Sample records for instance geometry approximation

  1. Estimates of the absolute error and a scheme for an approximate solution to scheduling problems

    NASA Astrophysics Data System (ADS)

    Lazarev, A. A.

    2009-02-01

    An approach is proposed for estimating absolute errors and finding approximate solutions to classical NP-hard scheduling problems of minimizing the maximum lateness for one or many machines and makespan is minimized. The concept of a metric (distance) between instances of the problem is introduced. The idea behind the approach is, given the problem instance, to construct another instance for which an optimal or approximate solution can be found at the minimum distance from the initial instance in the metric introduced. Instead of solving the original problem (instance), a set of approximating polynomially/pseudopolynomially solvable problems (instances) are considered, an instance at the minimum distance from the given one is chosen, and the resulting schedule is then applied to the original instance.

  2. Restoration of the Cretaceous uplift of the Harz Mountains, North Germany: Evidence for thick-skinned thrusting

    NASA Astrophysics Data System (ADS)

    Tanner, David C.; Krawczyk, Charlotte M.

    2017-04-01

    Fault prediction and kinematic restoration are useful tools to firstly determine the likely geometry of a fault at depth and secondly restore the pre-deformation state to discover, for instance, paleogeometry. The inclined-shear method with constant slip uses the known geometry of the surface position and dip of the fault and the geometries of the hanging and footwall beds to predict the probable shape of the fault at depth, down to a detachment level. We use this method to determine the geometry of the Northern Harz Boundary Fault in northern Germany that was responsible for the uplift of the Harz Mountains during Late Cretaceous inversion. A shear angle of 30° was most likely in this case, as indicated by geological and geophysical data. This suggests that the detachment level is at a depth of ca. 25 km. Kinematic restoration of the Harz Mountains using this fault geometry does not produce a flat horizon, rather it results in a 3.5 km depression. Restoration also causes a rotation of fabrics within the Harz Mountains of approximately 11° clockwise. Airy-Heiskanen isostatic equilibrium adjustment reduces the depression to ca. 1 km depth, as well as raising the Moho from 41 to 36 km depth. We show that this model geometry is also a very good fit to the interpreted DEKORP BASIN 9601 deep seismic profile.

  3. Quantum fluctuating geometries and the information paradox

    NASA Astrophysics Data System (ADS)

    Eyheralde, Rodrigo; Campiglia, Miguel; Gambini, Rodolfo; Pullin, Jorge

    2017-12-01

    We study Hawking radiation on the quantum space-time of a collapsing null shell. We use the geometric optics approximation as in Hawking’s original papers to treat the radiation. The quantum space-time is constructed by superposing the classical geometries associated with collapsing shells with uncertainty in their position and mass. We show that there are departures from thermality in the radiation even though we are not considering a back reaction. One recovers the usual profile for the Hawking radiation as a function of frequency in the limit where the space-time is classical. However, when quantum corrections are taken into account, the profile of the Hawking radiation as a function of time contains information about the initial state of the collapsing shell. More work will be needed to determine whether all the information can be recovered. The calculations show that non-trivial quantum effects can occur in regions of low curvature when horizons are involved, as is proposed in the firewall scenario, for instance.

  4. Using Fractal And Morphological Criteria For Automatic Classification Of Lung Diseases

    NASA Astrophysics Data System (ADS)

    Vehel, Jacques Levy

    1989-11-01

    Medical Images are difficult to analyze by means of classical image processing tools because they are very complex and irregular. Such shapes are obtained for instance in Nuclear Medecine with the spatial distribution of activity for organs such as lungs, liver, and heart. We have tried to apply two different theories to these signals: - Fractal Geometry deals with the analysis of complex irregular shapes which cannot well be described by the classical Euclidean geometry. - Integral Geometry treats sets globally and allows to introduce robust measures. We have computed three parameters on three kinds of Lung's SPECT images: normal, pulmonary embolism and chronic desease: - The commonly used fractal dimension (FD), that gives a measurement of the irregularity of the 3D shape. - The generalized lacunarity dimension (GLD), defined as the variance of the ratio of the local activity by the mean activity, which is only sensitive to the distribution and the size of gaps in the surface. - The Favard length that gives an approximation of the surface of a 3-D shape. The results show that each slice of the lung, considered as a 3D surface, is fractal and that the fractal dimension is the same for each slice and for the three kind of lungs; as for the lacunarity and Favard length, they are clearly different for normal lungs, pulmonary embolisms and chronic diseases. These results indicate that automatic classification of Lung's SPECT can be achieved, and that a quantitative measurement of the evolution of the disease could be made.

  5. An approach for management of geometry data

    NASA Technical Reports Server (NTRS)

    Dube, R. P.; Herron, G. J.; Schweitzer, J. E.; Warkentine, E. R.

    1980-01-01

    The strategies for managing Integrated Programs for Aerospace Design (IPAD) computer-based geometry are described. The computer model of geometry is the basis for communication, manipulation, and analysis of shape information. IPAD's data base system makes this information available to all authorized departments in a company. A discussion of the data structures and algorithms required to support geometry in IPIP (IPAD's data base management system) is presented. Through the use of IPIP's data definition language, the structure of the geometry components is defined. The data manipulation language is the vehicle by which a user defines an instance of the geometry. The manipulation language also allows a user to edit, query, and manage the geometry. The selection of canonical forms is a very important part of the IPAD geometry. IPAD has a canonical form for each entity and provides transformations to alternate forms; in particular, IPAD will provide a transformation to the ANSI standard. The DBMS schemas required to support IPAD geometry are explained.

  6. Technique for information retrieval using enhanced latent semantic analysis generating rank approximation matrix by factorizing the weighted morpheme-by-document matrix

    DOEpatents

    Chew, Peter A; Bader, Brett W

    2012-10-16

    A technique for information retrieval includes parsing a corpus to identify a number of wordform instances within each document of the corpus. A weighted morpheme-by-document matrix is generated based at least in part on the number of wordform instances within each document of the corpus and based at least in part on a weighting function. The weighted morpheme-by-document matrix separately enumerates instances of stems and affixes. Additionally or alternatively, a term-by-term alignment matrix may be generated based at least in part on the number of wordform instances within each document of the corpus. At least one lower rank approximation matrix is generated by factorizing the weighted morpheme-by-document matrix and/or the term-by-term alignment matrix.

  7. Representation of Ice Geometry by Parametric Functions: Construction of Approximating NURBS Curves and Quantification of Ice Roughness--Year 1: Approximating NURBS Curves

    NASA Technical Reports Server (NTRS)

    Dill, Loren H.; Choo, Yung K. (Technical Monitor)

    2004-01-01

    Software was developed to construct approximating NURBS curves for iced airfoil geometries. Users specify a tolerance that determines the extent to which the approximating curve follows the rough ice. The user can therefore smooth the ice geometry in a controlled manner, thereby enabling the generation of grids suitable for numerical aerodynamic simulations. Ultimately, this ability to smooth the ice geometry will permit studies of the effects of smoothing upon the aerodynamics of iced airfoils. The software was applied to several different types of iced airfoil data collected in the Icing Research Tunnel at NASA Glenn Research Center, and in all cases was found to efficiently generate suitable approximating NURBS curves. This method is an improvement over the current "control point formulation" of Smaggice (v.1.2). In this report, we present the relevant theory of approximating NURBS curves and discuss typical results of the software.

  8. Heating requirements and nonadiabatic surface effects for a model in the NTF cryogenic wind tunnel

    NASA Technical Reports Server (NTRS)

    Macha, J. M.; Landrum, D. B.; Pare, L. A., III; Johnson, C. B.

    1988-01-01

    A theoretical study has been made of the severity of nonadiabatic surface conditions arising from internal heat sources within a model in a cryogenic wind tunnel. Local surface heating is recognized as having an effect on the development of the boundary layer, which can introduce changes in the flow about the model and affect the wind tunnel data. The geometry was based on the NTF Pathfinder I wind tunnel model. A finite element heat transfer computer code was developed and used to compute the steady state temperature distribution within the body of the model, from which the surface temperature distribution was extracted. Particular three dimensional characteristics of the model were represented with various axisymmetric approximations of the geometry. This analysis identified regions on the surface of the model susceptible to surface heating and the magnitude of the respective surface temperatures. It was found that severe surface heating may occur in particular instances, but could be alleviated with adequate insulating material. The heat flux through the surface of the model was integrated to determine the net heat required to maintain the instrumentation cavity at the prescribed temperature. The influence of the nonadiabatic condition on boundary layer properties and on the validity of the wind tunnel simulation was also investigated.

  9. 3DHZETRN: Inhomogeneous Geometry Issues

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Slaba, Tony C.; Badavi, Francis F.

    2017-01-01

    Historical methods for assessing radiation exposure inside complicated geometries for space applications were limited by computational constraints and lack of knowledge associated with nuclear processes occurring over a broad range of particles and energies. Various methods were developed and utilized to simplify geometric representations and enable coupling with simplified but efficient particle transport codes. Recent transport code development efforts, leading to 3DHZETRN, now enable such approximate methods to be carefully assessed to determine if past exposure analyses and validation efforts based on those approximate methods need to be revisited. In this work, historical methods of representing inhomogeneous spacecraft geometry for radiation protection analysis are first reviewed. Two inhomogeneous geometry cases, previously studied with 3DHZETRN and Monte Carlo codes, are considered with various levels of geometric approximation. Fluence, dose, and dose equivalent values are computed in all cases and compared. It is found that although these historical geometry approximations can induce large errors in neutron fluences up to 100 MeV, errors on dose and dose equivalent are modest (<10%) for the cases studied here.

  10. Configuring Airspace Sectors with Approximate Dynamic Programming

    NASA Technical Reports Server (NTRS)

    Bloem, Michael; Gupta, Pramod

    2010-01-01

    In response to changing traffic and staffing conditions, supervisors dynamically configure airspace sectors by assigning them to control positions. A finite horizon airspace sector configuration problem models this supervisor decision. The problem is to select an airspace configuration at each time step while considering a workload cost, a reconfiguration cost, and a constraint on the number of control positions at each time step. Three algorithms for this problem are proposed and evaluated: a myopic heuristic, an exact dynamic programming algorithm, and a rollouts approximate dynamic programming algorithm. On problem instances from current operations with only dozens of possible configurations, an exact dynamic programming solution gives the optimal cost value. The rollouts algorithm achieves costs within 2% of optimal for these instances, on average. For larger problem instances that are representative of future operations and have thousands of possible configurations, excessive computation time prohibits the use of exact dynamic programming. On such problem instances, the rollouts algorithm reduces the cost achieved by the heuristic by more than 15% on average with an acceptable computation time.

  11. From geometry to algebra and vice versa: Realistic mathematics education principles for analyzing geometry tasks

    NASA Astrophysics Data System (ADS)

    Jupri, Al

    2017-04-01

    In this article we address how Realistic Mathematics Education (RME) principles, including the intertwinement and the reality principles, are used to analyze geometry tasks. To do so, we carried out three phases of a small-scale study. First we analyzed four geometry problems - considered as tasks inviting the use of problem solving and reasoning skills - theoretically in the light of the RME principles. Second, we tested two problems to 31 undergraduate students of mathematics education program and other two problems to 16 master students of primary mathematics education program. Finally, we analyzed student written work and compared these empirical to the theoretical results. We found that there are discrepancies between what we expected theoretically and what occurred empirically in terms of mathematization and of intertwinement of mathematical concepts from geometry to algebra and vice versa. We conclude that the RME principles provide a fruitful framework for analyzing geometry tasks that, for instance, are intended for assessing student problem solving and reasoning skills.

  12. Distributed Sleep Scheduling in Wireless Sensor Networks via Fractional Domatic Partitioning

    NASA Astrophysics Data System (ADS)

    Schumacher, André; Haanpää, Harri

    We consider setting up sleep scheduling in sensor networks. We formulate the problem as an instance of the fractional domatic partition problem and obtain a distributed approximation algorithm by applying linear programming approximation techniques. Our algorithm is an application of the Garg-Könemann (GK) scheme that requires solving an instance of the minimum weight dominating set (MWDS) problem as a subroutine. Our two main contributions are a distributed implementation of the GK scheme for the sleep-scheduling problem and a novel asynchronous distributed algorithm for approximating MWDS based on a primal-dual analysis of Chvátal's set-cover algorithm. We evaluate our algorithm with ns2 simulations.

  13. Heating requirements and nonadiabatic surface effects for a model in the NTF (National Transonic Facility) cryogenic wind tunnel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macha, J.M.; Landrum, D.B.; Pare, L.A. III

    1988-01-01

    A theoretical study has been made of the severity of nonadiabatic surface conditions arising from internal heat sources within a model in a cryogenic wind tunnel. Local surface heating is recognized as having an effect on the development of the boundary layer, which can introduce changes in the flow about the model and affect the wind tunnel data. The geometry was based on the NTF Pathfinder I wind tunnel model. A finite element heat transfer computer code was developed and used to compute the steady state temperature distribution within the body of the model, from which the surface temperature distributionmore » was extracted. Particular three dimensional characteristics of the model were represented with various axisymmetric approximations of the geometry. This analysis identified regions on the surface of the model susceptible to surface heating and the magnitude of the respective surface temperatures. It was found that severe surface heating may occur in particular instances, but could be alleviated with adequate insulating material. The heat flux through the surface of the model was integrated to determine the net heat required to maintain the instrumentation cavity at the prescribed temperature. The influence of the nonadiabatic condition on boundary layer properties and on the validity of the wind tunnel simulation was also investigated. 20 refs., 12 figs.« less

  14. Why Size Counts: Children's Spatial Reorientation in Large and Small Enclosures

    ERIC Educational Resources Information Center

    Learmonth, Amy E.; Newcombe, Nora S.; Sheridan, Natalie; Jones, Meredith

    2008-01-01

    When mobile organisms are spatially disoriented, for instance by rapid repetitive movement, they must re-establish orientation. Past research has shown that the geometry of enclosing spaces is consistently used for reorientation by a wide variety of species, but that non-geometric features are not always used. Based on these findings, some…

  15. Explicit approximations to estimate the perturbative diffusivity in the presence of convectivity and damping. I. Semi-infinite slab approximations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berkel, M. van; Fellow of the Japan Society for the Promotion of Science; FOM Institute DIFFER-Dutch Institute for Fundamental Energy Research, Association EURATOM- FOM, Trilateral Euregio Cluster, PO Box 1207, 3430 BE Nieuwegein

    2014-11-15

    In this paper, a number of new approximations are introduced to estimate the perturbative diffusivity (χ), convectivity (V), and damping (τ) in cylindrical geometry. For this purpose, the harmonic components of heat waves induced by localized deposition of modulated power are used. The approximations are based on semi-infinite slab approximations of the heat equation. The main result is the approximation of χ under the influence of V and τ based on the phase of two harmonics making the estimate less sensitive to calibration errors. To understand why the slab approximations can estimate χ well in cylindrical geometry, the relationships betweenmore » heat transport models in slab and cylindrical geometry are studied. In addition, the relationship between amplitude and phase with respect to their derivatives, used to estimate χ, is discussed. The results are presented in terms of the relative error for the different derived approximations for different values of frequency, transport coefficients, and dimensionless radius. The approximations show a significant region in which χ, V, and τ can be estimated well, but also regions in which the error is large. Also, it is shown that some compensation is necessary to estimate V and τ in a cylindrical geometry. On the other hand, errors resulting from the simplified assumptions are also discussed showing that estimating realistic values for V and τ based on infinite domains will be difficult in practice. This paper is the first part (Part I) of a series of three papers. In Part II and Part III, cylindrical approximations based directly on semi-infinite cylindrical domain (outward propagating heat pulses) and inward propagating heat pulses in a cylindrical domain, respectively, will be treated.« less

  16. Survey of meshless and generalized finite element methods: A unified approach

    NASA Astrophysics Data System (ADS)

    Babuška, Ivo; Banerjee, Uday; Osborn, John E.

    In the past few years meshless methods for numerically solving partial differential equations have come into the focus of interest, especially in the engineering community. This class of methods was essentially stimulated by difficulties related to mesh generation. Mesh generation is delicate in many situations, for instance, when the domain has complicated geometry; when the mesh changes with time, as in crack propagation, and remeshing is required at each time step; when a Lagrangian formulation is employed, especially with nonlinear PDEs. In addition, the need for flexibility in the selection of approximating functions (e.g., the flexibility to use non-polynomial approximating functions), has played a significant role in the development of meshless methods. There are many recent papers, and two books, on meshless methods; most of them are of an engineering character, without any mathematical analysis.In this paper we address meshless methods and the closely related generalized finite element methods for solving linear elliptic equations, using variational principles. We give a unified mathematical theory with proofs, briefly address implementational aspects, present illustrative numerical examples, and provide a list of references to the current literature.The aim of the paper is to provide a survey of a part of this new field, with emphasis on mathematics. We present proofs of essential theorems because we feel these proofs are essential for the understanding of the mathematical aspects of meshless methods, which has approximation theory as a major ingredient. As always, any new field is stimulated by and related to older ideas. This will be visible in our paper.

  17. Determination of the Shear Stress Distribution in a Laminate from the Applied Shear Resultant--A Simplified Shear Solution

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Aboudi, Jacob; Yarrington, Phillip W.

    2007-01-01

    The simplified shear solution method is presented for approximating the through-thickness shear stress distribution within a composite laminate based on laminated beam theory. The method does not consider the solution of a particular boundary value problem, rather it requires only knowledge of the global shear loading, geometry, and material properties of the laminate or panel. It is thus analogous to lamination theory in that ply level stresses can be efficiently determined from global load resultants (as determined, for instance, by finite element analysis) at a given location in a structure and used to evaluate the margin of safety on a ply by ply basis. The simplified shear solution stress distribution is zero at free surfaces, continuous at ply boundaries, and integrates to the applied shear load. Comparisons to existing theories are made for a variety of laminates, and design examples are provided illustrating the use of the method for determining through-thickness shear stress margins in several types of composite panels and in the context of a finite element structural analysis.

  18. Dynamic hyperbolic geometry: building intuition and understanding mediated by a Euclidean model

    NASA Astrophysics Data System (ADS)

    Moreno-Armella, Luis; Brady, Corey; Elizondo-Ramirez, Rubén

    2018-05-01

    This paper explores a deep transformation in mathematical epistemology and its consequences for teaching and learning. With the advent of non-Euclidean geometries, direct, iconic correspondences between physical space and the deductive structures of mathematical inquiry were broken. For non-Euclidean ideas even to become thinkable the mathematical community needed to accumulate over twenty centuries of reflection and effort: a precious instance of distributed intelligence at the cultural level. In geometry education after this crisis, relations between intuitions and geometrical reasoning must be established philosophically, rather than taken for granted. One approach seeks intuitive supports only for Euclidean explorations, viewing non-Euclidean inquiry as fundamentally non-intuitive in nature. We argue for moving beyond such an impoverished approach, using dynamic geometry environments to develop new intuitions even in the extremely challenging setting of hyperbolic geometry. Our efforts reverse the typical direction, using formal structures as a source for a new family of intuitions that emerge from exploring a digital model of hyperbolic geometry. This digital model is elaborated within a Euclidean dynamic geometry environment, enabling a conceptual dance that re-configures Euclidean knowledge as a support for building intuitions in hyperbolic space-intuitions based not directly on physical experience but on analogies extending Euclidean concepts.

  19. First order ball bearing kinematics

    NASA Technical Reports Server (NTRS)

    Kingbury, E.

    1984-01-01

    Two first order equations are given connecting geometry and internal motions in an angular contact ball bearing. Total speed, kinematic equivalence, basic speed ratio, and modal speed ratio are defined and discussed; charts are given for the speed ratios covering all bearings and all rotational modes. Instances where specific first order assumptions might fail are discussed, and the resulting effects on bearing performance reviewed.

  20. Limb-Nadir Matching for Tropospheric NO2: A New Algorithm in the SCIAMACHY Operational Level 2 Processor

    NASA Astrophysics Data System (ADS)

    Meringer, Markus; Gretschany, Sergei; Lichtenberg, Gunter; Hilboll, Andreas; Richter, Andreas; Burrows, John P.

    2015-11-01

    SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric ChartographY) aboard ESA's environmental satellite ENVISAT observed the Earth's atmosphere in limb, nadir, and solar/lunar occultation geometries covering the UV-Visible to NIR spectral range. Limb and nadir geometries were the main operation modes for the retrieval of scientific data. The new version 6 of ESA's level 2 processor now provides for the first time an operational algorithm to combine measurements of these two geometries in order to generate new products. As a first instance the retrieval of tropospheric NO2 has been implemented based on IUP-Bremen's reference algorithm. We will detail the single processing steps performed by the operational limb-nadir matching algorithm and report the results of comparisons with the scientific tropospheric NO2 products of IUP and the Tropospheric Emission Monitoring Internet Service (TEMIS).

  1. Numerical modeling of fluid-structure interaction in arteries with anisotropic polyconvex hyperelastic and anisotropic viscoelastic material models at finite strains.

    PubMed

    Balzani, Daniel; Deparis, Simone; Fausten, Simon; Forti, Davide; Heinlein, Alexander; Klawonn, Axel; Quarteroni, Alfio; Rheinbach, Oliver; Schröder, Joerg

    2016-10-01

    The accurate prediction of transmural stresses in arterial walls requires on the one hand robust and efficient numerical schemes for the solution of boundary value problems including fluid-structure interactions and on the other hand the use of a material model for the vessel wall that is able to capture the relevant features of the material behavior. One of the main contributions of this paper is the application of a highly nonlinear, polyconvex anisotropic structural model for the solid in the context of fluid-structure interaction, together with a suitable discretization. Additionally, the influence of viscoelasticity is investigated. The fluid-structure interaction problem is solved using a monolithic approach; that is, the nonlinear system is solved (after time and space discretizations) as a whole without splitting among its components. The linearized block systems are solved iteratively using parallel domain decomposition preconditioners. A simple - but nonsymmetric - curved geometry is proposed that is demonstrated to be suitable as a benchmark testbed for fluid-structure interaction simulations in biomechanics where nonlinear structural models are used. Based on the curved benchmark geometry, the influence of different material models, spatial discretizations, and meshes of varying refinement is investigated. It turns out that often-used standard displacement elements with linear shape functions are not sufficient to provide good approximations of the arterial wall stresses, whereas for standard displacement elements or F-bar formulations with quadratic shape functions, suitable results are obtained. For the time discretization, a second-order backward differentiation formula scheme is used. It is shown that the curved geometry enables the analysis of non-rotationally symmetric distributions of the mechanical fields. For instance, the maximal shear stresses in the fluid-structure interface are found to be higher in the inner curve that corresponds to clinical observations indicating a high plaque nucleation probability at such locations. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  2. Electroencephalography in ellipsoidal geometry with fourth-order harmonics.

    PubMed

    Alcocer-Sosa, M; Gutierrez, D

    2016-08-01

    We present a solution to the electroencephalographs (EEG) forward problem of computing the scalp electric potentials for the case when the head's geometry is modeled using a four-shell ellipsoidal geometry and the brain sources with an equivalent current dipole (ECD). The proposed solution includes terms up to the fourth-order ellipsoidal harmonics and we compare this new approximation against those that only considered up to second- and third-order harmonics. Our comparisons use as reference a solution in which a tessellated volume approximates the head and the forward problem is solved through the boundary element method (BEM). We also assess the solution to the inverse problem of estimating the magnitude of an ECD through different harmonic approximations. Our results show that the fourth-order solution provides a better estimate of the ECD in comparison to lesser order ones.

  3. A Single Instance of the Pythagorean Theorem Implies the Parallel Postulate

    ERIC Educational Resources Information Center

    Dobbs, David E.

    2002-01-01

    This note could find use as enrichment material in a course on the classical geometries; its preliminary results could also be used in an advanced calculus course. It is proved that if a , b and c are positive real numbers such that a[squared] + b[squared] = c[squared] , then cosh ( a ) cosh ( b ) greater than cosh ( c ). The proof of this result…

  4. A comparison of finite element and analytic models of acoustic scattering from rough poroelastic interfaces.

    PubMed

    Bonomo, Anthony L; Isakson, Marcia J; Chotiros, Nicholas P

    2015-04-01

    The finite element method is used to model acoustic scattering from rough poroelastic surfaces. Both monostatic and bistatic scattering strengths are calculated and compared with three analytic models: Perturbation theory, the Kirchhoff approximation, and the small-slope approximation. It is found that the small-slope approximation is in very close agreement with the finite element results for all cases studied and that perturbation theory and the Kirchhoff approximation can be considered valid in those instances where their predictions match those given by the small-slope approximation.

  5. Riparian vegetation controls on the hydraulic geometry of streams

    NASA Astrophysics Data System (ADS)

    McBride, M.

    2010-12-01

    A synthesis of field measurements, remote observations, and numerical modeling techniques highlights the significance of riparian vegetation in determining the geometry of streams and impacting sediment transport dynamics in temperate, Piedmont regions. Specifically, forested and grassy riparian vegetation establish streams with significantly different widths and with different timescales for attaining a state of dynamic equilibrium. The interactions between riparian vegetation, channel form, and channel dynamics are scale dependent. Scale dependency arises because of variations in ratios of vegetation length scales and geomorphic scales (e.g., channel width and depth). Stream reaches with grassy vegetation experience more frequent overbank discharges, migrate more quickly, and exhibit a more classic dynamic equilibrium than forested reaches. These phenomena are relevant to current watershed management efforts that aim to reduce sediment and nutrient loads to receiving water bodies, such as the Chesapeake Bay. The reforestation of riparian buffers is a common restoration technique that intends to improve water quality, temperature regimes, and in-stream physical habitat. Passive reforestation of riparian areas along a tributary to Sleepers River in Danville, VT, USA caused an increase in channel width and cross-sectional area over a 40-year period. From a comparison of historical records and current cross-sectional dimensions, the channel widening resulted in the mobilization of approximately 85 kg/ha/yr of floodplain sediments. Long-term monitoring of suspended sediments in an adjacent watershed indicates that this sediment source may account for roughly 40 percent of the total suspended sediment load. In some instances, increased sediment loads associated with channel widening may be an unforeseen consequence that compromises riparian restoration efforts.

  6. Improving the Efficiency of Abdominal Aortic Aneurysm Wall Stress Computations

    PubMed Central

    Zelaya, Jaime E.; Goenezen, Sevan; Dargon, Phong T.; Azarbal, Amir-Farzin; Rugonyi, Sandra

    2014-01-01

    An abdominal aortic aneurysm is a pathological dilation of the abdominal aorta, which carries a high mortality rate if ruptured. The most commonly used surrogate marker of rupture risk is the maximal transverse diameter of the aneurysm. More recent studies suggest that wall stress from models of patient-specific aneurysm geometries extracted, for instance, from computed tomography images may be a more accurate predictor of rupture risk and an important factor in AAA size progression. However, quantification of wall stress is typically computationally intensive and time-consuming, mainly due to the nonlinear mechanical behavior of the abdominal aortic aneurysm walls. These difficulties have limited the potential of computational models in clinical practice. To facilitate computation of wall stresses, we propose to use a linear approach that ensures equilibrium of wall stresses in the aneurysms. This proposed linear model approach is easy to implement and eliminates the burden of nonlinear computations. To assess the accuracy of our proposed approach to compute wall stresses, results from idealized and patient-specific model simulations were compared to those obtained using conventional approaches and to those of a hypothetical, reference abdominal aortic aneurysm model. For the reference model, wall mechanical properties and the initial unloaded and unstressed configuration were assumed to be known, and the resulting wall stresses were used as reference for comparison. Our proposed linear approach accurately approximates wall stresses for varying model geometries and wall material properties. Our findings suggest that the proposed linear approach could be used as an effective, efficient, easy-to-use clinical tool to estimate patient-specific wall stresses. PMID:25007052

  7. Viscous Rayleigh-Taylor instability in spherical geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mikaelian, Karnig O.

    We consider viscous fluids in spherical geometry, a lighter fluid supporting a heavier one. Chandrasekhar [Q. J. Mech. Appl. Math. 8, 1 (1955)] analyzed this unstable configuration providing the equations needed to find, numerically, the exact growth rates for the ensuing Rayleigh-Taylor instability. He also derived an analytic but approximate solution. We point out a weakness in his approximate dispersion relation (DR) and offer one that is to some extent improved.

  8. Viscous Rayleigh-Taylor instability in spherical geometry

    DOE PAGES

    Mikaelian, Karnig O.

    2016-02-08

    We consider viscous fluids in spherical geometry, a lighter fluid supporting a heavier one. Chandrasekhar [Q. J. Mech. Appl. Math. 8, 1 (1955)] analyzed this unstable configuration providing the equations needed to find, numerically, the exact growth rates for the ensuing Rayleigh-Taylor instability. He also derived an analytic but approximate solution. We point out a weakness in his approximate dispersion relation (DR) and offer one that is to some extent improved.

  9. Flexible intuitions of Euclidean geometry in an Amazonian indigene group

    PubMed Central

    Izard, Véronique; Pica, Pierre; Spelke, Elizabeth S.; Dehaene, Stanislas

    2011-01-01

    Kant argued that Euclidean geometry is synthesized on the basis of an a priori intuition of space. This proposal inspired much behavioral research probing whether spatial navigation in humans and animals conforms to the predictions of Euclidean geometry. However, Euclidean geometry also includes concepts that transcend the perceptible, such as objects that are infinitely small or infinitely large, or statements of necessity and impossibility. We tested the hypothesis that certain aspects of nonperceptible Euclidian geometry map onto intuitions of space that are present in all humans, even in the absence of formal mathematical education. Our tests probed intuitions of points, lines, and surfaces in participants from an indigene group in the Amazon, the Mundurucu, as well as adults and age-matched children controls from the United States and France and younger US children without education in geometry. The responses of Mundurucu adults and children converged with that of mathematically educated adults and children and revealed an intuitive understanding of essential properties of Euclidean geometry. For instance, on a surface described to them as perfectly planar, the Mundurucu's estimations of the internal angles of triangles added up to ∼180 degrees, and when asked explicitly, they stated that there exists one single parallel line to any given line through a given point. These intuitions were also partially in place in the group of younger US participants. We conclude that, during childhood, humans develop geometrical intuitions that spontaneously accord with the principles of Euclidean geometry, even in the absence of training in mathematics. PMID:21606377

  10. Orienteering in Knowledge Spaces: The Hyperbolic Geometry of Wikipedia Mathematics

    PubMed Central

    Leibon, Gregory; Rockmore, Daniel N.

    2013-01-01

    In this paper we show how the coupling of the notion of a network with directions with the adaptation of the four-point probe from materials testing gives rise to a natural geometry on such networks. This four-point probe geometry shares many of the properties of hyperbolic geometry wherein the network directions take the place of the sphere at infinity, enabling a navigation of the network in terms of pairs of directions: the geodesic through a pair of points is oriented from one direction to another direction, the pair of which are uniquely determined. We illustrate this in the interesting example of the pages of Wikipedia devoted to Mathematics, or “The MathWiki.” The applicability of these ideas extends beyond Wikipedia to provide a natural framework for visual search and to prescribe a natural mode of navigation for any kind of “knowledge space” in which higher order concepts aggregate various instances of information. Other examples would include genre or author organization of cultural objects such as books, movies, documents or even merchandise in an online store. PMID:23844017

  11. Orienteering in knowledge spaces: the hyperbolic geometry of Wikipedia Mathematics.

    PubMed

    Leibon, Gregory; Rockmore, Daniel N

    2013-01-01

    In this paper we show how the coupling of the notion of a network with directions with the adaptation of the four-point probe from materials testing gives rise to a natural geometry on such networks. This four-point probe geometry shares many of the properties of hyperbolic geometry wherein the network directions take the place of the sphere at infinity, enabling a navigation of the network in terms of pairs of directions: the geodesic through a pair of points is oriented from one direction to another direction, the pair of which are uniquely determined. We illustrate this in the interesting example of the pages of Wikipedia devoted to Mathematics, or "The MathWiki." The applicability of these ideas extends beyond Wikipedia to provide a natural framework for visual search and to prescribe a natural mode of navigation for any kind of "knowledge space" in which higher order concepts aggregate various instances of information. Other examples would include genre or author organization of cultural objects such as books, movies, documents or even merchandise in an online store.

  12. LEO high voltage solar array arcing response model, continuation 5

    NASA Technical Reports Server (NTRS)

    Metz, Roger N.

    1989-01-01

    The modeling of the Debye Approximation electron sheaths in the edge and strip geometries was completed. Electrostatic potentials in these sheaths were compared to NASCAP/LEO solutions for similar geometries. Velocity fields, charge densities and particle fluxes to the biased surfaces were calculated for all cases. The major conclusion to be drawn from the comparisons of our Debye Approximation calculations with NASCAP-LEO output is that, where comparable biased structures can be defined and sufficient resolution obtained, these results are in general agreement. Numerical models for the Child-Langmuir, high-voltage electron sheaths in the edge and strip geometries were constructed. Electrostatic potentials were calculated for several cases in each of both geometries. Velocity fields and particle fluxes were calculated. The self-consistent solution process was carried through one cycle and output electrostatic potentials compared to NASCAP-type input potentials.

  13. Water, something peculiar.

    USGS Publications Warehouse

    Van Hylckama, T. E. A.

    1979-01-01

    Some chemical and physical properties of water are discussed and compared with those of other fluids. For instance, the boiling point is much higher than one would expect considering the molecular weight of water. The heat capacity is also much higher but the viscosity is not. The dielectric constant is exceptionally high. These and other properties of water can be explained by the geometry of the water molecule and the structure of water or ice. -Author

  14. Young Children's Use of Features to Reorient Is More than Just Associative: Further Evidence against a Modular View of Spatial Processing

    ERIC Educational Resources Information Center

    Newcombe, Nora S.; Ratliff, Kristin R.; Shallcross, Wendy L.; Twyman, Alexandra D.

    2010-01-01

    Proponents of a geometric module have argued that instances of young children's use of features as well as geometry to reorient can be explained by a two-stage process. In this model, only the first stage is a true reorientation, accomplished by using geometric information alone; features are considered in a second stage using association (Lee,…

  15. The Standard Model Algebra - a summary

    NASA Astrophysics Data System (ADS)

    Cristinel Stoica, Ovidiu

    2017-08-01

    A generation of leptons and quarks and the gauge symmetries of the Standard Model can be obtained from the Clifford algebra ℂℓ 6. An instance of ℂℓ 6 is implicitly generated by the Dirac algebra combined with the electroweak symmetry, while the color symmetry gives another instance of ℂℓ 6 with a Witt decomposition. The minimal mathematical model proposed here results by identifying the two instances of ℂℓ 6. The left ideal decomposition generated by the Witt decomposition represents the leptons and quarks, and their antiparticles. The SU(3)c and U(1)em symmetries of the SM are the symmetries of this ideal decomposition. The patterns of electric charges, colors, chirality, weak isospins, and hypercharges, follow from this, without predicting additional particles or forces, or proton decay. The electroweak symmetry is present in its broken form, due to the geometry. The predicted Weinberg angle is given by sin2 W = 0.25. The model shares common features with previously known models, particularly with Chisholm and Farwell, 1996, Trayling and Baylis, 2004, and Furey, 2016.

  16. A new experiment-independent mechanism to persistify and serve the detector geometry of ATLAS

    NASA Astrophysics Data System (ADS)

    Bianchi, Riccardo Maria; Boudreau, Joseph; Vukotic, Ilija

    2017-10-01

    The complex geometry of the whole detector of the ATLAS experiment at LHC is currently stored only in custom online databases, from which it is built on-the-fly on request. Accessing the online geometry guarantees accessing the latest version of the detector description, but requires the setup of the full ATLAS software framework “Athena”, which provides the online services and the tools to retrieve the data from the database. This operation is cumbersome and slows down the applications that need to access the geometry. Moreover, all applications that need to access the detector geometry need to be built and run on the same platform as the ATLAS framework, preventing the usage of the actual detector geometry in stand-alone applications. Here we propose a new mechanism to persistify (in software development in general, and in HEP computing in particular, persistifying means taking an object which lives in memory only - for example because it was built on-the-fly while processing the experimental data, - serializing it and storing it on disk as a persistent object) and serve the geometry of HEP experiments. The new mechanism is composed by a new file format and the modules to make use of it. The new file format allows to store the whole detector description locally in a file, and it is especially optimized to describe large complex detectors with the minimum file size, making use of shared instances and storing compressed representations of geometry transformations. Then, the detector description can be read back in, to fully restore the in-memory geometry tree. Moreover, a dedicated REST API is being designed and developed to serve the geometry in standard exchange formats like JSON, to let users and applications download specific partial geometry information. With this new geometry persistification a new generation of applications could be developed, which can use the actual detector geometry while being platform-independent and experiment-independent.

  17. User oriented data processing at the University of Michigan

    NASA Technical Reports Server (NTRS)

    Thomson, F. J.

    1970-01-01

    The multispectral techniques have shown themselves capable of solving problems in a large number of user areas. The results obtained are in some instances quite impressive. In many instances, the multispectral detection of various phenomena is an empirical fact for which there is little physical explanation today. To date, most of the user applications that have been addressed are exploratory in nature. The closest approximation to an operational situation encountered so far is that of the survey of wetlands in North Dakota reported in this paper.

  18. An investigation of dynamic-analysis methods for variable-geometry structures

    NASA Technical Reports Server (NTRS)

    Austin, F.

    1980-01-01

    Selected space structure configurations were reviewed in order to define dynamic analysis problems associated with variable geometry. The dynamics of a beam being constructed from a flexible base and the relocation of the completed beam by rotating the remote manipulator system about the shoulder joint were selected. Equations of motion were formulated in physical coordinates for both of these problems, and FORTRAN programs were developed to generate solutions by numerically integrating the equations. These solutions served as a standard of comparison to gauge the accuracy of approximate solution techniques that were developed and studied. Good control was achieved in both problems. Unstable control system coupling with the system flexibility did not occur. An approximate method was developed for each problem to enable the analyst to investigate variable geometry effects during a short time span using standard fixed geometry programs such as NASTRAN. The average angle and average length techniques are discussed.

  19. Automated facial recognition of manually generated clay facial approximations: Potential application in unidentified persons data repositories.

    PubMed

    Parks, Connie L; Monson, Keith L

    2018-01-01

    This research examined how accurately 2D images (i.e., photographs) of 3D clay facial approximations were matched to corresponding photographs of the approximated individuals using an objective automated facial recognition system. Irrespective of search filter (i.e., blind, sex, or ancestry) or rank class (R 1 , R 10 , R 25 , and R 50 ) employed, few operationally informative results were observed. In only a single instance of 48 potential match opportunities was a clay approximation matched to a corresponding life photograph within the top 50 images (R 50 ) of a candidate list, even with relatively small gallery sizes created from the application of search filters (e.g., sex or ancestry search restrictions). Increasing the candidate lists to include the top 100 images (R 100 ) resulted in only two additional instances of correct match. Although other untested variables (e.g., approximation method, 2D photographic process, and practitioner skill level) may have impacted the observed results, this study suggests that 2D images of manually generated clay approximations are not readily matched to life photos by automated facial recognition systems. Further investigation is necessary in order to identify the underlying cause(s), if any, of the poor recognition results observed in this study (e.g., potential inferior facial feature detection and extraction). Additional inquiry exploring prospective remedial measures (e.g., stronger feature differentiation) is also warranted, particularly given the prominent use of clay approximations in unidentified persons casework. Copyright © 2017. Published by Elsevier B.V.

  20. Vapor ingestion in a cylindrical tank with a concave elliptical bottom

    NASA Technical Reports Server (NTRS)

    Klavins, A.

    1974-01-01

    An approximate analytical technique is presented for estimating the liquid residual in a tank of arbitrary geometry due to vapor ingestion at any drain rate and acceleration level. The bulk liquid depth at incipient pull-through is defined in terms of the Weber and Bond numbers and two functions that describe the fluid velocity field and free surface shape appropriate to the tank geometry. Numerical results are obtained for the Centaur LH2 tank using limiting approximations to these functions.

  1. Detecting Parkinsons' symptoms in uncontrolled home environments: a multiple instance learning approach.

    PubMed

    Das, Samarjit; Amoedo, Breogan; De la Torre, Fernando; Hodgins, Jessica

    2012-01-01

    In this paper, we propose to use a weakly supervised machine learning framework for automatic detection of Parkinson's Disease motor symptoms in daily living environments. Our primary goal is to develop a monitoring system capable of being used outside of controlled laboratory settings. Such a system would enable us to track medication cycles at home and provide valuable clinical feedback. Most of the relevant prior works involve supervised learning frameworks (e.g., Support Vector Machines). However, in-home monitoring provides only coarse ground truth information about symptom occurrences, making it very hard to adapt and train supervised learning classifiers for symptom detection. We address this challenge by formulating symptom detection under incomplete ground truth information as a multiple instance learning (MIL) problem. MIL is a weakly supervised learning framework that does not require exact instances of symptom occurrences for training; rather, it learns from approximate time intervals within which a symptom might or might not have occurred on a given day. Once trained, the MIL detector was able to spot symptom-prone time windows on other days and approximately localize the symptom instances. We monitored two Parkinson's disease (PD) patients, each for four days with a set of five triaxial accelerometers and utilized a MIL algorithm based on axis parallel rectangle (APR) fitting in the feature space. We were able to detect subject specific symptoms (e.g. dyskinesia) that conformed with a daily log maintained by the patients.

  2. Geometric Model for a Parametric Study of the Blended-Wing-Body Airplane

    NASA Technical Reports Server (NTRS)

    Mastin, C. Wayne; Smith, Robert E.; Sadrehaghighi, Ideen; Wiese, Micharl R.

    1996-01-01

    A parametric model is presented for the blended-wing-body airplane, one concept being proposed for the next generation of large subsonic transports. The model is defined in terms of a small set of parameters which facilitates analysis and optimization during the conceptual design process. The model is generated from a preliminary CAD geometry. From this geometry, airfoil cross sections are cut at selected locations and fitted with analytic curves. The airfoils are then used as boundaries for surfaces defined as the solution of partial differential equations. Both the airfoil curves and the surfaces are generated with free parameters selected to give a good representation of the original geometry. The original surface is compared with the parametric model, and solutions of the Euler equations for compressible flow are computed for both geometries. The parametric model is a good approximation of the CAD model and the computed solutions are qualitatively similar. An optimal NURBS approximation is constructed and can be used by a CAD model for further refinement or modification of the original geometry.

  3. Development and comparison of computational models for estimation of absorbed organ radiation dose in rainbow trout (Oncorhynchus mykiss) from uptake of iodine-131.

    PubMed

    Martinez, N E; Johnson, T E; Capello, K; Pinder, J E

    2014-12-01

    This study develops and compares different, increasingly detailed anatomical phantoms for rainbow trout (Oncorhynchus mykiss) for the purpose of estimating organ absorbed radiation dose and dose rates from (131)I uptake in multiple organs. The models considered are: a simplistic geometry considering a single organ, a more specific geometry employing additional organs with anatomically relevant size and location, and voxel reconstruction of internal anatomy obtained from CT imaging (referred to as CSUTROUT). Dose Conversion Factors (DCFs) for whole body as well as selected organs of O. mykiss were computed using Monte Carlo modeling, and combined with estimated activity concentrations, to approximate dose rates and ultimately determine cumulative radiation dose (μGy) to selected organs after several half-lives of (131)I. The different computational models provided similar results, especially for source organs (less than 30% difference between estimated doses), and whole body DCFs for each model (∼3 × 10(-3) μGy d(-1) per Bq kg(-1)) were comparable to DCFs listed in ICRP 108 for (131)I. The main benefit provided by the computational models developed here is the ability to accurately determine organ dose. A conservative mass-ratio approach may provide reasonable results for sufficiently large organs, but is only applicable to individual source organs. Although CSUTROUT is the more anatomically realistic phantom, it required much more resource dedication to develop and is less flexible than the stylized phantom for similar results. There may be instances where a detailed phantom such as CSUTROUT is appropriate, but generally the stylized phantom appears to be the best choice for an ideal balance between accuracy and resource requirements. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Approximated transport-of-intensity equation for coded-aperture x-ray phase-contrast imaging.

    PubMed

    Das, Mini; Liang, Zhihua

    2014-09-15

    Transport-of-intensity equations (TIEs) allow better understanding of image formation and assist in simplifying the "phase problem" associated with phase-sensitive x-ray measurements. In this Letter, we present for the first time to our knowledge a simplified form of TIE that models x-ray differential phase-contrast (DPC) imaging with coded-aperture (CA) geometry. The validity of our approximation is demonstrated through comparison with an exact TIE in numerical simulations. The relative contributions of absorption, phase, and differential phase to the acquired phase-sensitive intensity images are made readily apparent with the approximate TIE, which may prove useful for solving the inverse phase-retrieval problem associated with these CA geometry based DPC.

  5. Cosmology in the laboratory: An analogy between hyperbolic metamaterials and the Milne universe

    NASA Astrophysics Data System (ADS)

    Figueiredo, David; Moraes, Fernando; Fumeron, Sébastien; Berche, Bertrand

    2017-11-01

    This article shows that the compactified Milne universe geometry, a toy model for the big crunch/big bang transition, can be realized in hyperbolic metamaterials, a new class of nanoengineered systems which have recently found its way as an experimental playground for cosmological ideas. On one side, Klein-Gordon particles, as well as tachyons, are used as probes of the Milne geometry. On the other side, the propagation of light in two versions of a liquid crystal-based metamaterial provides the analogy. It is shown that ray and wave optics in the metamaterial mimic, respectively, the classical trajectories and wave function propagation, of the Milne probes, leading to the exciting perspective of realizing experimental tests of particle tunneling through the cosmic singularity, for instance.

  6. Explicit approximations to estimate the perturbative diffusivity in the presence of convectivity and damping. III. Cylindrical approximations for heat waves traveling inwards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berkel, M. van; Fellow of the Japan Society for the Promotion of Science; FOM Institute DIFFER-Dutch Institute for Fundamental Energy Research, Association EURATOM-FOM, Trilateral Euregio Cluster, P.O. Box 1207, 3430 BE Nieuwegein

    In this paper, a number of new explicit approximations are introduced to estimate the perturbative diffusivity (χ), convectivity (V), and damping (τ) in cylindrical geometry. For this purpose, the harmonic components of heat waves induced by localized deposition of modulated power are used. The approximations are based on the heat equation in cylindrical geometry using the symmetry (Neumann) boundary condition at the plasma center. This means that the approximations derived here should be used only to estimate transport coefficients between the plasma center and the off-axis perturbative source. If the effect of cylindrical geometry is small, it is also possiblemore » to use semi-infinite domain approximations presented in Part I and Part II of this series. A number of new approximations are derived in this part, Part III, based upon continued fractions of the modified Bessel function of the first kind and the confluent hypergeometric function of the first kind. These approximations together with the approximations based on semi-infinite domains are compared for heat waves traveling towards the center. The relative error for the different derived approximations is presented for different values of the frequency, transport coefficients, and dimensionless radius. Moreover, it is shown how combinations of different explicit formulas can be used to estimate the transport coefficients over a large parameter range for cases without convection and damping, cases with damping only, and cases with convection and damping. The relative error between the approximation and its underlying model is below 2% for the case, where only diffusivity and damping are considered. If also convectivity is considered, the diffusivity can be estimated well in a large region, but there is also a large region in which no suitable approximation is found. This paper is the third part (Part III) of a series of three papers. In Part I, the semi-infinite slab approximations have been treated. In Part II, cylindrical approximations are treated for heat waves traveling towards the plasma edge assuming a semi-infinite domain.« less

  7. Geometry of Thin Nematic Elastomer Sheets

    NASA Astrophysics Data System (ADS)

    Aharoni, Hillel; Sharon, Eran; Kupferman, Raz

    A thin sheet of nematic elastomer attains 3D configurations depending on the nematic director field upon heating. In this talk we describe the intrinsic geometry of such a sheet, and derive an expression for the metric induced by general smooth nematic director fields. Furthermore, we investigate the reverse problem of constructing a director field that induces a specified 2D geometry. We provide an explicit analytical recipe for constructing any surface of revolution using this method. We demonstrate how the design of an arbitrary 2D geometry is accessible using approximate numerical methods.

  8. 2D/3D image charge for modeling field emission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, Kevin L.; Shiffler, Donald A.; Harris, John R.

    Analytic image charge approximations exist for planar and spherical metal surfaces but approximations for more complex geometries, such as the conical and wirelike structures characteristic of field emitters, are lacking. Such models are the basis for the evaluation of Schottky lowering factors in equations for current density. The development of a multidimensional image charge approximation, useful for a general thermal-field emission equation used in space charge studies, is given and based on an analytical model using a prolate spheroidal geometry. A description of how the model may be adapted to be used with a line charge model appropriate for carbonmore » nanotube and carbon fiber field emitters is discussed. [http://dx.doi.org/10.1116/1.4968007]« less

  9. 2D/3D image charge for modeling field emission

    DOE PAGES

    Jensen, Kevin L.; Shiffler, Donald A.; Harris, John R.; ...

    2017-03-01

    Analytic image charge approximations exist for planar and spherical metal surfaces but approximations for more complex geometries, such as the conical and wirelike structures characteristic of field emitters, are lacking. Such models are the basis for the evaluation of Schottky lowering factors in equations for current density. The development of a multidimensional image charge approximation, useful for a general thermal-field emission equation used in space charge studies, is given and based on an analytical model using a prolate spheroidal geometry. A description of how the model may be adapted to be used with a line charge model appropriate for carbonmore » nanotube and carbon fiber field emitters is discussed. [http://dx.doi.org/10.1116/1.4968007]« less

  10. 5D Modelling: An Efficient Approach for Creating Spatiotemporal Predictive 3D Maps of Large-Scale Cultural Resources

    NASA Astrophysics Data System (ADS)

    Doulamis, A.; Doulamis, N.; Ioannidis, C.; Chrysouli, C.; Grammalidis, N.; Dimitropoulos, K.; Potsiou, C.; Stathopoulou, E.-K.; Ioannides, M.

    2015-08-01

    Outdoor large-scale cultural sites are mostly sensitive to environmental, natural and human made factors, implying an imminent need for a spatio-temporal assessment to identify regions of potential cultural interest (material degradation, structuring, conservation). On the other hand, in Cultural Heritage research quite different actors are involved (archaeologists, curators, conservators, simple users) each of diverse needs. All these statements advocate that a 5D modelling (3D geometry plus time plus levels of details) is ideally required for preservation and assessment of outdoor large scale cultural sites, which is currently implemented as a simple aggregation of 3D digital models at different time and levels of details. The main bottleneck of such an approach is its complexity, making 5D modelling impossible to be validated in real life conditions. In this paper, a cost effective and affordable framework for 5D modelling is proposed based on a spatial-temporal dependent aggregation of 3D digital models, by incorporating a predictive assessment procedure to indicate which regions (surfaces) of an object should be reconstructed at higher levels of details at next time instances and which at lower ones. In this way, dynamic change history maps are created, indicating spatial probabilities of regions needed further 3D modelling at forthcoming instances. Using these maps, predictive assessment can be made, that is, to localize surfaces within the objects where a high accuracy reconstruction process needs to be activated at the forthcoming time instances. The proposed 5D Digital Cultural Heritage Model (5D-DCHM) is implemented using open interoperable standards based on the CityGML framework, which also allows the description of additional semantic metadata information. Visualization aspects are also supported to allow easy manipulation, interaction and representation of the 5D-DCHM geometry and the respective semantic information. The open source 3DCityDB incorporating a PostgreSQL geo-database is used to manage and manipulate 3D data and their semantics.

  11. Space Shuttle Debris Impact Tool Assessment Using the Modern Design of Experiments

    NASA Technical Reports Server (NTRS)

    DeLoach, Richard; Rayos, Elonsio M.; Campbell, Charles H.; Rickman, Steven L.; Larsen, Curtis E.

    2007-01-01

    Complex computer codes are used to estimate thermal and structural reentry loads on the Shuttle Orbiter induced by ice and foam debris impact during ascent. Such debris can create cavities in the Shuttle Thermal Protection System. The sizes and shapes of these cavities are approximated to accommodate a code limitation that requires simple "shoebox" geometries to describe the cavities -- rectangular areas and planar walls that are at constant angles with respect to vertical. These approximations induce uncertainty in the code results. The Modern Design of Experiments (MDOE) has recently been applied to develop a series of resource-minimal computational experiments designed to generate low-order polynomial graduating functions to approximate the more complex underlying codes. These polynomial functions were then used to propagate cavity geometry errors to estimate the uncertainty they induce in the reentry load calculations performed by the underlying code. This paper describes a methodological study focused on evaluating the application of MDOE to future operational codes in a rapid and low-cost way to assess the effects of cavity geometry uncertainty.

  12. Using radiance predicted by the P3 approximation in a spherical geometry to predict tissue optical properties

    NASA Astrophysics Data System (ADS)

    Dickey, Dwayne J.; Moore, Ronald B.; Tulip, John

    2001-01-01

    For photodynamic therapy of solid tumors, such as prostatic carcinoma, to be achieved, an accurate model to predict tissue parameters and light dose must be found. Presently, most analytical light dosimetry models are fluence based and are not clinically viable for tissue characterization. Other methods of predicting optical properties, such as Monet Carlo, are accurate but far too time consuming for clinical application. However, radiance predicted by the P3-Approximation, an anaylitical solution to the transport equation, may be a viable and accurate alternative. The P3-Approximation accurately predicts optical parameters in intralipid/methylene blue based phantoms in a spherical geometry. The optical parameters furnished by the radiance, when introduced into fluence predicted by both P3- Approximation and Grosjean Theory, correlate well with experimental data. The P3-Approximation also predicts the optical properties of prostate tissue, agreeing with documented optical parameters. The P3-Approximation could be the clinical tool necessary to facilitate PDT of solid tumors because of the limited number of invasive measurements required and the speed in which accurate calculations can be performed.

  13. Sound field reproduction as an equivalent acoustical scattering problem.

    PubMed

    Fazi, Filippo Maria; Nelson, Philip A

    2013-11-01

    Given a continuous distribution of acoustic sources, the determination of the source strength that ensures the synthesis of a desired sound field is shown to be identical to the solution of an equivalent acoustic scattering problem. The paper begins with the presentation of the general theory that underpins sound field reproduction with secondary sources continuously arranged on the boundary of the reproduction region. The process of reproduction by a continuous source distribution is modeled by means of an integral operator (the single layer potential). It is then shown how the solution of the sound reproduction problem corresponds to that of an equivalent scattering problem. Analytical solutions are computed for two specific instances of this problem, involving, respectively, the use of a secondary source distribution in spherical and planar geometries. The results are shown to be the same as those obtained with analyses based on High Order Ambisonics and Wave Field Synthesis, respectively, thus bringing to light a fundamental analogy between these two methods of sound reproduction. Finally, it is shown how the physical optics (Kirchhoff) approximation enables the derivation of a high-frequency simplification for the problem under consideration, this in turn being related to the secondary source selection criterion reported in the literature on Wave Field Synthesis.

  14. Visualizing Gyrokinetic Turbulence in a Tokamak

    NASA Astrophysics Data System (ADS)

    Stantchev, George

    2005-10-01

    Multi-dimensional data output from gyrokinetic microturbulence codes are often difficult to visualize, in part due to the non-trivial geometry of the underlying grids, in part due to high irregularity of the relevant scalar field structures in turbulent regions. For instance, traditional isosurface extraction methods are likely to fail for the electrostatic potential field whose level sets may exhibit various geometric pathologies. To address these issues we develop an advanced interactive 3D gyrokinetic turbulence visualization framework which we apply in the study of microtearing instabilities calculated with GS2 in the MAST and NSTX geometries. In these simulations GS2 uses field-line-following coordinates such that the computational domain maps in physical space to a long, twisting flux tube with strong cross-sectional shear. Using statistical wavelet analysis we create a sparse multiple-scale volumetric representation of the relevant scalar fields, which we visualize via a variation of the so called splatting technique. To handle the problem of highly anisotropic flux tube configurations we adapt a geometry-driven surface illumination algorithm that places local light sources for effective feature-enhanced visualization.

  15. Recovering full repair costs of INDOT infrastructure damaged by motor vehicle crashes.

    DOT National Transportation Integrated Search

    2011-01-01

    There are approximately 4,000 instances per year where state property located along Indiana Department of Transportation : (INDOT) maintained right-of-way needs to be replaced or repaired due to motor vehicle crashes. INDOT incurs significant financi...

  16. Efficient Implementation of an Optimal Interpolator for Large Spatial Data Sets

    NASA Technical Reports Server (NTRS)

    Memarsadeghi, Nargess; Mount, David M.

    2007-01-01

    Interpolating scattered data points is a problem of wide ranging interest. A number of approaches for interpolation have been proposed both from theoretical domains such as computational geometry and in applications' fields such as geostatistics. Our motivation arises from geological and mining applications. In many instances data can be costly to compute and are available only at nonuniformly scattered positions. Because of the high cost of collecting measurements, high accuracy is required in the interpolants. One of the most popular interpolation methods in this field is called ordinary kriging. It is popular because it is a best linear unbiased estimator. The price for its statistical optimality is that the estimator is computationally very expensive. This is because the value of each interpolant is given by the solution of a large dense linear system. In practice, kriging problems have been solved approximately by restricting the domain to a small local neighborhood of points that lie near the query point. Determining the proper size for this neighborhood is a solved by ad hoc methods, and it has been shown that this approach leads to undesirable discontinuities in the interpolant. Recently a more principled approach to approximating kriging has been proposed based on a technique called covariance tapering. This process achieves its efficiency by replacing the large dense kriging system with a much sparser linear system. This technique has been applied to a restriction of our problem, called simple kriging, which is not unbiased for general data sets. In this paper we generalize these results by showing how to apply covariance tapering to the more general problem of ordinary kriging. Through experimentation we demonstrate the space and time efficiency and accuracy of approximating ordinary kriging through the use of covariance tapering combined with iterative methods for solving large sparse systems. We demonstrate our approach on large data sizes arising both from synthetic sources and from real applications.

  17. An accurate solution of the gas lubricated, flat sector thrust bearing

    NASA Technical Reports Server (NTRS)

    Etsion, I.; Fleming, D. P.

    1976-01-01

    A flat sector shaped pad geometry for gas lubricated thrust bearings is analyzed considering both pitch and roll angles of the pad and the true film thickness distribution. Maximum load capacity is achieved when the pad is tilted so as to create a uniform minimum film thickness along the pad trailing edge. Performance characteristics for various geometries and operating conditions of gas thrust bearings are presented in the form of design curves. A comparison is made with the rectangular slider approximation. It is found that this approximation is unsafe for practical design, since it always overestimates load capacity.

  18. Analysis of the gas-lubricated flat-sector-pad thrust bearing

    NASA Technical Reports Server (NTRS)

    Etsion, I.

    1976-01-01

    A flat sector-shaped pad geometry for a gas-lubricated thrust bearing is analyzed considering both the pitch and roll of the pad. It is shown that maximum load capacity is achieved when the pad is tilted so as to create uniform minimum film thickness along the pad trailing edge. Performance characteristics for various geometries and operating conditions of gas thrust bearings are presented in the form of design curves, and a comparison is made with the rectangular slider approximation. It is found that this approximation is unsafe for practical design, since it always overestimates load capacity.

  19. Multigrid Methods for Aerodynamic Problems in Complex Geometries

    NASA Technical Reports Server (NTRS)

    Caughey, David A.

    1995-01-01

    Work has been directed at the development of efficient multigrid methods for the solution of aerodynamic problems involving complex geometries, including the development of computational methods for the solution of both inviscid and viscous transonic flow problems. The emphasis is on problems of complex, three-dimensional geometry. The methods developed are based upon finite-volume approximations to both the Euler and the Reynolds-Averaged Navier-Stokes equations. The methods are developed for use on multi-block grids using diagonalized implicit multigrid methods to achieve computational efficiency. The work is focused upon aerodynamic problems involving complex geometries, including advanced engine inlets.

  20. Local CC2 response method based on the Laplace transform: analytic energy gradients for ground and excited states.

    PubMed

    Ledermüller, Katrin; Schütz, Martin

    2014-04-28

    A multistate local CC2 response method for the calculation of analytic energy gradients with respect to nuclear displacements is presented for ground and electronically excited states. The gradient enables the search for equilibrium geometries of extended molecular systems. Laplace transform is used to partition the eigenvalue problem in order to obtain an effective singles eigenvalue problem and adaptive, state-specific local approximations. This leads to an approximation in the energy Lagrangian, which however is shown (by comparison with the corresponding gradient method without Laplace transform) to be of no concern for geometry optimizations. The accuracy of the local approximation is tested and the efficiency of the new code is demonstrated by application calculations devoted to a photocatalytic decarboxylation process of present interest.

  1. Geometry of rear seats and child restraints compared to child anthropometry.

    PubMed

    Bilston, Lynne E; Sagar, Nipun

    2007-10-01

    The objective of this study was to evaluate the geometry of a wide range of restraints (child restraints, booster seats and rear seats) used by children, and how these match their anthropometry, and to determine limitations to restraint size for the population of children using them. The study is motivated by the widespread premature graduation from one restraint type to another, which parents often attribute to children outgrowing their previous restraint. Currently, recommended transitions are based on a small sample of vehicles and children. Outboard rear seat and seat belt geometry (anchorage locations, sash belt angles) from 50 current model vehicles were measured using a custom-developed measuring jig. For 17 child restraints, a 3-dimensional measuring arm was used to measure the geometry of the restraint including interior size and strap slot locations (where relevant). These measurements were compared to anthropometric measurements, to determine the suitability of a given restraint for children of particular ages. The results for the rear seat geometry indicate that all seat cushions were too deep for a child whose upper leg length is at the 50th percentile until approximately 11.5 years, and half of vehicle seat cushions were too deep for a 15 year old child whose upper leg length is at the 50th percentile. Sash belt geometry was more variable, with approximately a third of vehicles accommodating 6-8 year olds who approximate the shoulder geometry measurements at the 50th percentile. Dedicated child restraints accommodated most children within recommended age groups, with two exceptions. Several high back booster seats were not tall enough for a child whose seated height is at the 50th percentile for 8 year olds (who is still too short for an adult belt according to current guidelines and the results from the rear seat geometry study), and a small number of forward facing restraints and high back boosters were too narrow for children at the upper end of the recommended age ranges. Analysis of the results from this study indicates that alterations in restraint geometry, particularly shortening the seat cushion, allowing for adjustable upper sash belt anchorages in the rear seat of vehicles, and increasing the height of high back booster seats would substantially improve the fit of restraints for child occupants. This data confirms findings from a recent study that looked only at rear seat cushion depths and provides new data on seat belt and child restraint geometry for child occupants.

  2. A practical approximation algorithm for solving massive instances of hybridization number for binary and nonbinary trees.

    PubMed

    van Iersel, Leo; Kelk, Steven; Lekić, Nela; Scornavacca, Celine

    2014-05-05

    Reticulate events play an important role in determining evolutionary relationships. The problem of computing the minimum number of such events to explain discordance between two phylogenetic trees is a hard computational problem. Even for binary trees, exact solvers struggle to solve instances with reticulation number larger than 40-50. Here we present CycleKiller and NonbinaryCycleKiller, the first methods to produce solutions verifiably close to optimality for instances with hundreds or even thousands of reticulations. Using simulations, we demonstrate that these algorithms run quickly for large and difficult instances, producing solutions that are very close to optimality. As a spin-off from our simulations we also present TerminusEst, which is the fastest exact method currently available that can handle nonbinary trees: this is used to measure the accuracy of the NonbinaryCycleKiller algorithm. All three methods are based on extensions of previous theoretical work (SIDMA 26(4):1635-1656, TCBB 10(1):18-25, SIDMA 28(1):49-66) and are publicly available. We also apply our methods to real data.

  3. Recovering full repair costs of INDOT infrastructure damaged by motor vehicle crashes : [technical summary].

    DOT National Transportation Integrated Search

    2011-09-01

    There are approximately 4,000 instances per year that require infrastructure located along right-of-way maintained by the Indiana Department of Transportation (INDOT) to be replaced or repaired due to motor vehicle crashes. This infrastructure includ...

  4. Exemplar Models as a Mechanism for Performing Bayesian Inference

    DTIC Science & Technology

    2010-01-01

    Feldman Department of Cognitive and Linguistic Sciences Brown University Adam N. Sanborn Gatsby Computational Neuroscience Unit University College London...problem. As noted above, particle filters are another instance of a rational process model, but the great diversity of efficient approximation algorithms

  5. An adaptive large neighborhood search procedure applied to the dynamic patient admission scheduling problem.

    PubMed

    Lusby, Richard Martin; Schwierz, Martin; Range, Troels Martin; Larsen, Jesper

    2016-11-01

    The aim of this paper is to provide an improved method for solving the so-called dynamic patient admission scheduling (DPAS) problem. This is a complex scheduling problem that involves assigning a set of patients to hospital beds over a given time horizon in such a way that several quality measures reflecting patient comfort and treatment efficiency are maximized. Consideration must be given to uncertainty in the length of stays of patients as well as the possibility of emergency patients. We develop an adaptive large neighborhood search (ALNS) procedure to solve the problem. This procedure utilizes a Simulated Annealing framework. We thoroughly test the performance of the proposed ALNS approach on a set of 450 publicly available problem instances. A comparison with the current state-of-the-art indicates that the proposed methodology provides solutions that are of comparable quality for small and medium sized instances (up to 1000 patients); the two approaches provide solutions that differ in quality by approximately 1% on average. The ALNS procedure does, however, provide solutions in a much shorter time frame. On larger instances (between 1000-4000 patients) the improvement in solution quality by the ALNS procedure is substantial, approximately 3-14% on average, and as much as 22% on a single instance. The time taken to find such results is, however, in the worst case, a factor 12 longer on average than the time limit which is granted to the current state-of-the-art. The proposed ALNS procedure is an efficient and flexible method for solving the DPAS problem. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Towards timelike singularity via AdS dual

    NASA Astrophysics Data System (ADS)

    Bhowmick, Samrat; Chatterjee, Soumyabrata

    2017-07-01

    It is well known that Kasner geometry with spacelike singularity can be extended to bulk AdS-like geometry, furthermore, one can study field theory on this Kasner space via its gravity dual. In this paper, we show that there exists a Kasner-like geometry with timelike singularity for which one can construct a dual gravity description. We then study various extremal surfaces including spacelike geodesics in the dual gravity description. Finally, we compute correlators of highly massive operators in the boundary field theory with a geodesic approximation.

  7. An ellipsoidal representation of human hand anthropometry

    NASA Technical Reports Server (NTRS)

    Buchholz, Bryan; Armstrong, Thomas J.

    1991-01-01

    Anthropometric data concerning the heometry of the hand's surface are presently modeled as a function of gross external hand measurements; an effort is made to evaluate the accuracy with which ellipsoids describe the geometry of the hand segments. Graphical comparisons indicate that differences between the ellipsoidal approximations and the breadth and depth measurements were greatest near the joints. On the bases of the present data, a set of overlapping ellipsoids could furnish a more accurate representation of hand geometry for adaptation to ellipsoid segment-geometry employing biomechanical models.

  8. Measurement of the Casimir Force between Two Spheres

    NASA Astrophysics Data System (ADS)

    Garrett, Joseph L.; Somers, David A. T.; Munday, Jeremy N.

    2018-01-01

    Complex interaction geometries offer a unique opportunity to modify the strength and sign of the Casimir force. However, measurements have traditionally been limited to sphere-plate or plate-plate configurations. Prior attempts to extend measurements to different geometries relied on either nanofabrication techniques that are limited to only a few materials or slight modifications of the sphere-plate geometry due to alignment difficulties of more intricate configurations. Here, we overcome this obstacle to present measurements of the Casimir force between two gold spheres using an atomic force microscope. Force measurements are alternated with topographical scans in the x -y plane to maintain alignment of the two spheres to within approximately 400 nm (˜1 % of the sphere radii). Our experimental results are consistent with Lifshitz's theory using the proximity force approximation (PFA), and corrections to the PFA are bounded using nine sphere-sphere and three sphere-plate measurements with spheres of varying radii.

