. A possible method for self-consistently modelling the distribution functions without requiring PIC simulations is discussed.
NASA Astrophysics Data System (ADS)
Ruth, Max E.; Iacocca, Ezio; Kevrekidis, Panayotis G.; Hoefer, Mark A.
2018-03-01
Stripe domains are narrow, elongated, reversed regions that exist in magnetic materials with perpendicular magnetic anisotropy. They appear as a pair of domain walls that can exhibit topology with a nonzero chirality. Recent experimental and numerical investigations identify an instability of stripe domains along the long direction as a means of nucleating isolated magnetic skyrmions. Here, the onset and nonlinear evolution of transverse instabilities for a dynamic stripe domain known as the bion stripe are investigated. Both nontopological and topological variants of the bion stripe are shown to exhibit a long-wavelength transverse instability with different characteristic features. In the former, small transverse variations in the stripe's width lead to a neck instability that eventually pinches the nontopological stripe into a chain of two-dimensional breathers composed of droplet soliton pairs. In the latter case, small variations in the stripe's center result in a snake instability whose topological structure leads to the nucleation of dynamic magnetic skyrmions and antiskyrmions as well as perimeter-modulated droplets. Quantitative, analytical predictions for both the early, linear evolution and the long-time, nonlinear evolution are achieved using an averaged Lagrangian approach that incorporates both exchange (dispersion) and anisotropy (nonlinearity). The method of analysis is general and can be applied to other filamentary structures.
Vortex Dynamics and Shear-Layer Instability in High-Intensity Cyclotrons.
Cerfon, Antoine J
2016-04-29
We show that the space-charge dynamics of high-intensity beams in the plane perpendicular to the magnetic field in cyclotrons is described by the two-dimensional Euler equations for an incompressible fluid. This analogy with fluid dynamics gives a unified and intuitive framework to explain the beam spiraling and beam breakup behavior observed in experiments and in simulations. Specifically, we demonstrate that beam breakup is the result of a classical instability occurring in fluids subject to a sheared flow. We give scaling laws for the instability and predict the nonlinear evolution of beams subject to it. Our work suggests that cyclotrons may be uniquely suited for the experimental study of shear layers and vortex distributions that are not achievable in Penning-Malmberg traps.
The Farley-Buneman Instability in the Solar Chromosphere
NASA Astrophysics Data System (ADS)
Madsen, Chad A.; Dimant, Yakov S.; Oppenheim, Meers M.; Fontenla, Juan M.
2012-10-01
Strong currents drive the Farley-Buneman Instability (FBI) in the E-region ionosphere creating turbulence and heating. The solar chromosphere is a similar weakly ionized region with strong local Pedersen currents, and the FBI may play a role in sustaining the thin layer of enhanced temperature observed there. The plasma of the solar chromosphere requires a new theory of the FBI accounting for the presence of multiple ion species, higher temperatures and collisions between ionized metals and neutral hydrogen. This paper discusses the assumptions underlying the derivation of the multi-species FBI dispersion relation. It presents the predicted critical electron drift velocity needed to trigger the instability. Finally, this work argues that observed chromospheric neutral flow speeds are sufficiently large to trigger the multi-species FBI.
Simulation of crossflow instability on a supersonic highly swept wing
NASA Technical Reports Server (NTRS)
Pruett, C. David
1995-01-01
A direct numerical simulation (DNS) algorithm has been developed and validated for use in the investigation of crossflow instability on supersonic swept wings, an application of potential relevance to the design of the High-Speed Civil Transport (HSCT). The algorithm is applied to the investigation of stationary crossflow instability on an infinitely long 77-degree swept wing in Mach 3.5 flow. The results of the DNS are compared with the predictions of linear parabolized stability equation (PSE) methodology. In-general, the DNS and PSE results agree closely in terms of modal growth rate, structure, and orientation angle. Although further validation is needed for large-amplitude (nonlinear) disturbances, the close agreement between independently derived methods offers preliminary validation of both DNS and PSE approaches.
NASA Astrophysics Data System (ADS)
Lamarche, Leslie J.; Makarevich, Roman A.
2017-03-01
We present observations of plasma density gradients, electric fields, and small-scale plasma irregularities near a polar cap patch made by the Super Dual Auroral Radar Network radar at Rankin Inlet (RKN) and the northern face of Resolute Bay Incoherent Scatter Radar (RISR-N). RKN echo power and occurrence are analyzed in the context of gradient-drift instability (GDI) theory, with a particular focus on the previously uninvestigated 2-D dependencies on wave propagation, electric field, and gradient vectors, with the latter two quantities evaluated directly from RISR-N measurements. It is shown that higher gradient and electric field components along the wave vector generally lead to the higher observed echo occurrence, which is consistent with the expected higher GDI growth rate, but the relationship with echo power is far less straightforward. The RKN echo power increases monotonically as the predicted linear growth rate approaches zero from negative values but does not continue this trend into positive growth rate values, in contrast with GDI predictions. The observed greater consistency of echo occurrence with GDI predictions suggests that GDI operating in the linear regime can control basic plasma structuring, but measured echo strength may be affected by other processes and factors, such as multistep or nonlinear processes or a shear-driven instability.
Dumitrescu, A L; Zetu, L; Teslaru, S
2012-02-01
Our aim was to explore whether instability of self-esteem, self-confidence, self-liking, self-control, self-competence and perfectionism each has an independent contribution to the self-rated oral health and oral health-related behaviours. A cross-sectional study design was used. Data were collected between November 2008 and May 2009. The sample consisted of 205 Romanian adults (mean age: 29.84 years; 65.2% women; 40% married) who were a random population drawn consecutively from the registry file of two private dental practices in the Iasi area. The questionnaire included information about demographic, psychological, self-reported oral health and oral health-related behaviour items. The comparison of participants who never flossed their teeth with those who flossed everyday showed statistically significant lower levels of self-confidence (P < 0.05), self-liking (P = 0.001), self-competence (P < 0.0001), self-control (P < 0.05) and Perfectionism Scores (P < 0.05). Significant higher levels of self-competence were scored in persons who used weekly mouthrinses comparing with never users (P = 0.012). Also patients who visited the dentist mainly when treatment is needed or when pain presented lower levels of self-competence and self-control comparing with those who visited the dentist mainly for check-up or for tooth cleaning and scaling (P < 0.05). Oral health behaviours (toothbrushing and mouthrinse frequencies) were predicted by multiple regression analyses using sociodemographic (age, gender), self-competence and perfectionism variables. Our study showed that instability of self-esteem, self-confidence, self-competence, self-liking, self-control and perfectionism was associated not only with self-rated dental health but also with oral health behaviours. Understanding the psychological factors associated with oral hygiene can further the development and improvement in therapeutic strategies to be used in oral health-improving programs, as well as of programs aimed at prevention and education. © 2011 John Wiley & Sons A/S.
Study of Critical Heat Flux and Two-Phase Pressure Drop Under Reduced Gravity
NASA Technical Reports Server (NTRS)
Abdollahian, Davood; Quintal, Joseph; Barez, Fred; Zahm, Jennifer; Lohr, Victor
1996-01-01
The design of the two-phase flow systems which are anticipated to be utilized in future spacecraft thermal management systems requires a knowledge of two-phase flow and heat transfer phenomena in reduced gravities. This program was funded by NASA headquarters in response to NRA-91-OSSA-17 and was managed by Lewis Research Center. The main objective of this program was to design and construct a two-phase test loop, and perform a series of normal gravity and aircraft trajectory experiments to study the effect of gravity on the Critical Heat Flux (CHF) and onset of instability. The test loop was packaged on two aircraft racks and was also instrumented to generate data for two-phase pressure drop. The normal gravity tests were performed with vertical up and downflow configurations to bound the effect of gravity on the test parameters. One set of aircraft trajectory tests was performed aboard the NASA DC-9 aircraft. These tests were mainly intended to evaluate the test loop and its operational performance under actual reduced gravity conditions, and to produce preliminary data for the test parameters. The test results were used to demonstrate the applicability of the normal gravity models for prediction of the two-phase friction pressure drop. It was shown that the two-phase friction multipliers for vertical upflow and reduced gravity conditions can be successfully predicted by the appropriate normal gravity models. Limited critical heat flux data showed that the measured CHF under reduced gravities are of the same order of magnitude as the test results with vertical upflow configuration. A simplified correlation was only successful in predicting the measured CHF for low flow rates. Instability tests with vertical upflow showed that flow becomes unstable and critical heat flux occurs at smaller powers when a parallel flow path exists. However, downflow tests and a single reduced gravity instability experiment indicated that the system actually became more stable with a parallel single-phase flow path. Several design modifications have been identified which will improve the system performance for generating reduced gravity data. The modified test loop can provide two-phase flow data for a range of operating conditions and can serve as a test bed for component evaluation.
Fadhil, Wakkas; Kindle, Karin; Jackson, Darryl; Zaitoun, Abed; Lane, Nina; Robins, Adrian; Ilyas, Mohammad
2014-01-01
Colorectal cancers (CRC) are thought to have genetic instability in the form of either microsatellite instability (MSI) or chromosomal instability (CIN). Recently, tumours have been described without either MSI or CIN, that is, microsatellite and chromosome stable (MACS) CRCs. We investigated the (i) frequency of the MACS-CRCs and (ii) whether this genotype predicted responsiveness to neoadjuvant chemoradiotherapy. To examine the frequency of MACS-CRCs, DNA content (ploidy) was examined in 89 sporadic microsatellite-stable CRCs using flow cytometry. The tumours were also screened for mutations in KRAS/BRAF/TP53/PIK3CA by QMC-PCR. To examine the value of tumour ploidy in predicting response to chemoradiotherapy, DNA content was tested in a separate group of 62 rectal cancers treated with neoadjuvant chemoradiotherapy. Fifty-one of 89 CRCs (57%) were aneuploid and 38 (43%) were diploid. There was no significant association between mutations in TP53/KRAS/BRAF/PIK3CA and ploidy. Testing of association between mutations revealed only mutual exclusivity of KRAS/BRAF mutation (P < 0.001). Of the 62 rectal cancers treated with neoadjuvant chemoradiotherapy, 22 had responded (Mandard tumour regression grade 1/2) and 40 failed to respond (Grade 3–5). Twenty-five of 62 (40%) tumours were diploid, but there was no association between ploidy and response to therapy. We conclude that MACS-CRCs form a significant proportion of microsatellite-stable CRCs with a mutation profile overlapping that of CRCs with CIN. A diploid genotype does not, however, predict the responsiveness to radiotherapy. PMID:24456329
Observation of instability-induced current redistribution in a spherical-torus plasma.
Menard, J E; Bell, R E; Gates, D A; Kaye, S M; LeBlanc, B P; Levinton, F M; Medley, S S; Sabbagh, S A; Stutman, D; Tritz, K; Yuh, H
2006-09-01
A motional Stark effect diagnostic has been utilized to reconstruct the parallel current density profile in a spherical-torus plasma for the first time. The measured current profile compares favorably with neoclassical theory when no large-scale magnetohydrodynamic instabilities are present in the plasma. However, a current profile anomaly is observed during saturated interchange-type instability activity. This apparent anomaly can be explained by redistribution of neutral beam injection current drive and represents the first observation of interchange-type instabilities causing such redistribution. The associated current profile modifications contribute to sustaining the central safety factor above unity for over five resistive diffusion times, and similar processes may contribute to improved operational scenarios proposed for ITER.
Udagawa, Kazuhiko; Niki, Yasuo; Matsumoto, Hiroaki; Matsumoto, Hideo; Enomoto, Hiroyuki; Toyama, Yoshiaki; Suda, Yasunori
2014-01-01
Lateral retinacular release is still being performed in patients with recurrent patellar dislocation as an additional procedure with distal realignment or medial patellofemoral ligament (MPFL) reconstruction. However, consensus remains lacking regarding suitable indications for lateral retinacular release. A 20-year-old woman presented with patellar instability in both medial and lateral directions after undergoing lateral retinacular release with MPFL reconstruction. She displayed inherent systemic joint laxity meeting all seven Carter-Wilkinson criteria. Simultaneous MPFL revision and lateral retinaculum reconstruction successfully improved patellar instability in both directions. This case provides an example of iatrogenic medial patellar instability after failed lateral retinacular release. Copyright © 2013 Elsevier B.V. All rights reserved.
Molecular classification of gastric cancer.
Röcken, Christoph
2017-03-01
Gastric cancer is among the most common cancers worldwide. Despite declining incidences, the prognosis remains dismal in Western countries and is better in Asian countries with national cancer screening programs. Complete endoscopic or surgical resection of the primary tumor with or without lymphadenectomy offers the only chance of cure in the early stage of the disease. Survival of more locally advanced gastric cancers was improved by the introduction of perioperative, adjuvant and palliative chemotherapy. However, the identification and usage of novel predictive and diagnostic targets is urgently needed. Areas covered: Recent comprehensive molecular profiling of gastric cancer proposed four molecular subtypes, i.e. Epstein-Barr virus-associated, microsatellite instable, chromosomal instable and genomically stable carcinomas. The new molecular classification will spur clinical trials exploring novel targeted therapeutics. This review summarizes recent advancements of the molecular classification, and based on that, putative pitfalls for the development of tissue-based companion diagnostics, i.e. prevalence of actionable targets and therapeutic efficacy, tumor heterogeneity and tumor evolution, impact of ethnicity on gastric cancer biology, and standards of care in the East and West. Expert commentary: The overall low prevalence of actionable targets and tumor heterogeneity are the two main obstacles of precision medicine for gastric cancer.
Designing solid-liquid interphases for sodium batteries.
Choudhury, Snehashis; Wei, Shuya; Ozhabes, Yalcin; Gunceler, Deniz; Zachman, Michael J; Tu, Zhengyuan; Shin, Jung Hwan; Nath, Pooja; Agrawal, Akanksha; Kourkoutis, Lena F; Arias, Tomas A; Archer, Lynden A
2017-10-12
Secondary batteries based on earth-abundant sodium metal anodes are desirable for both stationary and portable electrical energy storage. Room-temperature sodium metal batteries are impractical today because morphological instability during recharge drives rough, dendritic electrodeposition. Chemical instability of liquid electrolytes also leads to premature cell failure as a result of parasitic reactions with the anode. Here we use joint density-functional theoretical analysis to show that the surface diffusion barrier for sodium ion transport is a sensitive function of the chemistry of solid-electrolyte interphase. In particular, we find that a sodium bromide interphase presents an exceptionally low energy barrier to ion transport, comparable to that of metallic magnesium. We evaluate this prediction by means of electrochemical measurements and direct visualization studies. These experiments reveal an approximately three-fold reduction in activation energy for ion transport at a sodium bromide interphase. Direct visualization of sodium electrodeposition confirms large improvements in stability of sodium deposition at sodium bromide-rich interphases.The chemistry at the interface between electrolyte and electrode plays a critical role in determining battery performance. Here, the authors show that a NaBr enriched solid-electrolyte interphase can lower the surface diffusion barrier for sodium ions, enabling stable electrodeposition.
An overview of selected NASP aeroelastic studies at the NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Spain, Charles V.; Soistmann, David L.; Parker, Ellen C.; Gibbons, Michael D.; Gilbert, Michael G.
1990-01-01
Following an initial discussion of the NASP flight environment, the results of recent aeroelastic testing of NASP-type highly swept delta-wing models in Langley's Transonic Dynamics Tunnel (TDT) are summarized. Subsonic and transonic flutter characteristics of a variety of these models are described, and several analytical codes used to predict flutter of these models are evaluated. These codes generally provide good, but conservative predictions of subsonic and transonic flutter. Also, test results are presented on a nonlinear transonic phenomena known as aileron buzz which occurred in the wind tunnel on highly swept delta wings with full-span ailerons. An analytical procedure which assesses the effects of hypersonic heating on aeroelastic instabilities (aerothermoelasticity) is also described. This procedure accurately predicted flutter of a heated aluminum wing on which experimental data exists. Results are presented on the application of this method to calculate the flutter characteristics of a fine-element model of a generic NASP configuration. Finally, it is demonstrated analytically that active controls can be employed to improve the aeroelastic stability and ride quality of a generic NASP vehicle flying at hypersonic speeds.
Transient triggering of near and distant earthquakes
Gomberg, J.; Blanpied, M.L.; Beeler, N.M.
1997-01-01
We demonstrate qualitatively that frictional instability theory provides a context for understanding how earthquakes may be triggered by transient loads associated with seismic waves from near and distance earthquakes. We assume that earthquake triggering is a stick-slip process and test two hypotheses about the effect of transients on the timing of instabilities using a simple spring-slider model and a rate- and state-dependent friction constitutive law. A critical triggering threshold is implicit in such a model formulation. Our first hypothesis is that transient loads lead to clock advances; i.e., transients hasten the time of earthquakes that would have happened eventually due to constant background loading alone. Modeling results demonstrate that transient loads do lead to clock advances and that the triggered instabilities may occur after the transient has ceased (i.e., triggering may be delayed). These simple "clock-advance" models predict complex relationships between the triggering delay, the clock advance, and the transient characteristics. The triggering delay and the degree of clock advance both depend nonlinearly on when in the earthquake cycle the transient load is applied. This implies that the stress required to bring about failure does not depend linearly on loading time, even when the fault is loaded at a constant rate. The timing of instability also depends nonlinearly on the transient loading rate, faster rates more rapidly hastening instability. This implies that higher-frequency and/or longer-duration seismic waves should increase the amount of clock advance. These modeling results and simple calculations suggest that near (tens of kilometers) small/moderate earthquakes and remote (thousands of kilometers) earthquakes with magnitudes 2 to 3 units larger may be equally effective at triggering seismicity. Our second hypothesis is that some triggered seismicity represents earthquakes that would not have happened without the transient load (i.e., accumulated strain energy would have been relieved via other mechanisms). We test this using two "new-seismicity" models that (1) are inherently unstable but slide at steady-state conditions under the background load and (2) are conditionally stable such that instability occurs only for sufficiently large perturbations. For the new-seismicity models, very small-amplitude transients trigger instability relative to the clock-advance models. The unstable steady-state models predict that the triggering delay depends inversely and nonlinearly on the transient amplitude (as in the clock-advance models). We were unable to generate delayed triggering with conditionally stable models. For both new-seismicity models, the potential for triggering is independent of when the transient load is applied or, equivalently, of the prestress (unlike in the clock-advance models). In these models, a critical triggering threshold appears to be inversely proportional to frequency. Further advancement of our understanding will require more sophisticated, quantitative models and observations that distinguish between our qualitative, yet distinctly different, model predictions.
Improving the Stability of Metal Halide Perovskite Materials and Light-Emitting Diodes.
Cho, Himchan; Kim, Young-Hoon; Wolf, Christoph; Lee, Hyeon-Dong; Lee, Tae-Woo
2018-01-25
Metal halide perovskites (MHPs) have numerous advantages as light emitters such as high photoluminescence quantum efficiency with a direct bandgap, very narrow emission linewidth, high charge-carrier mobility, low energetic disorder, solution processability, simple color tuning, and low material cost. Based on these advantages, MHPs have recently shown unprecedented radical progress (maximum current efficiency from 0.3 to 42.9 cd A -1 ) in the field of light-emitting diodes. However, perovskite light-emitting diodes (PeLEDs) suffer from intrinsic instability of MHP materials and instability arising from the operation of the PeLEDs. Recently, many researchers have devoted efforts to overcome these instabilities. Here, the origins of the instability in PeLEDs are reviewed by categorizing it into two types: instability of (i) the MHP materials and (ii) the constituent layers and interfaces in PeLED devices. Then, the strategies to improve the stability of MHP materials and PeLEDs are critically reviewed, such as A-site cation engineering, Ruddlesden-Popper phase, suppression of ion migration with additives and blocking layers, fabrication of uniform bulk polycrystalline MHP layers, and fabrication of stable MHP nanoparticles. Based on this review of recent advances, future research directions and an outlook of PeLEDs for display applications are suggested. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wikstrom, Erik A; McKeon, Patrick O
2017-04-01
Therapeutic modalities that stimulate sensory receptors around the foot-ankle complex improve chronic ankle instability (CAI)-associated impairments. However, not all patients have equal responses to these modalities. Identifying predictors of treatment success could improve clinician efficiency when treating patients with CAI. To conduct a response analysis on existing data to identify predictors of improved self-reported function in patients with CAI. Secondary analysis of a randomized controlled clinical trial. Sports medicine research laboratories. Fifty-nine patients with CAI, which was defined in accordance with the International Ankle Consortium recommendations. Participants were randomized into 3 treatment groups (plantar massage [PM], ankle-joint mobilization [AJM], or calf stretching [CS]) that received six 5-minute treatments over 2 weeks. Treatment success, defined as a patient exceeding the minimally clinically important difference of the Foot and Ankle Ability Measure-Sport (FAAM-S). Patients with ≤5 recurrent sprains and ≤82.73% on the Foot and Ankle Ability Measure had a 98% probability of having a meaningful FAAM-S improvement after AJM. As well, ≥5 balance errors demonstrated 98% probability of meaningful FAAM-S improvements from AJM. Patients <22 years old and with ≤9.9 cm of dorsiflexion had a 99% probability of a meaningful FAAM-S improvement after PM. Also, those who made ≥2 single-limb-stance errors had a 98% probability of a meaningful FAAM-S improvement from PM. Patients with ≤53.1% on the FAAM-S had an 83% probability of a meaningful FAAM-S improvement after CS. Each sensory-targeted ankle-rehabilitation strategy resulted in a unique combination of predictors of success for patients with CAI. Specific indicators of success with AJM were deficits in self-reported function, single-limb balance, and <5 previous sprains. Age, weight-bearing-dorsiflexion restrictions, and single-limb balance deficits identified patients with CAI who will respond well to PM. Assessing self-reported sport-related function can identify CAI patients who will respond positively to CS.
Chladni solitons and the onset of the snaking instability for dark solitons in confined superfluids.
Muñoz Mateo, A; Brand, J
2014-12-19
Complex solitary waves composed of intersecting vortex lines are predicted in a channeled superfluid. Their shapes in a cylindrical trap include a cross, spoke wheels, and Greek Φ, and trace the nodal lines of unstable vibration modes of a planar dark soliton in analogy to Chladni's figures of membrane vibrations. The stationary solitary waves extend a family of solutions that include the previously known solitonic vortex and vortex rings. Their bifurcation points from the dark soliton indicating the onset of new unstable modes of the snaking instability are predicted from scale separation for Bose-Einstein condensates (BECs) and superfluid Fermi gases across the BEC-BCS crossover, and confirmed by full numerical calculations. Chladni solitons could be observed in ultracold gas experiments by seeded decay of dark solitons.
Transmission of sound across a vortex layer enclosing a cylindrical column of jet
NASA Technical Reports Server (NTRS)
Luh, R.; Chao, C. C.
1982-01-01
An approximate solution to the problem of transmission of sound across a cylindrical vortex was obtained. Results are considerably different from the plane vortex sheet case because of the added role played by the curvature of the jet. In comparison with the plane case, the specularly transmitted waves are more complex and require some numerical integration. Resonance waves are identically predicted for M 2, but there is also a wave field whose modified effect appears to extend the region of resonance just as the instability waves cover a region in space and time. The instability waves are predicted to exist for all Mach numbers but vanish for wavelengths that are large compared to the jet radius. The region of propagation is similarly wavelength dependent.
Chladni Solitons and the Onset of the Snaking Instability for Dark Solitons in Confined Superfluids
NASA Astrophysics Data System (ADS)
Muñoz Mateo, A.; Brand, J.
2014-12-01
Complex solitary waves composed of intersecting vortex lines are predicted in a channeled superfluid. Their shapes in a cylindrical trap include a cross, spoke wheels, and Greek Φ , and trace the nodal lines of unstable vibration modes of a planar dark soliton in analogy to Chladni's figures of membrane vibrations. The stationary solitary waves extend a family of solutions that include the previously known solitonic vortex and vortex rings. Their bifurcation points from the dark soliton indicating the onset of new unstable modes of the snaking instability are predicted from scale separation for Bose-Einstein condensates (BECs) and superfluid Fermi gases across the BEC-BCS crossover, and confirmed by full numerical calculations. Chladni solitons could be observed in ultracold gas experiments by seeded decay of dark solitons.
Wise, Paul H; Darmstadt, Gary L
2015-08-01
Despite considerable improvements in reproductive and newborn health throughout the world, relatively poor outcomes persist in areas plagued by conflict or political instability. To assess the contribution of areas of conflict and instability to global patterns of stillbirths and newborn deaths and to identify opportunities for effective intervention in these areas. Analysis of the available data on stillbirths and neonatal mortality in association with conflict and governance indicators, and review of epidemiological and political literature pertaining to the provision of health and public services in areas of conflict and instability. Of the 15 countries with the highest neonatal mortality rates in the world, 14 are characterized by chronic conflict or political instability. If India and China are excluded, countries experiencing chronic conflict or political instability account for approximately 42% of all neonatal deaths worldwide. Efforts to address adverse reproductive and newborn outcomes in these areas must adapt recommended intervention protocols to the special security and governance conditions associated with unstable political environment. Despite troubling relative and absolute indicators, the special requirements of improving reproductive and neonatal outcomes in areas affected by conflict and political instability have not received adequate attention. New integrated political and technical strategies will be required. This should include moving beyond traditional approaches concerned with complex humanitarian emergencies. Rather, global efforts must be based on a deeper understanding of the specific governance requirements associated with protracted and widespread health requirements. A focus on women's roles, regional strategies which take advantage of relative stability and governance capacity in neighbouring states, virtual infrastructure, and assistance regimens directed specifically to unstable areas may prove useful.
Intrinsic low pass filtering improves signal-to-noise ratio in critical-point flexure biosensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jain, Ankit; Alam, Muhammad Ashraful, E-mail: alam@purdue.edu
2014-08-25
A flexure biosensor consists of a suspended beam and a fixed bottom electrode. The adsorption of the target biomolecules on the beam changes its stiffness and results in change of beam's deflection. It is now well established that the sensitivity of sensor is maximized close to the pull-in instability point, where effective stiffness of the beam vanishes. The question: “Do the signal-to-noise ratio (SNR) and the limit-of-detection (LOD) also improve close to the instability point?”, however remains unanswered. In this article, we systematically analyze the noise response to evaluate SNR and establish LOD of critical-point flexure sensors. We find thatmore » a flexure sensor acts like an effective low pass filter close to the instability point due to its relatively small resonance frequency, and rejects high frequency noise, leading to improved SNR and LOD. We believe that our conclusions should establish the uniqueness and the technological relevance of critical-point biosensors.« less
Gunshot wounds to the spine in adolescents.
