Science.gov

Sample records for installing bioenergy systems

  1. Advanced bio-energy systems for Air Force installations

    NASA Astrophysics Data System (ADS)

    Huff, W. J.; Bond, D. H.

    1981-10-01

    This investigation was sponsored by the US Air Force to determine the potential of using innovative biomass energy conversion technology interface with in place energy generating hardware to sustain total annual facility energy requirements on a forested airbase. The investigation found that Eglin AFB, FL, has high potential for such a system, but that certain components and subsystems require test, evaluation and demonstration in an Air Force base environment before full implementation is possible. The investigation found that a biomass energy island system could be achieved through a centralized biomass gasification/combined cycle system to produce 135,000 1b/hr 150 psig steam (saturated) and 27 Mwh/hr electrical power from 1480 green tons of wood chips daily. A phased implementation system is recommended, consisting of separate integrable test and evaluation modules for combined cycle wood gasification and for cogeneration, which would dovetail into an expanded basewide energy self sufficient system. The investigation did not consider harvestation of base woodlands, which is the subject of a separate effort to define the wood resource aspects of a total biomass self-sufficient system.

  2. Bioenergy

    SciTech Connect

    2014-11-20

    Scientists and engineers at Idaho National Laboratory are working with partners throughout the bioenergy industry in preprocessing and characterization to ensure optimum feedstock quality. This elite team understands that addressing feedstock variability is a critical component in the biofuel production process.

  3. A bioenergy feedstock/vegetable double-cropping system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Certain warm-season vegetable crops may lend themselves to bioenergy double-cropping systems, which involve growing a winter annual bioenergy feedstock crop followed by a summer annual crop. The objective of the study was to compare crop productivity and weed communities in different pumpkin product...

  4. Indicators to support environmental sustainability of bioenergy systems

    SciTech Connect

    McBride, Allen; Dale, Virginia H; Baskaran, Latha Malar; Downing, Mark; Eaton, Laurence M; Efroymson, Rebecca Ann; Garten Jr, Charles T; Kline, Keith L; Jager, Yetta; Mulholland, Patrick J; Parish, Esther S; Schweizer, Peter E; Storey, John Morse

    2011-01-01

    Indicators are needed to assess environmental sustainability of bioenergy systems. Effective indicators will help in the quantification of benefits and costs of bioenergy options and resource uses. We identify 19 measurable indicators for soil quality, water quality and quantity, greenhouse gases, biodiversity, air quality, and productivity, building on existing knowledge and on national and international programs that are seeking ways to assess sustainable bioenergy. Together, this suite of indicators is hypothesized to reflect major environmental effects of diverse feedstocks, management practices, and post-production processes. The importance of each indicator is identified. Future research relating to this indicator suite is discussed, including field testing, target establishment, and application to particular bioenergy systems. Coupled with such efforts, we envision that this indicator suite can serve as a basis for the practical evaluation of environmental sustainability in a variety of bioenergy systems.

  5. Heating equipment installation system

    DOEpatents

    Meuschke, Robert E.; Pomaibo, Paul P.

    1991-01-01

    A method for installing a heater unit assembly (52, 54) in a reactor pressure vessel (2) for performance of an annealing treatment on the vessel (2), the vessel (2) having a vertical axis, being open at the top, being provided at the top with a flange (6) having a horizontal surface, and being provided internally, at a location below the flange (6), with orientation elements (8) which are asymmetrical with respect to the vertical axis, by the steps of: providing an orientation fixture (10) having an upwardly extending guide member (18) and orientation elements (14, 16) and installing the orientation fixture (10) in the vessel (2) so that the orientation elements (14,16) of the orientation fixture (10) mate with the orientation elements (8) of the pressure vessel (2) in order to establish a defined position of the orientation fixture (10) in the pressure vessel (2), and so that the guide member (18) projects above the pressure vessel (2) flange (6); placing a seal ring (30) in a defined position on the pressure vessel (2) flange (6) with the aid of the guide member (18); mounting at least one vertical, upwardly extending guide stud (40) upon the seal ring (30); withdrawing the orientation fixture (10) from the pressure vessel (2); and moving the heater unit assembly (52,54) vertically downwardly into the pressure vessel (2) while guiding the heater unit assembly (52,54) along a path with the aid of the guide stud (40).

  6. Soil surface carbon dioxide efflux of bioenergy cropping systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioenergy cropping systems have been proposed as a way to enhance United States energy security. However, research on greenhouse gas emissions from such systems is needed to ensure environmental sustainability in the field. Since soil aeration properties are dynamic, high-resolution data are needed ...

  7. Installation package for a solar heating system

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Installation information is given for a solar heating system installed in Concho Indian School at El Reno, Oklahoma. This package includes a system Operation and Maintenance Manual, hardware brochures, schematics, system operating modes and drawings.

  8. Sprinkler System Installer. Occupational Analyses Series.

    ERIC Educational Resources Information Center

    Chinien, Chris; Boutin, France

    This analysis covers tasks performed by a sprinkler system installer, an occupational title some provinces and territories of Canada have also identified as pipefitter--fire protection mechanic specialty; sprinkler and fire protection installer; sprinkler and fire protection systems installer; and sprinkler fitter. A guide to analysis discusses…

  9. Installation of a materials management system.

    PubMed

    Graves, J; Siewert, B

    1990-04-01

    Installation in five months using existing staff--that's what it took Waukesha Memorial Hospital (WMH) to go from the first installation planning meeting to a fully operational system. This article explains the process WMH followed to install the HBO Materials Management system in five months using in-house staff.

  10. Solar system installation at Louisville, Kentucky

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The installation of a solar space heating and domestic hot water system is described. The overall philosophy used was to install both a liquid and a hot air system retrofitted to existing office and combined warehouse building. The 1080 sq. ft. office space is heated first and excess heat is dumped into the warehouse. The two systems offer a unique opportunity to measure the performance and compare results of both air and liquid at one site.

  11. Prototype solar-heating system - installation manual

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Manual for prototype solar-heating system gives detailed installation procedures for each of seven subsystems. Procedures for operation and maintenance are also included. It discusses architectural considerations, building construction considerations, and checkout-test procedures.

  12. Solar heating system installed at Troy, Ohio

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The completed system was composed of three basic subsystems: the collector system consisting of 3,264 square feet of Owens Illinois evacuated glass tube collectors; the storage system which included a 5,000 gallon insulated steel tank; and the distribution and control system which included piping, pumping and heat transfer components as well as the solemoid activated valves and control logic for the efficient and safe operation of the entire system. This solar heating system was installed in an existing facility and was, therefore, a retrofit system. Extracts from the site files, specifications, drawings, installation, operation and maintenance instructions are included.

  13. Accounting for Carbon Dioxide Emissions from Bioenergy Systems

    SciTech Connect

    Marland, Gregg

    2010-12-01

    Researchers have recently argued that there is a 'critical climate accounting error' and that we should say 'goodbye to carbon neutral' for bioenergy. Many other analysts have published opionions on the same topic, and the US Environmental Protection Agency posted a specific call for information. The currently burning questions for carbon accounting is how to deal with bioenergy. The questions arises because, unlike for fossil fuels, burning of biomass fuels represents part of a cycle in which combustion releases back to the atmosphere carbon that was earlier removed from the atmosphere by growing plants. In a sustainable system, plants will again remove the carbon dioxide (CO{sub 2}) from the atmosphere. Conceptually, it is clear that there are no net emissions of the greenhouse gas CO{sub 2} if biomass is harvested and combusted at the same rate that biomass grows and removes CO{sub 2} from the atmosphere. The problem lies in the fact that growth and combustion do not occur at the same time or in the same place, and our accounting system boundaries - spatial and temporal - frequently do not provide full and balanced accounting. When the first comprehensive guidelines for estimating national greenhouse gas emissions and sinks were put together by the Organization for Economic Cooperation and Development, they noted that it has been argued that CO{sub 2} emissions resulting from bioenergy consumption should not be included in a country's official emission inventory because there are no net emissions if the biomass is produced sustainably, and if the biomass is not produced sustainably, the loss of carbon will be captured as part of the accounting for emissions from land-use change. In the same philosophical vein, the Kyoto Protocol provides that emissions or sinks of CO{sub 2} from land-use change and forestry activities be measured as the 'verifiable changes in carbon stocks'. From these has grown the convention that emissions from biomass fuels are generally not

  14. ALACARTE installation and system manual

    USGS Publications Warehouse

    Fitzgibbon, Todd T.

    1991-01-01

    Compilations begun in other digital systems can be imported for completion as digital databases in ARC/INFO. The digital files that represent a geologic map can be used to prepare near-publication-quality color plots of the maps with full symbology or to create high-quality printing negatives. These files also constitute a digital database that can be used for computer-based query and analysis as well as for digital distribution of the map and associated data.

  15. Installation package - SIMS prototype system 1A

    NASA Technical Reports Server (NTRS)

    1976-01-01

    This report consists of details for the installation, operation and maintenance of a prototype heating and hot water system, designed for residential or light commercial applications. This system consists of the following subsystems: air type collectors, pebble bed thermal storage, air handling unit, air to water heat exchanger, hot water preheat tank, auxiliary energy, ducting system.

  16. Standard hydrogen monitoring system equipment installation instructions

    SciTech Connect

    Schneider, T.C.

    1996-09-27

    This document provides the technical specifications for the equipment fabrication, installation, and sitework construction for the Standard Hydrogen Monitoring System. The Standard Hydrogen Monitoring System is designed to remove gases from waste tank vapor space and exhaust headers for continual monitoring and remote sample analysis.

  17. Heat transfer and flow in solar energy and bioenergy systems

    NASA Astrophysics Data System (ADS)

    Xu, Ben

    The demand for clean and environmentally benign energy resources has been a great concern in the last two decades. To alleviate the associated environmental problems, reduction of the use of fossil fuels by developing more cost-effective renewable energy technologies becomes more and more significant. Among various types of renewable energy sources, solar energy and bioenergy take a great proportion. This dissertation focuses on the heat transfer and flow in solar energy and bioenergy systems, specifically for Thermal Energy Storage (TES) systems in Concentrated Solar Power (CSP) plants and open-channel algal culture raceways for biofuel production. The first part of this dissertation is the discussion about mathematical modeling, numerical simulation and experimental investigation of solar TES system. First of all, in order to accurately and efficiently simulate the conjugate heat transfer between Heat Transfer Fluid (HTF) and filler material in four different solid-fluid TES configurations, formulas of an e?ective heat transfer coe?cient were theoretically developed and presented by extending the validity of Lumped Capacitance Method (LCM) to large Biot number, as well as verifications/validations to this simplified model. Secondly, to provide design guidelines for TES system in CSP plant using Phase Change Materials (PCM), a general storage tank volume sizing strategy and an energy storage startup strategy were proposed using the enthalpy-based 1D transient model. Then experimental investigations were conducted to explore a novel thermal storage material. The thermal storage performances were also compared between this novel storage material and concrete at a temperature range from 400 °C to 500 °C. It is recommended to apply this novel thermal storage material to replace concrete at high operating temperatures in sensible heat TES systems. The second part of this dissertation mainly focuses on the numerical and experimental study of an open-channel algae

  18. PUREX exhaust ventilation system installation test report

    SciTech Connect

    Blackaby, W.B.

    1997-10-07

    This Acceptance Test Report validates the testing performed, the exceptions logged and resolved and certifies this portion of the SAMCONS has met all design and test criteria to perform as an operational system. The proper installation of the PUREX exhaust ventilation system components and wiring was systematically evaluated by performance of this procedure. Proper operation of PUREX exhaust fan inlet, outlet, and vortex damper actuators and limit switches were verified, using special test equipment, to be correct and installed wiring connections were verified by operation of this equipment.

  19. Canadian pipeline installs leak-detection system

    SciTech Connect

    Yoon, M.S.; Mensik, M.; Luk, W.Y.

    1988-05-30

    Site-acceptance tests for a recently installed leak-detection system on a pipeline in southern Alberta indicated that the system will reduce spillage because of leaks. The tests on the Porcupine Hills Pipeline also indicated that pipeline isolation and spill containment are enhanced by the use of the system. Covered here are the selection, design, and implementation of the real time leak-detection system and its extension to offshore and arctic applications.

  20. Solar heating system installed at Stamford, Connecticut

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The solar heating system installed at the Lutz-Sotire Partnership Executive East Office Building, Stamford, Connecticut is described. The Executive East Office Building is of moderate size with 25,000 sq ft of heated space in 2 1/2 stories. The solar system was designed to provide approximately 50 percent of the heating requirements. The system components are described. Appended data includes: the system design acceptance test, the operation and maintenance manual, and as-built drawings and photographs.

  1. Public Address Systems. Specifications - Installation - Operation.

    ERIC Educational Resources Information Center

    Palmer, Fred M.

    Provisions for public address in new construction of campus buildings (specifications, installations, and operation of public address systems), are discussed in non-technical terms. Consideration is given to microphones, amplifiers, loudspeakers and the placement and operation of various different combinations. (FS)

  2. Indicators for assessing socioeconomic sustainability of bioenergy systems. A short list of practical measures

    SciTech Connect

    Dale, Virginia H.; Efroymson, Rebecca Ann; Kline, Keith L.; Langholtz, Matthew H.; Leiby, Paul Newsome; Oladosu, Gbadebo A.; Davis, Maggie R.; Downing, Mark E.; Hilliard, Michael R.

    2012-10-16

    Indicators are needed to assess both socioeconomic and environmental sustainability of bioenergy systems. Effective indicators can help to identify and quantify the sustainability attributes of bioenergy options. We identify 16 socioeconomic indicators that fall into the categories of social well-being, energy security, trade, profitability, resource conservation, and social acceptability. The suite of indicators is predicated on the existence of basic institutional frameworks to provide governance, legal, regulatory and enforcement services. Indicators were selected to be practical, sensitive to stresses, unambiguous, anticipatory, predictive, calibrated with known variability, and sufficient when considered collectively. The utility of each indicator, methods for its measurement, and applications appropriate for the context of particular bioenergy systems are described along with future research needs. Together, this suite of indicators is hypothesized to reflect major socioeconomic effects of the full supply chain for bioenergy, including feedstock production and logistics, conversion to biofuels, biofuel logistics and biofuel end uses. Ten of those 16 indicators are proposed to be the minimum list of practical measures of socioeconomic aspects of bioenergy sustainability. Coupled with locally-prioritized environmental indicators, we propose that these socioeconomic indicators can provide a basis to quantify and evaluate sustainability of bioenergy systems across many regions in which they will be deployed.

  3. Urban Wood-Based Bio-Energy Systems in Seattle

    SciTech Connect

    Stan Gent, Seattle Steam Company

    2010-10-25

    Seattle Steam Company provides thermal energy service (steam) to the majority of buildings and facilities in downtown Seattle, including major hospitals (Swedish and Virginia Mason) and The Northwest (Level I) Regional Trauma Center. Seattle Steam has been heating downtown businesses for 117 years, with an average length of service to its customers of 40 years. In 2008 and 2009 Seattle Steam developed a biomass-fueled renewable energy (bio-energy) system to replace one of its gas-fired boilers that will reduce greenhouse gases, pollutants and the amount of waste sent to landfills. This work in this sub-project included several distinct tasks associated with the biomass project development as follows: a. Engineering and Architecture: Engineering focused on development of system control strategies, development of manuals for start up and commissioning. b. Training: The project developer will train its current operating staff to operate equipment and facilities. c. Flue Gas Clean-Up Equipment Concept Design: The concept development of acid gas emissions control system strategies associated with the supply wood to the project. d. Fuel Supply Management Plan: Development of plans and specifications for the supply of wood. It will include potential fuel sampling analysis and development of contracts for delivery and management of fuel suppliers and handlers. e. Integrated Fuel Management System Development: Seattle Steam requires a biomass Fuel Management System to track and manage the delivery, testing, processing and invoicing of delivered fuel. This application will be web-based and accessed from a password-protected URL, restricting data access and privileges by user-level.

  4. Productivity and nutrient cycling in bioenergy cropping systems

    NASA Astrophysics Data System (ADS)

    Heggenstaller, Andrew Howard

    One of the greatest obstacles confronting large-scale biomass production for energy applications is the development of cropping systems that balance the need for increased productive capacity with the maintenance of other critical ecosystem functions including nutrient cycling and retention. To address questions of productivity and nutrient dynamics in bioenergy cropping systems, we conducted two sets of field experiments during 2005-2007, investigating annual and perennial cropping systems designed to generate biomass energy feedstocks. In the first experiment we evaluated productivity and crop and soil nutrient dynamics in three prototypical bioenergy double-crop systems, and in a conventionally managed sole-crop corn system. Double-cropping systems included fall-seeded forage triticale (x Triticosecale Wittmack), succeeded by one of three summer-adapted crops: corn (Zea mays L.), sorghum-sudangrass [Sorghum bicolor (L.) Moench], or sunn hemp (Crotalaria juncea L.). Total dry matter production was greater for triticale/corn and triticale/sorghum-sudangrass compared to sole-crop corn. Functional growth analysis revealed that photosynthetic duration was more important than photosynthetic efficiency in determining biomass productivity of sole-crop corn and double-crop triticale/corn, and that greater yield in the tiritcale/corn system was the outcome of photosynthesis occurring over an extended duration. Increased growth duration in double-crop systems was also associated with reductions in potentially leachable soil nitrogen relative to sole-crop corn. However, nutrient removal in harvested biomass was also greater in the double-crop systems, indicating that over the long-term, double-cropping would mandate increased fertilizer inputs. In a second experiment we assessed the effects of N fertilization on biomass and nutrient partitioning between aboveground and belowground crop components, and on carbon storage by four perennial, warm-season grasses: big bluestem

  5. Integrated photo-bioelectrochemical system for contaminants removal and bioenergy production.

    PubMed

    Xiao, Li; Young, Erica B; Berges, John A; He, Zhen

    2012-10-16

    An integrated photobioelectrochemical (IPB) system was developed by installing a microbial fuel cell (MFC) inside an algal bioreactor. This system achieves the simultaneous removal from a synthetic solution of organics (in the MFC) and nutrients (in the algal bioreactor), and the production of bioenergy in electricity and algal biomass through bioelectrochemical and microbiological processes. During the one-year operation, the IPB system removed more than 92% of chemical oxygen demand, 98% of ammonium nitrogen, and 82% of phosphate and produced a maximum power density of 2.2 W/m(3) and 128 mg/L of algal biomass. The algal growth provided dissolved oxygen to the cathode reaction of the MFC, whereas electrochemical oxygen reduction on the MFC cathode buffered the pH of the algal growth medium (which was also the catholyte). The system performance was affected by illumination and dissolved oxygen. Initial energy analysis showed that the IPB system could theoretically produce enough energy to cover its consumption; however, further improvement of electricity production is desired. An analysis of the attached and suspended microbes in the cathode revealed diverse bacterial taxa typical of aquatic and soil bacterial communities with functional roles in contaminant degradation and nutrient cycling. PMID:22998430

  6. Static Frequency Converter System Installed and Tested

    NASA Technical Reports Server (NTRS)

    Brown, Donald P.; Sadhukhan, Debashis

    2003-01-01

    A new Static Frequency Converter (SFC) system has been installed and tested at the NASA Glenn Research Center s Central Air Equipment Building to provide consistent, reduced motor start times and improved reliability for the building s 14 large exhausters and compressors. The operational start times have been consistent around 2 min, 20 s per machine. This is at least a 3-min improvement (per machine) over the old variable-frequency motor generator sets. The SFC was designed and built by Asea Brown Boveri (ABB) and installed by Encompass Design Group (EDG) as part of a Construction of Facilities project managed by Glenn (Robert Scheidegger, project manager). The authors designed the Central Process Distributed Control Systems interface and control between the programmable logic controller, solid-state exciter, and switchgear, which was constructed by Gilcrest Electric.

  7. Installation of a Roof Mounted Photovoltaic System

    NASA Astrophysics Data System (ADS)

    Lam, M.

    2015-12-01

    In order to create a safe and comfortable environment for students to learn, a lot of electricity, which is generated from coal fired power plants, is used. Therefore, ISF Academy, a school in Hong Kong with approximately 1,500 students, will be installing a rooftop photovoltaic (PV) system with 302 solar panels. Not only will these panels be used to power a classroom, they will also serve as an educational opportunity for students to learn about the importance of renewable energy technology and its uses. There were four different options for the installation of the solar panels, and the final choice was made based on the loading capacity of the roof, considering the fact that overstressing the roof could prove to be a safety hazard. Moreover, due to consideration of the risk of typhoons in Hong Kong, the solar panel PV system will include concrete plinths as counterweights - but not so much that the roof would be severely overstressed. During and after the installation of the PV system, students involved would be able to do multiple calculations, such as determining the reduction of the school's carbon footprint. This can allow students to learn about the impact renewable energy can have on the environment. Another project students can participate in includes measuring the efficiency of the solar panels and how much power can be produced per year, which in turn can help with calculate the amount of money saved per year and when we will achieve economic parity. In short, the installation of the roof mounted PV system will not only be able to help save money for the school but also provide learning opportunities for students studying at the ISF Academy.

  8. Carbon balances during land conversion in early bioenergy systems

    NASA Astrophysics Data System (ADS)

    Zenone, T.; Chen, J.; Gelfand, I.; Robertson, G. P.; Hamilton, S. K.

    2012-12-01

    In this study, we established a field experiment and deployed seven eddy-covariance towers to quantify the roles of land use change and the subsequent carbon (C) balances of three different bioenergy systems (corn, switchgrass, and mixed prairie species) that were developed from two historical land use types: monocultural grasslands dominated by smooth brome (Bromus inermis Leyss) and lands in the Conservation Reserve Program (CRP). Three CRP fields and three cropland fields were converted to soybean in 2009 (conversion year) before establishing the cellulosic biofuel cropping systems in 2010 (establishment year). A CRP perennial grassland site was kept undisturbed as a reference. Conversion of CRP to soybean induced net C emissions during the conversion year (134 -262 g C m-2 yr-1), while in the same year the net C balance at the CRP grassland reference was -35 g C m-2 yr-1 (i.e., net C sequestration). The establishment of switchgrass and mixed prairie induced a cumulative C balance of -113 g C m-2 (switchgrass from CRP), 250 g C m-2 (switchgrass from cropland), 706 g C m-2 (mixed prairie from CRP), and 59 g C m-2 (mixed prairie from cropland) over the three-year study period. The cumulative three-year C balance of corn converted from CRP and from cropland was -151 g C m-2 and -183 g C m-2, respectively. Eddy flux measurements during cellulosic biofuel crop establishment reveal annual changes in C balance that cannot be detected using conventional mass balance approaches. When end-use of harvested biomass was considered, the C balances for all studied systems, except the reference site, exhibited large C emissions ranging from 150 to 990 g C m-2 over the three-year conversion phase.

  9. Bio-energy Recovery Systems for brewery wastewater management

    SciTech Connect

    Beers, A.R.

    1995-11-01

    Anheuser-Busch has installed anaerobic wastewater pretreatment systems or {open_quotes}Bio-Energy Recovery Systems{close_quotes} (BERS) at six breweries in the U.S. The primary purpose of BERS is the removal of soluble organic matter (grain liquor, waste beer, cleaning solutions) from wastewater in order to reduce the impact on downstream treatment works, either privately or publicly held. A byproduct of the anaerobic process is biogas (75% methane) which is used in the plants` boilers to create steam. A history of Anheuser-Busch`s wastewater management philosophy is discussed including the adoption and refinement of various treatment methods. A case study is presented, demonstrating by way of an energy balance the savings realized by BERS installation. Finally, the environmental benefits of these projects are displayed in a life cycle analysis.

  10. Cochin Pipeline installs workstation scada system

    SciTech Connect

    Not Available

    1993-12-13

    The Canadian operator of the Cochin Pipeline between Canada and the US has installed a workstation-based supervisory control and data acquisition (scada) system that directly links pipeline operations to the company's business accounting computer in Calgary. Amoco says that each remote workstation along the pipeline serves as a mini-scada system, monitoring and controlling devices at its particular location. These workstations collect field data that are sent over the network to the master server computer in Fort Saskatchewan, which automatically updates the data base. The network's distributed data base capability also enables the master controller to redefine parameters for the various field devices, then distribute the information to each workstation.

  11. Energy Integrated Dairy Farm digester and cogeneration system installation

    SciTech Connect

    Ross, C.C.; Walsh, J.L.

    1984-01-01

    Georgia Tech finished in December, 1983 Phase II (system installation and startup) of its four year Energy Integrated Dairy Farm System (EIDFS) program. This paper outlines the selection and installation of the anaerobic digestion and cogeneration components of the EIDFS.

  12. Installation, operation, and maintenance for the pyramidal optics solar system installed at Yacht Cove, Columbia, SC

    SciTech Connect

    Not Available

    1980-09-01

    Information is presented concerning the installation, operation, and maintenance of the pyramidal Solar System for space heating and domestic hot water. Included are such items as principles of operation, sequence of installation, and procedures for the operation and maintenance of each subsystem making up the solar system. Also included are trouble-shooting charts and maintenance schedules.

  13. Installation package for a sunspot cascade solar water heating system

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Solar water heating systems installed at Tempe, Arizona and San Diego, California are described. The systems consist of the following: collector, collector-tank water loop, solar tank, conventional tank, and controls. General guidelines which may be utilized in development of detailed installation plans and specifications are provided along with instruction on operation, maintenance, and installation of solar hot water systems.

  14. The economic potential of bioenergy for climate change mitigation with special attention given to implications for the land system

    NASA Astrophysics Data System (ADS)

    Popp, Alexander; Dietrich, Jan Philipp; Lotze-Campen, Hermann; Klein, David; Bauer, Nico; Krause, Michael; Beringer, Tim; Gerten, Dieter; Edenhofer, Ottmar

    2011-07-01

    Biomass from cellulosic bioenergy crops is expected to play a substantial role in future energy systems, especially if climate policy aims at stabilizing greenhouse gas concentration at low levels. However, the potential of bioenergy for climate change mitigation remains unclear due to large uncertainties about future agricultural yield improvements and land availability for biomass plantations. This letter, by applying a modelling framework with detailed economic representation of the land and energy sector, explores the cost-effective contribution of bioenergy to a low-carbon transition, paying special attention to implications for the land system. In this modelling framework, bioenergy competes directly with other energy technology options on the basis of costs, including implicit costs due to biophysical constraints on land and water availability. As a result, we find that bioenergy from specialized grassy and woody bioenergy crops, such as Miscanthus or poplar, can contribute approximately 100 EJ in 2055 and up to 300 EJ of primary energy in 2095. Protecting natural forests decreases biomass availability for energy production in the medium, but not in the long run. Reducing the land available for agricultural use can partially be compensated for by means of higher rates of technological change in agriculture. In addition, our trade-off analysis indicates that forest protection combined with large-scale cultivation of dedicated bioenergy is likely to affect bioenergy potentials, but also to increase global food prices and increase water scarcity. Therefore, integrated policies for energy, land use and water management are needed.

  15. Topographic and soil influences on root productivity of three bioenergy cropping systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Successful modeling of the carbon (C) cycle requires empirical data regarding species-specific root responses to edaphic characteristics. We address this challenge by quantifying annual root production of three bioenergy cropping systems (continuous corn, sorghum-triticale, switchgrass) arrayed acro...

  16. Bioenergy costs and potentials with special attention to implications for the land system

    NASA Astrophysics Data System (ADS)

    Popp, A.; Lotze-Campen, H.; Dietrich, J.; Klein, D.; Bauer, N.; Krause, M.; Beringer, T.; Gerten, D.

    2011-12-01

    In the coming decades, an increasing competition for global land and water resources can be expected, due to rising demand for agricultural products, goals of nature conservation, and changing production conditions due to climate change. Especially biomass from cellulosic bioenergy crops, such as Miscanthus or poplar, is being proposed to play a substantial role in future energy systems if climate policy aims at stabilizing greenhouse gas (GHG) concentration at low levels. However, the potential of bioenergy for climate change mitigation remains unclear due to large uncertainties about future agricultural yield improvements, land availability for biomass plantations, and implications for the land system. In order to explore the cost-effective contribution of bioenergy to a low carbon transition with special attention to implications for the land system, we present a modeling framework with detailed biophysical and economic representation of the land and energy sector: We have linked the global dynamic vegetation and water balance model LPJmL (Bondeau et al. 2007, Rost et al. 2008), the global land and water use model MAgPIE (Lotze-Campen et al. 2008, Popp et al. 2010), and the global energy-economy-climate model ReMIND (Leimbach et al. 2009). In this modeling framework LPJmL supplies spatially explicit (0.5° resolution) agricultural yields as well as carbon and water stocks and fluxes. Based on this biophysical input MAgPIE delivers cost-optimized land use patterns (0.5° resolution), associated GHG emissions and rates of future yield increases in agricultural production. Moreover, shadow prices are calculated for irrigation water (as an indicator for water scarcity), food commodities, and bioenergy (as an indicator for changes in production costs) under different land use constraints such as forest conservation for climate change mitigation and as a contribution to biodiversity conservation. The energy-economy-climate model ReMIND generates the demand for

  17. Bioenergy systems report. Special issue: cane energy systems

    SciTech Connect

    Not Available

    1986-03-01

    The report examines the use of cane to produce energy. It focuses primarily on two recent proposals for the production of electric power for the grid using cane residues and supplementary fuels. It also reviews use of cane juice or molasses to produce ethanol for blending with gasoline. In both types of cane energy systems, the objective is the production of energy as well as sugar or sugar products. The report is divided into sections on growing and harvesting biomass fuels in cane fields, producing power for the grid with these fuels, the uses of the cane juice produced in cane energy systems, the costs and revenues associated with these systems, and the national benefits derived from these systems.

  18. Installation package for a Sunspot Cascade Solar Water Heating System

    SciTech Connect

    1980-09-01

    Elcam, Incorporated of Santa Barbara, California, has developed two solar water heating systems. The systems have been installed at Tempe, Arizona and San Diego, California. The systems consist of the following: collector, collector-tank water loop, solar tank, conventional tank and controls. General guidelines are provided which may be utilized in development of detailed instalation plans and specifications. In addition, it provides instruction on operation, maintenance and installation of solar hot water systems.

  19. Subsurface Drainage Nitrate and Total Reactive Phosphorus Losses in Bioenergy-Based Prairies and Corn Systems.

    PubMed

    Daigh, Aaron L M; Zhou, Xiaobo; Helmers, Matthew J; Pederson, Carl H; Horton, Robert; Jarchow, Meghann; Liebman, Matt

    2015-09-01

    We compare subsurface-drainage NO-N and total reactive phosphorus (TRP) concentrations and yields of select bioenergy cropping systems and their rotational phases. Cropping systems evaluated were grain-harvested corn-soybean rotations, grain- and stover-harvested continuous corn systems with and without a cover crop, and annually harvested reconstructed prairies with and without the addition of N fertilizer in an Iowa field. Drainage was monitored when soils were unfrozen during 2010 through 2013. The corn-soybean rotations without residue removal and continuous corn with residue removal produced similar mean annual flow-weighted NO-N concentrations, ranging from 6 to 18.5 mg N L during the 4-yr study. In contrast, continuous corn with residue removal and with a cover crop had significantly lower NO-N concentrations of 5.6 mg N L when mean annual flow-weighted values were averaged across the 4 yr. Prairies systems with or without N fertilization produced significantly lower concentrations below <1 mg NO-N L than all the row crop systems throughout the study. Mean annual flow-weighted TRP concentrations and annual yields were generally low, with values <0.04 mg TRP L and <0.14 kg TRP ha, and were not significantly affected by any cropping systems or their rotational phases. Bioenergy-based prairies with or without N fertilization and continuous corn with stover removal and a cover crop have the potential to supply bioenergy feedstocks while minimizing NO-N losses to drainage waters. However, subsurface drainage TRP concentrations and yields in bioenergy systems will need further evaluation in areas prone to higher levels of P losses. PMID:26436280

  20. Subsurface Drainage Nitrate and Total Reactive Phosphorus Losses in Bioenergy-Based Prairies and Corn Systems.

    PubMed

    Daigh, Aaron L M; Zhou, Xiaobo; Helmers, Matthew J; Pederson, Carl H; Horton, Robert; Jarchow, Meghann; Liebman, Matt

    2015-09-01

    We compare subsurface-drainage NO-N and total reactive phosphorus (TRP) concentrations and yields of select bioenergy cropping systems and their rotational phases. Cropping systems evaluated were grain-harvested corn-soybean rotations, grain- and stover-harvested continuous corn systems with and without a cover crop, and annually harvested reconstructed prairies with and without the addition of N fertilizer in an Iowa field. Drainage was monitored when soils were unfrozen during 2010 through 2013. The corn-soybean rotations without residue removal and continuous corn with residue removal produced similar mean annual flow-weighted NO-N concentrations, ranging from 6 to 18.5 mg N L during the 4-yr study. In contrast, continuous corn with residue removal and with a cover crop had significantly lower NO-N concentrations of 5.6 mg N L when mean annual flow-weighted values were averaged across the 4 yr. Prairies systems with or without N fertilization produced significantly lower concentrations below <1 mg NO-N L than all the row crop systems throughout the study. Mean annual flow-weighted TRP concentrations and annual yields were generally low, with values <0.04 mg TRP L and <0.14 kg TRP ha, and were not significantly affected by any cropping systems or their rotational phases. Bioenergy-based prairies with or without N fertilization and continuous corn with stover removal and a cover crop have the potential to supply bioenergy feedstocks while minimizing NO-N losses to drainage waters. However, subsurface drainage TRP concentrations and yields in bioenergy systems will need further evaluation in areas prone to higher levels of P losses.

  1. Assessing multimetric aspects of sustainability: Application to a bioenergy crop production system in East Tennessee

    DOE PAGESBeta

    Parish, Esther S.; Dale, Virginia H.; English, Burton C.; Jackson, Samuel W.; Tyler, Donald D.

    2016-02-26

    This paper connects the science of sustainability theory with applied aspects of sustainability deployment. A suite of 35 sustainability indicators spanning six environmental, three economic, and three social categories has been proposed for comparing the sustainability of bioenergy production systems across different feedstock types and locations. A recent demonstration-scale switchgrass-to-ethanol production system located in East Tennessee is used to assess the availability of sustainability indicator data and associated measurements for the feedstock production and logistics portions of the biofuel supply chain. Knowledge pertaining to the available indicators is distributed within a hierarchical decision tree framework to generate an assessment ofmore » the overall sustainability of this no-till switchgrass production system relative to two alternative business-as-usual scenarios of unmanaged pasture and tilled corn production. The relative contributions of the social, economic and environmental information are determined for the overall trajectory of this bioenergy system s sustainability under each scenario. Within this East Tennessee context, switchgrass production shows potential for improving environmental and social sustainability trajectories without adverse economic impacts, thereby leading to potential for overall enhancement in sustainability within this local agricultural system. Given the early stages of cellulosic ethanol production, it is currently difficult to determine quantitative values for all 35 sustainability indicators across the entire biofuel supply chain. This case study demonstrates that integration of qualitative sustainability indicator ratings may increase holistic understanding of a bioenergy system in the absence of complete information.« less

  2. Installation package for a solar heating and hot water system

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Development and installation of two commercial solar heating and hot water systems are reported. The systems consist of the following subsystems: collector, storage, transport, hot water, auxiliary energy and controls. General guidelines are provided which may be utilized in development of detailed installation plans and specifications. In addition, operation, maintenance and repair of a solar heating and hot water system instructions are included.

  3. 14 CFR 23.1385 - Position light system installation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Position light system installation. 23.1385... Lights § 23.1385 Position light system installation. (a) General. Each part of each position light system... requirements of §§ 23.1387 through 23.1397. (b) Left and right position lights. Left and right position...

  4. 14 CFR 25.1385 - Position light system installation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Position light system installation. 25.1385... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Lights § 25.1385 Position light system installation. (a) General. Each part of each position light system must meet the...

  5. 14 CFR 27.1385 - Position light system installation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Position light system installation. 27.1385... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Lights § 27.1385 Position light system installation. (a) General. Each part of each position light system must meet the...

  6. 14 CFR 23.1385 - Position light system installation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Position light system installation. 23.1385... Lights § 23.1385 Position light system installation. (a) General. Each part of each position light system... requirements of §§ 23.1387 through 23.1397. (b) Left and right position lights. Left and right position...

  7. 14 CFR 23.1385 - Position light system installation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Position light system installation. 23.1385... Lights § 23.1385 Position light system installation. (a) General. Each part of each position light system... requirements of §§ 23.1387 through 23.1397. (b) Left and right position lights. Left and right position...

  8. 14 CFR 25.1385 - Position light system installation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Position light system installation. 25.1385... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Lights § 25.1385 Position light system installation. (a) General. Each part of each position light system must meet the...

  9. 14 CFR 29.1385 - Position light system installation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Position light system installation. 29.1385... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Lights § 29.1385 Position light system installation. (a) General. Each part of each position light system must meet the...

  10. Installation and Commissioning Automated Demand Response Systems

    SciTech Connect

    Global Energy Partners; Pacific Gas and Electric Company; Kiliccote, Sila; Kiliccote, Sila; Piette, Mary Ann; Wikler, Greg; Prijyanonda, Joe; Chiu, Albert

    2008-04-21

    strategies if convenient to the facility. From 2003 through 2006 Lawrence Berkeley National Laboratory (LBNL) and the Demand Response Research Center (DRRC) developed and tested a series of demand response automation communications technologies known as Automated Demand Response (Auto-DR). In 2007, LBNL worked with three investor-owned utilities to commercialize and implement Auto-DR programs in their territories. This paper summarizes the history of technology development for Auto-DR, and describes the DR technologies and control strategies utilized at many of the facilities. It outlines early experience in commercializing Auto-DR systems within PG&E DR programs, including the steps to configure the automation technology. The paper also describes the DR sheds derived using three different baseline methodologies. Emphasis is given to the lessons learned from installation and commissioning of Auto-DR systems, with a detailed description of the technical coordination roles and responsibilities, and costs.

  11. Life-cycle assessment of net greenhouse-gas flux for bioenergy cropping systems.

    PubMed

    Adler, Paul R; Del Grosso, Stephen J; Parton, William J

    2007-04-01

    Bioenergy cropping systems could help offset greenhouse gas emissions, but quantifying that offset is complex. Bioenergy crops offset carbon dioxide emissions by converting atmospheric CO2 to organic C in crop biomass and soil, but they also emit nitrous oxide and vary in their effects on soil oxidation of methane. Growing the crops requires energy (e.g., to operate farm machinery, produce inputs such as fertilizer) and so does converting the harvested product to usable fuels (feedstock conversion efficiency). The objective of this study was to quantify all these factors to determine the net effect of several bioenergy cropping systems on greenhouse-gas (GHG) emissions. We used the DAYCENT biogeochemistry model to assess soil GHG fluxes and biomass yields for corn, soybean, alfalfa, hybrid poplar, reed canarygrass, and switchgrass as bioenergy crops in Pennsylvania, USA. DAYCENT results were combined with estimates of fossil fuels used to provide farm inputs and operate agricultural machinery and fossil-fuel offsets from biomass yields to calculate net GHG fluxes for each cropping system considered. Displaced fossil fuel was the largest GHG sink, followed by soil carbon sequestration. N20 emissions were the largest GHG source. All cropping systems considered provided net GHG sinks, even when soil C was assumed to reach a new steady state and C sequestration in soil was not counted. Hybrid poplar and switchgrass provided the largest net GHG sinks, >200 g CO2e-C x m(-2) x yr(-1) for biomass conversion to ethanol, and >400 g CO2e-C x m(-2) x yr(-1) for biomass gasification for electricity generation. Compared with the life cycle of gasoline and diesel, ethanol and biodiesel from corn rotations reduced GHG emissions by approximately 40%, reed canarygrass by approximately 85%, and switchgrass and hybrid poplar by approximately 115%.

  12. Challenges and models in supporting logistics system design for dedicated-biomass-based bioenergy industry.

    PubMed

    Zhu, Xiaoyan; Li, Xueping; Yao, Qingzhu; Chen, Yuerong

    2011-01-01

    This paper analyzed the uniqueness and challenges in designing the logistics system for dedicated biomass-to-bioenergy industry, which differs from the other industries, due to the unique features of dedicated biomass (e.g., switchgrass) including its low bulk density, restrictions on harvesting season and frequency, content variation with time and circumambient conditions, weather effects, scattered distribution over a wide geographical area, and so on. To design it, this paper proposed a mixed integer linear programming model. It covered from planting and harvesting switchgrass to delivering to a biorefinery and included the residue handling, concentrating on integrating strategic decisions on the supply chain design and tactical decisions on the annual operation schedules. The present numerical examples verified the model and demonstrated its use in practice. This paper showed that the operations of the logistics system were significantly different for harvesting and non-harvesting seasons, and that under the well-designed biomass logistics system, the mass production with a steady and sufficient supply of biomass can increase the unit profit of bioenergy. The analytical model and practical methodology proposed in this paper will help realize the commercial production in biomass-to-bioenergy industry. PMID:20863690

  13. CO2 CH4 and N20 fluxes during land conversion in early bioenergy systems

    NASA Astrophysics Data System (ADS)

    Zenone, T.

    2012-04-01

    CO2 CH4 and N20 fluxes during land conversion in early bioenergy systems Terenzio Zenone1-2, Jiquan Chen1-2, Ilya Gelfand3-4, G. Philip Robertson3-4 1 Department of Environmental Sciences, University of Toledo, Toledo, OH USA 2 Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI USA 3 W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI USA 4Department of Crop and Soil Sciences, Michigan State University, East Lansing, MI USA Environmental sustainability of bioenergy crop cultivation represents an important challenge and is a topic of intensive scientific and political debate worldwide due to increasing societal needs for renewable energy. Despite the increasing knowledge related to potential bioenergy systems, the effect of land use change (LUC) on GHG fluxes during the conversion remains poorly understood but is likely to be substantial. In order to tackle this issue the Great lake Bioenergy Research Center (GLBRC) of the US Department of Energy (DOE) has established a field experiment and deployed a cluster of eddy-covariance towers to quantify the magnitude and changes of ecosystem carbon assimilation, loss, and balance during the conversion and establishment years in a permanent prairie and four types of candidate biofuel systems [Conservation Reserve Program (CRP) grassland, switchgrass, mixed-species restored prairie and corn]. Six sites were converted to soybean in 2009 before establishing the bioenergy systems in 2010 while one site was kept grassland as reference. Soil N2O and CH4 fluxes were measured biweekly with static chambers in four replicate locations in each fields, within the footprint of the eddy covariance tower using static chamber GHG flux protocols of the KBS LTER site. Our field observations, made between January 2009 through December 2010, showed that conversion of CRP to soybean induced net C emissions during the conversion year that ranging from 288 g C m-2, to 173 g C m-2 . while

  14. 14 CFR 29.1309 - Equipment, systems, and installations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... required by this subchapter must be designed and installed to ensure that they perform their intended..., considered separately and in relation to other systems, must be designed so that— (1) For Category B rotorcraft, the equipment, systems, and installations must be designed to prevent hazards to the...

  15. 14 CFR 27.1385 - Position light system installation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Position light system installation. 27.1385 Section 27.1385 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Lights § 27.1385 Position light system installation. (a) General. Each part...

  16. 14 CFR 29.1385 - Position light system installation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Position light system installation. 29.1385 Section 29.1385 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Lights § 29.1385 Position light system installation. (a) General. Each...

  17. Net land-atmosphere flows of biogenic carbon related to bioenergy: towards an understanding of systemic feedbacks.

    PubMed

    Haberl, Helmut

    2013-07-01

    The notion that biomass combustion is carbon neutral vis-a-vis the atmosphere because carbon released during biomass combustion is absorbed during plant regrowth is inherent in the greenhouse gas accounting rules in many regulations and conventions. But this 'carbon neutrality' assumption of bioenergy is an oversimplification that can result in major flaws in emission accounting; it may even result in policies that increase, instead of reduce, overall greenhouse gas emissions. This commentary discusses the systemic feedbacks and ecosystem succession/land-use history issues ignored by the carbon neutrality assumption. Based on recent literature, three cases are elaborated which show that the C balance of bioenergy may range from highly beneficial to strongly detrimental, depending on the plants grown, the land used (including its land-use history) as well as the fossil energy replaced. The article concludes by proposing the concept of GHG cost curves of bioenergy as a means for optimizing the climate benefits of bioenergy policies.

  18. Effects of child restraint system features on installation errors.

    PubMed

    Klinich, Kathleen D; Manary, Miriam A; Flannagan, Carol A C; Ebert, Sheila M; Malik, Laura A; Green, Paul A; Reed, Matthew P

    2014-03-01

    This study examined how child restraint system (CRS) features contribute to CRS installation errors. Sixteen convertible CRS, selected to include a wide range of features, were used in volunteer testing with 32 subjects. Subjects were recruited based on their education level (high or low) and experience with installing CRS (none or experienced). Each subject was asked to perform four child restraint installations in the right-rear passenger seat of a 2006 Pontiac G6 sedan using a crash dummy as a child surrogate. Each subject installed two CRS forward-facing (FF), one with LATCH and one with the vehicle seatbelt, and two CRS rear-facing (RF), one with LATCH and one with the seatbelt. After each installation, the experimenter evaluated 42 factors for each installation, such as choice of belt routing path, tightness of installation, and harness snugness. Analyses used linear mixed models to identify CRS installation outcomes associated with CRS features. LATCH connector type, LATCH strap adjustor type, and the presence of belt lockoffs were associated with the tightness of the CRS installation. The type of harness shoulder height adjuster was associated with the rate of achieving a snug harness. Correct tether use was associated with the tether storage method. In general, subject assessments of the ease-of-use of CRS features were not highly correlated with the quality of their installation, suggesting a need for feedback with incorrect installations. The data from this study provide quantitative assessments of some CRS features that were associated with reductions in CRS installation errors. These results provide child restraint designers with design guidelines for developing easier-to-use products. Research on providing effective feedback during the child restraint installation process is recommended. PMID:23731627

  19. Effects of child restraint system features on installation errors.

    PubMed

    Klinich, Kathleen D; Manary, Miriam A; Flannagan, Carol A C; Ebert, Sheila M; Malik, Laura A; Green, Paul A; Reed, Matthew P

    2014-03-01

    This study examined how child restraint system (CRS) features contribute to CRS installation errors. Sixteen convertible CRS, selected to include a wide range of features, were used in volunteer testing with 32 subjects. Subjects were recruited based on their education level (high or low) and experience with installing CRS (none or experienced). Each subject was asked to perform four child restraint installations in the right-rear passenger seat of a 2006 Pontiac G6 sedan using a crash dummy as a child surrogate. Each subject installed two CRS forward-facing (FF), one with LATCH and one with the vehicle seatbelt, and two CRS rear-facing (RF), one with LATCH and one with the seatbelt. After each installation, the experimenter evaluated 42 factors for each installation, such as choice of belt routing path, tightness of installation, and harness snugness. Analyses used linear mixed models to identify CRS installation outcomes associated with CRS features. LATCH connector type, LATCH strap adjustor type, and the presence of belt lockoffs were associated with the tightness of the CRS installation. The type of harness shoulder height adjuster was associated with the rate of achieving a snug harness. Correct tether use was associated with the tether storage method. In general, subject assessments of the ease-of-use of CRS features were not highly correlated with the quality of their installation, suggesting a need for feedback with incorrect installations. The data from this study provide quantitative assessments of some CRS features that were associated with reductions in CRS installation errors. These results provide child restraint designers with design guidelines for developing easier-to-use products. Research on providing effective feedback during the child restraint installation process is recommended.

  20. The impact of cultivar diversity in bioenergy feedstock production systems on soil carbon sequestration rates

    NASA Astrophysics Data System (ADS)

    De Graaff, M.; Morris, G.; Jastrow, J. D.; SIX, J. W.

    2013-12-01

    Land-use change for bioenergy production can create greenhouse gas (GHG) emissions through disturbance of soil carbon (C) pools, but native species with extensive root systems may rapidly repay the GHG debt, particularly when grown in diverse mixtures, by enhancing soil C sequestration upon land-use change. Native bioenergy candidate species, switchgrass (Panicum virgatum L.) and big bluestem (Andropogon gerardii) show extensive within-species variation, and our preliminary data show that increased cultivar diversity can enhance yield. We aim to assess how shifting C3-dominated nonnative perennial grasslands to C4-dominated native perennial grasslands for use as bioenergy feedstock affects soil C stocks, and how within-species diversity in switchgrass and big bluestem affects soil C sequestration rates. Our experiment is conducted at the Fermilab National Environmental Research Park, and compares different approaches for perennial feedstock production ranging across a biodiversity gradient, where diversity is manipulated at both the species- and cultivar level, and nitrogen (N) is applied at two levels (0 and 67 kg/ha). Preliminary results indicate that switchgrass and big bluestem differentially affect soil C sequstration, and that increasing diversity may enhance soil C sequestration rates.

  1. Solar hot water system installed at Mobile, Alabama

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The system consists of six rows of ten collectors and three rows of eleven collectors (1990 square feet) mounted on the roof. Griswald flow control valves were installed to regulate the flow to each row. Two Heliotrope electronic thermometers with a combined capability of measuring the temperatures of 22 different locations were installed for monitoring purposes.

  2. An Administrator's Guide to Installing a Telephone System.

    ERIC Educational Resources Information Center

    Forbes, Phyllis Rossiter

    1986-01-01

    Guidelines for administrators concerning installation of a new campus telephone system address these issues: where to start; location and emergency power; the project team; paperwork; communication among those involved in installation; working with the local operating company; existing wiring; the external cable plant; special needs; and training…

  3. 14 CFR 23.1385 - Position light system installation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... must consist of a red and a green light spaced laterally as far apart as practicable and installed on the airplane such that, with the airplane in the normal flying position, the red light is on the left... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Position light system installation....

  4. 14 CFR 23.1385 - Position light system installation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... must consist of a red and a green light spaced laterally as far apart as practicable and installed on the airplane such that, with the airplane in the normal flying position, the red light is on the left... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Position light system installation....

  5. New concept for a general purpose subsea installation system

    SciTech Connect

    Citi, G.; Cowen, S.; Radicioni, A.

    1996-12-31

    The first use of the Agip SAF System (Sistema Alti Fondali), an installation and maintenance system for subsea production systems up to 1,000 m water depth, was successfully performed on the Luna 40 well in 180 m w.d. The system successfully installed the christmas tree, flowline jumpers, control system and high pressure cap as well as deploying the LMRP to allow the commissioning of the well. The SAF system performed all the planned tasks during the installation of the Luna 40 subsea tree and now has to be considered an operational success. The system is based around a Master Vehicle that provides hydraulic power to, and controls a set of dedicated work modules. During the 2 test and 5 working dives, the Master Vehicle and the modules were subsea for a considerable period of time, up to 75 hours continuously, without any operational failures. This installation uncovered some system deficiencies that will have to be studied to improve the reliability and operability of the system. From the experience gained during this operation it has been shown that the system of a Master Vehicle providing locally generated hydraulic power is a feasible approach to many subsea installation problems. This paper describes the SAF system including improvements to be performed before being used operationally in up to 1,000 m of water and over. It also covers the necessary modifications required to allow the system to be deployed from a wide range of installation vessel.

  6. Solar hot water system installed at Las Vegas, Nevada

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A solar energy hot water system installed in a motor inn at Las Vegas, Nevada is described. The inn is a three story building with a flat roof for installation of the solar panels. The system consists of 1,200 square feet of liquid flat plate collectors, a 2,500 gallon insulated vertical steel storage tank, two heat exchangers, and pumps and controls. The system was designed to supply approximately 74 percent of the total hot water load.