  9. Gas-phase geometry optimization of biological molecules as a reasonable alternative to a continuum environment description: fact, myth, or fiction?

    PubMed

    Sousa, Sérgio Filipe; Fernandes, Pedro Alexandrino; Ramos, Maria João

    2009-12-31

    Gas-phase optimization of single biological molecules and of small active-site biological models has become a standard approach in first principles computational enzymology. The important role played by the surrounding environment (solvent, enzyme, both) is normally only accounted for through higher-level single point energy calculations performed using a polarizable continuum model (PCM) and an appropriate dielectric constant with the gas-phase-optimized geometries. In this study we analyze this widely used approximation, by comparing gas-phase-optimized geometries with geometries optimized with different PCM approaches (and considering different dielectric constants) for a representative data set of 20 very important biological molecules--the 20 natural amino acids. A total of 323 chemical bonds and 469 angles present in standard amino acid residues were evaluated. The results show that the use of gas-phase-optimized geometries can in fact be quite a reasonable alternative to the use of the more computationally intensive continuum optimizations, providing a good description of bond lengths and angles for typical biological molecules, even for charged amino acids, such as Asp, Glu, Lys, and Arg. This approximation is particularly successful if the protonation state of the biological molecule could be reasonably described in vacuum, a requirement that was already necessary in first principles computational enzymology.

  10. Hydraulic geometry of the Platte River in south-central Nebraska

    USGS Publications Warehouse

    Eschner, T.R.

    1982-01-01

    At-a-station hydraulic-geometry of the Platte River in south-central Nebraska is complex. The range of exponents of simple power-function relations is large, both between different reaches of the river, and among different sections within a given reach. The at-a-station exponents plot in several fields of the b-f-m diagram, suggesting that morphologic and hydraulic changes with increasing discharge vary considerably. Systematic changes in the plotting positions of the exponents with time indicate that in general, the width exponent has decreased, although trends are not readily apparent in the other exponents. Plots of the hydraulic-geometry relations indicate that simple power functions are not the proper model in all instances. For these sections, breaks in the slopes of the hydraulic geometry relations serve to partition the data sets. Power functions fit separately to the partitioned data described the width-, depth-, and velocity-discharge relations more accurately than did a single power function. Plotting positions of the exponents from hydraulic geometry relations of partitioned data sets on b-f-m diagrams indicate that much of the apparent variations of plotting positions of single power functions results because the single power functions compromise both subsets of partitioned data. For several sections, the shape of the channel primarily accounts for the better fit of two-power functions to partitioned data than a single power function over the entire range of data. These non-log linear relations may have significance for channel maintenance. (USGS)

  11. A finite difference Davidson procedure to sidestep full ab initio hessian calculation: Application to characterization of stationary points and transition state searches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharada, Shaama Mallikarjun; Bell, Alexis T., E-mail: mhg@bastille.cchem.berkeley.edu, E-mail: bell@cchem.berkeley.edu; Head-Gordon, Martin, E-mail: mhg@bastille.cchem.berkeley.edu, E-mail: bell@cchem.berkeley.edu

    2014-04-28

    The cost of calculating nuclear hessians, either analytically or by finite difference methods, during the course of quantum chemical analyses can be prohibitive for systems containing hundreds of atoms. In many applications, though, only a few eigenvalues and eigenvectors, and not the full hessian, are required. For instance, the lowest one or two eigenvalues of the full hessian are sufficient to characterize a stationary point as a minimum or a transition state (TS), respectively. We describe here a method that can eliminate the need for hessian calculations for both the characterization of stationary points as well as searches for saddlemore » points. A finite differences implementation of the Davidson method that uses only first derivatives of the energy to calculate the lowest eigenvalues and eigenvectors of the hessian is discussed. This method can be implemented in conjunction with geometry optimization methods such as partitioned-rational function optimization (P-RFO) to characterize stationary points on the potential energy surface. With equal ease, it can be combined with interpolation methods that determine TS guess structures, such as the freezing string method, to generate approximate hessian matrices in lieu of full hessians as input to P-RFO for TS optimization. This approach is shown to achieve significant cost savings relative to exact hessian calculation when applied to both stationary point characterization as well as TS optimization. The basic reason is that the present approach scales one power of system size lower since the rate of convergence is approximately independent of the size of the system. Therefore, the finite-difference Davidson method is a viable alternative to full hessian calculation for stationary point characterization and TS search particularly when analytical hessians are not available or require substantial computational effort.« less

  12. On the propagation of decaying planar shock and blast waves through non-uniform channels

    NASA Astrophysics Data System (ADS)

    Peace, J. T.; Lu, F. K.

    2018-05-01

    The propagation of planar decaying shock and blast waves in non-uniform channels is investigated with the use of a two-equation approximation of the generalized CCW theory. The effects of flow non-uniformity for the cases of an arbitrary strength decaying shock and blast wave in the strong shock limit are considered. Unlike the original CCW theory, the two-equation approximation takes into account the effects of initial temporal flow gradients in the flow properties behind the shock as the shock encounters an area change. A generalized order-of-magnitude analysis is carried out to analyze under which conditions the classical area-Mach (A-M) relation and two-equation approximation are valid given a time constant of decay for the flow properties behind the shock. It is shown that the two-equation approximation extends the applicability of the CCW theory to problems where flow non-uniformity behind the shock is orders of magnitude above that for appropriate use of the A-M relation. The behavior of the two-equation solution is presented for converging and diverging channels and compared against the A-M relation. It is shown that the second-order approximation and A-M relation have good agreement for converging geometries, such that the influence of flow non-uniformity behind the shock is negligible compared to the effects of changing area. Alternatively, the two-equation approximation is shown to be strongly dependent on the initial magnitude of flow non-uniformity in diverging geometries. Further, in diverging geometries, the inclusion of flow non-uniformity yields shock solutions that tend toward an acoustic wave faster than that predicted by the A-M relation.

  13. Reducing Negative Effects from Virtual Environments: Implications for Just-In-Time Training

    DTIC Science & Technology

    2003-02-01

    ability to perform mission- critical tasks following VE exposure. For instance, a group of side effects collectively known as cybersickness can be...detracting, such as visual motor coordination and balance disturbances. Cybersickness occurs in approximately 80-95% of individuals receiving virtual

  14. Efficient boundary hunting via vector quantization

    NASA Astrophysics Data System (ADS)

    Diamantini, Claudia; Panti, Maurizio

    2001-03-01

    A great amount of information about a classification problem is contained in those instances falling near the decision boundary. This intuition dates back to the earliest studies in pattern recognition, and in the more recent adaptive approaches to the so called boundary hunting, such as the work of Aha et alii on Instance Based Learning and the work of Vapnik et alii on Support Vector Machines. The last work is of particular interest, since theoretical and experimental results ensure the accuracy of boundary reconstruction. However, its optimization approach has heavy computational and memory requirements, which limits its application on huge amounts of data. In the paper we describe an alternative approach to boundary hunting based on adaptive labeled quantization architectures. The adaptation is performed by a stochastic gradient algorithm for the minimization of the error probability. Error probability minimization guarantees the accurate approximation of the optimal decision boundary, while the use of a stochastic gradient algorithm defines an efficient method to reach such approximation. In the paper comparisons to Support Vector Machines are considered.

  15. A new numerical approximation of the fractal ordinary differential equation

    NASA Astrophysics Data System (ADS)

    Atangana, Abdon; Jain, Sonal

    2018-02-01

    The concept of fractal medium is present in several real-world problems, for instance, in the geological formation that constitutes the well-known subsurface water called aquifers. However, attention has not been quite devoted to modeling for instance, the flow of a fluid within these media. We deem it important to remind the reader that the concept of fractal derivative is not to represent the fractal sharps but to describe the movement of the fluid within these media. Since this class of ordinary differential equations is highly complex to solve analytically, we present a novel numerical scheme that allows to solve fractal ordinary differential equations. Error analysis of the method is also presented. Application of the method and numerical approximation are presented for fractal order differential equation. The stability and the convergence of the numerical schemes are investigated in detail. Also some exact solutions of fractal order differential equations are presented and finally some numerical simulations are presented.

  16. An Optimization-Based Method for Feature Ranking in Nonlinear Regression Problems.

    PubMed

    Bravi, Luca; Piccialli, Veronica; Sciandrone, Marco

    2017-04-01

    In this paper, we consider the feature ranking problem, where, given a set of training instances, the task is to associate a score with the features in order to assess their relevance. Feature ranking is a very important tool for decision support systems, and may be used as an auxiliary step of feature selection to reduce the high dimensionality of real-world data. We focus on regression problems by assuming that the process underlying the generated data can be approximated by a continuous function (for instance, a feedforward neural network). We formally state the notion of relevance of a feature by introducing a minimum zero-norm inversion problem of a neural network, which is a nonsmooth, constrained optimization problem. We employ a concave approximation of the zero-norm function, and we define a smooth, global optimization problem to be solved in order to assess the relevance of the features. We present the new feature ranking method based on the solution of instances of the global optimization problem depending on the available training data. Computational experiments on both artificial and real data sets are performed, and point out that the proposed feature ranking method is a valid alternative to existing methods in terms of effectiveness. The obtained results also show that the method is costly in terms of CPU time, and this may be a limitation in the solution of large-dimensional problems.

  17. Constraints in Genetic Programming

    NASA Technical Reports Server (NTRS)

    Janikow, Cezary Z.

    1996-01-01

    Genetic programming refers to a class of genetic algorithms utilizing generic representation in the form of program trees. For a particular application, one needs to provide the set of functions, whose compositions determine the space of program structures being evolved, and the set of terminals, which determine the space of specific instances of those programs. The algorithm searches the space for the best program for a given problem, applying evolutionary mechanisms borrowed from nature. Genetic algorithms have shown great capabilities in approximately solving optimization problems which could not be approximated or solved with other methods. Genetic programming extends their capabilities to deal with a broader variety of problems. However, it also extends the size of the search space, which often becomes too large to be effectively searched even by evolutionary methods. Therefore, our objective is to utilize problem constraints, if such can be identified, to restrict this space. In this publication, we propose a generic constraint specification language, powerful enough for a broad class of problem constraints. This language has two elements -- one reduces only the number of program instances, the other reduces both the space of program structures as well as their instances. With this language, we define the minimal set of complete constraints, and a set of operators guaranteeing offspring validity from valid parents. We also show that these operators are not less efficient than the standard genetic programming operators if one preprocesses the constraints - the necessary mechanisms are identified.

  18. Triple differential cross-sections of Ne (2s2) in coplanar to perpendicular plane geometry

    NASA Astrophysics Data System (ADS)

    Chen, L. Q.; Khajuria, Y.; Chen, X. J.; Xu, K. Z.

    2003-10-01

    The distorted wave Born approximation (DWBA) with the spin averaged static exchange potential has been used to calculate the triple differential cross-sections (TDCSs) for Ne (2s^2) ionization by electron impact in coplanar to perpendicular plane symmetric geometry at 110.5 eV incident electron energy. The present theoretical results at gun angles Psi = 0^circ (coplanar symmetric geometry) and Psi = 90^circ (perpendicular plane geometry) are in satisfactory agreement with the available experimental data. A deep interference minimum appears in the TDCS in the coplanar symmetric geometry and a strong peak at scattering angle xi = 90^circ caused by the single collision mechanism has been observed in the perpendicular plane geometry. The TDCSs at the gun angles Psi = 30^circ, and Psi = 60^circ are predicted.

  19. Application of a low order panel method to complex three-dimensional internal flow problems

    NASA Technical Reports Server (NTRS)

    Ashby, D. L.; Sandlin, D. R.

    1986-01-01

    An evaluation of the ability of a low order panel method to predict complex three-dimensional internal flow fields was made. The computer code VSAERO was used as a basis for the evaluation. Guidelines for modeling internal flow geometries were determined and the effects of varying the boundary conditions and the use of numerical approximations on the solutions accuracy were studied. Several test cases were run and the results were compared with theoretical or experimental results. Modeling an internal flow geometry as a closed box with normal velocities specified on an inlet and exit face provided accurate results and gave the user control over the boundary conditions. The values of the boundary conditions greatly influenced the amount of leakage an internal flow geometry suffered and could be adjusted to eliminate leakage. The use of the far-field approximation to reduce computation time influenced the accuracy of a solution and was coupled with the values of the boundary conditions needed to eliminate leakage. The error induced in the influence coefficients by using the far-field approximation was found to be dependent on the type of influence coefficient, the far-field radius, and the aspect ratio of the panels.

  20. Fuzzy Logic for Incidence Geometry

    PubMed Central

    2016-01-01

    The paper presents a mathematical framework for approximate geometric reasoning with extended objects in the context of Geography, in which all entities and their relationships are described by human language. These entities could be labelled by commonly used names of landmarks, water areas, and so forth. Unlike single points that are given in Cartesian coordinates, these geographic entities are extended in space and often loosely defined, but people easily perform spatial reasoning with extended geographic objects “as if they were points.” Unfortunately, up to date, geographic information systems (GIS) miss the capability of geometric reasoning with extended objects. The aim of the paper is to present a mathematical apparatus for approximate geometric reasoning with extended objects that is usable in GIS. In the paper we discuss the fuzzy logic (Aliev and Tserkovny, 2011) as a reasoning system for geometry of extended objects, as well as a basis for fuzzification of the axioms of incidence geometry. The same fuzzy logic was used for fuzzification of Euclid's first postulate. Fuzzy equivalence relation “extended lines sameness” is introduced. For its approximation we also utilize a fuzzy conditional inference, which is based on proposed fuzzy “degree of indiscernibility” and “discernibility measure” of extended points. PMID:27689133

  1. The Effects of Accretion Disk Geometry on AGN Reflection Spectra

    NASA Astrophysics Data System (ADS)

    Taylor, Corbin James; Reynolds, Christopher S.

    2017-08-01

    Despite being the gravitational engines that power galactic-scale winds and mega parsec-scale jets in active galaxies, black holes are remarkably simple objects, typically being fully described by their angular momenta (spin) and masses. The modelling of AGN X-ray reflection spectra has proven fruitful in estimating the spin of AGN, as well as giving insight into their accretion histories and the properties of plasmas in the strong gravity regime. However, current models make simplifying assumptions about the geometry of the reflecting material in the accretion disk and the irradiating X-ray corona, approximating the disk as an optically thick, infinitely thin disk of material in the orbital plane. We present results from the new relativistic raytracing suite, Fenrir, that explore the effects that disk thickness may have on the reflection spectrum and the accompanying reverberation signatures. Approximating the accretion disk as an optically thick, geometrically thin, radiation pressure dominated disk (Shakura & Sunyaev 1973), one finds that the disk geometry is non-negligible in many cases, with significant changes in the broad Fe K line profile. Finally, we explore the systematic errors inherent in approximating the disk as being infinitely thin when modeling reflection spectrum, potentially biasing determinations of black hole and corona properties.

  2. A Mentoring Program for Inquiry-Based Teaching in a College Geometry Class

    ERIC Educational Resources Information Center

    Miller, Nathaniel; Wakefield, Nathan

    2014-01-01

    This paper describes a mentoring program designed to prepare novice instructors to teach a college geometry class using inquiry-based methods. The mentoring program was used in a medium-sized public university with approximately 12,000 undergraduate students and 1,500 graduate students. The authors worked together to implement a mentoring program…

  3. Approximation algorithms for the min-power symmetric connectivity problem

    NASA Astrophysics Data System (ADS)

    Plotnikov, Roman; Erzin, Adil; Mladenovic, Nenad

    2016-10-01

    We consider the NP-hard problem of synthesis of optimal spanning communication subgraph in a given arbitrary simple edge-weighted graph. This problem occurs in the wireless networks while minimizing the total transmission power consumptions. We propose several new heuristics based on the variable neighborhood search metaheuristic for the approximation solution of the problem. We have performed a numerical experiment where all proposed algorithms have been executed on the randomly generated test samples. For these instances, on average, our algorithms outperform the previously known heuristics.

  4. A 3-dimensional mass conserving element for compressible flows

    NASA Technical Reports Server (NTRS)

    Fix, G.; Suri, M.

    1985-01-01

    A variety of finite element schemes has been used in the numerical approximation of compressible flows particularly in underwater acoustics. In many instances instabilities have been generated due to the lack of mass conservation. Two- and three-dimensional elements are developed which avoid these problems.

  5. Coupled electron-nuclear dynamics: Charge migration and charge transfer initiated near a conical intersection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendive-Tapia, David; Vacher, Morgane; Bearpark, Michael J.

    Coupled electron-nuclear dynamics, implemented using the Ehrenfest method, has been used to study charge migration with fixed nuclei, together with charge transfer when nuclei are allowed to move. Simulations were initiated at reference geometries of neutral benzene and 2-phenylethylamine (PEA), and at geometries close to potential energy surface crossings in the cations. Cationic eigenstates, and the so-called sudden approximation, involving removal of an electron from a correlated ground-state wavefunction for the neutral species, were used as initial conditions. Charge migration without coupled nuclear motion could be observed if the Ehrenfest simulation, using the sudden approximation, was started near a conicalmore » intersection where the states were both strongly coupled and quasi-degenerate. Further, the main features associated with charge migration were still recognizable when the nuclear motion was allowed to couple. In the benzene radical cation, starting from the reference neutral geometry with the sudden approximation, one could observe sub-femtosecond charge migration with a small amplitude, which results from weak interaction with higher electronic states. However, we were able to engineer large amplitude charge migration, with a period between 10 and 100 fs, corresponding to oscillation of the electronic structure between the quinoid and anti-quinoid cationic electronic configurations, by distorting the geometry along the derivative coupling vector from the D{sub 6h} Jahn-Teller crossing to lower symmetry where the states are not degenerate. When the nuclear motion becomes coupled, the period changes only slightly. In PEA, in an Ehrenfest trajectory starting from the D{sub 2} eigenstate and reference geometry, a partial charge transfer occurs after about 12 fs near the first crossing between D{sub 1}, D{sub 2} (N{sup +}-Phenyl, N-Phenyl{sup +}). If the Ehrenfest propagation is started near this point, using the sudden approximation without coupled nuclear motion, one observes an oscillation of the spin density – charge migration – between the N atom and the phenyl ring with a period of 4 fs. When the nuclear motion becomes coupled, this oscillation persists in a damped form, followed by an effective charge transfer after 30 fs.« less

  6. Coupled electron-nuclear dynamics: Charge migration and charge transfer initiated near a conical intersection

    NASA Astrophysics Data System (ADS)

    Mendive-Tapia, David; Vacher, Morgane; Bearpark, Michael J.; Robb, Michael A.

    2013-07-01

    Coupled electron-nuclear dynamics, implemented using the Ehrenfest method, has been used to study charge migration with fixed nuclei, together with charge transfer when nuclei are allowed to move. Simulations were initiated at reference geometries of neutral benzene and 2-phenylethylamine (PEA), and at geometries close to potential energy surface crossings in the cations. Cationic eigenstates, and the so-called sudden approximation, involving removal of an electron from a correlated ground-state wavefunction for the neutral species, were used as initial conditions. Charge migration without coupled nuclear motion could be observed if the Ehrenfest simulation, using the sudden approximation, was started near a conical intersection where the states were both strongly coupled and quasi-degenerate. Further, the main features associated with charge migration were still recognizable when the nuclear motion was allowed to couple. In the benzene radical cation, starting from the reference neutral geometry with the sudden approximation, one could observe sub-femtosecond charge migration with a small amplitude, which results from weak interaction with higher electronic states. However, we were able to engineer large amplitude charge migration, with a period between 10 and 100 fs, corresponding to oscillation of the electronic structure between the quinoid and anti-quinoid cationic electronic configurations, by distorting the geometry along the derivative coupling vector from the D6h Jahn-Teller crossing to lower symmetry where the states are not degenerate. When the nuclear motion becomes coupled, the period changes only slightly. In PEA, in an Ehrenfest trajectory starting from the D2 eigenstate and reference geometry, a partial charge transfer occurs after about 12 fs near the first crossing between D1, D2 (N+-Phenyl, N-Phenyl+). If the Ehrenfest propagation is started near this point, using the sudden approximation without coupled nuclear motion, one observes an oscillation of the spin density - charge migration - between the N atom and the phenyl ring with a period of 4 fs. When the nuclear motion becomes coupled, this oscillation persists in a damped form, followed by an effective charge transfer after 30 fs.

  7. Epipolar Consistency in Transmission Imaging.

    PubMed

    Aichert, André; Berger, Martin; Wang, Jian; Maass, Nicole; Doerfler, Arnd; Hornegger, Joachim; Maier, Andreas K

    2015-11-01

    This paper presents the derivation of the Epipolar Consistency Conditions (ECC) between two X-ray images from the Beer-Lambert law of X-ray attenuation and the Epipolar Geometry of two pinhole cameras, using Grangeat's theorem. We motivate the use of Oriented Projective Geometry to express redundant line integrals in projection images and define a consistency metric, which can be used, for instance, to estimate patient motion directly from a set of X-ray images. We describe in detail the mathematical tools to implement an algorithm to compute the Epipolar Consistency Metric and investigate its properties with detailed random studies on both artificial and real FD-CT data. A set of six reference projections of the CT scan of a fish were used to evaluate accuracy and precision of compensating for random disturbances of the ground truth projection matrix using an optimization of the consistency metric. In addition, we use three X-ray images of a pumpkin to prove applicability to real data. We conclude, that the metric might have potential in applications related to the estimation of projection geometry. By expression of redundancy between two arbitrary projection views, we in fact support any device or acquisition trajectory which uses a cone-beam geometry. We discuss certain geometric situations, where the ECC provide the ability to correct 3D motion, without the need for 3D reconstruction.

  8. Fuzzy-Rough Nearest Neighbour Classification

    NASA Astrophysics Data System (ADS)

    Jensen, Richard; Cornelis, Chris

    A new fuzzy-rough nearest neighbour (FRNN) classification algorithm is presented in this paper, as an alternative to Sarkar's fuzzy-rough ownership function (FRNN-O) approach. By contrast to the latter, our method uses the nearest neighbours to construct lower and upper approximations of decision classes, and classifies test instances based on their membership to these approximations. In the experimental analysis, we evaluate our approach with both classical fuzzy-rough approximations (based on an implicator and a t-norm), as well as with the recently introduced vaguely quantified rough sets. Preliminary results are very good, and in general FRNN outperforms FRNN-O, as well as the traditional fuzzy nearest neighbour (FNN) algorithm.

  9. Geometry of Quantum Computation with Qudits

    PubMed Central

    Luo, Ming-Xing; Chen, Xiu-Bo; Yang, Yi-Xian; Wang, Xiaojun

    2014-01-01

    The circuit complexity of quantum qubit system evolution as a primitive problem in quantum computation has been discussed widely. We investigate this problem in terms of qudit system. Using the Riemannian geometry the optimal quantum circuits are equivalent to the geodetic evolutions in specially curved parametrization of SU(dn). And the quantum circuit complexity is explicitly dependent of controllable approximation error bound. PMID:24509710

  10. A dummy cell immersed boundary method for incompressible turbulence simulations over dirty geometries

    NASA Astrophysics Data System (ADS)

    Onishi, Keiji; Tsubokura, Makoto

    2016-11-01

    A methodology to eliminate the manual work required for correcting the surface imperfections of computer-aided-design (CAD) data, will be proposed. Such a technique is indispensable for CFD analysis of industrial applications involving complex geometries. The CAD geometry is degenerated into cell-oriented values based on Cartesian grid. This enables the parallel pre-processing as well as the ability to handle 'dirty' CAD data that has gaps, overlaps, or sharp edges without necessitating any fixes. An arbitrary boundary representation is used with a dummy-cell technique based on immersed boundary (IB) method. To model the IB, a forcing term is directly imposed at arbitrary ghost cells by linear interpolation of the momentum. The mass conservation is satisfied in the approximate domain that covers fluid region except the wall including cells. Attempts to Satisfy mass conservation in the wall containing cells leads to pressure oscillations near the IB. The consequence of this approximation will be discussed through fundamental study of an LES based channel flow simulation, and high Reynolds number flow around a sphere. And, an analysis comparing our results with wind tunnel experiments of flow around a full-vehicle geometry will also be presented.

  11. A dose assessment method for arbitrary geometries with virtual reality in the nuclear facilities decommissioning

    NASA Astrophysics Data System (ADS)

    Chao, Nan; Liu, Yong-kuo; Xia, Hong; Ayodeji, Abiodun; Bai, Lu

    2018-03-01

    During the decommissioning of nuclear facilities, a large number of cutting and demolition activities are performed, which results in a frequent change in the structure and produce many irregular objects. In order to assess dose rates during the cutting and demolition process, a flexible dose assessment method for arbitrary geometries and radiation sources was proposed based on virtual reality technology and Point-Kernel method. The initial geometry is designed with the three-dimensional computer-aided design tools. An approximate model is built automatically in the process of geometric modeling via three procedures namely: space division, rough modeling of the body and fine modeling of the surface, all in combination with collision detection of virtual reality technology. Then point kernels are generated by sampling within the approximate model, and when the material and radiometric attributes are inputted, dose rates can be calculated with the Point-Kernel method. To account for radiation scattering effects, buildup factors are calculated with the Geometric-Progression formula in the fitting function. The effectiveness and accuracy of the proposed method was verified by means of simulations using different geometries and the dose rate results were compared with that derived from CIDEC code, MCNP code and experimental measurements.

  12. Using Approximate Dynamic Programming to Solve the Stochastic Demand Military Inventory Routing Problem with Direct Delivery

    DTIC Science & Technology

    due to the dangers of utilizing convoy operations. However, enemy actions, austere conditions, and inclement weather pose a significant risk to a...squares temporal differencing for policy evaluation. We construct a representative problem instance based on an austere combat environment in order to

  13. Path Planning For A Class Of Cutting Operations

    NASA Astrophysics Data System (ADS)

    Tavora, Jose

    1989-03-01

    Optimizing processing time in some contour-cutting operations requires solving the so-called no-load path problem. This problem is formulated and an approximate resolution method (based on heuristic search techniques) is described. Results for real-life instances (clothing layouts in the apparel industry) are presented and evaluated.

  14. The Different Patterns of Gesture between Genders in Mathematical Problem Solving of Geometry

    NASA Astrophysics Data System (ADS)

    Harisman, Y.; Noto, M. S.; Bakar, M. T.; Amam, A.

    2017-02-01

    This article discusses about students’ gesture between genders in answering problems of geometry. Gesture aims to check students’ understanding which is undefined from their writings. This study is a qualitative research, there were seven questions given to two students of eight grade Junior High School who had the equal ability. The data of this study were collected from mathematical problem solving test, videoing students’ presentation, and interviewing students by asking questions to check their understandings in geometry problems, in this case the researchers would observe the students’ gesture. The result of this study revealed that there were patterns of gesture through students’ conversation and prosodic cues, such as tones, intonation, speech rate and pause. Female students tended to give indecisive gestures, for instance bowing, hesitating, embarrassing, nodding many times in shifting cognitive comprehension, forwarding their body and asking questions to the interviewer when they found tough questions. However, male students acted some gestures such as playing their fingers, focusing on questions, taking longer time to answer hard questions, staying calm in shifting cognitive comprehension. We suggest to observe more sample and focus on students’ gesture consistency in showing their understanding to solve the given problems.

  15. Optimizing Approximate Weighted Matching on Nvidia Kepler K40

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naim, Md; Manne, Fredrik; Halappanavar, Mahantesh

    Matching is a fundamental graph problem with numerous applications in science and engineering. While algorithms for computing optimal matchings are difficult to parallelize, approximation algorithms on the other hand generally compute high quality solutions and are amenable to parallelization. In this paper, we present efficient implementations of the current best algorithm for half-approximate weighted matching, the Suitor algorithm, on Nvidia Kepler K-40 platform. We develop four variants of the algorithm that exploit hardware features to address key challenges for a GPU implementation. We also experiment with different combinations of work assigned to a warp. Using an exhaustive set ofmore » $269$ inputs, we demonstrate that the new implementation outperforms the previous best GPU algorithm by $10$ to $$100\\times$$ for over $100$ instances, and from $100$ to $$1000\\times$$ for $15$ instances. We also demonstrate up to $$20\\times$$ speedup relative to $2$ threads, and up to $$5\\times$$ relative to $16$ threads on Intel Xeon platform with $16$ cores for the same algorithm. The new algorithms and implementations provided in this paper will have a direct impact on several applications that repeatedly use matching as a key compute kernel. Further, algorithm designs and insights provided in this paper will benefit other researchers implementing graph algorithms on modern GPU architectures.« less

  16. Adaptive optics system performance approximations for atmospheric turbulence correction

    NASA Astrophysics Data System (ADS)

    Tyson, Robert K.

    1990-10-01

    Analysis of adaptive optics system behavior often can be reduced to a few approximations and scaling laws. For atmospheric turbulence correction, the deformable mirror (DM) fitting error is most often used to determine a priori the interactuator spacing and the total number of correction zones required. This paper examines the mirror fitting error in terms of its most commonly used exponential form. The explicit constant in the error term is dependent on deformable mirror influence function shape and actuator geometry. The method of least squares fitting of discrete influence functions to the turbulent wavefront is compared to the linear spatial filtering approximation of system performance. It is found that the spatial filtering method overstimates the correctability of the adaptive optics system by a small amount. By evaluating fitting error for a number of DM configurations, actuator geometries, and influence functions, fitting error constants verify some earlier investigations.

  17. Resistive-force theory for mesh-like superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Schnitzer, Ory; Yariv, Ehud

    2018-03-01

    A common realization of superhydrophobic surfaces makes use of a mesh-like geometry, where pockets of air are trapped in a periodic array of holes in a no-slip solid substrate. We consider the small-solid-fraction limit where the ribs of the mesh are narrow. In this limit, we obtain a simple leading-order approximation for the slip-length tensor of an arbitrary mesh geometry. This approximation scales as the solid-fraction logarithm, as anticipated by Ybert et al. [Phys. Fluids 19, 123601 (2007), 10.1063/1.2815730]; in the special case of a square mesh it agrees with the analytical results obtained by Davis and Lauga [Phys. Fluids 21, 113101 (2009), 10.1063/1.3250947].

  18. Photonic crystal geometry for organic solar cells.

    PubMed

    Ko, Doo-Hyun; Tumbleston, John R; Zhang, Lei; Williams, Stuart; DeSimone, Joseph M; Lopez, Rene; Samulski, Edward T

    2009-07-01

    We report organic solar cells with a photonic crystal nanostructure embossed in the photoactive bulk heterojunction layer, a topography that exhibits a 3-fold enhancement of the absorption in specific regions of the solar spectrum in part through multiple excitation resonances. The photonic crystal geometry is fabricated using a materials-agnostic process called PRINT wherein highly ordered arrays of nanoscale features are readily made in a single processing step over wide areas (approximately 4 cm(2)) that is scalable. We show efficiency improvements of approximately 70% that result not only from greater absorption, but also from electrical enhancements. The methodology is generally applicable to organic solar cells and the experimental findings reported in our manuscript corroborate theoretical expectations.

  19. Influence of asymmetrical drawing radius deviation in micro deep drawing

    NASA Astrophysics Data System (ADS)

    Heinrich, L.; Kobayashi, H.; Shimizu, T.; Yang, M.; Vollertsen, F.

    2017-09-01

    Nowadays, an increasing demand for small metal parts in electronic and automotive industries can be observed. Deep drawing is a well-suited technology for the production of such parts due to its excellent qualities for mass production. However, the downscaling of the forming process leads to new challenges in tooling and process design, such as high relative deviation of tool geometry or blank displacement compared to the macro scale. FEM simulation has been a widely-used tool to investigate the influence of symmetrical process deviations as for instance a global variance of the drawing radius. This study shows a different approach that allows to determine the impact of asymmetrical process deviations on micro deep drawing. In this particular case the impact of an asymmetrical drawing radius deviation and blank displacement on cup geometry deviation was investigated for different drawing ratios by experiments and FEM simulation. It was found that both variations result in an increasing cup height deviation. Nevertheless, with increasing drawing ratio a constant drawing radius deviation has an increasing impact, while blank displacement results in a decreasing offset of the cups geometry. This is explained by different mechanisms that result in an uneven cup geometry. While blank displacement leads to material surplus on one side of the cup, an unsymmetrical radius deviation on the other hand generates uneven stretching of the cups wall. This is intensified for higher drawing ratios. It can be concluded that the effect of uneven radius geometry proves to be of major importance for the production of accurately shaped micro cups and cannot be compensated by intentional blank displacement.

  20. Information processing of motion in facial expression and the geometry of dynamical systems

    NASA Astrophysics Data System (ADS)

    Assadi, Amir H.; Eghbalnia, Hamid; McMenamin, Brenton W.

    2005-01-01

    An interesting problem in analysis of video data concerns design of algorithms that detect perceptually significant features in an unsupervised manner, for instance methods of machine learning for automatic classification of human expression. A geometric formulation of this genre of problems could be modeled with help of perceptual psychology. In this article, we outline one approach for a special case where video segments are to be classified according to expression of emotion or other similar facial motions. The encoding of realistic facial motions that convey expression of emotions for a particular person P forms a parameter space XP whose study reveals the "objective geometry" for the problem of unsupervised feature detection from video. The geometric features and discrete representation of the space XP are independent of subjective evaluations by observers. While the "subjective geometry" of XP varies from observer to observer, levels of sensitivity and variation in perception of facial expressions appear to share a certain level of universality among members of similar cultures. Therefore, statistical geometry of invariants of XP for a sample of population could provide effective algorithms for extraction of such features. In cases where frequency of events is sufficiently large in the sample data, a suitable framework could be provided to facilitate the information-theoretic organization and study of statistical invariants of such features. This article provides a general approach to encode motion in terms of a particular genre of dynamical systems and the geometry of their flow. An example is provided to illustrate the general theory.

  1. Accelerating NLTE radiative transfer by means of the Forth-and-Back Implicit Lambda Iteration: A two-level atom line formation in 2D Cartesian coordinates

    NASA Astrophysics Data System (ADS)

    Milić, Ivan; Atanacković, Olga

    2014-10-01

    State-of-the-art methods in multidimensional NLTE radiative transfer are based on the use of local approximate lambda operator within either Jacobi or Gauss-Seidel iterative schemes. Here we propose another approach to the solution of 2D NLTE RT problems, Forth-and-Back Implicit Lambda Iteration (FBILI), developed earlier for 1D geometry. In order to present the method and examine its convergence properties we use the well-known instance of the two-level atom line formation with complete frequency redistribution. In the formal solution of the RT equation we employ short characteristics with two-point algorithm. Using an implicit representation of the source function in the computation of the specific intensities, we compute and store the coefficients of the linear relations J=a+bS between the mean intensity J and the corresponding source function S. The use of iteration factors in the ‘local’ coefficients of these implicit relations in two ‘inward’ sweeps of 2D grid, along with the update of the source function in other two ‘outward’ sweeps leads to four times faster solution than the Jacobi’s one. Moreover, the update made in all four consecutive sweeps of the grid leads to an acceleration by a factor of 6-7 compared to the Jacobi iterative scheme.

  2. Improved response functions for gamma-ray skyshine analyses

    NASA Astrophysics Data System (ADS)

    Shultis, J. K.; Faw, R. E.; Deng, X.

    1992-09-01

    A computationally simple method, based on line-beam response functions, is refined for estimating gamma skyshine dose rates. Critical to this method is the availability of an accurate approximation for the line-beam response function (LBRF). In this study, the LBRF is evaluated accurately with the point-kernel technique using recent photon interaction data. Various approximations to the LBRF are considered, and a three parameter formula is selected as the most practical approximation. By fitting the approximating formula to point-kernel results, a set of parameters is obtained that allows the LBRF to be quickly and accurately evaluated for energies between 0.01 and 15 MeV, for source-to-detector distances from 1 to 3000 m, and for beam angles from 0 to 180 degrees. This re-evaluation of the approximate LBRF gives better accuracy, especially at low energies, over a greater source-to-detector range than do previous LBRF approximations. A conical beam response function is also introduced for application to skyshine sources that are azimuthally symmetric about a vertical axis. The new response functions are then applied to three simple skyshine geometries (an open silo geometry, an infinite wall, and a rectangular four-wall building) and the results are compared to previous calculations and benchmark data.

  3. Improved response functions for gamma-ray skyshine analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shultis, J.K.; Faw, R.E.; Deng, X.

    1992-09-01

    A computationally simple method, based on line-beam response functions, is refined for estimating gamma skyshine dose rates. Critical to this method is the availability of an accurate approximation for the line-beam response function (LBRF). In this study the LBRF is evaluated accurately with the point-kernel technique using recent photon interaction data. Various approximations to the LBRF are considered, and a three parameter formula is selected as the most practical approximation. By fitting the approximating formula to point-kernel results, a set of parameters is obtained that allows the LBRF to be quickly and accurately evaluated for energies between 0.01 and 15more » MeV, for source-to-detector distances from 1 to 3000 m, and for beam angles from 0 to 180 degrees. This reevaluation of the approximate LBRF gives better accuracy, especially at low energies, over a greater source-to-detector range than do previous LBRF approximations. A conical beam response function is also introduced for application to skyshine sources that are azimuthally symmetric about a vertical axis. The new response functions are then applied to three simple skyshine geometries (an open silo geometry, an infinite wall, and a rectangular four-wall building) and the results compared to previous calculations and benchmark data.« less

  4. Approximations useful for the prediction of electrostatic discharges for simple electrode geometries

    NASA Technical Reports Server (NTRS)

    Edmonds, L.

    1986-01-01

    The report provides approximations for estimating the capacitance and the ratio of electric field strength to potential for a certain class of electrode geometries. The geometry consists of an electrode near a grounded plane, with the electrode being a surface of revolution about the perpendicular to the plane. Some examples which show the accuracy of the capacitance estimate and the accuracy of the estimate of electric field over potential can be found in the appendix. When it is possible to estimate the potential of the electrode, knowing the ratio of electric field to potential will help to determine if an electrostatic discharge is likely to occur. Knowing the capacitance will help to determine the strength of the discharge (the energy released by it) if it does occur. A brief discussion of discharge mechanisms is given. The medium between the electrode and the grounded plane may be a neutral gas, a vacuum, or an unchanged homogeneous isotropic dielectric.

  5. Space-charge-limited currents for cathodes with electric field enhanced geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, Dingguo, E-mail: laidingguo@nint.ac.cn; Qiu, Mengtong; Xu, Qifu

    This paper presents the approximate analytic solutions of current density for annulus and circle cathodes. The current densities of annulus and circle cathodes are derived approximately from first principles, which are in agreement with simulation results. The large scaling laws can predict current densities of high current vacuum diodes including annulus and circle cathodes in practical applications. In order to discuss the relationship between current density and electric field on cathode surface, the existing analytical solutions of currents for concentric cylinder and sphere diodes are fitted from existing solutions relating with electric field enhancement factors. It is found that themore » space-charge-limited current density for the cathode with electric-field enhanced geometry can be written in a general form of J = g(β{sub E}){sup 2}J{sub 0}, where J{sub 0} is the classical (1D) Child-Langmuir current density, β{sub E} is the electric field enhancement factor, and g is the geometrical correction factor depending on the cathode geometry.« less

  6. An application of PSO algorithm for multi-criteria geometry optimization of printed low-pass filters based on conductive periodic structures

    NASA Astrophysics Data System (ADS)

    Steckiewicz, Adam; Butrylo, Boguslaw

    2017-08-01

    In this paper we discussed the results of a multi-criteria optimization scheme as well as numerical calculations of periodic conductive structures with selected geometry. Thin printed structures embedded on a flexible dielectric substrate may be applied as simple, cheap, passive low-pass filters with an adjustable cutoff frequency in low (up to 1 MHz) radio frequency range. The analysis of an electromagnetic phenomena in presented structures was realized on the basis of a three-dimensional numerical model of three proposed geometries of periodic elements. The finite element method (FEM) was used to obtain a solution of an electromagnetic harmonic field. Equivalent lumped electrical parameters of printed cells obtained in such manner determine the shape of an amplitude transmission characteristic of a low-pass filter. A nonlinear influence of a printed cell geometry on equivalent parameters of cells electric model, makes it difficult to find the desired optimal solution. Therefore an optimization problem of optimal cell geometry estimation with regard to an approximation of the determined amplitude transmission characteristic with an adjusted cutoff frequency, was obtained by the particle swarm optimization (PSO) algorithm. A dynamically suitable inertia factor was also introduced into the algorithm to improve a convergence to a global extremity of a multimodal objective function. Numerical results as well as PSO simulation results were characterized in terms of approximation accuracy of predefined amplitude characteristics in a pass-band, stop-band and cutoff frequency. Three geometries of varying degrees of complexity were considered and their use in signal processing systems was evaluated.

  7. Stress intensity factors for deep cracks emanating from the corner formed by a hole intersecting a plate surface

    NASA Technical Reports Server (NTRS)

    Mcgowan, J. J.; Smith, C. W.

    1974-01-01

    A technique consisting of a marriage between stress freezing photoelasticity and a numerical method was used to obtain stress intensity factors for natural cracks emanating from the corner at which a hole intersects a plate surface. Geometrics studied were: crack depth to thickness ratios of approximately 0.2, 0.5, and 0.75; crack depth to crack length ratios of approximately 1.0 to 2.0. All final crack geometries were grown under monotonic loading and growth was not self similar with most of the growth occurring through the thickness under remote extension. Stress intensity plate surface K sub s factors were determined at the intersection of the flaw border with the plate surface K sub s and with the edge of the hole K sub h. Results showed that for the relatively shallow flaws K sub h approximately equal to 1.5 K sub s, for the moderately deep flaws K sub h approximately equal to K sub s, and for the deep flaws K sub h approximately equal to 0.5 K sub s, revealing a severe sensitivity of K to flaw geometry.

  8. The load separation technique in the elastic-plastic fracture analysis of two- and three-dimensional geometries

    NASA Technical Reports Server (NTRS)

    Sharobeam, Monir H.

    1994-01-01

    Load separation is the representation of the load in the test records of geometries containing cracks as a multiplication of two separate functions: a crack geometry function and a material deformation function. Load separation is demonstrated in the test records of several two-dimensional geometries such as compact tension geometry, single edge notched bend geometry, and center cracked tension geometry and three-dimensional geometries such as semi-elliptical surface crack. The role of load separation in the evaluation of the fracture parameter J-integral and the associated factor eta for two-dimensional geometries is discussed. The paper also discusses the theoretical basis and the procedure for using load separation as a simplified yet accurate approach for plastic J evaluation in semi-elliptical surface crack which is a three-dimensional geometry. The experimental evaluation of J, and particularly J(sub pl), for three-dimensional geometries is very challenging. A few approaches have been developed in this regard and they are either complex or very approximate. The paper also presents the load separation as a mean to identify the blunting and crack growth regions in the experimental test records of precracked specimens. Finally, load separation as a methodology in elastic-plastic fracture mechanics is presented.

  9. Ibmdbpy-spatial : An Open-source implementation of in-database geospatial analytics in Python

    NASA Astrophysics Data System (ADS)

    Roy, Avipsa; Fouché, Edouard; Rodriguez Morales, Rafael; Moehler, Gregor

    2017-04-01

    As the amount of spatial data acquired from several geodetic sources has grown over the years and as data infrastructure has become more powerful, the need for adoption of in-database analytic technology within geosciences has grown rapidly. In-database analytics on spatial data stored in a traditional enterprise data warehouse enables much faster retrieval and analysis for making better predictions about risks and opportunities, identifying trends and spot anomalies. Although there are a number of open-source spatial analysis libraries like geopandas and shapely available today, most of them have been restricted to manipulation and analysis of geometric objects with a dependency on GEOS and similar libraries. We present an open-source software package, written in Python, to fill the gap between spatial analysis and in-database analytics. Ibmdbpy-spatial provides a geospatial extension to the ibmdbpy package, implemented in 2015. It provides an interface for spatial data manipulation and access to in-database algorithms in IBM dashDB, a data warehouse platform with a spatial extender that runs as a service on IBM's cloud platform called Bluemix. Working in-database reduces the network overload, as the complete data need not be replicated into the user's local system altogether and only a subset of the entire dataset can be fetched into memory in a single instance. Ibmdbpy-spatial accelerates Python analytics by seamlessly pushing operations written in Python into the underlying database for execution using the dashDB spatial extender, thereby benefiting from in-database performance-enhancing features, such as columnar storage and parallel processing. The package is currently supported on Python versions from 2.7 up to 3.4. The basic architecture of the package consists of three main components - 1) a connection to the dashDB represented by the instance IdaDataBase, which uses a middleware API namely - pypyodbc or jaydebeapi to establish the database connection via ODBC or JDBC respectively, 2) an instance to represent the spatial data stored in the database as a dataframe in Python, called the IdaGeoDataFrame, with a specific geometry attribute which recognises a planar geometry column in dashDB and 3) Python wrappers for spatial functions like within, distance, area, buffer} and more which dashDB currently supports to make the querying process from Python much simpler for the users. The spatial functions translate well-known geopandas-like syntax into SQL queries utilising the database connection to perform spatial operations in-database and can operate on single geometries as well two different geometries from different IdaGeoDataFrames. The in-database queries strictly follow the standards of OpenGIS Implementation Specification for Geographic information - Simple feature access for SQL. The results of the operations obtained can thereby be accessed dynamically via interactive Jupyter notebooks from any system which supports Python, without any additional dependencies and can also be combined with other open source libraries such as matplotlib and folium in-built within Jupyter notebooks for visualization purposes. We built a use case to analyse crime hotspots in New York city to validate our implementation and visualized the results as a choropleth map for each borough.

  10. Potential-Energy Surfaces, the Born-Oppenheimer Approximations, and the Franck-Condon Principle: Back to the Roots.

    PubMed

    Mustroph, Heinz

    2016-09-05

    The concept of a potential-energy surface (PES) is central to our understanding of spectroscopy, photochemistry, and chemical kinetics. However, the terminology used in connection with the basic approximations is variously, and somewhat confusingly, represented with such phrases as "adiabatic", "Born-Oppenheimer", or "Born-Oppenheimer adiabatic" approximation. Concerning the closely relevant and important Franck-Condon principle (FCP), the IUPAC definition differentiates between a classical and quantum mechanical formulation. Consequently, in many publications we find terms such as "Franck-Condon (excited) state", or a vertical transition to the "Franck-Condon point" with the "Franck-Condon geometry" that relaxes to the excited-state equilibrium geometry. The Born-Oppenheimer approximation and the "classical" model of the Franck-Condon principle are typical examples of misused terms and lax interpretations of the original theories. In this essay, we revisit the original publications of pioneers of the PES concept and the FCP to help stimulate a lively discussion and clearer thinking around these important concepts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A Historical Search for the Occurrence of Habitable Ground Ice at the Phoenix Landing Site

    NASA Technical Reports Server (NTRS)

    Zent, Aaron P.

    2006-01-01

    A numerical model of the thermal history of Martian ground ice at the approximate location of the planned Phoenix landing site has been developed and used to identify instances of relatively warm ground ice over the last 10 Ma. Many terrestrial organisms are adapted to life at or below the freezing temperature of water, and we will use the approximate doubling time of terrestrial microbial populations as a function of temperature, is used as a metric against which to assess the "habitability" of Martian ground ice.

  12. An Examination of New Paradigms for Spline Approximations.

    PubMed

    Witzgall, Christoph; Gilsinn, David E; McClain, Marjorie A

    2006-01-01

    Lavery splines are examined in the univariate and bivariate cases. In both instances relaxation based algorithms for approximate calculation of Lavery splines are proposed. Following previous work Gilsinn, et al. [7] addressing the bivariate case, a rotationally invariant functional is assumed. The version of bivariate splines proposed in this paper also aims at irregularly spaced data and uses Hseih-Clough-Tocher elements based on the triangulated irregular network (TIN) concept. In this paper, the univariate case, however, is investigated in greater detail so as to further the understanding of the bivariate case.

  13. Asymptotic response of observables from divergent weak-coupling expansions: a fractional-calculus-assisted Padé technique.

    PubMed

    Dhatt, Sharmistha; Bhattacharyya, Kamal

    2012-08-01

    Appropriate constructions of Padé approximants are believed to provide reasonable estimates of the asymptotic (large-coupling) amplitude and exponent of an observable, given its weak-coupling expansion to some desired order. In many instances, however, sequences of such approximants are seen to converge very poorly. We outline here a strategy that exploits the idea of fractional calculus to considerably improve the convergence behavior. Pilot calculations on the ground-state perturbative energy series of quartic, sextic, and octic anharmonic oscillators reveal clearly the worth of our endeavor.

  14. Group Differences in the Mutual Gaze of Chimpanzees (Pan Troglodytes)

    ERIC Educational Resources Information Center

    Bard, Kim A.; Myowa-Yamakoshi, Masako; Tomonaga, Masaki; Tanaka, Masayuki; Costall, Alan; Matsuzawa, Tetsuro

    2005-01-01

    A comparative developmental framework was used to determine whether mutual gaze is unique to humans and, if not, whether common mechanisms support the development of mutual gaze in chimpanzees and humans. Mother-infant chimpanzees engaged in approximately 17 instances of mutual gaze per hour. Mutual gaze occurred in positive, nonagonistic…

  15. "Dealing with Racial Conflicts in Schools."

    ERIC Educational Resources Information Center

    Holman, Ben

    In dealing with racial tension and conflict, the principal is not limited to a wing and a prayer and benign neglect. The roots of conflict can be identified. Conflict can be planned for and utilized constructively. For 10 years, in approximately 2,000 instances, conciliators and mediators of the Community Relations Service have stood side-by-side…

  16. Dense solar wind cloud geometries deduced from comparisons of radio signal delay and in situ plasma measurements

    NASA Technical Reports Server (NTRS)

    Landt, J. A.

    1974-01-01

    The geometries of dense solar wind clouds are estimated by comparing single-location measurements of the solar wind plasma with the average of the electron density obtained by radio signal delay measurements along a radio path between earth and interplanetary spacecraft. Several of these geometries agree with the current theoretical spatial models of flare-induced shock waves. A new class of spatially limited structures that contain regions with densities greater than any observed in the broad clouds is identified. The extent of a cloud was found to be approximately inversely proportional to its density.

  17. Effect of geometry on hydrodynamic film thickness

    NASA Technical Reports Server (NTRS)

    Brewe, D. E.; Hamrock, B. J.; Taylor, C. M.

    1978-01-01

    The influence of geometry on the isothermal hydrodynamic film separating two rigid solids was investigated. Pressure-viscosity effects were not considered. The minimum film thickness is derived for fully flooded conjunctions by using the Reynolds conditions. It was found that the minimum film thickness had the same speed, viscosity, and load dependence as Kapitza's classical solution. However, the incorporation of Reynolds boundary conditions resulted in an additional geometry effect. Solutions using the parabolic film approximation are compared with those using the exact expression for the film in the analysis. Contour plots are shown that indicate in detail the pressure developed between the solids.

  18. Effect of geometry on hydrodynamic film thickness

    NASA Technical Reports Server (NTRS)

    Brewe, D. E.; Hamrock, B. J.; Taylor, C. M.

    1978-01-01

    The influence of geometry on the isothermal hydrodynamic film separating two rigid solids was investigated. Pressure-viscosity effects were not considered. The minimum film thickness is derived for fully flooded conjunctions by using the Reynolds boundary conditions. It was found that the minimum film thickness had the same speed, viscosity, and load dependence as Kapitza's classical solution. However, the incorporation of Reynolds boundary conditions resulted in an additional geometry effect. Solutions using the parabolic film approximation are compared with those using the exact expression for the film in the analysis. Contour plots are shown that indicate in detail the pressure developed between the solids.

  19. Symplectic geometry spectrum regression for prediction of noisy time series

    NASA Astrophysics Data System (ADS)

    Xie, Hong-Bo; Dokos, Socrates; Sivakumar, Bellie; Mengersen, Kerrie

    2016-05-01

    We present the symplectic geometry spectrum regression (SGSR) technique as well as a regularized method based on SGSR for prediction of nonlinear time series. The main tool of analysis is the symplectic geometry spectrum analysis, which decomposes a time series into the sum of a small number of independent and interpretable components. The key to successful regularization is to damp higher order symplectic geometry spectrum components. The effectiveness of SGSR and its superiority over local approximation using ordinary least squares are demonstrated through prediction of two noisy synthetic chaotic time series (Lorenz and Rössler series), and then tested for prediction of three real-world data sets (Mississippi River flow data and electromyographic and mechanomyographic signal recorded from human body).

  20. Quantum Mechanical Calculations of Cytosine, Thiocytosine and Their Radical Ions

    NASA Astrophysics Data System (ADS)

    Singh, Rashmi

    2010-08-01

    The RNA and DNA are polymer that share some interesting similarities, for instance it is well known that cytosine is the one of the common nucleic acid base. The sulfur is characterized as a very reactive element and it has been used, in chemical warfare agents. Since the genetic information is based on the sequence of the nucleic acid bases. The quantum mechanical calculations of the energies, geometries, charges and vibrational characteristics of the cytosine and thiocytosine. and their corresponding radicals were carried out by using DFT method with b3lyp/6-311++g** basis set.

  1. Framework to trade optimality for local processing in large-scale wavefront reconstruction problems.

    PubMed

    Haber, Aleksandar; Verhaegen, Michel

    2016-11-15

    We show that the minimum variance wavefront estimation problems permit localized approximate solutions, in the sense that the wavefront value at a point (excluding unobservable modes, such as the piston mode) can be approximated by a linear combination of the wavefront slope measurements in the point's neighborhood. This enables us to efficiently compute a wavefront estimate by performing a single sparse matrix-vector multiplication. Moreover, our results open the possibility for the development of wavefront estimators that can be easily implemented in a decentralized/distributed manner, and in which the estimate optimality can be easily traded for computational efficiency. We numerically validate our approach on Hudgin wavefront sensor geometries, and the results can be easily generalized to Fried geometries.

  2. Viscous Rayleigh-Taylor instability in spherical geometry

    NASA Astrophysics Data System (ADS)

    Mikaelian, Karnig O.

    2016-02-01

    We consider viscous fluids in spherical geometry, a lighter fluid supporting a heavier one. Chandrasekhar [Q. J. Mech. Appl. Math. 8, 1 (1955), 10.1093/qjmam/8.1.1] analyzed this unstable configuration providing the equations needed to find, numerically, the exact growth rates for the ensuing Rayleigh-Taylor instability. He also derived an analytic but approximate solution. We point out a weakness in his approximate dispersion relation (DR) and offer a somewhat improved one. A third DR, based on transforming a planar DR into a spherical one, suffers no unphysical predictions and compares reasonably well with the exact work of Chandrasekhar and a more recent numerical analysis of the problem [Terrones and Carrara, Phys. Fluids 27, 054105 (2015), 10.1063/1.4921648].

  3. Ion and impurity transport in turbulent, anisotropic magnetic fields

    NASA Astrophysics Data System (ADS)

    Negrea, M.; Petrisor, I.; Isliker, H.; Vogiannou, A.; Vlahos, L.; Weyssow, B.

    2011-08-01

    We investigate ion and impurity transport in turbulent, possibly anisotropic, magnetic fields. The turbulent magnetic field is modeled as a correlated stochastic field, with Gaussian distribution function and prescribed spatial auto-correlation function, superimposed onto a strong background field. The (running) diffusion coefficients of ions are determined in the three-dimensional environment, using two alternative methods, the semi-analytical decorrelation trajectory (DCT) method, and test-particle simulations. In a first step, the results of the test-particle simulations are compared with and used to validate the results obtained from the DCT method. For this purpose, a drift approximation was made in slab geometry, and relatively good qualitative agreement between the DCT method and the test-particle simulations was found. In a second step, the ion species He, Be, Ne and W, all assumed to be fully ionized, are considered under ITER-like conditions, and the scaling of their diffusivities is determined with respect to varying levels of turbulence (varying Kubo number), varying degrees of anisotropy of the turbulent structures and atomic number. In a third step, the test-particle simulations are repeated without drift approximation, directly using the Lorentz force, first in slab geometry, in order to assess the finite Larmor radius effects, and second in toroidal geometry, to account for the geometric effects. It is found that both effects are important, most prominently the effects due to toroidal geometry and the diffusivities are overestimated in slab geometry by an order of magnitude.

  4. Iso-geometric analysis for neutron diffusion problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, S. K.; Eaton, M. D.; Williams, M. M. R.

    Iso-geometric analysis can be viewed as a generalisation of the finite element method. It permits the exact representation of a wider range of geometries including conic sections. This is possible due to the use of concepts employed in computer-aided design. The underlying mathematical representations from computer-aided design are used to capture both the geometry and approximate the solution. In this paper the neutron diffusion equation is solved using iso-geometric analysis. The practical advantages are highlighted by looking at the problem of a circular fuel pin in a square moderator. For this problem the finite element method requires the geometry tomore » be approximated. This leads to errors in the shape and size of the interface between the fuel and the moderator. In contrast to this iso-geometric analysis allows the interface to be represented exactly. It is found that, due to a cancellation of errors, the finite element method converges more quickly than iso-geometric analysis for this problem. A fuel pin in a vacuum was then considered as this problem is highly sensitive to the leakage across the interface. In this case iso-geometric analysis greatly outperforms the finite element method. Due to the improvement in the representation of the geometry iso-geometric analysis can outperform traditional finite element methods. It is proposed that the use of iso-geometric analysis on neutron transport problems will allow deterministic solutions to be obtained for exact geometries. Something that is only currently possible with Monte Carlo techniques. (authors)« less

  5. Towards Accurate Prediction of Turbulent, Three-Dimensional, Recirculating Flows with the NCC

    NASA Technical Reports Server (NTRS)

    Iannetti, A.; Tacina, R.; Jeng, S.-M.; Cai, J.

    2001-01-01

    The National Combustion Code (NCC) was used to calculate the steady state, nonreacting flow field of a prototype Lean Direct Injection (LDI) swirler. This configuration used nine groups of eight holes drilled at a thirty-five degree angle to induce swirl. These nine groups created swirl in the same direction, or a corotating pattern. The static pressure drop across the holes was fixed at approximately four percent. Computations were performed on one quarter of the geometry, because the geometry is considered rotationally periodic every ninety degrees. The final computational grid used was approximately 2.26 million tetrahedral cells, and a cubic nonlinear k - epsilon model was used to model turbulence. The NCC results were then compared to time averaged Laser Doppler Velocimetry (LDV) data. The LDV measurements were performed on the full geometry, but four ninths of the geometry was measured. One-, two-, and three-dimensional representations of both flow fields are presented. The NCC computations compare both qualitatively and quantitatively well to the LDV data, but differences exist downstream. The comparison is encouraging, and shows that NCC can be used for future injector design studies. To improve the flow prediction accuracy of turbulent, three-dimensional, recirculating flow fields with the NCC, recommendations are given.

  6. Anomalous diffusion on the Hanoi networks

    NASA Astrophysics Data System (ADS)

    Boettcher, S.; Gonçalves, B.

    2008-11-01

    Diffusion is modeled on the recently proposed Hanoi networks by studying the mean-square displacement of random walks with time, langr2rang~t2/dw. It is found that diffusion —the quintessential mode of transport throughout Nature— proceeds faster than ordinary, in one case with an exact, anomalous exponent dw=2- log2(phi)=1.30576... . It is an instance of a physical exponent containing the "golden ratio"\\phi=(1+\\sqrt{5})/2 that is intimately related to Fibonacci sequences and since Euclid's time has been found to be fundamental throughout geometry, architecture, art, and Nature itself. It originates from a singular renormalization group fixed point with a subtle boundary layer, for whose resolution phi is the main protagonist. The origin of this rare singularity is easily understood in terms of the physics of the process. Yet, the connection between network geometry and the emergence of phi in this context remains elusive. These results provide an accurate test of recently proposed universal scaling forms for first passage times.

  7. Reflections on the ambivalent helix.

    PubMed

    Galloway, J W

    1989-09-15

    The helix is nature's favourite shape. Because of its elementary geometry and distinctive appearance it is also the clearest instance of an enantiomorphic object--a helix and its mirror image are identical in all respects except their screw sense. This is a distinction that can be ignored from the points of view of pure geometry and pure group theory but any helical structure is actually available as either or both hands. Whether in nature helices do occur as just one hand, or both, is one of the best--perhaps the best--puzzles of the science of form. In this short review I look at a few examples of naturally occurring helices, some where only one hand is found, some where both are commonly found, and perhaps the most interesting examples in biological terms--those where both are found but one hand is very much rarer than the other. I review what mechanisms--physico-chemical, genetic, evolutionary--underlie the different manifestations of left- and right-handedness.

  8. Ground-state geometries and stability of impurity doped clusters: LinBe and LinMg (n=1-12)

    NASA Astrophysics Data System (ADS)

    Deshpande, M.; Dhavale, A.; Zope, R. R.; Chacko, S.; Kanhere, D. G.

    2000-12-01

    We have investigated the ground-state geometries of LinBe and LinMg (n=1-12) clusters using ab initio molecular dynamics. These divalent impurities Be and Mg induce different geometries and follow a different growth path for n>5. LinMg clusters are significantly different from the host geometries while LinBe clusters can be approximately viewed as Be occupying an interstitial site in the host. Our results indicate that Be gets trapped inside the Li cage, while Mg remains on the surface of the cluster. Mg-induced geometries become three-dimensional earlier at n=4 as compared to the Be system. In spite of a distinct arrangement of atoms in both cases the character of the wave functions in the d manifold is remarkably similar. In both cases an eight valence electron system has been found to be the most stable, in conformity with the spherical jellium model.

  9. Slab2 - Updated Subduction Zone Geometries and Modeling Tools

    NASA Astrophysics Data System (ADS)

    Moore, G.; Hayes, G. P.; Portner, D. E.; Furtney, M.; Flamme, H. E.; Hearne, M. G.

    2017-12-01

    The U.S. Geological Survey database of global subduction zone geometries (Slab1.0), is a highly utilized dataset that has been applied to a wide range of geophysical problems. In 2017, these models have been improved and expanded upon as part of the Slab2 modeling effort. With a new data driven approach that can be applied to a broader range of tectonic settings and geophysical data sets, we have generated a model set that will serve as a more comprehensive, reliable, and reproducible resource for three-dimensional slab geometries at all of the world's convergent margins. The newly developed framework of Slab2 is guided by: (1) a large integrated dataset, consisting of a variety of geophysical sources (e.g., earthquake hypocenters, moment tensors, active-source seismic survey images of the shallow slab, tomography models, receiver functions, bathymetry, trench ages, and sediment thickness information); (2) a dynamic filtering scheme aimed at constraining incorporated seismicity to only slab related events; (3) a 3-D data interpolation approach which captures both high resolution shallow geometries and instances of slab rollback and overlap at depth; and (4) an algorithm which incorporates uncertainties of contributing datasets to identify the most probable surface depth over the extent of each subduction zone. Further layers will also be added to the base geometry dataset, such as historic moment release, earthquake tectonic providence, and interface coupling. Along with access to several queryable data formats, all components have been wrapped into an open source library in Python, such that suites of updated models can be released as further data becomes available. This presentation will discuss the extent of Slab2 development, as well as the current availability of the model and modeling tools.

  10. Phantom energy traversable wormholes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lobo, Francisco S.N.; Campo Grande, Ed. C8 1749-016 Lisbon

    2005-04-15

    It has been suggested that a possible candidate for the present accelerated expansion of the Universe is 'phantom energy'. The latter possesses an equation of state of the form {omega}{identical_to}p/{rho}<-1, consequently violating the null energy condition. As this is the fundamental ingredient to sustain traversable wormholes, this cosmic fluid presents us with a natural scenario for the existence of these exotic geometries. 'Note, however, that the notion of phantom energy is that of a homogeneously distributed fluid. Nevertheless, it can be extended to inhomogeneous spherically symmetric spacetimes, and it is shown that traversable wormholes may be supported by phantom energy.more » Because of the fact of the accelerating Universe, macroscopic wormholes could naturally be grown from the submicroscopic constructions that originally pervaded the quantum foam. One could also imagine an advanced civilization mining the cosmic fluid for phantom energy necessary to construct and sustain a traversable wormhole. In this context, we investigate the physical properties and characteristics of traversable wormholes constructed using the equation of state p={omega}{rho}, with {omega}<-1. We analyze specific wormhole geometries, considering asymptotically flat spacetimes and imposing an isotropic pressure. We also construct a thin shell around the interior wormhole solution, by imposing the phantom energy equation of state on the surface stresses. Using the 'volume integral quantifier' we verify that it is theoretically possible to construct these geometries with vanishing amounts of averaged null energy condition violating phantom energy. Specific wormhole dimensions and the traversal velocity and time are also deduced from the traversability conditions for a particular wormhole geometry. These phantom energy traversable wormholes have far-reaching physical and cosmological implications. For instance, an advanced civilization may use these geometries to induce closed timelike curves, consequently violating causality.« less

  11. Computation of Relative Magnetic Helicity in Spherical Coordinates

    NASA Astrophysics Data System (ADS)

    Moraitis, Kostas; Pariat, Étienne; Savcheva, Antonia; Valori, Gherardo

    2018-06-01

    Magnetic helicity is a quantity of great importance in solar studies because it is conserved in ideal magnetohydrodynamics. While many methods for computing magnetic helicity in Cartesian finite volumes exist, in spherical coordinates, the natural coordinate system for solar applications, helicity is only treated approximately. We present here a method for properly computing the relative magnetic helicity in spherical geometry. The volumes considered are finite, of shell or wedge shape, and the three-dimensional magnetic field is considered to be fully known throughout the studied domain. Testing of the method with well-known, semi-analytic, force-free magnetic-field models reveals that it has excellent accuracy. Further application to a set of nonlinear force-free reconstructions of the magnetic field of solar active regions and comparison with an approximate method used in the past indicates that the proposed method can be significantly more accurate, thus making our method a promising tool in helicity studies that employ spherical geometry. Additionally, we determine and discuss the applicability range of the approximate method.

  12. Dendritic spine geometry can localize GTPase signaling in neurons

    PubMed Central

    Ramirez, Samuel A.; Raghavachari, Sridhar; Lew, Daniel J.

    2015-01-01

    Dendritic spines are the postsynaptic terminals of most excitatory synapses in the mammalian brain. Learning and memory are associated with long-lasting structural remodeling of dendritic spines through an actin-mediated process regulated by the Rho-family GTPases RhoA, Rac, and Cdc42. These GTPases undergo sustained activation after synaptic stimulation, but whereas Rho activity can spread from the stimulated spine, Cdc42 activity remains localized to the stimulated spine. Because Cdc42 itself diffuses rapidly in and out of the spine, the basis for the retention of Cdc42 activity in the stimulated spine long after synaptic stimulation has ceased is unclear. Here we model the spread of Cdc42 activation at dendritic spines by means of reaction-diffusion equations solved on spine-like geometries. Excitable behavior arising from positive feedback in Cdc42 activation leads to spreading waves of Cdc42 activity. However, because of the very narrow neck of the dendritic spine, wave propagation is halted through a phenomenon we term geometrical wave-pinning. We show that this can account for the localization of Cdc42 activity in the stimulated spine, and, of interest, retention is enhanced by high diffusivity of Cdc42. Our findings are broadly applicable to other instances of signaling in extreme geometries, including filopodia and primary cilia. PMID:26337387

  13. Discreteness of time in the evolution of the universe

    NASA Astrophysics Data System (ADS)

    Faizal, Mir; Ali, Ahmed Farag; Das, Saurya

    2017-04-01

    In this paper, we will first derive the Wheeler-DeWitt equation for the generalized geometry which occurs in M-theory. Then we will observe that M2-branes act as probes for this generalized geometry, and as M2-branes have an extended structure, their extended structure will limits the resolution to which this generalized geometry can be defined. We will demonstrate that this will deform the Wheeler-DeWitt equation for the generalized geometry. We analyze such a deformed Wheeler-DeWitt equation in the minisuperspace approximation, and observe that this deformation can be used as a solution to the problem of time. This is because this deformation gives rise to time crystals in our universe due to the spontaneous breaking of time reparametrization invariance.