Aryan, Henry E; Amar, Arun P; Ozgur, Burak M; Levy, Michael L
2005-10-01
The incidence of spinal instability after penetrating gunshot wounds to the spine in adolescents is unknown. We describe our experience over a 15-year period. Hospital records were reviewed retrospectively. After injury and emergency care, patients were transferred to a rehabilitation facility. Examinations were completed using the American Spinal Injury Association and Frankel scales on admission, discharge, and 6 and 12 months after injury. Severity of injury was described by: 1) degree of neurological damage, 2) degree of preserved neurological function, and 3) presence of instability. Sixty patients were identified with a mean age 15.6 years (+/- 2.7 yr). Twelve patients had cervical, 31 thoracic, and 17 lumbosacral injuries. No operative treatments were used in their care. Thirty-four patients had complete neurological deficits. Mean acute hospitalization was 21.1 days (+/- 22.8 d), and mean rehabilitation stay was 86.3 days (+/- 48.9 d), for a total hospitalization of 107.4 days (+/- 65.9 d). At 1 year, 19 patients were ambulatory and 53 were autonomous. Despite the presence of bony involvement in all, no evidence of spinal instability was noted on follow-up dynamic imaging. Even in two patients with apparent two-column disruption, no instability was noted. At 1-year follow-up, significant (nonfunctional) improvement was noted in the neurological examination (P < 0.0001). Improvements were most notable in those patients with cervical injuries, followed by thoracic and lumbar injuries. After penetrating gunshot wounds to the spine, patients at 1-year follow-up examinations have evidence of significant, but nonfunctional, improvement. No evidence of spinal instability was noted in this study, and no surgical intervention was required.
Witchalls, Jeremy; Waddington, Gordon; Blanch, Peter; Adams, Roger
2012-01-01
Individuals with and without functional ankle instability have been tested for deficits in lower limb proprioception with varied results. To determine whether a new protocol for testing participants' joint position sense during stepping is reliable and can detect differences between participants with unstable and stable ankles. Descriptive laboratory study. University clinical laboratory. Sample of convenience involving 21 young adult university students and staff. Ankle stability was categorized by score on the Cumberland Ankle Instability Tool; 13 had functional ankle instability, 8 had healthy ankles. Test-retest of ankle joint position sense when stepping onto and across the Active Movement Extent Discrimination Apparatus twice, separated by an interim test, standing still on the apparatus and moving only 1 ankle into inversion. Difference in scores between groups with stable and unstable ankles and between test repeats. Participants with unstable ankles were worse at differentiating between inversion angles underfoot in both testing protocols. On repeated testing with the stepping protocol, performance of the group with unstable ankles was improved (Cohen d = 1.06, P = .006), whereas scores in the stable ankle group did not change in the second test (Cohen d = 0.04, P = .899). Despite this improvement, the unstable group remained worse at differentiating inversion angles on the stepping retest (Cohen d = 0.99, P = .020). The deficits on proprioceptive tests shown by individuals with functional ankle instability improved with repeated exposure to the test situation. The learning effect may be the result of systematic exposure to ankle-angle variation that led to movement-specific learning or increased confidence when stepping across the apparatus.
Density-Gradient-Driven trapped-electron-modes in improved-confinement RFP plasmas
NASA Astrophysics Data System (ADS)
Duff, James
2016-10-01
Short wavelength density fluctuations in improved-confinement MST plasmas exhibit multiple features characteristic of the trapped-electron-mode (TEM), strong evidence that drift wave turbulence emerges in RFP plasmas when transport associated with MHD tearing is reduced. Core transport in the RFP is normally governed by magnetic stochasticity stemming from long wavelength tearing modes that arise from current profile peaking. Using inductive control, the tearing modes are reduced and global confinement is increased to values expected for a comparable tokamak plasma. The improved confinement is associated with a large increase in the pressure gradient that can destabilize drift waves. The measured density fluctuations have frequencies >50 kHz, wavenumbers k_phi*rho_s<0.14, and propagate in the electron drift direction. Their spectral emergence coincides with a sharp decrease in fluctuations associated with global tearing modes. Their amplitude increases with the local density gradient, and they exhibit a density-gradient threshold at R/L_n 15, higher than in tokamak plasmas by R/a. the GENE code, modified for RFP equilibria, predicts the onset of microinstability for these strong-gradient plasma conditions. The density-gradient-driven TEM is the dominant instability in the region where the measured density fluctuations are largest, and the experimental threshold-gradient is close to the predicted critical gradient for linear stability. While nonlinear analysis shows a large Dimits shift associated with predicted strong zonal flows, the inclusion of residual magnetic fluctuations causes a collapse of the zonal flows and an increase in the predicted transport to a level close to the experimentally measured heat flux. Similar circumstances could occur in the edge region of tokamak plasmas when resonant magnetic perturbations are applied for the control of ELMs. Work supported by US DOE.
NASA Astrophysics Data System (ADS)
Biancofiore, L.; Heifetz, E.; Hoepffner, J.; Gallaire, F.
2017-10-01
Both surface tension and buoyancy force in stable stratification act to restore perturbed interfaces back to their initial positions. Hence, both are intuitively considered as stabilizing agents. Nevertheless, the Taylor-Caulfield instability is a counterexample in which the presence of buoyancy forces in stable stratification destabilize shear flows. An explanation for this instability lies in the fact that stable stratification supports the existence of gravity waves. When two vertically separated gravity waves propagate horizontally against the shear, they may become phase locked and amplify each other to form a resonance instability. Surface tension is similar to buoyancy but its restoring mechanism is more efficient at small wavelengths. Here, we show how a modification of the Taylor-Caulfield configuration, including two interfaces between three stably stratified immiscible fluids, supports interfacial capillary gravity whose interaction yields resonance instability. Furthermore, when the three fluids have the same density, an instability arises solely due to a pure counterpropagating capillary wave resonance. The linear stability analysis predicts a maximum growth rate of the pure capillary wave instability for an intermediate value of surface tension corresponding to We-1=5 , where We denotes the Weber number. We perform direct numerical nonlinear simulation of this flow and find nonlinear destabilization when 2 ≤We-1≤10 , in good agreement with the linear stability analysis. The instability is present also when viscosity is introduced, although it is gradually damped and eventually quenched.
NASA Technical Reports Server (NTRS)
Linne, Diane L.; Meyer, Michael L.; Braun, Donald C.; Keller, Dennis J.
2000-01-01
A series of heated tube experiments was performed to investigate fluid instabilities that occur during heating of supercritical fluids. In these tests, JP-7 flowed vertically through small diameter tubes at supercritical pressures. Test section heated length, diameter, mass flow rate, inlet temperature, and heat flux were varied in an effort to determine the range of conditions that trigger the instabilities. Heat flux was varied up to 4 BTU/sq in./s, and test section wall temperatures reached as high as 1950 F. A statistical model was generated to explain the trends and effects of the control variables. The model included no direct linear effect of heat flux on the occurrence of the instabilities. All terms involving inlet temperature were negative, and all terms involving mass flow rate were positive. Multiple tests at conditions that produced instabilities provided inconsistent results. These inconsistencies limit the use of the model as a predictive tool. Physical variables that had been previously postulated to control the onset of the instabilities, such as film temperature, velocity, buoyancy, and wall-to-bulk temperature ratio, were evaluated here. Film temperatures at or near critical occurred during both stable and unstable tests. All tests at the highest velocity were stable, but there was no functional relationship found between the instabilities and velocity, or a combination of velocity and temperature ratio. Finally, all of the unstable tests had significant buoyancy at the inlet of the test section, but many stable tests also had significant buoyancy forces.
Nonlinear Evolution of Azimuthally Compact Crossflow-Vortex Packet over a Yawed Cone
NASA Astrophysics Data System (ADS)
Choudhari, Meelan; Li, Fei; Paredes, Pedro; Duan, Lian; NASA Langley Research Center Team; Missouri Univ of Sci; Tech Team
2017-11-01
Hypersonic boundary-layer flows over a circular cone at moderate incidence angle can support strong crossflow instability and, therefore, a likely scenario for laminar-turbulent transition in such flows corresponds to rapid amplification of high-frequency secondary instabilities sustained by finite amplitude stationary crossflow vortices. Direct numerical simulations (DNS) are used to investigate the nonlinear evolution of azimuthally compact crossflow vortex packets over a 7-degree half-angle, yawed circular cone in a Mach 6 free stream. Simulation results indicate that the azimuthal distribution of forcing has a strong influence on the stationary crossflow amplitudes; however, the vortex trajectories are nearly the same for both periodic and localized roughness height distributions. The frequency range, mode shapes, and amplification characteristics of strongly amplified secondary instabilities in the DNS are found to overlap with the predictions of secondary instability theory. The DNS computations also provide valuable insights toward the application of planar, partial-differential-equation based eigenvalue analysis to spanwise inhomogeneous, fully three-dimensional, crossflow-dominated flow configurations.
BAPA Database: Linking landslide occurrence with rainfall in Asturias (Spain)
NASA Astrophysics Data System (ADS)
Valenzuela, Pablo; José Domínguez-Cuesta, María; Jiménez-Sánchez, Montserrat
2015-04-01
Asturias is a region in northern Spain with a temperate and humid climate. In this region, slope instability processes are very common and often cause economic losses and, sometimes, human victims. To prevent the geological risk involved, it is of great interest to predict landslide spatial and temporal occurrence. Some previous investigations have shown the importance of rainfall as a trigger factor. Despite the high incidence of these phenomena in Asturias, there are no databases of recent and actual landslides. The BAPA Project (Base de Datos de Argayos del Principado de Asturias - Principality of Asturias Landslide Database) aims to create an inventory of slope instabilities which have occurred between 1980 and 2015. The final goal is to study in detail the relationship between rainfall and slope instabilities in Asturias, establishing precipitation thresholds and soil moisture conditions necessary to instability triggering. This work presents the database progress showing its structure divided into various fields that essentially contain information related to spatial, temporal, geomorphological and damage data.
Electrokinetic instability in microchannel ferrofluid/water co-flows
Song, Le; Yu, Liandong; Zhou, Yilong; Antao, Asher Reginald; Prabhakaran, Rama Aravind; Xuan, Xiangchun
2017-01-01
Electrokinetic instability refers to unstable electric field-driven disturbance to fluid flows, which can be harnessed to promote mixing for various electrokinetic microfluidic applications. This work presents a combined numerical and experimental study of electrokinetic ferrofluid/water co-flows in microchannels of various depths. Instability waves are observed at the ferrofluid and water interface when the applied DC electric field is beyond a threshold value. They are generated by the electric body force that acts on the free charge induced by the mismatch of ferrofluid and water electric conductivities. A nonlinear depth-averaged numerical model is developed to understand and simulate the interfacial electrokinetic behaviors. It considers the top and bottom channel walls’ stabilizing effects on electrokinetic flow through the depth averaging of three-dimensional transport equations in a second-order asymptotic analysis. This model is found accurate to predict both the observed electrokinetic instability patterns and the measured threshold electric fields for ferrofluids of different concentrations in shallow microchannels. PMID:28406228
Review of Combustion-acoustic Instabilities
NASA Technical Reports Server (NTRS)
Oyediran, Ayo; Darling, Douglas; Radhakrishnan, Krishnan
1995-01-01
Combustion-acoustic instabilities occur when the acoustic energy increase due to the unsteady heat release of the flame is greater than the losses of acoustic energy from the system. The problem of combustion-acoustic instability is a concern in many devices for various reasons, as each device may have a unique mechanism causing unsteady heat release rates and many have unique boundary conditions. To accurately predict and quantify combustion-acoustic stabilities, the unsteady heat release rate and boundary conditions need to be accurately determined. The present review brings together work performed on a variety of practical combustion devices. Many theoretical and experimental investigations of the unsteady heat release rate have been performed, some based on perturbations in the fuel delivery system particularly for rocket instabilities, while others are based on hydrodynamic processes as in ramjet dump combustors. The boundary conditions for rocket engines have been analyzed and measured extensively. However, less work has been done to measure acoustic boundary conditions in many other combustion systems.
Prevention and management of post-instability glenohumeral arthropathy
Waterman, Brian R; Kilcoyne, Kelly G; Parada, Stephen A; Eichinger, Josef K
2017-01-01
Post-instability arthropathy may commonly develop in high-risk patients with a history of recurrent glenohumeral instability, both with and without surgical stabilization. Classically related to anterior shoulder instability, the incidence and rates of arthritic progression may vary widely. Radiographic arthritic changes may be present in up to two-thirds of patients after primary Bankart repair and 30% after Latarjet procedure, with increasing rates associated with recurrent dislocation history, prominent implant position, non-anatomic reconstruction, and/or lateralized bone graft placement. However, the presence radiographic arthrosis does not predict poor patient-reported function. After exhausting conservative measures, both joint-preserving and arthroplasty surgical options may be considered depending on a combination of patient-specific and anatomic factors. Arthroscopic procedures are optimally indicated for individuals with focal disease and may yield superior symptomatic relief when combined with treatment of combined shoulder pathology. For more advanced secondary arthropathy, total shoulder arthroplasty remains the most reliable option, although the clinical outcomes, wear characteristics, and implant survivorship remains a concern among active, young patients. PMID:28361016
NASA Astrophysics Data System (ADS)
Becker, Leif E.; Shelley, Michael J.
2000-11-01
First normal stress differences in shear flow are a fundamental property of Non-Newtonian fluids. Experiments involving dilute suspensions of slender fibers exhibit a sharp transition to non-zero normal stress differences beyond a critical shear rate, but existing continuum theories for rigid rods predict neither this transition nor the corresponding magnitude of this effect. We present the first conclusive evidence that elastic instabilities are predominantly responsible for observed deviations from the dilute suspension theory of rigid rods. Our analysis is based on slender body theory and the equilibrium equations of elastica. A straight slender body executing its Jeffery orbit in Couette flow is subject to axial fluid forcing, alternating between compression and tension. We present a stability analysis showing that elastic instabilities are possible for strong flows. Simulations give the fully non-linear evolution of this shape instability, and show that flexibility of the fibers alone is sufficient to cause both shear-thinning and significant first normal stress differences.
Rippling Instability of a Collapsing Bubble
NASA Technical Reports Server (NTRS)
daSilveira, Rava; Chaieb, Sahraoui; Mahadevan, L.
1999-01-01
The rippling instability of a liquid sheet was first observed by Debregeas, de Gennes, an Brochard-Wyart [Science 279, 1704 (1998)] on a hemispherical bubble resting on a free surface. Unlike a soap bubble, it collapses under its own weight while bursting, and folds into a wavy structure which breaks the original axisymmetry. In fact, this effect occurs for both purely elastic and purely viscous (liquid) sheets, and an analogy can be made between the two mechanisms. We present a theory for the onset of the instability in both cases, in which the growth of the corrugation out of an inextensible initial condition is governed by the competition between gravitational and bending (shearing) forces. The instability occurs for a range of densities, stiffnesses (viscosities), and sizes, a result which arises less from dynamics than from geometry, suggesting a wide validity. We further obtain a quantitative expression for the number of ripples. Finally, we present the results of experiments, which are consistent with our predictions.
Bending instability in galactic discs: advocacy of the linear theory
NASA Astrophysics Data System (ADS)
Rodionov, S. A.; Sotnikova, N. Ya.
2013-09-01
We demonstrate that in N-body simulations of isolated disc galaxies, there is numerical vertical heating which slowly increases the vertical velocity dispersion and the disc thickness. Even for models with over a million particles in a disc, this heating can be significant. Such an effect is just the same as in numerical experiments by Sellwood. We also show that in a stellar disc, outside a boxy/peanut bulge, if it presents, the saturation level of the bending instability is rather close to the value predicted by the linear theory. We pay attention to the fact that the bending instability develops and decays very fast, so it cannot play any role in secular vertical heating. However, the bending instability defines the minimal value of the ratio between the vertical and radial velocity dispersions σz/σR ≈ 0.3 (so indirectly the minimal thickness), which stellar discs in real galaxies may have. We demonstrate that observations confirm the last statement.
Rapid Holocene thinning of an East Antarctic outlet glacier driven by marine ice sheet instability
Jones, R. S.; Mackintosh, A. N.; Norton, K. P.; Golledge, N. R.; Fogwill, C. J.; Kubik, P. W.; Christl, M.; Greenwood, S. L.
2015-01-01
Outlet glaciers grounded on a bed that deepens inland and extends below sea level are potentially vulnerable to ‘marine ice sheet instability'. This instability, which may lead to runaway ice loss, has been simulated in models, but its consequences have not been directly observed in geological records. Here we provide new surface-exposure ages from an outlet of the East Antarctic Ice Sheet that reveal rapid glacier thinning occurred approximately 7,000 years ago, in the absence of large environmental changes. Glacier thinning persisted for more than two and a half centuries, resulting in hundreds of metres of ice loss. Numerical simulations indicate that ice surface drawdown accelerated when the otherwise steadily retreating glacier encountered a bedrock trough. Together, the geological reconstruction and numerical simulations suggest that centennial-scale glacier thinning arose from unstable grounding line retreat. Capturing these instability processes in ice sheet models is important for predicting Antarctica's future contribution to sea level change. PMID:26608558
NASA Astrophysics Data System (ADS)
Zan, Hao; Li, Haowei; Jiang, Yuguang; Wu, Meng; Zhou, Weixing; Bao, Wen
2018-06-01
As part of our efforts to find ways and means to further improve the regenerative cooling technology in scramjet, the experiments of thermo-acoustic instability dynamic characteristics of hydrocarbon fuel flowing have been conducted in horizontal circular tubes at different conditions. The experimental results indicate that there is a developing process from thermo-acoustic stability to instability. In order to have a deep understanding on the developing process of thermo-acoustic instability, the method of Multi-scale Shannon Wavelet Entropy (MSWE) based on Wavelet Transform Correlation Filter (WTCF) and Multi-Scale Shannon Entropy (MSE) is adopted in this paper. The results demonstrate that the developing process of thermo-acoustic instability from noise and weak signals is well detected by MSWE method and the differences among the stability, the developing process and the instability can be identified. These properties render the method particularly powerful for warning thermo-acoustic instability of hydrocarbon fuel flowing in scramjet cooling channels. The mass flow rate and the inlet pressure will make an influence on the developing process of the thermo-acoustic instability. The investigation on thermo-acoustic instability dynamic characteristics at supercritical pressure based on wavelet entropy method offers guidance on the control of scramjet fuel supply, which can secure stable fuel flowing in regenerative cooling system.
NASA Technical Reports Server (NTRS)
Ibrahim, E. A.; Przekwas, A. J.
1991-01-01
An analysis of the characteristics of the spray produced by an impinging-jet injector is presented. Predictions of the spray droplet size and distribution are obtained through studying the formation and disintegration of the liquid sheet formed by the impact of two cylindrical jets of the same diameter and momentum. Two breakup regimes of the sheet are considered depending on Weber number, with transition occurring at Weber numbers between 500 and 2000. In the lower Weber number regime, the breakup is due to Taylor cardioidal waves, while at Weber number higher than 2000, the sheet disintegration is by the growth of Kelvin-Helmholtz instability waves. Theoretical expressions to predict the sheet thickness and shape are derived for the low Weber number breakup regime. An existing mathematical analysis of Kelvin-Helmholtz instability of radially moving liquid sheets is adopted in the predictions of resultant drop sizes by sheet breakup at Weber numbers greater than 2000. Comparisons of present theoretical results with experimental measurements and empirical correlations reported in the literature reveal favorable agreement.
Putnam, Christopher D.; Srivatsan, Anjana; Nene, Rahul V.; Martinez, Sandra L.; Clotfelter, Sarah P.; Bell, Sara N.; Somach, Steven B.; E.S. de Souza, Jorge; Fonseca, André F.; de Souza, Sandro J.; Kolodner, Richard D.
2016-01-01
Gross chromosomal rearrangements (GCRs) play an important role in human diseases, including cancer. The identity of all Genome Instability Suppressing (GIS) genes is not currently known. Here multiple Saccharomyces cerevisiae GCR assays and query mutations were crossed into arrays of mutants to identify progeny with increased GCR rates. One hundred eighty two GIS genes were identified that suppressed GCR formation. Another 438 cooperatively acting GIS genes were identified that were not GIS genes, but suppressed the increased genome instability caused by individual query mutations. Analysis of TCGA data using the human genes predicted to act in GIS pathways revealed that a minimum of 93% of ovarian and 66% of colorectal cancer cases had defects affecting one or more predicted GIS gene. These defects included loss-of-function mutations, copy-number changes associated with reduced expression, and silencing. In contrast, acute myeloid leukaemia cases did not appear to have defects affecting the predicted GIS genes. PMID:27071721
Langmuir wave turbulence transition in a model of stimulated Raman scatter
NASA Astrophysics Data System (ADS)
Rose, Harvey A.
2000-06-01
In a one-dimensional stationary slab model, it is found that once the stimulated Raman scatter (SRS) homogeneous growth rate, γ0, exceeds a threshold value, γT, there exists a local, finite amplitude instability, which leads to Langmuir wave turbulence (LWT). Given energetic enough initial conditions, this allows forward SRS, a linearly convective instability, to be nonlinearly self-sustaining for γ0>γT. Levels of forward scatter, much larger than predicted by the linear amplification of thermal fluctuations, are then accessible. The Stochastic quasilinear Markovian (SQM) model of SRS interacting with LWT predicts a jump in the value of <ɛ>, the mean energy injection rate from the laser to the plasma, across this threshold, while one-dimensional plasma slab simulations reveal large fluctuations in ɛ, and a smooth variation of <ɛ> with γ0. Away from γT, <ɛ> is well predicted by the SQM. If a background density ramp is imposed, LWT may lead to loss of SRS gradient stabilization for γ0≪γT.
Can, Ata; Erdogan, Fahri; Erdogan, Ayse Ovul
2017-09-01
Tibiofemoral instability is a common complication after total knee arthroplasty (TKA), accounting for up to 22% of all revision procedures. Instability is the second most common cause of revision in the first 5 years after primary TKA. In this study, 13 knees with tibiofemoral instability after TKA were identified among 693 consecutive primary TKA procedures. Patient demographics, body mass index, clinical symptoms, previous deformity, previous knee surgery, complications, interval between index TKA and first tibiofemoral instability, causes of instability, and interval between index TKA and revision TKA were retrospectively reviewed. Clinical outcomes were assessed with the Lysholm Knee Scoring Scale. All patients were women, and mean body mass index was 37.7 kg/m 2 (range, 27.2-52.6 kg/m 2 ). Mean interval between index TKA and first tibiofemoral instability was 23.4 months (range, 9-45 months), and mean interval between index TKA and revision TKA was 25.6 months (range, 14-48 months). All patients had posterior cruciate ligament-retaining implants. Of the 13 knees, 11 had flexion instability and 2 had global instability. In all patients, instability was caused by incompetence of the posterior cruciate ligament; additionally, 1 patient had undersized and malpositioned implants. In 4 knees, the polyethylene insert was broken as well. All patients underwent revision TKA. Lysholm Knee Scoring Scale score had improved from a mean of 35.8 (range, 30-46) to a mean of 68.3 (range, 66-76). All patients included in this study were female and obese. The main cause of instability was secondary posterior cruciate ligament rupture and incompetence. The use of posterior-stabilized implants for primary TKA may prevent secondary instability in obese patients. [Orthopedics. 2017; 40(5):e812-e819.]. Copyright 2017, SLACK Incorporated.
Combustion Instability in an Acid-Heptane Rocket with a Pressurized-Gas Propellant Pumping System
NASA Technical Reports Server (NTRS)
Tischler, Adelbert O.; Bellman, Donald R.
1951-01-01
Results of experimental measurements of low-frequency combustion instability of a 300-pound thrust acid-heptane rocket engine were compared to the trends predicted by an analysis of combustion instability in a rocket engine with a pressurized-gas propellant pumping system. The simplified analysis, which assumes a monopropellant model, was based on the concept of a combustion the delay occurring from the moment of propellant injection to the moment of propellant combustion. This combustion time delay was experimentally measured; the experimental values were of approximately half the magnitude predicted by the analysis. The pressure-fluctuation frequency for a rocket engine with a characteristic length of 100 inches and operated at a combustion-chamber pressure of 280 pounds per square inch absolute was 38 cycles per second; the analysis indicated. a frequency of 37 cycles per second. Increasing combustion-chamber characteristic length decreased the pressure-fluctuation frequency, in conformity to the analysis. Increasing the chamber operating pressure or increasing the injector pressure drop increased the frequency. These latter two effects are contrary to the analysis; the discrepancies are attributed to the conflict between the assumptions made to simplify the analysis and the experimental conditions. Oxidant-fuel ratio had no apparent effect on the experimentally measured pressure-fluctuation frequency for acid-heptane ratios from 3.0 to 7.0. The frequencies decreased with increased amplitude of the combustion-chamber pressure variations. The analysis indicated that if the combustion time delay were sufficiently short, low-frequency combustion instability would be eliminated.
A Multi-Parameter Approach for Calculating Crack Instability
NASA Technical Reports Server (NTRS)
Zanganeh, M.; Forman, R. G.
2014-01-01
An accurate fracture control analysis of spacecraft pressure systems, boosters, rocket hardware and other critical low-cycle fatigue cases where the fracture toughness highly impacts cycles to failure requires accurate knowledge of the material fracture toughness. However, applicability of the measured fracture toughness values using standard specimens and transferability of the values to crack instability analysis of the realistically complex structures is refutable. The commonly used single parameter Linear Elastic Fracture Mechanics (LEFM) approach which relies on the key assumption that the fracture toughness is a material property would result in inaccurate crack instability predictions. In the past years extensive studies have been conducted to improve the single parameter (K-controlled) LEFM by introducing parameters accounting for the geometry or in-plane constraint effects]. Despite the importance of the thickness (out-of-plane constraint) effects in fracture control problems, the literature is mainly limited to some empirical equations for scaling the fracture toughness data] and only few theoretically based developments can be found. In aerospace hardware where the structure might have only one life cycle and weight reduction is crucial, reducing the design margin of safety by decreasing the uncertainty involved in fracture toughness evaluations would result in lighter hardware. In such conditions LEFM would not suffice and an elastic-plastic analysis would be vital. Multi-parameter elastic plastic crack tip field quantifying developments combined with statistical methods] have been shown to have the potential to be used as a powerful tool for tackling such problems. However, these approaches have not been comprehensively scrutinized using experimental tests. Therefore, in this paper a multi-parameter elastic-plastic approach has been used to study the crack instability problem and the transferability issue by considering the effects of geometrical constraints as well as the thickness. The feasibility of the approach has been examined using a wide range of specimen geometries and thicknesses manufactured from 7075-T7351 aluminum alloy.
NASA Astrophysics Data System (ADS)
Yuan, Q.; Zeng, F.; Knorr, K. D.; Imran, M.
2017-12-01
Context/PurposeThe viscous fingering (VF) is widely encountered in a series of miscible displacements such as CO2 sequestration and solvent-based enhanced oil recovery (EOR). Accurate prediction and effective control of its development are significant. Commercial simulators cannot capture VF because of large numerical diffusion. Moreover, previous measures for controlling VF using polymer are very expensive. In the present study, a periodic change of injection rate involving injection and extraction is used to control and reduce VF instabilities at zero cost. MethodsHighly accurate spectral method and fully implicit alternating direction implicit method are used to simulate VF with concentration-dependent diffusion (CDD) and velocity-induced dispersion (VID), although the consideration of CDD and VID may result in strong nonlinearity and stiff problem under unfavourable viscosity ratio. In-house code is developed. The VF is reduced by optimizing period and amplitude of injection rate. ResultsThe results show that the periodic change of injection rates can strongly affect VF and sweep efficiency. In particular, a period-stabilizing range is found in which the VF is reduced compared with widely used constant injection with the same amount of fluid injected. The frequent change of rate results in high sweep efficiency. The optimal injection scheme, when compared with constant injection, can improve sweep efficiency by 20-35%. InterpretationDispersion plays a key role in the mitigation of VF in periodic displacement rates. It enhances the uniform mixing of two fluids in injection stage in any period, while it can more effectively attenuate VF instabilities through the following extraction stage. Fast switch of injection and extraction can mitigate flow instability once it develops. ConclusionThis finding is very novel and significant as it is the first time to control VF instability in porous media without any additional cost. It shows great potential for EOR at zero cost.