  7. Solar heating system installed at Troy, Ohio. Final report

    SciTech Connect

    1980-09-01

    This document is the Final Report of the Solar Energy System located at Troy-Miami County Public Library, Troy, Ohio. The completed system is composed of tree basic subsystems: the collector system consisting of 3264 square feet of Owens Illinois evacuated glass tube collectors; the storage system which includes a 5000-gallon insulated steel tank; and the distribution and control system which includes piping, pumping and control logic for the efficient and safe operation of the entire system. This solar heating system was installed in an existing facility and is, therefore, a retrofit system. This report includes extracts from the site files, specifications, drawings, installation, operation and maintenance instructions.

  8. Solar hot water system installed at Mobile, Alabama. Final report

    SciTech Connect

    1980-10-01

    This final report describes the solar energy hot water system installed at LaQuinta Motor Inn Inc., at Mobile, Alabama. The building is a 122 unit motel. The system consists of six rows of ten collectors and three rows of eleven collectors (1990 square feet) mounted on the roof. Griswald flow control valves were installed to regulate the flow to each row. Two Heliotrope electronic thermometers with a combined capability of measuring the temperatures of 22 different locations were installed for monitoring purposes. Engineering drawings, component specifications, and operator instructions are included.

  9. Renewable energy systems in Mexico: Installation of a hybrid system

    NASA Astrophysics Data System (ADS)

    Pate, Ronald C.

    1993-05-01

    Sandia has been providing technical leadership on behalf of DOE and CORECT on a working level cooperative program with Mexico on renewable energy (PROCER). As part of this effort, the Sandia Design Assistance Center (DAC) and the solar energy program staff at Instituto de Investigaciones Electricas (IIE) in Cuernavaca, Mexico, recently reached agreement on a framework for mutually beneficial technical collaboration on the monitoring and field evaluation of renewable energy systems in Mexico, particularly village-scale hybrid systems. This trip was made for the purpose of planning the details for the joint installation of a data acquisition system (DAS) on a recently completed PV/Wind/Diesel hybrid system in the village of Xcalac on the Southeast coast of the state of Quintana Roo, Mexico. The DAS installation will be made during the week of March 15, 1993. While in Mexico, discussions were also held with personnel from.the National Autonomous University of Mexico (UNAM) Solar Energy Laboratory and several private sector companies with regard to renewable energy project activities and technical and educational support needs in Mexico.

  10. Deep water installation -- Heavy mooring and riser systems

    SciTech Connect

    Alvheim, N.

    1995-12-31

    While the move into deep water has provided exciting challenges often resulting in ingenious and novel equipment it is usually the equipment or the solution itself that is remembered and discussed. Too often one overlooks just how that novel equipment was actually installed. Perhaps one of the most exciting and ingenious equipment designs of recent times is the Submerged Turret Loading (STL) system. To date the authors have had the privilege of installing each of the 3 systems so far produced. Their work is well on course for installing the fourth during the coming summer. This paper addresses the installation of two of these systems in the summer of 94 in 350m of the hostile Halten Bank waters as part of the Conoco Heidrun development. Because the Norwegian oil industry has always been at the cutting edge of technology each new development results in the usual plethora of statistics which when presented in papers Re this are accompanied with a long list of superlatives like tallest, heaviest, deepest, quickest etc. etc. Installation work at Heidrun has a similar list. Because the 2 STL systems at Heidrun (called Direct Shuttle Loading DSL) were to be installed in such deep water the sheer size of the system components are worthy of review.

  11. Dependency of global primary bioenergy crop potentials in 2050 on food systems, yields, biodiversity conservation and political stability.

    PubMed

    Erb, Karl-Heinz; Haberl, Helmut; Plutzar, Christoph

    2012-08-01

    The future bioenergy crop potential depends on (1) changes in the food system (food demand, agricultural technology), (2) political stability and investment security, (3) biodiversity conservation, (4) avoidance of long carbon payback times from deforestation, and (5) energy crop yields. Using a biophysical biomass-balance model, we analyze how these factors affect global primary bioenergy potentials in 2050. The model calculates biomass supply and demand balances for eleven world regions, eleven food categories, seven food crop types and two livestock categories, integrating agricultural forecasts and scenarios with a consistent global land use and NPP database. The TREND scenario results in a global primary bioenergy potential of 77 EJ/yr, alternative assumptions on food-system changes result in a range of 26-141 EJ/yr. Exclusion of areas for biodiversity conservation and inaccessible land in failed states reduces the bioenergy potential by up to 45%. Optimistic assumptions on future energy crop yields increase the potential by up to 48%, while pessimistic assumptions lower the potential by 26%. We conclude that the design of sustainable bioenergy crop production policies needs to resolve difficult trade-offs such as food vs. energy supply, renewable energy vs. biodiversity conservation or yield growth vs. reduction of environmental problems of intensive agriculture.

  12. Dependency of global primary bioenergy crop potentials in 2050 on food systems, yields, biodiversity conservation and political stability

    PubMed Central

    Erb, Karl-Heinz; Haberl, Helmut; Plutzar, Christoph

    2012-01-01

    The future bioenergy crop potential depends on (1) changes in the food system (food demand, agricultural technology), (2) political stability and investment security, (3) biodiversity conservation, (4) avoidance of long carbon payback times from deforestation, and (5) energy crop yields. Using a biophysical biomass-balance model, we analyze how these factors affect global primary bioenergy potentials in 2050. The model calculates biomass supply and demand balances for eleven world regions, eleven food categories, seven food crop types and two livestock categories, integrating agricultural forecasts and scenarios with a consistent global land use and NPP database. The TREND scenario results in a global primary bioenergy potential of 77 EJ/yr, alternative assumptions on food-system changes result in a range of 26–141 EJ/yr. Exclusion of areas for biodiversity conservation and inaccessible land in failed states reduces the bioenergy potential by up to 45%. Optimistic assumptions on future energy crop yields increase the potential by up to 48%, while pessimistic assumptions lower the potential by 26%. We conclude that the design of sustainable bioenergy crop production policies needs to resolve difficult trade-offs such as food vs. energy supply, renewable energy vs. biodiversity conservation or yield growth vs. reduction of environmental problems of intensive agriculture. PMID:23576836

  13. Evaluation of regional bioenergy recovery by local methane fermentation thermal recycling systems.

    PubMed

    Wong, Looi-Fang; Fujita, Tsuyoshi; Xu, Kaiqin

    2008-11-01

    This paper evaluates the potential for regional bioenergy recovery as electricity and heat by small-scale methane fermentation systems from organic waste matter generated from urban, industrial, and agricultural sectors. Biogas production functions of high-strength organic wastes are derived from data of implemented methane fermentation systems. The distributions of organic wastes from sewage, household, wholesale/retail, manufacturing, farming, and livestock activities in the Tokyo Bay region are calibrated into a disaggregated spatial database by compiling general activity statistics and emission intensity parameters using Geographic Information System (GIS). Three scenarios of organic matter circulation by co-digestion in sewage treatment plants (STPs) are designed and assessed. Surplus electricity and heat from methane fermentation systems are used for STP operations and household demand. The spatial database allows a preliminary examination for the suitability of locations for technology implementation from the aspects of bioenergy supply and balance. The results show that an additional 368,000-1,328,000 MW of electricity would be generated, and 1300-3600 TJ of heat could be used by households, reducing the annual emissions of CO2 from fossil fuels by 307,000-798,000 t. PMID:18166448

  14. Meeting the challenges of installing a mobile robotic system

    NASA Technical Reports Server (NTRS)

    Decorte, Celeste

    1994-01-01

    The challenges of integrating a mobile robotic system into an application environment are many. Most problems inherent to installing the mobile robotic system fall into one of three categories: (1) the physical environment - location(s) where, and conditions under which, the mobile robotic system will work; (2) the technological environment - external equipment with which the mobile robotic system will interact; and (3) the human environment - personnel who will operate and interact with the mobile robotic system. The successful integration of a mobile robotic system into these three types of application environment requires more than a good pair of pliers. The tools for this job include: careful planning, accurate measurement data (as-built drawings), complete technical data of systems to be interfaced, sufficient time and attention of key personnel for training on how to operate and program the robot, on-site access during installation, and a thorough understanding and appreciation - by all concerned - of the mobile robotic system's role in the security mission at the site, as well as the machine's capabilities and limitations. Patience, luck, and a sense of humor are also useful tools to keep handy during a mobile robotic system installation. This paper will discuss some specific examples of problems in each of three categories, and explore approaches to solving these problems. The discussion will draw from the author's experience with on-site installations of mobile robotic systems in various applications. Most of the information discussed in this paper has come directly from knowledge learned during installations of Cybermotion's SR2 security robots. A large part of the discussion will apply to any vehicle with a drive system, collision avoidance, and navigation sensors, which is, of course, what makes a vehicle autonomous. And it is with these sensors and a drive system that the installer must become familiar in order to foresee potential trouble areas in the

  15. Rotary feeding system for metallic coating installation by electrodeposition

    NASA Astrophysics Data System (ADS)

    Stănescu, A.; Alecusan, A. M.; Dimitescu, A.

    2016-08-01

    The paper aims to present an alternative feeding system for metallic coatings lines by electrodeposition which lends itself to the circular arrangement of the cuvettes used in such plants. The novelty lies both, in the arrangement of the electrodeposition installation components and mechanical feeding and transport system for parts to be electrodeposited. The control and actuation system of this type of installation simplifies. Nevertheless, all these increase the system reliability and run lower maintenance costs, without adversely affecting the quality of the end product. The paper presents the justification for reducing the total energy consumption in the electrodeposition process, too.

  16. 45. STEEL RESERVOIR TANKS FOR NEW SPRINGFED WATER SYSTEM INSTALLED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    45. STEEL RESERVOIR TANKS FOR NEW SPRING-FED WATER SYSTEM INSTALLED IN 1982. LOCATED IN WAIHANAU VALLEY, THIS REPLACED THE WAIKOLU SYSTEM AND PROVIDES A MORE CONSISTENT AND CLEAN WATER SUPPLY FOR KALAUPAPA. - Kalaupapa Water Supply System, Waikolu Valley to Kalaupapa Settlement, Island of Molokai, Kalaupapa, Kalawao County, HI

  17. Nutrient Use Efficiency in Bioenergy Cropping Systems: Critical Research Questions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Current U.S. plans for energy security rely on converting large areas of cropland from food to biofuel production. Additionally, lands currently considered too marginal for intensive food production may be considered suitable for biofuels production; predominant cropping systems may shift to more va...

  18. Agroforestry systems for bioenergy in the southeastern USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural landscapes are an important component of a biofuel strategy to develop energy independence. Agroforestry systems offer an opportunity to produce both food and biofuel feedstocks from the same land area. Such a strategy could improve numerous ecosystem services more so than either of t...

  19. Flexible tubing production system for well installation

    SciTech Connect

    Walling, J. B.

    1984-10-16

    An improved system for lifting formation fluid from a well bore to a surface facility is disclosed. Rigid production tubing and sucker rods are replaced by flexible, composite production tubing in which a production conduit, power conductors, signal conductors, hydraulic/pneumatic conduits and a load-bearing tension member are enclosed by a flexible, tubular covering. The load-bearing member of the flexible production tubing is mechanically coupled to a submersible pump. The pump includes driving means such as an electrical motor, hydraulic motor or pneumatic motor which is driven downhole by electrical or hydraulic/pneumatic power transmitted through auxiliary conduits in the flexible production tubing. The flexible production tubing is wound about a truck-mounted reel for convenient transport to and from a well site. A submersible pump is attached to the end of the flexible tubing and is played out from the reel through the well casing to the producing formation. Withdrawal of the pump from the well is accomplished by taking up the flexible production tubing around the truck-mounted reel.

  20. Development of sustainable, native grass-based bioenergy production systems in the prairie region of Minnesota: Soil nutrient response to fertilizer and harvest treatments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conversion of cropland for the production of bioenergy feedstocks is a promising scenario for the upper Midwest as economic and social interests in bioenergy and low-carbon fuels grow. Landowners are in the forefront of developing the necessary whole-farm management systems. Progressive multipurpos...

  1. 14 CFR 29.1309 - Equipment, systems, and installations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Equipment, systems, and installations. 29.1309 Section 29.1309 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... take appropriate corrective action. Systems, controls, and associated monitoring and warning means...

  2. Installation package for SIMS prototype system 2, solar hot water

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The prototype system 2 solar hot water was designed for use in a single family dwelling and consists of the following subsystems: collector, storage, energy transport, and control. Guidelines are presented for utilization in the development of detailed installation plans and specifications. Instruction on operation, maintenance, and repair of the system is discussed.

  3. 72. View of test system showing Klystron tube installed in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    72. View of test system showing Klystron tube installed in test position on first floor of transmitter building no. 102. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  4. 78 FR 56264 - Big Bear Mining Corp., Four Rivers BioEnergy, Inc., Mainland Resources, Inc., QI Systems Inc...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-12

    ... From the Federal Register Online via the Government Publishing Office SECURITIES AND EXCHANGE COMMISSION Big Bear Mining Corp., Four Rivers BioEnergy, Inc., Mainland Resources, Inc., QI Systems Inc... there is a lack of current and accurate information concerning the securities of Four Rivers...

  5. Horizontal pumping system installed at East Texas gas plant

    SciTech Connect

    Lopez, M.; Goodwin, B.

    1998-07-20

    Installation of horizontal, multistage centrifugal pumps in lean-amine service has proven successful and economical at Union Pacific Resources (UPR) East Texas gas plant (ETGP), Carthage, Tex. In the past, UPR had used either vertical can pumps or positive displacement (PD) pumps for amine circulation in gas-treating operations. When the need to replace a PD pump in the No. 4 amine plant arose, UPR solicited bids from both traditional pump suppliers. Additionally, UPR solicited a bid from REDA for its horizontal pumping system (HPS) based on previous success of this type of pump at ETGP for saltwater disposal. The first pump was installed in May 1996 and designed to circulate a maximum of 80 gpm. Since installation of the pump in No. 4 amine-treating unit, UPR has experienced no downtime and realized a significant cost savings on maintenance labor and parts over the previous positive displacement installation. The success of this HPS in amine service has led UPR to invest in five additional HPS pumps for ETGP`s amine service. The paper describes the decision, economics, pumping systems, preventive maintenance, and post installation performance.

  6. Installation, operation, and maintenance for the pyramidal optics solar system installed at Yacht Cover, Columbia, South Carolina

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Information concerning the installation, operation, and maintenance of the pyramidal Solar System for space heating and domestic hot water is presented. Principles of operation, sequence of installation, and procedures for the operation and maintenance of each subsystem making up the solar system are presented. Troubleshooting charts and maintenance schedules are presented.

  7. MODEL BASED BIOMASS SYSTEM DESIGN OF FEEDSTOCK SUPPLY SYSTEMS FOR BIOENERGY PRODUCTION

    SciTech Connect

    David J. Muth, Jr.; Jacob J. Jacobson; Kenneth M. Bryden

    2013-08-01

    Engineering feedstock supply systems that deliver affordable, high-quality biomass remains a challenge for the emerging bioenergy industry. Cellulosic biomass is geographically distributed and has diverse physical and chemical properties. Because of this feedstock supply systems that deliver cellulosic biomass resources to biorefineries require integration of a broad set of engineered unit operations. These unit operations include harvest and collection, storage, preprocessing, and transportation processes. Design decisions for each feedstock supply system unit operation impact the engineering design and performance of the other system elements. These interdependencies are further complicated by spatial and temporal variances such as climate conditions and biomass characteristics. This paper develops an integrated model that couples a SQL-based data management engine and systems dynamics models to design and evaluate biomass feedstock supply systems. The integrated model, called the Biomass Logistics Model (BLM), includes a suite of databases that provide 1) engineering performance data for hundreds of equipment systems, 2) spatially explicit labor cost datasets, and 3) local tax and regulation data. The BLM analytic engine is built in the systems dynamics software package PowersimTM. The BLM is designed to work with thermochemical and biochemical based biofuel conversion platforms and accommodates a range of cellulosic biomass types (i.e., herbaceous residues, short- rotation woody and herbaceous energy crops, woody residues, algae, etc.). The BLM simulates the flow of biomass through the entire supply chain, tracking changes in feedstock characteristics (i.e., moisture content, dry matter, ash content, and dry bulk density) as influenced by the various operations in the supply chain. By accounting for all of the equipment that comes into contact with biomass from the point of harvest to the throat of the conversion facility and the change in characteristics, the

  8. Bioenergy Sustainability in China: Potential and Impacts

    NASA Astrophysics Data System (ADS)

    Zhuang, Jie; Gentry, Randall W.; Yu, Gui-Rui; Sayler, Gary S.; Bickham, John W.

    2010-10-01

    The sustainability implications of bioenergy development strategies are large and complex. Unlike conventional agriculture, bioenergy production provides an opportunity to design systems for improving eco-environmental services. Different places have different goals and solutions for bioenergy development, but they all should adhere to the sustainability requirements of the environment, economy, and society. This article serves as a brief overview of China’s bioenergy development and as an introduction to this special issue on the impacts of bioenergy development in China. The eleven articles in this special issue present a range of perspectives and scenario analyses on bioenergy production and its impacts as well as potential barriers to its development. Five general themes are covered: status and goals, biomass resources, energy plants, environmental impacts, and economic and social impacts. The potential for bioenergy production in China is huge, particularly in the central north and northwest. China plans to develop a bioenergy capacity of 30GW by 2020. However, realization of this goal will require breakthroughs in bioenergy landscape design, energy plant biotechnology, legislation, incentive policy, and conversion facilities. Our analyses suggest that (1) the linkage between bioenergy, environment, and economy are often circular rather than linear in nature; (2) sustainability is a core concept in bioenergy design and the ultimate goal of bioenergy development; and (3) each bioenergy development scheme must be region-specific and designed to solve local environmental and agricultural problems.

  9. McClellan PV system installation provides key lessons

    NASA Astrophysics Data System (ADS)

    Kauffman, W. R.

    Design features and lessons learned in the installation of a 40 kWp solar cell array to supply power to a market on an airbase are outlined. The fixed-position modules interface with an inverter, ac and dc switchgear, controls, instrumentation, and an energy management system. The power control unit has a peak power tracking feature to maximize output from the 1142 cell modules. The inverter has functioned at over 98 percent efficiency near the 25 kW design range of the array. Moisture sealing to prevent ground faults was found necessary during the installation of the underground cabling.

  10. 20. SIMILAR TO THE SYSTEM INSTALLED IN THE GREY IRON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. SIMILAR TO THE SYSTEM INSTALLED IN THE GREY IRON FOUNDRY, MALLEABLE WORKERS FILLED MOLDS TRAVELING ON A CONVEYOR FROM LADLES ATTACHED TO OVERHEAD RAILS WHILE THEY STOOD ON A PLATFORM MOVING AT THE SAME SPEED AS THE CONVEYOR, CA. 1950 - Stockham Pipe & Fittings Company, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  11. 14 CFR 27.1309 - Equipment, systems, and installations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment General § 27.1309 Equipment... multiengine rotorcraft must be designed to prevent hazards to the rotorcraft in the event of a probable malfunction or failure. (c) The equipment, systems, and installations of single-engine rotorcraft must...

  12. 14 CFR 27.1309 - Equipment, systems, and installations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment General § 27.1309 Equipment... multiengine rotorcraft must be designed to prevent hazards to the rotorcraft in the event of a probable malfunction or failure. (c) The equipment, systems, and installations of single-engine rotorcraft must...

  13. 14 CFR 25.1385 - Position light system installation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ....1397. (b) Forward position lights. Forward position lights must consist of a red and a green light... airplane in the normal flying position, the red light is on the left side and the green light is on the... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Position light system installation....

  14. 14 CFR 29.1385 - Position light system installation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ....1397. (b) Forward position lights. Forward position lights must consist of a red and a green light... rotorcraft in the normal flying position, the red light is on the left side, and the green light is on the... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Position light system installation....

  15. 14 CFR 25.1385 - Position light system installation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ....1397. (b) Forward position lights. Forward position lights must consist of a red and a green light... airplane in the normal flying position, the red light is on the left side and the green light is on the... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Position light system installation....

  16. 14 CFR 27.1385 - Position light system installation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ....1397. (b) Forward position lights. Forward position lights must consist of a red and a green light... rotorcraft in the normal flying position, the red light is on the left side and the green light is on the... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Position light system installation....

  17. 14 CFR 27.1385 - Position light system installation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ....1397. (b) Forward position lights. Forward position lights must consist of a red and a green light... rotorcraft in the normal flying position, the red light is on the left side and the green light is on the... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Position light system installation....

  18. 14 CFR 29.1385 - Position light system installation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ....1397. (b) Forward position lights. Forward position lights must consist of a red and a green light... rotorcraft in the normal flying position, the red light is on the left side, and the green light is on the... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Position light system installation....

  19. 46 CFR 95.16-60 - System piping installation testing.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... piping installation testing. (a) Halocarbon systems. A pressure test using the extinguishing agent, air... generator rooms and paint lockers, may be tested by blowing out the piping with air pressure of at least 100... pressure of 11/2 times the cylinder charging pressure at 70 °Fahrenheit; and (ii) The leakage during a...

  20. 46 CFR 95.16-60 - System piping installation testing.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... piping installation testing. (a) Halocarbon systems. A pressure test using the extinguishing agent, air... generator rooms and paint lockers, may be tested by blowing out the piping with air pressure of at least 100... pressure of 11/2 times the cylinder charging pressure at 70 °Fahrenheit; and (ii) The leakage during a...

  1. 46 CFR 95.16-60 - System piping installation testing.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... piping installation testing. (a) Halocarbon systems. A pressure test using the extinguishing agent, air... generator rooms and paint lockers, may be tested by blowing out the piping with air pressure of at least 100... pressure of 11/2 times the cylinder charging pressure at 70 °Fahrenheit; and (ii) The leakage during a...

  2. Solar hot water system installed at Anderson, South Carolina

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A description is given of the solar energy hot water system installed in the Days Inns of America, Inc., at Anderson, South Carolina. The building is a low-rise, two-story 114-room motel. The solar system was designed to provide 40 percent of the total hot water demand. The collector is a flat plate, liquid with an area of 750 square feet. Operation of this system was begun in November 1977, and has performed flawlessly for one year.

  3. Bioenergy Knowledge Discovery Framework (KDF) Fact Sheet

    SciTech Connect

    2013-07-29

    The Bioenergy Knowledge Discovery Framework (KDF) is an online collaboration and geospatial analysis tool that allows researchers, policymakers, and investors to explore and engage the latest bioenergy research. This publication describes how the KDF harnesses Web 2.0 and social networking technologies to build a collective knowledge system that facilitates collaborative production, integration, and analysis of bioenergy-related information.

  4. Solar heating system installed at Jackson, Tennessee. Final report

    SciTech Connect

    1980-10-01

    The solar energy heating system installed at the Coca-Cola Bottling Works in Jackson, Tennessee is described. The system consists of 9480 square feet of Owens-Illinois evacuated tubular solar collectors with attached specular cylindrical reflectors and will provide space heating for the 70,000 square foot production building in the winter, and hot water for the bottle washing equipment the remainder of the year. Component specifications and engineering drawings are included. (WHK)

  5. Solar space and water heating system installed at Charlottesville, Virginia

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The solar energy system located at David C. Wilson Neuropsychiatric Hospital, Charlottesville, Virginia, is described. The solar energy system consists of 88 single glazed, Sunworks 'Solector' copper base plate collector modules, hot water coils in the hot air ducts, a Domestic Hot Water (DHW) preheat tank, a 3,000 gallon concrete urethane insulated storage tank and other miscellaneous components. Extracts from the site files, specifications, drawings, installation, operation and maintenance instructions are included.

  6. Land use impacts of low-carbon energy system transition - the case of UK bioenergy deployment under the Carbon Plan

    NASA Astrophysics Data System (ADS)

    Konadu, D. D.; Sobral Mourao, Z.; Lupton, R.; Skelton, S.

    2015-12-01

    The UK Department of Energy and Climate Change has developed four low-carbon energy transition pathways - the Carbon Plan - towards achieving the legally binding 80% territorial greenhouse gas emissions reduction, stipulated in the 2008 Climate Change Act by 2050. All the pathways require increase in bioenergy deployment, of which a significant amount could be indigenously sourced from crops. But will increased domestic production of energy crops conflict with other land use and ecosystem priorities? To address this question, a coupled analysis of the four energy transition pathways and land use has been developed using an integrated resource accounting platform called ForeseerTM. The two systems are connected by the bioenergy component, and are projected forward in time to 2050, under different scenarios of energy crop composition and yield, and accounting for various constraints on land use for agriculture and ecosystem services. The results show between 7 and 61% of UK agricultural land could be required to meet bioenergy deployment projections under different combinations of crop yield and compositions for the transition pathways. This could result in competition for land for food production and other socio-economic and ecological land uses. Consequently, the potential role of bioenergy in achieving UK emissions reduction targets may face significant deployment challenges.

  7. Hospitals recognize need to install or improve cost accounting systems.

    PubMed

    Gilman, T A

    1985-11-01

    Cost accounting and implementation of a cost accounting system are becoming increasing important issues for hospitals. Therefore, to gauge current practices and future plans, HFMA in conjunction with Deloitte Haskins & Sells conducted a survey of top financial officers in approximately 3,100 hospitals. The results show 54 percent of hospitals have installed some kind of cost accounting system that captures costs at the procedure or DRG level; the existing systems seem to be relatively unsophisticated; hospitals recognize the need to improve their systems; and the improved systems will incorporate some use of standard costs.

  8. Installation of a multiplexed Raman system in a chemical process.

    PubMed

    Weyer, Lois G; Yee, Dupon; Pearson, Gary I; Wade, John

    2004-12-01

    A 785 nm laser dispersive Raman system was installed in a hazardous chemical production plant to monitor two reactors, a still, and a holding tank with measurement directly through sight glasses. Compositional information for several raw materials, intermediates, and products was obtained using partial least squares (PLS) calibrations. Discriminate analysis was used to exclude extremely poor spectra while including usable ones. Derivative/standard normal variate (SNV) treatment was found to be effective for correcting for background fluorescence and for large differences in spectral intensity. Final regression equations incorporated temperature fluctuations, occasional fluorescence, some sunlight effects, large intensity variations, and large compositional changes. Various installation problems were solved via data treatment or mechanical changes. The Raman system provides information for control of the process, resulting in cost savings and improved safety.

  9. Solar space and water heating system installed at Charlottesville, Virginia

    SciTech Connect

    Greer, Charles R.

    1980-09-01

    The solar energy system located at David C. Wilson Neuropsychiatric Hospital, Charlottesville, Virginia, consists of 88 single glazed, Sunworks Solector copper base plate collector modules; hot water coils in the hot air ducts; a domestic hot water (DHW) preheat tank; a 3,000 gallon concrete urethane-insulated storage tank and other miscellaneous components. This report includes extracts from the site files, specifications, drawings, installation, operation and maintenance instructions.

  10. Solar domestic hot water system installed at Texas City, Texas

    NASA Technical Reports Server (NTRS)

    1980-01-01

    This is the final technical report of the solar energy system located at LaQuinta Motor Inn, Texas City, Texas. The system was designed to supply 63 percent of the total hot water load for a new 98 unit motor inn. The solar energy system consists of a 2100 square feet Raypack liquid flat plate collector subsystem and a 2500 gallon storage subsystem circulating hot water producing 3.67 x 10 to the 8th power Btu/year. Abstracts from the site files, specification references, drawings, installation, operation, and maintenance instructions are included.

  11. Solar domestic hot water system installed at Texas City, Texas

    NASA Astrophysics Data System (ADS)

    1980-12-01

    This is the final technical report of the solar energy system located at LaQuinta Motor Inn, Texas City, Texas. The system was designed to supply 63 percent of the total hot water load for a new 98 unit motor inn. The solar energy system consists of a 2100 square feet Raypack liquid flat plate collector subsystem and a 2500 gallon storage subsystem circulating hot water producing 3.67 x 10 to the 8th power Btu/year. Abstracts from the site files, specification references, drawings, installation, operation, and maintenance instructions are included.

  12. Solar heating and cooling system installed at Columbus, Ohio

    NASA Astrophysics Data System (ADS)

    1980-09-01

    The Solar Energy System was installed as a part of a new construction of a college building. The building will house classrooms and laboratories, administrative offices and three lecture halls. The Solar Energy System consists of 4,096 square feet (128 panels) Owens/Illinois Evacuated Glass Tube Collector Subsystem, and a 5,000 gallon steel tank below ground storage system. Hot water is circulated between the collectors and storage tank, passing through a water/lithium bromide absorption chiller to cool the building.

  13. Solar heating and cooling system installed at Columbus, Ohio

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The Solar Energy System was installed as a part of a new construction of a college building. The building will house classrooms and laboratories, administrative offices and three lecture halls. The Solar Energy System consists of 4,096 square feet (128 panels) Owens/Illinois Evacuated Glass Tube Collector Subsystem, and a 5,000 gallon steel tank below ground storage system. Hot water is circulated between the collectors and storage tank, passing through a water/lithium bromide absorption chiller to cool the building.

  14. New fertilizer-producing system installed at Pad 39A

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A recently installed fertilizer-producing system sits near Launch Pad 39A. Using a 'scrubber,' the system captures nitrogen tetroxide vapor that develops as a by-product when it is transferred from ground storage tanks into the Shuttle storage tanks. Nitrogen tetroxide is used as the oxidizer for the hypergolic propellant in the Shuttle's on-orbit reaction control system. The scrubber then uses hydrogen peroxide to produce nitric acid, which, after adding potassium hydroxide, converts to potassium nitrate, a commercial fertilizer. Plans call for the resulting fertilizer to be used on the orange groves that KSC leases to outside companies.

  15. The climate impacts of bioenergy systems depend on market and regulatory policy contexts.

    PubMed

    Lemoine, Derek M; Plevin, Richard J; Cohn, Avery S; Jones, Andrew D; Brandt, Adam R; Vergara, Sintana E; Kammen, Daniel M

    2010-10-01

    Biomass can help reduce greenhouse gas (GHG) emissions by displacing petroleum in the transportation sector, by displacing fossil-based electricity, and by sequestering atmospheric carbon. Which use mitigates the most emissions depends on market and regulatory contexts outside the scope of attributional life cycle assessments. We show that bioelectricity's advantage over liquid biofuels depends on the GHG intensity of the electricity displaced. Bioelectricity that displaces coal-fired electricity could reduce GHG emissions, but bioelectricity that displaces wind electricity could increase GHG emissions. The electricity displaced depends upon existing infrastructure and policies affecting the electric grid. These findings demonstrate how model assumptions about whether the vehicle fleet and bioenergy use are fixed or free parameters constrain the policy questions an analysis can inform. Our bioenergy life cycle assessment can inform questions about a bioenergy mandate's optimal allocation between liquid fuels and electricity generation, but questions about the optimal level of bioenergy use require analyses with different assumptions about fixed and free parameters.

  16. Development and installation of Picostrain sensors in structural systems

    NASA Astrophysics Data System (ADS)

    Sener, Joseph C.; Latta, Bernard M.; Ross, Jimmy D.

    2004-07-01

    The concept of the Picostrain sensor technology is based on a standard, commercially available, electrical cable assembly embedded in pavement or structural members. The concept has been developed through the 1990s and patented by the Idaho Transportation Department (ITD) in 2003. The objective of this new technology is to build an inexpensive, easily installed and maintained sensor system for the purposes of vehicle classification (VC), vehicle identification (VI), weigh-in-motion (WIM), and vehicle tracking (VT) applications along with real-time monitoring and evaluation of structural performance under static and dynamic traffic loading. It is intended, in the future, that these sensors will be further developed to replace curently utilized expensive embedded pavement and structural sensors for ultimate improvement of transportation decision-making and planning. This will also help to document the movement of people and goods along with the evironmental, social, economic and financial parameters with an emphasis on tracking movements in social life for security based upon the use of this durable and reliable transducers. Approximately, 400 sensors have been installed on and in the reinforced concrete structural members of the West Park Center River Crossing Bridge (Bridge) and the Micron Engineering Center (MEC) building (Building) at Boise State University (BSU) in Boise, Idaho, USA, since 1998. These sensors were installed: in bridge pile caps, piers, girders and decks; bridge abutment embankments; building footings, columns, beams, floor slabs; and, have been linked to instrument cabinets on site. These sensors installed structures may now be called "smart" structures since they contain a resident sensing system capable of maintaining a constant watch over the integrity of the structure. These sensing systems will be able to evaluate the applied loads, as well as the static and dynamic response of the structure. This paper introduces and describes the new

  17. Radiation Safety System (RSS) backbones: Design, engineering, fabrication, and installation

    SciTech Connect

    Wilmarth, J. E.; Sturrock, J. C.; Gallegos, F. R.

    1998-12-10

    The Radiation Safety System (RSS) backbones are part of an electrical/electronic/mechanical system ensuring safe access and exclusion of personnel to areas at the Los Alamos Neutron Science Center (LANSCE) accelerator. The RSS backbones control the safety-fusible beam plugs which terminate transmission of accelerated ion beams in response to predefined conditions. Any beam or access fault of the backbone inputs will cause insertion of the beam plugs in the low-energy beam transport. The backbones serve the function of tying the beam plugs to the access control systems, beam spill monitoring systems and current-level limiting systems. In some ways the backbones may be thought of as a spinal column with beam plugs at the head and nerve centers along the spinal column. The two linac backbone segments and the experimental area segments form a continuous cable plant over 3500 feet from the beam plugs to the tip on the longest tail. The backbones were installed in compliance with current safety standards, such as installation of the two segments in separate conduits or tray. Monitoring for ground-faults and input wiring verification was an added enhancement to the system. The system has the capability to be tested remotely.

  18. Radiation safety system (RSS) backbones: Design, engineering, fabrication and installation

    SciTech Connect

    Wilmarth, J.E.; Sturrock, J.C.; Gallegos, F.R.

    1998-12-01

    The Radiation Safety System (RSS) Backbones are part of an electrical/electronic/mechanical system insuring safe access and exclusion of personnel to areas at the Los Alamos Neutron Science Center (LANSCE) accelerator. The RSS Backbones control the safety fusible beam plugs which terminate transmission of accelerated ion beams in response to predefined conditions. Any beam or access fault of the backbone inputs will cause insertion of the beam plugs in the low energy beam transport. The Backbones serve the function of tying the beam plugs to the access control systems, beam spill monitoring systems and current-level limiting systems. In some ways the Backbones may be thought of as a spinal column with beam plugs at the head and nerve centers along the spinal column. The two Linac Backbone segments and experimental area segments form a continuous cable plant over 3,500 feet from beam plugs to the tip on the longest tail. The Backbones were installed in compliance with current safety standards, such as installation of the two segments in separate conduits or tray. Monitoring for ground-faults and input wiring verification was an added enhancement to the system. The system has the capability to be tested remotely.

  19. Radiation Safety System (RSS) backbones: Design, engineering, fabrication, and installation

    SciTech Connect

    Wilmarth, J.E.; Sturrock, J.C.; Gallegos, F.R.

    1998-12-01

    The Radiation Safety System (RSS) backbones are part of an electrical/electronic/mechanical system ensuring safe access and exclusion of personnel to areas at the Los Alamos Neutron Science Center (LANSCE) accelerator. The RSS backbones control the safety-fusible beam plugs which terminate transmission of accelerated ion beams in response to predefined conditions. Any beam or access fault of the backbone inputs will cause insertion of the beam plugs in the low-energy beam transport. The backbones serve the function of tying the beam plugs to the access control systems, beam spill monitoring systems and current-level limiting systems. In some ways the backbones may be thought of as a spinal column with beam plugs at the head and nerve centers along the spinal column. The two linac backbone segments and the experimental area segments form a continuous cable plant over 3500 feet from the beam plugs to the tip on the longest tail. The backbones were installed in compliance with current safety standards, such as installation of the two segments in separate conduits or tray. Monitoring for ground-faults and input wiring verification was an added enhancement to the system. The system has the capability to be tested remotely. {copyright} {ital 1998 American Institute of Physics.}

  20. Radiation Safety System (RSS) backbones: Design, engineering, fabrication, and installation

    NASA Astrophysics Data System (ADS)

    Wilmarth, J. E.; Sturrock, J. C.; Gallegos, F. R.

    1998-12-01

    The Radiation Safety System (RSS) backbones are part of an electrical/electronic/mechanical system ensuring safe access and exclusion of personnel to areas at the Los Alamos Neutron Science Center (LANSCE) accelerator. The RSS backbones control the safety-fusible beam plugs which terminate transmission of accelerated ion beams in response to predefined conditions. Any beam or access fault of the backbone inputs will cause insertion of the beam plugs in the low-energy beam transport. The backbones serve the function of tying the beam plugs to the access control systems, beam spill monitoring systems and current-level limiting systems. In some ways the backbones may be thought of as a spinal column with beam plugs at the head and nerve centers along the spinal column. The two linac backbone segments and the experimental area segments form a continuous cable plant over 3500 feet from the beam plugs to the tip on the longest tail. The backbones were installed in compliance with current safety standards, such as installation of the two segments in separate conduits or tray. Monitoring for ground-faults and input wiring verification was an added enhancement to the system. The system has the capability to be tested remotely.

  1. View northeast of a microchip based computer control system installed ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View northeast of a microchip based computer control system installed in the early 1980's to replace Lamokin Tower, at center of photograph; panels 1 and 2 at right of photograph are part of main supervisory board; panel 1 controlled Allen Lane sub-station #7; responsiblity for this portion of the system was transferred to southeast Pennsylvania transit authority (septa) in 1985; panel 2 at extreme right controls catenary switches in a coach storage yard adjacent to the station - Thirtieth Street Station, Power Director Center, Thirtieth & Market Streets in Amtrak Railroad Station, Philadelphia, Philadelphia County, PA

  2. Solar heating and hot water system installed at Listerhill, Alabama

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The Solar system was installed into a new building and was designed to provide 79% of the estimated annual space heating load and 59% of the estimated annual potable hot water requirement. The collectors are flat plate, liquid manufactured by Reynolds Metals Company and cover a total area of 2344 square feet. The storage medium is water inhibited with NALCO 2755 and the container is an underground, unpressurized steel tank with a capacity of 5000 gallons. This report describes in considerable detail the solar heating facility and contains detailed drawings of the completed system.

  3. An Integrated Model for Assessment of Sustainable Agricultural Residue Removal Limits for Bioenergy Systems

    SciTech Connect

    D. Muth; K. M. Bryden

    2003-12-01

    Agricultural residues have been identified as a significant potential resource for bioenergy production, but serious questions remain about the sustainability of harvesting residues. Agricultural residues play an important role in limiting soil erosion from wind and water and in maintaining soil organic carbon. Because of this, multiple factors must be considered when assessing sustainable residue harvest limits. Validated and accepted modeling tools for assessing these impacts include the Revised Universal Soil Loss Equation Version 2 (RUSLE2), the Wind Erosion Prediction System (WEPS), and the Soil Conditioning Index. Currently, these models do not work together as a single integrated model. Rather, use of these models requires manual interaction and data transfer. As a result, it is currently not feasible to use these computational tools to perform detailed sustainable agricultural residue availability assessments across large spatial domains or to consider a broad range of land management practices. This paper presents an integrated modeling strategy that couples existing datasets with the RUSLE2 water erosion, WEPS wind erosion, and Soil Conditioning Index soil carbon modeling tools to create a single integrated residue removal modeling system. This enables the exploration of the detailed sustainable residue harvest scenarios needed to establish sustainable residue availability. Using this computational tool, an assessment study of residue availability for the state of Iowa was performed. This study included all soil types in the state of Iowa, four representative crop rotation schemes, variable crop yields, three tillage management methods, and five residue removal methods. The key conclusions of this study are that under current management practices and crop yields nearly 26.5 million Mg of agricultural residue are sustainably accessible in the state of Iowa, and that through the adoption of no till practices residue removal could sustainably approach 40

  4. Our Commitment to Bioenergy Sustainability

    SciTech Connect

    2015-06-18

    The U.S. Department of Energy’s Bioenergy Technologies Office (BETO) is committed to developing the resources, technologies, and systems needed to support a thriving bioenergy industry that protects natural resources and ad- vances environmental, economic, and social benefits. BETO’s Sustainability Technology Area proactively identifies and addresses issues that affect the scale-up potential, public acceptance, and long-term viability of advanced bioenergy systems; as a result, the area is critical to achieving BETO’s overall goals.

  5. Energy Potential and Greenhouse Gas Emissions from Bioenergy Cropping Systems on Marginally Productive Cropland

    PubMed Central

    Schmer, Marty R.; Vogel, Kenneth P.; Varvel, Gary E.; Follett, Ronald F.; Mitchell, Robert B.; Jin, Virginia L.

    2014-01-01

    Low-carbon biofuel sources are being developed and evaluated in the United States and Europe to partially offset petroleum transport fuels. Current and potential biofuel production systems were evaluated from a long-term continuous no-tillage corn (Zea mays L.) and switchgrass (Panicum virgatum L.) field trial under differing harvest strategies and nitrogen (N) fertilizer intensities to determine overall environmental sustainability. Corn and switchgrass grown for bioenergy resulted in near-term net greenhouse gas (GHG) reductions of −29 to −396 grams of CO2 equivalent emissions per megajoule of ethanol per year as a result of direct soil carbon sequestration and from the adoption of integrated biofuel conversion pathways. Management practices in switchgrass and corn resulted in large variation in petroleum offset potential. Switchgrass, using best management practices produced 3919±117 liters of ethanol per hectare and had 74±2.2 gigajoules of petroleum offsets per hectare which was similar to intensified corn systems (grain and 50% residue harvest under optimal N rates). Co-locating and integrating cellulosic biorefineries with existing dry mill corn grain ethanol facilities improved net energy yields (GJ ha−1) of corn grain ethanol by >70%. A multi-feedstock, landscape approach coupled with an integrated biorefinery would be a viable option to meet growing renewable transportation fuel demands while improving the energy efficiency of first generation biofuels. PMID:24594783

  6. Solar hot water system installed at Day's Lodge, Atlanta, Georgia

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The solar energy hot water system installed in the Days Inns of America, Inc., Atlanta, Georgia is described. This system provides for 81 percent of the total hot water demand. There are two separate systems, each serving one building of the lodge (total of 65 suites). The entire system contains only potable city water. The 1024 square feet of Grumman Sunstream Model 332 liquid flat plate collectors and the outside piping drain whenever the collector plates approach freezing or when power is interrupted. Solar heated water from the two above ground cement lined steel tanks (1000 gallon tank) is drawn into the electric Domestic Hot Water (DHW) tanks as hot water is drawn. Electric resistance units in the DHW tanks top off the solar heated water, if needed, to reach thermostat setting.

  7. Bioenergy grass feedstock: current options and prospects for trait improvement using emerging genetic, genomic, and systems biology toolkits

    PubMed Central

    2012-01-01

    For lignocellulosic bioenergy to become a viable alternative to traditional energy production methods, rapid increases in conversion efficiency and biomass yield must be achieved. Increased productivity in bioenergy production can be achieved through concomitant gains in processing efficiency as well as genetic improvement of feedstock that have the potential for bioenergy production at an industrial scale. The purpose of this review is to explore the genetic and genomic resource landscape for the improvement of a specific bioenergy feedstock group, the C4 bioenergy grasses. First, bioenergy grass feedstock traits relevant to biochemical conversion are examined. Then we outline genetic resources available bioenergy grasses for mapping bioenergy traits to DNA markers and genes. This is followed by a discussion of genomic tools and how they can be applied to understanding bioenergy grass feedstock trait genetic mechanisms leading to further improvement opportunities. PMID:23122416

  8. Comparing net ecosystem carbon dioxide exchange at adjacent commercial bioenergy and conventional cropping systems in Lincolnshire, United Kingdom

    NASA Astrophysics Data System (ADS)

    Morrison, Ross; Brooks, Milo; Evans, Jonathan; Finch, Jon; Rowe, Rebecca; Rylett, Daniel; McNamara, Niall

    2016-04-01

    The conversion of agricultural land to bioenergy plantations represents one option in the national and global effort to reduce greenhouse gas emissions whilst meeting future energy demand. Despite an increase in the area of (e.g. perennial) bioenergy crops in the United Kingdom and elsewhere, the biophysical and biogeochemical impacts of large scale conversion of arable and other land cover types to bioenergy cropping systems remain poorly characterised and uncertain. Here, the results of four years of eddy covariance (EC) flux measurements of net ecosystem CO2 exchange (NEE) obtained at a commercial farm in Lincolnshire, United Kingdom (UK) are reported. CO2 flux measurements are presented and compared for arable crops (winter wheat, oilseed rape, spring barely) and plantations of the perennial biofuel crops Miscanthus x. giganteus (C4) and short rotation coppice (SRC) willow (Salix sp.,C3). Ecosystem light and temperature response functions were used to analyse and compare temporal trends and spatial variations in NEE across the three land covers. All three crops were net in situ sinks for atmospheric CO2 but were characterised by large temporal and between site variability in NEE. Environmental and biological controls driving the spatial and temporal variations in CO2 exchange processes, as well as the influences of land management, will be analysed and discussed.

  9. Field installation of an acoustic slug-detection system

    SciTech Connect

    Dhulesia, H.; Bernicot, M.; Romanet, T.

    1997-02-01

    A pipeline operating in the slug flow regime creates high fluctuations in gas and liquid flow rates at the outlet. The detection of slugs and the estimation of their length and velocity are necessary to minimize the upsets in the operation of downstream process facilities. A new method based on the acoustic principle has been developed by Total and Syminex with two variants--passive and active. The passive method gives the slug length and velocity, whereas the active method also gives the fluid density. The prototype of this system has been installed permanently on a 20-in. multiphase pipeline in Argentina. As this system detects the slugs and determines their characteristics approximately 2 minutes before they arrive at the first-stage separator, the operators take appropriate action in the case of arrival of an excessively long slug and, thus, avoid possible shutdowns. At a later stage, an automatic adjustment of the process control valves will be realized.

  10. Safety of Hydrogen Systems Installed in Outdoor Enclosures

    SciTech Connect

    Barilo, Nick F.

    2013-11-06

    The Hydrogen Safety Panel brings a broad cross-section of expertise from the industrial, government, and academic sectors to help advise the U.S. Department of Energy’s (DOE) Fuel Cell Technologies Office through its work in hydrogen safety, codes, and standards. The Panel’s initiatives in reviewing safety plans, conducting safety evaluations, identifying safety-related technical data gaps, and supporting safety knowledge tools and databases cover the gamut from research and development to demonstration and deployment. The Panel’s recent work has focused on the safe deployment of hydrogen and fuel cell systems in support of DOE efforts to accelerate fuel cell commercialization in early market applications: vehicle refueling, material handling equipment, backup power for warehouses and telecommunication sites, and portable power devices. This paper resulted from observations and considerations stemming from the Panel’s work on early market applications. This paper focuses on hydrogen system components that are installed in outdoor enclosures. These enclosures might alternatively be called “cabinets,” but for simplicity, they are all referred to as “enclosures” in this paper. These enclosures can provide a space where a flammable mixture of hydrogen and air might accumulate, creating the potential for a fire or explosion should an ignition occur. If the enclosure is large enough for a person to enter, and ventilation is inadequate, the hydrogen concentration could be high enough to asphyxiate a person who entered the space. Manufacturers, users, and government authorities rely on requirements described in codes to guide safe design and installation of such systems. Except for small enclosures used for hydrogen gas cylinders (gas cabinets), fuel cell power systems, and the enclosures that most people would describe as buildings, there are no hydrogen safety requirements for these enclosures, leaving gaps that must be addressed. This paper proposes that

  11. Design and installation of a multimode microscopy system

    NASA Astrophysics Data System (ADS)

    Helm, Johannes P.; Haug, Finn-Mogens S.; Storm, Johan F.; Ottersen, Ole-Petter

    2001-04-01

    We describe design and installation of a multi-mode microscopy core facility in an environment of varied research activity in life-sciences. The experimentators can select any combination of a) microscopes (upright, upright fixed-stage, inverted), b) microscopy modes (widefield, DIC, IRDIC, widefield epifluorescence, transmission LSM, reflection and fluorescence CLSM, MPLSM), c) imaging techniques (direct observation, video observation, photography, quantitative camera-recording, flying spot scanning), d) auxiliary systems (equipment for live specimen imaging, electrophysiology, time-coordinated laser-scanning and electrophysiology, patch-clamp). The equipment is installed on one large vibration-isolating optical table (3m X 1.5m X 0.3m). Electronics, auxiliary equipment, and a fiber-coupled, remotely controlled Ar+-Kr+ laser are mounted in a rack system fixed to the ceiling. The design of the shelves allows the head of the CSLM to be moved to any of the microscopes without increasing critical cable lengths. At the same time easy access to all the units is preserved. The beam of a Titanium-Sapphire laser, controlled by means of an EOM and a prism GVD, is coupled directly to the microscopes. Three mirrors mounted on a single precision translation table are integrated into the beam steering system so that the beam can easily be redirected to any of the microscopes. All the available instruments can be operated by the educated and trained user. The system is popular among researchers in neuroanatomy, embryology, cell biology, molecular biology - including the study of protein interactions, e.g. by means of FRET, and electrophysiology. Its colocalization with an EM facility promises to provide considerable synergy effects.

  12. Three stage vacuum system for ultralow temperature installation

    NASA Astrophysics Data System (ADS)

    Das, N. K.; Pradhan, J.; Naser, Md Z. A.; Mandal, B. Ch; Roy, A.; Kumar, P.; Mallik, C.; Bhandari, R. K.

    2012-11-01

    We use a three stage vacuum system for developing a dilution fridge at VECC, Kolkata. We aim at achieving a cooling power of 20μW at 100mK for various experiments especially in the field of condensed matter and nuclear physics. The system is essentially composed of four segments-bath cryostat, vacuum system, dilution insert and 3He circulation circuit. Requirement of vacuum system at different stages are different. The vacuum system for cryostat and for internal vacuum chamber located within the helium bath is a common turbo molecular pump backed by scroll pump as to maintain a vacuum ~10-6mbar. For bringing down the temperature of the helium evaporator, we use a high throughput Roots pump backed by a dry pump. The pumping system for 3He distillation chamber (still) requires a high pumping speed, so a turbo drag pump backed by a scroll pump has been installed. As the fridge use precious 3He gas for operation, the entire system has been made to be absolutely leak proof with respect to the 3He gas.

  13. Installation Guidelines for Solar DHW Systems in One- and Two-Family Dwellings. Second Edition.

    ERIC Educational Resources Information Center

    Hollander, Peter; And Others

    Described are some of the better techniques for installing solar domestic hot water (DHW) systems. By using these guidelines, along with the manufacturer's manual, professional installation contractors and skilled homeowners should be able to install and fill a solar DHW system. Among the topics considered are system layouts, siting, mounting…

  14. Solar hot water system installed at Day's Lodge, Atlanta, Georgia

    SciTech Connect

    1980-09-01

    The solar energy hot water system installed in the Days Inns of America, Inc., Day's Lodge I-85 and Shallowford Road, NE Atlanta, Georgia is described. This system is one of eleven systems planned under this grant and was designed to provide for 81% of the total hot water demand. There are two separate systems, each serving one building of the lodge (total of 65 suites). The entire system contains only potable city water. The 1024 square feet of Grumman Sunstream Model 332 liquid flat plate collectors and the outside piping drains whenever the collector plates approach freezing or when power is interrupted. Solar heated water from the two above ground cement lined steel tanks (1000 gallon tank) is drawn into the electric domestic hot water (DHW) tanks as hot water is drawn. Electric resistance units in the DHW tanks top off the solar heated water, if needed, to reach thermostat setting. Operation of this system was begun in August, 1979. The solar components were partly funded ($18,042 of $36,084 cost) by the Department of Energy.