  14. The role of pore geometry in single nanoparticle detection

    DOE PAGES

    Davenport, Matthew; Healy, Ken; Pevarnik, Matthew; ...

    2012-08-22

    In this study, we observe single nanoparticle translocation events via resistive pulse sensing using silicon nitride pores described by a range of lengths and diameters. Pores are prepared by focused ion beam milling in 50 nm-, 100 nm-, and 500 nm-thick silicon nitride membranes with diameters fabricated to accommodate spherical silica nanoparticles with sizes chosen to mimic that of virus particles. In this manner, we are able to characterize the role of pore geometry in three key components of the detection scheme, namely, event magnitude, event duration, and event frequency. We find that the electric field created by the appliedmore » voltage and the pore’s geometry is a critical factor. We develop approximations to describe this field, which are verified with computer simulations, and interactions between particles and this field. In so doing, we formulate what we believe to be the first approximation for the magnitude of ionic current blockage that explicitly addresses the invariance of access resistance of solid-state pores during particle translocation. These approximations also provide a suitable foundation for estimating the zeta potential of the particles and/or pore surface when studied in conjunction with event durations. We also verify that translocation achieved by electro-osmostic transport is an effective means of slowing translocation velocities of highly charged particles without compromising particle capture rate as compared to more traditional approaches based on electrophoretic transport.« less

  15. Evaluation of feature-based 3-d registration of probabilistic volumetric scenes

    NASA Astrophysics Data System (ADS)

    Restrepo, Maria I.; Ulusoy, Ali O.; Mundy, Joseph L.

    2014-12-01

    Automatic estimation of the world surfaces from aerial images has seen much attention and progress in recent years. Among current modeling technologies, probabilistic volumetric models (PVMs) have evolved as an alternative representation that can learn geometry and appearance in a dense and probabilistic manner. Recent progress, in terms of storage and speed, achieved in the area of volumetric modeling, opens the opportunity to develop new frameworks that make use of the PVM to pursue the ultimate goal of creating an entire map of the earth, where one can reason about the semantics and dynamics of the 3-d world. Aligning 3-d models collected at different time-instances constitutes an important step for successful fusion of large spatio-temporal information. This paper evaluates how effectively probabilistic volumetric models can be aligned using robust feature-matching techniques, while considering different scenarios that reflect the kind of variability observed across aerial video collections from different time instances. More precisely, this work investigates variability in terms of discretization, resolution and sampling density, errors in the camera orientation, and changes in illumination and geographic characteristics. All results are given for large-scale, outdoor sites. In order to facilitate the comparison of the registration performance of PVMs to that of other 3-d reconstruction techniques, the registration pipeline is also carried out using Patch-based Multi-View Stereo (PMVS) algorithm. Registration performance is similar for scenes that have favorable geometry and the appearance characteristics necessary for high quality reconstruction. In scenes containing trees, such as a park, or many buildings, such as a city center, registration performance is significantly more accurate when using the PVM.

  16. B and F Projection Methods for Nearly Incompressible Linear and Nonlinear Elasticity and Plasticity using Higher-order NURBS Elements

    DTIC Science & Technology

    2007-08-01

    Infinite plate with a hole: sequence of meshes produced by h-refinement. The geometry of the coarsest mesh...recalled with an emphasis on k -refinement. In Section 3, the use of high-order NURBS within a projection technique is studied in the geometri - cally linear...case with a B̄ method to investigate the choice of approximation and projection spaces with NURBS.

  17. Stress intensity factors for deep cracks emanating from the corner formed by a hole intersecting a plate surface

    NASA Technical Reports Server (NTRS)

    Mcgowan, J. J.; Smith, C. W.

    1974-01-01

    A technique consisting of freezing photo-elasticity and a numerical method was used to obtain stress intensity factors for natural cracks emanating from the corner at which a hole intersects a plate surface. Geometries studied were: (1) crack depth to thickness ratios of approximately 0.2, (2) 0.5 and 0.75; (3) crack depth to crack length ratios of approximately 1.0 to 2.0; and (4) crack length to hole radius ratios of about 0.5 to 2.0. All final crack geometries were grown under monotonic loading and growth was not self similar, with most of the growth occuring through the thickness under remote extension. Stress intensity factors were determined at the intersection of the flaw border.

  18. A consensus algorithm for approximate string matching and its application to QRS complex detection

    NASA Astrophysics Data System (ADS)

    Alba, Alfonso; Mendez, Martin O.; Rubio-Rincon, Miguel E.; Arce-Santana, Edgar R.

    2016-08-01

    In this paper, a novel algorithm for approximate string matching (ASM) is proposed. The novelty resides in the fact that, unlike most other methods, the proposed algorithm is not based on the Hamming or Levenshtein distances, but instead computes a score for each symbol in the search text based on a consensus measure. Those symbols with sufficiently high scores will likely correspond to approximate instances of the pattern string. To demonstrate the usefulness of the proposed method, it has been applied to the detection of QRS complexes in electrocardiographic signals with competitive results when compared against the classic Pan-Tompkins (PT) algorithm. The proposed method outperformed PT in 72% of the test cases, with no extra computational cost.

  19. Ab initio design of laser pulses to control molecular motion

    NASA Astrophysics Data System (ADS)

    Balint-Kurti, Gabriel; Ren, Qinghua; Manby, Frederick; Artamonov, Maxim; Ho, Tak-San; Rabitz, Herschel; Zou, Shiyang; Singh, Harjinder

    2007-03-01

    Our recent attempts to design laser pulses entirely theoretically, in a quantitative and accurate manner, so as to fully understand the underlying mechanisms active in the control process will be outlined. We have developed a new Born-Oppenheimer like separation called the electric-nuclear Born-Oppenheimer (ENBO) approximation. In this approximation variations of both the nuclear geometry and of the external electric field are assumed to be slow compared with the speed at which the electronic degrees of freedom respond to these changes. This assumption permits the generation of a potential energy surface that depends not only on the relative geometry of the nuclei, but also on the electric field strength and on the orientation of the molecule with respect to the electric field. The range of validity of the ENBO approximation is discussed. Optimal control theory is used along with the ENBO approximation to design laser pulses for exciting vibrational and rotational motion in H2 and CO molecules. Progress on other applications, including controlling photodissociation processes, isotope separation, stabilization of molecular Bose-Einstein condensates as well as applications to biological molecules also be presented. *Support acknowledged from EPSRC.

  20. Geometric Hitting Set for Segments of Few Orientations

    DOE PAGES

    Fekete, Sandor P.; Huang, Kan; Mitchell, Joseph S. B.; ...

    2016-01-13

    Here we study several natural instances of the geometric hitting set problem for input consisting of sets of line segments (and rays, lines) having a small number of distinct slopes. These problems model path monitoring (e.g., on road networks) using the fewest sensors (the \\hitting points"). We give approximation algorithms for cases including (i) lines of 3 slopes in the plane, (ii) vertical lines and horizontal segments, (iii) pairs of horizontal/vertical segments. Lastly, we give hardness and hardness of approximation results for these problems. We prove that the hitting set problem for vertical lines and horizontal rays is polynomially solvable.

  1. A generalized reconstruction framework for unconventional PET systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathews, Aswin John, E-mail: amathews@wustl.edu; Li, Ke; O’Sullivan, Joseph A.

    2015-08-15

    Purpose: Quantitative estimation of the radionuclide activity concentration in positron emission tomography (PET) requires precise modeling of PET physics. The authors are focused on designing unconventional PET geometries for specific applications. This work reports the creation of a generalized reconstruction framework, capable of reconstructing tomographic PET data for systems that use right cuboidal detector elements positioned at arbitrary geometry using a regular Cartesian grid of image voxels. Methods: The authors report on a variety of design choices and optimization for the creation of the generalized framework. The image reconstruction algorithm is maximum likelihood-expectation–maximization. System geometry can be specified using amore » simple script. Given the geometry, a symmetry seeking algorithm finds existing symmetry in the geometry with respect to the image grid to improve the memory usage/speed. Normalization is approached from a geometry independent perspective. The system matrix is computed using the Siddon’s algorithm and subcrystal approach. The program is parallelized through open multiprocessing and message passing interface libraries. A wide variety of systems can be modeled using the framework. This is made possible by modeling the underlying physics and data correction, while generalizing the geometry dependent features. Results: Application of the framework for three novel PET systems, each designed for a specific application, is presented to demonstrate the robustness of the framework in modeling PET systems of unconventional geometry. Three PET systems of unconventional geometry are studied. (1) Virtual-pinhole half-ring insert integrated into Biograph-40: although the insert device improves image quality over conventional whole-body scanner, the image quality varies depending on the position of the insert and the object. (2) Virtual-pinhole flat-panel insert integrated into Biograph-40: preliminary results from an investigation into a modular flat-panel insert are presented. (3) Plant PET system: a reconfigurable PET system for imaging plants, with resolution of greater than 3.3 mm, is shown. Using the automated symmetry seeking algorithm, the authors achieved a compression ratio of the storage and memory requirement by a factor of approximately 50 for the half-ring and flat-panel systems. For plant PET system, the compression ratio is approximately five. The ratio depends on the level of symmetry that exists in different geometries. Conclusions: This work brings the field closer to arbitrary geometry reconstruction. A generalized reconstruction framework can be used to validate multiple hypotheses and the effort required to investigate each system is reduced. Memory usage/speed can be improved with certain optimizations.« less

  2. A generalized reconstruction framework for unconventional PET systems.

    PubMed

    Mathews, Aswin John; Li, Ke; Komarov, Sergey; Wang, Qiang; Ravindranath, Bosky; O'Sullivan, Joseph A; Tai, Yuan-Chuan

    2015-08-01

    Quantitative estimation of the radionuclide activity concentration in positron emission tomography (PET) requires precise modeling of PET physics. The authors are focused on designing unconventional PET geometries for specific applications. This work reports the creation of a generalized reconstruction framework, capable of reconstructing tomographic PET data for systems that use right cuboidal detector elements positioned at arbitrary geometry using a regular Cartesian grid of image voxels. The authors report on a variety of design choices and optimization for the creation of the generalized framework. The image reconstruction algorithm is maximum likelihood-expectation-maximization. System geometry can be specified using a simple script. Given the geometry, a symmetry seeking algorithm finds existing symmetry in the geometry with respect to the image grid to improve the memory usage/speed. Normalization is approached from a geometry independent perspective. The system matrix is computed using the Siddon's algorithm and subcrystal approach. The program is parallelized through open multiprocessing and message passing interface libraries. A wide variety of systems can be modeled using the framework. This is made possible by modeling the underlying physics and data correction, while generalizing the geometry dependent features. Application of the framework for three novel PET systems, each designed for a specific application, is presented to demonstrate the robustness of the framework in modeling PET systems of unconventional geometry. Three PET systems of unconventional geometry are studied. (1) Virtual-pinhole half-ring insert integrated into Biograph-40: although the insert device improves image quality over conventional whole-body scanner, the image quality varies depending on the position of the insert and the object. (2) Virtual-pinhole flat-panel insert integrated into Biograph-40: preliminary results from an investigation into a modular flat-panel insert are presented. (3) Plant PET system: a reconfigurable PET system for imaging plants, with resolution of greater than 3.3 mm, is shown. Using the automated symmetry seeking algorithm, the authors achieved a compression ratio of the storage and memory requirement by a factor of approximately 50 for the half-ring and flat-panel systems. For plant PET system, the compression ratio is approximately five. The ratio depends on the level of symmetry that exists in different geometries. This work brings the field closer to arbitrary geometry reconstruction. A generalized reconstruction framework can be used to validate multiple hypotheses and the effort required to investigate each system is reduced. Memory usage/speed can be improved with certain optimizations.

  3. A generalized reconstruction framework for unconventional PET systems

    PubMed Central

    Mathews, Aswin John; Li, Ke; Komarov, Sergey; Wang, Qiang; Ravindranath, Bosky; O’Sullivan, Joseph A.; Tai, Yuan-Chuan

    2015-01-01

    Purpose: Quantitative estimation of the radionuclide activity concentration in positron emission tomography (PET) requires precise modeling of PET physics. The authors are focused on designing unconventional PET geometries for specific applications. This work reports the creation of a generalized reconstruction framework, capable of reconstructing tomographic PET data for systems that use right cuboidal detector elements positioned at arbitrary geometry using a regular Cartesian grid of image voxels. Methods: The authors report on a variety of design choices and optimization for the creation of the generalized framework. The image reconstruction algorithm is maximum likelihood-expectation–maximization. System geometry can be specified using a simple script. Given the geometry, a symmetry seeking algorithm finds existing symmetry in the geometry with respect to the image grid to improve the memory usage/speed. Normalization is approached from a geometry independent perspective. The system matrix is computed using the Siddon’s algorithm and subcrystal approach. The program is parallelized through open multiprocessing and message passing interface libraries. A wide variety of systems can be modeled using the framework. This is made possible by modeling the underlying physics and data correction, while generalizing the geometry dependent features. Results: Application of the framework for three novel PET systems, each designed for a specific application, is presented to demonstrate the robustness of the framework in modeling PET systems of unconventional geometry. Three PET systems of unconventional geometry are studied. (1) Virtual-pinhole half-ring insert integrated into Biograph-40: although the insert device improves image quality over conventional whole-body scanner, the image quality varies depending on the position of the insert and the object. (2) Virtual-pinhole flat-panel insert integrated into Biograph-40: preliminary results from an investigation into a modular flat-panel insert are presented. (3) Plant PET system: a reconfigurable PET system for imaging plants, with resolution of greater than 3.3 mm, is shown. Using the automated symmetry seeking algorithm, the authors achieved a compression ratio of the storage and memory requirement by a factor of approximately 50 for the half-ring and flat-panel systems. For plant PET system, the compression ratio is approximately five. The ratio depends on the level of symmetry that exists in different geometries. Conclusions: This work brings the field closer to arbitrary geometry reconstruction. A generalized reconstruction framework can be used to validate multiple hypotheses and the effort required to investigate each system is reduced. Memory usage/speed can be improved with certain optimizations. PMID:26233187

  4. Discovering Motifs in Biological Sequences Using the Micron Automata Processor.

    PubMed

    Roy, Indranil; Aluru, Srinivas

    2016-01-01

    Finding approximately conserved sequences, called motifs, across multiple DNA or protein sequences is an important problem in computational biology. In this paper, we consider the (l, d) motif search problem of identifying one or more motifs of length l present in at least q of the n given sequences, with each occurrence differing from the motif in at most d substitutions. The problem is known to be NP-complete, and the largest solved instance reported to date is (26,11). We propose a novel algorithm for the (l,d) motif search problem using streaming execution over a large set of non-deterministic finite automata (NFA). This solution is designed to take advantage of the micron automata processor, a new technology close to deployment that can simultaneously execute multiple NFA in parallel. We demonstrate the capability for solving much larger instances of the (l, d) motif search problem using the resources available within a single automata processor board, by estimating run-times for problem instances (39,18) and (40,17). The paper serves as a useful guide to solving problems using this new accelerator technology.

  5. Aerodynamic Optimization of Rocket Control Surface Geometry Using Cartesian Methods and CAD Geometry

    NASA Technical Reports Server (NTRS)

    Nelson, Andrea; Aftosmis, Michael J.; Nemec, Marian; Pulliam, Thomas H.

    2004-01-01

    Aerodynamic design is an iterative process involving geometry manipulation and complex computational analysis subject to physical constraints and aerodynamic objectives. A design cycle consists of first establishing the performance of a baseline design, which is usually created with low-fidelity engineering tools, and then progressively optimizing the design to maximize its performance. Optimization techniques have evolved from relying exclusively on designer intuition and insight in traditional trial and error methods, to sophisticated local and global search methods. Recent attempts at automating the search through a large design space with formal optimization methods include both database driven and direct evaluation schemes. Databases are being used in conjunction with surrogate and neural network models as a basis on which to run optimization algorithms. Optimization algorithms are also being driven by the direct evaluation of objectives and constraints using high-fidelity simulations. Surrogate methods use data points obtained from simulations, and possibly gradients evaluated at the data points, to create mathematical approximations of a database. Neural network models work in a similar fashion, using a number of high-fidelity database calculations as training iterations to create a database model. Optimal designs are obtained by coupling an optimization algorithm to the database model. Evaluation of the current best design then gives either a new local optima and/or increases the fidelity of the approximation model for the next iteration. Surrogate methods have also been developed that iterate on the selection of data points to decrease the uncertainty of the approximation model prior to searching for an optimal design. The database approximation models for each of these cases, however, become computationally expensive with increase in dimensionality. Thus the method of using optimization algorithms to search a database model becomes problematic as the number of design variables is increased.

  6. Differential Geometry Applied To Least-Square Error Surface Approximations

    NASA Astrophysics Data System (ADS)

    Bolle, Ruud M.; Sabbah, Daniel

    1987-08-01

    This paper focuses on extraction of the parameters of individual surfaces from noisy depth maps. The basis for this are least-square error polynomial approximations to the range data and the curvature properties that can be computed from these approximations. The curvature properties are derived using the invariants of the Weingarten Map evaluated at the origin of local coordinate systems centered at the range points. The Weingarten Map is a well-known concept in differential geometry; a brief treatment of the differential geometry pertinent to surface curvature is given. We use the curvature properties for extracting certain surface parameters from the curvature properties of the approximations. Then we show that curvature properties alone are not enough to obtain all the parameters of the surfaces; higher order properties (information about change of curvature) are needed to obtain full parametric descriptions. This surface parameter estimation problem arises in the design of a vision system to recognize 3D objects whose surfaces are composed of planar patches and patches of quadrics of revolution. (Quadrics of revolution are quadrics that are surfaces of revolution.) A significant portion of man-made objects can be modeled using these surfaces. The actual process of recognition and parameter extraction is framed as a set of stacked parameter space transforms. The transforms are "stacked" in the sense that any one transform computes only a partial geometric description that forms the input to the next transform. Those who are interested in the organization and control of the recognition and parameter recognition process are referred to [Sabbah86], this paper briefly touches upon the organization, but concentrates mainly on geometrical aspects of the parameter extraction.

  7. An Approach for a Mathematical Description of Human Root Canals by Means of Elementary Parameters.

    PubMed

    Dannemann, Martin; Kucher, Michael; Kirsch, Jasmin; Binkowski, Alexander; Modler, Niels; Hannig, Christian; Weber, Marie-Theres

    2017-04-01

    Root canal geometry is an important factor for instrumentation and preparation of the canals. Curvature, length, shape, and ramifications need to be evaluated in advance to enhance the success of the treatment. Therefore, the present study aimed to design and realize a method for analyzing the geometric characteristics of human root canals. Two extracted human lower molars were radiographed in the occlusal direction using micro-computed tomographic imaging. The 3-dimensional geometry of the root canals, calculated by a self-implemented image evaluation algorithm, was described by 3 different mathematical models: the elliptical model, the 1-circle model, and the 3-circle model. The different applied mathematical models obtained similar geometric properties depending on the parametric model used. Considering more complex root canals, the differences of the results increase because of the different adaptability and the better approximation of the geometry. With the presented approach, it is possible to estimate and compare the geometry of natural root canals. Therefore, the deviation of the canal can be assessed, which is important for the choice of taper of root canal instruments. Root canals with a nearly elliptical cross section are reasonably approximated by the elliptical model, whereas the 3-circle model obtains a good agreement for curved shapes. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  8. A statistical human rib cage geometry model accounting for variations by age, sex, stature and body mass index.

    PubMed

    Shi, Xiangnan; Cao, Libo; Reed, Matthew P; Rupp, Jonathan D; Hoff, Carrie N; Hu, Jingwen

    2014-07-18

    In this study, we developed a statistical rib cage geometry model accounting for variations by age, sex, stature and body mass index (BMI). Thorax CT scans were obtained from 89 subjects approximately evenly distributed among 8 age groups and both sexes. Threshold-based CT image segmentation was performed to extract the rib geometries, and a total of 464 landmarks on the left side of each subject׳s ribcage were collected to describe the size and shape of the rib cage as well as the cross-sectional geometry of each rib. Principal component analysis and multivariate regression analysis were conducted to predict rib cage geometry as a function of age, sex, stature, and BMI, all of which showed strong effects on rib cage geometry. Except for BMI, all parameters also showed significant effects on rib cross-sectional area using a linear mixed model. This statistical rib cage geometry model can serve as a geometric basis for developing a parametric human thorax finite element model for quantifying effects from different human attributes on thoracic injury risks. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Efficient Geometry Minimization and Transition Structure Optimization Using Interpolated Potential Energy Surfaces and Iteratively Updated Hessians.

    PubMed

    Zheng, Jingjing; Frisch, Michael J

    2017-12-12

    An efficient geometry optimization algorithm based on interpolated potential energy surfaces with iteratively updated Hessians is presented in this work. At each step of geometry optimization (including both minimization and transition structure search), an interpolated potential energy surface is properly constructed by using the previously calculated information (energies, gradients, and Hessians/updated Hessians), and Hessians of the two latest geometries are updated in an iterative manner. The optimized minimum or transition structure on the interpolated surface is used for the starting geometry of the next geometry optimization step. The cost of searching the minimum or transition structure on the interpolated surface and iteratively updating Hessians is usually negligible compared with most electronic structure single gradient calculations. These interpolated potential energy surfaces are often better representations of the true potential energy surface in a broader range than a local quadratic approximation that is usually used in most geometry optimization algorithms. Tests on a series of large and floppy molecules and transition structures both in gas phase and in solutions show that the new algorithm can significantly improve the optimization efficiency by using the iteratively updated Hessians and optimizations on interpolated surfaces.

  10. The Hybrid Management Model: Influences of Organizational Structure and IT Project Management Practices on the Performance of Federal IT Projects

    ERIC Educational Resources Information Center

    Neves, Celine A.

    2012-01-01

    The federal government spends much money on information technology (IT) projects each year, yet numerous IT projects continue to underperform. For instance, in Fiscal Year 2008, OMB and federal agencies identified approximately 413 IT projects ($25.2 billion) as being poorly planned, poorly performing, or both. Agencies struggle to implement sound…

  11. Hampton at Willamina is #1 : Seneca, Weyerhaeuser mills follow

    Treesearch

    Henry Spelter

    2003-01-01

    Approximately 720 sawmills produce most of the softwood lumber in the U.S. The largest 200 of these, ranked mostly according to 2002 production, are displayed in the table on the ensuing pages. Where the actual production statistic was not released, it was estimated by subtracting from capacity any lost volume due to downtime. In a few instances where neither...

  12. Online Domains of Language Use: Second Language Learners' Experiences of Virtual Community and Foreignness

    ERIC Educational Resources Information Center

    Pasfield-Neofitou, Sarah

    2011-01-01

    This paper examines the use of CMC in both Japanese and English dominated "domains" by Australian learners of Japanese. The natural, social online communication of 12 Australian university students with 18 of their Japanese contacts was collected for a period of up to four years, resulting in a corpus of approximately 2,000 instances of…

  13. Using Edit Distance to Analyse Errors in a Natural Language to Logic Translation Corpus

    ERIC Educational Resources Information Center

    Barker-Plummer, Dave; Dale, Robert; Cox, Richard; Romanczuk, Alex

    2012-01-01

    We have assembled a large corpus of student submissions to an automatic grading system, where the subject matter involves the translation of natural language sentences into propositional logic. Of the 2.3 million translation instances in the corpus, 286,000 (approximately 12%) are categorized as being in error. We want to understand the nature of…

  14. Parallel O(N) Stokes’ solver towards scalable Brownian dynamics of hydrodynamically interacting objects in general geometries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Xujun; Li, Jiyuan; Jiang, Xikai

    An efficient parallel Stokes’s solver is developed towards the complete inclusion of hydrodynamic interactions of Brownian particles in any geometry. A Langevin description of the particle dynamics is adopted, where the long-range interactions are included using a Green’s function formalism. We present a scalable parallel computational approach, where the general geometry Stokeslet is calculated following a matrix-free algorithm using the General geometry Ewald-like method. Our approach employs a highly-efficient iterative finite element Stokes’ solver for the accurate treatment of long-range hydrodynamic interactions within arbitrary confined geometries. A combination of mid-point time integration of the Brownian stochastic differential equation, the parallelmore » Stokes’ solver, and a Chebyshev polynomial approximation for the fluctuation-dissipation theorem result in an O(N) parallel algorithm. We also illustrate the new algorithm in the context of the dynamics of confined polymer solutions in equilibrium and non-equilibrium conditions. Our method is extended to treat suspended finite size particles of arbitrary shape in any geometry using an Immersed Boundary approach.« less

  15. Parallel O(N) Stokes’ solver towards scalable Brownian dynamics of hydrodynamically interacting objects in general geometries

    DOE PAGES

    Zhao, Xujun; Li, Jiyuan; Jiang, Xikai; ...

    2017-06-29

    An efficient parallel Stokes’s solver is developed towards the complete inclusion of hydrodynamic interactions of Brownian particles in any geometry. A Langevin description of the particle dynamics is adopted, where the long-range interactions are included using a Green’s function formalism. We present a scalable parallel computational approach, where the general geometry Stokeslet is calculated following a matrix-free algorithm using the General geometry Ewald-like method. Our approach employs a highly-efficient iterative finite element Stokes’ solver for the accurate treatment of long-range hydrodynamic interactions within arbitrary confined geometries. A combination of mid-point time integration of the Brownian stochastic differential equation, the parallelmore » Stokes’ solver, and a Chebyshev polynomial approximation for the fluctuation-dissipation theorem result in an O(N) parallel algorithm. We also illustrate the new algorithm in the context of the dynamics of confined polymer solutions in equilibrium and non-equilibrium conditions. Our method is extended to treat suspended finite size particles of arbitrary shape in any geometry using an Immersed Boundary approach.« less

  16. Quantum cluster variational method and message passing algorithms revisited

    NASA Astrophysics Data System (ADS)

    Domínguez, E.; Mulet, Roberto

    2018-02-01

    We present a general framework to study quantum disordered systems in the context of the Kikuchi's cluster variational method (CVM). The method relies in the solution of message passing-like equations for single instances or in the iterative solution of complex population dynamic algorithms for an average case scenario. We first show how a standard application of the Kikuchi's CVM can be easily translated to message passing equations for specific instances of the disordered system. We then present an "ad hoc" extension of these equations to a population dynamic algorithm representing an average case scenario. At the Bethe level, these equations are equivalent to the dynamic population equations that can be derived from a proper cavity ansatz. However, at the plaquette approximation, the interpretation is more subtle and we discuss it taking also into account previous results in classical disordered models. Moreover, we develop a formalism to properly deal with the average case scenario using a replica-symmetric ansatz within this CVM for quantum disordered systems. Finally, we present and discuss numerical solutions of the different approximations for the quantum transverse Ising model and the quantum random field Ising model in two-dimensional lattices.

  17. Fracture analysis of radial scientific instrument module registration fittings of the space telescope

    NASA Technical Reports Server (NTRS)

    Springfield, C. W., Jr.

    1986-01-01

    Various pieces of the registration fittings for the Radial Scientific instrument (SI) module of the Space Telescope were examined from a fracture mechanics point of view and deemed to be fail-safe or else have had maximum allowable flaw sizes specified for them. The results of these analyses are summarized in tabular form. In many instances the applied stress levels were so low that the threshold stress intensity factor range was never reached. In most of the others the allowable flaw sizes were large enough to be detected by visual inspection. However, for some parts, such as the flexures connecting the aluminum cover to the ball retainer in the fitting at point A, the flaw sizes were rather small. Eddy current tests are capable of detecting flaws of this size (0.022 inches x 0.1 inches), so for those which have been so tested these small flaws should represent no danger of going undetected. In every instance approximations were made to err on the conservative side. These were pointed out in the discussions of the analyses for each fitting. One conservative approximation that was not mentioned, however, is the fact that retardation was not included in the crack propagation computations.

  18. Feasibility of employing thick microbeams from superficial and orthovoltage kVp x-ray tubes for radiotherapy of superficial cancers

    NASA Astrophysics Data System (ADS)

    Kamali-Zonouzi, P.; Shutt, A.; Nisbet, A.; Bradley, D. A.

    2017-11-01

    Preclinical investigations of thick microbeams show these to be feasible for use in radiotherapeutic dose delivery. To create the beams we access a radiotherapy x-ray tube that is familiarly used within a conventional clinical environment, coupling this with beam-defining grids. Beam characterisation, both single and in the form of arrays, has been by use of both MCNP simulation and direct Gafchromic EBT film dosimetry. As a first step in defining optimal exit-beam profiles over a range of beam energies, simulation has been made of the x-ray tube and numbers of beam-defining parallel geometry grids, the latter being made to vary in thickness, slit separation and material composition. For a grid positioned after the treatment applicator, and of similar design to those used in the first part of the study, MCNP simulation and Gafchromic EBT film were then applied in examining the resultant radiation profiles. MCNP simulations and direct dosimetry both show useful thick microbeams to be produced from the x-ray tube, with peak-to-valley dose ratios (PVDRs) in the approximate range 8.8-13.9. Although the potential to create thick microbeams using radiotherapy x-ray tubes and a grid has been demonstrated, Microbeam Radiation Therapy (MRT) would still need to be approved outside of the preclinical setting, a viable treatment technique of clinical interest needing to benefit for instance from substantially improved x-ray tube dose rates.

  19. International Space Station Powered Bolt Nut Anomaly and Failure Analysis Summary

    NASA Technical Reports Server (NTRS)

    Sievers, Daniel E.; Warden, Harry K.

    2010-01-01

    A key mechanism used in the on-orbit assembly of the International Space Station (ISS) pressurized elements is the Common Berthing Mechanism. The mechanism that effects the structural connection of the Common Berthing Mechanism halves is the Powered Bolt Assembly. There are sixteen Powered Bolt Assemblies per Common Berthing Mechanism. The Common Berthing Mechanism has a bolt which engages a self aligning Powered Bolt Nut (PBN) on the mating interface (Figure 1). The Powered Bolt Assemblies are preloaded to approximately 84.5 kN (19000 lb) prior to pressurization of the CBM. The PBNs mentioned below, manufactured in 2009, will be used on ISS future missions. An on orbit functional failure of this hardware would be unacceptable and in some instances catastrophic due to the failure of modules to mate and seal the atmosphere, risking loss of crew and ISS functions. The manufacturing processes that create the PBNs need to be strictly controlled. Functional (torque vs. tension) acceptance test failures will be the result of processes not being strictly followed. Without the proper knowledge of thread tolerances, fabrication techniques, and dry film lubricant application processes, PBNs will be, and have been manufactured improperly. The knowledge gained from acceptance test failures and the resolution of those failures, thread fabrication techniques and thread dry film lubrication processes can be applied to many aerospace mechanisms to enhance their performance. Test data and manufactured PBN thread geometry will be discussed for both failed and successfully accepted PBNs.

  20. International Space Station Powered Bolt Nut Anomaly and Failure Analysis Summary

    NASA Technical Reports Server (NTRS)

    Sievers, Daniel E.; Warden, Harry K.

    2010-01-01

    A key mechanism used in the on-orbit assembly of the International Space Station (ISS) pressurized elements is the Common Berthing Mechanism (CBM). The mechanism that effects the structural connection of the CBM halves is the Powered Bolt Assembly. There are sixteen Powered Bolt Assemblies per CBM. The CBM has a bolt which engages a self aligning Powered Bolt Nut (PBN) on the mating interface; see Figure 1. The Powered Bolt Assemblies are preloaded to approximately 19 kilo pounds (KIPs) prior to pressurization of the CBM. The PBNs mentioned below, manufactured in 2009, will be used on ISS future missions. An on orbit functional failure of this hardware would be unacceptable and in some instances catastrophic due to the failure of modules to mate and seal the atmosphere, risking loss of crew and ISS functions. The manufacturing processes which create the PBNs need to be strictly controlled. Functional (torque vs. tension) acceptance test failures will be the result of processes not being strictly followed. Without the proper knowledge of thread tolerances, fabrication techniques, and dry film lubricant application processes, PBNs will be, and have been manufactured improperly. The knowledge gained from acceptance test failures and the resolution of those failures, thread fabrication techniques and thread dry film lubrication processes can be applied to many aerospace mechanisms to enhance their performance. Test data and manufactured PBN thread geometry will be discussed for both failed and successfully accepted PBNs.

  1. Studies on the injection molding of polyvinyl chloride: Analysis of viscous heating and degradation in simple geometries

    NASA Astrophysics Data System (ADS)

    Garcia, Jose Luis

    2000-10-01

    In injection molding processes, computer aided engineering (CAE) allows processors to evaluate different process parameters in order to achieve complete filling of a cavity and, in some cases, it predicts shrinkage and warpage. However, because commercial computational packages are used to design complex geometries, detail in the thickness direction is limited. Approximations in the thickness direction lead to the solution of a 2½-D problem instead of a 3-D problem. These simplifications drastically reduce computational times and memory requirements. However, these approximations hinder the ability to predict thermal and/or mechanical degradation. The goal of this study was to determine the degree of degradation during PVC injection molding and to compare the results with a computational model. Instead of analyzing degradation in complex geometries, the computational analysis and injection molding trials were performed on typical sections found in complex geometries, such as flow in a tube, flow in a rectangular channel, and radial flow. This simplification reduces the flow problem to a 1-D problem and allows one to develop a computational model with a higher level of detail in the thickness direction, essential for the determination of degradation. Two different geometries were examined in this study: a spiral mold, in order to approximate the rectangular channel, and a center gated plate for the radial flow. Injection speed, melt temperature, and shot size were varied. Parts varying in degree of degradation, from no to severe degradation, were produced to determine possible transition points. Furthermore, two different PVC materials were used, low and high viscosity, M3800 and M4200, respectively (The Geon Company, Avon Lake, OH), to correlate the degree of degradation with the viscous heating observed during injection. It was found that a good agreement between experimental and computational results was obtained only if the reaction was assumed to be more thermally sensitive than found in literature. The results from this study show that, during injection, the activation energy for degradation was 65 kcal/mol, compared to 17--30 kcal/mol found in literature for quiescent systems.

  2. Multiple Scattering Effects on Pulse Propagation in Optically Turbid Media.

    NASA Astrophysics Data System (ADS)

    Joelson, Bradley David

    The effects of multiple scattering in a optically turbid media is examined for an impulse solution to the radiative transfer equation for a variety of geometries and phase functions. In regions where the complexities of the phase function proved too cumbersome for analytic methods Monte Carlo techniques were developed to describe the entire scalar radiance distribution. The determination of a general spread function is strongly dependent on geometry and particular regions where limits can be placed on the variables of the problem. Hence, the general spread function is first simplified by considering optical regions which reduce the complexity of the variable dependence. First, in the small-angle limit we calculate some contracted spread functions along with their moments and then use Monte Carlo techniques to establish the limitations imposed by the small-angle approximation in planar geometry. The point spread function (PSF) for a spherical geometry is calculated for the full angular spread in the forward direction of ocean waters using Monte Carlo methods in the optically thin and moderate depths and analytic methods in the diffusion domain. The angular dependence of the PSF for various ocean waters is examined for a range of optical parameters. The analytic method used in the diffusion calculation is justified by examining the angular dependence of the radiance of a impulse solution in a planar geometry for a prolongated Henyey-Greenstein phase function of asymmetry factor approximately equal to that of the ocean phase functions. The Legendre moments of the radiance are examined in order to examine the viability of the diffusion approximation which assumes a linearly anisotropic angular distribution for the radiance. A realistic lidar calculation is performed for a variety of ocean waters to determine the effects of multiple scattering on the determination of the speed of sound by using the range gated frequency spectrum of the lidar signal. It is shown that the optical properties of the ocean help to ensure single scatter form for the frequency spectra of the lidar signal. This spectra can then be used to compute the speed of sound and backscatter probability.

  3. Directing stem cell fate on hydrogel substrates by controlling cell geometry, matrix mechanics and adhesion ligand composition.

    PubMed

    Lee, Junmin; Abdeen, Amr A; Zhang, Douglas; Kilian, Kristopher A

    2013-11-01

    There is a dynamic relationship between physical and biochemical signals presented in the stem cell microenvironment to guide cell fate determination. Model systems that modulate cell geometry, substrate stiffness or matrix composition have proved useful in exploring how these signals influence stem cell fate. However, the interplay between these physical and biochemical cues during differentiation remains unclear. Here, we demonstrate a microengineering strategy to vary single cell geometry and the composition of adhesion ligands - on substrates that approximate the mechanical properties of soft tissues - to study adipogenesis and neurogenesis in adherent mesenchymal stem cells. Cells cultured in small circular islands show elevated expression of adipogenesis markers while cells that spread in anisotropic geometries tend to express elevated neurogenic markers. Arraying different combinations of matrix protein in a myriad of 2D and pseudo-3D geometries reveals optimal microenvironments for controlling the differentiation of stem cells to these "soft" lineages without the use of media supplements. © 2013 Elsevier Ltd. All rights reserved.

  4. A Galerkin approximation for linear elastic shallow shells

    NASA Astrophysics Data System (ADS)

    Figueiredo, I. N.; Trabucho, L.

    1992-03-01

    This work is a generalization to shallow shell models of previous results for plates by B. Miara (1989). Using the same basis functions as in the plate case, we construct a Galerkin approximation of the three-dimensional linearized elasticity problem, and establish some error estimates as a function of the thickness, the curvature, the geometry of the shell, the forces and the Lamé costants.

  5. [A relational database to store Poison Centers calls].

    PubMed

    Barelli, Alessandro; Biondi, Immacolata; Tafani, Chiara; Pellegrini, Aristide; Soave, Maurizio; Gaspari, Rita; Annetta, Maria Giuseppina

    2006-01-01

    Italian Poison Centers answer to approximately 100,000 calls per year. Potentially, this activity is a huge source of data for toxicovigilance and for syndromic surveillance. During the last decade, surveillance systems for early detection of outbreaks have drawn the attention of public health institutions due to the threat of terrorism and high-profile disease outbreaks. Poisoning surveillance needs the ongoing, systematic collection, analysis, interpretation, and dissemination of harmonised data about poisonings from all Poison Centers for use in public health action to reduce morbidity and mortality and to improve health. The entity-relationship model for a Poison Center relational database is extremely complex and not studied in detail. For this reason, not harmonised data collection happens among Italian Poison Centers. Entities are recognizable concepts, either concrete or abstract, such as patients and poisons, or events which have relevance to the database, such as calls. Connectivity and cardinality of relationships are complex as well. A one-to-many relationship exist between calls and patients: for one instance of entity calls, there are zero, one, or many instances of entity patients. At the same time, a one-to-many relationship exist between patients and poisons: for one instance of entity patients, there are zero, one, or many instances of entity poisons. This paper shows a relational model for a poison center database which allows the harmonised data collection of poison centers calls.

  6. Geometric effects in applied-field MPD thrusters

    NASA Technical Reports Server (NTRS)

    Myers, R. M.; Mantenieks, M.; Sovey, J.

    1990-01-01

    Three applied-field magnetoplasmadynamic (MPD) thruster geometries were tested with argon propellant to establish the influence of electrode geometry on thruster performance. The thrust increased approximately linearly with anode radius, while the discharge and electrode fall voltages increased quadratically with anode radius. All these parameters increased linearly with applied-field strength. Thrust efficiency, on the other hand, was not significantly influenced by changes in geometry over the operating range studied, though both thrust and thermal efficiencies increased monotonically with applied field strength. The best performance, 1820 sec I (sub sp) at 20 percent efficiency, was obtained with the largest radius anode at the highest discharge current (1500 amps) and applied field strength (0.4 Tesla).

  7. Geometric effects in applied-field MPD thrusters

    NASA Technical Reports Server (NTRS)

    Myers, R. M.; Mantenieks, M.; Sovey, James S.

    1990-01-01

    Three applied-field magnetoplasmadynamic (MPD) thruster geometries were tested with argon propellant to establish the influence of electrode geometry on thruster performance. The thrust increased approximately linearly with anode radius, while the discharge and electrode fall voltages increased quadratically with anode radius. All these parameters increased linearly with applied-field strength. Thrust efficiency, on the other hand, was not significantly influenced by changes in geometry over the operating range studied, though both thrust and thermal efficiencies increased monotonically with applied field strength. The best performance, 1820 sec I(sub sp) at 20 percent efficiency, was obtained with the largest radius anode at the highest discharge current (1500 amps) and applied field strength (0.4 Tesla).

  8. Pressure recovery performance of conical diffusers at high subsonic Mach numbers

    NASA Technical Reports Server (NTRS)

    Dolan, F. X.; Runstadler, P. W., Jr.

    1973-01-01

    The pressure recovery performance of conical diffusers has been measured for a wide range of geometries and inlet flow conditions. The approximate level and location (in terms of diffuser geometry of optimum performance were determined. Throat Mach numbers from low subsonic (m sub t equals 0.2) through choking (m sub t equals 1.0) were investigated in combination with throat blockage from 0.03 to 0.12. For fixed Mach number, performance was measured over a fourfold range of inlet Reynolds number. Maps of pressure recovery are presented as a function of diffuser geometry for fixed sets of inlet conditions. The influence of inlet blockage, throat Mach number, and inlet Reynolds number is discussed.

  9. Deviations from idealised geometries part 3: approximately tetrahedral molecules of form MX 2Y 2 studied by SCF and MP2 calculations

    NASA Astrophysics Data System (ADS)

    Palmer, Michael H.

    1997-03-01

    The relatively minor deviations from true tetrahedral geometry for molecules of type MX 2Y 2 where M is tetravalent, and X, Y are either H, Me or halogen are discussed, in the light of ab initio calculations of equilibrium geometry with a large (triple zeta valence + polarisation) basis, at both the SCF and MP2 levels. The results are compared with known experimental structural and dipole moment data; in most cases a very close correlation with experiment is found, with slight improvements in the MP2 data. The study is coupled with a localised orbital study of relevance to Bent's Rule.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunt, H.B. III; Rosenkrantz, D.J.; Stearns, R.E.

    We study both the complexity and approximability of various graph and combinatorial problems specified using two dimensional narrow periodic specifications (see [CM93, HW92, KMW67, KO91, Or84b, Wa93]). The following two general kinds of results are presented. (1) We prove that a number of natural graph and combinatorial problems are NEXPTIME- or EXPSPACE-complete when instances are so specified; (2) In contrast, we prove that the optimization versions of several of these NEXPTIME-, EXPSPACE-complete problems have polynomial time approximation algorithms with constant performance guarantees. Moreover, some of these problems even have polynomial time approximation schemes. We also sketch how our NEXPTIME-hardness resultsmore » can be used to prove analogous NEXPTIME-hardness results for problems specified using other kinds of succinct specification languages. Our results provide the first natural problems for which there is a proven exponential (and possibly doubly exponential) gap between the complexities of finding exact and approximate solutions.« less

  11. A full-wave Helmholtz model for continuous-wave ultrasound transmission.

    PubMed

    Huttunen, Tomi; Malinen, Matti; Kaipio, Jari P; White, Phillip Jason; Hynynen, Kullervo

    2005-03-01

    A full-wave Helmholtz model of continuous-wave (CW) ultrasound fields may offer several attractive features over widely used partial-wave approximations. For example, many full-wave techniques can be easily adjusted for complex geometries, and multiple reflections of sound are automatically taken into account in the model. To date, however, the full-wave modeling of CW fields in general 3D geometries has been avoided due to the large computational cost associated with the numerical approximation of the Helmholtz equation. Recent developments in computing capacity together with improvements in finite element type modeling techniques are making possible wave simulations in 3D geometries which reach over tens of wavelengths. The aim of this study is to investigate the feasibility of a full-wave solution of the 3D Helmholtz equation for modeling of continuous-wave ultrasound fields in an inhomogeneous medium. The numerical approximation of the Helmholtz equation is computed using the ultraweak variational formulation (UWVF) method. In addition, an inverse problem technique is utilized to reconstruct the velocity distribution on the transducer which is used to model the sound source in the UWVF scheme. The modeling method is verified by comparing simulated and measured fields in the case of transmission of 531 kHz CW fields through layered plastic plates. The comparison shows a reasonable agreement between simulations and measurements at low angles of incidence but, due to mode conversion, the Helmholtz model becomes insufficient for simulating ultrasound fields in plates at large angles of incidence.

  12. An Analytical Study of Icing Similitude for Aircraft Engine Testing. Revision

    DTIC Science & Technology

    1987-02-01

    MODELING GEOMETRIES Component Cowl Spinner Fan Blade Fan Stator Exit Vane Probe Approximating Geometry NACA 0012 Airfoil Sphere NACA 0012...DOT/FAA/CT·86/35 AEDC·TR·86·26 An Analytical Study of Icing Similitude for Aircraft Engine Testing c. Scott Bartlett Sverdrup Technology, Inc...8217~,feCa.ORI A n AnalYtical Study )f Icin~ Similitude for Aircraft Engine Tes t tu~ 12. PERSONAL AUTHOR/S) B a r t l e t t , C. Scot t , Sverdrup

  13. Three-dimensional elastic stress and displacement analysis of finite circular geometry solids containing cracks

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, J. P.; Mendelson, A.; Kring, J.

    1973-01-01

    A seminumerical method is presented for solving a set of coupled partial differential equations subject to mixed and coupled boundary conditions. The use of this method is illustrated by obtaining solutions for two circular geometry and mixed boundary value problems in three-dimensional elasticity. Stress and displacement distributions are calculated in an axisymmetric, circular bar of finite dimensions containing a penny-shaped crack. Approximate results for an annular plate containing internal surface cracks are also presented.

  14. Effect of Dust Coagulation Dynamics on the Geometry of Aggregates

    NASA Technical Reports Server (NTRS)

    Nakamura, R.

    1996-01-01

    Master equation gives a more fundamental description of stochastic coagulation processes rather than popular Smoluchowski's equation. In order to examine the effect of the dynamics on the geometry of resulting aggregates, we study Master equation with a rigorous Monte Carlo algorithm. It is found that Cluster-Cluster aggregation model is a good approximation of orderly growth and the aggregates have fluffy structures with a fractal dimension approx. 2. A scaling analysis of Smoluchowski's equation also supports this conclusion.

  15. A Model for Axial Magnetic Bearings Including Eddy Currents

    NASA Technical Reports Server (NTRS)

    Kucera, Ladislav; Ahrens, Markus

    1996-01-01

    This paper presents an analytical method of modelling eddy currents inside axial bearings. The problem is solved by dividing an axial bearing into elementary geometric forms, solving the Maxwell equations for these simplified geometries, defining boundary conditions and combining the geometries. The final result is an analytical solution for the flux, from which the impedance and the force of an axial bearing can be derived. Several impedance measurements have shown that the analytical solution can fit the measured data with a precision of approximately 5%.

  16. Adsorption energies of benzene on close packed transition metal surfaces using the random phase approximation

    NASA Astrophysics Data System (ADS)

    Garrido Torres, José A.; Ramberger, Benjamin; Früchtl, Herbert A.; Schaub, Renald; Kresse, Georg

    2017-11-01

    The adsorption energy of benzene on various metal substrates is predicted using the random phase approximation (RPA) for the correlation energy. Agreement with available experimental data is systematically better than 10% for both coinage and reactive metals. The results are also compared with more approximate methods, including van der Waals density functional theory (DFT), as well as dispersion-corrected DFT functionals. Although dispersion-corrected DFT can yield accurate results, for instance, on coinage metals, the adsorption energies are clearly overestimated on more reactive transition metals. Furthermore, coverage dependent adsorption energies are well described by the RPA. This shows that for the description of aromatic molecules on metal surfaces further improvements in density functionals are necessary, or more involved many-body methods such as the RPA are required.

  17. Energy-efficient approach to minimizing the energy consumption in an extended job-shop scheduling problem

    NASA Astrophysics Data System (ADS)

    Tang, Dunbing; Dai, Min

    2015-09-01

    The traditional production planning and scheduling problems consider performance indicators like time, cost and quality as optimization objectives in manufacturing processes. However, environmentally-friendly factors like energy consumption of production have not been completely taken into consideration. Against this background, this paper addresses an approach to modify a given schedule generated by a production planning and scheduling system in a job shop floor, where machine tools can work at different cutting speeds. It can adjust the cutting speeds of the operations while keeping the original assignment and processing sequence of operations of each job fixed in order to obtain energy savings. First, the proposed approach, based on a mixed integer programming mathematical model, changes the total idle time of the given schedule to minimize energy consumption in the job shop floor while accepting the optimal solution of the scheduling objective, makespan. Then, a genetic-simulated annealing algorithm is used to explore the optimal solution due to the fact that the problem is strongly NP-hard. Finally, the effectiveness of the approach is performed smalland large-size instances, respectively. The experimental results show that the approach can save 5%-10% of the average energy consumption while accepting the optimal solution of the makespan in small-size instances. In addition, the average maximum energy saving ratio can reach to 13%. And it can save approximately 1%-4% of the average energy consumption and approximately 2.4% of the average maximum energy while accepting the near-optimal solution of the makespan in large-size instances. The proposed research provides an interesting point to explore an energy-aware schedule optimization for a traditional production planning and scheduling problem.

  18. Euler/Navier-Stokes calculations of transonic flow past fixed- and rotary-wing aircraft configurations

    NASA Technical Reports Server (NTRS)

    Deese, J. E.; Agarwal, R. K.

    1989-01-01

    Computational fluid dynamics has an increasingly important role in the design and analysis of aircraft as computer hardware becomes faster and algorithms become more efficient. Progress is being made in two directions: more complex and realistic configurations are being treated and algorithms based on higher approximations to the complete Navier-Stokes equations are being developed. The literature indicates that linear panel methods can model detailed, realistic aircraft geometries in flow regimes where this approximation is valid. As algorithms including higher approximations to the Navier-Stokes equations are developed, computer resource requirements increase rapidly. Generation of suitable grids become more difficult and the number of grid points required to resolve flow features of interest increases. Recently, the development of large vector computers has enabled researchers to attempt more complex geometries with Euler and Navier-Stokes algorithms. The results of calculations for transonic flow about a typical transport and fighter wing-body configuration using thin layer Navier-Stokes equations are described along with flow about helicopter rotor blades using both Euler/Navier-Stokes equations.

  19. Control of minimum member size in parameter-free structural shape optimization by a medial axis approximation

    NASA Astrophysics Data System (ADS)

    Schmitt, Oliver; Steinmann, Paul

    2018-06-01

    We introduce a manufacturing constraint for controlling the minimum member size in structural shape optimization problems, which is for example of interest for components fabricated in a molding process. In a parameter-free approach, whereby the coordinates of the FE boundary nodes are used as design variables, the challenging task is to find a generally valid definition for the thickness of non-parametric geometries in terms of their boundary nodes. Therefore we use the medial axis, which is the union of all points with at least two closest points on the boundary of the domain. Since the effort for the exact computation of the medial axis of geometries given by their FE discretization highly increases with the number of surface elements we use the distance function instead to approximate the medial axis by a cloud of points. The approximation is demonstrated on three 2D examples. Moreover, the formulation of a minimum thickness constraint is applied to a sensitivity-based shape optimization problem of one 2D and one 3D model.

  20. Comparative DMFT study of the eg-orbital Hubbard model in thin films

    NASA Astrophysics Data System (ADS)

    Rüegg, Andreas; Hung, Hsiang-Hsuan; Gull, Emanuel; Fiete, Gregory A.

    2014-02-01

    Heterostructures of transition-metal oxides have emerged as a new route to engineer electronic systems with desired functionalities. Motivated by these developments, we study a two-orbital Hubbard model in a thin-film geometry confined along the cubic [001] direction using the dynamical mean-field theory. We contrast the results of two approximate impurity solvers (exact diagonalization and one-crossing approximation) to the results of the numerically exact continuous-time quantum Monte Carlo solver. Consistent with earlier studies, we find that the one-crossing approximation performs well in the insulating regime, while the advantage of the exact-diagonalization-based solver is more pronounced in the metallic regime. We then investigate various aspects of strongly correlated eg-orbital systems in thin-film geometries. In particular, we show how the interfacial orbital polarization dies off quickly a few layers from the interface and how the film thickness affects the location of the interaction-driven Mott transition. In addition, we explore the changes in the electronic structure with varying carrier concentration and identify large variations of the orbital polarization in the strongly correlated regime.

  1. New approach to CT pixel-based photon dose calculations in heterogeneous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, J.W.; Henkelman, R.M.

    The effects of small cavities on dose in water and the dose in a homogeneous nonunit density medium illustrate that inhomogeneities do not act independently in photon dose perturbation, and serve as two constraints which should be satisfied by approximate methods of computed tomography (CT) pixel-based dose calculations. Current methods at best satisfy only one of the two constraints and show inadequacies in some intermediate geometries. We have developed an approximate method that satisfies both these constraints and treats much of the synergistic effect of multiple inhomogeneities correctly. The method calculates primary and first-scatter doses by first-order ray tracing withmore » the first-scatter contribution augmented by a component of second scatter that behaves like first scatter. Multiple-scatter dose perturbation values extracted from small cavity experiments are used in a function which approximates the small residual multiple-scatter dose. For a wide range of geometries tested, our method agrees very well with measurements. The average deviation is less than 2% with a maximum of 3%. In comparison, calculations based on existing methods can have errors larger than 10%.« less

  2. Control of minimum member size in parameter-free structural shape optimization by a medial axis approximation

    NASA Astrophysics Data System (ADS)

    Schmitt, Oliver; Steinmann, Paul

    2017-09-01

    We introduce a manufacturing constraint for controlling the minimum member size in structural shape optimization problems, which is for example of interest for components fabricated in a molding process. In a parameter-free approach, whereby the coordinates of the FE boundary nodes are used as design variables, the challenging task is to find a generally valid definition for the thickness of non-parametric geometries in terms of their boundary nodes. Therefore we use the medial axis, which is the union of all points with at least two closest points on the boundary of the domain. Since the effort for the exact computation of the medial axis of geometries given by their FE discretization highly increases with the number of surface elements we use the distance function instead to approximate the medial axis by a cloud of points. The approximation is demonstrated on three 2D examples. Moreover, the formulation of a minimum thickness constraint is applied to a sensitivity-based shape optimization problem of one 2D and one 3D model.

  3. Path integrals and the WKB approximation in loop quantum cosmology

    NASA Astrophysics Data System (ADS)

    Ashtekar, Abhay; Campiglia, Miguel; Henderson, Adam

    2010-12-01

    We follow the Feynman procedure to obtain a path integral formulation of loop quantum cosmology starting from the Hilbert space framework. Quantum geometry effects modify the weight associated with each path so that the effective measure on the space of paths is different from that used in the Wheeler-DeWitt theory. These differences introduce some conceptual subtleties in arriving at the WKB approximation. But the approximation is well defined and provides intuition for the differences between loop quantum cosmology and the Wheeler-DeWitt theory from a path integral perspective.

  4. Toward an optimal solver for time-spectral fluid-dynamic and aeroelastic solutions on unstructured meshes

    NASA Astrophysics Data System (ADS)

    Mundis, Nathan L.; Mavriplis, Dimitri J.

    2017-09-01

    The time-spectral method applied to the Euler and coupled aeroelastic equations theoretically offers significant computational savings for purely periodic problems when compared to standard time-implicit methods. However, attaining superior efficiency with time-spectral methods over traditional time-implicit methods hinges on the ability rapidly to solve the large non-linear system resulting from time-spectral discretizations which become larger and stiffer as more time instances are employed or the period of the flow becomes especially short (i.e. the maximum resolvable wave-number increases). In order to increase the efficiency of these solvers, and to improve robustness, particularly for large numbers of time instances, the Generalized Minimal Residual Method (GMRES) is used to solve the implicit linear system over all coupled time instances. The use of GMRES as the linear solver makes time-spectral methods more robust, allows them to be applied to a far greater subset of time-accurate problems, including those with a broad range of harmonic content, and vastly improves the efficiency of time-spectral methods. In previous work, a wave-number independent preconditioner that mitigates the increased stiffness of the time-spectral method when applied to problems with large resolvable wave numbers has been developed. This preconditioner, however, directly inverts a large matrix whose size increases in proportion to the number of time instances. As a result, the computational time of this method scales as the cube of the number of time instances. In the present work, this preconditioner has been reworked to take advantage of an approximate-factorization approach that effectively decouples the spatial and temporal systems. Once decoupled, the time-spectral matrix can be inverted in frequency space, where it has entries only on the main diagonal and therefore can be inverted quite efficiently. This new GMRES/preconditioner combination is shown to be over an order of magnitude more efficient than the previous wave-number independent preconditioner for problems with large numbers of time instances and/or large reduced frequencies.

  5. CFD analysis of turbopump volutes

    NASA Technical Reports Server (NTRS)

    Ascoli, Edward P.; Chan, Daniel C.; Darian, Armen; Hsu, Wayne W.; Tran, Ken

    1993-01-01

    An effort is underway to develop a procedure for the regular use of CFD analysis in the design of turbopump volutes. Airflow data to be taken at NASA Marshall will be used to validate the CFD code and overall procedure. Initial focus has been on preprocessing (geometry creation, translation, and grid generation). Volute geometries have been acquired electronically and imported into the CATIA CAD system and RAGGS (Rockwell Automated Grid Generation System) via the IGES standard. An initial grid topology has been identified and grids have been constructed for turbine inlet and discharge volutes. For CFD analysis of volutes to be used regularly, a procedure must be defined to meet engineering design needs in a timely manner. Thus, a compromise must be established between making geometric approximations, the selection of grid topologies, and possible CFD code enhancements. While the initial grid developed approximated the volute tongue with a zero thickness, final computations should more accurately account for the geometry in this region. Additionally, grid topologies will be explored to minimize skewness and high aspect ratio cells that can affect solution accuracy and slow code convergence. Finally, as appropriate, code modifications will be made to allow for new grid topologies in an effort to expedite the overall CFD analysis process.

  6. Integrated Aeromechanics with Three-Dimensional Solid-Multibody Structures

    NASA Technical Reports Server (NTRS)

    Datta, Anubhav; Johnson, Wayne

    2014-01-01

    A full three-dimensional finite element-multibody structural dynamic solver is coupled to a three-dimensional Reynolds-averaged Navier-Stokes solver for the prediction of integrated aeromechanical stresses and strains on a rotor blade in forward flight. The objective is to lay the foundations of all major pieces of an integrated three-dimensional rotor dynamic analysis - from model construction to aeromechanical solution to stress/strain calculation. The primary focus is on the aeromechanical solution. Two types of three-dimensional CFD/CSD interfaces are constructed for this purpose with an emphasis on resolving errors from geometry mis-match so that initial-stage approximate structural geometries can also be effectively analyzed. A three-dimensional structural model is constructed as an approximation to a UH-60A-like fully articulated rotor. The aerodynamic model is identical to the UH-60A rotor. For preliminary validation measurements from a UH-60A high speed flight is used where CFD coupling is essential to capture the advancing side tip transonic effects. The key conclusion is that an integrated aeromechanical analysis is indeed possible with three-dimensional structural dynamics but requires a careful description of its geometry and discretization of its parts.

  7. Effect of boattail geometry on the acoustics of parallel baffles in ducts

    NASA Technical Reports Server (NTRS)

    Soderman, P. T.; Unnever, G.; Dudley, M. R.

    1984-01-01

    Sound attenuation and total pressure drop of parallel duct baffles incorporating certain boattail geometries were measured in the NASA Ames Research Center 7- by 10-Foot Wind Tunnel. The baseline baffles were 1.56 m long and 20 cm thick, on 45-cm center-to-center spacings, and spanned the test section from floor to ceiling. Four different boattails were evaluated: a short, smooth (nonacoustic) boattail; a longer, smooth boattail; and two boattails with perforated surfaces and sound-absorbent filler. Acoustic measurements showed the acoustic boattails improved the sound attenuation of the baffles at approximately half the rate to be expected from constant-thickness sections of the same length; that is, 1.5 dB/n, where n is the ratio of acoustic treatment length to duct passage width between baffles. The aerodynamic total pressure loss was somewhat sensitive to tail geometry. Lengthening the tails to reduce the diffusion half-angle from 11 to 5 degrees reduced the total pressure loss approximately 9%. Perforating the boattails, which increased the surface roughness, did not have a large effect on the total pressure loss. Aerodynamic results are compared with a published empirical method for predicting baffle total pressure drop.

  8. Design and simulation of origami structures with smooth folds

    PubMed Central

    Peraza Hernandez, E. A.; Lagoudas, D. C.

    2017-01-01

    Origami has enabled new approaches to the fabrication and functionality of multiple structures. Current methods for origami design are restricted to the idealization of folds as creases of zeroth-order geometric continuity. Such an idealization is not proper for origami structures of non-negligible fold thickness or maximum curvature at the folds restricted by material limitations. For such structures, folds are not properly represented as creases but rather as bent regions of higher-order geometric continuity. Such fold regions of arbitrary order of continuity are termed as smooth folds. This paper presents a method for solving the following origami design problem: given a goal shape represented as a polygonal mesh (termed as the goal mesh), find the geometry of a single planar sheet, its pattern of smooth folds, and the history of folding motion allowing the sheet to approximate the goal mesh. The parametrization of the planar sheet and the constraints that allow for a valid pattern of smooth folds are presented. The method is tested against various goal meshes having diverse geometries. The results show that every determined sheet approximates its corresponding goal mesh in a known folded configuration having fold angles obtained from the geometry of the goal mesh. PMID:28484322

  9. Diffusional falsification of kinetic constants on Lineweaver-Burk plots.

    PubMed

    Ghim, Y S; Chang, H N

    1983-11-07

    The effect of mass transfer resistances on the Lineweaver-Burk plots in immobilized enzyme systems has been investigated numerically and with analytical approximate solutions. While Hamilton, Gardner & Colton (1974) studied the effect of internal diffusion resistances in planar geometry, our study was extended to the combined effect of internal and external diffusion in cylindrical and spherical geometries as well. The variation of Lineweaver-Burk plots with respect to the geometries was minimized by modifying the Thiele modulus and the Biot number with the shape factor. Especially for a small Biot number all the three Lineweaver-Burk plots fell on a single line. As was discussed by Hamilton et al. (1974), the curvature of the line for large external diffusion resistances was small enough to be assumed linear, which was confirmed from the two approximate solutions for large and small substrate concentrations. Two methods for obtaining intrinsic kinetic constants were proposed: First, we obtained both maximum reaction rate and Michaelis constant by fitting experimental data to a straight line where external diffusion resistance was relatively large, and second, we obtained Michaelis constant from apparent Michaelis constant from the figure in case we knew maximum reaction rate a priori.

  10. Design and simulation of origami structures with smooth folds.

    PubMed

    Peraza Hernandez, E A; Hartl, D J; Lagoudas, D C

    2017-04-01

    Origami has enabled new approaches to the fabrication and functionality of multiple structures. Current methods for origami design are restricted to the idealization of folds as creases of zeroth-order geometric continuity. Such an idealization is not proper for origami structures of non-negligible fold thickness or maximum curvature at the folds restricted by material limitations. For such structures, folds are not properly represented as creases but rather as bent regions of higher-order geometric continuity. Such fold regions of arbitrary order of continuity are termed as smooth folds . This paper presents a method for solving the following origami design problem: given a goal shape represented as a polygonal mesh (termed as the goal mesh ), find the geometry of a single planar sheet, its pattern of smooth folds, and the history of folding motion allowing the sheet to approximate the goal mesh. The parametrization of the planar sheet and the constraints that allow for a valid pattern of smooth folds are presented. The method is tested against various goal meshes having diverse geometries. The results show that every determined sheet approximates its corresponding goal mesh in a known folded configuration having fold angles obtained from the geometry of the goal mesh.

  11. The Effect of the Three-Dimensional Geometry of Cargo on the Detection of Radioactive Sources in Cargo Containers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schweppe, John E.; Ely, James H.; McConn, Ronald J.

    Pacific Northwest National Laboratory has developed computer models to simulate the screening of vehicles and cargo with radiation portal monitors for the presence of illegitimate radioactive material. In addition, selected measurements have been conducted to validate the models. An important consideration in the modeling of realistic scenarios is the influence of the three-dimensional geometry of the cargo on the measured signature. This is particularly important for scenarios where the source and detector move with respect to each other. Two cases of the influence of the three-dimensional geometry of the cargo on the measured radiation signature are analyzed. In the first,more » measurements show that spectral data collected from moving sources so as to maximize the gross-counting signal-to-noise ratio has minimal spectral distortion, so that the spectral data can be summed over this time interval. In the second, modeling demonstrates that the ability to detect radioactive sources at all locations in a container full of cargo scales approximately linearly with the vertical height of the detector, suggesting that detectors should be approximately the same height as the container they scan.« less

  12. Surface geometry of protoplanetary disks inferred from near-infrared imaging polarimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takami, Michihiro; Hasegawa, Yasuhiro; Gu, Pin-Gao

    2014-11-01

    We present a new method of analysis for determining the surface geometry of five protoplanetary disks observed with near-infrared imaging polarimetry using Subaru-HiCIAO. Using as inputs the observed distribution of polarized intensity (PI), disk inclination, assumed properties for dust scattering, and other reasonable approximations, we calculate a differential equation to derive the surface geometry. This equation is numerically integrated along the distance from the star at a given position angle. We show that, using these approximations, the local maxima in the PI distribution of spiral arms (SAO 206462, MWC 758) and rings (2MASS J16042165-2130284, PDS 70) are associated with localmore » concave-up structures on the disk surface. We also show that the observed presence of an inner gap in scattered light still allows the possibility of a disk surface that is parallel to the light path from the star, or a disk that is shadowed by structures in the inner radii. Our analysis for rings does not show the presence of a vertical inner wall as often assumed in studies of disks with an inner gap. Finally, we summarize the implications of spiral and ring structures as potential signatures of ongoing planet formation.« less

  13. Ice on waterfowl markers

    USGS Publications Warehouse

    Greenwood, R.J.; Bair, W.C.

    1974-01-01

    Wild and captive giant Canada geese (Branta canadensis maxima) and captive mallards (Anas platyrhynchos) accumulated ice on neck collars and/or nasal saddles during winter storm periods in 1971 and 1972. Weather conditions associated with icing were documented, and characteristics of icing are discussed. Severe marker icing occurred during subfreezing weather when the windchill reached approximately -37 deg.C. Birds appeared able to de-ice nasal saddles in most instances.

  14. Faith-Based Organizations and Veteran Reintegration: Enriching the Web of Support

    DTIC Science & Technology

    2015-01-01

    health care , physi- cal health, family, and social networks. In some cases, the support is offered to veterans directly; in other instances, the...locating meaningful civilian employment, pursuing higher education, securing housing, and building a social network after spending years or even...the prevalence of reintegration challenges. Approximately one-fourth to one-half of these veterans experienced difficulty in social functioning (e.g

  15. Measurement of proton momentum distributions using a direct geometry instrument

    NASA Astrophysics Data System (ADS)

    Senesi, R.; Kolesnikov, A. I.; Andreani, C.