A technique to remove the tensile instability in weakly compressible SPH
NASA Astrophysics Data System (ADS)
Xu, Xiaoyang; Yu, Peng
2018-01-01
When smoothed particle hydrodynamics (SPH) is directly applied for the numerical simulations of transient viscoelastic free surface flows, a numerical problem called tensile instability arises. In this paper, we develop an optimized particle shifting technique to remove the tensile instability in SPH. The basic equations governing free surface flow of an Oldroyd-B fluid are considered, and approximated by an improved SPH scheme. This includes the implementations of the correction of kernel gradient and the introduction of Rusanov flux into the continuity equation. To verify the effectiveness of the optimized particle shifting technique in removing the tensile instability, the impacting drop, the injection molding of a C-shaped cavity, and the extrudate swell, are conducted. The numerical results obtained are compared with those simulated by other numerical methods. A comparison among different numerical techniques (e.g., the artificial stress) to remove the tensile instability is further performed. All numerical results agree well with the available data.
Tele-ICU and Patient Safety Considerations.
Hassan, Erkan
The tele-ICU is designed to leverage, not replace, the need for bedside clinical expertise in the diagnosis, treatment, and assessment of various critical illnesses. Tele-ICUs are primarily decentralized or centralized models with differing advantages and disadvantages. The centralized model has sufficiently powered published data to be associated with improved mortality and ICU length of stay in a cost-effective manner. Factors associated with improved clinical outcomes include improved compliance with best practices; providing off-hours implementation of the bedside physician's care plan; and identification of and rapid response to physiological instability (initial clinical review within 1 hour) and rapid response to alerts, alarms, or direct notification by bedside clinicians. With improved communication and frequent review of patients between the tele-ICU and the bedside clinicians, the bedside clinician can provide the care that only they can provide. Although technology continues to evolve at a rapid pace, technology alone will most likely not improve clinical outcomes. Technology will enable us to process real or near real-time data into complex and powerful predictive algorithms. However, the remote and bedside teams must work collaboratively to develop care processes to better monitor, prioritize, standardize, and expedite care to drive greater efficiencies and improve patient safety.
Cinerama sickness and postural instability.
Bos, Jelte E; Ledegang, Wietse D; Lubeck, Astrid J A; Stins, John F
2013-01-01
Motion sickness symptoms and increased postural instability induced by motion pictures have been reported in a laboratory, but not in a real cinema. We, therefore, carried out an observational study recording sickness severity and postural instability in 19 subjects before, immediately and 45 min after watching a 1 h 3D aviation documentary in a cinema. Sickness was significantly larger right after the movie than before, and in a lesser extent still so after 45 min. The average standard deviation of the lateral centre of pressure excursions was significantly larger only right afterwards. When low-pass filtered at 0.1 Hz, lateral and for-aft excursions were both significantly larger right after the movie, while for-aft excursions then remained larger even after 45 min. Speculating on previous findings, we predict more sickness and postural instability in 3D than in 2D movies, also suggesting a possible, but yet unknown risk for work-related activities and vehicle operation. Watching motion pictures may be sickening and posturally destabilising, but effects in a cinema are unknown. We, therefore, carried out an observational study showing that sickness then is mainly an issue during the exposure while postural instability is an issue afterwards.
Wrinkling instabilities in soft bilayered systems
Budday, Silvia; Andres, Sebastian; Walter, Bastian
2017-01-01
Wrinkling phenomena control the surface morphology of many technical and biological systems. While primary wrinkling has been extensively studied, experimentally, analytically and computationally, higher-order instabilities remain insufficiently understood, especially in systems with stiffness contrasts well below 100. Here, we use the model system of an elastomeric bilayer to experimentally characterize primary and secondary wrinkling at moderate stiffness contrasts. We systematically vary the film thickness and substrate prestretch to explore which parameters modulate the emergence of secondary instabilities, including period-doubling, period-tripling and wrinkle-to-fold transitions. Our experiments suggest that period-doubling is the favourable secondary instability mode and that period-tripling can emerge under disturbed boundary conditions. High substrate prestretch can suppress period-doubling and primary wrinkles immediately transform into folds. We combine analytical models with computational simulations to predict the onset of primary wrinkling, the post-buckling behaviour, secondary bifurcations and the wrinkle-to-fold transition. Understanding the mechanisms of pattern selection and identifying the critical control parameters of wrinkling will allow us to fabricate smart surfaces with tunable properties and to control undesired surface patterns like in the asthmatic airway. This article is part of the themed issue ‘Patterning through instabilities in complex media: theory and applications.’ PMID:28373385
Gyrokinetic GDC turbulence simulations: confirming a new instability regime in LAPD plasmas
NASA Astrophysics Data System (ADS)
Pueschel, M. J.; Rossi, G.; Told, D.; Terry, P. W.; Jenko, F.; Carter, T. A.
2016-10-01
Recent high-beta experiments at the LArge Plasma Device have found significant parallel magnetic fluctuations in the region of large pressure gradients. Linear gyrokinetic simulations show the dominant instability at these radii to be the gradient-driven drift coupling (GDC) mode, a non-textbook mode driven by pressure gradients and destabilized by the coupling of ExB and grad-B∥ drifts. Unlike in previous studies, the large parallel extent of the device allows for finite-kz versions of this instability in addition to kz = 0 . The locations of maximum linear growth match very well with experimentally observed peaks of B∥ fluctuations. Local nonlinear simulations reproduce many features of the observations fairly well, with the exception of Bperp fluctuations, for which experimental profiles suggest a source unrelated to pressure gradients. In toto, the results presented here show that turbulence and transport in these experiments are driven by the GDC instability, that important characteristics of the linear instability carry over to nonlinear simulations, and - in the context of validation - that the gyrokinetic framework performs surprisingly well far outside its typical area of application, increasing confidence in its predictive abilities. Supported by U.S. DOE.
NASA Astrophysics Data System (ADS)
Alterman, B. L.; Klein, K. G.; Verscharen, D.; Stevens, M. L.; Kasper, J. C.
2017-12-01
Long duration, in situ data sets enable large-scale statistical analysis of free-energy-driven instabilities in the solar wind. The plasma beta and temperature anisotropy plane provides a well-defined parameter space in which a single-fluid plasma's stability can be represented. Because this reduced parameter space can only represent instability thresholds due to the free energy of one ion species - typically the bulk protons - the true impact of instabilities on the solar wind is under estimated. Nyquist's instability criterion allows us to systematically account for other sources of free energy including beams, drifts, and additional temperature anisotropies. Utilizing over 20 years of Wind Faraday cup and magnetic field observations, we have resolved the bulk parameters for three ion populations: the bulk protons, beam protons, and alpha particles. Applying Nyquist's criterion, we calculate the number of linearly growing modes supported by each spectrum and provide a more nuanced consideration of solar wind stability. Using collisional age measurements, we predict the stability of the solar wind close to the sun. Accounting for the free-energy from the three most common ion populations in the solar wind, our approach provides a more complete characterization of solar wind stability.
Protons and alpha particles in the expanding solar wind: Hybrid simulations
NASA Astrophysics Data System (ADS)
Hellinger, Petr; Trávníček, Pavel M.
2013-09-01
We present results of a two‒dimensional hybrid expanding box simulation of a plasma system with three ion populations, beam and core protons, and alpha particles (and fluid electrons), drifting with respect to each other. The expansion with a strictly radial magnetic field leads to a decrease of the ion perpendicular to parallel temperature ratios as well as to an increase of the ratio between the ion relative velocities and the local Alfvén velocity creating a free energy for many different instabilities. The system is most of the time marginally stable with respect to kinetic instabilities mainly due to the ion relative velocities; these instabilities determine the system evolution counteracting some effects of the expansion. Nonlinear evolution of these instabilities leads to large modifications of the ion velocity distribution functions. The beam protons and alpha particles are decelerated with respect to the core protons and all the populations are cooled in the parallel direction and heated in the perpendicular one. On the macroscopic level, the kinetic instabilities cause large departures of the system evolution from the double adiabatic prediction and lead to perpendicular heating and parallel cooling rates which are comparable to the heating rates estimated from the Helios observations.
Parametric Decay Instability of Near-Acoustic Waves in Fluid and Kinetic Regimes
NASA Astrophysics Data System (ADS)
Affolter, M.; Anderegg, F.; Driscoll, C. F.; Valentini, F.
2016-10-01
We present quantitative measurements of parametric wave-wave coupling rates and decay instabilities in the range 10 meV
NASA Astrophysics Data System (ADS)
Smith, Robert William
Many electrically driven thermoacoustic refrigerators have employed corrugated metal bellows to couple work from an electro-mechanical transducer to the working fluid typically. An alternative bellows structure to mediate this power transfer is proposed: a laminated hollow cylinder comprised of alternating layers of rubber and metal 'hoop-stack'. Fatigue and visoelastic power dissipation in the rubber are critical considerations; strain energy density plays a role in both. Optimal aspect ratios for a rectangle corss-section in the rubber, for given values of bellows axial strain and oscillatory pressure loads are discussed. Comparisons of tearing energies estimated from known load cases and those obtained by finite element analysis for candidate dimensions are presented. The metal layers of bellows are subject to an out-of-plane buckling instability for the case of external pressure loading; failure of this type was experimentally observed. The proposed structure also exhibits column instability when subject to internal pressure, as do metal bellows. For hoop-stack bellows, shear deflection cannot be ignored and this leads to column instability for both internal and external pressures, the latter being analogous to the case of tension buckling of a beam. During prototype bellows testing, transverse modes of vibration are believed to have been excited parametrically as a consequence of the oscillatory pressures. Some operating frequencies of interest in this study lie above the cut-on frequency at which Timoshenko beam theory (TBT) predicts multiple phase speeds; it is shown that TBT fails to accurately predict both mode shapes and resonance frequencies in this regime. TBT is also shown to predict multiple phase speeds in the presence of axial tension, or external pressures, at magnitudes of interest in this study, over the entire frequency spectrum. For modes below cut-on absent a pressure differential (or equivalently, axial load) TBT predicts decreasing resonance frequencies for both internal external static pressure, and converges on known, valid static buckling solutions. Parametric stability in the presence of oscillatory pressure is discussed for such modes; periodic solutions to the Whittaker-Hill equation are pursued to illustrate the shape of the parametric instability regions, and contrasted with results of the more well-known Mathieu equation.
Two-length-scale turbulence model for self-similar buoyancy-, shock-, and shear-driven mixing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morgan, Brandon E.; Schilling, Oleg; Hartland, Tucker A.
The three-equation k-L-a turbulence model [B. Morgan and M. Wickett, Three-equation model for the self-similar growth of Rayleigh-Taylor and Richtmyer-Meshkov instabilities," Phys. Rev. E 91 (2015)] is extended by the addition of a second length scale equation. It is shown that the separation of turbulence transport and turbulence destruction length scales is necessary for simultaneous prediction of the growth parameter and turbulence intensity of a Kelvin-Helmholtz shear layer when model coeficients are constrained by similarity analysis. Constraints on model coeficients are derived that satisfy an ansatz of self-similarity in the low-Atwood-number limit and allow the determination of model coeficients necessarymore » to recover expected experimental behavior. The model is then applied in one-dimensional simulations of Rayleigh-Taylor, reshocked Richtmyer-Meshkov, Kelvin{Helmholtz, and combined Rayleigh-Taylor/Kelvin-Helmholtz instability mixing layers to demonstrate that the expected growth rates are recovered numerically. Finally, it is shown that model behavior in the case of combined instability is to predict a mixing width that is a linear combination of Rayleigh-Taylor and Kelvin-Helmholtz mixing processes.« less
Reynolds number effects on the single-mode Richtmyer-Meshkov instability.
Walchli, B; Thornber, B
2017-01-01
The Reynolds number effects on the nonlinear growth rates of the Richtmyer-Meshkov instability are investigated using two-dimensional numerical simulations. A decrease in Reynolds number gives an increased time to reach nonlinear saturation, with Reynolds number effects only significant in the range Re<256. Within this range there is a sharp change in instability properties. The bubble and spike amplitudes move towards equal size at lower Reynolds numbers and the bubble velocities decay faster than predicted by Sohn's model [S.-I. Sohn, Phys. Rev. E 80, 055302 (2009)PLEEE81539-375510.1103/PhysRevE.80.055302]. Predicted amplitudes show reasonable agreement with the existing theory of Carles and Popinet [P. Carles and S. Popinet, Phys. Fluids Lett. 13, 1833 (2001)10.1063/1.1377863; Eur. J. Mech. B 21, 511 (2002)EJBFEV0997-754610.1016/S0997-7546(02)01199-8] and Mikaelian [K. O. Mikaelian, Phys. Rev. E 47, 375 (1993)1063-651X10.1103/PhysRevE.47.375; K. O. Mikaelian, Phys. Rev. E 87, 031003 (2013)PLEEE81539-375510.1103/PhysRevE.87.031003], with the former being the closest match to the current computations.
Numerical investigation of galloping instabilities in Z-shaped profiles.
Gomez, Ignacio; Chavez, Miguel; Alonso, Gustavo; Valero, Eusebio
2014-01-01
Aeroelastic effects are relatively common in the design of modern civil constructions such as office blocks, airport terminal buildings, and factories. Typical flexible structures exposed to the action of wind are shading devices, normally slats or louvers. A typical cross-section for such elements is a Z-shaped profile, made out of a central web and two-side wings. Galloping instabilities are often determined in practice using the Glauert-Den Hartog criterion. This criterion relies on accurate predictions of the dependence of the aerodynamic force coefficients with the angle of attack. The results of a parametric analysis based on a numerical analysis and performed on different Z-shaped louvers to determine translational galloping instability regions are presented in this paper. These numerical analysis results have been validated with a parametric analysis of Z-shaped profiles based on static wind tunnel tests. In order to perform this validation, the DLR TAU Code, which is a standard code within the European aeronautical industry, has been used. This study highlights the focus on the numerical prediction of the effect of galloping, which is shown in a visible way, through stability maps. Comparisons between numerical and experimental data are presented with respect to various meshes and turbulence models.
Experimental study on rotating instability mode characteristics of axial compressor tip flow
NASA Astrophysics Data System (ADS)
Tian, Jie; Yao, Dan; Wu, Yadong; Ouyang, Hua
2018-04-01
This paper investigates the rotating instabilities that occurred on the single-stage axial compressor designed for aerodynamic performance validation, which was tested with two sets of circumferential measuring points in combination. Circumferential mode characteristics of compressors are usually too high to be captured experimentally, and aliasing of the circumferential mode order occurs when not enough sensors are used. A calibration and prediction method to capture the higher circumferential mode of unsteady flow in a compressor was proposed. Unsteady pressure fluctuations near the tip region in an axial compressor were studied, and high circumferential mode characteristics were captured on both the blade passing frequency (BPF) and the rotational instability frequency (RIF) under different flow rate conditions based on this novel method. The characteristic RI spectrum with a broadband hump was present in a large range of flow conditions. Both the frequency range and the dominant circumferential mode order decreased as the flow rate decreased. Based on the calibrated mode characteristics, a rotating aerodynamic source model is used to explain the side-by-side peak of RIF spectrum and rotating characteristics of RI. The calibration and prediction method of the high circumferential mode is beneficial for the research of unsteady flow in an axial compressor.
Stability of miscible displacements across stratified porous media
NASA Astrophysics Data System (ADS)
Shariati, Maryam; Yortsos, Yanis C.
2001-08-01
We consider the stability of miscible displacements across stratified porous media, where the heterogeneity is along the direction of displacement. Asymptotic results for long and short wavelengths are derived. It is found that heterogeneity has a long-wave effect on the instability, which, in the absence of gravity, becomes nontrivial when the viscosity profiles are nonmonotonic. In the latter case, profiles with end-point viscosities, predicted to be stable using the Saffman-Taylor criterion, can become unstable, if the permeability contrast in the direction of displacement is sufficiently large. Conversely, profiles with end-point viscosities predicted to be unstable, can become stable, if the permeability decrease in the direction of displacement is sufficiently large. Analogous results are found in the presence of gravity, but without the nonmonotonic restriction on the viscosity profile. The increase or decrease in the propensity for instability as the permeability increases or decreases, respectively, reflects the variation of the two different components of the effective fluid mobility. While permeability remains frozen in space, viscosity varies following the concentration field. Thus, the condition for instability does not solely depend on the overall fluid mobility, as in the case of displacements in homogeneous media, but it is additionally dependent on the permeability variation.
Long-wavelength Instability of Trailing Vortices Behind a Delta Wing
NASA Astrophysics Data System (ADS)
Miller, G. D.; Williamson, C. H. K.
1996-11-01
The long-wavelength instability of a vortex pair is studied in the wake of a delta wing. While many previous studies of the instability exist, almost none are accompanied by accurate measurements of the vortex core parameters upon which the theoretical predictions depend. The present measurements of wavelength and maximum growth rate from visualization images are accompanied by extensive DPIV measurements of the distributions of vorticity and axial velocity. Axial velocity was found to be wake-like, with a velocity deficit. The vorticity distribution in the cores is well modeled by an Oseen vortex, as is the downstream growth of the core. The naturally occuring wavelength was measured to be 4.5 times the inter-vortex spacing, which compares very well with the wavelength of maximum growth rate predicted by theory using measured core parameters. Also, the measured value of the growth rate and the lower stability limit correspond well with theory. The response of the wake to forcing is also examined, and reveals that the wake is receptive to forcing at wavelengths near the natural wavelength. We demonstrate control over the rate at which the wake decays by hastening the action of the instabilty with initial forcing. Supported by NDSEG Fellowship for first author.
NASA Astrophysics Data System (ADS)
Maneva, Y. G.; Araneda, J. A.; Poedts, S.
2014-12-01
We consider parametric instabilities of finite-amplitude large-scale Alfven waves in a low-beta collisionless multi-species plasma, consisting of fluid electrons, kinetic protons and a drifting population of minor ions. Complementary to many theoretical studies, relying on fluid or multi-fluid approach, in this work we present the solutions of the parametric instability dispersion relation, including kinetic effects in the parallel direction, along the ambient magnetic field. This provides us with the opportunity to predict the importance of some wave-particle interactions like Landau damping of the daughter ion-acoustic waves for the given pump wave and plasma conditions. We apply the dispersion relation to plasma parameters, typical for low-beta collisionless solar wind close to the Sun. We compare the analytical solutions to the linear stage of hybrid numerical simulations and discuss the application of the model to the problems of preferential heating and differential acceleration of minor ions in the solar corona and the fast solar wind. The results of this study provide tools for prediction and interpretation of the magnetic field and particles data as expected from the future Solar Orbiter and Solar Probe Plus missions.
The Role of Instability Waves in Predicting Jet Noise
NASA Technical Reports Server (NTRS)
Goldstein, M. E.; Leib, S. J.
2004-01-01
There has been an ongoing debate about the role of linear instability waves in the prediction of jet noise. Parallel mean flow models, such as the one proposed by Lilley, usually neglect these waves because they cause the solution to become infinite. The resulting solution is then non-causal and can, therefore, be quite different from the true causal solution for the chaotic flows being considered here. The present paper solves the relevant acoustic equations for a non-parallel mean flow by using a vector Green s function approach and assuming the mean flow to be weakly non-parallel, i.e., assuming the spread rate to be small. It demonstrates that linear instability waves must be accounted for in order to construct a proper causal solution to the jet noise problem. . Recent experimental results (e.g., see Tam, Golebiowski, and Seiner,1996) show that the small angle spectra radiated by supersonic jets are quite different from those radiated at larger angles (say, at 90deg) and even exhibit dissimilar frequency scalings (i.e., they scale with Helmholtz number as opposed to Strouhal number). The present solution is (among other things )able to explain this rather puzzling experimental result.
Experimental study of transient paths to the extinction in sonoluminescence.
Urteaga, Raúl; Dellavale, Damián; Puente, Gabriela F; Bonetto, Fabián J
2008-09-01
An experimental study of the extinction threshold of single bubble sonoluminescence in an air-water system is presented. Different runs from 5% to 100% of air concentrations were performed at room pressure and temperature. The intensity of sonoluminescence (SL) and time of collapse (t(c)) with respect to the driving were measured while the acoustic pressure was linearly increased from the onset of SL until the bubble extinction. The experimental data were compared with theoretical predictions for shape and position instability thresholds. It was found that the extinction of the bubble is determined by different mechanisms depending on the air concentration. For concentrations greater than approximately 30%-40% with respect to the saturation, the parametric instability limits the maximum value of R(0) that can be reached. On the other hand, for lower concentrations, the extinction appears as a limitation in the time of collapse. Two different mechanisms emerge in this range, i.e., the Bjerknes force and the Rayleigh-Taylor instability. The bubble acoustic emission produces backreaction on the bubble itself. This effect occurs in both mechanisms and is essential for the correct prediction of the extinction threshold in the case of low air dissolved concentration.
Two-length-scale turbulence model for self-similar buoyancy-, shock-, and shear-driven mixing
Morgan, Brandon E.; Schilling, Oleg; Hartland, Tucker A.
2018-01-10
The three-equation k-L-a turbulence model [B. Morgan and M. Wickett, Three-equation model for the self-similar growth of Rayleigh-Taylor and Richtmyer-Meshkov instabilities," Phys. Rev. E 91 (2015)] is extended by the addition of a second length scale equation. It is shown that the separation of turbulence transport and turbulence destruction length scales is necessary for simultaneous prediction of the growth parameter and turbulence intensity of a Kelvin-Helmholtz shear layer when model coeficients are constrained by similarity analysis. Constraints on model coeficients are derived that satisfy an ansatz of self-similarity in the low-Atwood-number limit and allow the determination of model coeficients necessarymore » to recover expected experimental behavior. The model is then applied in one-dimensional simulations of Rayleigh-Taylor, reshocked Richtmyer-Meshkov, Kelvin{Helmholtz, and combined Rayleigh-Taylor/Kelvin-Helmholtz instability mixing layers to demonstrate that the expected growth rates are recovered numerically. Finally, it is shown that model behavior in the case of combined instability is to predict a mixing width that is a linear combination of Rayleigh-Taylor and Kelvin-Helmholtz mixing processes.« less
Sunakawa, Yu; Lenz, Heinz-Josef
2015-04-01
Gastric cancer is a heterogenous cancer, which may be classified into several distinct subtypes based on pathology and epidemiology, each with different initiating pathological processes and each possibly having different tumor biology. A classification of gastric cancer should be important to select patients who can benefit from the targeted therapies or to precisely predict prognosis. The Cancer Genome Atlas (TCGA) study collaborated with previous reports regarding subtyping gastric cancer but also proposed a refined classification based on molecular characteristics. The addition of the new molecular classification strategy to a current classical subtyping may be a promising option, particularly stratification by Epstein-Barr virus (EBV) and microsatellite instability (MSI) statuses. According to TCGA study, EBV gastric cancer patients may benefit the programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) antibodies or phosphoinositide 3-kinase (PI3K) inhibitors which are now being developed. The discoveries of predictive biomarkers should improve patient care and individualized medicine in the management since the targeted therapies may have the potential to change the landscape of gastric cancer treatment, moreover leading to both better understanding of the heterogeneity and better outcomes. Patient enrichment by predictive biomarkers for new treatment strategies will be critical to improve clinical outcomes. Additionally, liquid biopsies will be able to enable us to monitor in real-time molecular escape mechanism, resulting in better treatment strategies.
Rotordynamic Instability Problems in High-Performance Turbomachinery
NASA Technical Reports Server (NTRS)
1984-01-01
Rotordynamics and predictions on the stability of characteristics of high performance turbomachinery were discussed. Resolutions of problems on experimental validation of the forces that influence rotordynamics were emphasized. The programs to predict or measure forces and force coefficients in high-performance turbomachinery are illustrated. Data to design new machines with enhanced stability characteristics or upgrading existing machines are presented.
NASA Technical Reports Server (NTRS)
Kopasakis, George
2005-01-01
This year, an improved adaptive-feedback control method was demonstrated that suppresses thermoacoustic instabilities in a liquid-fueled combustor of a type used in aircraft engines. Extensive research has been done to develop lean-burning (low fuel-to-air ratio) combustors that can reduce emissions throughout the mission cycle to reduce the environmental impact of aerospace propulsion systems. However, these lean-burning combustors are susceptible to thermoacoustic instabilities (high-frequency pressure waves), which can fatigue combustor components and even downstream turbine blades. This can significantly decrease the safe operating life of the combustor and turbine. Thus, suppressing the thermoacoustic combustor instabilities is an enabling technology for meeting the low-emission goals of the NASA Ultra-Efficient Engine Technology (UEET) Project.
Effect of electron thermal anisotropy on the kinetic cross-field streaming instability
NASA Technical Reports Server (NTRS)
Tsai, S. T.; Tanaka, M.; Gaffey, J. D., Jr.; Wu, C. S.; Da Jornada, E. H.; Ziebell, L. F.
1984-01-01
The investigation of the kinetic cross-field streaming instability, motivated by the research of collisionless shock waves and previously studied by Wu et al. (1983), is discussed more fully. Since in the ramp region of a quasi-perpendicular shock electrons can be preferentially heated in the direction transverse to the ambient magnetic field, it is both desirable and necessary to include the effect of the thermal anisotropy on the instability associated with a shock. It is found that Te-perpendicular greater than Te-parallel can significantly enhance the peak growth rate of the cross-field streaming instability when the electron beta is sufficiently high. Furthermore, the present analysis also improves the analytical and numerical solutions previously obtained.
Open and Closed Loop Stability of Hingeless Rotor Helicopter Air and Ground Resonance
NASA Technical Reports Server (NTRS)
Young, M. I.; Bailey, D. J.; Hirschbein, M. S.
1974-01-01
The air and ground resonance instabilities of hingeless rotor helicopters are examined on a relatively broad parametric basis including the effects of blade tuning, virtual hinge locations, and blade hysteresis damping, as well as size and scale effects in the gross weight range from 5,000 to 48,000 pounds. A special case of a 72,000 pound helicopter air resonance instability is also included. The study shows that nominal to moderate and readily achieved levels of blade inertial hysteresis damping in conjunction with a variety of tuning and/or feedback conditions are highly effective in dealing with these instabilities. Tip weights and reductions in pre-coning angles are also shown to be effective means for improving the air resonance instability.
Instability-driven electromagnetic fields in coronal plasmas
Manuel, M. J.-E.; Li, C. K.; Seguin, F. H.; ...
2013-04-15
Filamentary electromagnetic fields previously observed in the coronae of laser-driven spherical targets [F. H. S eguin et al., Phys. Plasma. 19, 012701 (2012)] have been further investigated in laser irradiated plastic foils. Face-on proton-radiography provides an axial view of these filaments and shows coherent cellular structure regardless of initial foil-surface conditions. The observed cellular fields are shown to have an approximately constant scale size of 210 lm throughout the plasma evolution. A discussion of possible field-generation mechanisms is provided and it is demonstrated that the likely source of the cellular field structure is the magnetothermal instability. Using predicted temperature andmore » density profiles, the fastest growing modes of this instability were found to be slowly varying in time and consistent with the observed cellular size.« less
On the persistence of unstable bump-on-tail electron velocity distributions in the earth's foreshock
NASA Technical Reports Server (NTRS)
Klimas, Alexander J.; Fitzenreiter, Richard J.