  15. Green cheese: partial life cycle assessment of greenhouse gas emissions and energy intensity of integrated dairy production and bioenergy systems.

    PubMed

    Aguirre-Villegas, H A; Passos-Fonseca, T H; Reinemann, D J; Armentano, L E; Wattiaux, M A; Cabrera, V E; Norman, J M; Larson, R

    2015-03-01

    The objective of this study was to evaluate the effect of integrating dairy and bioenergy systems on land use, net energy intensity (NEI), and greenhouse gas (GHG) emissions. A reference dairy farm system representative of Wisconsin was compared with a system that produces dairy and bioenergy products. This integrated system investigates the effects at the farm level when the cow diet and manure management practices are varied. The diets evaluated were supplemented with varying amounts of dry distillers grains with solubles and soybean meal and were balanced with different types of forages. The manure-management scenarios included manure land application, which is the most common manure disposal method in Wisconsin, and manure anaerobic digestion (AD) to produce biogas. A partial life cycle assessment from cradle to farm gate was conducted, where the system boundaries were expanded to include the production of biofuels in the analysis and the environmental burdens between milk and bioenergy products were partitioned by system expansion. Milk was considered the primary product and the functional unit, with ethanol, biodiesel, and biogas considered co-products. The production of the co-products was scaled according to milk production to meet the dietary requirements of each selected dairy ration. Results indicated that land use was 1.6 m2, NEI was 3.86 MJ, and GHG emissions were 1.02 kg of CO2-equivalents per kilogram of fat- and protein-corrected milk (FPCM) for the reference system. Within the integrated dairy and bioenergy system, diet scenarios that maximize dry distillers grains with solubles and implement AD had the largest reduction of GHG emissions and NEI, but the greatest increase in land use compared with the reference system. Average land use ranged from 1.68 to 2.01 m2/kg of FPCM; NEI ranged from -5.62 to -0.73 MJ/kg of FPCM; and GHG emissions ranged from 0.63 to 0.77 kg of CO2-equivalents/kg of FPCM. The AD contributed 65% of the NEI and 77% of the GHG

  16. Best management practices: Managing cropping systems for soil protection and bioenergy production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Interest in renewable alternatives to fossil fuels has increased. Crop residue such as corn stover or wheat straw can be used for bioenergy including a substitution for natural gas or coal. Harvesting crop residue needs to be managed to protect the soil and future soil productivity. The amount of bi...

  17. Enhancing biomass utilization for bioenergy-crop rotation systems and alternative conversion processes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biomass for bioenergy has a great deal of potential for decreasing our dependence upon fossil fuels and decreasing the net CO2 accumulation in the atmosphere. Crop residues are often promoted as a means of meeting the total biomass goals to provide sufficient amounts of materials for liquid fuel pro...

  18. Cabin fuselage structural design with engine installation and control system

    NASA Technical Reports Server (NTRS)

    Balakrishnan, Tanapaal; Bishop, Mike; Gumus, Ilker; Gussy, Joel; Triggs, Mike

    1994-01-01

    Design requirements for the cabin, cabin system, flight controls, engine installation, and wing-fuselage interface that provide adequate interior volume for occupant seating, cabin ingress and egress, and safety are presented. The fuselage structure must be sufficient to meet the loadings specified in the appropriate sections of Federal Aviation Regulation Part 23. The critical structure must provide a safe life of 10(exp 6) load cycles and 10,000 operational mission cycles. The cabin seating and controls must provide adjustment to account for various pilot physiques and to aid in maintenance and operation of the aircraft. Seats and doors shall not bind or lockup under normal operation. Cabin systems such as heating and ventilation, electrical, lighting, intercom, and avionics must be included in the design. The control system will consist of ailerons, elevator, and rudders. The system must provide required deflections with a combination of push rods, bell cranks, pulleys, and linkages. The system will be free from slack and provide smooth operation without binding. Environmental considerations include variations in temperature and atmospheric pressure, protection against sand, dust, rain, humidity, ice, snow, salt/fog atmosphere, wind and gusts, and shock and vibration. The following design goals were set to meet the requirements of the statement of work: safety, performance, manufacturing and cost. To prevent the engine from penetrating the passenger area in the event of a crash was the primary safety concern. Weight and the fuselage aerodynamics were the primary performance concerns. Commonality and ease of manufacturing were major considerations to reduce cost.

  19. Improving greenhouse gas reduction calculations for bioenergy systems: Incremental life cycle analysis

    NASA Astrophysics Data System (ADS)

    Ney, Richard A.

    There are many scales that can be employed to calculate net greenhouse gas emissions from bioenergy systems, ranging from single point source (stack gas) measurement, to full, multi-layered life cycle analyses considering all of the inputs and outputs throughout the economy. At an appropriate scale within these extremes, a method can be selected to support verification activities related to project-based trading of greenhouse gas emissions. The boundaries of the analysis must be carefully selected in order to meet the twin goals of the verification activity: (1) to meet scientific standards for emission balance quantification; and (2) to meet cost-effectiveness criteria of the emission trading community. The Incremental Life Cycle Analysis (ILCA) methodology is proposed and implemented for the quantification of greenhouse gas emission reductions arising from substitution of switchgrass for coal in electricity generation. The method utilizes an incremental progression through the fuel life cycle, evaluating each level of the life cycle for the quality the emission estimate produced. The method also reviews the scientific uncertainty underlying emission estimation procedures so that areas of relative weakness can be targeted and improved. The ILCA methodology is applied to the Chariton Valley Biomass Project (CVBP) for case study and evaluation. The CVBP is seeking to replace coal combustion in an existing 650-MW generation facility with switchgrass, cofired at a rate of 5 percent switchgrass to 95 percent coal. When the project reaches full capacity, the ILCA estimates that 239 pounds of carbon dioxide-equivalent (CO2-eq) emissions will be reduced and/or removed from the atmosphere for every million Btu of switchgrass utilized, generating annual greenhouse gas reductions of 305,000 tons CO2-eq, leading to revenue for the project totaling over $1.5 million annually through trading of greenhouse gas emission reduction credits.

  20. Evapotranspiration of a pine-switchgrass intercropping bioenergy system measured by combined surface renewal and energy balance method

    NASA Astrophysics Data System (ADS)

    Fischer, M.; Noormets, A.; Domec, J. C.; Rosa, R.; Williamson, J.; Boone, J.; Sucre, E.; Trnka, M.; King, J.

    2015-12-01

    Intercropping bioenergy grasses within traditional pine silvicultural systems provides an opportunity for economic diversification and regional bioenergy production in a way that complements existing land use systems. Bioenergy intercropping in pine plantations does not compete with food production for land and it is thought will increase ecosystem resource-use efficiencies. As the frequency and intensity of drought is expected to increase with the changing climate, maximizing water use-efficiency of intercropped bioenergy systems will become increasingly important for long-term economic and environmental sustainability. The presented study is focused on evapotranspiration (ET) of an experimental pine-switchgrass intercropping system in the Lower Coastal Plain of North Carolina. We measured ET of two pure switchgrass fields, two pure pine stands and two pine-switchgrass intercropping systems using combined surface renewal (SR) and energy balance (EB) method throughout 2015. SR is based on high-frequency measurement of air temperature at or above canopy. As previously demonstrated, temperature time series are associated with identifiable, repeated patterns called "turbulent coherent structures". These coherent structures are considered to be responsible for most of the turbulent transport. Statistical analysis of the coherent structures in temperature time series allows quantification of sensible heat flux density (H) from the investigated area. Information about H can be combined with measurement of net radiation and soil heat flux density to indirectly obtain ET estimates as a residual of the energy balance equation. Despite the recent progress in the SR method, there is no standard methodology and each method available includes assumptions which require more research. To validate our SR estimates of ET, we used an eddy covariance (EC) system placed temporarily next to the each SR station as a comparative measurement of H. The conference contribution will include

  1. Flexibility need prompts installation of Zeepipe modeling system

    SciTech Connect

    Thaule, S.B.; Postvoll, W.

    1998-03-23

    Installation by den norske stats oljeselskap A.S. (Statoil) of a powerful pipeline-modeling system on Zeepipe has allowed this major North Sea gas pipeline to meet the growing demands and seasonal variations of the European gas market. The Troll gas-sales agreement (TGSA) in 1986 called for large volumes of Norwegian gas to begin arriving from the North Sea Sleipner East field in october 1993. It is important to Statoil to maintain regular gas delivers from its integrated transport network. In addition, high utilization of transport capacity maximizes profits. In advance of operations, Statoil realized that state-of-the-art supervisory control and data acquisition (scada) and pipeline-modeling systems (PMS) would be necessary to meet its goals and to remain the most efficient North Sea operator. The paper describes the linking of Troll and Zeebrugge, contractual issues, the supervisory system, the scada module, pipeline modeling, real-time model, look-ahead model, predictive model, and model performance.

  2. Sustainable and efficient pathways for bioenergy recovery from low-value process streams via bioelectrochemical systems in biorefineries

    DOE PAGESBeta

    Borole, Abhijeet P.

    2015-08-25

    Conversion of biomass into bioenergy is possible via multiple pathways resulting in production of biofuels, bioproducts and biopower. Efficient and sustainable conversion of biomass, however, requires consideration of many environmental and societal parameters in order to minimize negative impacts. Integration of multiple conversion technologies and inclusion of upcoming alternatives such as bioelectrochemical systems can minimize these impacts and improve conservation of resources such as hydrogen, water and nutrients via recycle and reuse. This report outlines alternate pathways integrating microbial electrolysis in biorefinery schemes to improve energy efficiency while evaluating environmental sustainability parameters.

  3. Installation package for a domestic solar heating and hot water system

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The installation of two prototype solar heating and hot water systems is described. The systems consists of the following subsystems: solar collector, storage, control, transport, and auxiliary energy.

  4. Experimental Systems-Biology Approaches for Clostridia-Based Bioenergy Production

    SciTech Connect

    Papoutsakis, Elefterios

    2015-04-30

    This is the final project report for project "Experimental Systems-Biology Approaches for Clostridia-Based Bioenergy Production" for the funding period of 9/1/12 to 2/28/2015 (three years with a 6-month no-cost extension) OVERVIEW AND PROJECT GOALS The bottleneck of achieving higher rates and titers of toxic metabolites (such as solvents and carboxylic acids that can used as biofuels or biofuel precursors) can be overcome by engineering the stress response system. Thus, understanding and modeling the response of cells to toxic metabolites is a problem of great fundamental and practical significance. In this project, our goal is to dissect at the molecular systems level and build models (conceptual and quantitative) for the stress response of C. acetobutylicum (Cac) to its two toxic metabolites: butanol (BuOH) and butyrate (BA). Transcriptional (RNAseq and microarray based), proteomic and fluxomic data and their analysis are key requirements for this goal. Transcriptional data from mid-exponential cultures of Cac under 4 different levels of BuOH and BA stress was obtained using both microarrays (Papoutsakis group) and deep sequencing (RNAseq; Meyers and Papoutsakis groups). These two sets of data do not only serve to validate each other, but are also used for identification of stress-induced changes in transcript levels, small regulatory RNAs, & in transcriptional start sites. Quantitative proteomic data (Lee group), collected using the iTRAQ technology, are essential for understanding of protein levels and turnover under stress and the various protein-protein interactions that orchestrate the stress response. Metabolic flux changes (Antoniewicz group) of core pathways, which provide important information on the re-allocation of energy and carbon resources under metabolite stress, were examined using 13C-labelled chemicals. Omics data are integrated at different levels and scales. At the metabolic-pathway level, omics data are integrated into a 2nd generation genome

  5. Communicating about bioenergy sustainability

    SciTech Connect

    Dale, Virginia H; Kline, Keith L; Perla, Dr. Donna; Lucier, Dr. Al

    2013-01-01

    Defining and measuring sustainability of bioenergy systems are difficult because the systems are complex, the science is in early stages of development, and there is a need to generalize what are inherently context-specific enterprises. These challenges, and the fact that decisions are being made now, create a need for improved communications among scientists as well as between scientists and decision makers. In order for scientists to provide information that is useful to decision makers, they need to come to an agreement on how to measure and report potential risks and benefits of diverse energy alternatives, including problems and opportunities in various bioenergy production pathways. Scientists also need to develop approaches that contribute information relevant to policy and decision making. The need for clear communication is especially important at this time when there is a plethora of scientific papers and reports, and it is difficult for the public or decision makers to assess the merits of each analysis. We propose three communication guidelines for scientists whose work can contribute to decision making: (1) relationships between the question and the analytical approach should be clearly defined and make common sense; (2) the information should be presented in a manner that nonscientists can understand; and (3) the implications of methods, assumptions and limitations should be clear. The scientists job is to analyze information in order to build a better understanding of environmental, cultural and socioeconomic aspects of the sustainability of energy alternatives. The scientific process requires transparency, debate, review, and collaboration across disciplines and time. This paper serves as an introduction to the papers in the special issue on Sustainability of Bioenergy Systems: Cradle to Grave because scientific communication is essential to developing more sustainable energy systems. Together these four papers provide a framework under which the

  6. Influences of Electromagnetic Energy on Bio-Energy Transport through Protein Molecules in Living Systems and Its Experimental Evidence.

    PubMed

    Pang, Xiaofeng; Chen, Shude; Wang, Xianghui; Zhong, Lisheng

    2016-07-25

    The influences of electromagnetic fields (EMFs) on bio-energy transport and its mechanism of changes are investigated through analytic and numerical simulation and experimentation. Bio-energy transport along protein molecules is performed by soliton movement caused by the dipole-dipole electric interactions between neighboring amino acid residues. As such, EMFs can affect the structure of protein molecules and change the properties of the bio-energy transported in living systems. This mechanism of biological effect from EMFs involves the amino acid residues in protein molecules. To study and reveal this mechanism, we simulated numerically the features of the movement of solitons along protein molecules with both a single chain and with three channels by using the Runge-Kutta method and Pang's soliton model under the action of EMFs with the strengths of 25,500, 51,000, 76,500, and 102,000 V/m in the single-chain protein, as well as 17,000, 25,500, and 34,000 V/m in the three-chain protein, respectively. Results indicate that electric fields (EFs) depress the binding energy of the soliton, decrease its amplitude, and change its wave form. Also, the soliton disperses at 102,000 V/m in a single-chain protein and at 25,500 and 34,000 V/m in three-chain proteins. These findings signify that the influence of EMFs on the bio-energy transport cannot be neglected; however, these variations depend on both the strength and the direction of the EF in the EMF. This direction influences the biological effects of EMF, which decrease with increases in the angle between the direction of the EF and that of the dipole moment of amino acid residues; however, randomness at the macroscopic level remains. Lastly, we experimentally confirm the existence of a soliton and the validity of our conclusion by using the infrared spectra of absorption of the collagens, which is activated by another type of EF. Thus, we can affirm that both the described mechanism and the corresponding theory are

  7. Influences of Electromagnetic Energy on Bio-Energy Transport through Protein Molecules in Living Systems and Its Experimental Evidence.

    PubMed

    Pang, Xiaofeng; Chen, Shude; Wang, Xianghui; Zhong, Lisheng

    2016-01-01

    The influences of electromagnetic fields (EMFs) on bio-energy transport and its mechanism of changes are investigated through analytic and numerical simulation and experimentation. Bio-energy transport along protein molecules is performed by soliton movement caused by the dipole-dipole electric interactions between neighboring amino acid residues. As such, EMFs can affect the structure of protein molecules and change the properties of the bio-energy transported in living systems. This mechanism of biological effect from EMFs involves the amino acid residues in protein molecules. To study and reveal this mechanism, we simulated numerically the features of the movement of solitons along protein molecules with both a single chain and with three channels by using the Runge-Kutta method and Pang's soliton model under the action of EMFs with the strengths of 25,500, 51,000, 76,500, and 102,000 V/m in the single-chain protein, as well as 17,000, 25,500, and 34,000 V/m in the three-chain protein, respectively. Results indicate that electric fields (EFs) depress the binding energy of the soliton, decrease its amplitude, and change its wave form. Also, the soliton disperses at 102,000 V/m in a single-chain protein and at 25,500 and 34,000 V/m in three-chain proteins. These findings signify that the influence of EMFs on the bio-energy transport cannot be neglected; however, these variations depend on both the strength and the direction of the EF in the EMF. This direction influences the biological effects of EMF, which decrease with increases in the angle between the direction of the EF and that of the dipole moment of amino acid residues; however, randomness at the macroscopic level remains. Lastly, we experimentally confirm the existence of a soliton and the validity of our conclusion by using the infrared spectra of absorption of the collagens, which is activated by another type of EF. Thus, we can affirm that both the described mechanism and the corresponding theory are

  8. Influences of Electromagnetic Energy on Bio-Energy Transport through Protein Molecules in Living Systems and Its Experimental Evidence

    PubMed Central

    Pang, Xiaofeng; Chen, Shude; Wang, Xianghui; Zhong, Lisheng

    2016-01-01

    The influences of electromagnetic fields (EMFs) on bio-energy transport and its mechanism of changes are investigated through analytic and numerical simulation and experimentation. Bio-energy transport along protein molecules is performed by soliton movement caused by the dipole–dipole electric interactions between neighboring amino acid residues. As such, EMFs can affect the structure of protein molecules and change the properties of the bio-energy transported in living systems. This mechanism of biological effect from EMFs involves the amino acid residues in protein molecules. To study and reveal this mechanism, we simulated numerically the features of the movement of solitons along protein molecules with both a single chain and with three channels by using the Runge–Kutta method and Pang’s soliton model under the action of EMFs with the strengths of 25,500, 51,000, 76,500, and 102,000 V/m in the single-chain protein, as well as 17,000, 25,500, and 34,000 V/m in the three-chain protein, respectively. Results indicate that electric fields (EFs) depress the binding energy of the soliton, decrease its amplitude, and change its wave form. Also, the soliton disperses at 102,000 V/m in a single-chain protein and at 25,500 and 34,000 V/m in three-chain proteins. These findings signify that the influence of EMFs on the bio-energy transport cannot be neglected; however, these variations depend on both the strength and the direction of the EF in the EMF. This direction influences the biological effects of EMF, which decrease with increases in the angle between the direction of the EF and that of the dipole moment of amino acid residues; however, randomness at the macroscopic level remains. Lastly, we experimentally confirm the existence of a soliton and the validity of our conclusion by using the infrared spectra of absorption of the collagens, which is activated by another type of EF. Thus, we can affirm that both the described mechanism and the corresponding theory

  9. A pilot plant two-phase anaerobic digestion system for bioenergy recovery from swine wastes and garbage.

    PubMed

    Feng, Chuanping; Shimada, Sadoru; Zhang, Zhenya; Maekawa, Takaaki

    2008-01-01

    A pilot plant bioenergy recovery system from swine waste and garbage was constructed. A series of experiments was performed using swine feces (SF); a mixture of swine feces and urine (MSFU); a mixture of swine feces, urine and garbage (MSFUG); garbage and a mixture of urine and garbage (AUG). The system performed well for treating the source materials at a high organic loading rate (OLR) and short hydraulic retention time (HRT). In particular, the biogas production for the MSFUG was the highest, accounting for approximately 865-930 L kg(-1)-VS added at the OLR of 5.0-5.3 kg-VS m(-3) day(-1) and the HRT of 9 days. The removal of VS was 67-75%, and that of COD was 73-74%. Therefore, co-digestion is a promising method for the recovery of bioenergy from swine waste and garbage. Furthermore, the results obtained from this study provide fundamental information for scaling up a high-performance anaerobic system in the future.

  10. Bioenergy market competition for biomass: A system dynamics review of current policies

    SciTech Connect

    Jacob J. Jacobson; Robert Jeffers

    2013-07-01

    There is growing interest in the United States and abroad to increase the use of biomass as an energy source due to environmental and energy security benefits. In the United States, the biofuel and biopower industries are regulated by different policies and different agencies and have different drivers, which impact the maximum price the industries are willing to pay for biomass. This article describes a dynamic computer simulation model that analyzes future behavior of bioenergy feedstock markets based on varying policy and technical options. The model simulates the long-term dynamics of these markets by treating advanced biomass feedstocks as a commodity and projecting the total demand of each industry, as well as the market price over time. The model is used for an analysis of the United States bioenergy feedstock market that projects supply, demand, and market price given three independent buyers: domestic biopower, domestic biofuels, and foreign exports. With base-case assumptions, the biofuels industry is able to dominate the market and meet the federal Renewable Fuel Standard (RFS) targets for advanced biofuels. Further analyses suggest that United States bioenergy studies should include estimates of export demand for biomass in their projections, and that GHG-limiting policy would partially shield both industries from export dominance.

  11. 14 CFR 23.1309 - Equipment, systems, and installations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... engines on an airplane with three or more engines; or (iii) Any power converter or energy storage device... installation, critical environmental and atmospheric conditions, including radio frequency energy and...

  12. Installation package for a solar-heating system

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Package consists of installation, operation and maintenance manuals for four commercial solar energy subsystems, including flat plate solar collector pebble bed thermal-storage. Manual gives design information, sizing data, specification drawings, and other material for subsystem.

  13. 14 CFR 23.1309 - Equipment, systems, and installations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... engines on an airplane with three or more engines; or (iii) Any power converter or energy storage device... installation, critical environmental and atmospheric conditions, including radio frequency energy and...

  14. Integrated dynamic landscape analysis and modeling system (IDLAMS) : installation manual.

    SciTech Connect

    Li, Z.; Majerus, K. A.; Sundell, R. C.; Sydelko, P. J.; Vogt, M. C.

    1999-02-24

    The Integrated Dynamic Landscape Analysis and Modeling System (IDLAMS) is a prototype, integrated land management technology developed through a joint effort between Argonne National Laboratory (ANL) and the US Army Corps of Engineers Construction Engineering Research Laboratories (USACERL). Dr. Ronald C. Sundell, Ms. Pamela J. Sydelko, and Ms. Kimberly A. Majerus were the principal investigators (PIs) for this project. Dr. Zhian Li was the primary software developer. Dr. Jeffrey M. Keisler, Mr. Christopher M. Klaus, and Mr. Michael C. Vogt developed the decision analysis component of this project. It was developed with funding support from the Strategic Environmental Research and Development Program (SERDP), a land/environmental stewardship research program with participation from the US Department of Defense (DoD), the US Department of Energy (DOE), and the US Environmental Protection Agency (EPA). IDLAMS predicts land conditions (e.g., vegetation, wildlife habitats, and erosion status) by simulating changes in military land ecosystems for given training intensities and land management practices. It can be used by military land managers to help predict the future ecological condition for a given land use based on land management scenarios of various levels of training intensity. It also can be used as a tool to help land managers compare different land management practices and further determine a set of land management activities and prescriptions that best suit the needs of a specific military installation.

  15. GOES data-collection system instrumentation, installation, and maintenance manual

    USGS Publications Warehouse

    Blee, J.W.; Herlong, H.E.; Kaufmann, C.D.; Hardee, J.H.; Field, M.L.; Middelburg, R.F.

    1986-01-01

    The purpose of the manual is to describe the installation, operation, and maintenance of Geostationary Operational Environmental Satellite (GOES) data collection platforms (DCP's) and associated equipment. This manual is not a substitute for DCP manufacturers ' manuals but is additional material that describes the application of data-collection platforms in the Water Resources Division. Power supplies, encoders, antennas, Mini Monitors, voltage analog devices, and the installation of these at streamflow-gaging stations are discussed in detail. (USGS)

  16. System design package for a solar heating and cooling system installed at Akron, Ohio

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Information used to evaluate the design of a solar heating, cooling, and domestic hot water system is given. A conventional heat pump provides summer cooling items as the design data brochure, system performance specification, system hazard analysis, spare parts list, and detailed design drawings. A solar system is installed in a single-family dwelling at Akron, Ohio, and at Duffield, Virginia.

  17. 30 CFR 75.1101-14 - Installation of dry powder chemical systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...' Laboratories, Inc., or Factory Mutual Engineering Corp. (c) The components of each dry powder chemical system... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Installation of dry powder chemical systems. 75...-14 Installation of dry powder chemical systems. (a) Self-contained dry powder chemical systems...

  18. 30 CFR 75.1101-14 - Installation of dry powder chemical systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...' Laboratories, Inc., or Factory Mutual Engineering Corp. (c) The components of each dry powder chemical system... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Installation of dry powder chemical systems. 75...-14 Installation of dry powder chemical systems. (a) Self-contained dry powder chemical systems...

  19. 30 CFR 75.1101-14 - Installation of dry powder chemical systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...' Laboratories, Inc., or Factory Mutual Engineering Corp. (c) The components of each dry powder chemical system... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Installation of dry powder chemical systems. 75...-14 Installation of dry powder chemical systems. (a) Self-contained dry powder chemical systems...

  20. 30 CFR 75.1101-14 - Installation of dry powder chemical systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...' Laboratories, Inc., or Factory Mutual Engineering Corp. (c) The components of each dry powder chemical system... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Installation of dry powder chemical systems. 75...-14 Installation of dry powder chemical systems. (a) Self-contained dry powder chemical systems...

  1. 30 CFR 75.1101-14 - Installation of dry powder chemical systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...' Laboratories, Inc., or Factory Mutual Engineering Corp. (c) The components of each dry powder chemical system... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Installation of dry powder chemical systems. 75...-14 Installation of dry powder chemical systems. (a) Self-contained dry powder chemical systems...

  2. Physical installation of Pelletron and electron cooling system

    SciTech Connect

    Hurh, P.

    1997-09-01

    Bremsstrahlung of 5 MeV electrons at a loss current of 50 microamp in the acceleration region is estimated to produce X-ray intensities of 7 Rad/sec. Radiation losses due to a misteer or sudden obstruction will of course be much higher still (estimated at 87,500 Rad/hr for a 0.5 mA beam current). It is estimated that 1.8 meters of concrete will be necessary to adequately shield the surrounding building areas at any possible Pelletron installation site. To satisfy our present electron cooling development plan, two Pelletron installations are required, the first at our development lab in the Lab B/NEF Enclosure area and the second at the operational Main Injector service building, MI-30, in the main Injector ring. The same actual Pelletron and electron beam-line components will be used at both locations. The Lab B installation will allow experimentation with actual high energy electron beam to develop the optics necessary for the cooling straight while Main Injector/Recycler commissioning is taking place. The MI-30 installation is obviously the permanent home for the Pelletron when electron cooling becomes operational. Construction plans for both installations will be discussed here.

  3. Systems study of drilling for installation of geothermal heat pumps

    SciTech Connect

    Finger, J.T.; Sullivan, W.N.; Jacobson, R.D.; Pierce, K.G.

    1997-09-01

    Geothermal, or ground-source, heat pumps (GHP) are much more efficient than air-source units such as conventional air conditioners. A major obstacle to their use is the relatively high initial cost of installing the heat-exchange loops into the ground. In an effort to identify drivers which influence installation cost, a number of site visits were made during 1996 to assess the state-of-the-art in drilling for GHP loop installation. As an aid to quantifying the effect of various drilling-process improvements, we constructed a spread-sheet based on estimated time and material costs for all the activities required in a typical loop-field installation. By substituting different (improved) values into specific activity costs, the effect on total project costs can be easily seen. This report contains brief descriptions of the site visits, key points learned during the visits, copies of the spread-sheet, recommendations for further work, and sample results from sensitivity analysis using the spread-sheet.

  4. System analysis of a bio-energy plantation: full greenhouse gas balance and energy accounting (POPFULL)

    NASA Astrophysics Data System (ADS)

    Ceulemans, R.; Janssens, I.; Berhongaray, G.; Broeckx, L.; De Groote, T.; ElKasmioui, O.; Fichot, R.; Njakou Djomo, S.; Verlinden, M.; Zona, D.

    2011-12-01

    In recent year the environmental impact of fossil fuels and their reduced availability are leading to an increasing interest in renewable energy sources, among them bio-energy. However, the cost/benefit in establishing, managing, and using these plantations for energy production should be quantified together with their environmental impact. In this project we are performing a full life cycle analysis (LCA) balance of the most important greenhouse gases (CO2, CH4, N2O, H2O and O3), together with full energy accounting of a short-rotation coppice (SRC) plantation with fast-growing trees. We established the plantation two years ago and we have been monitoring net fluxes of CO2, N2O, CH4, and O3, in combination with biomass pools (incl. soil) and fluxes, and volatile organic carbon (VOCs). This poplar plantation will be monitored for another two years then harvested and transformed into bio-energy. For the energy accounting we are performing a life cycle analysis and energy efficiency assessments over the entire cycle of the plantation until the production of electricity and heat. Here we present an overview of the results from the first two years from the plantation establishment, and some of the projections based on these first results.

  5. Solar energy system installed at Mount Rushmore National Visitor Center in Keystone, South Dakota

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The design and installation of the solar energy system installed at the Mount Rushmore Visitor Center is described. The system was designed to furnish about 45 percent of the heating for the total facility and about 53 percent partial cooling for the 2000 square foot observatory.

  6. Solar heating and hot water system installed at Charlotte Memorial Hospital, Charlotte, North Carolina

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Detailed information regarding the design and installation of a heating and hot water system in a commercial application is given. This information includes descriptions of system and building, design philosophy, control logic operation modes, design and installation drawing and a brief description of problems encountered and their solutions.

  7. 14 CFR Appendix H to Part 23 - Installation of An Automatic Power Reserve (APR) System

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Installation of An Automatic Power Reserve (APR) System H Appendix H to Part 23 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT... AIRPLANES Pt. 23, App. H Appendix H to Part 23—Installation of An Automatic Power Reserve (APR) System...

  8. 40 CFR 281.30 - New UST system design, construction, installation, and notification.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 27 2014-07-01 2014-07-01 false New UST system design, construction, installation, and notification. 281.30 Section 281.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...-Stringent § 281.30 New UST system design, construction, installation, and notification. In order to...

  9. 40 CFR 281.30 - New UST system design, construction, installation, and notification.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 27 2011-07-01 2011-07-01 false New UST system design, construction, installation, and notification. 281.30 Section 281.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...-Stringent § 281.30 New UST system design, construction, installation, and notification. In order to...

  10. 40 CFR 281.30 - New UST system design, construction, installation, and notification.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false New UST system design, construction, installation, and notification. 281.30 Section 281.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...-Stringent § 281.30 New UST system design, construction, installation, and notification. In order to...

  11. Communicating About Bioenergy Sustainability

    NASA Astrophysics Data System (ADS)

    Dale, Virginia H.; Kline, Keith L.; Perla, Donna; Lucier, Al

    2013-02-01

    Defining and measuring sustainability of bioenergy systems are difficult because the systems are complex, the science is in early stages of development, and there is a need to generalize what are inherently context-specific enterprises. These challenges, and the fact that decisions are being made now, create a need for improved communications among scientists as well as between scientists and decision makers. In order for scientists to provide information that is useful to decision makers, they need to come to an agreement on how to measure and report potential risks and benefits of diverse energy alternatives in a way that allows decision makers to compare options. Scientists also need to develop approaches that contribute information about problems and opportunities relevant to policy and decision making. The need for clear communication is especially important at this time when there is a plethora of scientific papers and reports and it is difficult for the public or decision makers to assess the merits of each analysis. We propose three communication guidelines for scientists whose work can contribute to decision making: (1) relationships between the question and the analytical approach should be clearly defined and make common sense; (2) the information should be presented in a manner that non-scientists can understand; and (3) the implications of methods, assumptions, and limitations should be clear. The scientists' job is to analyze information to build a better understanding of environmental, cultural, and socioeconomic aspects of the sustainability of energy alternatives. The scientific process requires transparency, debate, review, and collaboration across disciplines and time. This paper serves as an introduction to the papers in the special issue on "Sustainability of Bioenergy Systems: Cradle to Grave" because scientific communication is essential to developing more sustainable energy systems. Together these four papers provide a framework under which

  12. The drought of 2012: Effects on photosynthesis and soil respiration in bioenergy cropping systems of the Midwest USA

    NASA Astrophysics Data System (ADS)

    Cruse, M.; Kucharik, C. J.

    2012-12-01

    Climate change is predicted to increase the frequency and severity of drought conditions across the central US. This heightened risk on producers and economies alike also supports the need to improve our understanding of how extreme environmental conditions impact other ecosystem services such as carbon sequestration, which is directly linked to net ecosystem exchange (NEE). In doing so, the scientific community aims to improve the realism of ecosystem models that are relied upon to project changes in large scale and long-term land surface-atmosphere carbon exchange as they are affected by continued land management change and climate change. One such large-scale land management change of the next several decades in the Midwest US could be the expansion of bioenergy cropping systems across the landscape. A wide range of bioenergy cropping systems (e.g., miscanthus, switchgrass, diverse prairie, hybrid poplar) are now targeted to support a feedstock supply chain for production of cellulosic biofuels. Many of these agroecosystems have only recently begun to appear as functional types in dynamic ecosystem models, and a general lack of observational data across a wide range of soils and climate has hampered model development and validation. In response to this shortcoming, from 2009 through 2012, component measurements of ecosystem carbon exchange (total soil respiration and leaf level photosynthetic rates) have been made along with measurements of other soil and meteorological variables in three model bioenergy cropping systems (continuous corn, hybrid poplar and switchgrass) at the Great Lakes Bioenergy Research Center (GLBRC) field trial at Arlington, Wisconsin. The three cropping systems encompass a wide range of growth (e.g. C3 vs. C4, annual vs. perennial) and management (e.g., tillage, harvesting) strategies that are predicted to impart different controls on NEE given likely varying biological responses to extreme weather events. Throughout the study period, the

  13. An Automatic System of Testing the Best Stress of Installation for Semiconductor Refrigeration Piece

    NASA Astrophysics Data System (ADS)

    Chen, Hongyan; Song, Ping

    Concerning the problems of the impact on the factors of installation about semiconductor refrigeration piece are rarely studied in China and abroad, a reasonable structure of test device is designed, using stepper motor to test the temperature of the cold surface under different stress of installation to get the best stress of installation for the semiconductor refrigeration piece. Experiments shows that the system is of good noise immunity, high controlling and measuring precision.

  14. System design and installation for RS600 programmable control system for solar heating and cooling

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Procedures for installing, operating, and maintaining a programmable control system which utilizes a F8 microprocessor to perform all timing, control, and calculation functions in order to customize system performance to meet individual requirements for solar heating, combined heating and cooling, and/or hot water systems are described. The manual discusses user configuration and options, displays, theory of operation, trouble-shooting procedures, and warranty and assistance. Wiring lists, parts lists, drawings, and diagrams are included.

  15. Bioenergy for sustainable development: An African context

    NASA Astrophysics Data System (ADS)

    Mangoyana, Robert Blessing

    This paper assesses the sustainability concerns of bioenergy systems against the prevailing and potential long term conditions in Sub-Saharan Africa with a special attention on agricultural and forestry waste, and cultivated bioenergy sources. Existing knowledge and processes about bioenergy systems are brought into a “sustainability framework” to support debate and decisions about the implementation of bioenergy systems in the region. Bioenergy systems have been recommended based on the potential to (i) meet domestic energy demand and reduce fuel importation (ii) diversify rural economies and create employment (iii) reduce poverty, and (iv) provide net energy gains and positive environmental impacts. However, biofuels will compete with food crops for land, labour, capital and entrepreneurial skills. Moreover the environmental benefits of some feedstocks are questionable. These challenges are, however, surmountable. It is concluded that biomass energy production could be an effective way to achieve sustainable development for bioenergy pathways that (i) are less land intensive, (ii) have positive net energy gains and environmental benefits, and (iii) provide local socio-economic benefits. Feasibility evaluations which put these issues into perspective are vital for sustainable application of agricultural and forest based bioenergy systems in Sub-Saharan Africa. Such evaluations should consider the long run potential of biofuels accounting for demographic, economic and technological changes and the related implications.

  16. Farm systems assessment of bioenergy feedstock production: Integrating bio-economic models and life cycle analysis approaches

    PubMed Central

    Glithero, N.J.; Ramsden, S.J.; Wilson, P.

    2012-01-01

    Climate change and energy security concerns have driven the development of policies that encourage bioenergy production. Meeting EU targets for the consumption of transport fuels from bioenergy by 2020 will require a large increase in the production of bioenergy feedstock. Initially an increase in ‘first generation’ biofuels was observed, however ‘food competition’ concerns have generated interest in second generation biofuels (SGBs). These SGBs can be produced from co-products (e.g. cereal straw) or energy crops (e.g. miscanthus), with the former largely negating food competition concerns. In order to assess the sustainability of feedstock supply for SGBs, the financial, environmental and energy costs and benefits of the farm system must be quantified. Previous research has captured financial costs and benefits through linear programming (LP) approaches, whilst environmental and energy metrics have been largely been undertaken within life cycle analysis (LCA) frameworks. Assessing aspects of the financial, environmental and energy sustainability of supplying co-product second generation biofuel (CPSGB) feedstocks at the farm level requires a framework that permits the trade-offs between these objectives to be quantified and understood. The development of a modelling framework for Managing Energy and Emissions Trade-Offs in Agriculture (MEETA Model) that combines bio-economic process modelling and LCA is presented together with input data parameters obtained from literature and industry sources. The MEETA model quantifies arable farm inputs and outputs in terms of financial, energy and emissions results. The model explicitly captures fertiliser: crop-yield relationships, plus the incorporation of straw or removal for sale, with associated nutrient impacts of incorporation/removal on the following crop in the rotation. Key results of crop-mix, machinery use, greenhouse gas (GHG) emissions per kg of crop product and energy use per hectare are in line with

  17. The ATLAS Software Installation System v2: a highly available system to install and validate Grid and Cloud sites via Panda

    NASA Astrophysics Data System (ADS)

    De Salvo, A.; Kataoka, M.; Sanchez Pineda, A.; Smirnov, Y.

    2015-12-01

    The ATLAS Installation System v2 is the evolution of the original system, used since 2003. The original tool has been completely re-designed in terms of database backend and components, adding support for submission to multiple backends, including the original Workload Management Service (WMS) and the new PanDA modules. The database engine has been changed from plain MySQL to Galera/Percona and the table structure has been optimized to allow a full High-Availability (HA) solution over Wide Area Network. The servlets, running on each frontend, have been also decoupled from local settings, to allow an easy scalability of the system, including the possibility of an HA system with multiple sites. The clients can also be run in multiple copies and in different geographical locations, and take care of sending the installation and validation jobs to the target Grid or Cloud sites. Moreover, the Installation Database is used as source of parameters by the automatic agents running in CVMFS, in order to install the software and distribute it to the sites. The system is in production for ATLAS since 2013, having as main sites in HA the INFN Roma Tier 2 and the CERN Agile Infrastructure. The Light Job Submission Framework for Installation (LJSFi) v2 engine is directly interfacing with PanDA for the Job Management, the Atlas Grid Information System (AGIS) for the site parameter configurations, and CVMFS for both core components and the installation of the software itself. LJSFi2 is also able to use other plugins, and is essentially Virtual Organization (VO) agnostic, so can be directly used and extended to cope with the requirements of any Grid or Cloud enabled VO. In this work we will present the architecture, performance, status and possible evolutions to the system for the LHC Run2 and beyond.

  18. Integration of Feedstock Assembly System and Cellulosic Ethanol Conversion Models to Analyze Bioenergy System Performance

    SciTech Connect

    Jared M. Abodeely; Douglas S. McCorkle; Kenneth M. Bryden; David J. Muth; Daniel Wendt; Kevin Kenney

    2010-09-01

    Research barriers continue to exist in all phases of the emerging cellulosic ethanol biorefining industry. These barriers include the identification and development of a sustainable and abundant biomass feedstock, the assembly of viable assembly systems formatting the feedstock and moving it from the field (e.g., the forest) to the biorefinery, and improving conversion technologies. Each of these phases of cellulosic ethanol production are fundamentally connected, but computational tools used to support and inform analysis within each phase remain largely disparate. This paper discusses the integration of a feedstock assembly system modeling toolkit and an Aspen Plus® conversion process model. Many important biomass feedstock characteristics, such as composition, moisture, particle size and distribution, ash content, etc. are impacted and most effectively managed within the assembly system, but generally come at an economic cost. This integration of the assembly system and the conversion process modeling tools will facilitate a seamless investigation of the assembly system conversion process interface. Through the integrated framework, the user can design the assembly system for a particular biorefinery by specifying location, feedstock, equipment, and unit operation specifications. The assembly system modeling toolkit then provides economic valuation, and detailed biomass feedstock composition and formatting information. This data is seamlessly and dynamically used to run the Aspen Plus® conversion process model. The model can then be used to investigate the design of systems for cellulosic ethanol production from field to final product.

  19. Bridge capacitor bank installation concept reactive power generation in EHV systems

    SciTech Connect

    Andrei, R.G.; Keri, A.J.F.; Albanese, R.J.; Johnson, P.B. )

    1993-11-01

    As an alternative to the conventional shunt capacitor bank installation, a totally new concept of providing reactive power to an electrical power system is presented. A new type of capacitor bank installation called bridge'' is described. An analytical investigation of the bridge capacitor installation concept and its application in an EHV electrical power system is presented. The technical and economic advantages of the bridge capacitor bank over the shunt capacitor bank are analyzed in the context of the reactive power being directly supplied to an EHV system. A field trial installation at a lower than EHV level (138/69kV) along with some experimental test results are presented in the last part of this paper. A more detailed presentation of the field experience with the trial installation will be covered in a future paper.

  20. 40 CFR 60.1230 - What continuous emission monitoring systems must I install for gaseous pollutants?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false What continuous emission monitoring... Continuous Emission Monitoring § 60.1230 What continuous emission monitoring systems must I install for gaseous pollutants? (a) You must install, calibrate, maintain, and operate continuous emission...

  1. System installation package for the New Hampshire Vocational Technical College, Manchester, N. H.

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A system installed in the residential solar laboratory located at the New Hampshire Vocational Technical College in Manchester, N. H. is described. General guidelines which may be utilized in development of detailed installation plans and specifications, as well as instructions on operation and maintenance are provided.

  2. 40 CFR 60.2939 - What continuous emission monitoring systems must I install?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) You must install, calibrate, maintain, and operate continuous emission monitoring systems for carbon monoxide and for oxygen. You must monitor the oxygen concentration at each location where you monitor carbon monoxide. (b) You must install, evaluate, and operate each continuous emission monitoring...

  3. 40 CFR 60.2939 - What continuous emission monitoring systems must I install?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) You must install, calibrate, maintain, and operate continuous emission monitoring systems for carbon monoxide and for oxygen. You must monitor the oxygen concentration at each location where you monitor carbon monoxide. (b) You must install, evaluate, and operate each continuous emission monitoring...

  4. 40 CFR 60.2939 - What continuous emission monitoring systems must I install?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) You must install, calibrate, maintain, and operate continuous emission monitoring systems for carbon monoxide and for oxygen. You must monitor the oxygen concentration at each location where you monitor carbon monoxide. (b) You must install, evaluate, and operate each continuous emission monitoring...

  5. Solar heating and cooling system installed at Columbus, Ohio. Final report

    SciTech Connect

    Coy, R. G.; Braden, R. P.

    1980-09-01

    The Solar Energy System installed at Columbus Technical Institute, Columbus, Ohio was installed as a part of a new construction of a college building. The building will house classrooms and laboratories, administrative offices and three lecture halls. The Solar Energy System consists of 4096 square feet (128 panels) Owens/Illinois Evacuated Glass Tube Collector Subsystem, and a 5000 gallon steel tank below ground storage system, hot water is circulated between the collectors and storage tank, passing through a water/lithium bromide absorption chiller to cool the building. Extracts from the site files specification references, drawings, installation, operation and maintenance instructions are included.

  6. Measuring method of CCD installation verticality based on own system of intelligent laser cutting machine

    NASA Astrophysics Data System (ADS)

    Zhong, Ping; Lu, Hongbo; Liu, Fuguo; Chen, Ziyuan; He, Pan; Jiang, Xueshi

    2016-01-01

    The installation verticality between the optical axis of CCD and the working plane of intelligent laser cutting machine is one of the most important factors in determining image quality of the processed object which comes from computer vision system. In this paper, an innovative method is proposed which can make it possible to use the equipment of own system of intelligent laser cutting machine to detect installation verticality between the optical axis of CCD and the working plane. Experimental results show that the method presented in this paper is a feasible solution for measuring the installation verticality between the optical axis of CCD and the working plane of intelligent laser cutting machine.

  7. Installation of a water disinfection system in a Mexico City hospital.

    PubMed

    Juárez Mendoza, J; Martínez Rosales, G; Díaz Sánchez, J; Brust Mascher, E; Brust Carmona, H

    1992-01-01

    With a view to evaluating a small-scale water disinfection system based on production and application of oxidizing gases, the level of equivalent residual chlorine and the degree of contamination by fecal and total coliform bacteria was assessed at various points in the drinking water system of a Mexico City hospital before and after installation of the disinfection equipment. Tests done in May and June 1989, prior to installation of the equipment, showed that residual chlorine concentrations were lower than the national standard in most of the samples and that a sizable portion of these samples were also contaminated with fecal and total coliform concentrations exceeding national standards. After installation of the disinfection system at the main inflow to the hospital's drinking water supply in August 1989, the equivalent residual chlorine concentrations were found adequate and no coliform bacteria were detected. These results indicate that the oxidant mixture generated by the newly installed system was effectively disinfecting the water.

  8. Thiokol/Wasatch installation evaluation of the redesigned field joint protection system (concepts 1 and 3)

    NASA Technical Reports Server (NTRS)

    Cook, M.

    1989-01-01

    The procedures, performance, and results obtained from the Thiokol Corporation/Wasatch Redesigned Field Joint Protection System (FJPS) Installation Evaluation are documented. The purpose of the evaluation was to demonstrate and develop the procedures required to install two different concepts (referred to as Concepts 1 and 3) of the redesigned FJPS. The processing capability of each configuration was then evaluated and compared. The FJPS is installed on redesigned solid rocket motors (RSRM) to protect the field joints from rain intrusion and to maintain the joint temperature sensor measurement between 85 and 122 F while the boosters are on the launch pad. The FJPS is being redesigned to reduce installation timelines at KSC and to simplify or eliminate installation processing problems related to the present design of an EPDM moisture seal/extruded cork combination. Several installation techniques were evaluated, and a preferred method of application was developed for each concept. The installations were performed with the test article in the vertical (flight) position. Comparative timelines between the two concepts were also developed. An additional evaluation of the Concept 3 configuration was performed with the test article in the horizontal position, to simulate an overhead installation on a technical evaluation motor (TEM).

  9. The installation of a multiport ground-water sampling system in the 300 Area

    SciTech Connect

    Gilmore, T.J.

    1989-06-01

    In 1988, the Pacific Northwest Laboratory installed a multiport groundwater sampling system in well 399-1-20, drilled north of the 300 Area on the Hanford Site in southwestern Washington State. The purpose of installing the multiport system is to evaluate methods of determining the vertical distribution of contaminants and hydraulic heads in ground water. Well 399-1-20 is adjacent to a cluster of four Resource Conservation and Recovery Act (RCRA) ground-water monitoring wells. This proximity makes it possible to compare sampling intervals and head measurements between the multiport system and the RCRA monitoring wells. Drilling and installation of the multiport system took 42 working days. Six sampling ports were installed in the upper unconfined aquifer at depths of approximately 120, 103, 86, 74, 56, and 44 feet. The locations of the sampling ports were determined by the hydrogeology of the area and the screened intervals of adjacent ground-water monitoring wells. The system was installed by backfilling sand around the sampling ports and isolating the ports with bentonite seals. The method proved adequate. For future installation, however, development and evaluation of an alternative method is recommended. In the alternative method suggested, the multiport system would be placed inside a cased and screened well, using packers to isolate the sampling zones. 4 refs., 8 figs., 1 tab.

  10. Solar Heating System installed at Belz Investment Company, Memphis, Tennessee

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A hot air solar system which utilizes flat plate air collectors is discussed. Collector areas for each of four buildings cover 780 sq ft, with storage capacity of 390 cu ft per building. The air system has a special air handling unit to move air through the collectors and into and out of the rock storage, with connection to the air duct distribution system. The heat of the motor is added to the heat delivered to the system. The solar system also includes four motorized special low leakage dampers and two gravity fabric dampers. The system is automatically controlled by a solid state controller with three thermistors: one located in the collectors, one in the rock box to plenum, one in the return air duct from the heated space. A three stage heating thermostat, located in the conditioned space, controls the operation.

  11. Bioenergy and African transformation.

    PubMed

    Lynd, Lee R; Sow, Mariam; Chimphango, Annie Fa; Cortez, Luis Ab; Brito Cruz, Carlos H; Elmissiry, Mosad; Laser, Mark; Mayaki, Ibrahim A; Moraes, Marcia Afd; Nogueira, Luiz Ah; Wolfaardt, Gideon M; Woods, Jeremy; van Zyl, Willem H

    2015-01-01

    Among the world's continents, Africa has the highest incidence of food insecurity and poverty and the highest rates of population growth. Yet Africa also has the most arable land, the lowest crop yields, and by far the most plentiful land resources relative to energy demand. It is thus of interest to examine the potential of expanded modern bioenergy production in Africa. Here we consider bioenergy as an enabler for development, and provide an overview of modern bioenergy technologies with a comment on application in an Africa context. Experience with bioenergy in Africa offers evidence of social benefits and also some important lessons. In Brazil, social development, agricultural development and food security, and bioenergy development have been synergistic rather than antagonistic. Realizing similar success in African countries will require clear vision, good governance, and adaptation of technologies, knowledge, and business models to myriad local circumstances. Strategies for integrated production of food crops, livestock, and bioenergy are potentially attractive and offer an alternative to an agricultural model featuring specialized land use. If done thoughtfully, there is considerable evidence that food security and economic development in Africa can be addressed more effectively with modern bioenergy than without it. Modern bioenergy can be an agent of African transformation, with potential social benefits accruing to multiple sectors and extending well beyond energy supply per se. Potential negative impacts also cut across sectors. Thus, institutionally inclusive multi-sector legislative structures will be more effective at maximizing the social benefits of bioenergy compared to institutionally exclusive, single-sector structures. PMID:25709714

  12. Bioenergy: America's Energy Future

    ScienceCinema

    Nelson, Bruce; Volz, Sara; Male, Johnathan; Wolfson, Johnathan; Pray, Todd; Mayfield, Stephen; Atherton, Scott; Weaver, Brandon

    2016-07-12

    Bioenergy: America's Energy Future is a short documentary film showcasing examples of bioenergy innovations across the biomass supply chain and the United States. The film highlights a few stories of individuals and companies who are passionate about achieving the promise of biofuels and addressing the challenges of developing a thriving bioeconomy. This outreach product supports media initiatives to expand the public's understanding of the bioenergy industry and sustainable transportation and was developed by the U.S. Department of Energy Bioenergy Technologies Office (BETO), Oak Ridge National Laboratory, Green Focus Films, and BCS, Incorporated.

  13. Bioenergy: America's Energy Future

    SciTech Connect

    Nelson, Bruce; Volz, Sara; Male, Johnathan; Wolfson, Johnathan; Pray, Todd; Mayfield, Stephen; Atherton, Scott; Weaver, Brandon

    2014-07-31

    Bioenergy: America's Energy Future is a short documentary film showcasing examples of bioenergy innovations across the biomass supply chain and the United States. The film highlights a few stories of individuals and companies who are passionate about achieving the promise of biofuels and addressing the challenges of developing a thriving bioeconomy. This outreach product supports media initiatives to expand the public's understanding of the bioenergy industry and sustainable transportation and was developed by the U.S. Department of Energy Bioenergy Technologies Office (BETO), Oak Ridge National Laboratory, Green Focus Films, and BCS, Incorporated.