    2014-12-01

    We report the results of inelastic neutron scattering measurements on bulk water and ice using the direct geometry SEQUOIA chopper spectrometer at the Spallation Neutron Source (USA), with incident energy Ei= 6 eV. In this set up the measurements allow to access the Deep Inelastic Neutron Scattering regime. The scattering is centred at the proton recoil energy given by the impulse approximation, and the shape of the recoil peak conveys information on the proton momentum distribution in the system. The comparison with the performance of inverse geometry instruments, such as VESUVIO at the ISIS source (UK), shows that complementary information can be accessed by the use of direct and inverse geometry instruments. Analysis of the neutron Compton profiles shows that the proton kinetic energy in ice at 271 K is larger than in room temperature liquid water, in agreement with previous measurements on VESUVIO.

  16. A geometric modeler based on a dual-geometry representation polyhedra and rational b-splines

    NASA Technical Reports Server (NTRS)

    Klosterman, A. L.

    1984-01-01

    For speed and data base reasons, solid geometric modeling of large complex practical systems is usually approximated by a polyhedra representation. Precise parametric surface and implicit algebraic modelers are available but it is not yet practical to model the same level of system complexity with these precise modelers. In response to this contrast the GEOMOD geometric modeling system was built so that a polyhedra abstraction of the geometry would be available for interactive modeling without losing the precise definition of the geometry. Part of the reason that polyhedra modelers are effective is that all bounded surfaces can be represented in a single canonical format (i.e., sets of planar polygons). This permits a very simple and compact data structure. Nonuniform rational B-splines are currently the best representation to describe a very large class of geometry precisely with one canonical format. The specific capabilities of the modeler are described.

  17. Volume Diffusion Growth Kinetics and Step Geometry in Crystal Growth

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin; Ramachandran, Narayanan

    1998-01-01

    The role of step geometry in two-dimensional stationary volume diff4sion process used in crystal growth kinetics models is investigated. Three different interface shapes: a) a planar interface, b) an equidistant hemispherical bumps train tAx interface, and c) a train of right angled steps, are used in this comparative study. The ratio of the super-saturation to the diffusive flux at the step position is used as a control parameter. The value of this parameter can vary as much as 50% for different geometries. An approximate analytical formula is derived for the right angled steps geometry. In addition to the kinetic models, this formula can be utilized in macrostep growth models. Finally, numerical modeling of the diffusive and convective transport for equidistant steps is conducted. In particular, the role of fluid flow resulting from the advancement of steps and its contribution to the transport of species to the steps is investigated.

  18. Light-scattering changes caused by RBC aggregation: physical basis for new approach to noninvasive blood count

    NASA Astrophysics Data System (ADS)

    Shvartsman, Leonid D.; Fine, Ilya

    2001-06-01

    We develop theoretical models of light transmission through whole blood considering RBC aggregation. RBC aggregates are considered to be the main centers of scattering in red/near- infrared spectral region. In pulsatile blood flow the periodic changes of aggregate geometry cause oscillations of light scattering. Thus scattering-assisted mechanism has to be taken into account in pulse oximeter calibration. In case of over-systolic vessel occlusion the size of aggregates grows, and the light transmission rises. Light diffraction on a single scatterer makes the transmission growth non- monotonic for certain spectral range. For the most typical set of aggregate parameters this range corresponds to wavelengths below 760 nm, and this prediction fits well both in vivo and in vitro experimental results. This spectral range depends on the refraction index mismatch and the geometry of aggregates. Both of them may be affected by the chemistry of blood. For instance, changes of glucose and hemoglobin have different effect on light transmission time response. Consequently, their content may be determined from time evolution of optical transmission.

  19. Design charts for arbitrarily pivoted, liquid-lubricated flat-sector-pad thrust bearing

    NASA Technical Reports Server (NTRS)

    Etsion, I.

    1977-01-01

    A flat, sector-shaped geometry for a liquid-lubricated thrust bearing is analyzed considering both the pitch and roll of the pad. Results are presented in design charts that enable a direct approach to the design of point- and line-pivoted, tilting pad bearings. A comparison is made with the Mitchell bearing approximation and it is found that this approximation always overestimates load capacity.

  20. An Incompressible, Depth-Averaged Lattice Boltzmann Method for Liquid Flow in Microfluidic Devices with Variable Aperture

    DOE PAGES

    Laleian, Artin; Valocchi, Albert J.; Werth, Charles J.

    2015-11-24

    Two-dimensional (2D) pore-scale models have successfully simulated microfluidic experiments of aqueous-phase flow with mixing-controlled reactions in devices with small aperture. A standard 2D model is not generally appropriate when the presence of mineral precipitate or biomass creates complex and irregular three-dimensional (3D) pore geometries. We modify the 2D lattice Boltzmann method (LBM) to incorporate viscous drag from the top and bottom microfluidic device (micromodel) surfaces, typically excluded in a 2D model. Viscous drag from these surfaces can be approximated by uniformly scaling a steady-state 2D velocity field at low Reynolds number. We demonstrate increased accuracy by approximating the viscous dragmore » with an analytically-derived body force which assumes a local parabolic velocity profile across the micromodel depth. Accuracy of the generated 2D velocity field and simulation permeability have not been evaluated in geometries with variable aperture. We obtain permeabilities within approximately 10% error and accurate streamlines from the proposed 2D method relative to results obtained from 3D simulations. Additionally, the proposed method requires a CPU run time approximately 40 times less than a standard 3D method, representing a significant computational benefit for permeability calculations.« less

  1. Towards syntactic characterizations of approximation schemes via predicate and graph decompositions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunt, H.B. III; Stearns, R.E.; Jacob, R.

    1998-12-01

    The authors present a simple extensible theoretical framework for devising polynomial time approximation schemes for problems represented using natural syntactic (algebraic) specifications endowed with natural graph theoretic restrictions on input instances. Direct application of the technique yields polynomial time approximation schemes for all the problems studied in [LT80, NC88, KM96, Ba83, DTS93, HM+94a, HM+94] as well as the first known approximation schemes for a number of additional combinatorial problems. One notable aspect of the work is that it provides insights into the structure of the syntactic specifications and the corresponding algorithms considered in [KM96, HM+94]. The understanding allows them tomore » extend the class of syntactic specifications for which generic approximation schemes can be developed. The results can be shown to be tight in many cases, i.e. natural extensions of the specifications can be shown to yield non-approximable problems. The results provide a non-trivial characterization of a class of problems having a PTAS and extend the earlier work on this topic by [KM96, HM+94].« less

  2. Exp(1076) Shades of Black: Aspects of Black Hole Microstates

    NASA Astrophysics Data System (ADS)

    Vasilakis, Orestis

    In this thesis we examine smooth supergravity solutions known as "microstate geometries". These solutions have neither a horizon, nor a singularity, yet they have the same asymptotic structure and conserved charges as black holes. Specifically we study supersymmetric and extremal non-supersymmetric solutions. The goal of this program is to construct enough microstates to account for the correct scaling behavior of the black hole entropy with respect to the charges within the supergravity approximation. For supersymmetric systems that are ⅛-BPS, microstate geometries account so far only for Q5/4 of the total entropy S ˜ Q3/2, while for non-supersymmetric systems the known microstate geometries are sporadic. For the supersymmetric case we construct solutions with three and four charges. Five-dimensional systems with three and four charges are ⅛-BPS. Thus they admit macroscopic horizons making the supergravity approximation valid. For the three-charge case we present some steps towards the construction of the superstratum, a microstate geometry depending on arbitrary functions of two variables, which is expected to provide the necessary entropy for this class of solutions. Specifically we construct multiple concentric solutions with three electric and two dipole magnetic charges which depend on arbitrary functions of two variables and examine their properties. These solutions have no KKM charge and thus are singular. For the four-charge case we construct microstate geometries by extending results available in the literature for three charges. We find smooth solutions in terms of bubbled geometries with ambipolar Gibbons-Hawking base space and by constructing the relevant supertubes. In the non-supersymmetric case we work with a three-charge system of extremal black holes known as almost-BPS, which provides a controlled way of breaking sypersymmetry. By using supertubes we construct the first systematic example of a family of almost-BPS microstate geometries and examine the moduli space of solutions. Furthermore by using brane probe analysis we show that, despite the breaking of supersymmetry, almost-BPS solutions receive no quantum corrections and thus must be subject to some kind of non-renormalization theorem.

  3. Force-Free Magnetic Fields Calculated from Automated Tracing of Coronal Loops with AIA/SDO

    NASA Astrophysics Data System (ADS)

    Aschwanden, M. J.

    2013-12-01

    One of the most realistic magnetic field models of the solar corona is a nonlinear force-free field (NLFFF) solution. There exist about a dozen numeric codes that compute NLFFF solutions based on extrapolations of photospheric vector magnetograph data. However, since the photosphere and lower chromosphere is not force-free, a suitable correction has to be applied to the lower boundary condition. Despite of such "pre-processing" corrections, the resulting theoretical magnetic field lines deviate substantially from observed coronal loop geometries. - Here we developed an alternative method that fits an analytical NLFFF approximation to the observed geometry of coronal loops. The 2D coordinates of the geometry of coronal loop structures observed with AIA/SDO are traced with the "Oriented Coronal CUrved Loop Tracing" (OCCULT-2) code, an automated pattern recognition algorithm that has demonstrated the fidelity in loop tracing matching visual perception. A potential magnetic field solution is then derived from a line-of-sight magnetogram observed with HMI/SDO, and an analytical NLFFF approximation is then forward-fitted to the twisted geometry of coronal loops. We demonstrate the performance of this magnetic field modeling method for a number of solar active regions, before and after major flares observed with SDO. The difference of the NLFFF and the potential field energies allows us then to compute the free magnetic energy, which is an upper limit of the energy that is released during a solar flare.

  4. Quantum theory of electromagnetic fields in a cosmological quantum spacetime

    NASA Astrophysics Data System (ADS)

    Lewandowski, Jerzy; Nouri-Zonoz, Mohammad; Parvizi, Ali; Tavakoli, Yaser

    2017-11-01

    The theory of quantum fields propagating on an isotropic cosmological quantum spacetime is reexamined by generalizing the scalar test field to an electromagnetic (EM) vector field. For any given polarization of the EM field on the classical background, the Hamiltonian can be written in the form of the Hamiltonian of a set of decoupled harmonic oscillators, each corresponding to a single mode of the field. In transition from the classical to quantum spacetime background, following the technical procedure given by Ashtekar et al. [Phys. Rev. D 79, 064030 (2009), 10.1103/PhysRevD.79.064030], a quantum theory of the test EM field on an effective (dressed) spacetime emerges. The nature of this emerging dressed geometry is independent of the chosen polarization, but it may depend on the energy of the corresponding field mode. Specifically, when the backreaction of the field on the quantum geometry is negligible (i.e., a test field approximation is assumed), all field modes probe the same effective background independent of the mode's energy. However, when the backreaction of the field modes on the quantum geometry is significant, by employing a Born-Oppenheimer approximation, it is shown that a rainbow (i.e., a mode-dependent) metric emerges. The emergence of this mode-dependent background in the Planck regime may have a significant effect on the creation of quantum particles. The production amount on the dressed background is computed and is compared with the familiar results on the classical geometry.

  5. Ambient occlusion effects for combined volumes and tubular geometry.

    PubMed

    Schott, Mathias; Martin, Tobias; Grosset, A V Pascal; Smith, Sean T; Hansen, Charles D

    2013-06-01

    This paper details a method for interactive direct volume rendering that computes ambient occlusion effects for visualizations that combine both volumetric and geometric primitives, specifically tube-shaped geometric objects representing streamlines, magnetic field lines or DTI fiber tracts. The algorithm extends the recently presented the directional occlusion shading model to allow the rendering of those geometric shapes in combination with a context providing 3D volume, considering mutual occlusion between structures represented by a volume or geometry. Stream tube geometries are computed using an effective spline-based interpolation and approximation scheme that avoids self-intersection and maintains coherent orientation of the stream tube segments to avoid surface deforming twists. Furthermore, strategies to reduce the geometric and specular aliasing of the stream tubes are discussed.

  6. The absence of horizon in black-hole formation

    NASA Astrophysics Data System (ADS)

    Ho, Pei-Ming

    2016-08-01

    With the back-reaction of Hawking radiation taken into consideration, the work of Kawai, Matsuo and Yokokura [1] has shown that, under a few assumptions, the collapse of matter does not lead to event horizon nor apparent horizon. In this paper, we relax their assumptions and elaborate on the space-time geometry of a generic collapsing body with spherical symmetry. The geometry outside the collapsing sphere is found to be approximated by the geometry outside the white-hole horizon, hence the collapsing matter remains outside the Schwarzschild radius. As particles in Hawking radiation are created in the vicinity of the collapsing matter, the information loss paradox is alleviated. Assuming that the collapsing body evaporates within finite time, there is no event horizon.

  7. Sulphur hexaflouride: low energy (e,2e) experiments and molecular three-body distorted wave theory

    NASA Astrophysics Data System (ADS)

    Nixon, Kate L.; Murray, Andrew J.; Chaluvadi, H.; Ning, C. G.; Colgan, James; Madison, Don H.

    2016-10-01

    Experimental and theoretical triple differential ionisation cross-sections (TDCSs) are presented for the highest occupied molecular orbital of sulphur hexafluoride. These measurements were performed in the low energy regime, with outgoing electron energies ranging from 5 to 40 eV in a coplanar geometry, and with energies of 10 and 20 eV in a perpendicular geometry. Complementary theoretical predictions of the TDCS were calculated using the molecular three-body distorted wave formalism. Calculations were performed using a proper average over molecular orientations as well as the orientation-averaged molecular orbital approximation. This more sophisticated model was found to be in closer agreement with the experimental data, however neither model accurately predicts the TDCS over all geometries and energies.

  8. Effect of geometry on the pressure induced donor binding energy in semiconductor nanostructures

    NASA Astrophysics Data System (ADS)

    Kalpana, P.; Jayakumar, K.; Nithiananthi, P.

    2015-09-01

    The effect of geometry on an on-center hydrogenic donor impurity in a GaAs/(Ga,Al)As quantum wire (QWW) and quantum dot (QD) under the influence of Γ-X band mixing due to an applied hydrostatic pressure is theoretically studied. Numerical calculations are performed in an effective mass approximation. The ground state impurity energy is obtained by variational procedure. Both the effects of pressure and geometry are to exert an additional confinement on the impurity inside the wire as well as dot. We found that the donor binding energy is modified by the geometrical effects as well as by the confining potential when it is subjected to external pressure. The results are presented and discussed.

  9. Ambient Occlusion Effects for Combined Volumes and Tubular Geometry

    PubMed Central

    Schott, Mathias; Martin, Tobias; Grosset, A.V. Pascal; Smith, Sean T.; Hansen, Charles D.

    2013-01-01

    This paper details a method for interactive direct volume rendering that computes ambient occlusion effects for visualizations that combine both volumetric and geometric primitives, specifically tube-shaped geometric objects representing streamlines, magnetic field lines or DTI fiber tracts. The algorithm extends the recently presented the directional occlusion shading model to allow the rendering of those geometric shapes in combination with a context providing 3D volume, considering mutual occlusion between structures represented by a volume or geometry. Stream tube geometries are computed using an effective spline-based interpolation and approximation scheme that avoids self-intersection and maintains coherent orientation of the stream tube segments to avoid surface deforming twists. Furthermore, strategies to reduce the geometric and specular aliasing of the stream tubes are discussed. PMID:23559506

  10. Background-independent condensed matter models for quantum gravity

    NASA Astrophysics Data System (ADS)

    Hamma, Alioscia; Markopoulou, Fotini

    2011-09-01

    A number of recent proposals on a quantum theory of gravity are based on the idea that spacetime geometry and gravity are derivative concepts and only apply at an approximate level. There are two fundamental challenges to any such approach. At the conceptual level, there is a clash between the 'timelessness' of general relativity and emergence. Secondly, the lack of a fundamental spacetime renders difficult the straightforward application of well-known methods of statistical physics to the problem. We recently initiated a study of such problems using spin systems based on the evolution of quantum networks with no a priori geometric notions as models for emergent geometry and gravity. In this paper, we review two such models. The first model is a model of emergent (flat) space and matter, and we show how to use methods from quantum information theory to derive features such as the speed of light from a non-geometric quantum system. The second model exhibits interacting matter and geometry, with the geometry defined by the behavior of matter. This model has primitive notions of gravitational attraction that we illustrate with a toy black hole, and exhibits entanglement between matter and geometry and thermalization of the quantum geometry.

  11. Emancipating traditional channel network types: quantification of topology and geometry, and relation to geologic boundary conditions

    NASA Astrophysics Data System (ADS)

    Temme, A.; Langston, A. L.

    2017-12-01

    Traditional classification of channel networks is helpful for qualitative geologic and geomorphic inference. For instance, a dendritic network indicates no strong lithological control on where channels flow. However, an approach where channel network structure is quantified, is required to be able to indicate for instance how increasing levels of lithological control lead, gradually or suddenly, to a trellis-type drainage network Our contribution aims to aid this transition to a quantitative analysis of channel networks. First, to establish the range of typically occurring channel network properties, we selected 30 examples of traditional drainage network types from around the world. For each of these, we calculated a set of topological and geometric properties, such as total drainage length, average length of a channel segment and the average angle of intersection of channel segments. A decision tree was used to formalize the relation between these newly quantified properties on the one hand, and traditional network types on the other hand. Then, to explore how variations in lithological and geomorphic boundary conditions affect channel network structure, we ran a set of experiments with landscape evolution model Landlab. For each simulated channel network, the same set of topological and geometric properties was calculated as for the 30 real-world channel networks. The latter were used for a first, visual evaluation to find out whether a simulated network that looked, for instance, rectangular, also had the same set of properties as real-world rectangular channel networks. Ultimately, the relation between these properties and the imposed lithological and geomorphic boundary conditions was explored using simple bivariate statistics.

  12. Enhancement of thermoelectric characteristics in AlGaN/GaN films deposited on inverted pyramidal Si surfaces

    NASA Astrophysics Data System (ADS)

    Yalamarthy, Ananth Saran; So, Hongyun; Senesky, Debbie G.

    2017-07-01

    In this letter, we demonstrate an engineering strategy to boost thermoelectric power factor via geometry-induced properties of the pyramid structure. Aluminum gallium nitride (AlGaN)/GaN heterostructured films grown on inverted pyramidal silicon (Si) demonstrate higher power factor as compared to those grown on conventional flat Si substrates. We found that the magnitude of the Seebeck coefficient at room temperature increased from approximately 297 μVK-1 for the flat film to approximately 849 μVK-1 for the film on inverted pyramidal Si. In addition, the "effective" electrical conductivity of the AlGaN/GaN on the inverted pyramidal structure increased compared to the flat structure, generating an enhancement of thermoelectric power factor. The results demonstrate how manipulation of geometry can be used to achieve better thermoelectric characteristics in a manner that could be scaled to a variety of different material platforms.

  13. Hot-flow tests of a series of 10-percent-scale turbofan forced mixing nozzles

    NASA Technical Reports Server (NTRS)

    Head, V. L.; Povinelli, L. A.; Gerstenmaier, W. H.

    1984-01-01

    An approximately 1/10-scale model of a mixed-flow exhaust system was tested in a static facility with fully simulated hot-flow cruise and takeoff conditions. Nine mixer geometries with 12 to 24 lobes were tested. The areas of the core and fan stream were held constant to maintain a bypass ratio of approximately 5. The research results presented in this report were obtained as part of a program directed toward developing an improved mixer design methodology by using a combined analytical and experimental approach. The effects of lobe spacing, lobe penetration, lobe-to-centerbody gap, lobe contour, and scalloping of the radial side walls were investigated. Test measurements included total pressure and temperature surveys, flow angularity surveys, and wall and centerbody surface static pressure measurements. Contour plots at various stations in the mixing region are presented to show the mixing effectiveness for the various lobe geometries.

  14. Weakly nonparallel and curvature effects on stationary crossflow instability: Comparison of results from multiple-scales analysis and parabolized stability equations

    NASA Technical Reports Server (NTRS)

    Singer, Bart A.; Choudhari, Meelan; Li, Fei

    1995-01-01

    A multiple-scales approach is used to approximate the effects of nonparallelism and streamwise surface curvature on the growth of stationary crossflow vortices in incompressible, three-dimesional boundary layers. The results agree with results predicted by solving the parabolized stability equations in regions where the nonparallelism is sufficiently weak. As the nonparallelism increases, the agreement between the two approaches worsens. An attempt has been made to quantify the nonparallelism on flow stability in terms of a nondimensional number that describes the rate of change of the mean flow relative to the disturbance wavelength. We find that the above nondimensional number provides useful information about the adequacy of the multiple-scales approximation for different disturbances for a given flow geometry, but the number does not collapse data for different flow geometries onto a single curve.

  15. Variation in spectral response of soybeans with respect to illumination, view, and canopy geometry

    NASA Technical Reports Server (NTRS)

    Ranson, K. J.; Biehl, L. L.; Bauer, M. E.

    1984-01-01

    Comparisons of the spectral response for incomplete (well-defined row structure) and complete (overlapping row structure) canopies of soybeans indicated a greater dependence on Sun and view geometry for the incomplete canopies. Red and near-IR reflectance for the incomplete canopy decreased as solar zenith angle increased for a nadir view angle until the soil between the plant rows was completely shaded. Thereafter for increasing solar zenith angle, the red reflectance leveled off and the near-IR reflectance increased. A 'hot spot' effect was evident for the red and near-IR reflectance factors. The 'hot spot' effect was more pronounced for the red band based on relative reflectance value changes. The ratios of off-nadir to nadir acquired data reveal that off-nadir red band reflectance factors more closely approximated straightdown measurements for time periods away from solar noon. Normalized difference generally approximated straightdown measurements during the middle portion of the day.

  16. Carrier states and optical response in core-shell-like semiconductor nanostructures

    NASA Astrophysics Data System (ADS)

    Duque, C. M.; Mora-Ramos, M. E.; Duque, C. A.

    2017-02-01

    The charge carrier states in a GaAs/Al?Ga?As axially symmetric core-shell quantum wire are calculated in the effective mass approximation via a spectral method. The possible presence of externally applied electric and magnetic fields is taken into account, together with the variation in the characteristic in-plane dimensions of the structure. The obtained energy spectrum is used to evaluate the optical response through the coefficients of intersubband optical absorption and relative refractive index change. The particular geometry of the system also allows to use the same theoretical model in order to determine the photoluminescence peak energies associated to correlated electron-hole states in double GaAs/Al?Ga?As quantum rings, showing a good agreement when they are compared with recent experimental reports. This agreement may validate the use of both the calculation process and the approximate model of abrupt, circularly shaped cross section geometry for the system.

  17. Sprays and Cartan projective connections

    NASA Astrophysics Data System (ADS)

    Saunders, D. J.

    2004-10-01

    Around 80 years ago, several authors (for instance H. Weyl, T.Y. Thomas, J. Douglas and J.H.C. Whitehead) studied the projective geometry of paths, using the methods of tensor calculus. The principal object of study was a spray, namely a homogeneous second-order differential equation, or more generally a projective equivalence class of sprays. At around the same time, E. Cartan studied the same topic from a different point of view, by imagining a projective space attached to a manifold, or, more generally, attached to a `manifold of elements'; the infinitesimal `glue' may be interpreted in modern language as a Cartan projective connection on a principal bundle. This paper describes the geometrical relationship between these two points of view.

  18. Rapid estimation of characteristics of gas dynamic lasers

    NASA Technical Reports Server (NTRS)

    Murty, S. S. R.

    1974-01-01

    Sudden-freeze approximation is applied to the flow of a CO2-N2-He mixture in wedge-type nozzles. This approximation permits rapid estimation of the freezing temperature of the upper laser level as a function of the stagnation pressure and the nozzle geometry. The stagnation temperature and the composition of the mixture appear as parameters. Gain and power output may then be estimated and calculations are presented for two cases.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koenig, Robert; Institute for Quantum Information, California Institute of Technology, Pasadena, California 91125; Mitchison, Graeme

    In its most basic form, the finite quantum de Finetti theorem states that the reduced k-partite density operator of an n-partite symmetric state can be approximated by a convex combination of k-fold product states. Variations of this result include Renner's 'exponential' approximation by 'almost-product' states, a theorem which deals with certain triples of representations of the unitary group, and the result of D'Cruz et al. [e-print quant-ph/0606139;Phys. Rev. Lett. 98, 160406 (2007)] for infinite-dimensional systems. We show how these theorems follow from a single, general de Finetti theorem for representations of symmetry groups, each instance corresponding to a particular choicemore » of symmetry group and representation of that group. This gives some insight into the nature of the set of approximating states and leads to some new results, including an exponential theorem for infinite-dimensional systems.« less

  20. Performance Analysis of Evolutionary Algorithms for Steiner Tree Problems.

    PubMed

    Lai, Xinsheng; Zhou, Yuren; Xia, Xiaoyun; Zhang, Qingfu

    2017-01-01

    The Steiner tree problem (STP) aims to determine some Steiner nodes such that the minimum spanning tree over these Steiner nodes and a given set of special nodes has the minimum weight, which is NP-hard. STP includes several important cases. The Steiner tree problem in graphs (GSTP) is one of them. Many heuristics have been proposed for STP, and some of them have proved to be performance guarantee approximation algorithms for this problem. Since evolutionary algorithms (EAs) are general and popular randomized heuristics, it is significant to investigate the performance of EAs for STP. Several empirical investigations have shown that EAs are efficient for STP. However, up to now, there is no theoretical work on the performance of EAs for STP. In this article, we reveal that the (1+1) EA achieves 3/2-approximation ratio for STP in a special class of quasi-bipartite graphs in expected runtime [Formula: see text], where [Formula: see text], [Formula: see text], and [Formula: see text] are, respectively, the number of Steiner nodes, the number of special nodes, and the largest weight among all edges in the input graph. We also show that the (1+1) EA is better than two other heuristics on two GSTP instances, and the (1+1) EA may be inefficient on a constructed GSTP instance.

  1. Technique for Calculating Solution Derivatives With Respect to Geometry Parameters in a CFD Code

    NASA Technical Reports Server (NTRS)

    Mathur, Sanjay

    2011-01-01

    A solution has been developed to the challenges of computation of derivatives with respect to geometry, which is not straightforward because these are not typically direct inputs to the computational fluid dynamics (CFD) solver. To overcome these issues, a procedure has been devised that can be used without having access to the mesh generator, while still being applicable to all types of meshes. The basic approach is inspired by the mesh motion algorithms used to deform the interior mesh nodes in a smooth manner when the surface nodes, for example, are in a fluid structure interaction problem. The general idea is to model the mesh edges and nodes as constituting a spring-mass system. Changes to boundary node locations are propagated to interior nodes by allowing them to assume their new equilibrium positions, for instance, one where the forces on each node are in balance. The main advantage of the technique is that it is independent of the volumetric mesh generator, and can be applied to structured, unstructured, single- and multi-block meshes. It essentially reduces the problem down to defining the surface mesh node derivatives with respect to the geometry parameters of interest. For analytical geometries, this is quite straightforward. In the more general case, one would need to be able to interrogate the underlying parametric CAD (computer aided design) model and to evaluate the derivatives either analytically, or by a finite difference technique. Because the technique is based on a partial differential equation (PDE), it is applicable not only to forward mode problems (where derivatives of all the output quantities are computed with respect to a single input), but it could also be extended to the adjoint problem, either by using an analytical adjoint of the PDE or a discrete analog.

  2. Multi-Angle Implementation of Atmospheric Correction for MODIS (MAIAC). Part 3: Atmospheric Correction

    NASA Technical Reports Server (NTRS)

    Lyapustin, A.; Wang, Y.; Laszlo, I.; Hilker, T.; Hall, F.; Sellers, P.; Tucker, J.; Korkin, S.

    2012-01-01

    This paper describes the atmospheric correction (AC) component of the Multi-Angle Implementation of Atmospheric Correction algorithm (MAIAC) which introduces a new way to compute parameters of the Ross-Thick Li-Sparse (RTLS) Bi-directional reflectance distribution function (BRDF), spectral surface albedo and bidirectional reflectance factors (BRF) from satellite measurements obtained by the Moderate Resolution Imaging Spectroradiometer (MODIS). MAIAC uses a time series and spatial analysis for cloud detection, aerosol retrievals and atmospheric correction. It implements a moving window of up to 16 days of MODIS data gridded to 1 km resolution in a selected projection. The RTLS parameters are computed directly by fitting the cloud-free MODIS top of atmosphere (TOA) reflectance data stored in the processing queue. The RTLS retrieval is applied when the land surface is stable or changes slowly. In case of rapid or large magnitude change (as for instance caused by disturbance), MAIAC follows the MODIS operational BRDF/albedo algorithm and uses a scaling approach where the BRDF shape is assumed stable but its magnitude is adjusted based on the latest single measurement. To assess the stability of the surface, MAIAC features a change detection algorithm which analyzes relative change of reflectance in the Red and NIR bands during the accumulation period. To adjust for the reflectance variability with the sun-observer geometry and allow comparison among different days (view geometries), the BRFs are normalized to the fixed view geometry using the RTLS model. An empirical analysis of MODIS data suggests that the RTLS inversion remains robust when the relative change of geometry-normalized reflectance stays below 15%. This first of two papers introduces the algorithm, a second, companion paper illustrates its potential by analyzing MODIS data over a tropical rainforest and assessing errors and uncertainties of MAIAC compared to conventional MODIS products.

  3. Novel Agricultural Conservation System with Sustained Yield and Decreased Water, Nutrient, Energy, and Carbon Footprints

    NASA Astrophysics Data System (ADS)

    Hansen, K.; Shukla, S.; Holt, N.; Hendricks, G.; Sishodia, R. P.

    2017-12-01

    Fresh fruits and vegetables are conventionally grown in raised bed plasticulture (RBP), a high intensity, high input, and high output production system. In 2016, the fresh market plasticulture industry covered 680,000 ha in the US, producing crops (e.g. tomato, peppers, melons, and strawberries) valued at ten billion dollars. To meet the increasing future demand for fresh fruits and vegetables and sustain the production potential of croplands, a transformation of the conventional food-water-energy nexus is essential. A novel agricultural conservation system, compact bed geometry, has been proposed to shift the paradigm in RBP, sustaining yield and decreasing inputs (e.g. water, nutrients, energy, and carbon). Compact bed geometries fit the shape of the wetting front created when water is applied through drip irrigation on the production soil, creating a taller (23-30 cm) and thinner bed (66-41 cm). Two seasons of tomato (single row) and pepper (double row) production, in the environmentally fragile watershed of the Florida Everglades, highlight the potential impact of compact bed geometry on environmental sustainability in agricultural production. No difference in plant growth or yield was detected, with a reduction of 5-50% in irrigation water, up to 20% less N application, 12% less P, 20% less K, and 5-15% less carbon dioxide emissions. The hydrologic benefits of compact bed geometry include 26% less runoff generation, decreased need for active drainage pumping, and increased residence time for irrigation water within the bed, overall decreasing instances of nutrient leaching. A water related co-benefit observed was a reduction in the occurrences of Phytophthora capsici in pepper, which has the potential to reduce yield by as much as 70%. Non-water co-benefits include up to a 250/ ha reduction in production cost, with the potential to save the industry 200 million dollars annually. This economic benefit has led to rapid industry adoption, with more than 20,000 acres already converted to compact bed geometries, up and down the east coast of the US. The adoption of compact bed geometries achieves "More Crop, per Drop" and is revolutionizing the food-water-energy nexus as it relates to fruit and vegetable production.

  4. Magnetic reversal dynamics of NiFe-based artificial spin ice: Effect of Nb layer in normal and superconducting state

    NASA Astrophysics Data System (ADS)

    Kaur, M.; Gupta, Anurag; Varandani, D.; Verma, Apoorva; Senguttuvan, T. D.; Mehta, B. R.; Budhani, R. C.

    2017-11-01

    Square arrays of artificial spin ice (ASI) constituting weakly interacting NiFe nano-islands, with length ˜312 nm, width ˜125 nm, thickness ˜20 nm, and lattice constant ˜570 nm, were fabricated on Nb thin film and on thermally grown 300 nm SiO2 on silicon. Detailed investigations of magnetic force microscopy (MFM) at room temperature, and magnetization M(H) loops and relaxation of remanent magnetization (Mr) at various temperatures were carried out in two in-plane field geometries, namely, parallel ("P"-parallel to the square lattice) and diagonal ("D"- 45° to the square lattice). The magnetic response of the ASI samples shows striking difference for insulating (SiO2), metallic (Nb, T > 6.6 K) and superconducting (Nb, T < 6.6 K) bases, and the field geometry. For instance, with the Nb base in the normal metallic state (T > 6.6 K), (1) in "P" geometry the M(H) loops are found to be more "S" shaped in comparison with that for SiO2 base; (2) the ratio of magnetic vertex population of Type II to Type III vertices extracted from MFM studies in "P"("D") geometry is ˜1:1.1(1.2:1) that changed for the SiO2 base to ˜2.1:1 (4: 1). However, the NiFe-ASI on both metallic Nb and SiO2 bases exhibit a highly athermal decay of magnetization, and the % change in Mr in about two hours at T = 10 K (300 K) lies in a range of ˜1.07-1.80 (0.25-0.62). With Nb base in superconducting state (T < 6.6 K), the M(H) loops not only look radically different from those with SiO2 and metallic Nb as bases but also show significant difference in "P" and "D" geometries. These results are discussed in terms of inter-island magnetostatic energy as influenced by field geometry, presence of metallic Nb base and competing vortex pinning energy of superconducting Nb base.

  5. Lubrication of rigid ellipsida solids

    NASA Technical Reports Server (NTRS)

    Hamrock, B. J.; Dowson, D.

    1982-01-01

    The influence of geometry on the isothermal hydrodynamic film separating two rigid solids was investigated. The minimum film thickness is derived for fully flooded conjunctions by using the Reynolds boundary conditions. It was found that the minimum film thickness had the same speed, viscosity, and load dependence as Kapitza' classical solution. However, the incorporation of Reynolds boundary conditions resulted in an additional geometry effect. Solutions using the parabolic film approximation are compared by using the exact expression for the film in the analysis. Contour plots are known that indicate in detail the pressure developed between the solids.

  6. An analytical solution for the squeeze film between a nondeformable sphere and groove

    NASA Technical Reports Server (NTRS)

    Allen, C. W.; Wilson, M. P.

    1972-01-01

    An analysis is presented to compute the film thickness, pressure and load relations between a rigid ball and rigid groove in normal approach when lubricated by a fluid with an exponential pressure-viscosity relationship. The geometry of the ball-groove system is reduced to the equivalent system of a paraboloid approaching a flat plate. Exact and approximate solutions are presented for the load and pressure relations. There is found to be a limiting load for a given geometry and lubricant regardless of the rate of approach.

  7. Numerical simulation of MHD turbulence in three dimensions

    NASA Technical Reports Server (NTRS)

    Goldstein, M. L.; Roberts, D. A.; Deane, A.

    1997-01-01

    The evolution of Alfvenic turbulence in 3D spherical geometry can now be studied. In simulations, a fast stream is sandwiched between two slower streams. The inflow is both supersonic and superAlfvenic. Alfven waves entering the box are convected into the medium and interact nonlinearly with the velocity shear and with any structures (i.e., flux tubes) that might be present. These initial simulations suggest that velocity shear, even in spherical geometry, is able to drive a turbulent cascade which results in approximately Kolmogoroff-like power spectra.

  8. Subsonic longitudinal aerodynamic characteristics and engine pressure distributions for an aircraft with an integrated scramjet designed for Mach 6 cruise. [conducted in Langley 7 by 10 foot high speed tunnel

    NASA Technical Reports Server (NTRS)

    Huffman, J. K.; Fox, C. H., Jr.; Johnston, P. J.

    1977-01-01

    A 1/10-scale model of a proposed hypersonic aircraft with an integrated scramjet was tested. The investigation took place over a Mach number range from 0.2 to 0.7 and an angle of attack range from 2 deg to approximately 17 deg at a sideslip angle of 0 deg. The primary configuration variables studied were engine location, internal engine geometry, and external engine geometry. The results are presented without analysis.

  9. Probing near-normally propagating bulk acoustic waves using pseudo-reflection geometry Brillouin spectroscopy

    NASA Astrophysics Data System (ADS)

    Parsons, L. C.; Andrews, G. T.

    2012-09-01

    Pseudo-reflection geometry Brillouin spectroscopy can be used to probe acoustic wave dispersion approximately along the surface normal of a material system while avoiding the difficulties associated with specularly reflected light encountered in an ideal reflection configuration. As an example of its application, we show analytically that it can be used to determine both the refractive index and bulk acoustic mode velocities of optically-isotropic non-metallic materials and confirm the utility of the approach via a series of experiments on fused quartz, gallium phosphide, water, and porous silicon films.

  10. Combined VSWIR/TIR Products Overview: Issues and Examples

    NASA Technical Reports Server (NTRS)

    Knox, Robert G.

    2010-01-01

    The presentation provides a summary of VSWIR data collected at 19-day intervals for most areas. TIR data was collected both day and night on a 5-day cycle (more frequently at higher latitudes), the TIR swath is four times as wide as VSWIR, and the 5-day orbit repeat is approximate. Topics include nested swath geometry for reference point design and coverage simulations for sample FLUXNET tower sites. Other points examined include variation in latitude for revisit frequency, overpass times, and TIR overlap geometry and timing between VSWIR data collections.

  11. The Function sin x/x.

    ERIC Educational Resources Information Center

    Gearhart, William B.; Shultz, Harris S.

    1990-01-01

    Presents some examples from geometry: area of a circle; centroid of a sector; Buffon's needle problem; and expression for pi. Describes several roles of the trigonometric function in mathematics and applications, including Fourier analysis, spectral theory, approximation theory, and numerical analysis. (YP)

  12. A finite element formulation for scattering from electrically large 2-dimensional structures

    NASA Technical Reports Server (NTRS)

    Ross, Daniel C.; Volakis, John L.

    1992-01-01

    A finite element formulation is given using the scattered field approach with a fictitious material absorber to truncate the mesh. The formulation includes the use of arbitrary approximation functions so that more accurate results can be achieved without any modification to the software. Additionally, non-polynomial approximation functions can be used, including complex approximation functions. The banded system that results is solved with an efficient sparse/banded iterative scheme and as a consequence, large structures can be analyzed. Results are given for simple cases to verify the formulation and also for large, complex geometries.

  13. Error Estimates for Approximate Solutions of the Riccati Equation with Real or Complex Potentials

    NASA Astrophysics Data System (ADS)

    Finster, Felix; Smoller, Joel

    2010-09-01

    A method is presented for obtaining rigorous error estimates for approximate solutions of the Riccati equation, with real or complex potentials. Our main tool is to derive invariant region estimates for complex solutions of the Riccati equation. We explain the general strategy for applying these estimates and illustrate the method in typical examples, where the approximate solutions are obtained by gluing together WKB and Airy solutions of corresponding one-dimensional Schrödinger equations. Our method is motivated by, and has applications to, the analysis of linear wave equations in the geometry of a rotating black hole.

  14. Extrapolating subsurface geometry by surface expressions in transpressional strike slip fault, deduced from analogue experiments with settings of rheology and convergence angle

    NASA Astrophysics Data System (ADS)

    Hsieh, Shang Yu; Neubauer, Franz

    2015-04-01

    The internal structure of major strike-slip faults is still poorly understood, particularly how to extrapolate subsurface structures by surface expressions. Series of brittle analogue experiments by Leever et al., 2011 resulted the convergence angle is the most influential factor for surface structures. Further analogue models with different ductile settings allow a better understanding in extrapolating surface structures to the subsurface geometry of strike-slip faults. Fifteen analogue experiments were constructed to represent strike-slip faults in nature in different geological settings. As key parameters investigated in this study include: (a) the angle of convergence, (b) the thickness of brittle layer, (c) the influence of a rheological weak layer within the crust, and (d) influence of a thick and rheologically weak layer at the base of the crust. The experiments are aimed to explain first order structures along major transcurrent strike-slip faults such as the Altyn, Kunlun, San Andrea and Greendale (Darfield earthquake 2010) faults. The preliminary results show that convergence angle significantly influences the overall geometry of the transpressional system with greater convergence angles resulting in wider fault zones and higher elevation. Different positions, densities and viscosities of weak rheological layers have not only different surface expressions but also affect the fault geometry in the subsurface. For instance, rheological weak material in the bottom layer results in stretching when experiment reaches a certain displacement and a buildup of a less segmented, wide positive flower structure. At the surface, a wide fault valley in the middle of the fault zone is the reflection of stretching along the velocity discontinuity at depth. In models with a thin and rheologically weaker layer in the middle of the brittle layer, deformation is distributed over more faults and the geometry of the fault zone below and above the weak zone shows significant differences, suggesting that the correlation of structures across a weak layer has to be supported by geophysical data, which help constraining the geometry of the deep part. This latter experiment has significantly similar phenomena in reality, such as few pressure ridges along Altyn fault. The experimental results underline the need to understand the role of the convergence angle and the influence of rheology on fault evolution, in order to connect between surface deformation and subsurface geometry.

  15. Orientation relationship between the T structure and the icosahedral quasicrystal in the Zn-Mg-Al alloy system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakayama, Kei, E-mail: k.n@aoni.waseda.jp; Watanabe, Junya; Koyama, Yasumasa, E-mail: ykoyama@waseda.jp

    2016-08-26

    To understand the crystallographic relation between the Bergman-type icosahedral quasicrystal and its approximant-T structure, we have investigated the crystallographic features of prepared Zn-Mg-Al alloy samples, mainly by transmission electron microscopy. It was found that there existed three kinds of regions: that is, C14-Laves, approximant-T, and icosahedral-quasicrystal regions, in Zn-Mg-Al alloy samples with the composition of Zn-36at.%Mg-9at.%Al. Among these regions, in particular, we tried to determine an orientation relationship between neighboring icosahedral-quasicrystal and approximant-T regions. Based on the determined relationship, for instance, four threefold rotatory-inversion axes in the T structure were found to be parallel to four of ten threefold rotatory-inversionmore » axes in the icosahedral quasicrystal. It was thus understood that the atomic arrangements of the Bergman-type icosahedral quasicrystal and its approximant-T structure are likely to resemble each other.« less

  16. Fast and Analytical EAP Approximation from a 4th-Order Tensor.

    PubMed

    Ghosh, Aurobrata; Deriche, Rachid

    2012-01-01

    Generalized diffusion tensor imaging (GDTI) was developed to model complex apparent diffusivity coefficient (ADC) using higher-order tensors (HOTs) and to overcome the inherent single-peak shortcoming of DTI. However, the geometry of a complex ADC profile does not correspond to the underlying structure of fibers. This tissue geometry can be inferred from the shape of the ensemble average propagator (EAP). Though interesting methods for estimating a positive ADC using 4th-order diffusion tensors were developed, GDTI in general was overtaken by other approaches, for example, the orientation distribution function (ODF), since it is considerably difficult to recuperate the EAP from a HOT model of the ADC in GDTI. In this paper, we present a novel closed-form approximation of the EAP using Hermite polynomials from a modified HOT model of the original GDTI-ADC. Since the solution is analytical, it is fast, differentiable, and the approximation converges well to the true EAP. This method also makes the effort of computing a positive ADC worthwhile, since now both the ADC and the EAP can be used and have closed forms. We demonstrate our approach with 4th-order tensors on synthetic data and in vivo human data.

  17. Studies of porous anodic alumina using spin echo scattering angle measurement

    NASA Astrophysics Data System (ADS)

    Stonaha, Paul

    The properties of a neutron make it a useful tool for use in scattering experiments. We have developed a method, dubbed SESAME, in which specially designed magnetic fields encode the scattering signal of a neutron beam into the beam's average Larmor phase. A geometry is presented that delivers the correct Larmor phase (to first order), and it is shown that reasonable variations of the geometry do not significantly affect the net Larmor phase. The solenoids are designed using an analytic approximation. Comparison of this approximate function with finite element calculations and Hall probe measurements confirm its validity, allowing for fast computation of the magnetic fields. The coils were built and tested in-house on the NBL-4 instrument, a polarized neutron reflectometer whose construction is another major portion of this work. Neutron scattering experiments using the solenoids are presented, and the scattering signal from porous anodic alumina is investigated in detail. A model using the Born Approximation is developed and compared against the scattering measurements. Using the model, we define the necessary degree of alignment of such samples in a SESAME measurement, and we show how the signal retrieved using SESAME is sensitive to range of detectable momentum transfer.

  18. Fast and Analytical EAP Approximation from a 4th-Order Tensor

    PubMed Central

    Ghosh, Aurobrata; Deriche, Rachid

    2012-01-01

    Generalized diffusion tensor imaging (GDTI) was developed to model complex apparent diffusivity coefficient (ADC) using higher-order tensors (HOTs) and to overcome the inherent single-peak shortcoming of DTI. However, the geometry of a complex ADC profile does not correspond to the underlying structure of fibers. This tissue geometry can be inferred from the shape of the ensemble average propagator (EAP). Though interesting methods for estimating a positive ADC using 4th-order diffusion tensors were developed, GDTI in general was overtaken by other approaches, for example, the orientation distribution function (ODF), since it is considerably difficult to recuperate the EAP from a HOT model of the ADC in GDTI. In this paper, we present a novel closed-form approximation of the EAP using Hermite polynomials from a modified HOT model of the original GDTI-ADC. Since the solution is analytical, it is fast, differentiable, and the approximation converges well to the true EAP. This method also makes the effort of computing a positive ADC worthwhile, since now both the ADC and the EAP can be used and have closed forms. We demonstrate our approach with 4th-order tensors on synthetic data and in vivo human data. PMID:23365552

  19. The Effects of Accretion Disk Thickness on the Black Hole Reflection Spectrum

    NASA Astrophysics Data System (ADS)

    Taylor, Corbin; Reynolds, Christopher S.

    2018-01-01

    Despite being the gravitational engines that power galactic-scale winds and mega parsec-scale jets in active galaxies, black holes are remarkably simple objects, typically being fully described by their angular momenta (spin) and masses. The modelling of AGN X-ray reflection spectra has proven fruitful in estimating the spin of AGN, as well as giving insight into their accretion histories and into the properties of plasmas in the strong gravity regime. However, current models make simplifying assumptions about the geometry of the reflecting material in the accretion disk and the irradiating X-ray corona, approximating the disk as an optically thick, infinitely thin disk of material in the orbital plane. We present results from the new relativistic raytracing suite, Fenrir, that explore the effects that disk thickness may have on the reflection spectrum and the accompanying reverberation signatures. Approximating the accretion disk as an optically thick, geometrically thin, radiation pressure dominated disk (Shakura & Sunyaev 1973), one finds that the disk geometry is non-negligible in many cases, with significant changes in the broad Fe K line profile. Finally, we explore the systematic errors inherent in other contemporary models that approximate that disk as having negligible vertical extent.

  20. Robust optimization based upon statistical theory.

    PubMed

    Sobotta, B; Söhn, M; Alber, M

    2010-08-01

    Organ movement is still the biggest challenge in cancer treatment despite advances in online imaging. Due to the resulting geometric uncertainties, the delivered dose cannot be predicted precisely at treatment planning time. Consequently, all associated dose metrics (e.g., EUD and maxDose) are random variables with a patient-specific probability distribution. The method that the authors propose makes these distributions the basis of the optimization and evaluation process. The authors start from a model of motion derived from patient-specific imaging. On a multitude of geometry instances sampled from this model, a dose metric is evaluated. The resulting pdf of this dose metric is termed outcome distribution. The approach optimizes the shape of the outcome distribution based on its mean and variance. This is in contrast to the conventional optimization of a nominal value (e.g., PTV EUD) computed on a single geometry instance. The mean and variance allow for an estimate of the expected treatment outcome along with the residual uncertainty. Besides being applicable to the target, the proposed method also seamlessly includes the organs at risk (OARs). The likelihood that a given value of a metric is reached in the treatment is predicted quantitatively. This information reveals potential hazards that may occur during the course of the treatment, thus helping the expert to find the right balance between the risk of insufficient normal tissue sparing and the risk of insufficient tumor control. By feeding this information to the optimizer, outcome distributions can be obtained where the probability of exceeding a given OAR maximum and that of falling short of a given target goal can be minimized simultaneously. The method is applicable to any source of residual motion uncertainty in treatment delivery. Any model that quantifies organ movement and deformation in terms of probability distributions can be used as basis for the algorithm. Thus, it can generate dose distributions that are robust against interfraction and intrafraction motion alike, effectively removing the need for indiscriminate safety margins.

  1. Release of RANKERN 16A

    NASA Astrophysics Data System (ADS)

    Bird, Adam; Murphy, Christophe; Dobson, Geoff

    2017-09-01

    RANKERN 16 is the latest version of the point-kernel gamma radiation transport Monte Carlo code from AMEC Foster Wheeler's ANSWERS Software Service. RANKERN is well established in the UK shielding community for radiation shielding and dosimetry assessments. Many important developments have been made available to users in this latest release of RANKERN. The existing general 3D geometry capability has been extended to include import of CAD files in the IGES format providing efficient full CAD modelling capability without geometric approximation. Import of tetrahedral mesh and polygon surface formats has also been provided. An efficient voxel geometry type has been added suitable for representing CT data. There have been numerous input syntax enhancements and an extended actinide gamma source library. This paper describes some of the new features and compares the performance of the new geometry capabilities.

  2. An isogeometric boundary element method for electromagnetic scattering with compatible B-spline discretizations

    NASA Astrophysics Data System (ADS)

    Simpson, R. N.; Liu, Z.; Vázquez, R.; Evans, J. A.

    2018-06-01

    We outline the construction of compatible B-splines on 3D surfaces that satisfy the continuity requirements for electromagnetic scattering analysis with the boundary element method (method of moments). Our approach makes use of Non-Uniform Rational B-splines to represent model geometry and compatible B-splines to approximate the surface current, and adopts the isogeometric concept in which the basis for analysis is taken directly from CAD (geometry) data. The approach allows for high-order approximations and crucially provides a direct link with CAD data structures that allows for efficient design workflows. After outlining the construction of div- and curl-conforming B-splines defined over 3D surfaces we describe their use with the electric and magnetic field integral equations using a Galerkin formulation. We use Bézier extraction to accelerate the computation of NURBS and B-spline terms and employ H-matrices to provide accelerated computations and memory reduction for the dense matrices that result from the boundary integral discretization. The method is verified using the well known Mie scattering problem posed over a perfectly electrically conducting sphere and the classic NASA almond problem. Finally, we demonstrate the ability of the approach to handle models with complex geometry directly from CAD without mesh generation.

  3. Synergism of the method of characteristics and CAD technology for neutron transport calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Z.; Wang, D.; He, T.

    2013-07-01

    The method of characteristics (MOC) is a very popular methodology in neutron transport calculation and numerical simulation in recent decades for its unique advantages. One of the key problems determining whether the MOC can be applied in complicated and highly heterogeneous geometry is how to combine an effective geometry processing method with MOC. Most of the existing MOC codes describe the geometry by lines and arcs with extensive input data, such as circles, ellipses, regular polygons and combination of them. Thus they have difficulty in geometry modeling, background meshing and ray tracing for complicated geometry domains. In this study, amore » new idea making use of a CAD solid modeler MCAM which is a CAD/Image-based Automatic Modeling Program for Neutronics and Radiation Transport developed by FDS Team in China was introduced for geometry modeling and ray tracing of particle transport to remove these geometrical limitations mentioned above. The diamond-difference scheme was applied to MOC to reduce the spatial discretization error of the flat flux approximation in theory. Based on MCAM and MOC, a new MOC code was developed and integrated into SuperMC system, which is a Super Multi-function Computational system for neutronics and radiation simulation. The numerical testing results demonstrated the feasibility and effectiveness of the new idea for geometry treatment in SuperMC. (authors)« less

  4. Simulating wildfire spread behavior between two NASA Active Fire data timeframes

    NASA Astrophysics Data System (ADS)

    Adhikari, B.; Hodza, P.; Xu, C.; Minckley, T. A.

    2017-12-01

    Although NASA's Active Fire dataset is considered valuable in mapping the spatial distribution and extent of wildfires across the world, the data is only available at approximately 12-hour time intervals, creating uncertainties and risks associated with fire spread and behavior between the two Visible Infrared Imaging Radiometer Satellite (VIIRS) data collection timeframes. Our study seeks to close the information gap for the United States by using the latest Active Fire data collected for instance around 0130 hours as an ignition source and critical inputs to a wildfire model by uniquely incorporating forecasted and real-time weather conditions for predicting fire perimeter at the next 12 hour reporting time (i.e. around 1330 hours). The model ingests highly dynamic variables such as fuel moisture, temperature, relative humidity, wind among others, and prompts a Monte Carlo simulation exercise that uses a varying range of possible values for evaluating all possible wildfire behaviors. The Monte Carlo simulation implemented in this model provides a measure of the relative wildfire risk levels at various locations based on the number of times those sites are intersected by simulated fire perimeters. Model calibration is achieved using data at next reporting time (i.e. after 12 hours) to enhance the predictive quality at further time steps. While initial results indicate that the calibrated model can predict the overall geometry and direction of wildland fire spread, the model seems to over-predict the sizes of most fire perimeters possibly due to unaccounted fire suppression activities. Nonetheless, the results of this study show great promise in aiding wildland fire tracking, fighting and risk management.

  5. Geometric MCMC for infinite-dimensional inverse problems

    NASA Astrophysics Data System (ADS)

    Beskos, Alexandros; Girolami, Mark; Lan, Shiwei; Farrell, Patrick E.; Stuart, Andrew M.

    2017-04-01

    Bayesian inverse problems often involve sampling posterior distributions on infinite-dimensional function spaces. Traditional Markov chain Monte Carlo (MCMC) algorithms are characterized by deteriorating mixing times upon mesh-refinement, when the finite-dimensional approximations become more accurate. Such methods are typically forced to reduce step-sizes as the discretization gets finer, and thus are expensive as a function of dimension. Recently, a new class of MCMC methods with mesh-independent convergence times has emerged. However, few of them take into account the geometry of the posterior informed by the data. At the same time, recently developed geometric MCMC algorithms have been found to be powerful in exploring complicated distributions that deviate significantly from elliptic Gaussian laws, but are in general computationally intractable for models defined in infinite dimensions. In this work, we combine geometric methods on a finite-dimensional subspace with mesh-independent infinite-dimensional approaches. Our objective is to speed up MCMC mixing times, without significantly increasing the computational cost per step (for instance, in comparison with the vanilla preconditioned Crank-Nicolson (pCN) method). This is achieved by using ideas from geometric MCMC to probe the complex structure of an intrinsic finite-dimensional subspace where most data information concentrates, while retaining robust mixing times as the dimension grows by using pCN-like methods in the complementary subspace. The resulting algorithms are demonstrated in the context of three challenging inverse problems arising in subsurface flow, heat conduction and incompressible flow control. The algorithms exhibit up to two orders of magnitude improvement in sampling efficiency when compared with the pCN method.

  6. An investigation of reports of Controlled Flight Toward Terrain (CFTT)

    NASA Technical Reports Server (NTRS)

    Porter, R. F.; Loomis, J. P.

    1981-01-01

    Some 258 reports from more than 23,000 documents in the files of the Aviation Safety Reporting System (ASRS) were found to be to the hazard of flight into terrain with no prior awareness by the crew of impending disaster. Examination of the reports indicate that human error was a casual factor in 64% of the incidents in which some threat of terrain conflict was experienced. Approximately two-thirds of the human errors were attributed to controllers, the most common discrepancy being a radar vector below the Minimum Vector Altitude (MVA). Errors by pilots were of a much diverse nature and include a few instances of gross deviations from their assigned altitudes. The ground proximity warning system and the minimum safe altitude warning equipment were the initial recovery factor in some 18 serious incidents and were apparently the sole warning in six reported instances which otherwise would most probably have ended in disaster.

  7. Experimental evaluation of a new morphological approximation of the articular surfaces of the ankle joint.

    PubMed

    Belvedere, Claudio; Siegler, Sorin; Ensini, Andrea; Toy, Jason; Caravaggi, Paolo; Namani, Ramya; Giannini, Giulia; Durante, Stefano; Leardini, Alberto

    2017-02-28

    The mechanical characteristics of the ankle such as its kinematics and load transfer properties are influenced by the geometry of the articulating surfaces. A recent, image-based study found that these surfaces can be approximated by a saddle-shaped, skewed, truncated cone with its apex oriented laterally. The goal of this study was to establish a reliable experimental technique to study the relationship between the geometry of the articular surfaces of the ankle and its mobility and stability characteristics and to use this technique to determine if morphological approximations of the ankle surfaces based on recent discoveries, produce close to normal behavior. The study was performed on ten cadavers. For each specimen, a process based on medical imaging, modeling and 3D printing was used to produce two subject specific artificial implantable sets of the ankle surfaces. One set was a replica of the natural surfaces. The second approximated the ankle surfaces as an original saddle-shaped truncated cone with apex oriented laterally. Testing under cyclic loading conditions was then performed on each specimen following a previously established technique to determine its mobility and stability characteristics under three different conditions: natural surfaces; artificial surfaces replicating the natural surface morphology; and artificial approximation based on the saddle-shaped truncated cone concept. A repeated measure analysis of variance was then used to compare between the three conditions. The results show that (1): the artificial surfaces replicating natural morphology produce close to natural mobility and stability behavior thus establishing the reliability of the technique; and (2): the approximated surfaces based on saddle-shaped truncated cone concept produce mobility and stability behavior close to the ankle with natural surfaces. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. The impact of stack geometry and mean pressure on cold end temperature of stack in thermoacoustic refrigeration systems

    NASA Astrophysics Data System (ADS)

    Wantha, Channarong

    2018-02-01

    This paper reports on the experimental and simulation studies of the influence of stack geometries and different mean pressures on the cold end temperature of the stack in the thermoacoustic refrigeration system. The stack geometry was tested, including spiral stack, circular pore stack and pin array stack. The results of this study show that the mean pressure of the gas in the system has a significant impact on the cold end temperature of the stack. The mean pressure of the gas in the system corresponds to thermal penetration depth, which results in a better cold end temperature of the stack. The results also show that the cold end temperature of the pin array stack decreases more than that of the spiral stack and circular pore stack geometry by approximately 63% and 70%, respectively. In addition, the thermal area and viscous area of the stack are analyzed to explain the results of such temperatures of thermoacoustic stacks.

  9. Holographic free energy and thermodynamic geometry

    NASA Astrophysics Data System (ADS)

    Ghorai, Debabrata; Gangopadhyay, Sunandan

    2016-12-01

    We obtain the free energy and thermodynamic geometry of holographic superconductors in 2+1 dimensions. The gravitational theory in the bulk dual to this 2+1-dimensional strongly coupled theory lives in the 3+1 dimensions and is that of a charged AdS black hole together with a massive charged scalar field. The matching method is applied to obtain the nature of the fields near the horizon using which the holographic free energy is computed through the gauge/gravity duality. The critical temperature is obtained for a set of values of the matching point of the near horizon and the boundary behaviour of the fields in the probe limit approximation which neglects the back reaction of the matter fields on the background spacetime geometry. The thermodynamic geometry is then computed from the free energy of the boundary theory. From the divergence of the thermodynamic scalar curvature, the critical temperature is obtained once again. We then compare this result for the critical temperature with that obtained from the matching method.

  10. A linear shock cell model for jets of arbitrary exit geometry

    NASA Technical Reports Server (NTRS)

    Morris, P. J.; Bhat, T. R. S.; Chen, G.

    1989-01-01

    The shock cell structures of single supersonic non-ideally expanded jets with arbitrary exit geometry are studied. Both vortex sheets and realistic mean profiles are considered for the jet shear layer. The boundary element method is used to predict the shock spacing and screech tones in a vortex sheet model of a single jet. This formulation enables the calculations to be performed only on the vortex sheet. This permits the efficient and convenient study of complicated jet geometries. Results are given for circular, elliptic and rectangular jets and the results are compared with analysis and experiment. The agreement between the predictions and measurements is very good but depends on the assumptions made to predict the geometry of the fully expanded jet. A finite diffference technique is used to examine the effect of finite mixing layer thickness for a single jet. The finite thickness of the mixing layer is found to decrease the shock spacing by approximately 20 percent over the length of the jet potential core.

  11. Efficiently approximating the Pareto frontier: Hydropower dam placement in the Amazon basin

    USGS Publications Warehouse

    Wu, Xiaojian; Gomes-Selman, Jonathan; Shi, Qinru; Xue, Yexiang; Garcia-Villacorta, Roosevelt; Anderson, Elizabeth; Sethi, Suresh; Steinschneider, Scott; Flecker, Alexander; Gomes, Carla P.

    2018-01-01

    Real–world problems are often not fully characterized by a single optimal solution, as they frequently involve multiple competing objectives; it is therefore important to identify the so-called Pareto frontier, which captures solution trade-offs. We propose a fully polynomial-time approximation scheme based on Dynamic Programming (DP) for computing a polynomially succinct curve that approximates the Pareto frontier to within an arbitrarily small > 0 on treestructured networks. Given a set of objectives, our approximation scheme runs in time polynomial in the size of the instance and 1/. We also propose a Mixed Integer Programming (MIP) scheme to approximate the Pareto frontier. The DP and MIP Pareto frontier approaches have complementary strengths and are surprisingly effective. We provide empirical results showing that our methods outperform other approaches in efficiency and accuracy. Our work is motivated by a problem in computational sustainability concerning the proliferation of hydropower dams throughout the Amazon basin. Our goal is to support decision-makers in evaluating impacted ecosystem services on the full scale of the Amazon basin. Our work is general and can be applied to approximate the Pareto frontier of a variety of multiobjective problems on tree-structured networks.

  12. Low-frequency noise behavior of polysilicon emitter bipolar junction transistors: a review

    NASA Astrophysics Data System (ADS)

    Deen, M. Jamal; Pascal, Fabien

    2003-05-01

    For many analog integrated circuit applications, the polysilicon emitter bipolar junction transistor (PE-BJT) is still the preferred choice because of its higher operational frequency and lower noise performance characteristics compared to MOS transistors of similar active areas and at similar biasing currents. In this paper, we begin by motivating the reader with reasons why bipolar transistors are still of great interest for analog integrated circuits. This motivation includes a comparison between BJT and the MOSFET using a simple small-signal equivalent circuit to derive important parameters that can be used to compare these two technologies. An extensive review of the popular theories used to explain low frequency noise results is presented. However, in almost all instances, these theories have not been fully tested. The effects of different processing technologies and conditions on the noise performance of PE-BJTs is reviewed and a summary of some of the key technological steps and device parameters and their effects on noise is discussed. The effects of temperature and emitter geometries scaling is reviewed. It is shown that dispersion of the low frequency noise in ultra-small geometries is a serious issue since the rate of increase of the noise dispersion is faster than the noise itself as the emitter geometry is scaled to smaller values. Finally, some ideas for future research on PE-BJTs, some of which are also applicable to SiGe heteorjunction bipolar transistors and MOSFETs, are presented after the conclusions.

  13. Improved Simulation of Electrodiffusion in the Node of Ranvier by Mesh Adaptation.

    PubMed

    Dione, Ibrahima; Deteix, Jean; Briffard, Thomas; Chamberland, Eric; Doyon, Nicolas

    2016-01-01

    In neural structures with complex geometries, numerical resolution of the Poisson-Nernst-Planck (PNP) equations is necessary to accurately model electrodiffusion. This formalism allows one to describe ionic concentrations and the electric field (even away from the membrane) with arbitrary spatial and temporal resolution which is impossible to achieve with models relying on cable theory. However, solving the PNP equations on complex geometries involves handling intricate numerical difficulties related either to the spatial discretization, temporal discretization or the resolution of the linearized systems, often requiring large computational resources which have limited the use of this approach. In the present paper, we investigate the best ways to use the finite elements method (FEM) to solve the PNP equations on domains with discontinuous properties (such as occur at the membrane-cytoplasm interface). 1) Using a simple 2D geometry to allow comparison with analytical solution, we show that mesh adaptation is a very (if not the most) efficient way to obtain accurate solutions while limiting the computational efforts, 2) We use mesh adaptation in a 3D model of a node of Ranvier to reveal details of the solution which are nearly impossible to resolve with other modelling techniques. For instance, we exhibit a non linear distribution of the electric potential within the membrane due to the non uniform width of the myelin and investigate its impact on the spatial profile of the electric field in the Debye layer.

  14. Permeability estimations and frictional flow features passing through porous media comprised of structured microbeads

    NASA Astrophysics Data System (ADS)

    Shin, C.

    2017-12-01

    Permeability estimation has been extensively researched in diverse fields; however, methods that suitably consider varying geometries and changes within the flow region, for example, hydraulic fracture closing for several years, are yet to be developed. Therefore, in the present study a new permeability estimation method is presented based on the generalized Darcy's friction flow relation, in particular, by examining frictional flow parameters and characteristics of their variations. For this examination, computational fluid dynamics (CFD) simulations of simple hydraulic fractures filled with five layers of structured microbeads and accompanied by geometry changes and flow transitions are performed. Consequently, it was checked whether the main structures and shapes of each flow path are preserved, even for geometry variations within porous media. However, the scarcity and discontinuity of streamlines increase dramatically in the transient- and turbulent-flow regions. The quantitative and analytic examinations of the frictional flow features were also performed. Accordingly, the modified frictional flow parameters were successfully presented as similarity parameters of porous flows. In conclusion, the generalized Darcy's friction flow relation and friction equivalent permeability (FEP) equation were both modified using the similarity parameters. For verification, the FEP values of the other aperture models were estimated and then it was checked whether they agreed well with the original permeability values. Ultimately, the proposed and verified method is expected to efficiently estimate permeability variations in porous media with changing geometric factors and flow regions, including such instances as hydraulic fracture closings.

  15. Radiative properties of flame-generated soot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koeylue, U.O.; Faeth, G.M.

    1993-05-01

    Approximate methods for estimating the optical properties of flame-generated soot aggregates were evaluated using existing computer simulations and measurements in the visible and near-infrared portions of the spectrum. The following approximate methods were evaluated for both individual aggregates and polydisperse aggregate populations: the Rayleigh scattering approximation, Mie scattering for an equivalent sphere, and Rayleigh-Debye-Gans (R-D-G) scattering for both given and fractal aggregates. Results of computer simulations involved both prescribed aggregate geometry and numerically generated aggregates by cluster-cluster aggregation; multiple scattering was considered exactly using the mean-field approximation, and ignored using the R-D-G approximation. Measurements involved the angular scattering properties ofmore » soot in the postflame regions of both premixed and nonpremixed flames. The results show that available computer simulations and measurements of soot aggregate optical properties are not adequate to provide a definitive evaluation of the approximate prediction methods. 40 refs., 7 figs., 1 tab.« less

  16. Longitudinal pressure-driven flows between superhydrophobic grooved surfaces: Large effective slip in the narrow-channel limit

    NASA Astrophysics Data System (ADS)

    Schnitzer, Ory; Yariv, Ehud

    2017-07-01

    The gross amplification of the fluid velocity in pressure-driven flows due to the introduction of superhydrophobic walls is commonly quantified by an effective slip length. The canonical duct-flow geometry involves a periodic structure of longitudinal shear-free stripes at either one or both of the bounding walls, corresponding to flat-meniscus gas bubbles trapped within a periodic array of grooves. This grating configuration is characterized by two geometric parameters, namely the ratio κ of channel width to microstructure period and the areal fraction Δ of the shear-free stripes. For wide channels, κ ≫1 , this geometry is known to possess an approximate solution where the dimensionless slip length λ , normalized by the duct semiwidth, is small, indicating a weak superhydrophobic effect. We here address the other extreme of narrow channels, κ ≪1 , identifying large O (κ-2) values of λ for the symmetric configuration, where both bounding walls are superhydrophobic. This velocity enhancement is associated with an unconventional Poiseuille-like flow profile where the parabolic velocity variation takes place in a direction parallel (rather than perpendicular) to the boundaries. Use of matched asymptotic expansions and conformal-mapping techniques provides λ up to O (κ-1) , establishing the approximationλ ˜κ-2Δ/33 +κ-1Δ/2π ln4 +⋯, which is in excellent agreement with a semianalytic solution of the dual equations governing the respective coefficients of a Fourier-series representation of the fluid velocity. No similar singularity occurs in the corresponding asymmetric configuration, involving a single superhydrophobic wall; in that geometry, a Hele-Shaw approximation shows that λ =O (1 ) .