1988-01-01
This paper presents further evidence for the persistence of bump-on-tail unstable reduced velocity distributions in the earth's electron foreshock, which contradicts the understanding of quasi-linear saturation of the bump-on-tail instability. A modified theory for the saturation of the bump-on-tail instability in the earth's foreshock is proposed to explain the mechanism of this persistence, and the predictions are compared to the results of a numerical simulation of the electron plasma in the foreshock. The results support the thesis that quasi-linear saturation of the bump-on-tail instability is modified in the foreshock, due to the driven nature of the region, so that at saturation the stabilized velocity distribution still appears bump-on-tail unstable to linear plasma analysis.
Hall effect on magnetohydrodynamic instabilities at an elliptic magnetic stagnation line
NASA Astrophysics Data System (ADS)
Spies, Günther O.; Faghihi, Mustafa
1987-06-01
To answer the question whether the Hall effect removes the unphysical feature of ideal magnetohydrodynamics of predicting small wavelength kink instabilities at any elliptic magnetic stagnation line, a normal mode analysis is performed of the motion of an incompressible Hall fluid about cylindrical Z-pinch equilibria with circular cross sections. The eigenvalue loci in the complex frequency plane are derived for the equilibrium with constant current density. Every particular mode becomes stable as the Hall parameter exceeds a critical value. This value, however, depends on the mode such that it increases to infinity as the ideal growth rate decreases to zero, implying that there always remains an infinite number of slowly growing instabilities. Correspondingly, the stability criterion for equilibria with arbitrary current distributions is independent of the Hall parameter.
Symmetric and asymmetric instability of buried polymer interfaces
NASA Astrophysics Data System (ADS)
de Silva, J. P.; Cousin, F.; Wildes, A. R.; Geoghegan, M.; Sferrazza, M.
2012-09-01
We demonstrate using neutron reflectometry that the internal interfaces in a trilayer system of two identical thick polystyrene layers sandwiching a much thinner (deuterated) poly(methyl methacrylate) layer 15 nm thick (viscosity matched with the polystyrene layers) increase in roughness at the same rate. When the lower polystyrene layer is replaced with a layer of the same polymer of much greater molecular mass, two different growths of the interfaces are observed. From the growth of the interface for this asymmetric case in the solid regime using the theoretical prediction of the spinodal instability including slippage at the interface, a value of the Hamaker constant of the system has been extracted in agreement with the calculated value. For the symmetric case the rise time of the instability is much faster.
Lateral-Torsional Buckling Instability Caused by Individuals Walking on Wood Composite I-Joists
NASA Astrophysics Data System (ADS)
Villasenor Aguilar, Jose Maria
Recent research has shown that a significant number of the falls from elevation occur when laborers are working on unfinished structures. Workers walking on wood I-joists on roofs and floors are prone to fall hazards. Wood I-joists have been replacing dimension lumber for many floor systems and a substantial number of roof systems in light-frame construction. Wood I-joists are designed to resist axial stresses on the flanges and shear stresses on the web while minimizing material used. However, wood I-joists have poor resistance to applied lateral and torsional loads and are susceptible to lateral-torsional buckling instability. Workers walking on unbraced or partially braced wood I-joists can induce axial and lateral forces as well as twist. Experimental testing demonstrated that workers cause lateral-torsional buckling instability in wood I-joists. However, no research was found related to the lateral-torsional buckling instability induced by individuals walking on the wood I-joists. Furthermore, no research was found considering the effects of the supported end conditions and partial bracing in the lateral-torsional buckling instability of wood I-joists. The goal of this research was to derive mathematical models to predict the dynamic lateral-torsional buckling instability of wood composite I-joists loaded by individuals walking considering different supported end conditions and bracing system configurations. The dynamic lateral-torsional buckling instability was analyzed by linearly combining the static lateral-torsional buckling instability with the lateral bending motion of the wood Ijoists. Mathematical models were derived to calculate the static critical loads for the simply supported end condition and four wood I-joist hanger supported end conditions. Additionally, mathematical models were derived to calculate the dynamic maximum lateral displacements and positions of the individual walking on the wood Ijoists for the same five different supported end conditions. Three different lean-on bracing systems were investigated, non-bracing, one-bracing, and two-bracing systems. Mathematical models were derived to calculate the amount of constraint due to the lean-on bracing system. The derived mathematical models were validated by comparison to data from testing for all supported end conditions and bracing systems. The predicted critical loads using the static buckling theoretical models for the non-bracing system and the static buckling theoretical models combined with the bracing theoretical models for the simply and hanger supported end conditions agreed well with the critical loads obtained from testing for the two wood I-joist sizes investigated. The predicted maximum lateral displacements and individual positions using the bending motion theoretical models for the simply and hanger supported end conditions agreed well with the corresponding maximum lateral displacements and individual positions obtained from testing for both wood I-joist sizes. Results showed that; a) the supported end condition influenced the critical loads, maximum lateral displacements and individual positions, b) the bracing system increased the critical loads and reduced the maximum lateral displacements, c) the critical load increased as the load position displaced away from the wood I-joist mid-span, d) the critical load reduced as the initial lateral displacement of the wood I-joist increased and e) the wood I-joist mid-span was the critical point in the dynamic lateral-torsional buckling instability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sen, Amiya K.
The goal of this grant has been to study the basic physics of various sources of anomalous transport in tokamaks. Anomalous transport in tokamaks continues to be one of the major problems in magnetic fusion research. As a tokamak is not a physics device by design, direct experimental observation and identification of the instabilities responsible for transport, as well as physics studies of the transport in tokamaks, have been difficult and of limited value. It is noted that direct experimental observation, identification and physics study of microinstabilities including ITG, ETG, and trapped electron/ion modes in tokamaks has been very difficultmore » and nearly impossible. The primary reasons are co-existence of many instabilities, their broadband fluctuation spectra, lack of flexibility for parameter scans and absence of good local diagnostics. This has motivated us to study the suspected tokamak instabilities and their transport consequences in a simpler, steady state Columbia Linear Machine (CLM) with collisionless plasma and the flexibility of wide parameter variations. Earlier work as part of this grant was focused on both ITG turbulence, widely believed to be a primary source of ion thermal transport in tokamaks, and the effects of isotope scaling on transport levels. Prior work from our research team has produced and definitively identified both the slab and toroidal branches of this instability and determined the physics criteria for their existence. All the experimentally observed linear physics corroborate well with theoretical predictions. However, one of the large areas of research dealt with turbulent transport results that indicate some significant differences between our experimental results and most theoretical predictions. Latter years of this proposal were focused on anomalous electron transport with a special focus on ETG. There are several advanced tokamak scenarios with internal transport barriers (ITB), when the ion transport is reduced to neoclassical values by combined mechanisms of ExB and diamagnetic flow shear suppression of the ion temperature gradient (ITG) instabilities. However, even when the ion transport is strongly suppressed, the electron transport remains highly anomalous. The most plausible physics scenario for the anomalous electron transport is based on electron temperature gradient (ETG) instabilities. This instability is an electron analog of and nearly isomorphic to the ITG instability, which we had studied before extensively. However, this isomorphism is broken nonlinearily. It is noted that as the typical ETG mode growth rates are larger (in contrast to ITG modes) than ExB shearing rates in usual tokamaks, the flow shear suppression of ETG modes is highly unlikely. This motivated a broader range of investigations of other physics scenarios of nonlinear saturation and transport scaling of ETG modes.« less
NASA Astrophysics Data System (ADS)
Idier, Déborah; Falqués, Albert; Rohmer, Jérémy; Arriaga, Jaime
2017-09-01
The instability mechanisms for self-organized kilometer-scale shoreline sand waves have been extensively explored by modeling. However, while the assumed bathymetric perturbation associated with the sand wave controls the feedback between morphology and waves, its effect on the instability onset has not been explored. In addition, no systematic investigation of the effect of the physical parameters has been done yet. Using a linear stability model, we investigate the effect of wave conditions, cross-shore profile, closure depth, and two perturbation shapes (P1: cross-shore bathymetric profile shift, and P2: bed level perturbation linearly decreasing offshore). For a P1 perturbation, no instability occurs below an absolute critical angle θc0≈ 40-50°. For a P2 perturbation, there is no absolute critical angle: sand waves can develop also for low-angle waves. In fact, the bathymetric perturbation shape plays a key role in low-angle wave instability: such instability only develops if the curvature of the depth contours offshore the breaking zone is larger than the shoreline one. This can occur for the P2 perturbation but not for P1. The analysis of bathymetric data suggests that both curvature configurations could exist in nature. For both perturbation types, large wave angle, small wave period, and large closure depth strongly favor instability. The cross-shore profile has almost no effect with a P1 perturbation, whereas large surf zone slope and gently sloping shoreface strongly enhance instability under low-angle waves for a P2 perturbation. Finally, predictive statistical models are set up to identify sites prone to exhibit either a critical angle close to θc0 or low-angle wave instability.
Mason, Amanda G; Tomé, Stephanie; Simard, Jodie P; Libby, Randell T; Bammler, Theodor K; Beyer, Richard P; Morton, A Jennifer; Pearson, Christopher E; La Spada, Albert R
2014-03-15
Expansion of CAG/CTG trinucleotide repeats causes numerous inherited neurological disorders, including Huntington's disease (HD), several spinocerebellar ataxias and myotonic dystrophy type 1. Expanded repeats are genetically unstable with a propensity to further expand when transmitted from parents to offspring. For many alleles with expanded repeats, extensive somatic mosaicism has been documented. For CAG repeat diseases, dramatic instability has been documented in the striatum, with larger expansions noted with advancing age. In contrast, only modest instability occurs in the cerebellum. Using microarray expression analysis, we sought to identify the genetic basis of these regional instability differences by comparing gene expression in the striatum and cerebellum of aged wild-type C57BL/6J mice. We identified eight candidate genes enriched in cerebellum, and validated four--Pcna, Rpa1, Msh6 and Fen1--along with a highly associated interactor, Lig1. We also explored whether expression levels of mismatch repair (MMR) proteins are altered in a line of HD transgenic mice, R6/2, that is known to show pronounced regional repeat instability. Compared with wild-type littermates, MMR expression levels were not significantly altered in R6/2 mice regardless of age. Interestingly, expression levels of these candidates were significantly increased in the cerebellum of control and HD human samples in comparison to striatum. Together, our data suggest that elevated expression levels of DNA replication and repair proteins in cerebellum may act as a safeguard against repeat instability, and may account for the dramatically reduced somatic instability present in this brain region, compared with the marked instability observed in the striatum.
NASA Astrophysics Data System (ADS)
Yoshida, Tetsuya; Maekawa, Keiichi; Tsuda, Shibun; Shimizu, Tatsuo; Ogasawara, Makoto; Aono, Hideki; Yamaguchi, Yasuo
2018-04-01
We investigate the effect of fluorine implanted in the polycrystalline silicon (poly-Si) gate and source/drain (S/D) region on negative bias temperature instability (NBTI) improvement. It is found that there is a trade-off implantation energy dependence of NBTI between fluorine in the poly-Si gate and that in the S/D region. Fluorine implanted in the poly-Si gate contributes to NBTI improvement under low energy implantation. On the other hand, NBTI is improved by fluorine implanted in the S/D region under high energy. We propose that the two-step implantation process with high and low energy is the optimum condition for NBTI improvement.
Assessing the role of the Kelvin-Helmholtz instability at the QCD cosmological transition
NASA Astrophysics Data System (ADS)
Mourão Roque, V. R. C.; Lugones, G.
2018-03-01
We performed numerical simulations with the PLUTO code in order to analyze the non-linear behavior of the Kelvin-Helmholtz instability in non-magnetized relativistic fluids. The relevance of the instability at the cosmological QCD phase transition was explored using an equation of state based on lattice QCD results with the addition of leptons. The results of the simulations were compared with the theoretical predictions of the linearized theory. For small Mach numbers up to Ms ~ 0.1 we find that both results are in good agreement. However, for higher Mach numbers, non-linear effects are significant. In particular, many initial conditions that look stable according to the linear analysis are shown to be unstable according to the full calculation. Since according to lattice calculations the cosmological QCD transition is a smooth crossover, violent fluid motions are not expected. Thus, in order to assess the role of the Kelvin-Helmholtz instability at the QCD epoch, we focus on simulations with low shear velocity and use monochromatic as well as random perturbations to trigger the instability. We find that the Kelvin-Helmholtz instability can strongly amplify turbulence in the primordial plasma and as a consequence it may increase the amount of primordial gravitational radiation. Such turbulence may be relevant for the evolution of the Universe at later stages and may have an impact in the stochastic gravitational wave background.
The Influence of Trapped Particles on the Parametric Decay Instability of Near-Acoustic Waves
NASA Astrophysics Data System (ADS)
Affolter, M.; Anderegg, F.; Dubin, D. H. E.; Driscoll, C. F.
2017-10-01
We present quantitative measurements of a decay instability to lower frequencies of near-acoustic waves. These experiments are conducted on pure ion plasmas confined in a cylindrical Penning-Malmberg trap. The axisymmetric, standing plasma waves have near-acoustic dispersion, discretized by the axial wave number kz =mz(π /Lp) . The nonlinear coupling rates are measured between large amplitude mz = 2 (pump) waves and small amplitude mz = 1 (daughter) waves, which have a small frequency detuning Δω = 2ω1 -ω2 . Classical 3-wave parametric coupling rates are proportional to pump wave amplitude as Γ (δn2 /n0) , with oscillatory energy exchange for Γ < Δω / 2 and decay instability for Γ > Δω / 2 . Experiments on cold plasmas agree quantitatively for oscillatory energy exchange, and agree within a factor-of-two for decay instability rates. However, nascent theory suggest that this latter agreement is merely fortuitous, and that the instability mechanism is trapped particles. Experiments at higher temperatures show that trapped particles reduce the instability threshold below classical 3-wave theory predictions. Supported by NSF Grant PHY-1414570, and DOE Grants DE-SC0002451 and DE-SC0008693. M. Affolter is supported by the DOE FES Postdoctoral Research Program administered by ORISE for the DOE. ORISE is managed by ORAU under DOE Contract Number DE-SC0014664.
Direct Measurements of the Baroclinic Instability in the Ocean
NASA Astrophysics Data System (ADS)
Sadek, Mahmoud; Aluie, Hussein; Hecht, Matthew; Vallis, Geoffrey
2016-11-01
The ocean is mechanically driven by wind and buoyancy at the surface which produce sloping isopycnals with a reservoir of available potential energy (APE). Large scale APE can be converted to kinetic energy via the baroclinic instability, which produces mesoscale eddies. Mesoscale eddies are ubiquitous in mid- and high-latitudes, and play a primary role in determining the strength and trajectories of currents and in generating intrinsic climate variability. The widespread belief that mesoscale eddies are generated through baroclinic instability is based on general accord between observations and linear stability analysis and the predicted behavior of nonlinear models. However, these models are unable to give us quantitative evidence of the extent to which the instability is responsible for eddy generation at various locations in the ocean. To this end, we implement a new coarse-graining framework, recently developed to study flow on a sphere, to directly analyze the baroclinic instability as a function of scale and geographic location, and implement it using strongly eddying high-resolution simulations in the North Atlantic and in the Southern Ocean. The results give us new information about location and intensity of the instability in both physical and spectral space. Partial support was provided by National Science Foundation (NSF) Grant OCE-1259794, US Department of Energy (US DOE) Grant DE-SC0014318, and the LANL LDRD program through Project Number 20150568ER.
NASA Astrophysics Data System (ADS)
Grah, Aleksander; Dreyer, Michael E.
2010-01-01
Spacecraft technology provides a series of applications for capillary channel flow. It can serve as a reliable means for positioning and transport of liquids under low gravity conditions. Basically, capillary channels provide liquid paths with one or more free surfaces. A problem may be flow instabilities leading to a collapse of the liquid surfaces. A result is undesired gas ingestion and a two phase flow which can in consequence cause several technical problems. The presented capillary channel consists of parallel plates with two free liquid surfaces. The flow rate is established by a pump at the channel outlet, creating a lower pressure within the channel. Owing to the pressure difference between the liquid phase and the ambient gas phase the free surfaces bend inwards and remain stable as long as they are able to resist the steady and unsteady pressure effects. For the numerical prediction of the flow stability two very different models are used. The one-dimensional unsteady model is mainly based on the Bernoulli equation, the continuity equation, and the Gauss-Laplace equation. For three-dimensional evaluations an open source computational fluid dynamics (CFD) tool is applied. For verifications the numerical results are compared with quasisteady and unsteady data of a sounding rocket experiment. Contrary to previous experiments this one results in a significantly longer observation sequence. Furthermore, the critical point of the steady flow instability could be approached by a quasisteady technique. As in previous experiments the comparison to the numerical model evaluation shows a very good agreement for the movement of the liquid surfaces and for the predicted flow instability. The theoretical prediction of the flow instability is related to the speed index, based on characteristic velocities of the capillary channel flow. Stable flow regimes are defined by stability criteria for steady and unsteady flow. The one-dimensional computation of the speed index is based on the technique of the equivalent steady system, which is published for the first time in the present paper. This approach assumes that for every unsteady state an equivalent steady state with a special boundary condition can be formulated. The equivalent steady state technique enables a reformulation of the equation system and an efficient and reliable speed index computation. Furthermore, the existence of the numerical singularity at the critical point of the steady flow instability, postulated in previous publication, is demonstrated in detail. The numerical singularity is related to the stability criterion for steady flow and represents the numerical consequence of the liquid surface collapse. The evaluation and generation of the pressure diagram is demonstrated in detail with a series of numerical dynamic flow studies. The stability diagram, based on one-dimensional computation, gives a detailed overview of the stable and instable flow regimes. This prediction is in good agreement with the experimentally observed critical flow conditions and results of three-dimensional CFD computations.
THE STABILITY OF THE PINCH WITH ANISOTROPIC PRESSURE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaggi, R.K.
1961-12-01
A dispersion equation was obtained for the stability of the pinch from the hydromagnetic equations supplemented by an equation for the pressure tensor of the ions. The dispersion equation was obtained for the marginal instability case only. It was observed that this dispersion equation coincides with the dispersion equation obtained from the Chew, Goldberger, and Low equations for the marginal instability case. It was concluded that the region of stability predicted from the equations that were used is slightly more than given by the kinetic equation used by Chandrasekhar, Kaufmann, and Watson. (auth)
Phase transition dynamics for hot nuclei
NASA Astrophysics Data System (ADS)
Borderie, B.; Le Neindre, N.; Rivet, M. F.; Désesquelles, P.; Bonnet, E.; Bougault, R.; Chbihi, A.; Dell'Aquila, D.; Fable, Q.; Frankland, J. D.; Galichet, E.; Gruyer, D.; Guinet, D.; La Commara, M.; Lombardo, I.; Lopez, O.; Manduci, L.; Napolitani, P.; Pârlog, M.; Rosato, E.; Roy, R.; St-Onge, P.; Verde, G.; Vient, E.; Vigilante, M.; Wieleczko, J. P.; Indra Collaboration
2018-07-01
An abnormal production of events with almost equal-sized fragments was theoretically proposed as a signature of spinodal instabilities responsible for nuclear multifragmentation in the Fermi energy domain. On the other hand finite size effects are predicted to strongly reduce this abnormal production. High statistics quasifusion hot nuclei produced in central collisions between Xe and Sn isotopes at 32 and 45 A MeV incident energies have been used to definitively establish, through the experimental measurement of charge correlations, the presence of spinodal instabilities. N/Z influence was also studied.
Rogue waves lead to the instability in GaN semiconductors
Yahia, M. E.; Tolba, R. E.; El-Bedwehy, N. A.; El-Labany, S. K.; Moslem, W. M.
2015-01-01
A new approach to understand the electron/hole interfaced plasma in GaN high electron mobility transistors (HEMTs). A quantum hydrodynamic model is constructed to include electrons/holes degenerate pressure, Bohm potential, and the exchange/correlation effect and then reduced to the nonlinear Schrödinger equation (NLSE). Numerical analysis of the latter predicts the rough (in)stability domains, which allow for the rogue waves to occur. Our results might give physical solution rather than the engineering one to the intrinsic problems in these high frequency/power transistors. PMID:26206731
Advanced Booster Liquid Engine Combustion Stability
NASA Technical Reports Server (NTRS)
Tucker, Kevin; Gentz, Steve; Nettles, Mindy
2015-01-01
Combustion instability is a phenomenon in liquid rocket engines caused by complex coupling between the time-varying combustion processes and the fluid dynamics in the combustor. Consequences of the large pressure oscillations associated with combustion instability often cause significant hardware damage and can be catastrophic. The current combustion stability assessment tools are limited by the level of empiricism in many inputs and embedded models. This limited predictive capability creates significant uncertainty in stability assessments. This large uncertainty then increases hardware development costs due to heavy reliance on expensive and time-consuming testing.
Spin bearing retainer design optimization
NASA Technical Reports Server (NTRS)
Boesiger, Edward A.; Warner, Mark H.
1991-01-01
The dynamics behavior of spin bearings for momentum wheels (control-moment gyroscope, reaction wheel assembly) is critical to satellite stability and life. Repeated bearing retainer instabilities hasten lubricant deterioration and can lead to premature bearing failure and/or unacceptable vibration. These instabilities are typically distinguished by increases in torque, temperature, audible noise, and vibration induced by increases into the bearing cartridge. Ball retainer design can be optimized to minimize these occurrences. A retainer was designed using a previously successful smaller retainer as an example. Analytical methods were then employed to predict its behavior and optimize its configuration.
On consistency of hydrodynamic approximation for chiral media
NASA Astrophysics Data System (ADS)
Avdoshkin, A.; Kirilin, V. P.; Sadofyev, A. V.; Zakharov, V. I.
2016-04-01
We consider chiral liquids, that is liquids consisting of massless fermions and right-left asymmetric. In such media, one expects existence of electromagnetic current flowing along an external magnetic field, associated with the chiral anomaly. The current is predicted to be dissipation-free. We consider dynamics of chiral liquids, concentrating on the issues of possible instabilities and infrared sensitivity. Instabilities arise, generally speaking, already in the limit of vanishing electromagnetic constant, αel → 0. In particular, liquids with non-vanishing chiral chemical potential might decay into right-left asymmetric states containing vortices.
Wavelength selection in injection-driven Hele-Shaw flows: A maximum amplitude criterion
NASA Astrophysics Data System (ADS)
Dias, Eduardo; Miranda, Jose
2013-11-01
As in most interfacial flow problems, the standard theoretical procedure to establish wavelength selection in the viscous fingering instability is to maximize the linear growth rate. However, there are important discrepancies between previous theoretical predictions and existing experimental data. In this work we perform a linear stability analysis of the radial Hele-Shaw flow system that takes into account the combined action of viscous normal stresses and wetting effects. Most importantly, we introduce an alternative selection criterion for which the selected wavelength is determined by the maximum of the interfacial perturbation amplitude. The effectiveness of such a criterion is substantiated by the significantly improved agreement between theory and experiments. We thank CNPq (Brazilian Sponsor) for financial support.
Delay-induced Turing-like waves for one-species reaction-diffusion model on a network
NASA Astrophysics Data System (ADS)
Petit, Julien; Carletti, Timoteo; Asllani, Malbor; Fanelli, Duccio
2015-09-01
A one-species time-delay reaction-diffusion system defined on a complex network is studied. Traveling waves are predicted to occur following a symmetry-breaking instability of a homogeneous stationary stable solution, subject to an external nonhomogeneous perturbation. These are generalized Turing-like waves that materialize in a single-species populations dynamics model, as the unexpected byproduct of the imposed delay in the diffusion part. Sufficient conditions for the onset of the instability are mathematically provided by performing a linear stability analysis adapted to time-delayed differential equations. The method here developed exploits the properties of the Lambert W-function. The prediction of the theory are confirmed by direct numerical simulation carried out for a modified version of the classical Fisher model, defined on a Watts-Strogatz network and with the inclusion of the delay.
NASA Astrophysics Data System (ADS)
Elgin, L.; Handy, T.; Malamud, G.; Huntington, C. M.; Trantham, M. R.; Klein, S. R.; Kuranz, C. C.; Drake, R. P.; Shvarts, D.
2017-10-01
Potential flow models predict that a Rayleigh-Taylor unstable system will reach a terminal velocity (and constant Froude number) at low Atwood numbers. Numerical simulations predict a re-acceleration phase of Rayleigh-Taylor Instability (RTI) and higher Froude number at late times. To observe this effect, we are conducting a series of experiments at OMEGA 60 to measure single-mode RTI growth at low and high Atwood numbers and late times. X-ray radiographs spanning 40 + ns capture the evolution of these systems. Experimental design challenges and initial results are discussed here. This work is funded by the Lawrence Livermore National Laboratory under subcontract B614207, and was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.
NASA Astrophysics Data System (ADS)
Blum, J.
2014-07-01
There has been vast progress in our understanding of planetesimal formation over the past decades, owing to a number of laboratory experiments as well as to refined models of dust and ice agglomeration in protoplanetary disks. Coagulation rapidly forms cm-sized ''pebbles'' by direct sticking in collisions at low velocities (Güttler et al. 2010; Zsom et al. 2010). For the further growth, two model approaches are currently being discussed: (1) Local concentration of pebbles in nebular instabilities until gravitational instability occurs (Johansen et al. 2007). (2) A competition between fragmentation and mass transfer in collisions among the dusty bodies, in which a few ''lucky winners'' make it to planetesimal sizes (Windmark et al. 2012a,b; Garaud et al. 2013). Predictions of the physical properties of the resulting bodies in both models allow a distinction of the two formation scenarios of planetesimals. In particular, the tensile strength (i.e, the inner cohesion) of the planetesimals differ widely between the two models (Skorov & Blum 2012; Blum et al. 2014). While model (1) predicts tensile strengths on the order of ˜ 1 Pa, model (2) results in rather compactified dusty bodies with tensile strengths in the kPa regime. If comets are km-sized survivors of the planetesimal-formation era, they should in principle hold the secret of their formation process. Water ice is the prime volatile responsible for the activity of comets. Thermophysical models of the heat and mass transport close to the comet-nucleus surface predict water-ice sublimation temperatures that relate to maximum sublimation pressures well below the kPa regime predicted for formation scenario (2). Model (1), however, is in agreement with the observed dust and gas activity of comets. Thus, a formation scenario for cometesimals involving gravitational instability is favored (Blum et al. 2014).
NASA Astrophysics Data System (ADS)
Tahani, Masoud; Askari, Amir R.