  14. Bioenergy and African transformation.

    PubMed

    Lynd, Lee R; Sow, Mariam; Chimphango, Annie Fa; Cortez, Luis Ab; Brito Cruz, Carlos H; Elmissiry, Mosad; Laser, Mark; Mayaki, Ibrahim A; Moraes, Marcia Afd; Nogueira, Luiz Ah; Wolfaardt, Gideon M; Woods, Jeremy; van Zyl, Willem H

    2015-01-01

    Among the world's continents, Africa has the highest incidence of food insecurity and poverty and the highest rates of population growth. Yet Africa also has the most arable land, the lowest crop yields, and by far the most plentiful land resources relative to energy demand. It is thus of interest to examine the potential of expanded modern bioenergy production in Africa. Here we consider bioenergy as an enabler for development, and provide an overview of modern bioenergy technologies with a comment on application in an Africa context. Experience with bioenergy in Africa offers evidence of social benefits and also some important lessons. In Brazil, social development, agricultural development and food security, and bioenergy development have been synergistic rather than antagonistic. Realizing similar success in African countries will require clear vision, good governance, and adaptation of technologies, knowledge, and business models to myriad local circumstances. Strategies for integrated production of food crops, livestock, and bioenergy are potentially attractive and offer an alternative to an agricultural model featuring specialized land use. If done thoughtfully, there is considerable evidence that food security and economic development in Africa can be addressed more effectively with modern bioenergy than without it. Modern bioenergy can be an agent of African transformation, with potential social benefits accruing to multiple sectors and extending well beyond energy supply per se. Potential negative impacts also cut across sectors. Thus, institutionally inclusive multi-sector legislative structures will be more effective at maximizing the social benefits of bioenergy compared to institutionally exclusive, single-sector structures.

  15. Installing an Integrated Information System in a Centralized Network.

    ERIC Educational Resources Information Center

    Mendelson, Andrew D.

    1992-01-01

    Many schools are looking at ways to centralize the distribution and retrieval of video, voice, and data transmissions in an integrate information system (IIS). A centralized system offers greater control of hardware and software. Describes media network planning to retrofit an Illinois' high school with a fiber optic-based IIS. (MLF)

  16. 14 CFR 25.1309 - Equipment, systems, and installations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment General § 25.1309... any foreseeable operating condition. (b) The airplane systems and associated components, considered... condition which would prevent the continued safe flight and landing of the airplane is extremely...

  17. 14 CFR 25.1309 - Equipment, systems, and installations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment General § 25.1309... any foreseeable operating condition. (b) The airplane systems and associated components, considered... condition which would prevent the continued safe flight and landing of the airplane is extremely...

  18. 40 CFR 267.192 - What handling and inspection procedures must I follow during installation of new tank systems?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A STANDARDIZED PERMIT Tank Systems § 267.192 What... installation. Before placing a new tank system or component in use, an independent, qualified installation... procedures must I follow during installation of new tank systems? 267.192 Section 267.192 Protection...

  19. 40 CFR 267.192 - What handling and inspection procedures must I follow during installation of new tank systems?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A STANDARDIZED PERMIT Tank Systems § 267.192 What... installation. Before placing a new tank system or component in use, an independent, qualified installation... procedures must I follow during installation of new tank systems? 267.192 Section 267.192 Protection...

  20. Nitrogen Fertilization Effects on Productivity and Nitrogen Loss in Three Grass-Based Perennial Bioenergy Cropping Systems

    DOE PAGESBeta

    Duran, Brianna E. L.; Duncan, David S.; Oates, Lawrence G.; Kucharik, Christopher J.; Jackson, Randall D.

    2016-03-18

    Nitrogen (N) fertilization can greatly improve plant productivity but needs to be carefully managed to avoid harmful environmental impacts. Nutrient management guidelines aimed at reducing harmful forms of N loss such as nitrous oxide (N2O) emissions and nitrate (NO3 -) leaching have been tailored for many cropping systems. The developing bioenergy industry is likely to make use of novel cropping systems, such as polycultures of perennial species, for which we have limited nutrient management experience. We studied how a switchgrass (Panicum virgatum) monoculture, a 5-species native grass mixture and an 18- species restored prairie responded to annual fertilizer applications ofmore » 56 kg N ha-1 in a fieldscale agronomic trial in south-central Wisconsin over a 2-year period.We observed greater fertilizer-induced N2O emissions and sub-rooting zone NO3 - concentrations in the switchgrass monoculture than in either polyculture. Fertilization increased aboveground net primary productivity in the polycultures, but not in the switchgrass monoculture. Switchgrass was generally more productive, while the two polycultures did not differ from each other in productivity or N loss. In conclusion, our results highlight differences between polycultures and a switchgrass monoculture in responding to N fertilization.« less

  1. Nitrogen Fertilization Effects on Productivity and Nitrogen Loss in Three Grass-Based Perennial Bioenergy Cropping Systems

    PubMed Central

    Duran, Brianna E. L.; Duncan, David S.; Oates, Lawrence G.; Kucharik, Christopher J.; Jackson, Randall D.

    2016-01-01

    Nitrogen (N) fertilization can greatly improve plant productivity but needs to be carefully managed to avoid harmful environmental impacts. Nutrient management guidelines aimed at reducing harmful forms of N loss such as nitrous oxide (N2O) emissions and nitrate (NO3-) leaching have been tailored for many cropping systems. The developing bioenergy industry is likely to make use of novel cropping systems, such as polycultures of perennial species, for which we have limited nutrient management experience. We studied how a switchgrass (Panicum virgatum) monoculture, a 5-species native grass mixture and an 18-species restored prairie responded to annual fertilizer applications of 56 kg N ha-1 in a field-scale agronomic trial in south-central Wisconsin over a 2-year period. We observed greater fertilizer-induced N2O emissions and sub-rooting zone NO3- concentrations in the switchgrass monoculture than in either polyculture. Fertilization increased aboveground net primary productivity in the polycultures, but not in the switchgrass monoculture. Switchgrass was generally more productive, while the two polycultures did not differ from each other in productivity or N loss. Our results highlight differences between polycultures and a switchgrass monoculture in responding to N fertilization. PMID:26991790

  2. Nitrogen Fertilization Effects on Productivity and Nitrogen Loss in Three Grass-Based Perennial Bioenergy Cropping Systems.

    PubMed

    Duran, Brianna E L; Duncan, David S; Oates, Lawrence G; Kucharik, Christopher J; Jackson, Randall D

    2016-01-01

    Nitrogen (N) fertilization can greatly improve plant productivity but needs to be carefully managed to avoid harmful environmental impacts. Nutrient management guidelines aimed at reducing harmful forms of N loss such as nitrous oxide (N2O) emissions and nitrate (NO3(-)) leaching have been tailored for many cropping systems. The developing bioenergy industry is likely to make use of novel cropping systems, such as polycultures of perennial species, for which we have limited nutrient management experience. We studied how a switchgrass (Panicum virgatum) monoculture, a 5-species native grass mixture and an 18-species restored prairie responded to annual fertilizer applications of 56 kg N ha(-1) in a field-scale agronomic trial in south-central Wisconsin over a 2-year period. We observed greater fertilizer-induced N2O emissions and sub-rooting zone NO3(-) concentrations in the switchgrass monoculture than in either polyculture. Fertilization increased aboveground net primary productivity in the polycultures, but not in the switchgrass monoculture. Switchgrass was generally more productive, while the two polycultures did not differ from each other in productivity or N loss. Our results highlight differences between polycultures and a switchgrass monoculture in responding to N fertilization. PMID:26991790

  3. Developing an Integrated Model Framework for the Assessment of Sustainable Agricultural Residue Removal Limits for Bioenergy Systems

    SciTech Connect

    David Muth, Jr.; Jared Abodeely; Richard Nelson; Douglas McCorkle; Joshua Koch; Kenneth Bryden

    2011-08-01

    Agricultural residues have significant potential as a feedstock for bioenergy production, but removing these residues can have negative impacts on soil health. Models and datasets that can support decisions about sustainable agricultural residue removal are available; however, no tools currently exist capable of simultaneously addressing all environmental factors that can limit availability of residue. The VE-Suite model integration framework has been used to couple a set of environmental process models to support agricultural residue removal decisions. The RUSLE2, WEPS, and Soil Conditioning Index models have been integrated. A disparate set of databases providing the soils, climate, and management practice data required to run these models have also been integrated. The integrated system has been demonstrated for two example cases. First, an assessment using high spatial fidelity crop yield data has been run for a single farm. This analysis shows the significant variance in sustainably accessible residue across a single farm and crop year. A second example is an aggregate assessment of agricultural residues available in the state of Iowa. This implementation of the integrated systems model demonstrates the capability to run a vast range of scenarios required to represent a large geographic region.

  4. Nitrogen Fertilization Effects on Productivity and Nitrogen Loss in Three Grass-Based Perennial Bioenergy Cropping Systems.

    PubMed

    Duran, Brianna E L; Duncan, David S; Oates, Lawrence G; Kucharik, Christopher J; Jackson, Randall D

    2016-01-01

    Nitrogen (N) fertilization can greatly improve plant productivity but needs to be carefully managed to avoid harmful environmental impacts. Nutrient management guidelines aimed at reducing harmful forms of N loss such as nitrous oxide (N2O) emissions and nitrate (NO3(-)) leaching have been tailored for many cropping systems. The developing bioenergy industry is likely to make use of novel cropping systems, such as polycultures of perennial species, for which we have limited nutrient management experience. We studied how a switchgrass (Panicum virgatum) monoculture, a 5-species native grass mixture and an 18-species restored prairie responded to annual fertilizer applications of 56 kg N ha(-1) in a field-scale agronomic trial in south-central Wisconsin over a 2-year period. We observed greater fertilizer-induced N2O emissions and sub-rooting zone NO3(-) concentrations in the switchgrass monoculture than in either polyculture. Fertilization increased aboveground net primary productivity in the polycultures, but not in the switchgrass monoculture. Switchgrass was generally more productive, while the two polycultures did not differ from each other in productivity or N loss. Our results highlight differences between polycultures and a switchgrass monoculture in responding to N fertilization.

  5. Solar heating system installed at Blakedale Professional Center, Greenwood, South Carolina

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Information on the solar heating system installed at the Blakedale Professional Center, in Greenwood, South Carolina is presented. The information consists of site and building description, solar system description, performance evaluation, system problems and installation drawings. The solar system was designed to provide approximately 85 percent of the building's heating requirements. The system was installed concurrently with building construction and heats 4,440 square feet of the building. There are 954 square feet of liquid flat plate collectors that are proof-mounted and have a drain-down system to protect the collectors from freezing. A 5,000 gallon steel, polyurethane insulated tank buried underground provides storage. The system was fully instrumented for performance evaluation and integrated into the National Solar Data Network.

  6. 14 CFR 25.1309 - Equipment, systems, and installations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... shown by environmental tests, design analysis, or reference to previous comparable service experience on... required by this subchapter, must be designed to ensure that they perform their intended functions under... separately and in relation to other systems, must be designed so that— (1) The occurrence of any...

  7. 14 CFR 25.1309 - Equipment, systems, and installations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... shown by environmental tests, design analysis, or reference to previous comparable service experience on... required by this subchapter, must be designed to ensure that they perform their intended functions under... separately and in relation to other systems, must be designed so that— (1) The occurrence of any...

  8. 14 CFR 23.1309 - Equipment, systems, and installations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) Equipment essential to safe operation; or (ii) Other equipment unless there is a means to inform the pilot... result from a single failure; (2) Each hazardous failure condition is extremely remote; and (3) Each major failure condition is remote. (d) Information concerning an unsafe system operating condition...

  9. BUILDOUT AND UPGRADE OF CENTRAL EMERGENCY GENERATOR SYSTEM, GENERATOR 3 AND 4 ELECTRICAL INSTALLATION

    SciTech Connect

    Gary D. Seifert; G. Shawn West; Kurt S. Myers; Jim Moncur

    2006-07-01

    SECTION 01000—SUMMARY OF WORK PART 1—GENERAL 1.1 SUMMARY The work to be performed under this project consists of providing the labor, equipment, and materials to perform "Buildout and Upgrade of Central Emergency Generator System, Generator 3 and 4 Electrical Installation" for the National Aeronautics and Space Administration at the Dryden Flight Research Center (NASA/DFRC), Edwards, California 93523. All modifications to existing substations and electrical distribution systems are the responsibility of the contractor. It is the contractor’s responsibility to supply a complete and functionally operational system. The work shall be performed in accordance with these specifications and the related drawings. The work of this project is defined by the plans and specifications contained and referenced herein. This work specifically includes but is not limited to the following: Scope of Work - Installation 1. Install all electrical wiring and controls for new generators 3 and 4 to match existing electrical installation for generators 1 and 2 and in accordance with drawings. Contractor shall provide as-built details for electrical installation. 2. Install battery charger systems for new generators 3 and 4 to match existing battery charging equipment and installation for generators 1 and 2. This may require exchange of some battery charger parts already on-hand. Supply power to new battery chargers from panel and breakers as shown on drawings. Utilize existing conduits already routed to generators 3 and 4 to field route the new wiring in the most reasonable way possible. 3. Install electrical wiring for fuel/lube systems for new generators 3 and 4 to match existing installation for generators 1 and 2. Supply power to lube oil heaters and fuel system (day tanks) from panel and breakers as shown on drawings. Utilize existing conduits already routed to generators 3 and 4 to field route the new wiring in the most reasonable way possible. Add any conduits necessary to

  10. Facility Energy Decision System (FEDS) Assessment Report for US Army Garrison, Japan - Honshu Installations

    SciTech Connect

    Kora, Angela R.; Brown, Daryl R.; Dixon, Douglas R.

    2010-03-09

    This report documents an assessment was performed by a team of engineers from Pacific Northwest National Laboratory (PNNL) under contract to the Installation Management Command (IMCOM) Pacific Region Office (PARO). The effort used the Facility Energy Decision System (FEDS) model to determine how energy is consumed at five U.S. Army Garrison-Japan (USAG-J) installations in the Honshu area, identify the most cost-effective energy retrofit measures, and calculate the potential energy and cost savings.

  11. Design, installation and operating experience of 20 photovoltaic medical refrigerator systems on four continents

    NASA Astrophysics Data System (ADS)

    Hein, G. F.

    The NASA Lewis Research Center in cooperation with the World Health Organization, U.S.A. I.D., the Pan American Health Organization and national government agencies in some developing countries sponsored the installation of twenty photovoltaic powered medical vaccine storage refrigerator-freezer (R/F) systems. The Solar Power Corporation was selected as the contractor to perform the design, development and installation of these twenty units. Solar Power's experiences are described herein.

  12. Design, installation and operating experience of 20 photovoltaic medical refrigerator systems on four continents

    NASA Technical Reports Server (NTRS)

    Hein, G. F.

    1982-01-01

    The NASA Lewis Research Center in cooperation with the World Health Organization, U.S.A. I.D., the Pan American Health Organization and national government agencies in some developing countries sponsored the installation of twenty photovoltaic powered medical vaccine storage refrigerator-freezer (R/F) systems. The Solar Power Corporation was selected as the contractor to perform the design, development and installation of these twenty units. Solar Power's experiences are described herein.

  13. Bioenergy and Biodiversity: Key Lessons from the Pan American Region.

    PubMed

    Kline, Keith L; Martinelli, Fernanda Silva; Mayer, Audrey L; Medeiros, Rodrigo; Oliveira, Camila Ortolan F; Sparovek, Gerd; Walter, Arnaldo; Venier, Lisa A

    2015-12-01

    Understanding how large-scale bioenergy production can affect biodiversity and ecosystems is important if society is to meet current and future sustainable development goals. A variety of bioenergy production systems have been established within different contexts throughout the Pan American region, with wide-ranging results in terms of documented and projected effects on biodiversity and ecosystems. The Pan American region is home to the majority of commercial bioenergy production and therefore the region offers a broad set of experiences and insights on both conflicts and opportunities for biodiversity and bioenergy. This paper synthesizes lessons learned focusing on experiences in Canada, the United States, and Brazil regarding the conflicts that can arise between bioenergy production and ecological conservation, and benefits that can be derived when bioenergy policies promote planning and more sustainable land-management systems. We propose a research agenda to address priority information gaps that are relevant to biodiversity concerns and related policy challenges in the Pan American region.

  14. Bioenergy and Biodiversity: Key Lessons from the Pan American Region

    NASA Astrophysics Data System (ADS)

    Kline, Keith L.; Martinelli, Fernanda Silva; Mayer, Audrey L.; Medeiros, Rodrigo; Oliveira, Camila Ortolan F.; Sparovek, Gerd; Walter, Arnaldo; Venier, Lisa A.

    2015-12-01

    Understanding how large-scale bioenergy production can affect biodiversity and ecosystems is important if society is to meet current and future sustainable development goals. A variety of bioenergy production systems have been established within different contexts throughout the Pan American region, with wide-ranging results in terms of documented and projected effects on biodiversity and ecosystems. The Pan American region is home to the majority of commercial bioenergy production and therefore the region offers a broad set of experiences and insights on both conflicts and opportunities for biodiversity and bioenergy. This paper synthesizes lessons learned focusing on experiences in Canada, the United States, and Brazil regarding the conflicts that can arise between bioenergy production and ecological conservation, and benefits that can be derived when bioenergy policies promote planning and more sustainable land-management systems. We propose a research agenda to address priority information gaps that are relevant to biodiversity concerns and related policy challenges in the Pan American region.

  15. Creating dedicated bioenergy crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioenergy is one of the current mechanisms of producing renewable energy to reduce our use of nonrenewable fossil fuels and to reduce carbon emissions into the atmosphere. Humans have been using bioenergy since we first learned to create and control fire - burning manure, peat, and wood to cook food...

  16. Preface: Biocatalysis and Bioenergy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This book was assembled with the intent of bringing together current advances and in-depth review of biocatalysis and bioenergy with emphasis on biodiesel, bioethanol, biohydrogen and industrial products. Biocatalysis and bioenergy defined in this book include enzyme catalysis, biotransformation, b...

  17. 40 CFR 60.1720 - What continuous emission monitoring systems must I install for gaseous pollutants?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., maintain, and operate continuous emission monitoring systems for oxygen (or carbon dioxide), sulfur dioxide... emission monitoring systems for sulfur dioxide, nitrogen oxides, and oxygen (or carbon dioxide) at the... also install continuous emission monitoring systems for sulfur dioxide and oxygen (or carbon...

  18. 40 CFR 60.1720 - What continuous emission monitoring systems must I install for gaseous pollutants?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., maintain, and operate continuous emission monitoring systems for oxygen (or carbon dioxide), sulfur dioxide... emission monitoring systems for sulfur dioxide, nitrogen oxides, and oxygen (or carbon dioxide) at the... also install continuous emission monitoring systems for sulfur dioxide and oxygen (or carbon...

  19. Solar heating and domestic hot water system installed at North Dallas High School

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The solar energy system located at the North Dallas High School, Dallas, Texas is discussed. The system is designed as a retrofit in a three story with basement, concrete frame high school building. Extracts from the site files, specification references for solar modification to existing building heating and domestic hot water systems, drawings, installation, operation and maintenance instructions are included.

  20. 40 CFR 281.30 - New UST system design, construction, installation, and notification.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... than 25 gallons at one time. (c) All UST system owners and operators must notify the implementing state... 40 Protection of Environment 28 2013-07-01 2013-07-01 false New UST system design, construction...-Stringent § 281.30 New UST system design, construction, installation, and notification. In order to...

  1. 40 CFR 281.30 - New UST system design, construction, installation, and notification.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... than 25 gallons at one time. (c) All UST system owners and operators must notify the implementing state... 40 Protection of Environment 28 2012-07-01 2012-07-01 false New UST system design, construction...-Stringent § 281.30 New UST system design, construction, installation, and notification. In order to...

  2. Installing a HDPE vertical containment and collection system in one pass utilizing a deep trencher

    SciTech Connect

    Bocchino, W.M.; Burson, B.

    1997-12-31

    A unique method has been developed to install high density polyethylene (HDPE) vertical containment panels and a horizontal collection system for the containment and collection of contaminated groundwater. Unlike other means of creating this type of system, this barrier wall and collection system is installed in one step and in one narrow trench, utilizing a one-pass deep trencher. Originally HDPE vertical barriers were installed using conventional slurry trenching techniques. Use of this method raised questions of trench stability and disposal costs for the trench spoils. In addition, if a collection system was desired, a separate trench or vertical wells were required. In response to these concerns, a trenchless vibratory installation method was developed. Although this method addressed the concerns of trench stability and disposal costs, it raised a whole new set of concerns dealing with drivable soil conditions, buried debris and obstructions. Again, if a collection system was desired, a separate trench or vertical wells had to be installed. The latest development, the one-pass, deep trencher, has eliminated or significantly reduced the previously discussed construction concerns. The trencher methods reduce the amount of spoils generated because a trench width of 61 cm (24 inches) is constantly maintained by the machine. Additionally, soil classification and density are not as critical as with a vibratory installation. This is due to the trencher`s ability to trench in all but the hardest of materials (blow counts exceeding 35 blows/ft). Finally, the cost to add a collection system adjacent to the cutoff wall is substantially reduced and is limited only to the cost of the additional hydraulic fill and 4 inches HDPE collection piping. The trench itself is already constructed with the installation of the wall.

  3. Solar heating and cooling system installed at Leavenworth, Kansas

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A solar heating and cooling is described which is designed to furnish 90 percent of the overall heating load, 70 percent of the cooling load and 100 percent of the domestic hot water load. The building has two floors with a total of 12,000 square feet gross area. The system has 120 flat-plate liquid solar panels with a net area of 2,200 square feet. Five 3 ton Arkla solar assisted absorption units provide the cooling, in conjunction with a 3,000 gallon chilled water storage tank. Two 3,000 gallon storage tanks are provided with one designated for summer use, whereas both tanks are utilized during winter.

  4. Solar heating and cooling system installed at Leavenworth, Kansas

    NASA Astrophysics Data System (ADS)

    1980-06-01

    A solar heating and cooling is described which is designed to furnish 90 percent of the overall heating load, 70 percent of the cooling load and 100 percent of the domestic hot water load. The building has two floors with a total of 12,000 square feet gross area. The system has 120 flat-plate liquid solar panels with a net area of 2,200 square feet. Five 3 ton Arkla solar assisted absorption units provide the cooling, in conjunction with a 3,000 gallon chilled water storage tank. Two 3,000 gallon storage tanks are provided with one designated for summer use, whereas both tanks are utilized during winter.

  5. Installation and commissioning of a cryogen distribution system for the TPS project

    NASA Astrophysics Data System (ADS)

    Tsai, H. H.; Hsiao, F. Z.; Li, H. C.; Lin, M. C.; Wang, C.; Liao, W. R.; Lin, T. F.; Chiou, W. S.; Chang, S. H.; Chuang, P. S. D.

    2016-07-01

    A cryogen distribution system was installed and commissioned to transfer liquid nitrogen (LN2) and liquid helium (LHe) from storage dewars to superconducting radio-frequency (SRF) cavities for the 3-GeV Taiwan Photon Source (TPS) project. The cryogen distribution system comprises one distribution valve box (DVB), four control valve boxes (CVB) and seven sections of multichannel transfer line (MCL). The DVB distributes the LHe and LN2 to the CVB, and then to the SRF cavities through independent vacuum-jacketed transfer lines. The vaporized GHe and GN2 from the cryomodules are collected via the MCL. The cryogen distribution system was installed and commissioned from October 2014 to the end of March 2015. This paper presents the installation, pre-commissioning and commissioning of the cryogen distribution system, and describes the heat load test. Thermal acoustic oscillation (TAO) was found in the GHe process line; this phenomenon and its solution are also presented and discussed.

  6. An efficient optical fiber cable installation system using self-controlling cable pullers

    NASA Astrophysics Data System (ADS)

    Watanabe, Takanobu; Mitsuke, Hitoshi; Enami, Makoto

    1986-11-01

    In this paper, an efficient cable installation system using self-controlling cable pullers is discussed. This system is based on a computer simulation carried out to identify the cable installation system most cost efficient for conduits. These simulation results indicate that a distributed cable pulling system with a pulling force of 200 kgf can reduce cable line construction (installation and jointing) costs below that of one-end cable pulling systems. Up until now, an optical fiber cable puller with a pulling force of 200 kgf has been employed in NTT's distributed cable pulling system. Now, a self-controlling puller is being developed to improve this present puller operation. This newly developed puller can control its own pulling force and speed as well as automatically adjust the clearance between its two rubber caterpillars which arises from differences in rope or cable diameters. Its additional features of smaller size and lighter weight make it possible to set up the puller in manholes more easily. Consequently, the distributed cable pulling system employing newly developed self-controlling pullers at present appears to be the most efficient system for installing optical fiber cables in conduits.

  7. Increasing reliability of system water heaters for steam-turbine installations at the design stage

    NASA Astrophysics Data System (ADS)

    Brezgin, V. I.; Brodov, Yu. M.; Brezgin, D. V.

    2015-12-01

    A system for designing water heaters of steam-turbine installations based on uniting standards, reference information, and some numerical procedures with design procedures via wide use of parameterization is considered. The developed design system is based on extensive application of modern information technologies.

  8. Crime Prevention in Schools: Specification, Installation, and Maintenance of Intruder Alarm Systems. Building Bulletin 69.

    ERIC Educational Resources Information Center

    Haworth-Roberts, A., Ed.

    Greater use of expensive equipment by schools has also increased the potential for vandalism and theft, giving an increased role to intruder alarm systems. This document provides guidance on the management and technical aspects of forming policies for installing and operating intruder alarm systems in educational buildings. Also provided are…

  9. 40 CFR 62.15175 - What continuous emission monitoring systems must I install for gaseous pollutants?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., maintain, and operate a continuous emission monitoring system for nitrogen oxides. Install the continuous emission monitoring system for sulfur dioxide, nitrogen oxides, and oxygen (or carbon dioxide) at the... monitor nitrogen oxides. (d) You may choose to monitor carbon dioxide instead of oxygen as a diluent...

  10. Design, installation, and monitorig of a water-preheat system for coin laundries

    SciTech Connect

    Cloud, N. E.

    1983-01-01

    This project involved the design, installation, and monitoring of a water-preheat system for coin laundries. The system has two components. One component is solar, the other is waste heat reclamation from the clothes dryer exhaust. The energy savings achieved amount to roughly 50% of the total water heating load for a typical coin laundry.

  11. 40 CFR 62.15175 - What continuous emission monitoring systems must I install for gaseous pollutants?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., maintain, and operate a continuous emission monitoring system for nitrogen oxides. Install the continuous emission monitoring system for sulfur dioxide, nitrogen oxides, and oxygen (or carbon dioxide) at the... monitor nitrogen oxides. (d) You may choose to monitor carbon dioxide instead of oxygen as a diluent...

  12. 40 CFR 60.1230 - What continuous emission monitoring systems must I install for gaseous pollutants?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... emission monitoring system for nitrogen oxides. Install the continuous emission monitoring systems for sulfur dioxide, nitrogen oxides, and oxygen (or carbon dioxide) at the outlet of the air pollution...) concentration at the location where you monitor nitrogen oxides. (d) You may choose to monitor carbon...

  13. 40 CFR 60.1720 - What continuous emission monitoring systems must I install for gaseous pollutants?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., maintain, and operate a continuous emission monitoring system for nitrogen oxides. Install the continuous emission monitoring systems for sulfur dioxide, nitrogen oxides, and oxygen (or carbon dioxide) at the... oxygen (or carbon dioxide) concentration at the location where you monitor nitrogen oxides. (d) You...

  14. 40 CFR 62.15175 - What continuous emission monitoring systems must I install for gaseous pollutants?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., maintain, and operate a continuous emission monitoring system for nitrogen oxides. Install the continuous emission monitoring system for sulfur dioxide, nitrogen oxides, and oxygen (or carbon dioxide) at the... monitor nitrogen oxides. (d) You may choose to monitor carbon dioxide instead of oxygen as a diluent...

  15. 40 CFR 60.1230 - What continuous emission monitoring systems must I install for gaseous pollutants?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... emission monitoring system for nitrogen oxides. Install the continuous emission monitoring systems for sulfur dioxide, nitrogen oxides, and oxygen (or carbon dioxide) at the outlet of the air pollution...) concentration at the location where you monitor nitrogen oxides. (d) You may choose to monitor carbon...

  16. Sustainable agriculture, renewable energy and rural development: An analysis of bio-energy systems used by small farms in China

    NASA Astrophysics Data System (ADS)

    Zhou, Aiming

    Renewable energy needs to be incorporated into the larger picture of sustainable agriculture and rural development if it is to serve the needs of the 3.25 billion human beings whose livelihoods and based on rural economies and ecologies. For rural communities, increasing agriculture production is key to raising income generation and improving social well-being, but this linkage depends also upon not harming natural resources. This dissertation provides an overview of recent Chinese agriculture history, discusses the role of energy in contemporary's China's agriculture and rural development, and introduces a new approach---the integrated agricultural bio-energy (IAB) system---to address the challenge of sustainable agriculture and rural development. IAB is an innovative design and offers a renewable energy solution for improving agricultural productivity, realizing efficient resource management, and enhancing social well-being for rural development. In order to understand how the IAB system can help to achieve sustainable agricultural and rural development in China, a comprehensive evaluation methodology is developed from health, ecological, energy and economic (HE3) perspectives. With data from surveys of 200 small farm households, a detailed study of IAB and conventional agricultural energy (CAE) system applications (in China's Liaoning and Yunnan Province) is conducted. The HE3 impacts of IAB systems in China's rural areas (compared to existing CAE systems) are quantified. The dissertation analyzes the full life-cycle costs and benefits of IAB systems, including their contributions to energy savings, CO2 emissions reduction, agricultural waste reduction, increased rural incomes, better rural health, and improved ecosystem sustainability. The analysis relies upon qualitative and quantitative modeling in order to produce a comprehensive assessment of IAB system impacts. Finally, the dissertation discusses the barriers to greater diffusion of the IAB systems

  17. Sustainability Impact Assessment of two forest-based bioenergy production systems related to mitigation and adaption to Climate Change

    NASA Astrophysics Data System (ADS)

    Gartzia-Bengoetxea, Nahia; Arias-González, Ander; Tuomasjukka, Diana

    2016-04-01

    New forest management strategies are necessary to resist and adapt to Climate Change (CC) and to maintain ecosystem functions such as forest productivity, water storage and biomass production. The increased use of forest-based biomass for energy generation as well as the application of combustion or pyrolysis co-products such as ash or biochar back into forest soils is being suggested as a CC mitigation and adaptation strategy while trying to fulfil the targets of both: (i) Europe 2020 growth strategy in relation to CC and energy sustainability and (ii) EU Action Plan for the Circular Economy. The energy stored in harvested biomass can be released through combustion and used for energy generation to enable national energy security (reduced oil dependence) and the substitution of fossil fuel by renewable biomass can decrease the emission of greenhouse gases.In the end, the wood-ash produced in the process can return to the forest soil to replace the nutrients exported by harvesting. Another way to use biomass in this green circular framework is to pyrolyse it. Pyrolysis of the biomass produce a carbon-rich product (biochar) that can increase carbon sequestration in the soils and liquid and gas co-products of biomass pyrolysis can be used for energy generation or other fuel use thereby offsetting fossil fuel consumption and so avoiding greenhouse gas emissions. Both biomass based energy systems differ in the amount of energy produced, in the co-product (biochar or wood ash) returned to the field, and in societal impacts they have. The Tool for Sustainability Impact Assessment (ToSIA) was used for modelling both energy production systems. ToSIA integrates several different methods, and allows a quantification and objective comparison of economic, environmental and social impacts in a sustainability impact assessment for different decision alternatives/scenarios. We will interpret the results in order to support the bioenergy planning in temperate forests under the

  18. The Endurance Bioenergy Reactor

    SciTech Connect

    Laible, Philip

    2012-01-01

    Argonne biophysicist Dr. Philip Laible and Air Force Major Matt Michaud talks about he endurance bioenergy reactor—a device that contains bacteria that can convert energy from the sun into fuel molecules.

  19. Systems analysis of the installation, mounting, and activation of emergency locator transmitters in general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Hall, D. S.

    1980-01-01

    A development program was developed to design and improve the Emergency Locator Transmitter (ELT) transmitter and to improve the installation in the aircraft and its activation subsystem. There were 1135 general aviation fixed wing aircraft accident files reviewed. A detailed description of the damage to the aircraft was produced. The search aspects of these accidents were studied. As much information as possible about the ELT units in these cases was collected. The data should assist in establishing installation and mounting criteria, better design standards for activation subsystems, and requirements for the new ELT system design in the area of crashworthiness.

  20. 30 CFR 75.1101-7 - Installation of water sprinkler systems; requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...; requirements. 75.1101-7 Section 75.1101-7 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1101-7 Installation of water sprinkler systems; requirements. (a) The fire-control...

  1. 30 CFR 75.1101-7 - Installation of water sprinkler systems; requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...; requirements. 75.1101-7 Section 75.1101-7 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1101-7 Installation of water sprinkler systems; requirements. (a) The fire-control...

  2. 30 CFR 75.1101-7 - Installation of water sprinkler systems; requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...; requirements. 75.1101-7 Section 75.1101-7 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1101-7 Installation of water sprinkler systems; requirements. (a) The fire-control...

  3. 30 CFR 75.1101-7 - Installation of water sprinkler systems; requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...; requirements. 75.1101-7 Section 75.1101-7 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1101-7 Installation of water sprinkler systems; requirements. (a) The fire-control...

  4. 30 CFR 75.1101-7 - Installation of water sprinkler systems; requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...; requirements. 75.1101-7 Section 75.1101-7 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1101-7 Installation of water sprinkler systems; requirements. (a) The fire-control...

  5. Solar heating and cooling of residential buildings: sizing, installation and operation of systems. 1980 edition

    SciTech Connect

    1980-09-01

    This manual was prepared as a text for a training course on solar heating and cooling of residential buildings. The course and text are directed toward sizing, installation, operation, and maintenance of solar systems for space heating and hot water supply, and solar cooling is treated only briefly. (MHR)

  6. 14 CFR Appendix D to Part 417 - Flight Termination Systems, Components, Installation, and Monitoring

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Flight Termination Systems, Components, Installation, and Monitoring D Appendix D to Part 417 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Pt. 417, App. D Appendix D to Part 417—Flight...

  7. 14 CFR Appendix D to Part 417 - Flight Termination Systems, Components, Installation, and Monitoring

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Flight Termination Systems, Components, Installation, and Monitoring D Appendix D to Part 417 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Pt. 417, App. D Appendix D to Part 417—Flight...

  8. 14 CFR Appendix D to Part 417 - Flight Termination Systems, Components, Installation, and Monitoring

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Flight Termination Systems, Components, Installation, and Monitoring D Appendix D to Part 417 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Pt. 417, App. D Appendix D to Part 417—Flight...

  9. 30 CFR 75.1103-4 - Automatic fire sensor and warning device systems; installation; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Automatic fire sensor and warning device...-UNDERGROUND COAL MINES Fire Protection § 75.1103-4 Automatic fire sensor and warning device systems; installation; minimum requirements. (a) Effective December 31, 2009, automatic fire sensor and warning...

  10. Environmental Control System Installer/Servicer (Residential Air Conditioning Mechanic). V-TECS Guide.

    ERIC Educational Resources Information Center

    Meyer, Calvin F.; Benson, Robert T.

    This guide provides job relevant tasks, performance objectives, performance guides, resources, learning activitites, evaluation standards, and achievement testing in the occupation of environmental control system installer/servicer (residential air conditioning mechanic). It is designed to be used with any chosen teaching method. The course…

  11. 40 CFR 60.1720 - What continuous emission monitoring systems must I install for gaseous pollutants?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false What continuous emission monitoring systems must I install for gaseous pollutants? 60.1720 Section 60.1720 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emission Guidelines and...

  12. 40 CFR 60.1230 - What continuous emission monitoring systems must I install for gaseous pollutants?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false What continuous emission monitoring systems must I install for gaseous pollutants? 60.1230 Section 60.1230 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for...

  13. Training Community College faculty in the techniques and skills required for Solar Energy System installation

    SciTech Connect

    Leo, R.J.

    1980-05-01

    A project to train a specified number of community college, vocational/technical faculty in the techniques and skills required to install solar energy systems is described. The planning that led to the contract, the development and conduct of the training workshops, and the outcomes are detailed. An overall evaluation of the project and recommendations for the future are included. (MHR)

  14. Solar heating and hot water system installed at Cherry Hill, New Jersey

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The solar heating and hot water system installed in existing buildings at the Cherry Hill Inn in Cherry Hill, New Jersey is described in detail. The system is expected to furnish 31.5% of the overall heating load and 29.8% of the hot water load. The collectors are liquid evacuated tube type. The storage system is an above ground insulated steel water tank with a capacity of 7,500 gallons.

  15. Demonstration of a utility industry horizontal drilling system: Horizontal well AMH-5 installation report

    SciTech Connect

    Not Available

    1992-12-31

    The Department of Energy`s Office of Technology Development initiated an integrated demonstration of innovative technologies and systems for cleanup of VOCs in soils and groundwater at the Savannah River Site (SRS) in 1989. The overall goal of the program is demonstration of multiple technologies and systems in the fields of drilling, characterization, monitoring, and remediation at a single test bed. Innovative technologies are compared to one another and to baseline technologies in terms of technical performance and cost effectiveness. Transfer of successfully demonstrated technologies and systems to DOE environmental restoration organizations, to other government agencies, and to industry is a critical part of the program. Directional drilling has been shown to be a successful technique for enhancing access to the subsurface, thus improving remediation systems, especially remediation systems which perform in situ. Demonstration of an innovative directional drilling system at the Integrated Demonstration Site at the SRS, was initiated in June of 1992. The directional drilling system was designed to install an in situ remediation system. The drilling system is an experimental compaction/dry drilling technique developed by Charles Machine Works (Ditch Witch{reg_sign}) of Perry, Oklahoma. A horizontal well was installed in the M Area of the SRS below and parallel to an abandoned tile process sewer line. The installation of the horizontal well was a two-part process. Part one consisted of drilling the borehole, and part two was the horizontal well completion.

  16. Standard Engineering Installation Package. Ground control approach radar systems and radome(S)

    NASA Astrophysics Data System (ADS)

    1983-01-01

    This standard engineering installation package (SEIP) is one in a series for upgrading air traffic control and navigational and landing aids at Army airfields and heliports worldwide. It provides the guidance involved in selecting, acquiring, and installing ground control approach radar systems. It gives a system description along with the technical aspects of the equipment and installation areas. It contains a list of applicable documents, describes a comprehensive checklist for site surveys, tells how to install equipment, the manpower required to do it and gives a bill of materials to accomplish it all. The SEIP describes quality assurance inspections and gives sample forms to ascertain areas of responsibility, checklists, and certification. One section gives a detailed test plan and checkout procedure while the system is in operation and suggests the form for a technical acceptance certificate. The SEIP also contains sample coordination documents of all agencies involved in the upgrading process and a completion certification that the project was met all of the test criteria.

  17. Handbook of experiences in the design and installation of solar heating and cooling systems

    SciTech Connect

    Ward, D.S.; Oberoi, H.S.

    1980-07-01

    A large array of problems encountered are detailed, including design errors, installation mistakes, cases of inadequate durability of materials and unacceptable reliability of components, and wide variations in the performance and operation of different solar systems. Durability, reliability, and design problems are reviewed for solar collector subsystems, heat transfer fluids, thermal storage, passive solar components, piping/ducting, and reliability/operational problems. The following performance topics are covered: criteria for design and performance analysis, domestic hot water systems, passive space heating systems, active space heating systems, space cooling systems, analysis of systems performance, and performance evaluations. (MHR)

  18. Bio-polymer slurry trench method for installation of in-situ air sparging system

    SciTech Connect

    Linneman, D.M.

    1996-08-01

    An investigation was conducted at a site in Greenville Country, South Carolina which detected contaminants in the groundwater. It was then decided that remedial action was required. The contaminants and their location in the groundwater led to the selection of an in-situ air sparging system to be installed at approximately thirty-four feet deep. Due to design depth requirements and other site conditions, the bio-polymer slurry trench (B-P drain) Method was utilized in the air sparging system installation. The two trenches were installed using a biodegradable slurry in lieu of the bentonite slurry commonly utilized in the more traditional slurry trench technique. The slurry temporarily supported the trench walls while the air sparging components were submerged and set at the proper elevations Once backfilled with stone, the slurry in both trenches was broken by introducing a breaker solution which reduced the slurry to sugar water. The trenching, air sparging piping installation, and backfilling operations were completed in about six weeks.

  19. Characterization of the bacterial metagenome in an industrial algae bioenergy production system

    SciTech Connect

    Huang, Shi; Fulbright, Scott P; Zeng, Xiaowei; Yates, Tracy; Wardle, Greg; Chisholm, Stephen T; Xu, Jian; Lammers, Peter

    2011-03-16

    Cultivation of oleaginous microalgae for fuel generally requires growth of the intended species to the maximum extent supported by available light. The presence of undesired competitors, pathogens and grazers in cultivation systems will create competition for nitrate, phosphate, sulfate, iron and other micronutrients in the growth medium and potentially decrease microalgal triglyceride production by limiting microalgal health or cell density. Pathogenic bacteria may also directly impact the metabolism or survival of individual microalgal cells. Conversely, symbiotic bacteria that enhance microalgal growth may also be present in the system. Finally, the use of agricultural and municipal wastes as nutrient inputs for microalgal production systems may lead to the introduction and proliferation of human pathogens or interfere with the growth of bacteria with beneficial effects on system performance. These considerations underscore the need to understand bacterial community dynamics in microalgal production systems in order to assess microbiome effects on microalgal productivity and pathogen risks. Here we focus on the bacterial component of microalgal production systems and describe a pipeline for metagenomic characterization of bacterial diversity in industrial cultures of an oleaginous alga, Nannochloropsis salina. Environmental DNA was isolated from 12 marine algal cultures grown at Solix Biofuels, a region of the 16S rRNA gene was amplified by PCR, and 16S amplicons were sequenced using a 454 automated pyrosequencer. The approximately 70,000 sequences that passed quality control clustered into 53,950 unique sequences. The majority of sequences belonged to thirteen phyla. At the genus level, sequences from all samples represented 169 different genera. About 52.94% of all sequences could not be identified at the genus level and were classified at the next highest possible resolution level. Of all sequences, 79.92% corresponded to 169 genera and 70 other taxa. We

  20. Solar heating and hot water system installed at James Hurst Elementary School, Portsmouth, Virginia

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Solar heating and a hot water system installed in an elementary school in Portsmouth, Virginia are examined. The building is zoned into four heating/cooling areas. Each area is equipped with an air handling unit that is monitored and controlled by central control and monitoring system. The solar system for the building uses a collector area of 3,630 sq. ft. of flat plate liquid collectors, and a 6,000 gallon storage tank. System descriptions, maintenance reports, detailed component specifications, and design drawings to evaluate this solar system are reported.

  1. The OMEGA system for marine bioenergy, wastewater treatment, environmental enhancement, and aquaculture

    NASA Astrophysics Data System (ADS)

    Trent, J. D.

    2013-12-01

    OMEGA is an acronym for Offshore Membrane Enclosure for Growing Algae. The OMEGA system consists of photobioreactors (PBRs) made of flexible, inexpensive clear plastic tubes attached to floating docks, anchored offshore in naturally or artificially protected bays [1]. The system uses domestic wastewater and CO2 from coastal facilities to provide water, nutrients, and carbon for algae cultivation [2]. The surrounding seawater maintains the temperature inside the PBRs and prevents the cultivated (freshwater) algae from becoming invasive species in the marine environment (i.e., if a PBR module accidentally leaks, the freshwater algae that grow in wastewater cannot survive in the marine environment). The salt gradient between seawater and wastewater is used for forward osmosis (FO) to concentrate nutrients and facilitate algae harvesting [3]. Both the algae and FO clean the wastewater, removing nutrients as well as pharmaceuticals and personal-care products [4]. The offshore infrastructure provides a large surface area for solar-photovoltaic arrays and access to offshore wind or wave generators. The infrastructure can also support shellfish, finfish, or seaweed aquaculture. The economics of the OMEGA system are supported by a combination of biofuels production, wastewater treatment, alternative energy generation, and aquaculture. By using wastewater and operating offshore from coastal cities, OMEGA can be located close to wastewater and CO2 sources and it can avoid competing with agriculture for water, fertilizer, and land [5]. By combining biofuels production with wastewater treatment and aquaculture, the OMEGA system provides both products and services, which increase its economic feasibility. While the offshore location has engineering challenges and concerns about the impact and control of biofouling [6], large OMEGA structure will be floating marine habitats and will create protected 'no-fishing' zones that could increase local biodiversity and fishery

  2. Solar heating and hot water system installed at Shoney's Restaurant, North Little Rock, Arkansas. Final report

    SciTech Connect

    1980-08-01

    The solar heating system is designed to supply a major portion of the space and water heating requirements for a newly built Shoney's Big Boy Restaurant which was installed with completion occurring in December 1979. The restaurant has a floor space of approximately 4,650 square feet and requires approximately 1500 gallons of hot water daily. The solar energy system consists of 1,428 square feet of Chamberlain flat plate liquid collector subsystem, and a 1500 gallon storage subsystem circulating hot water producing 321 x 10/sup 6/ Btu/yr (specified) building heating and hot water heating. Designer - Energy Solutions, Incorporated. Contractor - Stephens Brothers, Incorporated. This report includes extracts from site files, specification references for solar modifications to existing building heating and hot water systems, drawings installation, operation and maintenance instructions.

  3. Installation of the first Distributed Energy Storage System (DESS) at American Electric Power (AEP).

    SciTech Connect

    Nourai, Ali

    2007-06-01

    AEP studied the direct and indirect benefits, strengths, and weaknesses of distributed energy storage systems (DESS) and chose to transform its entire utility grid into a system that achieves optimal integration of both central and distributed energy assets. To that end, AEP installed the first NAS battery-based, energy storage system in North America. After one year of operation and testing, AEP has concluded that, although the initial costs of DESS are greater than conventional power solutions, the net benefits justify the AEP decision to create a grid of DESS with intelligent monitoring, communications, and control, in order to enable the utility grid of the future. This report details the site selection, construction, benefits and lessons learned of the first installation, at Chemical Station in North Charleston, WV.

  4. Bioenergy as a Mitigation Measure

    NASA Astrophysics Data System (ADS)

    Dass, P.; Brovkin, V.; Müller, C.; Cramer, W.

    2011-12-01

    Numerous studies have shown that bioenergy, being one of the renewable energies with the lowest costs, is expected to play an important role in the near future as climate change mitigation measure. Current practices of converting crop products such as carbohydrates or plant oils to ethanol or biodiesel have limited capabilities to curb emission. Moreover, they compete with food production for the most fertile lands. Thus, second generation bioenergy technologies are being developed to process lignocellulosic plant materials from fast growing tree and grass species. A number of deforestation experiments using Earth System models have shown that in the mid- to high latitudes, deforested surface albedo strongly increases in presence of snow. This biophysical effect causes cooling, which could dominate over the biogeochemical warming effect because of the carbon emissions due to deforestation. In order to find out the global bioenergy potential of extensive plantations in the mid- to high latitudes, and the resultant savings in carbon emissions, we use the dynamic global vegetation model LPJmL run at a high spatial resolution of 0.5°. It represents both natural and managed ecosystems, including the cultivation of cellulosic energy crops. LPJmL is run with 21st century projections of climate and atmospheric CO2 concentration based on the IPCC-SRES business as usual or A2 scenario. Latitudes above 45° in both hemispheres are deforested and planted with crops having the highest bioenergy return for the respective pixels of the model. The rest of the Earth has natural vegetation. The agricultural management intensity values are used such that it results in the best approximation for 1999 - 2003 national yields of wheat and maize as reported by FAOSTAT 2009. Four different scenarios of land management are used ranging from an idealistic or best case scenario, where all limitations of soil and terrain properties are managed to the worst case scenario where none of these

  5. Measurement-Based Evaluation of Installed Filtration System Performance in Single-Family Homes

    SciTech Connect

    Chan, Wanyu Rengie; Singer, Brett C.

    2014-04-03

    This guide discusses important study design issues to consider when conducting an on-site evaluation of filtration system performance. The two most important dichotomies to consider in developing a study protocol are (1) whether systems are being evaluated in occupied or unoccupied homes and (2) whether different systems are being compared in the same homes or if the comparison is between systems installed in different homes. This document provides perspective and recommendations about a suite of implementation issues including the choice of particle measurement devices, selection of sampling locations, ways to control and/or monitor factors and processes that can impact particle concentrations, and data analysis approaches.

  6. Phosphorus removal coupled to bioenergy production by three cyanobacterial isolates in a biofilm dynamic growth system.

    PubMed

    Gismondi, Alessandra; Pippo, Francesca Di; Bruno, Laura; Antonaroli, Simonetta; Congestri, Roberta

    2016-09-01

    In the present study a closed incubator, designed for biofilm growth on artificial substrata, was used to grow three isolates of biofilm-forming heterocytous cyanobacteria using an artificial wastewater secondary effluent as the culture medium. We evaluated biofilm efficiency in removing phosphorus, by simulating biofilm-based tertiary wastewater treatment and coupled this process with biodiesel production from the developed biomass. The three strains were able to grow in the synthetic medium and remove phosphorus in percentages, between 6 and 43%, which varied between strains and also among each strain according to the biofilm growth phase. Calothrix sp. biofilm turned out to be a good candidate for tertiary treatment, showing phosphorus reducing capacity (during the exponential biofilm growth) at the regulatory level for the treated effluent water being discharged into natural water systems. Besides phosphorus removal, the three cyanobacterial biofilms produced high quality lipids, whose profile showed promising chemical stability and combustion behavior. Further integration of the proposed processes could include the integration of oil extracted from these cyanobacterial biofilms with microalgal oil known for high monounsaturated fatty acids content, in order to enhance biodiesel cold flow characteristics.

  7. Phosphorus removal coupled to bioenergy production by three cyanobacterial isolates in a biofilm dynamic growth system.

    PubMed

    Gismondi, Alessandra; Pippo, Francesca Di; Bruno, Laura; Antonaroli, Simonetta; Congestri, Roberta

    2016-09-01

    In the present study a closed incubator, designed for biofilm growth on artificial substrata, was used to grow three isolates of biofilm-forming heterocytous cyanobacteria using an artificial wastewater secondary effluent as the culture medium. We evaluated biofilm efficiency in removing phosphorus, by simulating biofilm-based tertiary wastewater treatment and coupled this process with biodiesel production from the developed biomass. The three strains were able to grow in the synthetic medium and remove phosphorus in percentages, between 6 and 43%, which varied between strains and also among each strain according to the biofilm growth phase. Calothrix sp. biofilm turned out to be a good candidate for tertiary treatment, showing phosphorus reducing capacity (during the exponential biofilm growth) at the regulatory level for the treated effluent water being discharged into natural water systems. Besides phosphorus removal, the three cyanobacterial biofilms produced high quality lipids, whose profile showed promising chemical stability and combustion behavior. Further integration of the proposed processes could include the integration of oil extracted from these cyanobacterial biofilms with microalgal oil known for high monounsaturated fatty acids content, in order to enhance biodiesel cold flow characteristics. PMID:26939844

  8. A Framework to Survey the Energy Efficiency of Installed Motor Systems

    SciTech Connect

    Rao, Prakash; Hasanbeigi, Ali; McKane, Aimee

    2013-08-01

    While motors are ubiquitous throughout the globe, there is insufficient data to properly assess their level of energy efficiency across regional boundaries. Furthermore, many of the existing data sets focus on motor efficiency and neglect the connected drive and system. Without a comprehensive survey of the installed motor system base, a baseline energy efficiency of a country or region’s motor systems cannot be developed. The lack of data impedes government agencies, utilities, manufacturers, distributers, and energy managers when identifying where to invest resources to capture potential energy savings, creating programs aimed at reducing electrical energy consumption, or quantifying the impacts of such programs. This paper will outline a data collection framework for use when conducting a survey under a variety of execution models to characterize motor system energy efficiency within a country or region. The framework is intended to standardize the data collected ensuring consistency across independently conducted surveys. Consistency allows for the surveys to be leveraged against each other enabling comparisons to motor system energy efficiencies from other regions. In creating the framework, an analysis of various motor driven systems, including compressed air, pumping, and fan systems, was conducted and relevant parameters characterizing the efficiency of these systems were identified. A database using the framework will enable policymakers and industry to better assess the improvement potential of their installed motor system base particularly with respect to other regions, assisting in efforts to promote improvements to the energy efficiency of motor driven systems.