  17. High surface area electrodes by template-free self-assembled hierarchical porous gold architecture.

    PubMed

    Morag, Ahiud; Golub, Tatiana; Becker, James; Jelinek, Raz

    2016-06-15

    The electrode active surface area is a crucial determinant in many electrochemical applications and devices. Porous metal substrates have been employed in electrode design, however construction of such materials generally involves multistep processes, generating in many instances electrodes exhibiting incomplete access to internal pore surfaces. Here we describe fabrication of electrodes comprising hierarchical, nano-to-microscale porous gold matrix, synthesized through spontaneous crystallization of gold thiocyanate in water. Cyclic voltammetry analysis revealed that the specific surface area of the conductive nanoporous Au microwires was very high and depended only upon the amount of gold used, not electrode areas or geometries. Application of the electrode in a pseudo-capacitor device is presented. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Duality and the Knizhnik-Polyakov-Zamolodchikov relation in Liouville quantum gravity.

    PubMed

    Duplantier, Bertrand; Sheffield, Scott

    2009-04-17

    We present a (mathematically rigorous) probabilistic and geometrical proof of the Knizhnik-Polyakov-Zamolodchikov relation between scaling exponents in a Euclidean planar domain D and in Liouville quantum gravity. It uses the properly regularized quantum area measure dmicro_{gamma}=epsilon;{gamma;{2}/2}e;{gammah_{epsilon}(z)}dz, where dz is the Lebesgue measure on D, gamma is a real parameter, 02 is shown to be related to the quantum measure dmu_{gamma;{'}}, gamma;{'}<2, by the fundamental duality gammagamma;{'}=4.

  19. Modeling crater topography and albedo from monoscopic Viking orbiter images 1. Methodology.

    USGS Publications Warehouse

    Davis, P.A.; Soderblom, L.A.

    1984-01-01

    A new photoclinometric technique for extraction of topographic data from single planetary images is presented that overcomes many previous limitations. The procedure fully compensates for oblique viewing geometry prevalent in spacecraft images. Albedo variations have been overcome in the topographic solution by simultaneously utilizing brightness data from a pair of profiles. Test results indicate an accuracy and precision of approximately 2o for slopes of typical bowl-shaped craters, which translates to approximately 5% for depths.-from Authors

  20. Analysis of Family Structures Reveals Robustness or Sensitivity of Bursting Activity to Parameter Variations in a Half-Center Oscillator (HCO) Model.

    PubMed

    Doloc-Mihu, Anca; Calabrese, Ronald L

    2016-01-01

    The underlying mechanisms that support robustness in neuronal networks are as yet unknown. However, recent studies provide evidence that neuronal networks are robust to natural variations, modulation, and environmental perturbations of parameters, such as maximal conductances of intrinsic membrane and synaptic currents. Here we sought a method for assessing robustness, which might easily be applied to large brute-force databases of model instances. Starting with groups of instances with appropriate activity (e.g., tonic spiking), our method classifies instances into much smaller subgroups, called families, in which all members vary only by the one parameter that defines the family. By analyzing the structures of families, we developed measures of robustness for activity type. Then, we applied these measures to our previously developed model database, HCO-db, of a two-neuron half-center oscillator (HCO), a neuronal microcircuit from the leech heartbeat central pattern generator where the appropriate activity type is alternating bursting. In HCO-db, the maximal conductances of five intrinsic and two synaptic currents were varied over eight values (leak reversal potential also varied, five values). We focused on how variations of particular conductance parameters maintain normal alternating bursting activity while still allowing for functional modulation of period and spike frequency. We explored the trade-off between robustness of activity type and desirable change in activity characteristics when intrinsic conductances are altered and identified the hyperpolarization-activated (h) current as an ideal target for modulation. We also identified ensembles of model instances that closely approximate physiological activity and can be used in future modeling studies.

  1. On the integrable elliptic cylindrical Kadomtsev-Petviashvili equation.

    PubMed

    Khusnutdinova, K R; Klein, C; Matveev, V B; Smirnov, A O

    2013-03-01

    There exist two versions of the Kadomtsev-Petviashvili (KP) equation, related to the Cartesian and cylindrical geometries of the waves. In this paper, we derive and study a new version, related to the elliptic cylindrical geometry. The derivation is given in the context of surface waves, but the derived equation is a universal integrable model applicable to generic weakly nonlinear weakly dispersive waves. We also show that there exist nontrivial transformations between all three versions of the KP equation associated with the physical problem formulation, and use them to obtain new classes of approximate solutions for water waves.

  2. Two-dimensional simulations of stimulated Brillouin scattering in laser produced plasmas

    NASA Astrophysics Data System (ADS)

    Amin, M. R.; Capjack, C. E.; Frycz, P.; Rozmus, W.; Tikhonchuk, V. T.

    1993-07-01

    A system of electromagnetic and ion acoustic wave equations coupled via the ponderomotive force are solved numerically in a two-dimensional planar geometry. The competition between forward, side, and backward Brillouin scattering of the finite size laser beam is studied for the first time without the standard paraxial optics approximation. Simulations reveal a strong dependence of the scattered light characteristics on the geometry of the interaction region, the shape of the pump beam, and the ion acoustic wave damping. The main effects include side and forward scattering enhancement and a stimulation of collimated backward scattered radiation.

  3. Scale/Analytical Analyses of Freezing and Convective Melting with Internal Heat Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali S. Siahpush; John Crepeau; Piyush Sabharwall

    2013-07-01

    Using a scale/analytical analysis approach, we model phase change (melting) for pure materials which generate constant internal heat generation for small Stefan numbers (approximately one). The analysis considers conduction in the solid phase and natural convection, driven by internal heat generation, in the liquid regime. The model is applied for a constant surface temperature boundary condition where the melting temperature is greater than the surface temperature in a cylindrical geometry. The analysis also consider constant heat flux (in a cylindrical geometry).We show the time scales in which conduction and convection heat transfer dominate.

  4. Stress focusing and collapse of a thin film under constant pressure

    NASA Astrophysics Data System (ADS)

    Hamm, Eugenio; Cabezas, Nicolas

    2012-02-01

    Thin elastic sheets and shells are prone to focus stress when forced, due to their near inextensibility. Singular structures such as ridges, vertices, and folds arising from wrinkles, are characteristic of the deformation of such systems. Usually the forcing is exerted at the boundaries or at specific points of the surface, in displacement controlled experiments. On the other hand, much of the phenomenology of stress focusing can be found at micro and nanoscales, in physics and biology, making it universal. We will consider the post-buckling regime of a thin elastic sheet that is subjected to a constant normal distributed force. Specifically, we will present experiments made on thin elastoplastic sheets that collapse under atmospheric pressure. For instance, in vacuum-sealing technology, when a flat plastic bag is forced to wrap a solid volume, a series of self-contacts and folds develop. The unfolded bag shows a pattern of scars whose structure is determined by the geometry of the volume and by the exact way it stuck to its surface, by friction. Inspired by this everyday example we study the geometry of folds that result from collapsing a hermetic bag on regular rigid bodies.

  5. Theory of Excitation Transfer between Two-Dimensional Semiconductor and Molecular Layers

    NASA Astrophysics Data System (ADS)

    Specht, Judith F.; Verdenhalven, Eike; Bieniek, Björn; Rinke, Patrick; Knorr, Andreas; Richter, Marten

    2018-04-01

    The geometry-dependent energy transfer rate from an electrically pumped inorganic semiconductor quantum well into an organic molecular layer is studied theoretically. We focus on Förster-type nonradiative excitation transfer between the organic and inorganic layers and include quasimomentum conservation and intermolecular coupling between the molecules in the organic film. (Transition) partial charges calculated from density-functional theory are used to calculate the coupling elements. The partial charges describe the spatial charge distribution and go beyond the common dipole-dipole interaction. We find that the transfer rates are highly sensitive to variations in the geometry of the hybrid inorganic-organic system. For instance, the transfer efficiency is improved by up to 2 orders of magnitude by tuning the spatial arrangement of the molecules on the surface: Parameters of importance are the molecular packing density along the effective molecular dipole axis and the distance between the molecules and the surface. We also observe that the device performance strongly depends on the orientation of the molecular dipole moments relative to the substrate dipole moments determined by the inorganic crystal structure. Moreover, the operating regime is identified where inscattering dominates over unwanted backscattering from the molecular layer into the substrate.

  6. Study of modeling aspects of long period fiber grating using three-layer fiber geometry

    NASA Astrophysics Data System (ADS)

    Singh, Amit

    2015-03-01

    The author studied and demonstrated the various modeling aspects of long period fiber grating (LPFG) such as the core effective index, cladding effective index, coupling coefficient, coupled mode theory, and transmission spectrum of the LPFG using three-layer fiber geometry. Actually, there are two different techniques used for theoretical modeling of the long period fiber grating. The first technique was used by Vengsarkar et al who described the phenomenon of long-period fiber gratings, and the second technique was reported by Erdogan who revealed the inaccuracies and shortcomings of the original method, thereby providing an accurate and updated alternative. The main difference between these two different approaches lies in their fiber geometry. Venserkar et al used two-layer fiber geometry which is simple but employs weakly guided approximation, whereas Erdogan used three-layer fiber geometry which is complex but also the most accurate technique for theoretical study of the LPFG. The author further discussed about the behavior of the transmission spectrum by altering different grating parameters such as the grating length, ultraviolet (UV) induced-index change, and grating period to achieve the desired flexibility. The author simulated the various results with the help of MATLAB.

  7. Letter to Russia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tobin, J G

    Below is the referee report. It is not as bad as it seems at first. The manuscript has not been rejected. Instead, the referee is 'not recommending publication.' On the APS website, the status is 'with authors,' instead of 'not under consideration.' Thus, this manuscript is still alive, but we will need to work on it. Please take a look at what the referee says below and let me know how you would respond. I will do the same. Hopefully, we will be able to respond well and find a way for this manuscript to get into PRB. According tomore » the introduction of their manuscript, the authors intend to study the electronic structure of clusters of Pu atoms and, among other things, to illustrate how the properties of the cluster's central region approach those of the bulk Pu metal as the cluster size increases. It is then somewhat surprising to find out that all the 'cluster' calculations discussed in the paper are in fact set up in such a way that they model the bulk properties - the clusters are embedded in a kind of mean field that is designed to approximate the rest of an infinite lattice (the authors call it the extended cluster scheme). Consequently, all the observed finite-size effects are essentially artificial since they represent the inaccuracies of the embedding procedure. The results for the finite clusters themselves do not carry a direct physical meaning (which contradicts authors statements from the introduction), only the extrapolation to the infinite cluster would, if done properly. The authors propose that the number of 5f electrons n{_}5f is a linear function of the cubic root of N, where N is the number of atoms in the cluster. This function fits the calculated data well (Fig. 8), but, as the authors indeed note, it cannot hold for very large N where n{_}5f must saturate at a finite value. The calculated data show no sign of such saturation (Fig. 8), which indicates that the considered clusters are too small to draw conclusions about the bulk properties. I find it puzzling that the authors nonetheless claim in their conclusions that 'An evaluation of state occupations supports the proposal that the occupation of the 5f levels in bulk Pu must be near 5'. Apart from the aforementioned conceptual inconsistencies, there are a number of more technical aspects that are not discussed in sufficient detail. Among these are: (1) The authors use LDA to approximate the electron correlations. A lively debate takes place in the literature whether this approximation can adequately describe the electronic structure of Pu metal or not, yet the authors do not discuss the choice of the approximation at all, which they should, in my opinion. They should also specify if their solutions are spin polarized or whether they use spin-restricted LDA. (2) The quality of the employed basis set is not clear. Are the results converged with respect to the basis size? What is the estimated magnitude of the residual errors? (3) There are statements in the manuscript indicating that the cluster calculations depend somehow on the calculations of the diatomic molecule. Namely: 'Underpinning these calculations, there is a geometry optimization of diatomic molecules...' and 'Underlying the Pu cluster simulations is the calculation of the electronic structure of a Pu2 dimer with the bond length 3.28 {angstrom} corresponding to the inter-atomic distances in delta-Pu.' What does this underpinning/underlying mean in more technical terms? What role does the geometry optimization play when the cluster calculations seem to be performed at a fixed geometry corresponding to the delta-Pu? Lastly, the manuscript contains a lot of material that was previously (and often multiple times) published elsewhere, including the Physical Review journals. For instance, the experimental part of Fig. 2 was shown already in Refs. 26, 27 and 28 in essentially the same graphical form; the top part of Fig. 9 appeared in Refs. 19, 4 and in PRL 90, 196404 (2003). I think that reprinting these results is not necessary and just referencing the earlier papers would be sufficient.« less

  8. A new constituent of electrostatic energy in semiconductors. An attempt to reformulate electrostatic energy in matter

    NASA Astrophysics Data System (ADS)

    Sallese, Jean-Michel

    2016-06-01

    The concept of electric energy is revisited in detail for semiconductors. We come to the conclusion that the main relationship used to calculate the energy related to the penetration of the electric field in semiconductors is missing a fundamental term. For instance, spatial derivate of the electrostatic energy using the traditional formula fails at giving the correct electrostatic force between semiconductor based capacitor plates, and reveals unambiguously the existence of an extra contribution to the standard electrostatic free energy. The additional term is found to be related to the generation of space charge regions which are predicted when combining electrostatics with semiconductor physics laws, such as for accumulation and inversion layers. On the contrary, no such energy is needed when relying on electrostatics only, as for instance when adopting the so-called full depletion approximation. The same holds for neutral and charged insulators that are still consistent with the customary definition, but these two examples are in fact singular cases. In semiconductors for instance, this additional energy can largely exceed the energy gained by the dipoles, thus becoming the dominant term. This unexpected result clearly asks for a generalization of electrostatic energy in matter in order to reconcile basic concepts of electrostatic energy in the framework of classical physics.

  9. gemcWeb: A Cloud Based Nuclear Physics Simulation Software

    NASA Astrophysics Data System (ADS)

    Markelon, Sam

    2017-09-01

    gemcWeb allows users to run nuclear physics simulations from the web. Being completely device agnostic, scientists can run simulations from anywhere with an Internet connection. Having a full user system, gemcWeb allows users to revisit and revise their projects, and share configurations and results with collaborators. gemcWeb is based on simulation software gemc, which is based on standard GEant4. gemcWeb requires no C++, gemc, or GEant4 knowledge. Using a simple but powerful GUI allows users to configure their project from geometries and configurations stored on the deployment server. Simulations are then run on the server, with results being posted to the user, and then securely stored. Python based and open-source, the main version of gemcWeb is hosted internally at Jefferson National Labratory and used by the CLAS12 and Electron-Ion Collider Project groups. However, as the software is open-source, and hosted as a GitHub repository, an instance can be deployed on the open web, or any institution's intra-net. An instance can be configured to host experiments specific to an institution, and the code base can be modified by any individual or group. Special thanks to: Maurizio Ungaro, PhD., creator of gemc; Markus Diefenthaler, PhD., advisor; and Kyungseon Joo, PhD., advisor.

  10. Eigenmode computation of cavities with perturbed geometry using matrix perturbation methods applied on generalized eigenvalue problems

    NASA Astrophysics Data System (ADS)

    Gorgizadeh, Shahnam; Flisgen, Thomas; van Rienen, Ursula

    2018-07-01

    Generalized eigenvalue problems are standard problems in computational sciences. They may arise in electromagnetic fields from the discretization of the Helmholtz equation by for example the finite element method (FEM). Geometrical perturbations of the structure under concern lead to a new generalized eigenvalue problems with different system matrices. Geometrical perturbations may arise by manufacturing tolerances, harsh operating conditions or during shape optimization. Directly solving the eigenvalue problem for each perturbation is computationally costly. The perturbed eigenpairs can be approximated using eigenpair derivatives. Two common approaches for the calculation of eigenpair derivatives, namely modal superposition method and direct algebraic methods, are discussed in this paper. Based on the direct algebraic methods an iterative algorithm is developed for efficiently calculating the eigenvalues and eigenvectors of the perturbed geometry from the eigenvalues and eigenvectors of the unperturbed geometry.

  11. Hadamard States for the Klein-Gordon Equation on Lorentzian Manifolds of Bounded Geometry

    NASA Astrophysics Data System (ADS)

    Gérard, Christian; Oulghazi, Omar; Wrochna, Michał

    2017-06-01

    We consider the Klein-Gordon equation on a class of Lorentzian manifolds with Cauchy surface of bounded geometry, which is shown to include examples such as exterior Kerr, Kerr-de Sitter spacetime and the maximal globally hyperbolic extension of the Kerr outer region. In this setup, we give an approximate diagonalization and a microlocal decomposition of the Cauchy evolution using a time-dependent version of the pseudodifferential calculus on Riemannian manifolds of bounded geometry. We apply this result to construct all pure regular Hadamard states (and associated Feynman inverses), where regular refers to the state's two-point function having Cauchy data given by pseudodifferential operators. This allows us to conclude that there is a one-parameter family of elliptic pseudodifferential operators that encodes both the choice of (pure, regular) Hadamard state and the underlying spacetime metric.

  12. Smooth Horizonless Geometries Deep Inside the Black-Hole Regime.

    PubMed

    Bena, Iosif; Giusto, Stefano; Martinec, Emil J; Russo, Rodolfo; Shigemori, Masaki; Turton, David; Warner, Nicholas P

    2016-11-11

    We construct the first family of horizonless supergravity solutions that have the same mass, charges, and angular momenta as general supersymmetric rotating D1-D5-P black holes in five dimensions. This family includes solutions with arbitrarily small angular momenta, deep within the regime of quantum numbers and couplings for which a large classical black hole exists. These geometries are well approximated by the black-hole solution, and in particular exhibit the same near-horizon throat. Deep in this throat, the black-hole singularity is resolved into a smooth cap. We also identify the holographically dual states in the N=(4,4) D1-D5 orbifold conformal field theory (CFT). Our solutions are among the states counted by the CFT elliptic genus, and provide examples of smooth microstate geometries within the ensemble of supersymmetric black-hole microstates.

  13. A Galerkin method for linear PDE systems in circular geometries with structural acoustic applications

    NASA Technical Reports Server (NTRS)

    Smith, Ralph C.

    1994-01-01

    A Galerkin method for systems of PDE's in circular geometries is presented with motivating problems being drawn from structural, acoustic, and structural acoustic applications. Depending upon the application under consideration, piecewise splines or Legendre polynomials are used when approximating the system dynamics with modifications included to incorporate the analytic solution decay near the coordinate singularity. This provides an efficient method which retains its accuracy throughout the circular domain without degradation at singularity. Because the problems under consideration are linear or weakly nonlinear with constant or piecewise constant coefficients, transform methods for the problems are not investigated. While the specific method is developed for the two dimensional wave equations on a circular domain and the equation of transverse motion for a thin circular plate, examples demonstrating the extension of the techniques to a fully coupled structural acoustic system are used to illustrate the flexibility of the method when approximating the dynamics of more complex systems.

  14. Segmented strings and the McMillan map

    DOE PAGES

    Gubser, Steven S.; Parikh, Sarthak; Witaszczyk, Przemek

    2016-07-25

    We present new exact solutions describing motions of closed segmented strings in AdS 3 in terms of elliptic functions. The existence of analytic expressions is due to the integrability of the classical equations of motion, which in our examples reduce to instances of the McMillan map. Here, we also obtain a discrete evolution rule for the motion in AdS 3 of arbitrary bound states of fundamental strings and D1-branes in the test approximation.

  15. Mott physics beyond the Brinkman-Rice scenario

    NASA Astrophysics Data System (ADS)

    Wysokiński, Marcin M.; Fabrizio, Michele

    2017-04-01

    The main flaw of the well-known Brinkman-Rice description, obtained through the Gutzwiller approximation, of the paramagnetic Mott transition in the Hubbard model is in neglecting high-energy virtual processes that generate, for instance, the antiferromagnetic exchange J ˜t2/U . Here, we propose a way to capture those processes by combining the Brinkman-Rice approach with a variational Schrieffer-Wolff transformation, and apply this method to study the single-band metal-to-insulator transition in a Bethe lattice with infinite coordination number, where the Gutzwiller approximation becomes exact. We indeed find for the Mott transition a description very close to the real one provided by the dynamical mean-field theory, an encouraging result in view of possible applications to more involved models.

  16. Online sequential Monte Carlo smoother for partially observed diffusion processes

    NASA Astrophysics Data System (ADS)

    Gloaguen, Pierre; Étienne, Marie-Pierre; Le Corff, Sylvain

    2018-12-01

    This paper introduces a new algorithm to approximate smoothed additive functionals of partially observed diffusion processes. This method relies on a new sequential Monte Carlo method which allows to compute such approximations online, i.e., as the observations are received, and with a computational complexity growing linearly with the number of Monte Carlo samples. The original algorithm cannot be used in the case of partially observed stochastic differential equations since the transition density of the latent data is usually unknown. We prove that it may be extended to partially observed continuous processes by replacing this unknown quantity by an unbiased estimator obtained for instance using general Poisson estimators. This estimator is proved to be consistent and its performance are illustrated using data from two models.

  17. Hybrid Microgrid Configuration Optimization with Evolutionary Algorithms

    NASA Astrophysics Data System (ADS)

    Lopez, Nicolas

    This dissertation explores the Renewable Energy Integration Problem, and proposes a Genetic Algorithm embedded with a Monte Carlo simulation to solve large instances of the problem that are impractical to solve via full enumeration. The Renewable Energy Integration Problem is defined as finding the optimum set of components to supply the electric demand to a hybrid microgrid. The components considered are solar panels, wind turbines, diesel generators, electric batteries, connections to the power grid and converters, which can be inverters and/or rectifiers. The methodology developed is explained as well as the combinatorial formulation. In addition, 2 case studies of a single objective optimization version of the problem are presented, in order to minimize cost and to minimize global warming potential (GWP) followed by a multi-objective implementation of the offered methodology, by utilizing a non-sorting Genetic Algorithm embedded with a monte Carlo Simulation. The method is validated by solving a small instance of the problem with known solution via a full enumeration algorithm developed by NREL in their software HOMER. The dissertation concludes that the evolutionary algorithms embedded with Monte Carlo simulation namely modified Genetic Algorithms are an efficient form of solving the problem, by finding approximate solutions in the case of single objective optimization, and by approximating the true Pareto front in the case of multiple objective optimization of the Renewable Energy Integration Problem.

  18. Recovering Total Megathrust Slip Across the Seismic Cycle: Results from Two Decades of Study at the Nicoya Seismic Cycle Observatory (NSCO)

    NASA Astrophysics Data System (ADS)

    Newman, A. V.; Kyriakopoulos, C.

    2015-12-01

    Unlike most subduction environments that exist mostly or entirely offshore, the Nicoya Peninsula's location allows for unique land-based observations of the entire down-dip extent of coupling and failure along the seismogenic megathrust. Because of this geometry and approximately 50-year repeat cycle of mid-magnitude 7 earthquakes there, numerous geophysical studies were focused on the peninsula. Most notably of these are the dense seismic and GPS networks cooperatively operated by UC Santa Cruz, Georgia Tech, U. South Florida, and OVSICORI, collectively called the Nicoya Seismic Cycle Observatory (NSCO). The megathrust environment beneath Nicoya is additionally characterized by strong along-strike transitions in oceanic crust origin and geometries, including massive subducted seamounts, and a substantial crustal suture well documented in recent work by Kyriakopoulos et al. [JGR, 2015]. Using GPS data collected from campaign and continuous sites going back approximately 20 years, a number of studies have imaged components of the seismic cycle, including late-interseismic coupling, frequent slow-slip events, coseismic rupture of a moment magnitude 7.6 earthquake in 2012, and early postseismic response. The derived images of interface locking and slip behavior published for each of these episodes use different model geometries, different weighting schemes, and modeling algorithms limiting their use for fully characterizing the transitions between zones. Here, we report the first unified analysis of the full continuum of slip using the new locally defined 3D plate interface model. We focus on evaluating how transitions in plate geometry control observed locking, slip, and quantifying how well pre-seismic images of megathrust locking and slow-slip events dictate coseismic and postseismic behavior. Without the long-term and continuous geodetic observations made by the NSCO, this work would not have been possible.

  19. ESTABLISHING A STEREOSCOPIC TECHNIQUE FOR DETERMINING THE KINEMATIC PROPERTIES OF SOLAR WIND TRANSIENTS BASED ON A GENERALIZED SELF-SIMILARLY EXPANDING CIRCULAR GEOMETRY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davies, J. A.; Perry, C. H.; Harrison, R. A.

    2013-11-10

    The twin-spacecraft STEREO mission has enabled simultaneous white-light imaging of the solar corona and inner heliosphere from multiple vantage points. This has led to the development of numerous stereoscopic techniques to investigate the three-dimensional structure and kinematics of solar wind transients such as coronal mass ejections (CMEs). Two such methods—triangulation and the tangent to a sphere—can be used to determine time profiles of the propagation direction and radial distance (and thereby radial speed) of a solar wind transient as it travels through the inner heliosphere, based on its time-elongation profile viewed by two observers. These techniques are founded on themore » assumption that the transient can be characterized as a point source (fixed φ, FP, approximation) or a circle attached to Sun-center (harmonic mean, HM, approximation), respectively. These geometries constitute extreme descriptions of solar wind transients, in terms of their cross-sectional extent. Here, we present the stereoscopic expressions necessary to derive propagation direction and radial distance/speed profiles of such transients based on the more generalized self-similar expansion (SSE) geometry, for which the FP and HM geometries form the limiting cases; our implementation of these equations is termed the stereoscopic SSE method. We apply the technique to two Earth-directed CMEs from different phases of the STEREO mission, the well-studied event of 2008 December and a more recent event from 2012 March. The latter CME was fast, with an initial speed exceeding 2000 km s{sup –1}, and highly geoeffective, in stark contrast to the slow and ineffectual 2008 December CME.« less

  20. Numerical analysis of the pressure drop across highly-eccentric coronary stenoses: application to the calculation of the fractional flow reserve.

    PubMed

    Agujetas, R; González-Fernández, M R; Nogales-Asensio, J M; Montanero, J M

    2018-05-30

    Fractional flow reverse (FFR) is the gold standard assessment of the hemodynamic significance of coronary stenoses. However, it requires the catheterization of the coronary artery to determine the pressure waveforms proximal and distal to the stenosis. On the contrary, computational fluid dynamics enables the calculation of the FFR value from relatively non-invasive computed tomography angiography (CTA). We analyze the flow across idealized highly-eccentric coronary stenoses by solving the Navier-Stokes equations. We examine the influence of several aspects (approximations) of the simulation method on the calculation of the FFR value. We study the effects on the FFR value of errors made in the segmentation of clinical images. For this purpose, we compare the FFR value for the nominal geometry with that calculated for other shapes that slightly deviate from that geometry. This analysis is conducted for a range of stenosis severities and different inlet velocity and pressure waveforms. The errors made in assuming a uniform velocity profile in front of the stenosis, as well as those due to the Newtonian and laminar approximations, are negligible for stenosis severities leading to FFR values around the threshold 0.8. The limited resolution of the stenosis geometry reconstruction is the major source of error when predicting the FFR value. Both systematic errors in the contour detection of just 1-pixel size in the CTA images and a low-quality representation of the stenosis surface (coarse faceted geometry) may yield wrong outcomes of the FFR assessment for an important set of eccentric stenoses. On the contrary, the spatial resolution of images acquired with optical coherence tomography may be sufficient to ensure accurate predictions for the FFR value.

  1. Oscillator strength of symmetry-forbidden d-d absorption of octahedral transition metal complex: theoretical evaluation.

    PubMed

    Saito, Ken; Eishiro, Yoshinori; Nakao, Yoshihide; Sato, Hirofumi; Sakaki, Shigeyoshi

    2012-03-05

    The theoretical evaluation of the oscillator strength of a symmetry-forbidden d-d transition is not easy even nowadays. A new approximate method is proposed here and applied to octahedral complexes [Co(NH(3))(6)](3+) and [Rh(NH(3))(6)](3+) as an example. Our method incorporates the effects of geometry distortion induced by molecular vibration and the thermal distribution of such distorted geometries but does not need the Herzberg-Teller approximation. The calculated oscillator strengths of [Co(NH(3))(6)](3+) agree well with the experimental values in both (1)A(1g) → (1)T(1g) and (1)A(1g) → (1)T(2g) transitions. In the Rh analogue, though the calculated oscillator strengths are somewhat smaller than the experimental values, computational results reproduce well the experimental trends that the oscillator strengths of [Rh(NH(3))(6)](3+) are much larger than those of the Co analogue and the oscillator strength of the (1)A(1g) → (1)T(1g) transition is larger than that of the (1)A(1g) → (1)T(2g) transition. It is clearly shown that the oscillator strength is not negligibly small even at 0 K because the distorted geometry (or the uncertainty in geometry) by zero-point vibration contributes to the oscillator strength at 0 K. These results are discussed in terms of frequency of molecular vibration, extent of distortion induced by molecular vibration, and charge-transfer character involved in the d-d transition. The computational results clearly show that our method is useful in evaluating and discussing the oscillator strength of symmetry-forbidden d-d absorption of transition metal complex.

  2. Ray-theory approach to electrical-double-layer interactions.

    PubMed

    Schnitzer, Ory

    2015-02-01

    A novel approach is presented for analyzing the double-layer interaction force between charged particles in electrolyte solution, in the limit where the Debye length is small compared with both interparticle separation and particle size. The method, developed here for two planar convex particles of otherwise arbitrary geometry, yields a simple asymptotic approximation limited to neither small zeta potentials nor the "close-proximity" assumption underlying Derjaguin's approximation. Starting from the nonlinear Poisson-Boltzmann formulation, boundary-layer solutions describing the thin diffuse-charge layers are asymptotically matched to a WKBJ expansion valid in the bulk, where the potential is exponentially small. The latter expansion describes the bulk potential as superposed contributions conveyed by "rays" emanating normally from the boundary layers. On a special curve generated by the centers of all circles maximally inscribed between the two particles, the bulk stress-associated with the ray contributions interacting nonlinearly-decays exponentially with distance from the center of the smallest of these circles. The force is then obtained by integrating the traction along this curve using Laplace's method. We illustrate the usefulness of our theory by comparing it, alongside Derjaguin's approximation, with numerical simulations in the case of two parallel cylinders at low potentials. By combining our result and Derjaguin's approximation, the interaction force is provided at arbitrary interparticle separations. Our theory can be generalized to arbitrary three-dimensional geometries, nonideal electrolyte models, and other physical scenarios where exponentially decaying fields give rise to forces.

  3. Solid T-spline Construction from Boundary Representations for Genus-Zero Geometry

    DTIC Science & Technology

    2011-11-14

    Engineering, accepted, 2011. [6] M. S. Floater . Parametrization and smooth approximation of surface triangulations. Com- puter Aided Geometric Design...14(3):231 – 250, 1997. [7] M. S. Floater and K. Hormann. Surface parameterization: a tutorial and survey. Advances in Multiresolution for Geometric

  4. Modeling dam-break flows using finite volume method on unstructured grid

    USDA-ARS?s Scientific Manuscript database

    Two-dimensional shallow water models based on unstructured finite volume method and approximate Riemann solvers for computing the intercell fluxes have drawn growing attention because of their robustness, high adaptivity to complicated geometry and ability to simulate flows with mixed regimes and di...

  5. Watt steam governor stability

    NASA Astrophysics Data System (ADS)

    Denny, Mark

    2002-05-01

    The physics of the fly-ball governor, introduced to regulate the speed of steam engines, is here analysed anew. The original analysis is generalized to arbitrary governor geometry. The well-known stability criterion for the linearized system breaks down for large excursions from equilibrium; we show approximately how this criterion changes.

  6. Effect of vegetative canopy architecture on vertical transport of massless particles

    USDA-ARS?s Scientific Manuscript database

    A series of large-eddy simulations were performed to examine the effect of canopy architecture on particle dispersion. A heterogeneous canopy geometry was simulated that consists of a set of infinitely repeating vegetation rows. Simulations in which row structure was approximately resolved were comp...

  7. Cylindrically distributing optical fiber tip for uniform laser illumination of hollow organs

    NASA Astrophysics Data System (ADS)

    Buonaccorsi, Giovanni A.; Burke, T.; MacRobert, Alexander J.; Hill, P. D.; Essenpreis, Matthias; Mills, Timothy N.

    1993-05-01

    To predict the outcome of laser therapy it is important to possess, among other things, an accurate knowledge of the intensity and distribution of the laser light incident on the tissue. For irradiation of the internal surfaces of hollow organs, modified fiber tips can be used to shape the light distribution to best suit the treatment geometry. There exist bulb-tipped optical fibers emitting a uniform isotropic distribution of light suitable for the treatment of organs which approximate a spherical geometry--the bladder, for example. For the treatment of organs approximating a cylindrical geometry--e.g. the oesophagus--an optical fiber tip which emits a uniform cylindrical distribution of light is required. We report on the design, development and testing of such a device, the CLD fiber tip. The device was made from a solid polymethylmethacrylate (PMMA) rod, 27 mm in length and 4 mm in diameter. One end was shaped and 'silvered' to form a mirror which reflected the light emitted from the delivery fiber positioned at the other end of the rod. The shape of the mirror was such that the light fell with uniform intensity on the circumferential surface of the rod. This surface was coated with BaSO4 reflectance paint to couple the light out of the rod and onto the surface of the tissue.

  8. Influence of the quantum dot geometry on p -shell transitions in differently charged quantum dots

    NASA Astrophysics Data System (ADS)

    Holtkemper, M.; Reiter, D. E.; Kuhn, T.

    2018-02-01

    Absorption spectra of neutral, negatively, and positively charged semiconductor quantum dots are studied theoretically. We provide an overview of the main energetic structure around the p -shell transitions, including the influence of nearby nominally dark states. Based on the envelope function approximation, we treat the four-band Luttinger theory as well as the direct and short-range exchange Coulomb interactions within a configuration interaction approach. The quantum dot confinement is approximated by an anisotropic harmonic potential. We present a detailed investigation of state mixing and correlations mediated by the individual interactions. Differences and similarities between the differently charged quantum dots are highlighted. Especially large differences between negatively and positively charged quantum dots become evident. We present a visualization of energetic shifts and state mixtures due to changes in size, in-plane asymmetry, and aspect ratio. Thereby we provide a better understanding of the experimentally hard to access question of quantum dot geometry effects. Our findings show a method to determine the in-plane asymmetry from photoluminescence excitation spectra. Furthermore, we supply basic knowledge for tailoring the strength of certain state mixtures or the energetic order of particular excited states via changes of the shape of the quantum dot. Such knowledge builds the basis to find the optimal QD geometry for possible applications and experiments using excited states.

  9. Accurate reconstruction of 3D cardiac geometry from coarsely-sliced MRI.

    PubMed

    Ringenberg, Jordan; Deo, Makarand; Devabhaktuni, Vijay; Berenfeld, Omer; Snyder, Brett; Boyers, Pamela; Gold, Jeffrey

    2014-02-01

    We present a comprehensive validation analysis to assess the geometric impact of using coarsely-sliced short-axis images to reconstruct patient-specific cardiac geometry. The methods utilize high-resolution diffusion tensor MRI (DTMRI) datasets as reference geometries from which synthesized coarsely-sliced datasets simulating in vivo MRI were produced. 3D models are reconstructed from the coarse data using variational implicit surfaces through a commonly used modeling tool, CardioViz3D. The resulting geometries were then compared to the reference DTMRI models from which they were derived to analyze how well the synthesized geometries approximate the reference anatomy. Averaged over seven hearts, 95% spatial overlap, less than 3% volume variability, and normal-to-surface distance of 0.32 mm was observed between the synthesized myocardial geometries reconstructed from 8 mm sliced images and the reference data. The results provide strong supportive evidence to validate the hypothesis that coarsely-sliced MRI may be used to accurately reconstruct geometric ventricular models. Furthermore, the use of DTMRI for validation of in vivo MRI presents a novel benchmark procedure for studies which aim to substantiate their modeling and simulation methods using coarsely-sliced cardiac data. In addition, the paper outlines a suggested original procedure for deriving image-based ventricular models using the CardioViz3D software. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. Multi-pelvis characterisation of articular cartilage geometry.

    PubMed

    Gillard, Faye C; Dickinson, Alexander S; Schneider, Urs; Taylor, Andrew C; Browne, Martin

    2013-12-01

    The shape of the acetabular cartilage follows the contact stress distribution across the joint. Accurate characterisation of this geometry may be useful for the development of acetabular cup devices that are more biomechanically compliant. In this study, the geometry of the acetabular cartilage was characterised by taking plaster moulds of the acetabulum from 24 dry bone human pelvises and digitising the mould shapes using a three-dimensional laser scanner. The articular bone surface geometry was analysed, and the shape of the acetabulum was approximated by fitting a best-fit sphere. To test the hypothesis that the acetabulum is non-spherical, a best-fit ellipsoid was also fitted to the geometry. In each case, points around the acetabular notch edge that disclosed the articular surface geometry were identified, and vectors were drawn between these and the best-fit sphere or ellipsoid centre. The significantly larger z radii (into the pole) of the ellipsoids indicated that the acetabulum was non-spherical and could imply that the kinematics of the hip joint is more complex than purely rotational motion, and the traditional ball-and-socket replacement may need to be updated to reflect this motion. The acetabular notch edges were observed to be curved, with males exhibiting deeper, wider and shorter notches than females, although the difference was not statistically significant (mean: p = 0.30) and supports the use of non-gender-specific models in anatomical studies.

  11. Extrapolating surface structures to depth in transpressional systems: the role of rheology and convergence angle deduced from analogue experiments

    NASA Astrophysics Data System (ADS)

    Hsieh, S. Y.; Neubauer, F.; Willingshofer, E.; Sokoutis, D.

    2014-12-01

    The internal structure of major strike-slip faults is still poorly understood, particularly how the deep structure could be inferred from its surface expression (Molnar and Dayem, 2011). Previous analogue experiments suggest that the convergence angle is the most influential factor (Leever et al., 2011). Further analogue modeling may allow a better understanding how to extrapolate surface structures to the subsurface geometry of strike-slip faults. Various scenarios of analogue experiments were designed to represent strike-slip faults in nature from different geological settings. As such key parameters, which are investigated in this study include: (a) the angle of convergence, (b) the thickness of brittle layer, (c) the influence of a rheological weak layer within the crust, and (d) influence of a thick and rheologically weak layer at the base of the crust. The latter aimed to simulate the effect of a hot metamorphic core complex or an alignment of uprising plutons bordered by a transtensional/transpressional strike-slip fault. The preliminary results show that convergence angle significantly influences the overall geometry of the transpressive system with greater convergence angles resulting in wider fault zones and higher elevation. Different positions, densities and viscosities of weak rheological layers have not only different surface expressions but also affect the fault geometry in the subsurface. For instance, rheological weak material in the bottom layer results in stretching when experiment reaches a certain displacement and a buildup of a less segmented, wide positive flower structure. At the surface, a wide fault valley in the middle of the fault zone is the reflection of stretching along the velocity discontinuity at depth. In models with a thin and rheologically weaker layer in the middle of the brittle layer, deformation is distributed over more faults and the geometry of the fault zone below and above the weak zone shows significant differences. This latter experiment has significantly similar phenomena in reality, such as few pressure ridges along Altyn fault. The experimental results underline the need to understand the role of the convergence angle and the influence of rheology on fault evolution, in order to connect between surface deformation and subsurface geometry.

  12. Coincidence studies of He ionized by C{sup 6+}, Au{sup 24+}, and Au{sup 53+}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGovern, M.; Walters, H. R. J.; Assafrao, D.

    2010-04-15

    A recently developed [Phys. Rev. A 79, 042707 (2009)] impact parameter coupled pseudostate approximation (CP) is applied to calculate triple differential cross sections for single ionization of He by C{sup 6+}, Au{sup 24+}, and Au{sup 53+} projectiles at impact energies of 100 and 2 MeV/amu for C{sup 6+} and 3.6 MeV/amu for Au{sup 24+} and Au{sup 53+}. For C{sup 6+}, satisfactory, but not perfect, agreement is found with experimental measurements in coplanar geometry, but there is substantial disagreement with data taken in a perpendicular plane geometry. The CP calculations firmly contradict a projectile-nucleus interaction model which has been used tomore » support the perpendicular plane measurements. For Au{sup 24+} and Au{sup 53+}, there is a complete lack of accord with the available experiments. However, for Au{sup 24+} the theoretical position appears to be quite firm with clear indications of convergence in the CP approximation and very good agreement between CP and the completely different three-distorted-waves eikonal-initial-state (3DW-EIS) approximation. The situation for Au{sup 53+} is different. At the momentum transfers at which the measurements were made, there are doubts about the convergence of the CP approximation and a factor of 2 difference between the CP and 3DW-EIS predictions. The discord between theory and experiment is even greater with the experiment giving cross sections a factor of 10 larger than the theory. A study of the convergence of the CP approximation shows that it improves rapidly with reducing momentum transfer. As a consequence, lower-order cross sections than the triple are quite well converged and present an opportunity for a more reliable test of the experiment.« less

  13. Effect of electron temperature on small-amplitude electron acoustic solitary waves in non-planar geometry

    NASA Astrophysics Data System (ADS)

    Bansal, Sona; Aggarwal, Munish; Gill, Tarsem Singh

    2018-04-01

    Effects of electron temperature on the propagation of electron acoustic solitary waves in plasma with stationary ions, cold and superthermal hot electrons is investigated in non-planar geometry employing reductive perturbation method. Modified Korteweg-de Vries equation is derived in the small amplitude approximation limit. The analytical and numerical calculations of the KdV equation reveal that the phase velocity of the electron acoustic waves increases as one goes from planar to non planar geometry. It is shown that the electron temperature ratio changes the width and amplitude of the solitary waves and when electron temperature is not taken into account,our results completely agree with the results of Javidan & Pakzad (2012). It is found that at small values of τ , solitary wave structures behave differently in cylindrical ( {m} = 1), spherical ( {m} = 2) and planar geometry ( {m} = 0) but looks similar at large values of τ . These results may be useful to understand the solitary wave characteristics in laboratory and space environments where the plasma have multiple temperature electrons.

  14. Experimental investigation and numerical simulation of 3He gas diffusion in simple geometries: implications for analytical models of 3He MR lung morphometry.

    PubMed

    Parra-Robles, J; Ajraoui, S; Deppe, M H; Parnell, S R; Wild, J M

    2010-06-01

    Models of lung acinar geometry have been proposed to analytically describe the diffusion of (3)He in the lung (as measured with pulsed gradient spin echo (PGSE) methods) as a possible means of characterizing lung microstructure from measurement of the (3)He ADC. In this work, major limitations in these analytical models are highlighted in simple diffusion weighted experiments with (3)He in cylindrical models of known geometry. The findings are substantiated with numerical simulations based on the same geometry using finite difference representation of the Bloch-Torrey equation. The validity of the existing "cylinder model" is discussed in terms of the physical diffusion regimes experienced and the basic reliance of the cylinder model and other ADC-based approaches on a Gaussian diffusion behaviour is highlighted. The results presented here demonstrate that physical assumptions of the cylinder model are not valid for large diffusion gradient strengths (above approximately 15 mT/m), which are commonly used for (3)He ADC measurements in human lungs. (c) 2010 Elsevier Inc. All rights reserved.

  15. Approximate Bayesian evaluations of measurement uncertainty

    NASA Astrophysics Data System (ADS)

    Possolo, Antonio; Bodnar, Olha

    2018-04-01

    The Guide to the Expression of Uncertainty in Measurement (GUM) includes formulas that produce an estimate of a scalar output quantity that is a function of several input quantities, and an approximate evaluation of the associated standard uncertainty. This contribution presents approximate, Bayesian counterparts of those formulas for the case where the output quantity is a parameter of the joint probability distribution of the input quantities, also taking into account any information about the value of the output quantity available prior to measurement expressed in the form of a probability distribution on the set of possible values for the measurand. The approximate Bayesian estimates and uncertainty evaluations that we present have a long history and illustrious pedigree, and provide sufficiently accurate approximations in many applications, yet are very easy to implement in practice. Differently from exact Bayesian estimates, which involve either (analytical or numerical) integrations, or Markov Chain Monte Carlo sampling, the approximations that we describe involve only numerical optimization and simple algebra. Therefore, they make Bayesian methods widely accessible to metrologists. We illustrate the application of the proposed techniques in several instances of measurement: isotopic ratio of silver in a commercial silver nitrate; odds of cryptosporidiosis in AIDS patients; height of a manometer column; mass fraction of chromium in a reference material; and potential-difference in a Zener voltage standard.

  16. Shape-matching soft mechanical metamaterials.

    PubMed

    Mirzaali, M J; Janbaz, S; Strano, M; Vergani, L; Zadpoor, A A

    2018-01-17

    Architectured materials with rationally designed geometries could be used to create mechanical metamaterials with unprecedented or rare properties and functionalities. Here, we introduce "shape-matching" metamaterials where the geometry of cellular structures comprising auxetic and conventional unit cells is designed so as to achieve a pre-defined shape upon deformation. We used computational models to forward-map the space of planar shapes to the space of geometrical designs. The validity of the underlying computational models was first demonstrated by comparing their predictions with experimental observations on specimens fabricated with indirect additive manufacturing. The forward-maps were then used to devise the geometry of cellular structures that approximate the arbitrary shapes described by random Fourier's series. Finally, we show that the presented metamaterials could match the contours of three real objects including a scapula model, a pumpkin, and a Delft Blue pottery piece. Shape-matching materials have potential applications in soft robotics and wearable (medical) devices.

  17. Oscillator strengths, first-order properties, and nuclear gradients for local ADC(2).

    PubMed

    Schütz, Martin

    2015-06-07

    We describe theory and implementation of oscillator strengths, orbital-relaxed first-order properties, and nuclear gradients for the local algebraic diagrammatic construction scheme through second order. The formalism is derived via time-dependent linear response theory based on a second-order unitary coupled cluster model. The implementation presented here is a modification of our previously developed algorithms for Laplace transform based local time-dependent coupled cluster linear response (CC2LR); the local approximations thus are state specific and adaptive. The symmetry of the Jacobian leads to considerable simplifications relative to the local CC2LR method; as a result, a gradient evaluation is about four times less expensive. Test calculations show that in geometry optimizations, usually very similar geometries are obtained as with the local CC2LR method (provided that a second-order method is applicable). As an exemplary application, we performed geometry optimizations on the low-lying singlet states of chlorophyllide a.

  18. Detonation Failure Thickness Measurement in AN Annular Geometry

    NASA Astrophysics Data System (ADS)

    Mack, D. B.; Petel, O. E.; Higgins, A. J.

    2007-12-01

    The failure thickness of neat nitromethane in aluminum confinement was measured using a novel experimental technique. The thickness was approximated in an annular geometry by the gap between a concentric aluminum tube and rod. This technique was motivated by the desire to have a periodic boundary condition in the direction orthogonal to the annulus thickness, rather than a free surface occurring in typical rectangular geometry experiments. This results in a two-dimensional charge analogous to previous failure thickness setups but with infinite effective width (i.e. infinite aspect ratio). Detonation propagation or failure was determined by the observation of failure patterns engraved on the aluminum rod by the passing detonation. Analysis of these engraved patterns provides a statistical measurement of the spatial density of failure waves. Failure was observed as far as 180 thicknesses downstream. The failure thickness was measured to be 1.45 mm±0.15 mm.

  19. An immersed boundary method for modeling a dirty geometry data

    NASA Astrophysics Data System (ADS)

    Onishi, Keiji; Tsubokura, Makoto

    2017-11-01

    We present a robust, fast, and low preparation cost immersed boundary method (IBM) for simulating an incompressible high Re flow around highly complex geometries. The method is achieved by the dispersion of the momentum by the axial linear projection and the approximate domain assumption satisfying the mass conservation around the wall including cells. This methodology has been verified against an analytical theory and wind tunnel experiment data. Next, we simulate the problem of flow around a rotating object and demonstrate the ability of this methodology to the moving geometry problem. This methodology provides the possibility as a method for obtaining a quick solution at a next large scale supercomputer. This research was supported by MEXT as ``Priority Issue on Post-K computer'' (Development of innovative design and production processes) and used computational resources of the K computer provided by the RIKEN Advanced Institute for Computational Science.

  20. Reply to ``Comment on `Relative locality and the soccer ball problem'''

    NASA Astrophysics Data System (ADS)

    Amelino-Camelia, Giovanni; Freidel, Laurent; Kowalski-Glikman, Jerzy; Smolin, Lee

    2013-07-01

    In a Comment [S. Hossenfelder Phys. Rev. D 88, 028701 (2013)], Hossenfelder proposes a generalization of the results we reported in [Phys. Rev. D 84, 087702 (2011)] and argues that thermal fluctuations introduce incurable pathologies for the description of macroscopic bodies in the relative-locality framework. We here show that Hossenfelder’s analysis, while raising a very interesting point, is incomplete and leads to incorrect conclusions. Her estimate for the fluctuations did not take into account some contributions from the geometry of momentum space, which must be included at the relevant order of approximation. Using the full expression here derived, one finds that thermal fluctuations are not, in general, large for macroscopic bodies in the relative-locality framework. We find that such corrections can be unexpectedly large only for some choices of momentum-space geometry, and we comment on the possibility of developing a phenomenology suitable for possibly ruling out such geometries of momentum space.

  1. Stages as models of scene geometry.

    PubMed

    Nedović, Vladimir; Smeulders, Arnold W M; Redert, André; Geusebroek, Jan-Mark

    2010-09-01

    Reconstruction of 3D scene geometry is an important element for scene understanding, autonomous vehicle and robot navigation, image retrieval, and 3D television. We propose accounting for the inherent structure of the visual world when trying to solve the scene reconstruction problem. Consequently, we identify geometric scene categorization as the first step toward robust and efficient depth estimation from single images. We introduce 15 typical 3D scene geometries called stages, each with a unique depth profile, which roughly correspond to a large majority of broadcast video frames. Stage information serves as a first approximation of global depth, narrowing down the search space in depth estimation and object localization. We propose different sets of low-level features for depth estimation, and perform stage classification on two diverse data sets of television broadcasts. Classification results demonstrate that stages can often be efficiently learned from low-dimensional image representations.

  2. Magnetoencephalography in ellipsoidal geometry

    NASA Astrophysics Data System (ADS)

    Dassios, George; Kariotou, Fotini

    2003-01-01

    An exact analytic solution for the forward problem in the theory of biomagnetics of the human brain is known only for the (1D) case of a sphere and the (2D) case of a spheroid, where the excitation field is due to an electric dipole within the corresponding homogeneous conductor. In the present work the corresponding problem for the more realistic ellipsoidal brain model is solved and the leading quadrupole approximation for the exterior magnetic field is obtained in a form that exhibits the anisotropic character of the ellipsoidal geometry. The results are obtained in a straightforward manner through the evaluation of the interior electric potential and a subsequent calculation of the surface integral over the ellipsoid, using Lamé functions and ellipsoidal harmonics. The basic formulas are expressed in terms of the standard elliptic integrals that enter the expressions for the exterior Lamé functions. The laborious task of reducing the results to the spherical geometry is also included.

  3. Vestibular response to pseudorandom angular velocity input: progress report.

    PubMed

    Lessard, C S; Wong, W C

    1987-09-01

    Space motion sickness was not reported during the first Apollo missions; however, since Apollo 8 through the current Shuttle and Skylab missions, approximately 50% of the crewmembers have experienced instances of space motion sickness. One of NASA's efforts to resolve the space adaptation syndrome is to model the vestibular response for both basic knowledge and as a possible predictor of an individual's susceptibility to the disorder. This report describes a method to analyze the vestibular system when subjected to a pseudorandom angular velocity input.

  4. Creep of Hi-Nicalon S Ceramic Fiber Tows at 800 deg C in Air and in Silicic Acid-Saturated Steam

    DTIC Science & Technology

    2015-12-26

    earliest recorded instances is that of Egyptian brick making. As far back as approximately 1500 BC, Egyptians added straw to clay for bricks [3]. This...The accuracy of this calculation method depends on the accuracy of amorphous silica viscosity data, which, in turn, are affected by impurities in...the SiC fiber. Lack of availability of viscosity data for crystobalite and tridymite pre- cluded calculation of growth stresses in crystallized silica

  5. Optimal Vaccination in a Stochastic Epidemic Model of Two Non-Interacting Populations

    DTIC Science & Technology

    2015-02-17

    of diminishing returns from vacci- nation will generally take place at smaller vaccine allocations V compared to the deterministic model. Optimal...take place and small r0 values where it does not is illustrat- ed in Fig. 4C. As r0 is decreased, the region between the two instances of switching...approximately distribute vaccine in proportion to population size. For large r0 (r0 ≳ 2.9), two switches take place . In the deterministic optimal solution, a

  6. NetPath: a public resource of curated signal transduction pathways

    PubMed Central

    2010-01-01

    We have developed NetPath as a resource of curated human signaling pathways. As an initial step, NetPath provides detailed maps of a number of immune signaling pathways, which include approximately 1,600 reactions annotated from the literature and more than 2,800 instances of transcriptionally regulated genes - all linked to over 5,500 published articles. We anticipate NetPath to become a consolidated resource for human signaling pathways that should enable systems biology approaches. PMID:20067622

  7. [Design and study of parallel computing environment of Monte Carlo simulation for particle therapy planning using a public cloud-computing infrastructure].

    PubMed

    Yokohama, Noriya

    2013-07-01

    This report was aimed at structuring the design of architectures and studying performance measurement of a parallel computing environment using a Monte Carlo simulation for particle therapy using a high performance computing (HPC) instance within a public cloud-computing infrastructure. Performance measurements showed an approximately 28 times faster speed than seen with single-thread architecture, combined with improved stability. A study of methods of optimizing the system operations also indicated lower cost.

  8. Static internal performance characteristics of two thrust reverser concepts for axisymmetric nozzles

    NASA Technical Reports Server (NTRS)

    Leavitt, L. D.; Re, R. J.

    1982-01-01

    The statis performance of two axisymmetric nozzle thrust reverser concepts was investigated. A rotating vane thrust reverser represented a concept in which reversing is accomplished upstream of the nozzle throat, and a three door reverser concept provided reversing downstream of the nozzle throat. Nozzle pressure ratio was varied from 2.0 to approximately 6.0. The results of this investigation indicate that both the rotating vane and three door reverser concepts were effective static thrust spoilers with the landing approach nozzle geometry and were capable of providing at least a 50 percent reversal of static thrust when fully deployed with the ground roll nozzle geometry.

  9. Hydrodynamics of confined colloidal fluids in two dimensions

    NASA Astrophysics Data System (ADS)

    Sané, Jimaan; Padding, Johan T.; Louis, Ard A.

    2009-05-01

    We apply a hybrid molecular dynamics and mesoscopic simulation technique to study the dynamics of two-dimensional colloidal disks in confined geometries. We calculate the velocity autocorrelation functions and observe the predicted t-1 long-time hydrodynamic tail that characterizes unconfined fluids, as well as more complex oscillating behavior and negative tails for strongly confined geometries. Because the t-1 tail of the velocity autocorrelation function is cut off for longer times in finite systems, the related diffusion coefficient does not diverge but instead depends logarithmically on the overall size of the system. The Langevin equation gives a poor approximation to the velocity autocorrelation function at both short and long times.

  10. Acoustic guided waves in cylindrical solid-fluid structures: Modeling with a sweeping frequency finite element method and experimental validation

    NASA Astrophysics Data System (ADS)

    Liu, Yang; D'Angelo, Ralph M.; Sinha, Bikash K.; Zeroug, Smaine

    2017-02-01

    Modeling and understanding the complex elastic-wave physics prevalent in solid-fluid cylindrically-layered structures is of importance in many NDE fields, and most pertinently in the domain of well integrity evaluation of cased holes in the oil and gas industry. Current sonic measurements provide viable techniques for well integrity evaluation yet their practical effectiveness is hampered by the current lack of knowledge of acoustic wave fields particularly in complicated cased-hole geometry where for instance two or more nested steel strings are present in the borehole. In this article, we propose and implement a Sweeping Frequency Finite Element Method (SFFEM) for acoustic guided waves simulation in complex geometries that include double steel strings cemented to each other and to the formation and where the strings may be non-concentric. Transient dynamic finite element models are constructed with sweeping frequency signals being applied as the excitation sources. The sources and receivers disposition simulate current sonic measurement tools deployed in the oilfield. Synthetic wavetrains are recorded and processed with modified matrix pencil method to isolate both the dispersive and non-dispersive propagating guided wave modes. Scaled experiments of fluid-filled double strings with dimensions mimicking the real ones encountered in the field have also been carried out to generate reference data. A comparison of the experimental and numerical results indicates that the SFFEM is capable of accurately reproducing the rich and intricate higher-order multiple wave fields observed experimentally in the fluid-filled double string geometries.

  11. When eyes drive hand: Influence of non-biological motion on visuo-motor coupling.

    PubMed

    Thoret, Etienne; Aramaki, Mitsuko; Bringoux, Lionel; Ystad, Sølvi; Kronland-Martinet, Richard

    2016-01-26

    Many studies stressed that the human movement execution but also the perception of motion are constrained by specific kinematics. For instance, it has been shown that the visuo-manual tracking of a spotlight was optimal when the spotlight motion complies with biological rules such as the so-called 1/3 power law, establishing the co-variation between the velocity and the trajectory curvature of the movement. The visual or kinesthetic perception of a geometry induced by motion has also been shown to be constrained by such biological rules. In the present study, we investigated whether the geometry induced by the visuo-motor coupling of biological movements was also constrained by the 1/3 power law under visual open loop control, i.e. without visual feedback of arm displacement. We showed that when someone was asked to synchronize a drawing movement with a visual spotlight following a circular shape, the geometry of the reproduced shape was fooled by visual kinematics that did not respect the 1/3 power law. In particular, elliptical shapes were reproduced when the circle is trailed with a kinematics corresponding to an ellipse. Moreover, the distortions observed here were larger than in the perceptual tasks stressing the role of motor attractors in such a visuo-motor coupling. Finally, by investigating the direct influence of visual kinematics on the motor reproduction, our result conciliates previous knowledge on sensorimotor coupling of biological motions with external stimuli and gives evidence to the amodal encoding of biological motion. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Space Radiation Transport Code Development: 3DHZETRN

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Slaba, Tony C.; Badavi, Francis F.; Reddell, Brandon D.; Bahadori, Amir A.

    2015-01-01

    The space radiation transport code, HZETRN, has been used extensively for research, vehicle design optimization, risk analysis, and related applications. One of the simplifying features of the HZETRN transport formalism is the straight-ahead approximation, wherein all particles are assumed to travel along a common axis. This reduces the governing equation to one spatial dimension allowing enormous simplification and highly efficient computational procedures to be implemented. Despite the physical simplifications, the HZETRN code is widely used for space applications and has been found to agree well with fully 3D Monte Carlo simulations in many circumstances. Recent work has focused on the development of 3D transport corrections for neutrons and light ions (Z < 2) for which the straight-ahead approximation is known to be less accurate. Within the development of 3D corrections, well-defined convergence criteria have been considered, allowing approximation errors at each stage in model development to be quantified. The present level of development assumes the neutron cross sections have an isotropic component treated within N explicit angular directions and a forward component represented by the straight-ahead approximation. The N = 1 solution refers to the straight-ahead treatment, while N = 2 represents the bi-directional model in current use for engineering design. The figure below shows neutrons, protons, and alphas for various values of N at locations in an aluminum sphere exposed to a solar particle event (SPE) spectrum. The neutron fluence converges quickly in simple geometry with N > 14 directions. The improved code, 3DHZETRN, transports neutrons, light ions, and heavy ions under space-like boundary conditions through general geometry while maintaining a high degree of computational efficiency. A brief overview of the 3D transport formalism for neutrons and light ions is given, and extensive benchmarking results with the Monte Carlo codes Geant4, FLUKA, and PHITS are provided for a variety of boundary conditions and geometries. Improvements provided by the 3D corrections are made clear in the comparisons. Developments needed to connect 3DHZETRN to vehicle design and optimization studies will be discussed. Future theoretical development will relax the forward plus isotropic interaction assumption to more general angular dependence.

  13. Quantum Tunneling from Apparent Horizon of Rainbow-FRW Universe

    NASA Astrophysics Data System (ADS)

    Lin, Kai; Yang, Shuzheng

    2009-07-01

    The quantum tunneling from the apparent horizon of rainbow-FRW universe is studied in this paper. We apply the semi-classical approximation, which is put forward by Parikh and Wilczek et al., to research on the scalar field particles tunneling from the apparent horizon of the rainbow-FRW universe, and then use the spin 1/2 Fermions tunneling theory, which brought forward by Kerner and Mann firstly, to research on the Fermions Hawking radiation via semi-classical approximation. Finally, we discuss the meanings of the quantum effect via Finsler geometry.

  14. Microwave imaging by three-dimensional Born linearization of electromagnetic scattering

    NASA Astrophysics Data System (ADS)

    Caorsi, S.; Gragnani, G. L.; Pastorino, M.

    1990-11-01

    An approach to microwave imaging is proposed that uses a three-dimensional vectorial form of the Born approximation to linearize the equation of electromagnetic scattering. The inverse scattering problem is numerically solved for three-dimensional geometries by means of the moment method. A pseudoinversion algorithm is adopted to overcome ill conditioning. Results show that the method is well suited for qualitative imaging purposes, while its capability for exactly reconstructing the complex dielectric permittivity is affected by the limitations inherent in the Born approximation and in ill conditioning.

  15. Approximate inverse for the common offset acquisition geometry in 2D seismic imaging

    NASA Astrophysics Data System (ADS)

    Grathwohl, Christine; Kunstmann, Peer; Quinto, Eric Todd; Rieder, Andreas

    2018-01-01

    We explore how the concept of approximate inverse can be used and implemented to recover singularities in the sound speed from common offset measurements in two space dimensions. Numerical experiments demonstrate the performance of the method. We gratefully acknowledge financial support by the Deutsche Forschungsgemeinschaft (DFG) through CRC 1173. Quinto additionally thanks the Otto Mønsteds Fond and U.S. National Science Foundation (under grants DMS 1311558 and DMS 1712207) for their support. He thanks colleagues at DTU and KIT for their warm hospitality while this research was being done.

  16. What is fractal, and why fractals should matter to the petroleum geologist. [The use of fractal geometry to determine the occurrence and movement of hydrocarbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mandelbrot, B.B.

    1991-03-01

    The following statements are obviously quite wrong: oil fields are circular; they are the same size and are distributed uniformly throughout the world; soil is of uniform porosity and permeability; after water has been pumped into a field it seeps through as an underground sphere. The preceding statements are so grossly incorrect that they do not even provide useful first approximations that one could improve upon by adding so-called corrective terms. For example, one gains little by starting with the notion of a uniform distribution of oil fields and then assuming it is perturbed by small Gaussian scatter. The flowmore » of water in a porous medium often fingers out in a pattern so diffuse that a sphere is not a useful point of departure in describing it. In summary, even the simplest data underlying petroleum geology exhibit very gross irregularity and unevenness. Fractal geometry is the proper geometry of manageable irregularity, fragmentation, and unevenness. It is the only workable alternative between the excessive order of the Euclidean geometry and unmanageable disorder. The main features of fractal geometry will be described and several techniques will be pointed out that show promise for the petroleum geologist.« less

  17. Absorption line studies of reflection from horizontally inhomogeneous layers. [in cloudy planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Appleby, J. F.; Van Blerkom, D. J.

    1975-01-01

    The article details an inhomogeneous reflecting layer (IRFL) model designed to survey absorption line behavior from a Squires-like cloud cover (which is characterized by convection cell structure). Computational problems and procedures are discussed in detail. The results show trends usually opposite to those predicted by a simple reflecting layer model. Per cent equivalent width variations for the tower model are usually somewhat greater for weak than for relatively strong absorption lines, with differences of a factor of about two or three. IRFL equivalent width variations do not differ drastically as a function of geometry when the total volume of absorbing gas is held constant. The IRFL results are in many instances consistent with observed equivalent width variations of Jupiter, Saturn, and Venus.

  18. Versatile microrobotics using simple modular subunits

    NASA Astrophysics Data System (ADS)

    Cheang, U. Kei; Meshkati, Farshad; Kim, Hoyeon; Lee, Kyoungwoo; Fu, Henry Chien; Kim, Min Jun

    2016-07-01

    The realization of reconfigurable modular microrobots could aid drug delivery and microsurgery by allowing a single system to navigate diverse environments and perform multiple tasks. So far, microrobotic systems are limited by insufficient versatility; for instance, helical shapes commonly used for magnetic swimmers cannot effectively assemble and disassemble into different size and shapes. Here by using microswimmers with simple geometries constructed of spherical particles, we show how magnetohydrodynamics can be used to assemble and disassemble modular microrobots with different physical characteristics. We develop a mechanistic physical model that we use to improve assembly strategies. Furthermore, we experimentally demonstrate the feasibility of dynamically changing the physical properties of microswimmers through assembly and disassembly in a controlled fluidic environment. Finally, we show that different configurations have different swimming properties by examining swimming speed dependence on configuration size.

  19. Versatile microrobotics using simple modular subunits

    PubMed Central

    Cheang, U Kei; Meshkati, Farshad; Kim, Hoyeon; Lee, Kyoungwoo; Fu, Henry Chien; Kim, Min Jun

    2016-01-01

    The realization of reconfigurable modular microrobots could aid drug delivery and microsurgery by allowing a single system to navigate diverse environments and perform multiple tasks. So far, microrobotic systems are limited by insufficient versatility; for instance, helical shapes commonly used for magnetic swimmers cannot effectively assemble and disassemble into different size and shapes. Here by using microswimmers with simple geometries constructed of spherical particles, we show how magnetohydrodynamics can be used to assemble and disassemble modular microrobots with different physical characteristics. We develop a mechanistic physical model that we use to improve assembly strategies. Furthermore, we experimentally demonstrate the feasibility of dynamically changing the physical properties of microswimmers through assembly and disassembly in a controlled fluidic environment. Finally, we show that different configurations have different swimming properties by examining swimming speed dependence on configuration size. PMID:27464852

  20. Context-dependent logo matching and recognition.

    PubMed

    Sahbi, Hichem; Ballan, Lamberto; Serra, Giuseppe; Del Bimbo, Alberto

    2013-03-01

    We contribute, through this paper, to the design of a novel variational framework able to match and recognize multiple instances of multiple reference logos in image archives. Reference logos and test images are seen as constellations of local features (interest points, regions, etc.) and matched by minimizing an energy function mixing: 1) a fidelity term that measures the quality of feature matching, 2) a neighborhood criterion that captures feature co-occurrence/geometry, and 3) a regularization term that controls the smoothness of the matching solution. We also introduce a detection/recognition procedure and study its theoretical consistency. Finally, we show the validity of our method through extensive experiments on the challenging MICC-Logos dataset. Our method overtakes, by 20%, baseline as well as state-of-the-art matching/recognition procedures.