2014-09-01
In spite of the fact that pull-in instability of electrically actuated nano/micro-beams has been investigated by many researchers to date, no explicit formula has been presented yet which can predict pull-in voltage based on a geometrically non-linear and distributed parameter model. The objective of present paper is to introduce a simple and accurate formula to predict this value for a fully clamped electrostatically actuated nano/micro-beam. To this end, a non-linear Euler-Bernoulli beam model is employed, which accounts for the axial residual stress, geometric non-linearity of mid-plane stretching, distributed electrostatic force and the van der Waals (vdW) attraction. The non-linear boundary value governing equation of equilibrium is non-dimensionalized and solved iteratively through single-term Galerkin based reduced order model (ROM). The solutions are validated thorough direct comparison with experimental and other existing results reported in previous studies. Pull-in instability under electrical and vdW loads are also investigated using universal graphs. Based on the results of these graphs, non-dimensional pull-in and vdW parameters, which are defined in the text, vary linearly versus the other dimensionless parameters of the problem. Using this fact, some linear equations are presented to predict pull-in voltage, the maximum allowable length, the so-called detachment length, and the minimum allowable gap for a nano/micro-system. These linear equations are also reduced to a couple of universal pull-in formulas for systems with small initial gap. The accuracy of the universal pull-in formulas are also validated by comparing its results with available experimental and some previous geometric linear and closed-form findings published in the literature.
Merrick, Melissa T; Henly, Megan; Turner, Heather A; David-Ferdon, Corinne; Hamby, Sherry; Kacha-Ochana, Akadia; Simon, Thomas R; Finkelhor, David
2018-05-01
Predictability in a child's environment is a critical quality of safe, stable, nurturing relationships and environments, which promote wellbeing and protect against maltreatment. Research has focused on residential mobility's effect on this predictability. This study augments such research by analyzing the impact of an instability index-including the lifetime destabilization factors (LDFs) of natural disasters, homelessness, child home removal, multiple moves, parental incarceration, unemployment, deployment, and multiple marriages--on childhood victimizations. The cross-sectional, nationally representative sample of 12,935 cases (mean age = 8.6 years) was pooled from 2008, 2011, and 2014 National Surveys of Children's Exposure to Violence (NatSCEV). Logistic regression models controlling for demographics, socio-economic status, and family structure tested the association between excessive residential mobility, alone, and with LDFs, and past year childhood victimizations (sexual victimization, witnessing community or family violence, maltreatment, physical assault, property crime, and polyvictimization). Nearly 40% of the sample reported at least one LDF. Excessive residential mobility was significantly predictive of increased odds of all but two victimizations; almost all associations were no longer significant after other destabilizing factors were included. The LDF index without residential mobility was significantly predictive of increased odds of all victimizations (AOR's ranged from 1.36 to 1.69), and the adjusted odds ratio indicated a 69% increased odds of polyvictimization for each additional LDF a child experienced. The LDF index thus provides a useful alternative to using residential moves as the sole indicator of instability. These findings underscore the need for comprehensive supports and services to support stability for children and families. Copyright © 2018. Published by Elsevier Ltd.
Merrick, Melissa T.; Henly, Megan; Turner, Heather A.; David-Ferdon, Corinne; Hamby, Sherry; Kacha-Ochana, Akadia; Simon, Thomas R.; Finkelhor, David
2018-01-01
Predictability in a child’s environment is a critical quality of safe, stable, nurturing relationships and environments, which promote wellbeing and protect against maltreatment. Research has focused on residential mobility’s effect on this predictability. This study augments such research by analyzing the impact of an instability index—including the lifetime destabilization factors (LDFs) of natural disasters, homelessness, child home removal, multiple moves, parental incarceration, unemployment, deployment, and multiple marriages–on childhood victimizations. The cross-sectional, nationally representative sample of 12,935 cases (mean age = 8.6 years) was pooled from 2008, 2011, and 2014 National Surveys of Children’s Exposure to Violence (NatSCEV). Logistic regression models controlling for demographics, socio-economic status, and family structure tested the association between excessive residential mobility, alone, and with LDFs, and past year childhood victimizations (sexual victimization, witnessing community or family violence, maltreatment, physical assault, property crime, and polyvictimization). Nearly 40% of the sample reported at least one LDF. Excessive residential mobility was significantly predictive of increased odds of all but two victimizations; almost all associations were no longer significant after other destabilizing factors were included. The LDF index without residential mobility was significantly predictive of increased odds of all victimizations (AOR’s ranged from 1.36 to 1.69), and the adjusted odds ratio indicated a 69% increased odds of polyvictimization for each additional LDF a child experienced. The LDF index thus provides a useful alternative to using residential moves as the sole indicator of instability. These findings underscore the need for comprehensive supports and services to support stability for children and families. PMID:29558715
Manipulating Energetic Ion Velocity Space to Control Instabilities and Improve Tokamak Performance
NASA Astrophysics Data System (ADS)
Pace, David C.
2017-10-01
The first-ever demonstration of independent current (I) and voltage (V) control of high power neutral beams in tokamak plasma shots has successfully reduced the prevalence of instabilities and improved energetic ion confinement in experiments at the DIII-D tokamak. Energetic ions drive Alfvén eigenmode (AE) instabilities through a resonant energy exchange that can increase radial diffusion of the ions, thereby reducing beam heating and current drive efficiency. This resonance is incredibly sensitive to the ion velocity and orbit topology, which then allows changes in beam voltage (keeping the injected power constant through compensating changes in current) to remove nearly all instability drive. The implementation of temporal control of beam current and voltage allows for a reduction in the resonant energetic ion velocity space while maintaining the ability to inject maximum power. DIII-D low confinement (L-mode) plasmas demonstrate a nearly complete avoidance of AE activity in plasmas with 55 kV beam injection compared to the many AEs that are observed in plasmas featuring similar total beam power at 70 kV. Across the experimental range of beam settings, resulting increases in beam divergence have been inconsequential. High performance steady-state scenarios featuring equilibria that are conducive to dense arrays of Alfvén waves benefit the most from instability control mechanisms. One such scenario, the so-called high qmin scenario, demonstrates improved confinement and equilibrium evolution when the injected beam voltage begins at lower values (i.e., fewer resonances) and then increases as the plasma reaches its stationary period. These results suggest a future in which plasma confinement and performance is improved through continuous feedback control of auxiliary heating systems such that the energetic ion distribution is constantly adapted to produce an optimal plasma state. Work supported by US DOE under DE-FC02-04ER54698.
Majda, Andrew J; Abramov, Rafail; Gershgorin, Boris
2010-01-12
Climate change science focuses on predicting the coarse-grained, planetary-scale, longtime changes in the climate system due to either changes in external forcing or internal variability, such as the impact of increased carbon dioxide. The predictions of climate change science are carried out through comprehensive, computational atmospheric, and oceanic simulation models, which necessarily parameterize physical features such as clouds, sea ice cover, etc. Recently, it has been suggested that there is irreducible imprecision in such climate models that manifests itself as structural instability in climate statistics and which can significantly hamper the skill of computer models for climate change. A systematic approach to deal with this irreducible imprecision is advocated through algorithms based on the Fluctuation Dissipation Theorem (FDT). There are important practical and computational advantages for climate change science when a skillful FDT algorithm is established. The FDT response operator can be utilized directly for multiple climate change scenarios, multiple changes in forcing, and other parameters, such as damping and inverse modelling directly without the need of running the complex climate model in each individual case. The high skill of FDT in predicting climate change, despite structural instability, is developed in an unambiguous fashion using mathematical theory as guidelines in three different test models: a generic class of analytical models mimicking the dynamical core of the computer climate models, reduced stochastic models for low-frequency variability, and models with a significant new type of irreducible imprecision involving many fast, unstable modes.
Doherty, Cailbhe; Bleakley, Chris; Hertel, Jay; Caulfield, Brian; Ryan, John; Delahunt, Eamonn
2018-04-01
To evaluate whether a battery of clinical assessments for acute lateral ankle sprain (LAS) can be used to predict long-term recovery. Cohort study. University biomechanics laboratory. Individuals (N=82) were assessed using a clinical test battery within 2 weeks of incurring a first-time LAS. Not applicable. The clinical test battery included scores on the talar glide test (degrees), the anterior drawer, talar tilt, figure of 8 for swelling (millimeters) and knee to wall (millimeters) tests, and handheld goniometric range of motion (inversion, eversion, and plantarflexion [in degrees]). Scores on the Cumberland Ankle Instability Tool taken 12 months after the clinical test battery were used to classify participants as having chronic ankle instability (CAI) or as being LAS copers. Forty percent of participants were designated as having CAI, with 60% being designated as LAS copers. A logistic regression analysis revealed that a combined model using scores from the talar glide, talar tilt, and anterior drawer tests in addition to plantarflexion range of motion was statistically significant (P<.01) and correctly classified cases with moderate accuracy (68.8%). The final model had moderate sensitivity (64%) and good specificity (72%). The clinical tests used in this investigation have limited predictive value for CAI when conducted in the acute phase of a first-time LAS injury. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Potts, Richard; Faith, J Tyler
2015-10-01
Interaction of orbital insolation cycles defines a predictive model of alternating phases of high- and low-climate variability for tropical East Africa over the past 5 million years. This model, which is described in terms of climate variability stages, implies repeated increases in landscape/resource instability and intervening periods of stability in East Africa. It predicts eight prolonged (>192 kyr) eras of intensified habitat instability (high variability stages) in which hominin evolutionary innovations are likely to have occurred, potentially by variability selection. The prediction that repeated shifts toward high climate variability affected paleoenvironments and evolution is tested in three ways. In the first test, deep-sea records of northeast African terrigenous dust flux (Sites 721/722) and eastern Mediterranean sapropels (Site 967A) show increased and decreased variability in concert with predicted shifts in climate variability. These regional measurements of climate dynamics are complemented by stratigraphic observations in five basins with lengthy stratigraphic and paleoenvironmental records: the mid-Pleistocene Olorgesailie Basin, the Plio-Pleistocene Turkana and Olduvai Basins, and the Pliocene Tugen Hills sequence and Hadar Basin--all of which show that highly variable landscapes inhabited by hominin populations were indeed concentrated in predicted stages of prolonged high climate variability. Second, stringent null-model tests demonstrate a significant association of currently known first and last appearance datums (FADs and LADs) of the major hominin lineages, suites of technological behaviors, and dispersal events with the predicted intervals of prolonged high climate variability. Palynological study in the Nihewan Basin, China, provides a third test, which shows the occupation of highly diverse habitats in eastern Asia, consistent with the predicted increase in adaptability in dispersing Oldowan hominins. Integration of fossil, archeological, sedimentary, and paleolandscape evidence illustrates the potential influence of prolonged high variability on the origin and spread of critical adaptations and lineages in the evolution of Homo. The growing body of data concerning environmental dynamics supports the idea that the evolution of adaptability in response to climate and overall ecological instability represents a unifying theme in hominin evolutionary history. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Liu, Tao; Qin, Weilun; Wang, Dong; Huang, Zhirong
2017-08-01
The microbunching instability driven by beam collective effects in a linear accelerator of a free-electron laser (FEL) facility significantly degrades the electron beam quality and FEL performance. A conventional method to suppress this instability is to introduce an additional uncorrelated energy spread by laser-electron interaction, which has been successfully operated in the Linac Coherent Light Source and Fermi@Elettra, etc. Some other ideas are recently proposed to suppress the instability without increasing energy spread, which could benefit the seeded FEL schemes. In this paper, we propose a reversible electron beam heater using two transverse gradient undulators to suppress the microbunching instability. This scheme introduces both an energy spread increase and a transverse-to-longitudinal phase space coupling, which suppress the microbunching instabilities driven by both longitudinal space charge and coherent synchrotron radiation before and within the system. Finally the induced energy spread increase and emittance growth are reversed. Theoretical analysis and numerical simulations are presented to verify the feasibility of the scheme and indicate the capability to improve the seeded FEL radiation performance.
Study of Uneven Fills to Cure the Coupled-Bunch Instability in SRRC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chao, Alex W.
2002-08-12
The performance of the 1.5-GeV storage ring light source TLS in SRRC has been limited by a longitudinal coupled-bunch beam instability. To improve the performance of the TLS, the beam instability has to be suppressed. One possible way considered for the TLS to suppress its coupled-bunch instability uses uneven filling patterns according to the theory of Prabhakar[1]. By knowing the harmful high-order-modes (HOMs), a special filling pattern can be designed to utilize either mode coupling or Landau damping to cure beam instability. In TLS the HOMs are contributed from the Doris RF cavity installed in the storage ring. The HOMsmore » of a 3-D Doris cavity was numerically analyzed. Filling patterns with equal bunch current according to theory had been calculated to cure the most harmful HOM. A longitudinal particle tracking program was used to simulate the coupled-bunch beam instability with both the uniform filling and the special designed filling. Filling pattern with unequal bunch current was also studied. The results of the simulation were discussed and compared to the theory.« less
Superior labrum anterior to posterior tears and glenohumeral instability.
Virk, Mandeep S; Arciero, Robert A
2013-01-01
Cadaver experiments and clinical studies suggest that the superior labrum-biceps complex plays a role in glenohumeral stability. Superior labrum anterior to posterior (SLAP) tears can be present in acute and recurrent glenohumeral dislocations and contribute to glenohumeral instability. Isolated SLAP tears can cause instability, especially in throwing athletes. Diagnosing a SLAP tear on the basis of the clinical examination alone is difficult because of nonspecific history and physical examination findings and the presence of coexisting intra-articular lesions. Magnetic resonance arthrography is the imaging study of choice for diagnosing SLAP tears; however, arthroscopy remains the gold standard for diagnosis. Arthroscopy is the preferred technique for the repair of a type II SLAP tear and its variant types (V through X) in acute glenohumeral dislocations and instability in younger populations. Clinical outcome studies report a low recurrence of glenohumeral instability after the arthroscopic repair of a SLAP tear in addition to a Bankart repair. Long-term follow-up studies and further advances in arthroscopic fixation techniques will allow a better understanding and improvement in outcomes in patients with SLAP tears associated with glenohumeral instability.
Liu, Tao; Qin, Weilun; Wang, Dong; ...
2017-08-02
The microbunching instability driven by beam collective effects in a linear accelerator of a free-electron laser (FEL) facility significantly degrades the electron beam quality and FEL performance. A conventional method to suppress this instability is to introduce an additional uncorrelated energy spread by laser-electron interaction, which has been successfully operated in the Linac Coherent Light Source and Fermi@Elettra, etc. Some other ideas are recently proposed to suppress the instability without increasing energy spread, which could benefit the seeded FEL schemes. In this paper, we propose a reversible electron beam heater using two transverse gradient undulators to suppress the microbunching instability.more » This scheme introduces both an energy spread increase and a transverse-to-longitudinal phase space coupling, which suppress the microbunching instabilities driven by both longitudinal space charge and coherent synchrotron radiation before and within the system. Finally the induced energy spread increase and emittance growth are reversed. In conclusion, theoretical analysis and numerical simulations are presented to verify the feasibility of the scheme and indicate the capability to improve the seeded FEL radiation performance.« less
Posterior Shoulder Instability
Antosh, Ivan J.; Tokish, John M.; Owens, Brett D.
2016-01-01
Context: Posterior shoulder instability has become more frequently recognized and treated as a unique subset of shoulder instability, especially in the military. Posterior shoulder pathology may be more difficult to accurately diagnose than its anterior counterpart, and commonly, patients present with complaints of pain rather than instability. “Posterior instability” may encompass both dislocation and subluxation, and the most common presentation is recurrent posterior subluxation. Arthroscopic and open treatment techniques have improved as understanding of posterior shoulder instability has evolved. Evidence Acquisition: Electronic databases including PubMed and MEDLINE were queried for articles relating to posterior shoulder instability. Study Design: Clinical review. Level of Evidence: Level 4. Results: In low-demand patients, nonoperative treatment of posterior shoulder instability should be considered a first line of treatment and is typically successful. Conservative treatment, however, is commonly unsuccessful in active patients, such as military members. Those patients with persistent shoulder pain, instability, or functional limitations after a trial of conservative treatment may be considered surgical candidates. Arthroscopic posterior shoulder stabilization has demonstrated excellent clinical outcomes, high patient satisfaction, and low complication rates. Advanced techniques may be required in select cases to address bone loss, glenoid dysplasia, or revision. Conclusion: Posterior instability represents about 10% of shoulder instability and has become increasingly recognized and treated in military members. Nonoperative treatment is commonly unsuccessful in active patients, and surgical stabilization can be considered in patients who do not respond. Isolated posterior labral repairs constitute up to 24% of operatively treated labral repairs in a military population. Arthroscopic posterior stabilization is typically considered as first-line surgical treatment, while open techniques may be required in complex or revision settings. PMID:27697889
A Nonlinear Model for Fuel Atomization in Spray Combustion
NASA Technical Reports Server (NTRS)
Liu, Nan-Suey (Technical Monitor); Ibrahim, Essam A.; Sree, Dave
2003-01-01
Most gas turbine combustion codes rely on ad-hoc statistical assumptions regarding the outcome of fuel atomization processes. The modeling effort proposed in this project is aimed at developing a realistic model to produce accurate predictions of fuel atomization parameters. The model involves application of the nonlinear stability theory to analyze the instability and subsequent disintegration of the liquid fuel sheet that is produced by fuel injection nozzles in gas turbine combustors. The fuel sheet is atomized into a multiplicity of small drops of large surface area to volume ratio to enhance the evaporation rate and combustion performance. The proposed model will effect predictions of fuel sheet atomization parameters such as drop size, velocity, and orientation as well as sheet penetration depth, breakup time and thickness. These parameters are essential for combustion simulation codes to perform a controlled and optimized design of gas turbine fuel injectors. Optimizing fuel injection processes is crucial to improving combustion efficiency and hence reducing fuel consumption and pollutants emissions.
Lee, Hong-Jae; Lim, Kil-Byung; Jung, Tae-Ho; Kim, Dug-Young
2013-01-01
Objective To compare the effect of foot orthotics and rehabilitation exercises by assessing balancing ability and joint proprioception in athletes who have chronic ankle instability. Methods Forty-one athletes who visited hospitals due to chronic ankle instability were randomly assigned to two groups. One group had ankle rehabilitation exercises while the other group had the same rehabilitation exercises as well as foot orthotics. Joint position sense of the ankle joint was examined by using an isokinetic exercise machine. Balancing abilities categorized into static, dynamic and functional balance abilities were evaluated by using computerized posturography. We tested the subjects before and after the four-week rehabilitation program. Results After the four-week treatment, for joint reposition sense evaluation, external 75% angle evaluation was done, revealing that the group with the application of foot orthotics improved by -1.07±1.64 on average, showing no significant difference between the two groups (p>0.05). Static, dynamic and functional balancing abilities using balance masters were evaluated, revealing that the two groups improved in some items, but showing no significant difference between them (p>0.05). Conclusion This study found that athletes with chronic ankle instability who had foot orthotics applied for four weeks improved their proprioceptive and balancing abilities, but did not show additional treatment effects compared with rehabilitation exercise treatment. PMID:24020033
Lee, Hong-Jae; Lim, Kil-Byung; Jung, Tae-Ho; Kim, Dug-Young; Park, Kyung-Rok
2013-08-01
To compare the effect of foot orthotics and rehabilitation exercises by assessing balancing ability and joint proprioception in athletes who have chronic ankle instability. Forty-one athletes who visited hospitals due to chronic ankle instability were randomly assigned to two groups. One group had ankle rehabilitation exercises while the other group had the same rehabilitation exercises as well as foot orthotics. Joint position sense of the ankle joint was examined by using an isokinetic exercise machine. Balancing abilities categorized into static, dynamic and functional balance abilities were evaluated by using computerized posturography. We tested the subjects before and after the four-week rehabilitation program. After the four-week treatment, for joint reposition sense evaluation, external 75% angle evaluation was done, revealing that the group with the application of foot orthotics improved by -1.07±1.64 on average, showing no significant difference between the two groups (p>0.05). Static, dynamic and functional balancing abilities using balance masters were evaluated, revealing that the two groups improved in some items, but showing no significant difference between them (p>0.05). This study found that athletes with chronic ankle instability who had foot orthotics applied for four weeks improved their proprioceptive and balancing abilities, but did not show additional treatment effects compared with rehabilitation exercise treatment.
Footwear effects on walking balance at elevation.
Simeonov, Peter; Hsiao, Hongwei; Powers, John; Ammons, Douglas; Amendola, Alfred; Kau, Tsui-Ying; Cantis, Douglas
2008-12-01
The study evaluated the effects of shoe style on workers' instability during walking at elevation. Twenty-four construction workers performed walking tasks on roof planks in a surround-screen virtual reality system, which simulated a residential roof environment. Three common athletic and three work shoe styles were tested on wide, narrow and tilted planks on a simulated roof and on an unrestricted surface at simulated ground. Dependent variables included lateral angular velocities of the trunk and the rear foot, as well as the workers' rated perceptions of instability. The results demonstrated that shoe style significantly affected workers walking instability at elevated work environments. The results highlighted two major shoe-design pathways for improving walking balance at elevation: enhancing rear foot motion control; and improving ankle proprioception. This study also outlined some of the challenges in optimal shoe selection and specific shoe-design needs for improved walking stability during roof work. The study adds to the knowledge in the area of balance control, by emphasising the role of footwear as a critical human-support surface interface during work on narrow surfaces at height. The results can be used for footwear selection and improvements to reduce risk of falls from elevation.
Holmes, E A; Bonsall, M B; Hales, S A; Mitchell, H; Renner, F; Blackwell, S E; Watson, P; Goodwin, G M; Di Simplicio, M
2016-01-26
Treatment innovation for bipolar disorder has been hampered by a lack of techniques to capture a hallmark symptom: ongoing mood instability. Mood swings persist during remission from acute mood episodes and impair daily functioning. The last significant treatment advance remains Lithium (in the 1970s), which aids only the minority of patients. There is no accepted way to establish proof of concept for a new mood-stabilizing treatment. We suggest that combining insights from mood measurement with applied mathematics may provide a step change: repeated daily mood measurement (depression) over a short time frame (1 month) can create individual bipolar mood instability profiles. A time-series approach allows comparison of mood instability pre- and post-treatment. We test a new imagery-focused cognitive therapy treatment approach (MAPP; Mood Action Psychology Programme) targeting a driver of mood instability, and apply these measurement methods in a non-concurrent multiple baseline design case series of 14 patients with bipolar disorder. Weekly mood monitoring and treatment target data improved for the whole sample combined. Time-series analyses of daily mood data, sampled remotely (mobile phone/Internet) for 28 days pre- and post-treatment, demonstrated improvements in individuals' mood stability for 11 of 14 patients. Thus the findings offer preliminary support for a new imagery-focused treatment approach. They also indicate a step in treatment innovation without the requirement for trials in illness episodes or relapse prevention. Importantly, daily measurement offers a description of mood instability at the individual patient level in a clinically meaningful time frame. This costly, chronic and disabling mental illness demands innovation in both treatment approaches (whether pharmacological or psychological) and measurement tool: this work indicates that daily measurements can be used to detect improvement in individual mood stability for treatment innovation (MAPP).
Witchalls, Jeremy; Waddington, Gordon; Blanch, Peter; Adams, Roger
2012-01-01
Context Individuals with and without functional ankle instability have been tested for deficits in lower limb proprioception with varied results. Objective To determine whether a new protocol for testing participants' joint position sense during stepping is reliable and can detect differences between participants with unstable and stable ankles. Design Descriptive laboratory study. Setting University clinical laboratory. Patients or Other Participants Sample of convenience involving 21 young adult university students and staff. Ankle stability was categorized by score on the Cumberland Ankle Instability Tool; 13 had functional ankle instability, 8 had healthy ankles. Intervention(s) Test-retest of ankle joint position sense when stepping onto and across the Active Movement Extent Discrimination Apparatus twice, separated by an interim test, standing still on the apparatus and moving only 1 ankle into inversion. Main Outcome Measure(s) Difference in scores between groups with stable and unstable ankles and between test repeats. Results Participants with unstable ankles were worse at differentiating between inversion angles underfoot in both testing protocols. On repeated testing with the stepping protocol, performance of the group with unstable ankles was improved (Cohen d = 1.06, P = .006), whereas scores in the stable ankle group did not change in the second test (Cohen d = 0.04, P = .899). Despite this improvement, the unstable group remained worse at differentiating inversion angles on the stepping retest (Cohen d = 0.99, P = .020). Conclusions The deficits on proprioceptive tests shown by individuals with functional ankle instability improved with repeated exposure to the test situation. The learning effect may be the result of systematic exposure to ankle-angle variation that led to movement-specific learning or increased confidence when stepping across the apparatus. PMID:23182010
NASA Technical Reports Server (NTRS)
Melcher, John C.; Morehead, Robert L.
2014-01-01
The project Morpheus liquid oxygen (LOX) / liquid methane (LCH4) main engine is a Johnson Space Center (JSC) designed 5,000 lbf-thrust, 4:1 throttling, pressure-fed cryogenic engine using an impinging element injector design. The engine met or exceeded all performance requirements without experiencing any in- ight failures, but the engine exhibited acoustic-coupled combustion instabilities during sea-level ground-based testing. First tangential (1T), rst radial (1R), 1T1R, and higher order modes were triggered by conditions during the Morpheus vehicle derived low chamber pressure startup sequence. The instability was never observed to initiate during mainstage, even at low power levels. Ground-interaction acoustics aggravated the instability in vehicle tests. Analysis of more than 200 hot re tests on the Morpheus vehicle and Stennis Space Center (SSC) test stand showed a relationship between ignition stability and injector/chamber pressure. The instability had the distinct characteristic of initiating at high relative injection pressure drop at low chamber pressure during the start sequence. Data analysis suggests that the two-phase density during engine start results in a high injection velocity, possibly triggering the instabilities predicted by the Hewitt stability curves. Engine ignition instability was successfully mitigated via a higher-chamber pressure start sequence (e.g., 50% power level vs 30%) and operational propellant start temperature limits that maintained \\cold LOX" and \\warm methane" at the engine inlet. The main engine successfully demonstrated 4:1 throttling without chugging during mainstage, but chug instabilities were observed during some engine shutdown sequences at low injector pressure drop, especially during vehicle landing.
Willinger, Lukas; Schanda, Jakob; Herbst, Elmar; Imhoff, Andreas B; Martetschläger, Frank
2016-12-01
Publications describing tendon graft reconstruction for anterior sternoclavicular joint (SCJ) instability are rare and usually refer to small patient numbers. The aim of this study was to systematically review the literature regarding outcomes and complications following tendon graft reconstruction techniques for anterior SCJ instability. An online database was systematically searched to identify studies on graft reconstruction for anterior SCJ instability. Reported outcome scores were graded as excellent, good, fair and poor to summarize the study results. All reported complications were recorded. Five articles with a total of 80 patients met the inclusion criteria. Reported outcomes were excellent in 10 %, good in 89 % and fair in 1 %. Recurrent instability was found in 10 % of the patients, and 5 % underwent revision surgery due to persistent impairment of shoulder function related to SCJ instability or osteoarthritis. Surgical stabilization techniques for the SCJ using autologous tendon grafts have shown to be safe and reliable and make better patients' pain situation and shoulder function. However, a certain amount of impairment might persist, which needs to be discussed with patients. Severe complications were rare and revision rates were as low as 5 %. Therefore, graft reconstruction techniques should be considered for patients with chronic anterior SCJ instability after a course of failed conservative treatment. This study is valuable for clinicians in daily clinical practice when dealing with this difficult-to-treat pathology and can help surgeons to better predict the clinical outcomes and complications following SCJ graft reconstruction. It should, however, not lead to underestimation of the potential risks of the procedure. Systematic review, Level IV.