  9. Evaluating industrial drying of cellulosic feedstock for bioenergy: a systems approach

    SciTech Connect

    Sokhansanj, Shahabaddine; Webb, Erin

    2016-01-01

    A large portion of herbaceous and woody biomass must be dried following harvest. Natural field drying is possible if the weather cooperates. Mechanical drying is a certain way of reducing the moisture content of biomass. This paper presents an engineering analysis applied to drying of 10 Mg h(-1) (exit mass flow) of biomass with an initial moisture content ranging from 25% to 70% (wet mass basis) down to 10% exit moisture content. The requirement for hog fuel to supply heat to the dryer increases from 0.5 dry Mg to 3.8 dry Mg h(-1) with the increased initial moisture of biomass. The capital cost for the entire drying system including equipment for biomass size reduction, pollution control, dryer, and biomass combustor sums up to more than $4.7 million. The operating cost (electricity, labor, repair, and maintenance) minus fuel cost for the dryer alone amount to 4.05 Mg-1 of dried biomass. For 50% moisture content biomass, the cost of fuel to heat the drying air is $7.41/ dry ton of biomass for a total $11.46 per dry ton at 10% moisture content. The fuel cost ranges from a low of $2.21 to a high of $18.54 for a biomass at an initial moisture content of 25% to 75%, respectively. This wide range in fuel cost indicates the extreme sensitivity of the drying cost to initial moisture content of biomass and to ambient air humidity and temperature and highlights the significance of field drying for a cost effective drying operation. (c) 2016 Society of Chemical Industry and John Wiley & Sons, Ltd

  10. Evaluating industrial drying of cellulosic feedstock for bioenergy: A systems approach

    DOE PAGESBeta

    Sokhansanj, Shahab; Webb, Erin

    2016-01-21

    Here, a large portion of herbaceous and woody biomass must be dried following harvest. Natural field drying is possible if the weather cooperates. Mechanical drying is a certain way of reducing the moisture content of biomass. This paper presents an engineering analysis applied to drying of 10 Mg h–1 (exit mass flow) of biomass with an initial moisture content ranging from 25% to 70% (wet mass basis) down to 10% exit moisture content. The requirement for hog fuel to supply heat to the dryer increases from 0.5 dry Mg to 3.8 dry Mg h–1 with the increased initial moisture ofmore » biomass. The capital cost for the entire drying system including equipment for biomass size reduction, pollution control, dryer, and biomass combustor sums up to more than 4.7 million dollars. The operating cost (electricity, labor, repair, and maintenance) minus fuel cost for the dryer alone amount to 4.05 Mg–1 of dried biomass. For 50% moisture content biomass, the cost of fuel to heat the drying air is 7.41 dollars/ dry ton of biomass for a total 11.46 dollars per dry ton at 10% moisture content. The fuel cost ranges from a low of 2.21 dollars to a high of 18.54 dollars for a biomass at an initial moisture content of 25% to 75%, respectively. This wide range in fuel cost indicates the extreme sensitivity of the drying cost to initial moisture content of biomass and to ambient air humidity and temperature and highlights the significance of field drying for a cost effective drying operation.« less

  11. 47 CFR 68.213 - Installation of other than “fully protected” non-system simple customer premises wiring.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... TELEPHONE NETWORK Terminal Equipment Approval Procedures § 68.213 Installation of other than “fully... residential and business telephone service. More complex installations of wiring for multiple line services, for use with systems such as PBX and key telephone systems, are controlled by § 68.215 of these...

  12. Bioenergy systems report: The AID (Agency for International Development) approach. Using agricultural and forestry wastes for the production of energy in support of rural development

    SciTech Connect

    Not Available

    1989-04-01

    The Biomass Energy Systems and Technology project (BEST) seeks to integrate natural resources, private sector expertise, and financial support in order to convert biomass into marketable energy products at existing agro-processing facilities. This report documents BEST's approach to biomass promotion and includes sections on: the rationale for the project's commodity focus (sugar cane, rice, and wood); the relevant U.S. biomass experience with rice, cane, and wood residues, etc., which BEST draws upon; A.I.D.'s experience in the field application of rice, wood, and cane residue bioenergy systems; economic analyses of biomass systems (using examples from Indonesia and Costa Rica); research initiatives to develop off-season fuels for sugar mills, advanced biomass conversion systems, and energy efficiency in sugar factories; and the environmental aspects of biomass (including its ability to be used without increasing global warming).

  13. Analysis of Bioenergy Residues (biochar and digestate) to Study the Fate of Pesticides for Biopurification Systems

    NASA Astrophysics Data System (ADS)

    Mukherjee, S.

    2015-12-01

    To overcome the problem of on farm point sources of pollution, environmental friendly and low cost technology filter systems are under development. Processes like sorption-desorption, dissipation behavior of three radiolabeled pesticides (Bentazone, Boscalid and Pyrimethanil) has been investigated at lab scale. Biochar and digestate mixtures with two types of soil (sandy and silt loam) had been used as a biofilter test material for a respiration study (over three month's time period) instead of conventional soil, peat and straw mixtures. The results show that digestate is an easily available C-source leading to highest release of CO2-C. It was found that with the addition of even a small amount (1 % W/W) of biochar there is a profound suppression in the CO2-C release.The driving mechanism for this suppression can be manifold like negative priming, chemisorption of CO2-C on biochar or combinations of all. Further, the fate of applied organic contaminants to biomixtures depends on factors like soil properties as well as biological degradation by soil microbes. To analyze the degradation potential of the different soil/amendment mixtures on pesticides a degradation study was performed. The results from the 14C labelled pesticides study indicated that a mixture of digestate (5%) and biochar (5%) well balanced the mineralization (~20% for bentazone, ~6% for boscalid and ~2% for pyrimethanil) and sorption process (>85% non-extractable residues for all pesticides) resulting in favorable dissipation process. To investigate the sorption-desorption potential of the above pesticides a batch equilibrium study was carried out with selected biomixtures. A higher Kd (>1500 L kg-1), kf (>400 μM1-1/nf L1/nfkg-1) and KL (>40 L kg-1) was obtained for all pesticides for the soil/digestate/biochar mixtures, which had a higher organic matter content. SUVA254 values justified the aromatic character of digestate (5%) and biochar (5%) mixture which showed highest Koc values among all

  14. Predictive parameters of Legionella pneumophila occurrence in hospital water: HPCs and plumbing system installation age.

    PubMed

    Ghanizadeh, Ghader; Mirmohamadlou, Ali; Esmaeli, Davoud

    2016-09-01

    Occurrence of Legionella pneumophila can be relevant to the installation age and the presence of heterotrophic plate counts (HPCs). This research illustrates L. pneumophila contamination of hospital water in accordance with the installation age and the presence of HPCs. One hundred and fifty samples were collected from hot and cold water systems and cultured on R2A and BCYE agar. L. pneumophila identification was done via specific biochemical tests. HPCs and L. pneumophila were detected in 96 and 37.3 % of the samples, respectively. The mean of HPCs density was 947 ± 998 CFU/ml; therefore, 52 % of the samples had higher densities than 500 CFU/ml. High densities of HPCs (>500 CFU/ml) led to colonization of L. pneumophila (≥1000 CFU/ml), mainly observed in cooling systems, gynecological, sonography, and NICU wards. Chi(2) test demonstrated that higher densities (>500 CFU/ml) of HPCs and L. pneumophila contamination in cold water were more frequent than warm water (OR: 2.3 and 1.49, respectively). Univariate regressions implied a significant difference between HPCs density and installation age in positive and negative tests of L. pneumophila (OR = 1.1, p < 0.001, OR = 1.2, p < 0.001). Mann-Whitney U test implied the significant effects of HPCs and installation age on L. pneumophila occurrences (p < 0.001). Spearman correlation and multivariate linear regression revealed significant differences between L. pneumophila and HPCs densities (r s  = 0.33, p < 0.001 and ß = 0.11, p = 0.02), but nonsignificant difference with installation age (r s  = 0.33, p < 0.001 and ß = 0.0, p = 0.91). The occurrence of L. pneumophila, HPCs, and installation age are relevant; so, plumbing system renovation with appropriate materials and promotion of the effective efforts for hospital's water quality assurance is highly recommended. PMID:27573071

  15. Design and installation of a laboratory-scale system for radioactive waste treatment

    SciTech Connect

    Berger, D.N.; Knox, C.A.; Siemens, D.H.

    1980-05-01

    Described are the mechanical design features and remote installation of a laboratory-scale radiochemical immobilization system which is to provide a means at Pacific Northwest Laboratory of studying effluents generated during solidification of high-level liquid radioactive waste. Detailed are the hot cell, instrumentation, two 4-in. and 12-in. service racks, the immobilization system modules - waste feed, spray calciner unit, and effluent - and a gamma emission monitor system for viewing calcine powder buildup in the spray calciner/in-can melter.

  16. Solar photovoltaic applications seminar: design, installation and operation of small, stand-alone photovoltaic power systems

    SciTech Connect

    Not Available

    1980-07-01

    This seminar material was developed primarily to provide solar photovoltaic (PV) applied engineering technology to the Federal community. An introduction to photoconductivity, semiconductors, and solar photovoltaic cells is included along with a demonstration of specific applications and application identification. The seminar details general systems design and incorporates most known information from industry, academia, and Government concerning small solar cell power system design engineering, presented in a practical and applied manner. Solar PV power system applications involve classical direct electrical energy conversion and electric power system analysis and synthesis. Presentations and examples involve a variety of disciplines including structural analysis, electric power and load analysis, reliability, sizing and optimization; and, installation, operation and maintenance. Four specific system designs are demonstrated: water pumping, domestic uses, navigational and aircraft aids, and telecommunications. All of the applications discussed are for small power requirement (under 2 kilowatts), stand-alone systems to be used in remote locations. Also presented are practical lessons gained from currently installed and operating systems, problems at sites and their resolution, a logical progression through each major phase of system acquisition, as well as thorough design reviews for each application.

  17. Design, development, and installation of a two-node, color video-teleconferencing system for the US Navy

    NASA Astrophysics Data System (ADS)

    Vest, K. F.; Jones, P.; French, D.; Sachs, H.; Clements, F.

    1985-11-01

    This report discusses the design of a two-node, color Video-Teleconferencing System for the System for the U.S. Navy and its installation at sites in Suitland, Maryland, and Pearl Harbor. It details the development of the audio, video, and fast-facsimile parts of the system; integration of the system into the communications network; design of a teleconference room; and installation of the system.

  18. Sustainable Forest Bioenergy Initiative

    SciTech Connect

    Breger, Dwayne; Rizzo, Rob

    2011-09-20

    In the state’s Electricity Restructuring Act of 1998, the Commonwealth of Massachusetts recognized the opportunity and strategic benefits to diversifying its electric generation capacity with renewable energy. Through this legislation, the Commonwealth established one of the nation’s first Renewable Energy Portfolio Standard (RPS) programs, mandating the increasing use of renewable resources in its energy mix. Bioenergy, meeting low emissions and advanced technology standards, was recognized as an eligible renewable energy technology. Stimulated by the state’s RPS program, several project development groups have been looking seriously at building large woody biomass generation units in western Massachusetts to utilize the woody biomass resource. As a direct result of this development, numerous stakeholders have raised concerns and have prompted the state to take a leadership position in pursuing a science based analysis of biomass impacts on forest and carbon emissions, and proceed through a rulemaking process to establish prudent policy to support biomass development which can contribute to the state’s carbon reduction commitments and maintain safeguards for forest sustainability. The Massachusetts Sustainable Forest Bioenergy Initiative (SFBI) was funded by the Department of Energy and started by the Department of Energy Resources before these contentious biomass issues were fully raised in the state, and continued throughout the substantive periods of this policy development. Thereby, while SFBI maintained its focus on the initially proposed Scope of Work, some aspects of this scope were expanded or realigned to meet the needs for groundbreaking research and policy development being advanced by DOER. SFBI provided DOER and the Commonwealth with a foundation of state specific information on biomass technology and the biomass industry and markets, the most comprehensive biomass fuel supply assessment for the region, the economic development impact

  19. Solar PV Manufacturing Cost Model Group: Installed Solar PV System Prices (Presentation)

    SciTech Connect

    Goodrich, A. C.; Woodhouse, M.; James, T.

    2011-02-01

    EERE's Solar Energy Technologies Program is charged with leading the Secretary's SunShot Initiative to reduce the cost of electricity from solar by 75% to be cost competitive with conventional energy sources without subsidy by the end of the decade. As part of this Initiative, the program has funded the National Renewable Energy Laboratory (NREL) to develop module manufacturing and solar PV system installation cost models to ensure that the program's cost reduction targets are carefully aligned with current and near term industry costs. The NREL cost analysis team has leveraged the laboratories' extensive experience in the areas of project finance and deployment, as well as industry partnerships, to develop cost models that mirror the project cost analysis tools used by project managers at leading U.S. installers. The cost models are constructed through a "bottoms-up" assessment of each major cost element, beginning with the system's bill of materials, labor requirements (type and hours) by component, site-specific charges, and soft costs. In addition to the relevant engineering, procurement, and construction costs, the models also consider all relevant costs to an installer, including labor burdens and overhead rates, supply chain costs, and overhead and materials inventory costs, and assume market-specific profits.

  20. Solar heating and hot water system installed at Arlington Raquetball Club, Arlington, Virginia

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A solar space and water heating system is described. The solar energy system consists of 2,520 sq. ft. of flat plate solar collectors and a 4,000 gallon solar storage tank. The transfer medium in the forced closed loop is a nontoxic antifreeze solution (50 percent water, 50 percent propylene glycol). The service hot water system consists of a preheat coil (60 ft. of 1 1/4 in copper tubing) located in the upper third of the solar storage tank and a recirculation loop between the preheat coil and the existing electric water heaters. The space heating system consists of two separate water to air heat exchangers located in the ducts of the existing space heating/cooling systems. The heating water is supplied from the solar storage tank. Extracts from site files, specification references for solar modifications to existing building heating and hot water systems, and installation, operation and maintenance instructions are included.

  1. Solar heating, cooling and domestic hot water system installed at Columbia Gas System Service Corporation, Columbus, Ohio

    NASA Astrophysics Data System (ADS)

    1980-11-01

    The solar energy system installed in the building has 2,978 sq ft of single axis tracking, concentrating collectors and provides solar energy for space heating, space cooling and domestic hot water. A 1,200,000 Btu/hour water tube gas boiler provides hot water for space heating. Space cooling is provided by a 100 ton hot water fired absorption chiller. Domestic hot water heating is provided by a 50 gallon natural gas domestic storage water heater. Extracts from the site files, specification references, drawings, installation, operation and maintenance instructions are included.

  2. Solar heating, cooling and domestic hot water system installed at Columbia Gas System Service Corporation, Columbus, Ohio

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The solar energy system installed in the building has 2,978 sq ft of single axis tracking, concentrating collectors and provides solar energy for space heating, space cooling and domestic hot water. A 1,200,000 Btu/hour water tube gas boiler provides hot water for space heating. Space cooling is provided by a 100 ton hot water fired absorption chiller. Domestic hot water heating is provided by a 50 gallon natural gas domestic storage water heater. Extracts from the site files, specification references, drawings, installation, operation and maintenance instructions are included.

  3. Metabolic Reconstruction of Setaria italica: A Systems Biology Approach for Integrating Tissue-Specific Omics and Pathway Analysis of Bioenergy Grasses.

    PubMed

    de Oliveira Dal'Molin, Cristiana G; Orellana, Camila; Gebbie, Leigh; Steen, Jennifer; Hodson, Mark P; Chrysanthopoulos, Panagiotis; Plan, Manuel R; McQualter, Richard; Palfreyman, Robin W; Nielsen, Lars K

    2016-01-01

    The urgent need for major gains in industrial crops productivity and in biofuel production from bioenergy grasses have reinforced attention on understanding C4 photosynthesis. Systems biology studies of C4 model plants may reveal important features of C4 metabolism. Here we chose foxtail millet (Setaria italica), as a C4 model plant and developed protocols to perform systems biology studies. As part of the systems approach, we have developed and used a genome-scale metabolic reconstruction in combination with the use of multi-omics technologies to gain more insights into the metabolism of S. italica. mRNA, protein, and metabolite abundances, were measured in mature and immature stem/leaf phytomers, and the multi-omics data were integrated into the metabolic reconstruction framework to capture key metabolic features in different developmental stages of the plant. RNA-Seq reads were mapped to the S. italica resulting for 83% coverage of the protein coding genes of S. italica. Besides revealing similarities and differences in central metabolism of mature and immature tissues, transcriptome analysis indicates significant gene expression of two malic enzyme isoforms (NADP- ME and NAD-ME). Although much greater expression levels of NADP-ME genes are observed and confirmed by the correspondent protein abundances in the samples, the expression of multiple genes combined to the significant abundance of metabolites that participates in C4 metabolism of NAD-ME and NADP-ME subtypes suggest that S. italica may use mixed decarboxylation modes of C4 photosynthetic pathways under different plant developmental stages. The overall analysis also indicates different levels of regulation in mature and immature tissues in carbon fixation, glycolysis, TCA cycle, amino acids, fatty acids, lignin, and cellulose syntheses. Altogether, the multi-omics analysis reveals different biological entities and their interrelation and regulation over plant development. With this study, we demonstrated

  4. Metabolic Reconstruction of Setaria italica: A Systems Biology Approach for Integrating Tissue-Specific Omics and Pathway Analysis of Bioenergy Grasses

    PubMed Central

    de Oliveira Dal'Molin, Cristiana G.; Orellana, Camila; Gebbie, Leigh; Steen, Jennifer; Hodson, Mark P.; Chrysanthopoulos, Panagiotis; Plan, Manuel R.; McQualter, Richard; Palfreyman, Robin W.; Nielsen, Lars K.

    2016-01-01

    The urgent need for major gains in industrial crops productivity and in biofuel production from bioenergy grasses have reinforced attention on understanding C4 photosynthesis. Systems biology studies of C4 model plants may reveal important features of C4 metabolism. Here we chose foxtail millet (Setaria italica), as a C4 model plant and developed protocols to perform systems biology studies. As part of the systems approach, we have developed and used a genome-scale metabolic reconstruction in combination with the use of multi-omics technologies to gain more insights into the metabolism of S. italica. mRNA, protein, and metabolite abundances, were measured in mature and immature stem/leaf phytomers, and the multi-omics data were integrated into the metabolic reconstruction framework to capture key metabolic features in different developmental stages of the plant. RNA-Seq reads were mapped to the S. italica resulting for 83% coverage of the protein coding genes of S. italica. Besides revealing similarities and differences in central metabolism of mature and immature tissues, transcriptome analysis indicates significant gene expression of two malic enzyme isoforms (NADP- ME and NAD-ME). Although much greater expression levels of NADP-ME genes are observed and confirmed by the correspondent protein abundances in the samples, the expression of multiple genes combined to the significant abundance of metabolites that participates in C4 metabolism of NAD-ME and NADP-ME subtypes suggest that S. italica may use mixed decarboxylation modes of C4 photosynthetic pathways under different plant developmental stages. The overall analysis also indicates different levels of regulation in mature and immature tissues in carbon fixation, glycolysis, TCA cycle, amino acids, fatty acids, lignin, and cellulose syntheses. Altogether, the multi-omics analysis reveals different biological entities and their interrelation and regulation over plant development. With this study, we demonstrated

  5. Metabolic Reconstruction of Setaria italica: A Systems Biology Approach for Integrating Tissue-Specific Omics and Pathway Analysis of Bioenergy Grasses.

    PubMed

    de Oliveira Dal'Molin, Cristiana G; Orellana, Camila; Gebbie, Leigh; Steen, Jennifer; Hodson, Mark P; Chrysanthopoulos, Panagiotis; Plan, Manuel R; McQualter, Richard; Palfreyman, Robin W; Nielsen, Lars K

    2016-01-01

    The urgent need for major gains in industrial crops productivity and in biofuel production from bioenergy grasses have reinforced attention on understanding C4 photosynthesis. Systems biology studies of C4 model plants may reveal important features of C4 metabolism. Here we chose foxtail millet (Setaria italica), as a C4 model plant and developed protocols to perform systems biology studies. As part of the systems approach, we have developed and used a genome-scale metabolic reconstruction in combination with the use of multi-omics technologies to gain more insights into the metabolism of S. italica. mRNA, protein, and metabolite abundances, were measured in mature and immature stem/leaf phytomers, and the multi-omics data were integrated into the metabolic reconstruction framework to capture key metabolic features in different developmental stages of the plant. RNA-Seq reads were mapped to the S. italica resulting for 83% coverage of the protein coding genes of S. italica. Besides revealing similarities and differences in central metabolism of mature and immature tissues, transcriptome analysis indicates significant gene expression of two malic enzyme isoforms (NADP- ME and NAD-ME). Although much greater expression levels of NADP-ME genes are observed and confirmed by the correspondent protein abundances in the samples, the expression of multiple genes combined to the significant abundance of metabolites that participates in C4 metabolism of NAD-ME and NADP-ME subtypes suggest that S. italica may use mixed decarboxylation modes of C4 photosynthetic pathways under different plant developmental stages. The overall analysis also indicates different levels of regulation in mature and immature tissues in carbon fixation, glycolysis, TCA cycle, amino acids, fatty acids, lignin, and cellulose syntheses. Altogether, the multi-omics analysis reveals different biological entities and their interrelation and regulation over plant development. With this study, we demonstrated

  6. Bioenergy: Agricultural Crop Residues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The increasing cost of fossil fuels especially natural gas and petroleum as well as a desire to curtail greenhouse gas emissions are driving the expansion of bioenergy. Plant biomass (woody, grain and nongrain) is a potential energy source. Prior to the Industrial Revolution, plant biomass was a maj...

  7. Seismic detection system for blocking the dangerous installations in case of strong earthquake occurrence

    NASA Astrophysics Data System (ADS)

    Ghica, Daniela; Corneliu Rau, Dan; Ionescu, Constantin; Grigore, Adrian

    2010-05-01

    During the last 70 years, four major earthquakes occurred in the Vrancea seismic area affected Romania territory: 10 November 1940 (Mw = 7.7, 160 km depth), 4 March 1977 (Mw = 7.5, 100 km depth), 30 August 1986 (Mw = 7.2, 140 km depth), 30 May 30 1990 (Mw = 6.9, 80 km depth). Romania is a European country with significant seismicity. So far, the 1977 event had the most catastrophic consequences: about 33,000 residences were totally destroyed or partially deteriorated, 1,571 people dies and another 11,300 were injured. Moreover, 61 natural-gas pipelines were damaged, causing destructive fires. The total losses were estimated at 3 mld. U.S. dollars. Recent studies clearly pointed out that in case of a strong earthquake occurrence in Vrancea region (Ms above 7), the biggest danger regarding the major cities comes from explosions and fires started immediately after the earthquake, and the most important factor of risk are the natural gas distribution networks. The damages are strongly amplified by the fact that, simultaneously, water and electric energy lines distributions are damaged too, making impossible the efficient firemen intervention, for localizing the fire sources. Presently, in Romania safe and efficient accepted solutions for improving the buildings securing, using antiseismic protection of the dangerous installations as natural-gas pipelines are not available. Therefore, we propose a seismic detection system based on a seismically actuated gas shut-off valve, which is automatically shut down in case of a seismic shock. The device is intended to be installed in the natural-gas supply line outside of buildings, as well at each user (group of users), inside of the buildings. The seismic detection system for blocking the dangerous installations in case of a strong earthquake occurrence was designed on the basis of 12 criteria enforced by the US regulations for seismic valves, aimed to eliminate the critical situations as fluids and under pressure gases leakage

  8. Installation and Initial Operation of an On-line Target Imaging System for SNS

    SciTech Connect

    McManamy, Thomas J; Banke, Glenn; Blokland, Willem; Brunson, Aly; Dayton, Michael J; Goetz, Kathleen C; Janney, Jim G; Lance, Michael J; Maxey, L Curt; Montgomery, Fred C; Rosenblad, Peter M; Sampath, Sanjay; Simpson, Marc Livingstone; Shea, Thomas J

    2010-01-01

    After several years of operation, the SNS now enters an era of megawatt class operation. At this intensity level, the target will be operating closer to its engineering limits and the beam profile on target must be carefully controlled. During commissioning and early operations, a temporary imaging system was used to measure the proton density on target. This system was not designed to survive the increasing power levels and it had to be removed in the second half of 2006. Since then, no direct measurement of beam properties at the target has been available. A collaboration was forged to remedy this situation, and has resulted in a new imaging system consisting of three major components: a thermal-sprayed luminescent coating deposited on the target nose, a radiation-tolerant optical system installed upstream of the target, and an image acquisition system integrated with the accelerator controls network. The design, installation, and integration of these components will be described. Initial beam measurements and image analysis results will be presented. Lessons learned during this initial operating experience have been documented and will guide the collaboration s future plans.

  9. Global search tool for the Advanced Photon Source Integrated Relational Model of Installed Systems (IRMIS) database.

    SciTech Connect

    Quock, D. E. R.; Cianciarulo, M. B.; APS Engineering Support Division; Purdue Univ.

    2007-01-01

    The Integrated Relational Model of Installed Systems (IRMIS) is a relational database tool that has been implemented at the Advanced Photon Source to maintain an updated account of approximately 600 control system software applications, 400,000 process variables, and 30,000 control system hardware components. To effectively display this large amount of control system information to operators and engineers, IRMIS was initially built with nine Web-based viewers: Applications Organizing Index, IOC, PLC, Component Type, Installed Components, Network, Controls Spares, Process Variables, and Cables. However, since each viewer is designed to provide details from only one major category of the control system, the necessity for a one-stop global search tool for the entire database became apparent. The user requirements for extremely fast database search time and ease of navigation through search results led to the choice of Asynchronous JavaScript and XML (AJAX) technology in the implementation of the IRMIS global search tool. Unique features of the global search tool include a two-tier level of displayed search results, and a database data integrity validation and reporting mechanism.

  10. Installation guidelines for Solar Heating System, single-family residence at New Castle, Pennsylvania

    SciTech Connect

    Not Available

    1980-01-01

    The Solar Heating System installer guidelines are provided for each subsystem and includes testing and filling the system. This single-family residential heating system is a solar-assisted, hydronic-to-warm-air system with solar-assisted domestic water heating. It is composed of the following major components: liquid cooled flat plate collectors; water storage tank; passive solar-fired domestic water preheater; electric hot water heater; heat pump with electric backup; solar hot water coil unit; tube-and-shell heat exchanger, three pumps, and associated pipes and valving in an energy transport module; control system; and air-cooled heat purge unit. Information is also provided on the operating procedures, controls, caution requirements, and routine and schedule maintenance. Information consists of written procedures, schematics, detail drawings, pictures and manufacturer's component data.

  11. Solar hot water system installed at Quality Inn, Key West, Florida

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The solar energy hot water system installed in the Quality Inn, Key West, Florida, which consists of four buildings is described. Three buildings are low-rise, two-story buildings containing 100 rooms. The fourth is a four-story building with 48 rooms. The solar system was designed to provide approximately 50 percent of the energy required for the domestic hot water system. The solar system consists of approximately 1400 square feet of flat plate collector, two 500 gallon storage tanks, a circulating pump, and a controller. Operation of the system was begun in April 1978, and has continued to date with only three minor interruptions for pump repair. In the first year of operation, it was determined that the use of the solar facility resulted in forty percent fuel savings.

  12. Experience in the installation of a microprocessor system for controlling converter units of the Vyborg substation

    SciTech Connect

    Gusakovskii, K. B.; Zmaznov, E. Yu.; Katantsev, S. V.; Mazurenko, A. K.; Mestergazi, V. A.; Prochan, G. G.; Funtikova, S. F.

    2006-01-15

    The experience in the installation of modern digital systems for controlling converter units at the Vyborg converter substation on the basis of advanced microprocessor devices is considered. It is shown that debugging of a control and protection system on mathematical and physical models does not guarantee optimum control of actual converter devices. Examples of advancing the control and protection system are described, the necessity for which has become obvious in tests of actual equipment. Comparison of oscillograms of processes before optimization of the control system and after its optimization and adjustment shows that the digital control system makes it possible to improve substantially the algorithms of control and protection in the short term and without changing the hardware component.

  13. Determination of the optimal positions for installing gamma ray detection systems at Tehran Research Reactor

    NASA Astrophysics Data System (ADS)

    Sayyah, A.; Rahmani, F.; Khalafi, H.

    2015-09-01

    Dosimetric instruments must constantly monitor radiation dose levels in different areas of nuclear reactor. Tehran Research Reactor (TRR) has seven beam tubes for different research purposes. All the beam tubes extend from the reactor core to Beam Port Floor (BPF) of the reactor facility. During the reactor operation, the gamma rays exiting from each beam tube outlet produce a specific gamma dose rate field in the space of the BPF. To effectively monitor the gamma dose rates on the BPF, gamma ray detection systems must be installed in optimal positions. The selection of optimal positions is a compromise between two requirements. First, the installation positions must possess largest gamma dose rates and second, gamma ray detectors must not be saturated in these positions. In this study, calculations and experimental measurements have been carried out to identify the optimal positions of the gamma ray detection systems. Eight three dimensional models of the reactor core and related facilities corresponding to eight scenarios have been simulated using MCNPX Monte Carlo code to calculate the gamma dose equivalent rate field in the space of the BPF. These facilities are beam tubes, thermal column, pool, BPF space filled with air, facilities such as neutron radiography facility, neutron powder diffraction facility embedded in the beam tubes as well as biological shields inserted into the unused beam tubes. According to the analysis results of the combined gamma dose rate field, three positions on the north side and two positions on the south side of the BPF have been recognized as optimal positions for installing the gamma ray detection systems. To ensure the consistency of the simulation data, experimental measurements were conducted using TLDs (600 and 700) pairs during the reactor operation at 4.5 MW.

  14. Hot tap thermowell installation

    NASA Technical Reports Server (NTRS)

    Romero, C. A.

    1971-01-01

    System permits valve housings or other fillings to be installed in live steam lines or water pipes without interrupting their operation, thus eliminating current tapping restrictions. Two basic assemblies for installation under pressure are described.

  15. Argonne National Laboratory`s photo-oxidation organic mixed waste treatment system - installation and startup testing

    SciTech Connect

    Shearer, T.L.; Nelson, R.A.; Torres, T.; Conner, C.; Wygmans, D.

    1997-09-01

    This paper describes the installation and startup testing of the Argonne National Laboratory (ANL-E) Photo-Oxidation Organic Mixed Waste Treatment System. This system will treat organic mixed (i.e., radioactive and hazardous) waste by oxidizing the organics to carbon dioxide and inorganic salts in an aqueous media. The residue will be treated in the existing radwaste evaporators. The system is installed in the Waste Management Facility at the ANL-E site in Argonne, Illinois. 1 fig.

  16. Installation guidelines for solar heating system, single-family residence at New Castle, Pennsylvania

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The solar heating system installer guidelines are presented for each subsystem. This single family residential heating system is a solar-assisted, hydronic-to-warm-air system with solar-assisted domestic water heating. It is composed of the following major components: (1) liquid cooled flat plate collectors; (2) water storage tank; (3) passive solar-fired domestic water preheater; (4) electric hot water heater; (5) heat pump with electric backup; (6) solar hot water coil unit; (7) tube-and-shell heat exchanger, three pumps, and associated pipes and valving in an energy transport module; (8) control system; and (9) air-cooled heat purge unit. Information is provided on the operating procedures, controls, caution requirements, and routine and schedule maintenance in the form of written descriptions, schematics, detail drawings, pictures, and manufacturer's component data.

  17. Solar heating and hot water system installed at Municipal Building complex, Abbeville, South Carolina

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Information on the solar energy system installed at the new municipal building for the City of Abbeville, SC is presented, including a description of solar energy system and buildings, lessons learned, and recommendations. The solar space heating system is a direct air heating system. The flat roof collector panel was sized to provide 75% of the heating requirement based on an average day in January. The collectors used are job-built with two layers of filon corrugated fiberglass FRP panels cross lapped make up the cover. The storage consists of a pit filled with washed 3/4 in - 1 1/2 in diameter crushed granite stone. The air handler includes the air handling mechanism, motorized dampers, air circulating blower, sensors, control relays and mode control unit. Solar heating of water is provided only those times when the hot air in the collector is exhausted to the outside.

  18. Designing, selecting and installing a residential ground-source heat pump system

    SciTech Connect

    Hughes, Patrick; Liu, Xiaobing; Munk, Jeffrey D

    2010-01-01

    It's a compelling proposition: Use the near-constant-temperature heat underground to heat and cool your home and heat domestic water, slashing your energy bills. Yet despite studies demonstrating significant energy savings from ground-source heat pump (GSHP) systems, their adoption has been hindered by high upfront costs. Fewer than 1% of US homes use a GSHP system. However, compared to a minimum-code-compliant conventional space-conditioning system, when properly designed and installed, a GSHP retrofit at current market prices offers simple payback of 4.3 years on national average, considering existing federal tax credits. Most people understand how air-source heat pumps work: they move heat from indoor air to outdoor air when cooling and from outdoor air to indoor air when heating. The ground-source heat pump operates on the same principle, except that it moves heat to or from the ground source instead of outdoor air. The ground source is usually a vertical or horiontal ground heat exchanger. Because the ground usually has a more favorable temperature than ambient air for the heating and cooling operation of the vapor-compression refrigeration cycle, GSHP sysems can operate with much higher energy efficiencies than air-source heat pump systems when properly designed and installed. A GSHP system used in a residual building typically provides space conditioning and hot water and comprises three major components: a water-source heat pump unit designed to operate at a wider range of entering fluid temperatures (typically from 30 F to 110 F, or 1 C to 43 C) than a conventional water-source heat pump unit; a ground heat exchanger (GHX); and distribution systems to deliver hot water to the storage tank and heating or cooling to the conditioned rooms. In most residual GSHP systems, the circulation pumps and associated valves are integrated with the heat pump to circulate the heat-carrier fluid (water or aqueous antifreeze solution) through the heat pump and the GHX. A

  19. Design and installation of a next generation pilot scale fermentation system.

    PubMed

    Junker, B; Brix, T; Lester, M; Kardos, P; Adamca, J; Lynch, J; Schmitt, J; Salmon, P

    2003-01-01

    Four new fermenters were designed and constructed for use in secondary metabolite cultivations, bioconversions, and enzyme production. A new PC/PLC-based control system also was implemented using GE Fanuc PLCs, Genius I/O blocks, and Fix Dynamics SCADA software. These systems were incorporated into an industrial research fermentation pilot plant, designed and constructed in the early 1980s. Details of the design of these new fermenters and the new control system are described and compared with the existing installation for expected effectiveness. In addition, the reasoning behind selection of some of these features has been included. Key to the design was the goal of preserving similarity between the new and previously existing and successfully utilized fermenter hardware and software installations where feasible but implementing improvements where warranted and beneficial. Examples of enhancements include strategic use of Inconel as a material of construction to reduce corrosion, piping layout design for simplified hazardous energy isolation, on-line calculation and control of nutrient feed rates, and the use of field I/O modules located near the vessel to permit low-cost addition of new instrumentation. PMID:12790627

  20. NACA Investigations of Icing-Protection Systems for Turbojet-Engine Installations

    NASA Technical Reports Server (NTRS)

    VonGlahn, Uwe; Callaghan, Edmund E.; Gray, Vernon H.

    1951-01-01

    Investigations have been made in flight and in wind tunnels to determine which components of turbojet installations are most critical in icing conditions, and to evaluate several methods of icing protection. From these studies, the requirements necessary for adequate icing protection and the consequent penalties on engine performance can be estimated. Because investigations have indicated that the compressor-inlet screen constitutes the greatest icing hazard and is difficult to protect, complete removal or retraction of the screen upon encountering an icing condition is recommended. In the absence of the screen, the inlet guide vanes of an axial-flow-type turbojet engine constitute the greatest danger to engine operation in an icing condition; a centrifugal-type engine, on the other hand, is relatively unsusceptible to icing once the screen has been removed. Of the three icing-protection systems investigated, surface heating, hot-gas bleedback, and inertia-separation inlets, only the first two offer an acceptable solution to the problem of engine icing protection. Surface heating, either by gas heating or electrical means, appears to be the most acceptable icing-protection method with regard to performance losses. Hot-gas bleedback, although causing undesirable thrust losses, offers an easy means of obtaining icing protection for some installations. The final choice of an icing-protection system depends, however, on the supply of heated gas and electrical power available and on the allowable performance and. weight penalties associated with each system.

  1. Design and installation of a next generation pilot scale fermentation system.

    PubMed

    Junker, B; Brix, T; Lester, M; Kardos, P; Adamca, J; Lynch, J; Schmitt, J; Salmon, P

    2003-01-01

    Four new fermenters were designed and constructed for use in secondary metabolite cultivations, bioconversions, and enzyme production. A new PC/PLC-based control system also was implemented using GE Fanuc PLCs, Genius I/O blocks, and Fix Dynamics SCADA software. These systems were incorporated into an industrial research fermentation pilot plant, designed and constructed in the early 1980s. Details of the design of these new fermenters and the new control system are described and compared with the existing installation for expected effectiveness. In addition, the reasoning behind selection of some of these features has been included. Key to the design was the goal of preserving similarity between the new and previously existing and successfully utilized fermenter hardware and software installations where feasible but implementing improvements where warranted and beneficial. Examples of enhancements include strategic use of Inconel as a material of construction to reduce corrosion, piping layout design for simplified hazardous energy isolation, on-line calculation and control of nutrient feed rates, and the use of field I/O modules located near the vessel to permit low-cost addition of new instrumentation.

  2. Hydrological and sedimentation implications of landscape changes in a Himalayan catchment due to bioenergy cropping

    NASA Astrophysics Data System (ADS)

    Remesan, Renji; Holman, Ian; Janes, Victoria

    2015-04-01

    There is a global effort to focus on the development of bioenergy and energy cropping, due to the generally increasing demand for crude oil, high oil price volatility and climate change mitigation challenges. Second generation energy cropping is expected to increase greatly in India as the Government of India has recently approved a national policy of 20 % biofuel blending by 2017; furthermore, the country's biomass based power generation potential is estimated as around ~24GW and large investments are expected in coming years to increase installed capacity. In this study, we have modelled the environmental influences (e.g.: hydrology and sediment) of scenarios of increased biodiesel cropping (Jatropha curcas) using the Soil and Water Assessment Tool (SWAT) in a northern Indian river basin. SWAT has been applied to the River Beas basin, using daily Tropical Rainfall Measuring Mission (TRMM) precipitation and NCEP Climate Forecast System Reanalysis (CFSR) meteorological data to simulate the river regime and crop yields. We have applied Sequential Uncertainty Fitting Ver. 2 (SUFI-2) to quantify the parameter uncertainty of the stream flow modelling. The model evaluation statistics for daily river flows at the Jwalamukhi and Pong gauges show good agreement with measured flows (Nash Sutcliffe efficiency of 0.70 and PBIAS of 7.54 %). The study has applied two land use change scenarios of (1) increased bioenergy cropping in marginal (grazing) lands in the lower and middle regions of catchment (2) increased bioenergy cropping in low yielding areas of row crops in the lower and middle regions of the catchment. The presentation will describe the improved understanding of the hydrological, erosion and sediment delivery and food production impacts arising from the introduction of a new cropping variety to a marginal area; and illustrate the potential prospects of bioenergy production in Himalayan valleys.

  3. Instructor's Manual for Teaching and Practical Courses on Design of Systems and Sizing, Installation and Operation of Systems for Solar Heating and Cooling of Residential Buildings.

    ERIC Educational Resources Information Center

    Colorado State Univ., Ft. Collins. Solar Energy Applications Lab.

    Presented are guidelines for instructors of two courses in the design, installation, and operation of solar heating and cooling systems. These courses are: (1) Design of Systems, and (2) Sizing, Installation, and Operation of Systems. Limited in scope to active solar systems for residential buildings, these courses place primary emphasis upon…

  4. Incorporating bioenergy into sustainable landscape designs

    DOE PAGESBeta

    Dale, Virginia H.; Kline, Keith L.; Buford, Marilyn A.; Volk, Timothy A.; Smith, C. Tattersall; Stupak, Inge

    2015-12-30

    In this paper, we describe an approach to landscape design that focuses on integrating bioenergy production with other components of environmental, social and economic systems. Landscape design as used here refers to a spatially explicit, collaborative plan for management of landscapes and supply chains. Landscape design can involve multiple scales and build on existing practices to reduce costs or enhance services. Appropriately applied to a specific context, landscape design can help people assess trade-offs when making choices about locations, types of feedstock, transport, refining and distribution of bioenergy products and services. The approach includes performance monitoring and reporting along themore » bioenergy supply chain. Examples of landscape design applied to bioenergy production systems are presented. Barriers to implementation of landscape design include high costs, the need to consider diverse land-management objectives from a wide array of stakeholders, up-front planning requirements, and the complexity and level of effort needed for successful stakeholder involvement. A landscape design process may be stymied by insufficient data or participation. An impetus for coordination is critical, and incentives may be required to engage landowners and the private sector. In conclusion, devising and implementing landscape designs for more sustainable outcomes require clear communication of environmental, social, and economic opportunities and concerns.« less

  5. Bioenergy Science Center KnowledgeBase

    DOE Data Explorer

    Syed, M. H.; Karpinets, T. V.; Parang, M.; Leuze, M. R.; Park, B. H.; Hyatt, D.; Brown, S. D.; Moulton, S. Galloway, M.D.; Uberbacher, E. C.

    The challenge of converting cellulosic biomass to sugars is the dominant obstacle to cost effective production of biofuels in s capable of significant enough quantities to displace U. S. consumption of fossil transportation fuels. The BioEnergy Science Center (BESC) tackles this challenge of biomass recalcitrance by closely linking (1) plant research to make cell walls easier to deconstruct, and (2) microbial research to develop multi-talented biocatalysts tailor-made to produce biofuels in a single step. [from the 2011 BESC factsheet] The BioEnergy Science Center (BESC) is a multi-institutional, multidisciplinary research (biological, chemical, physical and computational sciences, mathematics and engineering) organization focused on the fundamental understanding and elimination of biomass recalcitrance. The BESC Knowledgebase and its associated tools is a discovery platform for bioenergy research. It consists of a collection of metadata, data, and computational tools for data analysis, integration, comparison and visualization for plants and microbes in the center.The BESC Knowledgebase (KB) and BESC Laboratory Information Management System (LIMS) enable bioenergy researchers to perform systemic research. [http://bobcat.ornl.gov/besc/index.jsp

  6. Incorporating bioenergy into sustainable landscape designs

    SciTech Connect

    Dale, Virginia H.; Kline, Keith L.; Buford, Marilyn A.; Volk, Timothy A.; Smith, C. Tattersall; Stupak, Inge

    2015-12-30

    In this paper, we describe an approach to landscape design that focuses on integrating bioenergy production with other components of environmental, social and economic systems. Landscape design as used here refers to a spatially explicit, collaborative plan for management of landscapes and supply chains. Landscape design can involve multiple scales and build on existing practices to reduce costs or enhance services. Appropriately applied to a specific context, landscape design can help people assess trade-offs when making choices about locations, types of feedstock, transport, refining and distribution of bioenergy products and services. The approach includes performance monitoring and reporting along the bioenergy supply chain. Examples of landscape design applied to bioenergy production systems are presented. Barriers to implementation of landscape design include high costs, the need to consider diverse land-management objectives from a wide array of stakeholders, up-front planning requirements, and the complexity and level of effort needed for successful stakeholder involvement. A landscape design process may be stymied by insufficient data or participation. An impetus for coordination is critical, and incentives may be required to engage landowners and the private sector. In conclusion, devising and implementing landscape designs for more sustainable outcomes require clear communication of environmental, social, and economic opportunities and concerns.

  7. Installation and operation of a large scale RAPS system in Peru

    NASA Astrophysics Data System (ADS)

    Cole, J. F.

    In 1997, International Lead Zinc Research Organization Inc. (ILZRO), Solar Energy Industries Association (SEIA), and the Ministry of Energy and Mines (MEM) of Peru signed a Memorandum of Understanding to facilitate the installation of hybrid remote area power supply (RAPS) systems in the Amazon region of Peru. Many remote villages in this vast region have either no or limited electricity supplied by diesel generators running a few hours per day. Subsequently, ILZRO sponsored the engineering design of the hybrid RAPS system and SEIA supported a socio-economic study to determine the sustainability of such systems and the locations for pilot installations. In mid-1998, the Peruvian government approved the design of the system. ILZRO then began efforts to obtain governmental and inter-governmental funding to supplement its own funds to underwrite the cost of manufacture and installation of the systems in two villages in the Amazon region. Additional major funding has been received from the Global Environmental Facility (GEF) administered by the United Nations Development Program (UNDP) and from the Common Fund for Commodities (CFC). Funds have also been received from the US Department of Energy, the International Greenhouse Partnership (Australia) and the Peruvian government. The RAPS system consists of modules designed to provide 150 kW h per day of utility grade ac electricity over a 24 h period. Each module contains a diesel generator, battery bank using heavy-duty 2 V VRLA GEL batteries, a battery charger, a photovoltaic array and an ac/dc inverter. The batteries and electrical components are housed in modified shipping containers. The modules can be installed with a new generator or retrofitted to an existing generator. The charging and discharging regime of the batteries has been recommended by a study carried out by CSIRO, which has simulated the RAPS operation. The system will employ a partial-state-of-charge (PSOC) regime in order to optimize the life of the

  8. BioenergyKDF: Enabling Spatiotemporal Data Synthesis and Research Collaboration

    SciTech Connect

    Myers, Aaron T; Movva, Sunil; Karthik, Rajasekar; Bhaduri, Budhendra L; White, Devin A; Thomas, Neil; Chase, Adrian S Z

    2014-01-01

    The Bioenergy Knowledge Discovery Framework (BioenergyKDF) is a scalable, web-based collaborative environment for scientists working on bioenergy related research in which the connections between data, literature, and models can be explored and more clearly understood. The fully-operational and deployed system, built on multiple open source libraries and architectures, stores contributions from the community of practice and makes them easy to find, but that is just its base functionality. The BioenergyKDF provides a national spatiotemporal decision support capability that enables data sharing, analysis, modeling, and visualization as well as fosters the development and management of the U.S. bioenergy infrastructure, which is an essential component of the national energy infrastructure. The BioenergyKDF is built on a flexible, customizable platform that can be extended to support the requirements of any user community especially those that work with spatiotemporal data. While there are several community data-sharing software platforms available, some developed and distributed by national governments, none of them have the full suite of capabilities available in BioenergyKDF. For example, this component-based platform and database independent architecture allows it to be quickly deployed to existing infrastructure and to connect to existing data repositories (spatial or otherwise). As new data, analysis, and features are added; the BioenergyKDF will help lead research and support decisions concerning bioenergy into the future, but will also enable the development and growth of additional communities of practice both inside and outside of the Department of Energy. These communities will be able to leverage the substantial investment the agency has made in the KDF platform to quickly stand up systems that are customized to their data and research needs.

  9. Installations and methods for measurement of aircraft radio components and systems

    NASA Astrophysics Data System (ADS)

    Tetzlaff, Juergen

    1993-01-01

    The requirements and workings of a flight measurement system for measurement of radio frequency systems and components used in flight control and guidance are described. These systems and components consist of radio systems for communication, navigation, flight monitoring (Air Traffic Control (ATC)), and radar systems for flight monitoring (ATC); recognition and protection procedures. A range of subsystems and components for such installations requires in flight testing. In the case of radio systems, this relates primarily to aircaft antenna whose radiation patterns have to be measured in flight. In the case of radar systems for flight monitoring, it is particularly important to have knowledge of the radar cross section of whatever aircraft are involved, in order to estimate system range and probability of detection. Recognition systems (electronic support measurement) require measurement of antenna radiation diagrams and direction, finding antenna accuracy. In order to ascertain the coverage of systems operating electronic countermeasures, it is also necessary to have knowledge of the radiation patterns of the antennae involved. Although the above mentioned system characteristics can also be at least approximately determined by other methods (theoretical calculations, model measurements, and static measurements on the original on ground test rigs), flight measurements, for example for design acceptance of new aircraft types, is neccessary. These provide practical values and make it possible largely to avoid interferences and omissions which could affect the results of the other processes mentioned above.

  10. Interactions among bioenergy feedstock choices, landscape dynamics, and land use

    SciTech Connect

    Dale, Virginia H; Kline, Keith L; Wright, Lynn L; Perlack, Robert D; Downing, Mark; Graham, Robin Lambert

    2011-01-01

    Landscape implications of bioenergy feedstock choices are significant and depend on land-use practices and their environmental impacts. Although land-use changes and carbon emissions associated with bioenergy feedstock production are dynamic and complicated, lignocellulosic feedstocks may offer opportunities that enhance sustainability when compared to other transportation fuel alternatives. For bioenergy sustainability, major drivers and concerns revolve around energy security, food production, land productivity, soil carbon and erosion, greenhouse gas emissions, biodiversity, air quality, and water quantity and quality. The many implications of bioenergy feedstock choices require several indicators at multiple scales to provide a more complete accounting of effects. Ultimately, the long-term sustainability of bioenergy feedstock resources (as well as food supplies) throughout the world depends on land-use practices and landscape dynamics. Land-management decisions often invoke trade-offs among potential environmental effects and social and economic factors as well as future opportunities for resource use. The hypothesis being addressed in this paper is that sustainability of bioenergy feedstock production can be achieved via appropriately designed crop residue and perennial lignocellulosic systems. We find that decision makers need scientific advancements and adequate data that both provide quantitative and qualitative measures of the effects of bioenergy feedstock choices at different spatial and temporal scales and allow fair comparisons among available options for renewable liquid fuels.

  11. Optical analysis of a photovoltaic V-trough system installed in western India.

    PubMed

    Maiti, Subarna; Sarmah, Nabin; Bapat, Pratap; Mallick, Tapas K

    2012-12-20

    The low concentrating photovoltaic (PV) system such as a 2× V-trough system can be a promising choice for enhancing the power output from conventional PV panels with the inclusion of thermal management. This system is more attractive when the reflectors are retrofitted to the stationary PV panels installed in a high aspect ratio in the north-south direction and are tracked 12 times a year manually according to preset angles, thus eliminating the need of diurnal expensive tracking. In the present analysis, a V-trough system facing exactly the south direction is considered, where the tilt angle of the PV panels' row is kept constant at 18.34°. The system is installed on the terrace of CSIR-Central Salt and Marine Chemicals Research Institute in Bhavnagar, Gujarat, India (21.47 N, 71.15 E). The dimension of the entire PV system is 9.64 m×0.55 m. The V-troughs made of anodized aluminum reflectors (70% specular reflectivity) had the same dimensions. An in-house developed; experimentally validated Monte Carlo ray-trace model was used to study the effect of the angular variation of the reflectors throughout a year for the present assembly. Results of the ray trace for the optimized angles showed the maximum simulated optical efficiency to be 85.9%. The spatial distribution of solar intensity over the 0.55 m dimension of the PV panel due to the V-trough reflectors was also studied for the optimized days in periods that included solstices and equinoxes. The measured solar intensity profiles with and without the V-trough system were used to calculate the actual optical efficiencies for several sunny days in the year, and results were validated with the simulated efficiencies within an average error limit of 10%.