  1. On the maximum principle for complete second-order elliptic operators in general domains

    NASA Astrophysics Data System (ADS)

    Vitolo, Antonio

    This paper is concerned with the maximum principle for second-order linear elliptic equations in a wide generality. By means of a geometric condition previously stressed by Berestycki-Nirenberg-Varadhan, Cabré was very able to improve the classical ABP estimate obtaining the maximum principle also in unbounded domains, such as infinite strips and open connected cones with closure different from the whole space. Now we introduce a new geometric condition that extends the result to a more general class of domains including the complements of hypersurfaces, as for instance the cut plane. The methods developed here allow us to deal with complete second-order equations, where the admissible first-order term, forced to be zero in a preceding result with Cafagna, depends on the geometry of the domain.

  2. Generation of gear tooth surfaces by application of CNC machines

    NASA Technical Reports Server (NTRS)

    Litvin, F. L.; Chen, N. X.

    1994-01-01

    This study will demonstrate the importance of application of computer numerically controlled (CNC) machines in generation of gear tooth surfaces with new topology. This topology decreases gear vibration and will extend the gear capacity and service life. A preliminary investigation by a tooth contact analysis (TCA) program has shown that gear tooth surfaces in line contact (for instance, involute helical gears with parallel axes, worm gear drives with cylindrical worms, etc.) are very sensitive to angular errors of misalignment that cause edge contact and an unfavorable shape of transmission errors and vibration. The new topology of gear tooth surfaces is based on the localization of bearing contact, and the synthesis of a predesigned parabolic function of transmission errors that is able to absorb a piecewise linear function of transmission errors caused by gear misalignment. The report will describe the following topics: description of kinematics of CNC machines with six degrees of freedom that can be applied for generation of gear tooth surfaces with new topology. A new method for grinding of gear tooth surfaces by a cone surface or surface of revolution based on application of CNC machines is described. This method provides an optimal approximation of the ground surface to the given one. This method is especially beneficial when undeveloped ruled surfaces are to be ground. Execution of motions of the CNC machine is also described. The solution to this problem can be applied as well for the transfer of machine tool settings from a conventional generator to the CNC machine. The developed theory required the derivation of a modified equation of meshing based on application of the concept of space curves, space curves represented on surfaces, geodesic curvature, surface torsion, etc. Condensed information on these topics of differential geometry is provided as well.

  3. Energetics using the single point IMOMO (integrated molecular orbital+molecular orbital) calculations: Choices of computational levels and model system

    NASA Astrophysics Data System (ADS)

    Svensson, Mats; Humbel, Stéphane; Morokuma, Keiji

    1996-09-01

    The integrated MO+MO (IMOMO) method, recently proposed for geometry optimization, is tested for accurate single point calculations. The principle idea of the IMOMO method is to reproduce results of a high level MO calculation for a large ``real'' system by dividing it into a small ``model'' system and the rest and applying different levels of MO theory for the two parts. Test examples are the activation barrier of the SN2 reaction of Cl-+alkyl chlorides, the C=C double bond dissociation of olefins and the energy of reaction for epoxidation of benzene. The effects of basis set and method in the lower level calculation as well as the effects of the choice of model system are investigated in detail. The IMOMO method gives an approximation to the high level MO energetics on the real system, in most cases with very small errors, with a small additional cost over the low level calculation. For instance, when the MP2 (Møller-Plesset second-order perturbation) method is used as the lower level method, the IMOMO method reproduces the results of very high level MO method within 2 kcal/mol, with less than 50% of additional computer time, for the first two test examples. When the HF (Hartree-Fock) method is used as the lower level method, it is less accurate and depends more on the choice of model system, though the improvement over the HF energy is still very significant. Thus the IMOMO single point calculation provides a method for obtaining reliable local energetics such as bond energies and activation barriers for a large molecular system.

  4. Assimilating the ICE-6G_C Reconstruction of the Latest Quaternary Ice Age Cycle Into Numerical Simulations of the Laurentide and Fennoscandian Ice Sheets

    NASA Astrophysics Data System (ADS)

    Stuhne, G. R.; Peltier, W. R.

    2017-12-01

    We analyze the effects of nudging 100 kyr numerical simulations of the Laurentide and Fennoscandian ice sheets toward the glacial isostatic adjustment-based (GIA-based) ICE-6G_C reconstruction of the most recent ice age cycle. Starting with the ice physics approximations of the PISM ice sheet model and the SeaRISE simulation protocols, we incorporate nudging at characteristic time scales, τf, through anomalous mass balance terms in the ice mass conservation equation. As should be expected, these mass balances exhibit physically unrealistic details arising from pure GIA-based reconstruction geometry when nudging is very strong (τf=20 years for North America), while weakly nudged (τf=1,000 years) solutions deviate from ICE-6G_C sufficiently to degrade its observational fit quality. For reasonable intermediate time scales (τf=100 years and 200 years), we perturbatively analyze nudged ice dynamics as a superposition of "leading-order smoothing" that diffuses ICE-6G_C in a physically and observationally consistent manner and "higher-order" deviations arising, for instance, from biases in the time dependence of surface climate boundary conditions. Based upon the relative deviations between respective nudged simulations in which these biases follow surface temperature from ice cores and eustatic sea level from marine sediment cores, we compute "ice core climate adjustments" that suggest how local paleoclimate observations may be applied to the systematic refinement of ICE-6G_C. Our results are consistent with a growing body of evidence suggesting that the geographical origins of Meltwater Pulse 1B (MWP1b) may lie primarily in North America as opposed to Antarctica (as reconstructed in ICE-6G_C).

  5. Floating-point geometry: toward guaranteed geometric computations with approximate arithmetics

    NASA Astrophysics Data System (ADS)

    Bajard, Jean-Claude; Langlois, Philippe; Michelucci, Dominique; Morin, Géraldine; Revol, Nathalie

    2008-08-01

    Geometric computations can fail because of inconsistencies due to floating-point inaccuracy. For instance, the computed intersection point between two curves does not lie on the curves: it is unavoidable when the intersection point coordinates are non rational, and thus not representable using floating-point arithmetic. A popular heuristic approach tests equalities and nullities up to a tolerance ɛ. But transitivity of equality is lost: we can have A approx B and B approx C, but A not approx C (where A approx B means ||A - B|| < ɛ for A,B two floating-point values). Interval arithmetic is another, self-validated, alternative; the difficulty is to limit the swell of the width of intervals with computations. Unfortunately interval arithmetic cannot decide equality nor nullity, even in cases where it is decidable by other means. A new approach, developed in this paper, consists in modifying the geometric problems and algorithms, to account for the undecidability of the equality test and unavoidable inaccuracy. In particular, all curves come with a non-zero thickness, so two curves (generically) cut in a region with non-zero area, an inner and outer representation of which is computable. This last approach no more assumes that an equality or nullity test is available. The question which arises is: which geometric problems can still be solved with this last approach, and which cannot? This paper begins with the description of some cases where every known arithmetic fails in practice. Then, for each arithmetic, some properties of the problems they can solve are given. We end this work by proposing the bases of a new approach which aims to fulfill the geometric computations requirements.

  6. Young's moduli of carbon materials investigated by various classical molecular dynamics schemes

    NASA Astrophysics Data System (ADS)

    Gayk, Florian; Ehrens, Julian; Heitmann, Tjark; Vorndamme, Patrick; Mrugalla, Andreas; Schnack, Jürgen

    2018-05-01

    For many applications classical carbon potentials together with classical molecular dynamics are employed to calculate structures and physical properties of such carbon-based materials where quantum mechanical methods fail either due to the excessive size, irregular structure or long-time dynamics. Although such potentials, as for instance implemented in LAMMPS, yield reasonably accurate bond lengths and angles for several carbon materials such as graphene, it is not clear how accurate they are in terms of mechanical properties such as for instance Young's moduli. We performed large-scale classical molecular dynamics investigations of three carbon-based materials using the various potentials implemented in LAMMPS as well as the EDIP potential of Marks. We show how the Young's moduli vary with classical potentials and compare to experimental results. Since classical descriptions of carbon are bound to be approximations it is not astonishing that different realizations yield differing results. One should therefore carefully check for which observables a certain potential is suited. Our aim is to contribute to such a clarification.

  7. Adsorption of asymmetric rigid rods or heteronuclear diatomic moleculeson homogeneous surfaces

    NASA Astrophysics Data System (ADS)

    Engl, W.; Courbin, L.; Panizza, P.

    2004-10-01

    We treat the adsorption on homogeneous surfaces of asymmetric rigid rods (like for instance heteronuclear diatomic molecules). We show that the n→0 vector spin formalism is well suited to describe such a problem. We establish an isomorphism between the coupling constants of the magnetic Hamiltonian and the adsorption parameters of the rigid rods. By solving this Hamiltonian within a mean-field approximation, we obtain analytical expressions for the densities of the different rod’s configurations, both isotherm and isobar adsorptions curves. The most probable configurations of the molecules (normal or parallel to the surface) which depends on temperature and energy parameters are summarized in a diagram. We derive that the variation of Qv , the heat of adsorption at constant volume, with the temperature is a direct signature of the adsorbed molecules configuration change. We show that this formalism can be generalized to more complicated problems such as for instance the adsorption of symmetric and asymmetric rigid rods mixtures in the presence or not of interactions.

  8. Misalignment of disposable pulse oximeter probes results in false saturation readings that influence anesthetic management.

    PubMed

    Guan, Zhonghui; Baker, Keith; Sandberg, Warren S

    2009-11-01

    We report a small case series in which misaligned disposable pulse oximeter sensors gave falsely low saturation readings. In each instance, the sensor performed well during preinduction oxygen administration and the early part of the case, most notably by producing a plethysmographic trace rated as high quality by the oximeter software. The reported pulse oximeter oxygen saturation eventually decreased to concerning levels in each instance, but the anesthesiologists, relying on the reported high-quality signal, initially sought other causes for apparent hypoxia. They undertook maneuvers and diagnostic procedures later deemed unnecessary. When the malpositioned sensors were discovered and repositioned, the apparent hypoxia was quickly relieved in each case. We then undertook a survey of disposable oximeter sensors as patients entered the recovery room, and discovered malposition of more than 1 cm in approximately 20% of all sensors, without apparent consequence. We conclude that the technology is quite robust, but that the diagnosis of apparent hypoxia should include a quick check of oximeter position early on.

  9. Interactive Machine Learning at Scale with CHISSL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arendt, Dustin L.; Grace, Emily A.; Volkova, Svitlana

    We demonstrate CHISSL, a scalable client-server system for real-time interactive machine learning. Our system is capa- ble of incorporating user feedback incrementally and imme- diately without a structured or pre-defined prediction task. Computation is partitioned between a lightweight web-client and a heavyweight server. The server relies on representation learning and agglomerative clustering to learn a dendrogram, a hierarchical approximation of a representation space. The client uses only this dendrogram to incorporate user feedback into the model via transduction. Distances and predictions for each unlabeled instance are updated incrementally and deter- ministically, with O(n) space and time complexity. Our al- gorithmmore » is implemented in a functional prototype, designed to be easy to use by non-experts. The prototype organizes the large amounts of data into recommendations. This allows the user to interact with actual instances by dragging and drop- ping to provide feedback in an intuitive manner. We applied CHISSL to several domains including cyber, social media, and geo-temporal analysis.« less

  10. Statis omnidirectional stereoscopic display system

    NASA Astrophysics Data System (ADS)

    Barton, George G.; Feldman, Sidney; Beckstead, Jeffrey A.

    1999-11-01

    A unique three camera stereoscopic omnidirectional viewing system based on the periscopic panoramic camera described in the 11/98 SPIE proceedings (AM13). The 3 panoramic cameras are equilaterally combined so each leg of the triangle approximates the human inter-ocular spacing allowing each panoramic camera to view 240 degree(s) of the panoramic scene, the most counter clockwise 120 degree(s) being the left eye field and the other 120 degree(s) segment being the right eye field. Field definition may be by green/red filtration or time discrimination of the video signal. In the first instance a 2 color spectacle is used in viewing the display or in the 2nd instance LCD goggles are used to differentiate the R/L fields. Radially scanned vidicons or re-mapped CCDs may be used. The display consists of three vertically stacked 120 degree(s) segments of the panoramic field of view with 2 fields/frame. Field A being the left eye display and Field B the right eye display.

  11. Invariant patterns in crystal lattices: Implications for protein folding algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HART,WILLIAM E.; ISTRAIL,SORIN

    2000-06-01

    Crystal lattices are infinite periodic graphs that occur naturally in a variety of geometries and which are of fundamental importance in polymer science. Discrete models of protein folding use crystal lattices to define the space of protein conformations. Because various crystal lattices provide discretizations of the same physical phenomenon, it is reasonable to expect that there will exist invariants across lattices related to fundamental properties of the protein folding process. This paper considers whether performance-guaranteed approximability is such an invariant for HP lattice models. The authors define a master approximation algorithm that has provable performance guarantees provided that a specificmore » sublattice exists within a given lattice. They describe a broad class of crystal lattices that are approximable, which further suggests that approximability is a general property of HP lattice models.« less

  12. Validation of space-based polarization measurements by use of a single-scattering approximation, with application to the global ozone monitoring experiment.

    PubMed

    Aben, Ilse; Tanzi, Cristina P; Hartmann, Wouter; Stam, Daphne M; Stammes, Piet

    2003-06-20

    A method is presented for in-flight validation of space-based polarization measurements based on approximation of the direction of polarization of scattered sunlight by the Rayleigh single-scattering value. This approximation is verified by simulations of radiative transfer calculations for various atmospheric conditions. The simulations show locations along an orbit where the scattering geometries are such that the intensities of the parallel and orthogonal polarization components of the light are equal, regardless of the observed atmosphere and surface. The method can be applied to any space-based instrument that measures the polarization of reflected solar light. We successfully applied the method to validate the Global Ozone Monitoring Experiment (GOME) polarization measurements. The error in the GOME's three broadband polarization measurements appears to be approximately 1%.

  13. On the geometry dependence of differential pathlength factor for near-infrared spectroscopy. I. Steady-state with homogeneous medium

    PubMed Central

    Piao, Daqing; Barbour, Randall L.; Graber, Harry L.; Lee, Daniel C.

    2015-01-01

    Abstract. This work analytically examines some dependences of the differential pathlength factor (DPF) for steady-state photon diffusion in a homogeneous medium on the shape, dimension, and absorption and reduced scattering coefficients of the medium. The medium geometries considered include a semi-infinite geometry, an infinite-length cylinder evaluated along the azimuthal direction, and a sphere. Steady-state photon fluence rate in the cylinder and sphere geometries is represented by a form involving the physical source, its image with respect to the associated extrapolated half-plane, and a radius-dependent term, leading to simplified formula for estimating the DPFs. With the source-detector distance and medium optical properties held fixed across all three geometries, and equal radii for the cylinder and sphere, the DPF is the greatest in the semi-infinite and the smallest in the sphere geometry. When compared to the results from finite-element method, the DPFs analytically estimated for 10 to 25 mm source–detector separations on a sphere of 50 mm radius with μa=0.01  mm−1 and μs′=1.0  mm−1 are on average less than 5% different. The approximation for sphere, generally valid for a diameter ≥20 times of the effective attenuation pathlength, may be useful for rapid estimation of DPFs in near-infrared spectroscopy of an infant head and for short source–detector separation. PMID:26465613

  14. Simulated E-Bomb Effects on Electronically Equipped Targets

    DTIC Science & Technology

    2009-09-01

    coupling model program (CEMPAT), pursuing a feasible geometry of attack, practical antennas, best coupling approximations of ground conductivity and...procedure to determine these possible effects is to estimate the electromagnetic coupling from first principles and simulations using a coupling model ...Applications .................................... 16 B. SYSTEM OF INTEREST MODEL AS A TARGET ............................. 16 1. Shielding Methods, as

  15. Fractal characterization of fracture surfaces in concrete

    USGS Publications Warehouse

    Saouma, V.E.; Barton, C.C.; Gamaleldin, N.A.

    1990-01-01

    Fractal geometry is used to characterize the roughness of cracked concrete surfaces through a specially built profilometer, and the fractal dimension is subsequently correlated to the fracture toughness and direction of crack propagation. Preliminary results indicate that the fracture surface is indeed fractal over two orders of magnitudes with a dimension of approximately 1.20. ?? 1990.

  16. Prediction of dynamic and aerodynamic characteristics of the centrifugal fan with forward curved blades

    NASA Astrophysics Data System (ADS)

    Polanský, Jiří; Kalmár, László; Gášpár, Roman

    2013-12-01

    The main aim of this paper is determine the centrifugal fan with forward curved blades aerodynamic characteristics based on numerical modeling. Three variants of geometry were investigated. The first, basic "A" variant contains 12 blades. The geometry of second "B" variant contains 12 blades and 12 semi-blades with optimal length [1]. The third, control variant "C" contains 24 blades without semi-blades. Numerical calculations were performed by CFD Ansys. Another aim of this paper is to compare results of the numerical simulation with results of approximate numerical procedure. Applied approximate numerical procedure [2] is designated to determine characteristics of the turbulent flow in the bladed space of a centrifugal-flow fan impeller. This numerical method is an extension of the hydro-dynamical cascade theory for incompressible and inviscid fluid flow. Paper also partially compares results from the numerical simulation and results from the experimental investigation. Acoustic phenomena observed during experiment, during numerical simulation manifested as deterioration of the calculation stability, residuals oscillation and thus also as a flow field oscillation. Pressure pulsations are evaluated by using frequency analysis for each variant and working condition.

  17. Fast reconstruction of optical properties for complex segmentations in near infrared imaging

    NASA Astrophysics Data System (ADS)

    Jiang, Jingjing; Wolf, Martin; Sánchez Majos, Salvador

    2017-04-01

    The intrinsic ill-posed nature of the inverse problem in near infrared imaging makes the reconstruction of fine details of objects deeply embedded in turbid media challenging even for the large amounts of data provided by time-resolved cameras. In addition, most reconstruction algorithms for this type of measurements are only suitable for highly symmetric geometries and rely on a linear approximation to the diffusion equation since a numerical solution of the fully non-linear problem is computationally too expensive. In this paper, we will show that a problem of practical interest can be successfully addressed making efficient use of the totality of the information supplied by time-resolved cameras. We set aside the goal of achieving high spatial resolution for deep structures and focus on the reconstruction of complex arrangements of large regions. We show numerical results based on a combined approach of wavelength-normalized data and prior geometrical information, defining a fully parallelizable problem in arbitrary geometries for time-resolved measurements. Fast reconstructions are obtained using a diffusion approximation and Monte-Carlo simulations, parallelized in a multicore computer and a GPU respectively.

  18. The Dynamics of Current Carriers In Standing Alfven Waves

    NASA Astrophysics Data System (ADS)

    Wright, A. N.; Allan, W.; Ruderman, M. S.; Elphic, R. C.

    The acceleration of current carriers in an Alfvén wave current system is considered. The model incorporates a dipole magnetic field geometry, and we present an analyt- ical solution of the two-fluid equations by successive approximations. The leading solution corresponds to the familiar single-fluid toroidal oscillations. The next order describes the nonlinear dynamics of electrons responsible for carrying a few µAm-2 field aligned current into the ionosphere. The solution shows how most of the elec- tron acceleration in the magnetosphere occurs within 1 RE of the ionosphere, and that a parallel electric field of the order of 1 mVm-1 is reponsible for energising the electrons to 1 keV. The limitations of the electron fluid approximation are considered, and a qualitative solution including electron beams and a modified E is developed in accord with observations. We find that the electron acceleration can be nonlinear, (ve )ve > ve , as a result of our nonuniform equilibrium field geometry even when ve is less than the Alfvén speed. Our calculation also elucidates the processes through which E is generated and supported.

  19. Simple Scaling of Mulit-Stream Jet Plumes for Aeroacoustic Modeling

    NASA Technical Reports Server (NTRS)

    Bridges, James

    2016-01-01

    When creating simplified, semi-empirical models for the noise of simple single-stream jets near surfaces it has proven useful to be able to generalize the geometry of the jet plume. Having a model that collapses the mean and turbulent velocity fields for a range of flows allows the problem to become one of relating the normalized jet field and the surface. However, most jet flows of practical interest involve jets of two or more coannular flows for which standard models for the plume geometry do not exist. The present paper describes one attempt to relate the mean and turbulent velocity fields of multi-stream jets to that of an equivalent single-stream jet. The normalization of single-stream jets is briefly reviewed, from the functional form of the flow model to the results of the modeling. Next, PIV data from a number of multi-stream jets is analyzed in a similar fashion. The results of several single-stream approximations of the multi-stream jet plume are demonstrated, with a best approximation determined and the shortcomings of the model highlighted.

  20. Simple Scaling of Multi-Stream Jet Plumes for Aeroacoustic Modeling

    NASA Technical Reports Server (NTRS)

    Bridges, James

    2015-01-01

    When creating simplified, semi-empirical models for the noise of simple single-stream jets near surfaces it has proven useful to be able to generalize the geometry of the jet plume. Having a model that collapses the mean and turbulent velocity fields for a range of flows allows the problem to become one of relating the normalized jet field and the surface. However, most jet flows of practical interest involve jets of two or more co-annular flows for which standard models for the plume geometry do not exist. The present paper describes one attempt to relate the mean and turbulent velocity fields of multi-stream jets to that of an equivalent single-stream jet. The normalization of single-stream jets is briefly reviewed, from the functional form of the flow model to the results of the modeling. Next, PIV (Particle Image Velocimetry) data from a number of multi-stream jets is analyzed in a similar fashion. The results of several single-stream approximations of the multi-stream jet plume are demonstrated, with a 'best' approximation determined and the shortcomings of the model highlighted.

  1. Leak Isolation in Pressurized Pipelines using an Interpolation Function to approximate the Fitting Losses

    NASA Astrophysics Data System (ADS)

    Badillo-Olvera, A.; Begovich, O.; Peréz-González, A.

    2017-01-01

    The present paper is motivated by the purpose of detection and isolation of a single leak considering the Fault Model Approach (FMA) focused on pipelines with changes in their geometry. These changes generate a different pressure drop that those produced by the friction, this phenomenon is a common scenario in real pipeline systems. The problem arises, since the dynamical model of the fluid in a pipeline only considers straight geometries without fittings. In order to address this situation, several papers work with a virtual model of a pipeline that generates a equivalent straight length, thus, friction produced by the fittings is taking into account. However, when this method is applied, the leak is isolated in a virtual length, which for practical reasons does not represent a complete solution. This research proposes as a solution to the problem of leak isolation in a virtual length, the use of a polynomial interpolation function in order to approximate the conversion of the virtual position to a real-coordinates value. Experimental results in a real prototype are shown, concluding that the proposed methodology has a good performance.

  2. Generalized exact holographic mapping with wavelets

    NASA Astrophysics Data System (ADS)

    Lee, Ching Hua

    2017-12-01

    The idea of renormalization and scale invariance is pervasive across disciplines. It has not only drawn numerous surprising connections between physical systems under the guise of holographic duality, but has also inspired the development of wavelet theory now widely used in signal processing. Synergizing on these two developments, we describe in this paper a generalized exact holographic mapping that maps a generic N -dimensional lattice system to a (N +1 )-dimensional holographic dual, with the emergent dimension representing scale. In previous works, this was achieved via the iterations of the simplest of all unitary mappings, the Haar mapping, which fails to preserve the form of most Hamiltonians. By taking advantage of the full generality of biorthogonal wavelets, our new generalized holographic mapping framework is able to preserve the form of a large class of lattice Hamiltonians. By explicitly separating features that are fundamentally associated with the physical system from those that are basis specific, we also obtain a clearer understanding of how the resultant bulk geometry arises. For instance, the number of nonvanishing moments of the high-pass wavelet filter is revealed to be proportional to the radius of the dual anti-de Sitter space geometry. We conclude by proposing modifications to the mapping for systems with generic Fermi pockets.

  3. Geometry-aware multiscale image registration via OBBTree-based polyaffine log-demons.

    PubMed

    Seiler, Christof; Pennec, Xavier; Reyes, Mauricio

    2011-01-01

    Non-linear image registration is an important tool in many areas of image analysis. For instance, in morphometric studies of a population of brains, free-form deformations between images are analyzed to describe the structural anatomical variability. Such a simple deformation model is justified by the absence of an easy expressible prior about the shape changes. Applying the same algorithms used in brain imaging to orthopedic images might not be optimal due to the difference in the underlying prior on the inter-subject deformations. In particular, using an un-informed deformation prior often leads to local minima far from the expected solution. To improve robustness and promote anatomically meaningful deformations, we propose a locally affine and geometry-aware registration algorithm that automatically adapts to the data. We build upon the log-domain demons algorithm and introduce a new type of OBBTree-based regularization in the registration with a natural multiscale structure. The regularization model is composed of a hierarchy of locally affine transformations via their logarithms. Experiments on mandibles show improved accuracy and robustness when used to initialize the demons, and even similar performance by direct comparison to the demons, with a significantly lower degree of freedom. This closes the gap between polyaffine and non-rigid registration and opens new ways to statistically analyze the registration results.

  4. Generalized Finsler geometric continuum physics with applications in fracture and phase transformations

    NASA Astrophysics Data System (ADS)

    Clayton, J. D.

    2017-02-01

    A theory of deformation of continuous media based on concepts from Finsler differential geometry is presented. The general theory accounts for finite deformations, nonlinear elasticity, and changes in internal state of the material, the latter represented by elements of a state vector of generalized Finsler space whose entries consist of one or more order parameter(s). Two descriptive representations of the deformation gradient are considered. The first invokes an additive decomposition and is applied to problems involving localized inelastic deformation mechanisms such as fracture. The second invokes a multiplicative decomposition and is applied to problems involving distributed deformation mechanisms such as phase transformations or twinning. Appropriate free energy functions are posited for each case, and Euler-Lagrange equations of equilibrium are derived. Solutions are obtained for specific problems of tensile fracture of an elastic cylinder and for amorphization of a crystal under spherical and uniaxial compression. The Finsler-based approach is demonstrated to be more general and potentially more physically descriptive than existing hyperelasticity models couched in Riemannian geometry or Euclidean space, without incorporation of supplementary ad hoc equations or spurious fitting parameters. Predictions for single crystals of boron carbide ceramic agree qualitatively, and in many instances quantitatively, with results from physical experiments and atomic simulations involving structural collapse and failure of the crystal along its c-axis.

  5. Three-dimensional light-tissue interaction models for bioluminescence tomography

    NASA Astrophysics Data System (ADS)

    Côté, D.; Allard, M.; Henkelman, R. M.; Vitkin, I. A.

    2005-09-01

    Many diagnostic and therapeutic approaches in medical physics today take advantage of the unique properties of light and its interaction with tissues. Because light scatters in tissue, our ability to develop these techniques depends critically on our knowledge of the distribution of light in tissue. Solutions to the diffusion equation can provide such information, but often lack the flexibility required for more general problems that involve, for instance, inhomogeneous optical properties, light polarization, arbitrary three-dimensional geometries, or arbitrary scattering. Monte Carlo techniques, which statistically sample the light distribution in tissue, offer a better alternative to analytical models. First, we discuss our implementation of a validated three-dimensional polarization-sensitive Monte Carlo algorithm and demonstrate its generality with respect to the geometry and scattering models it can treat. Second, we apply our model to bioluminescence tomography. After appropriate genetic modifications to cell lines, bioluminescence can be used as an indicator of cell activity, and is often used to study tumour growth and treatment in animal models. However, the amount of light escaping the animal is strongly dependent on the position and size of the tumour. Using forward models and structural data from magnetic resonance imaging, we show how the models can help to determine the location and size of tumour made of bioluminescent cancer cells in the brain of a mouse.

  6. Analyzation of photopolymer materials shrunken influence for thick hologram gratings

    NASA Astrophysics Data System (ADS)

    Li, Zhenzhen; Xiao, Xue; Chen, Wei; Kang, Guoguo; Huang, Yong; Tan, Xiaodi

    2016-09-01

    The photopolymer materials are good media to record thick hologram gratings, because photopolymer materials have high resolution, low cost, simple process technology and so on. According to coupled wave theory for thick hologram gratings, we know that the same object beam can be reconstructed if the same reference beam is used to retrieve a thick hologram grating. However, the shrinkage always occurs in the photopolymer materials because of environment temperature, humidity, vibration etc. For instance, the same object beam cannot be reconstructed even the same reference beam to be used. In this paper, we will analysis the shrinkage influence of photopolymer materials for thick hologram gratings. We divide the photopolymer materials into several geometry layers, and analysis the reconstructed characteristics separately basing on coupled wave theory of Kogelnik. Through gradually continuous changing the angle between gratings and the border (we call it slant angle), we can build the geometry model of gratings bending caused by shrinkage of materials. We calculate wave complex amplitude diffracted from every layer, and superpose them to compute the total diffraction efficiency. We simulate above methods to obtain the curve of diffraction efficiency with reconstruction wavelength by using Matlab software. Comparing the simulated results with the experiments results, we can deduce the probable situation of thick hologram gratings bending after photopolymer materials shrink.

  7. Solving radiative transfer with line overlaps using Gauss-Seidel algorithms

    NASA Astrophysics Data System (ADS)

    Daniel, F.; Cernicharo, J.

    2008-09-01

    Context: The improvement in observational facilities requires refining the modelling of the geometrical structures of astrophysical objects. Nevertheless, for complex problems such as line overlap in molecules showing hyperfine structure, a detailed analysis still requires a large amount of computing time and thus, misinterpretation cannot be dismissed due to an undersampling of the whole space of parameters. Aims: We extend the discussion of the implementation of the Gauss-Seidel algorithm in spherical geometry and include the case of hyperfine line overlap. Methods: We first review the basics of the short characteristics method that is used to solve the radiative transfer equations. Details are given on the determination of the Lambda operator in spherical geometry. The Gauss-Seidel algorithm is then described and, by analogy to the plan-parallel case, we see how to introduce it in spherical geometry. Doing so requires some approximations in order to keep the algorithm competitive. Finally, line overlap effects are included. Results: The convergence speed of the algorithm is compared to the usual Jacobi iterative schemes. The gain in the number of iterations is typically factors of 2 and 4 for the two implementations made of the Gauss-Seidel algorithm. This is obtained despite the introduction of approximations in the algorithm. A comparison of results obtained with and without line overlaps for N2H^+, HCN, and HNC shows that the J=3-2 line intensities are significantly underestimated in models where line overlap is neglected.

  8. The public goods hypothesis for the evolution of life on Earth

    PubMed Central

    2011-01-01

    It is becoming increasingly difficult to reconcile the observed extent of horizontal gene transfers with the central metaphor of a great tree uniting all evolving entities on the planet. In this manuscript we describe the Public Goods Hypothesis and show that it is appropriate in order to describe biological evolution on the planet. According to this hypothesis, nucleotide sequences (genes, promoters, exons, etc.) are simply seen as goods, passed from organism to organism through both vertical and horizontal transfer. Public goods sequences are defined by having the properties of being largely non-excludable (no organism can be effectively prevented from accessing these sequences) and non-rival (while such a sequence is being used by one organism it is also available for use by another organism). The universal nature of genetic systems ensures that such non-excludable sequences exist and non-excludability explains why we see a myriad of genes in different combinations in sequenced genomes. There are three features of the public goods hypothesis. Firstly, segments of DNA are seen as public goods, available for all organisms to integrate into their genomes. Secondly, we expect the evolution of mechanisms for DNA sharing and of defense mechanisms against DNA intrusion in genomes. Thirdly, we expect that we do not see a global tree-like pattern. Instead, we expect local tree-like patterns to emerge from the combination of a commonage of genes and vertical inheritance of genomes by cell division. Indeed, while genes are theoretically public goods, in reality, some genes are excludable, particularly, though not only, when they have variant genetic codes or behave as coalition or club goods, available for all organisms of a coalition to integrate into their genomes, and non-rival within the club. We view the Tree of Life hypothesis as a regionalized instance of the Public Goods hypothesis, just like classical mechanics and euclidean geometry are seen as regionalized instances of quantum mechanics and Riemannian geometry respectively. We argue for this change using an axiomatic approach that shows that the Public Goods hypothesis is a better accommodation of the observed data than the Tree of Life hypothesis. PMID:21861918

  9. The Public Goods Hypothesis for the evolution of life on Earth.

    PubMed

    McInerney, James O; Pisani, Davide; Bapteste, Eric; O'Connell, Mary J

    2011-08-23

    It is becoming increasingly difficult to reconcile the observed extent of horizontal gene transfers with the central metaphor of a great tree uniting all evolving entities on the planet. In this manuscript we describe the Public Goods Hypothesis and show that it is appropriate in order to describe biological evolution on the planet. According to this hypothesis, nucleotide sequences (genes, promoters, exons, etc.) are simply seen as goods, passed from organism to organism through both vertical and horizontal transfer. Public goods sequences are defined by having the properties of being largely non-excludable (no organism can be effectively prevented from accessing these sequences) and non-rival (while such a sequence is being used by one organism it is also available for use by another organism). The universal nature of genetic systems ensures that such non-excludable sequences exist and non-excludability explains why we see a myriad of genes in different combinations in sequenced genomes. There are three features of the public goods hypothesis. Firstly, segments of DNA are seen as public goods, available for all organisms to integrate into their genomes. Secondly, we expect the evolution of mechanisms for DNA sharing and of defense mechanisms against DNA intrusion in genomes. Thirdly, we expect that we do not see a global tree-like pattern. Instead, we expect local tree-like patterns to emerge from the combination of a commonage of genes and vertical inheritance of genomes by cell division. Indeed, while genes are theoretically public goods, in reality, some genes are excludable, particularly, though not only, when they have variant genetic codes or behave as coalition or club goods, available for all organisms of a coalition to integrate into their genomes, and non-rival within the club. We view the Tree of Life hypothesis as a regionalized instance of the Public Goods hypothesis, just like classical mechanics and euclidean geometry are seen as regionalized instances of quantum mechanics and Riemannian geometry respectively. We argue for this change using an axiomatic approach that shows that the Public Goods hypothesis is a better accommodation of the observed data than the Tree of Life hypothesis.

  10. Method Producing an SNS Superconducting Junction with Weak Link Barrier

    NASA Technical Reports Server (NTRS)

    Hunt, Brian D. (Inventor)

    1999-01-01

    A method of producing a high temperature superconductor Josephson element and an improved SNS weak link barrier element is provided. A YBaCuO superconducting electrode film is deposited on a substrate at a temperature of approximately 800 C. A weak link barrier layer of a nonsuperconducting film of N-YBaCuO is deposited over the electrode at a temperature range of 520 C. to 540 C. at a lower deposition rate. Subsequently a superconducting counter-electrode film layer of YBaCuO is deposited over the weak link barrier layer at approximately 800 C. The weak link barrier layer has a thickness of approximately 50 A and the SNS element can be constructed to provide an edge geometry junction.

  11. Doping evolution of charge and spin excitations in two-leg Hubbard ladders: Comparing DMRG and FLEX results [Doping evolution of charge and spin excitations in two-leg Hubbard ladders: Comparing DMRG and RPA+FLEX results

    DOE PAGES

    Nocera, Alberto; Wang, Yan; Patel, Niravkumar D.; ...

    2018-05-31

    Here, we study the magnetic and charge dynamical response of a Hubbard model in a two-leg ladder geometry using the density matrix renormalization group (DMRG) method and the random phase approximation within the fluctuation-exchange approximation (FLEX). Our calculations reveal that FLEX can capture the main features of the magnetic response from weak up to intermediate Hubbard repulsion for doped ladders, when compared with the numerically exact DMRG results. However, while at weak Hubbard repulsion both the spin and charge spectra can be understood in terms of weakly interacting electron-hole excitations across the Fermi surface, at intermediate coupling DMRG shows gappedmore » spin excitations at large momentum transfer that remain gapless within the FLEX approximation. For the charge response, FLEX can only reproduce the main features of the DMRG spectra at weak coupling and high doping levels, while it shows an incoherent character away from this limit. Overall, our analysis shows that FLEX works surprisingly well for spin excitations at weak and intermediate Hubbard U values even in the difficult low-dimensional geometry such as a two-leg ladder. Finally, we discuss the implications of our results for neutron scattering and resonant inelastic x-ray scattering experiments on two-leg ladder cuprate compounds.« less

  12. Solitary waves in shallow water hydrodynamics and magnetohydrodynamics in rotating spherical coordinates

    NASA Astrophysics Data System (ADS)

    London, Steven D.

    2018-01-01

    In a recent paper (London, Geophys. Astrophys. Fluid Dyn. 2017, vol. 111, pp. 115-130, referred to as L1), we considered a perfect electrically conducting rotating fluid in the presence of an ambient toroidal magnetic field, governed by the shallow water magnetohydrodynamic (MHD) equations in a modified equatorial ?-plane approximation. In conjunction with a WKB type approximation, we used a multiple scale asymptotic scheme, previously developed by Boyd (J. Phys. Oceanogr. 1980, vol. 10, pp. 1699-1717) for equatorial solitary hydrodynamic waves, and found solitary MHD waves. In this paper, as in L1, we apply a WKB type approximation in order to extend the results of L1 from the modified ?-plane to the full spherical geometry. We have included differential rotation in the analysis in order to make the results more relevant to the solar case. In addition, we consider the case of hydrodynamic waves on the rotating sphere in the presence of a differential rotation intended to roughly model the varying large scale currents in the oceans and atmosphere. In the hydrodynamic case, we find the usual equatorial solitary waves as found by Boyd, as well as waves in bands away from the equator for sufficiently strong currents. In the MHD case, we find basically the same equatorial waves found in L1. L1 also found non-equatorial modes; no such modes are found in the full spherical geometry.

  13. Doping evolution of charge and spin excitations in two-leg Hubbard ladders: Comparing DMRG and FLEX results [Doping evolution of charge and spin excitations in two-leg Hubbard ladders: Comparing DMRG and RPA+FLEX results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nocera, Alberto; Wang, Yan; Patel, Niravkumar D.

    Here, we study the magnetic and charge dynamical response of a Hubbard model in a two-leg ladder geometry using the density matrix renormalization group (DMRG) method and the random phase approximation within the fluctuation-exchange approximation (FLEX). Our calculations reveal that FLEX can capture the main features of the magnetic response from weak up to intermediate Hubbard repulsion for doped ladders, when compared with the numerically exact DMRG results. However, while at weak Hubbard repulsion both the spin and charge spectra can be understood in terms of weakly interacting electron-hole excitations across the Fermi surface, at intermediate coupling DMRG shows gappedmore » spin excitations at large momentum transfer that remain gapless within the FLEX approximation. For the charge response, FLEX can only reproduce the main features of the DMRG spectra at weak coupling and high doping levels, while it shows an incoherent character away from this limit. Overall, our analysis shows that FLEX works surprisingly well for spin excitations at weak and intermediate Hubbard U values even in the difficult low-dimensional geometry such as a two-leg ladder. Finally, we discuss the implications of our results for neutron scattering and resonant inelastic x-ray scattering experiments on two-leg ladder cuprate compounds.« less

  14. The Multi-Layer Variable Absorbers in NGC 1365 Revealed by XMM-Newton and NuSTAR

    NASA Technical Reports Server (NTRS)

    Rivers, E.; Risaliti, G.; Walton, D. J.; Harrison, F.; Arevalo, P.; Baur, F. E.; Boggs, S. E.; Brenneman, L. W.; Brightman, M.; Zhang, W. W.

    2015-01-01

    Between 2012 July and 2013 February, NuSTAR and XMM-Newton performed four long-look joint observations of the type 1.8 Seyfert, NGC 1365. We have analyzed the variable absorption seen in these observations in order to characterize the geometry of the absorbing material. Two of the observations caught NGC 1365 in an unusually low absorption state, revealing complexity in the multi-layer absorber that had previously been hidden. We find the need for three distinct zones of neutral absorption in addition to the two zones of ionized absorption and the Compton-thick torus previously seen in this source. The most prominent absorber is likely associated with broad-line region clouds with column densities of around approximately 10 (sup 23) per square centimeter and a highly clumpy nature as evidenced by an occultation event in 2013 February. We also find evidence of a patchy absorber with a variable column around approximately 10 (sup 22) per square centimeter and a line-of-sight covering fraction of 0.3-0.9, which responds directly to the intrinsic source flux, possibly due to a wind geometry. A full-covering, constant absorber with a low column density of approximately 1 by 10 (sup 22) per square centimeter is also present, though the location of this low density haze is unknown.

  15. NeuroTessMesh: A Tool for the Generation and Visualization of Neuron Meshes and Adaptive On-the-Fly Refinement.

    PubMed

    Garcia-Cantero, Juan J; Brito, Juan P; Mata, Susana; Bayona, Sofia; Pastor, Luis

    2017-01-01

    Gaining a better understanding of the human brain continues to be one of the greatest challenges for science, largely because of the overwhelming complexity of the brain and the difficulty of analyzing the features and behavior of dense neural networks. Regarding analysis, 3D visualization has proven to be a useful tool for the evaluation of complex systems. However, the large number of neurons in non-trivial circuits, together with their intricate geometry, makes the visualization of a neuronal scenario an extremely challenging computational problem. Previous work in this area dealt with the generation of 3D polygonal meshes that approximated the cells' overall anatomy but did not attempt to deal with the extremely high storage and computational cost required to manage a complex scene. This paper presents NeuroTessMesh, a tool specifically designed to cope with many of the problems associated with the visualization of neural circuits that are comprised of large numbers of cells. In addition, this method facilitates the recovery and visualization of the 3D geometry of cells included in databases, such as NeuroMorpho, and provides the tools needed to approximate missing information such as the soma's morphology. This method takes as its only input the available compact, yet incomplete, morphological tracings of the cells as acquired by neuroscientists. It uses a multiresolution approach that combines an initial, coarse mesh generation with subsequent on-the-fly adaptive mesh refinement stages using tessellation shaders. For the coarse mesh generation, a novel approach, based on the Finite Element Method, allows approximation of the 3D shape of the soma from its incomplete description. Subsequently, the adaptive refinement process performed in the graphic card generates meshes that provide good visual quality geometries at a reasonable computational cost, both in terms of memory and rendering time. All the described techniques have been integrated into NeuroTessMesh, available to the scientific community, to generate, visualize, and save the adaptive resolution meshes.

  16. Flavor structure in F-theory compactifications

    NASA Astrophysics Data System (ADS)

    Hayashi, Hirotaka; Kawano, Teruhiko; Tsuchiya, Yoichi; Watari, Taizan

    2010-08-01

    F-theory is one of frameworks in string theory where supersymmetric grand unification is accommodated, and all the Yukawa couplings and Majorana masses of righthanded neutrinos are generated. Yukawa couplings of charged fermions are generated at codimension-3 singularities, and a contribution from a given singularity point is known to be approximately rank 1. Thus, the approximate rank of Yukawa matrices in low-energy effective theory of generic F-theory compactifications are minimum of either the number of generations N gen = 3 or the number of singularity points of certain types. If there is a geometry with only one E 6 type point and one D 6 type point over the entire 7-brane for SU(5) gauge fields, F-theory compactified on such a geometry would reproduce approximately rank-1 Yukawa matrices in the real world. We found, however, that there is no such geometry. Thus, it is a problem how to generate hierarchical Yukawa eigenvalues in F-theory compactifications. A solution in the literature so far is to take an appropriate factorization limit. In this article, we propose an alternative solution to the hierarchical structure problem (which requires to tune some parameters) by studying how zero mode wavefunctions depend on complex structure moduli. In this solution, the N gen × N gen CKM matrix is predicted to have only N gen entries of order unity without an extra tuning of parameters, and the lepton flavor anarchy is predicted for the lepton mixing matrix. The hierarchy among the Yukawa eigenvalues of the down-type and charged lepton sector is predicted to be smaller than that of the up-type sector, and the Majorana masses of left-handed neutrinos generated through the see-saw mechanism have small hierarchy. All of these predictions agree with what we observe in the real world. We also obtained a precise description of zero mode wavefunctions near the E 6 type singularity points, where the up-type Yukawa couplings are generated.

  17. Disc-geometry homopolar synchronous machine

    NASA Astrophysics Data System (ADS)

    Evans, P. D.; Eastham, J. F.

    1980-09-01

    Results of an experimental and theoretical investigation of a disc-geometry homopolar synchronous machine with field excitation on the primary side are presented. The unlaminated mild-steel rotor contains no windings and is brushless. The prototype machine produces approximately 7.5 kW of mechanical output at 3000 rev/min, with a product of power factor and efficiency greater than 0.7. The construction of the stator core is unusual and incorporates both laminated and unlaminated portions. The magnetic circuit is also arranged to minimize the axial force between the stator and rotor. A novel rotor design which achieves a reduced quadrature-axis reactance is shown experimentally to be superior to the conventional homopolar rotor.

  18. A portable time of flight system for thermal and cold neutron applications

    NASA Astrophysics Data System (ADS)

    Benenson, R. E.; Chen-Mayer, H. H.; Sharov, V.

    1996-08-01

    A very small Fermi-type neutron chopper fashioned by cutting slots in a boron nitride cylinder was developed for use with a source of thermal and cold (subthermal velocity) neutrons. The original goal was to characterize spectra emerging from glass capillary fibers of less than 1 mm diameter, but other applications became apparent. For approximately 1 m flight paths, conventional nuclear electronics had to be adapted to the millisecond flight times. Both time-to-amplitude converter and multiscaling time-data storage methods were used. Data corrections for the particular geometry are reviewed and applied to the present geometry. Among examples of its potential use, the spectrum of a newly installed cold source was measured.

  19. Cosmology from group field theory formalism for quantum gravity.

    PubMed

    Gielen, Steffen; Oriti, Daniele; Sindoni, Lorenzo

    2013-07-19

    We identify a class of condensate states in the group field theory (GFT) formulation of quantum gravity that can be interpreted as macroscopic homogeneous spatial geometries. We then extract the dynamics of such condensate states directly from the fundamental quantum GFT dynamics, following the procedure used in ordinary quantum fluids. The effective dynamics is a nonlinear and nonlocal extension of quantum cosmology. We also show that any GFT model with a kinetic term of Laplacian type gives rise, in a semiclassical (WKB) approximation and in the isotropic case, to a modified Friedmann equation. This is the first concrete, general procedure for extracting an effective cosmological dynamics directly from a fundamental theory of quantum geometry.

  20. Triple differential cross sections of magnesium in doubly symmetric geometry

    NASA Astrophysics Data System (ADS)

    S, Y. Sun; X, Y. Miao; Xiang-Fu, Jia

    2016-01-01

    A dynamically screened three-Coulomb-wave (DS3C) method is applied to study the single ionization of magnesium by electron impact. Triple differential cross sections (TDCS) are calculated in doubly symmetric geometry at incident energies of 13.65, 17.65, 22.65, 27.65, 37.65, 47.65, 57.65, and 67.65 eV. Comparisons are made with experimental data and theoretical predictions from a three-Coulomb-wave function (3C) approach and distorted-wave Born approximation (DWBA). The overall agreement between the predictions of the DS3C model and the DWBA approach with the experimental data is satisfactory. Project supported by the National Natural Science Foundation of China (Grant No. 11274215).

  1. Creation of an idealized nasopharynx geometry for accurate computational fluid dynamics simulations of nasal airflow in patient-specific models lacking the nasopharynx anatomy

    PubMed Central

    Borojeni, Azadeh A.T.; Frank-Ito, Dennis O.; Kimbell, Julia S.; Rhee, John S.; Garcia, Guilherme J. M.

    2016-01-01

    Virtual surgery planning based on computational fluid dynamics (CFD) simulations has the potential to improve surgical outcomes for nasal airway obstruction (NAO) patients, but the benefits of virtual surgery planning must outweigh the risks of radiation exposure. Cone beam computed tomography (CBCT) scans represent an attractive imaging modality for virtual surgery planning due to lower costs and lower radiation exposures compared with conventional CT scans. However, to minimize the radiation exposure, the CBCT sinusitis protocol sometimes images only the nasal cavity, excluding the nasopharynx. The goal of this study was to develop an idealized nasopharynx geometry for accurate representation of outlet boundary conditions when the nasopharynx geometry is unavailable. Anatomically-accurate models of the nasopharynx created from thirty CT scans were intersected with planes rotated at different angles to obtain an average geometry. Cross sections of the idealized nasopharynx were approximated as ellipses with cross-sectional areas and aspect ratios equal to the average in the actual patient-specific models. CFD simulations were performed to investigate whether nasal airflow patterns were affected when the CT-based nasopharynx was replaced by the idealized nasopharynx in 10 NAO patients. Despite the simple form of the idealized geometry, all biophysical variables (nasal resistance, airflow rate, and heat fluxes) were very similar in the idealized vs. patient-specific models. The results confirmed the expectation that the nasopharynx geometry has a minimal effect in the nasal airflow patterns during inspiration. The idealized nasopharynx geometry will be useful in future CFD studies of nasal airflow based on medical images that exclude the nasopharynx. PMID:27525807

  2. Effects of generation time on spray aerosol transport and deposition in models of the mouth-throat geometry.

    PubMed

    Worth Longest, P; Hindle, Michael; Das Choudhuri, Suparna

    2009-06-01

    For most newly developed spray aerosol inhalers, the generation time is a potentially important variable that can be fully controlled. The objective of this study was to determine the effects of spray aerosol generation time on transport and deposition in a standard induction port (IP) and more realistic mouth-throat (MT) geometry. Capillary aerosol generation (CAG) was selected as a representative system in which spray momentum was expected to significantly impact deposition. Sectional and total depositions in the IP and MT geometries were assessed at a constant CAG flow rate of 25 mg/sec for aerosol generation times of 1, 2, and 4 sec using both in vitro experiments and a previously developed computational fluid dynamics (CFD) model. Both the in vitro and numerical results indicated that extending the generation time of the spray aerosol, delivered at a constant mass flow rate, significantly reduced deposition in the IP and more realistic MT geometry. Specifically, increasing the generation time of the CAG system from 1 to 4 sec reduced the deposition fraction in the IP and MT geometries by approximately 60 and 33%, respectively. Furthermore, the CFD predictions of deposition fraction were found to be in good agreement with the in vitro results for all times considered in both the IP and MT geometries. The numerical results indicated that the reduction in deposition fraction over time was associated with temporal dissipation of what was termed the spray aerosol "burst effect." Based on these results, increasing the spray aerosol generation time, at a constant mass flow rate, may be an effective strategy for reducing deposition in the standard IP and in more realistic MT geometries.

  3. Static Performance of a Fixed-Geometry Exhaust Nozzle Incorporating Porous Cavities for Shock-Boundary Layer Interaction Control

    NASA Technical Reports Server (NTRS)

    Asbury, Scott C.; Hunter, Craig A.

    1999-01-01

    An investigation was conducted in the model preparation area of the Langley 16-Foot Transonic Tunnel to determine the internal performance of a fixed-geometry exhaust nozzle incorporating porous cavities for shock-boundary layer interaction control. Testing was conducted at static conditions using a sub-scale nozzle model with one baseline and 27 porous configurations. For the porous configurations, the effects of percent open porosity, hole diameter, and cavity depth were determined. All tests were conducted with no external flow at nozzle pressure ratios from 1.25 to approximately 9.50. Results indicate that baseline nozzle performance was dominated by unstable, shock-induced, boundary-layer separation at over-expanded conditions. Porous configurations were capable of controlling off-design separation in the nozzle by either alleviating separation or encouraging stable separation of the exhaust flow. The ability of the porous nozzle concept to alternately alleviate separation or encourage stable separation of exhaust flow through shock-boundary layer interaction control offers tremendous off-design performance benefits for fixed-geometry nozzle installations. In addition, the ability to encourage separation on one divergent flap while alleviating it on the other makes it possible to generate thrust vectoring using a fixed-geometry nozzle.

  4. Towards spectral geometric methods for Euclidean quantum gravity

    NASA Astrophysics Data System (ADS)

    Panine, Mikhail; Kempf, Achim

    2016-04-01

    The unification of general relativity with quantum theory will also require a coming together of the two quite different mathematical languages of general relativity and quantum theory, i.e., of differential geometry and functional analysis, respectively. Of particular interest in this regard is the field of spectral geometry, which studies to which extent the shape of a Riemannian manifold is describable in terms of the spectra of differential operators defined on the manifold. Spectral geometry is hard because it is highly nonlinear, but linearized spectral geometry, i.e., the task to determine small shape changes from small spectral changes, is much more tractable and may be iterated to approximate the full problem. Here, we generalize this approach, allowing, in particular, nonequal finite numbers of shape and spectral degrees of freedom. This allows us to study how well the shape degrees of freedom are encoded in the eigenvalues. We apply this strategy numerically to a class of planar domains and find that the reconstruction of small shape changes from small spectral changes is possible if enough eigenvalues are used. While isospectral nonisometric shapes are known to exist, we find evidence that generically shaped isospectral nonisometric shapes, if existing, are exceedingly rare.

  5. Galerkin's Method and the Double P$sub 1$ approximation for Thermal Flux Calculation; IL METODO DI GALERKIN E LA DOPPIA P$sub 1$ PER IL CALCOLO DEL FLUSSO TERMICO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daneri, A.; Daneri, A.

    1964-01-01

    The program DESTHEC DP, in FORTRAN MONITOR for the IBM 7090, solves the transport equation for thermal neutrons in slab geometry. For the energy, Galerkin's method with the double P/sub 1/ approximation is used, Comparison shows good agreement between DESTHEC DP results and results obtained by the THERMOS program, which solves the transport equation in integral form. The theory is presented, and input and output are discussed. Numerical results are included, as well as the program listing. (D.C.W.)

  6. An approximate methods approach to probabilistic structural analysis

    NASA Technical Reports Server (NTRS)

    Mcclung, R. C.; Millwater, H. R.; Wu, Y.-T.; Thacker, B. H.; Burnside, O. H.

    1989-01-01

    A probabilistic structural analysis method (PSAM) is described which makes an approximate calculation of the structural response of a system, including the associated probabilistic distributions, with minimal computation time and cost, based on a simplified representation of the geometry, loads, and material. The method employs the fast probability integration (FPI) algorithm of Wu and Wirsching. Typical solution strategies are illustrated by formulations for a representative critical component chosen from the Space Shuttle Main Engine (SSME) as part of a major NASA-sponsored program on PSAM. Typical results are presented to demonstrate the role of the methodology in engineering design and analysis.

  7. Hydraulic-Geometry Relations for Rivers in Coastal and Central Maine

    USGS Publications Warehouse

    Dudley, Robert W.

    2004-01-01

    Hydraulic-geometry relations (curves) were derived for 15 sites on 12 rivers in coastal and central Maine on the basis of site-specific (at-a-station) hydraulic-geometry relations and hydraulic models. At-a-station hydraulic-geometry curves, expressed as well-established power functions, describe the relations between channel geometry, velocity, and flow at a given point on a river. The derived at-a-station hydraulic-geometry curves indicate that, on average, a given increase in flow at a given river cross section in the study area will be nearly equally conveyed by increases in velocity and channel cross-sectional area. Regional curves describing the bankfull streamflow and associated channel geometry as functions of drainage area were derived for use in stream-channel assessment and restoration projects specific to coastal and central Maine. Regional hydraulic-geometry curves were derived by combining hydraulic-geometry information for 15 river cross sections using bankfull flow as the common reference streamflow. The exponents of the derived regional hydraulic-geometry relations indicate that, in the downstream direction, most of the conveyance of increasing contribution of flow is accommodated by an increase in cross-sectional area?with about 50 percent of the increase in flow accommodated by an increase in channel width, and 32 percent by an increase in depth. The remaining 18 percent is accommodated by an increase in streamflow velocity. On an annual-peak-series basis, results of this study indicate that the occurrence of bankfull streamflow for rivers in Maine is more frequent than the 1.5-year streamflow. On a flow-duration basis, bankfull streamflow for rivers in coastal and central Maine is equaled or exceeded approximately 8.1 percent of the time on mean?or about 30 days a year. Bankfull streamflow is roughly three times that of the mean annual streamflow for the sites investigated in this study. Regional climate, snowmelt hydrology, and glacial geology may play important roles in dictating the magnitude and frequency of occurrence of bankfull streamflows observed for rivers in coastal and central Maine.

  8. Beyond Worst-Case Analysis in Privacy and Clustering: Exploiting Explicit and Implicit Assumptions

    DTIC Science & Technology

    2013-08-01

    Dwork et al [63]. Given a query function f , the curator first estimates the global sensitivity of f , denoted GS(f) = maxD,D′ f(D)− f(D′), then outputs f...Ostrovsky et al [121]. Ostrovsky et al study instances in which the ratio between the cost of the optimal (k − 1)-means solu- tion and the cost of the...k-median objective. We also build on the work of Balcan et al [25] that investigate the connection between point-wise approximations of the target

  9. Effect of Loading Rate Upon Conventional Ceramic Microindentation Hardness

    PubMed Central

    Quinn, George D.; Patel, Parimal J.; Lloyd, Isabel

    2002-01-01

    The world standards for conventional ceramic hardness have varying requirements for control of loading rate during the indentation cycle. A literature review suggests that loading rate may affect measured hardness in some instances. In view of the uncertainty over this issue, new experiments over a range of indentation loading rates were performed on a steel, sintered silicon carbide, and an aluminum oxynitride. There was negligible effect upon Vickers hardness when loading rate was varied by almost four orders of magnitude from approximately 0.03 N/s to 10 N/s. PMID:27446732

  10. First International Conference on Numerical Ship Hydrodynamics Held in Gaithersburg, Maryland on 20-22 October 1975.

    DTIC Science & Technology

    1975-01-01

    instance, Harlow and Amsden, 1971 ). In this method a staggered finite difference mesh as shown in Figure 2 is used. 4X 1X 41X 0X 4 - -* - 4 - * - 4 - -X I...in Harlow and Amsden ( 1971 ). It suffices to state here that spatial derivatives are approximated by central differences throughout giving 0(h 2...flow divergence.) The boundary conditions are not elaborated here (but see Harlow and Amsden, 1971 ) except to note that the free surface is advanced

  11. Historic surface faulting in continental United States and adjacent parts of Mexico

    USGS Publications Warehouse

    Bonilla, M.G.

    1967-01-01

    This report summarizes geometric aspects of approximately 35 instances of historic faulting of the ground surface in the continental United States and adjacent parts of Mexico. This information is of immediate importance in the selection and evaluation of sites for vital structures such as nuclear power plants. The data are presented in a table and graphs which show the quantitative relations between various aspects of the faulting. Certain items in the table that are uncertain, poorly known, or not in the published literature are briefly described in the text.

  12. Impact-parameter dependence of the energy loss of fast molecular clusters in hydrogen

    NASA Astrophysics Data System (ADS)

    Fadanelli, R. C.; Grande, P. L.; Schiwietz, G.

    2008-03-01

    The electronic energy loss of molecular clusters as a function of impact parameter is far less understood than atomic energy losses. For instance, there are no analytical expressions for the energy loss as a function of impact parameter for cluster ions. In this work, we describe two procedures to evaluate the combined energy loss of molecules: Ab initio calculations within the semiclassical approximation and the coupled-channels method using atomic orbitals; and simplified models for the electronic cluster energy loss as a function of the impact parameter, namely the molecular perturbative convolution approximation (MPCA, an extension of the corresponding atomic model PCA) and the molecular unitary convolution approximation (MUCA, a molecular extension of the previous unitary convolution approximation UCA). In this work, an improved ansatz for MPCA is proposed, extending its validity for very compact clusters. For the simplified models, the physical inputs are the oscillators strengths of the target atoms and the target-electron density. The results from these models applied to an atomic hydrogen target yield remarkable agreement with their corresponding ab initio counterparts for different angles between cluster axis and velocity direction at specific energies of 150 and 300 keV/u.

  13. Engineering, Life Sciences, and Health/Medicine Synergy in Aerospace Human Systems Integration: The Rosetta Stone Project

    NASA Technical Reports Server (NTRS)

    Williams, Richard S. (Editor); Doarn, Charles R. (Editor); Shepanek, Marc A.

    2017-01-01

    In the realm of aerospace engineering and the physical sciences, we have developed laws of physics based on empirical and research evidence that reliably guide design, research, and development efforts. For instance, an engineer designs a system based on data and experience that can be consistently and repeatedly verified. This reproducibility depends on the consistency and dependability of the materials on which the engineer works and is subject to physics, geometry and convention. In life sciences and medicine, these apply as well, but individuality introduces a host of variables into the mix, resulting in characteristics and outcomes that can be quite broad within a population of individuals. This individuality ranges from differences at the genetic and cellular level to differences in an individuals personality and abilities due to sex and gender, environment, education, etc.

  14. Additive Manufacturing of Metal Structures at the Micrometer Scale.

    PubMed

    Hirt, Luca; Reiser, Alain; Spolenak, Ralph; Zambelli, Tomaso

    2017-05-01

    Currently, the focus of additive manufacturing (AM) is shifting from simple prototyping to actual production. One driving factor of this process is the ability of AM to build geometries that are not accessible by subtractive fabrication techniques. While these techniques often call for a geometry that is easiest to manufacture, AM enables the geometry required for best performance to be built by freeing the design process from restrictions imposed by traditional machining. At the micrometer scale, the design limitations of standard fabrication techniques are even more severe. Microscale AM thus holds great potential, as confirmed by the rapid success of commercial micro-stereolithography tools as an enabling technology for a broad range of scientific applications. For metals, however, there is still no established AM solution at small scales. To tackle the limited resolution of standard metal AM methods (a few tens of micrometers at best), various new techniques aimed at the micrometer scale and below are presently under development. Here, we review these recent efforts. Specifically, we feature the techniques of direct ink writing, electrohydrodynamic printing, laser-assisted electrophoretic deposition, laser-induced forward transfer, local electroplating methods, laser-induced photoreduction and focused electron or ion beam induced deposition. Although these methods have proven to facilitate the AM of metals with feature sizes in the range of 0.1-10 µm, they are still in a prototype stage and their potential is not fully explored yet. For instance, comprehensive studies of material availability and material properties are often lacking, yet compulsory for actual applications. We address these items while critically discussing and comparing the potential of current microscale metal AM techniques. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Experimental and numerical analysis of interlocking rib formation at sheet metal blanking

    NASA Astrophysics Data System (ADS)

    Bolka, Špela; Bratuš, Vitoslav; Starman, Bojan; Mole, Nikolaj

    2018-05-01

    Cores for electrical motors are typically produced by blanking of laminations and then stacking them together, with, for instance, interlocking ribs or welding. Strict geometrical tolerances, both on the lamination and on the stack, combined with complex part geometry and harder steel strip material, call for use of predictive methods to optimize the process before actual blanking to reduce the costs and speed up the process. One of the major influences on the final stack geometry is the quality of the interlocking ribs. A rib is formed in one step and joined with the rib of the preceding lamination in the next. The quality of the joint determines the firmness of the stack and also influences its. The geometrical and positional accuracy is thus crucial in rib formation process. In this study, a complex experimental and numerical analysis of interlocking rib formation has been performed. The aim of the analysis is to numerically predict the shape of the rib in order to perform a numerical simulation of the stack formation in the next step of the process. A detailed experimental research has been performed in order to characterize influential parameters on the rib formation and the geometry of the ribs itself, using classical and 3D laser microscopy. The formation of the interlocking rib is then simulated using Abaqus Explicit. The Hilll 48 constitutive material model is based on extensive and novel material characterization process, combining data from in-plane and out-of-plane material tests to perform a 3D analysis of both, rib formation and rib joining. The study shows good correlation between the experimental and numerical results.

  16. Computational characterization of HPGe detectors usable for a wide variety of source geometries by using Monte Carlo simulation and a multi-objective evolutionary algorithm

    NASA Astrophysics Data System (ADS)

    Guerra, J. G.; Rubiano, J. G.; Winter, G.; Guerra, A. G.; Alonso, H.; Arnedo, M. A.; Tejera, A.; Martel, P.; Bolivar, J. P.

    2017-06-01

    In this work, we have developed a computational methodology for characterizing HPGe detectors by implementing in parallel a multi-objective evolutionary algorithm, together with a Monte Carlo simulation code. The evolutionary algorithm is used for searching the geometrical parameters of a model of detector by minimizing the differences between the efficiencies calculated by Monte Carlo simulation and two reference sets of Full Energy Peak Efficiencies (FEPEs) corresponding to two given sample geometries, a beaker of small diameter laid over the detector window and a beaker of large capacity which wrap the detector. This methodology is a generalization of a previously published work, which was limited to beakers placed over the window of the detector with a diameter equal or smaller than the crystal diameter, so that the crystal mount cap (which surround the lateral surface of the crystal), was not considered in the detector model. The generalization has been accomplished not only by including such a mount cap in the model, but also using multi-objective optimization instead of mono-objective, with the aim of building a model sufficiently accurate for a wider variety of beakers commonly used for the measurement of environmental samples by gamma spectrometry, like for instance, Marinellis, Petris, or any other beaker with a diameter larger than the crystal diameter, for which part of the detected radiation have to pass through the mount cap. The proposed methodology has been applied to an HPGe XtRa detector, providing a model of detector which has been successfully verificated for different source-detector geometries and materials and experimentally validated using CRMs.

  17. Low-contrast lesion detection in tomosynthetic breast imaging using a realistic breast phantom

    NASA Astrophysics Data System (ADS)

    Zhou, Lili; Oldan, Jorge; Fisher, Paul; Gindi, Gene

    2006-03-01

    Tomosynthesis mammography is a potentially valuable technique for detection of breast cancer. In this simulation study, we investigate the efficacy of three different tomographic reconstruction methods, EM, SART and Backprojection, in the context of an especially difficult mammographic detection task. The task is the detection of a very low-contrast mass embedded in very dense fibro-glandular tissue - a clinically useful task for which tomosynthesis may be well suited. The project uses an anatomically realistic 3D digital breast phantom whose normal anatomic variability limits lesion conspicuity. In order to capture anatomical object variability, we generate an ensemble of phantoms, each of which comprises random instances of various breast structures. We construct medium-sized 3D breast phantoms which model random instances of ductal structures, fibrous connective tissue, Cooper's ligaments and power law structural noise for small scale object variability. Random instances of 7-8 mm irregular masses are generated by a 3D random walk algorithm and placed in very dense fibro-glandular tissue. Several other components of the breast phantom are held fixed, i.e. not randomly generated. These include the fixed breast shape and size, nipple structure, fixed lesion location, and a pectoralis muscle. We collect low-dose data using an isocentric tomosynthetic geometry at 11 angles over 50 degrees and add Poisson noise. The data is reconstructed using the three algorithms. Reconstructed slices through the center of the lesion are presented to human observers in a 2AFC (two-alternative-forced-choice) test that measures detectability by computing AUC (area under the ROC curve). The data collected in each simulation includes two sources of variability, that due to the anatomical variability of the phantom and that due to the Poisson data noise. We found that for this difficult task that the AUC value for EM (0.89) was greater than that for SART (0.83) and Backprojection (0.66).

  18. Connecting Geometry and Chemistry: A Three-Step Approach to Three-Dimensional Thinking

    ERIC Educational Resources Information Center

    Donaghy, Kelley J.; Saxton, Kathleen J.

    2012-01-01

    A three-step active-learning approach is described to enhance the spatial abilities of general chemistry students with respect to three-dimensional molecular drawing and visualization. These activities are used in a medium-sized lecture hall with approximately 150 students in the first semester of the general chemistry course. The first activity…

  19. Mixing blade system for high-resistance media

    DOEpatents

    Kronberg, James W.

    1991-01-01

    A blade system for stirring and agitating a medium, comprising a shaft bearing a plurality of paddles, each having a different geometry and each having approximately the same rotational moment. The geometrically different paddles sweep through different volumes of the medium to minimize shear zone development and maximize the strength of the system with respect to medium-induced stress.

  20. Approximate analysis of thermal convection in a crystal-growth cell for Spacelab 3

    NASA Technical Reports Server (NTRS)

    Dressler, R. F.