Pulsating Hydrodynamic Instability in a Dynamic Model of Liquid-Propellant Combustion
NASA Technical Reports Server (NTRS)
Margolis, Stephen B.; Sacksteder, Kurt (Technical Monitor)
1999-01-01
Hydrodynamic (Landau) instability in combustion is typically associated with the onset of wrinkling of a flame surface, corresponding to the formation of steady cellular structures as the stability threshold is crossed. In the context of liquid-propellant combustion, such instability has recently been shown to occur for critical values of the pressure sensitivity of the burning rate and the disturbance wavenumber, significantly generalizing previous classical results for this problem that assumed a constant normal burning rate. Additionally, however, a pulsating form of hydrodynamic instability has been shown to occur as well, corresponding to the onset of temporal oscillations in the location of the liquid/gas interface. In the present work, we consider the realistic influence of a nonzero temperature sensitivity in the local burning rate on both types of stability thresholds. It is found that for sufficiently small values of this parameter, there exists a stable range of pressure sensitivities for steady, planar burning such that the classical cellular form of hydrodynamic instability and the more recent pulsating form of hydrodynamic instability can each occur as the corresponding stability threshold is crossed. For larger thermal sensitivities, however, the pulsating stability boundary evolves into a C-shaped curve in the disturbance-wavenumber/ pressure-sensitivity plane, indicating loss of stability to pulsating perturbations for all sufficiently large disturbance wavelengths. It is thus concluded, based on characteristic parameter values, that an equally likely form of hydrodynamic instability in liquid-propellant combustion is of a nonsteady, long-wave nature, distinct from the steady, cellular form originally predicted by Landau.
NASA Technical Reports Server (NTRS)
Margolis, Stephen B.; Sacksteder, Kurt (Technical Monitor)
1999-01-01
Hydrodynamic (Landau) instability in combustion is typically associated with the onset of wrinkling of a flame surface, corresponding to the formation of steady cellular structures as the stability threshold is crossed. In the context of liquid-propellant combustion, such instability has recently been shown to occur for critical values of the pressure sensitivity of the burning rate and the disturbance wavenumber, significantly generalizing previous classical results for this problem that assumed a constant normal burning rate. Additionally, however, a pulsating form of hydrodynamic instability has been shown to occur as well, corresponding to the onset of temporal oscillations in the location of the liquid/gas interface. In the present work, we consider the realistic influence of a non-zero temperature sensitivity in the local burning rate on both types of stability thresholds. It is found that for sufficiently small values of this parameter, there exists a stable range of pressure sensitivities for steady, planar burning such that the classical cellular form of hydrodynamic instability and the more recent pulsating form of hydrodynamic instability can each occur as the corresponding stability threshold is crossed. For larger thermal sensitivities, however, the pulsating stability boundary evolves into a C-shaped curve in the (disturbance-wavenumber, pressure-sensitivity) plane, indicating loss of stability to pulsating perturbations for all sufficiently large disturbance wavelengths. It is thus concluded, based on characteristic parameter values, that an equally likely form of hydrodynamic instability in liquid-propellant combustion is of a non-steady, long-wave nature, distinct from the steady, cellular form originally predicted by Landau.
NASA Astrophysics Data System (ADS)
Min, Kyungguk; Liu, Kaijun
2018-01-01
Maintaining the stability of pickup ions in the outer heliosheath is a critical element for the secondary energetic neutral atom (ENA) mechanism, a theory put forth to explain the nearly annular band of ENA emission observed by the Interstellar Boundary EXplorer. A recent study showed that a pickup ion ring can remain stable to the Alfvén/ion cyclotron (AC) instability at propagation parallel to the background magnetic field when the parallel thermal spread of the ring is comparable to that of a background population. This study investigates the potential role that the mirror or ion Bernstein (IB) instabilities can play in the stability of pickup ions when conditions are such that the AC instability is suppressed. Linear Vlasov theory predicts relatively fast mirror and IB instability growth even though AC instability growth is suppressed. For a few such cases, two-dimensional hybrid and macroscopic quasi-linear simulations are carried out to examine how the unstable mirror and IB modes evolve and affect the pickup ion ring beyond the linear theory picture. For the parameters used, the mirror mode dominates initially and leads to a rapid parallel heating of the pickup ions in excess of the parallel temperature of the background protons. The heated pickup ions subsequently trigger onset of the AC mode, which grows sufficiently large to be the dominant pitch angle scattering agent after the mirror mode has decayed away. The present results indicate that the pickup ion stability needed may not be guaranteed once the mirror and IB instabilities are taken into account.
Schilirò, Luca; Montrasio, Lorella; Scarascia Mugnozza, Gabriele
2016-11-01
In recent years, physically-based numerical models have frequently been used in the framework of early-warning systems devoted to rainfall-induced landslide hazard monitoring and mitigation. For this reason, in this work we describe the potential of SLIP (Shallow Landslides Instability Prediction), a simplified physically-based model for the analysis of shallow landslide occurrence. In order to test the reliability of this model, a back analysis of recent landslide events occurred in the study area (located SW of Messina, northeastern Sicily, Italy) on October 1st, 2009 was performed. The simulation results have been compared with those obtained for the same event by using TRIGRS, another well-established model for shallow landslide prediction. Afterwards, a simulation over a 2-year span period has been performed for the same area, with the aim of evaluating the performance of SLIP as early warning tool. The results confirm the good predictive capability of the model, both in terms of spatial and temporal prediction of the instability phenomena. For this reason, we recommend an operating procedure for the real-time definition of shallow landslide triggering scenarios at the catchment scale, which is based on the use of SLIP calibrated through a specific multi-methodological approach. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Podestà, M.; Gorelenkova, M.; Gorelenkov, N. N.; White, R. B.
2017-09-01
Alfvénic instabilities (AEs) are well known as a potential cause of enhanced fast ion transport in fusion devices. Given a specific plasma scenario, quantitative predictions of (i) expected unstable AE spectrum and (ii) resulting fast ion transport are required to prevent or mitigate the AE-induced degradation in fusion performance. Reduced models are becoming an attractive tool to analyze existing scenarios as well as for scenario prediction in time-dependent simulations. In this work, a neutral beam heated NSTX discharge is used as reference to illustrate the potential of a reduced fast ion transport model, known as kick model, that has been recently implemented for interpretive and predictive analysis within the framework of the time-dependent tokamak transport code TRANSP. Predictive capabilities for AE stability and saturation amplitude are first assessed, based on given thermal plasma profiles only. Predictions are then compared to experimental results, and the interpretive capabilities of the model further discussed. Overall, the reduced model captures the main properties of the instabilities and associated effects on the fast ion population. Additional information from the actual experiment enables further tuning of the model’s parameters to achieve a close match with measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Podestà, M.; Gorelenkova, M.; Gorelenkov, N. N.
Alfvénic instabilities (AEs) are well known as a potential cause of enhanced fast ion transport in fusion devices. Given a specific plasma scenario, quantitative predictions of (i) expected unstable AE spectrum and (ii) resulting fast ion transport are required to prevent or mitigate the AE-induced degradation in fusion performance. Reduced models are becoming an attractive tool to analyze existing scenarios as well as for scenario prediction in time-dependent simulations. Here, in this work, a neutral beam heated NSTX discharge is used as reference to illustrate the potential of a reduced fast ion transport model, known as kick model, that hasmore » been recently implemented for interpretive and predictive analysis within the framework of the time-dependent tokamak transport code TRANSP. Predictive capabilities for AE stability and saturation amplitude are first assessed, based on given thermal plasma profiles only. Predictions are then compared to experimental results, and the interpretive capabilities of the model further discussed. Overall, the reduced model captures the main properties of the instabilities and associated effects on the fast ion population. Finally, additional information from the actual experiment enables further tuning of the model's parameters to achieve a close match with measurements.« less
Podestà, M.; Gorelenkova, M.; Gorelenkov, N. N.; ...
2017-07-20
Alfvénic instabilities (AEs) are well known as a potential cause of enhanced fast ion transport in fusion devices. Given a specific plasma scenario, quantitative predictions of (i) expected unstable AE spectrum and (ii) resulting fast ion transport are required to prevent or mitigate the AE-induced degradation in fusion performance. Reduced models are becoming an attractive tool to analyze existing scenarios as well as for scenario prediction in time-dependent simulations. Here, in this work, a neutral beam heated NSTX discharge is used as reference to illustrate the potential of a reduced fast ion transport model, known as kick model, that hasmore » been recently implemented for interpretive and predictive analysis within the framework of the time-dependent tokamak transport code TRANSP. Predictive capabilities for AE stability and saturation amplitude are first assessed, based on given thermal plasma profiles only. Predictions are then compared to experimental results, and the interpretive capabilities of the model further discussed. Overall, the reduced model captures the main properties of the instabilities and associated effects on the fast ion population. Finally, additional information from the actual experiment enables further tuning of the model's parameters to achieve a close match with measurements.« less
Interplay between protons and electrons in a firehose-unstable plasma: Particle-in-cell simulations
NASA Astrophysics Data System (ADS)
Bourdin, Philippe-A.; Maneva, Yana
2017-04-01
Kinetic plasma instabilities originating from unstable, non-Maxwellian shapes of the velocity distribution functions serve as internal degrees of freedom in plasma dynamics, and play an important role near solar current sheets and in solar wind plasmas. In the presence of strong temperature anisotropy (different thermal spreads in the velocity space with respect to the mean magnetic field), plasmas are unstable either to the firehose mode or to the mirror mode in the case of predominant parallel and perpendicular temperatures, respectively. The growth rates of these instabilities and their thresholds depend on plasma properties, such as the temperature anisotropy and the plasma beta. The physics of the temperature anisotropy-driven instabilities becomes even more diverse for various shapes of velocity distribution functions and the particle species of interest. Recent studies based on a linear instability analysis show an interplay in the firehose instability between protons and electrons when the both types of particle species are prone to unstable velocity distribution functions and their instability thresholds. In this work we perform for the first time 3D nonlinear PIC (particle-in-cell) numerical simulations to test for the linear-theory prediction of the simultaneous proton-electron firehose instability. The simulation setup allows us not only to evaluate the growth rate of each firehose instability, but also to track its nonlinear evolution and the related wave-particle interactions such as the pitch-angle scattering or saturation effects. The specialty of our simulation is that the magnetic and electric fields have a low numerical noise level by setting a sufficiently large number of super-particles into the simulation box and enhancing the statistical significance of the velocity distribution functions. We use the iPIC3D code with fully periodic boundaries under various conditions of the electron-to-proton mass ratio, which gives insight into the instability interplay at the intermediate electron-proton and on the scaling of our results towards more realistic particle settings.
An Experimental Investigation of Incompressible Richtmyer-Meshkov Instability
NASA Technical Reports Server (NTRS)
Jacobs, J. W.; Niederhaus, C. E.
2002-01-01
Richtmyer-Meshkov (RM) instability occurs when two different density fluids are impulsively accelerated in the direction normal to their nearly planar interface. The instability causes small perturbations on the interface to grow and eventually become a turbulent flow. It is closely related to Rayleigh-Taylor instability, which is the instability of a planar interface undergoing constant acceleration, such as caused by the suspension of a heavy fluid over a lighter one in the earth's gravitational field. Like the well-known Kelvin-Helmholtz instability, RM instability is a fundamental hydrodynamic instability which exhibits many of the nonlinear complexities that transform simple initial conditions into a complex turbulent flow. Furthermore, the simplicity of RM instability (in that it requires very few defining parameters), and the fact that it can be generated in a closed container, makes it an excellent test bed to study nonlinear stability theory as well as turbulent transport in a heterogeneous system. However, the fact that RM instability involves fluids of unequal densities which experience negligible gravitational force, except during the impulsive acceleration, requires RM instability experiments to be carried out under conditions of microgravity. This experimental study investigates the instability of an interface between incompressible, miscible liquids with an initial sinusoidal perturbation. The impulsive acceleration is generated by bouncing a rectangular tank containing two different density liquids off a retractable vertical spring. The initial perturbation is produced prior to release by oscillating the tank in the horizontal direction to produce a standing wave. The instability evolves in microgravity as the tank travels up and then down the vertical rails of a drop tower until hitting a shock absorber at the bottom. Planar Laser Induced Fluorescence (PLIF) is employed to visualize the flow. PLIF images are captured by a video camera that travels with the tank. Figure 1 is as sequence of images showing the development of the instability from the initial sinusoidal disturbance far into the nonlinear regime which is characterized by the appearance of mushroom structures resulting from the coalescence of baroclinic vorticity produced by the impulsive acceleration. At later times in this sequence the vortex cores are observed to become unstable showing the beginnings of the transition to turbulence in this flow. The amplitude of the growing disturbance after the impulsive acceleration is measured and found to agree well with theoretical predictions. The effects of Reynolds number (based on circulation) on the development of the vortices and the transition to turbulence are also determined.
NASA Technical Reports Server (NTRS)
DeLaat, John C.; Breisacher, Kevin J.
2000-01-01
Low-emission combustor designs are prone to combustor instabilities. Because active control of these instabilities may allow future combustors to meet both stringent emissions and performance requirements, an experimental combustor rig was developed for investigating methods of actively suppressing combustion instabilities. The experimental rig has features similar to a real engine combustor and exhibits instabilities representative of those in aircraft gas turbine engines. Experimental testing in the spring of 1999 demonstrated that the rig can be tuned to closely represent an instability observed in engine tests. Future plans are to develop and demonstrate combustion instability control using this experimental combustor rig. The NASA Glenn Research Center at Lewis Field is leading the Combustion Instability Control program to investigate methods for actively suppressing combustion instabilities. Under this program, a single-nozzle, liquid-fueled research combustor rig was designed, fabricated, and tested. The rig has many of the complexities of a real engine combustor, including an actual fuel nozzle and swirler, dilution cooling, and an effusion-cooled liner. Prior to designing the experimental rig, a survey of aircraft engine combustion instability experience identified an instability observed in a prototype engine as a suitable candidate for replication. The frequency of the instability was 525 Hz, with an amplitude of approximately 1.5-psi peak-to-peak at a burner pressure of 200 psia. The single-nozzle experimental combustor rig was designed to preserve subcomponent lengths, cross sectional area distribution, flow distribution, pressure-drop distribution, temperature distribution, and other factors previously found to be determinants of burner acoustic frequencies, mode shapes, gain, and damping. Analytical models were used to predict the acoustic resonances of both the engine combustor and proposed experiment. The analysis confirmed that the test rig configuration and engine configuration had similar longitudinal acoustic characteristics, increasing the likelihood that the engine instability would be replicated in the rig. Parametric analytical studies were performed to understand the influence of geometry and condition variations and to establish a combustion test plan. Cold-flow experiments verified that the design values of area and flow distributions were obtained. Combustion test results established the existence of a longitudinal combustion instability in the 500-Hz range with a measured amplitude approximating that observed in the engine. Modifications to the rig configuration during testing also showed the potential for injector independence. The research combustor rig was developed in partnership with Pratt & Whitney of West Palm Beach, Florida, and United Technologies Research Center of East Hartford, Connecticut. Experimental testing of the combustor rig took place at United Technologies Research Center.
The effectiveness of arthroscopic stabilisation for failed open shoulder instability surgery.
Millar, N L; Murrell, G A C
2008-06-01
We identified ten patients who underwent arthroscopic revision of anterior shoulder stabilisation between 1999 and 2005. Their results were compared with 15 patients, matched for age and gender, who had a primary arthroscopic stabilisation during the same period. At a mean follow-up of 37 and 36 months, respectively, the scores for pain and shoulder function improved significantly between the pre-operative and follow-up visits in both groups (p = 0.002), with no significant difference between them (p = 0.4). The UCLA and Rowe shoulder scores improved significantly (p = 0.004 and p = 0.002, respectively), with no statistically significant differences between groups (p = 0.6). Kaplan-Meier analysis for time to recurrent instability showed no differences between the groups (p = 0.2). These results suggest that arthroscopic revision anterior shoulder stabilisation is as reliable as primary arthroscopic stabilisation for patients who have had previous open surgery for recurrent anterior instability.
Mesoscale Ionospheric Prediction
2006-09-30
Mesoscale Ionospheric Prediction Gary S. Bust 10000 Burnet Austin Texas, 78758 phone: (512) 835-3623 fax: (512) 835-3808 email: gbust...time-evolving non-linear numerical model of the mesoscale ionosphere , second to couple the mesoscale model to a mesoscale data assimilative analysis...third to use the new data-assimilative mesoscale model to investigate ionospheric structure and plasma instabilities, and fourth to apply the data
ERIC Educational Resources Information Center
Longobardi, Emiddia; Spataro, Pietro; Putnick, Diane L.; Bornstein, Marc H.
2016-01-01
The present study examined continuity/discontinuity and stability/instability of noun and verb production measures in 30 child-mother dyads observed at 16 and 20 months, and predictive relations with the acquisition of nouns and verbs at 24 months. Children exhibited significant discontinuity and robust stability in the frequency of nouns and…
Aerodynamics for the Mars Phoenix Entry Capsule
NASA Technical Reports Server (NTRS)
Edquist, Karl T.; Desai, Prasun N.; Schoenenberger, Mark
2008-01-01
Pre-flight aerodynamics data for the Mars Phoenix entry capsule are presented. The aerodynamic coefficients were generated as a function of total angle-of-attack and either Knudsen number, velocity, or Mach number, depending on the flight regime. The database was constructed using continuum flowfield computations and data from the Mars Exploration Rover and Viking programs. Hypersonic and supersonic static coefficients were derived from Navier-Stokes solutions on a pre-flight design trajectory. High-altitude data (free-molecular and transitional regimes) and dynamic pitch damping characteristics were taken from Mars Exploration Rover analysis and testing. Transonic static coefficients from Viking wind tunnel tests were used for capsule aerodynamics under the parachute. Static instabilities were predicted at two points along the reference trajectory and were verified by reconstructed flight data. During the hypersonic instability, the capsule was predicted to trim at angles as high as 2.5 deg with an on-axis center-of-gravity. Trim angles were predicted for off-nominal pitching moment (4.2 deg peak) and a 5 mm off-axis center-ofgravity (4.8 deg peak). Finally, hypersonic static coefficient sensitivities to atmospheric density were predicted to be within uncertainty bounds.
Edge instability in incompressible planar active fluids
NASA Astrophysics Data System (ADS)
Nesbitt, David; Pruessner, Gunnar; Lee, Chiu Fan
2017-12-01
Interfacial instability is highly relevant to many important biological processes. A key example arises in wound healing experiments, which observe that an epithelial layer with an initially straight edge does not heal uniformly. We consider the phenomenon in the context of active fluids. Improving upon the approximation used by Zimmermann, Basan, and Levine [Eur. Phys. J.: Spec. Top. 223, 1259 (2014), 10.1140/epjst/e2014-02189-7], we perform a linear stability analysis on a two-dimensional incompressible hydrodynamic model of an active fluid with an open interface. We categorize the stability of the model and find that for experimentally relevant parameters, fingering instability is always absent in this minimal model. Our results point to the crucial role of density variation in the fingering instability in tissue regeneration.
Novel Biomarker for Prognosis, Treatment Response
An NCI Cancer Currents blog about a study of a new type of cancer biomarker that measures the extent of chromosomal instability as a way to potentially predict patient prognosis and help guide cancer treatment choices.
The Role of Moist Processes in the Intrinsic Predictability of Indian Ocean Cyclones
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taraphdar, Sourav; Mukhopadhyay, P.; Leung, Lai-Yung R.
The role of moist processes and the possibility of error cascade from cloud scale processes affecting the intrinsic predictable time scale of a high resolution convection permitting model within the environment of tropical cyclones (TCs) over the Indian region are investigated. Consistent with past studies of extra-tropical cyclones, it is demonstrated that moist processes play a major role in forecast error growth which may ultimately limit the intrinsic predictability of the TCs. Small errors in the initial conditions may grow rapidly and cascades from smaller scales to the larger scales through strong diabatic heating and nonlinearities associated with moist convection.more » Results from a suite of twin perturbation experiments for four tropical cyclones suggest that the error growth is significantly higher in cloud permitting simulation at 3.3 km resolutions compared to simulations at 3.3 km and 10 km resolution with parameterized convection. Convective parameterizations with prescribed convective time scales typically longer than the model time step allows the effects of microphysical tendencies to average out so convection responds to a smoother dynamical forcing. Without convective parameterizations, the finer-scale instabilities resolved at 3.3 km resolution and stronger vertical motion that results from the cloud microphysical parameterizations removing super-saturation at each model time step can ultimately feed the error growth in convection permitting simulations. This implies that careful considerations and/or improvements in cloud parameterizations are needed if numerical predictions are to be improved through increased model resolution. Rapid upscale error growth from convective scales may ultimately limit the intrinsic mesoscale predictability of the TCs, which further supports the needs for probabilistic forecasts of these events, even at the mesoscales.« less
Effects of Glycosylation on the Stability of Protein Pharmaceuticals
SOLÁ, RICARDO J.; GRIEBENOW, KAI
2008-01-01
In recent decades, protein-based therapeutics have substantially expanded the field of molecular pharmacology due to their outstanding potential for the treatment of disease. Unfortunately, protein pharmaceuticals display a series of intrinsic physical and chemical instability problems during their production, purification, storage, and delivery that can adversely impact their final therapeutic efficacies. This has prompted an intense search for generalized strategies to engineer the long-term stability of proteins during their pharmaceutical employment. Due to the well known effect that glycans have in increasing the overall stability of glycoproteins, rational manipulation of the glycosylation parameters through glycoengineering could become a promising approach to improve both the in vitro and in vivo stability of protein pharmaceuticals. The intent of this review is therefore to further the field of protein glycoengineering by increasing the general understanding of the mechanisms by which glycosylation improves the molecular stability of protein pharmaceuticals. This is achieved by presenting a survey of the different instabilities displayed by protein pharmaceuticals, by addressing which of these instabilities can be improved by glycosylation, and by discussing the possible mechanisms by which glycans induce these stabilization effects. PMID:18661536
The Richtmyer-Meshkov Instability on a Circular Interface in Magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Black, Wolfgang; Maxon, W. Curtis; Denissen, Nicholas; McFarland, Jacob
2017-11-01
Hydrodynamic instabilities (HI) are ubiquitous in high energy density (HED) applications such as astrophysics, thermonuclear weapons, and inertial fusion. In these systems, fluid mixing is encouraged by the HI which can reduce the energy yield and eventually drive the system to equilibrium. The Richtmyer-Meshkov (RM) instability is one such HI and is created when a perturbed interface between a density gradient is impulsively accelerated. The physics can be complicated one step further by the inclusion of Magnetohydrodynamics (MHD), where HED systems experience the effects of magnetic and electric fields. These systems provide unique challenges and as such can be used to validate hydrodynamic codes capable of predicting HI. The work presented here will outline efforts to study the RMI in MHD for a circular interface utilizing the hydrocode FLAG, developed at Los Alamos National Laboratory.
Symmetry-Breaking Phase Transition without a Peierls Instability in Conducting Monoatomic Chains
NASA Astrophysics Data System (ADS)
Blumenstein, C.; Schäfer, J.; Morresi, M.; Mietke, S.; Matzdorf, R.; Claessen, R.
2011-10-01
The one-dimensional (1D) model system Au/Ge(001), consisting of linear chains of single atoms on a surface, is scrutinized for lattice instabilities predicted in the Peierls paradigm. By scanning tunneling microscopy and electron diffraction we reveal a second-order phase transition at 585 K. It leads to charge ordering with transversal and vertical displacements and complex interchain correlations. However, the structural phase transition is not accompanied by the electronic signatures of a charge density wave, thus precluding a Peierls instability as origin. Instead, this symmetry-breaking transition exhibits three-dimensional critical behavior. This reflects a dichotomy between the decoupled 1D electron system and the structural elements that interact via the substrate. Such substrate-mediated coupling between the wires thus appears to have been underestimated also in related chain systems.
Womack, Sean R; Taraban, Lindsay; Shaw, Daniel S; Wilson, Melvin N; Dishion, Thomas J
2018-06-19
This study examined the impact of residential instability and family structure transitions on the development of internalizing and externalizing problems from age 2 through 10.5. Child's race was examined as a moderator. Caregiver reports of internalizing and externalizing behaviors were obtained on 665 children at ages 5 and 10.5. Early-childhood residential and family structure transitions predicted elevated internalizing and externalizing problems at ages 5 and 10.5, but only for Caucasian children. These findings suggest that residential and family structure instability during early childhood independently contribute to children's later emotional and behavioral development, but vary as a function of the child's race. Community organizations (e.g., Women, Infant, and Children) can connect turbulent families with resources to attenuate effects of residential and family structure instability. © 2018 Society for Research in Child Development.
The effect of instability training on knee joint proprioception and core strength.
Cuğ, Mutlu; Ak, Emre; Ozdemir, Recep Ali; Korkusuz, Feza; Behm, David G
2012-01-01
Although there are many studies demonstrating increased trunk activation under unstable conditions, it is not known whether this increased activation would translate into meaningful trunk strength with a prolonged training program. Additionally, while balance-training programs have been shown to improve stability, their effect on specific joint proprioception is not clear. Thus the objective of this study was to examine training adaptations associated with a 10-week instability-training program. Participants were tested pre- and post-training for trunk extension and flexion strength and knee proprioception. Forty-three participants participated in either a 10-week (3 days per week) instability-training program using Swiss balls and body weight as resistance or a control group (n = 17). The trained group increased (p < 0. 05) trunk extension peak torque/body weight (23.6%) and total work output (20.1%) from pre- to post-training while the control group decreased by 6.8% and 6.7% respectively. The exercise group increased their trunk flexion peak torque/body weight ratios by 18.1% while the control group decreased by 0.4%. Knee proprioception (combined right and left joint repositioning) improved 44.7% from pre- to post-training (p = 0.0006) and persisted (21.5%) for 9 months post-training. In addition there was a side interaction with the position sense of the right knee at 9 months showing 32.1% (p = 0.03) less deviation from the reference angle than the right knee during pre-testing. An instability-training program using Swiss balls with body weight as resistance can provide prolonged improvements in joint proprioception and core strength in previously untrained individuals performing this novel training stress which would contribute to general health. Key pointsAlthough traditional free weight resistance exercises have been recommended as most beneficial for improving strength and power in athletes (Behm et al., 2010b), an IT program using Swiss balls and body weight as a resistance may provide an alternative starting point for the sedentary untrained population.As it is well documented that force or strength is decreased when unbalanced (Behm et al., 2010b) and balance-training programs improve balance (Behm and Kean 2006), this type of instability RT program can provide significant adaptations to improve trunk strength especially with the untrained.This type of training should also be incorporated into a new program as the improvements in joint proprioception may help protect from joint injuries over a protracted period.The finding that improved joint proprioception persists for months after training should be emphasized to those individuals whose training is regularly or inconsistently interrupted.
van Middelkoop, Marienke; van Rijn, Rogier M; Verhaar, Jan A N; Koes, Bart W; Bierma-Zeinstra, Sita M A
2012-01-01
What are prognostic factors for incomplete recovery, instability, re-sprains and pain intensity 12 months after patients consult primary care practitioners for acute ankle sprains? Observational study. One hundred and two patients who consulted their general practitioner or an emergency department for an acute ankle sprain were included in the study. Possible prognostic factors were assessed at baseline and at 3 months follow-up. Outcome measures assessed at 12 months follow-up were self-reported recovery, instability, re-sprains and pain intensity. At 3 months follow-up, 65% of the participants reported instability and 24% reported one or more re-sprains. At 12 months follow-up, 55% still reported instability and more than 50% regarded themselves not completely recovered. None of the factors measured at baseline could predict the outcome at 12 months follow-up. Additionally, prognostic factors from the physical examination of the non-recovered participants at 3 months could not be identified. However, among the non-recovered participants at 3 months follow-up, re-sprains and self-reported pain at rest at 3 months were related to incomplete recovery at 12 months. A physical examination at 3 months follow-up for the non-recovered ankle sprain patient seems to have no additional value for predicting outcome at 12 months. However, for the non-recovered patients at 3 months follow-up, self-reported pain at rest and re-sprains during the first 3 months of follow-up seem to have a prognostic value for recovery at 12 months. Copyright © 2012 Australian Physiotherapy Association. Published by .. All rights reserved.