  12. Optical analysis of a photovoltaic V-trough system installed in western India.

    PubMed

    Maiti, Subarna; Sarmah, Nabin; Bapat, Pratap; Mallick, Tapas K

    2012-12-20

    The low concentrating photovoltaic (PV) system such as a 2× V-trough system can be a promising choice for enhancing the power output from conventional PV panels with the inclusion of thermal management. This system is more attractive when the reflectors are retrofitted to the stationary PV panels installed in a high aspect ratio in the north-south direction and are tracked 12 times a year manually according to preset angles, thus eliminating the need of diurnal expensive tracking. In the present analysis, a V-trough system facing exactly the south direction is considered, where the tilt angle of the PV panels' row is kept constant at 18.34°. The system is installed on the terrace of CSIR-Central Salt and Marine Chemicals Research Institute in Bhavnagar, Gujarat, India (21.47 N, 71.15 E). The dimension of the entire PV system is 9.64 m×0.55 m. The V-troughs made of anodized aluminum reflectors (70% specular reflectivity) had the same dimensions. An in-house developed; experimentally validated Monte Carlo ray-trace model was used to study the effect of the angular variation of the reflectors throughout a year for the present assembly. Results of the ray trace for the optimized angles showed the maximum simulated optical efficiency to be 85.9%. The spatial distribution of solar intensity over the 0.55 m dimension of the PV panel due to the V-trough reflectors was also studied for the optimized days in periods that included solstices and equinoxes. The measured solar intensity profiles with and without the V-trough system were used to calculate the actual optical efficiencies for several sunny days in the year, and results were validated with the simulated efficiencies within an average error limit of 10%. PMID:23262601

  13. Solar heating and hot water system installed at St. Louis, Missouri. Final report

    SciTech Connect

    Not Available

    1980-04-01

    Information is provided on the solar heating and hot water system installed at the William Tao and Associates, Inc., office building in St. Louis, Missouri. The information consists of description, photos, maintenance and construction problems, final drawing, system requirements and manufacturer's component data. The solar system was designed to provide 50% of the hot water requirements and 45% of the space heating needs for a 900 square foot office space and drafting room. The solar facility has 252 square foot of glass tube concentrator collectors and a 1000 gallon steel storage tank buried below a concrete slab floor. Freeze protection is provided by a propylene glycol/water mixture in the collector loop. The collectors are roof mounted on a variable tilt array which is adjusted seasonally and is connected to the solar thermal storage tank by a tube-in-shell heat exchanger. Incoming city water is preheated through the solar energy thermal storage tank.

  14. Solar heating and hot water system installed at Saint Louis, Missouri

    NASA Astrophysics Data System (ADS)

    1980-04-01

    The solar heating and hot water system installed at the William Tao & Associates, Inc., office building in St. Louis, Missouri is described, including maintenance and construction problems, final drawings, system requirements, and manufacturer's component data. The solar system was designed to provide 50 percent of the hot water requirements and 45 percent of the space heating needs for a 900 sq ft office space and drafting room. The solar facility has 252 sq ft of glass tube concentrator collectors and a 1000 gallon steel storage tank buried below a concrete slab floor. Freeze protection is provided by a propylene glycol/water mixture in the collector loop. The collectors are roof mounted on a variable tilt array which is adjusted seasonally and is connected to the solar thermal storage tank by a tube-in-shell heat exchanger. Incoming city water is preheated through the solar energy thermal storage tank.

  15. Solar heating and hot water system installed at Saint Louis, Missouri

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The solar heating and hot water system installed at the William Tao & Associates, Inc., office building in St. Louis, Missouri is described, including maintenance and construction problems, final drawings, system requirements, and manufacturer's component data. The solar system was designed to provide 50 percent of the hot water requirements and 45 percent of the space heating needs for a 900 sq ft office space and drafting room. The solar facility has 252 sq ft of glass tube concentrator collectors and a 1000 gallon steel storage tank buried below a concrete slab floor. Freeze protection is provided by a propylene glycol/water mixture in the collector loop. The collectors are roof mounted on a variable tilt array which is adjusted seasonally and is connected to the solar thermal storage tank by a tube-in-shell heat exchanger. Incoming city water is preheated through the solar energy thermal storage tank.

  16. 205 kW Photovoltaic (PV) System Installed on the U.S. Department of Energy's Forrestal Building

    SciTech Connect

    2009-01-18

    Fact sheet on the installation of a photovoltaic system providing renewable energy for the U.S. Department of Energy and providing leadership for meeting Federal goals in the use of renewable energy technologies.

  17. Solar installer's training program

    SciTech Connect

    Schmidt, W.J.; Philbin, J.

    1981-01-01

    Instructions are given for the installation of solar domestic water heating systems, space heating systems, and pool heating systems. The basic procedures for installing any solar heating system are presented with reference to solar domestic hot water systems, and the space and pool systems are taught on that basis. (LEW)

  18. Coal conversion systems design and process modeling. Volume 2: Installation of MPPM on the Signal 9 computer

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Relevant differences between the MPPM resident IBM 370computer and the NASA Sigma 9 computer are described as well as the MPPM system itself and its development. Problems encountered and solutions used to overcome these difficulties during installation of the MPPM system at MSFC are discussed. Remaining work on the installation effort is summarized. The relevant hardware features incorporated in the program are described and their implications on the transportability of the MPPM source code are examined.

  19. Investigating afforestation and bioenergy CCS as climate change mitigation strategies

    NASA Astrophysics Data System (ADS)

    Humpenöder, Florian; Popp, Alexander; Dietrich, Jan Philip; Klein, David; Lotze-Campen, Hermann; Bonsch, Markus; Bodirsky, Benjamin Leon; Weindl, Isabelle; Stevanovic, Miodrag; Müller, Christoph

    2014-05-01

    The land-use sector can contribute to climate change mitigation not only by reducing greenhouse gas (GHG) emissions, but also by increasing carbon uptake from the atmosphere and thereby creating negative CO2 emissions. In this paper, we investigate two land-based climate change mitigation strategies for carbon removal: (1) afforestation and (2) bioenergy in combination with carbon capture and storage technology (bioenergy CCS). In our approach, a global tax on GHG emissions aimed at ambitious climate change mitigation incentivizes land-based mitigation by penalizing positive and rewarding negative CO2 emissions from the land-use system. We analyze afforestation and bioenergy CCS as standalone and combined mitigation strategies. We find that afforestation is a cost-efficient strategy for carbon removal at relatively low carbon prices, while bioenergy CCS becomes competitive only at higher prices. According to our results, cumulative carbon removal due to afforestation and bioenergy CCS is similar at the end of 21st century (600-700 GtCO2), while land-demand for afforestation is much higher compared to bioenergy CCS. In the combined setting, we identify competition for land, but the impact on the mitigation potential (1000 GtCO2) is partially alleviated by productivity increases in the agricultural sector. Moreover, our results indicate that early-century afforestation presumably will not negatively impact carbon removal due to bioenergy CCS in the second half of the 21st century. A sensitivity analysis shows that land-based mitigation is very sensitive to different levels of GHG taxes. Besides that, the mitigation potential of bioenergy CCS highly depends on the development of future bioenergy yields and the availability of geological carbon storage, while for afforestation projects the length of the crediting period is crucial.

  20. Bioenergy: Potentials and limitations

    NASA Astrophysics Data System (ADS)

    Schulze, E.-D.; Canadell, J. G.

    2015-08-01

    In this lecture we explain 1) the biochemical basis for photosynthesis and plant production and 2) the future demands on biomass for human use. Summing all physiological processes, the efficiency of converting solar energy into biomass is < 1.6% in the tropics, and between 0.4 and 0.8% for the temperate regions. In view of the present and future high demand on biomass for food, bioeconomics, fiber, construction material, only a relatively small fraction of plant production will be available for bioenergy. We estimate this fraction to be between 3 and 8% of the global energy demand by 2050. The contribution of bioenergy is at the higher end in tropical regions and in the less industrialized parts of the world, but may even be < 3% in industrialized nations.

  1. Agricultural chemistry and bioenergy.

    PubMed

    Orts, William J; Holtman, Kevin M; Seiber, James N

    2008-06-11

    Renewed interest in converting biomass to biofuels such as ethanol, other forms of bioenergy, and bioenergy byproducts or coproducts of commercial value opens opportunities for chemists, including agricultural chemists and related disciplines. Applications include feedstock characterization and quantification of structural changes resulting from genetic modification and of the intermediates formed during enzymatic and chemical processing; development of improved processes for utilizing chemical coproducts such as lactic acid and glycerol; development of alternative biofuels such as methanol, butanol, and hydrogen; and ways to reduce greenhouse gas emission and/or use carbon dioxide beneficially. Chemists will also be heavily involved in detailing the phytochemical composition of alternative energy crops and genetically improved crops. A resurgence of demand for agricultural chemistry and related disciplines argues for increasing output through targeted programs and on-the-job training. PMID:18473470

  2. Intelligent systems installed in building of research centre for research purposes

    NASA Astrophysics Data System (ADS)

    Matusov, Jozef; Mokry, Marian; Kolkova, Zuzana; Sedivy, Stefan

    2016-06-01

    The attractiveness of intelligent buildings is nowadays directly connected with higher level of comfort and also the economic mode of consumption energy for heating, cooling and the total consumption of electricity for electric devices. The technologies of intelligent buildings compared with conventional solutions allow dynamic optimization in real time and make it easy for operational message. The basic division of functionality in horizontal direction is possible divide in to two areas such as Economical sophisticated residential care about the comfort of people in the building and Security features. The paper deals with description of intelligent systems which has a building of Research Centre. The building has installed the latest technology for utilization of renewable energy and also latest systems of controlling and driving all devices which contribute for economy operation by achieving the highest thermal comfort and overall safety.

  3. New Spray Bar System Installed in NASA Lewis' Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Irvine, Thomas B.

    1998-01-01

    NASA Lewis Research Center's Icing Research Tunnel (IRT) is the world's largest refrigerated wind tunnel dedicated to the study of aircraft icing. In the IRT, natural icing conditions are duplicated to test the effects of in-flight icing on actual aircraft components and on scale models of airplanes and helicopters. The IRT's ability to reproduce a natural icing cloud was significantly improved with the recent installation of a new spray bar system. It is the spray bar system that transforms the low-speed wind tunnel into an icing wind tunnel by producing microscopic droplets of water and injecting them into the wind tunnel air stream in order to accurately simulate cloud moisture.

  4. Pectins, Endopolygalacturonases, and Bioenergy

    PubMed Central

    Latarullo, Mariana B. G.; Tavares, Eveline Q. P.; Maldonado, Gabriel P.; Leite, Débora C. C.; Buckeridge, Marcos S.

    2016-01-01

    The precise disassembly of the extracellular matrix of some plant species used as feedstocks for bioenergy production continues to be a major barrier to reach reasonable cost effective bioethanol production. One solution has been the use of pretreatments, which can be effective, but increase even more the cost of processing and also lead to loss of cell wall materials that could otherwise be used in industry. Although pectins are known to account for a relatively low proportion of walls of grasses, their role in recalcitrance to hydrolysis has been shown to be important. In this mini-review, we examine the importance of pectins for cell wall hydrolysis highlighting the work associated with bioenergy. Here we focus on the importance of endopolygalacturonases (EPGs) discovered to date. The EPGs cataloged by CAZy were screened, revealing that most sequences, as well as the scarce structural work performed with EPGs, are from fungi (mostly Aspergillus niger). The comparisons among the EPG from different microorganisms, suggests that EPGs from bacteria and grasses display higher similarity than each of them with fungi. This compilation strongly suggests that structural and functional studies of EPGs, mainly from plants and bacteria, should be a priority of research regarding the use of pectinases for bioenergy production purposes. PMID:27703463

  5. Preliminary measurements on the new TOF system installed at the AMS beamline of INFN-LABEC

    NASA Astrophysics Data System (ADS)

    Palla, L.; Castelli, L.; Czelusniak, C.; Fedi, M. E.; Giuntini, L.; Liccioli, L.; Mandò, P. A.; Martini, M.; Mazzinghi, A.; Ruberto, C.; Schiavulli, L.; Sibilia, E.; Taccetti, F.

    2015-10-01

    A high resolution time of flight (TOF) system has been developed at LABEC, the 3 MV Tandem accelerator laboratory in Florence, in order to improve the sensitivity of AMS measurements on carbon samples with ultra-low concentration and also to measure other isotopes, such as 129I. The system can be employed to detect and identify residual interfering particles originated from the break-up of molecular isobars. The set-up has been specifically designed for low energy heavy ions: it consists of two identical time pick-off stations, each made up of a thin conductive foil and a Micro-Channel Plate (MCP) multiplier. The beamline is also equipped with a silicon detector, installed downstream the stop TOF station. In this paper the design of the new system and the implemented readout electronics are presented. The tests performed on the single time pick-off station are reported: they show that the maximum contribution to the timing resolution given by both the intrinsic MCP resolution and the electronics is ⩽500 ps (FWHM). For these tests, single particle pulsed beams of 2-5 MeV protons and 10 MeV 12C3+ ions, to simulate typical AMS conditions, were used. The preliminary TOF and TOF-E (TOF-energy) measurements performed with carbon beams after the installation of the new system on the AMS beam line are also discussed. These measurements were performed using the foil-MCP as the start stage and a silicon detector as the stop stage. The spectra acquired with carbon ions suggest the presence of a small residual background from neighboring masses reaching the end of the beamline with the same energy as the rare isotope.

  6. Vadose zone monitoring system installation report for McClellan AFB

    SciTech Connect

    Zawislanski, P.; Faybishenko, B.; James, A.; Freifeld, B.; Salve, R.

    1996-10-31

    Two vadose zone monitoring systems (VZMS) have been installed at Site S-7, in Investigation Cluster 34 (IC 34), in Operable Unit A (OU A) of McClellan AFB. The two boreholes, VZMS-A and VZMS-B were instrumented at depths ranging from approximately 6 ft to 113 ft. Instruments were installed in clusters using a custom-made stainless steel cage with a spring-loaded mechanism allowing instruments to be in contact with the well bore wall once in place. Each cluster contains a tensiometer, suction lysimeter, soil gas probe and thermistor for measuring hydraulic potential, liquid- and gas-phase pressure, temperature of the formation and for collecting samples for chemical analyses in both the liquid and gas phases. Neutron probe logging is performed in two separate, smaller borings, VZMS-NP-1 and VZMS-NP-2, to obtain soil moisture content data. Preliminary details of soil gas analyses, laboratory field testing of soil samples, particle size analyses and neutron probe data are presented.

  7. Software installation and condition data distribution via CernVM File System in ATLAS

    NASA Astrophysics Data System (ADS)

    De Salvo, A.; De Silva, A.; Benjamin, D.; Blomer, J.; Buncic, P.; Harutyunyan, A.; Undrus, A.; Yao, Y.

    2012-12-01

    The ATLAS collaboration is managing one of the largest collections of software among the High Energy Physics experiments. Traditionally, this software has been distributed via rpm or pacman packages, and has been installed in every site and user's machine, using more space than needed since the releases share common files but are installed in their own trees. As soon as the software has grown in size and number of releases this approach showed its limits, in terms of manageability, used disk space and performance. The adopted solution is based on the CernVM File System, a fuse-based HTTP, read-only filesystem which guarantees file de-duplication, on-demand file transfer with caching, scalability and performance. Here we describe the ATLAS experience in setting up the CVMFS facility and putting it into production, for different type of use-cases, ranging from single users’ machines up to large data centers, for both software and conditions data. The performance of CernVM-FS, both with software and condition data access, will be shown, comparing with other filesystems currently in use by the collaboration.

  8. LED system performance in a trial installation - one year later: Yuma border patrol, Yuma, Arizona

    SciTech Connect

    Wilkerson, Andrea M.; Davis, Robert G.

    2015-04-01

    The Yuma Sector Border Patrol Area is a high temperature and high solar radiation environment, providing an opportunity for the U.S. Department of Energy (DOE) to study thermal effects on outdoor light-emitting diode (LED) luminaires outside of the testing laboratory. Six LED luminaires were installed on three poles on the U.S.- Mexico border in February 2014 as part of a trial installation, which was detailed in a prior GATEWAY report.1 The initial trial installation was intended as a short - term test of six luminaires installed on three poles before proceeding with the complete installation of over 400 luminaires. Unexpected delays in the full installation have prevented the detailed evaluations initially planned, but the six installed LED luminaires continue to be monitored, and over the past year illuminance measurements were recorded initially in February 2014 and again in September 2014 at about 2500 hours of operation and in March 2015 at about 5000 hours of operation.

  9. Solar heating and domestic hot water system installed at North Dallas High School. Final report

    SciTech Connect

    Not Available

    1980-05-01

    This Document is the Final Technical Report of the Solar Energy System located at the North Dallas High School, Dallas, Texas. The system is designed as a retrofit in a three story with basement, concrete frame high school building. The building was air conditioned with an electric drive 300-ton chilled water central system in 1973. The building contains 126,000 square feet and the solar energy system will preheat 100 percent of domestic hot water and supply 47.5 percent of annual building heating requirements. During the building cooling seasons, the solar energy system will supply 100 percent of domestic hot water. The solar energy system consists of 4800 square feet (320 panels) Lennox/Honeywell flat plate liquid collector subsystem, and a 10,000 gallon steel tank storage subsystem circulating hot water producing 686.6 x 10/sup 6/ Btu/year (specified) building heating and domestic hot water heating. The start up date is December 4, 1979. Extracts from the site files, specification references for solar modification to existing building heating and domestic hot water systems, drawings, installation, operation and maintenance instructions are presented.

  10. Technical Analysis of Installed Micro-Combined Heat and Power Fuel-Cell System

    SciTech Connect

    Brooks, Kriston P.; Makhmalbaf, Atefe

    2014-10-31

    Combined heat and power fuel cell systems (CHP-FCSs) provide consistent electrical power and hot water with greater efficiency and lower emissions than alternative sources. These systems can be used either as baseload, grid-connected, or as off-the-grid power sources. This report presents a technical analysis of 5 kWe CHP-FCSs installed in different locations in the U.S. At some sites as many as five 5 kWe system is used to provide up to 25kWe of power. Systems in this power range are considered “micro”-CHP-FCS. To better assess performance of micro-CHP-FCS and understand their benefits, the U.S. Department of Energy worked with ClearEdge Power to install fifteen 5-kWe PBI high temperature PEM fuel cells (CE5 models) in the commercial markets of California and Oregon. Pacific Northwest National Laboratory evaluated these systems in terms of their economics, operations, and technical performance. These units were monitored from September 2011 until June 2013. During this time, about 190,000 hours of data were collected and more than 17 billion data points were analyzed. Beginning in July 2013, ten of these systems were gradually replaced with ungraded systems (M5 models) containing phosphoric acid fuel cell technology. The new units were monitored until June 2014 until they went offline because ClearEdge was bought by Doosan at the time and the new manufacturer did not continue to support data collection and maintenance of these units. During these two phases, data was collected at once per second and data analysis techniques were applied to understand behavior of these systems. The results of this analysis indicate that systems installed in the second phase of this demonstration performed much better in terms of availability, consistency in generation, and reliability. The average net electrical power output increased from 4.1 to 4.9 kWe, net heat recovery from 4.7 to 5.4 kWth, and system availability improved from 94% to 95%. The average net system electric

  11. Space Suit Portable Life Support System (PLSS) 2.0 Pre-Installation Acceptance (PIA) Testing

    NASA Technical Reports Server (NTRS)

    Anchondo, Ian; Cox, Marlon; Meginnis, Carly; Westheimer, David; Vogel, Matt R.

    2016-01-01

    Following successful completion of the space suit Portable Life Support System (PLSS) 1.0 development and testing in 2011, the second system-level prototype, PLSS 2.0, was developed in 2012 to continue the maturation of the advanced PLSS design. This advanced PLSS is intended to reduce consumables, improve reliability and robustness, and incorporate additional sensing and functional capabilities over the current Space Shuttle/International Space Station Extravehicular Mobility Unit (EMU) PLSS. PLSS 2.0 represents the first attempt at a packaged design comprising first generation or later component prototypes and medium fidelity interfaces within a flight-like representative volume. Pre-Installation Acceptance (PIA) is carryover terminology from the Space Shuttle Program referring to the series of test sequences used to verify functionality of the EMU PLSS prior to installation into the Space Shuttle airlock for launch. As applied to the PLSS 2.0 development and testing effort, PIA testing designated the series of 27 independent test sequences devised to verify component and subsystem functionality, perform in situ instrument calibrations, generate mapping data, define set-points, evaluate control algorithms, evaluate hardware performance against advanced PLSS design requirements, and provide quantitative and qualitative feedback on evolving design requirements and performance specifications. PLSS 2.0 PIA testing was carried out in 2013 and 2014 using a variety of test configurations to perform test sequences that ranged from stand-alone component testing to system-level testing, with evaluations becoming increasingly integrated as the test series progressed. Each of the 27 test sequences was vetted independently, with verification of basic functionality required before completion. Because PLSS 2.0 design requirements were evolving concurrently with PLSS 2.0 PIA testing, the requirements were used as guidelines to assess performance during the tests; after the

  12. Space Suit Portable Life Support System (PLSS) 2.0 Pre-Installation Acceptance (PIA) Testing

    NASA Technical Reports Server (NTRS)

    Watts, Carly; Vogel, Matthew

    2016-01-01

    Following successful completion of the space suit Portable Life Support System (PLSS) 1.0 development and testing in 2011, the second system-level prototype, PLSS 2.0, was developed in 2012 to continue the maturation of the advanced PLSS design which is intended to reduce consumables, improve reliability and robustness, and incorporate additional sensing and functional capabilities over the current Space Shuttle/International Space Station Extravehicular Mobility Unit (EMU) PLSS. PLSS 2.0 represents the first attempt at a packaged design comprising first generation or later component prototypes and medium fidelity interfaces within a flight-like representative volume. Pre-Installation Acceptance (PIA) is carryover terminology from the Space Shuttle Program referring to the series of test sequences used to verify functionality of the EMU PLSS prior to installation into the Space Shuttle airlock for launch. As applied to the PLSS 2.0 development and testing effort, PIA testing designated the series of 27 independent test sequences devised to verify component and subsystem functionality, perform in situ instrument calibrations, generate mapping data to define set-points for control algorithms, evaluate hardware performance against advanced PLSS design requirements, and provide quantitative and qualitative feedback on evolving design requirements and performance specifications. PLSS 2.0 PIA testing was carried out from 3/20/13 - 3/15/14 using a variety of test configurations to perform test sequences that ranged from stand-alone component testing to system-level testing, with evaluations becoming increasingly integrated as the test series progressed. Each of the 27 test sequences was vetted independently, with verification of basic functionality required before completion. Because PLSS 2.0 design requirements were evolving concurrently with PLSS 2.0 PIA testing, the requirements were used as guidelines to assess performance during the tests; after the completion of PIA

  13. Installing and Commissioning a New Radioactive Waste Tracking System - Lessons Learned

    SciTech Connect

    Robert S. Anderson; Miklos Garamszeghy; Fred Rodrigues; Ed Nicholls

    2005-05-01

    Ontario Power Generation (OPG) recognizes the importance of information management particularly with regards to its low and intermediate level waste program. Various computer based waste tracking systems have been used in OPG since the 1980s. These systems tracked the physical receipt, processing, storage, and inventory of the waste. As OPG moved towards long-term management (e.g. disposal), it was recognized that tracking of more detailed waste characterization information was important. This required either substantial modification of the existing system to include a waste characterization module or replacing it entirely with a new system. After a detailed review of available options, it was decided that the existing waste tracking application would be replaced with the Idaho National Laboratory’s (INL) Integrated Waste Tracking System (IWTS). Installing and commissioning a system which must receive historical operational waste management information (data) and provide new features, required much more attention than was originally considered. The operational readiness of IWTS required extensive vetting and preparation of historic data (which itself had been created from multiple databases in varied formats) to ensure a consistent format for import of some 30,000-container records, and merging and linking these container records to a waste stream based characterization database. This paper will discuss some of the strengths and weaknesses contributing to project success or hindrance so that others can understand and minimize the difficulties inherent in a project of this magnitude.

  14. RADIATION PROTECTION SYSTEM INSTALLATION FOR THE ACCELERATOR PRODUCTION OF TRITIUM/LOW ENERGY DEMONSTRATION ACCELERATOR PROJECT (APT/LEDA)

    SciTech Connect

    J. WILMARTH; M. SMITH; T. TOMEI

    1999-07-01

    The APT/LEDA personnel radiation protection system installation was accomplished using a flexible, modular proven system which satisfied regulatory orders, project design criteria, operational modes, and facility requirements. The goal of providing exclusion and safe access of personnel to areas where prompt radiation in the LEDA facility is produced was achieved with the installation of a DOE-approved Personnel Access Control System (PACS). To satisfy the facility configuration design, the PACS, a major component of the overall radiation safety system, conveniently provided five independent areas of personnel access control. Because of its flexibility and adaptability the Los Alamos Neutron Science Center (LANSCE) designed Radiation Security System (RSS) was efficiently configured to provide the desired operational modes and satisfy the APT/LEDA project design criteria. The Backbone Beam Enable (BBE) system based on the LANSCE RSS provided the accelerator beam control functions with redundant, hardwired, tamper-resistant hardware. The installation was accomplished using modular components.

  15. Governor stability simulations of Svartisen power plant verified by the installed monitoring system on site

    NASA Astrophysics Data System (ADS)

    Nielsen, T. K.; Kjeldsen, M.

    2010-08-01

    Many Norwegian hydro power plants have complex lay-out with several reservoirs, broke intakes, surge shafts and even air cushion chambers. There are kilometers of excavated tunnels as well as long tail water systems. The stations are often equipped by multiple of turbines, both in series and parallel. A number of operation modes are therefore possible. Doing transient simulations and simulations of governor stability in the design phase, the problem is to find the worst case scenario regarding these operating modes. Svartisen power plant has been of particular interest these days. The power plant is originally designed for two 350 MW Francis turbines, however, only one turbine was installed. When designed, governor stability was regarded as problematic due to the long penstock. A long penstock will give a too high time constant for the hydraulic inertia. The main problem here is, however, the water hammer frequency that interferes with the governor performance. The frequency is in the same range as the cross frequency. Therefore the governor will react on these water hammer waves, which in its nature is notoriously unstable. The common solution is to build an air cushion and thereby increase the water hammer frequency above the cross frequency. The expenses were, however, deemed too high, and it was necessary to seek for other solutions. A pressure feedback on the governor was introduced in order to have stable operation at least for two turbines. With only one turbine installed, the pressure feedback has not been activated because, based on the simulations, it was regarded unnecessary. Even if the original simulations shows good stability margins when only one turbine is running, there has been some indications that the aggregate has suffered from instability. In 2004 Svartisen Power Plant was equipped with a comprehensive monitoring system. Both the turbine and the generator performance have been observed. This gives valuable information on how the hydropower

  16. Installation and impact of sound field systems on hearing and hearing impaired children and their teachers

    NASA Astrophysics Data System (ADS)

    Dockrell, Julie; Rigby, Kate; Shield, Bridget; Carey, Anne

    2005-04-01

    An evaluation of the installation and use of sound field systems in ten schools in England has been carried out. The evaluation included noise surveys of classrooms, questionnaire surveys of pupils and teachers and experimental testing of children with and without the use of SFS. The aim of this project was to investigate the impact of SFS on teaching and learning in elementary school classrooms, in particular, to ascertain whether the SFS differentially benefited children with hearing impairments. Barriers to teachers use of SFS were found in terms of equipment placement and maintenance, appropriate training, and teacher's knowledge. Nonetheless positive reports are recorded from both teachers and pupils. Teachers' and pupils' perceptions are compared with objective data evaluating change in performance when SFS are used for language and cognitive tasks. Data from children with hearing impairments and additional learning needs are analyzed for comparative purposes. The results are discussed in terms of effective practice for the use of SFS with elementary school pupils.

  17. Systems engineering aspects to installation of the phased multi-year LANSCE-refurbishment project

    SciTech Connect

    Pieck, Martin; Erickson, John E; Gulley, Mark S; Jones, Kevin W; Rybarcyk, Larry J

    2009-01-01

    The LANSCE Refurbishment Project (LANSCE-R) is a phased, multiyear project. The project is scheduled to start refurbishment in the 2nd quarter of fiscal year 2011. Closeout will occur during the 4th quarter of FY2016. During the LANSCE-R project, installation of project components must be scheduled during six annual 6-month maintenance-outages and not conflict with annual LANSCE operational commitments to its user facilities. The project and operations schedules must be synchronized carefully. Therefore, the scheduled maintenance outages, functional testing (with beam off, by primarily project personnel) and commissioning (with beam on, by primarily Accelerator Operation Technology (AOT) personnel) must be managed to accommodate operation. Active and effective coordination and communication between the project and AOT personnel must be encouraged to identify, as early as possible, any operational issues. This paper will report on the systems engineering approach to the integration and control of engineering activities.

  18. DEMONSTRATiON OF A SUBSURFACE CONTAINMENT SYSTEM FOR INSTALLATION AT DOE WASTE SITES

    SciTech Connect

    Thomas J. Crocker; Verna M. Carpenter

    2003-05-21

    Between 1952 and 1970, DOE buried mixed waste in pits and trenches that now have special cleanup needs. The disposal practices used decades ago left these landfills and other trenches, pits, and disposal sites filled with three million cubic meters of buried waste. This waste is becoming harmful to human safety and health. Today's cleanup and waste removal is time-consuming and expensive with some sites scheduled to complete cleanup by 2006 or later. An interim solution to the DOE buried waste problem is to encapsulate and hydraulically isolate the waste with a geomembrane barrier and monitor the performance of the barrier over its 50-yr lifetime. The installed containment barriers would isolate the buried waste and protect groundwater from pollutants until final remediations are completed. The DOE has awarded a contract to RAHCO International, Inc.; of Spokane, Washington; to design, develop, and test a novel subsurface barrier installation system, referred to as a Subsurface Containment System (SCS). The installed containment barrier consists of commercially available geomembrane materials that isolates the underground waste, similar to the way a swimming pools hold water, without disrupting hazardous material that was buried decades ago. The barrier protects soil and groundwater from contamination and effectively meets environmental cleanup standards while reducing risks, schedules, and costs. Constructing the subsurface containment barrier uses a combination of conventional and specialized equipment and a unique continuous construction process. This innovative equipment and construction method can construct a 1000-ft-long X 34-ft-wide X 30-ft-deep barrier at construction rates to 12 Wday (8 hr/day operation). Life cycle costs including RCRA cover and long-term monitoring range from approximately $380 to $590/cu yd of waste contained or $100 to $160/sq ft of placed barrier based upon the subsurface geology surrounding the waste. Project objectives for Phase I

  19. Installation of spectrally selective imaging system in RF negative ion source.

    PubMed

    Ikeda, K; Wünderlich, D; Fantz, U; Heinemann, B; Kisaki, M; Nagaoka, K; Nakano, H; Osakabe, M; Tsumori, K; Geng, S; Kaneko, O; Takeiri, Y

    2016-02-01

    A spectrally selective imaging system has been installed in the RF negative ion source in the International Thermonuclear Experimental Reactor-relevant negative ion beam test facility ELISE (Extraction from a Large Ion Source Experiment) to investigate distribution of hydrogen Balmer-α emission (Hα) close to the production surface of hydrogen negative ion. We selected a GigE vision camera coupled with an optical band-path filter, which can be controlled remotely using high speed network connection. A distribution of Hα emission near the bias plate has been clearly observed. The same time trend on Hα intensities measured by the imaging diagnostic and the optical emission spectroscopy is confirmed. PMID:26931995

  20. Feedstock Production Datasets from the Bioenergy Knowledge Discovery Framework

    DOE Data Explorer

    The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. [copied from https://www.bioenergykdf.net/content/about] Holdings include datasets, models, and maps and the collections are growing due to both DOE contributions and data uploads from individuals.

  1. Biofuel Production Datasets from DOE's Bioenergy Knowledge Discovery Framework (KDF)

    DOE Data Explorer

    The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. [copied from https://www.bioenergykdf.net/content/about]

    Holdings include datasets, models, and maps and the collections arel growing due to both DOE contributions and data uploads from individuals.

  2. Biofuel Distribution Datasets from the Bioenergy Knowledge Discovery Framework

    DOE Data Explorer

    The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. [copied from https://www.bioenergykdf.net/content/about] Holdings include datasets, models, and maps and the collections are growing due to both DOE contributions and individuals' data uploads.

  3. Feedstock Logistics Datasets from DOE's Bioenergy Knowledge Discovery Framework (KDF)

    DOE Data Explorer

    The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. Holdings include datasets, models, and maps. [from https://www.bioenergykdf.net/content/about

  4. Install Waste Heat Recovery Systems for Fuel-Fired Furnaces (English/Chinese) (Fact Sheet)

    SciTech Connect

    Not Available

    2011-10-01

    Chinese translation of ITP fact sheet about installing Waste Heat Recovery Systems for Fuel-Fired Furnaces. For most fuel-fired heating equipment, a large amount of the heat supplied is wasted as exhaust or flue gases. In furnaces, air and fuel are mixed and burned to generate heat, some of which is transferred to the heating device and its load. When the heat transfer reaches its practical limit, the spent combustion gases are removed from the furnace via a flue or stack. At this point, these gases still hold considerable thermal energy. In many systems, this is the greatest single heat loss. The energy efficiency can often be increased by using waste heat gas recovery systems to capture and use some of the energy in the flue gas. For natural gas-based systems, the amount of heat contained in the flue gases as a percentage of the heat input in a heating system can be estimated by using Figure 1. Exhaust gas loss or waste heat depends on flue gas temperature and its mass flow, or in practical terms, excess air resulting from combustion air supply and air leakage into the furnace. The excess air can be estimated by measuring oxygen percentage in the flue gases.

  5. The effectiveness of the installation of a mobile voice communication system in a university hospital.

    PubMed

    Hanada, Eisuke; Fujiki, Tadayoshi; Nakakuni, Hideaki; Sullivan, Corbet Vernon

    2006-04-01

    In large hospitals, collaborative clinical practice is currently emphasized, with members of various departments expected to work as a team. The importance of accurate communication among the team members is of utmost importance. To improve such communication, the introduction of mobile voice communication systems has received much attention in Japan. Shimane University Hospital also introduced a Personal Handy-phone System (PHS) for doctors. In the traditional setting, much time was wasted searching for doctors through multiple calls on fixed-line telephones. In order to measure the effectiveness of our system, the change in the number of calls made on fixed-line telephones before and after PHS installation was compared. The total number of calls was reduced by more than 35%, and the number of calls to the wards on weekdays was reduced by half. Mobile telecommunication systems with small output power, such as PHS, are known to cause little interference with medical devices which makes it possible to use mobile voice communication safely in hospitals. The improvement in communication by this systems resulted in an improvement in labor efficiency.

  6. Joint BioEnergy Institute

    SciTech Connect

    Keasling, Jay; Simmons, Blake; Tartaglino, Virginia; Baidoo, Edward; Kothari, Ankita

    2015-06-15

    The Joint BioEnergy Institute (JBEI) is a U.S. Department of Energy (DOE) Bioenergy Research Center dedicated to developing advanced biofuels—liquid fuels derived from the solar energy stored in plant biomass that can replace gasoline, diesel and jet fuels.

  7. Recommendations for the design and the installation of large laser scanning microscopy systems

    NASA Astrophysics Data System (ADS)

    Helm, P. Johannes

    2012-03-01

    Laser Scanning Microscopy (LSM) has since the inventions of the Confocal Scanning Laser Microscope (CLSM) and the Multi Photon Laser Scanning Microscope (MPLSM) developed into an essential tool in contemporary life science and material science. The market provides an increasing number of turn-key and hands-off commercial LSM systems, un-problematic to purchase, set up and integrate even into minor research groups. However, the successful definition, financing, acquisition, installation and effective use of one or more large laser scanning microscopy systems, possibly of core facility character, often requires major efforts by senior staff members of large academic or industrial units. Here, a set of recommendations is presented, which are helpful during the process of establishing large systems for confocal or non-linear laser scanning microscopy as an effective operational resource in the scientific or industrial production process. Besides the description of technical difficulties and possible pitfalls, the article also illuminates some seemingly "less scientific" processes, i.e. the definition of specific laboratory demands, advertisement of the intention to purchase one or more large systems, evaluation of quotations, establishment of contracts and preparation of the local environment and laboratory infrastructure.

  8. COMPREHENSIVE DIAGNOSTIC AND IMPROVEMENT TOOLS FOR HVAC-SYSTEM INSTALLATIONS IN LIGHT COMMERCIAL BUILDINGS

    SciTech Connect

    Abram Conant; Mark Modera; Joe Pira; John Proctor; Mike Gebbie

    2004-10-31

    Proctor Engineering Group, Ltd. (PEG) and Carrier-Aeroseal LLP performed an investigation of opportunities for improving air conditioning and heating system performance in existing light commercial buildings. Comprehensive diagnostic and improvement tools were created to address equipment performance parameters (including airflow, refrigerant charge, and economizer operation), duct-system performance (including duct leakage, zonal flows and thermal-energy delivery), and combustion appliance safety within these buildings. This investigation, sponsored by the National Energy Technology Laboratory, a division of the U.S. Department of Energy, involved collaboration between PEG and Aeroseal in order to refine three technologies previously developed for the residential market: (1) an aerosol-based duct sealing technology that allows the ducts to be sealed remotely (i.e., without removing the ceiling tiles), (2) a computer-driven diagnostic and improvement-tracking tool for residential duct installations, and (3) an integrated diagnosis verification and customer satisfaction system utilizing a combined computer/human expert system for HVAC performance. Prior to this work the aerosol-sealing technology was virtually untested in the light commercial sector--mostly because the savings potential and practicality of this or any other type of duct sealing had not been documented. Based upon the field experiences of PEG and Aeroseal, the overall product was tailored to suit the skill sets of typical HVAC-contractor personnel.

  9. Installation of a variable-angle spectrometer system for monitoring diffuse and global solar radiation

    NASA Astrophysics Data System (ADS)

    Ormachea, O.; Abrahamse, A.; Tolavi, N.; Romero, F.; Urquidi, O.; Pearce, J. M.; Andrews, R.

    2013-11-01

    We report on the design and installation of a spectrometer system for monitoring solar radiation in Cochabamba, Bolivia. Both the light intensity and the spectral distribution affect the power produced by a photovoltaic device. Local variations in the solar spectrum (especially compared to the AM1.5 standard) may have important implications for device optimization and energy yield estimation. The spectrometer system, based on an Ocean Optics USB4000 (300-900nm) spectrometer, was designed to increase functionality. Typically systems only record the global horizontal radiation. Our system moves a fiber-optic cable 0-90 degrees and takes measurements in 9 degree increments. Additionally, a shadow band allows measurement of the diffuse component of the radiation at each position. The electronic controls utilize an Arduino UNO microcontroller to synchronizes the movement of two PAP bipolar (stepper) motors with the activation of the spectrometer via an external trigger. The spectrometer was factory calibrated for wavelength and calibrated for absolute irradiance using a Sellarnet SL1-Cal light source. We present preliminary results from data taken March-June, 2013, and comment on implications for PV devices in Cochabamba.

  10. Bioenergy and Biodiversity: Key Lessons from the Pan American Region.

    PubMed

    Kline, Keith L; Martinelli, Fernanda Silva; Mayer, Audrey L; Medeiros, Rodrigo; Oliveira, Camila Ortolan F; Sparovek, Gerd; Walter, Arnaldo; Venier, Lisa A

    2015-12-01

    Understanding how large-scale bioenergy production can affect biodiversity and ecosystems is important if society is to meet current and future sustainable development goals. A variety of bioenergy production systems have been established within different contexts throughout the Pan American region, with wide-ranging results in terms of documented and projected effects on biodiversity and ecosystems. The Pan American region is home to the majority of commercial bioenergy production and therefore the region offers a broad set of experiences and insights on both conflicts and opportunities for biodiversity and bioenergy. This paper synthesizes lessons learned focusing on experiences in Canada, the United States, and Brazil regarding the conflicts that can arise between bioenergy production and ecological conservation, and benefits that can be derived when bioenergy policies promote planning and more sustainable land-management systems. We propose a research agenda to address priority information gaps that are relevant to biodiversity concerns and related policy challenges in the Pan American region. PMID:26105970

  11. Hydraulic Shuttle Irradiation System (HSIS) Recently Installed in the Advanced Test Reactor (ATR)

    SciTech Connect

    A. Joseph Palmer; Gerry L. McCormick; Shannon J. Corrigan

    2010-06-01

    2010 International Congress on Advances in Nuclear Power Plants (ICAPP’10) ANS Annual Meeting Imbedded Topical San Diego, CA June 13 – 17, 2010 Hydraulic Shuttle Irradiation System (HSIS) Recently Installed in the Advanced Test Reactor (ATR) Author: A. Joseph Palmer, Mechanical Engineer, Irradiation Test Programs, 208-526-8700, Joe.Palmer@INL.gov Affiliation: Idaho National Laboratory P.O. Box 1625, MS-3840 Idaho Falls, ID 83415 INL/CON-10-17680 ABSTRACT Most test reactors are equipped with shuttle facilities (sometimes called rabbit tubes) whereby small capsules can be inserted into the reactor and retrieved during power operations. With the installation of Hydraulic Shuttle Irradiation System (HSIS) this capability has been restored to the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL). The general design and operating principles of this system were patterned after the hydraulic rabbit at Oak Ridge National Laboratory’s (ORNL) High Flux Isotope Reactor (HFIR), which has operated successfully for many years. Using primary coolant as the motive medium the HSIS system is designed to simultaneously transport fourteen shuttle capsules, each 16 mm OD x 57 mm long, to and from the B-7 position of the reactor. The B-7 position is one of the higher flux positions in the reactor with typical thermal and fast (>1 Mev) fluxes of 2.8E+14 n/cm2/sec and 1.9E+14 n/cm2/sec respectively. The available space inside each shuttle is approximately 14 mm diameter x 50 mm long. The shuttle containers are made from titanium which was selected for its low neutron activation properties and durability. Shuttles can be irradiated for time periods ranging from a few minutes to several months. The Send and Receive Station (SRS) for the HSIS is located 2.5 m deep in the ATR canal which allows irradiated shuttles to be easily moved from the SRS to a wet loaded cask, or transport pig. The HSIS system first irradiated (empty) shuttles in September 2009 and has since completed

  12. Design, Observing and Data Systems, and Final Installation of the NEPTUNE Canada Regional Cabled Ocean Observatory

    NASA Astrophysics Data System (ADS)

    Barnes, C. R.; Best, M. M.; Johnson, F. R.; Phibbs, P.; Pirenne, B.

    2009-05-01

    NEPTUNE Canada (NC; www.neptunecanada.ca) will complete most of the installation of the world's first regional cabled ocean observatory in late 2009 off Canada's west coast. It will comprise five main observatory nodes (100-2700m water depths) linked by an 800km backbone cable delivering 10kVDC power and 10Gbps communications bandwidth to hundreds of sensors, with a 25-year design life. Infrastructure (100M) and initial operational funding (20M) is secured. University of Victoria (UVic) leads a consortium of 12 Canadian universities, hosts the coastal VENUS cabled observatory, with Ocean Networks Canada (ONC) providing management oversight. Observatory architecture has a trunk and branch topology. Installed in late 2007, the backbone cable loops from/to UVic's Port Alberni shore station. The wet plant's design, manufacture and installation was contracted to Alcatel-Lucent. Each node provides six interface ports for connection of science instrument arrays or extensions. Each port provides dual optical Ethernet links and up to 9kW of electrical power at 400VDC. Junction boxes, designed and built by OceanWorks support up to 10 instruments each and can be daisy- chained. They accommodate both serial and 10/100 Ethernet instruments, and provide a variety of voltages (400V, 48V, 24V, 15V). Backbone equipment has all been qualified and installed; shore station re-equipping is complete; junction boxes are manufactured. A major marine program will deploy nodes and instruments in July-September 2009; instruments to one node will probably be deferred until 2010. Observatory instruments will be deployed in subsurface (boreholes), on seabed, and buoyed through the water column. Over 130 instruments (over 40 different types) will host several hundred sensors; mobile assets include a tethered crawler and a 400m vertical profiler. Experiments will address: earthquake dynamics and tsunami hazards; fluid fluxes in both ocean crust and sediments, including gas hydrates; ocean

  13. Preparation for Retrievals from Sellafield Legacy Ponds Installation of the Gantry Refurbishment System

    SciTech Connect

    Ellison, M.

    2008-07-01

    Retrieval of sludge and fuel from the First Generation Magnox Fuel Storage Pond, and its safe long term storage is one of the NDA's top priorities in the UK clean up programme. The plant is currently undergoing a series of major modifications in preparation for the retrievals operations. The most visible example of these modifications is the Gantry Refurbishment System (GRS), a major work platform which has recently been lifted onto the pond long travel girders used by the Skip Handler. This paper describes the design, manufacture, works test, and site installation of this major piece of equipment. The installation lift, involving the use of an 800Te crane was one of the largest lifts undertaken at Sellafield. The GRS is a mobile platform structure which is designed to be pushed or pulled along the long travel girders by the Skip Handler. Its principle function is to provide a safe and shielded working platform from which to undertake refurbishment of the Skip Handler long travel girders and support structure. The potential hazards and consequences resulting from the modification were fully understood and controls were put in place to ensure that the risk of carrying out the work was as low as reasonably practicable. The work was authorised by the NII, Sellafield Nuclear Safety Committee and an independent readiness review panel. Despite less than perfect weather in the run up to the lift, the GRS was successfully and safely lifted onto the pond on 18 October 2006, the culmination of three years of planning, engineering and construction. (authors)

  14. Tracking the Sun VIII. The Installed Price of Residential and Non-Residential Photovoltaic Systems in the United States

    SciTech Connect

    Barbose, Galen L.; Darghouth, Naïm R.; Millstein, Dev; Spears, Mike; Wiser, Ryan H.; Buckley, Michael; Widiss, Rebecca; Grue, Nick

    2015-08-01

    Now in its eighth edition, Lawrence Berkeley National Laboratory (LBNL)’s Tracking the Sun report series is dedicated to summarizing trends in the installed price of grid-connected solar photovoltaic (PV) systems in the United States. The present report focuses on residential and nonresidential systems installed through year-end 2014, with preliminary trends for the first half of 2015. As noted in the text box below, this year’s report incorporates a number of important changes and enhancements. Among those changes, this year's report focuses solely on residential and nonresidential PV systems; data on utility-scale PV are reported in LBNL’s companion Utility-Scale Solar report series. Installed pricing trends presented within this report derive primarily from project-level data reported to state agencies and utilities that administer PV incentive programs, solar renewable energy credit (SREC) registration systems, or interconnection processes. In total, data were collected for roughly 400,000 individual PV systems, representing 81% of all U.S. residential and non-residential PV capacity installed through 2014 and 62% of capacity installed in 2014, though a smaller subset of this data were used in analysis.

  15. Solar heating and cooling system installed at Leavenworth, Kansas. Final report

    SciTech Connect

    Perkins, R. M.

    1980-06-01

    The solar heating and cooling system installed at the headquarters of Citizens Mutual Savings Association in Leavenworth, Kansas, is described in detail. The project is part of the U.S. Department of Energy's solar demonstration program and became operational in March, 1979. The designer was TEC, Inc. Consulting Engineers, Kansas City, Missouri and contractor was Norris Brothers, Inc., Lawrence, Kansas. The solar system is expected to furnish 90 percent of the overall heating load, 70 percent of the cooling load and 100 percent of the domestic hot water load. The building has two floors with a total of 12,000 square feet gross area. The system has 120 flat-plate liquid solar panels with a net area of 2200 square feet. Five, 3-ton Arkla solar assisted absorption units provide the cooling, in conjunction with a 3000 gallon chilled water storage tank. Two, 3000 gallon storage tanks are provided with one designated for summer use, whereas both tanks are utilized during winter.

  16. Design and installation of a low particulate, ultrahigh vacuum system for a high power free-electron laser

    SciTech Connect

    Fred Dylla; George Biallas; Butch Dillon-Townes; Erich Feldl; Ganapati Rao Myneni; Jim Parkinson; Joe Preble; Tim Siggins; S. Williams; Mark Wiseman

    1999-03-01

    A high-average power (kW) infrared (IR) free-electron laser (FEL) is currently being commissioned for the Jefferson Laboratory FEL User Facility. The IR FEL is driven by a unique superconducting rf linac which is recirculated to recover electron beam power that is not radiated in the FEL. The design and installation of the vacuum system for the FEL involved particular attention to minimizing particulate contamination which could cause problems with the superconducting acceleration cavities and the high power FEL optics. Particulate contamination levels of all vacuum components were monitored during the cleaning process using laser scattering. Cleaning, transport, and installation procedures were developed to minimize the contamination of the complete system. We will summarize a data base we compiled of particulate contamination levels of the various components installed in the FEL vacuum system.

  17. One-year follow-up study of performance of radon mitigation systems installed in Tennessee Valley houses

    SciTech Connect

    Dudney, C.S.; Wilson, D.L.; Saultz, R.J.; Matthews, T.G.

    1990-01-01

    Subbarrier depressurization systems were installed for radon mitigation in two basement ranchers in Oak Ridge, TN, and in two ranchers with partial basements in Huntsville, AL. System performance parameters, including pressure field extension, subslab permeability, and indoor radon concentrations were followed in each house for a year or longer. 9 refs., 3 figs., 3 tabs.

  18. Solar heating, cooling and domestic hot water system installed at Columbia Gas System Service Corp. , Columbus, Ohio. Final report

    SciTech Connect

    1980-11-01

    The Solar Energy System located at the Columbia Gas Corporation, Columbus, Ohio, has 2978 ft/sup 2/ of Honeywell single axis tracking, concentrating collectors and provides solar energy for space heating, space cooling and domestic hot water. A 1,200,000 Btu/h Bryan water-tube gas boiler provides hot water for space heating. Space cooling is provided by a 100 ton Arkla hot water fired absorption chiller. Domestic hot water heating is provided by a 50 gallon natural gas domestic storage water heater. Extracts are included from the site files, specification references, drawings, installation, operation and maintenance instructions.

  19. Towards a Real-Time Embedded System for Water Monitoring Installed in a Robotic Sailboat

    PubMed Central

    da Silva Junior, Andouglas Goncalves; de Lima Sa, Sarah Thomaz; dos Santos, Davi Henrique; de Negreiros, Álvaro Pinto Ferrnandes; de Souza Silva, João Moreno Vilas Boas; Álvarez Jácobo, Justo Emílio; Garcia Gonçalves, Luiz Marcos

    2016-01-01

    Problems related to quality (and quantity) of water in natural resources or in artificial reservoirs are frequently arising and are at the center of attention of authorities and governments around the world. Many times the monitoring is not performed in an efficient time frame and a precise manner, whereas the adoption of fast and punctual solutions would undoubtedly improve the water quality and consequently enhance the life of people. To minimize or diminish such kinds of problems, we propose an architecture for sensors installed in a robotic platform, an autonomous sail boat, able to acquire raw data relative to water quality, to process and make them available to people that might be interested in such information. The main contributions are the sensors architecture itself, which uses low cost sensors, with practical experimentation done with a prototype. Results show data collected for points in lakes and rivers in the northeast of Brazil. This embedded system is fixed in the sailboat robot with the intention to facilitate the study of water quality for long endurance missions. This robot can help monitoring water bodies in a more consistent manner. Nonetheless the system can also be used with fixed vases or buoys in strategic points. PMID:27509506

  20. Payload installation and deployment aid for space shuttle orbiter spacecraft remote manipulator system

    NASA Technical Reports Server (NTRS)

    Ross, T. O.