    1982-01-01

    The transient and steady thermal convection in microgravity is described. The approach is applicable to many three dimensional flows in containers of various shapes with various thermal gradients imposed. The method employs known analytical solutions to two dimensional thermal flows in simpler geometries, and does not require recourse to numerical calculations by computer.

  1. A Simulation Algorithm to Approximate the Area of Mapped Forest Inventory Plots

    Treesearch

    William A. Bechtold; Naser E. Heravi; Matthew E. Kinkenon

    2003-01-01

    Calculating the area of polygons associated with mapped forest inventory plots can be mathematically cumbersome, especially when computing change between inventories. We developed a simulation technique that utilizes a computer-generated dot grid and geometry to estimate the area of mapped polygons within any size circle. The technique also yields a matrix of change in...

  2. THE EFFECT OF GRAVITATION ON THE POLARIZATION STATE OF A LIGHT RAY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Tanay; Sen, A. K.

    In the present work, detailed calculations have been carried out on the rotation of the polarization vector of an electromagnetic wave due to the presence of a gravitational field of a rotating body. This has been done using the general expression of Maxwell’s equation in curved spacetime. Considering the far-field approximation (i.e., the impact parameter is greater than the Schwarzschild radius and rotation parameter), the amount of rotation of the polarization vector as a function of impact parameter has been obtained for a rotating body (considering Kerr geometry). The present work shows that the rotation of the polarization vector cannotmore » be observed in the case of Schwarzschild geometry. This work also calculates the rotational effect when considering prograde and retrograde orbits for the light ray. Although the present work demonstrates the effect of rotation of the polarization vector, it confirms that there would be no net polarization of an electromagnetic wave due to the curved spacetime geometry in a Kerr field.« less

  3. Study of degenerate four-quark states with SU(2) lattice Monte Carlo techniques

    NASA Astrophysics Data System (ADS)

    Green, A. M.; Lukkarinen, J.; Pennanen, P.; Michael, C.

    1996-01-01

    The energies of four-quark states are calculated for geometries in which the quarks are situated on the corners of a series of tetrahedra and also for geometries that correspond to gradually distorting these tetrahedra into a plane. The interest in tetrahedra arises because they are composed of three degenerate partitions of the four quarks into two two-quark color singlets. This is an extension of earlier work showing that geometries with two degenerate partitions (e.g., squares) experience a large binding energy. It is now found that even larger binding energies do not result, but that for the tetrahedra the ground and first excited states become degenerate in energy. The calculation is carried out using SU(2) for static quarks in the quenched approximation with β=2.4 on a 163×32 lattice. The results are analyzed using the correlation matrix between different Euclidean times and the implications of these results are discussed for a model based on two-quark potentials.

  4. Casimir energy in Kerr space-time

    NASA Astrophysics Data System (ADS)

    Sorge, F.

    2014-10-01

    We investigate the vacuum energy of a scalar massless field confined in a Casimir cavity moving in a circular equatorial orbit in the exact Kerr space-time geometry. We find that both the orbital motion of the cavity and the underlying space-time geometry conspire in lowering the absolute value of the (renormalized) Casimir energy ⟨ɛvac⟩ren , as measured by a comoving observer, with respect to whom the cavity is at rest. This, in turn, causes a weakening in the attractive force between the Casimir plates. In particular, we show that the vacuum energy density ⟨ɛvac⟩ren→0 when the orbital path of the Casimir cavity comes close to the corotating or counter-rotating circular null orbits (possibly geodesic) allowed by the Kerr geometry. Such an effect could be of some astrophysical interest on relevant orbits, such as the Kerr innermost stable circular orbits, being potentially related to particle confinement (as in some interquark models). The present work generalizes previous results obtained by several authors in the weak field approximation.

  5. Phonon impact on optical control schemes of quantum dots: Role of quantum dot geometry and symmetry

    NASA Astrophysics Data System (ADS)

    Lüker, S.; Kuhn, T.; Reiter, D. E.

    2017-12-01

    Phonons strongly influence the optical control of semiconductor quantum dots. When modeling the electron-phonon interaction in several theoretical approaches, the quantum dot geometry is approximated by a spherical structure, though typical self-assembled quantum dots are strongly lens-shaped. By explicitly comparing simulations of a spherical and a lens-shaped dot using a well-established correlation expansion approach, we show that, indeed, lens-shaped dots can be exactly mapped to a spherical geometry when studying the phonon influence on the electronic system. We also give a recipe to reproduce spectral densities from more involved dots by rather simple spherical models. On the other hand, breaking the spherical symmetry has a pronounced impact on the spatiotemporal properties of the phonon dynamics. As an example we show that for a lens-shaped quantum dot, the phonon emission is strongly concentrated along the direction of the smallest axis of the dot, which is important for the use of phonons for the communication between different dots.

  6. Using surface impedance for calculating wakefields in flat geometry

    DOE PAGES

    Bane, Karl; Stupakov, Gennady

    2015-03-18

    Beginning with Maxwell's equations and assuming only that the wall interaction can be approximated by a surface impedance, we derive formulas for the generalized longitudinal and transverse impedance in flat geometry, from which the wakefields can also be obtained. From the generalized impedances, by taking the proper limits, we obtain the normal longitudinal, dipole, and quad impedances in flat geometry. These equations can be applied to any surface impedance, such as the known dc, ac, and anomalous skin models of wall resistance, a model of wall roughness, or one for a pipe with small, periodic corrugations. We show that, formore » the particular case of dc wall resistance, the longitudinal impedance obtained here agrees with a known result in the literature, a result that was derived from a very general formula by Henke and Napoly. As an example, we apply our results to representative beam and machine parameters in the undulator region of LCLS-II and estimate the impact of the transverse wakes on the machine performance.« less

  7. Wind-tunnel investigation of a Fowler flap and spoiler for an advanced general aviation wing

    NASA Technical Reports Server (NTRS)

    Paulson, J. W., Jr.

    1976-01-01

    The wing was tested without fuselage or empennage and was fitted with approximately three-quarter span Fowler flaps and half span spoilers. The spoilers were hinged at the 70 percent chord point and vented when the flaps were deflected. Static longitudinal and lateral aerodynamic data were obtained over an angle of attack range of -8 deg to 22 deg for various flap deflections and positions, spoiler geometries, and vent lip geometries. Lateral characteristics indicate that the spoilers are generally adequate for lateral control. In general, the spoiler effectiveness increases with increasing angle of attack, increases with increasing flap deflections, and is influenced by vent lip geometry. In addition, the data show that some two-dimensional effects on spoiler effectiveness are reduced in the three-dimensional case. Results also indicate significant increase in lift coefficient as the Fowler flaps are deflected; when the flap was fully deflected, the maximum wing lift coefficient was increased about 96 percent.

  8. A magnetic method for determining the geometry of hydraulic fractures

    USGS Publications Warehouse

    Byerlee, J.D.; Johnston, M.J.S.

    1976-01-01

    We propose a method that may be used to determine the spatial orientation of the fracture plane developed during hydraulic fracture. In the method, magnetic particles are injected into the crack with the fracturing fluid so as to generate a sheet of magnetized material. Since the magnetization of a body with extreme dimension ratios, such as a crack, exceeds that of an equidimensional body and since this magnetization is sensitive both to orientation and geometry, this could be used to obtain information about the crack. By measuring the vertical and horizontal components of the magnetic field and field gradients at the earth's surface surrounding the injection well with superconducting magnetometers having 10-4 gamma sensitivity and also by measuring field direction within the well itself, it should be possible to calculate the orientation and perhaps infer the approximate geometry of the fracture surface. Experiments on electric field potential operated in conjunction with this experiment could further constrain estimates of shape and orientation. ?? 1976 Birkha??user Verlag.

  9. Modeling deep brain stimulation: point source approximation versus realistic representation of the electrode

    NASA Astrophysics Data System (ADS)

    Zhang, Tianhe C.; Grill, Warren M.

    2010-12-01

    Deep brain stimulation (DBS) has emerged as an effective treatment for movement disorders; however, the fundamental mechanisms by which DBS works are not well understood. Computational models of DBS can provide insights into these fundamental mechanisms and typically require two steps: calculation of the electrical potentials generated by DBS and, subsequently, determination of the effects of the extracellular potentials on neurons. The objective of this study was to assess the validity of using a point source electrode to approximate the DBS electrode when calculating the thresholds and spatial distribution of activation of a surrounding population of model neurons in response to monopolar DBS. Extracellular potentials in a homogenous isotropic volume conductor were calculated using either a point current source or a geometrically accurate finite element model of the Medtronic DBS 3389 lead. These extracellular potentials were coupled to populations of model axons, and thresholds and spatial distributions were determined for different electrode geometries and axon orientations. Median threshold differences between DBS and point source electrodes for individual axons varied between -20.5% and 9.5% across all orientations, monopolar polarities and electrode geometries utilizing the DBS 3389 electrode. Differences in the percentage of axons activated at a given amplitude by the point source electrode and the DBS electrode were between -9.0% and 12.6% across all monopolar configurations tested. The differences in activation between the DBS and point source electrodes occurred primarily in regions close to conductor-insulator interfaces and around the insulating tip of the DBS electrode. The robustness of the point source approximation in modeling several special cases—tissue anisotropy, a long active electrode and bipolar stimulation—was also examined. Under the conditions considered, the point source was shown to be a valid approximation for predicting excitation of populations of neurons in response to DBS.

  10. Dynamically Consistent Shallow-Atmosphere Equations with a Complete Coriolis force

    NASA Astrophysics Data System (ADS)

    Tort, Marine; Dubos, Thomas; Bouchut, François; Zeitlin, Vladimir

    2014-05-01

    Dynamically Consistent Shallow-Atmosphere Equations with a Complete Coriolis force Marine Tort1, Thomas Dubos1, François Bouchut2 & Vladimir Zeitlin1,3 1 Laboratoire of Dynamical Meteorology, Univ. P. and M. Curie, Ecole Normale Supérieure, and Ecole Polytechnique, FRANCE 2 Université Paris-Est, Laboratoire d'Analyse et de Mathématiques Appliquées, FRANCE 3 Institut Universitaire de France Atmospheric and oceanic motion are usually modeled within the shallow-fluid approximation, which simplifies the 3D spherical geometry. For dynamical consistency, i.e. to ensure conservation laws for potential vorticity, energy and angular momentum, the horizontal component of the Coriolis force is neglected. Here new equation sets combining consistently a simplified shallow-fluid geometry with a complete Coriolis force is presented. The derivation invokes Hamilton's principle of least action with an approximate Lagrangian capturing the small increase with height of the solid-body entrainment velocity due to planetary rotation. A three-dimensional compressible model and a one-layer shallow-water model are obtained. The latter extends previous work done on the f-plane and β-plane. Preliminary numerical results confirm the accuracy of the 3D model within the range of parameters for which the equations are relevant. These new models could be useful to incorporate a full Coriolis force into existing numerical models and to disentangle the effects of the shallow-atmosphere approximation from those of the traditional approximation. Related papers: Tort M., Dubos T., Bouchut F. and Zeitlin V. Consistent shallow-water equations on the rotating sphere with complete Coriolis force and topography. J. Fluid Mech. (under revisions) Tort M. and Dubos T. Dynamically consistent shallow-atmosphere equations with a complete Coriolis force. Q.J.R. Meteorol. Soc. (DOI: 10.1002/qj.2274)

  11. Data approximation using a blending type spline construction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalmo, Rune; Bratlie, Jostein

    2014-11-18

    Generalized expo-rational B-splines (GERBS) is a blending type spline construction where local functions at each knot are blended together by C{sup k}-smooth basis functions. One way of approximating discrete regular data using GERBS is by partitioning the data set into subsets and fit a local function to each subset. Partitioning and fitting strategies can be devised such that important or interesting data points are interpolated in order to preserve certain features. We present a method for fitting discrete data using a tensor product GERBS construction. The method is based on detection of feature points using differential geometry. Derivatives, which aremore » necessary for feature point detection and used to construct local surface patches, are approximated from the discrete data using finite differences.« less

  12. Swiss-cheese models and the Dyer-Roeder approximation

    NASA Astrophysics Data System (ADS)

    Fleury, Pierre

    2014-06-01

    In view of interpreting the cosmological observations precisely, especially when they involve narrow light beams, it is crucial to understand how light propagates in our statistically homogeneous, clumpy, Universe. Among the various approaches to tackle this issue, Swiss-cheese models propose an inhomogeneous spacetime geometry which is an exact solution of Einstein's equation, while the Dyer-Roeder approximation deals with inhomogeneity in an effective way. In this article, we demonstrate that the distance-redshift relation of a certain class of Swiss-cheese models is the same as the one predicted by the Dyer-Roeder approach, at a well-controlled level of approximation. Both methods are therefore equivalent when applied to the interpretation of, e.g., supernova obervations. The proof relies on completely analytical arguments, and is illustrated by numerical results.

  13. A Varifold Approach to Surface Approximation

    NASA Astrophysics Data System (ADS)

    Buet, Blanche; Leonardi, Gian Paolo; Masnou, Simon

    2017-11-01

    We show that the theory of varifolds can be suitably enriched to open the way to applications in the field of discrete and computational geometry. Using appropriate regularizations of the mass and of the first variation of a varifold we introduce the notion of approximate mean curvature and show various convergence results that hold, in particular, for sequences of discrete varifolds associated with point clouds or pixel/voxel-type discretizations of d-surfaces in the Euclidean n-space, without restrictions on dimension and codimension. The variational nature of the approach also allows us to consider surfaces with singularities, and in that case the approximate mean curvature is consistent with the generalized mean curvature of the limit surface. A series of numerical tests are provided in order to illustrate the effectiveness and generality of the method.

  14. Microgravity nucleation and particle coagulation experiments support

    NASA Technical Reports Server (NTRS)

    Lilleleht, L. U.; Ferguson, F. T.

    1987-01-01

    A preliminary model for diffusion between concentric hemispheres was adapted to the cylindrical geometry of a microgravity nucleation apparatus, and extended to include the effects of radiation and conduction through the containment walls. Computer programs were developed to calculate first the temperature distribution and then the evolving concentration field using a finite difference formulation of the transient diffusion and radiation processes. The following estimations are made: (1) it takes approximately 35 minutes to establish a steady temperature field; (2) magnesium vapors released into the argon environment at the steady temperature distribution will reach a maximum supersaturation ratio of approximately 10,000 in the 20-second period at a distance of 15 cm from the source of vapors; and (3) approximately 750W electrical power will be required to maintain steady operating temperatures within the chamber.

  15. Consider a non-spherical elephant: computational fluid dynamics simulations of heat transfer coefficients and drag verified using wind tunnel experiments.

    PubMed

    Dudley, Peter N; Bonazza, Riccardo; Porter, Warren P

    2013-07-01

    Animal momentum and heat transfer analysis has historically used direct animal measurements or approximations to calculate drag and heat transfer coefficients. Research can now use modern 3D rendering and computational fluid dynamics software to simulate animal-fluid interactions. Key questions are the level of agreement between simulations and experiments and how superior they are to classical approximations. In this paper we compared experimental and simulated heat transfer and drag calculations on a scale model solid aluminum African elephant casting. We found good agreement between experimental and simulated data and large differences from classical approximations. We used the simulation results to calculate coefficients for heat transfer and drag of the elephant geometry. Copyright © 2013 Wiley Periodicals, Inc.

  16. Second derivatives for approximate spin projection methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, Lee M.; Hratchian, Hrant P., E-mail: hhratchian@ucmerced.edu

    2015-02-07

    The use of broken-symmetry electronic structure methods is required in order to obtain correct behavior of electronically strained open-shell systems, such as transition states, biradicals, and transition metals. This approach often has issues with spin contamination, which can lead to significant errors in predicted energies, geometries, and properties. Approximate projection schemes are able to correct for spin contamination and can often yield improved results. To fully make use of these methods and to carry out exploration of the potential energy surface, it is desirable to develop an efficient second energy derivative theory. In this paper, we formulate the analytical secondmore » derivatives for the Yamaguchi approximate projection scheme, building on recent work that has yielded an efficient implementation of the analytical first derivatives.« less

  17. Validation of an Accurate Three-Dimensional Helical Slow-Wave Circuit Model

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.

    1997-01-01

    The helical slow-wave circuit embodies a helical coil of rectangular tape supported in a metal barrel by dielectric support rods. Although the helix slow-wave circuit remains the mainstay of the traveling-wave tube (TWT) industry because of its exceptionally wide bandwidth, a full helical circuit, without significant dimensional approximations, has not been successfully modeled until now. Numerous attempts have been made to analyze the helical slow-wave circuit so that the performance could be accurately predicted without actually building it, but because of its complex geometry, many geometrical approximations became necessary rendering the previous models inaccurate. In the course of this research it has been demonstrated that using the simulation code, MAFIA, the helical structure can be modeled with actual tape width and thickness, dielectric support rod geometry and materials. To demonstrate the accuracy of the MAFIA model, the cold-test parameters including dispersion, on-axis interaction impedance and attenuation have been calculated for several helical TWT slow-wave circuits with a variety of support rod geometries including rectangular and T-shaped rods, as well as various support rod materials including isotropic, anisotropic and partially metal coated dielectrics. Compared with experimentally measured results, the agreement is excellent. With the accuracy of the MAFIA helical model validated, the code was used to investigate several conventional geometric approximations in an attempt to obtain the most computationally efficient model. Several simplifications were made to a standard model including replacing the helical tape with filaments, and replacing rectangular support rods with shapes conforming to the cylindrical coordinate system with effective permittivity. The approximate models are compared with the standard model in terms of cold-test characteristics and computational time. The model was also used to determine the sensitivity of various circuit parameters including typical manufacturing dimensional tolerances and support rod permittivity. By varying the circuit parameters of an accurate model using MAFIA, these sensitivities can be computed for manufacturing concerns, and design optimization previous to fabrication, thus eliminating the need for costly experimental iterations. Several variations were made to a standard helical circuit using MAFIA to investigate the effect that variations on helical tape and support rod width, metallized loading height and support rod permittivity, have on TWT cold-test characteristics.

  18. Numerical integration techniques for curved-element discretizations of molecule-solvent interfaces.

    PubMed

    Bardhan, Jaydeep P; Altman, Michael D; Willis, David J; Lippow, Shaun M; Tidor, Bruce; White, Jacob K

    2007-07-07

    Surface formulations of biophysical modeling problems offer attractive theoretical and computational properties. Numerical simulations based on these formulations usually begin with discretization of the surface under consideration; often, the surface is curved, possessing complicated structure and possibly singularities. Numerical simulations commonly are based on approximate, rather than exact, discretizations of these surfaces. To assess the strength of the dependence of simulation accuracy on the fidelity of surface representation, here methods were developed to model several important surface formulations using exact surface discretizations. Following and refining Zauhar's work [J. Comput.-Aided Mol. Des. 9, 149 (1995)], two classes of curved elements were defined that can exactly discretize the van der Waals, solvent-accessible, and solvent-excluded (molecular) surfaces. Numerical integration techniques are presented that can accurately evaluate nonsingular and singular integrals over these curved surfaces. After validating the exactness of the surface discretizations and demonstrating the correctness of the presented integration methods, a set of calculations are presented that compare the accuracy of approximate, planar-triangle-based discretizations and exact, curved-element-based simulations of surface-generalized-Born (sGB), surface-continuum van der Waals (scvdW), and boundary-element method (BEM) electrostatics problems. Results demonstrate that continuum electrostatic calculations with BEM using curved elements, piecewise-constant basis functions, and centroid collocation are nearly ten times more accurate than planar-triangle BEM for basis sets of comparable size. The sGB and scvdW calculations give exceptional accuracy even for the coarsest obtainable discretized surfaces. The extra accuracy is attributed to the exact representation of the solute-solvent interface; in contrast, commonly used planar-triangle discretizations can only offer improved approximations with increasing discretization and associated increases in computational resources. The results clearly demonstrate that the methods for approximate integration on an exact geometry are far more accurate than exact integration on an approximate geometry. A MATLAB implementation of the presented integration methods and sample data files containing curved-element discretizations of several small molecules are available online as supplemental material.

  19. Supersonic/Hypersonic Laminar Heating Correlations for Rectangular and Impact-Induced Open and Closed Cavities

    NASA Technical Reports Server (NTRS)

    Everhart, Joel L.

    2008-01-01

    Impact and debris damage to the Space Shuttle Orbiter Thermal Protection System tiles is a random phenomenon, occurring at random locations on the vehicle surface, resulting in random geometrical shapes that are exposed to a definable range of surface flow conditions. In response to the 2003 Final Report of the Columbia Accident Investigation Board, wind tunnel aeroheating experiments approximating a wide range of possible damage scenarios covering both open and closed cavity flow conditions were systematically tested in hypersonic ground based facilities. These data were analyzed and engineering assessment tools for damage-induced fully-laminar heating were developed and exercised on orbit. These tools provide bounding approximations for the damaged-surface heating environment. This paper presents a further analysis of the baseline, zero-pressure-gradient, idealized, rectangular-geometry cavity heating data, yielding new laminar correlations for the floor-averaged heating, peak cavity endwall heating, and the downstream decay rate. Correlation parameters are derived in terms of cavity geometry and local flow conditions. Prediction Limit Uncertainty values are provided at the 95%, 99% and 99.9% levels of significance. Non-baseline conditions, including non-rectangular geometries and flows with known pressure gradients, are used to assess the range of applicability of the new correlations. All data variations fall within the 99% Prediction Limit Uncertainty bounds. Importantly, both open-flow and closed-flow cavity heating are combined into a single-curve parameterization of the heating predictions, and provide a concise mathematical model of the laminar cavity heating flow field with known uncertainty.

  20. First principles cable braid electromagnetic penetration model

    DOE PAGES

    Warne, Larry Kevin; Langston, William L.; Basilio, Lorena I.; ...

    2016-01-01

    The model for penetration of a wire braid is rigorously formulated. Integral formulas are developed from energy principles for both self and transfer immittances in terms of potentials for the fields. The detailed boundary value problem for the wire braid is also set up in a very efficient manner; the braid wires act as sources for the potentials in the form of a sequence of line multi-poles with unknown coefficients that are determined by means of conditions arising from the wire surface boundary conditions. Approximations are introduced to relate the local properties of the braid wires to a simplified infinitemore » periodic planar geometry. Furthermore, this is used to treat nonuniform coaxial geometries including eccentric interior coaxial arrangements and an exterior ground plane.« less

  1. Strategy for reflector pattern calculation - Let the computer do the work

    NASA Technical Reports Server (NTRS)

    Lam, P. T.; Lee, S.-W.; Hung, C. C.; Acosta, R.

    1986-01-01

    Using high frequency approximations, the secondary pattern of a reflector antenna can be calculated by numerically evaluating a radiation integral I(u,v). In recent years, tremendous effort has been expended to reducing I(u,v) to Fourier integrals. These reduction schemes are invariably reflector geometry dependent. Hence, different analyses/computer software development must be carried out for different reflector shapes/boundaries. It is pointed out, that, as the computer power improves, these reduction schemes are no longer necessary. Comparable accuracy and computation time can be achieved by evaluating I(u,v) by a brute force FFT described in this note. Furthermore, there is virtually no restriction on the reflector geometry by using the brute force FFT.

  2. Electric field prediction for a human body-electric machine system.

    PubMed

    Ioannides, Maria G; Papadopoulos, Peter J; Dimitropoulou, Eugenia

    2004-01-01

    A system consisting of an electric machine and a human body is studied and the resulting electric field is predicted. A 3-phase induction machine operating at full load is modeled considering its geometry, windings, and materials. A human model is also constructed approximating its geometry and the electric properties of tissues. Using the finite element technique the electric field distribution in the human body is determined for a distance of 1 and 5 m from the machine and its effects are studied. Particularly, electric field potential variations are determined at specific points inside the human body and for these points the electric field intensity is computed and compared to the limit values for exposure according to international standards.

  3. Effects of dynamical screening on single ionization of potassium by electron impact in doubly symmetric geometry

    NASA Astrophysics Data System (ADS)

    Sun, S. Y.; Jia, X. F.; Miao, X. Y.; Zhang, J. F.

    2014-03-01

    The dynamically screened three-Coulomb-wave (DS3C) method is applied to study the single ionization of potassium by electron impact. Triple differential cross-sections (TDCS) are calculated in doubly symmetric geometry at excess energies of 6, 10, 15, 20, 30, 40, 50 and 60 eV. Comparisons are made with recent experimental data and theoretical predictions from a three-Coulomb-wave (3C) and distorted-wave Born approximation (DWBA). The DS3C method is able to reproduce most of the trend of experimental data and in good agreement with DWBA results. It is shown that the DS3C calculation provides much better shape and relative magnitude agreement with experiment.

  4. Strategy for reflector pattern calculation: Let the computer do the work

    NASA Technical Reports Server (NTRS)

    Lam, P. T.; Lee, S. W.; Hung, C. C.; Acousta, R.

    1985-01-01

    Using high frequency approximations, the secondary pattern of a reflector antenna can be calculated by numerically evaluating a radiation integral I(u,v). In recent years, tremendous effort has been expended to reducing I(u,v) to Fourier integrals. These reduction schemes are invariably reflector geometry dependent. Hence, different analyses/computer software development must be carried out for different reflector shapes/boundaries. it is pointed out, that, as the computer power improves, these reduction schemes are no longer necessary. Comparable accuracy and computation time can be achieved by evaluating I(u,v) by a brute force FFT described in this note. Furthermore, there is virtually no restriction on the reflector geometry by using the brute force FFT.

  5. Pseudo-equilibrium geometry of HNO determined by an E-Band CP-FTmmW spectrometer

    DOE PAGES

    Zaleski, Daniel P.; Prozument, Kirill

    2017-05-16

    An E-Band (60–90 GHz) chirped-pulse Fourier transform millimeter-wave spectrometer has been constructed for eventual kinetics and dynamics studies. The performance of the spectrometer is demonstrated with the molecule nitroxyl (HNO). Using the new spectrometer and by passing isotopically labelled methyl nitrite (CH 3ONO) through a pyrolysis nozzle, the spectra of minor isotopologues of HNO have been obtained. The observations on the isotopologues identified here, H 15NO, HN 18O, and D 15NO, have been combined with the earlier isotopic observations, HNO and DNO, to create a global r m (1) HNO geometry that approximates an equilibrium structure. Furthermore, the results aremore » compared to high-level ab initio calculations.« less

  6. Pseudo-equilibrium geometry of HNO determined by an E-Band CP-FTmmW spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaleski, Daniel P.; Prozument, Kirill

    An E-Band (60–90 GHz) chirped-pulse Fourier transform millimeter-wave spectrometer has been constructed for eventual kinetics and dynamics studies. The performance of the spectrometer is demonstrated with the molecule nitroxyl (HNO). Using the new spectrometer and by passing isotopically labelled methyl nitrite (CH 3ONO) through a pyrolysis nozzle, the spectra of minor isotopologues of HNO have been obtained. The observations on the isotopologues identified here, H 15NO, HN 18O, and D 15NO, have been combined with the earlier isotopic observations, HNO and DNO, to create a global r m (1) HNO geometry that approximates an equilibrium structure. Furthermore, the results aremore » compared to high-level ab initio calculations.« less

  7. The synchrotron-self-Compton process in spherical geometries. I - Theoretical framework

    NASA Technical Reports Server (NTRS)

    Band, D. L.; Grindlay, J. E.

    1985-01-01

    Both spatial and spectral accuracies are stressed in the present method for the calculation of the synchrotron-self-Compton model in spherical geometries, especially in the partially opaque regime of the synchrotron spectrum of inhomogeneous sources that can span a few frequency decades and contribute a significant portion of the scattered flux. A formalism is developed that permits accurate calculation of incident photon density throughout an optically thin sphere. An approximation to the Klein-Nishina cross section is used to model the effects of variable electron and incident photon cutoffs, as well as the decrease in the cross section at high energies. General results are derived for the case of inhomogeneous sources with power law profiles in both electron density and magnetic field.

  8. Variable neighborhood search to solve the vehicle routing problem for hazardous materials transportation.

    PubMed

    Bula, Gustavo Alfredo; Prodhon, Caroline; Gonzalez, Fabio Augusto; Afsar, H Murat; Velasco, Nubia

    2017-02-15

    This work focuses on the Heterogeneous Fleet Vehicle Routing problem (HFVRP) in the context of hazardous materials (HazMat) transportation. The objective is to determine a set of routes that minimizes the total expected routing risk. This is a nonlinear function, and it depends on the vehicle load and the population exposed when an incident occurs. Thus, a piecewise linear approximation is used to estimate it. For solving the problem, a variant of the Variable Neighborhood Search (VNS) algorithm is employed. To improve its performance, a post-optimization procedure is implemented via a Set Partitioning (SP) problem. The SP is solved on a pool of routes obtained from executions of the local search procedure embedded on the VNS. The algorithm is tested on two sets of HFVRP instances based on literature with up to 100 nodes, these instances are modified to include vehicle and arc risk parameters. The results are competitive in terms of computational efficiency and quality attested by a comparison with Mixed Integer Linear Programming (MILP) previously proposed. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Enlargement of the supraglottal cavity and its relation to stop consonant voicing.

    PubMed

    Westbury, J R

    1983-04-01

    Measurements were made of saggital plane movements of the larynx, soft palate, and portions of the tongue, from a high-speed cinefluorographic film of utterances produced by one adult male speaker of American English. These measures were then used to approximate the temporal variations in supraglottal cavity volume during the closures of voiced and voiceless stop consonants. All data were subsequently related to a synchronous acoustic recording of the utterances. Instances of /p,t,k/ were always accompanied by silent closures, and sometimes accompanied by decreases in supraglottal volume. In contrast, instances of /b,d,g/ were always accompanied both by significant intervals of vocal fold vibration during closure, and relatively large increases in supraglottal volume. However, the magnitudes of volume increments during the voiced stops, and the means by which those increments were achieved, differed considerably across place of articulation and phonetic environment. These results are discussed in the context of a well-known model of the breath-stream control mechanism, and their relevance for a general theory of speech motor control is considered.

  10. A Fast Reduced Kernel Extreme Learning Machine.

    PubMed

    Deng, Wan-Yu; Ong, Yew-Soon; Zheng, Qing-Hua

    2016-04-01

    In this paper, we present a fast and accurate kernel-based supervised algorithm referred to as the Reduced Kernel Extreme Learning Machine (RKELM). In contrast to the work on Support Vector Machine (SVM) or Least Square SVM (LS-SVM), which identifies the support vectors or weight vectors iteratively, the proposed RKELM randomly selects a subset of the available data samples as support vectors (or mapping samples). By avoiding the iterative steps of SVM, significant cost savings in the training process can be readily attained, especially on Big datasets. RKELM is established based on the rigorous proof of universal learning involving reduced kernel-based SLFN. In particular, we prove that RKELM can approximate any nonlinear functions accurately under the condition of support vectors sufficiency. Experimental results on a wide variety of real world small instance size and large instance size applications in the context of binary classification, multi-class problem and regression are then reported to show that RKELM can perform at competitive level of generalized performance as the SVM/LS-SVM at only a fraction of the computational effort incurred. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Optimal predictions in everyday cognition: the wisdom of individuals or crowds?

    PubMed

    Mozer, Michael C; Pashler, Harold; Homaei, Hadjar

    2008-10-01

    Griffiths and Tenenbaum (2006) asked individuals to make predictions about the duration or extent of everyday events (e.g., cake baking times), and reported that predictions were optimal, employing Bayesian inference based on veridical prior distributions. Although the predictions conformed strikingly to statistics of the world, they reflect averages over many individuals. On the conjecture that the accuracy of the group response is chiefly a consequence of aggregating across individuals, we constructed simple, heuristic approximations to the Bayesian model premised on the hypothesis that individuals have access merely to a sample of k instances drawn from the relevant distribution. The accuracy of the group response reported by Griffiths and Tenenbaum could be accounted for by supposing that individuals each utilize only two instances. Moreover, the variability of the group data is more consistent with this small-sample hypothesis than with the hypothesis that people utilize veridical or nearly veridical representations of the underlying prior distributions. Our analyses lead to a qualitatively different view of how individuals reason from past experience than the view espoused by Griffiths and Tenenbaum. 2008 Cognitive Science Society, Inc.

  12. Quantum annealing correction with minor embedding

    NASA Astrophysics Data System (ADS)

    Vinci, Walter; Albash, Tameem; Paz-Silva, Gerardo; Hen, Itay; Lidar, Daniel A.

    2015-10-01

    Quantum annealing provides a promising route for the development of quantum optimization devices, but the usefulness of such devices will be limited in part by the range of implementable problems as dictated by hardware constraints. To overcome constraints imposed by restricted connectivity between qubits, a larger set of interactions can be approximated using minor embedding techniques whereby several physical qubits are used to represent a single logical qubit. However, minor embedding introduces new types of errors due to its approximate nature. We introduce and study quantum annealing correction schemes designed to improve the performance of quantum annealers in conjunction with minor embedding, thus leading to a hybrid scheme defined over an encoded graph. We argue that this scheme can be efficiently decoded using an energy minimization technique provided the density of errors does not exceed the per-site percolation threshold of the encoded graph. We test the hybrid scheme using a D-Wave Two processor on problems for which the encoded graph is a two-level grid and the Ising model is known to be NP-hard. The problems we consider are frustrated Ising model problem instances with "planted" (a priori known) solutions. Applied in conjunction with optimized energy penalties and decoding techniques, we find that this approach enables the quantum annealer to solve minor embedded instances with significantly higher success probability than it would without error correction. Our work demonstrates that quantum annealing correction can and should be used to improve the robustness of quantum annealing not only for natively embeddable problems but also when minor embedding is used to extend the connectivity of physical devices.

  13. Multi-instance learning based on instance consistency for image retrieval

    NASA Astrophysics Data System (ADS)

    Zhang, Miao; Wu, Zhize; Wan, Shouhong; Yue, Lihua; Yin, Bangjie

    2017-07-01

    Multiple-instance learning (MIL) has been successfully utilized in image retrieval. Existing approaches cannot select positive instances correctly from positive bags which may result in a low accuracy. In this paper, we propose a new image retrieval approach called multiple instance learning based on instance-consistency (MILIC) to mitigate such issue. First, we select potential positive instances effectively in each positive bag by ranking instance-consistency (IC) values of instances. Then, we design a feature representation scheme, which can represent the relationship among bags and instances, based on potential positive instances to convert a bag into a single instance. Finally, we can use a standard single-instance learning strategy, such as the support vector machine, for performing object-based image retrieval. Experimental results on two challenging data sets show the effectiveness of our proposal in terms of accuracy and run time.

  14. Extensions to the integral line-beam method for gamma-ray skyshine analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shultis, J.K.; Faw, R.E.

    1995-08-01

    A computationally simple method for estimating gamma-ray skyshine dose rates has been developed on the basis of the line-beam response function. Both Monte Carlo and pointkernel calculations that account for both annihilation and bremsstrahlung were used in the generation of line beam response functions (LBRF) for gamma-ray energies between 10 and 100 MeV. The LBRF is approximated by a three-parameter formula. By combining results with those obtained in an earlier study for gamma energies below 10 MeV, LBRF values are readily and accurately evaluated for source energies between 0.02 and 100 MeV, for source-to-detector distances between 1 and 3000 m,more » and beam angles as great as 180 degrees. Tables of the parameters for the approximate LBRF are presented. The new response functions are then applied to three simple skyshine geometries, an open silo geometry, an infinite wall, and a rectangular four-wall building. Results are compared to those of previous calculations and to benchmark measurements. A new approach is introduced to account for overhead shielding of the skyshine source and compared to the simplistic exponential-attenuation method used in earlier studies. The effect of the air-ground interface, usually neglected in gamma skyshine studies, is also examined and an empirical correction factor is introduced. Finally, a revised code based on the improved LBRF approximations and the treatment of the overhead shielding is presented, and results shown for several benchmark problems.« less

  15. Fast Solvers for Moving Material Interfaces

    DTIC Science & Technology

    2008-01-01

    interface method—with the semi-Lagrangian contouring method developed in References [16–20]. We are now finalizing portable C / C ++ codes for fast adaptive ...stepping scheme couples a CIR predictor with a trapezoidal corrector using the velocity evaluated from the CIR approximation. It combines the...formula with efficient geometric algorithms and fast accurate contouring techniques. A modular adaptive implementation with fast new geometry modules

  16. Mixing blade system for high-resistance media

    DOEpatents

    Kronberg, J.W.

    1991-07-09

    A blade system is described for stirring and agitating a medium, comprising a shaft bearing a plurality of paddles, each having a different geometry and each having approximately the same rotational moment. The geometrically different paddles sweep through different volumes of the medium to minimize shear zone development and maximize the strength of the system with respect to medium-induced stress. 6 figures.

  17. Dose in critical body organs in low Earth orbit

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Cucinotta, F.

    1984-01-01

    Human exposure to trapped radiations in low Earth orbit (LEO) are evaluated on the basis of a simple approximation of the human geometry for spherical shell shields of varying thickness. A data base is presented that may be used to make preliminary assessment of the impact of radiation exposure constraints on human performance. A sample impact assessment is discussed.

  18. Multimode Jahn-Teller effect in bulk systems: A case of the N V 0 center in diamond

    DOE PAGES

    Zhang, Jianhua; Wang, Cai -Zhuang; Zhu, Zizhong; ...

    2018-04-15

    Here, the multimode Jahn-Teller (JT) effect in a bulk system of a neutral nitrogen-vacancy (NV 0) center in diamond is investigated via first-principles density-functional-theory calculations and the intrinsic distortion path (IDP) method. The adiabatic potential energy surface of the electronic ground state of the NV 0 center is calculated based on the local spin-density approximation. Our calculations confirm the presence of the dynamic Jahn-Teller effect in the ground 2E state of the NV 0 center. Within the harmonic approximation, the IDP method provides the reactive path of JT distortion from unstable high-symmetry geometry to stable low-symmetry energy minimum geometry, andmore » it describes the active normal modes participating in the distortion. We find that there is more than one vibrational mode contributing to the distortion, and their contributions change along the IDP. Several vibrational modes with large contributions to JT distortion, especially those modes close to 44 meV, are clearly observed as the phonon sideband in photoluminescence spectra in a series of experiments, indicating that the dynamic Jahn-Teller effect plays an important role in the optical transition of the NV 0 center.« less

  19. Multimode Jahn-Teller effect in bulk systems: A case of the N V0 center in diamond

    NASA Astrophysics Data System (ADS)

    Zhang, Jianhua; Wang, Cai-Zhuang; Zhu, Zizhong; Liu, Qing Huo; Ho, Kai-Ming

    2018-04-01

    The multimode Jahn-Teller (JT) effect in a bulk system of a neutral nitrogen-vacancy (N V0 ) center in diamond is investigated via first-principles density-functional-theory calculations and the intrinsic distortion path (IDP) method. The adiabatic potential energy surface of the electronic ground state of the N V0 center is calculated based on the local spin-density approximation. Our calculations confirm the presence of the dynamic Jahn-Teller effect in the ground 2E state of the N V0 center. Within the harmonic approximation, the IDP method provides the reactive path of JT distortion from unstable high-symmetry geometry to stable low-symmetry energy minimum geometry, and it describes the active normal modes participating in the distortion. We find that there is more than one vibrational mode contributing to the distortion, and their contributions change along the IDP. Several vibrational modes with large contributions to JT distortion, especially those modes close to 44 meV, are clearly observed as the phonon sideband in photoluminescence spectra in a series of experiments, indicating that the dynamic Jahn-Teller effect plays an important role in the optical transition of the N V0 center.

  20. Development of FullWave : Hot Plasma RF Simulation Tool

    NASA Astrophysics Data System (ADS)

    Svidzinski, Vladimir; Kim, Jin-Soo; Spencer, J. Andrew; Zhao, Liangji; Galkin, Sergei

    2017-10-01

    Full wave simulation tool, modeling RF fields in hot inhomogeneous magnetized plasma, is being developed. The wave equations with linearized hot plasma dielectric response are solved in configuration space on adaptive cloud of computational points. The nonlocal hot plasma dielectric response is formulated in configuration space without limiting approximations by calculating the plasma conductivity kernel based on the solution of the linearized Vlasov equation in inhomogeneous magnetic field. This approach allows for better resolution of plasma resonances, antenna structures and complex boundaries. The formulation of FullWave and preliminary results will be presented: construction of the finite differences for approximation of derivatives on adaptive cloud of computational points; model and results of nonlocal conductivity kernel calculation in tokamak geometry; results of 2-D full wave simulations in the cold plasma model in tokamak geometry using the formulated approach; results of self-consistent calculations of hot plasma dielectric response and RF fields in 1-D mirror magnetic field; preliminary results of self-consistent simulations of 2-D RF fields in tokamak using the calculated hot plasma conductivity kernel; development of iterative solver for wave equations. Work is supported by the U.S. DOE SBIR program.

  1. Multimode Jahn-Teller effect in bulk systems: A case of the N V 0 center in diamond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jianhua; Wang, Cai -Zhuang; Zhu, Zizhong

    Here, the multimode Jahn-Teller (JT) effect in a bulk system of a neutral nitrogen-vacancy (NV 0) center in diamond is investigated via first-principles density-functional-theory calculations and the intrinsic distortion path (IDP) method. The adiabatic potential energy surface of the electronic ground state of the NV 0 center is calculated based on the local spin-density approximation. Our calculations confirm the presence of the dynamic Jahn-Teller effect in the ground 2E state of the NV 0 center. Within the harmonic approximation, the IDP method provides the reactive path of JT distortion from unstable high-symmetry geometry to stable low-symmetry energy minimum geometry, andmore » it describes the active normal modes participating in the distortion. We find that there is more than one vibrational mode contributing to the distortion, and their contributions change along the IDP. Several vibrational modes with large contributions to JT distortion, especially those modes close to 44 meV, are clearly observed as the phonon sideband in photoluminescence spectra in a series of experiments, indicating that the dynamic Jahn-Teller effect plays an important role in the optical transition of the NV 0 center.« less

  2. The dynamics of current carriers in standing Alfvén waves: Parallel electric fields in the auroral acceleration region

    NASA Astrophysics Data System (ADS)

    Wright, Andrew N.; Allan, W.; Ruderman, Michael S.; Elphic, R. C.

    2002-07-01

    The acceleration of current carriers in an Alfvén wave current system is considered. The model incorporates a dipole magnetic field geometry, and we present an analytical solution of the two-fluid equations by successive approximations. The leading solution corresponds to the familiar single-fluid toroidal oscillations. The next order describes the nonlinear dynamics of electrons responsible for carrying a few μAm-2 field aligned current into the ionosphere. The solution shows how most of the electron acceleration in the magnetosphere occurs within 1 RE of the ionosphere, and that a parallel electric field of the order of 1 mVm-1 is responsible for energising the electrons to 1 keV. The limitations of the electron fluid approximation are considered, and a qualitative solution including electron beams and a modified E∥ is developed in accord with observations. We find that the electron acceleration can be nonlinear, (ve∥∇∥)ve∥ > ωve∥, as a result of our nonuniform equilibrium field geometry even when ve∥ is less than the Alfvén speed. Our calculation also elucidates the processes through which E∥ is generated and supported.

  3. Numerical Study of HHFW Heating in FRC Plasmas

    NASA Astrophysics Data System (ADS)

    Ceccherini, Francesco; Galeotti, Laura; Brambilla, Marco; Dettrick, Sean; Yang, Xiaokang; TAE Team

    2017-10-01

    The TriAlpha Energy (TAE) code RF-Pisa is a Finite Larmor Radius (FLR) full wave code developed over the years to study RF heating in the Field Reversed Configuration (FRC) in both the ion and electron cyclotron regimes. The FLR approximation is perfectly adequate to address RF propagation and absorption at the fundamental and second harmonic frequencies (as in the minority heating scheme), but it is not able to describe higher order processes such as high-harmonic fast waves (HHFW). The latter ones have frequencies lying between the ion cyclotron and lower hybrid resonances and they may represent a viable path to develop an efficient method to deposit energy inside the FRC separatrix, as suggested by recent results obtained at NSTX. A significant upgrade of RF-Pisa to include HHFW has been undertaken. In particular, the so-called ``quasi local approximation'' originally proposed for toroidal geometries has been re-derived for the cylindrical geometry and a new HHFW version of RF-Pisa concurrent to the FLR version has been developed. Here we present the first results of the application of the new code to FRC equilibria and we discuss the features of the dispersion relations and the absorption processes which characterize this novel regime.

  4. Numerical Modeling of Electromagnetic Radiation Within a Particulate Medium.

    NASA Astrophysics Data System (ADS)

    Noe Dobrea, E. Z.

    2017-12-01

    Numerical modeling of electromagnetic radiation with a particulate medium. Understanding the effect of particulate media and coatings on electromagnetic radiation is key to understanding the effects of multiple scattering on the spectra of geologic materials. Multiple radiative transfer theories have been developed that provide a good approximation to these effects [1,2]. However, approximations regarding particle size, distribution, shape, and other parameters need to be made and in some cases, the theory is limited to specific geometries [2]. In this work, we seek to develop an numerical radiative transfer algorithm to simulate the passage of light through a particulate medium. The code allows arbitrary particle size distributions (uniform, bimodal, trimodal, composition dependent), compositions, and viewing geometries, as well as arbitrary coating thicknesses and compositions. Here, we report on the the status of our model and present comparisons of model predictions with the spectra of well-characterize minerals and mixtures. Future work will include particle size-dependent effects of diffraction as well as particle emittance due to fluorescence and Raman excitation. [1] Hapke, B. (2012). Theory of reflectance and emittance spectroscopy. Cambridge University Press, 2nd edition, 528 p. [2] Shkuratov et al. (1999) Icarus 137

  5. Infrared spectra and other properties predictions of 5-amino-3-methyl-4-isoxazolecarbohydrazide with electric field simulation using CPC model

    NASA Astrophysics Data System (ADS)

    Regiec, Andrzej; Wojciechowski, Piotr; Pietraszko, Adam; Mączyński, Marcin

    2018-06-01

    Here, the Conductor-like Polarizable Continuum Model (CPCM) was used as a less demanding substitute of Periodic Boundary Conditions (PBC) method to attempt to reliably simulate infrared spectra and some structural parameters of solid compound - 5-amino-3-methyl-4-isoxazolecarbohydrazide (HIX). The measured relative electric permittivity of HIX was used as a simplified equivalent of electric intensity generating by other molecules of 5-amino-3-methyl-4-isoxazolecarbohydrazide in crystal structure. The application of CPCM has resulted in better conformity of calculated molecular parameters with experimentally found. Theoretical geometry was compared with data obtained with X-ray crystallography. Comparison of harmonic approximation with anharmonic one, based on the six selected characteristic vibrations, shows that non-scaled harmonic wavenumbers, calculated with CPCM, well correspond to experimental spectra. Additionally, the results point out that anharmonic approximation appeared to be strong sensitive for input geometry and calculation parameters used, so the results are sometimes unreliable, especially for low wavenumbers. Also, the new feasible ways of the synthesis of the titled compound is presented, one of which is particularly easy and highly efficient.

  6. Teaching light scattering spectroscopy: the dimension and shape of tobacco mosaic virus.

    PubMed Central

    Santos, N C; Castanho, M A

    1996-01-01

    The tobacco mosaic virus is used as a model molecular assembly to illustrate the basic potentialities of light scattering techniques (both static and dynamic) to undergraduates. The work has two objectives: a pedagogic one (introducing light scattering to undergraduate students) and a scientific one (stabilization of the virus molecular assembly structure by the nucleic acid). Students are first challenged to confirm the stabilization of the cylindrical shape of the virus by the nucleic acid, at pH and ionic strength conditions where the coat proteins alone do not self-assemble. The experimental intramolecular scattering factor is compared with the theoretical ones for several model geometries. The data clearly suggest that the geometry is, in fact, a rod. Comparing the experimental values of gyration radius and hydrodynamic radius with the theoretical expectations further confirms this conclusion. Moreover, the rod structure is maintained over a wider range of pH and ionic strength than that valid for the coat proteins alone. The experimental values of the diffusion coefficient and radius of gyration are compared with the theoretical expectations assuming the dimensions detected by electron microscopy techniques. In fact, both values are in agreement (length approximately 300 nm, radius approximately 20 nm). PMID:8874039

  7. About approximation of integer factorization problem by the combination fixed-point iteration method and Bayesian rounding for quantum cryptography

    NASA Astrophysics Data System (ADS)

    Ogorodnikov, Yuri; Khachay, Michael; Pljonkin, Anton

    2018-04-01

    We describe the possibility of employing the special case of the 3-SAT problem stemming from the well known integer factorization problem for the quantum cryptography. It is known, that for every instance of our 3-SAT setting the given 3-CNF is satisfiable by a unique truth assignment, and the goal is to find this assignment. Since the complexity status of the factorization problem is still undefined, development of approximation algorithms and heuristics adopts interest of numerous researchers. One of promising approaches to construction of approximation techniques is based on real-valued relaxation of the given 3-CNF followed by minimizing of the appropriate differentiable loss function, and subsequent rounding of the fractional minimizer obtained. Actually, algorithms developed this way differ by the rounding scheme applied on their final stage. We propose a new rounding scheme based on Bayesian learning. The article shows that the proposed method can be used to determine the security in quantum key distribution systems. In the quantum distribution the Shannon rules is applied and the factorization problem is paramount when decrypting secret keys.

  8. Cascading gauge theory on dS4 and String Theory landscape

    NASA Astrophysics Data System (ADS)

    Buchel, Alex; Galante, Damián A.

    2014-06-01

    Placing anti-D3 branes at the tip of the conifold in Klebanov-Strassler geometry provides a generic way of constructing meta-stable de Sitter (dS) vacua in String Theory. A local geometry of such vacua exhibit gravitational solutions with a D3 charge measured at the tip opposite to the asymptotic charge. We discuss a restrictive set of such geometries, where anti-D3 branes are smeared at the tip. Such geometries represent holographic dual of cascading gauge theory in dS4 with or without chiral symmetry breaking. We find that in the phase with unbroken chiral symmetry the D3 charge at the tip is always positive. Furthermore, this charge is zero in the phase with spontaneously broken chiral symmetry. We show that the effective potential of the chirally symmetric phase is lower than that in the symmetry broken phase, i.e., there is no spontaneous chiral symmetry breaking for cascading gauge theory in dS4. The positivity of the D3 brane charge in smooth de-Sitter deformed conifold geometries with fluxes presents difficulties in uplifting AdS vacua to dS ones in String Theory via smeared anti-D3 branes. First, turning on fluxes on Calabi-Yau compactifications of type IIB string theory produces highly warped geometry with stabilized complex structure (but not Kähler) moduli of the compactification [3]; Next, including non-perturbative effects (which are under control given the unbroken supersymmetry), one obtains anti-de Sitter (AdS4) vacua with all moduli fixed; Finally, one uses anti-D3 branes of type IIB string theory to uplift AdS4 to de Sitter (dS4) vacua. As the last step of the construction completely breaks supersymmetry, it is much less controlled. In fact, in [4-7] it was argued that putting anti-D3 branes at the tip of the Klebanov-Strassler (KS) [8] geometry (as done in KKLT construction) leads to a naked singularity. Whether or not the resulting singularity is physical is subject to debates. When M4=dS4 and the chiral symmetry is unbroken, the D3 brane charge at the tip of the conifold is always positive, as long as ln H2Λ2/P2g0 ⩾-0.4. When M4=dS4 and the chiral symmetry is broken, the D3 brane charge at the tip of the conifold is always zero; we managed to construct geometries of this type for ln H2Λ2/P2g0⩾-0.03. Comparing effective potential of the gauge theory in broken Veffb and unbroken Veffs phases we establish that in all cases, when we can construct the phase with spontaneously broken chiral symmetry, Veffb>Veffs, when ln H2Λ2/P2g0⩾-0.03, i.e., spontaneous symmetry breaking does not happen for given values of the gauge theory parameters. To put these parameters in perspective, note that the (first-order) confinement/deconfinement and chiral symmetry breaking phase transition in cascading gauge theory plasma occurs at temperature T such that [16] ln Tdeconfinement,χSB2Λ2/P2g0=0.2571(2), and the (first-order) chiral symmetry breaking in cascading gauge theory on S3 occurs for compactification scale μ3≡ℓ3-1 such that [21] ln μ3,χSB2Λ2/P2g0=0.4309(8). When M4=R×S3 and the chiral symmetry is unbroken, the D3 brane charge at the tip of the conifold is negative when ln μ32Λ2/P2g0 μ, and the D3 brane charge at the tip of the conifold in broken phase is zero, the charge in the ground state is in fact zero whenever μ3⩽μ. Furthermore, chirally symmetric states of cascading gauge theory on S3 develop symmetry breaking tachyonic instabilities at μ (below the first order chiral symmetry breaking scale μ) ln μ3,tachyon2Λ2/P2g0=0.3297(3) which is again above μ.Our results represented here, together with those reported in [10], point that the singularity of smeared anti-D3 branes at the tip of the conifold is unphysical: had it been otherwise, we should have been able to implement an infrared cutoff in the geometry with a D3 brane charge measured at the cutoff being negative. The role of the cutoff is played by the temperature (as discussed in [10]), by the compactification scale (when M4=R×S3), or by the Hubble scale (when M4=dS4). Interesting, we find that the D3 brane charge can become negative when the KT throat geometry is S3 deformed; however this occurs in the regime where this phase is unstable both via the first order phase transition and the tachyon condensation to S3 deformed KS throat geometry - the latter geometry has zero D3 brane charge at the tip. All this raises questions about construction of generic de Sitter vacua in String Theory [2].We stress, however, that our analysis does not definitely exclude local non-singular supergravity description of de Sitter vacua in String Theory. The issue stems from the anti-D3 brane “smearing approximation” used. Early discussion of the relevant smearing approximation appeared in [6,9]. There, the authors carefully analyzed non-supersymmetric deformations of KS geometry, invariant under the SU(2)×SU(2) global symmetry of the latter. They further identified a class of perturbations that is being sources by anti-D3 branes, placed at the tip of the conifold, and then computed the leading-order backreaction of those perturbations on KS geometry. Insistence on preserving the SU(2)×SU(2) global symmetry is a smearing approximation - from the brane perspective it implies that anti-D3 branes are uniformly distributed (uniformly smeared) over the transverse compact five-dimensional manifold. Our discussion here shares the same smearing approximation as in [6,9], but extends the analysis to the full (rather than leading-order) backreaction. Smearing approximation is a practical tool enabling the analysis of the complicated cascading geometries involved. However, it must be questioned: it is not clear that non-supersymmetric uniform distribution along T directions of anti-D3 branes is stable against ‘clumping’. While it is highly desirable to lift this approximation, it is very difficult to do this in practice: one is forced to analyze a coupled nonlinear system of partial differential equations, rather than ordinary differential equations. We feel that until fully localized anti-D3 brane analysis in cascading geometries are performed, the singularity question of local supergravity description of de Sitter vacua in String Theory will remain open.

  9. Thin airfoil theory based on approximate solution of the transonic flow equation

    NASA Technical Reports Server (NTRS)

    Spreiter, John R; Alksne, Alberta Y

    1957-01-01

    A method is presented for the approximate solution of the nonlinear equations transonic flow theory. Solutions are found for two-dimensional flows at a Mach number of 1 and for purely subsonic and purely supersonic flows. Results are obtained in closed analytic form for a large and significant class of nonlifting airfoils. At a Mach number of 1 general expressions are given for the pressure distribution on an airfoil of specified geometry and for the shape of an airfoil having a prescribed pressure distribution. Extensive comparisons are made with available data, particularly for a Mach number of 1, and with existing solutions.

  10. Aerodynamic prediction techniques for hypersonic configuration design

    NASA Technical Reports Server (NTRS)

    1981-01-01

    An investigation of approximate theoretical techniques for predicting aerodynamic characteristics and surface pressures for relatively slender vehicles at moderate hypersonic speeds was performed. Emphasis was placed on approaches that would be responsive to preliminary configuration design level of effort. Potential theory was examined in detail to meet this objective. Numerical pilot codes were developed for relatively simple three dimensional geometries to evaluate the capability of the approximate equations of motion considered. Results from the computations indicate good agreement with higher order solutions and experimental results for a variety of wing, body, and wing-body shapes for values of the hypersonic similarity parameter M delta approaching one.

  11. DNA packing in chromatine, a manifestation of the Bonnet transformation.

    PubMed

    Blum, Z; Lidin, S

    1988-08-01

    The packing of DNA is described using the formalism of differential geometry. Winding of the DNA double helix around the histone 2-5 octamer forming a nucleosome and the condensation of the so-formed bead-on-a-string chromatine aided by histone 1 is interpreted as two consecutive isometric, i.e. Bonnet, transformations. The DNA double helix can be approximated to a helicoid which can be transformed isometrically to a catenoid, an approximation of the nucleosome. Owing to the organization of the histone octamer the extended chromatine takes a helicoidal shape allowing a second Bonnet transformation to consummate the condensation into a chromatine fibre.

  12. Branes in Extended Spacetime: Brane Worldvolume Theory Based on Duality Symmetry.

    PubMed

    Sakatani, Yuho; Uehara, Shozo

    2016-11-04

    We propose a novel approach to the brane worldvolume theory based on the geometry of extended field theories: double field theory and exceptional field theory. We demonstrate the effectiveness of this approach by showing that one can reproduce the conventional bosonic string and membrane actions, and the M5-brane action in the weak-field approximation. At a glance, the proposed 5-brane action without approximation looks different from the known M5-brane actions, but it is consistent with the known nonlinear self-duality relation, and it may provide a new formulation of a single M5-brane action. Actions for exotic branes are also discussed.

  13. VENTURE: a code block for solving multigroup neutronics problems applying the finite-difference diffusion-theory approximation to neutron transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vondy, D.R.; Fowler, T.B.; Cunningham, G.W.

    1975-10-01

    The computer code block VENTURE, designed to solve multigroup neutronics problems with application of the finite-difference diffusion-theory approximation to neutron transport (or alternatively simple P$sub 1$) in up to three- dimensional geometry is described. A variety of types of problems may be solved: the usual eigenvalue problem, a direct criticality search on the buckling, on a reciprocal velocity absorber (prompt mode), or on nuclide concentrations, or an indirect criticality search on nuclide concentrations, or on dimensions. First- order perturbation analysis capability is available at the macroscopic cross section level. (auth)

  14. Domain decomposition methods for systems of conservation laws: Spectral collocation approximations

    NASA Technical Reports Server (NTRS)

    Quarteroni, Alfio

    1989-01-01

    Hyperbolic systems of conversation laws are considered which are discretized in space by spectral collocation methods and advanced in time by finite difference schemes. At any time-level a domain deposition method based on an iteration by subdomain procedure was introduced yielding at each step a sequence of independent subproblems (one for each subdomain) that can be solved simultaneously. The method is set for a general nonlinear problem in several space variables. The convergence analysis, however, is carried out only for a linear one-dimensional system with continuous solutions. A precise form of the error reduction factor at each iteration is derived. Although the method is applied here to the case of spectral collocation approximation only, the idea is fairly general and can be used in a different context as well. For instance, its application to space discretization by finite differences is straight forward.

  15. Simulating incompressible flow on moving meshfree grids using General Finite Differences (GFD)

    NASA Astrophysics Data System (ADS)

    Vasyliv, Yaroslav; Alexeev, Alexander

    2016-11-01

    We simulate incompressible flow around an oscillating cylinder at different Reynolds numbers using General Finite Differences (GFD) on a meshfree grid. We evolve the meshfree grid by treating each grid node as a particle. To compute velocities and accelerations, we consider the particles at a particular instance as Eulerian observation points. The incompressible Navier-Stokes equations are directly discretized using GFD with boundary conditions enforced using a sharp interface treatment. Cloud sizes are set such that the local approximations use only 16 neighbors. To enforce incompressibility, we apply a semi-implicit approximate projection method. To prevent overlapping particles and formation of voids in the grid, we propose a particle regularization scheme based on a local minimization principle. We validate the GFD results for an oscillating cylinder against the lattice Boltzmann method and find good agreement. Financial support provided by National Science Foundation (NSF) Graduate Research Fellowship, Grant No. DGE-1148903.

  16. Numerical optimization in Hilbert space using inexact function and gradient evaluations

    NASA Technical Reports Server (NTRS)

    Carter, Richard G.

    1989-01-01

    Trust region algorithms provide a robust iterative technique for solving non-convex unstrained optimization problems, but in many instances it is prohibitively expensive to compute high accuracy function and gradient values for the method. Of particular interest are inverse and parameter estimation problems, since function and gradient evaluations involve numerically solving large systems of differential equations. A global convergence theory is presented for trust region algorithms in which neither function nor gradient values are known exactly. The theory is formulated in a Hilbert space setting so that it can be applied to variational problems as well as the finite dimensional problems normally seen in trust region literature. The conditions concerning allowable error are remarkably relaxed: relative errors in the gradient error condition is automatically satisfied if the error is orthogonal to the gradient approximation. A technique for estimating gradient error and improving the approximation is also presented.

  17. Pseudogap and the specific heat of high Tc superconductors: a Hubbard model in a n-pole approximation

    NASA Astrophysics Data System (ADS)

    Calegari, E. J.; Lausmann, A. C.; Magalhaes, S. G.; Chaves, C. M.; Troper, A.

    2015-03-01

    In this work the specific heat of a two-dimensional Hubbard model, suitable to discuss high-Tc superconductors (HTSC), is studied taking into account hopping to first (t) and second (t2) nearest neighbors. Experimental results for the specific heat of HTSC's, for instance, the YBCO and LSCO, indicate a close relation between the pseudogap and the specific heat. In the present work, we investigate the specific heat by the Green's function method within a n-pole approximation. The specific heat is calculated on the pseudogap and on the superconducting regions. In the present scenario, the pseudogap emerges when the antiferromagnetic (AF) fluctuations become sufficiently strong. The specific heat jump coefficient Δγ decreases when the total occupation per site (nT) reaches a given value. Such behavior of Δγ indicates the presence of a pseudogap in the regime of high occupation.

  18. Benefits of curved serrations on broadband trailing-edge noise reduction

    NASA Astrophysics Data System (ADS)

    Avallone, F.; van der Velden, W. C. P.; Ragni, D.

    2017-07-01

    Far-field noise and flow field over a novel curved trailing-edge serration (named as iron-shaped serration) are investigated. Spectra of the far-field broadband noise, directivity plots and the flow-field over the iron-shaped serration are obtained from numerical computations performed using a compressible Lattice-Boltzmann solver. The new design is compared to a conventional trailing-edge serration with a triangular geometry. Both serration geometries were retrofitted to a NACA 0018 airfoil at zero degree angle of attack. The iron-shaped geometry is found to reduce far-field broadband noise of approximately 2 dB more than the conventional sawtooth serration for chord-based Strouhal numbers Stc<15. At higher frequencies, the far-field broadband noise for the two serration geometries has comparable intensity. Near-wall velocity distribution and surface pressure fluctuations show that their intensity and spectra are independent on the serration geometry, but a function of the streamwise location. It is found that the larger noise reduction achieved by the iron-shaped trailing-edge serration is due to the mitigation of the scattered noise at the root. This effect is obtained by mitigating the interaction between the two sides of the serration, by delaying toward the tip both the outward (i.e., the tendency of the flow to deviate from the centerline to the edge of the serration) and the downward (i.e., the tendency of the flow to merge between the upper and bottom side of the serration) flow motions present at the root of the sawtooth.

  19. 3D Reconstruction and Approximation of Vegetation Geometry for Modeling of Within-canopy Flows

    NASA Astrophysics Data System (ADS)

    Henderson, S. M.; Lynn, K.; Lienard, J.; Strigul, N.; Mullarney, J. C.; Norris, B. K.; Bryan, K. R.

    2016-02-01

    Aquatic vegetation can shelter coastlines from waves and currents, sometimes resulting in accretion of fine sediments. We developed a photogrammetric technique for estimating the key geometric vegetation parameters that are required for modeling of within-canopy flows. Accurate estimates of vegetation geometry and density are essential to refine hydrodynamic models, but accurate, convenient, and time-efficient methodologies for measuring complex canopy geometries have been lacking. The novel approach presented here builds on recent progress in photogrammetry and computer vision. We analyzed the geometry of aerial mangrove roots, called pneumatophores, in Vietnam's Mekong River Delta. Although comparatively thin, pneumatophores are more numerous than mangrove trunks, and thus influence near bed flow and sediment transport. Quadrats (1 m2) were placed at low tide among pneumatophores. Roots were counted and measured for height and diameter. Photos were taken from multiple angles around each quadrat. Relative camera locations and orientations were estimated from key features identified in multiple images using open-source software (VisualSfM). Next, a dense 3D point cloud was produced. Finally, algorithms were developed for automated estimation of pneumatophore geometry from the 3D point cloud. We found good agreement between hand-measured and photogrammetric estimates of key geometric parameters, including mean stem diameter, total number of stems, and frontal area density. These methods can reduce time spent measuring in the field, thereby enabling future studies to refine models of water flows and sediment transport within heterogenous vegetation canopies.

  20. Investigating the geometry of pig airways using computed tomography

    NASA Astrophysics Data System (ADS)

    Mansy, Hansen A.; Azad, Md Khurshidul; McMurray, Brandon; Henry, Brian; Royston, Thomas J.; Sandler, Richard H.

    2015-03-01

    Numerical modeling of sound propagation in the airways requires accurate knowledge of the airway geometry. These models are often validated using human and animal experiments. While many studies documented the geometric details of the human airways, information about the geometry of pig airways is scarcer. In addition, the morphology of animal airways can be significantly different from that of humans. The objective of this study is to measure the airway diameter, length and bifurcation angles in domestic pigs using computed tomography. After imaging the lungs of 3 pigs, segmentation software tools were used to extract the geometry of the airway lumen. The airway dimensions were then measured from the resulting 3 D models for the first 10 airway generations. Results showed that the size and morphology of the airways of different animals were similar. The measured airway dimensions were compared with those of the human airways. While the trachea diameter was found to be comparable to the adult human, the diameter, length and branching angles of other airways were noticeably different from that of humans. For example, pigs consistently had an early airway branching from the trachea that feeds the superior (top) right lung lobe proximal to the carina. This branch is absent in the human airways. These results suggested that the human geometry may not be a good approximation of the pig airways and may contribute to increasing the errors when the human airway geometric values are used in computational models of the pig chest.

  1. Shuttle Debris Impact Tool Assessment Using the Modern Design of Experiments

    NASA Technical Reports Server (NTRS)

    DeLoach, R.; Rayos, E. M.; Campbell, C. H.; Rickman, S. L.

    2006-01-01

    Computational tools have been developed to estimate thermal and mechanical reentry loads experienced by the Space Shuttle Orbiter as the result of cavities in the Thermal Protection System (TPS). Such cavities can be caused by impact from ice or insulating foam debris shed from the External Tank (ET) on liftoff. The reentry loads depend on cavity geometry and certain Shuttle state variables, among other factors. Certain simplifying assumptions have been made in the tool development about the cavity geometry variables. For example, the cavities are all modeled as shoeboxes , with rectangular cross-sections and planar walls. So an actual cavity is typically approximated with an idealized cavity described in terms of its length, width, and depth, as well as its entry angle, exit angle, and side angles (assumed to be the same for both sides). As part of a comprehensive assessment of the uncertainty in reentry loads estimated by the debris impact assessment tools, an effort has been initiated to quantify the component of the uncertainty that is due to imperfect geometry specifications for the debris impact cavities. The approach is to compute predicted loads for a set of geometry factor combinations sufficient to develop polynomial approximations to the complex, nonparametric underlying computational models. Such polynomial models are continuous and feature estimable, continuous derivatives, conditions that facilitate the propagation of independent variable errors. As an additional benefit, once the polynomial models have been developed, they require fewer computational resources to execute than the underlying finite element and computational fluid dynamics codes, and can generate reentry loads estimates in significantly less time. This provides a practical screening capability, in which a large number of debris impact cavities can be quickly classified either as harmless, or subject to additional analysis with the more comprehensive underlying computational tools. The polynomial models also provide useful insights into the sensitivity of reentry loads to various cavity geometry variables, and reveal complex interactions among those variables that indicate how the sensitivity of one variable depends on the level of one or more other variables. For example, the effect of cavity length on certain reentry loads depends on the depth of the cavity. Such interactions are clearly displayed in the polynomial response models.