Mitrano, Peter P; Garzó, Vicente; Hilger, Andrew M; Ewasko, Christopher J; Hrenya, Christine M
2012-04-01
An intriguing phenomenon displayed by granular flows and predicted by kinetic-theory-based models is the instability known as particle "clustering," which refers to the tendency of dissipative grains to form transient, loose regions of relatively high concentration. In this work, we assess a modified-Sonine approximation recently proposed [Garzó, Santos, and Montanero, Physica A 376, 94 (2007)] for a granular gas via an examination of system stability. In particular, we determine the critical length scale associated with the onset of two types of instabilities--vortices and clusters--via stability analyses of the Navier-Stokes-order hydrodynamic equations by using the expressions of the transport coefficients obtained from both the standard and the modified-Sonine approximations. We examine the impact of both Sonine approximations over a range of solids fraction φ<0.2 for small restitution coefficients e = 0.25-0.4, where the standard and modified theories exhibit discrepancies. The theoretical predictions for the critical length scales are compared to molecular dynamics (MD) simulations, of which a small percentage were not considered due to inelastic collapse. Results show excellent quantitative agreement between MD and the modified-Sonine theory, while the standard theory loses accuracy for this highly dissipative parameter space. The modified theory also remedies a high-dissipation qualitative mismatch between the standard theory and MD for the instability that forms more readily. Furthermore, the evolution of cluster size is briefly examined via MD, indicating that domain-size clusters may remain stable or halve in size, depending on system parameters.
High beta effects and nonlinear evolution of the TAE instability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spong, D.A.
1992-12-31
The toroidal Alfven eigenmode has recently been observed experimentally on DIII-D and TFTR when neutral beams are injected near the Alfven velocity. This instability is also of concern for future high {beta} D-T devices where fusion by-product alpha populations will generally be super-Alfvenic. We have developed a gyrofluid model (with Landau closure) of the TAE mode which can include most of the relevant damping mechanisms (continuum damping, ion and electron damping, ion FLR and collisional trapped electron damping) as well as reproducing analytically predicted undamped growth rates relatively accurately. An important consideration in predicting future unstable TAE regimes is themore » effect of finite beta in the background plasma. Due to the Shafranov shift and distortion of the flux surfaces, the location of the stable TAE root and the continuum will shift with increasing {beta}. The net effect of this is to generally enhance continuum damping and stabilize the TAF instability. Also, as the pressure gradient drive from the background becomes increasingly important, coupling between TAE and background driven modes can alter the TAE mode. A further application of our gyrofluid model which will be discussed is the nonlinear evolution of the TAE instability. Gyrofluid models offer a convenient reduced description which is more amenable to computational nonlinear modeling than full kinetic particle models. Our results demonstrate the rise and crash phases of TAE activity similar to experimental observations. The saturation is caused by generation of m=0 n=0 components through nonlinear beatings of the n > 1 modes; these cause modifications to the original equilibrium profiles in such a direction as to decrease the instability drive. This is the gyrofluid analog of direct particle losses. The peak magnetic fluctuation level increases with increasing energetic species beta, resulting in non-resonant stochastization of magnetic field lines.« less
High beta effects and nonlinear evolution of the TAE instability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spong, D.A.
1992-01-01
The toroidal Alfven eigenmode has recently been observed experimentally on DIII-D and TFTR when neutral beams are injected near the Alfven velocity. This instability is also of concern for future high [beta] D-T devices where fusion by-product alpha populations will generally be super-Alfvenic. We have developed a gyrofluid model (with Landau closure) of the TAE mode which can include most of the relevant damping mechanisms (continuum damping, ion and electron damping, ion FLR and collisional trapped electron damping) as well as reproducing analytically predicted undamped growth rates relatively accurately. An important consideration in predicting future unstable TAE regimes is themore » effect of finite beta in the background plasma. Due to the Shafranov shift and distortion of the flux surfaces, the location of the stable TAE root and the continuum will shift with increasing [beta]. The net effect of this is to generally enhance continuum damping and stabilize the TAF instability. Also, as the pressure gradient drive from the background becomes increasingly important, coupling between TAE and background driven modes can alter the TAE mode. A further application of our gyrofluid model which will be discussed is the nonlinear evolution of the TAE instability. Gyrofluid models offer a convenient reduced description which is more amenable to computational nonlinear modeling than full kinetic particle models. Our results demonstrate the rise and crash phases of TAE activity similar to experimental observations. The saturation is caused by generation of m=0 n=0 components through nonlinear beatings of the n > 1 modes; these cause modifications to the original equilibrium profiles in such a direction as to decrease the instability drive. This is the gyrofluid analog of direct particle losses. The peak magnetic fluctuation level increases with increasing energetic species beta, resulting in non-resonant stochastization of magnetic field lines.« less
Maté-Muñoz, José Luis; Monroy, Antonio J Antón; Jodra Jiménez, Pablo; Garnacho-Castaño, Manuel V
2014-09-01
The purpose of this study was compare the effects of a traditional and an instability resistance circuit training program on upper and lower limb strength, power, movement velocity and jumping ability. Thirty-six healthy untrained men were assigned to two experimental groups and a control group. Subjects in the experimental groups performed a resistance circuit training program consisting of traditional exercises (TRT, n = 10) or exercises executed in conditions of instability (using BOSU® and TRX®) (IRT, n = 12). Both programs involved three days per week of training for a total of seven weeks. The following variables were determined before and after training: maximal strength (1RM), average (AV) and peak velocity (PV), average (AP) and peak power (PP), all during bench press (BP) and back squat (BS) exercises, along with squat jump (SJ) height and counter movement jump (CMJ) height. All variables were found to significantly improve (p <0.05) in response to both training programs. Major improvements were observed in SJ height (IRT = 22.1%, TRT = 20.1%), CMJ height (IRT = 17.7%, TRT = 15.2%), 1RM in BS (IRT = 13.03%, TRT = 12.6%), 1RM in BP (IRT = 4.7%, TRT = 4.4%), AP in BS (IRT = 10.5%, TRT = 9.3%), AP in BP (IRT = 2.4%, TRT = 8.1%), PP in BS (IRT=19.42%, TRT = 22.3%), PP in BP (IRT = 7.6%, TRT = 11.5%), AV in BS (IRT = 10.5%, TRT = 9.4%), and PV in BS (IRT = 8.6%, TRT = 4.5%). Despite such improvements no significant differences were detected in the posttraining variables recorded for the two experimental groups. These data indicate that a circuit training program using two instability training devices is as effective in untrained men as a program executed under stable conditions for improving strength (1RM), power, movement velocity and jumping ability. Key PointsSimilar adaptations in terms of gains in strength, power, movement velocity and jumping ability were produced in response to both training programs.Both the stability and instability approaches seem suitable for healthy, physically-active individuals with or with limited experience in resistance training.RPE emerged as a useful tool to monitor exercise intensity during instability strength training.
Maté-Muñoz, José Luis; Monroy, Antonio J. Antón; Jodra Jiménez, Pablo; Garnacho-Castaño, Manuel V.
2014-01-01
The purpose of this study was compare the effects of a traditional and an instability resistance circuit training program on upper and lower limb strength, power, movement velocity and jumping ability. Thirty-six healthy untrained men were assigned to two experimental groups and a control group. Subjects in the experimental groups performed a resistance circuit training program consisting of traditional exercises (TRT, n = 10) or exercises executed in conditions of instability (using BOSU® and TRX®) (IRT, n = 12). Both programs involved three days per week of training for a total of seven weeks. The following variables were determined before and after training: maximal strength (1RM), average (AV) and peak velocity (PV), average (AP) and peak power (PP), all during bench press (BP) and back squat (BS) exercises, along with squat jump (SJ) height and counter movement jump (CMJ) height. All variables were found to significantly improve (p <0.05) in response to both training programs. Major improvements were observed in SJ height (IRT = 22.1%, TRT = 20.1%), CMJ height (IRT = 17.7%, TRT = 15.2%), 1RM in BS (IRT = 13.03%, TRT = 12.6%), 1RM in BP (IRT = 4.7%, TRT = 4.4%), AP in BS (IRT = 10.5%, TRT = 9.3%), AP in BP (IRT = 2.4%, TRT = 8.1%), PP in BS (IRT=19.42%, TRT = 22.3%), PP in BP (IRT = 7.6%, TRT = 11.5%), AV in BS (IRT = 10.5%, TRT = 9.4%), and PV in BS (IRT = 8.6%, TRT = 4.5%). Despite such improvements no significant differences were detected in the posttraining variables recorded for the two experimental groups. These data indicate that a circuit training program using two instability training devices is as effective in untrained men as a program executed under stable conditions for improving strength (1RM), power, movement velocity and jumping ability. Key Points Similar adaptations in terms of gains in strength, power, movement velocity and jumping ability were produced in response to both training programs. Both the stability and instability approaches seem suitable for healthy, physically-active individuals with or with limited experience in resistance training. RPE emerged as a useful tool to monitor exercise intensity during instability strength training. PMID:25177170
Levine, Brett R; Della Valle, Craig J; Deirmengian, Carl A; Breien, Kristoffer M; Weeden, Steven H; Sporer, Scott M; Paprosky, Wayne G
2008-12-01
A retrospective cohort study of 31 hips revised with a tripolar articular construct was performed. Patient demographics and preoperative and postoperative information were recorded. Indications for a tripolar construct were recurrent dislocation and the inability to attain intraoperative stability during hip revision. Nine patients (29%) were revised to the tripolar construct after failure of a constrained liner. Twenty patients (65%) had at least one episode of instability before the most recent revision. At a mean follow-up of 38 months, modified Postel scores improved from a mean of 5.28 to 9.64 (P < .01). Radiographic follow-up revealed no evidence of component loosening/migration, osteolysis, or polyethylene wear. Two patients (7%) required further revision surgery for recurrent instability. A tripolar construct was effective in eliminating or preventing instability in 93% of the complex cases treated. These early results support the use of a tripolar construct in treating recurrent instability or instability encountered at the time of revision hip arthroplasty.
Suppression of the Transit -Time Instability in Large-Area Electron Beam Diodes
NASA Astrophysics Data System (ADS)
Myers, Matthew C.; Friedman, Moshe; Swanekamp, Stephen B.; Chan, Lop-Yung; Ludeking, Larry; Sethian, John D.
2002-12-01
Experiment, theory, and simulation have shown that large-area electron-beam diodes are susceptible to the transit-time instability. The instability modulates the electron beam spatially and temporally, producing a wide spread in electron energy and momentum distributions. The result is gross inefficiency in beam generation and propagation. Simulations indicate that a periodic, slotted cathode structure that is loaded with resistive elements may be used to eliminate the instability. Such a cathode has been fielded on one of the two opposing 60 cm × 200 cm diodes on the NIKE KrF laser at the Naval Research Laboratory. These diodes typically deliver 600 kV, 500 kA, 250 ns electron beams to the laser cell in an external magnetic field of 0.2 T. We conclude that the slotted cathode suppressed the transit-time instability such that the RF power was reduced by a factor of 9 and that electron transmission efficiency into the laser gas was improved by more than 50%.
Fink, Brandi C.; Shapiro, Alyson F.
2014-01-01
The association between marital discord and depression is well established. Marital discord is hypothesized to be a stressful life event that would evoke one’s efforts to cope with it. In an effort to further understand the nature of this association, the current study investigated coping as a mediating variable between marital dissatisfaction and depression and between marital instability and depression. Both marital dissatisfaction and instability, reflecting orthogonal dimensions of marital discord, were included in the model examined to elucidate a more complete picture of marital functioning. Structural Equation Modeling analyses revealed that coping mediated the association between marital instability and depression, but not marital dissatisfaction and depression, suggesting that coping traditionally considered adaptive for individuals in the context of controllable stressors may not be adaptive in the context of couple relationship instability. The findings also have implications for interventions focusing on decreasing maladaptive coping strategies in couples presenting for marital therapy or depression in addition to efforts directed at improving marital quality. PMID:25032063
McCabe, Michael P; Weinberg, Douglas; Field, Larry D; O'Brien, Michael J; Hobgood, E Rhett; Savoie, Felix H
2014-04-01
This study aims to evaluate our outcomes of arthroscopic remplissage in this setting. A retrospective review was performed to identify patients who underwent arthroscopic remplissage of an engaging Hill-Sachs lesion along with anterior capsulolabral reconstruction for anterior glenohumeral instability with moderate glenohumeral bone loss at our institution. Thirty-five patients, with a minimum of 2 years' follow-up, were identified. We assessed the American Shoulder and Elbow Surgeons score, incidence of recurrent instability, and postoperative Rowe instability score. Follow-up was available for 30 patients (31 shoulders). The mean age was 24.6 years, with a mean follow-up period of 41 months. Prior instability surgery had failed in 11 patients, and they underwent capsulolabral reconstruction and remplissage ("revision surgery"). The failure rate in revision cases (36%) was significantly higher than the failure rate in primary surgery cases (0%) (P = .01). Failure resulted from trauma in all 4 patients, and none required further surgery. The mean American Shoulder and Elbow Surgeons score for all patients improved from 50 preoperatively to 91 postoperatively (P < .001), with no significant postoperative difference between primary and revision patients (P = .13). The patients with clinical failure showed nonsignificant improvement from 41 preoperatively to 72 postoperatively (P = .08). The mean postoperative Rowe score for the entire cohort was 90. The Rowe score was significantly lower in the 4 cases of failure than in the 27 non-failure cases (51 v 96, P < .001). In our experience, aggressive capsulolabral reconstruction with remplissage in traumatic instability patients with moderate bone loss and engaging humeral Hill-Sachs lesions yields acceptable outcomes for primary instability surgery. However, a significantly higher failure rate occurred when arthroscopic reconstruction with remplissage was performed in the revision setting. Level IV, therapeutic case series. Copyright © 2014 Arthroscopy Association of North America. All rights reserved.
Wainright, William B; Spritzer, Charles E.; Lee, Jun Young; Easley, Mark E.; DeOrio, James K.; Nunley, James A.; DeFrate, Louis E.
2012-01-01
Background Lateral ankle instability leads to an increased risk of tibiotalar joint osteoarthritis. Previous studies have found abnormal tibiotalar joint motions with lateral ankle instability that may contribute to this increased incidence of osteoarthritis, including increased anterior translation and internal rotation of the talus under weight-bearing loading. Surgical repairs for lateral ankle instability have shown good clinical results, but the effects of repair on in vivo ankle motion are not well understood. Hypothesis The modified Broström-Gould lateral ligament reconstruction decreases anterior translation and internal rotation of the talus under in vivo weight-bearing loading conditions. Study Design Controlled laboratory study. Methods Seven patients underwent modified Brostöm-Gould repair for unilateral lateral ankle instability. Ankle joint kinematics as a function of increasing body weight were studied with magnetic resonance imaging and biplanar fluoroscopy. Tibiotalar kinematics were measured in unstable ankles preoperatively and postoperatively at a mean follow-up of 12 months, as well as in the uninjured contralateral ankles of the same individuals. Results Surgical repair resulted in statistically significant decreases in anterior translation of the talus (0.9±0.3mm, p=0.018) at 100% bodyweight and internal rotation of the talus at 75% (2.6±0.8°, p=0.019) and 100% (2.7±0.8°, p=0.013) bodyweight compared to ankle kinematics measured before repair. No statistically significant differences were detected between repaired ankles and contralateral normal ankles. Conclusion The modified Broström-Gould repair improved the abnormal joint motion observed in patients with lateral ankle instability, decreasing anterior translation and internal rotation of the talus. Clinical Relevance Altered kinematics may contribute to the tibiotalar joint degeneration that occurs with chronic lateral ankle instability. The findings of the current study support the efficacy of this repair in improving the abnormal ankle motion observed in these patients. PMID:22886690
NASA Astrophysics Data System (ADS)
Prime, Michael; Vaughan, Diane; Preston, Dean; Oro, David; Buttler, William
2013-06-01
Rayleigh-Taylor instabilities have been widely used to study the deviatoric (flow) strength of solids at high strain rates. More recently, experiments applying a supported shock through mating surfaces (Atwood number = 1) with geometrical perturbations have been proposed for studying strength at strain rates up to 107/sec using Richtmyer-Meshkov (RM) instabilities. Buttler et al. [J. Fluid Mech., 2012] recently reported experimental results for RM instability growth but with an unsupported shock applied by high explosives and the geometrical perturbations on the opposite free surface (Atwood number = -1). This novel configuration allowed detailed experimental observation of the instability growth and arrest. We present results and detailed interpretation from numerical simulations of the Buttler experiments on copper. Highly-resolved, two-dimensional simulations were performed using a Lagrangian hydrocode and the Preston-Tonks-Wallace (PTW) strength model. The model predictions show good agreement with the data in spite of the PTW model being calibrated on lower strain rate data. The numerical simulations are used to 1) examine various assumptions previously made in an analytical model, 2) to estimate the sensitivity of such experiments to material strength and 3) to explore the possibility of extracting meaningful strength information in the face of complicated spatial and temporal variations of stress, pressure, and temperature during the experiments.
Phase space effects on fast ion distribution function modeling in tokamaks
NASA Astrophysics Data System (ADS)
Podestà, M.; Gorelenkova, M.; Fredrickson, E. D.; Gorelenkov, N. N.; White, R. B.
2016-05-01
Integrated simulations of tokamak discharges typically rely on classical physics to model energetic particle (EP) dynamics. However, there are numerous cases in which energetic particles can suffer additional transport that is not classical in nature. Examples include transport by applied 3D magnetic perturbations and, more notably, by plasma instabilities. Focusing on the effects of instabilities, ad-hoc models can empirically reproduce increased transport, but the choice of transport coefficients is usually somehow arbitrary. New approaches based on physics-based reduced models are being developed to address those issues in a simplified way, while retaining a more correct treatment of resonant wave-particle interactions. The kick model implemented in the tokamak transport code TRANSP is an example of such reduced models. It includes modifications of the EP distribution by instabilities in real and velocity space, retaining correlations between transport in energy and space typical of resonant EP transport. The relevance of EP phase space modifications by instabilities is first discussed in terms of predicted fast ion distribution. Results are compared with those from a simple, ad-hoc diffusive model. It is then shown that the phase-space resolved model can also provide additional insight into important issues such as internal consistency of the simulations and mode stability through the analysis of the power exchanged between energetic particles and the instabilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Podesta, M.; Gorelenkova, M.; Fredrickson, E. D.
Here, integrated simulations of tokamak discharges typically rely on classical physics to model energetic particle (EP) dynamics. However, there are numerous cases in which energetic particles can suffer additional transport that is not classical in nature. Examples include transport by applied 3D magnetic perturbations and, more notably, by plasma instabilities. Focusing on the effects of instabilities,ad-hocmodels can empirically reproduce increased transport, but the choice of transport coefficients is usually somehow arbitrary. New approaches based on physics-based reduced models are being developed to address those issues in a simplified way, while retaining a more correct treatment of resonant wave-particle interactions. Themore » kick model implemented in the tokamaktransport code TRANSP is an example of such reduced models. It includes modifications of the EP distribution by instabilities in real and velocity space, retaining correlations between transport in energy and space typical of resonant EP transport. The relevance of EP phase space modifications by instabilities is first discussed in terms of predicted fast ion distribution. Results are compared with those from a simple, ad-hoc diffusive model. It is then shown that the phase-space resolved model can also provide additional insight into important issues such as internal consistency of the simulations and mode stability through the analysis of the power exchanged between energetic particles and the instabilities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Podestà, M., E-mail: mpodesta@pppl.gov; Gorelenkova, M.; Fredrickson, E. D.
Integrated simulations of tokamak discharges typically rely on classical physics to model energetic particle (EP) dynamics. However, there are numerous cases in which energetic particles can suffer additional transport that is not classical in nature. Examples include transport by applied 3D magnetic perturbations and, more notably, by plasma instabilities. Focusing on the effects of instabilities, ad-hoc models can empirically reproduce increased transport, but the choice of transport coefficients is usually somehow arbitrary. New approaches based on physics-based reduced models are being developed to address those issues in a simplified way, while retaining a more correct treatment of resonant wave-particle interactions.more » The kick model implemented in the tokamak transport code TRANSP is an example of such reduced models. It includes modifications of the EP distribution by instabilities in real and velocity space, retaining correlations between transport in energy and space typical of resonant EP transport. The relevance of EP phase space modifications by instabilities is first discussed in terms of predicted fast ion distribution. Results are compared with those from a simple, ad-hoc diffusive model. It is then shown that the phase-space resolved model can also provide additional insight into important issues such as internal consistency of the simulations and mode stability through the analysis of the power exchanged between energetic particles and the instabilities.« less
The initial instability and finite-amplitude stability of alternate bars in straight channels
Nelson, J.M.
1990-01-01
The initial instability and fully developed stability of alternate bars in straight channels are investigated using linearized and nonlinear analyses. The fundamental instability leading to these features is identified through a linear stability analysis of the equations governing the flow and sediment transport fields. This instability is explained in terms of topographically induced steering of the flow and the associated pattern of erosion and deposition on the bed. While the linear theory is useful for examining the instability mechanism, this approach is shown to yield relatively little information about well-developed alternate bars and, specifically, the linear analysis is shown to yield poor predictions of the fully developed bar wavelength. A fully nonlinear approach is presented that permits computation of the evolution of these bed features from an initial perturbation to their fully developed morphology. This analysis indicates that there is typically substantial elongation of the bar wavelength during the evolution process, a result that is consistent with observations of bar development in flumes and natural channels. The nonlinear approach demonstrates that the eventual stability of these features is a result of the interplay between topographic steering effects, secondary flow production as a result of streamline curvature, and gravitationally induced modifications of sediment fluxes over a sloping bed. ?? 1990.
Phase space effects on fast ion distribution function modeling in tokamaks
White, R. B. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Podesta, M. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Gorelenkova, M. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Fredrickson, E. D. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Gorelenkov, N. N. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
2016-06-01
Integrated simulations of tokamak discharges typically rely on classical physics to model energetic particle (EP) dynamics. However, there are numerous cases in which energetic particles can suffer additional transport that is not classical in nature. Examples include transport by applied 3D magnetic perturbations and, more notably, by plasma instabilities. Focusing on the effects of instabilities, ad-hoc models can empirically reproduce increased transport, but the choice of transport coefficients is usually somehow arbitrary. New approaches based on physics-based reduced models are being developed to address those issues in a simplified way, while retaining a more correct treatment of resonant wave-particle interactions. The kick model implemented in the tokamak transport code TRANSP is an example of such reduced models. It includes modifications of the EP distribution by instabilities in real and velocity space, retaining correlations between transport in energy and space typical of resonant EP transport. The relevance of EP phase space modifications by instabilities is first discussed in terms of predicted fast ion distribution. Results are compared with those from a simple, ad-hoc diffusive model. It is then shown that the phase-space resolved model can also provide additional insight into important issues such as internal consistency of the simulations and mode stability through the analysis of the power exchanged between energetic particles and the instabilities.
NASA Astrophysics Data System (ADS)
Li, Yuan; Chen, Xuejiang; Su, Juan
2017-06-01
A three-dimensional kinetic Monte Carlo (KMC) model has been developed to study the step instability caused by nucleation during the step-flow growth of 3C-SiC. In the model, a lattice mesh was established to fix the position of atoms and bond partners based on the crystal lattice of 3C-SiC. The events considered in the model were adsorption and diffusion of adatoms on the terraces, attachment, detachment and interlayer transport of adatoms at the step edges, and nucleation of adatoms. Then the effects of nucleation on the instability of step meandering and the coalescence of both islands and steps were simulated by the model. The results showed that the instability of step meandering caused by nucleation was affected by the growth temperature. And the effects of nucleation on the instability was also analyzed. Moreover, the surface roughness as a function of time for different temperatures was discussed. Finally, a phase diagram was presented to predict in which conditions the effects of nucleation on step meandering become significant and the three different regimes, the step-flow (SF), 2D nucleation (2DN), and 3D layer by layer (3DLBL) were determined.
Wind, Rutger J P; Heesterbeek, Petra J C; Wymenga, Ate B
2018-06-11
Trochlear dysplasia is a major risk factor predisposing to patellar instability and has been reported to occur in up to 85% of patients with recurrent patellar dislocation. Different operative techniques have been described to correct trochlear dysplasia, including the Bereiter technique, in which subchondral bone is removed and the cartilage can be compressed into a U-shaped groove. The hypothesis was that after a Bereiter-type trochleoplasty combined with medialisation of the tibial tubercle and MPFL reconstruction, patellar pain and instability decreased and anatomic reconstruction can be seen radiographically after 5-year follow-up. Between 2004 and 2011, a combined procedure including Bereiter-type trochleoplasty was performed on 21 consecutively included patients (22 knees) with objective patellar instability and severe trochlear dysplasia. Instability and pain were assessed preoperatively and 3, 6, 12, 24 and 60 months postoperatively with the visual analogue scale (VAS) for pain and instability, Kujala, International Knee Documentation Committee Subjective Knee Evaluation (IKDC SKE) and Short Form Health Survey (SF-36). Pre- and postoperatively, a true lateral radiograph was made to investigate the presence of the crossing sign and to measure the trochlear bump and trochlear depth, as well as a sunrise patella view to measure the sulcus angle. VAS pain and instability, Kujala and IKDC SKE improved significantly 5 years after trochleoplasty (p < 0.05). SF-36 showed no significant improvement. None of the patients reported patellar dislocations postoperatively. Sport activities remained limited. Postoperative radiographs showed no crossing sign. There was a significant increase in trochlear depth (p < 0.0001) and also a significant decrease in trochlear bump and sulcus angle (both p < 0.0001). A combined procedure consisting of Bereiter-type trochleoplasty, medialisation of the tibial tubercle and MPFL reconstruction in patients with objective patellar instability and severe trochlear dysplasia resulted in a clear decrease of pain and instability. Radiological assessment showed anatomical reconstruction. Nevertheless, residual symptoms remain and the possibility of future cartilage damage is uncertain. IV.
Flight-Test Evaluation of Flutter-Prediction Methods
NASA Technical Reports Server (NTRS)
Lind, RIck; Brenner, Marty
2003-01-01
The flight-test community routinely spends considerable time and money to determine a range of flight conditions, called a flight envelope, within which an aircraft is safe to fly. The cost of determining a flight envelope could be greatly reduced if there were a method of safely and accurately predicting the speed associated with the onset of an instability called flutter. Several methods have been developed with the goal of predicting flutter speeds to improve the efficiency of flight testing. These methods include (1) data-based methods, in which one relies entirely on information obtained from the flight tests and (2) model-based approaches, in which one relies on a combination of flight data and theoretical models. The data-driven methods include one based on extrapolation of damping trends, one that involves an envelope function, one that involves the Zimmerman-Weissenburger flutter margin, and one that involves a discrete-time auto-regressive model. An example of a model-based approach is that of the flutterometer. These methods have all been shown to be theoretically valid and have been demonstrated on simple test cases; however, until now, they have not been thoroughly evaluated in flight tests. An experimental apparatus called the Aerostructures Test Wing (ATW) was developed to test these prediction methods.