    1982-01-01

    An aid concept known as the PIDA (Payload Installation and Deployment Aid) is presented as a way to assist the Remote Manipulator System (RMS) by relaxing the accuracy required during payload handling in the payload bay. The aid concept was designed and developed to move payloads through a prescribed path between the confined quarters of the payload bay and a position outside the critical maneuvering area of the Orbiter. An androgynous docking mechanism is used at the payload/PIDA interfaces for normal docking functions that also serves as the structural connection between the payload and the Orbiter, that is capable of being loosened to prevent transfer of loads between a stowed payload and the PIDA structure. A gearmotor driven drum/cable system is used in the docking mechanism in a unique manner to center the attenuator assembly, align the ring and guide assembly (docking interface) in roll, pitch, and yaw, and rigidize the mechanism at a nominal position. A description of the design requirements and the modes of operation of the various functions of the deployment and the docking mechanisms are covered.

  1. System-Level Verification of Science Instruments Prior to Installation at TMT

    NASA Astrophysics Data System (ADS)

    Ebbets, Dennis; Lystrup, Makenzie

    2014-07-01

    Science instruments for TMT will share many similarities with those built for large space observatories such as HST and JWST. They will be physically large, scientifically sophisticated and technologically complex. They will represent very significant investments of time and money by PI-led teams with common scientific interests, but from many academic institutions, industry partners and even nations. These teams will verify the basic functionality and performance of their instruments, but may not each have facilities to test the many complex interfaces to and interactions with the observatory. Once installed on the telescope and commissioned, the instruments will be expected to function for many years with very limited opportunities for servicing. These and other considerations argue that a common facility that provides reasonably high fidelity simulation of the TMT mechanical and optical environments, AO system interfaces, operations and data management systems and other critical functions would enable a confidence-building final step in the Integration and Test process. This poster illustrates how high-quality Ground Support Equipment was used to prepare seven instruments for Hubble, develop and validate wave-front sensing and control algorithms for James Webb, simulate the optical characteristics of JWST, conduct vibration and modal surveys, and produce performance data that were compared with predictions of integrated models. Analogous capabilities could be developed to support TMT, ensuring delivery of fully qualified instruments to the observatory.

  2. Towards a Real-Time Embedded System for Water Monitoring Installed in a Robotic Sailboat.

    PubMed

    Silva Junior, Andouglas Goncalves da; Lima Sa, Sarah Thomaz de; Santos, Davi Henrique Dos; Negreiros, Álvaro Pinto Ferrnandes de; Souza Silva, João Moreno Vilas Boas de; Álvarez Jácobo, Justo Emílio; Garcia Gonçalves, Luiz Marcos

    2016-01-01

    Problems related to quality (and quantity) of water in natural resources or in artificial reservoirs are frequently arising and are at the center of attention of authorities and governments around the world. Many times the monitoring is not performed in an efficient time frame and a precise manner, whereas the adoption of fast and punctual solutions would undoubtedly improve the water quality and consequently enhance the life of people. To minimize or diminish such kinds of problems, we propose an architecture for sensors installed in a robotic platform, an autonomous sail boat, able to acquire raw data relative to water quality, to process and make them available to people that might be interested in such information. The main contributions are the sensors architecture itself, which uses low cost sensors, with practical experimentation done with a prototype. Results show data collected for points in lakes and rivers in the northeast of Brazil. This embedded system is fixed in the sailboat robot with the intention to facilitate the study of water quality for long endurance missions. This robot can help monitoring water bodies in a more consistent manner. Nonetheless the system can also be used with fixed vases or buoys in strategic points. PMID:27509506

  3. Halophytes As Bioenergy Crops.

    PubMed

    Sharma, Rita; Wungrampha, Silas; Singh, Vinay; Pareek, Ashwani; Sharma, Manoj K

    2016-01-01

    Shrinking arable land due to soil salinization and, depleting fresh water resources pose serious worldwide constraints to crop productivity. A vision of using plant feedstock for biofuel production can only be realized if we can identify alternate species that can be grown on saline soils and therefore, would not compete for the resources required for conventional agriculture. Halophytes have remarkable ability to grow under high salinity conditions. They can be irrigated with seawater without compromising their biomass and seed yields making them good alternate candidates as bioenergy crops. Both oil produced from the seeds and the lignocellulosic biomass of halophytes can be utilized for biofuel production. Several researchers across the globe have recognized this potential and assessed several halophytes for their tolerance to salt, seed oil contents and composition of their lignocellulosic biomass. Here, we review current advances and highlight the key species of halophytes analyzed for this purpose. We have critically assessed the challenges and opportunities associated with using halophytes as bioenergy crops. PMID:27679645

  4. Halophytes As Bioenergy Crops

    PubMed Central

    Sharma, Rita; Wungrampha, Silas; Singh, Vinay; Pareek, Ashwani; Sharma, Manoj K.

    2016-01-01

    Shrinking arable land due to soil salinization and, depleting fresh water resources pose serious worldwide constraints to crop productivity. A vision of using plant feedstock for biofuel production can only be realized if we can identify alternate species that can be grown on saline soils and therefore, would not compete for the resources required for conventional agriculture. Halophytes have remarkable ability to grow under high salinity conditions. They can be irrigated with seawater without compromising their biomass and seed yields making them good alternate candidates as bioenergy crops. Both oil produced from the seeds and the lignocellulosic biomass of halophytes can be utilized for biofuel production. Several researchers across the globe have recognized this potential and assessed several halophytes for their tolerance to salt, seed oil contents and composition of their lignocellulosic biomass. Here, we review current advances and highlight the key species of halophytes analyzed for this purpose. We have critically assessed the challenges and opportunities associated with using halophytes as bioenergy crops. PMID:27679645

  5. Halophytes As Bioenergy Crops.

    PubMed

    Sharma, Rita; Wungrampha, Silas; Singh, Vinay; Pareek, Ashwani; Sharma, Manoj K

    2016-01-01

    Shrinking arable land due to soil salinization and, depleting fresh water resources pose serious worldwide constraints to crop productivity. A vision of using plant feedstock for biofuel production can only be realized if we can identify alternate species that can be grown on saline soils and therefore, would not compete for the resources required for conventional agriculture. Halophytes have remarkable ability to grow under high salinity conditions. They can be irrigated with seawater without compromising their biomass and seed yields making them good alternate candidates as bioenergy crops. Both oil produced from the seeds and the lignocellulosic biomass of halophytes can be utilized for biofuel production. Several researchers across the globe have recognized this potential and assessed several halophytes for their tolerance to salt, seed oil contents and composition of their lignocellulosic biomass. Here, we review current advances and highlight the key species of halophytes analyzed for this purpose. We have critically assessed the challenges and opportunities associated with using halophytes as bioenergy crops.

  6. Halophytes As Bioenergy Crops

    PubMed Central

    Sharma, Rita; Wungrampha, Silas; Singh, Vinay; Pareek, Ashwani; Sharma, Manoj K.

    2016-01-01

    Shrinking arable land due to soil salinization and, depleting fresh water resources pose serious worldwide constraints to crop productivity. A vision of using plant feedstock for biofuel production can only be realized if we can identify alternate species that can be grown on saline soils and therefore, would not compete for the resources required for conventional agriculture. Halophytes have remarkable ability to grow under high salinity conditions. They can be irrigated with seawater without compromising their biomass and seed yields making them good alternate candidates as bioenergy crops. Both oil produced from the seeds and the lignocellulosic biomass of halophytes can be utilized for biofuel production. Several researchers across the globe have recognized this potential and assessed several halophytes for their tolerance to salt, seed oil contents and composition of their lignocellulosic biomass. Here, we review current advances and highlight the key species of halophytes analyzed for this purpose. We have critically assessed the challenges and opportunities associated with using halophytes as bioenergy crops.

  7. Cellulosic and grain bioenergy crops reduce net greenhouse gas emissions associated with transportation fuels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioenergy cropping systems could help offset GHG emissions, but quantifying that offset is complex. Adler et al. (2007, Ecol. Appl. 17:675-691) conducted a life cycle assessment of the net greenhouse gas flux from bioenergy cropping systems. Compared with the life cycle of gasoline and diesel, ethan...

  8. Design and installation of a cathodic protection system for a large reinforced concrete intake structure in the Arabian Gulf

    SciTech Connect

    Ali, M.; Al-Ghannam, H.

    1997-09-01

    The paper describes the condition survey methodology, design and installation of a cathodic protection (C.P.) system for a large reinforced concrete reservoir and sea water intake structure. The structure is critical for the supply of cooling water for a 2.4 million metric ton steel plant. The C.P. System consisting of mixed metal oxide coating on titanium mesh type anodes and automatic voltage/current controlled rectifiers was successfully installed and has been operating within design guidelines for the past 15 months.

  9. AUTOMOTIVE DIESEL MAINTENANCE L. UNIT XII, PART I--MAINTAINING THE FUEL SYSTEM (PART II), CUMMINS DIESEL ENGINE, PART II--UNIT INSTALLATION (ENGINE).

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE FUEL SYSTEM AND THE PROCEDURES FOR DIESEL ENGINE INSTALLATION. TOPICS ARE FUEL FLOW CHARACTERISTICS, PTG FUEL PUMP, PREPARATION FOR INSTALLATION, AND INSTALLING ENGINE. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH…

  10. Lottery Proceeds in California Pay for Installation of a Ground-Water Monitoring System.

    ERIC Educational Resources Information Center

    Oberdorfer, June Ann; And Others

    1990-01-01

    The installation and uses of three water wells on the San Jose State University campus are discussed. Included in the discussion are funding, industry-university cooperation, and benefits to the instructional program. (CW)

  11. 40 CFR 60.3038 - What continuous emission monitoring systems must I install?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... carbon monoxide and for oxygen. You must monitor the oxygen concentration at each location where you monitor carbon monoxide. (b) You must install, evaluate, and operate each continuous emission...

  12. 40 CFR 60.3038 - What continuous emission monitoring systems must I install?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... carbon monoxide and for oxygen. You must monitor the oxygen concentration at each location where you monitor carbon monoxide. (b) You must install, evaluate, and operate each continuous emission...

  13. 40 CFR 60.3038 - What continuous emission monitoring systems must I install?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... carbon monoxide and for oxygen. You must monitor the oxygen concentration at each location where you monitor carbon monoxide. (b) You must install, evaluate, and operate each continuous emission...

  14. 40 CFR 60.3038 - What continuous emission monitoring systems must I install?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... carbon monoxide and for oxygen. You must monitor the oxygen concentration at each location where you monitor carbon monoxide. (b) You must install, evaluate, and operate each continuous emission...

  15. 40 CFR 60.3038 - What continuous emission monitoring systems must I install?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... carbon monoxide and for oxygen. You must monitor the oxygen concentration at each location where you monitor carbon monoxide. (b) You must install, evaluate, and operate each continuous emission...

  16. Reader Placement Effects of a Moving Robot on Floor-Installed-Type RFID Systems

    NASA Astrophysics Data System (ADS)

    Kodaka, Kenri; Niwa, Haruhiko; Sugano, Shigeki

    This paper offers a significant evaluation of reader's placement for wheeled robots to estimate their posture from a lattice of RFID (Radio Frequency Identification) tags. RFID systems where IC tags are installed under/on floors have been widely utilized in recent years as the next positioning infrastructure. There is a model room in the Wabot-house Laboratory of Waseda University, where the floor has a lattice of RFID tags, and some actual experiments previously revealed that robots could accurately estimate their posture. The readers' antennas should be properly configured on a robot so that such an environment can give full play to its potential capabilities of positioning the robot. This problem calls for something like guidelines in designing the placement of readers. Experiments using actual robots cannot offer sufficient data because of time and physical limitations, which prevent helpful and reproducible evaluations of configurations. We construct a simulation environment using a localization model and evaluated the effects of configurations on positioning accuracy by using detailed computations. Then we obtain the simulation results, which enable us to identify some useful clues in designing where readers should be placed. In addition, a validation experiment using an actual robot verifies a part of the simulation results.

  17. Installation and management of the SPS and LEP control system computers

    NASA Astrophysics Data System (ADS)

    Bland, Alastair

    1994-12-01

    Control of the CERN SPS and LEP accelerators and service equipment on the two CERN main sites is performed via workstations, file servers, Process Control Assemblies (PCAs) and Device Stub Controllers (DSCs). This paper describes the methods and tools that have been developed to manage the file servers, PCAs and DSCs since the LEP startup in 1989. There are five operational DECstation 5000s used as file servers and boot servers for the PCAs and DSCs. The PCAs consist of 90 SCO Xenix 386 PCs, 40 LynxOS 486 PCs and more than 40 older NORD 100s. The DSCs consist of 90 OS-968030 VME crates and 10 LynxOS 68030 VME crates. In addition there are over 100 development systems. The controls group is responsible for installing the computers, starting all the user processes and ensuring that the computers and the processes run correctly. The operators in the SPS/LEP control room and the Services control room have a Motif-based X window program which gives them, in real time, the state of all the computers and allows them to solve problems or reboot them.

  18. Integrated propulsion/energy transfer control systems for lift-fan V/STOL aircraft. [reduction of total propulsion system and control system installation requirements

    NASA Technical Reports Server (NTRS)

    Deckert, W. H.; Rolls, L. S.

    1974-01-01

    An integrated propulsion/control system for lift-fan transport aircraft is described. System behavior from full-scale experimental and piloted simulator investigations are reported. The lift-fan transport is a promising concept for short-to-medium haul civil transportation and for other missions. The lift-fan transport concept features high cruise airspeed, favorable ride qualities, small perceived noise footprints, high utilization, transportation system flexibility, and adaptability to VTOL, V/STOL, or STOL configurations. The lift-fan transport has high direct operating costs in comparison to conventional aircraft, primarily because of propulsion system and aircraft low-speed control system installation requirements. An integrated lift-fan propulsion system/aircraft low-speed control system that reduces total propulsion system and control system installation requirements is discussed.

  19. Engineering task plan for the development, fabrication and installation of rotary mode core sample truck grapple hoist box level wind system

    SciTech Connect

    BOGER, R.M.

    1999-05-12

    This Engineering Task Plan is to design, generate fabrication drawings, fabricate, test, and install the grapple hoist level wind system for Rotary Mode Core Sample Trucks (RMCST) 3 and 4. Deliverables will include generating fabrication drawings, fabrication of one level wind system, updating fabrication drawings as required, and installation of level wind systems on RMCST 3 or 4. The installation of the level wind systems will be done during a preventive maintenance outage.

  20. Our Commitment to Bioenergy Sustainability

    SciTech Connect

    2011-07-01

    This fact sheet describes how the Biomass Program and its partners combine advanced analysis with applied research to understand and address the potential environmental, economic, and social impacts of bioenergy production.

  1. Designing bioenergy crop buffers to mitigate nitrous oxide emissions and water quality impacts from agriculture

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, G.; Negri, C. M.

    2010-12-01

    There is a strong societal need to evaluate and understand the environmental aspects of bioenergy production, especially due to the significant increases in production mandated by many countries, including the United States. Bioenergy is a land-based renewable resource and increases in production are likely to result in large-scale conversion of land from current uses to bioenergy crop production; potentially causing increases in the prices of food, land and agricultural commodities as well as disruption of ecosystems. Current research on the environmental sustainability of bioenergy has largely focused on the potential of bioenergy crops to sequester carbon and mitigate greenhouse gas (GHG) emissions and possible impacts on water quality and quantity. A key assumption in these studies is that bioenergy crops will be grown in a manner similar to current agricultural crops such as corn and hence would affect the environment similarly. This study presents a systems approach where the agricultural, energy and environmental sectors are considered as components of a single system, and bioenergy crops are used to design multi-functional agricultural landscapes that meet society’s requirements for food, energy and environmental protection. We evaluate the production of bioenergy crop buffers on marginal land and using degraded water and discuss the potential for growing cellulosic bioenergy crops such as miscanthus and switchgrass in optimized systems such that (1) marginal land is brought into productive use; (2) impaired water is used to boost yields (3); clean freshwater is left for other uses that require higher water quality; and (4) feedstock diversification is achieved that helps ecological sustainability, biodiversity, and economic opportunities for farmers. The process-based biogeochemical model DNDC was used to simulate crop yield, nitrous oxide production and nitrate concentrations in groundwater when bioenergy crops were grown in buffer strips adjacent to

  2. 10 CFR 34.75 - Records of alarm system and entrance control checks at permanent radiographic installations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Records of alarm system and entrance control checks at permanent radiographic installations. 34.75 Section 34.75 Energy NUCLEAR REGULATORY COMMISSION LICENSES FOR INDUSTRIAL RADIOGRAPHY AND RADIATION SAFETY REQUIREMENTS FOR INDUSTRIAL RADIOGRAPHIC OPERATIONS...

  3. 10 CFR 34.75 - Records of alarm system and entrance control checks at permanent radiographic installations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Records of alarm system and entrance control checks at permanent radiographic installations. 34.75 Section 34.75 Energy NUCLEAR REGULATORY COMMISSION LICENSES FOR INDUSTRIAL RADIOGRAPHY AND RADIATION SAFETY REQUIREMENTS FOR INDUSTRIAL RADIOGRAPHIC OPERATIONS...

  4. MODELING WORLD BIOENERGY CROP POTENTIAL

    NASA Astrophysics Data System (ADS)

    Hagiwara, Kensuke; Hanasaki, Naota; Kanae, Shinjiro

    Bioenergy is regarded as clean energy due to its characteristics and expected to be a new support of world energy de¬mand, but there are few integrated assessments of the potential of bioenergy considering sustainable land use. We esti¬mated the global bioenergy potential with an integrated global water resources model, the H08. It can simulate the crop yields on global-scale at a spatial resolution of 0.50.5. Seven major crops in the world were considered; namely, maize, sugar beet, sugar cane, soybean, rapeseed, rice, and wheat, of which the first 5 are commonly used to produce biofuel now. Three different land-cover types were chosen as potential area for cultivation of biofuel-producing crop: fallow land, grassland, and portion of forests (excluding areas sensitive for biodiversity such as frontier forest). We attempted to estimate the maximum global bioenergy potential and it was estimated to be 1120EJ. Bioenergy potential depends on land-use limitations for the protection of bio-diversity and security of food. In another condition which assumed more land-use limitations, bioenergy potential was estimated to be 70-233EJ.

  5. Performance evaluation of ground-source heat pump system and development of suitability map for its installation

    NASA Astrophysics Data System (ADS)

    Shrestha, G.; Uchida, Y.; Yoshioka, M.; Kuronuma, S.

    2015-12-01

    Ground-source heat pump (GSHP) system is an energy efficient and environment friendly technology that uses natural subsurface heat energy stored in the shallow depth for space-heating, space-cooling, snow-melting, hot water supply etc. In Japan, development of this system is gradually increasing, however the rate is still limited due to higher initial cost caused by oversized design of ground heat exchangers. An efficient system that can lower the installation cost should be developed and evaluated for its performance in order to expand the growth of GSHP system in Japan. In addition, development of suitability map to assess appropriate locations for the system installation is essential for optimum design and sustainability. In this study, GSHP system was constructed utilizing an artesian well as ground heat exchanger (GHE) and evaluated its performance. The objective of this study is to develop low cost and high efficiency system. In areas with abundant groundwater and its flow, higher heat exchange rate can be expected leading to cost reduction and energy saving. Further, suitability map was prepared in regional scale to assess the suitable locations where this type of system can be installed. The suitability map was prepared considering local hydrogeological and thermal data. Average coefficient of performance (COP) was found to be 7 during space-cooling operation and 5 during space-heating operation. These values of COP are higher than that of normal air conditioner (air-source heat pump system).

  6. Cellulosic and Grain Bioenergy Crops Reduce Net Greenhouse Gas Emissions Associated with Transportation Fuels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioenergy cropping systems could help offset GHG emissions, but quantifying that offset is complex. Bioenergy crops offset CO2 emissions by converting atmospheric CO2 to organic C in crop biomass and soil, but they also emit N2O and vary in their effects on soil oxidation of methane. Growing the cro...

  7. Mitigation of greenhouse gas emissions with cellulosic and grain bioenergy crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioenergy cropping systems could help offset GHG emissions, but quantifying that offset is complex. Bioenergy crops offset CO2 emissions by converting atmospheric CO2 to organic C in crop biomass and soil, but they also emit N2O and vary in their effects on soil oxidation of methane. Growing the cro...

  8. Modeling carbon dynamics and social drivers of bioenergy agroecosystems

    NASA Astrophysics Data System (ADS)

    Hunt, Natalie D.

    Meeting society's energy needs through bioenergy feedstock production presents a significant and urgent challenge, as it can aid in achieving energy independence goals and mitigating climate change. With federal biofuel production standards to be met within the next decade, and with no commercial scale production or markets currently in place, many questions regarding the sustainability and social feasibility of bioenergy still persist. Clarifying these uncertainties requires the incorporation of biogeochemical, biophysical, and socioeconomic modeling tools. Chapter 2 validated the biogeochemical cycling model AGRO-BGC by comparing model estimates with empirical observations from corn and perennial C4 grass systems across Wisconsin and Illinois. AGRO-BGC, in its first application to an annual cropping system, was found to be a robust model for simulating carbon dynamics of an annual cropping system. Chapter 3 investigated the long-term implications of bioenergy feedstock harvest on soil productivity and erosion in annual corn and perennial switchgrass agroecosystems using AGRO-BGC and the soil erosion model RUSLE2. Modeling environments included biophysical landscape characteristics and management practices of bioenergy feedstock production systems. This study found that intensifying aboveground residue harvest reduces soil productivity over time, and the magnitude of these losses is greater in corn than in switchgrass systems. Results of this study will aid in the design of sustainable bioenergy feedstock management practices. Chapter 4 provided evidence that combining biophysical crop canopy characteristics with satellite-derived vegetation indices offers suitable estimates of crop canopy phenology for corn and soybeans in Southwest Wisconsin farms. LANDSAT based vegetation indices, when combined with a light use efficiency model, provide yield estimates in agreement with farmer reports, providing an efficient and accurate means of estimating crop yields from

  9. Installation guidelines for solar heating system, single-family residence at William OBrien State Park, Stillwater, Minnesota

    NASA Astrophysics Data System (ADS)

    1980-05-01

    Installation procedures for the single family residential solar heating system at the William O'Brien State Park, Stillwater, Minnesota, are presented. The system is a solar-assisted, hydronic-to-warm-air system with solar-assisted domestic water heating. It is composed of the following major components: liquid cooled flat plate collectors; water storage tank; passive solar-fired domestic water preheater; electric hot water heater; heat pump with electric backup; solar hot water coil unit; tube-and-shell heat exchanger, three pumps, and associated pipes and valving in an energy transport module; control system; and air-cooled heat purge unit. Installer guidelines are provided for each subsystem and includes testing and filling the system. Information is also given on the operating procedures, controls, caution requirements and routine and schedule maintenance.

  10. Installation guidelines for solar heating system, single-family residence at William OBrien State Park, Stillwater, Minnesota

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Installation procedures for the single family residential solar heating system at the William O'Brien State Park, Stillwater, Minnesota, are presented. The system is a solar-assisted, hydronic-to-warm-air system with solar-assisted domestic water heating. It is composed of the following major components: liquid cooled flat plate collectors; water storage tank; passive solar-fired domestic water preheater; electric hot water heater; heat pump with electric backup; solar hot water coil unit; tube-and-shell heat exchanger, three pumps, and associated pipes and valving in an energy transport module; control system; and air-cooled heat purge unit. Installer guidelines are provided for each subsystem and includes testing and filling the system. Information is also given on the operating procedures, controls, caution requirements and routine and schedule maintenance.

  11. A TDR-based system for the localization of leaks in newly installed, underground pipes made of any material

    NASA Astrophysics Data System (ADS)

    Cataldo, A.; Cannazza, G.; De Benedetto, E.; Giaquinto, N.

    2012-10-01

    In this paper, a time domain reflectometry-based system for locating leaks in underground pipes (made of any material) is presented. The proposed system simply requires that a biwire should be attached to the pipe (all along its length), at the time of installation. Basically, the biwire acts as a permanent sensing element that can be connected to the measurement instrument whenever it is necessary to check for the presence of leaks. It is worth emphasizing that such a simple and low-cost system could tremendously facilitate leak detection not only in water distribution systems but also in wastewater/sewer pipelines. The proposed system was validated through measurements on a newly installed pilot plant, in which a leak was intentionally provoked.

  12. Lighting installations

    NASA Technical Reports Server (NTRS)

    Schurer, Kees

    1994-01-01

    Model computations that give the lay-out of a lighting installation have to be implemented in the real world. There, deviations from the ideal performance of just about every element of the installation will be felt. A list of possible sources of non-ideal behavior, based on practical experience, are: lamps, ballasts, reflectors, mounting position, sagging of lamps, and soiling. It is clear that with all possible deviations from the ideal the homogeneity of a real lighting installation can never be as good as the one computed. The only way to make sure it is nearly as good is by measurement of the actual light distribution. Then, an occasional adjustment or replacement may often yield a satisfactory result. This measurement should really be part of the installation contract.

  13. Development of Download System for Waveform Data Observed at Long-Term Borehole Monitoring System installed in the Nankai Trough

    NASA Astrophysics Data System (ADS)

    Tsuboi, Seiji; Horikawa, Hiroki; Takaesu, Morifumi; Sueki, Kentaro; Araki, Eiichiro; Sonoda, Akira; Takahashi, Narumi

    2016-04-01

    The Nankai Trough in southwest Japan is one of most active subduction zone in the world. Great mega-thrust earthquakes repeatedly occurred every 100 to 150 years in this area, it's anticipated to occur in the not distant future. For the purpose of elucidation of the history of mega-splay fault activity, the physical properties of the geological strata and the internal structure of the accretionary prism, and monitoring of diastrophism in this area, we have a plan, Nankai Trough Seismogenic Zone Experiments (NanTroSEIZE), as a part of Integrated Ocean Drilling Program (IODP). We have a plan to install the borehole observation system in a few locations by the NanTroSEIZE. This system is called Long-Term Borehole Monitoring System, it consists of various sensors in the borehole such as a broadband seismometer, a tiltmeter, a strainmeter, geophones and accelerometer, thermometer array as well as pressure ports for pore-fluid pressure monitoring. The signal from sensors is transmitted to DONET (Dense Ocean-floor Network System for Earthquake and Tsunamis) in real time. During IODP Exp. 332 in December 2010, the first Long-Term Borehole Monitoring System was installed into the C0002 borehole site located 80 km off the Kii Peninsula, 1938 m water depth in the Nankai Trough. We have developed a web application system for data download, Long-Term Borehole Monitoring Data Site. Based on a term and sensors which user selected on this site, user can download monitoring waveform data (e.g. broadband seismometer data, accelerometer data, strainmeter data, tiltmeter data) in near real-time. This system can make the arbitrary data which user selected a term and sensors, and download it simply. Downloadable continuous data is provided in seed format, which includes sensor informations. In addition, before data download, user can check that data is abailable or not by data check function. In this presentation, we show our web application system and discuss our future plans for

  14. Characterization of Site for Installing Open Loop Ground Source Heat Pump System

    NASA Astrophysics Data System (ADS)

    Yun, S. W.; Park, Y.; Lee, J. Y.; Yi, M. J.; Cha, J. H.

    2014-12-01

    This study was conducted to understand hydrogeological properties of site where open loop ground source heat pump system will be installed and operated. Groundwater level and water temperature were hourly measured at the well developed for usage of open loop ground source heat pump system from 11 October 2013 to 8 January 2014. Groundwater was sampled in January and August 2013 and its chemical and isotopic compositions were analyzed. The bedrock of study area is the Jurassic granodiorite that mainly consists of quartz (27.9 to 46.8%), plagioclase (26.0 to 45.5%), and alkali feldspar (9.5 to 18.7%). The groundwater level ranged from 68.30 to 68.94 m (above mean sea level). Recharge rate was estimated using modified watertable fluctuation method and the recharge ratios was 9.1%. The water temperature ranged from 14.8 to 15.0oC. The vertical Increase rates of water temperature were 1.91 to 1.94/100 m. The water temperature showed the significant seasonal variation above 50 m depth, but had constant value below 50 m depth. Therefore, heat energy of the groundwater can be used securely in open loop ground source heat pump system. Electrical conductivity ranged from 120 to 320 µS/cm in dry season and from 133 to 310 µS/cm in wet season. The electrical conductivity gradually decreased with depth. In particular, electrical conductivity in approximately 30 m depth decreased dramatically (287 to 249 µS/cm) in wet season. The groundwater was Ca-HCO3 type. The concentrations of dissolved components did not show the vertically significant variations from 0 to 250 m depth. The δ18O and δD ranged from -9.5 to -9.4‰ and from -69 to -68‰. This work is supported by the New and Renewable Energy of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy (No.20123040110010).

  15. Study of installed and life-cycle costs for batteries in photovoltaic power systems. Final report

    SciTech Connect

    Not Available

    1982-10-01

    The overall objective of the study reported was to estimate the installed and life-cycle costs of 9 battery technologies in a range of photovoltaic application types and sizes. For each battery type is given: a description of the battery technology, the battery factory price analysis, and the installed and life-cycle cost estimates for the battery in each of the applications evaluated. Battery types include: conventional lead-acid; sealed lead-acid; redox; zinc-bromine batteries of two types; zinc chloride; iron redox; lithium-metal sulfide; and sodium-sulfur. Applications include: shopping center; high school; multiple residence; hotel/motel; remote residence; and single residence. (LEW)

  16. Study of installed and life-cycle costs for batteries in photovoltaic power systems

    NASA Astrophysics Data System (ADS)

    1982-10-01

    The overall objective was to estimate the installed and life-cycle costs of 9 battery technologies in a range of photovoltaic application types and sizes. For each battery type is given is a description of the battery technology, the battery factory price analysis, and the installed and life-cycle cost estimates for the battery in each of the applications evaluated. Battery types include: conventional lead-acid; sealed lead-acid; redox; zinc-bromine batteries of two types; zinc chloride; iron redox; lithium-metal sulfide; and sodium-sulfur. Applications include: shopping center; high school; multiple residence; hotel-motel; remote residence; and single residence.

  17. A study of mass production and installation of small solar thermal electric power systems

    NASA Technical Reports Server (NTRS)

    Butterfield, J. F.

    1980-01-01

    Technological constraints, materials availability, production capacity, and manufacturing and installations plans and costs at different production levels are included in a study of concentrating collector industrialization. As cobalt for the engine and receiver is supply limited, alternative lower temperature alloys and higher temperature materials such as ceramics are discussed. Economics and production efficiency favor co-location of cellular and thin glass production for reflectors. Assembly and installation are expensive for small sites and few alternatives exist to apply mass production techniques to lower these costs for the selected design. Stepping motors in the size and quantities required are not commercially available today but could be in the future.

  18. Bioenergy crop models: Descriptions, data requirements and future challenges

    SciTech Connect

    Nair, S. Surendran; Kang, Shujiang; Zhang, Xuesong; Miguez, Fernando; Izaurralde, Dr. R. Cesar; Post, Wilfred M; Dietze, Michael; Lynd, L.; Wullschleger, Stan D

    2012-01-01

    Field studies that address the production of lignocellulosic biomass as a source of renewable energy provide critical data for the development of bioenergy crop models. A literature survey revealed that 14 models have been used for simulating bioenergy crops including herbaceous and woody bioenergy crops, and for crassulacean acid metabolism (CAM) crops. These models simulate field-scale production of biomass for switchgrass (ALMANAC, EPIC, and Agro-BGC), miscanthus (MISCANFOR, MISCANMOD, and WIMOVAC), sugarcane (APSIM, AUSCANE, and CANEGRO), and poplar and willow (SECRETS and 3PG). Two models are adaptations of dynamic global vegetation models and simulate biomass yields of miscanthus and sugarcane at regional scales (Agro-IBIS and LPJmL). Although it lacks the complexity of other bioenergy crop models, the environmental productivity index (EPI) is the only model used to estimate biomass production of CAM (Agave and Opuntia) plants. Except for the EPI model, all models include representations of leaf area dynamics, phenology, radiation interception and utilization, biomass production, and partitioning of biomass to roots and shoots. A few models simulate soil water, nutrient, and carbon cycle dynamics, making them especially useful for assessing the environmental consequences (e.g., erosion and nutrient losses) associated with the large-scale deployment of bioenergy crops. The rapid increase in use of models for energy crop simulation is encouraging; however, detailed information on the influence of climate, soils, and crop management practices on biomass production is scarce. Thus considerable work remains regarding the parameterization and validation of process-based models for bioenergy crops; generation and distribution of high-quality field data for model development and validation; and implementation of an integrated framework for efficient, high-resolution simulations of biomass production for use in planning sustainable bioenergy systems.

  19. Development of sustainable, native grass-based bioenergy production systems in the prairie region of Minnesota: Biomass production and plant community response to fertilizer and harvest treatments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Native perennial plants are emerging as an alternative, low-carbon, bioenergy feedstock. Land restored from crop monocultures to diverse, native plantings has the potential to provide a host of ecological services, as well as farm income. However, best management practices for maintaining a diverse,...

  20. Workload and transmission data for the installation of a digital breast tomosynthesis system

    SciTech Connect

    Li Xinhua; Zhang Da; Liu, Bob

    2013-06-15

    Purpose: Digital breast tomosynthesis (DBT) differs from conventional mammography in target/filter, kVp range, and imaging geometry. The aim of this study was to assess the breast input exposure of a DBT system by completing a workload survey of DBT installations, and to determine the parameters {alpha}, {beta}, and {gamma} in the Archer equation for the primary radiation generated by the clinical workload distributions. Methods: The authors conducted a retrospective survey of the x-ray breast imaging performed between September 2011 and September 2012 in three clinical DBT rooms equipped with Selenia Dimensions systems (Hologic Inc., Bedford, MA). A total of 343 examinations were analyzed to calculate the workload (mA-minute) and the primary air kerma at 1 m from the source (K{sup 1}). Transmission curves were calculated for the primary radiation generated by the workload distributions of the DBT rooms, and were fitted to the Archer equation. Results: There were large variations in patient volume and workload in the three examination rooms. In all these rooms, the average tube voltage (kVp) was about 31, the average K{sup 1} per patient was 16-21 mGy, and the average mA-minute per patient was 1.4-2.2 times higher than that of the mammography room described in NCRP Report No. 147. Most DBT screening examinations consisted of four two-dimensional mammographic views plus four tomosynthesis scans; the numbers of views acquired in diagnostic examinations varied widely. Tomosynthesis scans contributed about 30% of total mA-minute and about 50% of K{sup 1}. For the primary radiation generated by the clinical workload distributions, {alpha} was similar to that of 40-45 kVp W/Al (target/filter), and {alpha}+{beta} was similar to that of 30 kVp W/Al. Conclusions: The workload (mA-minute and K{sup 1}) distributions of mammographic examinations with DBT differ from conventional mammography. A field survey of patient volume and x-ray tube usage is important for the shielding

  1. Achieving a quiet rooftop installation

    SciTech Connect

    Harold, R.G.

    1993-12-01

    This article examines the design considerations for quiet roof top installations of air conditioning systems. The topics of the article include the elements of a quiet installation, acoustic design requirements for minimizing noise problems, incorporating system requirements into the overall design of the building, and survival of the system design through bid review and installation.

  2. Prospects for using a full-scale installation for wet combustion of organic wastes in closed life support systems

    NASA Astrophysics Data System (ADS)

    Trifonov, Sergey V.; Kudenko, Yurii A.; Tikhomirov, Alexander A.

    2015-11-01

    The issue of recycling organic wastes in closed life support systems (CLSS) includes both fundamental aspects of environmental safety of the recycled products and their effective involvement in material cycles and technical aspects related to the structure of the system and the crew's demands. This study estimates the effectiveness of wet combustion of different amounts of organic wastes in hydrogen peroxide under application of an alternating current electric field. The study also addresses the possibility of controlling the process automatically. The results show that processing of greater amounts of wastes reduces specific power consumption and shortens the duration of the process, without significantly affecting the level of oxidation of the products. An automatic control system for a semi-commercial installation has been constructed and tested experimentally. The solution of mineralized human wastes prepared in the automatically controlled process in this installation was successfully used to grow radish plants, with the main production parameters being similar to those of the control.

  3. The importance of a picture archiving and communications system (PACS) manager for large-scale PACS installations.

    PubMed

    Beird, L C

    1999-05-01

    Installing a picture archiving and communication system (PACS) is a massive undertaking for any radiology department. Facilities making a successful transition to digital systems are finding that a PACS manager helps guide the way and offers a heightened return on the investment. The PACS manager fills a pivotal role in a multiyear, phased PACS installation. PACS managers navigate a facility through the complex sea of issues surrounding a PACS installation by coordinating the efforts of the vendor, radiology staff, hospital administration, and the information technology group. They are involved in the process from the purchase decision through the design and implementation phases. They can help administrators justify a PACS, purchase and shape the request for proposal (RFP) process before a vendor is even chosen. Once a supplier has been selected, the PACS manager works closely with the vendor and facility staff to determine the best equipment configuration for his or her facility, and makes certain that all deadlines are met during the planning and installation phase. The PACS manager also ensures that the infrastructure and backbone of the facility are ready for installation of the equipment. PACS managers also help the radiology staff gain acceptance of the technology by serving as teachers, troubleshooters, and the primary point-of-contact for all PACS issues. This session will demonstrate the value of a PACS manager, as well as point out ways to determine the manager's responsibilities. By the end of the session, participants will be able to describe the role of a PACS manager as it relates to departmental operation and in partnership with equipment vendors, justify a full-time position for a PACS manager, and identify the qualifications of candidates for the position of PACS manager.

  4. 33 CFR Appendix E to Part 157 - Specifications for the Design, Installation and Operation of a Part Flow System for Control of...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., Installation and Operation of a Part Flow System for Control of Overboard Discharges E Appendix E to Part 157... THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Pt. 157, App. E Appendix E to Part 157—Specifications for the Design, Installation and Operation of a Part Flow System...

  5. Farm-scale costs and returns for second generation bioenergy cropping systems in the US Corn Belt

    NASA Astrophysics Data System (ADS)

    Manatt, Robert K.; Hallam, Arne; Schulte, Lisa A.; Heaton, Emily A.; Gunther, Theo; Hall, Richard B.; Moore, Ken J.

    2013-09-01

    While grain crops are meeting much of the initial need for biofuels in the US, cellulosic or second generation (2G) materials are mandated to provide a growing portion of biofuel feedstocks. We sought to inform development of a 2G crop portfolio by assessing the profitability of novel cropping systems that potentially mitigate the negative effects of grain-based biofuel crops on food supply and environmental quality. We analyzed farm-gate costs and returns of five systems from an ongoing experiment in central Iowa, USA. The continuous corn cropping system was most profitable under current market conditions, followed by a corn-soybean rotation that incorporated triticale as a 2G cover crop every third year, and a corn-switchgrass system. A novel triticale-hybrid aspen intercropping system had the highest yields over the long term, but could only surpass the profitability of the continuous corn system when biomass prices exceeded foreseeable market values. A triticale/sorghum double cropping system was deemed unviable. We perceive three ways 2G crops could become more cost competitive with grain crops: by (1) boosting yields through substantially greater investment in research and development, (2) increasing demand through substantially greater and sustained investment in new markets, and (3) developing new schemes to compensate farmers for environmental benefits associated with 2G crops.

  6. Bioenergy from Biofuel Residues and Wastes.

    PubMed

    Choudri, B S; Baawain, Mahad

    2015-10-01

    This review includes works published in the general scientific literature during 2014 on the production of bioenergy and biofuel from waste residues generated during bioethanol and biodiesel production with a brief overview of current and emerging feedstocks. Anothersection of this review summarizes literature on culturing algae for biofuels including bioreactors and open pond cultivation systems with the utilization of inorganic and organic sources of nutrients. New methods applicable to the mass culture of algae are highlighted. Algal cell harvesting and oil extraction techniques tested and developed for algae are also discussed. PMID:26420094

  7. Bioenergy from Biofuel Residues and Wastes.

    PubMed

    Choudri, B S; Baawain, Mahad

    2016-10-01

    This review includes works published in the general scientific literature during 2015 on the production of bioenergy and biofuel from waste residues generated during bioethanol and biodiesel production with a brief overview of current and emerging feedstocks. A section of this review summarizes literature on culturing algae for biofuels including bioreactors and open pond cultivation systems with the utilization of inorganic and organic sources of nutrients. New methods applicable to the mass culture of algae are highlighted. Algal cell harvesting and oil extraction techniques tested and developed for algae discussed alongwith policies and economics are also provided.

  8. Bioenergy from Biofuel Residues and Wastes.

    PubMed

    Choudri, B S; Baawain, Mahad

    2016-10-01

    This review includes works published in the general scientific literature during 2015 on the production of bioenergy and biofuel from waste residues generated during bioethanol and biodiesel production with a brief overview of current and emerging feedstocks. A section of this review summarizes literature on culturing algae for biofuels including bioreactors and open pond cultivation systems with the utilization of inorganic and organic sources of nutrients. New methods applicable to the mass culture of algae are highlighted. Algal cell harvesting and oil extraction techniques tested and developed for algae discussed alongwith policies and economics are also provided. PMID:27620098

  9. Bioenergy from Biofuel Residues and Wastes.

    PubMed

    Choudri, B S; Baawain, Mahad

    2015-10-01

    This review includes works published in the general scientific literature during 2014 on the production of bioenergy and biofuel from waste residues generated during bioethanol and biodiesel production with a brief overview of current and emerging feedstocks. Anothersection of this review summarizes literature on culturing algae for biofuels including bioreactors and open pond cultivation systems with the utilization of inorganic and organic sources of nutrients. New methods applicable to the mass culture of algae are highlighted. Algal cell harvesting and oil extraction techniques tested and developed for algae are also discussed.

  10. Modeling Sustainable Bioenergy Feedstock Production in the Alps

    NASA Astrophysics Data System (ADS)

    Kraxner, Florian; Leduc, Sylvain; Kindermann, Georg; Fuss, Sabine; Pietsch, Stephan; Lakyda, Ivan; Serrano Leon, Hernan; Shchepashchenko, Dmitry; Shvidenko, Anatoly

    2016-04-01

    Sustainability of bioenergy is often indicated by the neutrality of emissions at the conversion site while the feedstock production site is assumed to be carbon neutral. Recent research shows that sustainability of bioenergy systems starts with feedstock management. Even if sustainable forest management is applied, different management types can impact ecosystem services substantially. This study examines different sustainable forest management systems together with an optimal planning of green-field bioenergy plants in the Alps. Two models - the biophysical global forest model (G4M) and a techno-economic engineering model for optimizing renewable energy systems (BeWhere) are implemented. G4M is applied in a forward looking manner in order to provide information on the forest under different management scenarios: (1) managing the forest for maximizing the carbon sequestration; or (2) managing the forest for maximizing the harvestable wood amount for bioenergy production. The results from the forest modelling are then picked up by the engineering model BeWhere, which optimizes the bioenergy production in terms of energy demand (power and heat demand by population) and supply (wood harvesting potentials), feedstock harvesting and transport costs, the location and capacity of the bioenergy plant as well as the energy distribution logistics with respect to heat and electricity (e.g. considering existing grids for electricity or district heating etc.). First results highlight the importance of considering ecosystem services under different scenarios and in a geographically explicit manner. While aiming at producing the same amount of bioenergy under both forest management scenarios, it turns out that in scenario (1) a substantially larger area (distributed across the Alps) will need to be used for producing (and harvesting) the necessary amount of feedstock than under scenario (2). This result clearly shows that scenario (2) has to be seen as an "intensification

  11. Development and installation of an advanced beam guidance system on Viking`s 2.4 megawatt EB furnace

    SciTech Connect

    Motchenbacher, C.A.; Grosse, I.A.

    1994-12-31

    Viking Metallurgical is a manufacturer of titanium alloy and superalloy seamless ring forgings for the aerospace industry. For more than 20 years Viking has used electron beam cold hearth melting to recover titanium alloy scrap and to produce commercially pure titanium ingot for direct forging. In the 1970`s Viking pioneered electron beam cold hearth melting and in 1983 added a two-gun, 2.4 MW furnace. As part of Vikings efforts to improve process control we have commissioned and installed a new electron beam guidance system. The system is capable of generating virtually unlimited EB patterns resulting in improved melt control.

  12. Will more intensive forest harvesting for bioenergy cause unacceptable depletion of base cation pools - a modelling study using the Heureka decision support system

    NASA Astrophysics Data System (ADS)

    Futter, M. N.; Lucas, R. W.; Egnell, G.; Holmström, H.; Laudon, H.; Nilsson, U.; Oni, S. K.; Lämâs, T.

    2012-04-01

    Intensive forest harvesting has the potential to remove base cations (BC; Ca, K, Mg and Na) from ecosystems more rapidly than they can be replaced through mineral weathering. For this reason, whole tree harvesting (i.e. branches and needles harvested) for biofuel production in Sweden and elsewhere may not be ecologically sustainable. Under some circumstances, excessive BC removal may lead to re-acidification of soil and surface waters and a reduction of the growth potential in subsequent forest rotations. There is considerable uncertainty in all components of stand-scale BC mass balance estimates associated with forest harvests. Estimates of weathering rates from a single site can range over more than an order of magnitude, deposition estimates are often poorly constrained and tree element concentrations can show considerable variation. Despite these uncertainties, BC dynamics play a key role in forest management and planning. The Heureka decision support system has been developed in Sweden for multi-criteria analysis of forest management scenarios. Heureka can be used to estimate timber production and economic return under a series of user-specified constraints. Here, we present a model application based on Heureka, a database of tree element concentrations, published weathering rate estimates and long-term monitoring data to estimate BC budgets and their associated uncertainty under a series of forest harvest scenarios at the Strömsjöliden production park in northern Sweden. We evaluated BC budgets under four long term forest management scenarios associated with "business as usual", more intensive production, nature conservation and reindeer husbandry. Despite the large amount of uncertainty, a number of trends emerged. Nature conservation and reindeer husbandry scenarios were, in general, more sustainable than the other scenarios. Model results suggested that stem-only harvest could remove BC more rapidly than they could be replaced by weathering at some

  13. Gap between technically accurate information and socially appropriate information for structural health monitoring system installed into tall buildings

    NASA Astrophysics Data System (ADS)

    Mita, Akira

    2016-04-01

    The importance of the structural health monitoring system for tall buildings is now widely recognized by at least structural engineers and managers at large real estate companies to ensure the structural safety immediately after a large earthquake and appeal the quantitative safety of buildings to potential tenants. Some leading real estate companies decided to install the system into all tall buildings. Considering this tendency, a pilot project for the west area of Shinjuku Station supported by the Japan Science and Technology Agency was started by the author team to explore a possibility of using the system to provide safe spaces for commuters and residents. The system was installed into six tall buildings. From our experience, it turned out that viewing only from technological aspects was not sufficient for the system to be accepted and to be really useful. Safe spaces require not only the structural safety but also the soundness of key functions of the building. We need help from social scientists, medical doctors, city planners etc. to further improve the integrity of the system.

  14. Managing for soil protection and bioenergy production on agricultural lands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioenergy systems are needed that can aid in meeting the growing energy demands of the expanding human population without sacrificing the long-term sustainability, productivity and quality of the underlying natural resources. Agriculture, like the forestry sector, will produce the feedstocks. While ...

  15. NREL National Bioenergy Center Overview

    SciTech Connect

    2012-01-01

    The demand for clean, sustainable, secure energy is growing... and the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) is answering the call. NREL's National bioenergy Center is pioneering biofuels research and development and accelerating the pace these technologies move into the marketplace.

  16. Bioenergy in a Multifunctional Landscape

    SciTech Connect

    Watts, Chad; Negri, Cristina; Ssegane, Herbert

    2015-10-23

    How can our landscapes be managed most effectively to produce crops for food, feed, and bioenergy, while also protecting our water resources by preventing the loss of nutrients from the soil? Dr. Cristina Negri and her team at the U.S. Department of Energy’s Argonne National Laboratory are tackling this question at an agricultural research site located in Fairbury, Illinois.

  17. NREL National Bioenergy Center Overview

    SciTech Connect

    Foust, Thomas; Pienkos, Phil; Sluiter, Justin; Magrini, Kim; McMillan, Jim

    2014-07-28

    The demand for clean, sustainable, secure energy is growing... and the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) is answering the call. NREL's National Bioenergy Center is pioneering biofuels research and development and accelerating the pace these technologies move into the marketplace.

  18. Switchgrass for forage and bioenergy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Switchgrass is a native warm-season grass that has been used for hay, forage, and conservation purposes for decades and switchgrass research in Nebraska has been ongoing since 1936. Recently, switchgrass has been identified as a model perennial grass for bioenergy in the Great Plains and Midwest. Si...

  19. Impact evaluation of a refrigeration control system installed at Vitamilk Dairy, Incorporated under the Energy $avings Plan

    SciTech Connect

    Brown, D.R.; Dixon, D.R.; Spanner, G.E.

    1995-01-01

    This impact evaluation of a refrigeration control system (RCS) recently installed at Vitamilk Dairy, Inc. (Vitamilk) was conducted for the Bonneville Power Administration (Bonneville) as part of an evaluation of its Energy $avings Plan (E$P) Program. The RCS installation at Vitamilk uses microcomputer- based controls to automate refrigeration equipment previously controlled manually. This impact evaluation assessed how much electricity is being saved at Vitamilk as a result of the E$P and to determine how much the savings cost Bonneville and the region. On a unit savings basis, this project will save 9.7 kWh/tonne (8-8 kWh/ton) of milk and ice cream produced, based on the product mix for June 1992 through May 1993, representing a 28% reduction in energy consumption. The project was installed in 1992 for a total cost of $129,330, and Vitamilk received payment of $62,974 from Bonneville in 1993 for the acquisition of energy savings. The real levelized cost of these energy savings to Bonneville is 8.5 mills/kWh (in 1993 dollars) over the project`s assumed 15-year life, and the real levelized cost to the region is 17.9 mills/kWh (in 1993 dollars), not including transmission and distribution effects. Based on the expected project installation costs and energy savings benefits, the RCS would not have been implemented by Vitamilk without the E$P acquisition payment. The expected acquisition payment reduced the estimated payback period from 7.0 to 2.8 years. Although Vitamilk would generally require an energy conservation project to have a payback period of two years or less, the slightly longer payback period was accepted in this case.

  20. 46 CFR 183.392 - Radiotelephone installations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... TONS) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.392 Radiotelephone installations. A separate circuit, with overcurrent protection at the main distribution panel, must be...

  1. 46 CFR 120.392 - Radiotelephone installations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... INSTALLATION Power Sources and Distribution Systems § 120.392 Radiotelephone installations. A separate circuit, with overcurrent protection at the main distribution panel, must be provided for each...

  2. 46 CFR 183.392 - Radiotelephone installations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... TONS) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.392 Radiotelephone installations. A separate circuit, with overcurrent protection at the main distribution panel, must be...