  2. Understanding the Geometry of Connected Fracture Flow with Multiperiod Oscillatory Hydraulic Tests.

    PubMed

    Sayler, Claire; Cardiff, Michael; Fort, Michael D

    2018-03-01

    An understanding of the spatial and hydraulic properties of fast preferential flow pathways in the subsurface is necessary in applications ranging from contaminant fate and transport modeling to design of energy extraction systems. One method for the characterization of fracture properties over interwellbore scales is Multiperiod Oscillatory Hydraulic (MOH) testing, in which the aquifer response to oscillatory pressure stimulations is observed. MOH tests were conducted on isolated intervals of wells in siliciclastic and carbonate aquifers in southern Wisconsin. The goal was to characterize the spatial properties of discrete fractures over interwellbore scales. MOH tests were conducted on two discrete fractured intervals intersecting two boreholes at one field site, and a nest of three piezometers at another field site. Fracture diffusivity estimates were obtained using analytical solutions that relate diffusivity to observed phase lag and amplitude decay. In addition, MOH tests were used to investigate the spatial extent of flow using different conceptual models of fracture geometry. Results indicated that fracture geometry at both field sites can be approximated by permeable two-dimensional fracture planes, oriented near-horizontally at one site, and near-vertically at the other. The technique used on MOH field data to characterize fracture geometry shows promise in revealing fracture network characteristics important to groundwater flow and transport. © 2017, National Ground Water Association.

  3. Theoretical background of retrieving Green's function by cross-correlation: one-dimensional case

    NASA Astrophysics Data System (ADS)

    Nakahara, Hisashi

    2006-06-01

    Recently, an assertion has been verified experimentally and theoretically that Green's function between two receivers can be reproduced by cross-correlating the records at the receivers. In this paper, we have theoretically proved the assertion for 1-D media with the free surface by using the Thomson-Haskell matrix method. Strictly speaking, one side of the cross-correlation between records at two receivers is the convolution between Green's function and the autocorrelation function of the source wavelet. This study extends the geometry considered by Claerbout to two receivers vertically apart, and is a special case of the proof by Wapenaar et al. which dealt with 3-D arbitrary inhomogeneous media. However, a simple geometry in 1-D problems enables us to make the proof without any approximations and to better understand the physical background with more ease. That is the main advantage of this study. Though a 1-D geometry seems far from reality, it may be sufficient if an appropriate combination of receivers and earthquakes is selected. In fact, such a geometry is often seen in seismological observations by a vertical array of seismographs in the shallow subsurface. Therefore, we refer to a possibility that the proof in this paper is applied to the estimation of site amplification factors by using records of a vertical seismographic array.

  4. Errors in the Calculation of 27Al Nuclear Magnetic Resonance Chemical Shifts

    PubMed Central

    Wang, Xianlong; Wang, Chengfei; Zhao, Hui

    2012-01-01

    Computational chemistry is an important tool for signal assignment of 27Al nuclear magnetic resonance spectra in order to elucidate the species of aluminum(III) in aqueous solutions. The accuracy of the popular theoretical models for computing the 27Al chemical shifts was evaluated by comparing the calculated and experimental chemical shifts in more than one hundred aluminum(III) complexes. In order to differentiate the error due to the chemical shielding tensor calculation from that due to the inadequacy of the molecular geometry prediction, single-crystal X-ray diffraction determined structures were used to build the isolated molecule models for calculating the chemical shifts. The results were compared with those obtained using the calculated geometries at the B3LYP/6-31G(d) level. The isotropic chemical shielding constants computed at different levels have strong linear correlations even though the absolute values differ in tens of ppm. The root-mean-square difference between the experimental chemical shifts and the calculated values is approximately 5 ppm for the calculations based on the X-ray structures, but more than 10 ppm for the calculations based on the computed geometries. The result indicates that the popular theoretical models are adequate in calculating the chemical shifts while an accurate molecular geometry is more critical. PMID:23203134

  5. DIATOM (Data Initialization and Modification) Library Version 7.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, David A.; Schmitt, Robert G.; Hensinger, David M.

    DIATOM is a library that provides numerical simulation software with a computational geometry front end that can be used to build up complex problem geometries from collections of simpler shapes. The library provides a parser which allows for application-independent geometry descriptions to be embedded in simulation software input decks. Descriptions take the form of collections of primitive shapes and/or CAD input files and material properties that can be used to describe complex spatial and temporal distributions of numerical quantities (often called “database variables” or “fields”) to help define starting conditions for numerical simulations. The capability is designed to be generalmore » purpose, robust and computationally efficient. By using a combination of computational geometry and recursive divide-and-conquer approximation techniques, a wide range of primitive shapes are supported to arbitrary degrees of fidelity, controllable through user input and limited only by machine resources. Through the use of call-back functions, numerical simulation software can request the value of a field at any time or location in the problem domain. Typically, this is used only for defining initial conditions, but the capability is not limited to just that use. The most recent version of DIATOM provides the ability to import the solution field from one numerical solution as input for another.« less

  6. A design tool for direct and non-stochastic calculations of near-field radiative transfer in complex structures: The NF-RT-FDTD algorithm

    NASA Astrophysics Data System (ADS)

    Didari, Azadeh; Pinar Mengüç, M.

    2017-08-01

    Advances in nanotechnology and nanophotonics are inextricably linked with the need for reliable computational algorithms to be adapted as design tools for the development of new concepts in energy harvesting, radiative cooling, nanolithography and nano-scale manufacturing, among others. In this paper, we provide an outline for such a computational tool, named NF-RT-FDTD, to determine the near-field radiative transfer between structured surfaces using Finite Difference Time Domain method. NF-RT-FDTD is a direct and non-stochastic algorithm, which accounts for the statistical nature of the thermal radiation and is easily applicable to any arbitrary geometry at thermal equilibrium. We present a review of the fundamental relations for far- and near-field radiative transfer between different geometries with nano-scale surface and volumetric features and gaps, and then we discuss the details of the NF-RT-FDTD formulation, its application to sample geometries and outline its future expansion to more complex geometries. In addition, we briefly discuss some of the recent numerical works for direct and indirect calculations of near-field thermal radiation transfer, including Scattering Matrix method, Finite Difference Time Domain method (FDTD), Wiener Chaos Expansion, Fluctuating Surface Current (FSC), Fluctuating Volume Current (FVC) and Thermal Discrete Dipole Approximations (TDDA).

  7. A Preliminary Formation Flying Orbit Dynamics Analysis for Leonardo-BRDF

    NASA Technical Reports Server (NTRS)

    Hughes, Steven P.; Mailhe, Laurie M.

    2001-01-01

    Leonardo-BRDF is a new NASA mission concept proposed to allow the investigation of radiative transfer and its effect on the Earth's climate and atmospheric phenomenon. Enabled by the recent developments in small-satellite and formation flying technology, the mission is envisioned to be composed of an array of spacecraft in carefully designed orbits. The different perspectives provided by a distributed array of spacecraft offer a unique advantage to study the Earth's albedo. This paper presents the flight dynamics analysis performed in the context of the Leonardo-BRDF science requirements. First, the albedo integral is investigated and the effect of viewing geometry on science return is studied. The method used in this paper, based on Gauss quadrature, provides the optimal formation geometry to ensure that the value of the integral is accurately approximated. An orbit design approach is presented to achieve specific relative orbit geometries while simultaneously satisfying orbit dynamics constraints to reduce formation-keeping fuel expenditure. The relative geometry afforded by the design is discussed in terms of mission requirements. An optimal Lambert initialization scheme is presented with the required DeltaV to distribute all spacecraft from a common parking orbit into their appropriate orbits in the formation. Finally, formation-keeping strategies are developed and the associated DeltaV's are calculated to maintain the formation in the presence of perturbations.

  8. Fiberprint: A subject fingerprint based on sparse code pooling for white matter fiber analysis.

    PubMed

    Kumar, Kuldeep; Desrosiers, Christian; Siddiqi, Kaleem; Colliot, Olivier; Toews, Matthew

    2017-09-01

    White matter characterization studies use the information provided by diffusion magnetic resonance imaging (dMRI) to draw cross-population inferences. However, the structure, function, and white matter geometry vary across individuals. Here, we propose a subject fingerprint, called Fiberprint, to quantify the individual uniqueness in white matter geometry using fiber trajectories. We learn a sparse coding representation for fiber trajectories by mapping them to a common space defined by a dictionary. A subject fingerprint is then generated by applying a pooling function for each bundle, thus providing a vector of bundle-wise features describing a particular subject's white matter geometry. These features encode unique properties of fiber trajectories, such as their density along prominent bundles. An analysis of data from 861 Human Connectome Project subjects reveals that a fingerprint based on approximately 3000 fiber trajectories can uniquely identify exemplars from the same individual. We also use fingerprints for twin/sibling identification, our observations consistent with the twin data studies of white matter integrity. Our results demonstrate that the proposed Fiberprint can effectively capture the variability in white matter fiber geometry across individuals, using a compact feature vector (dimension of 50), making this framework particularly attractive for handling large datasets. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Are non-linearity effects of absorption important for MAX-DOAS observations?

    NASA Astrophysics Data System (ADS)

    Pukite, Janis; Wang, Yang; Wagner, Thomas

    2017-04-01

    For scattered light observations the absorption optical depth depends non-linearly on the trace gas concentrations if their absorption is strong. This is the case because the Beer-Lambert law is generally not applicable for scattered light measurements due to many (i.e. more than one) light paths contributing to the measurement. While in many cases a linear approximation can be made, for scenarios with strong absorption non-linear effects cannot always be neglected. This is especially the case for observation geometries with spatially extended and diffuse light paths, especially in satellite limb geometry but also for nadir measurements as well. Fortunately the effects of non-linear effects can be quantified by means of expanding the radiative transfer equation in a Taylor series with respect to the trace gas absorption coefficients. Herewith if necessary (1) the higher order absorption structures can be described as separate fit parameters in the DOAS fit and (2) the algorithm constraints of retrievals of VCDs and profiles can be improved by considering higher order sensitivity parameters. In this study we investigate the contribution of the higher order absorption structures for MAX-DOAS observation geometry for different atmospheric and ground properties (cloud and aerosol effects, trace gas amount, albedo) and geometry (different Sun and viewing angles).

  10. A Preliminary Formation Flying Orbit Dynamics Analysis for Leonardo-BRDF

    NASA Technical Reports Server (NTRS)

    Hughes, Steven P.; Mailhe, Laurie M.

    2001-01-01

    Leonardo-BRDF is a NASA mission concept proposed to allow the investigation of radiative transfer and its effect on the Earth's climate and atmospheric phenomenon. Enabled by the recent developments in small-satellite and formation flying technology, the mission is envisioned to be composed of an array of spacecraft in carefully designed orbits. The different perspectives provided by a distributed array of spacecraft offer a unique advantage to study the Earth's albedo. This paper presents the orbit dynamics analysis performed in the context of the Leonardo-BRDF science requirements. First, the albedo integral is investigated and the effect of viewing geometry on science return is studied. The method used in this paper, based on Gauss quadrature, provides the optimal formation geometry to ensure that the value of the integral is accurately approximated. An orbit design approach is presented to achieve specific relative orbit geometries while simultaneously satisfying orbit dynamics constraints to reduce formation-keeping fuel expenditure. The relative geometry afforded by the design is discussed in terms of mission requirements. An optimal two-burn initialization scheme is presented with the required delta-V to distribute all spacecraft from a common parking orbit into their appropriate orbits in the formation. Finally, formation-keeping strategies are developed and the associated delta-V's are calculated to maintain the formation in the presence of perturbations.

  11. Flight Dynamics Analysis for Leonardo-BRDF

    NASA Technical Reports Server (NTRS)

    Hughes, Steven P.; Mailhe, Laurie; Bauer, Frank H. (Technical Monitor)

    2000-01-01

    Leonardo-BRDF (Bidirectional Reflectance Distribution Function) is a new NASA mission concept proposed to allow the investigation of radiative transfer and its effect on the Earth's climate and atmospheric phenomenon. Enabled by the recent developments in small-satellite and formation flying technology, the mission is envisioned to be composed of an array of spacecraft in carefully designed orbits. The different perspectives provided by a distributed array of spacecraft offer a unique advantage to study the Earth's albedo. This paper presents the flight dynamics analysis performed in the context of the Leonardo-BRDF science requirements. First, the albedo integral is investigated and the effect of viewing geometry on science return is studied. The method used in this paper, based on Gauss quadrature, provides the optimal formation geometry to ensure that the value of the integral is accurately approximated. An orbit design approach is presented to achieve specific relative orbit geometries while simultaneously satisfying orbit dynamics constraints to reduce formation-keeping fuel expenditure. The relative geometry afforded by the design is discussed in terms of mission requirements. An optimal Lambert initialization scheme is presented with the required Delta-V to distribute all spacecraft from a common parking orbit into their appropriate orbits in the formation. Finally, formation-keeping strategies are developed and the associated Delta-V's are calculated to maintain the formation in the presence of perturbations.

  12. Compensating for Electrode Polarization in Dielectric Spectroscopy Studies of Colloidal Suspensions: Theoretical Assessment of Existing Methods

    PubMed Central

    Chassagne, Claire; Dubois, Emmanuelle; Jiménez, María L.; van der Ploeg, J. P. M; van Turnhout, Jan

    2016-01-01

    Dielectric spectroscopy can be used to determine the dipole moment of colloidal particles from which important interfacial electrokinetic properties, for instance their zeta potential, can be deduced. Unfortunately, dielectric spectroscopy measurements are hampered by electrode polarization (EP). In this article, we review several procedures to compensate for this effect. First EP in electrolyte solutions is described: the complex conductivity is derived as function of frequency, for two cell geometries (planar and cylindrical) with blocking electrodes. The corresponding equivalent circuit for the electrolyte solution is given for each geometry. This equivalent circuit model is extended to suspensions. The complex conductivity of a suspension, in the presence of EP, is then calculated from the impedance. Different methods for compensating for EP are critically assessed, with the help of the theoretical findings. Their limit of validity is given in terms of characteristic frequencies. We can identify with one of these frequencies the frequency range within which data uncorrected for EP may be used to assess the dipole moment of colloidal particles. In order to extract this dipole moment from the measured data, two methods are reviewed: one is based on the use of existing models for the complex conductivity of suspensions, the other is the logarithmic derivative method. An extension to multiple relaxations of the logarithmic derivative method is proposed. PMID:27486575

  13. Accuracy assessment of Precise Point Positioning with multi-constellation GNSS data under ionospheric scintillation effects

    NASA Astrophysics Data System (ADS)

    Marques, Haroldo Antonio; Marques, Heloísa Alves Silva; Aquino, Marcio; Veettil, Sreeja Vadakke; Monico, João Francisco Galera

    2018-02-01

    GPS and GLONASS are currently the Global Navigation Satellite Systems (GNSS) with full operational capacity. The integration of GPS, GLONASS and future GNSS constellations can provide better accuracy and more reliability in geodetic positioning, in particular for kinematic Precise Point Positioning (PPP), where the satellite geometry is considered a limiting factor to achieve centimeter accuracy. The satellite geometry can change suddenly in kinematic positioning in urban areas or under conditions of strong atmospheric effects such as for instance ionospheric scintillation that may degrade satellite signal quality, causing cycle slips and even loss of lock. Scintillation is caused by small scale irregularities in the ionosphere and is characterized by rapid changes in amplitude and phase of the signal, which are more severe in equatorial and high latitudes geomagnetic regions. In this work, geodetic positioning through the PPP method was evaluated with integrated GPS and GLONASS data collected in the equatorial region under varied scintillation conditions. The GNSS data were processed in kinematic PPP mode and the analyses show accuracy improvements of up to 60% under conditions of strong scintillation when using multi-constellation data instead of GPS data alone. The concepts and analyses related to the ionospheric scintillation effects, the mathematical model involved in PPP with GPS and GLONASS data integration as well as accuracy assessment with data collected under ionospheric scintillation effects are presented.

  14. Relating soil pore geometry to soil water content dynamics decomposed at multiple frequencies

    NASA Astrophysics Data System (ADS)

    Qin, Mingming; Gimenez, Daniel; Cooper, Miguel

    2016-04-01

    Soil structure is a critical factor determining the response of soil water content to meteorological inputs such as precipitation. Wavelet analysis can be used to filter a signal into several wavelet components, each characterizing a given frequency. The purpose of this research was to investigate relationships between the geometry of soil pore systems and the various wavelet components derived from soil water content dynamics. The two study sites investigated were located in the state of São Paulo, Brazil. Each site was comprised of five soil profiles, the first site was situated along a 300-meter transect with about 10% slope in a tropical semi-deciduous forest, while the second one spanned 230-meter over a Brazilian savanna with a slope of about 6%. For each profile, between two to four Water Content Reflectometer CS615 (Campbell Scientific, Inc.) probes were installed according to horizonation at depths varying between 0.1 m and 2.3 m. Bulk soil, three soil cores, and one undisturbed soil block were sampled from selected horizons for determining particle size distributions, water retention curves, and pore geometry, respectively. Pore shape and size were determined from binary images obtained from resin-impregnated blocks and used to characterize pore geometry. Soil water contents were recorded at a 20-minute interval over a 4-month period. The Mexican hat wavelet was used to decompose soil water content measurements into wavelet components. The responses of wavelet components to wetting and drying cycles were characterized by the median height of the peaks in each wavelet component and were correlated with particular pore shapes and sizes. For instance, large elongated and irregular pores, largely responsible for the transmission of water, were significantly correlated with wavelet components at high frequencies (40 minutes to 48 hours) while rounded pores, typically associated to water retention, were only significantly correlated to lower frequency ranges (48 hours and two months). These results will be further discussed in the context of the location of the soil horizons within the toposequence.

  15. Discontinuous Galerkin method with Gaussian artificial viscosity on graphical processing units for nonlinear acoustics

    NASA Astrophysics Data System (ADS)

    Tripathi, Bharat B.; Marchiano, Régis; Baskar, Sambandam; Coulouvrat, François

    2015-10-01

    Propagation of acoustical shock waves in complex geometry is a topic of interest in the field of nonlinear acoustics. For instance, simulation of Buzz Saw Noice requires the treatment of shock waves generated by the turbofan through the engines of aeroplanes with complex geometries and wall liners. Nevertheless, from a numerical point of view it remains a challenge. The two main hurdles are to take into account the complex geometry of the domain and to deal with the spurious oscillations (Gibbs phenomenon) near the discontinuities. In this work, first we derive the conservative hyperbolic system of nonlinear acoustics (up to quadratic nonlinear terms) using the fundamental equations of fluid dynamics. Then, we propose to adapt the classical nodal discontinuous Galerkin method to develop a high fidelity solver for nonlinear acoustics. The discontinuous Galerkin method is a hybrid of finite element and finite volume method and is very versatile to handle complex geometry. In order to obtain better performance, the method is parallelized on Graphical Processing Units. Like other numerical methods, discontinuous Galerkin method suffers with the problem of Gibbs phenomenon near the shock, which is a numerical artifact. Among the various ways to manage these spurious oscillations, we choose the method of parabolic regularization. Although, the introduction of artificial viscosity into the system is a popular way of managing shocks, we propose a new approach of introducing smooth artificial viscosity locally in each element, wherever needed. Firstly, a shock sensor using the linear coefficients of the spectral solution is used to locate the position of the discontinuities. Then, a viscosity coefficient depending on the shock sensor is introduced into the hyperbolic system of equations, only in the elements near the shock. The viscosity is applied as a two-dimensional Gaussian patch with its shape parameters depending on the element dimensions, referred here as Element Centered Smooth Artificial Viscosity. Using this numerical solver, various numerical experiments are presented for one and two-dimensional test cases in homogeneous and quiescent medium. This work is funded by CEFIPRA (Indo-French Centre for the Promotion of Advance Research) and partially aided by EGIDE (Campus France).

  16. UAV based hydromorphological mapping of a river reach to improve hydrodynamic numerical models

    NASA Astrophysics Data System (ADS)

    Lükő, Gabriella; Baranya, Sándor; Rüther, Nils

    2017-04-01

    Unmanned Aerial Vehicles (UAVs) are increasingly used in the field of engineering surveys. In river engineering, or in general, water resources engineering, UAV based measurements have a huge potential. For instance, indirect measurements of the flow discharge using e.g. large-scale particle image velocimetry (LSPIV), particle tracking velocimetry (PTV), space-time image velocimetry (STIV) or radars became a real alternative for direct flow measurements. Besides flow detection, topographic surveys are also essential for river flow studies as the channel and floodplain geometry is the primary steering feature of the flow. UAVs can play an important role in this field, too. The widely used laser based topographic survey method (LIDAR) can be deployed on UAVs, moreover, the application of the Structure from Motion (SfM) method, which is based on images taken by UAVs, might be an even more cost-efficient alternative to reveal the geometry of distinct objects in the river or on the floodplain. The goal of this study is to demonstrate the utilization of photogrammetry and videogrammetry from airborne footage to provide geometry and flow data for a hydrodynamic numerical simulation of a 2 km long river reach in Albania. First, the geometry of the river is revealed from photogrammetry using the SfM method. Second, a more detailed view of the channel bed at low water level is taken. Using the fine resolution images, a Matlab based code, BASEGrain, developed by the ETH in Zürich, will be applied to determine the grain size characteristics of the river bed. This information will be essential to define the hydraulic roughness in the numerical model. Third, flow mapping is performed using UAV measurements and LSPIV method to quantitatively asses the flow field at the free surface and to estimate the discharge in the river. All data collection and analysis will be carried out using a simple, low-cost UAV, moreover, for all the data processing, open source, freely available software will be used leading to a cost-efficient methodology. The results of the UAV based measurements will be discussed and future research ideas will be outlined.

  17. Extending the Range for Force Calibration in Magnetic Tweezers

    PubMed Central

    Daldrop, Peter; Brutzer, Hergen; Huhle, Alexander; Kauert, Dominik J.; Seidel, Ralf

    2015-01-01

    Magnetic tweezers are a wide-spread tool used to study the mechanics and the function of a large variety of biomolecules and biomolecular machines. This tool uses a magnetic particle and a strong magnetic field gradient to apply defined forces to the molecule of interest. Forces are typically quantified by analyzing the lateral fluctuations of the biomolecule-tethered particle in the direction perpendicular to the applied force. Since the magnetic field pins the anisotropy axis of the particle, the lateral fluctuations follow the geometry of a pendulum with a short pendulum length along and a long pendulum length perpendicular to the field lines. Typically, the short pendulum geometry is used for force calibration by power-spectral-density (PSD) analysis, because the movement of the bead in this direction can be approximated by a simple translational motion. Here, we provide a detailed analysis of the fluctuations according to the long pendulum geometry and show that for this direction, both the translational and the rotational motions of the particle have to be considered. We provide analytical formulas for the PSD of this coupled system that agree well with PSDs obtained in experiments and simulations and that finally allow a faithful quantification of the magnetic force for the long pendulum geometry. We furthermore demonstrate that this methodology allows the calibration of much larger forces than the short pendulum geometry in a tether-length-dependent manner. In addition, the accuracy of determination of the absolute force is improved. Our force calibration based on the long pendulum geometry will facilitate high-resolution magnetic-tweezers experiments that rely on short molecules and large forces, as well as highly parallelized measurements that use low frame rates. PMID:25992733

  18. Slab1.0: A three-dimensional model of global subduction zone geometries

    NASA Astrophysics Data System (ADS)

    Hayes, Gavin P.; Wald, David J.; Johnson, Rebecca L.

    2012-01-01

    We describe and present a new model of global subduction zone geometries, called Slab1.0. An extension of previous efforts to constrain the two-dimensional non-planar geometry of subduction zones around the focus of large earthquakes, Slab1.0 describes the detailed, non-planar, three-dimensional geometry of approximately 85% of subduction zones worldwide. While the model focuses on the detailed form of each slab from their trenches through the seismogenic zone, where it combines data sets from active source and passive seismology, it also continues to the limits of their seismic extent in the upper-mid mantle, providing a uniform approach to the definition of the entire seismically active slab geometry. Examples are shown for two well-constrained global locations; models for many other regions are available and can be freely downloaded in several formats from our new Slab1.0 website, http://on.doi.gov/d9ARbS. We describe improvements in our two-dimensional geometry constraint inversion, including the use of `average' active source seismic data profiles in the shallow trench regions where data are otherwise lacking, derived from the interpolation between other active source seismic data along-strike in the same subduction zone. We include several analyses of the uncertainty and robustness of our three-dimensional interpolation methods. In addition, we use the filtered, subduction-related earthquake data sets compiled to build Slab1.0 in a reassessment of previous analyses of the deep limit of the thrust interface seismogenic zone for all subduction zones included in our global model thus far, concluding that the width of these seismogenic zones is on average 30% larger than previous studies have suggested.

  19. Demonstration of cardiac rotor and source mapping techniques in embryonic chick monolayers

    NASA Astrophysics Data System (ADS)

    You, Min Ju; Langfield, Peter; Campanari, Lucas; Dobbs, Matt; Shrier, Alvin; Glass, Leon

    2017-09-01

    Excitable media, such as the heart, display propagating waves with different geometries including target patterns and rotors (spiral waves). Collision of two waves leads to annihilation of both. We present algorithms for data processing and analysis to identify the core of rotors. In this work, we show that as the spatial sampling resolution decreases it becomes increasingly difficult to identify rotors—there are instances of false negatives and false positives. These observations are relevant to current controversies concerning the role of rotors in the initiation, maintenance, and treatment of cardiac arrhythmias, especially atrial fibrillation. Currently some practitioners target the core of rotors for ablation, but the effectiveness of this procedure has been questioned. In view of the difficulties inherent in the identification of rotors, we conclude that methods to identify rotors need to first be validated prior to assessing the efficacy of ablation.

  20. Enhanced convective dissolution of CO2 in reactive systems

    NASA Astrophysics Data System (ADS)

    de Wit, Anne; Thomas, Carelle; Loodts, Vanessa; Knaepen, Bernard; Rongy, Laurence

    2017-11-01

    To decrease the atmospheric concentration of CO2, sequestration techniques whereby this greenhouse gas is injected in saline aquifers present in soils are considered. Upon contact with the aquifer, the CO2 can dissolve in it and subsequently be mineralized via reactions with minerals like carbonates for instance. We investigate both experimentally and theoretically the influence of such reactions on the convective dissolution of CO2. Experiments analyze convective patterns developing when gaseous CO2 is put in contact with aqueous solutions of reactants in a confined vertical Hele-Shaw geometry. We show that the reactions can enhance convection and modify the nonlinear dynamics of density fingering. Numerical simulations further show that reactions can increase the flux of dissolving CO2, inducing a more efficient sequestration. Emphasis will be put on the control of the convective pattern properties by varying the very nature of the chemicals. Implications on the choice of optimal sequestration sites will be discussed.

  1. Classical geometry to quantum behavior correspondence in a virtual extra dimension

    NASA Astrophysics Data System (ADS)

    Dolce, Donatello

    2012-09-01

    In the Lorentz invariant formalism of compact space-time dimensions the assumption of periodic boundary conditions represents a consistent semi-classical quantization condition for relativistic fields. In Dolce (2011) [18] we have shown, for instance, that the ordinary Feynman path integral is obtained from the interference between the classical paths with different winding numbers associated with the cyclic dynamics of the field solutions. By means of the boundary conditions, the kinematical information of interactions can be encoded on the relativistic geometrodynamics of the boundary, see Dolce (2012) [8]. Furthermore, such a purely four-dimensional theory is manifestly dual to an extra-dimensional field theory. The resulting correspondence between extra-dimensional geometrodynamics and ordinary quantum behavior can be interpreted in terms of AdS/CFT correspondence. By applying this approach to a simple Quark-Gluon-Plasma freeze-out model we obtain fundamental analogies with basic aspects of AdS/QCD phenomenology.

  2. Modeling the defrost process in complex geometries - Part 1: Development of a one-dimensional defrost model

    NASA Astrophysics Data System (ADS)

    van Buren, Simon; Hertle, Ellen; Figueiredo, Patric; Kneer, Reinhold; Rohlfs, Wilko

    2017-11-01

    Frost formation is a common, often undesired phenomenon in heat exchanges such as air coolers. Thus, air coolers have to be defrosted periodically, causing significant energy consumption. For the design and optimization, prediction of defrosting by a CFD tool is desired. This paper presents a one-dimensional transient model approach suitable to be used as a zero-dimensional wall-function in CFD for modeling the defrost process at the fin and tube interfaces. In accordance to previous work a multi stage defrost model is introduced (e.g. [1, 2]). In the first instance the multi stage model is implemented and validated using MATLAB. The defrost process of a one-dimensional frost segment is investigated. Fixed boundary conditions are provided at the frost interfaces. The simulation results verify the plausibility of the designed model. The evaluation of the simulated defrost process shows the expected convergent behavior of the three-stage sequence.

  3. Direct weak localization signature with ultracold atoms: the CBS revival

    NASA Astrophysics Data System (ADS)

    Josse, Vincent

    2016-05-01

    Ultracold atomic systems in presence of disorder have attracted a lot of interest over the past decade, in particular to study the physics of Anderson localization (AL) in a renewed perspective. Landmark experiments have been demonstrated, in 1D and 3D geometries. However many challenges remain and new ideas have emerged, as for instance the search for original signatures of Anderson localization in momentum space. Here I will describe our progresses along that line where a weak localization effect has been directly observed, i.e. the Coherent Backscattering (CBS) phenomenon. In particular I will report on the recent observation of suppression and revival of CBS when a controlled dephasing kick is applied to the system. This observation demonstrates a novel and general method, introduced by T. Micklitz and coworkers, to study probe phase coherence in disordered systems by manipulating time reversal symmetry.

  4. Quantitative electron density characterization of soft tissue substitute plastic materials using grating-based x-ray phase-contrast imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarapata, A.; Chabior, M.; Zanette, I.

    2014-10-15

    Many scientific research areas rely on accurate electron density characterization of various materials. For instance in X-ray optics and radiation therapy, there is a need for a fast and reliable technique to quantitatively characterize samples for electron density. We present how a precise measurement of electron density can be performed using an X-ray phase-contrast grating interferometer in a radiographic mode of a homogenous sample in a controlled geometry. A batch of various plastic materials was characterized quantitatively and compared with calculated results. We found that the measured electron densities closely match theoretical values. The technique yields comparable results between amore » monochromatic and a polychromatic X-ray source. Measured electron densities can be further used to design dedicated X-ray phase contrast phantoms and the additional information on small angle scattering should be taken into account in order to exclude unsuitable materials.« less

  5. Coupling lattice Boltzmann and continuum equations for flow and reactive transport in porous media.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coon, Ethan; Porter, Mark L.; Kang, Qinjun

    2012-06-18

    In spatially and temporally localized instances, capturing sub-reservoir scale information is necessary. Capturing sub-reservoir scale information everywhere is neither necessary, nor computationally possible. The lattice Boltzmann Method for solving pore-scale systems. At the pore-scale, LBM provides an extremely scalable, efficient way of solving Navier-Stokes equations on complex geometries. Coupling pore-scale and continuum scale systems via domain decomposition. By leveraging the interpolations implied by pore-scale and continuum scale discretizations, overlapping Schwartz domain decomposition is used to ensure continuity of pressure and flux. This approach is demonstrated on a fractured medium, in which Navier-Stokes equations are solved within the fracture while Darcy'smore » equation is solved away from the fracture Coupling reactive transport to pore-scale flow simulators allows hybrid approaches to be extended to solve multi-scale reactive transport.« less

  6. Manual for the prediction of blast and fragment loadings on structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-11-01

    The purpose of this manual is to provide Architect-Engineer (AE) firms guidance for the prediction of air blast, ground shock and fragment loadings on structures as a result of accidental explosions in or near these structures. Information in this manual is the result of an extensive literature survey and data gathering effort, supplemented by some original analytical studies on various aspects of blast phenomena. Many prediction equations and graphs are presented, accompanied by numerous example problems illustrating their use. The manual is complementary to existing structural design manuals and is intended to reflect the current state-of-the-art in prediction of blastmore » and fragment loads for accidental explosions of high explosives at the Pantex Plant. In some instances, particularly for explosions within blast-resistant structures of complex geometry, rational estimation of these loads is beyond the current state-of-the-art.« less

  7. Non-equilibrium ionization around clouds evaporating in the interstellar medium

    NASA Technical Reports Server (NTRS)

    Ballet, J.; Luciani, J. F.; Mora, P.

    1986-01-01

    It is of prime importance for global models of the interstellar medium to know whether dense clouds do or do not evaporate in the hot coronal gas. The rate of mass exchanges between phases depends very much on that. McKee and Ostriker's model, for instance, assumes that evaporation is important enough to control the expansion of supernova remnants, and that mass loss obeys the law derived by Cowie and McKee. In fact, the geometry of the magnetic field is nearly unknown, and it might totally inhibit evaporation, if the clouds are not regularly connected to the hot gas. Up to now, the only test of the theory is the U.V. observation (by the Copernicus and IUE satellites) of absorption lines of ions such as OVI or NV, that exist at temperatures of a few 100,000 K typical of transition layers around evaporating clouds. Other means of testing the theory are discussed.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sypek, John T.; Yu, Hang; Dusoe, Keith J.

    Shape memory materials have the ability to recover their original shape after a significant amount of deformation when they are subjected to certain stimuli, for instance, heat or magnetic fields. But, their performance is often limited by the energetics and geometry of the martensitic-austenitic phase transformation. We report a unique shape memory behavior in CaFe 2As 2, which exhibits superelasticity with over 13% recoverable strain, over 3 GPa yield strength, repeatable stress–strain response even at the micrometer scale, and cryogenic linear shape memory effects near 50 K. These properties are acheived through a reversible uni-axial phase transformation mechanism, the tetragonal/orthorhombic-to-collapsed-tetragonalmore » phase transformation. These results offer the possibility of developing cryogenic linear actuation technologies with a high precision and high actuation power per unit volume for deep space exploration, and more broadly, suggest a mechanistic path to a class of shape memory materials, ThCr 2Si 2-structured intermetallic compounds.« less

  9. Novel Spectral Representations and Sparsity-Driven Algorithms for Shape Modeling and Analysis

    NASA Astrophysics Data System (ADS)

    Zhong, Ming

    In this dissertation, we focus on extending classical spectral shape analysis by incorporating spectral graph wavelets and sparsity-seeking algorithms. Defined with the graph Laplacian eigenbasis, the spectral graph wavelets are localized both in the vertex domain and graph spectral domain, and thus are very effective in describing local geometry. With a rich dictionary of elementary vectors and forcing certain sparsity constraints, a real life signal can often be well approximated by a very sparse coefficient representation. The many successful applications of sparse signal representation in computer vision and image processing inspire us to explore the idea of employing sparse modeling techniques with dictionary of spectral basis to solve various shape modeling problems. Conventional spectral mesh compression uses the eigenfunctions of mesh Laplacian as shape bases, which are highly inefficient in representing local geometry. To ameliorate, we advocate an innovative approach to 3D mesh compression using spectral graph wavelets as dictionary to encode mesh geometry. The spectral graph wavelets are locally defined at individual vertices and can better capture local shape information than Laplacian eigenbasis. The multi-scale SGWs form a redundant dictionary as shape basis, so we formulate the compression of 3D shape as a sparse approximation problem that can be readily handled by greedy pursuit algorithms. Surface inpainting refers to the completion or recovery of missing shape geometry based on the shape information that is currently available. We devise a new surface inpainting algorithm founded upon the theory and techniques of sparse signal recovery. Instead of estimating the missing geometry directly, our novel method is to find this low-dimensional representation which describes the entire original shape. More specifically, we find that, for many shapes, the vertex coordinate function can be well approximated by a very sparse coefficient representation with respect to the dictionary comprising its Laplacian eigenbasis, and it is then possible to recover this sparse representation from partial measurements of the original shape. Taking advantage of the sparsity cue, we advocate a novel variational approach for surface inpainting, integrating data fidelity constraints on the shape domain with coefficient sparsity constraints on the transformed domain. Because of the powerful properties of Laplacian eigenbasis, the inpainting results of our method tend to be globally coherent with the remaining shape. Informative and discriminative feature descriptors are vital in qualitative and quantitative shape analysis for a large variety of graphics applications. We advocate novel strategies to define generalized, user-specified features on shapes. Our new region descriptors are primarily built upon the coefficients of spectral graph wavelets that are both multi-scale and multi-level in nature, consisting of both local and global information. Based on our novel spectral feature descriptor, we developed a user-specified feature detection framework and a tensor-based shape matching algorithm. Through various experiments, we demonstrate the competitive performance of our proposed methods and the great potential of spectral basis and sparsity-driven methods for shape modeling.

  10. MLFMA-accelerated Nyström method for ultrasonic scattering - Numerical results and experimental validation

    NASA Astrophysics Data System (ADS)

    Gurrala, Praveen; Downs, Andrew; Chen, Kun; Song, Jiming; Roberts, Ron

    2018-04-01

    Full wave scattering models for ultrasonic waves are necessary for the accurate prediction of voltage signals received from complex defects/flaws in practical nondestructive evaluation (NDE) measurements. We propose the high-order Nyström method accelerated by the multilevel fast multipole algorithm (MLFMA) as an improvement to the state-of-the-art full-wave scattering models that are based on boundary integral equations. We present numerical results demonstrating improvements in simulation time and memory requirement. Particularly, we demonstrate the need for higher order geom-etry and field approximation in modeling NDE measurements. Also, we illustrate the importance of full-wave scattering models using experimental pulse-echo data from a spherical inclusion in a solid, which cannot be modeled accurately by approximation-based scattering models such as the Kirchhoff approximation.

  11. Dynamical error bounds for continuum discretisation via Gauss quadrature rules—A Lieb-Robinson bound approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woods, M. P.; Centre for Quantum Technologies, National University of Singapore; QuTech, Delft University of Technology, Lorentzweg 1, 2611 CJ Delft

    2016-02-15

    Instances of discrete quantum systems coupled to a continuum of oscillators are ubiquitous in physics. Often the continua are approximated by a discrete set of modes. We derive error bounds on expectation values of system observables that have been time evolved under such discretised Hamiltonians. These bounds take on the form of a function of time and the number of discrete modes, where the discrete modes are chosen according to Gauss quadrature rules. The derivation makes use of tools from the field of Lieb-Robinson bounds and the theory of orthonormal polynomials.

  12. Transferring technology to the public sector.

    NASA Technical Reports Server (NTRS)

    Alper, M. E.

    1972-01-01

    Approximately four years ago the Jet Propulsion Laboratory, under NASA sponsorship, began to devote some of its resources to examining ways to transfer space technology to the civil sector. As experience accumulated under this program, certain principles basic to success in technology transfer became apparent. An adequate definition of each problem must be developed before any substantial effort is expended on a solution. In most instances, a source of funds other than the potential user is required to support the problem definition phase of the work. Sensitivity to the user's concerns and effective interpersonal communications between the user and technical personnel are essential to success.

  13. Preface: Special Topic on Nuclear Quantum Effects

    NASA Astrophysics Data System (ADS)

    Tuckerman, Mark; Ceperley, David

    2018-03-01

    Although the observable universe strictly obeys the laws of quantum mechanics, in many instances, a classical description that either ignores quantum effects entirely or accounts for them at a very crude level is sufficient to describe a wide variety of phenomena. However, when this approximation breaks down, as is often the case for processes involving light nuclei, a full quantum treatment becomes indispensable. This Special Topic in The Journal of Chemical Physics showcases recent advances in our understanding of nuclear quantum effects in condensed phases as well as novel algorithmic developments and applications that have enhanced the capability to study these effects.

  14. A fully programmable 100-spin coherent Ising machine with all-to-all connections

    NASA Astrophysics Data System (ADS)

    McMahon, Peter; Marandi, Alireza; Haribara, Yoshitaka; Hamerly, Ryan; Langrock, Carsten; Tamate, Shuhei; Inagaki, Takahiro; Takesue, Hiroki; Utsunomiya, Shoko; Aihara, Kazuyuki; Byer, Robert; Fejer, Martin; Mabuchi, Hideo; Yamamoto, Yoshihisa

    We present a scalable optical processor with electronic feedback, based on networks of optical parametric oscillators. The design of our machine is inspired by adiabatic quantum computers, although it is not an AQC itself. Our prototype machine is able to find exact solutions of, or sample good approximate solutions to, a variety of hard instances of Ising problems with up to 100 spins and 10,000 spin-spin connections. This research was funded by the Impulsing Paradigm Change through Disruptive Technologies (ImPACT) Program of the Council of Science, Technology and Innovation (Cabinet Office, Government of Japan).

  15. Preface: Special Topic on Nuclear Quantum Effects.

    PubMed

    Tuckerman, Mark; Ceperley, David

    2018-03-14

    Although the observable universe strictly obeys the laws of quantum mechanics, in many instances, a classical description that either ignores quantum effects entirely or accounts for them at a very crude level is sufficient to describe a wide variety of phenomena. However, when this approximation breaks down, as is often the case for processes involving light nuclei, a full quantum treatment becomes indispensable. This Special Topic in The Journal of Chemical Physics showcases recent advances in our understanding of nuclear quantum effects in condensed phases as well as novel algorithmic developments and applications that have enhanced the capability to study these effects.

  16. Statistically significant relational data mining :

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berry, Jonathan W.; Leung, Vitus Joseph; Phillips, Cynthia Ann

    This report summarizes the work performed under the project (3z(BStatitically significant relational data mining.(3y (BThe goal of the project was to add more statistical rigor to the fairly ad hoc area of data mining on graphs. Our goal was to develop better algorithms and better ways to evaluate algorithm quality. We concetrated on algorithms for community detection, approximate pattern matching, and graph similarity measures. Approximate pattern matching involves finding an instance of a relatively small pattern, expressed with tolerance, in a large graph of data observed with uncertainty. This report gathers the abstracts and references for the eight refereed publicationsmore » that have appeared as part of this work. We then archive three pieces of research that have not yet been published. The first is theoretical and experimental evidence that a popular statistical measure for comparison of community assignments favors over-resolved communities over approximations to a ground truth. The second are statistically motivated methods for measuring the quality of an approximate match of a small pattern in a large graph. The third is a new probabilistic random graph model. Statisticians favor these models for graph analysis. The new local structure graph model overcomes some of the issues with popular models such as exponential random graph models and latent variable models.« less

  17. New Hardness Results for Diophantine Approximation

    NASA Astrophysics Data System (ADS)

    Eisenbrand, Friedrich; Rothvoß, Thomas

    We revisit simultaneous Diophantine approximation, a classical problem from the geometry of numbers which has many applications in algorithms and complexity. The input to the decision version of this problem consists of a rational vector α ∈ ℚ n , an error bound ɛ and a denominator bound N ∈ ℕ + . One has to decide whether there exists an integer, called the denominator Q with 1 ≤ Q ≤ N such that the distance of each number Q ·α i to its nearest integer is bounded by ɛ. Lagarias has shown that this problem is NP-complete and optimization versions have been shown to be hard to approximate within a factor n c/ loglogn for some constant c > 0. We strengthen the existing hardness results and show that the optimization problem of finding the smallest denominator Q ∈ ℕ + such that the distances of Q·α i to the nearest integer are bounded by ɛ is hard to approximate within a factor 2 n unless {textrm{P}} = NP.

  18. SU-G-TeP3-02: Determination of Geometry-Specific Backscatter Factors for Radiobiology Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viscariello, N; Culberson, W; Lawless, M

    2016-06-15

    Purpose: Radiation biology research relies on an accurate radiation dose delivered to the biological target. Large field irradiations in a cabinet irradiator may use the AAPM TG-61 protocol. This relies on an air-kerma measurement and conversion to absorbed dose to water (Dw) on the surface of a water phantom using provided backscatter factors. Cell or small animal studies differ significantly from this reference geometry. This study aims to determine the impact of the lack of full scatter conditions in four representative geometries that may be used in radiobiology studies. Methods: MCNP6 was used to model the Dw on the surfacemore » of a full scatter phantom in a validated orthovoltage x-ray reference beam. Dw in a cylindrical mouse, 100 mm Petri dish, 6-well and 96-well cell culture dishes was simulated and compared to this full scatter geometry. A reference dose rate was measured using the TG-61 protocol in a cabinet irradiator. This nominal dose rate was used to irradiate TLDs in each phantom to a given dose. Doses were obtained based on TLDs calibrated in a NIST-traceable beam. Results: Compared to the full scattering conditions, the simulated dose to water in the representative geometries were found to be underestimated by 12-26%. The discrepancy was smallest with the cylindrical mouse geometry, which most closely approximates adequate lateral- and backscatter. TLDs irradiated in the mouse and petri dish phantoms using the TG-61 determined dose rate showed similarly lower values of Dw. When corrected for this discrepancy, they agreed with the predicted Dw within 5%. Conclusion: Using the TG-61 in-air protocol and given backscatter factors to determine a reference dose rate in a biological irradiator may not be appropriate given the difference in scattering conditions between irradiation and calibration. Without accounting for this, the dose rate is overestimated and is dependent on irradiation geometry.« less

  19. Reduce beam hardening artifacts of polychromatic X-ray computed tomography by an iterative approximation approach.

    PubMed

    Shi, Hongli; Yang, Zhi; Luo, Shuqian

    2017-01-01

    The beam hardening artifact is one of most important modalities of metal artifact for polychromatic X-ray computed tomography (CT), which can impair the image quality seriously. An iterative approach is proposed to reduce beam hardening artifact caused by metallic components in polychromatic X-ray CT. According to Lambert-Beer law, the (detected) projections can be expressed as monotonic nonlinear functions of element geometry projections, which are the theoretical projections produced only by the pixel intensities (image grayscale) of certain element (component). With help of a prior knowledge on spectrum distribution of X-ray beam source and energy-dependent attenuation coefficients, the functions have explicit expressions. Newton-Raphson algorithm is employed to solve the functions. The solutions are named as the synthetical geometry projections, which are the nearly linear weighted sum of element geometry projections with respect to mean of each attenuation coefficient. In this process, the attenuation coefficients are modified to make Newton-Raphson iterative functions satisfy the convergence conditions of fixed pointed iteration(FPI) so that the solutions will approach the true synthetical geometry projections stably. The underlying images are obtained using the projections by general reconstruction algorithms such as the filtered back projection (FBP). The image gray values are adjusted according to the attenuation coefficient means to obtain proper CT numbers. Several examples demonstrate the proposed approach is efficient in reducing beam hardening artifacts and has satisfactory performance in the term of some general criteria. In a simulation example, the normalized root mean square difference (NRMSD) can be reduced 17.52% compared to a newest algorithm. Since the element geometry projections are free from the effect of beam hardening, the nearly linear weighted sum of them, the synthetical geometry projections, are almost free from the effect of beam hardening. By working out the synthetical geometry projections, the proposed approach becomes quite efficient in reducing beam hardening artifacts.

  20. Probabilistic Signal Recovery and Random Matrices

    DTIC Science & Technology

    2016-12-08

    applications in statistics , biomedical data analysis, quantization, dimen- sion reduction, and networks science. 1. High-dimensional inference and geometry Our...low-rank approxima- tion, with applications to community detection in networks, Annals of Statistics 44 (2016), 373–400. [7] C. Le, E. Levina, R...approximation, with applications to community detection in networks, Annals of Statistics 44 (2016), 373–400. C. Le, E. Levina, R. Vershynin, Concentration

  1. Spark gap with low breakdown voltage jitter

    DOEpatents

    Rohwein, G.J.; Roose, L.D.

    1996-04-23

    Novel spark gap devices and electrodes are disclosed. The novel spark gap devices and electrodes are suitable for use in a variety of spark gap device applications. The shape of the electrodes gives rise to local field enhancements and reduces breakdown voltage jitter. Breakdown voltage jitter of approximately 5% has been measured in spark gaps according the invention. Novel electrode geometries and materials are disclosed. 13 figs.

  2. Two atoms in an anisotropic harmonic trap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Idziaszek, Z.; Centrum Fizyki Teoretycznej, Polska Akademia Nauk, 02-668 Warsaw; Calarco, T.

    2005-05-15

    We consider the system of two interacting atoms confined in axially symmetric harmonic trap. Within the pseudopotential approximation, we solve the Schroedinger equation exactly, discussing the limits of quasi-one-and quasi-two-dimensional geometries. Finally, we discuss the application of an energy-dependent pseudopotential, which allows us to extend the validity of our results to the case of tight traps and large scattering lengths.

  3. NeuroTessMesh: A Tool for the Generation and Visualization of Neuron Meshes and Adaptive On-the-Fly Refinement

    PubMed Central

    Garcia-Cantero, Juan J.; Brito, Juan P.; Mata, Susana; Bayona, Sofia; Pastor, Luis

    2017-01-01

    Gaining a better understanding of the human brain continues to be one of the greatest challenges for science, largely because of the overwhelming complexity of the brain and the difficulty of analyzing the features and behavior of dense neural networks. Regarding analysis, 3D visualization has proven to be a useful tool for the evaluation of complex systems. However, the large number of neurons in non-trivial circuits, together with their intricate geometry, makes the visualization of a neuronal scenario an extremely challenging computational problem. Previous work in this area dealt with the generation of 3D polygonal meshes that approximated the cells’ overall anatomy but did not attempt to deal with the extremely high storage and computational cost required to manage a complex scene. This paper presents NeuroTessMesh, a tool specifically designed to cope with many of the problems associated with the visualization of neural circuits that are comprised of large numbers of cells. In addition, this method facilitates the recovery and visualization of the 3D geometry of cells included in databases, such as NeuroMorpho, and provides the tools needed to approximate missing information such as the soma’s morphology. This method takes as its only input the available compact, yet incomplete, morphological tracings of the cells as acquired by neuroscientists. It uses a multiresolution approach that combines an initial, coarse mesh generation with subsequent on-the-fly adaptive mesh refinement stages using tessellation shaders. For the coarse mesh generation, a novel approach, based on the Finite Element Method, allows approximation of the 3D shape of the soma from its incomplete description. Subsequently, the adaptive refinement process performed in the graphic card generates meshes that provide good visual quality geometries at a reasonable computational cost, both in terms of memory and rendering time. All the described techniques have been integrated into NeuroTessMesh, available to the scientific community, to generate, visualize, and save the adaptive resolution meshes. PMID:28690511

  4. Influence of proline upon the folding and geometry of the WALP19 transmembrane peptide.

    PubMed

    Thomas, Rachel; Vostrikov, Vitaly V; Greathouse, Denise V; Koeppe, Roger E

    2009-12-22

    The orientations, geometries, and lipid interactions of designed transmembrane (TM) peptides have attracted significant experimental and theoretical interest. Because the amino acid proline will introduce a known discontinuity into an alpha helix, we have sought to measure the extent of helix kinking caused by a single proline within the isolated TM helical domain of WALP19. For this purpose, we synthesized acetyl-GWWLALALAP(10)ALALALWWA-ethanolamide and included pairs of deuterated alanines by using 60-100% Fmoc-l-Ala-d(4) at selected sequence positions. Solid-state deuterium ((2)H) magnetic resonance spectra from oriented, hydrated samples (1/40, peptide/lipid; using several lipids) reveal signals from many of the alanine backbone C(alpha) deuterons as well as the alanine side-chain C(beta) methyl groups, whereas signals from C(alpha) deuterons generally have not been observed for similar peptides without proline. It is conceivable that altered peptide dynamics may be responsible for the apparent "unmasking" of the backbone resonances in the presence of the proline. Data analysis using the geometric analysis of labeled alanines (GALA) method reveals that the peptide helix is distorted due to the presence of the proline. To provide additional data points for evaluating the segmental tilt angles of the two halves of the peptide, we substituted selected leucines with l-Ala-d(4). Using this approach, we were able to deduce that the apparent average tilt of the C-terminal increases from approximately 4 degrees to approximately 12 degrees when Pro(10) is introduced. The segment N-terminal to proline is more complex and possibly is more dynamically flexible; Leu to Ala mutations within the N-terminal segment alter the average orientations of alanines in both segments. Nevertheless, in DOPC, we could estimate an apparent kink angle of approximately 19 degrees . Together, the results suggest that the central proline influences not only the geometry but also the dynamics of the membrane-spanning peptide. The results make up an important basis for understanding the functional role of proline in several families of membrane proteins.

  5. Implicit time-marching solution of the Navier-Stokes equations for thrust reversing and thrust vectoring nozzle flows

    NASA Technical Reports Server (NTRS)

    Imlay, S. T.

    1986-01-01

    An implicit finite volume method is investigated for the solution of the compressible Navier-Stokes equations for flows within thrust reversing and thrust vectoring nozzles. Thrust reversing nozzles typically have sharp corners, and the rapid expansion and large turning angles near these corners are shown to cause unacceptable time step restrictions when conventional approximate factorization methods are used. In this investigation these limitations are overcome by using second-order upwind differencing and line Gauss-Siedel relaxation. This method is implemented with a zonal mesh so that flows through complex nozzle geometries may be efficiently calculated. Results are presented for five nozzle configurations including two with time varying geometries. Three cases are compared with available experimental data and the results are generally acceptable.

  6. Spatial-heterodyne sampling requirements in the off-axis pupil plane recording geometry for deep-turbulence wavefront sensing

    NASA Astrophysics Data System (ADS)

    Banet, Matthias T.; Spencer, Mark F.

    2017-09-01

    Spatial-heterodyne interferometry is a robust solution for deep-turbulence wavefront sensing. With that said, this paper analyzes the focal-plane array sampling requirements for spatial-heterodyne systems operating in the off-axis pupil plane recording geometry. To assess spatial-heterodyne performance, we use a metric referred to as the field-estimated Strehl ratio. We first develop an analytical description of performance with respect to the number of focal-plane array pixels across the Fried coherence diameter and then verify our results with wave-optics simulations. The analysis indicates that at approximately 5 focal-plane array pixels across the Fried coherence diameter, the field-estimated Strehl ratios begin to exceed 0:9 which is indicative of largely diffraction-limited results.

  7. Born Oppenheimer potential energy for interaction of antihydrogen with molecular hydrogen

    NASA Astrophysics Data System (ADS)

    Strasburger, Krzysztof

    2005-09-01

    Inelastic collisions with hydrogen molecules are claimed to be an important channel of antihydrogen (\\overlineH) losses (Armour and Zeman 1999 Int. J. Quantum Chem. 74 645). In the present work, interaction energies for the H_{2}\\--\\overlineH system in the ground state have been calculated within the Born-Oppenheimer approximation. The leptonic problem was solved variationally with the basis of explicitly correlated Gaussian functions. The geometry of H2 was fixed at equilibrium geometry and the \\overlineH atom approached the molecule from two directions—along or perpendicularly to the bond axis. Purely attractive potential energy curve has been obtained for the first nuclear configuration, while a local maximum (lower than the energy at infinite separation) has been found for the second one.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warne, Larry K.; Langston, William L.; Basilio, Lorena I.

    The model for penetration of a wire braid is rigorously formulated. Integral formulas are developed from energy principles and reciprocity for both self and transfer immittances in terms of potentials for the fields. The detailed boundary value problem for the wire braid is also setup in a very efficient manner; the braid wires act as sources for the potentials in the form of a sequence of line multipoles with unknown coefficients that are determined by means of conditions arising from the wire surface boundary conditions. Approximations are introduced to relate the local properties of the braid wires to a simplifiedmore » infinite periodic planar geometry. This is used in a simplified application of reciprocity to be able to treat nonuniform coaxial geometries including eccentric interior coaxial arrangements and an exterior ground plane.« less

  9. Accurate, efficient, and (iso)geometrically flexible collocation methods for phase-field models

    NASA Astrophysics Data System (ADS)

    Gomez, Hector; Reali, Alessandro; Sangalli, Giancarlo

    2014-04-01

    We propose new collocation methods for phase-field models. Our algorithms are based on isogeometric analysis, a new technology that makes use of functions from computational geometry, such as, for example, Non-Uniform Rational B-Splines (NURBS). NURBS exhibit excellent approximability and controllable global smoothness, and can represent exactly most geometries encapsulated in Computer Aided Design (CAD) models. These attributes permitted us to derive accurate, efficient, and geometrically flexible collocation methods for phase-field models. The performance of our method is demonstrated by several numerical examples of phase separation modeled by the Cahn-Hilliard equation. We feel that our method successfully combines the geometrical flexibility of finite elements with the accuracy and simplicity of pseudo-spectral collocation methods, and is a viable alternative to classical collocation methods.

  10. On the Kerr-AdS/CFT correspondence

    NASA Astrophysics Data System (ADS)

    Amado, Julián Barragán; da Cunha, Bruno Carneiro; Pallante, Elisabetta

    2017-08-01

    We review the relation between four-dimensional global conformal blocks and field propagation in AdS5. Following the standard argument that marginal perturbations should backreact in the geometry, we turn to the study of scalar fields in the generic Kerr-AdS5 geometry. On one hand, the result for scattering coefficients can be obtained exactly using the isomonodromy technique, giving exact expressions in terms of c = 1 chiral conformal blocks. On the other hand, one can use the analogy between the scalar field equations to the Level 2 null field Ward identity in two dimensional Liouville field theory to write approximate expressions for the same coefficients in terms of semi-classical chiral Liouville conformal blocks. Surprisingly, the conformal block thus constructed has a well-behaved interpretation in terms of Liouville vertex operators.

  11. Anisotropic Laplace-Beltrami Eigenmaps: Bridging Reeb Graphs and Skeletons*

    PubMed Central

    Shi, Yonggang; Lai, Rongjie; Krishna, Sheila; Sicotte, Nancy; Dinov, Ivo; Toga, Arthur W.

    2010-01-01

    In this paper we propose a novel approach of computing skeletons of robust topology for simply connected surfaces with boundary by constructing Reeb graphs from the eigenfunctions of an anisotropic Laplace-Beltrami operator. Our work brings together the idea of Reeb graphs and skeletons by incorporating a flux-based weight function into the Laplace-Beltrami operator. Based on the intrinsic geometry of the surface, the resulting Reeb graph is pose independent and captures the global profile of surface geometry. Our algorithm is very efficient and it only takes several seconds to compute on neuroanatomical structures such as the cingulate gyrus and corpus callosum. In our experiments, we show that the Reeb graphs serve well as an approximate skeleton with consistent topology while following the main body of conventional skeletons quite accurately. PMID:21339850

  12. Capillary Flows Along Open Channel Conduits: The Open-Star Section

    NASA Technical Reports Server (NTRS)

    Weislogel, Mark; Geile, John; Chen, Yongkang; Nguyen, Thanh Tung; Callahan, Michael

    2014-01-01

    Capillary rise in tubes, channels, and grooves has received significant attention in the literature for over 100 years. In yet another incremental extension of such work, a transient capillary rise problem is solved for spontaneous flow along an interconnected array of open channels forming what is referred to as an 'open-star' section. This geometry possesses several attractive characteristics including passive phase separations and high diffusive gas transport. Despite the complex geometry, novel and convenient approximations for capillary pressure and viscous resistance enable closed form predictions of the flow. As part of the solution, a combined scaling approach is applied that identifies unsteady-inertial-capillary, convective-inertial-capillary, and visco-capillary transient regimes in a single parameter. Drop tower experiments are performed employing 3-D printed conduits to corroborate all findings.

  13. Reliability of equivalent sphere model in blood-forming organ dose estimation

    NASA Technical Reports Server (NTRS)

    Shinn, Judy L.; Wilson, John W.; Nealy, John E.

    1990-01-01

    The radiation dose equivalents to blood-forming organs (BFO's) of the astronauts at the Martian surface due to major solar flare events are calculated using the detailed body geometry of Langley and Billings. The solar flare spectra of February 1956, November 1960, and August 1972 events are employed instead of the idealized Webber form. The detailed geometry results are compared with those based on the 5-cm sphere model which was used often in the past to approximate BFO dose or dose equivalent. Larger discrepancies are found for the later two events possibly due to the lower numbers of highly penetrating protons. It is concluded that the 5-cm sphere model is not suitable for quantitative use in connection with future NASA deep-space, long-duration mission shield design studies.

  14. Frequency-selective near-field radiative heat transfer between photonic crystal slabs: a computational approach for arbitrary geometries and materials.

    PubMed

    Rodriguez, Alejandro W; Ilic, Ognjen; Bermel, Peter; Celanovic, Ivan; Joannopoulos, John D; Soljačić, Marin; Johnson, Steven G

    2011-09-09

    We demonstrate the possibility of achieving enhanced frequency-selective near-field radiative heat transfer between patterned (photonic-crystal) slabs at designable frequencies and separations, exploiting a general numerical approach for computing heat transfer in arbitrary geometries and materials based on the finite-difference time-domain method. Our simulations reveal a tradeoff between selectivity and near-field enhancement as the slab-slab separation decreases, with the patterned heat transfer eventually reducing to the unpatterned result multiplied by a fill factor (described by a standard proximity approximation). We also find that heat transfer can be further enhanced at selective frequencies when the slabs are brought into a glide-symmetric configuration, a consequence of the degeneracies associated with the nonsymmorphic symmetry group.

  15. Development and application of a 3-D geometry/mass model for LDEF satellite ionizing radiation assessments

    NASA Technical Reports Server (NTRS)

    Colborn, B. L.; Armstrong, T. W.

    1992-01-01

    A computer model of the three dimensional geometry and material distributions for the LDEF spacecraft, experiment trays, and, for selected trays, the components of experiments within a tray was developed for use in ionizing radiation assessments. The model is being applied to provide 3-D shielding distributions around radiation dosimeters to aid in data interpretation, particularly in assessing the directional properties of the radiation exposure. Also, the model has been interfaced with radiation transport codes for 3-D dosimetry response predictions and for calculations related to determining the accuracy of trapped proton and cosmic ray environment models. The methodology is described used in developing the 3-D LDEF model and the level of detail incorporated. Currently, the trays modeled in detail are F2, F8, and H12 and H3. Applications of the model which are discussed include the 3-D shielding distributions around various dosimeters, the influence of shielding on dosimetry responses, and comparisons of dose predictions based on the present 3-D model vs those from 1-D geometry model approximations used in initial estimates.

  16. A new spherical model for computing the radiation field available for photolysis and heating at twilight

    NASA Technical Reports Server (NTRS)

    Dahlback, Arne; Stamnes, Knut

    1991-01-01

    Accurate computation of atmospheric photodissociation and heating rates is needed in photochemical models. These quantities are proportional to the mean intensity of the solar radiation penetrating to various levels in the atmosphere. For large solar zenith angles a solution of the radiative transfer equation valid for a spherical atmosphere is required in order to obtain accurate values of the mean intensity. Such a solution based on a perturbation technique combined with the discrete ordinate method is presented. Mean intensity calculations are carried out for various solar zenith angles. These results are compared with calculations from a plane parallel radiative transfer model in order to assess the importance of using correct geometry around sunrise and sunset. This comparison shows, in agreement with previous investigations, that for solar zenith angles less than 90 deg adequate solutions are obtained for plane parallel geometry as long as spherical geometry is used to compute the direct beam attenuation; but for solar zenith angles greater than 90 deg this pseudospherical plane parallel approximation overstimates the mean intensity.

  17. Computing travel time when the exact address is unknown: a comparison of point and polygon ZIP code approximation methods.

    PubMed

    Berke, Ethan M; Shi, Xun

    2009-04-29

    Travel time is an important metric of geographic access to health care. We compared strategies of estimating travel times when only subject ZIP code data were available. Using simulated data from New Hampshire and Arizona, we estimated travel times to nearest cancer centers by using: 1) geometric centroid of ZIP code polygons as origins, 2) population centroids as origin, 3) service area rings around each cancer center, assigning subjects to rings by assuming they are evenly distributed within their ZIP code, 4) service area rings around each center, assuming the subjects follow the population distribution within the ZIP code. We used travel times based on street addresses as true values to validate estimates. Population-based methods have smaller errors than geometry-based methods. Within categories (geometry or population), centroid and service area methods have similar errors. Errors are smaller in urban areas than in rural areas. Population-based methods are superior to the geometry-based methods, with the population centroid method appearing to be the best choice for estimating travel time. Estimates in rural areas are less reliable.

  18. MONTE CARLO SIMULATIONS OF PERIODIC PULSED REACTOR WITH MOVING GEOMETRY PARTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Yan; Gohar, Yousry

    2015-11-01

    In a periodic pulsed reactor, the reactor state varies periodically from slightly subcritical to slightly prompt supercritical for producing periodic power pulses. Such periodic state change is accomplished by a periodic movement of specific reactor parts, such as control rods or reflector sections. The analysis of such reactor is difficult to perform with the current reactor physics computer programs. Based on past experience, the utilization of the point kinetics approximations gives considerable errors in predicting the magnitude and the shape of the power pulse if the reactor has significantly different neutron life times in different zones. To accurately simulate themore » dynamics of this type of reactor, a Monte Carlo procedure using the transfer function TRCL/TR of the MCNP/MCNPX computer programs is utilized to model the movable reactor parts. In this paper, two algorithms simulating the geometry part movements during a neutron history tracking have been developed. Several test cases have been developed to evaluate these procedures. The numerical test cases have shown that the developed algorithms can be utilized to simulate the reactor dynamics with movable geometry parts.« less

  19. Strategic guidelines for street canyon geometry to achieve sustainable street air quality—part II: multiple canopies and canyons

    NASA Astrophysics Data System (ADS)

    Chan, Andy T.; Au, William T. W.; So, Ellen S. P.

    The flow field and pollutant dispersion characteristics in a three-dimensional urban street canyon are investigated for various building array geometries. The street canyon in consideration is located in a multi-canopy building array that is similar to realistic estate situations. The pollutant dispersion characteristics are studied for various canopy aspect ratios, namely: the canyon height to width ratio, canyon length to height ratio, canyon breadth ratio and crossroad locations are studied. A three-dimensional field-size canyon has been analysed through numerical simulations using k- ɛ turbulence model. As expected, the wind flow and mode of pollutant dispersion is strongly dependent on the various flow geometric configurations and that the results can be different from that of a single canyon system. For example, it is found that the pollutant retention value is minimum when the canyon height-to-width ratio is approximately 0.8, or that the building height ratio is 0.5. Various rules of thumbs on urban canyon geometry have been established for good pollutant dispersion.

  20. Transition mixing study

    NASA Technical Reports Server (NTRS)

    Reynolds, R.; White, C.

    1986-01-01

    A computer model capable of analyzing the flow field in the transition liner of small gas turbine engines is developed. A FORTRAN code has been assembled from existing codes and physical submodels and used to predict the flow in several test geometries which contain characteristics similar to transition liners, and for which experimental data was available. Comparisons between the predictions and measurements indicate that the code produces qualitative results but that the turbulence models, both K-E and algebraic Reynolds Stress, underestimate the cross-stream diffusion. The code has also been used to perform a numerical experiment to examine the effect of a variety of parameters on the mixing process in transition liners. Comparisons illustrate that geometries with significant curvature show a drift of the jet trajectory toward the convex wall and weaker wake region vortices and decreased penetration for jets located on the convex wall of the liner, when compared to jets located on concave walls. Also shown were the approximate equivalency of angled slots and round holes and a technique by which jet mixing correlations developed for rectangular channels can be used for can geometries.

Top