Hydrodynamic Instability in an Extended Landau/Levich Model of Liquid-Propellant Combustion
NASA Technical Reports Server (NTRS)
Margolis, Stephen B.; Sackesteder, Kurt (Technical Monitor)
1998-01-01
The classical Landau/Levich models of liquid propellant combustion, which serve as seminal examples of hydrodynamic instability in reactive systems, have been combined and extended to account for a dynamic dependence, absent in the original formulations, of the local burning rate on the local pressure and/or temperature fields. The resulting model admits an extremely rich variety of both hydrodynamic and reactive/diffusive instabilities that can be analyzed in various limiting parameter regimes. In the present work, a formal asymptotic analysis, based on the realistic smallness of the gas-to-liquid density ratio, is developed to investigate the combined effects of gravity, surface tension and viscosity on the hydrodynamic instability of the propagating liquid/gas interface. In particular, a composite asymptotic expression, spanning three distinguished wavenumber regimes, is derived for both cellular and pulsating hydrodynamic neutral stability boundaries A(sub p)(k), where A(sub p) is the pressure sensitivity of the burning rate and k is the disturbance wavenumber. For the case of cellular (Landau) instability, the results demonstrate explicitly the stabilizing effect of gravity on long-wave disturbances, the stabilizing effect of viscosity and surface tension on short-wave perturbations, and the instability associated with intermediate wavenumbers for critical negative values of A(sub p). In the limiting case of weak gravity, it is shown that cellular hydrodynamic instability in this context is a long-wave instability phenomenon, whereas at normal gravity, this instability is first manifested through O(l) wavenumber disturbances. It is also demonstrated that, in the large wavenumber regime, surface tension and both liquid and gas viscosity all produce comparable stabilizing effects in the large-wavenumber regime, thereby providing significant modifications to previous analyses of Landau instability in which one or more of these effects were neglected. In contrast, the pulsating hydrodynamic stability boundary is found to be insensitive to gravitational and surface-tension effects, but is more sensitive to the effects of liquid viscosity, which is a significant stabilizing effect for O(l) and higher wavenumbers. Liquid-propellant combustion is predicted to be stable (i.e., steady and planar) only for a range of negative pressure sensitivities that lie between the two types of hydrodynamic stability boundaries.
Onset of Darrieus-Landau Instability in Expanding Flames
NASA Astrophysics Data System (ADS)
Mohan, Shikhar; Matalon, Moshe
2017-11-01
The effect of small amplitude perturbations on the propagation of circular flames in unconfined domains is investigated, computationally and analytically, within the context of the hydrodynamic theory. The flame, treated as a surface of density discontinuity separating fresh combustible mixture from the burnt gas, propagates at a speed dependent upon local curvature and hydrodynamic strain. For mixtures with Lewis numbers above criticality, thermodiffusive effects have stabilizing influences which largely affect the flame at small radii. The amplitude of these disturbances initially decay and only begin to grow once a critical radius is reached. This instability is hydrodynamic in nature and is a consequence of thermal expansion. Through linear stability analysis, predictions of critical flame radius at the onset of instability are obtained as functions of Markstein length and thermal expansion coefficients. The flame evolution is also examined numerically where the motion of the interface is tracked via a level-set method. Consistent with linear stability results, simulations show the flame initially remaining stable and the existence of a particular mode that will be first to grow and later determine the cellular structure observed experimentally at the onset of instability.
Stall induced instability of a teetered rotor
NASA Astrophysics Data System (ADS)
Glasgow, J. C.; Corrigan, R. D.
Recent tests on the 38m Mod-0 horizontal experimental wind turbine yielded quantitative information on stall induced instability of a teetered rotor. Tests were conducted on rotor blades with NACA 230 series and NACA 643-618 airfoils at low rotor speeds to produce high angles of attack at relatively low wind speeds and power levels. The behavior of the rotor shows good agreement with predicted rotor response based on blade angle of attack calculations and airfoil section properties. The untwisted blades with the 64 series airfoil sections had a slower rate of onset of rotor instability when compared with the twisted 230 series blades, but high teeter angles and teeter stop impacts were experienced with both rotors as wind speeds increased to produce high angles of attack on the outboard portion of the blade. The relative importance of blade twist and airfoil section stall characteristics on the rate of onset of rotor unstability with increasing wind speed was not established however. Blade pitch was shown to be effective in eliminating rotor instability at the expense of some loss in rotor performance near rated wind speed.
Current Driven Instabilities and Anomalous Mobility in Hall-effect Thrusters
NASA Astrophysics Data System (ADS)
Tran, Jonathan; Eckhardt, Daniel; Martin, Robert
2017-10-01
Due to the extreme cost of fully resolving the Debye length and plasma frequency, hybrid plasma simulations utilizing kinetic ions and quasi-steady state fluid electrons have long been the principle workhorse methodology for Hall-effect thruster (HET) modeling. Plasma turbulence and the resulting anomalous electron transport in HETs is a promising candidate for developing predictive models for the observed anomalous transport. In this work, we investigate the implementation of an anomalous electron cross field transport model for hybrid HET simulations such a HPHall. A theory for anomalous transport in HETs and current driven instabilities has been recently studied by Lafleur et al. This work has shown collective electron-wave scattering due to large amplitude azimuthal fluctuations of the electric field. We will further adapt the previous results for related current driven instabilities to electric propulsion relevant mass ratios and conduct a preliminary study of resolving this instability with a modified hybrid (fluid electron and kinetic ion) simulation with the hope of integration with established hybrid HET simulations. This work is supported by the Air Force Office of Scientific Research award FA9950-17RQCOR465.
NASA Astrophysics Data System (ADS)
Guha, Anirban
2017-11-01
Theoretical studies on linear shear instabilities as well as different kinds of wave interactions often use simple velocity and/or density profiles (e.g. constant, piecewise) for obtaining good qualitative and quantitative predictions of the initial disturbances. Moreover, such simple profiles provide a minimal model to obtain a mechanistic understanding of shear instabilities. Here we have extended this minimal paradigm into nonlinear domain using vortex method. Making use of unsteady Bernoulli's equation in presence of linear shear, and extending Birkhoff-Rott equation to multiple interfaces, we have numerically simulated the interaction between multiple fully nonlinear waves. This methodology is quite general, and has allowed us to simulate diverse problems that can be essentially reduced to the minimal system with interacting waves, e.g. spilling and plunging breakers, stratified shear instabilities (Holmboe, Taylor-Caulfield, stratified Rayleigh), jet flows, and even wave-topography interaction problem like Bragg resonance. We found that the minimal models capture key nonlinear features (e.g. wave breaking features like cusp formation and roll-ups) which are observed in experiments and/or extensive simulations with smooth, realistic profiles.
Zanon, Carlo; Tonini, Gian Paolo
2017-11-01
Chromosome instability has a pivotal role among the hallmarks of cancer, but its transcriptional counterpart is rarely considered a relevant factor in cell destabilization. To examine transcription instability (TIN), we first devised a metric we named TIN index and used it to evaluate TIN on a dataset containing more than 500 neuroblastoma samples. We found that metastatic tumors from high-risk (HR) patients are characterized by significantly different TIN index values compared to low/intermediate-risk patients. Our results indicate that the TIN index is a good predictor of neuroblastoma patient's outcome, and a related TIN index gene signature (TIN-signature) is also able to predict the neuroblastoma patient's outcome with high confidence. Interestingly, we find that TIN-signature genes have a strong positional association with superenhancers in neuroblastoma tumors. Finally, we show that TIN is linked to chromatin structural domains and interferes with their integrity in HR neuroblastoma patients. This novel approach to gene expression analysis broadens the perspective of genome instability investigations to include functional aspects. © 2017 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.
Instability of elliptic liquid jets: Temporal linear stability theory and experimental analysis
NASA Astrophysics Data System (ADS)
Amini, Ghobad; Lv, Yu; Dolatabadi, Ali; Ihme, Matthias
2014-11-01
The instability dynamics of inviscid liquid jets issuing from elliptical orifices is studied, and effects of the surrounding gas and the liquid surface tension on the stability behavior are investigated. A dispersion relation for the zeroth azimuthal (axisymmetric) instability mode is derived. Consistency of the analysis is confirmed by demonstrating that these equations reduce to the well-known dispersion equations for the limiting cases of round and planar jets. It is shown that the effect of the ellipticity is to increase the growth rate over a large range of wavenumbers in comparison to those of a circular jet. For higher Weber numbers, at which capillary forces have a stabilizing effect, the growth rate decreases with increasing ellipticity. Similar to circular and planar jets, increasing the density ratio between gas and liquid increases the growth of disturbances significantly. These theoretical investigations are complemented by experiments to validate the local linear stability results. Comparisons of predicted growth rates with measurements over a range of jet ellipticities confirm that the theoretical model provides a quantitatively accurate description of the instability dynamics in the Rayleigh and first wind-induced regimes.
Surface Tension Induced Instabilities in Reduced Gravity: the Benard Problem
NASA Technical Reports Server (NTRS)
Koschmieder, E.; Chai, A. T.
1985-01-01
A Benard convection experiment has been set up, and the onset of convection in shallow layers of silicone oil two millimeters or less deep has been studied. The onset has been observed visually or has been determined by the break in the heat transfer curve which accompanies the onset of convection. The outcome of these experiments has been very surprising, from the point of view of theoretical expectations. The onset of convection at temperature differences far below the critical value for fluid depths smaller than 2mm was observed. The discrepancy between experiments and theory increases with decreasing fluid depth. According to theoretical considerations, the effects of surface tension become more important as the fluid depth is decreased. Actually, one observes that the onset of convection tales place in two stages. There is first an apparently surface tension driven instability, occuring at subcritical temperature differences according to conventional theory. If then the temperature difference is increased, a second instability occurs which transform the first pattern into conventional strong hexagonal Benard cells. The second instability is in agreement with the critical temperature gradients predicted by Nield.
Proton core-beam system in the expanding solar wind: Hybrid simulations
NASA Astrophysics Data System (ADS)
Hellinger, Petr; Trávníček, Pavel M.
2011-11-01
Results of a two-dimensional hybrid expanding box simulation of a proton beam-core system in the solar wind are presented. The expansion with a strictly radial magnetic field leads to a decrease of the ratio between the proton perpendicular and parallel temperatures as well as to an increase of the ratio between the beam-core differential velocity and the local Alfvén velocity creating a free energy for many different instabilities. The system is indeed most of the time marginally stable with respect to the parallel magnetosonic, oblique Alfvén, proton cyclotron and parallel fire hose instabilities which determine the system evolution counteracting some effects of the expansion and interacting with each other. Nonlinear evolution of these instabilities leads to large modifications of the proton velocity distribution function. The beam and core protons are slowed with respect to each other and heated, and at later stages of the evolution the two populations are not clearly distinguishable. On the macroscopic level the instabilities cause large departures from the double adiabatic prediction leading to an efficient isotropization of effective proton temperatures in agreement with Helios observations.
Small-Amplitude Richtmyer-Meshkov Instability at a Re-Shocked Material Interface
NASA Astrophysics Data System (ADS)
Velikovich, A. L.; Zalesak, S. T.; Metzler, N.; Aglitskiy, Y.
2008-11-01
We report an exact small-amplitude theory of the Richtmyer-Meshkov (RM) instability developing at a re-shocked material interface and favorably compare it to our simulations. The re-shock is seen to restart the classical RM instability growth from a larger initial amplitude, at a higher rate, and change its direction from heavy-to-light to light-to heavy and vice versa. Similarly, if a Rayleigh-Taylor (RT) unstable interface is strongly re-shocked from either the heavy or light fluid side, the fast RM growth is triggered. If a RT-unstable ablation front is re-shocked, it exhibits the ablative RM-instability, that is, low-frequency decaying oscillations [V. N. Goncharov, PRL 82, 2091 (1998); Y. Aglitskiy et al., PRL 87, 265001 (2001)]. This is predicted for colliding foil experiments on the Nike laser, where a RT-unstable ablation front is re-shocked by the strong shock wave produced in the collision of the laser-driven plastic foil with a stationary foam layer. The re-shock stops the acceleration and switches the perturbation evolution from the ablative RT to the ablative RM regime.
Connecting Clump Sizes in Turbulent Disk Galaxies to Instability Theory
NASA Astrophysics Data System (ADS)
Fisher, David B.; Glazebrook, Karl; Abraham, Roberto G.; Damjanov, Ivana; White, Heidi A.; Obreschkow, Danail; Basset, Robert; Bekiaris, Georgios; Wisnioski, Emily; Green, Andy; Bolatto, Alberto D.
2017-04-01
In this letter we study the mean sizes of Hα clumps in turbulent disk galaxies relative to kinematics, gas fractions, and Toomre Q. We use ˜100 pc resolution HST images, IFU kinematics, and gas fractions of a sample of rare, nearby turbulent disks with properties closely matched to z˜ 1.5{--}2 main-sequence galaxies (the DYNAMO sample). We find linear correlations of normalized mean clump sizes with both the gas fraction and the velocity dispersion-to-rotation velocity ratio of the host galaxy. We show that these correlations are consistent with predictions derived from a model of instabilities in a self-gravitating disk (the so-called “violent disk instability model”). We also observe, using a two-fluid model for Q, a correlation between the size of clumps and self-gravity-driven unstable regions. These results are most consistent with the hypothesis that massive star-forming clumps in turbulent disks are the result of instabilities in self-gravitating gas-rich disks, and therefore provide a direct connection between resolved clump sizes and this in situ mechanism.
NASA Astrophysics Data System (ADS)
Gejji, Rohan M.
The management of combustion dynamics in gas turbine combustors has become more challenging as strict NOx/CO emission standards have led to engine operation in a narrow, lean regime. While premixed or partially premixed combustor configurations such as the Lean Premixed Pre-vaporized (LPP), Rich Quench Lean burn (RQL), and Lean Direct Injection (LDI) have shown a potential for reduced NOx emissions, they promote a coupling between acoustics, hydrodynamics and combustion that can lead to combustion instabilities. These couplings can be quite complex, and their detailed understanding is a pre-requisite to any engine development program and for the development of predictive capability for combustion instabilities through high-fidelity models. The overarching goal of this project is to assess the capability of high-fidelity simulation to predict combustion dynamics in low-emissions gas turbine combustors. A prototypical lean-direct-inject combustor was designed in a modular configuration so that a suitable geometry could be found by test. The combustor comprised a variable length air plenum and combustion chamber, air swirler, and fuel nozzle located inside a subsonic venturi. The venturi cross section and the fuel nozzle were consistent with previous studies. Test pressure was 1 MPa and variables included geometry and acoustic resonance, inlet temperatures, equivalence ratio, and type of liquid fuel. High-frequency pressure measurements in a well-instrumented metal chamber yielded frequencies and mode shapes as a function of inlet air temperature, equivalence ratio, fuel nozzle placement, and combustor acoustic resonances. The parametric survey was a significant effort, with over 105 tests on eight geometric configurations. A good dataset was obtained that could be used for both operating-point-dependent quantitative comparisons, and testing the ability of the simulation to predict more global trends. Results showed a very strong dependence of instability amplitude on the geometric configuration of the combustor, i.e., its acoustic resonance characteristics, with measured pressure fluctuation amplitudes ranged from 5 kPa (0.5% of mean pressure) to 200 kPa ( 20% of mean pressure) depending on combustor geometry. The stability behavior also showed a consistent and pronounced dependence on equivalence ratio and inlet air temperature. Instability amplitude increased with higher equivalence ratio and with lower inlet air temperature. A pronounced effect of fuel nozzle location on the combustion dynamics was also observed. Combustion instabilities with the fuel nozzle at the throat of the venturi throat were stronger than in the configuration with fuel nozzle 2.6 mm upstream of the nozzle. A second set of dynamics data was based on high-response-rate laser-based combustion diagnostics using an optically accessible combustor section. High-frequency measurements of OH*-chemiluminescence and OH-PLIF and velocity fields using PIV were obtained at a relatively stable, low equivalence ratio case and a less stable case at higher equivalence ratio. PIV measurements were performed at 5 kHz for non-reacting flow but glare from the cylindrical quartz chamber limited the field of view to a small region in the combustor. Quantitative and qualitative comparisons were made for five different combinations of geometry and operating condition that yielded discriminating stability behavior in the experiment with simulations that were carried out concurrently. Comparisons were made on the basis of trends and pressure mode data as well as with OH-PLIF measurements for the baseline geometry at equivalence ratios of 0.44 and 0.6. Overall, the ability of the simulation to match experimental data and trends was encouraging. Dynamic Mode Decomposition (DMD) analysis was performed on two sets of computations - a global 2-step chemistry mechanism and an 18-step chemistry mechanism - and the OH-PLIF images to allow comparison of dynamic patterns of heat release and OH distribution in the combustion zone. The DMD analysis was able to identify similar dominant unstable modes in the combustor. Recommendations for future work are based on the continued requirement for quantitative and spatio-temporally resolved data for direct comparison with computational efforts to develop predictive capabilities for combustion instabilities at relevant operating conditions. Discriminating instability behavior for the prototypical combustor demonstrated in this study is critical for any robust validation effort Unit physics based scaling of the current effort to multi-element combustors along with improvement in diagnostic techniques and analysis efforts are recommended for advancement in understanding of the complex physics in the multi-phase, three dimensional and turbulent combustion processes in the LDI combustor.
Cytolytic Activity Score to Assess Anticancer Immunity in Colorectal Cancer.
Narayanan, Sumana; Kawaguchi, Tsutomu; Yan, Li; Peng, Xuan; Qi, Qianya; Takabe, Kazuaki
2018-05-16
Elevated tumor-infiltrating lymphocytes (TILs) within the tumor microenvironment is a known positive prognostic factor in colorectal cancer (CRC). We hypothesized that since cytotoxic T cells release cytolytic proteins such as perforin (PRF1) and pro-apoptotic granzymes (GZMA) to attack cancer cells, a cytolytic activity score (CYT) would be a useful tool to assess anticancer immunity. Genomic expression data were obtained from 456 patients from The Cancer Genome Atlas (TCGA). CYT was defined by GZMA and PRF1 expression, and CIBERSORT was used to evaluate intratumoral immune cell composition. High CYT was associated with high microsatellite instability (MSI-H), as well as high levels of activated memory CD4+T cells, gamma-delta T cells, and M1 macrophages. CYT-high CRC patients had improved overall survival (p = 0.019) and disease-free survival (p = 0.016) compared with CYT-low CRC patients, especially in TIL-positive tumors. Multivariate analysis demonstrated that CYT- high associates with improved survival independently after controlling for age, lymphovascular invasion, colonic location, microsatellite instability, and TIL positivity. The levels of immune checkpoint molecules (ICMs)-programmed death-1 (PD-1), programmed death-ligand 1 (PD-L1), cytotoxic T-lymphocyte-associated protein 4 (CTLA4), lymphocyte-activation gene 3 (LAG3), T cell immunoglobulin and mucin domain 3 (TIM3), and indoleamine 2,3-dioxygenase 1 (IDO1)-correlated significantly with CYT (p < 0.0001); with improved survival in CYT-high and ICM-low patients, and poorer survival in ICM-high patients. High CYT within CRC is associated with improved survival, likely due to increased immunity and cytolytic activity of T cells and M1 macrophages. High CYT is also associated with high expression of ICMs; thus, further studies to elucidate the role of CYT as a predictive biomarker of the efficacy of immune checkpoint blockade are warranted.
Buckling of graded coatings: A continuum model
NASA Astrophysics Data System (ADS)
Chiu, Tz-Cheng
2000-12-01
Requirements for the protection of hot section components in many high temperature applications such as earth-to-orbit winged planes and advanced turbine systems have led to the application of thermal barrier coatings (TBCs) that utilize ceramic coatings on metal substrates. An alternative concept to homogeneous ceramic coatings is the functionally graded materials (FGM) in which the composition of the coating is intentionally graded to improve the bonding strength and to reduce the magnitude of the residual and thermal stresses. A widely observed failure mode in such layered systems is known to be interface cracking that leads to spallation fracture. In most cases, the final stage of the failure process for a thin coating appears to be due to buckling instability under thermally or mechanically induced compressive stress. The objective of this study is to develop a solution to the buckling instability problem by using continuum elasticity rather than a structural mechanics approach. The emphasis in the solution will be on the investigation of the effect of material inhomogeneity in graded coatings on the instability load, the postbuckling behavior, and fracture mechanics parameters such as the stress intensity factors and strain energy release rate. In this analysis, a nonlinear continuum theory is employed to examine the interface crack problem. The analytical solution of the instability problem permits the study of the effect of material inhomogeneity upon the inception of buckling and establishes benchmark results for the numerical solutions of related problems. To study the postbuckling behavior and to calculate the stress intensity factors and strain energy release rate a geometrically nonlinear finite element procedure with enriched crack-tip element is developed. Both plane strain and axisymmetric interface crack problems in TBCs with either homogeneous or graded coating are then considered by using the finite element procedure. It is assumed that the applied load is a uniform temperature drop. Comparison of the results with that obtained from the plate approximation shows that because of the higher constraints the plate theory predicts greater instability strains and lower strain energy release rates. It is also observed that compared with a homogeneous coating the graded coating gives lower strain energy release rate because of the lower thermal residual stress and higher bending stiffness. (Abstract shortened by UMI.)
Multiple-Scale Physics During Magnetic Reconnection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jara-Almonte, Jonathan
Magnetic reconnection is a key fundamental process in magnetized plasmas wherein the global magnetic topology is modified and stored energy is transferred from fields to particles. Reconnection is an inherently local process, and mechanisms to couple global-scale dynamics are not well understood. This dissertation explores two different mechanisms for cross-scale coupling during magnetic reconnection. As one example, we theoretically examine reconnection in a collisionless plasma using particle-in-cell simulations and demonstrate that large scale reconnection physics can couple to and drive microscopic instabilities, even in two-dimensional systems if significant scale separation exists between the Debye length and the electron skin depth.more » The physics underlying these instabilities is explained using simple theoretical models, and their potential connection to existing discrepancies between laboratory experiments and numerical simulations is explored. In three-dimensional systems, these instabilities are shown to generate anomalous resistivity that balances a substantial fraction of the electric field. In contrast, we also use experiments to investigate cross-scale couplings during reconnection in a collisional plasma. A leading candidate for coupling global and local scales is the hierarchical breakdown of elongated, reconnecting current sheets into numerous smaller current sheets -– the plasmoid instability. In the Magnetic Reconnection Experiment (MRX), recent hardware improvements have extended the accessible parameter space allowing for the study of long-lived, elongated current sheets. Moreover, by using Argon, reproducible and collisional plasmas are produced, which allow for a detailed statistical study of collisional reconnection. As a result, we have conclusively measured the onset of sub-ion-scale plasmoids during resistive, anti-parallel reconnection for the first time. The current sheet thickness is intermediate between ion and electron kinetic scales such that the plasma is in the Hall-MHD regime. Surprisingly, plasmoids are observed at Lundquist numbers < 100 well below theoretical predictions (> 10,000). The number of plasmoids scales with both Lundquist number and current sheet aspect ratio. The Hall quadrupolar fields are shown to suppress plasmoids. Finally, plasmoids are shown to couple local and global physics by enhancing the reconnection rate. These results are compared with prior studies of tearing and plasmoid instability, and implications for astrophysical plasmas, laboratory experiments, and theoretical studies of reconnection are discussed.« less
Investigation and suppression of high dynamic response encountered on an elastic supercritical wing
NASA Technical Reports Server (NTRS)
Seidel, David A.; Adams, William M., Jr.; Eckstrom, Clinton V.; Sandford, Maynard C.
1989-01-01
The DAST Aeroelastic Research Wing had been previously in the NASA Langley TDT and an unusual instability boundary was predicted based upon supercritical response data. Contrary to the predictions, no instability was found during the present test. Instead a region of high dynamic wing response was observed which reached a maximum value between Mach numbers 0.92 and 0.93. The amplitude of the dynamic response increased directly with dynamic pressure. The reponse appears to be related to chordwise shock movement in conjunction with flow separation and reattachment on the upper and lower wing surfaces. The onset of flow separation coincided with the occurrence of strong shocks on a surface. A controller was designed to suppress the wing response. The control law attenuated the response as compared with the uncontrolled case and added a small but significant amount of damping for the lower density condition.
NASA Astrophysics Data System (ADS)
Fu, Xiangrong; Li, Hui; Guo, Fan; Li, Xiaocan; Roytershteyn, Vadim
2018-03-01
Evolution of the parametric decay instability (PDI) of a circularly polarized Alfvén wave in a turbulent low-beta plasma background is investigated using 3D hybrid simulations. It is shown that the turbulence reduces the growth rate of PDI as compared to the linear theory predictions, but PDI can still exist. Interestingly, the damping rate of the ion acoustic mode (as the product of PDI) is also reduced as compared to the linear Vlasov predictions. Nonetheless, significant heating of ions in the direction parallel to the background magnetic field is observed due to resonant Landau damping of the ion acoustic waves. In low-beta turbulent plasmas, PDI can provide an important channel for energy dissipation of low-frequency Alfvén waves at a scale much larger than the ion kinetic scales, different from the traditional turbulence dissipation models.
Supersonic jet noise generated by large scale instabilities
NASA Technical Reports Server (NTRS)
Seiner, J. M.; Mclaughlin, D. K.; Liu, C. H.
1982-01-01
The role of large scale wavelike structures as the major mechanism for supersonic jet noise emission is examined. With the use of aerodynamic and acoustic data for low Reynolds number, supersonic jets at and below 70 thousand comparisons are made with flow fluctuation and acoustic measurements in high Reynolds number, supersonic jets. These comparisons show that a similar physical mechanism governs the generation of sound emitted in he principal noise direction. These experimental data are further compared with a linear instability theory whose prediction for the axial location of peak wave amplitude agrees satisfactorily with measured phased averaged flow fluctuation data in the low Reynolds number jets. The agreement between theory and experiment in the high Reynolds number flow differs as to the axial location for peak flow fluctuations and predicts an apparent origin for sound emission far upstream of the measured acoustic data.
NASA Technical Reports Server (NTRS)
Lee, Cynthia C.; Obara, Clifford J.; Vijgen, Paul M.; Wusk, Michael S.
1991-01-01
Flight test results are reported from an experiment designed to study the detailed growth of disturbances in the laminar boundary layer. A gloved wing section incorporating closely-spaced flush-mounted streamwise-located instrumentation for measuring instability frequencies and amplitude growths as well as pressure distributions was used. The growth of Tollmien-Schlichting (T-S) and crossflow instabilities is predicted by the linear e exp n method and compared to the measured boundary-layer disturbance frequencies. The predictions showed good agreement with the measured data. The results exhibited fair agreement with previous n(T-S) and n(CF) flight correlations for several of the conditions analyzed. It is inferred from the high n(T-S) values for these data that moderately swept wings at compressible speeds can withstand higher combinations of n(T-S) and n(CF) values and still remain laminar than previously thought.