  3. 46 CFR 120.392 - Radiotelephone installations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... INSTALLATION Power Sources and Distribution Systems § 120.392 Radiotelephone installations. A separate circuit, with overcurrent protection at the main distribution panel, must be provided for each...

  4. 46 CFR 120.392 - Radiotelephone installations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... INSTALLATION Power Sources and Distribution Systems § 120.392 Radiotelephone installations. A separate circuit, with overcurrent protection at the main distribution panel, must be provided for each...

  5. 46 CFR 120.392 - Radiotelephone installations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... INSTALLATION Power Sources and Distribution Systems § 120.392 Radiotelephone installations. A separate circuit, with overcurrent protection at the main distribution panel, must be provided for each...

  6. 46 CFR 183.392 - Radiotelephone installations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... TONS) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.392 Radiotelephone installations. A separate circuit, with overcurrent protection at the main distribution panel, must be...

  7. 46 CFR 183.392 - Radiotelephone installations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... TONS) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.392 Radiotelephone installations. A separate circuit, with overcurrent protection at the main distribution panel, must be...

  8. Installation guidelines for solar heating system, single-family residence at William O'Brien State Park, Stillwater, Minnesota

    SciTech Connect

    Not Available

    1980-05-01

    The Solar Heating System installer guidelines are provided for each subsystem and testing and filling the system are included. This single-family residential heating system is a solar-assisted, hydronic-to-warm-air system with solar-assisted domestic water heating. It is composed of the following major components: liquid cooled flat plate collectors; water storage tank; passive solar-fired domestic water preheater; electric hot water heater; heat pump with electric backup; solar hot water coil unit; tube-and-shell heat exchanger, three pumps, and associated pipes and valving in an energy transport module; control system; and air-cooled heat purge unit. Information is also provided on the operating procedures, controls, caution requirements, and routine and schedule maintenance. Information consists of written procedures, schematics, detail drawings, pictures and manufacturer's component data.

  9. Two year performance of a 10 kW CPV system installed in two areas of Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Khonkar, Hussam; Alowais, Abdullah; Sheikho, Ayman; Alyahya, Abdulaziz; Alghamdi, Ahmed; Alsaedan, Abdullah; Eugenio, Nunilo N.; Alalweet, Fahad; Halawani, Mohammad; Alsaferan, Abdulrahman

    2014-09-01

    The three year KACST/IBM collaboration in solar technology research led to the design and development of a 10kW CPV system. The system is comprised of 81 PV modules, inverters and a tracking system and is grid connected. A primary and secondary optics were employed to reach 1600x concentration on multijunction solar cells. Two CPV trackers were installed in the city of Riyadh and one in the eastern coastal city of Al Khafji. These two areas differ in climatic conditions. Riyadh is mostly dry and very often hit by very strong sand storms while Al Khafji is very humid with sand storms. Very fine dusts and dirt carried by the storms hits the surface of the primary optics, Fresnel lens, of the system. In Riyadh, the particles stick to the lenses but accumulation in the surface is not much since it is blown away by wind. However, the humid condition of the coastal areas wets the dusts and makes it sticky, cumulating more dusts and dirt. This paper discusses in details the parts of the 10kW CPV system. It presents a comprehensive analysis of the system's performance since the time they were installed and operated. CPV systems are operated with the least number of personnel and supervision. However, dust and dirt lessens the amount of sunlight passing through the primary optics. It requires periodic cleaning of the Fresnel lens. Different methods of cleaning were tried to identify the efficient way to clean the system that results to a higher power generation. Corrections and modifications of the system to further increase power production are presented.

  10. Solar heating and hot water system installed at Southeast of Saline, Unified School District 306, Mentor, Kansas

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The solar system, installed in a new building, was designed to provide 52 percent of the estimated annual space heating load and 84 percent of the estimated annual potable hot water requirement. The liquid flat plate collectors are ground-mounted and cover a total area of 5125 square feet. The system will provide supplemental heat for the school's closed-loop water-to-air heat pump system and domestic hot water. The storage medium is water inside steel tanks with a capacity of 11,828 gallons for space heating and 1,600 gallons for domestic hot water. The solar heating facility is described and drawings are presented of the completed system which was declared operational in September 1978, and has functioned successfully since.

  11. Solar heating and hot water system installed at the Senior Citizen Center, Huntsville, Alabama. [Includes engineering drawings

    SciTech Connect

    Not Available

    1980-02-01

    Information is provided on the solar energy system installed at the Huntsville Senior Citizen Center. The solar space heating and hot water facility and the project involved in its construction are described in considerable detail and detailed drawings of the complete system and discussions of the planning, the hardware, recommendations, and other pertinent information are included. The facility was designed to provide 85 percent of the hot water and 85 percent of the space heating requirements. Two important factors concerning this project for commercial demonstration are the successful use of silicon oil as a heat transfer fluid and the architecturally aesthetic impact of a large solar energy system as a visual centerpoint. There is no overheat or freeze protection due to the characteristics of the silicon oil and the design of the system. Construction proceeded on schedule with no cost overruns. It is designed to be relatively free of scheduled maintenance, and has experienced practically no problems.

  12. Geographic Information Systems for Assessing Existing and Potential Bio-energy Resources: Their Use in Determining Land Use and Management Options which Minimize Ecological and Landscape Impacts in Rural Areas

    NASA Technical Reports Server (NTRS)

    Jackman, A. E.; Fabos, J. G.; Carlozzi, C. C.

    1982-01-01

    A management construct is described which forms part of an overall landscape ecological planning model which has as a principal objective the extension of the traditional descriptive land use mapping capabilities of geographic information systems into land management realms. It is noted that geographic information systems appear to be moving to more comprehensive methods of data handling and storage, such as relational and hierarchical data management systems, and a clear need has simultaneously arisen therefore for planning assessment techniques and methodologies which can actually use such complex levels of data in a systematic, yet flexible and scenario dependent way. The descriptive of mapping method proposed broaches such issues and utilizes a current New England bioenergy scenario, stimulated by the use of hardwoods for household heating purposes established in the post oil crisis era and the increased awareness of the possible landscape and ecological ramifications of the continued increasing use of the resource.

  13. Geographic information systems for assessing existing and potential bio-energy resources: Their use in determining land use and management options which minimize ecological and landscape impacts in rural areas

    SciTech Connect

    Jackman, A.E.; Fabos, J.G.; Carlozzi, C.C.

    1982-01-01

    A management construct is described which forms part of an overall landscape ecological planning model which has as a principal objective the extension of the traditional descriptive land use mapping capabilities of geographic information systems into land management realms. It is noted that geographic information systems appear to be moving to more comprehensive methods of data handling and storage, such as relational and hierarchical data management systems, and a clear need has simultaneously arisen therefore for planning assessment techniques and methodologies which can actually use such complex levels of data in a systematic, yet flexible and scenario dependent way. The description of mapping method proposed broaches such issues and utilizes a current New England bioenergy scenario, stimulated by the use of hardwoods for household heating purposes established in the post oil crisis era and the increased awareness of the possible landscape and ecological ramifications of the continued increasing use of the resource.

  14. 30 CFR 250.1628 - Design, installation, and operation of production systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Hydrocarbon handling vessels associated with fuel gas system. You must protect hydrocarbon handling vessels associated with the fuel gas system with a basic and ancillary surface safety system. This system must be..., AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE...

  15. NanTroSEIZE observatories: Installation of a long-term borehole monitoring systems offshore the Kii Peninsula, Japan

    NASA Astrophysics Data System (ADS)

    Kopf, A.; Saffer, D. M.; Davis, E. E.; Araki, E.; Kinoshita, M.; Lauer, R. M.; Wheat, C. G.; Kitada, K.; Kimura, T.; Toczko, S.; Eguchi, N. O.; Science Parties, E.

    2010-12-01

    The IODP Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) is a multi-expedition drilling program designed to investigate fault mechanics, fault slip behavior, and strain accumulation along subduction megathrusts, through coring, logging, and long-term monitoring experiments. One key objective is the development and installation of a borehole observatory network extending from locations above the outer, presumably aseismic accretionary wedge to the seismogenic and interseismically locked plate interface, to record seismicity and slip transients, monitor strain accumulation, document hydraulic transients associated with deformation events, and quantify in situ pore fluid pressure and temperature. As part of recent NanTroSEIZE operations, borehole instruments have been developed for deployment at two sites: (1) Site C0010, which penetrates a major out-of-sequence thrust fault termed the “megasplay” at ca. 400 mbsf, and (2) Site C0002 in the Kumano forearc basin at a location that overlies both the updip edge of the inferred interseismically locked portion of the plate interface, and clusters of very low frequency thrust and reverse earthquakes located within the accretionary prism and potentially on the megasplay fault. In 2009, Site C0010 was drilled and cased with screens to access the megasplay fault, and a simple pore pressure and temperature monitoring system (a ”smartplug”) was installed. The simple observatory unit includes pressure and temperature sensors and a data logging package mounted beneath a mechanically set retrievable casing packer, and includes two pressure sensors, one in hydraulic communication with the formation through the casing screens below the packer, and the other to the open borehole above the packer to record hydrostatic reference pressure and ocean loading signals. Temperatures are recorded within the instrument package using a platinum thermometer and by a self-contained miniature temperature logger (MTL). In fall 2010

  16. Installation and commissioning of a large area coating system for neutron and X-ray optical devices

    SciTech Connect

    Biswas, A. Haque, Sk. Maidul Misal, J. Sampathkumar, R.; Ajaykumar,; Bhattacharyya, D.; Sahoo, N. K.; Lagoo, K. D.; Veerapur, R. D.; Padmanabhan, M.; Puri, R. K.; Bhattacharya, Debarati

    2014-04-24

    A 9 meter long DC/RF sputtering cylindrical coating system which is designed and built indigenously for coating of neutron supermirrors and grazing incidence hard X-ray mirrors on large area substrates has been installed and commissioned recently. The performance of the system has been tested by depositing Ti films on glass substrate of 1500mm X 150mm size. By depositing Ti films on several small area c-Si substrates placed over the length and breadth of the substrate holder, and by subsequent characterization by GIXR measurement, it has been observed that films with bulk-like density and very low surface roughness can be obtained in the above system. The thickness uniformity achieved in the deposited films is within ±3.5% over the 1500mm length and within ±4.8% over the 150mm width.

  17. Installation and commissioning of a large area coating system for neutron and X-ray optical devices

    NASA Astrophysics Data System (ADS)

    Biswas, A.; Haque, Sk. Maidul; Misal, J.; Lagoo, K. D.; Veerapur, R. D.; Padmanabhan, M.; Puri, R. K.; Sampathkumar, R.; Ajaykumar, Bhattacharya, Debarati; Bhattacharyya, D.; Sahoo, N. K.

    2014-04-01

    A 9 meter long DC/RF sputtering cylindrical coating system which is designed and built indigenously for coating of neutron supermirrors and grazing incidence hard X-ray mirrors on large area substrates has been installed and commissioned recently. The performance of the system has been tested by depositing Ti films on glass substrate of 1500mm X 150mm size. By depositing Ti films on several small area c-Si substrates placed over the length and breadth of the substrate holder, and by subsequent characterization by GIXR measurement, it has been observed that films with bulk-like density and very low surface roughness can be obtained in the above system. The thickness uniformity achieved in the deposited films is within ±3.5% over the 1500mm length and within ±4.8% over the 150mm width.

  18. Solar energy system installed at the North Georgia APDC office building

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A hydronic, automatic drain-down solar heating and cooling system is described. The system provides solar heat exchange from a 2,001 square foot effective collector area and supplies 65-70 percent of the building's cooling demand, 90-95 percent of the heating demand, and domestic hot water. The acceptance test plan and results, system operation and maintenance, and predicted system performance are presented.

  19. 40 CFR 62.15175 - What continuous emission monitoring systems must I install for gaseous pollutants?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., maintain, and operate continuous emission monitoring systems for oxygen (or carbon dioxide), sulfur dioxide... emission monitoring system for sulfur dioxide, nitrogen oxides, and oxygen (or carbon dioxide) at the... emission monitoring system according to the “Monitoring Requirements” in § 60.13 of subpart A of 40...

  20. 40 CFR 62.15175 - What continuous emission monitoring systems must I install for gaseous pollutants?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., maintain, and operate continuous emission monitoring systems for oxygen (or carbon dioxide), sulfur dioxide... emission monitoring system for sulfur dioxide, nitrogen oxides, and oxygen (or carbon dioxide) at the... emission monitoring system according to the “Monitoring Requirements” in § 60.13 of subpart A of 40...

  1. Design and development of synthetic microbial platform cells for bioenergy

    PubMed Central

    Lee, Sang Jun; Lee, Sang-Jae; Lee, Dong-Woo

    2013-01-01

    The finite reservation of fossil fuels accelerates the necessity of development of renewable energy sources. Recent advances in synthetic biology encompassing systems biology and metabolic engineering enable us to engineer and/or create tailor made microorganisms to produce alternative biofuels for the future bio-era. For the efficient transformation of biomass to bioenergy, microbial cells need to be designed and engineered to maximize the performance of cellular metabolisms for the production of biofuels during energy flow. Toward this end, two different conceptual approaches have been applied for the development of platform cell factories: forward minimization and reverse engineering. From the context of naturally minimized genomes,non-essential energy-consuming pathways and/or related gene clusters could be progressively deleted to optimize cellular energy status for bioenergy production. Alternatively, incorporation of non-indigenous parts and/or modules including biomass-degrading enzymes, carbon uptake transporters, photosynthesis, CO2 fixation, and etc. into chassis microorganisms allows the platform cells to gain novel metabolic functions for bioenergy. This review focuses on the current progress in synthetic biology-aided pathway engineering in microbial cells and discusses its impact on the production of sustainable bioenergy. PMID:23626588

  2. Biofuel Enduse Datasets from the Bioenergy Knowledge Discovery Framework (KDF)

    DOE Data Explorer

    The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. [copied from https://www.bioenergykdf.net/content/about]

    Holdings include datasets, models, and maps. This is a very new resource, but the collections will grow due to both DOE contributions and individualsÆ data uploads. Currently the Biofuel Enduse collection includes 133 items. Most of these are categorized as literature, but 36 are listed as datasets and ten as models.

  3. Design and development of synthetic microbial platform cells for bioenergy.

    PubMed

    Lee, Sang Jun; Lee, Sang-Jae; Lee, Dong-Woo

    2013-01-01

    The finite reservation of fossil fuels accelerates the necessity of development of renewable energy sources. Recent advances in synthetic biology encompassing systems biology and metabolic engineering enable us to engineer and/or create tailor made microorganisms to produce alternative biofuels for the future bio-era. For the efficient transformation of biomass to bioenergy, microbial cells need to be designed and engineered to maximize the performance of cellular metabolisms for the production of biofuels during energy flow. Toward this end, two different conceptual approaches have been applied for the development of platform cell factories: forward minimization and reverse engineering. From the context of naturally minimized genomes,non-essential energy-consuming pathways and/or related gene clusters could be progressively deleted to optimize cellular energy status for bioenergy production. Alternatively, incorporation of non-indigenous parts and/or modules including biomass-degrading enzymes, carbon uptake transporters, photosynthesis, CO2 fixation, and etc. into chassis microorganisms allows the platform cells to gain novel metabolic functions for bioenergy. This review focuses on the current progress in synthetic biology-aided pathway engineering in microbial cells and discusses its impact on the production of sustainable bioenergy.

  4. AUTOMOTIVE DIESEL MAINTENACE 1. UNIT XV, I--MAINTAINING THE COOLING SYSTEM, CUMMINS DIESEL ENGINE, I--UNIT INSTALLATION--TRANSMISSION.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE FUNCTION AND MAINTENANCE OF THE DIESEL ENGINE COOLING SYSTEM AND THE PROCEDURES FOR TRANSMISSION INSTALLATION. TOPICS ARE (1) IMPORTANCE OF THE COOLING SYSTEM, (2) COOLING SYSTEM COMPONENTS, (3) EVALUATING COOLING SYSTEM FAILURES, (4) CARING FOR THE COOLING SYSTEM,…

  5. Fungal Genome Sequencing and Bioenergy

    SciTech Connect

    Baker, Scott E.; Thykaer, Jette; Adney, William S.; Brettin, T.; Brockman, Fred J.; D'haeseleer, Patrik; Martinez, Antonio D.; Miller, R. M.; Rokhsar, Daniel S.; Schadt, Christopher W.; Torok, Tamas; Tuskan, Gerald; Bennett, Joan W.; Berka, Randy; Briggs, Steve; Heitman, Joseph; Taylor, John; Turgeon, Barbara G.; Werner-Washburne, Maggie; Himmel, Michael E.

    2008-09-30

    To date, the number of ongoing filamentous fungal genome sequencing projects is almost tenfold fewer than those of bacterial and archaeal genome projects. The fungi chosen for sequencing represent narrow kingdom diversity; most are pathogens or models. We advocate an ambitious, forward-looking phylogenetic-based genome sequencing program, designed to capture metabolic diversity within the fungal kingdom, thereby enhancing research into alternative bioenergy sources, bioremediation, and fungal-environment interactions.

  6. Fungal Genome Sequencing and Bioenergy

    SciTech Connect

    Baker, Scott; Thykaer, Jette; Adney, William S; Brettin, Tom; Brockman, Fred; Dhaeseleer, Patrick; Martinez, A diego; Miller, R michael; Rokhsar, Daniel; Schadt, Christopher Warren; Torok, Tamas; Tuskan, Gerald A; Bennett, Joan; Berka, Randy; Briggs, Steven; Heitman, Joseph; Taylor, John; Turgeon, Gillian; Werner-Washburne, Maggie; Himmel, Michael E

    2008-01-01

    To date, the number of ongoing filamentous fungal genome sequencing projects is almost tenfold fewer than those of bacterial and archaeal genome projects. The fungi chosen for sequencing represent narrow kingdom diversity; most are pathogens or models. We advocate an ambitious, forward-looking phylogenetic-based genome sequencing program, designed to capture metabolic diversity within the fungal kingdom, thereby enhancing research into alternative bioenergy sources, bioremediation, and fungal-environment interactions. Published by Elsevier Ltd on behalf of The British Mycological Society.

  7. Fungal Genome Sequencing and Bioenergy

    SciTech Connect

    Schadt, Christopher Warren; Baker, Scott; Thykaer, Jette; Adney, William S; Brettin, Tom; Brockman, Fred; Dhaeseleer, Patrick; Martinez, A diego; Miller, R michael; Rokhsar, Daniel; Torok, Tamas; Tuskan, Gerald A; Bennett, Joan; Berka, Randy; Briggs, Steven; Heitman, Joseph; Rizvi, L; Taylor, John; Turgeon, Gillian; Werner-Washburne, Maggie; Himmel, Michael

    2008-01-01

    To date, the number of ongoing filamentous fungal genome sequencing projects is almost tenfold fewer than those of bacterial and archaeal genome projects. The fungi chosen for sequencing represent narrow kingdom diversity; most are pathogens or models. We advocate an ambitious, forward-looking phylogenetic-based genome sequencing program, designed to capture metabolic diversity within the fungal kingdom, thereby enhancing research into alternative bioenergy sources, bioremediation, and fungal-environment interactions.

  8. Trade-offs of different land and bioenergy policies on the path to achieving climate targets

    SciTech Connect

    Calvin, Katherine V.; Wise, Marshall A.; Kyle, G. Page; Patel, Pralit L.; Clarke, Leon E.; Edmonds, James A.

    2013-10-16

    Many papers have shown that bioenergy and land-use are potentially important elements in a strategy to limit anthropogenic climate change. But, significant expansion of bioenergy production can have a large terrestrial footprint. In this paper, we test the implications for land use, the global energy system, carbon cycle, and carbon prices of meeting a specific climate target, using a single fossil fuel and industrial sector policy instrument—the carbon tax, but with five alternative bioenergy and land-use policy architectures. We find that the policies we examined have differing effects on the different segments of the economy. Comprehensive land policies can reduce land-use change emissions, increasing allowable emissions in the energy system, but have implications for the cost of food. Bioenergy taxes and constraints, on the other hand, have little effect on food prices, but can result in increased carbon and energy prices.

  9. Test Report for Cricket Radiation Detection System Used In EPA Port Installations

    SciTech Connect

    Shourbaji, AA

    2004-08-11

    Oak Ridge National Laboratory conducted field radiological measurements at two port locations at the request of the Environmental Protection Agency (EPA). The radiological measurements were performed on five radiation detection systems at the port of Darrow, Louisiana and three systems at the port of Charleston, South Carolina. Darrow was visited on January 20-23, 2004 and Charleston on May 25, 2004. All tested systems are designed to detect radioactive material that might be present in scrap metals as the scrap is being unloaded from ships. All eight systems are commercially known as the Cricket and manufactured by RAD/COMM Systems. Each radiation detection system consists of a detector with two channels and a wireless transmitter, both mounted on the grapple, and a controller located in the crane cab. The cranes at both locations are operated by the Cooper T. Smith Company. The purpose of the radiological measurements was to evaluate the performance of the radiation detection systems in terms of their ability to detect elevated radiation levels, and to develop a routine testing method for all EPA Cricket systems.

  10. Specifying, Installing and Maintaining Built-Up and Modified Bitumen Roofing Systems.

    ERIC Educational Resources Information Center

    Hobson, Joseph W.

    2000-01-01

    Examines built-up, modified bitumen, and hybrid combinations of the two roofing systems and offers advise on how to assure high- quality performance and durability when using them. Included is a glossary of commercial roofing terms and asphalt roofing resources to aid in making decisions on roofing and systems product selection. (GR)

  11. 14 CFR Appendix D to Part 417 - Flight Termination Systems, Components, Installation, and Monitoring

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... other protected area; (3) Destroy the pressure integrity of any solid propellant system to terminate all... propellant. (b) A flight termination system must not cause any solid or liquid propellant to detonate. (c... switching. In the event of an input power dropout, a power control or switching circuit, including any...

  12. 30 CFR 250.1628 - Design, installation, and operation of production systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., storage tanks, compressor pumps, metering devices, and other sulphur-handling vessels; (2) A schematic... approved designs of this subpart. (c) Hydrocarbon handling vessels associated with fuel gas system. You must protect hydrocarbon handling vessels associated with the fuel gas system with a basic...

  13. 30 CFR 250.1628 - Design, installation, and operation of production systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., storage tanks, compressor pumps, metering devices, and other sulphur-handling vessels; (2) A schematic... approved designs of this subpart. (c) Hydrocarbon handling vessels associated with fuel gas system. You must protect hydrocarbon handling vessels associated with the fuel gas system with a basic...

  14. 30 CFR 250.1628 - Design, installation, and operation of production systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., storage tanks, compressor pumps, metering devices, and other sulphur-handling vessels; (2) A schematic... approved designs of this subpart. (c) Hydrocarbon handling vessels associated with fuel gas system. You must protect hydrocarbon handling vessels associated with the fuel gas system with a basic...

  15. Executing the double win: protect your cash flow during a patient accounting system install.

    PubMed

    Adams, Jason L; Smith, J Cathy; Strand, Brett

    2009-09-01

    MultiCare Health System's plan for ensuring that its patient accounting system implementation would bring rapid financial benefits comprised eight basic steps: Set baselines and establish goals. Identify key leadership stakeholders across departmental lines. Identify team resources. Establish roles and responsibilities. Identify and prepare for potential risks. Develop guiding principles. Develop key reporting and monitoring tools. Conduct daily monitoring.

  16. 14 CFR Appendix D to Part 417 - Flight Termination Systems, Components, Installation, and Monitoring

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... predicted highest temperature plus 10 °C. (3) Electronic components. An electronic flight termination system... highest temperature plus 10 °C. (4) Power source thermal design. A flight termination system power source... higher than the highest temperature of the range. An exception is that each thermal cycle may range...

  17. Solar heating system installed at Telex Communications, Inc., Blue Earth, Minnesota

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The solar heating system for space heating a 97,000 square foot building which houses administrative offices, assembly areas, and warehouse space is summarized. Information on system description, test data, major problems and resolutions, performance, operation and maintenance manual, manufacturer's literature, and as-built drawings is presented.

  18. Advanced Coupled Simulation of Borehole Thermal Energy Storage Systems and Above Ground Installations

    NASA Astrophysics Data System (ADS)

    Welsch, Bastian; Rühaak, Wolfram; Schulte, Daniel O.; Bär, Kristian; Sass, Ingo

    2016-04-01

    Seasonal thermal energy storage in borehole heat exchanger arrays is a promising technology to reduce primary energy consumption and carbon dioxide emissions. These systems usually consist of several subsystems like the heat source (e.g. solarthermics or a combined heat and power plant), the heat consumer (e.g. a heating system), diurnal storages (i.e. water tanks), the borehole thermal energy storage, additional heat sources for peak load coverage (e.g. a heat pump or a gas boiler) and the distribution network. For the design of an integrated system, numerical simulations of all subsystems are imperative. A separate simulation of the borehole energy storage is well-established but represents a simplification. In reality, the subsystems interact with each other. The fluid temperatures of the heat generation system, the heating system and the underground storage are interdependent and affect the performance of each subsystem. To take into account these interdependencies, we coupled a software for the simulation of the above ground facilities with a finite element software for the modeling of the heat flow in the subsurface and the borehole heat exchangers. This allows for a more realistic view on the entire system. Consequently, a finer adjustment of the system components and a more precise prognosis of the system's performance can be ensured.

  19. Building-Integrated Photovoltaics (BIPV) in the Residential Sector: An Analysis of Installed Rooftop System Prices

    SciTech Connect

    James, T.; Goodrich, A.; Woodhouse, M.; Margolis, R.; Ong, S.

    2011-11-01

    For more than 30 years, there have been strong efforts to accelerate the deployment of solar-electric systems by developing photovoltaic (PV) products that are fully integrated with building materials. This report examines the status of building-integrated PV (BIPV), with a focus on the cost drivers of residential rooftop systems, and explores key opportunities and challenges in the marketplace.

  20. Metaphors of Time and Installed Knowledge Organization Systems: Ouroboros, Architectonics, or Lachesis?

    ERIC Educational Resources Information Center

    Tennis, Joseph T.

    2013-01-01

    Introduction: This paper presents three metaphors of time present in knowledge organization systems. Analysis: These three metaphors the architectonic, ouroboric, and lachesic, can be used as lenses to analyse extant or newly designed knowledge organization systems. Conclusion: A foundational view of evaluating and theorizing about knowledge…

  1. Solar Heating and Cooling of Residential Buildings: Sizing, Installation and Operation of Systems.

    ERIC Educational Resources Information Center

    Colorado State Univ., Ft. Collins. Solar Energy Applications Lab.

    This training course and a companion course titled "Design of Systems for Solar Heating and Cooling of Residential Buildings," are designed to train home designers and builders in the fundamentals of solar hydronic and air systems for space heating and cooling and domestic hot water heating for residential buildings. Each course, organized in 22…

  2. 30 CFR 250.1628 - Design, installation, and operation of production systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... approved designs of this subpart. (c) Hydrocarbon handling vessels associated with fuel gas system. You must protect hydrocarbon handling vessels associated with the fuel gas system with a basic and... THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF...

  3. 40 CFR 60.1720 - What continuous emission monitoring systems must I install for gaseous pollutants?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., maintain, and operate continuous emission monitoring systems for oxygen (or carbon dioxide), sulfur dioxide... emission monitoring systems for sulfur dioxide, nitrogen oxides, and oxygen (or carbon dioxide) at the... oxygen (or carbon dioxide) concentration at each location where you monitor sulfur dioxide and...

  4. Solar heating and domestic hot water system installed at Kansas City, Fire Stations, Kansas City, Missouri

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The solar system was designed to provide 47 percent of the space heating, 8,800 square feet area and 75 percent of the domestic hot water (DHW) load. The solar system consists of 2,808 square feet of Solaron, model 2001, air, flat plate collector subsystem, a concrete box storage subsystem which contains 1,428 cubic feet of 0.5 inch diameter pebbles weighing 71.5 tons, a DHW preheat tank, blowers, pumps, heat exchangers, air ducting, controls and associated plumbing. Two 120 gallon electric DHW heaters supply domestic hot water which is preheated by the solar system. Auxiliary space heating is provided by three electric heat pumps with electric resistance heaters and four 30 kilowatt electric unit heaters. There are six modes of system operation.

  5. 40 CFR 60.2939 - What continuous emission monitoring systems must I install?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., maintain, and operate continuous emission monitoring systems for carbon monoxide and for oxygen. You must monitor the oxygen concentration at each location where you monitor carbon monoxide. (b) You must...

  6. 40 CFR 60.2939 - What continuous emission monitoring systems must I install?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., maintain, and operate continuous emission monitoring systems for carbon monoxide and for oxygen. You must monitor the oxygen concentration at each location where you monitor carbon monoxide. (b) You must...

  7. 30 CFR 75.1101-5 - Installation of foam generator systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... (d) Water, power, and chemicals required shall be adequate to maintain water or foam flow for no less than 25 minutes. (e) Water systems shall include strainers with a flush-out connection and a...

  8. 30 CFR 75.1101-5 - Installation of foam generator systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... (d) Water, power, and chemicals required shall be adequate to maintain water or foam flow for no less than 25 minutes. (e) Water systems shall include strainers with a flush-out connection and a...

  9. 30 CFR 75.1101-5 - Installation of foam generator systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... (d) Water, power, and chemicals required shall be adequate to maintain water or foam flow for no less than 25 minutes. (e) Water systems shall include strainers with a flush-out connection and a...

  10. 30 CFR 75.1101-5 - Installation of foam generator systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... (d) Water, power, and chemicals required shall be adequate to maintain water or foam flow for no less than 25 minutes. (e) Water systems shall include strainers with a flush-out connection and a...

  11. 30 CFR 75.1101-5 - Installation of foam generator systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... (d) Water, power, and chemicals required shall be adequate to maintain water or foam flow for no less than 25 minutes. (e) Water systems shall include strainers with a flush-out connection and a...

  12. Design of an infrared camera based aircraft detection system for laser guide star installations

    SciTech Connect

    Friedman, H.; Macintosh, B.

    1996-03-05

    There have been incidents in which the irradiance resulting from laser guide stars have temporarily blinded pilots or passengers of aircraft. An aircraft detection system based on passive near infrared cameras (instead of active radar) is described in this report.

  13. Solar heating and cooling system installed at RKL Controls Company, Lumberton, New Jersey. Final report

    SciTech Connect

    1981-03-01

    Solar heating and cooling of a 40,000 square foot manufacturing building, sales offices and the solar computer control center/display room are described. Information on system description, test data, major problems and resolutions, performance, operation and maintenance manual, manufacturer's literature and as-built drawings are provided also. The solar system is composed of 6000 square feet of Sunworks double glazed flat plate collectors, external above ground storage subsystem, controls, ARKLA absorption chiller, heat recovery and a cooling tower.

  14. DEVELOPMENT, INSTALLATION AND OPERATION OF THE MPC&A OPERATIONS MONITORING (MOM) SYSTEM AT THE JOINT INSTITUTE FOR NUCLEAR RESEARCH (JINR) DUBNA, RUSSIA

    SciTech Connect

    Kartashov,V.V.; Pratt,W.; Romanov, Y.A.; Samoilov, V.N.; Shestakov, B.A.; Duncan, C.; Brownell, L.; Carbonaro, J.; White, R.M.; Coffing, J.A.

    2009-07-12

    The Material Protection, Control and Accounting (MPC&A) Operations Monitoring (MOM) systems handling at the International Intergovernmental Organization - Joint Institute for Nuclear Research (JINR) is described in this paper. Category I nuclear material (plutonium and uranium) is used in JINR research reactors, facilities and for scientific and research activities. A monitoring system (MOM) was installed at JINR in April 2003. The system design was based on a vulnerability analysis, which took into account the specifics of the Institute. The design and installation of the MOM system was a collaborative effort between JINR, Brookhaven National Laboratory (BNL) and the U.S. Department of Energy (DOE). Financial support was provided by DOE through BNL. The installed MOM system provides facility management with additional assurance that operations involving nuclear material (NM) are correctly followed by the facility personnel. The MOM system also provides additional confidence that the MPC&A systems continue to perform effectively.

  15. Recent changes in contaminant levels in the Bow River following the installation of a containment system at the Canada cresote site

    SciTech Connect

    Sosiak, A.

    1999-01-01

    In 1989, a liquid mixture of various contaminants including creosote and PCP was found seeping into the Bow River adjacent to an abandoned wood preservatives plant site in Calgary. A temporary berm was built in the river around the seepage area in 1989 and permanent barriers to contaminant flow were installed in 1995 and 1996. This report evaluates changes in water quality in the river over the two years since the containment system was installed. Contaminant levels are compared before and after installation at sites downstream and upstream from the abandoned plant. Results are presented for such compounds as naphthalene, pentachlorophenol, dibenzofuran, benzo(a)pyrene, and benzo(a)anthracene.

  16. Recent changes in contaminant levels in the Bow River following the installation of a containment system at the Canada cresote site

    SciTech Connect

    Sosiak, A.

    1999-11-01

    In 1989, a liquid mixture of various contaminants including creosote and PCP was found seeping into the Bow River adjacent to an abandoned wood preservatives plant site in Calgary. A temporary berm was built in the river around the seepage area in 1989 and permanent barriers to contaminant flow were installed in 1995 and 1996. This report evaluates changes in water quality in the river over the two years since the containment system was installed. Contaminant levels are compared before and after installation at sites downstream and upstream from the abandoned plant. Results are presented for such compounds as naphthalene, pentachlorophenol, dibenzofuran, benzo(a)pyrene, and benzo(a)anthracene.

  17. Bioenergy crop models: Descriptions, data requirements and future challenges

    SciTech Connect

    Surendran Nair, Sujith; Kang, Shujiang; Zhang, Xuesong; Miguez, Fernando; Izaurralde, Roberto C.; Post, W. M.; Dietze, Michael; Lynd, Lee R.; Wullschleger, Stan D.

    2012-03-15

    Field studies that address the production of lignocellulosic biomass as a potential source of renewable energy are making available critical information for the development, validation, and use of bioenergy crop models. A literature survey revealed that 14 models have been developed and validated for herbaceous and woody bioenergy crops, and for Crassulacean acid metabolism (CAM) crops adapted to arid lands. These models simulate field-scale production of biomass for switchgrass (ALMANAC, EPIC, and Agro-BGC), miscanthus (MISCANFOR, MISCANMOD, and WIMOVAC), sugarcane (APSIM, AUSCANE, and CANEGRO), and poplar and willow (SECRETS and 3PG). Two models are adaptations of dynamic global vegetation models and simulate biomass yields of miscanthus and sugarcane as plant function types at regional scales (Agro-IBIS and LPJmL). A model of biomass production in CAM plants has been developed (EPI), but lacks the sophistication of the other models. Except for CAM plants, all the models include representations of leaf area dynamics, radiation interception and utilization, biomass production, and partitioning of biomass to roots and shoots. A few of the models are capable of simulating soil water, nutrient, and carbon cycle processes, making them especially useful for assessing environmental consequences (e.g., erosion and nutrient losses) associated with the field-scale deployment of bioenergy crops. Similar to other process-based models, simulations are challenged by computing and data management issues and an integrated framework for model testing and inter-comparison is needed. Considerable work remains concerning the development of models for unconventional bioenergy crops like CAM plants, generation and distribution of high-quality field data for model development and validation, and development of an integrated framework for efficient execution of large-scale simulations for use in planning regional to global sustainable bioenergy production systems.

  18. Federal Emergency Management Information System (FEMIS), Installation Guide for FEMIS 1.4.6

    SciTech Connect

    Arp, J.A.; Burnett, R.A.; Carter, R.J.; Downing, T.R.; Dunkle, J.R.; Fangman, P.M.; Gackle, P.P.; Homer, B.J.; Johnson, D.M.; Johnson, R.L.; Johnson, S.M.; Loveall, R.M.; Stephan, A.J.; Millard, W.D.; Wood, B.M.

    1999-06-29

    The Federal Emergency Management Information System (FEMIS) is an emergency management planning and response tool that was developed by the Pacific Northwest National Laboratory (PNNL) under the direction of the U.S. Army Chemical Biological Defense Command. The FEMIS System Administration Guide provides information necessary for the system administrator to maintain the FEMIS system. The FEMIS system is designed for a single Chemical Stockpile Emergency Preparedness Program (CSEPP) site that has multiple Emergency Operations Centers (EOCs). Each EOC has personal computers (PCs) that emergency planners and operations personnel use to do their jobs. These PCs are corrected via a local area network (LAN) to servers that provide EOC-wide services. Each EOC is interconnected to other EOCs via a Wide Area Network (WAN). Thus, FEMIS is an integrated software product that resides on client/server computer architecture. The main body of FEMIS software, referred to as the FEMIS Application Software, resides on the PC client(s) and is directly accessible to emergency management personnel. The remainder of the FEMIS software, referred to as the FEMIS Support Software, resides on the UNIX server. The Support Software provides the communication data distribution and notification functionality necessary to operate FEMIS in a networked, client/server environment.

  19. Field Test and Performance Verification: Integrated Active Desiccant Rooftop Hybrid System Installed in a School - Final Report: Phase 4A

    SciTech Connect

    Fischer, J

    2005-12-21

    This report summarizes the results of a field verification pilot site investigation that involved the installation of a hybrid integrated active desiccant/vapor-compression rooftop heating, ventilation, and air-conditioning (HVAC) unit at an elementary school in the Atlanta Georgia area. For years, the school had experienced serious humidity and indoor air quality (IAQ) problems that had resulted in occupant complaints and microbial (mold) remediation. The outdoor air louvers of the original HVAC units had been closed in an attempt to improve humidity control within the space. The existing vapor compression variable air volume system was replaced by the integrated active desiccant rooftop (IADR) system that was described in detail in an Oak Ridge National Laboratory (ORNL) report published in 2004 (Fischer and Sand 2004). The IADR system and all space conditions have been monitored remotely for more than a year. The hybrid system was able to maintain both the space temperature and humidity as desired while delivering the outdoor air ventilation rate required by American Society of Heating, Refrigerating and Air-Conditioning Engineers Standard 62. The performance level of the IADR unit and the overall system energy efficiency was measured and found to be very high. A comprehensive IAQ investigation was completed by the Georgia Tech Research Institute before and after the system retrofit. Before-and-after data resulting from this investigation confirmed a significant improvement in IAQ, humidity control, and occupant comfort. These observations were reported by building occupants and are echoed in a letter to ORNL from the school district energy manager. The IADR system was easily retrofitted in place of the original rooftop system using a custom curb adapter. All work was completed in-house by the school's maintenance staff over one weekend. A subsequent cost analysis completed for the school district by the design engineer of record concluded that the IADR system

  20. Solar heating and cooling system installed at RKL Controls Company, Lumberton, New Jersey

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The final results of the design and operation of a computer controlled solar heated and cooled 40,000 square foot manufacturing building, sales office, and computer control center/display room are summarized. The system description, test data, major problems and resolutions, performance, operation and maintenance manual, equipment manufacturers' literature, and as-built drawings are presented. The solar system is composed of 6,000 square feet of flat plate collectors, external above ground storage subsystem, controls, absorption chiller, heat recovery, and a cooling tower.

  1. Solar heating and hot water system installed at Shoney's Restaurant, North Little Rock, Arkansas

    NASA Astrophysics Data System (ADS)

    1980-08-01

    A solar heating system designed to supply a major portion of the space and water heating requirements for a restaurant is described. The restaurant has a floor space of approximately 4,650 square feet and requires approximate 1500 gallons of hot water daily. The solar energy system consists of 1,428 square feet of Chamberlain flat plate liquid collector subsystem, and a 1500 gallon storage subsystem circulating hot water producing 321 x 10 to the 6th power Btu/Yr (specified) building heating and hot water heating.

  2. Solar hot water system installed at Days Inn Motel, Dallas, Texas (Forrest Lane)

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The solar system was designed to provide 65 percent of the total Domestic Hot Water (DHW) demand. The liquid flat plate (water) collector (1,000 square feet) system automatically drains into the 1,000 gallon steel storage tank located in the mechanical room when the pump is not running. Heat is transferred from the storage tank to DHW tanks through a tube and shell heat exchanger. A circulating pump between the DHW tanks and the heat exchanger enables solar heated water to help make DHW tank standby losses. All pumps are controlled by differential temperature.

  3. Solar hot water system installed at Days Inn Motel, Dallas, Texas (Forrest Lane)

    NASA Astrophysics Data System (ADS)

    1980-09-01

    The solar system was designed to provide 65 percent of the total Domestic Hot Water (DHW) demand. The liquid flat plate (water) collector (1,000 square feet) system automatically drains into the 1,000 gallon steel storage tank located in the mechanical room when the pump is not running. Heat is transferred from the storage tank to DHW tanks through a tube and shell heat exchanger. A circulating pump between the DHW tanks and the heat exchanger enables solar heated water to help make DHW tank standby losses. All pumps are controlled by differential temperature.

  4. Solar hot water system installed at Day's Inn Motel, Dallas, Texas (Valley View)

    NASA Astrophysics Data System (ADS)

    1980-09-01

    The solar system was designed to provide 65 percent of the total domestic hot water (DHW) demand. A liquid (water) flat plate collector (1,000 square feet) system automatically drains into the 1,000 gallon steel storage tank when the solar pump is not running. Heat is transferred from the DHW tanks through a shell and tube heat exchanger. A circulating pump between the DHW tanks and heat exchanger enables solar heated water to help make up standby losses. All pumps are controlled by differential temperature controllers.

  5. Solar hot water system installed at Day's Inn Motel, Dallas, Texas (Valley View)

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The solar system was designed to provide 65 percent of the total domestic hot water (DHW) demand. A liquid (water) flat plate collector (1,000 square feet) system automatically drains into the 1,000 gallon steel storage tank when the solar pump is not running. Heat is transferred from the DHW tanks through a shell and tube heat exchanger. A circulating pump between the DHW tanks and heat exchanger enables solar heated water to help make up standby losses. All pumps are controlled by differential temperature controllers.

  6. Solar heating and cooling system installed at RKL Controls Company, Lumberton, New Jersey

    NASA Astrophysics Data System (ADS)

    1981-03-01

    The final results of the design and operation of a computer controlled solar heated and cooled 40,000 square foot manufacturing building, sales office, and computer control center/display room are summarized. The system description, test data, major problems and resolutions, performance, operation and maintenance manual, equipment manufacturers' literature, and as-built drawings are presented. The solar system is composed of 6,000 square feet of flat plate collectors, external above ground storage subsystem, controls, absorption chiller, heat recovery, and a cooling tower.

  7. Solar heating and hot water system installed at Shoney's Restaurant, North Little Rock, Arkansas

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A solar heating system designed to supply a major portion of the space and water heating requirements for a restaurant is described. The restaurant has a floor space of approximately 4,650 square feet and requires approximate 1500 gallons of hot water daily. The solar energy system consists of 1,428 square feet of Chamberlain flat plate liquid collector subsystem, and a 1500 gallon storage subsystem circulating hot water producing 321 x 10 to the 6th power Btu/Yr (specified) building heating and hot water heating.

  8. Solar hot water system installed at Days Inn Motel, Jacksonville, Florida

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The solar system was designed to provide 65 percent of the hot water demand. Water in the liquid flat plate collector (900 square feet) system automatically drains into the 1000 gallon lined and vented steel storage tank when the pump is not running. Heat is transferred from storage to Domestic Hot Water (DHW) tanks through a tube and shell heat exchanger. A circulating pump between the DHW tanks and heat exchanger enables solar heated water to help make up DHW standby losses. All pumps are controlled by differential temperature.

  9. Engineering development of a digital replacement protection system at an operating US PWR nuclear power plant: Installation and operational experiences

    SciTech Connect

    Miller, M.H.

    1995-04-01

    The existing Reactor Protection Systems (RPSs) at most US PWRs are systems which reflect 25 to 30 year-old designs, components and manufacturing techniques. Technological improvements, especially in relation to modern digital systems, offer improvements in functionality, performance, and reliability, as well as reductions in maintenance and operational burden. The Nuclear power industry and the US nuclear regulators are poised to move forward with the issues that have slowed the transition to modern digital replacements for nuclear power plant safety systems. The electric utility industry is now more than ever being driven by cost versus benefit decisions. Properly designed, engineered, and installed digital systems can provide adequate cost-benefit and allow continued nuclear generated electricity. This paper describes various issues and areas related to an ongoing RPS replacement demonstration project which are pertinant for a typical US nuclear plant to consider cost-effective replacement of an aging analog RPS with a modern digital RPS. The following subject areas relative to the Oconee Nuclear Station ISAT{trademark} Demonstrator project are discussed: Operator Interface Development; Equipment Qualification; Validation and Verification of Software; Factory Testing; Field Changes and Verification Testing; Utility Operational, Engineering and Maintenance; Experiences with Demonstration System; and Ability to operate in parallel with the existing Analog RPS.

  10. Solar heating and hot water system installed at office building, One Solar Place, Dallas, Texas. Final report

    SciTech Connect

    Not Available

    1980-06-01

    This document is the Final Report of the Solar Energy System Installed at the First Solar Heated Office Building, One Solar Place, Dallas, Texas. The Solar System was designed to provide 87 percent of the space heating needs, 100 percent of the potable hot water needs and is sized for future absorption cooling. The collection subsystem consists of 28 Solargenics, series 76, flat plate collectors with a total area of 1596 square feet. The solar loop circulates an ethylene glycol-water solution through the collectors into a hot water system heat exchanger. The hot water storage subsystem consists of a heat exchanger, two 2300 gallon concrete hot water storage tanks with built in heat exchangers and a back-up electric boiler. The domestic hot water subsystem sends hot water to the 10,200 square feet floor area office building hot water fixtures. The building cold water system provides make-up to the solar loop, the heating loop, and the hot water concrete storage tanks. The design, construction, cost analysis, operation and maintenance of the solar system are described. The system became operational July 11, 1979.

  11. Bioenergy and Biodiversity: Key Lessons from the Pan American Region to be part of Special Issue on Biofuels in the Americas

    SciTech Connect

    Kline, Keith L; Martinelli, Fernanda Silva; Mayer, Audrey L.; Medeiros, Rodrigo; Oliveira, Camilia Ortolan F.; Sparovek, Gerd; Walter, Arnaldo Cesar de Silva; Venier, Lisa A.

    2015-01-01

    Understanding how large-scale bioenergy production can affect biodiversity and ecosystems is important if society is to meet current and future sustainable development goals. A variety of bioenergy production systems have been established within different contexts throughout the Pan American region, with wide-ranging results in terms of documented and projected effects on biodiversity and ecosystems. The Pan American region is home to the majority of commercial bioenergy production and therefore the region offers a broad set of experiences and insights on both conflicts and opportunities for biodiversity and bioenergy. This paper synthesizes lessons learned focusing on experiences in Canada, the United States, and Brazil, regarding the conflicts that can arise between bioenergy production and ecological conservation, and benefits that can be derived when bioenergy policies promote planning and more sustainable land management systems. We propose a research agenda to address priority information gaps that are relevant to biodiversity concerns and related policy challenges in the Pan American region.

  12. 14 CFR Appendix I to Part 25 - Installation of an Automatic Takeoff Thrust Control System (ATTCS)

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... mechanical and electrical, that sense engine failure, transmit signals, actuate fuel controls or power levers...-related systems and equipment dependent upon engine thrust or power lever position; or (c) That shown to... conditions through the use of the power lever. For airplanes equipped with limiters that...

  13. 14 CFR Appendix I to Part 25 - Installation of an Automatic Takeoff Thrust Control System (ATTCS)

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... mechanical and electrical, that sense engine failure, transmit signals, actuate fuel controls or power levers...-related systems and equipment dependent upon engine thrust or power lever position; or (c) That shown to... conditions through the use of the power lever. For airplanes equipped with limiters that...

  14. 14 CFR Appendix I to Part 25 - Installation of an Automatic Takeoff Thrust Control System (ATTCS)

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... mechanical and electrical, that sense engine failure, transmit signals, actuate fuel controls or power levers...-related systems and equipment dependent upon engine thrust or power lever position; or (c) That shown to... conditions through the use of the power lever. For airplanes equipped with limiters that...

  15. 14 CFR 25.1302 - Installed systems and equipment for use by the flightcrew.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., individually and in combination with other such systems and equipment, are designed so that qualified... and unambiguous; and (2) Designed to enable the flightcrew to intervene in a manner appropriate to the... flightcrew to manage errors resulting from the kinds of flightcrew interactions with the equipment that...

  16. Solar heating and hot water system installed at office building, One Solar Place, Dallas, Texas

    NASA Astrophysics Data System (ADS)

    1980-06-01

    A solar heating on cooling system is described which is designed to provide 87 percent of the space heating needs, 100 percent of the potable hot water needs and is sized for future absorption cooling. The collection subsystem consists of 28 solargenics, series 76, flat plate collectors with a total area of 1,596 square feet. The solar loop circulates an ethylene glyco water solution through the collectors into a hot water system exchanger. The water storage subsystem consists of a heat exchanger, two 2,300 gallon concrete hot water storage tanks with built in heat exchangers and a back-up electric boiler. The domestic hot water subsystem sends hot water to the 10,200 square feet floor area office building hot water water fixtures. The building cold water system provides make up to the solar loop, the heating loop, and the hot water concrete storage tanks. The design, construction, cost analysis, operation and maintenance of the solar system are described.

  17. Acceptance testing report of Eductor System to be installed in the 105 K Basins

    SciTech Connect

    Packer, M.J.

    1996-04-25

    The Spent Nuclear Fuel (SNF) Project Engineering Support group cold-tested the Eductor System a 15 horsepower multi-stage centrifugal pump manufactured by the Grunfos Corporation with the housing manufactured and sold with the pump by the Tri-Nuclear Corporation and a 3-inch diameter water jet eductor manufactured by the Fox Valve Corporation. The Eductor System was tested to gather and document information to optimize sludge retrieval operations for use in the 105 K Basins. The cold-testing took place during February 12 through February 29, 1996 in the 305 Cold Test Facility basin located in the 300 area. The pump, utilized in conjunction with the eductor, makes up the core of the Eductor System. The pumping unit consists of a 15 hp stainless steel multi-stage centrifugal Grunfos pump which is seated in a stainless steel fabricated housing. Two baskets or filter elements make up part of the housing on the suction side of the pump. The pump can be used independent of the housing but the housing has two identified purposes. The first use is to stabilize the centrifugal pump and give the pneumatic valves and pump discharge piping a solid platform so the Eductor System can be more easily mobilized within the basin as one unit. The second use for the housing presents the option to utilize the suction-side filters for capturing larger fuel pieces after the smaller fines have been removed.

  18. 78 FR 25840 - Installed Systems and Equipment for Use by the Flightcrew

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-03

    ... Rulemaking Advisory Committee ATC Air Traffic Control DER Designated Engineering Representative EASA European... System HF Human Factors ICAO International Civil Aviation Organization NPRM Notice of Proposed Rulemaking... ARAC submitted its recommendations to the FAA in a report, Human Factors--Harmonization Working...

  19. 40 CFR 63.9306 - What are my continuous parameter monitoring system (CPMS) installation, operation, and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Standards for Hazardous Air Pollutants for Engine Test Cells/Stands General Compliane Requirements § 63.9306... at all times that an engine test cell/stand is operating, except during monitoring malfunctions... engine test cell/stand is operating. You must inspect the automatic shutdown system at least once...

  20. 40 CFR 63.9306 - What are my continuous parameter monitoring system (CPMS) installation, operation, and...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Standards for Hazardous Air Pollutants for Engine Test Cells/Stands General Compliane Requirements § 63.9306... at all times that an engine test cell/stand is operating, except during monitoring malfunctions... engine test cell/stand is operating. You must inspect the automatic shutdown system at least once...